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Abstract

In parallel and distributed applications there are two common programming models for
interprocess communication: shared memory and message passing. Shared memory has been
the standard for tightly-coupled systems (multiprocessors), where the processors have uniform
access to a single global memory. Although it is easy to use, memory contention limits the
scalability of tightly-coupled systems. On the other hand, message passing has been the major
model for loosely-coupled systems (multicomputers), where each processor has a physically
separate private memory. Applications that use message passing must move the data back
and forth explicitly within programs, making the model burdensome for programmers. In
recent years, researchers exploited the shared memory paradigm and studied its applicability
to loosely-coupled systems. These efforts resulted in a new abstraction of shared memory on a
distributed system that combines the best of the two original models. This concept, commonly
known as Distributed Shared Memory (DSM), provides the illusion of a large “shared” memory
that extends across machine boundaries. This paper reviews current research in distributed
shared memory and related topics.

1 Introduction

Traditionally, shared memory and message passing have been the two programming models for

interprocess communication and synchronization in computations performed on a distributed

system. Message passing has been the preferred way of handling interprocess communication in

loosely-coupled systems, because the computers forming a distributed system do not share physical

memory. The message passing model is characterized by data movement among cooperating

processes as they communicate and synchronize by sending and receiving messages. In contrast,

tightly-coupled processors primarily use shared memory model since it provides direct support

for data sharing.

In recent years, researchers exploited the shared memory paradigm and studied its applica-

bility to loosely-coupled systems. These efforts resulted in the introduction of a new concept

that combines the best of the two basic models. This concept, commonly known as Distributed

Shared Memory (DSM), refers to the abstraction of memory distributed over several systems, thus
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providing the illusion of a large “shared” memory. As illustrated in Figure 1, this global memory

spans the private memories of the component processors and extends across machine boundaries.

DSM allows processes executing on different interconnected processors to share memory by hiding

the physical location(s) of data, making the memory location transparent to the entire system. An

important benefit of this approach is that parallel programs developed for (real) shared memory

systems can execute on distributed architectures with no modification.

Memory 1 Memory 2
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Memory n

Processor 2

. . .
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Distributed Shared Memory

Interconnection Network

Figure 1: Distributed Shared Memory Abstraction

This paper is motivated by the considerable body of research on DSM in the past decade.

Our purpose is to provide an overview of distributed shared memory and to summarize current

research in this and related topics. While it is by no means exhaustive, we believe that this

review provides a representative picture of the topic covering all important research areas. An

earlier work as a comprehensive literature study of DSM is Hellwagner’s work [1]. This work aims

at identifying basic approaches and specifying desirable architectural support for implementing

required abstractions efficiently. In another comparative work, Tam et al. [2] elaborate on the

general DSM architecture and compare several systems. Other earlier survey and comparative

study on distributed shared memory include [3, 4, 5, 6]. Readers are also referred to the work by

Eskicioglu [7] for a more comprehensive list of the literature.

The rest of the paper is organized as follows. Section 2 begins with a brief historical overview

and describes early work related to distributed shared memory. We then introduce an informal

definition of consistency and briefly discuss common memory consistency models in section 3.

Section 4 describes fundamental protocols and algorithms used to provide consistent shared data

in a distributed system. Section 5 explores different ways to integrate DSM with the underlying

systems. In section 6 and 7, we overview performance studies and other issues surrounding DSM,

respectively. Finally, Section 9 elaborates on the current research directions. At the end of each

section, we list a representative collection of the literature in each category.
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[1] H. Hellwagner. A Survey of Virtually Shared Memory Schemes. Technical Report TUM-19056, Institute for
Informatics, Technical University of Munich, Germany, December 1990.

[2] M-C. Tam, J. M. Smith, and D. J. Farber. A Taxonomy-Based Comparison of Several Distributed Shared
Memory Systems. ACM Operating Systems Review, 24(3), July 1990.

[3] A. Mohindra and U. Ramachandran. A Survey of Distributed Shared Memory in Loosely-coupled Systems.
Technical Report GIT-CC-91/01, College of Computing, Georgia Institute of Technology, January 1991.

[4] A. Mohindra and U. Ramachandran. A Comparative Study of Distributed Shared Memory System Design
Issues. Technical Report GIT-CC-94/35, College of Computing, Georgia Institute of Technology, August
1994.

[5] S. Raina. Virtual Shared Memory: A Survey of Techniques and Systems. Technical Report CSTR-92-36,
Dept. of Computer Science, University of Bristol, 1992.

[6] J. Protic, M. Tomasevic, and V. Milutinovic. A Survey of Distributed Shared Memory Systems. In Proc. of
the 28th Hawaii Int’l Conf. on System Sciences (HICSS-28), volume I, pages 74–84, January 1995.

[7] M. R. Eskicioglu. A Comprehensive Bibliography of Distributed Shared Memory. ACM Operating Sys-
tems Review, 30(1):71–96, January 1996. This bibliography is updated periodically. It is available online at
http://www.cs.ualberta.ca/~rasit/dsmbiblio.html.

2 Concepts and Origins

Early in 1981, Abramson presented an interesting paper [8] at the Australian Computer Science

Conference, considering how to manage large virtual memory from a hardware perspective. At

the same conference, another paper by Rosenberg and Keedy [9] addresses the software issues

of large virtual memory. Later, a prototype, called MONADS-PC [10], was built based on the

concept of a single shared virtual memory. MONADS-PC had a large1 address space spanning

across a network of computers on which all the objects, such as processes, data, and files, are

accessed uniformly [11].

An earlier commercial system that employed basic DSM concepts on a network of workstations

was theApollo Domain built on Aegis operating system [13]. TheDomain system introduce the

single level store (SLS) concept, where users share objects in a local area network environment.

This approach allows different types of objects such as text files, structured data, and display

bitmaps to be transparently mapped into the address spaces of processes. The SLS views the

main memory of each node as a cache of objects mapped using a demand paging scheme.

Cheriton [12] proposes somewhat different paradigm, called problem-oriented shared memory

for building sophisticated distributed applications. This special form of shared memory imple-

ments the two fundamental memory operations (fetch and store) in a way that exploits problem-

specific semantics. Typically, problem-oriented shared memory provides a particular consistency

model and manages this model in behalf of the applications. Cheriton argues that shared mem-

ory semantics should be tuned to individual applications as needed and he suggests that studying

characteristics of problem semantics would reduce the cost of implementing shared memory. His

1The virtual address space of this prototype was 60 bits wide. MONADS-MM, a follow-up prototype, had
128-bit wide address space.
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work identifies several generic characteristics, such as relaxed memory schemes allowing temporary

“stale data”, and describes how they can be exploited to reduce the implementation costs.

[8] D. A. Abramson. Hardware Memory Management of a Large Virtual Memory. In Proc. of the 4th Australian
Computer Science Conf. (ACSC-4), pages 1–13, January 1981.

[9] J. Rosenberg and J. L. Keedy. Software Management of a Large Virtual Memory. In Proc. of the 4th Australian
Computer Science Conf. (ACSC-4), pages 173–181, January 1981.

[10] J. Rosenberg and D. A. Abramson. MONADS-PC: A Capability Based Workstation to Support Software
Engineering. In Proc. of the 18th Hawaii Int’l Conf. on System Sciences (HICSS-18), pages 222–230, January
1985.

[11] D. A. Abramson and J. L. Keedy. Implementing a Large Virtual Memory in a Distributed Computer System.
In Proc. of the 18th Hawaii Int’l Conf. on System Sciences (HICSS-18), pages 515–522, January 1985.

[12] D. R. Cheriton. Preliminary Thoughts on Problem-oriented Shared Memory: A Decentralized Approach to
Distributed Systems. ACM Operating Systems Review, 19(4):26–33, October 1985.

[13] P. J. Leach, P. H. Levine, B. P. Douros, J. Hamilton, D. L. Nelson, and B. L. Stumpf. The Architecture
of an Integrated Local Network. IEEE Journal on Selected Areas in Communications, SAC-1(5):842–856,
November 1983.

In his PhD dissertation [14], Kai Li describes a software shared memory abstraction on a

loosely-coupled distributed system. He also proposed several algorithms to enforce strict memory

consistency on this abstraction. IVY [15] is a page-based prototype DSM system implemented

on a token-ring network of Apollo workstations. It runs in user mode on top of slightly modified

Aegis operating system. We discuss IVY in more detail in Section 5.

[14] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Department of Computer
Science, Yale University, September 1986.

[15] K. Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proc. of the 1988 Int’l Conf. on
Parallel Processing (ICPP’88), volume II, pages 94–101, August 1988.

The foundations of distributed shared memory, basically cache coherence and memory man-

agement, have been studied since the 1960s. However, detailed research on DSM has been done

only during the past decade, and it has since become an active research area resulting in the

development of several experimental systems. Many people extended Li’s ideas to other such

areas as distributed object based systems, language and hardware supported systems. We discuss

these research research efforts in Section 5.

3 Consistency Models

Users generally assume when writing programs that “the current value of a variable is determined

by the most recent write by the program to that variable.” This fundamental assumption is also

desirable for shared data accessed by programs running on a multiprocessor.

A consistency model is used to express the semantics of memory as observed by the programs

sharing it. Traditionally, only computer architects designing multiprocessor systems were inter-

ested in memory consistency. However, the study of memory consistency became increasingly
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popular in recent years and many publications about theoretical aspects appear in the literature.

For example, Raynal and Schiper [18] propose a set of formal definitions for several consistency

models. Also, Adve and Hill [16] and Sindhu et al. [17] introduce formal specifications of con-

sistency models. The specification of a consistency model provides answers to such questions

as: (1) What behavior is expected by the system (i.e., what is the value returned by every read

operation performed by a user)? (2) How does the system adhere to the expected consistency of

shared data? and (3) What are the constraints imposed on the ordering of shared data accesses

performed by two or more processors?

Mosberger [19] classifies the proposed memory consistency models as uniform and hybrid.

Hybrid models employ different ordering constraints depending on the type of memory access,

such as ordinary (to shared data) or synchronizing, while the uniform models do not distinguish

between the types of memory access. A recent article by Adve and Gharachorloo [20] also gives

a detailed overview of various consistency models. The variety of proposals in the literature

indicates that there is not a best consistency model for distributed systems.

[16] S. V. Adve and M. D. Hill. A Unified Formalization of Four Shared-Memory Models. IEEE Trans. on Parallel
and Distributed Systems, 4(6):613–624, June 1993.

[17] P. S. Sindhu, J-M. Frailong, and M. Cekleov. Formal Specification of Memory Models. In M. Dubois and
S. S. Thakkar, editors, Scalable Shared Memory Multiprocessors, pages 25–41. Kluwer Academic Publishers,
1992.

[18] M. Raynal and A. Schiper. A Suite of Formal Definitions for Consistency Criteria in Shared Memories.
In Proc. of the 9th Int’l Conf. on Parallel and Distributed Computing Systems (PDCS’96), pages 125–131,
September 1996.

[19] D. Mosberger. Memory Consistency Models. ACM Operating Systems Review, 27(1):18–26, January 1993.
Some correspondence appeared in Volume 27, Number 3 of the same journal. A revised version is available
as University of Arizona technical report TR 93/11.

[20] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial. IEEE Computer,
29(12):66–76, December 1996.

3.1 Uniform Models

Uniprocessors follow the sequential order specified by the programs (the program order) to achieve

a simple yet sufficient criteria known as atomic (strict) consistency (AC). An AC memory guar-

antees that a read access to a (shared) location always returns the most recent value written into

that location. However, “most recent” is ambiguous in a distributed system, because the results

of memory accesses (writes) performed by individual processors may be seen in different order

by some other processor(s). For this reason, less strict consistency models are proposed. Among

them, the following are the most common:

Sequential Consistency (SC) [21] weakens the AC requirements such that memory access

operations may not “take effect” during their execution. The SC model, however, guarantees that

“the result of any execution is the same as if the operations of all processors were executed in
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some sequential order, and the operations of each individual processor appear in this sequence

in the order specified by its program.” Accordingly, a system is sequentially consistent if all

shared accesses are consistent with some global ordering, such that this ordering does not violate

individual program orders.

Causal Consistency (CC) [22] is defined as “the agreement of all processors on the order of

causally related events (writes).” Basically, Hutto and Ahamad [22] applied Lamport’s notion of

potential causality [23] to distributed shared memory. They argue that events (reads and writes)

initiated by individual processors are totally ordered, and that reads of remote writes are related

by potential causality. The CC model allows events not causally related (i.e., concurrent) to be

observed in different orders. Thus, in CC only reads respect the order of causally related writes.

Processor Consistency (PC) [24] states that “the result of any execution is the same as if

operations of each individual processor appear [to any other processor] in the sequential order

specified by its program.” This informal definition is later formalized by Ahamad et al. [25] and

eliminated some ambiguities. PC ensures that writes by a given processor are always observed

(by the other processors) in the order they are issued. Gharachorloo et al. [26] propose somewhat

different consistency model, also called PC. One major difference between the two is that, the

latter allows a read of a different location to bypass a write operation in a given program order.

[21] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers, C-28(9):690–691, September 1979.

[22] P. W. Hutto and M. Ahamad. Slow Memory: Weakening Consistency to Enhance Concurrency in Distributed
Shared Memories. In Proc. of the 10th Int’l Conf. on Distributed Computing Systems (ICDCS-10), pages 302–
311, May 1990.

[23] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of the
ACM, 21(7):558–565, July 1978.

[24] J. R. Goodman. Cache Consistency and Sequential Consistency. Technical Report 61, IEEE Scalable Coher-
ence Interface Working Group, March 1989.

[25] M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger. The Power of Processor Consistency (Extended
Abstract). In Proc. of the 5th ACM Annual Symp. on Parallel Algorithms and Architectures (SPAA’93),
pages 251–260, June 1993.

[26] K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-Memory Multiprocessors. In Proc. of the 17th Annual Int’l Symp. on
Computer Architecture (ISCA’90), pages 15–26, May 1990.

3.2 Hybrid Models

Hybrid memory consistency models reduce strictness even further. These models take the advan-

tage of the fact that most parallel and distributed applications enforce higher-level synchronization

mechanisms within themselves, thus requiring the enforcement of coherent shared memory only

during explicit synchronization operation(s). We summarize the common hybrid models below.

Weak Consistency (WC) [27] separates ordinary shared data access from synchronization data
access. The conditions of the WC are:
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(1) accesses to synchronization variables are sequentially consistent,

(2) accesses to a synchronization variable are only allowed after all the previous ordinary
shared data accesses are performed, and

(3) accesses to ordinary shared data are only allowed after all the previous synchronization
accesses are performed.

Basically, a synchronization access is used both to control concurrency between processors and to

maintain the integrity of shared data.

Release Consistency (RC) [26] is as an extension of WC, with somewhat relaxed requirements.
The conditions for RC are:

(1) accesses to synchronization variables are processor consistent,

(2) all previous acquire operations must be performed before any access to shared data,
and

(3) all previous operations to shared data must be performed before a release operation is
performed.

Entry Consistency (EC) [28] relates a synchronization variable with each shared datum. In

an entry consistent system, processors require consistency of shared data only at the beginning

of a critical region.

[27] M. Dubois, C. Scheurich, and F. A. Briggs. Memory Access Buffering in Multiprocessors. In Proc. of the
13th Annual Int’l Symp. on Computer Architecture (ISCA’86), pages 434–442, June 1986.

[28] B. N. Bershad and M. J. Zekauskas. Shared Memory Parallel Programming with Entry Consistency for Dis-
tributed Memory Multiprocessors. Technical Report CMU-CS-91-170, School of Computer Science, Carnegie-
Mellon University, September 1991.

4 Memory Coherence Protocols and Algorithms

DSM provides a global view of all memories which should be maintained consistently according

to the memory model used. Coherence protocols, similar to cache coherence protocols found in

multiprocessors, are used to implement the required consistency semantics. The protocol is usually

straightforward if there is no replication among the shared data. In this case, the coherence can

easily be achieved by serializing the accesses to the data through the underlying network on each

processor. However, this method severely reduces the major advantages, namely scalability and

parallelism, of DSM. Thus, data replication is often required. Unfortunately, data replication

complicates the coherence protocols, since the protocols should also deal with multiple copies of

the shared data.

There are two common protocols to handle replication: write-invalidate and write-update.

• The Write-invalidate protocol broadcasts an invalidation request when a replica is modified

by a processor. Hence, it allows multiple read-only copies and one write-only copy to exist.

However, before a write operation is actually performed on the write-only copy, all the other
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(read-only) copies must be invalidated. This protocol is also known as the multiple-readers-

single-writer (MRSW) protocol.

• The Write-update protocol broadcasts the new value of the data when a replica is modified

by a processor. Since the write operations are immediate, this protocol allows multiple write-

only copies of shared data, as well as multiple read-only copies. Because of this characteristics,

it is also known as the multiple-reader-multiple-writer (MRMW) protocol.

Synchronized access to shared data is achieved by low level machine instructions such as Test-

and-Set in shared memory multiprocessors, In DSM systems, however, the use of such instructions

on arbitrary memory accesses is meaningless. A general solution is to provide the users with high

level synchronization primitives, such as locks and barriers, implemented using message passing.

Also, applications may synchronize only when necessary (for example, to indicate the completion

of a computation.)

In addition to keeping the shared memory consistent, a DSM system should also provide

algorithms to locate and access shared data. Stumm and Zhou [29] categorize such algorithms

based on whether the data are migratory, replicated, or both as follows:

• Central-server algorithm. Shared data resides in a fixed and known location and is main-

tained by a server. The users (clients) of the shared data send requests to the server and the

server responds to those requests. Although this algorithm is quite simple, it has a potential

bottleneck where the server node may become overloaded by frequent requests.

• Migration algorithm: Shared data relocate to the requesting nodes as they are accessed.

The shared data can also be grouped into larger units to reduce communication costs, allowing

neighboring data to be accessed locally. If the data block is not local, a client broadcasts a

“location request” message. Once it is located, the client sends a “migrate request” message

to the current holder to receive the data block. However, the communication costs can still be

high if the application exhibits poor locality of reference. Also, this two-phase algorithm causes

unnecessary traffic on the network.

• Read-replication algorithm. Shared data is replicated with read operations. This usually

reduces the communication overhead, since multiple read operations can be performed simul-

taneously. However, to maintain consistency for a write operation, the requester must first

multicast an invalidate message to the holders of the replicas. This algorithm basically follows

the write-invalidate protocol.

• Full-replication algorithm. This goes one step further and allows multiple writable copies

of the data blocks, but complicates the consistency maintenance of shared data. A global

“sequencer” controls accesses to the shared data to ensure consistency.

[29] M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared Memory. IEEE Computer, 23(5):54–64,
May 1990.
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5 System Models and Architectures

DSM implementations are integrated in parallel and distributed systems at different levels, pre-

senting the users with an abstraction of global shared memory (Figure 2). Researchers have

proposed three ways to provide DSM: hardware enhancements, operating system primitives and

system libraries, and language and application level mechanisms. These implementations, how-

ever, are not mutually exclusive. Wilson et al. [30] argue that a hybrid approach provides a

combination of the advantages of the individual abstractions.

Language Systems

Systems Software

Hardware

Figure 2: Levels of Integration

[30] A. W. Wilson Jr., R. P. LaRowe Jr., and M. J. Teller. Hardware Assist for Distributed Shared Memory. In
Proc. of the 13th Int’l Conf. on Distributed Computing Systems (ICDCS-13), pages 246–255, May 1993.

[31] D. Chaiken and A. Agarwal. Software-Extended Coherent Shared Memory: Performance and Cost. In Proc.
of the 21th Annual Int’l Symp. on Computer Architecture (ISCA’94), pages 314–324, April 1994.

The following sections introduce different levels of integration and give some examples of such

implementations.

5.1 Hardware Implementations

Providing hardware support to DSM has been exploited in several ways. Some systems explore

the idea of enhancing the networking capabilities of the loosely-coupled systems. For example, the

development of MemNet [32] is based on the observation that the network is always treated as

an I/O device by the communication protocols. MemNet is a shared memory local area network,

based on a high-speed token ring, where the local network appears as memory in the physical

address space of each processor. Capnet [33] extends this idea to a wider domain, namely wide

area networks, whereas the DASH system [34] aims at building a scalable high performance

architecture with single address space and coherent caches. Accordingly, the design of DASH
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combines the programmability of shared memory machines and the scalability of message passing

machines.

The Data Diffusion Machine (DDM) [35] is a new architecture that supports a cache-only

memory model. The DDM views the entire memory of the system as a large cache of its virtual

address space. PLUS [36] is a multiprocessor architecture that uses distributed memories with

hardware supported memory coherence and synchronization mechanisms. The PLUS architecture

is tailored to the fast and efficient execution of a single multi-threaded process on each processor.

Galactica Net [37] is a hardware assisted DSM architecture. The coherency of the shared

memory is achieved through the use of a special interface module, called Galactica Net Interface

Module (GIM).

Other hardware assisted DSM architectures include research machines such as MIT’s Alewife

[38], SUNY–Stony Brook’s Sesame [39], Rice University’s Willow [40], the Wisconsin Mul-

ticube [41], and commercial systems such as BBN Butterfly and Kendall Square Research’s

KSR1. These architectures generally employ hierarchical designs. With the exception of Galac-

tica Net, Sesame and Alewife, all the hardware solutions rely mainly on complex hardware

strategies to reduce shared memory access times. Yet, most of the hardware implementations are

supported to some extend by high-level software techniques to reduce the amount of communica-

tion overhead among the involved processors.

The following are some currently active projects related to hardware implementations of DSM:

FLASH is a scalable multiprocessor capable of supporting a variety of communication models

[42]; SHRIMP is a parallel multicomputer built from off-the-shelf Pentium PCs interconnected

to a routing network with an in-house network interface [43]; DICE is a modular and scalable

platform architecture based on a cache-only distributed memory scheme [44]; IA-COMA is a

scalable shared memory multiprocessor organized as a flat cache-only memory architecture [45];

S3.mp is a commercial scalable multiprocessor prototype based on cache-coherent non-uniform

memory access architecture [46]; andAvalanche is a project aiming at building a scalable parallel

computing platform from inexpensive components [47].

[32] G. S. Delp, A. S. Sethi, and D. J. Farber. An Analysis of MemNet: An Experiment in High-Speed Shared-
Memory Local Networking. In Proc. of the ACM Symp. on Communications Architectures, Protocols and
Applications (SIGCOMM’88), pages 165–174, August 1988.

[33] M-C. Tam and D. J. Farber. CapNet–An Approach to Ultra High Speed Network. In Proc. of the IEEE Int’l
Conf. on Communications (ICC’90), pages 955–961, April 1990.

[34] D. E. Lenoski, J. Ludon, K. Gharachorloo W-D. Weber, A. Gupta, J. L. Hennessy, M. Horowitz, and M. S.
Lam. The Stanford DASH Multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[35] D. H. D. Warren and S. Haridi. Data Diffusion Machine—A Scalable Share Virtual Memory Multiprocessor.
In Proc. of the Int’l Conf. on Fifth Generation Computer Systems (ICOT’88), pages 943–952, 1988.

[36] R. Bisiani and M. Ravishankar. PLUS: A Distributed Shared-Memory System. In Proc. of the 17th Annual
Int’l Symp. on Computer Architecture (ISCA’90), pages 115–124, May 1990.

[37] A. W. Wilson Jr., T. H. Probert, T. Lane, and B. Fleischer. Galactica Net: An Architecture for Distributed
Shared Memory. In Proc. of the 1991 GOMAC, pages 513–516, November 1991.
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[38] A. Agarwal, B-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Architecture for Multiprocessing.
In Proc. of the 17th Annual Int’l Symp. on Computer Architecture (ISCA’90), pages 14–110, May 1990.

[39] L. D. Wittie, G. Hermannsson, and A. Li. Eager Sharing for Efficient Massive Parallelism. In Proc. of the
1992 Int’l Conf. on Parallel Processing (ICPP’92), pages 251–255, August 1992.

[40] J. K. Bennett, S. Dwarkadas, J. A. Greenwood, and E. Speight. Willow: A Scalable Shared Memory Multi-
processor. In Proc. of Supercomputing’92, pages 336–345, November 1992.

[41] J. R. Goodman and P. J. Woest. The Wisconsin Multicube: A New Large-Scale Cache-Coherent Multipro-
cessor. In Proc. of the 15th Annual Int’l Symp. on Computer Architecture (ISCA’88), pages 422–431, May
1988.

[42] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. L. Hennessy. The Stanford FLASH Multiprocessor. In Proc.
of the 21th Annual Int’l Symp. on Computer Architecture (ISCA’94), pages 302–313, April 1994.

[43] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. In Proc. of the 21th Annual Int’l Symp. on Computer
Architecture (ISCA’94), pages 142–153, April 1994.

[44] G. Lee. An Assessment of COMA Multiprocessors. In Proc. of the 9th Int’l Parallel Processing Symp.
(IPPS’95), pages 388–392, April 1995.

[45] J. Torrellas and D. Padua. The Illinois Aggressive Coma Multiprocessor Project (I-ACOMA). In Proc. of the
6th Symp. on the Frontiers of Massively Parallel Computing (Frontiers’96), October 1996.

[46] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, D. Lee, and M. Parkin. The S3.mp Scalable Shared Memory
Multiprocessor. In Proc. of the 27th Hawaii Int’l Conf. on System Sciences (HICSS-27), volume I, pages
144–153, January 1994.

[47] J. B. Carter, A. Davis, R. Kuramkote, C-C. Kuo, L. B. Stoller, and M. Swanson. Avalanche: A Communication
and Memory Architecture for Scalable Parallel Computing. In Proc. of the Fifth Workshop on Scalable Shared
Memory Multiprocessors, June 1995.

5.2 Software Implementations

During the past decade, several prototypes have been built that provide a DSM abstraction at

the system level. System level implementations usually integrate the DSM as a region of virtual

address space in the participating programs using the virtual memory management system of the

underlying operating system.

Li’s shared virtual memory [14] provides users with an interface similar to the memory address

space on a multiprocessor architecture. Later, he expanded this idea to other architectures and

developed a prototype called Shiva on a hypercube [48].

Munin [49] is a runtime system and a server mechanism to allow programs written for shared

memory multiprocessors to be executed efficiently in a distributed memory environment. The

runtime system handles faults, threads, and synchronization mechanisms and provides support

for multiple consistency protocols [50], while the server mechanism handles the correct mapping of

shared segments into local memories. DSM is implemented as a two-level mechanism in Clouds

[51]: the Distributed Shared Memory Controller (DSMC) [52] provides data transfer and synchro-

nization primitives for supporting the abstraction of a global distributed shared memory, while

the DSM partition provides the kernel with the ability to create, destroy, activate, deactivate

segments, page-in, page-out portions of segments, and the semaphore operations. The DSMC is

also proposed as a hardware component [53].
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Mether [54] is a DSM system that runs on a network of Sun workstations integrated with the

SunOS operating system. It defines a special address space, called Mether Address Space, which

is a collection of fixed locations on the virtual address space of each workstation. The network file

system (NFS) of SunOS operating system was later modified to support virtual shared memory

[55]. Mirage [56] extends System V shared memory semantics to a network of computers. Users

organize and access their shared data through segments which are used to store data. The original

prototype of Mirage was developed on a network of three VAX 11/750 minicomputers. Later, this

prototype was ported to a network of IBM PS/2 personal computers, and is now called Mirage+

[57]. In the Choices project [58], the distributed shared memory is implemented using object-

oriented techniques [59]. The Choices DSM system is composed of two parts: an extension of

Choices virtual memory class hierarchy that provides page fault handling and maintains memory

coherence, and a network protocol that specifies the communications protocol among nodes that

shares memory to maintain memory coherence.

Newer research on distributed shared memory also extends to advanced software projects. The

Coherent Virtual Machine (CVM) provides multiple protocol support, extensibility, and fault

tolerance to the applications [60]. DiSOM is built as a software layer on the operating systems

of heterogeneous multicomputers [61]. KOAN is embedded in the operating system of a iPSC/2

hypercube multicomputer [62]. The Millipede project aims at developing a distributed shared

memory environment for parallel programming [63]. Quarks is a portable system supporting

multiple consistency protocols and multi-threading [64]. Phosphorus [65] and Adsmith [66] both

sit on top of the popular message passing kernel, PVM [67]. PAMS [68] and TreadMarks [69]

are the only two commercial DSM systems available today.
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5.3 Language Support

The highest level of integration provides distributed shared memory abstraction either by extend-

ing languages through run time libraries or by providing new language constructs. Tuple Space

is a novel synchronization mechanism developed for Linda [70], a parallel language based on the

notion of distributed shared memory. Similar to a record construct in Pascal, Tuple Space is a

global memory containing tuples. Unlike the other conceptual shared memory systems, however,

it is addressed associatively (by contents). Amber [71] is a programming system that permits ap-

plication programs to view a homogeneous network of computers as an integrated multiprocessor.

Orca [72], however, views DSM as a collection of shared objects of variable size and structures.

Current DSM projects that extend languages (mainly the C language) include Cilk [73], Fila-

ments [74], locust [75], and SAM [76]. Cilk is a multi-threaded runtime system that provides a

relaxed consistency, called DAG-consistency [73]. Filaments is a software package that supports

fine-grain parallelism efficiently on shared- and distributed-memory machines [74]. locust is an

object-based DSM that uses compile-time data dependency information to improve application
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performance by addressing issues such as false sharing, coherence maintenance, data prefetch-

ing, and affinity scheduling [75]. Finally, SAM, which also uses PVM as the underlying message

passing system, is a portable runtime system that provides a global name space and automatic

caching of shared data [76].
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6 Performance Evaluation and Analysis

Performance evaluation of distributed shared memory systems (both hardware and software ap-

proaches) is not an easy task. Performance aspects of hardware DSM architectures are evaluated

on simulators of the hardware [77]. Software memory consistency models are evaluated either by

simulation [78] or by other tools, such as petri nets [79, 80].

Keleher et al. [81] evaluate three implementations of software-based release consistent proto-

cols. Bodin et al. report the performance of a test suite on KOAN SVM [82]. Levelt et al. [83]

compare a language based DSM with a IVY–like system level implementation. Sun and Zhu [84]

propose “generalized speedup” as a new performance metric. Also, some work was done mea-

suring the performance of parallel applications that run on distributed shared memory systems

[85, 86, 87].
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7 Related Issues

Over the past few years, the research on DSM has been expanded to include some other related

issues, such as heterogeneity, recoverability, and fault-tolerance.

The Agora [88] and Mermaid [89] projects aim at extending DSM to heterogeneous system

environments. As a language level DSM, Agora supports multilanguage modules running on het-

erogeneous machines, by providing a set of access functions to create and manipulate shared data

structures. These functions can be accessed by different languages such as C and CommonLisp.

Mermaid, however, is implemented as a user-level DSM with minor operating system kernel

modifications. Although implemented in different languages on different machines, Mermaid

only supports the C language. Both research efforts conclude that the major problem is data con-

version and that for values at limits of range, different representations of floating point numbers

make the conversion impossible. Zhou et al. [90] argue that the number of different machines

accommodating heterogeneous DSM can be extended arbitrarily at the cost of providing separate

conversion routines for basic data types on each pair of machines. The development and coding

of these conversion routines is a one-time only effort and is transparent to the users. On the other

hand, inter-processor (network) data formats can be defined to eliminate this effort. However,

this would increase runtime conversion overhead, as the data would have to be converted twice

(first from sender’s format into the standard format and then from the standard format into the

receiver’s format) each time they are transported.
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Another problem that has recently drawn research interest is the recoverability of shared

data after processor failures. Wu and Fuchs [91] examine the problem of rollback recovery in

distributed shared memory environments using checkpointing and a twin-page disk storage tech-

nique. Their checkpointing scheme is transparent to users and is integrated into the coherence

protocol. Janssens and Fuchs [92] introduce new algorithms for checkpointing that take advantage

of relaxed consistency memory models. Two other works take different approaches to address the

recoverability of distributed shared memory: Kermarrec et al. [93] propose a recovery technique

that extends Li’s static distributed coherency management mechanism, Kim and Vaidya [94], in

contrast, propose a competitive update protocol.
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faults. They argue that host failures are not frequent and the failures in most cases are independent

of each other (except for power failure which might affect many hosts), thus tolerating a single

host failure is sufficient for most applications. The study shows that the extended versions of the

central-server and the full-replication algorithms do not introduce significant additional overhead.

However, the overhead introduced by the migration and the read-replication algorithms may be

substantial and reduce the performance of these algorithms dramatically, depending on the access

patterns of the applications. Brown and Wu [96] present a new set of fault-tolerant algorithms.
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8 Conclusion

We have reviewed the current research in distributed shared memory. Admittedly, substantial

research progress has been achieved over the past decade and more work is underway. The wide

variety of research in the field suggests that no one technique developed so far is alone sufficient to

provide an efficient implementation. Techniques solely based on hardware suffer from the lack of

proper technology, which can be partially eliminated by the use of sophisticated software methods.

On the other hand, software approaches alone usually have communication latencies regardless of

the techniques used. This overhead can usually be reduced by language-level primitives. Language

extensions then increases the complexity of programming.

We hope that this review will provide a solid starting point and a reference for interested

researchers. More research on DSM will be following. For example, expansion of the scope of

DSM, which is currently almost exclusively directed at large scientific applications, provision of

debugging and performance tuning tools for DSM, and better integration of the DSM systems

with the rest of the programming environments, are much needed [64].
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