. . -])
43589 .,
‘ I* National Library , Bibliotheque nationale
© MW of Canada du Canada

Canadian Theses Division Division des théses canadiennes

Ottawa, Canada.
K1A ON4

-2 . ~

A,

"
foon

PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER

e Please print or type — Ecrire en lettres moulées ou dactylographie

P

r

LN

Full Name of Author — Nom compilet de |'auteur ’
LOBERT & wnLLOQEF\’

o

Date of Birth - Date de narlssance

MAY 151950

Country of Birth — Lieu de naissance

Permanent Address — Résidence fi
- kol Willoner,

HUN CARY

|

190€- Mountain Highway, -

North Vancouver,

British Columkbia V7J 2M8.

Title of Thesis — Titre de la these

ON THE DesioN oF A PARALLEL AR\THMETIC oUN T

7 | o

p oS

University — Université

UNwy. <CF ALRER TA

Degree for which thesis was presemed — Grade pour quuel cette these fut présentee

Ph.D.

Year this degree conferred - Année d obtention de ce grade

Q749

. Permission is hereby granted to the NATIONAL LIBRARY OF
CANADA to microfilm this thesis and to Iend or sell copiles of
the film.

The author reserves other publication nghts, and neither the
thesis nor extensive extracts from it may be printed or other-
wise reproduced without the author S written permission.

Nam@ of Supervmm - Nom du dwectpur do these

PR. T. N.

¢ Htf\l

L'autornsation est. par la présente, accordée a la BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette théese ot de
préter ou de vendre des exemplaires du film

L'auteur se réserve tes autres droits de publication: ni la these
ni de longs extraits de celle-ci ne doivent étre imprimés ou
autrement reproduits sans I'autorisation écrite de |'auteur.

Date

/&/pizzwﬁé EIENEIN

Signature

NL-91 (4/77)

L5Y

I* National Library of Canada

Cataloguing Branch
Canadian Theses Division

Ottawa, Canada
K1A ON4 -

A

NOTICE

"

The quality of this mi&rofiche is heavily dependent upon
the quality of the original thesis submitted for microfilm-
ing. Every effort has been made to ensure the highest
quality of reproduction possible.

if pages are missing, contact the university which
granted the degree.

Some pages may have indistinct print especially. if

‘the original pages were typed with a poor typewriter

ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journat érticles,
published tests, etc.) are not tilmed.

\

Reproduction in full or in part of this film is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30.
Please read the authorization forms which accompany
this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339 (3/77) b

a
Bibliotheque natiomale du Canada

Direction du catalogage
Division des théses canadiennes

AVIS

La qualité de cette microfiche dépend grandement de Ia
qualité de la thése soumise au microfilmage. Nous avons

“tout fait pour assurer une qualité supérieure de repro-

duction.
’ .
S'il manque des pages, veuillez communiquer avec
Vuniversité qui a conféré le grade. +

La qualité d'impression de certaines p&ges peut
laisser a désirer, surtout si les pages originales ont été
dactylographiées al'aided un ruban usé ou sil'universite
nous alfait parvenir une photocopie de mauvaise qualité.

s documents qui font déja I'objet d'un droit d'au-
teurfarticles de revue, examens pubiiés, etc.) ne sont pas
microfilmés. .

Lareproduction, méme partielle, de ce'microfilm est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970. ¢. C-30. Veuillez ‘prendre connaissance des for-
mules d'autorisation qui accompagnent cette these.

1 \//

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

" f

. i

: ’ Bt o
THE UNIVERSITY OF ALBERTA . J

>
- f

ON 'THE DESIGN OF A PARALLEL ARITHMETIC UNIT

by
(:::) RQBERT G. WILLONER

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEAECH

IN PARTIAL ﬁU;FILLMENT OF. THE REQUIREMENTS FOR THE DEGREE

»

CF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTING SCIENCE

-

EDMONTON ALBERTA CANADA

FALL 1979

-

THE UNIVERSITY OF ALBERTA

] ' o
FACULTY OF GRALCUAZE STUDIES ANL RESFARCE
¥ :

.

ES

» -
V « - . Y s
! »

2

The wundersigned certify ,th%; they«\haye ready dnd-

recommend to the Faculty cf‘Graduéte Stqﬁies and ReSearch,v;_\
, ' - e v e, ’
for acceptance, a thesis entitled "oy THE DESIGN.OF A
. L ~ o S '
PARALLFL ARITHMETIC UNIT", submitted by Kobert Willoner in.

partial fulfillment of the requifemenfs‘fo: the degree of:

Doctor of Philosophv.

>,
. ~") /g) o -
lf/./ (~n —é_(;;l .(M]
Stanley Cafay
‘/ S o
// /” el
ma4 Gl ol
| laS Bates 3
""KJ T u&g\ < S
Kishor Trivedi (external) 3

Date _w___J_‘_q_z 9

N -
ABSTRACT =~ &) woe

In this study, the fea51b111ty of performlng the four

basic rlthmetlc operations "on-line" and in llnear time is

investigated. The operands and the results ‘are assumed to be

~ St o N o
fixed ©point and in bipary notation.;An gperation is said to

perform in linear time if its execution time is bounded from

above (and helow) by somne constant multlple of the length of

“ the longest of the operands. The on- llne property is
'satisf{ed if, 'in order to generate the 1th'brt of the

»fresult, it is necessary and sufflclent tp have the operands

-

available to the ith bit only. The operands_are assumed to
flow ~ through the. arithmetick unit in a bit-by-bit,
1easg»51gn1f1cant—b1t first fashion;' and the. réSults are

produced in the same manner..The advantages of thlS mode of

computatlon stem from the fact that a sequence of operatlons
.

L'can b%, performed <in an overlapped fashion,. ‘resulting in a

significant . speedlng up over .tradlglonal sequentlal

algorithms.

-

A} The proposed multlpller con51sts of a set of modules,

one 'for"each blt of the product A basic module of the.

»

muitipliefo is only slightly more complex than a- full adder;

ninstead of “three inputs and two outputs, it has five inputs

and three outputs, and is designzd to execute in the same
time as the adder. A divider is designed which accepts its

, . ‘ e
inputs and .produces a remainder and quotient in the same

1 iv

?

»
: b
bit-sequential right-to-left fashion, bt vith 4n initia}
time delayh'proportional to §;e word leﬁgth; Thé divide;,
whick also operafes "in linear time,-Vebngistéf

L 4

of three

ceparate circuits executing concuerentlyy: each -of

r

approximately the saﬁé/Jco@plexity as the circuits for the

other- three operations.

»

Suitable applications for this proposed mode of
I " ; .) T

. . . »
arithmetic operation are considered. -The evaluation of

\ .
expressions and the use of linear on-line arithmetic in

associative memories are prominent among tﬁése; A new,
superior method. of per forming modular exponentiatfon using
these concepts 1is developed. Using thisg a’ high spéed‘
hardware device for encoding and deéodiﬁ; me§s§§es in a.

"public-key cryptosysten" is designed.

E)

. ACKNOWLEDGEMENTS =

1

‘ . e : 3
- I ¥.wish +to express sincere gratitude to my supervisor,
pr. ~I-Ngo Chen, for his gﬁidancé,and;asSistance‘at every

" stage in the’ﬁéve}qpment of this thesis. ‘I thank the members

’ . Vi, 3 i . i
of my conmittee, 'Drs. John Tartar, Stan Cabay, Doug Bates
! N Kl I o N .

~

and Kishor Trifegi,"who have been invaluable in their

thorough assessment of this dissertation. All the people in
the 'Compuﬁing Science department have .con#ributed to making

my four year stay here a most-enjoyable experience.

“§ N
.

Special thanks must;‘gp to mjj>fiancee, Annie, for

providing the motivation necessary for the completion of
~this work. Agovenéli, I amvéyateful‘to my father, Guido, to
whdm this ‘thesis" is dedicﬁted; for instilling in me his
belief in the value of éducation. |

‘

s TABLE OF CONTENTS
chapter : : page

"1 INTRODUCTION « « « & v o 4 o o o o o o o o e o o o o o 1

’
2 LiNEAR ON-LINE ADDITION AND'SUBTRACTIQN e ¢ e « = « - 10
2.1 The Concept of 'Redundant Notgtion‘ s [0

2.2 A Bit-Sequential View of the Ripple-Carry Adder -. 11

3 THE NULTIPLIER = « v v v w o o @ e o mie e e e e e o 23
3.1 Previbus'Perosalé for Multipliers . « . « 24
3.2 A Linear Cﬁ1Line Design A S 3
3.3 logical Reéiization and Application . . & U3
3.4 An Optimal Algorithm for Multlple-Prec151on

Multiplication « . ¢« ¢ ¢ 4 & 4« v ¢ 4 4 e o <« -« « < 50

4 THE DIVIDER . « « o« « « « « % v v @ a v v v o o . . . 68

4.1 Fixed~Point Dividers « o o o . . e’ e « « « 68

4.2 A New Proposal for a Divider 75
1

5 ASSOCIATIVE MEMORY APPLICATIONS v 2 « o o = o o« « « < 82
5.1 An AssociatiV@ Processor Model . . . o o o o « . . B2

$.2 Addition of a Sequence of Numbers in an
Associative Processor . . . ¢ ¢ ¢« ¢ « o o . .- % 87

5.3 Multiplication of a Sequence of Numbers =+ , . . . 95

5.4 Vector and Matrix Operations <« 99

o vii

APPLICATIONS IN CRYPTOGRAPHY o« o = o « o 2 e 2©e o 107
6.1 What is a Public-Key Cryptosystem? 107

6.2 An O(n®) Algorithm for Modular Exponentiation . 110

x

"CONCLUSIONS =« o o o « o @ o a a s o o o @« o« o =« =« = 120

BIBLIOGRAPHY « « « « o o o o ege « «'« «'a =« « « « » 125

viii

figure

1.1

1.2

| T E »
: + LIST OF FIGURES '

»
A

L

Flynn's categorization of parallel processors . . .

A linear pipeline illustrated . . ./ . o . o . « .

~Addition and subtraction tables . .’{ i e e e e

Examples of addi}ion and subtraction

A éequential adder{ viewed in the context of

this.thesis o o o0 oL Lo oL,
One of the modules of the parallel-adder

Linkage of the adder modules+

Lo
3 13 . . 3 «\-‘/
The multlpller immediately before initiatiTig
step i in the computation of the product of |

ANA B v 4 i i i it h e e e m e e e e e e e e
1”*
/

\
>

One of the modules of the parailel nultiplier . .
Linkage of the multiplier modules

Generation of the elements of .the multiplication
ThombUus « ¢ ¢ ¢ & 4 v 4 v 4 e 4 e e e e e e e

Example of generation;of A(i,j)'s amd B(i,j)'s

Full multiplication example; The 5 inputs to
each module are arranged as shown at the bottonm

ol I I

Legend for logic dlagrams,'lllustrated wlth
examples . ¢ ¢ 4 4 4 4 i e e e ee e e e e

Logical realizatiqn”of a multiplier ﬁodule e e
Pipelined computétion of (A*¥B — C*D + E) *.F"._.
A compact computation tree, T - o
A computation tree, T', similar to T

A sample evaluation of the function ﬂt"';'. - . e

) ix

H

Example'of standard division method . + « « . .

The same example, modified for machine

implementation . .« « < + 4 o & = & o - - IR

Example of reciprocal evaluation . 5
/ i 2

An associative processor with bit-slice
capabilities . « e « 4 + ¢ o+ e o . e e - - -

Example of bit-slice on-line addition in an
associative MEMOTY. « =« « « o o = o« = =« =« =

Addition of m numbers in an associative memory

Initial layout of operands in memory prior to
AAditioN < « o« o o @ + o o+ e e e o e o =

Example of bit-slice on-line multiplication in
an associative BMEROLY . . « « « = « « « = =+ =« =

Computation of dot product . .7« <« o' - « - -

summary of applications of limnear on~line
circuits in associative memory . - < - - - = -

Exanple of modular exponentiation

69

71

79

85

89

91

92

100

101

106

119

algorithm A L e

2.1

LIST OF ALGORITHMS

g

Linear on-line addition . « « o ¢ ¢ o & + o <

Linear on—liﬁe mﬁltiplication‘f c e e e e e s o
Evaluation of the intermediate function “t" . .
S éﬁ
Restoring diVisionfalgorithm e = e ata ...'. .
Non-restoring division algorithm

Recursive function for computing reciprocals .

Associative memory addition

Associative memory multiplication . . « . - . .

Modular exponentiation by repeated'squaring‘and
multiplication . . . « .+ < . o ¢« « ¢ & . .

Modular exponehtiation algorithm suitable for
hardware implementation « 4 ¢ « « .

xi

page

113

114

- ~ chapter one-

) " INTRODUCTION

Paraliéi~,pr0cbssors ‘have beem categorized rn a number
of different ways[ﬂ9j. Perhaps the categorization nost
commonly acdepted ‘is ‘one based on the stream concept
introduced by Fiynn[ﬂb]ﬁﬁ A :stream is a sejuence of
instructions or data as executed or operated .on by a
processor. Using this concept, parallel computers are
classified by the magnltude (either in space or in time) oF
interactions of thelr instructions and data streams. In the
simplest— case, an SISD (single 1nstruct10n stream, single

data stream) machlne, only one 1nstruct13h can be operating

on one set Aof data at any given time. SIMD {single
Lo S

)

instruction stream, multiple data strean) computers have
~only one stream of anstructlons in execution at any tlme,
but each instruction may affect many different da'ta items.
These parallel computers are further categorized in [19] as’
follows:

- parallel infspace, as aézﬂstructured array COmputers

e.g. ILLIAC IV, OMEN-60, SIMDA;
- unstructured linear array computers, or ensembles

e.g. PEPE, Goodyear STARAN-S:

o

— parallel primarily _.in time, as are pirelined

computers

e.g. Amdahl 470 V/7, Cray-1, -TI ASC;

o

/- . . .
— associative processors whose memories are addressed

by contents rather than by addresses

e.g. PEPE, Goodyear STARAN S.

MIMD {(rultiple instruction stream, mwmultiple data
strepm) machines have more than one stream of instructions,
as many streams as theré are data streams. These
parallel

omputers are essentially interconnected sequential

computers, uxnally called multiprocessors. The UNIVAC 1108

is an example)\of such a machine. Flynn's categorization is

summarized in Figire 1.1, along with examples.

) The arithmetdc unit.is the heart for computation on a
gzziis}\hggﬁfu er, apd as such, has been the focus of
research in tye hardware area from the time the field was
first defined.. The standard ripple-~carry adder[31] is the
simplest to'build, and it performs in O (n) time,'where n is
the ndmbef_of bits of the addends. This adder is both linear
and on-line. A "ripple-horrow" subtracter performs in an
analogous ‘manﬁer. Theoretically, each of these «can be
speeded up to O(log n) by the use of "carry-lookahead"[31],
but at the cost of ennrmously increasing the complexity of

the circuitry. Information—theoretic.arguments can be used

n2Z2oHsNaCT ks n=H

D ATA
I T 1
| | |
{ Single | Multiple [
| Da ta | - Data |
| Streanm | Stream |
| i {
I (SD) | (MD) |
| l |
f +=:::::::::::::::::f:::::::::::::::::::.'
| . H | Array or |
| Single H Unit] Associative |
Instruction H Processor	Processor
Stream H	'
H e.g.	e.g.
{SI) H IBM 360	ILLIAC IV
[. H	
F H + —	
' . H _ (: .	
Multiple H Pipelined	Multiprocessor
ITnstruction 'H Processor i]	
! Stream H	!
H : e.g.	e.g.
(MI) H Amdahl 470 v/6	UNIVAC 1108 I
H :	
L 1 L]

Figure 1.1. Flynn's categorization of
parallel processors.

to show that +this is asymptotically optimal. The simplest
algorithm for performing mul£iplication without the use of
paral}elism requires O0(n2) time. Knuth[30] has shown that
this can be reduced to O(nd(1+€))+ for any arbitrarily small
€, but this result is not practical as the algorithams become
increasinglx complex as € —> 0, causing the constant of
rroportionality to become exttemely’ large. Schqnhage and
StraSsén[uu] have shown a Seriél algorithm that iéﬁ a
consié?rable improvement: C(n log h log log n). This is the
fastestv kﬁoqn algorithm but it is not yet known whether or

\

not it is optimal. Knuth shows a division algorithm of the

- same order “of time complexity, based on the

Schonhage-Strassen multiplication algorithm.

Atrubin[5] waé the first to show that by allowing
rarallelism, it is possible to perform multiplication in
»time O(n). He ~aLso showed a linear on-line algorithnm,
considerably more complex than the one to be demonstrated,
for evaluating the three-operand expressianA*B + C. This
algorithm will be discussed in some detail in éhapter 3.
Atrubin's work is of interest because it introduced the
éohcept bﬁflinear on-line arithmetic, which is the focus of

J
interest ”iﬁAthis thesis. An operation is said to perform in
lipear time if its execution time is bounded.ﬁrom above (and

below) by some constant nultiple of the length of the

-longest of the operands. The on-line property is satiéfiéd

+The symbol "A" is used to denote exponentiation

-
©

if, in order to generate the ith bit of the resulf, it is
necessary and sufficient to have the operands available to
the ith Lft only. The operands and the results are assumed
to be fixed point and in binary notation. They are further
assumed to floﬁ through the arithmetic unit in a bit-by-bit,

»

least-significant-bit-first fashion, and the result§/are

7

produced in the same ‘manner.

A number of studies have been made of algorithﬁs which
execute orn-line, but which perform in a left-to-right,
most—§ignificant—bit—first fashion. The most recent result,
with refe;ences ~to others, 1is given by Trivedi and
Ercegoyac[51j. The nature of their algorithms rnecessitates
the wuse of a redundant digit set, a£ least for the bits of
the result. This implies themneedufor post-processing of the
results. The algorithms presented here use a redundant
notation internally, but ©produce a1 results in customary
binary notation. Trivedi and Ercegovac present_algorithmé
for multiplication‘and division which have an inherent fixed
time delay independent of the length gg,the operands. |

The advantages of arithmetic operations being performed
on-lire and inA linear time stem fronm ﬁhe fact that a
sequéﬁce of ope}ations can be perfofﬁed in an overlapped
fashion, resulting in a significant "speediﬁg up o%er
traditional sequential algorithms. This teéhnigue is known

as pipelining. Pipelining is a commonly used hardware design

technique for utilizing parallelism to increase the
computation ‘rate of a computer. The effectiveness of this
technique is highly dependent on the structures of the
algorithm and of its input data. For certain types of
computations, pipelining can result in a significant
increase in performance, whereas for others, a noticeable

gain may be impossible to achieve.

In general, pipelining can be used effectively to
realize, an algorithm whenever that algorithm tan be divided
into a fixed number of steps that are to be executed in
" sequernce. A pipelined~ realizatiqn .of such an algotithm
consists of ,several hardware stages separated by registers.
There is one stage for each step of the algorithm and they
are inter;onnected in the same order that the steps are
executed. This is illustrated in’ Figure 1.2. éany computers
today ﬁse this technique for instruction execution. However,
the "arithmetic + computation "~ phase of an arithmetic
instruction is <currently alw;;s a single~ stage in the
pipeline. The development of on-line techniques in this
thesis and in other work allow the petential of breaking up

-individual arithmetic operations into yet another level of.

stages to be pipelined.

“

A number of recent technological developmernts make the
[
results of this thesis particularly applicable. The

bit-sequential nature of the arithmetic discussed herein is

Figure 1.2. 2

NN
e
Iﬁpgts &
I | o i
| | < e |
Y Y ¥
r) Bl
i - Register i |
L LS T L 1
| | =
Y Y i 4
r ?“\‘ 1
| _ NS l .
i Stage 1 ; I
| R
L L LI L .
| | { ,
¥ Y Yy 7
] 2 B
| Register |
L i
T T T : S~
| | | P :
Y \ Y »
r v R .J“.'
| | :
[Stage 2 | .
| [
L 1) L 8 L 1
i | |
| i K s
Y Y | J Y
. 1 “
| Register | %
T L T T T =
- - | | |
- ' \j Y A |
r 1
l |
| Stage N [
| ‘ ! |
! — + -]
o | - - . i
Y \ Y
Outputs
¥
linear pipeline illustrated.

- - equations. . L e

entirely compatible with the nature of bubble memories and

CCD's (charge-coupled devices), which are essentially.

.continuous shift registers. The modular construction of each
&) .

of the devices to be described allows for representation in

the bit-slice architecture which is currently popular with

many microprocessor manufacturers. Furthermore, the small
number of inputs and outputs on each of the designs to be
described permit LSI implementation wherein the limited

number of pins per chip is a constant constraint.

-

The thesis begins with a discussion of redundant

notatior in computer arithmetic, in Chaptef 2. The
ripple-carry adder -and ripple-borrow subtracter are
introduced in preparation for the development and

nd

explanation of the multiplier. The. next chapter aiscusses
the linear on-1line pultig&ier in detail. a logical
realization of the central part of this multiplier is given.
It is seen to be simple ih constrﬁction and, most impoftant,
cémpatible in timing-with the adder and subtracter.. Chapter
3 ends with a section concerning nmultiple-precision
multiplication in an SIMD processor. Ap algbrithm is
described and prowed to be optimal. The significance of this
result 1lies in th corollaries which follow from it. Lower
bounds can be tij:z;hed on a number of multipie—precision
g‘algorithms, such as (determinant ~éomputa£ioh; matrix

. ,(? <) . .
multiplication,- and the,x§olution of a -system of linear

~.

Chapter U4 describes the problems imposed»by,diﬁision.

- \

If is shown that sfrictly on-line division is notvpossiblg.
The introduction of. a delay between inputs and outputs
allows the construction of a suitable divider. This}érbﬁosed
divider makes use of ' the on-line muifrplier and
adder/éubtraé@er“ in an iterative éonvergent' reciprocal

algorithm.

A number of\applications for these elementary results
are. considered. In Chapter 5,' a strong correspondence
between on-line arithmetic and bithlice opefations in an
associative processor 1is demonstrated. This leads to a
number _of ihteresting applicatibns in an associative
processor, such as efficient algorithms for many vector and
~matrix operations. Another major’ applicapion of on-lirne
arithmefic appears 1in Chapter 6. This concgEnS»the problen
6f modular exponentiation, which is useful in certain
proposed implementations ' of public—key}éryptosystems. The
standard cubic algorithm for this problem is improved to one

of quadratic complexity.

chapter two

LINEAR ON—LINE ADDITION AND SUBTRACTION

A brief discussion of adders anq subtracters is
presented. Ripple-carry and. carry—lookaﬁead adders are
described and ~compared in time and design complexity. The
notion of redundant arithmetic is defined and diseussed.

. /‘:\
Ripple carry add iscussed in view of the arithmetic

unit to be propdgsed.

o

. r

2.1 The Concept| of Redundant Notation

r and subtracter presented here are capable of

a result in a redundant notation[26] in unit time
« the redundant notation is an extension of

i;lusfration of the subtracter, it is most convenient to
allow the digit -1, denoted 1. Since the result ofiEacp‘of
tﬁese operations een be performed in unit time, the result
in non-redundant form‘can be produced‘after n time steps, by

-

effectively perfofmingnn ripple-carries.

For the ©purposes of the multiplier and divider which

are to be discussed in the next two chapters, it will also

ke hecessary to have a means of producing a sum in redundant

form when one of the two addends is in redundant form, in

uni{: time. An analogous result will be neéeded for

10

%inary, by allowing the digit 2 in a poSition.‘Forv

~

1

subtraction. These can all be done, and the corresponding
|

table§;>appear in Fiqure 2.1. A few examples which should
ya

illustrate the algorithms are given in Figure 2.2. It is

easy to realize the required functions as Boolean logic

circuits.

2.2 A Bit-Sequential View of the Ripple—-Carry Adder

The design of the ﬁrithﬁetic unit to be described in
this thesis was ﬁotivated by observation of tﬁe performance
of a ripple~carry adder[31]. lLet us examine the operation of
this \simplé addér. Assume, throughout this thesis, that all
combutations are done in fixed polnt integers and that all
numbers are expressed in binary notatioﬁ. The two addends
which are input to this adder nust initially'pe lined up,
"right justified", so that the leasf significant bits of the
inputs are in the same position. The adder can then be
thought of as a device which moves over the two adddégs fronm
right to left, putting out a bit of tﬁe sum as it pésses

2

over each pair of bits of the operands;
A point to be noted is that the adder will have to have

some kind of temporary store (possibly denoted. as a change

of state) which is equivalent to theicarry bit.

In this thesis, it will be more useful to think of this

same adder as it 1is depicted in Figure 2.3. The addends

~"move through" the adder, one bit at a time with the least

‘ADDITION | SUBTRACTION

without|{ with
carry!| carry?

|without | with

12

| borrow3jborrow?|

RY

~-

i
|
+ + b — ——
| o n | !
O+0 4 0 1 1 | 0-014 0 1 |
I | | [| |
0+ 1 | 1 f 2 i 0 - 1| 1 I 0 |
| | | | | l
1+ 0 | 1 1 2 | 1 - 0 | 1 { 0 i
| | | | | o
1T+ 11 0 | 1 | 1-11 0 1 1 1
[| | | oy | |
2+0¢ 0 { 1 . 1-04 1 1 0
o IR | | |
L I T I I R P i-17 0 1 1
| | '| o | |
\ ay
N < |

In ADDITION,
0 0

_ 1
i"yithout carry" means 0, 1, or 0 in column to right

v 1 2 2 : :
2tyith carry" mearns 1, 0, or 1 in column to right

In SUBTRACTION,
0 1 1 ,

3nyithout borrow" means 0, 0, or 1 in column to right

0 1 a : :
4"yith borrow" means 1, 0, or 1 in column to right

Figure 2.1. Addition and subtraction tables.

Figure 2.2.

102 1001111
39 - 0100110
o 0100031 1
01‘640_111
0101111
141 01T 1111
00 1111 1
56 11\\"0'1101
56 -.15\1)1011
o 0111000
04001000
112
Examples of addition And

‘subtractiop.

13

69

31

83

75

[]
| a(n) | I b(mn) |
| | | |
—— —
| | { |
la{n-1)| kb(n-1)] .
| I | | -
| |] |
| - . S |
| . - {
{ . . {
I { | [
¥ —— —l v
{ | | |
1oa(d) | | b(i) |
—I — {—
| : |
{ [
| |
i : | »
| |
| ADDER 1
r4
| |
| ' |
| |
{ :) |
| |
L] |*.L__1
S os(3) |
-1 |
i 3
i | |
| Is(i-1) |
i |
Y ——
| |
o
——
| |
I s(1) |
| | N

Figure 2.3. A sequential adder, viewed in
the context of this thesis.

s

..significant bit first. The sum emerges in the same
fashion-—one mit at-a time, least significant bit first. Tt
tegins +to emerge exactly one time step after the first bits
of the addends are recelved. Hence, it is not necessary to
know the full addends before addition can begin; it is only

desirable td supply the imput bits at a rate fast enough to

keep the adder continuously busy.

The | construction of such an adder is trivial.
Subtractdon has all tthe smmple properfies of additiom, and
the constructiom ef a sequent%al subtracter along the sanme
lines 1is equally easy. The desién of an adderqwhich accepts
phree or more operands and still operates in bit-sequemtiel
input/output mode would proceed in a similar manner. In
fact, an arithmetic circuit could be designed which would
accept any fixed number oOf operands and coul@® perform a
fixed sequence of additions/subtractions in bit-sequential

input/output mode. Such circuits are not practical, however,

because of the fixed number of operands and the fixed

- v

sequernce of operations required.

A different approach to the problem of evaluating an
expression ‘con51st1ng of only addltlons and subtractlons is
suggested if a number of parallel adders and subtracters-of
the above type are avallable. The expre551on : s

” ((A+B) -c) +p

can be evaluated by cascading two adders and one subtracter.

16

. \
the <(Cray-1(39)], and forwarding in the launguage:of the IEH

360/91[3]. Assume the rightmost bits of each of the four
operands is available initially, and that successive bits
car be supplied one per time step. The first adder can start
working on A + B immediately. One time step later, the
subtracter can &tart working on (A +# B) - C, énd one time
step after that, the second adder can start working on the
entire expreséion. Hencer\gﬁree time Steps after the start
of the compukation,,the fitstgbit of the answer 1s computed.
In gergral, the first bit of e answer is compieted after &
steps, where # 1s the /number of operations in the
expression. The entire answ;r is complete after n + ¢ éteps,

where 1 is the number of bits of the answer. For arbitrary

expressions, Aefine n to be the word length of the machine.

The virtues of an arithmetic unit which operates in the
above p%rallel manner are obvious. Newly presented in this
thesis are circuits for performing multiplication and
division in bit—seg&éﬁ%ial input/output, ‘right—to-left
fashion, thus «completing the arithmetic .unit capable of
operating in this mode. -

Multiplication by the traditional algorithm 1is
inherently done in right-to-left fashion, but the complete
multipligrv and multiplicand are needed before the
computation Can :Begiﬁ.'-Tﬁe circuit»touheﬁdescri?edmpSes a

’

N

modified version .of this algorithm to preCisely Fulfill the |

properties requ1red. Cne time step after the first bits of

the inputs are available, the least significant bit of the

-product emerges. After that, successive bits of the product

emerge, one bit rper.time step.

let us now examine the familiar ripple-carry adder in a

3

format compatible with the descriptions of the other three

parallel circuits. Let [a (n)

a(1)] represent the numher A

in bit form. The other addend, B, and the sum, S, are -

represenrted 1in an .analogous way. Internally, the parallel
adder «consists of a set of n+1 modules, where i is the
maximum length of the addends. It is to be noted that only
one module is operational at any given time, and that the

description consisting of several modules is useful only for

‘comparison with the multiplier to be introduced in the next

PR

chapter. Each module has fo?r inputs and two outputs see
Figure 2.4 and Figqure 2.5» The four inputs consist of two
inputs, A and ‘B, from the addends, one. carry, c, from the

prev1ous module at the preVious time step, and a sum blt S,

which is cycled back fronm the current module at the preVious

time 'step. The two outputs from each module consist “of a
carry - bit, C, and a - sum bit, S, which is cycled back to the
same module. Although there are four inputs, it is never

possible to have four ones, which would require two carries,<

i
since either A and B are both 0 and S is 0 or 1, or S is 0

»and A and B are 0 or 1. Hence, one carry bit, C. is

.2

18

r X al
t g |
A(i,3) > ' [,
| > C(1,3)
B(i,3) > |
. . o i Module]
C(i-1,3-1) —>| J ! .
l > S(i,]J)
S (i-1,7) > R L
1 }
L 1

Figure 2.84. One of the modules of the
parallel adder.

AV

Linkage of the adder modules.

*

Figure 2.5.

20

\v .
sufficient. The four input kits generated for the jth module
during the ith iteration of -the addition algorithm are as

follows:

r a(l) lf i = j-1
L 0 otherwise
B(ll]) = { ’
L0 - otherwise
r O _ S if § =1
|
C(i,j) - l . 3 v - .
i 523[A(1—1l])l BU—"“:]):'
L S C(i-1,3-1), s(i-1,3) 1 otherwise
r O lf j = 1
i
S(ij3) = | o S
| 513[A(l_113)' B(l“'lj)l
L C(i-1,3-1), S(i-1,3) 1] otherwise

In the above, the functions S13 and S23 represent the
symmetric function| 31]. Fof example, S13[v, W, x, y] is 1 1if
exactly 1 or 3 of the arguments v, W, x; and y are 1; and 0
otherwise. A(i,j) and B(i,]j) are the ith bits‘ of the
addends. These bits are available-at the ith time step..The
functioning of the n+1 mnodules of the parallel adder is

presented as Algorithm 2.1.
P ya

This algorithm is written serially, but most of it is
executed in parallel by the parallel adder. Lines 1-7 are

initializations and can be <considered to be done at the

PR I

2.
3.

5.
€.
7.
‘8.
10.
1.
12.
13.
1.

15.
16.

17.
18.
19.
20.
21.
22.
23.

24.

begin

25. - .

end;

21

Algorithm 2.1

Linear on-line addition

comment given a (1), a(2), . . ., a{(n), and b(1),
b(2), - « ., b{(n), the bits of the two numbers to
be added (least significant bit first), this
algorithm computes s (1), s(2), - - -, s(n),
s(n+1), the bits of the sum (again, JTeast
significant bit first) ;

for i <— 1 until n+1 do
begin '
A(i) <— O0;
B (1) <— 03
C(i) <— 0;
S(i) <— 0
end; :
for i <— 1 until n do
begin

for j <— 1 until n do
begin
A(3) <— 03
B(j) < O
end;

A (L) <— a(i);
B (i) <— b(i);

for j <— n step -1 until 1 do

begin
comment Define C(0) = 0;
t (1) <— sS23[a(j), B(3), C(3—-1).,
S(3) 1s
t(2) <— S13[A(j), B(J), C(3-1),
S(3) 15

C(J) <— t(1);
S(J) <— t(2)
end : ‘

end

for i 2—431.nnfil»h+1¥dd'sii)¥<§§7§(i)fffi_’fff

\4;7

“Vf:jﬁdiCiods t1m1ng such that the result blt of‘the sum is not;h o

22 .

start of the calcdulation. The block in lines 10-14 and in

lines 15-16 is executed in one parallel operatfon. This is
L |

follovwed- :by- executlon of the block in lines 17+ 23 also in

”bae‘ parallel bperatlon. Note that there is no need for thel'
'temporary varlables t(1),_“_nd‘ t(2), if the.algorlthm is.

ﬂexeduted“rn ~parallel V:aﬁher_than_setlally. The last step,

line 25, is a retrieval of the answer. This can be done

while computation of the prev1ous steps is under way, with

“ . ERTSN T v e -

retrleved untll the c1rcuLt has executed a- suff1c1ent numben

of times (bit s(i) of the sum is ready for retrleval after'

i+1 time steps).

o

The\ parallel subtracter §% constructed in an analogous
manner, and will not be presented. The important broperty of
the traditional addition algorithm ”which'allowed for the
Erevious description also holds for the subtraction
algorithm; in subtraction,' the carry bit is replaced by a
"borrow" bit. For the purposes of this presentation, the
possibility . of the minuendhbeing larger than the subtrahend
causes DO moOre COncern than the possibility of an overflow

in addition; both 1leave a carry (borrow) bit after the

leftmost position.' .

chapter three

'THE MULTIPLIER

Bnevious proposa ls for faét mulpiplidﬁs are
diséussedt26, 543, - along with a summary:,of .the known
theoretical limitations . of such designs. Then, a new
parallel multiplier with 'a 'very simpié'configutation-ié:'
suggested. This multiplier operates in time O (n), whére n is

_~th¢”' maximum of = the lengths of the. multiplier and
Vmultiplica;d;ffboth gf: whiéh'ére fiiéd'pbinﬁjwéfgfeséédfiﬁfii

7-bihaxy. notation. It is a lbgical circuit consisting of 2n
modules, each being only sliéhtly more-complek7théh a full
adder;"inSteéd 9f tgree inputs ané two outputs,’eachmedu%éV’
has five inputs and three outputs. A logical circuit
realization 1is given for the modules. But_perhaps the nost
signifiéahﬁ aspect of this design is the property that the
input is reduired only bit-sequentially and the output is,
generatéd bitféequentially, both at the rate of one bit per
time step, least significant bit first. The advantages of

such bit-sequential inbut and output arithmetic units are

described. t . . s

m‘AﬁréithficéﬁtjLpart-of‘this cﬂabier;is'fo'aﬁpeat:as a full . -
- .paper[12] 1in the October 1979 issue.of IEEE Tramsactiqns on
"Z?Q@?ﬁiers'-' BT ST AT R

o, P e e Oy

24

3.1 Previous Proposals for. Multipliers

“

The design of fast, efficient multipliers is currently
a very active areal 54]. Many scientific and engineering
- applications such ‘as inversion Qf“matrices, solution of

.différentiql equations, computation of eigenvalues, modular'

!

éxponentiaiion,» étc: hu;ggq}ée'w> lg:ggLnjunumbéfs.théf~f.
.ﬁﬁitipLications; :‘ ﬁsbecially\ in the _iith)‘of - LsT
'techhafdgy[uQ], v;t'AiS ‘iﬁporfaﬁt for computer hardware
'ﬂesiéher§ J“€6:4béi awéfellbf:véﬁrrént"résééfch concérﬁihémh.
multipliers‘ wﬁich are és efficient as theoretigally
possible. | ._ ..‘.f : I’ - '.”' L ,2f\»

The most primitivé:method of multiplication for binarj
nunbers is a direct adaptation of the traditional "school
boy method". Thig algorithnm proceéde.és follows. The
r'a¢CUmﬁiatpr (théh is: to eventually. bngain:the*prOddCf).is;i;
| initialiéedi %o‘AOD.‘Then;'eédﬁ::Siéi 6fi?thé;mﬁi;ipliérgi§
examined, with the rightmost (léaét’signifiéantj bif first. .
As each bit is scanned, the multiplicand is shiftea left one
posi;ion. Whenever 'a 1 bit is found in the multiplier, the
multiplicand is added tb the accumulator. When all the 1
bits in the multiplier have been exhausﬁed, the accumulator
holds thé required product. This elementary algorithm is not‘

used in computers with hardware multipliers because of its

relative. inefficiency. However, in machines where

25
multiplioation 1must be performed through software routines,

varlatloms of thls method dre ‘often used.. o co

‘A simple amaiysis. oﬁi the time required to perform a
multiplication"hy the above algorithm should suffioe:to
- convince the reader why it is not in common use. Let n be

the maximum of the lengths (numbers of bits) of the
¢

) multlpller and the‘multlpllcand. A'ssuming that the shifts of.)

» - v

?H-the"multlpllcand and examipations - of ’the_ bltS)of(the.
- .
multiplier cam be'idqge‘ in 'megligihle tinme (a realistic
assumption);::the' broblém'“reduoesa.to' that:of"a number'of
additiorns. The number of addltlons required is one less than
fhé7 mumber of 1 blts in the multlpller. In the worst case,
this means n-1 additions. Thellengths of the addends inheach
case 1s not more than 2n. A standard ripple-carry adder can
perform such an addition in O{(n) . time steps. Thus, the’
- multiplication requlres (n—1)O(n) L= ,O(nZ)A steps.

Theoretlcally, . thlS canu’be speeded p_ by use of‘ a

carry- lookahead adder[su 9], but at the cost of enormously'»

1ncrea51ng '_the complex1ty of the circuitry. The
'carry—IOQRahead adder can add two binary numbers of length n
in time O(log n). Hence, 'incorporating this in the above-

rultiplication algorithm yields a multiplier which perforums

. .in time - O(n, log n). In practlce, the n stages of an adder

"are d1v1ded 1nto groups such that each group contalns a full"w
~ carry- lookahead adder, while -a carry rlpp;e is malntalned

between the 'groups[QJ_fwThisxgiVés a multiplier whose tinme

e

26

complexity lies between O(n log n) and O(n2).

The concept of a parallel multiplier was first

introduced\'by Daddaf 13]. Parallel gult}pliers“are discussed

be;Wallace[53];Aby Karstsuba and Ofman{ 281 .and mOre~recehtly

by Stenzel et al;[46]. An excellent overview of hardware

multlpllers is given by Waser[Su]. Such parallel multlpllers

-generally operate in tlme proportlonal to the max1mum of the

lengths of the multlpller and- multlpllcands.»

3Wirograd[58] derived an absolute lower bound on.tue
computation time of a parallel multiplier. He shgwed if-each
: <
element of -the logioal circuit of the,multiplier has a
fan- 1n lower than r, then the c1rcu1t has a gate delay of at’

least. log (n—2)/log 'r§+ hence, O(log n) is an asymptotlc

lower tlme bound for multlpllcatlon,'as 1t 1s for addltlon.

The type of multiplier that is of 1nterest to us 1n)

this”NStudy: involves blt sequentlal '1nput and output. The

‘Operatlon -of. such .a dev1ce is illustrated-in Flgure 3.1,

which deplcts a "snapshot" of the multlpller just before “the

start of ‘the ith step of its procedure. Traditional

ripple-carry adders and subtracters have this bit-sequential

property. _ A entire <arithmetic wunit consisting only of
circuits of ~ this type would have .an. advantage over

traditiornal units, much as the cohcept of éipelining can. be

used to perform dlfferent segments of hardware 1nstructlons

*All logarithms in this the51s are taken to base 2

B R S R §
~1l-a(n) | | b(n) 1
o | I |
e A
! - [S
la(nx1) | ib(n-TI
I l i |
— —
| l | | =
| - L. |
| A] l
P . . |
[N | I I
¥ —— Y
| o I i
" I a(i) .1 . | b(i) 1
—| b ,l {—
| ; |
) |
| 2 ‘ I
l " o |
| .~ MULTIPLIER |
| : : Lo~
| i
L ¢ |
l |
| |
— L ——
1. pei)y . ..
| I s
I . |
I I
I tp(i-11
. L B S
v —
| ‘ |
| |
A
| |
I p(1) |
i |

Figurev3.1. The multipliet immediately
before initiating step i in the computation
.of the product of A and B. ‘

1

28

independently and simultaneously. Arithmetic operatione
during .the computation of an expression could be overlapped
in time. For example, in the computation of A*B+C, it would
not be necessary to coqplete‘the computation of the product
of a and b before the addition can be initiated. As soon as
the first bit of A*B is’ computed, the addition can be
started. In faet, if the 1length of C were less than the
length of A%*B, the expression would be computed in the same
length of tinme as the simple product A*Bj Other authors have
discussed the problem of extending a multiplier to compute
an expression such as A%*B+C. The flrst example of this was
given by Atrubln{S] this is discussed below. Advanced Mlcro‘
‘Dev1ces[1] manufactures an MSI device, the AMD 25505 whch
coaputes this exp:eéSlon us1ng» an 1teratlv;w arrag. The
vmaltlpliet ’aeseribed -herein can also be easily extended to
‘compute vthiS~ ekpression;. but that is not the gist of thlS‘
design;. The p01nt is that wlth the bit-sequential nature of

“the algorithnm, any expre851on could be effectlvely speeded

up (assumlng a su1table control device is available).

The generélization to more complicated . arithmetic
expressions is evident. The success of. such a system depends

-on a number of factors: o

v

(1) each circuit nust operate in bit-sequential

input/output mode:;

O

29

4 J

(ii) the time required for outputting (and E
inputting) each bit, must be coﬂstéﬁt, and the
same as the time required for a full adder
(pfesumably; this .cannot be reduced . for more

.

advanced operations) ;

(1ii) there must be such a circuit for each of'the
four arithmetic operatious (+, -, *, and /) -
. A
[
- . ‘ _,-

In this chapteé, a _multi?lier vhich neets tﬁese
requirements isfdescribed. A standard ripple-carry ;dder and
subtracter will suffice to satisfy these. A simple
coﬁntereiamplé shoys that krnowledge ofgthe least significant
bits of ‘the .divisor and the dividend do not determine the

least significant bit of either the gquotient or the

‘remainder of a division operation, so a divider meeting

these strict -constraints cannot be designed, but slight
relaxations of these Testrictions could possibly lead to a
divider which would make the systenm complete. Further

discussion of this is given 'in the next chapter.

A further desirable property of any multiplier is that

its ‘ components consist of one pasic c1rcu1t type, much as a

.ripple-carry adder con51sts of a sequence of full addeIS'

~ this leads to economlcal large-scale integration. Atrubln[S]

refers to such’ bit—seguential circuits as operating in

"real—time", and he discusses one such Amultiplier. His
multiflier consists of a iinear iterative array of automata,
each of which can be in a finite set ef States, -at each step
of the computation. Fach automaton is too complex to operate
;n time correspondiné to a full adder, so that property (ii)
above is not met. To the author's knowledge, this nultiplier
has ‘never been implemented. Atrubin's idea was subsequently
simplified by Knuth{ 30]. The following is the basic idea
behind their construction. Suppose the product of A and B is
desired, and” that the bits of these operands are made

available sequentially,'least significant bit first. Let the

bits of A and B be a(l), a(2y, . . ., a(n), and b(1), b(2y,

- -« <,b(m) respectiﬁely, least significant bit first.

Initially, .the first automaton recognizes a(1) and b(1), so

it is able to output a(1)b (1) at time 1. Then, it sees a(2)
]

and b(2)., so it can output {a(1)b(2) + a(2)b(1) + c} mod 2,

where ¢ is the carry left over from the previous step, at

time 2. Next it sees a(3) and b(3), and outputs f{a (1)b(3) +

Ma(2)b(2) + a(3)h(ﬁ) vt ¢} mod 2; furthermore, its state

recerds the values of a(3) and b(3) so that the second

automaton wil}l be able to sense these values at ‘time 3, and

will be able to compute a(3)b (3) for the benefit of the

first automaton at timg 4. Thus, the first automaton

arranges - to ‘start the seccnd one multigi&i&é fa(3), b(3)3,
a Y

{a(u), b(4)}, - . ., and the second automaton will

ultimately . give'the third one the jobrof hﬂltiplying»{a{S),
))

&
. o
a4

. L e " o
e v 3 ﬂpﬁﬂqg‘ Fo e
. B v L

PR

~

31

b(5)3}, f{a(€), b(6)}, . - ., etc. Approximat?ly n/2 automata
are required to multiply two n-bit numbers.ﬁpll bits of the.
pfoduct are oﬁtput by the first automato%, one perrtime
s£ep; least signi¥icant bit first. . T S
vin con%rasf, the wmultiplier described hereir has one
module (automaton) for each bit of the product, and the
result bits are output by their réspective rodules. There
are 11 inputs to each of the Knuth-Atrubin automata, leading
to a possible 211 states per autcmaton; by comparison, the

present modules have only S inputs.

Trivedi and Ercegovac[51] refer to°such bit-sequential
cirguits as "on-line" «circuits. They approach the problem
with the inpﬁts and outputs being involved with the most
significant bit first. Uéing a redundant number system and
allowing a certain constant time delay (independent of the
lengtk of the operands), théy design an on-line multiplier
and divider. It is not possible to perform a conversion fron
the redundant system to a non-redundant binary system in

bit-sequential mode (most significant bit first). However,

N
N

their design fcan accept operands in redundant notation, so
the conversion fronm redundant notation to binary notation
car be insignificant in cost whgn\va large number of

-operations are involved.

32

3.2 A lLinear Cn-line Design

In ghis section, we shali describe a multiplier which

‘takes two n-bit numbéers® A “{(the wultiplier) and B (the
» . /

multiplicaﬂd) and outputs their product P. It inputs one bit
of A and one bit of B at each time step (least significaht
bit first) and outputs onebbit of P at each time step after
the first (again, least significant bit first). Just before
the start of s%ep i, the multiplier may be visualized as in

Figure 3.1. After 2n éteps} the product is complete; after n

steps, R ard B are consumed.

let '[a(n)*———a(1)] represent thé number A in bit form,
with [a(1)] being its degenerate form. Also, let
[a(k)———a(1)], for k<n, represent the first k bits of A.

The number B is represented in an analogous manner. We will

denote the full product p by [p(2n) p(1)]'and the partial
rrod uct of [a(k)—a (1)] and [b(k)——Db (131 'byv
[p(2k)———p (1)]- Then, the traditional method of

multiplication may be derived as follows:

[p(2n) p(1)]1 =[a(n)——a(1)] [b(n) b (1)]
n n
/1 1
= { > a(@)e2h(i-M} { > b(i)e2h(i-M)}
—_—1 J

i=1 ’ i=1

'

5

n n
! |
= > {a(i) > Db(J)e28(j-1)}e2K(i-1)
—_— —_
i=1 j=1
n)

= > a(i)[b(m b(1) Je2h(1-1)

By contrast, the multiplier to be constructed in this

thesis is derived in the followingfway:

[p(2k)——p (1)] = [a(K)——a (1)] [b(K)—b(1)]
= {a (k) *2h (k-1)
+ [a(k-1)——a (N]} [b{k)——b (1)]
—
= a (k) [b (k) ——b (1) J*2} (k= 1)
+ [a(k-1) a(1) 1 {bgk)e2h(k=1)
4 [b(k=1)——b (1) T}
= [P (2k-2) ——p/(1}]
+ a(k)[b (k)———Db(1) Je2h (k-1)
+ b(k)[a(k=1)——a (1) Jo24 (k-1),
for k >,1
~
_Lp(M] = a(b(D)
N |

Two main points are to be noted about this recursive

formula:

3

’
S

(i) To compute [p(2k)————p(]§] from
[p(2k- 2)————p(1)] requires;at most 'two additions
(a(i) and’ b(l) are elther O or 1) of'numbers of

2w P [LN B -
o O P . -

”"leﬁgtﬁﬁln.:051ng parallellsm,‘we shalicéheédﬂe;ce'A-‘
bsufficient portion of these additions can be
carried out in one tlme step to output the least
51gn1f1cant bit of the»~suﬁ, and to generate

enough carry information to allow processiwg of

the next pair of input addends. Thus we shall be

able to compute [p(2n) p(1)] in 2n time units.

’

(11) In the computation of the sequence [p(1)],

[P(2) Pp(D] [p(2i) Pp(1) 1, a(i) and
b(i)’ are involved only in the last step. Hence,

\
)

at the ith step in' the computation of

[p(21) p(1) 1, only the 1least significant i

‘bitsmof A and B are required.

4

’ﬂ\\ Using‘ these facts, the nultiplier is now constructtd.
The Basic eircuit (module) is an extension of the full
adder§<jA full adder has _three'iﬂputs {(one bit from each
addengl\' d one carry>t1t from the previous summation) and
two OJXQEES——the sum bit and the carry bit. Our module has 5
inputs and "3 outputs. For a nmultiplier capabie of

multiplying numbers whose product does not exceed n bits,

there are n modules. The 3 outputs of each module represeht

t R e

35

A}

the sum of the 5 bit inputs. This is the same as a (5,3)
.counter of. Dadda[13]; see Figure 3.2. One output bit is the
sum bit, and since the sum can be as great as 5, two carr}

"Gﬂtydf"bifS'aré‘genefafedﬁ<Theo}iVe;1npuf Hitslqqugated-for.

T a L, e

the jth module during the ith “ iteration of the

multiplication algorithm are as follows:

¢ B(i)a(3-ib) Cf < 2i-1
Md,3) = 1= o e PR
L0 o ' if j 2 2i-1.
PR Tr ()b (FFik 1) - v if Jj < 21
F 0 - if'§ =1
|
TCuayg) = o e s e _ _
| S23[A(1i-1,3), B(i-1,3), C1(i-1,3-1), o
L c2(i-1,3-2), S(iJT,j)] otherwise
c 0 . if 5 = 1
‘1 LAY l or j = 2
jC2(1,3) = | .)))) et
. |SUS[A (1—11_:3)‘1 B(1i- 1-0 J) , C1 (l-1lj"’1)’l :
L Cc2(1-1,3-2), S(i-1,3)] otherwise
Fo | if §o= 1
. | L
S{(1,3) = | .))))
| 5135[3(1“1,3), B(1-1,3), C1(1-1,3-1),
L

C2(i-1,3-2), S(i-1,3)] otherwvise

All operations in'~tﬁe aBbve/are bit operétionS; Tbé
eleméntary symmetric functions, S23, SdS,uvand,S135,nare
denoted as usual{31]. For example, Su5[v, w, x; Y, z]mismlf“
if exactly 4 or 5 of the arguﬁents v, ¥, X, f,.énd‘z are 1, .

and 0 otherwise.

36

|
r g —/
Lo - |
A (i, 3) > | . _
. | t > C1(1,3)
B (i 7). > I :
C'T(i—‘l,j—'l) —_—> Module- P——> C2(i,3)
| 3 i
C2(i-1,3j-2) > 1
S | t > S (1,3)
.S(i-1,73) >1 |
| i

Figure 3.2. One of the modules of the
parallel multiplier.

37
'”Figure. 3,3‘iillUStratés thg‘linkage'of the multiplier

modules.

A(i,j) and B(i,j), aré generated} from the 1i least
significant Dbits oflfhe multiplier and]mﬁltiplicand. Theée
bits are availablé ~at the ith iteration via a simple data
frégsfer ogération.' If .é(i)v,= ﬂ1;‘ Fheﬁ.B(i—1;i{ ;‘b(i);.
B(i-1,i-1) = b(i=1), . =+ B(i=1,1) = b(1): if a(i) = 0,

then B(i-1,i). = B(i-1,i-1) = . . . = B(i-1,1) = 0. If b(i)

71,7 then A(i-1,i-1 = a(i-1), A(i-1,i-2) = a(i-2), . - .

A(i-1,1)

a(1); if b(i) =0, then A(E=T,i=1) = A(i-1,1-2)

. e e A(i-1,1) = 0. C1(i,j) is the low order carry bit
~from the sum of the 5 inputs to module j at time i and
C2(i,j)>is the high order carry bit from this sum. C1(i-1,7)
is - the 1low order carry bit from module j-1 in thevprevibus

time step and C2(i-1,j) 1is the high order carry bit from

module j-2 in the previous time step.

Thé. generation of the A(i,Jj)'s and B(i,j)'s can*be
elegantly illustrated .by iexamining theﬁﬁrdér in which the
multiplication4 "fhombus"' is prédﬁced. In conventional
multiplication, this rhombus of bits is generated rowvby
row. In the on-line multiplier proposed here, this rhombus
is expanded on two _sides at each time step. The two

different schemes are illustrated by example in Figure 3.4.

.The entire 'algofithm for - the 1functioning of the 21
nodules thrdﬁghOut the duration of the multiplication is

o~

.,.E:.;_ur‘

38
—
| AN
|

i

|

!

I

|

|

{

15 1
>4

il | . [TTITZIII=EDD

[JM Hm, ’ - 5 . r' [——— - m;
Ci : L v -

R ‘ : - . - &)
IR . i O - ERY ——

w._v: N . : Brlrle‘IY é ‘m , 4

vooaa ¥ g : - =

o D o , M

Linkage of the multiplier

Figure 3.3.

modules.

1 1 0 1 1 step
1 0 1 1 1 1
1 0 1 1 1 2
0 0 0 0 0 3
-
1 0 1 1 4

On-line multiplication

) .. 1T 0 1 1 1
11 0 1 1
. . , _/.

AN VEVEUE 1

-/ /S S S
1./ 0.1 /1A 2

/S _/ _/

J0/0/0 0 0 3

/S _/ ;
/1,0 111 : 4

-/ 4
1.0 1 1 1 5

Figure 3.4. Generation of the elements of
the multiplication rhombus.

v
)

39 .

4o

presented “as 'Algoritﬁm 3.1. This glgorithm if describgdﬂin
serial fashion, but it should be noted that most of it can
" be done in parallel. The initialization in lines 1-8 can be
done ih one step and may be ignored in timing
considerations. FEach cycle of the miltiplier is started in
lice 10. 'Lines 11-15 reset the values of arrays A and B in
each module. This can be done in ote parallei operation.
Lines >16—19 copy a part of the multiplier into array A (if
*
~b(i) = 1). lines 20-24 copy a part of?the multiplicand into
array - B (if a(i) = 1). These can both bé;doﬁe in one
parallei' sfep. Lines 26-33 compute the elementary symmetric
functiors of the 5 inputs and create the 3 outputs for each
module. If done in pafallel, the loop in line 25‘is not
needed, and furthermore, there is no need fqr-fhe temﬁgfary
variables t(1), t(2),-and t(3).'The last line, 35, extracts

the output from each of the modules at. the end of the

multiplication.

Clearly, each module of this multiplier is very simple
to construct since only the three elementary symmetric

functions V‘described above are involved; a logical
nr‘eélization is given in thé next section as Figure 3.8. The
parallel operation of the modules assures that the entire
nultiplier operates in time 2n, and éach time step is no
loﬂger than that required by a full adder. Hence, the

multipiier can multiply two numbers whose product is of .

length - 2n in exactly the same time as it takes a

begin

we

11.

12.
13.
4.
15.

16.
17.

18.
19.

20.

21.
22.
23.
24,

41

Algorithm. 3.1

linear on-line multiplication

1)

comment Given a(1), a(2), . . -, a(n), and b(1), b(2),

.« . -+ b(n), the bits of thée two numbers to be
multiplied (least significant bit first), this
‘algorithm computes p (1), p(2), . . -+ P(2n) , the bits

of the product (again, least significant bit first) ;

for 1 <— 1 until 2n do .

begin
CA(L) <— 0;
“ B(i) <— 0;
C1(1) <— 0;
C2(1) <— 0;
S(i) <— 0

yféﬁa;

9. #ffor i <— 1,until 2n-1 do

begin V ‘ : -
for j <— 1 until 2n do
begin
A (J)

B (3)
end;

<— 03
<— 0

if b(i) = 1 then

begin ‘

for j <— 1yruntil i do
end;)

A(i+3-1) <— a(9)

if ‘a(i) = 1 then
begin
if 1 > 1 then
for j <—— 1 until i-1

A

Y
do B(i+j=-1) <— b(])
end; ,

o

25.

26..

27.

28.

29.

30.
31.
32.
33.
3.

35,

Algorithm 3.1 1gontihued)

for j <— 2n-1 step -1 until 1 do

begin V ‘
" comment Define C1(0) = €2(0) =
o C1(-1 = C2(-1) = 0;

t (1) <— S23[A(3), B(I), C1(i-MN,
€2(3-2), S(1
t(2) <— SU5[A(F), B(3), CH{(i-T),
c2(j-2y, s(i 1:,
£ (3) <— S135[A(3), B(3), c1(3-18,
C2(3-2), S(N 1
C1(j) <— t:(1) 3
C2{3)- <— t(2);
S(3) <— t(3)
end :

end;

for i <— 1 until 2n do p(i) <— S(i)

end.

42

43

ripple- carry adder consisting of 2n full adders to add two

- numbers whOse sum is of length 2n.

An example of the generation of the A(1,J) 's and the

v

B(i,3)'s is given in Figure 3.5. The full operation of this
multiplier is illustrated by example in Figure 3.6. In this
example, n = 7. Note that the multiplication is complete

-

atter 9 time steps. In general, 2n tinme Steps may be

required, but the correct product can usually be expected in -

much less time. B

3.3 Logical ﬁealiiation and Application

A parallel multiplier jconsisting of a series of
identical <modulesb_has beeo proposed. Each module” Kas 5 bit
inputs angd 3 bit outputs, the outputs being elementary
symmetric fynctions of the inputs. The notation used for
logical - diagrams is shown in Figure 3.7, ard a two-level
-logical realgzation og a multiplier module is given in
Figqure 3.8. The modules can execute in the same time as a
“,tfaditioﬂ%d full adder. AS‘opposed to the ripple-carry adder

where only one of the full gdders is

any given tinme, each of . the modules of this

.multiplierﬁ?is operatigg simultaneously. Hence, the modules
may be thought of as operatingﬁ ~ln pipelined fashion;
'computing each bit of the prodﬂcf\simultaneously. After each
time step, a new bit ~° the product (least significant bit

first) is generated.

B(1,1) =

B(2,3) B(2,2) =

CA(2,2)y =
R "‘_‘ % (3,5) B(3,4) B(3,3) =
1 A(3,4) B(3,3) S
0 1 B(L&,‘7) B (4,6) B(4,5) B{(#,4) =
11 ' A(4,6) A(4,5) A(4,8) =
001 B(5,9) B(58 . . 5yS). =
011 2(5,8) . . =
100 1B(6,11)B(6,10). . . B(6,6) = 1
1011 A(6,10). . . A(6,6) =

Figure 3.5. Exanple of generation of
A(i,j)'s and B(i,]) 's.

\l

4y

=

A*ER

12

00
00

00

00

20
00

00
00

00
00

00
90

00
00

00
01

00
00
1

I

11

00
00

00
00

00
00

00
00

00
00

01
00

60
11

00
00

00
00
1

10

00
00

00
00

00
00

00
00

00
60

11

00~

00
00

00
00

00
00
0

00
00

00
00

00
00

00
00

01
00

M
01

00
00

00
00

00
00
1

00
00

00
00

00

00

00
00

11
00

00
00

00
01

00 -

01

00
00

00

1
1

00
00

00
00

00

01"

00

00
00

10
10

00
01

00
00

00
60
0

1
1

1
1

00

00

00
00

00
00

00
00

10
00

11
00

00
00

00

00

00
00
1

0
0

(nodule)
5 0}
00 00
00 00
0 0
00 00
00 00
0 0
00 00
00 00
0 0
10 11
00 00
0 0
11 00
01 00
it 0
00 00
00 00
0 0
00 00
00 00
0 0
00 00
00 00
0 0
00 00
00 00
0 0
0 1
11

110100100011

Figure 3.6. _
5 inputs to each module are arranged 35
shown at the bottom rightC;//*i“";i

\\

Full multiplication example.

00
00

00
00

00
00
O'v

00
00

00
v0

00
00

00
00

00
a0

00
00
0

00

" 00

01
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00
1

]

01

00 1

0

00

00 2

1

Qo

00 3

1

00

00 u

1

00

00 5

1

00

00 6

1

00

00 7

1

00

00 8

1

00

00 9

1
—
| A | B |
| S e |
| C2| C1]
| S |
—

The

46

AND | o | | o /

‘OR I+ {

F=a+ b' + c'

EXCLUSIVE | € |
OR ()

| F=aeklk &c
F = abc + atb'c + a'bct' + ab'c!

Figure 3.7. Legeng for logic diagrams,
illustrated vith examples. g

- 47

— o —— — —

Y — — S —— o — —— - —— — v — — —

—— . — T — — R oo —— ey — —

S0la,b,c,d,e]

U -

O — .
L -

U — St
= —

U - .
O —

a' e

n
M
]
-
he
~
9]
-
Q
-
«
—
W
22 ~
-~ [}
— = 0N -
o
Q ~
- O
e} -
~ Ee]
C -
- 0]
Q —
- — m -
a : ~~ 2 C
—_— . e - -
—)) ——
0 — d .
a [-
h—_—
(@]
@)
— i e - — —— —— —— [~

s4s5(a,b,c,d,e]l

Logical realization of a

multiplier module.

Figure 3.8.

48

v

s

Ripple-carry adders and sugt:acters traditionally ﬁork
in this manner. Addipg a multiﬁlier of the proposed type to
an - arithmetic unit allows pipelining of arithmetic
operations at “a higher level. In an expression involving
several of these operatione, it is not necessary to wait for
one opetatien to complete before the next can be initiated,
since the nexqmoperation can start as soon as the first bit
of each of its operanhds is known. An example of this is
given in Figqure 3.9. Here, the evaluation of the expression
(A%R ‘— C*D + E) * F is performed using 3 multipliers of the
type proposed here; 1 ripple-carry adder and 1 ripple-carry
subtracter. It is assSuped that all the oéerands are
availablé at the start of the computation. If the length of
the result 1is g then the entire computation takes g+3 tiﬁe
steps (note that after U fime steps, the least significant

bit of the reeﬁlt is available) -

NegatiQe numbers in uncomplemented form can be handled
in the wusual manner by the proposed multiplier, with the
resultant sign being produced by an exclusive-or operation.

Numbers in twos complement form must be complemented, but
the complementing function can be evaluated
bit-sequentially. Hence, sigrned nugbers "can be readily

accomodated.

As shall be showh in Chapter 5, it is possible, by

judicious arrangement of the addends, to compute the sum of

[——time ,
¥ r - —
| compute 1st bit of A*B |
1 ' " 1st " " C*D '
L T 5
|
1A}
|
r L L
. | compute 2nd bit of Ax*B (
2 I " 2nd v n C*D |
e " Ist "™ " A%B - C*Dp |
L T)
I - .
Y
{
r 4]
| compute 3rd bit of A*B |
l n 3rd 1" n C*D I
3 i " 2nd " n A*¥B - C*D [
{ " 1st vroon A*B - C*D + E |
i T J
[
Y
|
{ 1]
| compute 4th bit of Ax%B i
| " 4th n] C*D (
[} | " 3rd "o.n A*B - Cx*D |
: | " 2nd " . " A%B - CxD + E |
| " 1st v o (A%*B - C*D + E) % F |
L T]
|
Y
I .
r 4 1
| compute Sth bit of A#*B i
I 1" . S-th n 1] C*D I
5. I " 4th " " AxB - Cx*D i
I " 3rd " " A%B -~ C*D + E |
! " 2nd " " (A%B - C*D + E) * F |
e r ° iy]
. |
|
Y
[]
®
L]
Vs

Figure 3.9. Pipelined computation of (A*B -
C*D + E) * F,

49

50
o numbers, each of 1length =n, in time n + 2log m in an
associative pProcessor | with bit-slice operation
capabilities[11, 71]. This can how be extended to a
multiplication algorithm which leads to the computation of
the product of m numbers sf length n in time nm + log B =
C(nm) in an associative processor. This represents a vast
improvement oveiﬂ the +traditional tree—p;bduct algorithm
wvhich requires n2(m2-1)/3 = 0 (n2m2) tinme stéps[11]f

3.4 Ap Optimal Algorithm for Multiple-Precision
Multiplication g

This section discusses and solves a problem which
originally arose in the résearch, leading to an earlier
thesisf32] in this' department, but which hés relevance to
the subject of +this chapter. The questioﬂg posed is és
follows. Given a set of numbers whose product is to be
found} and 'an uhlimited“number of multipliers available at
anngiven'time, what'is tﬂé/dptimal ordering of the required
multiplications such that’thé'tota1~t§he t}ﬁeniis minimal. A
muitiplier‘ is assumed to multiply‘two numbers_of léngths n1
and n2 in time O(log(nf+n2)), which is the theoretically
.cptimal speed for a- parallel multiplier, as shpwn' by
winograd[SBJQ

If the nunber of multiplicands, m, is a power of two,

one's 1intuition ‘judges_that the optimal way to compufe t he

product is by the traditional tree-product algorithm. With m

51

-operahds, éach of length: n, first pefform n/2
multiplications omn pairs ;;~;t;\original operands. Each of
theée.multiplications takes time aépgﬁxiggfely log 2ﬁ. Since
they can be done simultaneously using the assumed model, the
total time so far is 'log 2n. In the néxt‘ step, mn/4
rultiplications on operands of length 2n are performed. The
time required for this is log 4n; total time so far is
log 2n + log 4n = log (2neln). °

For m operands, this procedure is ;epeated rlog m4+* times,

for a total time of

log 2n + log 4n + log 8n + . . . + log mn"

. 1log (2ned4ne8ne . . . emn)

log [(2e4e8e . . . sm) e nplog m]

log m log n + log '(2-14-@@; - . °m)

= log m log n + log (21e22e23e . . . e2ilog m)
4

=logm logn + log [2h(1 + 2 +3 + . . . + 1log m)]

logm logn+ (1 + 2+ 3+ . . . + log m)

i

log m log n + (1/2l(1 + log m) log m

(1/2) (1 + log m).log m, “if n = 1.

It will be shown below that in this baéé; intuiiion
leads to the correct conélusion;‘this binary trée Qrdering
does indeed prove to be 5ptimal. Hence, the multiplication
of mn numbers can be'computed in time O(logg m). This result

has a number of major ‘implications concernifig the lower

*The symbol "exq" is used to denote "the least integer
greater "tham or egqual +to x"; "LxJd" denotes "the greatest
integer less than or equal to x"

-0 /_’/” \
i

-

-0(log2 m).

bounds ”‘of certain nultiple-precision operations. For

exggpbe(l. the previous 1lower bound for #évaluation of

'determlnants of matrices of size m was O(log .m)[32]. Using

the- present result we know that the determinant of a

dlagonalmggmrlx requlres 0 (log%. m) steps, so the lower bound

‘w

of the &5tenﬁ3nant problem

;gptenedl.to
5 v - ‘”v_‘_ ,_.;~ 2N

& 4 o

From this, it follows that the lower bound for solving

a system of m linear equatypnsmln mn unknowns is O(log2 m).

. R ' :

This can be demonstrated by finding an example in which. the

numerator and denomipator of a solution contain no CoOmmON.

factors (so that at least n multiplications are reqﬁifed).
it is also shown in [327] - that tfe lower ;bound for
ﬁultiplication of two mxm métrices is the same as that for
solving a system of m linear equaticns in m unkhowns; Hence,
we have the same new lower bound for matrix multipiic;tion

, o
in SIMD computers.

The ‘multiplicatiQQ\‘Qrdering will be represented by a

computation tree. To simplify the following proof, n will be

'assumed to be 1. Also, note that the #ime calculated above

is a sum of logarithms, which is the same as the logarithm
of the product. As a simplification, we will'compute only
the product, and call this the cost of the computation. The

proof begins with a few definitions.

I

A bipary tree is a.tree for which each node has,eifher
0 or 2 sons. This non-standard definition, which doesn't

allow nodes with only ‘one son, will be useful for our

PN

purposes. A computation tree, T, is a binary tree with a set
of labeled nodes or vertices, denoted v[T], and two integer

functions "1" and "d" on its nodes.
Pl

The . length of a node n € v[T], denoted l1(n), is the

number of leaves in the subtree rooted at n.

’ , '
The depth of a node n € Vv[T], denoted, d(n), is an

integer function satisfying the following:

d(r) =0 . ' vhere r is the root
of T
¥n, m € v[T], d(n) > d(m)+ where node n’is a

i descendant. of node n.

A computation tree,- T, is said to be compact if for
each pair of nodes n, m € v[T] such thatn is a son of m,

d(n) - d(m) = 1.

. The heiqht of a computation tree, T, denoted h[®], is

defined to be the largest depth among the nodes in T, i.e.s
h[T] = MAX { d(n) }-
{n€v[T}

We note at this point that if T is compact, then the

!

{ i | n€ v[T] such that d(n) = 1i }

+The symbols "¥" and "3" denote the universal ("for all")
and existential ("there exixts") quantifiers, respectively

’

is egquivalent to the set { i1 0 <1i < h{T]},. since by the-§.
definition of a compact tree, the depth of the father of any
¢ ‘node n, if the father exists (i.e. if the node’'n is not the

robt) is d(n) - 1.

The factor of a computation tree, T, at depth i,
denoted f(i, T), is defined for all non-negative integers i

as follows:

\
N 1, \\\\\. if there is no node
: n € v[T] for which d(n) = 1
-
MAX" “{ I(n) 3}, otherwise. <«
{(DEV[T]{d(n)=1} ' '

r
‘ |
f(l' Ty = |
o

L

The cost of a computation tree, T, denoted c[T]), is an

integer defined as follows:

£
—r—
c[T] = I f(i, T).w
—1r
i>0
O0r, since f (i, T) = 1 for each i > h[{ T], the prodhct may be

considered to be taken over all i, 0 £ i < h[T].

Two computation trees, f and T', are said to be Similar
if there exists a one-to-one correspondence between v[T]’ana
V[T'] which prgsérves father-son felationships between the
nodes. For every nodé ﬁ € v[T], fhe\dbrresponding node in
the similar tree T' will. be denotedvn'. Thus, if m € viT] is

the father of n € v(T], then m' € V[T*'1 is the father of n!

CRE P

AL } . v

TN
N g

It follows iﬁﬁediately that for two similar computati&n
trees T andAT', for each n e‘v[T], 1(n) = 1(n"), since the
nunber of 1leaves in the subtree of T' rooted at n' must be
the same as the number of leaves in the subtree of T rooted

at n.

Llemma 1: let T be a compact computation tree, and T' be some
other computation tree similar to T. Then, S

¥

c[T] € c[T'].

Proof: Since T is compact, for’ each i, 0 < i < h{T], there
- exists a node n € v[T,] for which d(n) = i. Let n (i) be ohe:
of £he nodes- of maximum length among all nodes ofvdepth i in
T, i.e.: for each depth i, 0 £ 1 < h[T], and for each n €
v{ T] such that d(ny =i, 1(m) £ 1(n(i))-.
Then, £ (i, f)_= 1(n (1)), agd hence,

g

h[T]

c[T] = i 1(n(1)) .
The cost of T' is given. by:
c[T'] = i £, 7).
'let us examine f(i, T') for i > 0. For each i for which
there exists some node n € v[T'] such that d(n) = i, select

cne of the nodes of maximum length over all nodes in T' of

depth i, and call it m(i). Then,

h{T']
: -7 N
c[T'] = I 1(m(i)).
N N W— .
1 i= 0 ;)
Jn€v{ T')34 (n) =i+ s

our goal now is to prove that

h{ T] ~ Rh[T')
e B - Tr
[1(n(i)) < H 1(m (1)) - ' (*)
N Y W N W T .
i=0 i=0

3n€v[T*' 134 (n) =i

Let us first show that the right side of (*) has at
- - &

SN

3 N N \// i
least as many factors as the left side. Select an arbitrary

node n € v[T] which is of deépth h[T] ﬁ@%T. For the purposes .y

arqument, we will define a relabeling functibn I

whiich els podé n and all its ancestors. Relabel n as
L{h(\r {]. Name the father of n as L[h[T] - 1], the father af
t as~ii£ﬁ[T] - 21, and so on. Since T is compact, the \\\
depth of a;jiﬁode is 1 greater than the depthvof its father.

Thu§; the"rootbis relabeled L[0], and in fact, for each i,

0

IA

%wa h{T3], d(L{i]) = i. Since father-son relationships
aré%%teggrved between similar trees, |

W Aol < a@[1]) <. . . . <A(LA[T]]Y)
and- 56, the integeré d(L{il'), O < i < h[T] are all
dis?i;ct. T£us, the right side of (*f.has at leést as many
‘factors as the;lef£‘Side; c Ce

p S <‘

*The symbol "3" denotes "such that" !

57

‘We will now show that there exists a .one-to-one
function, t,
t: [0, h[T]] —> [0 n[T"]]*

&

sucﬂ that
1(n(i)) < 1(m(t(i)9)
for all i € [0, K T]]-
 Note: It (is impliéd that t is a function such thﬁt féf.all
i, t(i) . is one of those integers for which m(t(i)) exists,

&

i.e. there exists at least one node n € v[T'] for which

d(n) = t(i).

Cnce the existence of this fundtion, t, has been shown,

. '-V/ -
the inegquality (%) wil}/follow immedliately.
. l .

;The functlon, %, will be deflqed for the: computatlon-

tree, T', by AIgorlfhm 3.2. This algorithm determines N (i)

“fori =0, 1, . . . h[T] to be some distinct set of nodes in

T'. Afterwérds, t(i) will be defined to be d(N(i)).

An ‘éxample will now be , given. It was designed to
demonstrate all aspects of the algorithm. Figure 3.10 shows
a4 compact 'comﬁutation tree, T. In this figure, solid nodes
are those of méxihum length at their respective depths. The
s . . -
niengths of the nodes are not given, and'sufficient extra

nodes are ' assumed such that the so0lid nodes are those of

maximum length at their corresponding depths. These nodes
v

+*The mnotation "[a, b]" is used to denote the integers
between a gnd b inclusive

\.‘ N

depth

— o S — —— ——— y T S s — i m— — i s S e o G — —— — T okl g S - — = op—— f—

/

Figure 3.10.

en (0)
)) en (1)
o- .on(2) o. -.
n(3)e. .o o- ..
o. -. n(u)e.
n(?)o. . .-
N .o n(6)o.
. ,
-)) - \
n(7)e . N
n(8)e- .o
o. -on(9)

A compact computation tree,

tree

h{ T}

T.

Il

58

—N

L 59

are labeled '"n (i)™".

Figure 3.11 shows a computation tree, T', which is
similar to T but is not compact. The-nodes correéponding to
the nodes n(i) € v[T] are labeled."n(i)'"‘in v[T"'] ana are
marked sélid, as before. The squared nodes, labeled "N(i)"
dernote the values of N(i) after completion of the ifh
iteration of the loop in lines 2 through 10 of Algor&thm
3.2. The evaluation of the function tigy/gigorithm 3.2 is

summarized in Figure 3.12. This jé/aone-on this example

P

tree, T', Dby giving the values.~of d(N(i)) Eefore each

L

execution_of 1line ;B;/Q/ﬂf//

It remainsvié explain why the algorithm always finishes

\

executing line / 10 before N(i) becomes the root of T' (i.e..

2

why the fathet of W (i) always ékists). Since d(n(i)) = i in
the compact tree T, node n(i), and hence node n(i) ', has
exactly 1 ancesto .\At the beginning of thé ith iteratign
of the loop im lines Z\Ehrqggh 10, N(i) = n(i)'. Of the i+1
numbers which are the depfhs o% néaé N (1) and its ancestors,

at most 1 can be equivalent to one of the numbers 4 (N(0)),
X
a(¥¢1)), - . ., d(N(i-1)). Hence line 10 may be executed 0

times, or, at most, i tinmes.

At the end of the ith iteration of the loop in lines
2-10, d(N(j)) #. 4d(N(i)), for each j € [0, i-1], since the
logical expression 1in lines 4-9 has the value "false". All

subsequent iterations of the loop for greater values of i

depth

o

~J

10

14

e Satn S e ——— . e . — N —— g S S G mm, Gamn R G s St i g e G m—— S G e Geee G AR e Sm . Sem e

/

. [
N(0)le|n(0)"
Ll
e - .-
N(3) -1 .
l_l -
o. -. -.
1
N(2)|e]n(2)"
L1
n(3)'b. .o
- — !
o) . t-1¥(9
. | -
- M
- I-1N(8)
. L
—n .- ..
n(5)'{efN(5) . o
(. L.
.. n(8)'o. .o
) .on(9)'

Figure 3.11.
to T.

A computation tree, T?',

€60

tree T!
h{T'] = 10
. 1
N(1) |ejn (1)
| -
o. -.
o. -.
- '_'] --
< N(6) .1 o)
- | S—}
(| -. ,,-.)
|e|N(4) en(6)" o
L_1 '
‘n(4)"

similar

A

Algorithm 3.2

Evaluation of the intermediate function "tn

begin ¥

comment An algorithm which takes as input a set

of nodes
n(0)', n(N', . . ., n(h(T)) ' € v{T']
whose corresponding nodes
n@), n(1), . . ., n(h(M)) € v{T]

Tare of maximum length at their respective

depths in T, and returns a set of nodes
N(@©), N(1), . . ., N(h[T]),

which are all of different depths, and which
. can be used to determine the 'values of the
function t. The nodes n(i)' are not all

hecessarily of different ‘depths in T'.
Notes: ! ’

(a) N 1is an array of nodes in T' whose

index ranges from 0 to h{T].

(b) .the father function, denoted "father"
takes a node as argument ang returns its
father (immediate ancestor). It is
forbidden to use a root as an’ argument to

this function.
(c) "check" is a logical variable

(d) "v" denotes the logicail "or" function;

1. for i <—) until h{T] do N(i) <— n (i) ':

2. for i <— 1 until h{T] do

3. vhile .

4. begin N

5. check <—' false;

6. for j <— 0 until i - 1 4o

7. check <— check v [deN(F)) = d(N(1)) J;
8. check ' :

9. end;

10. do N(i) <— father[N (i)]

- end.

61

62

.

/
number of executions of line 10
Q 3
l g —> oty =
{ { d(N(1))
i i 0 1 2 3 4 5 ((final)
-+ +
| - | ;
0] { 0 - - - - - i 0
| > |
1 { u - - - - - 1 i
| |
2 | 3 - - - - - | 3 ;
| . g
3 | 4 3 1 - - - | 1
| v C
4 | 9 - - - - - 9.
| | B :
o) | 7 ~ ;T - - - { 7
4o~ | 9 8 - - - - { 8
, | |
7 | 10 - - - - - N 10
| |
8 | 9 8 7 6 - - l 6
| |
9 | 10 . 9> 8 7) 5 | 5
. l N I

Hence, the\function, t, is as follows:

[

t(0) = 0
t(1) = 4
t(2) = 3
t(3) =1
t(s) =9

Figure 3.12.

t(5) = 7
t(é) =8
t(7) = 10
£(8) = 6
t(9) =5

A sample evaluation of the
function "th,

63

~cannot affect this result since they only alter the nodes
N(i+1), N(i+2), . . ., N(h[T]) . It therefore follows that
after execution of the entire algorithm, d (N(i)) # d(N(3))

for each i < j (and heﬂce, for each i # j).~

Now, for all i € [0, h{T]], 1(n(i)*') < 1(N(i)) since
either N(i) = n(i)' (in which éase equality holds) or NJ;)

is an ancestor of n(i)'. Hence,

Ch[T]

c[T]

1(n (1))

= b I(n(1)Y) sinée l(n(1))=1(n(i) "), ¥i

1(N(1)) - since either N(i)=n(i) "' or
- N(i) is an ancestor of n(i)'!

IA

IA

I(m(t(i))) since 4 (N(i)) = t (&

P

L(m(i)) since ¥i€[0,h[T]],
-4 t(1)€[0,h{T*"]] and
i=0 1(m(i))21, ¥i€[0,h[T']]
dnev[T' 13d (n) =1

1A

= c[T"']

64

lemma 2: - For all compact computation trees, T,

=
C[T] 2 'l rp/2li1.
—L 1

120
4 iy

" Proof: Consider f(i, T) for all i > 0. There are two cases:

First, if i < h{T], then let n(i) € v[T] be some node
¥ith 1(n(1)) = £(i, T) amM d(n(i)) = i. Since i < h{T],
l1(n(i)) > 1 so n has exactly 2 sons (of depth i+1). Since
the sum of the lengths of its sons is 1(n(i)), one of them
must have length at least rl(n(i))/24. Hence,

£(i41, T) 2 (1(n(i))/2,

r£(i, T)/2,5.

S

In “ the second case, if i > h[T] then f(i, T) = 1, so

the above relaficn also holds.

Hence, for all i > 0, f(i+1, 1) > rf(i, TY /24 .

Now, —-
N
[Tl = ({ £(i, T)
. ~1l1
iz2o0
-TT
=£(0, T) (1 £(i, T)
11 _
i>1 ‘
—TT .
=p Il f(i, T)

v
ol

= P rP/2

v
el

rP/ 2+

=P rP/24

v
e

rP/ 24

65
f(i+1, T)‘

fE(E, TV /22

—Tr

T) /22 |l * c£(i, 5T) /24 @
T
i>1
T .
{1 £ (141, T)4
4
i>0
‘ﬁT—. .
| ref (i, T)/24/24
i
120
——r.T_‘
i1 cf£(i, T)/4,
—ay
i>0
TT .
rp/4+ L r£(1, T)/23,
—d 3
120
° ¢
. . ’ . .
rP/2837 3 { 1l fEf(i, T) /2R (i+1)q}
a1

i20

]

66 .

1
-

>0y rp/2kin since ¥i2h{T], £(i, T)

Q. E. D.

&) .

We row define a balanced computation tree as a compact

. computation tree for which any node having successors has a

-

-

difference of at most one between the lengths of its two

soLs. The final theorem then follows:

Thggreg& Let T be a computation tree with p leéves.'If T is
balanced, theﬁ no other computation tree with p leaves has
lower cost than c[T].

Proof: If T is balanced, then it is comp;ct. We shall now
prove bf induct ion that f(i, T) = ¢p/2Rhiy for all i 2 0.
Since T has p leaves, f£(0, T) = Pp. |

Assume f£(k, T) = P/2hk, - |

1f k 2 h{T] fhen p/2hka = 1 since 2Mh(T)-1] < p < 23h(T)
for a balanced compﬁtat%on tree with p 1leaves. Hence,
o1, T) = 1= /2 (KeT).

2
W
)

If k < h[T]dthen let n be one of the nodes of T having depth

"k and -length l(n)' = f(k, ' T).' Node n " pust have some

successors since 1(n), > 1. The lengths of its two sons are
¢l () /27 and tl(mn)/24. The maximum of the iengths of the two
sons of node n isl rl(nf/21. in fact, since node n is of
maximal leﬁéth at depth k, rl(h)/Zﬁ is the maximum of the

lengths of all nodes having depth k+1. Hence,

il

f(k+1, T)

rf(K: T) /24
reP/28K~/24

rP/ 28 (k+1)4

Therefore, ¥i 2 0, f (i, &) = rp/2ki,q. Then,

-—Tr

clT] = 1l

a1
i>0

By lemma 2, this is minimal.

rP/2hiq-

. Q.

D

o .
chapter four

‘ ’ THE DIVIDER

A number of current approaches to division , are

described: a restoring scheme, a nbn—restoring scheme, and a
convergence scheme[26]. In comparison, a new linrear on-line
divisién algorithm is discussed in detail. Sor of this is
taken from our paper[56]. The difficulties with +is divider
ére " mentioned:. Possible ways to overcome this are éxamined,

with a good example beihg left for Chapter 6, where nodular

exponentiation is discussed. . Yoo,

4.1 Fixed-Point Dividers

In fixed-point division, two nﬁmbers, é divisor Vv and a
dividend D, are given. The object is to qompute a quotient Q
and a remainder R such that

D = Q*V + R
where B is required to be of smaller absolute value than v,
i.e. 0 < IRl < V. The simplest division method is Afhe

traditional pencigaandeaper algorithm. illustrated in ?é;ure
>

4.1. Here, the quotient, Q = [q(ﬂ) g(1)], is computedloqe '
bit af a time, most significant bit first. At the ith step
of this methoé; (2b-1)V, which .représents the divisor
shifted i bits to the right, is compared with the current
partial ‘remainder' R(i). A full comparison gf this nature
takes. time proportional to the tength of'the.operands. The
quotient bit g(n+1-i) is set to 0 or 1 according to whethér

- 68

quotient Q = [q(5)——q(1)]

[V (U)- v (1)]

divisor V

(o)

11 11

¢
{

divisor V=1101) 1100 110 1 dividend D = R(0)

0000 q(5) Vv

17100110 1 R(]j

1101 q (4) 2-1v

17100 101 R(2)

110 1 q(3)2-2v

110001 R(3)

110 1 q(2) 2-3V
. | 10111 R
o 1101 g(l)y2mev

10 10 R(5) =R remainder
P ,

Fﬁgufe 4.1. Example of standard division
e :) "method.

70

(28-1) V i's less than or greater than R (1) .

The new partial remainder is computed as
CR(i+1) <— R(i) - g(n+1-i)-(2h-i)V.
In herdware implementations, it is more convenient to shift
the partial remainder to the left, changing the above
relation to
R{(i+1) <— 2R(i) - q(n+1-i)v.
However, when this is done, the final partial remainder is
the required remalnder shifted to the left n p051tlons. An

example of this is shown in Figure 4.2.

The principal problem in fixed—point‘ division 1is
determination of the bits of the quotient Q. This can be
done with a comparator circuit: if v > 2R(1i), then g(n+1-i)
= 0; otherwise, g(n+1-1i) .= 1. For large values of n, a
combinatioral comparator circuit is imbractical, and the
method wusuvally wused is to determine the quotient bit by
subtracting Vv from QRKi)'and examining the sign of 2R(i) -
V. If,2R(i{ = V < 0 then gq(n+1-i) = 0; otherwise, g{n+1-1) =

1.

In the case that the quotient bit is determined to be
1, this trial subtraction also yields the new partial
remainder R (i¥+1). It is clear that the determination of the
quotient bits and the computation of the partial remainders
can be combined. Two major division algorithms are

d;stinguished according to the way that they handle this

divisor v

110 1

Figure.u.Z. The same example, modified
machine implementation.

0 000

e

dividend D)

q(5) Vv

"R{(M)

2R(1)
q(u)yv
R (2)

2R (2)

9V

"R (3)

2R (3)
q(2)v
R (4)

2R (4)

q(mv

R (5) = 24R

quotient 0

11 11

for

71

combination.

The straightforward techni@ue, described in Algorithm
4.1, always éerfofhs a subtraction of the fornm
R(i+1). <— 2R(i) - ¥.
When the result of the subtraction 1is neqgative (the
corresponding quotient bit is 0) an addition is performed:
N CR(i+1) <— R(i) + ¥ ,

to restore the partial remainder to its correct value. This

teéhnique‘ is known as restoring division. If O's and 1's

»

occur with equal °‘likelihood in the quotient then this
algorithm reguites n subtractions and an average of n/2

7

additions.

The computation time of this algorithm can be reduced

by a technique called ponrestoring division. This is based

/ "
/ i

on the observation that a restoration of the form

R(i) <— R(i) + V i
is always followed in the next step by a subtraction: . |

R(i) <— 2R(i) - V.

These two operations cah be combined into

, R(i) <— 2R(i) + V.
Thus, if R(i) > 0 then g(n+1-i) = 1 and R(i+1) is computed
by subtracting V; Voﬁherwise, g(n+1-i) = 0 and R(i+1) is

computed by 'adding V; This procéduré is given as Algorithm

4. 2.

Algorithm 4.1

Restoring division algorithm

)

begin : :
comment This algorithm finds the gquotient, Q
[g(n)—9q (1) 1, and - the remainder, R
{r(n)——T (1)1, after being given the .dividend in

and the divisor in V;

1. Q0 <— 0;
R

2. " <— D3
3. for i <— n step -1 until 1 do
4. begin _
5. R <—— 2%*R;
6. Q <— 2%Q;
7. . R <— R - V;
8. if R < 0 then
"~ 9. begin
10. q(1) <— 0;
11. R<— TR + 1V
12. A end '
13. else g(1) <— 1
14. end

end.

[I]

end. *

the gquotient, Q
remainder, R

74

LY
}
Algorithm 4.2
Non-restoring division algorithm
begin
conment This algorithm finds
[a(n) q(mn 1, and the
[r(n) r(1)y], after belng given the d1v1dend in
and the diviser in V;
1. Q <— 03
2. R <— D;
3. Q <— 2%Q;
4. R <— 2%R;
5 R <— Rk - V;
6. for i <— n step -1 until 1 do" .
7. begin
8. if R < 0 then
9. begin
10. q(1) <— 0;
11. "R <~— R+ V
12. end
13. ‘else |
14, begin
15. qg(1) <— 1;
16. R<— R -V
17. ~end; .
3
18. Q <— 2%Q;
iS. R <—— 2%*R
20. end;
connent The final remainder may have to be corrected;
*21. 1if R < 0 then R <— R + vV

Yonrestoring division always requires exactly n
additions/subtractions, . as can be Seen from . the

specification of the algorithnm.

A

4.2 A New Proposal for a DlVlder ‘

Another division technique often employed involves the
use of iteration to approximate the required quotient. This
is -particularly applicable in floatindepoint division, but
as we shkall see, can also be adapted to our current(problem.x

'g/'/

The process of division can be split into two distinct

phases: computation of the reciprocal of the divisor,\

followed : multiplication of the reciprocal by the'
e ’ o *;‘w—u' RKegudl - 4 -
lelde%@Sﬁﬂt. s sfloating- point lelslon, thlS is-all that is
s

reguired. .In flxed-point. division, however, this nust be
follewed by. a third phase yhieh computes the remainder: the
largest integef' in the product of the reciprocal and the
bdividend, multiplied by the divisor,vmust be subtracted fronm
the dividend, to obtain"the desired remalnder. Thls
technique .will be used to develop a d1v1der which operates
in linear tiﬁe, us;hg the concepts developed earlfer in this
thesis. The jreciprocal algorithm to be described‘involves
only additions/subtrastions and multiplications, ali of
which can bé performed‘ en—line in linear time. Also, the
computations descfibed for 'the second and thlrd phases of

the lelSlOD method lnvolve only these three operatlons. As

shall be seen however, certain truncatlons necessary in the

76

division algorithm prevent it from being on-line.

It should nof come as - a surprise that the division
algorithm is not pn—line. Divisior poses a considegébly‘more
difficult problen thgg\‘the other- three operation;, fdr
division is inherently a Jleft-to-right process. The
traditional algorithm produces the most significant bit of
the quotient first and the "least signiéicant bit last. Also,
it reqtires knoQiedge of the full dividend and divisor
before any computation can begin. Furthermore, this
algorithm does not pr&duce any bits of the remainder until
after the last bit of the quotient is complete..The divider
"to be propoged accepts bits of the divisor and dividend
beginning with the least significant bit, and performs some
internal computation ~at each time step. After the compleie'
dividend 1is in‘Jfassuping the dividend is longer than the
divisor),v-it ‘produées the first»(leasf’significant) bit of
the quotient. The remaining. bits bf the quotient emérée
after each tinme step. The first (lea%t significant) bit of
the remainder is ready one time step after the first bit of_
the guot?ent, and successive bits emerge in the same manner
as before. | ' ’ .

]

-

One can ‘easily show by counterexample that it is not
possible to produce a truly on-line divider. Given the
rightmost bits of a dividend and a divisor, it is impossible

to'.determine_ in general the rightmost bits of either the

17

quotient or the remainder. In fact, it is not possible to do

so until the entire divisor and dividend are known, for a
change in the'most‘significantJbit of either will cﬂange the
results unpredictably. However, it is possible to do some
"préprocessihg"' before the entire inputs are known, so that
the firei bits of the outputs can be produced as quickly as
poesible"after the complete divisor and‘dividend are. known.
This is 'the principle used. in the subsequent development

% . b '

e, *

Let us now consider an iterative algorithm for
computibg the reciprocal of a number. Since the reciprocal

of an n bit integer is a fraction, we 5hall define the

reciprocal,to be *

rec(x) = 25(}n—1) + X. .

-

Observe that +the ”reciprocal is normally an n bit infeger,

) . - . * .
~except when x is a power of two, in which case it is an n+1
i 1 re .

bit integer. & recursive algorithm. For computing,reciprocals,_

' is ‘given as Algorithm 4.3. . An_ exagéle illuStrsting its
. _ o | o

-execution is given in Figure 4.%.

) ? ’ ?) ?

’ ; ' ' 4

It is shown in [2] that Algorithm 4. 3 converges onto
the reciprocal of an n blt number iniiog n 1terations. Each

iteration is-‘a call to procedure rec Q?nd‘ involves a

t

computation of . tye fbrm A —.?Z*C. A dev1ce for computing the
" .

’_expres51on 4 - B2xC could be constructed in a similar m%nner‘

§
as were the adder and multiplier in earlier sectionsi These

could each be 'capable of exegution‘in on-line fashion: In
.) 1 o , L ’ "

78

Algorithm 4.3

Recursive function for computing reciprocals ////Nvﬂ\\\
. | P \

function rec([4d (k) am n; ‘ -
comment This function finds the reciprocal, R

i

[T (k) r(1)], after being given the divisor, D
fd(k)——d4(1) 1:
'begin’
1. if k = 1 then [r(2),c(1)] <— [10]
2. else: B _
3. ﬁbégin B ‘
4. . [c(k/2+1) c(1]] <~— rec([ad(k/2)——a (1) 1 :
5. . [t(k)——t(1)] <— [c(k/2+1)——c (1)] * 21 (3k/2)
: '»[C(k/2+1) c(1)]2 * [d(ky——d(1) I;
6. [E(k+1) 1 (1)] <— [t (k+2)——t(2)] -
_ . = : 5
7. end; '
P8, [r(k+1)- r(1)]

end.

79

Example: rec(10011001)

rec (1) = 10 . -

rec (10) = 10 * 1000 - 102 * 10
= 1000

_ truncate 1: 1008 —> 100
0

100 * 106 -~ 1002 * 1001

H

rec(1001)
= 11106000

truncate 3: 1110098 —> 1110 .

‘

rec (10011001)

B Y

1110 * 1012 - 11102 * 10011001

= 110121011011100

, truncate 7: 1101010129¥1299 —> 11010101

Figure 4.3. Example of reciprocal
- evaluation.

’
’fact, the entire reciprocal algorithn coﬁld be executed
on-line ;Qere it not for the fact thatj each iteration
requires truncations from ‘the 1least significant bits, as
, iilustratéd” in figure 4.3. Each bit which is truncated fronm
the right .introduces a delay of one time step. The tSta15
delay introdpped in this manner is

T+3+ 7+ ...+ ([20(logn - 1]

i

2+4 +8+ .. .4+ 0n-1logan

-

= 2n - 2 - log n steps.

Q

Having discu_ssed the device L&omputihg reciprocals,
let” us see what other hardwafe is nteded to complete the
division process. As mentioned above, a'multiplier is needed
to 'multiplf ‘the reciprocal by'the_divisér to proauce tﬁe
. gﬁotient. This has been thqroﬁgh;y'examined in the previous
chapter. ‘Next, for the last phase&;f di%ision, a_dgvice
.which compptés the expressiqn A - B*C is requited to Gombﬁte~
the.remainder; Th%s cén again be cénst#ucted usihg a similar
design as was applied for thelon—liﬁé adder and the on-line
;hultiplier, The ‘details will not. be given, but it is
conceptually cléar thét,such‘a device‘accéptingvthree inputs

and producing one output could be built.

.

A summary of the parts needed for the diQider is as

follows:v
- Phase 1: - devices for A - B2*C — lbg n of ‘these
Phase 2: device for A*B o — 1 of these

Phase 3: ‘device for A - B*C — 1 of thesg.

. Now let us compute the to.al delay of the divider, i.é.
’ ' ’ . . |

the time from when the rightmost bits of the divisor ana

dividend are input to the time when the rightmost bit of the
. ~ . : \

quotient is output (the rightmost bit of the remainder lags\

one step behind the quotient). Thtoughoﬁt the entire\

process, the inputs arei expected to be flowigg into the
divider, one pair of bits per time'step. As shown above, the
delay introa;ced by phase 1 (éomputation of the reciprocal)
is 2n- - 2 ‘—v—log n steps. The delay due to phase 2
;(éomputation of the quot}ght) is oply 2n-steps since the
prbduct of an n bit-reciproéal and a 2n bix'di%idend‘isla_Bn
. bit number, ofi which only the most significant n bits
§omp;ise‘_the duotient of interest. The‘delay corresponding

to phase 3 (computation of the remainder) is.one step. This.

is possible only because all three computations are being ,v

perforned simultaneously.-ﬁence, the total dela} is:

Al

4n -1 - log n steps.

!

R

chapter five

ASSOCIATIVE MEMORY APPLICATIONS

Chen's scheme[11] for adding columns of numbers using
bit-slice arithmetic in associative memory'is,giscuésed./ﬂhe
problem éfjextending it to multiplication is int;oduced and
solved. Other computations such as veétor ‘and matrix.
pultiplications are studied. in"light' of the éreceding
results. Some of these operations, such as computation ofl

determinants, are less practical than others. The

feasibility of designing the required data manipulator for

associative memory operations is examined.

5.1 An Associative Processor Model

let us consider a 1list of records in memory, each

J .
~

record containing a fixed number Qf,fﬁelds,-e.g.: a person's
name (NAME), an identification number (ID), and an age
(AGE) . Most information storage and retrieval problens

involve accessing certain fields -within a set of records in

ansver to a question such as: "What are Taylor!s ID number

and age?" If a conventional random access memdrf is being
used, - it is necessary: to specify exactly the physical
addreés of 'the Taylor ~entry in tgi'table. Although the
prégrammer need not knou_it speéifically, spmehow‘a search

through a series of addresses is reéuired; At each address,

‘a comparison must be made between the name residing there

and 'Taylor'. Oh;f after a match is found and the address is

82 L

4

83

known can the required informatrgpw-be extracted, The
instruetion' for obtaining thds“ information contains the'
acquired address. This address has ‘no loglcal relatlonshlp
to Taylor; hence if can /be viewed as an artificial construct

<

which adds to Programming complexity.

N An' alternative approach is to search the enrire table
Using the NA ME field as an address. In such a systen, the
request for the Taylor data eould be in the form of an
instrucfion which contains only the ﬁame 'Taylor':and a
specification Ehat it is . the NAME field that is to be
scanned. The conyentioaal method of - implementing thi?
approach involves seannrng all entries in the table
seguentrally and checking their NAME fields until a match is
found, Sequential searching of this type is easily
implemented with rand?mf aceess demories, but it is very
slow.” It can be speeded up if the table is sorted according
to the field, being searched and through a variety of other
technlques. An associative nmemory eliminates whls dlfflculty
by ‘51multaneously examining all entrles in the table and
selecting the ' one that matches the given address. Tt is
clearly dseful to - be able‘ to select other fields of.the

record to use as an address. In the current example,

Taylor's ID number .could be used as an address. } -

In genegal, an assoc1at1ve memory is one in whlch any

-

stored item can be'accessed dlrectly hy using the contents .

84

4

of the item in question, generally some specified subﬁiéld,

as an address. Associative memories are also commonly called

content . addressable memories[20, 42, 43]. Fiqure 5.1

illustrqtes this property of an associative memory. The
records are stored one per row. It is assumed that the width
of the' memory is’'sufficient to hold the desired number of
fields and that there are enough rows to hold all records in
the. table., The " record being searched for is specified via
two registers: the comparator and the mésk. The key to be
searched for iévplaced int the comparator. The mask register

? . _
masks out- ‘those bits of the comparator which are not

significant to the search, thus allowing the selection of

specific fields. The response to the search is given in the
responder register, ~which has the 1length of the memory.

» 14

Those rows in which there .is a match show a 1 bit; the

(4

others don't change from their previous state. It is quite

possible to have several matches.

. ’ . . 4
Since all words in the hemory are required . to compare

their contents with the comparator simultaneously, each nust

-

: 3

have its own match circuit. The match End response circuits
make associative memories much more

omplex and expensive

than conventional memdries[SQ]. The advent of LSI techniques
. . " o . h \ .
has made - associative memories economically feasible.

Howevét, cost consigeﬁations still- Lfmit them to
applications vhere a relatively small amount of information

nust be accessed very Tapidly, e.q. memory address mapping.

’E

85

—— comparator

L

mask

pmmm

e

nooooBoonOoan

e

<

ooonoonpoon

.

ettt D

L.

UnmOopomuoopooogn | oo

MEMORY

* 3

P |
HUD.UWUA..H«A,UUU\UEDDU L

Vs
A1
ats

respondersJ

Figure 5.1.

1ve processor with

?Fsociat :
Ce capabilities.

An
bit-s1

86

NS
] ' N
7’

" When the match/mismatch logic in an associative memory

'\.

is modified to include certain grithmetic capabilities at
. RN

’

each memory word, the unit ' is often known as an associat ive

.

processor. There are’ * several variations of ‘this in

existence[59]. The unique feature'which'will be of primary
) X .

importance in this thesis is the bit-slice operation

l

capability. There are a number of machines of .this type in

’ | -
existence,” perhaps the most well known one being the STARAN,

manufactured by Goodyear Aerospace Corporation[7]. ‘

Suppose it is neceséaryvto obtain the sum of many pairs
of numbers stored in the memory. In a sequentiai processor,
each pair nust 'be passed, one at a time, through a single
- adder; if many pairs must be added, the tstal computation
time 'is proportional to the number -of pairgf,But in the
associative proéessor, each word in the memory:has its own
simple adder, and alli the adders can form sums
simultaneously. Although each one is relatively slow and
takes lbnqor to obtain an individual sum than would a
high-speed adder, the total elapsed time for'obtaining all
the sums 1is orders of magnitude less than.with the single
central» adder. The total time is no longer dependent on the

?*

nﬁmber of operands, assuming a sufficiently large memory.

Typically, an associative processor allows logical
bit-slice operations on the contents of the memory. This

"vertical processing”" is also illustrated in Figure 5.1.

o

- | ’ M 87

Here, a logical fugétion (such as 'and' or 'or') of columns

a and b is performed in one processor cycle and the result

-
!

is placéd in column c._ More advanced operations such as
addition of columns of words can be implemented from this-
«capability either through ‘harduare or software. In either
case, the time taken is dependént only on the width of the

vords to be added, rafher than on their widths as well as

>

the number of operands, as would be the <case with a

. €
conventional processor.

5.2 Agiitiog of a Sequence of Numbers in an Associative
Processor i

The usefulness ‘of an associative processor in adding
many pairs of numbers has been illustrated. A more difficult
problem in this environment is the computation of the sum of
a set of numbers. Suppoée the sum of m numbers A1, A2, . .
., Am is desired.‘We will denote the bit representations of

al(1)] , o

the n-bit numbers as before:

A1 = [al(n)
A2 = [a2(n) az2(1]
¢
Am = [am(n) am(1) 1.)

3 . Tt
The method which comes to mind immédiately is to add pairs,
then pairs of pairs, and so on. This simple algorithm is

readily implemented in an associative processor and takes
}

1Y
* ‘

time O(n log m) bit steps.

Mﬁch more use of the vertical processing capabiliity of'
the associative 'procesépr can bé made by using a scheme
discovered by Chen[11]. ’This algorithnm makes use of the
on-line property of ripple-carry addition. The general idea
is the same as the mekh?d mentioned above. The significant
gain in speed is obtained by overlapping the git operations,
as 6is allowed by the on-1line property. The operands-are
diviaed into two halves. In one time rsteﬁ, the least

significant bit column of the first half is added to the

least significant bit column of the second half. This

v

produces two <columns: a sum and a carry column. This is

{

illustrated by example in Figure - 5.2. There, this first
Qddition is indicated by boxes. Next,"ragher than storing
tﬂéﬂhsum and proceeding to thelnext operation, the sun is
splitﬂ into two half .columns and placed under the second
ieast significant b#ts of the original operands. The carry
cblumn is stored somewhere in ‘memory to bevugéd in the next
addition step. The Processor now moves on to add the secornd
least sign}ficant bit columns‘plus the carry column from the
first addition. This time, it will also be adding the least
significant ‘bits of the second set of agditiéis (the carry
for these, is zero, so it is assqmeg* that the entire
teméorary carry column is initialized to zero at the start).

This process repeéts. The example in Figuke 5.2 shows one

addition to completion. For the purpose of clarity, the-

|]

110 010]
- 1
11 111]

1

101110

1001000

-
v

A
10 1114
I
1 11y
11
1T 1401
||

1
J

{——sun

o - ©

[

-]

—t
| SR

i

1111168

carries

- Figure 5.2. Exampléeqf’bit—slicefqn—line
addition in an associative“memory.

<
-

5.

3.

L 2

«

N .

“

canry ‘column for each sfep is shown (moving right to left).
‘ ' . : g ' &
In " practice, only one column. is n%cessary, with each

§ucéeSsive carry. overwriting~ the previous one. At the
completion of the addltlon, the contents of the memory may

‘be v1suallzed as in FlguretS 3.

This algo;ithm”will now be~descﬁined more formally. The
B operands ‘are layed out in me mOry ;in twvo columns. Assuming

m to be a pover of 2fhplace the operands A1, A3, . . -,

A(p-1) in one ‘column,“ ancff a2, hut « « -, AR in another
=column, as shownﬁin Figure';.u,‘Aseune the least significant
bit of the first set of numbers g% be in column p and that
of‘the eecond'set to be_in cofhnn q. ‘Columns r and s will be
used for tenponary storage; ;f is, of course, necessary to
'haveﬁ a snfficiently' large ﬁnemdfy available. As shall be

'seen, the number of columns necessary is at' ledst 2n + 4log

] and the‘req01red number of 9ows is m.

Assume the memory to be addressed sequentially with
indices increasing’ from left to right and from top to

bottom. As ceolumn operations are allowed, a special notation

“is in order for columns: the index for the given column is

“underlined. Hénce, r denotes the rth column from the left.
logical operations arezallowed on colunns. Hence,
<— r ® s

t
g .3 . .
dengtes the operation of :<taking the ‘'exclusive or' of
“columnség and s and putting the result in column t.

]

]

91

A [e v e == = =

V b e e =

o
‘l'/lllv
=]

-

S~ s

= T e
-
]
[]
®_
' .
b —
Y S '
A% L
o ———
- =
L]
[]
b —— — o
e -

=
-\ — B~
=] o8]
— g — N
=]

Jsum

L

I S el

1""'.'I.I'llrl'lllllllllll.l.lj

>

n + log m

4

earr y—!

log m

Addition of m numbers in an

Figure 5.3.

. 1

associative memory.

4

PRt

LOW

-—

3]

m/2

N

(——_——*——__———_—-‘——_——1

colhmnéQ} P ! q
- | {
¥ Y.
fat(m—al(1)] [a2(n)——a2(1)] 1
1,[a3(n2‘ - a3(1)l [al(n) a4(1)J |
| [
] ® |
;\‘ I
oy . ’ * ||
[—) [am (n) am (1)]]
|
|
‘ {
|
l.
|
N
|
p {
|

Figure 5.4. Initial layout of operands in

memory prior to ‘addition.

'Two functions, ODD and EVEN, aré also required for
splitting a column in ﬁalf. ODD[§j is a column havihg half
the length . of. s whiéh ‘contains the odd elements of s.
Similéfly, EVEN éélects alternate elements starting wifh fhe
second; A column with .an ind;x; e.g. pkk) denotes the colunmm
p from row k on. 0 denotés a column with all zero entries
(this 1is Inot entifelj consistent but will be found very

)usefui).

With this notation established, the algorithm can now
be formalized; ‘see Algorithm. 5.1. - The feasiBility of
performing the data manipulating functions such:és EVEN-and
©oDb, and méving columns from one location in memory to
another has been sgndied by Feng[16, 17j.'As’caﬁ be deduced
immediately from the main for loop, this algorithm takes
time O(n + 2log ,) to add m numbers of n bits each. ?his
compares favorably witﬁ the O(n log m) time taken by the
algorithm mentioned’Cﬁt‘ the beginning of\this'sec;ion. The

best serial. algorithm would need O (nm) time steps.

As a. -rigid " means of comparison of the Qarious
algorithms to follow 1in this chapter, a uniform~Procedure
for deducing the worst case times of exécution i§
introduced. This is illpstrated by the following derivation
for the . present algorithm; In the addition of m Gumbers of
length n, the first bit of the 5;9 is ready after rlog m,

steps. The maxinum value of the sum is

-

Sy

K]

vAlqbrithm 5.1

Associative memory -additiom

fégin

comment Initialfze: Assume the m operands to be added
are layed out in memory as shown in Figure 5.4;

/

L <— 0;

for i <— 0 until n -1 + 2log n do
begin " :

comment Add columns p-i, g—i, r. Put the sum in
column s and the carry in column r;

S <— p-i © g-i € r;
L. <— (p-i)e(g-i) + (p—i)er + (g=i) er;

pzi-1(m/2+1) <— ODD[s];
g-i-i(m/2+1) <— EVEN[s]

end

end.

, m{2kn - 1).'
Henct, the sun is_complete after
Liog m(24n -'1)Jc4 1 + (log my gteps‘
= tlog m + log(2hn - 1) + 1 + log m,
x 2iog mJ+ n steps.t+

¢ i : .
The addition, algorithm requires m rows of associative

memory. The nﬁmber of columns required is computed gs
follows:
) 2{tlog m{2kn ~ 1)1 + 1+ rlog m} - 1

* 2log m+ 2n + 2log m N

= Blog m.+ 2n.

5.3 Multiplication of a Sequence of Numbers

. ,
The application of the above algorithm for addition of

a set of numbers-in associative menmory translates readily to
pultiplication. This follows since the on-line property of

the multiplication algorithm pré§ented lnvchapter 3 is the

same as that for addition in Chapter 2. The fact that this

would be possible if a linear. on-line mﬁltiplicatién
algorithm. were available was recognized by Chen in.[11]. A
formal déscription of this procedure is given as Aigorithm

5. 2.

The similarities between this algorithm and Algorithm

3.1 are obvious. The key difference is that operations are

+The symbol "&" is used to denote "approximately equal to"

’J’ﬁ, ~ 1 . ’ 96

R,
b
&S

Algorithm 5.2

Associativle memory multiplication

begin

/ s

comment This algorithm computes the product of m
numbers each of n bits in an associative memory.
Assume . the numpers are placed in pemory starting in
the first row, in two equal columns, the first ending
at column p and the second at column qg. The product
will appear in row 2m of the me mory;

1. for i <— 0 until nm - 1 do

2. begin .

comment Five column groups of work space will be
needed: A, B, C1, C2, S. These correspond
directly to their namesakes in Algorithm 3.1.
They must all be initialized to 0;

3. A+i <— 0;
4. B+i <— 0;
5. Cl+i <— 0;
6. C2+i <— 0;
7. S*i <— 0
8. © end:

9. for i <— 0 until nm - 1 + log m do

10. begin
11. begin
12. for j <— 0 until i do Atitj-1 <— ptj e g+i
13. end ;
14. begin
©15. if i > 0 then
16. for j <— 0 until i - 1 Ao

B+i+j-1 <— g+j e p+i
17. + end; o

18.

T 19.

20.
21.
22.
23.

2.
25.

26.

27.
28..

29.

end.

97

I

Algorithm 5.2 igontinued)

for j <— nn step -1 until 0 do

begin .
comment Initialize C1 = Cl1-1 = C2 = C2-1 =

[=}
-

©t#1 <— s23[Axj, B+j, Cl+j-1,
‘ C2+-i—2' S+-1];
t+2 <— SUS[A+d, B+i, Cl+i-1,
C2+i-2, 5*il;
t43 <— S135(A+j, B+i, Ci+j-1,
: C2+3-2, S+il;

Cl+i <— t#1;
C2+] <— t+2;
- S*j <— t*3

p-iz1(m/2+1) <— ODD[S*j];
g-i-1(m/2+1) <— EVEN[S+]]
end

end

fgie

98

2’ ’

- “ - i

heing‘ done bit-slite and word parallel rTather than on

% individual bits: This. néqusitates thé elimination .Y
‘bémpariSons such as afg }ound in lines 16 and 20 of
'Algorithm 3.1. They are replaced by the t'and? operatlons of'_
lihe§ 12 and” 16 in, Algorlthm 5.2. In both algorlthms, the
high degree of parallellsm is ev1dent as was discussed in

. e . W
detail in the descrlption ~of AlgoIithm '3.1. The data

manipulations found in lines 26 and 27 are the sane as’thosé‘“

: {
in Algorithm 5.1.

N

The time and space complexities of this.;algorithnm are
" X

i, . s . ‘
derived as follows, in a similar manner asywas used in the-
. — . X N N \:.

previodé\section for Algorithm 5.1. In the multlpllcatlon of
A

m numbers of length n, the flrst bit of the product is ready
after :

. . v .

2Arlog m1 -1
steps. The maximum value of the product is,

(24 - 1)in.
., Hence, the product is coﬁpletétgfter

Llog (23n - Nimd + 1 + 2hflog m4q - 1 stesz

W 13g (2hn - 1)+ + 1 + 24clog my - 1

£ nn + m

{

e

m(n + 1) steps.

I

Again, m rows of'associative~memory arg}requireg. The

. nurber of columns used is computed as follows: ‘

99

tlog (28n - 1)Amd + 1+ 2hclog mq - 1 +
tlog (23n - i)l(m/2)J + 1 + 24clog (m/2), - 1
tmn + m+ nm/2 + ns2

= 3,2 m{n .

Figure S.S 8demonstrates the multiplication algorithm by
exanmple. There, he‘four numbers 101, 110, 111, and 110 are -

multiplied to foym a 12 bit product.

e e

5.4 Vector and Matrix Qperations

Certain other operations. such® as ~Vector and matrix
manipulations involving * large numbers = of additions,
subtractions,’ apd/or multiplications, can be effectively

speeded upa using bit-slice ' operations in an associative

)

processor, drametiéally. demonstrating the power of this-

8

computer architecture.

Figure 5. 6 shows how the dot product (also known .as. the

qscalar product) of +two vectors can be readlly,computed in

this env1ronment. Assume the dot product of two vectors A =

(A1, a2, . - -+ Am) and B =. (B1,
‘ \
found. If n ils not evenA make it even by lettlng the last

B2, .'. ., Bm) is tb be

'elements AD = Bp = 0. Next place the %ectors in memory

.as shown in .the top half of Figure 5.6. The pairwise

rroducts. of the elements " (not the product of all the

i

i elements), Pf;34P2, . ;. <y, Pm, ‘can be readnly found as

dlscussed prevlously.‘Plac1ng these products in another part

.,4\ .

100

11110 110001
101101111100 <—product o

11111 11111 . 11111
i—> 43210987654321 43210987654321 43210987654321
) r |
101 110 | {
111 110 | |
| carries |
| l
| |
L i

Carry columns after step i, for i =1, 2, . . ., 13:

.0 11110

i=1 - i=8 110001
101101111100

10 11110

i=2 1001 1=9 110001
0 ’ 101101111100

11110 11110

i=3 110001 i=10 110001
100 101101111100

| 11110 | | 11110
i=4 110001 i=11 110001
1100 107101111100

11110 : 11110

i=5 110001 i=12 110001
11100 ~ 101101111100

11110 : 11110

i=6 110001 i=13 110001

) 1111111100 101101111100 R
11110
i=7 110001

101101111100

Figure 5.5. Example of bit-slice on-line
nultiplication in an associative memory.

101

i. Multiply pairwise, ... 2. Alternate product—
r 1 , Al
Y Y
| : .
I [ai(n)= al(] [(b1(n) bi1(1)]
|
I [a2(n) a2(1)] [b2(n) b2(1)]
| ' “
I L))
{
| ‘e °
| > —
{ d o {
| |
I [am(n) am (1)] [(bm(n) bm (1)] |
i ' Y
| |
| N |
l I
t e o @ |
' |
r < -
|
l e o o —
{)
P1=R1eB1| {p1(n) pt(1)] [p2(n) p2(1) 1]
|
P2=R2eB2| [pP3(n) p3(1) 1 ([pl(n) pa(n 1]
I .
* { ; . ’ ™
—>
[— 1 [pm(n)—pn(1)]
t |

3. Add these to form dot product

Figure 5.6. Computation of dot product.

3102

9
of the memory in a column as shown in Figure 5.6, the'total
©of these numbers can ke computed by applying the addition

algorithm, Algorithm 5.7.

A‘ discussion of the time and space complexities of the
dot product algorithm is of interest. In thﬁ/first half, the
pairwise multiplicatidn, the first bit of AieBi for each i
is ready after 1 séep. The first bit of the sunm ié‘ready
after log m, steps. Therefore, the first bit of the dot

~

ptoduct is, ready after

; rlog my + 1

steps. If each rnumber has length.n, the maximum value of
each numbér' is 2hn - 1. Hence, the largest possible dot
rroduct is. | .
m(24n - 1) p2.
Thus, the fength of the #argest poséible dot product is
tlog m{234n —\~1)A2J + 1.
The complete dot product is ready afﬁer
tlog m(2An - 1) p24 + 1.+ log mq + 1 o

¥ 2log m + 2n stebs.

[

* As deduced from Figure 5.6, m .rows of memory are

requiréd. For storing ali the elements, 2n columns are
needed. Adding m ﬁumbers,'each of lengfh 2n»requires<gP'+
4log mvcolumns. Herce, the total numbé:‘of columns required
for computing the dot product ié

\

6én + 4log m.

103

The computation of the product of two m x m matrices is
essentially the computation of m2 dot products, each of

vectors of length m. Hence, this operation can be easily

performed in the same'manner as the dot product, the chief
difference being that m3 rows of memory, rather than m, are

required. ’ , :)

The high-speed computation of the déterminant of a

-

matrix is possible in associative memory 1if one allows
P

~

virtually unlimited memory space. In a serial processor, the
algorithm for computing determinants directly fronm b:he
.definition requires expdﬁ%ntial time; in an associ;tive
processor, the exponential tinme complexity' :can be
transformed into a linear time cdmplexity and a; équneqtial’
space conplexity. ththough. the algorithm has no practical

value, it is of interest for this reason.

The defiﬁition of the determinant of an m x m matrix
‘includes the computation' of a Seﬁ of m!'cofactofs, each
consistiﬁg of the product of m factors selected from the m2
elements . of the matrix éccording. to one of the m!
permutations. Those cofactors whose permutations are of like
parity are then added to fornm two éums, énd*the égm of the
even cofactors is, sustfactéd from the sum of the odd

cofactors to produce the determinant.

Assuming 'a large amount of associative memory - is

ke

104

) S . 5o
S . fon
54

available; the elements to . be multiplied to form -the

cofactors can be layed out one '"under" the other in a group

N ’ J : FES

of m! sets of m rows each. The cofactors can then all‘be
computed simultaneously:f‘The even cofactors' must now be
summed up. At the san&, tlme, the sum of the odd ones can

U

also be found. The '/2 .even cofactors are placed in two

columns, each having length n!/4 and are then presented to

14

. » 4
the addition - algorithm digcussed previously. The m!/2 odd

cofactors are treated similarlf at the same time..As these

7p : . v
two sums are being produced, théﬁy dif ference is computed to

yield the final’ ansver. "

2 .

.:/] . | -

A computation of the time taken for this loosely

described algorithm follows. The total time taken "before the

\

least sigrificant bits of the cofactors are produced 1is &

23rlog mq - 1 steps.
After this, addition of the cofactors can be initrated;'As
there are m!/2 even cofactors to be added, the fir%%\bit of

the sﬁm of the even cofactors is complete after a delay of

S

/ rlog (m!/2)y steps.
The .de cofactors take the same time to be added. These two .
- Sums are then 'subtracted producmng the first blt of the
final“ result after another delay of 1 step. The total delay

LY

nntll the flrst bit of the determlnant is computed is
2h¢log” m1‘ ‘1 + rlog- (m!/2)1 + 1 steps.
"The max1mum V:Tue of the determlnant is -

—m!!(21n - 1) in.

105
i
Hence, the time taken for computing the determinant of an m
X @ matrix, each of whose elements is of length n, is:

2hrlog mq - 1 + log (m!/2), + 1+

tlog m!e(2kn - 1)dmt + 1

23 rlog m, + rlog (m!/2)4 +
tlog m! + m log (2hn - 1)4 + 1
- s m+ (1/2)1log o + n log‘m - m iog e, +
L(1/2)log o+ m log m - m\log’e +
m log (2hn - 1)2+
*m+ (m+ 1/2)log m - n log e + (m + 1/2)log m -
m log e + mn |
x ;ém + 1) 1log m + mn.
The full algorithm requires mem! rows of memory. For
.the multiplication of m numbetsxﬂ(3/2)m(n + 1) columns are
required. Then, to add m!/2 numbers of length mn, twicé,‘
requires v ‘

2[{4log (m!/2) + 2mn)

8 log (1/2) + 8 log (m!) + 4mn

(8m + d}{ié R columns.,

A summary of \the time and space requirements of the

L

various algorithms disdussed in this chapter is givem in

Figure 5.7. Z.

:+Th1s makes -usé- of Stlrllng's a?Pr0x1matlon for- factorlals-w°w
x! ® (2ox)R-(1/2) '@ xXpx e e‘—

P, s

106

—— - w—— o mn v —

T T T 1

{ | i |

| Circuits | | Associative I

PROBLEM I : | Bit | 1

. | required | o memory |
(all words of | { steps | ' |
| (parallel | . i required (

length n) i | Tequired F : T 4

‘ | bit-slice) | | rows | columns |

| | | | |
i.::::::::::::::: f::::::::: ::::*::::::::::::::’:: :::::::F:::::::::{
[| { I | ‘ (
| sum of m | | | | 2n |
{ | 1 adder | n + 2log mj il 1 + |
|- numbers | } { { 4log m |
{ | | | N |
F + —+ — + 1
[| i | { |
{ product of m | i i | 372 |
| |1 multiplier| m{n+1) -} m | m{n+1) {
| num bers | | l | |
{ I oo | | i |
k + +— +- + |
| dot product | i | | |
| 11 multiplier| { 1 6n |
jof two vectors| & |2n + 2log m| m | + i
| : | 1 adder | | | 4log m |
| of length m] { { I |
- + —— +- -+ 4
| | o | | i
{product of two|1 multiplier| i i én {
(. { & {2n + 2log m| m3 { +]
| mxm matrices | 1 adder | | | Blog m |
I ‘ | | i | {
F = + + —+ + 4
I t 1 adder, | l | |
{determinant of| :] | | (8m+4d) |
(|1 multiplier| (2n+1)1log m|{ nem!? { elog m |
jan mxm matrix | &’ | +mn (|, (
| i1 subtracter| | | |
L 4 . i 1]

Figure 5.7. Summary of applications of
linear on-line circuits in associative

’
o memory.

chapter six

APPLICATIONS IN CRYPTOGRAPHY

There has Dbeen éonsiderabié mention in the recent
literature[21, 50, 14, 29, 36] about "public-key

- cryptosystems". A neéessary component of such a public—kéy
system implementation, as well as for certain otheri%ystems,
isb a hardware device for rapid modglar exponentiation. A
proposed method for this in time O (n2), using the linear

Jgon—line concepts developed in this thesis, is given.

6.1 What is a Public-Key Cryptosystem?

This chapter deals with a most interesting and useful
application of the bit-sequential on-line arithmetic
SN o o o

concepts developed in the preceding sections; namely to the

encoding and decoding of messages in a ‘"public-key

cryptosysten". ‘ : g' \

<

_Recently, a major advance has been made in the area:of
éﬁmmunications security—that of a practical way to
irmplement public;key cryptbsystems. Public-key cryptosystems
make use of a métﬁod for encryption and dét;?ption in‘which
the encryption key is different from the decryption key: Not "
only are the keys different, but TrTevealing one doesﬂ'ﬁ
frovide -any useful help in determining the other. A

particular value for the one key does, of course assign a

‘value for the other, but for all practical purposes, the

107

108

4

other Ng;)impossible to find without further information. To
say tiat it 1is impossible, for all_practical purposes,’to
find ope‘ key given: the other, is-to imply that it is not
~computationally fedsible within‘\reasonable time and space
constraints. There is, of course, always the trial and error
techrique of trying all possibilities—a completely
impractical method for sdfficientiy large keys.

As its name implies, a major implication éf this scheme
is 1hat encryption keys can be made public; literally anyone
can have access to ‘them without threatening the security of
encrypted communications.. The decryption key is kept
private; there 1is never.any need for anyomne to communicate
his-:decryptiéﬁ key to anyone'elsé: In“the subsequent text,
fhe encryption and decryption keys will often be referred to
as the public and private kéys, respecfively. This gchene
eliminates the need for a secret transferral of keys,<as is
thﬁ case with conventional encryptioh nethods. In systens
using conventional methods, -~ before two parties can
communicate, they must agree on a key to_be used for both
the encryption and decryption. This key must be kept secret
as well, or someone who intercepts a message will be able to
read aﬁd/or modify it. This agreement on a key is generally
either very expensive and time-consuming -or relatively
insecure. In a public-key cryptosystem, it is neceséary;oniy g

for a central controller to distribute a private key to each

user of the system. No previous communication between a set

109

pair of users 1is necessary before they can begin to send
encrypted méssages to each other. In a system with n users,
the number of keys to be distributed in a public-key
cryptosystem is n, Whereas in a conventional system, if each
user vis to be able to communicate with every other, n(n-1)

-

keys must be ‘distributed.

Hence, the ©problem of key distribution is largely
eliminated in a publfz—key cryptosystem. There is still the
need to properly distribute the publi¢ keys (an intruder
could otherwise give a legitimate Qser an invalid key,

unbeknownst -to the wuser), but this problem is minimal and

can be done ‘inexpensively.

Arn equal ly important property of a public-key
cryptosystem, which is not exhibited by a conventional one
Lis the possibility of users "sighing" messages in a Qay that
is unforgeable but easily verifiable. This property is best
explained byfexampie. Bill can send'Aliée a "signed" nessage
which she can later prove to a judge to have originated from
him, even though the content and the encryption key may be
made public knowledge. This is possible because the keys can
be used in either order: encryptiﬁg with the private key and
then'-decrypti;g with the public key produces the original
message. Thus, tdv sign a message, Bill first encrypts the
message with his prlyate key, then encrypts thé result with

Alice's publiéikey.'hliceunok has a dbubiy éncrypted#me$sage

110

which she first decrypts with her private decryption Kkey,
then decrypts again‘with Bill‘s public key to arrive at the
English messége.>5incé only Bill knows his private key, oniy
‘he could have created the encoded message which produced
English} when his publicbkey is,applied'tb it. This conéépt
can also bé applied to-messagesxémanating-from the central
éontrollern - Any information (such as public keys of users)
retrieved from the controller can be encoded by it using its
private key. The éontroller itself has a pubiic key which
must be known by everyone. This is best publicized via sonme
nedium such as a newspap@%,'which is not. easily altered by a
would-be intruder into the system. In this manner, the
controller's pubiié key <can be.periodically changed as an
extra measufe of security. .Thus, in a seﬁse, the key
distribﬁtion problem refefrea to previousyy has now been
reducéd ‘to one of properlybdistributing one key: the public

key of the controller.

-

6.2 Ap O(n2) Algorithm for Modular Exponentiation

This brilliant éoncept of public—key cryptosyétems was

first introduced by Diffie and Hellman of Stanford

Universityf1u]. In .their article,' the aufhors discussed
certaiﬁ functions called "trap-door one-way functions",
which would enable the' implementation of a public-key
cryptosystem. They did hot,\;howeVer, suggest a specific

trap-door function which would be suitable. Such a function

[

1

2 ’ ' 111
‘ J

was first published by Rivest, Shémir, and Adleman of .

MIT[40]. The suitability of thei£ function is based on the

computational complexity of factofing large_numbers. This

chapter contains a descriptidn of this function and é

Froposal for a rapid way of computing‘it using some of the

_concepts developed earlier in this thesis. °

In the scheme described in [40], both the encryptién
and decryption keys afe composed of a pair of positive.
integers: (e, t) and (d, t) respectively. As éhown in that
paper, the numbers e, 4 and t musf be of ‘considerab’le length
to as?ure the security of the system: of the order of 100 {o
200 ‘bits\ each. To encrypt a message M, it must first be
representéd_ as an integer between 0 and t-1. A long message
must be broken into a sefies of blocks and each block cén
then be represénted as such an iﬁteger. Any stahdard
_Tepresentation such as ihe;EBCDIC codexfor the characters in
the message will db for this pdrpose. Next, the message is

. encrypted by raising \it tb the e-th power modulo t. The
vpropeduré for decryption is analogous. Stated formally, the

N
two functions E and D are as follows:

Encryption: Q = E (M) Mpe (mod t) for a message M

Decryption: M: D(Q)

Qpd (mod‘t)‘éor a ciphertext Q. -

Suitakle methods for . choosing the encryption and
decrthion key® are described in (40]. The need for a quick

way of evaluating.’ this set of functions is obvious. The

R

‘.

112

"development of inexpensive LSI has made it possible to

2

design hardware devices to perform the function of modular
exponentiation on large numbers. This. will be invaluabie as

the need j5§r secure © communication increases. Such

-applications as electronic mail, electronic funds transfer

(EFT), and even rapid éncoding and dedoding of telephone
¢onversations can be made secure with such hardware devices.

<

The problem of modular exponentiation, i.e. evaluating
ajb mod ¢ for arbiﬁrary a, b and ¢, has been studied in
detail by Knuth in [30]. The procedure recommended in [40]

is given as Algorithm 6.1. A study of this is made in [%é].

There, it 1is rejected, along with all other known software

algorithms on the basis of insufficient speed. These

evaluations are ,.based on the use of nultiple Qgecision

Rl

algorithms for multiplication and division (in evaluation of
the rem functions) taken .from Knuth[30}. It is easily seen
that the execution time of Algorithm 6.1 is O(n3), where n

is the maximum of the lengths of the three operands.

~

A more suitable algorithm which leads easily to a

:hardware inplementation’ is similarly based but also makes

oy

use of the linear on-line éoncepts developed in this thesis.'
It is presented as Algorithm 6.2. As opposed to the previous
algorithm, +this one does not efficiently perform modular

exponentiation on three arbitrary numbers of 1length n.

Rather, 1if t 1s constant, it rapidly computes Mie mod t for

- -

113

begin

/
Algorithm 6.1
Modular exponentiation by repeated squaring
and multiplication
comment This algorithm evaluates the encryption

function Mle mod t where M, e and t are arbitrary n
bit numbers, e.g. e = [e(n) e(1) I;

corment Initialize;

comment Examine the bits of e from left to right.
Square and multiply Q by M (mod t) according to
the value of e (i);

for i1 <— n step -1 until 1 do

begin

Q <— rem[Q*Q, t];
if e(i) = 1'$§§n Q0 <— rem[Q*M, t]

end

114

Algorithm 6.2

Modular exponentiation algorithm suitable
for hardware implementation

begin -

COmment Given M = [m(n) m(1)], e = [e(n) e (1)]
and t [t (n) t(1)] (M is given on-line with the
least s1gn1f1cant bit first), this algorithm computes

= [g(n) qg(1)], the ciphertext correspondlng to M
(Q is also produced on—line);

1. u <— n + log n4;
2. v <— 2u;

>3. comment Compute the u residues ri1, r2, . . ., ru of t:
4. for i <— 1 until u do

5. begin

6. [ri(n) ri(1] <— rem{ p, t];
7. p <— 2p ' ’

8. end;

9. g(1) <— 1;
10. for i <— 2 until v do g(i) <— 0;

11. for k <— n step -1 antil 1 do

12. begin
. comment Square Q; :
13. for j <— 1 until u do <
1. '-begln - ’ : T
15. for j <— 1 unt11 u do
6. ... begin]
¥7e -~ . 4 LA(F) <— 0;
18. o B(j) <= 0
- 19. . . .end; .
20. _if g(i) = 1 then .
21. begln o :
22. 7 for j <—— 1 until i do A(i+j-1) <— q(J);
23. if i > 1 then
24, for j <~— 1 until i-1 do

_ B(i+j-1) <— q(J)
25. end ;

26.
27.
28.

29.

37.

39.
4o.
41.

42,

43.

44 .

.45, .

46.

_
u8.
49.

50.

51.

52.

Algorithm 6.2 (continued)

for j <— 2n-1 step -1 until 1 do
begin
t (1) <— s23[A(J), B(J)., CI1(J-T),

R C2(3-2), s(J) 1

t(2) <— Su45(A(J), B(3), CI(J-1),
C2(3j-2), s(3) Is
t(3) <— S135[A(J), B{(J), C1(3-1),
» C2(j-2), s(J) 1s
C1(3) <— t(h); .
C2(3) <— t(2);
s(j) <— t(3)
end ;

for j <— 1 until n do Q2(j) <— 0;
if s(i) = 1 then _
for § <— 1 antil r do Q2(j) <— ri(j);

for j < n-1 step -1 until 1 do
begin) .

t(1) <— SI13[Q1(J), Q2(j-1), () Ii
t(2) <—"sS23[Q1(J), Q2(3-M), q(I) 1
01(J) <— t(1);

gy <— t(2)
end . ‘

if e(k) = 1 them

.begin

comment Multiply Q by M;
for j <— 1 until u do

begin :
for j <— 1 until u do
begin
A(J) <— 03
B(j) <— 0

end;

-

£3.
54.
55.
56.

57.
‘58.
59.
- 60.

61.

£2.
63.
64.

65.
66 .

67.
68 .
. 69.
S 70.

71.
72.

3.
4.
75.
76.
77.
78.
79.
80.

81.

. 82.

end.

AV
@
116
Algorithm 6.2 (continued)

if g(i) = 1 then

begin

for j <— 1 until i do A(i+j-1) <— nmAJ)

end; /,\\\/
if m(i) = 1 then S \

begin /)

~ if i > 1 then '

for j <— 1 until i-1 do Z /
‘ B(i+j-1) <— ¢ (J)
end;

for j <— 2n-1 step -1 until 1 ao~——r/
begin : '

t (1) <— sS23[(A(J), B(j)., CI(J-),

_ , C2(j-2), s(3) L

t(2) <— S45[A(j), B(J), C1(j-1),
C2(j-2), s(3) 1;

"t (3) <— S135[A(J), B(J), C1(3=1),
.C2(3-2), s(J) }s

C1(3) <— t(N); .
‘ C2:(F) <— t(2); .
s(3) <— t(3) X -

end;

for j <— 1 until n'do Q2 (j) <— O0;
if s(i) = 1 then
for j <— 1 umtil n do Q2(j) <— ri(3j) ;

for j <— n-1 step -1 until 1 do

begin ° o
t (1) <— s13[Q1(J), Q2(J-N, 9(I) s
t(2) <— S23[Q1(3j), Q2(j-M, g(3) 1;
Q1 (3) <— t(1); '
q(j) <— t(2)

end

end
end;

[g(@)——q(1).] < rem{Q, t]

N
3

v

chanéing values ' of M (e may be constart or variable). This
is, . of course, exactly what a public-key cryptosystem

requires.

An analysis of Algorithm 6.2 will show that it performs’
inAtime O(n2). The basic elements of Algorithm 6.1 will also
',be_v found '}n Algorithm " 6.2. Lines 9-10 perform the
initTalization. Line 11 is the start of the main loop for
repeated squaring and multiélicatron. Lines 12-43 correspond
to the squaring of (ard lines U44-81 correspond to the
multiplying of Q by M (if the appropriate bit in e is 1).
The key idea in this algorithm is 6 the saving of

*. approximately n divisions which are otherwise required. The
/ : : :

/

;;//technique for this is as follows.
S

, / A table of residues modulo t of powers of 2 from 1
7 through 2Av, where v = 2(n + (log nq), 1s constructed. Since
t 1s constant for many values of M, it is irrelevant how
this takble is computed. In fact, it could be contained in a

ROM. The two sets of multiplications are performed on-line

as described in Chapter 3. As a given bit of a particular

product S = [s (2n) s{1)] is produced by the multiplier, .
B /”_‘,/
rather than lettin§ the result (Q increase in size

exponentially, the corresponding ‘residue is added to the
accumulated value of Q. As discussed in Chapter 2, this
addition can be done (assuming redundant notation)Hin-one‘

time step. In this way, Q never gets'longer:fhgﬁ ﬁéévﬁ-;.z

118

rlog n,q bits. In order to keep Q in redundant notatipn, the
temporary sforage locations Q1 and Q2 are nee@ed. Thg.bits,
of Q .are gq{(1, - . -, q(u). The residue’ (if the
éorresponding bit of s is 1) is stored in Q2, as specifiéd
in lines 35-36 and 71-72. The reduction of Q in one time
step to redundant notation is done i;\%ines 37-43 and 73-79.
This entire sequence is performed n times and there are n
residues to be added at most-fwice. Heﬁce, the worst time
for the bulk of this algorithm is 2n2 = O(n2). There is also
a final division to be pérformed in line 82. As this is done

only once, the particular algorithm used is of no interest,

as long as it takes no more than O(n2) time.

An example of this_method-of modular exponentiation is
given in, Figure 6.1. Although in this example all the values
of Q contain only 0 or 1 bits, since the n%tation is

" redundant, another example mjght also contain some 2's.

119

n =-4 5
M= 111
e = 1011
t = 1101 |
' Residue table . T s e
., pi 2)p nod t
s 1 1
2 10 . .
3 100 ©
y 21000
) 5 11
6 110
7 1100
8 1011
9 1001
10 101
11 1010
12 111
. partial Powers
Q
1 111
10 1010
. 100 10110
_101. 11000
| 1010 10001
e = 1011 11100
- M"‘e = 10 h {mlod :,.‘t:) - . - >'< .
" pigqure 6:1. Example of modulaT .. N
- e ,?”-__.e_.,xgon_en_-t.i‘atiqn.: BT

chapter seven

CONCLUSIONS

The research results :reported.in this -thesis lead to
the deQeIOpment of a fixed-point arithmetic processor in -
which the individual bit steps of the elementary operatlons

are- pipelined. There are numerous 1mplementatlons " of

pipeliping in ex1stence[39] t these usually are at the

v . :

“instruction level rather than at the lower blt operatlon B

/.

‘level; As .reported throughout ‘this thesis, some research

.similar to the;:present'yworki has been. ‘reported in the('(

Jiterature, but ﬂthis has"largely cohcerhed‘ arlthmetlcul
.

operations with the operands in a most 51gn1f1cant bit~- flrst

fashion. New results 4involving the least significant bit

first have been described in this dissertation.

=3

The‘ripple carry adder was discussed in preparation for
the development and explanation of the multiplier. The
multiplier, which performs on-line, least significant bit
first, and in linear time, is described. A logical
realization of the central part of the multiplier is glven.
It is seen to be simple 1in constructlon and, more
significantly, compatible in timing with the adder and
“sibtracter. |

by product of thls research led to & result vhlch 1s"‘

- 3

T of 1nterest in any SIMD processor. The problem ralsed here-:

~

”~concerns the optlmal orderlng of flxed p01nt multlpllcatlons'!'

N
R

o ‘ | | 121

whén fhe product of a set -of numbers-oﬁ oonStant:lehgth'io
desired. The logarithmic lower bound for one nultiplication,
derived' by winograd[SS], is ﬁsed as a model. The result
~a;rived‘ at is that a sequence of‘operations~dictated by a
balanced binary - tree is optimal. The real'signififance of
~this result 1lies in the corollarles relatlng to tlghter-

lower bounds - -on- certaln multlple prec1510n operatlons such

as matrix ﬁanlpulat;ons,j

‘4"~FTBE' ﬁrobiéms'iﬁboéed:by di?iéionohaVe bééﬁ“éﬁmﬁdfizédﬁ o
One 'can ' prove by countefexample that an on;line divider
operatlng rlght to ieft‘oannot'bé.consttﬁofed; Honce, the
lelder must "by oécegsiﬁy,’,relaxA—some of the strict
constraints of’ 1ipear on-line arithmetic. The design

proposed'herein involves a delay, proportional to the length

of _the ‘operands, 'between the first bits of the 1nputs and_y~

" the Jfirst bltS of the outputsn 1t is. t erefore lncon51stent5fﬁff~

with the other three openatlons.;The proposed d1v1der makeé_
use of the on-line multiplier and adder/subtracter in anv

iteratiwe convergent reciprocal algorithm.

There are certainly other possible designs which "oome
close"™ to satisfying the requirements of a linear on—line
divider. Rather than allowing'_for’ a iarge delay between
inputs and outputo, a' different design may 'relax the
linearity restriction,lifdr example. Another interesting

possibility .arises ¥f it may be assumed that one of the

122

.inputs . (the divisor or the dividend) is available in its
entirety while the other input is available on-line. Similar.

‘assﬁmptions could also'be'made on:the outputs. - This 4rea is

ripe for future research.

All results reported in this thesis involve_fixed-point)
-0perandsfjend'QreSults;7It'eppears most'naturnl_inithiS’casek¥
"to make use of the «least -significent‘ bit first in the

operations.u Houever, 1f the operands were in floatlng p01nt)

notation} thlS would not be the most practical dlrectlon.

Nevertheless, it is of interest to know bLov much
right-to-left arithmetic can be wusefully performed on
. floating-point operands. A significant amount of work

remains to be done in this area. Perhaps the most difficult
problem here is the development of' the most practical -

floatingfpo;nt_notation'for;all operations:

Ann nnmber ‘off:applications” for fthe, nb0ve elementnry'
resﬁlts vere considered | A strong correspondence between
blt -slice operations in an assoc1at1ve processor and on—llne
arithmetic was demonstrated.' This led to ‘a number of
interesting applications in the associative processor. The
foundation of these ideas appeared in a paper by Chen[11} in
,which~<it was'snonn:tnat a'clever~arrangement of operands in
assoc1at1ve memory comblned w1th a data manlpulator can lead
to a :very fast algorlthm for computlng the total sum of a

set of numbers. Thls concept was extended to the computatlon

) i

- 123

. - - e
o o N T . » “

of thé product of a set of numbers. A further extension of

" these ' ideas produced yéry 'effigiéht algbritth'fbr'ﬁéﬁY ‘;V

vectof and matrix operations.
A natural gquestion arises as to what other applications:

6perations, “matrix iﬁﬁéfg;oh één’likely‘be perfbfmed mdre,
rapidly than ‘byr thé use'of.cohveﬁtional algorithms. This
~p“rob‘lem would involve +the divider developed herein. The
reciprocal of an entry could be definsd as in Chaptef 4. Two
“other | iﬁfg;esting possible applications are polynomial

evaluation and- Fourier transforms. Both of these involve a
S L ’ o '
~set of rumbers to be stored in a

sequencewof operations of the kindslstudied in _this thesisy

The second major . applicatjon ‘of onfliﬁe.arithmetic
" ‘Wwhich was studied -extensively is 'thé”probiém of mb@plan"

exporentiation. This leads to a very useful result in

‘are possible "in an associative processor. With .bit+slice -~

n associative memory, and a ® -

public-key. cryptography where the loose‘qqnsttaint55onwtwo*~*'

cf the three operands“éllgws for a qﬁadratic.algbrithm for
modular expohenfiation. This was poSsible only because of
the particwlar sequence of alternating multiplicatiods and
divisions required: by _thé -étanﬁafd ‘algorifEE::Normally,
division imPQSes é‘éonétant delay on each application, and
hence, ;algorithms’QHiCh require a -large numbetyéf d;?isidné‘”
caﬁpbt effiéiently nake use of the dividéfwdévélépéd in

Chapter 4. VHoyever,-the nultiplications aﬁdydiﬁisions‘were

124

s

cleverly'ftombined-‘to"produce a truly practical algorithm.
Cther problems: for which the best algorithms involve large
‘ o . . . :

numbers of divisions can possibly be speéﬁéd up by similar

teckniques. This is yet another area in' which further

. research would very likely be fruitfﬁl, L

BIBLIOGRAPHY

'[3] Advanced Micro Devices, Inc., Low .Power Schottky Data
Book, Sunnyvale, California, 1977 {28} + .

[2] Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison- Wesley,
1974 (77 . l

3] Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D.

. M. Powers, "The IBM System/360 Model .91:
Floating-Point Execution Unit, IBM Jourrnal of Research
and Development, vol. 11, no. 1, pp. 34-53, January
1967 {16} ¢

W

(4] Atkins, D. E., "Higher Radix Division Using Estimates
for the Divisor and Partial Remainders", IEEE
Iransactions on Computers, vol. C-17, no. 10, pp.
925-934, October 1968

{57 Atrubin, A. 9., A One- Dlmen51onal Real-Time Iterative
Multiplier", IEEE TPransactions on. Computers, vol.
EC-14, no. 3, pp- 394-399, June 1965 {4, 28, ZQL

{6] Avizienis, '‘A., "Signed-Digit Number Representatlons for
Fast Parallel Arithmetic", IRE Transactions on
Electronic Computers, vol. EC~10, no. 3, pp. 389-400,
September 1961 Ce T

“[7] Batcher, K. E., "STARAN/RADCAP Hardware Archltecture"
) Proceedlngs of the 1973 Sada more Computer Conference

on Parallel Proce851ng, pp. 147-152, August 1973 {50,
8€} .

[8] Briley, B., "Some New KResults on Average Worst Case
Carry", IEEE Transactions on Computers, vol. C- 22, 'no.
¥5, pp- 459-463, May 1973 . ‘

[9] Brzozowski, J. A. and M. Yoeli, Pigital Netvworks,
Prentice~Hall, 1976 {25}

[10] Campeau, J. O., "Communlcatlon and Sequential Problems
in the Parallel Processor" in Parallel Processor
Systems, Technologies and Applications, edited by L.

~ C. Hobbs, Spartan Books, 1970

unggers in braces indicate pages on which the sources are .
enced

~—— _ 125
: TN

~

[11]

[12]

(137

[14]

L1T]

O

[164]

(17]

(187
[19)

(201

[21]

[22]

126

Chen, I-N., "Performing Summation and Product in an
Associative Processor", Proceedings of the 1977
International Conference on Parallel Processing,
August 1977 {50, 82, 88, 95, 122}

Chen, I-N. and R. Willoner, "An O(n) Parallel
Multiplier with Bit-Sequential Input and Output", IEEE
Transactions on Computers, to appear in vol. C-28, no.
10, October 1979 {23} ' o

Y

Dadda, L., "Some Schemes for Parallel Multipliers", ‘
Alta Frequenza, vol. 19, pp. 349-356, March 1965 (26,

. 353

Diffie, W. and M. E. Hellman,\VNew Directions in
Cryptography", IEEE Transactiops on Information -
Theory, vol. IT-22, no. 6, pp. 644-654, November 1576
{107, 1103 B ')

Feldman, J. D. and O. A. Reiman, "RADCAP: An

" Operational Parallel Processing Facility", Proceedings

of the Sagamore Computer Conference on Parallel
Processing, pp. 140-146, August 1973

Feng, T. Y., "A Versatdle Data Manipulator",
Proceedings of the 1 Sagamore Computer Conference
on Pparallel ‘Processing, p. 101, August 1973 {93}

FYerg, T. Y., "Data Manipulating Functions in Parallel
Processors and Their Implementations", IEEE
Transactions on Computers, vol. C-23, no. 3, pp.
309~318, March 1974 {93} :

Ferg, T. Y. and C. Hsu, "Design and Evaluation of an
Arithmetic Unit", Technical Report RADC-TR-73-86,
March 1975

Flynn, M. J., "Some‘Computer Organizations and Their
Effectiveness", 1EEE Transactions 6n Computers, vol.
C-21, no. 9, pp. 948-960, September 1972 (1}

Foster, C. C., Content Addressable Parallel Processorg,
Van Nostrand Reinhold, New York, 1976 (84}

Gardner, M., "A New Kind of Cibher that Would Take
Millions of Years to Break", Scientific American, vol.
236, no. 8, pp.- 120-724, August 1978 ({107}

Garner, H. L., "A Survey of Some Recent Contributions
to Computer Arithmetic", IEEE Transactions on
Computers, vol. C-22, no. 6, pp. 552-555, June 1973

oz

[23]

[2b]

[25]
(267
[27)

[28]
[29]

[30]

[31]

{327
[33]

[34]

e

127

Fabibi, A. and P. J. Wintz, "Fast Multipliers", I1IEEE
Transactions on Computers, vol. C-19, no. 2, pp.
153-157, February 1970 ST

Hayes, J. P., Computer Architecture ggg Orqganiza®ion, .
McGraw-Hill, New York, 1978 7

Hellman, M. E., "The Mathematics of Public-Key
Cryptography", Scientific Americamn, vol. 241, no. 2,
"pp. 146-157, August 1979

Hwang, K., Computer Arithmetic: Principles,
Architecture, and Design, John Wiley & Sons, 1979 {10,
23, 68}

Hwang, K., ficlobal and Modular Two's Complement
Cellular Array Multipliers", IEEE Transactions on
Computers, vol. C-28, no. 4, pp. 300-306, April 1979

2

Karatsuba, A. and Y. Ofman, "Multiplication of
Multiple-Digit Numbers with Computers", Doklady
Akadémii Nauk SSR, vol. 145, no. 2, pp. 293-294,
February 1962 (in Russian) {26} -

Kline, *C. S. and G. J. Popek, "Public Key vs.
Conventional Key Encryption", AFIPS Natiopnal Computer
Conference Proceedings, New York, New York, vol. 48,
pp- 831-837, June 4-7, 1979 {107}

Knuth, D. E., The Art of Computer Programming:
Seminumerical Algorithms, vol. 2, Addison-Wesley, 1971
{4, 30, 1123 '

1.4

Kohavi, 7., Switching and Finite Automata Theory,
McGraw-Kill, 1970 ({2, 11, 20, 353 ’

lee, R., Optimal Parallel Computations for SI¥D
Computers, .Ph.D. Thesis, Department of Computing
Science, University of Alberta, Fall 1976 ({50, 52}

Martin, N. and S. Hufnagel, "Conditional-Sum Early
Completion Adder Logic",, IEEE Transactions on
Computers, submitted: - : a

[

. A o -
Majithia, J. C. and R. Kstai, "An Iterative Array for
Multiplication of Signéd Binary Numbers", IEEE
Transactions on Computers, vol. -EC-13, no. 2, pp.
214-216, February 1971 : :

4

ol : 'Y

128
- \
[35] Merkle; R. C. and M. E. Hellman, "Hiding Information in

Trapdoor Knapsacks", IEEE Transactions on Information
Theory, vol. IT-24, no. 5, pp. 525-530, September 1978

[36] Michelmah,” E. H., "The Design and .Operation of. .
Public-Key Cryptosystens", AFIPS National Computer
Cornference Proceedings, New York, New York, vol. 48,
pp. 305-311, June 4-7, 1979 {107, 112}

[37] Pezaris, S. D., ™A 40-ns 17-RBit by 17-Bit Array
Multiplier", IEEE Transactions on Computers, vol.
EC-13, no. 4, pp. 442-447, April 1971

[38] Pohlig, S. C. and M. E. Hellman, "An Improved Algorithm
~ for Computing Logarithms over GF(p) and its
Cryptographic sSignificance", IEEE Transactions on
Information Theory, vol. IT-24, no. 1, pp. 106-110,
January 1978

{39] Ramamoorthy, C. V., and H. F. Li, "Pipeline
Architecture", ACM Computing Surveys, vol. 9, no. 1,
Pp- 61-102, March 1977 {16, 120}

[40] Rivest, P. L., A. Shamir, and L. Adleman, "A Method for
Obtaining Digital Signatures and Public-key
Cryptosystems", Communications of the ACM, vol. 21,
no. 2, pp- 120-126, February 1978 {111, 112}

[41] Pobertson, Jd. E., "A New Class of Digital Division
Methods", IRE Transactions on Electronic Computers,
pp. 218-222, September 1958

fu2] Eudolph, J. A., L. C. Fulmer, and W. C. Meilander,
"With Associative Memory, Speed Limit is no ",
Barrier", Electronics, vol. 43, no. 14, pp. 96-101,
June 22, 1970 {84} ‘

(43] Eudolph, J. A., L. C. Fulmer, and W. C. Meilander, "The
Comingdof/Age of the Associative Processor",
Electronics, vol. 44, no. 4, pp. 91-96, February 15,
1971 {84} g

{44] Schonhage, A. and V. Strassen, "Schnelle Multiplikation
grosser Zahlen", Computing, vol. 7, pp. 281-292, 1971

[45] spira, P. M., "Computation Times of Arithmetic and
Boolean Functions in (d,r) Circuits"™, IEEE
Transactions on Computers, vol. C-26, no. 10, pp.
948-957, October 1977 '

[46]

YA

o8]

[u9]
[50]
(51]
[52]

[53]
(54]
(55]

1567

157]

129

Stenzel, W. J., W. J. Kubitz, and G. H. Garcia, "A
Compact High-Speed Parallel Multiplicaton Scheme",
IEEE Transactions on Computers, vol. C-26, no. 10, pp.

- 948-957, October 1977 {26}

Swartzlander, E., "The QuéSi;Serial.Multiplier", IEEE

Transactions on Computers, vol. C-22, no. 4, pp.
317-321, April 1973

Taub, H. and D. L. Schilling, Digqital Integrated

—_—_—— e e

Thurber, K. J. and L. D. Wald, "Associative and
Parallel Processors", ACM Computing Surveys, vol. 7,
no. 4, pp. 215-255, December 1975 {1}

TIME Magazine, "An Uncrackable Code?", p. 52, July 3,
1978 {107}

Trivedi, K. S. and M. D. Ercegovac, "On-Line Algorithnms
for Division and Multiplication", IEEE Transactions on
Computers, vol. C-26, no. 7, pp. 681-687, July 1977
{5, 31

Trivedi, K. S. and J. G. Rusnak, "Higher Radix On-LlLine
Division", Proceedings of the Fourth IEEE Symposiunm on
Computer Arithmetic, Santa Monica, California, PP-
164-174, October 25-27, 1978

Wallace, C. S.,~"A Suggestion for a Fast Multiplier",
IEEE Transactions on Computers, vol. EC-13, no. 2, PP-
14-17, February 1974 {26} C) :

Raser, S., "High-Speed Monolithic Multipliers for
Real-Time Digital Signal Processing", IEEE Computer,
vol. 11, no. 10, October 1978 {23, 24, 25, 26}

Willoner, R., "A Highly Parallel Arithmetic Unit",
Proceedings of the 1979 ACM Computer Science

. Conference, Dayton, Ohio, p. 21, February 20-22, 1979

Willoner, R. and I-N. Chen, "A Parallel Arithmetic
Onit", Proceedings of the First European Conference on
Parallel and Distributed Processing, Toulouse, France,
pp. 198-207, February 14-16, 1979 {68}

Winograd, S., "On the Time Required to Perfornm
Addition", Journal of the Association for Computing
Machisery, vol. 12, no. 2, pp. 277-285, April 1965

130

[58] ¥Winograd, S., "On the Time Required to Perforn
Multiplication",. Journal of the Association for
Computing Machinery, vol. 14, no. 4, pp. 793-802,
October 1967 {26, 50, 121}

{597 vau, s. S.;’ana'H.'S.‘thg;t"AéédéiétiVéfPfoééSéot- L
Architecture—A Survey", ACM Computing Surveys, vol.
9, no. 1, pp. 3-27, March 1977 {84, 86}

BRI

