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Abstract 

Aquaponics is a farming method that promises to be a good alternative against the food 

and environmental problem the world is facing. It is a combination between aquaculture 

(farming of fish) and hydroponics (growing plants without soil), being a technique to 

grow plants with the aquaculture effluent. This technique claims to have a high water 

efficiency, is pesticide-free, and reduces the use of fertilizers. All in all this technology 

is considered green and sustainable. Since the interest in aquaponics is increasing, the 

major challenge is to provide feasible and reliable solutions at the commercial scale. 

The concept of precision farming, usually applied in the traditional farming sense, is 

now being introduced, leading to the need to adopt sensing, smart, and IoT systems for 

monitoring and control of its automated processes. This thesis aims to support research 

towards a viable commercial aquaponics solution by first; identifying, listing, and 

providing an in-depth explanation of each of the parameters sensed in aquaponics, and 

the smart systems and IoT technologies in the reviewed literature. Secondly, to propose 

a tool that uses image-processing techniques, deep learning, and regression analysis to 

estimate the size of the crops as they grow using image segmentation and do a 

correlation between the size of the crops and their fresh weight for being modelled that 

will work as a performance metrics. Third, the development of a framework is presented 

that involves the creation of a wireless sensing module that uses sensing parameters and 

the connection to a database capable of storing and linking the information to a quality 

assessment tool. Finally, an application that adopts digital twinning in the growing beds 

of an aquaponics system for monitoring, in real time, parameters and hence control the 

aquaponics physical system is developed. 
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Chapter 1 Introduction 

This chapter introduces the thesis, describes the work done, and gives motivation for 

the research. It also defines the preliminary research questions and sets the objectives 

of the research project.  

1.1. Background and Motivation 

More than 113 million people across 53 countries experienced acute hunger requiring 

urgent food, nutrition and livelihoods assistance (IPC/CH Phase 3 or above) in 2018 

[1]. In front of this reality, it is necessary to look for alternatives to solve this problem. 

The food demand the world is facing cannot be maintained by additional natural 

resources or land exploitation [2]. Looking for sustainable solutions that contribute to 

the food production and consumption, some of the alternatives that can be implemented 

are: (1) reduce actual meat consumption, (2) minimize food waste, and (3) modify the 

current food production processes [3].  

In this scenario of food and environmental crisis, the aquaponics farming method come 

into as a solution to improve farming productivity. Aquaponics is defined as the process 

of growing aquatic organisms and plants symbiotically [4]. Aquaponics have attracted 

increasing attention because the ability to save resources, high efficiency, and low 

consumption. Aquaponics have become the trend of the agricultural development 

nowadays [5]. Any aquaponics system is defined by a recirculating aquaculture system 

(RAS) and a hydroponic system working together. As a brief summary, aquatic animals 

excrete waste, then bacteria convert the animal waste into nutrients, and plants make 

use of the nutrients to grow, thus improving the water quality for the aquatic animals 

[6].  
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Nowadays, the agriculture industry is the world’s largest user of water, around the 70% 

of the total consumption, of which 70% of the water is wasted throughout their different 

processes [7], [8]. One person drinks around two and five liters of water daily, but it 

requires nearly 5000 liters of water to produce the daily diet for a single person [9]. The 

sustainable development strategies have become a global trend, and a circular economy 

is the general trend of sustainable development and the best mode of economic 

development [10]. Aquaponics is known as a form of sustainable agriculture because it 

imitates natural systems, where the efficiency of the water is dramatically increased, 

and has fewer environmental impacts [11]. As a sustainable, circular, efficient and 

intensive low-carbon production mode in the future, the aquaponics system has realized 

the transformation from waste to nutrients and has effectively solve the problem of 

environmental pollution [12]. 

As a modern approach, the earliest application of aquaponics, as a research area, was 

in the 70’s and 80’s. With the purpose of improving the quality of water by removing 

the excess of ammonia in RAS aquaculture systems, plants were used as bio filters [13]. 

Aquaponics research started to grow after 2010 [14]. Nowadays, aquaponics is being 

practiced in at least 43 countries around the world, but 84% of the practitioners use this 

technology as a hobby [6]. The successful development of aquaponics could guarantee 

a major part of a more sustainable world food supply [14]. The global application of 

aquaponics will succeed helping the food crisis and world sustainability as long as it 

becomes widely spread as a commercial alternative. Only 31% of the commercial 

aquaponics facilities reported to be profitable and 47% rely in others products or 

services for additional income [6]. As such, research challenges still exist to procure 

viable commercial aquaponics facilities. 
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A proper design and correct management of the system are the key points towards the 

economic feasibility and the global success of aquaponics itself [15]. The design and 

management of an aquaponic system is a difficult challenge when trying to achieve 

high yields and quality. Being a greenhouse and a symbiotic environment, the 

parameters, and factors (light, temperature, pH, moisture, etc.) that need to be 

controlled are diverse. As these systems are quite complex because of their multiple 

components and requirements such as disease prevention, water quality and levels, 

leading to inspections seven days a week 24 hour per day [16]. Estimations made by 

Tokunaga et al. [17] state that in aquaponic environments the labor costs are around 

46% of total operating costs and 40% of total annual costs. 

Precision farming is a concept that has benefited from the rise of sensing techniques, 

automation, computer vision, smart applications, and Industry 4.0. With the 

introduction of automation, smart strategies, and connectivity in the farming industry, 

a new door was opened for the improvement of these aquaponics systems. The expected 

benefits of smart automation are a significant reduction of manual labor, a more robust 

control of the process by increasing the accessibility and connectivity of the parameters, 

and using computer capabilities to make data-driven decisions [18]. 

Thus, due to the importance that aquaponics is getting as a future farming method, it 

seems like the right path to keep working in the development of tools and frameworks 

towards precision farming, using the concepts aforementioned (sensing, automation, 

etc.), to help with the scalability and economic feasibility of aquaponics in the future.

1.2. Research questions 

To understand the challenges that Aquaponics faces towards it’s widely adoption and 

contribute to this objective with the design and use of automation, computer vision 
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systems and smart technologies; some questions are proposed. Questions that, if 

answered, will help the future academic and commercial contributors in the research 

area to enhance this technology and promote the Aquaponics scope as a feasible and 

sustainable food production technology. 

 Which parameters are involved in Aquaponics, and which ones can control, 

monitor, and/or predict aquaponics system behavior to reduce manual labor?  

 Which monitoring, smart and IoT technologies are currently being researched 

towards commercialization of aquaponics systems that could lead to an easily 

adoption? 

 Which performance metrics are stablished for Aquaponics that increase the 

understanding of the process? 

 How can the concept of IoT be putted in place with Aquaponics and how it 

benefits the limiting factors in the aquaponics technology? 

1.3. Research objectives 

The overall principle of this thesis is to widely promote the adoption of Aquaponics 

around the globe, moved by the great potential this technique offers facing the food 

challenges in the upcoming years. Working towards the precision farming concept, will 

ensure the correct understanding of Aquaponics but also open the door to the inclusion 

of automation and smart techniques that help reducing the inherent complexity and 

costly adoption of it. With this aim in mind, the general objective and three specific 

objectives are listed, which along the different chapters will be approached and 

explained in detail. The main research objective is to:  

“Develop a framework for Aquaponics 4.0 to promote the use of automation, computer 

vision and smart technologies towards the enhancement and the widely adoption of this 
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farming technology as a reliable, feasible, sustainable and green option for food 

production’’ 

The objectives of the framework are:  

 O1. Bridge the gap between biological and automation experts building some 

knowledge ground that benefit the mutual understanding , promoting the 

contributions of automation and smart implementations in Aquaponics and the 

interest of biological experts in automation tools as a beneficial trend in the 

development in the area. 

 O2. Develop smart tools using computer vision, image processing and 

prediction algorithms that enhance the performance metrics of Aquaponics 

towards precision agriculture. 

 O3. Structure a Digital Twin framework and application for Aquaponics that 

encourage the reduction in labor, increase the comprehension of digital tools 

and supports the autonomous applications in commercial implementations. 

Figure 1.1 displays a representation of the Aquaponics 4.0 concept and research 

steps (objectives), tools and related topics. 

1.4. Organization of the thesis 

Aquaponics as a farming technique promise to be one of the tools to solve the hunger 

and food scarcity in the world, the fact that is a green and sustainable technique, make 

this technique even more appealing to the research community considering the 
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environmental problems that we as a society are facing nowadays. Even though the 

advantages offered by Aquaponics, it has become difficult the widely and commercial 

adoption since its management complexity and high costs of operation. The work 

shown in this thesis presents the introduction of the Industry 4.0 and automation 

techniques as a feasible solution to increase the understanding of Aquaponics, making 

an analogy of the progress achieved in other areas such as automotive or manufacturing 

production. Techniques such as automation, computer vision systems and prediction 

algorithms will not only enhance the development of aquaponics but also help to 

manage the complexity of the systems and reduce costs related to labor.  

For the best introduction of this Industry 4.0 and automation tools into Aquaponics, it 

becomes necessary the mutual understanding of the both involved knowledge areas: 

biological and automation experts. During the analysis of the literature review, was 

found the existence of a huge gap between both and there was not a contribution that 

helped this collaboration. Chapter 2 presents the article “Towards automated 

Aquaponics a review on Monitoring, IoT and Smart Systems” addressing the first 

research objective aiming to bridge this gap and help to a well-organized and substantial 

future contributions. 

Figure 1.1 Tools, related topics and research steps in Aquaponics 4.0. 
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Organically, two performance metrics were designed and putted in place to monitor the 

grow rate and fresh weight of the crops in Aquaponics systems as the following step to 

increase this Aquaponics understanding using engineering technologies. This is the 

base for any future contribution that could be done towards the study of optimal 

parameters or the system behavior under changing conditions. These performance 

metrics were implemented using computer vision, image processing and smart learning 

algorithms and are explained in Chapter 3 to fulfill the objective 2 through the article 

“Real-time growth rate and fresh weight estimation for Little Gem Romaine Lettuce in 

aquaponic growing beds”. 

To increase the potential understanding of the process, the IoT and modular capability 

was introduced to the system. Sensors to monitor the current status of the system were 

installed as an IoT module and a framework to send, store and analyze this values that 

use MySQL databases and procedures, PHP and python scripts were designed. This 

work was described in Chapter 4 through the article “Wireless sensing module for IoT 

Aquaponics”. 

Finally, the digitalization of this system and the tools implemented were done. This 

digitalization was designed as a mechanism to facilitate the communication between 

the digital tools and the human operators as a human-machine-interface. For this 

purpose, the Digital Twin concept was adapted to Aquaponics and developed, being 

able to successfully make this interaction and is shown in Chapter 5  and in the article 

“A Digital Twin framework for grow beds in aquaponics systems”. 

Finally, Chapter 6 provides conclusions and summarizes the research contributions, 

limitations, and future-work directions. Figure 1.2 presents the structure of the thesis.  
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Chapter 2 A review on monitoring, IoT, and smart 

systems 

This chapter performed a systematic literature review analysis that may be used then as 

a bridge between the biological and automation academics areas and serve as a guide 

for those interested to initiate in the enhancement of aquaponics through precision 

farming. 

2.1.  Research Methodology 

The analysis is based in a comprehensive literature review of monitoring, smart and 

IoT systems in aquaponics. The objective of this research is to synthesize the current 

knowledge and approaches on monitoring systems for aquaponics. Towards this 

objective, a quantitative review method, e.g. systematic approach, is employed in this 

study. Since there are scarce publications in literature about aquaponics systems, some 

hydroponic systems were included in the analysis to complement the information. 

Objective 1 

Objective 2 

Objective 3 

Chapter 2 

Chapter 4 and 5 

Chapter 3 

Figure 1.2 Thesis Structure 
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The systematic analysis presented in this paper is based on a qualitative analysis of 

carefully selected journal and conference papers. The task was performed manually by 

the authors; as a result, the identified and presented articles are reviewed one by one 

and categorized based on their research focus and results. Publications written only in 

English were considered and no review articles were included in this research. The 

systematic review is carried out to provide a comprehensive view of existing research 

with the purpose of identifying gaps in the body of knowledge and provide deep 

understanding of the current status of the studied research area [19], [20]. Figure 2.1 

displays the overview of the research methodology adopted. 

Table 2.1 lists all the selected publications and their integration of sensors based on the 

researched parameters, smart approaches, and IoT technology. In summary, 21 

aquaponic (A) or hydroponic (H) systems are selected from the literature and their 

proposed monitoring systems are evaluated in depth. Overall, 19 physical parameters 

are identified as being actively studied and are considered by researchers as critical for 

aquaponic systems. ‘Smart’ includes the use of machine learning, deep learning, 

prediction algorithms and decision-making. IoT involves, for example, remote control 

through web based or mobile applications. 

The monitoring parameters found in the analysis are then defined, classified by water 

and environmental factors. Then, the importance of each of them in an aquaponics 

Figure 2.1. Overview of research methodology. 
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system is presented and how to measure and control them in an automated system is 

discussed. The admissible high and low levels for each parameter in the symbiotic 

(aquaculture, nitrification, hydroponic) environment are finally summarized. Then, a 

suggested location for each of the mentioned sensors for both coupled and decoupled 

aquaponics system is proposed based on literature analysis. As such, a summary of all 

the parameters that influence the behavior and final growth results in aquaponics 

systems is given. Each parameter is listed with the proposed adequate ranges for each 

component, namely the aquaculture, the nitrification process, and the hydroponic 

component. Further, the potential side effects on the system when outside of the 

proposed range are provided for each parameter.  

Smart and IoT frameworks and techniques are presented. Some future considerations 

and possible applications in the areas are then proposed. A discussion part is presented 

where high and low levels for a sustainable equilibrium in the three components is 

proposed for an aquaponics environment. The authors hope that illustrating the 

relationship between sensors and each parameter serves as a good start to introduce 

automation in aquaponics at a commercial level.
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Table 2.1 List of sensed parameters, smart systems and IoT systems in literature. 

Author Type 
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(Wang et al., 2015) A                    

(Kumar et al., 2016) A                    

(Kyaw and Ng, 2017) A                    

(Murad et al., 2017) A                    

(Nagayo et al., 2017) A                    

(Mamatha and Namratha, 2017) A                    

(Pitakphongmetha et al., 2016) H                    

(Palande et al., 2018) H                    

(Mehra et al., 2018) H                    

(Aishwarya et al., 2018) A                    

(Vernandhes et al., 2017) A                    

(Manju et al., 2017) A                    

(Sreelekshmi and Madhusoodanan, 2018) A                    

(Jacob, 2017) A                    

(Dutta et al., 2018) A                    

(Zamora-Izquierdo et al., 2019) H                    

(Odema et al., 2018) A                    

(Elsokah and Sakah, 2019) A                    

(Haryanto et al., 2019) A                    

(Mandap et al., 2018) A                    

(Naser et al., 2019) A                    
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2.2. Monitoring parameters 

The approach to measure the recurring parameters can vary from system to system. As 

an example, the water pH sensing system can vary from pH test strips, some standalone 

sensors with LCD screen attached, or analog sensors capable of transmitting the 

information, wireless or not, to some controller (PLC, micro-controller, etc.). With the 

aim of designing a reliable, sustainable, and economic feasible system, automated 

sensing techniques need to be evaluated. The monitoring and control of environment 

and equipment through intelligent technology is the premise and foundation to ensure 

the stable operation of aquaponics system [10]. Along the years, different types of 

aquaponics systems have been proposed, adopted and explained [21], mainly 

categorized as coupled and decoupled systems. Figure 2.2 summarizes the proposed 

location of the sensors for the aforementioned aquaponics systems. In the following 

subsections, each parameter is introduced and its role in aquaponic systems is 

explained. Then, an explanation on how authors measured, used, and controlled them 

is given.  

 

Figure 2.2 Location of sensors in a Coupled and Decoupled Aquaponics, after [4]. 
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2.2.1. Water 

The quality of the water is commonly presented as the most important factor in 

aquaponics processes [22]. This can be easily understood since water is used as the 

medium to provide nutrients to the plants. In addition, water is the most complex factor 

in the automation point of view because implies synchronous control of several 

parameters that are dependent of each other. As a combination of aquaculture and 

hydroponics, aquaponics is the result of mixing two well-known techniques that, 

nowadays, are still being widely adopted and developed individually. The RAS design 

in aquaculture came up for water efficiency and sustainability. However, the ammonia 

in the water started to accumulate at deadly levels for the fish. As such, bio filters started 

to be used for recirculating the water. In the other hand, the plants in the hydroponic 

approach need nutrients and elements that the water cannot provide without the use of 

fertilizers. Using fertilizers in hydroponics leads to water disposal and replacement. The 

dependency between these two techniques in aquaponics lies in the transformation that 

the water goes through between them. Technically, the plants grow with the effluent of 

the fish tank. However, this process is not straightforward and occurs thanks to a 

process called nitrification, explained below. 

To ensure ideal quality standards in the water solution to favor the nitrification process 

and plant growth, while keeping the fishes healthy, it is theoretically necessary to 

maintain the correct amount of nutrients, pH, temperature, dissolved oxygen and salt 

throughout the whole process. The methods to measure or sense each of the parameters 

are varied. In the next sections, each parameter will be explained in depth. 

2.2.1.1. Nitrification 

Nitrogen is the most important inorganic nutrient for the plants. The nitrification 

process base is the ammonia, which is obtained from fish waste. It can be found in the 
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form of ammonia (NH3) and ammonium (NH4+), where the concentration of both in 

the water solution is a function of the pH, the temperature and the salinity [23], [24]. 

The sum of both is known as total ammonia-nitrogen concentration TAN (NH4+ + 

NH3) [25]. The process that transforms the TAN into nitrates NO3-, which is a form of 

nitrogen that the plants can uptake, is called nitrification [26]. First, TAN is oxidized 

intro nitrite NO2- by ammonia oxidizing bacteria (AOB). This nitrite NO2- is then 

broken down by nitrite oxidizing bacteria (NOB) into Nitrates NO3- [23]. A typical 

aquaponic system consists of an aquaculture component, a bio filter for the nitrification 

and a hydroponic component, as illustrated in Figure 2.3[27].  

When designing the hydroponic component three different choices can be made for the 

grow bed: (1) nutrient film technique (NFT); (2) deep water culture (DWC); and (3) 

media-based [21].  

2.2.1.1.1. TAN 

Ammonia is a dissolved gas present naturally in surface and wastewaters [28]. It is a 

form of nitrogen found in organic materials and many fertilizers. Ten percent of the 

protein in fish feed will be converted into ammonia in the system water [29].Ammonia 

is produced by the waste excreted by fish and plays an important role in the aquaponics 

Figure 2.3 Nitrification in a CAS system with NFT grow bed, after [27]. 
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system, since it will serve as initial component for plants nutrients. The total ammonia-

nitrogen generated in the aquaculture component can be calculated by the Equation 2.1 

given below: 

𝑃𝑇𝐴𝑁 = 𝐹 ∗ 𝑃𝐶 ∗ 𝑐 Equation 2.1 

where 𝑃𝑇𝐴𝑁 is the production rate of TAN (kg/day), 𝐹 represents the feeding rate 

(kg/day), 𝑃𝐶 is the protein content (fractional), and c is the constant amount of excreted 

TAN per protein input based upon the feeding rate. The constant is empirically obtained 

and, for aquaponics systems, 𝑐 = 0.092 [23]. The feeding process can be then adjusted 

by controlling the production rate of TAN. 

Ammonia is highly toxic for fish in small amounts, and it is predominant (relative 

proportion increases) in the water solution when it becomes strongly acidic or alkaline. 

Stone and Thomforde mentioned that the desirable range for fishes of TAN is from 0-

2 mg/L [28]. Somerville et al. make a difference between warm water fish and cold 

water fish [30]. In the first case, the optimum TAN range is <3 mg/L, and in the second 

one, it is <1 mg/L. For bacterial activity, namely AOB and NOB, the optimum value is 

<3 mg/L and <30 mg/L for plants [30]. 

Ammonia is colorless and odorless in small amounts, so sensing it is the best form of 

knowing the presence of the parameter. Usually these sensors consist of a wire electrode 

in a custom filling solution. The internal solution is segregated from the sample medium 

by a ion selective membrane, which interacts with ammonium ions [31]. To increase 

the ammonia measurement accuracy, it is necessary to know the pH and temperature of 

the water. As such, quantifying the amount of ammonia in water solutions becomes a 

data fusion problem between pH sensors, temperature sensors, and ammonia 

concentration sensors. As shown in Figure 2.2, those sensors need to be included in the 



16 

 

water tank, as the concentration of ammonia past the biofilter can be considered 

negligible. 

2.2.1.1.2. Nitrite 

Nitrite is obtained from ammonia by the AOB. Nitrite is another form of nitrogenous 

waste that is deadly for aquatic life [32]. The desirable range of nitrite dissolute in water 

to allow fish, plants and bacteria’s life is 0-1 mg/l [28]. A similar range of nitrite is 

required for bacterial activity and plant growth. The presence of nitrite should not be a 

problem if maintained in the optimal range. Nitrite concentration sensors are usually a 

combination of nitrite-ionized electrodes and a sensing element made of a plastic (PVC) 

membrane, working as an ion exchanger and reference electrode. The sensor develops 

an electrical potential proportional to the concentration of nitrite ions in the solution, 

thus providing the concentration of nitrite in the water. 

2.2.1.1.3. Nitrates 

Nitrate is the result of the nitrification process by NOB and is a form of nitrogen 

component that plants can uptake. Nitrate is relatively non-toxic to fish. Stone and 

Thomforde mentioned that nitrate should not cause health issues if maintained below 

90 mg/L [28]. Bhatnagar and Devi recommend a normally stabilized range of 50-100 

ppm. This factor is important when designing the biofilter. High amounts of nitrates 

could mean an under-sized bio filtration and be toxic for fishes [32]. The nitrate 

measurement is usually done with the same sensor that estimates the concentration of 

ammonia, which are commonly prepared to measure both signals.  

2.2.1.2. pH 

pH is a measure of hydrogen ion concentration, usually known as a measure of acidity 

of alkalinity of a solution. The water pH affects plant nutrient availability and the 
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nitrification rate [15], [33]. Currently, pH measurements are obtained using three 

different approaches: (1) test strips (2) manual electronic probes and (3) automatic 

probes in controllers. Due to the aim of this paper, only the third method will be 

covered. A pH meter is an electric device that measures the hydrogen-ion activity 

(acidity or alkalinity) in some solution [34]. In the aquaculture component, the desirable 

range for the water pH goes from 6.5-9.5 and the acceptable range from 5.5-10, 

however this range can slightly vary with fish species [28]. Outside that pH range, water 

can alter the equilibrium of the aquaponic system. For example, fish reproduction rate 

may be diminished in slightly acidic environments [28]. In the hydroponics component, 

the optimum pH is around 6.0. A higher pH than 7.0 will cause precipitation of Fe or 

Mn, and a lower pH than 4.5 can cause root injury [35] and plants experience nutrient 

deficiencies [30].  

In general, aquaponics systems are sensible to changes in the water pH. For the 

nitrification process, the required pH range goes from 7.0 to 9.0. An efficiency increase 

in the range of 8.4-8.8 was reported [36]. To adjust the pH in the aquaponics system, 

bases like potassium and calcium should be prioritized as they serve as base for 

nutrients [30], [36]. Smalls changes (< 0.3) in short periods of time (18-24 h) can highly 

affect the health of the fishes [30].  

In an automated system, the pH meter is connected to a controller where the controller 

receives the change in the pH meter output (mV, mA). For the controller is necessary 

to calibrate the sensor. The pH meter is connected to the controller and then tested in a 

solution with known ph. The gotten output is then correlated to the pH units into the 

controller programing interface. Zamora-Izquierdo et al., developed a smart farming 

IoT platform that focused on pH equilibrium as an agent to ensure high yield. They 

used a pH meter (B&C Electronics - SZ 1093) with a range of 0-13, maximum 
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temperature of 80°C and maximum pressure of 7 bars [37]. Mandap et al., 2018 used 

an ISFET (ion-sensitive field-effect transistor) in their system claiming nearly the same 

performance as a 0.01 resolution digital pH meter (Dr. Meter pH pen tester). In this 

study, Mandap et al. ended up suggesting the Atlas EZO pH Sensor, having this one 

significantly less percentage error than other possible tested options [38]. Nonetheless, 

other options still exist. Manju et al., used, in their aquaponics system, an OMEGA 

PHE-45P pH sensor with lower maximum temperature resistance (60°C) [9], and Kuhn 

et al., used an Orion 3 Star meter from Thermo Fisher Scientific to determine the pH 

[33]. 

2.2.1.3. Temperature 

The temperature in the water is linked to most of the other water-related parameters in 

the aquaponics system. For the nitrification process, the optimal temperature is around 

17-34°C [30], if the water temperature goes below this range, the productivity of the 

bacteria will tend to decrease and the nitrification process will not be successful. For 

the hydroponics component, the suitable temperature range is 18-30 °C [30]. For the 

fish, maintaining a correct temperature diminishes the risk of diseases. The appropriate 

temperature varies depending on the species: for tropical fish, the optimum temperature 

is 22-32 °C; while for cold-water fish species, the required temperature is 10-18 °C. 

Some other fishes have a wider range of suitable temperature, i.e. 5-30 °C [30]. High 

water temperatures can restrict plants’ absorption of calcium. 

The methods to measure the temperature in the water are varied. The most common 

practice to measure water temperature is to check the temperature range, resolution and 

the tolerance to the salinity. Since most of water temperature sensors cover the desired 

range, the sensor’s resolution is the most important factor in the selection. Note that the 

sensor must be made to be submerged long periods and not just ‘‘waterproof’’. 
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Thermistors are the most common and widely used to measure water temperature. 

Mandap et al., Sreelekshmi and Madhusoodanan, and Mamatha and Namratha,  used a 

DS1820 temperature sensor for Arduino controller. The temperature range in this 

sensor goes from - 55 °C to 125 °C and the resolution is ± 0.5 °C. Manju et al., 2017 

used a LM35 IC National semiconductor temperature sensor [38]–[40]. 

2.2.1.4. Level 

The amount of water needed in the system is determined by the size of the components, 

especially the aquaculture ones (fish tanks) [30]. The stocking density in the 

aquaculture tank highly affects the fish’s growth and health and is one of the most 

common root causes for fish stress. The recommended amount of stocking is 20 kg of 

fish per 1000 liters of water [30]. It is not recommended to grow fishes for consume in 

tanks with less than 500 liters. In bigger systems, to mitigate changes in the water 

quality parameters has been reported to be easier than in smaller units.  

Every aquaponics system has natural water losses  for mainly four reasons: 1) fish 

sludge removal; 2) evaporation; 3) plant evapotranspiration; and 4) fish splashing 

during feeding [41]. Also, the hydroponic system consumes a daily amount of water 

that typically goes from 0.1% to 3%, depending on the hydroponic/fish tank ratio, water 

temperature, flow, plant and fish species, and the hydroponic type of system used [41].  

The water level in tanks can be manually measured with sight glass or floating devices, 

but the automated measuring systems available are numerous. One can simply sense 

when the water gets to a desired level (binary output) or decide to measure the total 

amount of water in the tank/system (range output, usually 4-20 mA). The most 

advanced sensors for measuring fluid level are ultrasonic, radar or laser-based sensors.  
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Water level is the third most researched parameter in existing literature. Zamora-

Izquierdo et al., used a Omron K8AK-LS1 water level controller with a maximum 

temperature tolerance of 50 °C [37]. Mehra et al., used an analog output water level 

sensor connected to an Arduino controller [42]. Wang et al., followed the same 

approach [43]. Mamatha and Namratha, used an array of sensors to determine the water 

level in tanks[40]. They used three probes at different levels to know when actions were 

needed to keep the water level as required, e.g. start pumping water when water level 

was low. Jacob, used a BC546 NPN transistor circuit to make an overflow level sensor 

in the water tank [44]. Kyaw and Ng, and Sreelekshmi and Madhusoodanan, used an 

ultrasonic level sensor to control the water tank levels [39], [45]. 

2.2.1.5. Dissolved Oxygen 

Dissolved oxygen (DO) is a measure of how much oxygen is dissolve in the water 

available for the aquatic living organisms. The amount of Do in the water is an 

important parameter for the three organisms (fish, bacteria, and plants) that share the 

aquaponics environment. Alongside the water level, the amount of oxygen in water 

determines the ability to support aquatic life [46]. Oxygen is dissolved in the water at 

very low concentrations (in parts per million or ppm) and has been reported to be the 

parameter that has most immediate and drastic effects on aquaponics [30]. 

In natural environments, oxygen is produced by photosynthesis in aquatic green plants 

and algae. It is of high importance to monitor the dissolved oxygen in any aquaponics 

system because its level varies dramatically in short periods of time (24 hours) [46]. 

There is a strong relationship between temperature and the DO, as warmer water can 

hold less oxygen. When fishes are eating, the consumption of DO increases and it needs 

to be compensated in some cases. Further, the nitrification process is an oxidative 



21 

 

reaction; thus, it depends on the existing dissolved oxygen to happen. When the levels 

of oxygen are low, the bacteria will stop to break down the ammonia and nitrite, 

increasing potential health’s risks for fishes and plants. Optimum levels for nitrifying 

bacteria’s go from 4 to 8 mg/L [30].  

Plants use their leaves to absorb oxygen during respiration, but still need to absorb 

oxygen through their roots [30]. For the hydroponics component, plants need high 

levels of DO, typically >3 mg/L[30]. When oxygen is low, plants’ roots start to die, and 

some fungus may appear. In the aquaculture component, most of the fish species require 

a DO concentration >5 mg/L [47]. In cases of low concentration, fish production of 

TAN will diminish [32]. In small sized systems, dissolved oxygen is expensive to 

measure since there are no low-cost methods available. In this case, manual visual 

inspection of the fish is the most common approach, i.e. red zones around the eyes or 

fish swimming close to the surface are indicators that DO levels are low. When using 

DO sensors, it is necessary to be aware that DO measurements are affected by 

temperature, pressure, salinity, and some compensations may be needed. The two 

methods available to measure DO concentration are optical and electromechanical, if 

excluding laboratory-based methods such as colorimetric approaches and Winkler 

titration. 

The optical sensors measure the interaction between the oxygen and certain luminescent 

dyes. When DO is present, the returned wavelengths are limited or altered due to 

oxygen molecules interacting with the dye [48]. The existent electromechanical option 

to measure the dissolved oxygen concentration can be galvanic and polarographic. 

Inducing voltage to polarize (or not) the system, the presence of DO is measured by the 

change in the electrical signal. 
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DO concentration measurement systems are expensive, and as such, few publications 

that target such parameter exist in the literature. Odema et al., connected a DO sensor 

to a Modbus and used TCP/IP technology to transfer the data [22]. Mandap et al., 

successfully used an Atlas DO probe with a capacity range of 0-100 mg/L, a maximum 

pressure of 3,447 kPa and maximum depth of 343 meters, in an aquaponics system [38]. 

2.2.1.6. Electro-Conductivity 

The electro-conductivity (EC) is a measurement of the ability of a medium to conduct 

electric current, and in the case of aquaponics systems, it is highly correlated to salinity 

(amount of salt concentration in the water) [9], [49]. Therefore, fish population is the 

most sensible to changes in the EC. It also relates to how fresh the water is and low 

levels could indicate unbalanced systems [49]. High levels of EC indicate that water is 

polluted, and it may cause death of the fish population.  

A minimum salt content is desirable though to help fish maintain their osmotic balance 

[28]. The optimum range for fishes is 100-2000 µS/cm, but a wider range has been 

found acceptable (30-5000 µS/cm) [28]. A measurement of the electro-conductivity in 

the hydroponic component can be used as an estimator of the water nutrient content if 

added to a pH measurement. However, such measurement would not be able to 

differentiate between all the different nutrients. 

Day by day, measurements of water EC may provide insight on nutrient consumption. 

Thus, it may help maintain consistency with each crop cycle, and ensure maximization 

of nutrients use without over-fertilizing [50]. A method to control the nutrient solution 

in the hydroponics system through EC monitoring was proposed [35]. For example, 

Enshi-shoho nutrient solution was used to provide control over EC, as it has a known 

EC of 2400 µS/cm.  
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The electro-conductivity meters usually employ a potentiometric method and four 

platinum electrodes. Some current is applied to the outer pair and the potential between 

the inner pair is then measured. Nagayo et al., suggested the use of this parameter in 

their work [49]. 

2.2.1.7. Total Dissolved Solids 

Dissolved solids are naturally present in water. TDS levels represent the content of 

inorganic salts, organic matter and other dissolved materials in water [51]. Typically an 

optimum amount of TDS in water for fish life is inferior to 1000 mg/L, although values 

below 2500 mg/L have been found acceptable [28]. High amounts (>1000 mg/L) of 

TDS can cause a toxic medium for most fish species.  

As sensing units, TDS meters are commercially available. Usually used to measure 

TDS in potable water, TDS meters are similar to EC meters. In fact, the same sensor 

used to measure EC can be used. 

2.2.1.8. Salinity 

The salinity (SL) indicates the amount of salt concentration in the water [49] and is a 

driving factor that affects the density and growth of the fishes [32]. Salinity is often 

derived by the electro-conductivity measurement, just like TDS. The desirable range of 

SL varies with each fish species. The most common adoption was given by (Garg and 

Bhatnagar, 1996 for the common carp and its range goes from 0 to 2 ppt (part per 

trillion). 

2.2.1.9. Water hardness 

Water hardness is a measure of the concentration of existing positively charged calcium 

and magnesium salts in water solution. Calcium and magnesium are essential to fish 

metabolic reaction, namely bone and scale formation, thus, relevant to fish growth [32]. 



24 

 

Whereas low levels of water hardness only cause stress in fishes, high levels could be 

lethal since it increases water pH, resulting in a low nitrification and nutrients 

absorption rate for plants. The desirable range for water hardness goes from 50-150 

mg/L, but >10 mg/L is acceptable for most species [28].  

Water test kits can be used to manually measuring water hardness, relying in test tablets 

or paper test strips. However, water hardness is usually determined qualitatively by the 

TDS or EC measurements [52]. Some colorimeters or spectrophotometer sensors are 

used when lower measurements than 4mg/L CaCO3 are expected.  

2.2.1.10. Alkalinity 

The alkalinity is a measure of the concentration of bases, typically carbonate and 

bicarbonate in aquaponics systems. Water hardness and alkalinity are often confused as 

alkalinity measures the negative ions (carbonate and bicarbonate) and hardness the 

positive ions (calcium and magnesium). Alkalinity is usually referred as the water 

ability to resist changes in pH or the capacity to neutralize acids. Low levels indicates 

that even small amounts of acids can cause large change in the pH [32], high levels of 

alkalinity cause non-toxic ammonia to become toxic. Desirable ranges of alkalinity go 

from 50 to 150 mg/L CaCO3 [28]. 

2.2.1.11. Flow 

Water flow through the aquaponics system is extremely important to estimate the 

capacity of filtration (solids) and bio-filtration (nitrification), as well as to determine 

the nutrients availability for the plants. It is recommendable that the flow in the system 

is maintained constant to avoid stress in the fishes and to avoid nutrient deficiencies in 

the plants. Most importantly, it is needed to measure the flow between the filters and 

the grow bed.  
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The flow rate will vary depending in the hydroponic system adopted. In NFT-based 

systems, flowing water in the channels ensures that the roots receive large amounts of 

oxygen and nutrition. The recommended water flow for NFT should be lower than 1-2 

L/min [30]. In the media-based technique, a siphon is used to filtrate the water through 

the media. The recommendation is to set the flow rate to be able to filter the entire water 

fish tanks every hour through the grow beds. In the DWC-based systems, the water flow 

is mostly due to gravity. As such, water needs to flow during approximatively 1 to 4 

hours through the channels to guarantee adequate replenishment of nutrients. The 

growth of the plants in DWC systems benefit from high flow rates and turbulent water 

because plants’ roots absorb more nutrients.  

Optimal water flow is calculated from channel size and water capacity. Once the 

requirements are set, a flowmeter will be useful to guarantee water flow throughout the 

system and enable detection of major problems, i.e. obstructions in the piping system. 

A flowmeter is a device capable of measuring the amount of water that is passing 

through a pipe. It exists four types of different flowmeters: 1) mechanical; 2) vortex; 3) 

ultrasonic; and 4) magnetic. Murad et al., use a water sensor to detect the water flow 

into the fish tank through the siphon outlet in a media grow bed [8], and Kyaw and Ng, 

put a flowmeter between the fish tank and the grow beds [45]. 

2.2.2. Environment 

The parameter related to the air conditions in contact with the plants are analyzed in 

this section. To obtain and maintain balanced and safe optimal crops in the system and 

to ensure the stable and healthy growth of fish and vegetables it is necessary to monitor 

and control some environmental parameters[10]. Namely, the air temperature, where 

the ranges changes between the plant species; the light intensity, which depends on the 
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growth stage of the plant; the air humidity, the air content of CO2 (carbon dioxide), and 

the media moisture, in case of adopting a media base as the hydroponic component. 

2.2.2.1. Air Temperature 

The air temperature influences the health of plants. The suitable temperature for most 

of the vegetables commonly grown in aquaponics systems is 18-30 °C. At higher 

temperatures, leafy greens bolt and begin to flower and seed [30]. Further, the air 

temperature is responsible of a correct transpiration of the crops.  

The factors that have taken into consideration when selecting air temperature sensors 

are: 1) temperature range; 2) contact or contactless; 3) sensing element; and 4) 

calibration method. For measuring the air temperature in aquaponics systems, a 

thermistor has been the recurrent option as the air temperature and humidity are 

measured together. Sreelekshmi and Madhusoodanan, used a DTH11 thermistor  [39]. 

Vernandhes et al., used a DHT22 thermistor, which is a more accurate sensor and has 

a larger range of temperature values than the DTH11 [53].  

2.2.2.2. Relative Humidity 

The relative humidity is an expression for moisture in the air. Most of the grown crops 

in aquaponics systems need humid air for thriving, thus the relative humidity needs to 

be well managed. The humidity in the air can be measured in different ways: 1) mass 

of water in unit volume of air; 2) unit mass of air; or 3) partial pressure of water vapor 

in the air [54]. Air humidity can be also expressed as a proportion of the air-water 

saturation or relative humidity (RH).  

Warm air has a higher moisture-holding capacity than cooler air. To maintain control 

of the level of humidity, a good control over ventilation and heating systems is 

necessary. The ventilation system allows the exchange of the moisture inside the 
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greenhouse with drier air from outside the facilities. The heating devices are necessary 

to warm up the outdoor air to the optimum growing temperature and increase the 

capacity of the air to hold moisture. To increase moisture on indoor air, it is common 

to use moisturizers. 

The optimum level of RH varies depending in the type of crop and the growth stage of 

the plants. The most common considerations are 50%-80%, but those depend on the 

indoor temperature. An excess of RH in the air would interfere with the plants’ 

transpiration and prevent roots and stems to supply an adequate quantity water to the 

leaves.  

As mentioned previously, air RH is usually provided by the air temperature sensor. 

However, individual sensors can be used: Wang et al., used a DTH11 capacity humidity 

sensor to measure RH values in an aquaponics systems [43].  

2.2.2.3. CO2 

The carbon dioxide is an essential component of the photosynthesis, vital chemical 

reaction for plants sustain. In mass production indoor systems, it is possible that plants 

use all the CO2 available in the air. As such, artificial addition of CO2 and control of 

its levels is necessary. 

The optimum range level for most of indoor crops is within 340-1300 ppm [55]. 

However, a smaller range may be needed for some crops. For example, 800-1000 ppm 

of CO2 in air is necessary to grow tomatoes, cucumbers, peppers, or even lettuces. 

Depending on the type of crop, the lighting conditions, air temperature and RH, 

different CO2 air concentrations are needed.  

Elevated CO2 also leads to changes in the chemical composition of plant tissue. The 

extra carbon molecules may be dissolved in the systems’ water, forming carbonic acid, 
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HCO3-. This would provoke a decrease in the water pH. Recommended levels of 

carbonic acid must be less than 5 mg/L to enable proper fish growth [32], [56]. More 

than the indicated level is toxic for aquatic life. 

The commercially available sensors that measure CO2 concentration in the air are 

infrared gas sensors (NDIR) or chemical gas sensors. Nagayo et al., used a MG811 

sensor to measure the CO2 content in the air of their proposed system [49]. 

2.2.2.4. Media Moisture 

Media moisture is the soil water content in the media base. This measurement is only 

necessary when is used the media-base type in the hydroponic component. For this type 

of hydroponic component, it is good practice to implement a moisture-soil sensor to 

guarantee that the media has correct amount of water for the plants. More plants die 

due oversaturated root than of drought. It is highly recommendable to check for the 

water holding capacity of the soil selected in order to set the parameters for the sensor 

system. Werner did an analysis for traditional farming using different types of sands, 

loams, clays and combinations. After sensing using a tensiometer (0-100 centibars), he 

found that the optimum ranges vary from type to type of soil, going from 30-60 

centibars (Werner, 2002). Traditional meters are electrical resistance blocks, 

tensiometer and time domain reflectometry (TDR). Another soil-moisture sensor works 

under capacitance and measure the dielectric permittivity of the water in the medium 

and is the sensor commonly adopted in Hydroponics due the simplicity. In this case, 

Vernandhes et al., used a FC-28 as a soil-moisture sensor. Since various materials for 

the media base are used and their levels are not fixed, no generic recommendation can 

be provided for this parameter [53]. Nevertheless, interested people can find the 

appropriate levels after selecting the media base and crops to farm. 
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2.2.2.5. Light Intensity 

Sunlight is critical for plants but is unavailable or limited in indoor facilities. Artificial 

lighting is placed in aquaponics systems as a substitute to provide light to the plants. 

Light is usually measured in terms of its intensity (lux). However, plants use a limited 

part of the light spectrum called photosynthetically active radiation (PAR). It designates 

the spectral range of solar radiation that photosynthetic organisms can process.  

Most of the plants do not require PAR regulations and grow independently of lighting 

conditions, but some light sensitive crops, i.e. lettuce, salad greens, and cabbages, can 

bolt, seed and become bitter and unpalatable with high levels of PAR [30]. 

Additionally, with low light intensity, the growing rate of plants is greatly diminished. 

Contrary to plants, water does not need direct light radiation and it is paramount to 

isolate any water system to help maintain the water temperature and prevent algae 

growth. Further, the nitrifying bacteria are photosensitive organisms during the initial 

formation of the bacteria colonies. For new aquaponics systems, it is recommendable 

to cover the area from direct light for the first 3-5 days.  

Different equipment can be used to obtain PAR measurements; however, research has 

shown that using a photosynthetic photon flux (PPF) and yield photon flux (YPF) 

specific PAR meter is the most accurate measuring sensor for narrow spectrum 

radiation sources, such as artificial lights [58]. In efficient light systems, a balance 

between correct PAR usually given in photosynthetic photon flux density (PPFD) and 

the right light intensity (lux or lumens) must be reached. In general, crops need between 

14 to18 hours of light per day. The amount of PPFD that plants need vary from its 

growth stage and type of plant, but an average optimal range of 600-900 PPFD is 

required [59]. To measure the radiation intensity of a lighting system, a light dependent 

resistor (LDR) can be used. From such measurement, PPFD can be estimated. Both, 
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Mamatha and Namratha, and Sreelekshmi and Madhusoodanan, used an LDR to 

successfully measure the ambient light intensity [39], [40]. 

Table 2.2 shows the summarized levels and the parameters just introduced.
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Table 2.2 Parameter ranges and potential effects in aquaponics systems 

Parameter 
Aquaculture 

Range 
Nitrification 

Hydroponic 

Range 
Low Level Effect High Level Effect Ref. 

pH 6.5-9.5 7.0-9.0 4.5-7.0 Fish reproduction rate 

is diminished. Root 
injury and plants 

experience nutrient 

deficiencies. 

Plants experience 

nutrient deficiencies. 

[36] 

[35] 

[28] 

Water T  5-32 °C * 17-34 °C 18-30 °C Increase the risk of 

diseases in fishes. 

 

Increases the risk of 

diseases in fishes. 

[30] 

Water Level 1000 L per 20 kg of 

fish 

- - Fish stress leading to 

grow health issues. 

Plants experience 

nutrient deficiencies. 

[30] 

DO 4-5 mg/L 4-8 mg/L >3 mg/L Plant roots may die, 

and some fungus can 

start to grow. Fish stop 
to eat. Bacteria will 

stop nitrification 

process. 

- [30] 

[47] 

EC 100-2000 µS/cm - - Loss of nutrients in the 

water. Indicates 

unbalanced systems. 

High levels of EC 

indicate that water is 

pollute and may cause 
death of the fish 

population. 

[28] 

TDS <1000 mg/L - - - Toxic for most aquatic 
life, especially fish. 

[28] 

Salinity 0-2 ppt - - - Affects the density and 
growth of the fishes. 

[60] 

Water 

Hardness 

50-150 mg/L CaCO3 -  Fish stress. Increase of pH , resulting 

in a low nitrification and 
nutrients absorption rate 

for plants 

[28] 

Alkalinity 50-150 mg/L CaCO3 - - Poor status of water 
body. Low ability to 

neutralize acids, risk of 

high ph. 

Cause non-toxic 
ammonia to become 

toxic. Fish stop 

breathing. 

[28] 

TAN 0-2 mg/ L <3 mg/ L <30 mg/ L - Highly toxic for fish. [30] 

[28] 

Nitrites 0-1 mg/ L 0-1 mg/ L 0-1 mg/ L - Highly toxic for fish, 
plants and bacterial 

activity. 

[28] 

Nitrates 50-100 ppm - - Nutrient deficiencies in 

plants 

Toxic for fishes. [32] 

Flow - - 1-2 L/min* Low availability of 

nutrients. 

Low availability of 

nutrients 

[30] 

Air T - - 18-30 °C Incorrect transpiration 

of the crops. 

Leafy greens bolt and 

begin to flower and seed. 

Increases transpiration of 
the crops. Reduces 

efficiency of water 

supply to the plants. 

[30] 

RH - - 50%-80 % Curled leaves and dry 

leaf. 

Inadequate supply of 

water to plants. Causes 

mold and fungus growth. 

N/A 

CO2 - - 340 ppm-1300 
ppm 

Decrease in plants 
photosynthesis. 

Changes in the chemical 
composition of plant 

tissue.  

[32] 

[55][56] 

Bed Moisture - - - Not enough nutrient 
availability in plants. 

Drought. 

Plants will start to wilt, 
and roots start to dye due 

a lack of oxygen. 

N/A 

Light Intensity - - 600-900 PPFD Decrease in plants’ 

photosynthesis. 

Carbon limitation in 

plants. 

[61] 
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2.3. Smart Systems 

Intelligent or smart systems is a broad concept in the academic world with the purpose 

of optimizing production by making use of cutting-edge information, communication 

and computing technologies [62]. The opportunity to use smart systems in industrial 

applications came from the research developments in artificial intelligence (AI) in 

general. Some misconceptions have been made in this research area when naming 

proposed systems as “smart”. Usually, researchers tend to label as smart a system that 

is just automated or wireless. A machine that work under input signals, comparison 

between signals and ranges, triggers and output cannot be called smart and is just an 

automated system. Smart is a concept more related to the Industry 4.0 itself and 

involves complex logical process, algorithms and it is not limited to basic logical 

operators. The adoption of the smart systems in the farming is going towards the 

concept of precision farming, which looks to apply only the water and nutrients that 

plants need [63]. This concept was analyzed and presents a dominance of heuristic 

approaches over the quantitative working methods when applying tools from the 

Industry 4.0 [64]. 

König et al.,  presented a review of aquaponics as an emerging technological innovation 

system where changing the food production technologies themselves was proposed as 

one way of creating more sustainable food systems [2]. The immersion of smart 

techniques in aquaponics is helping to minimize production times, reducing the need of 

labor, lowering the expertise need it to regulate the systems and enhance the quality of 

the products. When managing a farming system, the adoption of Cyber-Physical 

systems is increasing. These systems are presented as collaboration levels between self-

configuration (machines), local (analysis of the production system) and extended 
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(collaboration between different actors as clients, farmers, etc.). The usage of advanced 

learning techniques (machine learning), can support and expand this concept [64] . 

2.3.1. Parameters prediction 

In all the literature reviewed, only one smart application was found for aquaponics 

systems. Kumar et al., developed an autonomous wireless aquaponics system. The 

smart component of the system relies in the application of regression techniques to 

predict future values for some of the sensed parameters (nitrate and pH) and make smart 

decisions with the outputs [65].  

Smart applications in hydroponics, in the other hand, have more contributors and 

developments using deep neural networks, predictions, decision making have been 

made. Mehra et al., trained a deep neural network to predict pH, humidity, light 

intensity, temperature, and the water level in hydroponic tanks’ sensors outputs. Then, 

this trained neural network was installed in a Raspberry Pi to control the outputs 

depending on the sensed values [42]. Pitakphongmetha et al., used an artificial neural 

network with the pH, electro conductivity, temperature, humidity, light intensity, and 

plant age, as inputs to predict the pH and electrical conductivity. Then, the error 

between predicted values and sensor outputs was used to monitor and control the 

parameters [66].  

2.3.2. Quality and growth rate 

The use of Convolutional Neural Networks is commonly used in quality assessments 

of the crops. A monitoring growth rate of lettuce using deep convolutional neural 

networks was implemented in a hydroponics system by Lu et al. [67]. Moving forward, 

this image prediction models can be used to monitor some parameters in the aquaculture 

component, e.g. the health of the fishes based in the known physical reactions of some 
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parameters, (i.e. red areas in the eyes when the level of ammonia is dangerous), 

turbidity of the water for triggering the filter or cleaning, etc. The image processing and 

prediction techniques based on images is not found often in the literature of 

Aquaponics. 

2.4. IoT systems 

Internet of Things (IoT) is looking to dismiss the bridge of connectivity issues between 

systems. One of its main objectives is to make industrial machinery capable of 

communicating between each other and provide a framework where data-driven 

decisions can be taken without human intervention. The enhancement of the network 

capacity, with the 4G and 5G technologies, increases the feasibility of IoT 

implementations and leads to the creation of new communication hardware, protocols, 

and frameworks. The communication between devices and interfaces is currently less 

limited, increasing the flexibility, interoperability, and integration of complex 

communication systems into complex industrial scenarios such as aquaponics. In 

farming, IoT technologies are being implemented with very different objectives, 

including:  improve GPS systems, weather predictions, inventories, producer-consumer 

information, and so forth. In our review, 71% percent of the publications used an IoT 

technique in their proposed system. The findings are categorized in three different 

sections: 1) monitoring interfaces, 2) remote applications and 3) wireless technologies. 

In some cases, combinations of these categories were found. 

2.4.1. Remote monitoring interfaces 

Monitoring interfaces are commonly an environment (interactive or not) that displays 

some of the interested parameters in the process to the user or stakeholder. This 

visualization process is key to final decision making. IoT technology enable these 

monitoring interfaces to display values through wireless networks, even in real-time. 
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Manju et al., designed a web application that showcased a dashboard connected to a 

microcontroller to monitor selected aquaponics’ parameters [9]. In the same year, Dutta 

et al., connected a Raspberry Pi to all the system measurement units, then the sensors’ 

data are sent to a web-based platform where it is stored and displayed [68]. A year later, 

Elsokah and Sakah, programmed an iOS application that allowed to monitor the system 

environment continuously by obtaining data directly from the systems’ 

microcontrollers [69]. The direction of these collaborations is heading towards the real 

time reliability and mobility (not only web based but also application for mobile 

devices). 

2.4.2. Remote control applications 

Remote control applications are defined based on their capability to signal system 

actuators to interact or change certain parameter. Such applications are a step forward 

from only monitoring the system, as presented in the previous subsection. For example, 

with remote control applications (web-based or applications), operators can turn on/off 

water pumps or lights when necessary, change values of critical timers to modify the 

plants’ growth process, and so forth. 

From the reviewed papers, Nagayo et al., implemented a GSM Arduino-based 

monitoring and control system that can send alert messages to operators when 

measurements are outside specific ranges. A graphical user interfaces is designed to 

display the information and data could be extracted from the system [49]. The 

collaboration of Pitakphongmetha et al., was using Blynk, a multi-language platform 

that enables remote control of different microcontrollers (i.e. Arduino, Raspberry Pi) 

[66]. The next year, Aishwarya et al., integrated a GSM receptor with a microcontroller 

in an aquaponics system. As such, operators can send messages to the receptor so that 

real-time control over the water supply or temperature is achieved[70]. Vernandhes et 
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al., used an Arduino connected to a web server through an Ethernet Shield. A user 

interface was created to allow real-time monitoring and control of the water-related 

sensor measurements, i.e. switch on or off the exhaust, pumps, and mist makers [53]. 

Odema et al., created an IoT-based aquaponics system that allows remote monitoring 

and control of the system parameters. The authors used a Modbus TCP standard 

protocol to pull measurement data from the sensing nodes of a supervisory computer 

[22]. Haryanto et al., designed a system with a microcontroller connected to an Ubuntu 

IoT Cloud. The system could be accessed to monitor and control the parameters 

automatically based on the sensed inputs[71]. The authors in this section added the 

controlling parameter into the scenario. Currently, the visualization of the parameters 

in the system is not enough and is necessary to control such parameters for a better 

system. 

2.4.3. Wireless technologies 

The wireless technologies are rarely presented alone and are mostly linked to the two 

past sections (remote monitoring or control interfaces). Nevertheless, was found that 

some contributors were focus in develop/apply some wireless technologies into 

Aquaponics to improve the connectivity. Wang et al., designed an architecture to 

monitor and control an aquaponics system with Arduino and sensors information. Data 

is efficiently stored on WRT nodes and transmitted to an OpenWrt server using a Wi-

Fi data transmission module[43]. Kumar et al., designed an aquaponics system using 

the 6LOWPAN protocol and a wireless sensor network (WSN)[65]. Murad et al., used 

GSM technology to send notifications if pH and temperature values go out of range [8]. 

Mamatha and Namratha, used a data logging platform, ThingSpeak, to store all the 

information from an aquaponics[40]. 
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Sreelekshmi and Madhusoodanan, developed a web-based monitoring system using 

ThingSpeak IoT platform with Arduino Uno and an ESP8266-01 Wi-Fi transceiver 

[39]. Jacob used a Raspberry Pi along with a Wi-Fi dongle to give internet connectivity 

to the system. The system uses cloud-based platforms (Pubnub, Cloudinary, and Dweet) 

to store and control the diverse parameters of the aquaponics system, i.e. motors and 

lights, with an IoT dashboard using Freeboard [44]. The use of wireless technologies in 

sensors or a transmission of data opens the door to improvements in the monitoring and 

control of parameters. 

2.5. Discussion 

2.5.1. Overview 

The success of an aquaponics system relies on a correct management and 

implementation of sensors, IoT techniques and smart systems. This paper aims to 

summarize through bibliometric analysis the necessary and proposed solutions 

available in the literature to support commercial availability. Moreover, this paper 

targets to ease the introduction of automation, smart technologies and IoT in aquaponics 

systems by simplifying the selection of sensors based on biological needs. 

An automated system had proven in other mature areas (i.e. automotive, manufacturing, 

construction etc.) to increase the productivity, reduce the human error and reduce time 

and amount of labor. Extrapolating it to Aquaponics will lead to fulfill the concept of 

precision farming with the inherent attributes such as improving resources utilization 

(water, electricity, fertilizers) reducing human intervention, reduce field expertise  and 

even accelerating the grow time of most of the crops since the ideal environment can 

be automatically maintained.  
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Introducing sensors is a mandatory step in working towards the fully or semi-

automation of this systems. Here the importance of having a guide for those planning 

to dive into the automation of aquaponics systems. Table 2.3 summarizes the parameter 

ranges; optimized to avoid potential threats to the aquaponic system. Figure 2.4 shows 

the direct correspondence found in the literature between sensors and the aquaponic 

parameters. 

Table 2.3 Optimal parameters range for aquaponics systems. 

Parameters Aquaponic 

pH 6.5-7.0 

Water T 17°C -30°C 

Water Level .02 kg/L 

Dissolved Oxygen >4 mg/L 

Electro-Conductivity 100-2000 µSiemens/cm 

Total Dissolved Solids <1000 mg/L 

Salinity 0-2 ppt 

Water Hardness 50-150 mg/L CaCO3 

Alkalinity 50-150 mg/L CaCO3 

Total Ammonia-Nitrogen <2 mg/L 

Nitrites <1 mg/L 

Nitrates 50ppm-100 ppm 

Flow 1-2 liters/min * 

Air T 18°C -30°C 

Relative Humidity 60%-80% 

CO2 340 ppm-1300 ppm 

Light Intensity 600 PPFD -900 PPFD 
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2.5.2. Control Strategies 

The analysis of the mentioned literature showcased a consistent use of micro-

controllers, such as Raspberry Pi and Arduino, in aquaponic systems. Overall, three 

different levels of control strategies were noted.  

The most basic control strategy can be understood as a local approach with external 

communication. Murad et al. kept the automation and deployment locally [8]. Several 

sensors were used and controlled with Arduino. The system was locally controlled and 

connected to a GSM (Global System for Mobile) communication interface, capable to 

send notifications or alarms as predefined actions based on sensors levels.  

Figure 2.4 List of all parameters found in literature and their correspondence. 
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A step further implies to gather and analyze information wirelessly through cloud 

servers. Wang et al. utilized an Arduino and a WRTnod to monitor the data acquisition 

and manage the aquaponic system built [43]. The sensor acquisition module built 

consisted in temperature, humidity, light, water level, and DO sensors. The data was 

sent wirelessly to the control and management center, whose function was to store the 

data, process it, and send it to a remote server. Once the information was stored in the 

server, users were able then to analyze the information and make decisions in regard to 

the state of the air and water pumps, lights, and so forth.  

Finally, complex control strategies found in literature aimed to achieve autonomous 

systems through a variety of smart techniques that go from linear regression to more 

complex prediction models, such as neural networks. Kumar et al. included in their 

system wireless sensor network devices (temperature, pH and nitrate sensors) [65]. The 

network had a 10-meter communications range with a transfer rate of 250 Kbits/s. The 

authors used this time the run-time platform IBM Mote Runner1 as the sensor network. 

A cloud data storage system was used to store the data from the sensors, then, trend 

analysis helped to predict the next time series values of the variables. A regression 

technique was implemented to make predictions about nitrate and pH values, aiming to 

create an autonomous aquaponic system regarding the control of these two parameters. 

However, no discrete or event-triggered control strategies were found during the 

analysis as authors tend more to apply distributed control systems (DCS). Those 

missing strategies are key to the implementation of Programmable Logic Controllers 

(PLCs) in such environments and would require further research. 

                                                 

 

1 www.zurich.ibm.com/moterunner/ 
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2.5.3. Current Limitations and Future Work 

Some limitations were encountered in the current body of knowledge. Based on Table 

2.1, Figure 2.5 displays the concurrence of the parameters in the reviewed literature.  

It is important to note that while some parameters have been thoroughly researched, i.e. 

pH or water temperature, some other parameters are being neglected by the automation 

academic community. With varying degrees of effect in the aquaponics system, 

research is needed to provide practitioners of a clear impact of each of the listed 

parameters. An effort is then required to draw precedent in certain parameters, while 

keeping improving past contributions. 

Regarding IoT systems, their implementation has influenced the success of other 

industries, i.e. automotive or aerospace, thus working in the use of those technologies 

in aquaponics to aim towards precision farming seems to be an accurate solution for the 

feasibility of such farming systems. Nonetheless, the available solutions are still 

primitive, with a widely spread use of micro-controllers and commercially available 

software that would limit its industrial application, economically speaking.  
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When moving to commercial-industrial levels, the adoption of the adequate equipment 

becomes mandatory. Migration towards controllers and sensing equipment that are 

more robust, such as a Programmable Logic Controller (PLC), is necessary to promote 

automatic aquaponic solutions to commercial production. Nowadays, monitoring off-

the-shelve equipment can be purchased, capable of giving real-time data, namely 

parameters such as temperature, pH, electroconductivity (EC) and relative humidity 

(RH) currently used to improve yield performance and quality of crops in greenhouses. 

Nevertheless, these systems cannot deal with closed-loop feedback systems that may, 

potentially, control external variables and/or hardware, which are necessary to push 

aquaponics towards smart technologies. On the same page, some monitoring systems 

are commercially available for correspondent systems in aquaculture. These are capable 

to measure parameters such as temperature, dissolved oxygen (DO), and pH, with the 

same limitations aforementioned. When planning aquaponics’ control systems, high 

flexibility is needed. Since the complexity and interaction between parameters, as well 

Figure 2.5 Concurrence of parameters in the proposed systems. 
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as the cross-incidence (i.e. variations in temperature levels yield variations to pH 

levels), is high and sometimes difficult to predict or still unknown, it is then necessary 

to have a control system flexible enough to control and monitor the variety of sensors 

and equipment shared (and not) between this two technologies (aquaculture and 

hydroponics).  

The introduction of advanced industrial control systems, such as PLCs, together with 

wireless networks and data servers in aquaponics can highly impact the development 

of this industry. PLC offers high flexibility when dealing with variety of sensors, 

motors, pumps, and other hardware needed in the aquaponics industry.  

At last, water is the most important and complex parameter in an aquaponic system. 

Aquaculture alone have been one of the fastest growing food production industry, with 

an average rate of 8.5 % annually over the last 30 years. Promoting the adoption of the 

hydroponics technology as a business opportunity to the aquaculture sector will 

exponentially expand the aquaponics impact. To achieve this, it is necessary to enhance 

the research of the water treatment strategies towards a feasible and easy to adopt 

business model. Even though some research efforts have been made in this area that 

can contribute to the popularization of aquaponics, further research is required to 

provide a real stimulus towards the commercialization of such systems. For example, 

Lie et al. reported the performance of a immobilized biofilm treatment in aquaponics 

pilot scale [72] . Boxman et al. recently evaluated the water treatment capacity, nutrient 

cycling, and biomass production of a marine aquaponic system [73] and Calone et al. 

investigated the implications of water management through a series of experimentations 

in aquaponics systems [74] .However, even in this research area, it is still necessary to 

move towards the goal of adopting smart technologies. Further studies about the use of 

monitoring systems of the parameters in the bio filtration unit is necessary, monitoring 
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and controlling parameters such as pH, water temperature and DO become mandatory 

in this stage since the microbial activity is highly related to this levels and the nitrogen 

availability in the whole system. Currently, no smart system has been designed towards 

the quality of water in such conditions, and the development of a smart system that 

involves water within the aquaculture, bio filtration, and hydroponic components is 

becoming necessary.  

2.6. Conclusions 

Research contributions in the topics of aquaculture and hydroponics are increasing and 

attracting attention from researchers and practitioners. A systematic analysis was 

presented to explore the status and global trends of aquaponics systems, focusing on 

their relevant sensing parameters, smart and IoT technologies. This paper presents a 

study of the field as a whole aiming to simplify the decision making regarding the setup 

of sensors in aquaponic systems and provide a clear image of the research trends in 

smart aquaponics. The final purpose of this work is to create a bridge between 

biological and electrical engineering knowledge to enable aquaponic development as a 

sustainable source of food. This paper contributes by giving aquaponics experts’ 

technical knowledge about automation, IoT and smart systems; and automation expert’s 

knowledge regarding the biological processes happening in aquaponic systems. 

Creating a bridge towards scaled up aquaponics systems will accelerate contributions 

in the area and enable viability in commercial solutions. 
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Chapter 3 Real-time growth rate and fresh weight 

estimation for leafy crops 

In this chapter, the application of smart systems for monitoring, quality control, and 

condition assessment of the crops is researched. Early detection of plant stress is critical 

to minimize both acute and chronic loss of productivity [75]. Computer vision is highly 

suitable to perform growth and quality assessments since it’s a non-contact, rapid, 

environmental-friendly, and accurate method for non-invasive evaluation in fruits and 

vegetables [76]. Contributions that make use of new technologies to enhance the growth 

and quality of the crops are necessary. The main aim of this contribution is to propose 

a system that is able to monitor the current state of the crops using computer vision 

systems and, automatically, estimates the growth rate and fresh weight as key 

performance metrics that can impact and promote future applications of smart 

technologies in this area. Through this work, a literature review and research 

methodology are presented. After this, the setup for the experimentation and the results 

are introduced. Finally, a conclusion of the work done and the relevance to the 

agricultural community is explained. 

3.1. Literature review 

Vast contributions have been made in performance metrics in agriculture; however, few 

of them target hydroponic systems, and even less related to aquaponics. Computer 

vision systems and deep learning approaches represent a suitable solution to solve the 

request of evaluation tools and can be applied to the whole production system of 

aquaponics. In one hand, computer vision has provided great results in other industries 

[20], increasing productivity by providing a deeper understanding of the underlying 

issues [62]. On the other hand, deep learning approaches have accurately supported 
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modeling of complex scenarios, showcasing the capabilities of artificial intelligence 

[77]. 

Reviewing some of them, Pietro Cavallo et al. created a classification algorithm for 

quality evaluation of table grapes using computer vision. They categorized the quality 

of the grapes in five different levels using image-processing techniques by analyzing 

color levels in images. In addition, they used machine learning techniques to simplify 

the tuning and configuration of the algorithms. In the end, they proposed models that 

extract features from digital images. Those features allow them to predict the grape 

quality with good performance, overcoming linear model’ limitations [76]. Flora Yeh 

et al. developed an automated growth measurement system for leafy vegetables in a 

hydroponic system. In this work, lettuce was recorded with a camera that moves along 

each channel. After applying image processing techniques to detect contours and 

estimate each plant’ area and height, growth curves were given by the authors [78]. 

Jung et al. analyzed two different image-processing methods for the measurement of 

fresh lettuce weight. This analysis was done correlating the images of the leaf area with 

the weight of the lettuce using regression algorithms [79]. Mortensen et al. developed 

a methodology to perform lettuce segmentation in 3D point clouds for fresh weight 

estimation [80]. Lu et al. developed an application to monitor growth rate of lettuce 

using deep convolutional neural networks (MASK-RCNN) in systems that used NFT 

channels. Further image processing analysis was done to estimate the leaf area and its 

growth rate [67]. In a more recent generic context, MASK R-CNN has been used to 

segment crops successfully [81]–[84]. 

Even though the aforementioned contributions help to further understand the growth 

and quality assessments of different crops, these are not planned to work as an online 

mechanism for training databases in smart applications. Further, those works that 
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include smart techniques for leaf segmentation (i.e. Lu et al. [67]), it can be expanded 

by adding fresh weight correlation, which is a demanded metric by the agricultural 

community [85], as well as to adapt the proposed approach to work with several plants 

simultaneously (multi-instance analysis segmentation). This work aims to present a 

feasible option for those interested in determining the growth rate of leafy crops based 

on deep learning multi instance-segmentation algorithms and estimate the fresh weight 

of the crops using prediction tools. 

3.2. Research methodology 

An automated system was developed to monitor the growth rate and estimate the fresh 

weight of little gem romaine lettuce in aquaponic grow beds using deep learning 

techniques. The methodology is divided into three sequential modules: ‘Model 

Building’, ‘Model Prediction - Correlation’ and ‘Parameters Estimation.’ The first one 

refers to the training of the model using MASK RCNN and involves the (1) image 

training database, (2) images pre-processing and (3) model training. The second module 

aims to perform the segmentation of leaves in the grow beds environment, and it 

consists of three phases: (1) image acquisition, (2) manual measurements for ground 

truth, and (3) model prediction. The third module makes use of the second block for 

feature extraction. The steps to estimate the desired parameters are the following: (1) 

image conditioning; (2) features extraction; and, (3) growth rate and fresh weight 

estimation.  

First,  in the model building the image database to train our segmentation model is 

constructed robustly, which includes images of a variety of leafy vegetables that gives 

to the model enough variation to perform segmentation and not only our selected crop, 

but can be extended to spinach, basil and other types of leafy vegetables. Once this 

images are gathered, the images are segmented and labeled and then used for training 
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our model. This training is just done once, since the trained model can be used every 

time without the needing have repeating this process.  

In the second module ‘Model Prediction - Correlation’ this trained model is used to 

predict the location of the crop and segment each of the instances in the image and 

refers the use of the experimentation part. Before this happens, the experimentation 

images (not the same as the ones used for the training part) need to be taken through a 

pair of cameras in the experimentation setup and some manual measurements are 

performed to validate the results of the model (correlate pixel values to real units i.e. 

mm).  

The last and third module named ‘Parameters Estimations’ refers to the tools used to 

condition this images (remove distortions), perform the pixel-value task, extract 

features (i.e. height, area, etc.) and calculate the growth rate and fresh weight 

estimation. The overview of the research methodology is presented in Figure 3.1. Each 

element of each module is presented in the following subsections. 

3.2.1. Model building 

The objective of the first module is to train a model that will be used to determine the 

growth rate and fresh weight of plants in later steps.  The steps for building the model 

are explained next. 

Figure 3.1 Overview of research methodology. 
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3.2.1.1. Dataset and pre-processing 

 The image dataset was constructed using a variety of images from diverse sources. This 

involve the use of images from side and top view that were recorded along the growing 

process with the purpose of using them in the training process. With the objective of 

increasing the model flexibility to recognize and segment plant leaves no matter the 

background, i.e. indoor or outdoor environments, the database is complemented with 

images of leafy vegetables in different growth stages and in different scenarios obtained 

through Google search engine. A total of 1350 images were gathered between these two 

methods. In order to train the model and to provide the algorithm with the necessary 

data for training purposes, the images need to be consistently sized, label and manually 

segmented. The software used was Label Me [86] and a total of  3150 instances were 

obtained. Figure 3.2 shows some images from the training database.  

3.2.1.2. Model Training 

Traditionally for two-dimensional images, crop segmentation is performed using color, 

intensity, textures and morphological operations [80]. This project implementation, 

instead, make use of the MASK-RCNN framework proposed by He et al. for object 

instance segmentation [87].  

For this purpose, the image database is divided into training and validation image sets. 

During the training process, the algorithm weights the extracted features from the 

Figure 3.2 Sample database set of images 
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training data and, then, tests the model results against the validation data. As such, 

unbiased estimation of the trained model performance is obtained. The MASK-RCNN 

model performance had a training loss of 0.21 and a validation loss of 0.31, as shown 

in Figure 3.3. Here can be seen how the loss (error) of the model during the prediction 

is getting smaller with the training epochs (runs). The ‘loss’ graph stands for the overall 

loss, and the others make reference to the steps of the model during the region proposal 

network (RPN) step, classification, bounding box prediction and masking head step. 

3.2.2. Model Prediction-Correlation 

During this stage, the model trained is used to perform prediction of the leafy masks in 

real time with images retrieved from the experimental setup where little gem romaine 

lettuce is being grown. The main steps for this purpose are the image acquisition of the 

images, manual measurements and the mask prediction. 

a) 

b) 

Figure 3.3 Model training results: a) training data; b) validation data. 
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3.2.2.1. Image acquisition and manual measurements 

The acquisition of images that show plants at different growth stages is necessary. For 

this purpose, two different cameras are scheduled to take pictures of a growing bed 

every 30 minutes from 6:00 hrs. to 18:00 hrs. The cameras take pictures of 1920×1080 

pixels, from both top and lateral view of the plants. Each of the pictures has three plants 

in them. The manual measurements were taken twice a day at 8:00 hrs. And 16:00 hrs 

during the same period (15 days). These measurements were (1) width, (2) depth, (3) 

height and (4) weight using a caliper and a digital scale with a resolution of 0.01 g. To 

ensure the consistent weight record and reduce errors related to varying moisture 

content in the rockwool, this measurements were performed consistently at the same 

time of the day and under the same conditions (30 seconds drying process before 

weighting). Also, the wet rockwool was weight  alone at the beginning and at the end 

of the process, a relation between the rockwool alone and the plant without rockwool 

at the end of the experiment was calculated to then derive the plant weight during the 

experimentation. The experimental setup that show the cameras used is shown in Figure 

3.4. A schematic of the manual measurements performed is shown in Figure 3.5. 

 

Figure 3.4 Experimental Setup 
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3.2.3. Parameters estimation 

The third module aims to perform feature extraction using the model output from the 

second module and estimate growth rates and fresh weight. Here, the images first need 

to be conditioned to avoid errors due distortions and proceed with the features 

extraction from the masks. The steps that this module follows are explained next. 

3.2.3.1. Image conditioning 

The image conditioning is needed to correlate the image pixel value with the actual 

measurements. To avoid errors due to radial and tangential distortion, both cameras 

need to be calibrated. Radial distortion makes straight lines appear to be curved and 

tangential distortion makes images appear closer than expected. This process was 

performed following standard camera calibration [88]. This calibration process finds an 

accurate relationship between a 3D point in the real world and its corresponding 2D 

image projection (pixel). The calibration images were analyzed using the OpenCV 

library and programmed in Python language, to find the camera parameters (internal 

and external) and distortion matrices. To find the projection of a 3D point onto the 

image plane (2D), first the transformation from world coordinate system to the camera 

coordinate system using the external parameters (rotation and translation of the camera) 

needs to be done. Next, using the internal parameters (focal length, optical center, and 

Figure 3.5 Manual measurements 
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radial distortion) of the camera, the 3D point is projected onto the image plane. 

Equation 3.1 to Equation 3.4 show the equations that relate 3D points with radial and 

tangential distortion, respectively, for the x and y directions.  

𝑥𝑟𝑐 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) Equation 3.1 

𝑦𝑟𝑐 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) Equation 3.2 

𝑥𝑡𝑐 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)] Equation 3.3 

𝑦𝑡𝑐 = 𝑥 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦] Equation 3.4 

The camera matrix, 𝑪𝑴, is then defined to remove the distortion created by the lenses 

of a specific camera and depends on its intrinsic parameters. Intrinsic parameters are 

the focal length (𝑓𝑥, 𝑓𝑦) and optical centers (𝑐𝑥, 𝑐𝑦). This camera matrix is shown in 

Equation 3.5.  

𝑪𝑴 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] Equation 3.5 

To associate the coordinates of the segmented leaves of both cameras, they need to be 

converted to a common reference frame. Considering each camera as a pinhole, the 

relationship between a 3D point 𝑴 = [𝑋, 𝑌, 𝑍]𝑇and its image projection 𝒎 = [𝑢, 𝑣]𝑇 is 

given by: 

�̃� = 𝑪𝑴[𝑹 𝒕]�̃� Equation 3.6 
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here �̃� denotes the augmented vector by adding 1 as the last element, and (𝑹 𝒕) are the 

rotation and translation matrices from each camera to the common reference frame. 

Figure 3.6 shows the original image and the undistorted results using this approach. 

3.2.3.2. Features extraction 

The prediction in the experimental dataset to locate and segment the leafy vegetables is 

implemented with the trained model from the first module. The features of these plants 

are determined through the predicted masks obtained. Essentially, a set of matrices with 

the pixels locations that belongs to the segmented plant (interested area) are retrieved 

from the prediction and further work need to be done with this data to process it and 

give it a useful meaning in our case. For this purpose, the image’s moments are used. 

An image moment is a particular weighted average of the image pixels' intensities or a 

function of such moments, usually chosen to have some attractive property or 

interpretation. Image moments are useful to describe objects after segmentation. For 

example, after calculate this image moments we can easily derive features as centroid 

in x and y direction or area of the interest pixels. In order to derive our growth rates and 

predict the weights a set of features of the plants need firsts to be obtained. A list of 

these features are listed in Table 3.1. To calculate this features, the following steps are 

implemented. First, from the prediction process, the mask and a bounding box for each 

instance are obtained.  

Figure 3.6 Distortion correction results: a) raw image, b) undistorted. 

https://en.m.wikipedia.org/wiki/Image_segmentation
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 Table 3.1 List of features extracted 

 Plant Features 

Side view area 𝐴𝑠𝑖𝑑𝑒 

Height 𝐻𝑠𝑖𝑑𝑒 

Width 𝑊𝑠𝑖𝑑𝑒 

Centroid Side 𝐶𝑥𝑦𝑠 

Top view area 𝐴𝑡𝑜𝑝 

Centroid top 𝐶𝑥𝑦𝑡 

Depth 𝐷𝑡𝑜𝑝 

As explained before, the masks are a set of matrices that contain the pixels that belong 

to the area of the object. The bounding boxes are retrieved from the model in the form 

of coordinates of opposite rectangle corners.  In our case, three masks and three 

bounding boxes are retrieved from each image, one for each plant. Second, the contour 

for each mask is calculated using Green’s theorem, as suggested by Suzuki et al. [89]. 

Green’s theorem provides the relationship between a curve 𝐶, and a region 𝐷 bounded 

by 𝐶, as shown in Equation 3.7. 

∮ (𝐿 𝑑𝑥 + 𝑀 𝑑𝑦) = ∬ (
𝜕𝑀

𝜕𝑥
−

𝜕𝐿

𝜕𝑦
)  𝑑𝑥𝑑𝑦

𝐷

  

𝐶

 Equation 3.7 

where 𝐶 is a positive oriented, piecewise smooth, a simple closed curve in a plane, and 

𝐷 is the region bounded by 𝐶, 𝐿 and 𝑀 are functions of (𝑥, 𝑦) defined on an open region 

containing 𝐷 that have continuous partial derivatives. A schematic that presents the 

relationship just mentioned is shown in Figure 3.7. 

Figure 3.7 Green’s theorem visual representation  
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Using the location of the pixels (interested area) in the matrix retrieved  that can be seen 

as the region D, the Green theorem is then used to calculated the contour from each of 

the segmented instances in terms of bounding curves C. Now, a matrix that contain the 

points of the curve that bound the segmented pixels is calculated and can be used for 

the following calculations. From the obtained contours, the moments are calculated in 

order to estimate the area and centroid of the masks. The formulas of the moment of 

any plant shape image, in grayscale, follow Equation 3.8, where 𝐼(𝑥, 𝑦) are the pixel 

intensities, following the process suggested by Suzuki et al. [89] as implemented in 

OpenCV. 

𝑀𝑖𝑗 =  ∑ ∑ 𝑥𝑖𝑦𝑗𝐼(𝑥, 𝑦)

𝑦𝑥

 Equation 3.8 

From the Equation 3.8 can be calculated several combinations of i and j where each of 

them represent a specific feature of the image, by definition  𝑀00 represents the area of 

the leaf shape. Then, our first moment to calculate is 𝑀00 (pixels units) where the value 

is directly adopted as the area of this specific contour or plant. Our next feature to obtain 

is the centroid. To calculate the centroid, two more moments needs to be 

determined:𝑀10 and 𝑀01 which are the pixels weighted averaged in x and y direction. 

The relation of the centroid components {�̅�, �̅�} can be now derived by the quotient of  

𝑀10 and 𝑀01   divided by the 𝑀00 area .This relationship is shown in Equation 3.9. 

{�̅�, �̅�} = {
𝑀10

𝑀00
,
𝑀01

𝑀00
} 

Equation 3.9 
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The calculated moments for each contour are then 𝑀00,𝑀01 and 𝑀10. Next, the 

centroids for the side and top view are derived from the moments based in Equation 3.9 

and are used to locate the masks and bounding box retrieved and assign them to the 

correspondent plant (i.e. plant 1, plant 2, plant 3). The area from the correspondence 

between the area of a contour and the moment𝑀00. Fourth, the height, width and depth 

are calculated from the dimensions of the bounding box retrieved before, as shown in 

Figure 3.8. 

The width, height, and depth are obtained from the coordinates, as shown in Equation 

3.10 to Equation 3.12. 

𝑤 =
(𝑥2𝑠 − 𝑥1𝑠) + (𝑦1𝑡 − 𝑦2𝑡)

2
 Equation 3.10 

ℎ =  𝑦2𝑠 − 𝑦1𝑠 Equation 3.11 

𝑑 = 𝑥2𝑡 − 𝑥1𝑡 Equation 3.12 

3.2.3.3. Growth rate and Fresh weight estimation 

Growth rate estimation is obtained using the variations in area for each plant at time 𝑖. 

Equation 3.13 presents the mathematical calculation for the growth rate based in the 

area 𝑎: 

Figure 3.8 Bounding boxes schematic 
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𝐺𝑅𝑖>0 =  
𝑎𝑖 ∗ 100

𝑎𝑖−1
 Equation 3.13 

The trend obtained is then used to estimate the growth rate in percentage units. On the 

other hand, the weight estimation is performed using linear regression techniques to 

correlate some features extracted using our proposed approach with the manual weight 

measurements. Linear regression tries to match the population to a set result, as shown 

in Equation 3.14 where 𝑌𝑖 is the objective population, 𝛽0 is the population intercept, 𝛽1 

the slope coefficients, 𝑋1 the variable, and 𝜀𝑖 the random error. The results and 

comments from both are being introduced in the results section.  

𝑌𝑖 =  𝛽0 +  𝛽1𝑋1 + 𝜀𝑖 Equation 3.14 

3.3. Results and findings 

To validate the proposed methodology, a new batch of plants are grown. These plants 

are monitored for 15 days and the leafy vegetable chosen is Little Gem Romaine 

Lettuce. The side and top cameras take pictures at the same rate as in the model training 

stage: one picture every 30 minutes from 6:00 hrs. to 18:00 hrs. In total, 750 pictures 

(375 side view and 375 top view) with three plants each one.  

3.3.1. Experimental Setup 

The experimental setup consists in a wooden structure that holds a cover of 

polyethylene film to maintain the humidity in the system and the following 

components: 

 1 CropKing ® NFT Desktop System. 

 2 ELP 1080P Webcam (2.8 -12 mm HD Varifocal Lens) 

 1 Growth Light (T5 high output bulb, full daylight spectrum, 24 W). 
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 1 Camera Ring Light (56-LED Lamps, 3000-35000 Lux)  

 1 Raspberry Pi controller 

 1 4-Channel Relay Module 

The two cameras are connected to the Raspberry Pi via USB and programmed to take 

pictures at the intervals mentioned before. In order to control either the ring light 

(camera light) and the grow lights a 4-Channel Relay module was used as an interface 

to the Raspberry Pi. The growth lights were programmed to work at on/off intervals of 

12 hours. As the hydroponics component of our system a CropKing® NFT Desktop 

System was used. Figure 3.4 shows the experimental setup built for the 

experimentations. Figure 3.9 shows a schematic of the connections between the 

cameras, growth light, ring light and 4-Channel relay module used.  

3.3.2. Model training 

As aforementioned, the training of our model capable of recognizing leafy vegetables 

is achieved using MASK-RCNN implementation repository from Waleed Abdulla [90]. 

Figure 3.3, introduced before, shows the training and validations loss (error) of the 

proposed model. The proposed approach uses first a region proposal network (RPN), 

which is a framework that generates several anchors (boxes) that are then evaluated by 

a regressor to check the occurrence of the target detection, in this case, the plants. A 

binary classifier returns then object/no-object scores, and the highest scored region is 

Figure 3.9 Connections schematics 
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finally passed to a classifier that predicts the class (in our case is BN (background) and 

Leafy). Figure 3.10 illustrates the regions proposed for a sample image.  

Secondly, the Mask-RCNN algorithm runs the mask head after retrieving the refined 

bounding boxes and it’s identified class from the RPN stage. Figure 3.11 shows the 

three masks obtained for a sample image and Figure 3.12 shows the final masked image 

with its classification results and confidence scores. 

 

3.3.3. Features extraction 

First, images are undistorted using the calibration process aforementioned. Following 

the research methodology, a database is constructed where the plant features from Table 

3.1 are listed for each of the plants for the duration of the experiment.  

Figure 3.10 Overview of RPN step results  

Figure 3.11 Mask results for the sample image 

Figure 3.12 Segmentation for the sample image 
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The plant’s height, depth, and width estimated using the proposed model are compared 

with the manual measurements obtained from the experimental setup. Figure 3.13 the 

comparison between this manual and masked values for each plant. Herein can be 

observed the increasing trend in the dimensions, matching with the growing behavior 

of the plants (increase in size). Also, the estimation error for each dimension per plant 

can be visualized. It can be noted that important errors in estimation occur at the later 

stages in the plant’s growth. After analyzing the masked images, it is noted that leaf’s 

start to interfere with each other. In other words, occlusion in partially responsible for 

the discrepancies between measurements, especially for plants 1 and 2 after day 11. 

This effect will be discussed later in Section 5.2. To measure these discrepancies, the 

root mean squared error (RMSE) between manual and masked dimensions is used (see 

Equation 3.15). Table 3.2 lists the RMSE calculated using Equation 3.15 for each 

measurement per plant. 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑|𝑝(𝑥𝑗 −  𝑦𝑗)|

2
𝑘

𝑗=0

 Equation 3.15 

Table 3.2 RMSE of manual vs estimated dimension 

Table 2. RMSE of manual vs. estimated dimensions. 

 

Instance Height Depth Width 

Plant 1 11.31 mm 30.22 mm 28.70 mm 

Plant 2 10.61 mm 24.53 mm 21.81 mm 

Plant 3 14.71 mm 22.34 mm 12.31 mm 
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3.4. Growth rate and fresh weight modeling 

3.4.1. Growth rate 

Recall that the main objective of this paper is to present a novel approach to determine 

the growth rate and weight of leafy crops during the growing stage as an online system 

using deep learning multi-instance segmentation .On each of the subplots (Figure 3.13), 

it can be noted the increasing trend of the dimensions by either manual means or 

estimated through the proposed vision-based method. This reflects that the model can 

capture and estimate the growth rates of each plant individually during the experimental 

setup. This analysis is performed with the purpose to validate the method’s results, its 

estimations, and compare the trends to visualize opportunities regarding the accuracy 

of the model based on each of the views obtained during the experiment.  

Using Equation 3.13, Table 3.3 presents the average growth rate of each one of the 

plants depending on the view selected. For the selected crop, reported growth rates in 

literature are around 21% on average [67]. 

a)

=) 

b) 

Figure 3.13 Manual vs. image estimations: a) Plant 1; b) Plant 2; c) Plant 3 

c) 
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Table 3.3 Estimated average growth rate per plant 

Table 3. Estimated average growth rate per plant. 

 

Plant Side View Top View 

Plant 1 18.17 % 18.09 % 

Plant 2 16.21 % 16.31 % 

Plant 3 21.06 % 19.93 % 

Then, for each view, Figure 3.14 shows the detected size (in area) of each plant as it 

grows over time. The growth rate may then be visualized and differences in growth 

between them can be spotted. Furthermore, a fitting model (continuous line in Figure 

3.14) can recreate the growth rate of the selected crop as a function of time. This line is 

obtained by minimizing the mean square error, degree 2, as shown in Equation 3.16.  

𝑀𝑆𝐸 =  
1

𝑛
∑|𝑝(𝑥𝑗 − 𝑦𝑗)|

2
𝑘

𝑗=0

 Equation 3.16 

A polynomial fit of n = 4 is then obtained from the data collected and presented in this 

study. The obtained coefficients that model crop growth following a polynomial 

equation, as shown in Equation 3.17 are listed in Table 3.4. 

Figure 3.14 Growth rate results and fitting trends: a) side view; b) top view 
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𝑝(x) =  𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 + ⋯ + 𝑝𝑛𝑥 + 𝑝𝑛+1 Equation 3.17 

Table 3.4 List of the obtained polynomial coefficients. 

 Coefficient Value 

𝒑𝟏 +3.23 e+00 

𝒑𝟐 -1.03 e+02 

𝒑𝟑 +1.10 e+03 

𝒑𝟒 -3.00 e+03 

𝒑𝟓 +7.52 e+03 

3.4.2. Fresh weight 

A database is constructed as a base for the fresh weight model. The database consists 

in seven parameters in total: height, depth, width, side area, top area, volume, and 

weight. The first five are obtained from the feature’s extraction process explained in 

Section 3.3.2.2 and listed in Table 3.1. The volume is calculated from the height, depth, 

and width. The final parameter (reference weight) will serve as the prediction output. 

An exploratory data analysis (EDA) is initially performed to visualize the data 

distribution and decide the best approach to obtain a prediction model. Based on Figure 

3.15 a linear regression approach is then decided for the weight prediction model for 

Figure 3.15 Correlation heat map for weight prediction. 
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further steps, as most independent variables have a quasi-linear relationship with the 

objective variable, the plant’s weight. 

The linear regression equation for the model is shown next in Equation 3.18, where 𝛽 

represents the coefficients from the models and X the independent variables. 

𝑌 =  𝛽0 + 𝛽1X 2 + ⋯ + 𝛽𝑛X 𝑛 Equation 3.18 

A correlation matrix is then calculated and shown as a heat map to identify the R-

squared (R2) measure of the parameters. R2 is a statistical measure that represents the 

proportion of the variance for a dependent variable, the weight in this case, by each one 

of the other independent variables, and is shown in Figure 3.16 as a heat map. 

For the construction of the linear model, the first step is to divide our data between 

inputs, ‘X’, and output, ‘y’. By empirically selecting different sets of inputs, the 

regression analysis provides estimates for the output parameter, which is later compared 

to the real results. As a starting point, aiming to simplify the model while maintaining 

good prediction accuracy, the model is estimated excluding one by one those 

parameters with smaller R2 values. 

Figure 3.16 Correlation heat map for weight prediction. 
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The model is constructed using the scikit-learn library in a Python environment. The 

provided data is split into training and validation sets in a 70%-30% proportion. Table 

3.5 lists the different RMSE achieved with the simplification of the model dropping 

different parameters based in the results shown in Figure 3.16. 

Table 3.5 RMSE with different Criterions. 

 Criterion RMSE 

All Parameters .52 g 

All except Depth .54 g 

All except Width .66 g 

All except Volume .42 g 

Since our loss function (RMSE) needs to be minimized, the model obtained by using 

all the parameters except ‘Volume’ is selected. Other combinations of input parameters 

were tested, in addition to the ones presented in Table 3.5; however, those models 

obtained worse RMSE and therefore are not presented. For the selected model, the 

coefficients calculated are shown in Table 3.6. 

Table 3.6 Linear regression Coefficients 

 Coefficient Value 

β 1 Height - 0.000859 

β 2 Depth +0.001044 

β 3 Width +0.005135 

β 4 Side Area -0.000007 

β 5 Top Area +0.000042 

β 0 Intercept +0.246012 

The results of the model using the coefficient values are then evaluated versus the true 

values to visualize the result of the predictions. These results are shown in Figure 3.17 

as scatter points with a regression line as a reference.  
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3.5. Discussion and future work 

Analyzing the dimensions plotted in Figure 3.13, some important differences can be 

visualized in the latter stage of growth of crops. After reviewing the plant’s masks, it is 

noted that in certain images, the plants went out of the range of the cameras, leading to 

some dimension miscalculations with this specific dataset. This problem is produced 

by the proximity of the cameras in the presented experimental setup shown in Figure 

3.4. This has been already corrected for further experimentations and expected 

maximum size of the selected crops should be considered when installing the cameras. 

Another interesting point are the occlusions that are noted when plants achieve a big 

enough size to be in touch with each other. Since one of the purposes of this work is to 

evaluate the model with occlusions (realistic multi-instance scenario), this point is also 

validated successfully. However, occlusion may confuse the segmentation process and 

extra error is added to the growth rate and weight estimations in this case. For the 

presented study, an extra 10% error approximately is introduced by occlusion when 

comparing the results of plants 1 and 2 (with occlusion) against plant 3. Nevertheless, 

due to the size of the NFT channel selected for this study, this error will be considerably 

Figure 3.17 Predicted values vs. true values. 
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reduced when moving to realistic setups where space between plants is increased to 

accommodate plant size. Anyhow, the effect of occlusion and potential solutions for it 

will be investigated further to try to minimize its impact on the proposed key 

performance metrics. With the vision-based framework and the two proposed models 

in this study to calculate crop performance metrics (growth rate and fresh weight 

estimation) that are designed to work as an online evaluation tool, the existent lack of 

tools that promote the implementation of smart applications in aquaponics can be 

covered. 

3.6. Conclusion  

Computer vision systems’ interest in food grading has been increasing and adopted due 

to the non-destructive and contactless features of the process. An aquaponic system, on 

the other hand, is a farming method that combines recirculating aquaculture system for 

the farming of fishes and soilless hydroponics agriculture, promising to be one of the 

answers for the food and sustainability crisis. In this study, a solid tool to predict and 

calculate two key performance metrics in aquaponics is presented and validated in this 

paper. The growth of plants is estimated within 30 mm of error for both length and 

width, and fresh weight is estimated within less than 0.5 g of error. 

The proposed method proves to be accurate and flexible enough to be used in real 

scenarios and is not limited to one instance segmentation or manual methods that can 

be disturbed by potential changing conditions of the environment. The methods 

presented offer the opportunity to rely on smart algorithms that can be constantly 

improved using dynamic data and implemented in online systems reducing the 

feedback time loop. This contribution will help and promote the introduction of new 

implementations, such as research for complex relationships between optimal 

parameters, detection of illnesses using computer vision, or adjustable autonomous 
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farms that could lead in a short time to precision farming in aquaponics. Achieving the 

concept of precision farming in aquaponics will help in the development of the 

commercial implementations and the widespread of this technology around the globe, 

impacting the food scarcity and lack of green and sustainable resources in these difficult 

times. 

Chapter 4 Wireless Sensing Module for IoT 

Aquaponics 

In this chapter, a wireless sensing module (WSM) is designed and implemented in an 

aquaponics grow bed to gather information about six different parameters related to the 

water quality and air condition. Then, a framework to store the data and interact with 

the online performance metrics built in Chapter 3 is presented to promote future 

applications of smart algorithms and prediction tools. The construction and successful 

deployment of this work will promote the building of solid models to monitor and 

predict the behavior of aquaponics systems with less human intervention and lead to 

the adoption of smart technologies for optimal parameters autoregulation and precision 

farming.  

4.1. Literature review 

Research efforts have been made towards the development of monitoring systems and 

posterior visualization of relevant aquaponic parameters, but only a few of them are 

aiming at modeling each parameter interaction and thinking of future autonomous smart 

implementations. Nagayo et al. implemented a GSM Arduino-based monitoring and 

control system capable of sending alert messages to the users when certain 

measurements reach dangerous levels, such as temperature, relative humidity, light, pH, 
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water level, DO, EC, TDS, and salinity. A graphical user interface (GUI) was then 

designed to display the information and the generated data could be extracted from the 

system using NI LabView [49]. Odema et al. created an IoT-based aquaponics system 

that allows remote monitoring and control of the sensed parameters such as EC, 

temperature, humidity, pH, and DO. The authors used a Modbus TCP standard protocol 

to pull measurement data from the sensing nodes of a supervisory computer [22]. 

Vernandhes et al. used an Arduino connected to a web server through an Ethernet 

Shield. A GUI was then created for real-time monitoring and control, enabling users to 

remotely switch on or off the exhaust, pumps, and mist makers [53]. Wang et al. utilized 

an Arduino and a WRTnod with a sensor acquisition module. The module contained 

different sensors to provide real-time data on temperature, humidity, light, water level, 

and DO in an aquaponic system. The data was sent wirelessly to the control and 

management system, which stored the data, processed it, and sent it to the server. 

Finally, the user could analyze the data and make data-driven decisions to control each 

aquaponic component [43].  

Even though these contributions have been useful and contribute to the enhancement of 

aquaponics, remote monitoring, and control of system parameters are not enough 

anymore. The construction of smart decision-support models capable of predicting and 

correlating parameters will exponentially increase the adoption of aquaponics, by 

reducing costs and increase the overall flexibility. To build algorithms and predictive 

models for aquaponic systems, the availability and robustness of the acquired data are 

key to obtain accurate representations of the system itself. Since its inception and to 

become a database for prediction and control tools, data needs to be well-structured and 

defined.  
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In the following sections the development of a wireless module that promote 

Aquaponics IoT will be approached, the module development, working framework, 

experimentations, and results are presented next. 

4.2. Module development and experimentation 

A wireless sensing module (WSM) is fabricated to sense six different parameters: pH, 

electroconductivity (EC), water temperature, air humidity, air temperature, and light 

intensity using an Arduino as the controller. This module sends the data wirelessly to a 

database locally stored in the main controller (Raspberry Pi). The main controller and 

the Arduino can communicate through an access point using a Wi-Fi module installed 

in the Arduino controller. The main controller is running a parallel process capable of 

estimating the growth rate and predict the fresh weight of the crops from pictures of the 

current state of the grow bed using two different cameras [91] and store these 

performance metrics along the sensed values received. In addition to that, the database 

is uploading to the server all the pictures obtained from the aquaponic environment. 

Figure 4.1 shows the process just introduced. The components for the construction of 

the module are listed next.  

 1 Arduino UNO USB Microcontroller 

 1 Liquid PH Value Detection Sensor 

 1 Analog Electrical Conductivity Sensor 

 1 DS18B20 Water Temperature Sensor 

 1 DHT22 Air Temperature and Humidity Sensor 

 1 LDR Sensor 

 1 ESP8266 Wireless Sensor 

 1 2- Channel Relay Module 
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 For the construction of the wireless sensing module, first, the six sensors are connected 

to the Arduino as needed. In some cases, transistors or resistors are required by the 

sensor manufacturers. Two of the sensors (EC and pH) use individual modules with 

BNC connectors. These two sensors need specific calibrations with different solutions 

and mathematical relations. For this type of sensors and to avoid noisy readings by 

aliasing, a 2-channel relay is then installed to power the sensors at different times and 

execute the readings asynchronously. The Wi-Fi module is installed in the Arduino 

using the serial ports. Figure 4.2 shows the main connections required for the WSM 

using the components just listed. 

Second, the sensors are physically placed in the grow beds of the aquaponic system, 

namely on the hydroponic component. Further work will include the placement of 

different sensors in the fish tanks and biofilters of the Aquaponics environment. To 

place these sensors some fixtures and bases were 3D printed to be attached to the NFT 

channel as shown in Figure 4.3.

Figure 4.1 Process schematics of WSM construction and working principle 
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4.3. Results 

The WSM is designed to extract data in real-time and serve as a feeding process for 

smart algorithms as a well-studied, balanced, and designed database. Herein the 

importance of the module to communicate wirelessly, supporting the commercial 

scaling deployment with the ability to link several modules installed at different 

locations and send the data to a main controller, following the distributed control 

systems (DCS) in automation [92].  

The WSM is tested for a 14-day lapse in an experimental setup with an NFT channel 

as the hydroponics component of the process. There, Little Gem Romaine Lettuce is 

the crop selected for this study. The database is constructed following the process 

Figure 4.3 WSM experimental setup. 

Figure 4.2 Connection Schematics 
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described and showed in Figure 4.1 and the setup to grow the crops and the explanation 

of the components is detailed in a previous work [91].  

To start the process, the Arduino controller in the WSM starts to retrieve the values 

from the sensors and send them as unique values through the Wi-Fi antenna to the main 

controller every five minutes. This main controller is responsible of execute the parallel 

actions that refer to the evaluation of the growth rate and fresh weight estimation. Once 

these sensed values are received, the main controller formatted and insert them in a 

MySQL database at the local level using PHP. Next, the database is uploaded to the 

server and displayed through PHP. Figure 4.4 shows an image from the database 

displayed in the server. The database can be accessed through an IP address and is 

formatted to display a unique ID and a timestamp value to identify the correspondence 

with external processes. Each of the sensing measurements are displayed with the 

correct labels in columns such as light, temperature, air humidity, water temperature, 

water pH and water EC. Figure 4.5, on the other hand shows the values recorded for 3 

days during the experimentation part displayed in continuous measurement plots.  

 

     Figure 4.4 Example of database entries 
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At this point, the database is fully accessible and can be used for a variety of basic 

implementations such as remote monitoring or trending visualization. The next step in 

the process and which makes this setup more valuable is the linking in real-time of the 

sensed values database with the outputs from the parallel process that estimates the 

growth rate and the fresh weight of the crops. The main processor then, link the tables 

based in the time where the records were measured and establish the final database with 

sensed values (light, air temperature, air humidity, water temperature, water pH and 

EC) and the parameters extracted from the images of the plants that are shown in Figure 

4.6. This final database is then a complete scenario of the status of the system and will 

be used in future work to deploy and predict parameter relationships and optimal levels.  

Figure 4.5 Example of time series of database records 

Figure 4.6 Extracted parameters  
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4.4. Conclusion 

At this point, due to the available resources and the limitations from internal regulations 

about animal experimentations the sensors were just located in the hydroponic 

component. Future work will include sensors in the aquaculture tank such as dissolved 

oxygen, ammonia, nitrites and nitrates, salinity, dissolved solids among others. 

The main contribution of this method proposed is the ability to link online 

measurements (regular monitoring systems) to real time performance metrics. In this 

case, the values from the sensors (which reflects the current state of the systems) are 

linked to the performance of the plants in terms of growing rate and fresh weight, 

opening the possibilities to perform further analysis about correlations between optimal 

parameters. Here, the feedback loop time can be reduced and the control systems in 

place can be adjusted with live data to improve the output of the process. Further work 

can include the calibration of sensors to work with less error due signal disturbance 

[77]. 

Also, the high flexibility of this system offers the opportunity to adopt it at a 

commercial scale since it is not limited to standalone execution and it communicates 

with a central controller that processes the data and can receive information from 

multiple locations. 

Chapter 5 A digital twin framework for grow beds 

in aquaponics systems 

This chapter proposes a digital twinning process of the grow bed (hydroponics 

component) of an aquaponic system. The main objective of the presented research is to 

create a virtual platform in which aquaponic practitioners can visualize the results 
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obtained through sensors and smart systems in real-time. For example, an interface is 

proposed to showcase the individual growth rate and fresh weight of crops estimated 

using an online tool based on image processing and deep learning segmentation 

described in Chapter 2. Also, system parameters such as pH, electroconductivity, water 

temperature, relative humidity, environment temperature, and light intensity are 

recorded and linked to the performance metrics. From there, a database is created to 

serve as a base for the implementation of smart algorithms that relate performance 

metrics versus parameters to achieve optimal parameters. Finally, an exploratory 

analysis of the information is presented as an intuitive approach of the behavior of 

system. 

5.1. Literature review 

Recently, valuable contributions have been made for mobile/computer devices to 

monitor parameters [39], [93]–[97], remote applications to monitor and control outputs 

[22], [98]–[102], wireless networks and sensors [103] and smart implementations 

[104], [105]. However, to integrate all the considered inputs and smart systems, a 

complex model is needed that enables users to intuitively make use of the available 

systems. On top of that, a simulated scenario for aquaponics will benefit a deeper 

understanding of the correlations between parameters, thus, leading to optimization and 

increased control over the system. In the author opinion, developing a digital twin 

would support this research effort. 

Digital twins (DTs) are commonly composed of three components: physical entity, 

virtual representation and the communication channels between them [106]. DTs are 

typically adopted to improve the performance of physical entities by leveraging 

computational power and techniques and using a virtual counterpart [107]. The origin 

of DTs is attributed to Michael Grieves and the work developed with John Vickers of 
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NASA in 2003 [108]. The initial conception intended to provide the foundations for 

product life-cycle management for situations where the possibility of gathering data 

was scarce, manually performed, and/or limited by the available resources [109], with 

the potential risk of, eventually, putting the concept in standby. The rise and interest in 

digital twins nowadays is mainly attributed to the advances in the technologies around 

the Industry 4.0 era, such as internet-of-things (IoT), big data, real-time sensors, and 

big data management and processing techniques [110].  

A representation of the basic principles behind a digital twin is displayed in Figure 5.1. 

Jones et al. did a highly valuable work characterizing the digital twin concept through 

a literature review, facing the reality where the ideas around digital twin were diverse 

and did not converge mainly due the disorganized rapid growing of the applications, 

limiting the nourishment of the area and the maturation of the concept [111]. As of 

today, a better and clearer understanding about the components of a DT and their 

interrelationships are considered, and the expected impact of future research will be 

higher and in a broad range of industrial applications. The adoption of a digital twin is 

a valuable tool for the optimization of the process and labor reduction because it 

promotes the implementation of models for prediction, optimization, and the use of 

monitoring interfaces. However, a single contribution that researched to implement the 

concept of digital twins in aquaponic systems can be found in the literature authored by 

Ahmed et al. [112]. Here, a model was constructed to simulate the behavior of the 

system under current monitored conditions (air temperature and humidity, light 

intensity, pH, electroconductivity, water level, water flow, and water temperature). The 

authors modeled some system characteristics such as the fish feed rate, the total 

dissolved solids in water, fish weight gain, the water pH and nitrates, and plant growth. 

The author reported good estimations in most of the predicted models, except for the 
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nitrates and plants growth. The main drawback of their proposed system lies in the lack 

of feedback from the real system in terms of plants growth and rate. This result is 

expected since the changing conditions of the environment and the ‘somehow’ 

changing-adapting behaviors of the living organisms alter their growth conditions 

continuously. 

This chapter proposes a digital twinning process of the grow bed (hydroponics 

component) of an aquaponic system as introduced before, during the next sections the 

work will be explained in detail. 

5.2. Research methodology 

The digital twin framework for aquaponics and the process developed in this paper is 

based on available literature, which takes on consideration theory and review 

publications on digital twins [109], [111], [113], manufacturing processes [114]–[116],  

and farming implementations [117], [118]. Expanding the concept and developing a 

framework for our case of study is work of the authors of this chapter. In the following 

subsections the general concepts of a digital twin implementation and its use to develop 

an aquaponics framework are explained. 

The analysis in this chapter is based in a comprehensive systematic review of the 

literature about digital twins. The objective of this research is to propose a framework 

of digital twinning that can be generally applied to aquaponic systems. For this purpose, 

qualitative methods are used, in this case, systematic approach and experimentation. 

The systematic analysis is based on a qualitative analysis of selected journals and 

Figure 5.1 Digital Twin Schematic 
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conferences that infers the framework proposed. The experimentation design and setup 

are done using the CropKing® NFT Desktop System. In this sense, the plants are grown 

for 15 days and the vegetable selected was Little Gem Romaine Lettuce. Specific details 

about the experimentation procedure are defined in section 5.3.2. 

This research methodology is organized as follows: first, the generic framework of a 

digital twin is introduced in section 5.2.1 based on the systematic review; next, section 

5.2.2 report on the proposed framework for aquaponics; then, section 5.3 encompasses 

the case of study, experimental setup, and components used for this research; and, 

lastly, the results obtained as proof of concept are presented and discussed.  

5.2.1. Digital twin framework 

The generic methodology for the construction of a digital twin framework and its 

application is based in Figure 5.2, which displays the schematics of the relationship 

between the digital twin components [111]. A twinning process is based on the virtual 

to physical and physical to virtual relationships in which identical scenarios are 

presented in both environments. The main concepts and processes needed for a digital 

twin are presented below.  

Figure 5.2 Components understanding schematics, after [111] 
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The concept of physical and virtual entity refers to a specific real object, product, 

machine, or process and its virtual counterpart. Expanding the concept, the word 

environment is introduced for both cases (i.e. physical environment and virtual 

environment) that refers to the whole system and the internal relationships; not just 

limited to the level interactions (physical to virtual and virtual to physical).  

The parameters are another key component of a digital twin system and it refers to the 

type of data and information of the processes that is passed between the physical and 

virtual environments. Fidelity and state are two attributes that describe the 

characteristics of the selected parameters. Fidelity describes the value and accuracy of 

each parameter while State describes its current condition.  

The other two important components are the physical-to-virtual connection and the 

virtual-to-physical connection. In these connections lie the main differentiators of 

digital twins compared to other virtualization processes, i.e. simulation models. 

Physical-to-virtual connection is the communication and virtualization process: how 

the state of the physical entity or environment is transferred to the virtual parameters 

such as interfaces, graphs, databases, and so forth. There are two phases in this 

connection type, the metrology and realization. Metrology refers to the method in which 

the parameters are captured (i.e. sensors) and sent to the virtual component, and 

realization refers to the virtualization approach used to update and execute accordingly 

regarding the parameter inputs. The continuous mode in how this connection is 

established is what makes this process an online interaction. The virtual-to-physical 

connection represents the flow of information that goes from the virtual side to the 

physical part. This information or analysis output enables the functionality in the 

physical system to adjust or change its processes, for example, to improve its 

performance. This connection is identical to its physical-to-virtual counterpart, with 
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similar actions (metrology and realization) as aforementioned. In Jones’ opinion, this 

is the valuable paradigm of digital twins since it defines the bidirectional relationship 

between the virtual and the physical twins. However, the official definition of the digital 

twin by the CIRP encyclopedia of production engineering does not include this 

interaction as mandatory, which is also addressed by the same authors [119].  

Physical and virtual processes are the specific activities performed on each of the levels, 

i.e. simulations, modelling, prediction, and optimization of virtual processes or 

manufacturing tasks, along with the control and design of physical processes. Finally, 

the twinning rate defines how the frequency at which the virtual and physical 

environments are synchronized, which leads to consider digital twins as a real-time 

virtualization. In the next subsection, the generic framework just presented is 

implemented for aquaponic systems. Based in the concepts just introduced, these 

general components are defined in an aquaponic framework. 

5.2.2. Aquaponics digital twin framework 

Aquaponics itself is a complex farming method due the symbiotic relationships 

between its components (aquaculture and hydroponics) when compared to the 

components alone. Developing a digital twin framework addresses the need to have a 

better understanding of these relationships and how they can be improved. Following 

the framework aforementioned, the digital twin for aquaponic systems is discussed 

below and summarized in Table 5.1. Here can be seen the how the components (e.g. 

connections, parameters, metrology etc.) in the generic DT framework are related to the 

aquaponics environment and the named hardware, connections, procedures and 

physical entities in aquaponics are listed. 

In an aquaponics system, the physical entity refers to the machine or process where the 

main output of the whole system happens. Fish tanks, where the fish are farmed, and 
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grow beds are the principal entities in the physical side. Virtual entity are those 

representations of the physical ones. As such, 3D modeling software is often used to 

build this objects, machines, or processes in the virtual environment. The physical and 

virtual environments involve all the individual physical components and the virtual 

processes associated to them. For example, the physical environment includes the bio 

filters, pumps, feeders, aerators, humidifiers, sensors, etc. besides the physical entities 

previously mentioned. Then, the virtual environment includes the interface, buttons, 

notifications, graphs, tables, and so forth that establish a virtual dashboard or interface 

that represents the physical environment.  
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Table 5.1 Generic components in Aquaponics Digital Twin framework 

Component Generic Framework Definition Aquaponics Framework 

Physical entity 
Specific real object, product, machine, or process 

physically present. 
Fish tank and Grow bed 

Virtual entity 
Replica of the existing physical entity into the 

virtual world 

3D models or representations of the fish tank and 

grow beds. 

Physical 

environment 

All the physical entities and the relationships 

between them 

Physical entities plus pumps, lights, humidifiers, 

water treatments, sensors, etc. 

Virtual 

environment 

Virtual entities and the tools to display them such 

as graphs, buttons, interfaces, models, etc. 

Interfaces, graphs, tables, buttons, Andon, 

notifications, etc. 

Parameters 

Parameters that define the behaviour of the 

physical system and help the virtual environment 

to perform the mimicking 

Include but not limited to pH, electroconductivity, 

RH, ammonia, nitrites, nitrates, light intensity, etc. 

State 

State of the parameters, can be defined in terms 

of values, levels, stage, etc. Fidelity and state are 

inherent adjectives of the state. 

Commonly values of the parameters and growing 

stage of fished and plants 

Physical-to-

virtual 

connection 

How the data is transferred from the physical to 

the virtual environment 

IoT technologies such wireless modules, SQL, 

programming languages and others. 

Virtual-to-

physical 

connection 

How the data is transferred from the virtual to the 

physical environment 

Depends in the type of physical and virtual 

controller, i.e. RsLinx for ABB controller, for 

Siemens. 

Metrology 
Measuring the state of the parameters in either of 

the physical or virtual environments. 

Sensors, cameras, etc. for PVc. Evaluation tools, 

mathematical models and other for VPc. 

Realization 

The actions that the correspondent environment 

take to adjust/change based on the metrology 

input. 

Database constructions, building of graphs, 

notifications, etc. in the PVc. Hardware control, 

change in levels in the VPc. 

Physical 

processes 
Process executed in the physical environment. Seedling, harvesting, feeding, water treatments, etc. 

Virtual 

processes 
Processes executed in the virtual environment. 

Smart prediction models, data tracking and 

recording, levels adjustments, etc. 

Twinning rate 
Rate at which the interaction between 

environments is performed. 

Commonly ‘real-time’, in noncritical processes 

defined lapse times such as 5 min, 30 min. 
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Parameters are an important component in any digital twinning process and extremely 

relevant to virtualize and simulate an aquaponic system. Several parameters are defined 

in aquaponics: pH, water and air temperatures, water level, dissolved oxygen, electro-

conductivity, total dissolved solids, salinity, total ammonia-nitrogen, nitrites, nitrates, 

flow, relative humidity, light intensity, among others. In some cases, more complex 

depending parameters obtained from the physical side can be included as parameters, 

for example, fish age, plant’s growth, or remaining available resources. Those 

parameters monitor the performance of the system in a more comprehensive fashion. 

Physical-to-virtual and virtual-to-physical connections are mostly generic in digital 

Twin and depend more on the controllers and interfaces adopted rather than the 

aquaponics application itself. On the one hand, generic tools used in the physical-to-

virtual connection can vary from industrial protocols and applications developed by 

hardware and software companies to open source developments. For example, SQL, 

MySQL, or PHP are highly used for the transfer and storage of the data acquired, to 

build procedures, and control internal processes. Additionally, several IoT technologies 

are now available to build robust connections, e.g. wireless modules [39]. On the other 

hand the virtual-to-physical connection is mostly limited by the specific components 

chosen in the physical and virtual side, although in a few occasions, connections may 

be built using open source communication protocols at the risk of having cybersecurity 

issues. 

Additionally, the dependence of communication protocols and physical devices 

increases when considering the incompatibility of physical devices and certain software 

or communication protocols. For example, taking the commercial controllers from the 

ABB Company (Allen Bradley PLC’s), the communication system will solely rely on 

RsLinx, which is the communication protocol from the company that allow their PLC 
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to send and receive information and be controlled remotely. The initial selection of the 

physical system brand determines the protocols and software that will be used to 

generate the digital twin. 

Part of it can be avoided if the use of micro-controllers is implemented to control the 

physical environment. The development of the connection tools is easier since they are 

mostly open source and are available for the use with Raspberry Pi, Arduino, and other 

open-source controllers. Herein, the software or programming language that is used to 

build the interface is the main factor for the resources available, in which each case is 

different.  

Finally, aquaponics metrology is often constructed through a series of sensors for the 

parameters, cameras, mathematical, and smart models installed in the grow beds and 

fish tanks. Realization refers to the reactive effect of the metrology part and makes use 

of the controller used and the metrology applied, while the twinning rate defines the 

heartbeat of the system. To display sensor results, asynchronous updating of its values 

occurs every second , however, if more complex processes are developed, such as 

prediction tools or optimal parameters adjustments, elapsed times around 5 minutes is 

a good option [22] . As aquaponic systems are slow dynamical processes, changes occur 

in the long term, enabling long synchronization of the digital twin and easing the 

introduction of complex and tedious tasks. 

5.3. Aquaponics digital twin 

5.3.1. Case of study 

A case of study is developed to prove the concept of digital twin in aquaponics. The 

scope of the experimentation is limited to applying the concept in the hydroponics 

(grow beds) component of the aquaponics environment. For our case of study, Figure 
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5.3 illustrates the specific aquaponic components using the framework provided in the 

previous section. 

Physical entity refers to the grow beds and the virtual entity to the built model that 

mimics it. The physical environment are all the components listed in the subsection 3.2 

and the virtual environment are the virtual entity, information displayed, and the 

graphical user interface (GUI). The parameters are the sensor measurements. The 

values of the components are considered the state of the parameters.  

The physical-virtual connection is achieved using a wireless sensing module, php, 

MySQL and the connection from visual studio to the database in the network. Here, the 

metrology is the action of sensing the parameters and the realization in the physical 

system corresponds to the database construction with the process of gathering and 

analyzed the raw data. The virtual-physical connection is executed using the IoT Core 

module and Visual Studio to control the outputs in the main controller. The metrology 

stage in this connection mode refers to the growth rate and fresh weight estimation 

Figure 5.3 Aquaponics Digital Twin framework with components 
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using the prediction models and the logical process to evaluate the sensed values against 

the optimal levels. The realization on the other hand in this case is the action to turn on 

or off the outputs depending on the conditions. Physical processes are specifically the 

growing of the plants and the process involved (water flow, humidity, light) and the 

sensing of the parameters. Virtual processes correspond to the execution of the 

prediction process, the logical classification of the levels, and the remote monitoring 

and control of the system. Lastly, the twinning rate is determined by the one second for 

the displaying of the sensors values, five-minute interval between the database records 

and thirty-minutes time-lapse between predictions. 

The project development will be explained following an explanatory process. First, the 

experimental setup will be described along the components installed and experimental 

principles such as frequency and working logic. Secondly, the process to calculate the 

growing rate and fresh weight estimation will be shortly explained. Third, the process 

used to construct the database will be introduced. Fourth, the twinning interface and the 

tools to build it will be presented. Fifth, the feedback loop from the virtual to the 

physical environment will be introduced, and the performed actions will be explained 

in detail. 

5.3.2. Experimental Setup 

A NFT hydroponic grow bed setup is designed and constructed for the experimentation 

part. The frame of the device was assembled using MDF (medium density fiber) board. 

This holds the NFT channel (grow bed) with a water pump and a heater, two cameras 

(one at the side and other one at the top of the grow bed), artificial growing lights, a 

camera ring light (to provide consistent light to the cameras), and a humidifier. As for 

the sensors introduced in the system, pH, electroconductivity, water temperature, air 
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humidity, air temperature, and luminosity are used. For the main controller, a Raspberry 

Pi is selected, while an Arduino Nano is employed as the sensing unit. 

To the Raspberry Pi, two cameras are connected and work with scheduled scripts that 

take pictures every 30 minutes from 6:00 am to 6:00 pm. The growing lights, the camera 

ring and the humidifier are connected to the 4-channel relay module which is triggered 

by outputs from the main controller. For the sensor modules, all of them are installed 

in an Arduino Nano with the corresponding configurations. The pH and electro 

conductivity sensors are connected to a 2-channel relay module to avoid measuring 

problems. Also, an ESP8266 Wi-Fi Sensor is installed in the Arduino, allowing the data 

to be transmitted wirelessly to the main controller (Raspberry Pi) and to the twining 

interface for real time sensor values display. 

5.3.3. Growth rate and fresh weight estimation 

The estimation of the grow rate and fresh weight of the leafy crops is done through a 

smart implementation using a predictive model for the localization and multi-instance 

segmentation of the plants. The model was constructed using the MASK-RCNN 

framework proposed by He et al. and the online repository by Waleed Abdulla[90]. The 

images acquired by the experimental setup are first conditioned to avoid radial and 

tangential distortion [88] and then the images are segmented using MASK-RCNN. 

From the prediction model, a script routine is created using Python to extract the 

parameters of interest which are listed in Table 3.1. 

With these parameters the overall height, width and depth are calculated to derive the 

growing rate of the plants. A linear regression model is then created to describe the 

fresh weight of the plants, which is validated using experimental results. The fresh 
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weight model is presented in Equation 3.18 with the values of linear regression 

coefficients in Table 3.6.  

The whole model validation and explanation can be found in Chapter 3. 

5.3.4. Database construction 

Building the database is a key step towards the construction of this digital twin model 

and future uses of the model in knowledge discovery in databases (KDD) techniques. 

Regarding the digital twinning process, the mechanisms to send and receive 

information, the fidelity and accuracy of the information, and the twining rate are 

defined in this step. As per the experimental setup, six sensors are used to monitor the 

current state of the system: pH, electro conductivity, water temperature, relative 

humidity, air temperature, and light intensity. To ensure the future deployment of the 

system at larger scale, the sensing module is designed as an external device to the main 

controller, therefore an Arduino Nano is implemented for this task. The limitation about 

connectivity of the Arduino Nano is overcome using an ESP8266 wireless sensor that 

allows the controller to send data wirelessly to the main controller, a Raspberry Pi. 

The IoT sensing module processes the values from the different sensors and sends the 

information through a digital access point to the Raspberry Pi every five minutes. The 

main controller formats and inserts the values in a MySQL database at the local level 

using PHP. During this process, a host computer executes a parallel process using the 

growth rate and fresh weight models and sends the obtained results to the main database 

every 30 minutes, synchronously with the other records. Figure 5.4 shows the model of 

the relational database designed with the tables and relationships used. In this figure 
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can be seen the columns of each of the tables (i.e. sensors_records, masked_results, 

acc_masked_records and variables) and how they are related to each other.  

In summary, a database that describes the current state of the system is available and 

can be accessed through an IP address from any point in the network.  As such, this 

allows the communication between any devices in the network anytime. Further details 

are also described in a previous work [120]. Figure 5.5 displays the IoT sensing module 

interaction process.  

 

Figure 5.4 Model of the relational database implemented  

 

Figure 5.5 Wireless Sensing Module process for database construction 
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5.3.5. Twinning interface 

One of the main benefits of digital twins is its ability to close the gap between the user 

and the digital process. This can be achieved by giving them a clear understanding about 

the state of the digital process and the internal activities performed [62]. Introducing a 

visualization tool in the digital twin process removes the idea of a ‘digital black box’, 

giving them total control and supervision of the system at the physical and virtual levels. 

The twinning interface concept describes the virtual graphical display of the system.  

The graphical interface is designed using Visual Studio and it is directly connected to 

the database to retrieve the information it needs for displaying. Also, a direct connection 

to the IoT sensing module is done via serial communication, allowing to retrieve real-

time sensed values every second. Six different windows are designed to offer the user 

organized and appropriate requested information, as shown in Figure 5.6, the different 

windows are ‘Home’, ‘Sensors Tracking’, ‘Database’, ‘Imaging’, ‘Predictions’ and 

‘About’. 

In the ‘Home’ window Figure 5.6(a), a replica of the physical entity (NFT channel) is 

designed and acts as the main component of this interface. Interactive and resizable 

reproductions of the plants are modeled and the current size of the crops in the physical 

side at real time are mimicked in the virtual environment. Information about the growth 

rate and weight of each of the plant is displayed. For the plant’s growth, a decision 

model is built to categorize the actual size of the plant and assign a stage from 1 to 12. 

This categorization is made calculating the growth area along the 15 days from previous 

runs, averaging them and dividing evenly throughout the 12 stages, thus every stage 

corresponds to an area interval (i.e. stage 1: 0 cm2 to 1 cm2). Based on this level, the 

scalable digital model that represents the plant current growth status is displayed to the 

user.  
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Figure 5.6 Digital twin interface:  a) ‘Home’ window; b) ‘Sensors Tracking’ window; c) 

‘Database’ window; d) ‘Imaging’ window; e) ‘Predictions’ window; f) ‘About’ window. 
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Window Figure 5.6(b) is named ‘Sensors Tracking’, where tracking graphs for each 

sensor are displayed with the historical values of the sensors and is updated every 5 

minutes synchronously with the ‘sensors-records’ table. Figure 5.6 (c), the ‘Database’ 

window is where the all the entries of the ‘sensors-records’ are displayed.  

Window Figure 5.6 (d), ‘Imaging’ gives the user the opportunity to visualize the 

segmentation output of the masked leafy vegetables, as seen in Figure 4, and to identify 

potential problems in the image processing results. As explained before, top and side 

pictures are taken of the plants every 30 minutes, with the purpose of extracting 

information about the state of the plants (Table 3.1). Once a new set of pictures is 

available, a Python script is executed to run a prediction model to identify the plants 

location and extract the features of each of them using instance segmentation. At this 

point the digital interface connects to a specific folder and retrieves the masked images 

to show them into the window ‘Masked images’ to the user. The features from the plants 

are saved into a MySQL table named ‘masked-results’. A structured procedure is 

designed into MySQL to be triggered by the insertion of a new value in this ‘masked-

results’ table, therefore, it constantly calculates the average of the areas, height, width 

and depth features grouping by view, instance and date. This data is saved in a new 

table named ‘accumulative-masked-records’. 

Window Figure 5.6 (e), the ‘Predictions’ window is where the predictive models used 

show their results. This window displays through graphs at the record level the side and 

top area of each of the plants and the daily calculations automatically made by the 

MySQL procedure.  

The digital interface by itself calculates the growing rate based in the change in the area 

of the plant and the fresh weight of the plants using the values in named ‘accumulative-
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masked-records’ and the logistic linear model shown in Equation 3.18 and Table 3.6. 

Lastly Figure 5.6 (f) displays information about the working principle of the interface.  

All the windows share a lower banner that displays the current values of the sensors 

that are retrieved directly from the sensing module every second. A logical procedure 

is then developed to showcase the status of the grow bed at that moment. On the other 

hand, this parameter’s values are saved every five minutes directly by the main 

controller  (Raspberry Pi) into a MySQL table in the network called ‘sensors-records’. 

After this evaluation, a three-color code similar to ‘traffic lights’ displays the current 

status when compared to predetermined correct ranges. For each parameter, the color 

chosen is assigned as green if the value is between the acceptable levels, yellow if it 

ends near the maximum or minimum (15 % from the limits), and red if the value is not 

conforming, displaying to the user not only the value but also the meaning of the read 

measurements in terms of performance and adequate grow environment for the plants. 

A summary of those parameter ranges is presented in Table 5.2 from [121]. Figure 5.7 

shows the communication 

Table 5.2 Optimal parameters for experimentation 

 Parameters Aquaponic 

pH 6.5-7.0 

Electro-Conductivity 100-2000 µSiemens/cm 

Water T 17°C -30°C 

Relative Humidity 50 % - 80 % 

Air Temperature 22°C -30°C 

Light intensity > 450 lux 
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5.3.6. Feedback loop 

Feedback loop refers to the virtual-physical connection and the way the virtual 

environment sends an action to be executed in the physical environment. This is 

possible using the IoT Core connection in Visual Studio. For this case study, simple 

orders for the feedback loop are designed to prove the concept: the main controller in 

the physical system is prepared with scripts to turn on and off the system growing lights, 

humidifiers, and ring lights for the cameras as requested.  

After the twinning model retrieves the sensor information and evaluates if the levels in 

humidity or light intensity are in the correct range of values, it automatically sends a 

request to the Raspberry Pi to turn on, off, or adjust the specific device to reach adequate 

values. Also, this action can be performed manually by a set of buttons in the interface. 

All of the automatic decisions and changes made by the digital twin are logged and 

notified to the operator of the system via e-mail. Figure 5.8 illustrates this working 

principle.  

Figure 5.7 Communication of the interface, MySQL and physical component. 
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5.4. Results  

5.4.1. Feedback control 

Through the continuous analysis and monitoring of the data, it is possible to get a better 

understanding of the growing behavior of the plants. The presented system proves to 

be reliable at identifying trends and linking parameters of the environment to two design 

performance metrics, which is the initial step towards complex implementations. The 

research community and the aquaponics/hydroponics practitioners will highly benefit 

from this contribution. Figure 5.9 displays the growing behavior of the three different 

plants throughout the whole growth process and in a daily basis. From the figure can 

be note how the pixels area retrieved from the calculations is increasing in each of the 

instances either in the top view and side view, denoting the ability of the system to 

successfully monitor the growing behavior through the proposed DT proposed system. 

Furthermore, the daily calculation gives a better understanding averaging the area 

increment during the day giving to the operator the ability to easily understand the data. 

With this implementation, the user is constantly aware of the status of the sensors and, 

consequently, the plants, and can turn on-off system actuators at will, such as lights and 

humidifiers. Furthermore, live data can be analyzed almost instantaneously with the use 

of KDD algorithms that for example allow the system to estimate the growth rate of the 

plants and predict their weight. As such, a complete understanding of the process can 

Figure 5.8 Feedback loop process 
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be presented with not only status of the parameters but also the incidence of them in the 

outputs (performance metrics). 

From the results obtained during the experimentation, it is noted that plant #1 had an 

overall growth rate of 15 %, with a side growth rate of 14.7 % and a top growth rate of 

15.6 %. The average growth rate in the plant #2 is 14.46 %, the side growth rate is 

10.25 % and the top growth rate is 18.67%. For plant #3, the average growth rate is 

23 %, with a side growth rate of 22.73 % and top growth rate of 23.16 %. As observed, 

plants growing under the same conditions theoretically, do grow at different rates. One 

of the limitations of the presented study is that some design and physical aspects of the 

aquaponics system, such as air flow in the system or distance between plants, are not 

included. This limits the potential modeling of the growth rate of the plants based on 

Figure 5.9 Growing process of plants during validation 
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the data obtained using the proposed system. To extend the proposed system to include 

these factors, among others, will be pursued by the authors in the near future. 

Further analysis can be done by comparing, not only the daily growth rates, but the 

daytime growth rates versus the nightly growth rates. In this study, it is found 

notoriously that plants growth faster during the morning/afternoon, with an average 

growth rate of 28 %, while growth is reduced to an average of 16 % during the 

evening/night.  Similarly, analyzing other records from the sensing values during the 

experimentation, it is interesting to find that the pH values of the water are slightly 

higher during the morning with an average of 0.15 difference, with average values of 

6.9 and 7.05 respectively. The opposite effect can be found about the 

electroconductivity, where higher values are consistently found during the nights with 

average of 2500 µSiemens/cm and 2550 µSiemens/cm respectively. Another finding, 

which is more intuitive, is about the relative humidity behaviour: higher values are 

found at night, with values around 15%-20% higher in comparison with the morning 

hours. As such, based on the empirical evidence for the plants studied, different 

resources’ consumption and control strategies might be needed for different hours of 

the day, while keeping the objective of maximizing the growth of the plant at the end 

of the day and throughout the whole growth process.  

Some limitations about this framework and system will be addressed in future work. A 

generic digital twin framework is adapted to the aquaponics technology; however, the 

scope is limited to the resources available: the hydroponics beds. Including the fish tank 

and corresponding systems, namely bio filters, feeding systems, etc., of the aquaponics 

system in future developments is necessary to finalize the complete digital twinning of 

the process. Monitoring the weight of the fish (density in the tanks), assess their health 

and include the inherent associated parameters, such ammonia transformation and 
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dissolved oxygen, will definitely open more possibilities regarding the control and 

optimization of the process. Finally, the digital twin aquaponics framework can be 

validated as a whole in future developments. 

5.5. Conclusions 

Aquaponics is becoming a popular method as a sustainable solution for indoor food 

production. Under the background of ‘Industrial 4.0’, the digital twin technology has 

been widely used as a tool to realize the interaction and interconnection between 

physical and virtual spaces. This paper describes the framework and implementation of 

the digital twin technology for the hydroponic component of an aquaponic system. By 

integrating IoT technology, databases, control strategies, artificial intelligence, and 

visualization tools, the virtual model of the physical system can be created, updated to 

reflect status changes in real-time, and represents a comprehensive reference for 

aquaponic users. 

The presented study showcases the use of the digital twin platform to acquire data in 

real-time, make use of data-driven algorithms to determine growth rate and fresh 

weight, and take informed decisions towards a healthy aquaponic environment. 

Ultimately, it presents a platform towards optimizing crop yield in aquaponic systems. 

The benefit of this paper for research and practitioners is the provision of an integrated 

detailed framework for digital twinning, which is to be enriched to determine optimal 

functionality of aquaponic systems and provide clear performance metrics that support 

commercialization of the aquaponics technology.
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Chapter 6 Conclusion 

6.1. General conclusion 

Aquaponics has become a trending technology for those that are looking to adopt and 

develop sustainable and environmentally friendly food production systems. Its capacity 

to achieve a green transformation of fish aquaculture waste supports the reduction of 

environmental pollution and it’s becoming one of the more promising food production 

systems for the near future, overcoming the environmental problems and food scarcity 

the world is facing. Although aquaponics started to become adopted in several 

countries, the complex relationship between this components (complex management) 

and the limited available crop and fish species suitable for this technology nowadays 

makes difficult its adoption at commercial scale which impacts its availability and 

widespread benefits.   

Along this thesis, the main followed idea is to enhance the use of precision farming in 

aquaponics, to increase the understanding of this technology, and to implement tools 

that reduce the management complexity of the systems, increase understanding of the 

process, ease the monitoring of the parameters and predict their optimal relationship. 

In Chapter 2, a systematic analysis is presented first to explore the state of the art and 

future trends of aquaponics systems, with a special focus on sensing parameters, smart, 

and IoT technologies. The study in this chapter presents the information necessary to 

simplify the decision-making process regarding the setup of sensors and the adoption 

of new technologies, presenting a clear scenario of the research trends in this area in 

aquaponics. This chapter, then, contributes by giving aquaponics experts’ technical 

knowledge about automation, IoT, and smart systems; and automation expert’s 
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knowledge regarding the biological processes happening in aquaponic systems. 

Creating a bridge towards scaled up aquaponics systems will accelerate contributions 

in the area and enable viability in commercial solutions. 

In Chapter 3, following the objectives in the thesis, it is presented the introduction of 

computer visions systems in aquaponics grow beds as a feasible tool due its non-

destructive and contactless features. In this study, a tool to predict and calculate two 

key performance metrics in aquaponics is presented and validated. The growth of plants 

is estimated within 30 mm of error for both length and width, and fresh weight is 

estimated within less than 0.5 g of error. The method proposed proves to be accurate 

and flexible enough to be used in real scenarios and is not limited to one instance 

segmentation or manual image processing techniques that can be easily disturbed by 

the potential changes in the environment where this crops are growth. Through the 

methods used, the possibility to rely on smart algorithms that can be constantly 

improved is presented.  

In Chapter 4, an introduction of aquaponic system that makes use of wireless 

technologies and IoT frameworks is reported. The main contribution that is achieved in 

this chapter is the ability to link online measurements to real-time performance metrics 

as discussed in the chapter 3, opening the possibilities to perform further analysis about 

correlations between optimal parameters. Also, the high flexibility of this system offers 

the opportunity to adopt it at a commercial scale since it is not limited to standalone 

execution and it communicates with a central controller that processes the data and can 

receive information from multiple locations. 

In Chapter 5, the concept of digital twin (DT), as widely studied in other industries such 

as manufacturing, maintenance, or design,  is introduced to the aquaponics technology 
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to leverage its physical system capabilities with the use of digital tools. The study 

presented proposes a DT framework for aquaponics that explains each of its 

components and gives a better understanding about how this process can be used and 

enriched to determine optimal functionality of aquaponic systems and provide clear 

performance metrics that support commercialization of the aquaponics technology. 

Through a case of study, this chapter makes use of data-driven application to determine 

the growth rate and fresh weight of the plants, by retrieving real-time values of 

parameters through a digital interface that, then, takes informed decisions towards a 

healthy aquaponic environment. 

6.2. Research contributions 

The contributions of this research work were clearly described along each chapter and 

are summarized as follows: 

 Bridge the knowledge areas between biological and automation experts with 

aquaponics as a common ground, increasing the mutual understanding and 

promoting interdisciplinary contributions both ways. 

 Two well defined performance metrics developments that use new engineering 

techniques (computer vision, image processing, smart learning algorithms) to 

monitor and predict crop’s behavior. 

 Digital twin framework for aquaponics that supports the implementation of 

digital tools easing the adoption of them by aquaponics practitioners and 

operators. 

6.3. Research limitations 

This research is subject to the following limitations: 
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 Small experimental setup that due its size, brings inherent limitations related to 

the space, crops to grow, and experimental time. 

 Limited budget for the hardware selection such as cameras, sensors and lights 

that limit the capabilities of the experimentation (resolution, robustness). 

 Due to certifications requirements, the aquaculture tanks are not part of the 

experimentation and it was limited to the hydroponics component of the 

process. 

6.4. Future research 

 More experimentation is needed to find reliable results about optimal 

parameters and the relationship between growth rates and sensed values. 

 The introduction of the aquaculture tank will bring the possibility to experiment 

and train algorithms that involve this component. Work towards the whole 

system optimization or quality systems in the fish tank will be approached in 

future studies. 

 The fabrication of a fully automated racking system for the hydroponics 

components is in process.
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