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ABSTRACT

A field comparison of three different methods for
measuring the latent heat flux was conducted in the summer
of 1988. The methods included two variations of the eddy
corralation approach involving sensing the temperature,
humidity and vertical velocity fluctuations of the eddies,
and a Bowen ratio method using instrumentation assembled
for this study. The results of the field season are pro-
vided along with the requisite background theory necessary
to understand both the operating principles of the
instrumentation and the manipulation of data used to
obtain the final results. The evaporation data are used
o astimate the bulk stomatal resistance (canopy resist-
sroe) to transpiration from the local alfalfa canopy, and
thess results are compared to those obtained in similar
studias found in the literature. Conclusions are drawn
about the performance of the three techniques used for
estimating evapotranspiration and the utility of the

data derived from it.
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CHAPTER I
EVAPOTRANSPIRATION THEORY

1.1. Introduction

Evapotranspiration from vegetaéed surfaces may be
measured using a variety of techniques, and the data
gained from such measurements may be analyzed to determine
several micrometeorological variables and their associated
diurnal variation. There are two micro-meteorological
approaches to measuring the vertical water vapour flux.
First, the direct eddy correlation method which requires
sensing the vertical velocity and humidity fluctuations
on an instantaneous basis, and second, profile methods
'which deduce the flux from averaged differences in atmos-
pheric properties between two fixed levels. There are,
in addition, non-meteorological approaches which measure
the moisture loss from the soil using, for example,
lysimeters or neutron moisture meters. There are also
numerous empirical formulae. Many of the methods used
for finding the evapotranspiration can also be used to
determine the energy partition and other variables, such

as "canopy resistance", with appropriate instrumentation



and related theory. The results are of interest to
hydrologists, climatologists, botanists, and agronomists,

among others.

1.2. The Energy Balance

The incoming and outgoing energy fluxes at the
earth's surface must balance if there is to be no net
gain of energy at the surface over time. This assumption
is referred to as the energy balance. Normally, the
largest factor in the balance is the net radiation, Q%*,
which is the net rate of gain or loss of radiative energy
at a surface. The net radiative flux is equal to the
amount cf solar energy incident at the surface (assumed
horizontal) from the sun plus the long-wave (terrestrial)
flux originating from the atmosphere minus the reflected
solar flux and the outgoing terrestrial radiative flux.
By convention, the flux is defined as positive when the
incoming energy exceeds the outgoing energy.

Part of the radiative energy surplus is trans-
ferred to the atmosphere via an upward turbulent convect-
ive f£flux of sensible heat, QH’ and the quantity that is
used for evaporation is referred to as the latent heat
flux, QE' The latent heat flux is positive when energy
is being consumed to support evaporation, and is negative

for condensation. The sensible heat flux is positive



when the air is gaining energy. The Bowen ratio is

defined as:

e+

B = = (1)

0

The final heat flux of significance is the soil heat flux,
QG' This is a measure of the amount of energy going into
soil storage and is defined as positive when heat is
being gained by the soil. The primary means of energy
transfer through the soil is conduction, whereas that for
latent and sensible heat is turbulent convection.

A complete energy balance would include terms for
photosynthesis and the storage of heat in the ground and
in the vegetated canopy; however, for our purposes, it is
sufficient to equate the net radiative flux with the

three other'fluxes so that:
* =
Q QH + QE + QG (2)

As the morning progresses and the net radiant flux
increases, so will the sum of the cother heat fluxes rise
in response. Although the sum will always rise and fall
in response to the net radiant flux, the individual fluxes
will not always vary proportionately. For example, QE
may fall rapidly later in the day as plant tissue water

is depleted and plant stomates close in response to that



stress; QH will rise to compensate. On most clear days,
though, the energy associated with each flux increases
with increasing net radiatioﬁ with a notable delay in the
soil heat flux peak relative to the others due to the
thermal inertia of the soil.

In the evening or at night when the net energy
flux is negative, the values of these fluxes will con-
tinue to balance though the energy is being transferred
in the opposite sense. To elaborate by example, the
outgoing net radiation will equal the amount of heat
being lost due to atmospheric cooling, condensation, or
continued evaporation (depending on the atmospheric
vapour pressure and the nature of the underlying surface)

and soil cooling.

1.3. Micrometeorological Determination of Evapotranspira-

tion

Micrometeorological methods of estimating the
latent heat flux always involve an assumption of symmetry.
When symmetry is valid the mean vapour flux passing
through an elevated plane parallel to the surface is
identical to the vapour flux at the surface. The con-
ditions that must be satisfied for this assumption to
hold true are that there be no change in the storage of

vapour between the surface and the plane and that



there be horizontal uniformity of the lateral heat flux.
These ideals are most closely matched far from the upwind
edge of a large uniformly vegetated field (i.e., with a
long undisturbed upwind path length or "fetch").

The assumption of symmetry allows an intuitive
definition of the evaporative flux. For simplicity,
consider the transport of vapour through an imaginary
thin slab of the atmosphere lying parallel to the ground.
This slab is thin enough that no significant changes in
the absolute humidity of the air will occur in the time
it takes for the air to move through it.

The time, At, required for the air to travel up-
wards through this slab will be brief enough that the
vertical velocity, w, will be constant. The thickness
of the slab, Az, can then be closely approximated by
multiplying the time period, At, required to traverse
the latter by the vertical velocity of the air moving
through it. If we consider an arbitrary area of the slab,
A, then the volume of air, V, moving through it during

that time will be:

V = wiAt A (3)

The mass of water vapour within that volume would then be:



m = p_V = Py v At A (4)

where Py is the absolute humidity of the air, the mass of
water vapour per unit volume (kg m~3).
The rate of passage of vapour through the plane,
E, at height, z, per unit time would then be:
pv w At A

E = = p_W (5)
At A v

Due to the turbulent nature of the atmosphere these quan-
tities must be measured frequently and averaged over a
suitably long period of time in order to provide useful
estimates of thé mean Local flux. That is, for practical

applications it is necessary to measure:
E(z) = § } = wo, (6)

This equation is the basis of the Eddy correla-
tion method for measuring evaporation. The correlation
comes about because in general, though not always, upward
moving air will, by day, be carrying relatively moist
parcels upwards, whereas downward moving air will be
carrying relatively drier air from above.

By following similar arguments, the sensible heat

flux density can be shown to be:



1 —
QH=pCﬁZwiTi=prT (7

In practise these eddy fluxes are measured and evaluated

using:

QH=pC_wT=pC(F1‘-—W¥) (8)
and

Qp = prv =L(wpv - W) (9)

where in theory, though not always in practise due to
instrumental or site limitations; W = 0.

Note that the moisture flux at the surface (i.e.,
the desired guantity Eo) will not necessarily equal the
measured flux (through a plane above the surface) if
moisture is advecting over the field from an adjacent

area (i.e., if the symmetry requirement is not met).

1.4. Models

Many models of evapotranspiration are available,
ranging from crude correlations against temperature and
sunshine hours (etc.), through models paying some respect
to physical principles, to extremely detailed treatments
of the entire canopy microclimate, including calculation

of the radiative divergence of the canopy and the



individual leaf energy balance for a representative set
of canopy layers (Naot and Mahrer, 1986).

In this thesis the focus will be placed on the
Monteith "big leaf" model, a fairly simple but nontheless
physically insightful model that treats an entire canopy
as one big leaf. This model is derived from the principle
of energy conservation and the Ohm's law analogy for the
turbulent convective fluxes and is given by (Monteith,
1965):

-1
S(Q*-Q;) + pcp(es(T) -e) r,

o = T (10)

S+ v + ¥ rcra

where e and T are vapour pressure and temperature measured
at some reference level (say, "screen" height), S is the
slope of the saturation vapour pressure curve, and vy is
the psychrometric "constant”. The r's are transfer
resistances. Considering the "big leaf" as a source for
heat and vapour which travel down a diffusion pathway to
the reference level, there is clearly a.greater resistance
to vapour loss than heat loss, since the vapour must pass
through the stomata. The canopy resistance r, represents
in the model this additional resistance to vapour loss,
and the remaining resistance (which consists of boundary-
layer and aercdynamic resistance and is treated as being
equal for heat and vapour diffusion) is r,. According to

Thomn (1972) the aerodynamic resistance in neutral strati-



fication is:

ﬁ(zs)
r, = + 6.266 u,”
2
Uy

2

(11)

where the friction velocity u, and the reference velocity
G(ZS) must be specified in m s™!. Van 2yl and De Jager
(1987) have shown that stability effects on r, are small.
Therefore, we need only E(zs) and u, to determine the
aerodynamic resistance. Ve have neglected the influence
of stabi;ity on the shape of the wind profile and have
simply used the logarithmic wind profile:

u
T(z) = E: n 2 (12)

where k is von Karman's constant which has been experiment-
ally found to be 0.40, and 2, is the roughness length
which is a measure of the aerodynamic roughness of th-
surface. It follows that u, is given by the slope of

the wind profile:

_ Au
Uy = K Zinz (13)

The canopy resistance is a bulk measure of the
stomatal resistance of the crop as a whole and is in
reality not uniquely controlled by the individual leaf

stomatal resistance. The transpiration rate of a plant
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is controlled by the variable-aperture stomates on one
or both sides of the plant's surface. These stomates
are porous openings representing 0.3% to 1.0% of the leaf
area when fully open (Rutter, 1975). When the plant is
under moisture stress these stomates partially close
reducing the outflow of water from the plant through
transpiration. The stomatal aperture also varies in
response to the light intensity. Therefore, in drought
conditions and at night, the stomatal resistance would be
high, but during the day, with good moisture supply, it
would be low. The loss of water through the stomates
provides the water potential gradient driving the move-
ment of water and solutes within the plant and in the soil.

The canopy resistance may be evaluated from
measurements by rearranging the combination equation to
obtain (Bailey and Davies, 1981):

r, (sQ; - vQg) + oC, (e (T) ~e)

r = (14)
c Y .

where es(T) is the saturation vapour pressure at the
reference temperature T. This equation is the one uged
for the calculation of canopy resistances.

1.5. Objectives

The objectives of this research are as follows:



(1)

(2)

(3)

(4)

11

to measure the components of the energy
balance for a suitable field site using two
different eddy correlation approaches and to

a limited extent, a third profile method;

to compare the latent heat fluxes determined
both directly and indirectly from these

measurements;

to estimate the canopy resistance of the local

crop; and

to evaluate the most likely sources of error

in these procedures.



CHAPTER II

THE EXPERIMENT

The purpose of this section is to describe the
instrumentation used in this project, along with the

appropriate theory and methodology.

2.1. Field Site

The field site was an alfalfa field on a black
chernozemic soil at the University of Alberta farm near
Ellerslie. The field was relatively flat, uniformly
vegetated, possessed a long fetch to the west, and was
subject to minimal anthropogenic disturbance. These site
requirements are necessary to ensure a horizontally uni-
form surface layer. The field was chosen mainly for
these site requirements and for availability rather than
for crop and soil type. A photograph taken by the author
of the field site and the genéral instrumentation appears

on Plate 1.

12
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2.2. Instrumentation

The instrumentation used included an automatically
reversing Bowen ratio psychrometer apparatus; a sonic
anemometer, a Lyman-a humidiometer, and a fast response
thermocouple for eddy correlation measurements; a soil
heat flux plate; cup ansmometers for determining the wind
profile; a net radiometer; and the requisite ancillary
equipment and data logging capability. The equipment will
be described piece-by-piece with emphasis being placed on
the Bowen Ratio device, unique to this experiment, and
then the combined operation and data collection will be

explained.

2.3. Bowen Ratio Device

The Bowen ratio defined earlier is given by
Eq. (1). If we assume horizontal uniformity, then QH and
QE are constant with height and by the Ohm's law analogy,
we can relate the fluxes to differences in temperature
and vapour pressure across a finite height interval Az,

viz:

Qy = ¢, TF ry™* (15)

and

0
t
i

pC, (Be v°%) .~ (16)
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where Y, the psychrometric constant, is determined from:

pC
Y = §.622 1 (17)
Therefore,
—_— -1 —_
_ QH _ pCp AT rH _ AT
B = 5 = . - = (18)
E Cp(Ae Y )rV Ae v

where Ty has been found empirically to be closely equal
to r_.
v
The change in wet and drv bulb temperatures
between two levels in the atmosphere can be measured by
matched psychrometers at those two levels. The difference
in vapour pressure is then found as follows.

The vapour pressure is related to the wet and dry

bulb temperatures by:

e = es(Tw) - Y(T - Tw) (19)

Therefore, using an approximation which gets better for

smaller ATw:

Ae e (T

s (Tya) = eglTy) = v(Ty =Ty = (Tyy - Tw))

sS(T .- Twl) - \r(T2 - Tl) + Y(Twz - Twl)

w2

(S + ¥) ATw - yA T (20)
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where S, the slope of the saturation vapour pressure

curve, is defined by:

s
s(T,) (21)

where Rv is the gas constant for water vapour. The Bowen
ratio, then, can be calculated from the difference between
two levels in the wet and dry bulb tempeatures. Such a
device is theoretically simple but requires considerable
effort to give satisfactory results. The standard
practise is to set up the psychrometers on a device that
will reverse their position on a regular interval in order
to reduce systematic error arising from differences in
response between imperfectly matched psychrometers. The
psychrometers must be well shielded and ventilated in
order to avoid errors due to radiational heating and the
wet bulb thermometer wicks must be kept constantly wet
with distilled water. An additional complication arises
because the temperature values are useful and worth
storing only after a sufficient wait for temperature
stabilization has occurred after each reversal.

The device developed for this project is pictured
in Plate 2. The main structure of the device was made of
a 2 m length of PVC pipe with a 3/4" inner (=1.91 cm)
and a 1" outer (5254 cm) diameter. The psychrometers

extended upwind at right angles at each end of the length
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Plate 2. Frontal view of reversing psychrometer appar-
atus as used in 1988 field season. View is
to the east. (Photograph taken by author.)
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and the reversing motor and mounting to the tower were
at the middle.

The diameter of the éipe was minimized to reduce
the stress on the reversing motor and to increase the
ventilation speed across the psychrometers. A sketch of
the main reversing arm assembly is shown on Figure 1. The
psychrometers were constructed using 8 inches of 40-gauge
chromel-constantin thefmocouple wire joined to stronger
24~gauge thermocouple wire to make the connection with the
data logger. Calculations indicated that, with 40-gauge
wire, conduction to the thermocouple junction would not
cause significant error.

The sensor heads were constructed by inserting a
junction of the 40-gauge thermocouple wire into a shrink
tube molding attached to a 1 1/4 inch Polyethylene T. The
junction was potted with 5-minute epoxy. The time con-
stant for the thermocouple junctions was measured to be
about 30 seconds. A sketch giving details of the psy-
chrometers is shown on Figure 2. The junction between
the 40-gauge and the 24-gauge wire and temperature sensors
themselves was delicate, so care was taken to minimize
tension along the connecting wires by clamping them down.

The device was ventilated by a fan connected by
a hose to the top of the T fitting at the middle of the
arm. The fan was a PAPST Type RL 90-18/12 12-Volt DC

centrifugal fan rated at 40 cubic metres per hour. The
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flow rate across the psychrometer junction was difficult
to measure exactly but exceeded 5 m/s.

The shielding for the psychrometers consisted of
form-fitting foam covered with 3M reflective tape.

The motor used to reverse the arm was a TRW EM-
15/409A6054-2 12-Volt DC planetary gear motor rated at a
maximum continuous torque of 1250 ounce-inches. The
details of how this was mounted are shown on Figure 3.
Both this motor and the fan were powered by standard 12V
automotive batteries.

The printed circuit board that controlled the
reversing of the device allowed both manual (push button)
and automatic reversal through programmed excitation
pulses sent by the data logger (Figure 4).

The instrument was mounted on the tower such that
the lower psychrometer was 0.97 metres above the ground
and the upper psychrometer was 2.20 metres above the
ground. The two psychrometers were found to be very
closely matched when tested in the laboratory. Despite

this close matching it is still necessary to reverse,

to reduce radiation error.

2.4. Sonic Anemometer

The sonic anemometer used for this research was
a Campbell Scientific CA27 and it was used to obtain

fluctuations in the vertical windspeed, which are
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generally of the order of 1 m/s. The calibration response
of a CA27 is one volt per metre per second with a range
between plus and minus four volts. This device was

mounted on the tower at a height of 2.45 metres.

2.5. Fine Wire Thermocouple

The fine wire thermocouple is mounted on the arm
with the sonic anemometer on the CA27. It is a 5.0 x 107°
inch (1.96 x 10~% m) diameter chromel constantan thermo-
couple. The calibration on the thermocouple is 0.25
Volts per degree Celsius within a range of plus or minus
4 Volts. The temperature signal received is the fluctua-
tion relative to the temperature within the sonic anemo-
meter case which has a much higher thermal inertia. This

was mounted to the tower at a height of 2.45 metres.

2.6. Net Radiometer

The net radiation was measured using a Q*4 net
radiometer manufactured by Radiation Energy Balance
Systems (REBS) of Seattle, Washington. The instrument
was new at the time of this research and was f[actory
calibrated at 10.1 W m 2 mV"}. The net radiometer was

mounted on the tower at a height of 3.39 metres.
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2.7. Heat Flux Plate

The soil heat flux was measured using a soil
heat flux plate manufactured and calibrated in the
meteorology lab at the University of Alberta. The cali-
bration factor was 4 Wm™2 mv~!. This was buried under
5 cm.of soil in a relatively undisturbed site near the
instrument tower. No correction for heat storage in the
soil layer above the flux plate was attempted. An esti-
mate of the error associated with this measurement is in

Section 3.4.

2.8. Lyman-o Humidiometer

The Lyman-a Humidiometer was manufactured by the
Electromagnetic Research Corporation of College Park,
Maryland. It was mounted on the tower at a height of
2.45 metres and was used to detect rapid fluctuations in
the water vapour concentration. At the Lyman-o frequency
the absorption coefficient of water vapour far exceeds
thst of other gases in the lower atmosphere so that the
amount of Lyman-o radiation transmitted through the atmos-
phere is inversely proportional to the concentration of
water vapour in that air. The output current of the

Lyman-o humidiometer has been found to obey:

I = J:oe"‘”’v‘f’l (22)
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where Io depends upon the source tube condition and
detector sensitivity, 4 is the length of the measuring
path, u is the absorption coefficient of water vapour,
and Py is the absolute humidity of the air in the path-
length.

This device was calibrated in the meteorology lab
against an EG+G dewpoint hygrometer. The calibration
curves are shown on Figure 5. Note that the curves are

essentially linear.

2.9. Ancillary Equipment

A gasoline-powered electrical generator was used
to power the Lyman-c and the fan that provided aspiration
to the psychrometer mounted on the tower.

A psychrometer, made and calibrated in the Univer-
sity of Alberta meteorology lab, was mounted on the tower
at the 2.08 metre level. This was needed to measure
absolute wet and dry bulb temperatures since the Bowen
ratio equipment was set up to measure differential temper-
atures between two levels. The absolute temperatures
were necessary to calculate the canopy resistances.

Cup anemometers were set at heights of 0.65 m,
1.64 m, and 4.11 m on the tower in order to provide the
data necessary to infer the aerodynamic resistance. From

knowledge of the wind profile based on the wind speeds at
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these three levels, it was possible to deduce wind speeds
at in“ermediate levels using a least squares curve fit.
The data logger used.in this research was a
Campbell Scientific CR21X. The signals from all instru-
ments, except for the Bowen ratio device, were connected
to this logger and were accessible in real time as well
as being averaged and stored in output locations in the
logger's memory. The Bowen ratio device was separately
connected to a Campbell Scientific CR-7 logger. The
main prograr used in the CR21X for this field study with
notes on the assigned input and output locations is given

in Appendix 1.



CHAPTER III
FIELD RESULTS

This section will present an overview of the data
.obtained from the instruments during this research. This
will be largely shown in a graphical format. The data
manipulation necessary to obtain these graphical represent-

ations will also be discussed.

3.1. Energy Balances

The energy balances as measured by the instrument-
ation used in this study are shown in figures 6 through
l16. On these figures Q*--QG is derived directly by sub-
tracting the soil heat flux from the net radiative flux
as output in the CR21X. The CR21X was pfogrammed to out-
put these values in their proper units for simplicity and
ease of inspection. The QH value is obtained through
calculations using the CR21X output locations for w, T,

and wT, and by using,

- ET e Sl ]
QH = pCp wT pcp(wT w T) (23)

29
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as discussed in Chapter I. The density was calculated
from the Edmonton station pressure and mean temperature.
The QE value was similarly found from the CR21X output

locations for w, p,s aud §3v and by using,

WO - W Bv) (24)

The sum of Q. and Q, should equal Q* minus Qg?
however, it is notable from the figures that this was often
not the case, especially in the morning. Another point of
interest in these energy balances is the way in which the
availability of moisture affected the Bowen ratio with
Irier days clearly showing the higher values (see Table 1).
It is also interesting to see how dramatically the avail-
able energy Q*--QG dropped off in Figure 16 as a large

thunderstorm approached around 1400 local time.

3.2. Comparative Latent Heat Fluxes

Figures 17 to 26 show the latent heat fluxes as
measured by the field instrumentation. The following
symbols will be defined to indicate the method by which

the flux was calculated:

QE‘W""V) = L(Wp, -~ W p) (25)

- (w-t)

Qg Q* - Q. - pC_(WF - ¥ T) (26)
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Table 1. Summary . . - ‘al rainfall (Rg), daily average
Bowen ratios (BR), mid-day canopy resistances
(rc) , and temperatures (T).
Date Rt(mm) BR T, T
May 1-12 0.0
13 1.0
1 6.0
15 0.0 0.77 96.5 10.0
16 0.0 0.88 264.1 17.2
17 tx 0.49 108.8 11.9
18 0.0 1.07 177.4 12.0
19 0.0 1.06 257.6 10.2
20 0.0 1.28 153.6 11.8
21 0.0 1.28 279.7 12.9
30 9.0
June 1 0.4
2 0.0 0.88 97.1 13.3
5 11.0
7 0.4
8 39.6
9 5.0
10 0.2
11 10.4
13 3.4
14 0.0 0.36 12.6
15 1.6 0.13 17.5
18 3.8
22 10.2
23 4.0 0.23 17.7

No rainfall occurred, and no field measurements were
taken on May 22-29, May 31, June 3-4, June 6, and

June l6-17. No canopy resistances were calculated

for June 14, 15 and 23.
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R
The first two methods are shown on each one of this set of
figures with the third method being shown additionally on
figures 24 and 25. This set of graphs is central to the
purpose of this research as it compares the latent heat
fluxes and therefore the evapotranspiration as given by
our three methods. 1Ideally, if our instruments were all
perfect, then all three would give the same values. Note

(w=t) almost always gave values greater than

that QE
QE(w-rV) and that this difference was generally greatest
in the morning. The energy balances indicated a general
loss of total energy as detected by the eddy correlation
methods. The simplest hypothesis was that QE(W-rV) was
consistently too small.

The Bowen ratio equipment was only used on June 2

and June 14. Figures 24 and 25 show the results of these

days coplotted with the 4.11 metre windspeed.

3.3. Discussion of the Failure to Close the Energy

Balance

If Lwp, pCPWT < Q* - 0., then either the radio-
meter has read too high (considered unlikely because it
was new and factory calibrated) or one or both eddy
correlation fluxes is too small. The eddy flux determina-

tibébns share the same w signal, and since the thermocouple
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i5 a simple measurement, it is natural to suspect the
Lyman-c and sonic anemometer determinations. An estimate
of the error :n the soil heat flux measurement follows in
Section 3.4.

= gonic anemometer velocity signal can be in
error du ~ probe-induced flow distortion; in addition
it is incapable of measuring eddy contributions below a
certain size and above a certain frequency so that some
signal loss is expected. The wind flow across.the sonic
could be disturbed by the Lyman-c humidiometer, which was
mounted only 10 cm from the velocity measurement path.
This separation was later increased to 20 cm but no notable
change in the overall energy flux was observed. Thus the
flow distortion was likely not the problem.

As for the possibility of flux loss due to unre-
solved eddies, we follow Kaimal (1972). Kaimal found that
the highest frequ:-ncy component contributing to the eddy
flux is approximately £ = 10 u/s. Given that the height
of the sonic anemometer was about 2 metres and that the
maximum winds at that height were about 5 m/s, this equa-
tion suggests a maximum éontributing frequency of 25 Hz,
far below the 78 Hz measurement frequency of the CA27.
The corresponding minimum significant wavelength for
vapour trazusport in this flow would be about
lmin = i‘.‘x/fmax z 20 cm. Since the spacing between the two

sonic transducers is 10 cm and the velocity path to
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scalar-sensor spacing was about 20 cm, we would expect
negligible loss of flux due to sensor separation and path
averaging.

Another possibility which would account for the
larger loss of energy in the morning was investigated:
it was suspected that the drifting reference temperature
at the base of the sonic anemometer arm was inducing an
error in the temperature fluctuation signal. To investi~
gate this possibility, the instrumentation was altered on
June 14 to compare the sensible heat flux as determined
from the relative temperature fluctuation with that obtain-
ed from the absolute temperature fluctuation. This was
done by insr:rting an additional thermocouple into the
reference point on the sonic anemometer. The results of
this trial follow on Figure 27. No significant difference
was noted.

The known sources of error for the sonic anemometer
have been ruled out leaving the likelihood of a poor
measurement of the fluctuating humidity by the Lyman-a
humidiometer.

The Bowen ratio gear shou'.d give further evidence
for this conclusion. On June 2, when the agreement

between Lwpy + pC_WT and Q* - Q. was fairly good, the Bowen

P
ratic equipment agreed quite well with ﬂWEv. £n June 14
the direct fluxes seriously under-estimated Q% «QG from

about 1130 to 1630. Several Bowen ratio measurement.s
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during this period disagree seriously with the direct
latent heat flux EWEV, suggesting that the latter was in
error. The evidence given by the Bowen ratio equipment
was therefore ambiguous in evaluating our conclusion. 1In
addition, on June 14 when the arm was placed horizontally
in the field to check for offsets between the psychromet-
ers, an error of 0.04 K was being shown in the dry bulb
temperatures with typical signals being about 0.5 K.
Table 2 gives details of the results of two consecutive
15-minute periods with the device horizontal. With this
error observed it was decided that the data were not
reliable enough to determine the accuracy of the other

two methods and its use was discontinued.

Table 2. Results of horizontal measurements with Bowen
ratio device for June 14, 1988.

Period A Period B
AT -0.035 0.048
ATw -0.077 -0.096
Ae -8.518 -16.14
de/y -0.139 -0.263

Table 2 implies an estimated typical mid-day
error of 25 percent which is too large. The Bowen ratio
equipment was suspected to be suffering from radiation

error.
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3.4. Estimate of Soil Heat Flux Error

The soil heat flux plate was buried under 5 cm of
scil. No correction or measﬁrement was attempted in the
field to determine the amount of heat being gained or lost
in the layer above the plate. Normally, by day, the soil
above the plate will absurb incoming energy and warm in
the process. This would suggest that the soil heat flux
measured at the plate is generally under-estimated by
day.

Following Sellers (1965) we can obtain an estimate
of this error. Sellers found that the soil heat flux

varied with time and depth according to:

Qg(2:8)  _ _z(w/20)? sinfet - w/2c)dz + 1/41 4
QG(Opt) sin{wt + ©/4)

where e is the base of the natural logarithms, w is the
frequency (in this case, diurnal), and « is the soil

diffusivity.
The damping depth, D, is defined by

D = (2K/w)§ (29)

and the amplitude reduction factor is given by e~2/D

The black chernozemic soil at the field would have
diffusivity values ranging roughly from 10~7 m?/s dry
to 107° m?/s wet (oke, 1978). This implies a daily

damping depth range of from 5 cm dry to 17 cm wet.
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The amplitude reduction at 5 cm would then range from 0.7%7
dry to 0.75 wet.

The maximum soil heat fluxes at plate depth were
measured to be approximately 32 W/m2. This, combined with
the above amplitude reduction factor, suggests that the
maximum error due to soil heat storage would be approxi-

mately 20 W/m2.

3.5. Canopy Resistance

The canopy resistances inferred from this instru-
mentation are shown on figures 28 to 35. The canopy
resistance was estimated using Equation (14) as previously
shown in Chapter I. Both the latent and sensible heat flux
values were directly from the eddy correlations in all
these cases. The Bowen ratio gear data were not used for
this purpose.

All these calculations had to be carried out for
the height of the psychrometer which was being used to
calculate the vapour pressure deficit (compared to
saturation) . The wind speed at the psychrometer height
was determined using a least squares fit to the log wind
profile of the windspeeds at .he three anemometers. With
the wind speed known it was possible to solve for the
friction velocity which is related to the slope of the
wind profile by von Karman's constant. The aerodynamic

resistance is then found using Thom's Equation (11) from
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Chapter I. An example of a plot of the aerodynamic
resistance as determined from our wind profiles is shown
on Figure 36 along with the 4.11 metre windspeed. These
values were found to vary inversely with the wind speed
as expected. That is, high wind speeds corresponded with
lower r, values.

The estimated canopy resistances averaged approxi-
mately 200 s/m and were higher than a previous study by
Russell (1978). Russell found that the value of the
resistance over fields of barley and pasture averaged
around 80 s/m. Russell's study was carried out during
conditions of much greater moisture, favouring lower can-
opy resistances. The expected diurnal trend towards high
resistances in the early morning or late evening are shown
in figures 28, 29, and 34. Note from Table 1 that con-
ditions were quite dry for most of the May period of the
field season so that fairly high resistances would be
expected at those times and were observed. The exception
to this was when the crop was moist with dew or shortly
after a rainfall such as occurred on May 17. Appendix 2
gives a brief description of the field conditions for
each plotted day of data.

Table 1 gives a summary of the total rainfall (Rt)’
daily average Bowen ratios (BR) , mid-day canopy resist-
ances (rc), and temperatures (T) for each day for which

they were measured. 1In general both the Bowen ratio
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and the canopy resistance tend towards lower values during
conditions of greater moisture. Appendix 2 gives the wind
and cloudiness conditions for each field day.

Canopy resistances for each field day versus total
daily precipitation are given in Figure 37. The figure
shows the large day-to-day changes that occurred in the
canopy resistance values. The lower values correspond to
conditions with more moisture, such as a heavy dew or
rainfall. The rainfall on May 14 contributed to the low
canopy resistance on May 15 as did the trace of rain on

May 17, with lower values for that day as well.
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CHAPTER IV

CONCLUSIONS

Both eddy correlation methods were capable cf
giving reasonable energy balances but neither was con-
sistently equivalent to the total flux suggested by the
net radiometer less the soil heat flux, especially in
the morning.

The Lyman-o humidiometer was suspected as the
most likely to be causing a loss of flux. This conclusion
was largely reached by a process of elimination +hat
investigated all reasonable sources of error for the
sonic anemometer.

The reversing psychrometer device was used for
only two days, and although it gave results that were
generally consistent with the other two methods, its field
performance was not adequate to allow it to be the "tie
breaker" to determine which of the eddy correlation methods
was more accurate.

The canopy resistances obtained from this instru-

mentation were generally between 100 and 300 s/m. A

72
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diurnal trend was noted on some days and the values
generally varied as expected in reaction to ambient
moisture conditions. Even with the errors inherent to
the instruments used to calculate this parameter it is
likely that these values were closer to the true values
than any textbook values chosen for such crops (for lack
of any measured data). It is therefore possible that
these values will be of interest to agronomists and

drought researchers.
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APPENDIX 1

DETAILS OF CR21X OPERATION FOR THIS FIELD SEASON

I. CR21X input configuration used with this program.
A. Single ended input locations

1. soil heat £flux plate
2. net radiometer

3. sonic anemometer

4. fine wire thermocouple
5. Lyman-a

B. Differential input locations

6. psychrometer total voltage drop across two diodes
7. psychrometer dry bulb diode voltage drop

C. Pulse input locations

1. low anemometer
2. middle anemometer
3. high anemometer

II. Input storage loccations

1. soil heat flux

2, net radiation

3. vertical velocity

4. temperature fluctuation

5. Lyman-o voltage

6. log Lyman-a vol+tage

7. log Lyman-a voltage minus mean log Lyman-a volt=-
age

77



III.

9.
10.
11.
12.
13.
14.
15.
ie.
17.
18.
19.
20.
21.
22.
23.
24.
25,
26.
27.
28.

location 7 multiplied by slope of Lyman-o graph

wT
W2
T2
Py
L[
Py’
unused

unused

mean absolute humidity

log mean Lyman-o voltage
slope of Lyman-o curve

unused

low anemometer

middle anemometer

high anemometer

total psychrometer voltage
dry bulb psychrometer voltage
unused

unused

CR21X battery voltage

Output storage locations

1.
2.
3.
4,
5.
6.
7.
8.
9.
10.

unused

date

time

soil heat flux

net radiation

w

T

mean Lyman-a voltage
mean log Lyman-a voltage

wT

78



11.
12.
13.
14.

4y

Py

WPy

15. py?

16.
17.

79

mean total psychrometer voltage
mean psychrometer dry bulb voltage

IV. CR21X program used for field program

CR21X Program Code

Function

A. SAMPLI
P10 28
Pl
Pl
Pl
Pl
Pl
P2

R S .

B. PROCESSING

P30

P30

P30

P36 3
P36 3
P36 4
P40 5
P35 6
P36 7
P33 8
P36 12
P36 12

NG

> it e -

6

18

19
17

12

A U W N

17
18
19

10
11

12
13
14

oW

[N

2500
10.1
.001
.004
.001

o © © O o o

Battery voltage (21X)
Qg W m™? |
Q* Wm™?
sonic w m s~
sonic T °C
Lyman-o volts

1

Psychrometer

stores mean humidity
stores Lyman-o veltage
stores Lyman-o curve slope
calculates wT

calculates w?

calculates T?

calculates ln Lyman-c
voltage

(In Lyman-a mean ln
Lyman-g) volts

calculates
calculates oy,
calculates wpy
calculates py?
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CR21X Program Code Function
C. OUTPUT

P92 0 30 10

P77 110

P71 6 1
P71 6 9
P71 2 24

D. TABLE 2 FOR ANEMOMETERS
P03 3 1 10 21 0.025 0.25
P92 0 30 10
P71 3 21

Note: Storage locations in section B with blank lines
indicate where values were input manually according

to daily conditions.



May 15:
May 16:

May 17:

May 18:

May 19:

May 20:

May 21:

June 2:

June 14:

June 15:

June 23:

APPENDIX 2

DAILY CONDITIONS DURING FIELD SEASON

sky clear, light west wind, crop slightly damp
sky clear, cool, light south wind

cloudy, cool, strong northwest winds, brief
period of very light rain, some afternoon
sunny breaks

partly cloudy, northwest wind, cool

clear, cool, light southwest winds becoming
northwesterly in the afternoon, a few clouds
after mid-day

sunny, cool, moderate northwest wind

sunny, warm, dry, light southerly breeze,
heavy dew in the morning

sunny, cool, moderate west to northwest
breeze, vegetation beginning to develop

sunny, cool, light west wind, vegetation much
thicker than on previous day, road machines at
work on nearby upwind road

sunny, cool, moderate south wind, high cloud
in afternoon

high cloud, wet surface, light west to
northwest wind, thunderstorm ends day early
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