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Abstract

Recent proposals for semantics of default theories are all based on some types of
weaker notion of extensions. This is typified in the well-founded semantics and the
extension class semantics for default theories. Although these semantics solve the no-
extension problem in Reiter’s default logic, they also present a departure from Reiter’s
original extension semantics, even for default theories which can be completely char-
acterized by the extension semantics. This results in a weaker capability for skeptical
reasoning.

In this paper we propose a semantics for default theories, based on van Gelder’s
alternating fixpoint theory. The distinct feature of this semantics is its preservation of
Reiter’s semantics when a default theory is not considered “problematic” under Reiter’s
semantics. Differences arise only when a default theory has no extensions, or has only
“biased extensions” under Reiter’s semantics. This feature allows skeptical reasoning
in Reiter’s logic to be properly preserved in the new semantics. By the familiar, natural
translation from logic programs to default theories, the semantics proposed for default
theories provides a natural extension to the stable model semantics of normal logic

programs.

*The paper has been printed as a Technical Report TR 92-16, Department of Computing Science, Uni-
versity of Alberta.



1 Introduction

Default logic, introduced by Reiter [13], forms one of the most important formalisms for
nonmonotonic reasoning. One of the problems with this default logic is that a reasonable
default theory may not always have extensions. In such a case, the semantics of the default
theory is not defined. There are also default theories for which there seem to be reasonable
(partial) extensions that could not be captured in Reiter’s extension semantics (from now
on, the extension semantics).

The aim of this paper is to define a semantics for default theories that is faithful to the
extension semantics for those default theories whose extension semantics yields (arguably)
perfect extensions. Arguably, if a default theory is not considered problematic under the ex-
tension semantics, one expects to get the same conclusions from any semantics that “corrects”
its problem. This semantic preservation is important for preserving both choice reasoning
and skeptical reasoning, as advocated originally by Reiter on the use of default logic.

Various semantics have been proposed in an attempt to resolve this problem. Marek and
Truszezynski [8] introduced the concept of weak extensions of default theories and showed
that weak extensions of a default theory correspond to expansions of suitably translated
formulas in autoepistemic logic. A default theory however is not guaranteed to possess a
weak extension. The well-founded semantics for logic programs has been extended to default
theories (see, for example, [12]). Although the well-founded approach is computationally
more attractive, it nevertheless pays the price for being unable to draw skeptical conclusions
that are implied under Reiter’s extensions semantics. Based on the concept of stable class
for logic programs, Baral and Subrahmanian [1, 2] proposed the extension class semantics for
default theories. This semantics is still considered weak in that there exist default theories
with (arguably) perfect extensions; but its extension class semantics could not draw any
useful conclusion. This phenomenon has a significant impact on identifying intended stable
classes for logic programs. As a matter of fact, as we will show, some obvious unintuitive
conclusions can be implied by the stable class semantics for logic programs.

Van Gelder, on the other hand, has shown that the well-founded semantics of logic
programs can be defined by the alternating fixpoint theory [5]. The basic idea is that if an
operator 7' is anti-monotonic, i.e., for £y and FEs, from E; C Ey we have T'(FEy) C T(E),



then 72, the function that applies 7' twice, is monotonic, and thus has at least one alternating
fixpoint.

The main result of this paper is to show that the alternating fixpoint theory can be used
to define a semantics that corrects the problem of the extension semantics without affecting
those default theories whose extension semantics have been considered appropriate. The
next section recalls default logic, and reviews various semantics for default logic. Section 3
discusses drawbacks in existing semantics. Then in Section 4 we present our new semantics
for default theories, with Section 5 showing that this semantics automatically applies to
normal logic programs. Section 6 discusses some of problems which are still not satisfactorily

solved by the recent proposals of semantics for default theories.

2 Default Logic and its Semantics

We assume a propositional language [ consisting of the usual well formed formulas over an
alphabet B. A default is a triple d = {p(d), j(d),c(d)}, where p(d) and ¢(d) are formulas of
L, and j(d) is a finite subset of L. p(d) is called the prerequisite of d, j(d) the justification
of d, and ¢(d) the consequent, or conclusion of d. Default d is usually denoted by M%%ﬂ. A
default theory is a pair (D, W), where W C L, and D is a collection of defaults.

2.1 The Extension Semantics of Reiter

Given a default theory (D, W) and a set E of formulas (called context), we first define an

operator g p which maps sets of formulas to sets of formulas in the following way:
Ry p(3) = Cn(S U {e(d)|d € D, p(d) € S, ~j(d) N E = 0}

where Cn denotes the familiar Tarskian consequence operator and —j(d) = {—ala € j(d)}.
The operator was initially defined by Reiter [13] and paraphrased in [1]. In this paper we
follow the notations used in [1].

We now define an operator T that transforms a given set E of formulas into a set T'(F)

of formulas as follows.



Definition 2.1 ([13, 1]) Suppose (D, W) is a default theory, and F is a set of formulas,

called the context. Assume

R0E7D = Cn(W)
Ry = Rpp(REp(W))
R%O,D = U?io R%,D(W)

Then an operator Tp w(FE) is defined as

Tpw(E) = Ry p(W).
When there is no confusion, we also use T'(F) to denote Tp w(FE). O
Lemma 2.1 ([2]) 7' is anti-monotonic, that is T'(FEy) C T'(Fy) if Fy C Fy. O

Given a default theory (D, W) and a set of formula £ = Cn(F), E is said to be a fixpoint
of (D,W)if and only if £ =T(F). F is said to be an alternating fizpoint of (D, W) if and
only if £ = T(T(F)). Since T is anti-monotonic, T? is monotonic and therefore, (D, W) has
at least one alternating fixpoint.

The extension semantics of a default theory is determined by its extensions.

Definition 2.2 ([13, 1]) £ is an extension of default theory (D, W) if and only if E is a

fixpoint of Tk p. O

Example 2.1 Suppose (D, W) is given by

W ={a—c}, D={— = 1
¢ d
and F = Cn({a,c,p}) is the context. Then:

B, = Cn(faec))
R}ED = Cn({a « ¢, c})
RE p Cn({a < ¢,c,p}) = Rg p(W) = Un(E)

Since T(E) = F, E is an extension of (D, W). O



According to Reiter, there are two reasoning modes in using default logic: each arbitrarily
chosen extension can be seen as an acceptable set of beliefs, or the truth of a formula is
determined by whether it is contained in all extensions. The former is called choice reasoning
and latter skeptical reasoning.

However, a default theory may have no extensions at all.

Example 2.2 Consider the default theory (D, W), where W = {p}, and D = {%q} The

two possible candidates for extensions are:

Ey = Cn({p}) and Ey = Cn({p.q})

But T(FEy) = Fy # Ey and T(Fz) = Ey # F>. Hence the default theory have no extensions

at all. O

To address the no-extension problem, various semantics for default theories have been

proposed.

2.2 The Extension Class Semantics

Baral and Subrahmanian have proposed the structure of extension class to represent the
meaning of default theories [1, 2]. The basic idea behind the concept of extension class is
that T' may not always have fixpoints; however, there may exist a collection of points so that

T circles around this collection of points.

Definition 2.3 ([1]) Let (D, W) be a default theory. A family, £ = (F;);ca of sets of

formulas is an extension class of (D, W) if and only if
1. E={T(E;,) | E; € E}, and
2. no proper subset of F satisfies the above condition.

a

As defined above, an extension class is a set of sets of formulas. A formula F' is assigned
true (resp. false) by an extension class £ = (F;);ca of a default theory (D, W) iff F'is true
(resp. false) in each F;, i € A.



Example 2.3 Consider the default theory (D, W) in Example 2.2 again. This theory has

exactly one extension class
{Cn({p}), Cn({p.q})}

Since p is true in both sets of this extension class, we say p is implied by the extension class
semantics of this default theory, and ¢ is unknown as it can be said to be neither true nor

false, based on the extension class. a

It has been shown that every default theory has at least one nonempty extension class

[1].

2.3 The Well-Founded Semantics

The well-founded semantics, introduced by Van Gelder, Ross, and Schlipf [6], is one of the
most prominent semantics for logic programs, which can be redefined in terms of alternating
fixpoints as below.

A logic program is a set of clauses of the form
A — Bl,...,Bn,_'Ch...,_‘Cm

where m,n > 0 and A, B;’s, and C;’s are atoms.
Let P be a program and [ a (two-valued) Herbrand interpretation of P. Then the
Gelfond-Lifschitz transformation of P with respect to I is the logic program P! obtained

from P as follows:

1. eliminating from P each clause whose body contains the negation of an atom in [;

2. from the body of each remaining clause in P, delete all negative literals.

Recall the transformation Tp (1), called the immediate consequence operator for a definite
program, whose output is a set of atoms such that « € Tp([) if and only if a is the head
of some clause in P all of whose literals in the body are in I. P! is a definite program and
hence has a unique least model which is given by Tpr T w.

We define Sp(I) = Tpr T w. A fizpoint of Sp is an interpretation of P such that [ =
Sp([), and an alternating fixpoint of P is an interpretation [ of P such that I = Sp(Sp(1)).
It has been shown that [ is a stable model of P if and only if [ is a fixpoint of Sp [7, 5].
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Let Ap(I) be Sp(Sp([)). Since Sp is anti-monotonic, Ap is monotonic and its least

fixpoint exists.

Proposition 2.1 ([5]) Let T" be the least fixpoint of Ap, F' = {ala ¢ Sp(T)}. Then
< T, F > is the well-founded model of P. O

Baral and Subrahmanian extend the well-founded semantics to default theories in the
following way [2].
Since T is anti-monotonic, TZ, the function that applies 1" twice, is monotonic. Let

Ipf(T?) be the least fixpoint of 7% and ¢fp(T?) be the greatest fixpoint of (7%). Then the

well-founded semantics is defined as follows.

Definition 2.4 ([2]) Let (D, W) be a default theory and F' be a formula. Then F' is true in
the well-founded semantics of the theory if F'is true in [ fp(T?). F'is false in the well-founded
semantics of the theory if F'is false in ¢ fp(T?). O

Przymusinski also gave a well-founded semantics for default logic [12], based on a three-
valued formalism for autoepistemic logic and the natural correspondence between default
theories and autoepistemic theories. Both well-founded semantics, by Przymusinski and
by Baral and Subrahmanian respectively, reduce to the well-founded model semantics for

normal logic programs.

2.4 Stable Class Semantics for Logic Programs

Baral and Subrahmanian [1] also introduced the concept of stable class. A stable class for
a logic program P is a set S of interpretations such that S = {Sp(/)|I € S}. It has been
shown that M is a (strict) stable class of P if and only if £ = {Cn(M;) | M; € M} is an
extension class of the default theory translated from P [1, 2].

Baral and Subrahmanian have realized that some stable classes do not make positive
contribution to capturing intended semantics and therefore defined a preference relation
among all stable classes and then defined the stable class semantics for logic programs as the
union of all minimal strict stable classes of P [1]. (Note that the extension class semantics

for default theories is defined by the set of all extension classes.)
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3 Recent Semantics Considered Too Weak

The original extension semantics for default theories suffers from the no-extension problem,
that is, some default theories may not have extensions at all, as demonstrated by Example 2.2
The recently proposed semantics to address this problem do not preserve Reiter’s seman-

tics for “non-problematic” default theories.
Example 3.1 Let (D, W) be the default theory, where
:mb i a
W:{CHG,CHZ)} D:{—vT}
a

There are two extensions Fy; = Cn({a,c} UW) and Ey = Cn({b,c} U W), which seem
to capture exactly the intuitive meaning of the theory. It then seems desirable for a new
semantics that intends to “correct” the no-extension problem to preserve the semantics of

Reiter for “non-problematic” default theories. a

Under the extension class semantics, the theory has three extension classes, viz.

FEy ={Cn({a,c; UW)}
Ey = {Cn({b,c} UW)}
FEs ={Cn({a,b,c; UW), Cn(W)}.

In the well-founded semantics by Baral and Subrahmanian, as well as in the three-valued
approach by Przymusinski, all the atoms have the unknown value. This yields a weaker
semantics, and the arguably intuitive meaning under Reiter’s semantics is not preserved. As
a result, neither choice reasoning nor skeptical reasoning under the original semantics can
be preserved.

It appears that in order to preserve Reiter’s semantics, all one needs to do is to identify the
desired extension classes, i.e., Ky and E5 for the preceding example. Baral and Subrahmanian
have studied different orderings over extension classes and proposed to use the so called
Smyth ordering. As a matter of fact, the set of all minimal extension classes under this
ordering defines the stable class semantics for logic programs. For the default theory above,
this ordering indeed isolates F; and F; as desired. Thus, it seems that the problem can be

resolved by eliminating undesirable extension classes. However the following example shows



that the approach used in the stable class semantics may yield unreanonable semantics for

logic programs.

Example 3.2 Let P be given by

a — —a
b«— —b
c— a,"a
c«— b b
P has two strict stable classes, viz. Cy = {{a,b,c},0}, and Cy = {{a,c},{b,c}}, but only
C'y is minimal by Smyth ordering. Therefore, the stable class semantics of P is determined
by C,, which implies ¢ is true.
Since the premises for deriving ¢ can never be satisfied in any circumstance, ¢ shall not
be true in any reasonable semantics.
It the above program is expressed as a default theory by the familiar translation, by
applying Smyth ordering, one gets the unintuitive extension class that corresponds to Cj
above.

a

4 The Alternating Semantics for Default Theories

In this section, we define the alternating semantics for default theories and demonstrate that
the alternating semantics provides a satisfactory solution to the problems discussed in the
previous section.

The basic idea behind the alternating semantics is that given a default theory (D, W),
Tpw may not always have fixpoints, which is the source of the no-extension problem for the
extension semantics of default logic. However, since T' is anti-monotonic, 7% is monotonic
and therefore, the least fixpoint of 7% does exist. By considering fixpoints of 7', that is the

alternating fixpoints, instead of extension classes, we are able to define a desired semantics.

Definition 4.1 Let (D, W) be a default theory, and F be a set of formulas. E is said to be
an alternating point of (D, W) if and only if £ = T(T(FE)). O



Example 4.1 Consider the default theory in Example 3.1 again. The theory has four
alternating fixpoints, viz. Iy = Cn({a,c}UW), I, = Cn({b,c} UW), I3 = Cn({a,b,c} UW),
and Iy = Cn(W). a

An alternating fixpoint is a set of formulas, and a formula F' is true in an alternating
fixpoint if and only if F' is contained in F' and F'is false in an alternating fixpoint if and
only if =/ is contained in the point. Since 7' is anti-monotonic and 72 is monotonic, every
default theory has at least one alternating fixpoint. The following theorem shows that the
well-founded semantics is characterized by the set of all alternating fixpoints of a default

theory.

Theorem 4.1 A formula F' is true (resp. false) in the well-founded semantics of a default
theory (D, W) if and only if it is true (resp. false) in the set of all alternating fixpoints of
the theory.

Proof: 1t directly follows from Definition 2.4 and the fact that for each alternating fixpoint
I, we have I C gfp(T?) and Ifp(T?) C I. O

The well-founded semantics is determined by the set of all alternating fixpoints of the
theory. However, not every alternating fixpoint makes positive contribution to the semantics.
Consider the theory in Example 4.1 again. (D, W) has four alternating fixpoints, viz Iy, I,
15, and 1. But the intuitive meaning of the theory is characterized by the first two alternating
fixpoints. The challenge here is how to eliminate those undesirable alternating fixpoints.

Let (D, W) be a default theory and I be an alternating fixpoint of the theory. Then
J =T(I) is also an alternating fixpoint, {I,J} is an extension class, and [ is a fixpoint if
and only if I = J. This simple fact tells us that each fixpoint is closely attached to another
alternating fixpoint. Let I and J be such two alternating fixpoints. Then {I,.J} can be used
to represent the meaning of the theory without conflict only if one is a subset of another,

i.e., either I C .J or J C [. This observation leads to the following definition.

Definition 4.2 Let (D,W) be a default theory, and I be an alternating fixpoint of the
theory. Then [ is said to be

1. a max-alternating fizrpoint of the theory if and only if T'(1) C I,

10



2. a minimal maz-alternating fizxpoint of the theory if [ is a max-alternating fixpoint of

the theory and there exists no man-alternating fixpoint J such that J C I, and

3. a normal alternating fixpoint of the theory if either [ is a minimal max-alternating

fixpoint or T'(/) is a minimal max-alternating fixpoint of the theory.

The alternating semantics of the default theory is then defined by the set of all normal
alternating fixpoints of the theory. a

Example 4.2 Consider the default theory in Example 3.1 and 4.1 again. [, I and I35 are
max-alternating fixpoints, but I, is not. Furthermore, only I; and [, are minimal max-
alternating fixpoints, and therefore, [; and I; are the only normal alternating fixpoints of

the theory. a

The following theorem shows that every default theory has at least one normal alternating

fixpoint.

Theorem 4.2 Every default theory has at least one normal alternating fixpoint.

Proof: 1t is sufficient to show that every default theory has at least one max-alternating fix-
point. Since T is anti-monotonic, {fp(T?) C gfp(T?) and Ifp(T?) = T(gpf(T?)). Therefore,
gpf(T?) is a max-alternating fixpoint of the theory. O

Example 4.3 Consider the default theory corresponding to the logic program in Exam-

ple 3.2 as follows.
cma s —b oaoa bi—b

WZ@? D:{‘ Y Y Y }

a b c c

The theory has four alternating fixpoints, viz. [ = Cn({a,b,c}), I, = Cn(0), I3 =
Cn({a,c}), and Iy = C'n({b, c}).

Of four alternating fixpoints, only 7 is a max-alternating fixpoint, and therefore, I; and
Iy are the only normal alternating fixpoints of the theory. Hence the alternating semantics

of the theory is the same as its well-founded semantics. a

There are also default theories for which there seem to be reasonable (partial) extensions

that could not be captured in Reiter’s extension semantics.
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Example 4.4 Consider the default theory (D, W) given by

e b oroa cp
}

WZ@? DZ{b? a? p7 p

This default theory corresponds to the following logic program P

a — —b
b— —a
pHﬁa

p<7p

The default theory has three normal alternating fixpoints: Iy = Cn({b,p}), I = Cn({a, p}),
and I3 = Cn({a}). Iy corresponds to one extension class and the other extension class
consists of Iy and 3. Thus, The alternating semantics of (D, W) coincides with the stable
class semantics of P. However, under the extension semantics we have exactly one extension

11, which seems biased. a

Note that the alternating semantics is not a proper extension of the stable class semantics,

since a stable class may not correspond to any alternating fixpoints.

Example 4.5 Consider the default theory:

W — ®7 D = {‘ b 2 : 2 ‘ }
There are two extension classes:

FEy ={Cn({a,b,c},Cn(0)}
by ={Cn({a}), On({b}), Cn({c}), Cn({a, b}),Cn({a,c}), Cn({b,c})}

The alternating semantics is determined by the two normal alternating fixpoints, Cn({a, b, c})
and Cn(0). If we apply Smyth ordering, the extension class F» will be chosen to represent the
semantics of theory. Indeed, the stable class semantics of the corresponding logic program
is determined by the stable class C = {{a}, {b}, {c}, {a, b},{a, ¢}, {b,c}}, which corresponds
to Fs O

12



5 The Alternating Semantics for Logic Programs

By the familiar, natural translation from logic programs to default theories [8], the alternat-
ing semantics we propose here for default theories automatically provides a natural semantics
for normal logic programs.

A logic program clause
A — Bl,...,Bn,_'Ch...,_‘Cm

can be translated to a default

B1 AN Bn . _‘Cl, ...,_|Cm
A

Then an alternating fixpoint of a program P is a (two-valued) Herbrand interpretation,
and normal alternating fixpoints of P can be identified in exactly the same way as for default
theories.

We argue that this semantics is a faithful extension of Gelfond and Lifschitz’s stable
model semantics, as it assigns the same semantics for those logic programs whose stable
models are never questioned or faulted in the literature. Further, for logic programs that

have no stable models, it provides a satisfactory extension.

6 Final Remarks

We comment that, like the well-founded semantics and the extension class semantics, the
alternating semantics proposed in this paper tackles the problem of no-extension and biased
extension, it however does not resolve the problem of inconsistency. Inconsistency can arise
because a given default theory is inconsistent in the sense of traditional logic, or because
seemingly independent justifications lead to contradictory consequents. The second case is
more interesting in the context of nonmonotonic reasoning.

Let us first consider the default theory given by
b e

W={a,  D={Z =}
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There are two alternating fixpoints, Cn({a}) and the set of all formulas, both of which are

normal. Now suppose we have one more default, i.e.,

b e

’ ‘P
W= {a}v D" = {jv _|_d7 ?}

[ts alternating fixpoints are exactly the same as before. However, it is intuitively desirable
to derive ¢, independent of the fact that some contradictory beliefs could also be derived.
(For the two examples we discussed here, the alternating semantics coincides with the well-
founded and extension class semantics.)

Consistency-based default logics, like J-default logic [4], Cumulative Default Logic [3],
and THEORIST [10], avoid the contradiction in the above example by branching into two
extensions, one containing {«,d, ¢} and the other containing {«, ~d, ¢}. This indeed solves
the problem at hand. However, these approaches also depart from Reiter’s semantics when

a default theory is not considered problematic. For example, the default theory below

:—a b
w=0 P=im= =)

has exactly one extension in Reiter’s logic; but it has two extensions in consistency-based
logics. Thus, these logics do not preserve Reiter’s semantics for “non-prolematic” theories.
As a matter of fact, the unique extension in Reiter’s logic is not only reasonable but is also
intuitive and desirable, as it presents the familiar notion of preference (particularly in the
context of logic programming). Indeed, the intuitive reason that the first default has higher
priority is because it provides “evidence” against assuming —b. The problem of identify-
ing preferred extensions has recently caught great attention in the field of nonmonotonic
reasoning (see, for example, [11]).

It is then interesting to see whether the problem of inconsistency can be properly treated

while still preserving Reiter’s semantics for “non-problematic” default theories.!

!'We should mention that the problem of handling inconsistency of this type has been considered for the

well-founded semantics [9].
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