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ABSTRACT

This dissertation presents a method for the analysis

of a frame subjected to either a blast load or an earth-

'quake motion. The procedure accounts for the inelastic

actibn of the frame members and the other significant
secondary effects. A behavioral study has been performed
using the procedure and as a result, a tentative design
procedure for steel frames subjected to blast loads has
been proposed.

The analytical model used to represent the frame has
equal numbers of stories and bays as the actual frame.
The frame may contain shearwalls. In the analysis, a tri-

linear type of moment-curvature-thrust relationship is

- assumed for the structural components with a hysteresis

rule employed in an attempt to account for the increasing

strength under reversals of loading.

The inelastic action of the members and the P-A
effect are considered by introducing an equivalent rotation-

al spring at each member end. By selecting the properties

‘of the rotational spring properly, the response of the model

to lateral load can closely simulate that of an actual
frame. Other secondary effects such as the shear deforma-
tions of the members and joints, the effect of semi-rigid

connections, etc., may also be considered by modifying the
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properties of the rotational springs.

The standard slope deflection equations are modified
to meet the present situation. When these equations are
used to construct the frame stiffness matrix, the computa-
tion in the inelastic range can be done in the same manner
as those in the elastic range. The stiffness matrix is
thus updated to be compatible with the deteriorated struc-
ture at each instant of the motion. The equations of
motion are solved using a linear acceleration method.

As a result of behavioral study performed, an empiri-
cal equation for the calculation of the fundamental natural
period has been proposed (the error is usually less than
5%). In addition, once the modified total impulse of a
blast load is defined, the relationships between the blast
load intensity and the resisting base shear can be expressed
by a relatively simple formula. Once the base shear is
known, the required strengths for the frame members may be
estimated.

A désign procedure is proposed to select a set of
member sizes to resist an expected blast load. The proced-
ure eliminates the need for a dynamic analysis for regular
frames. Although the frames designed according to this
procedure can be expected to behave satisfactorily, it is

always desirable to perform a dynamic analysis if possible.
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Chapter 1.

INTRODUCTION

1-1 Purpose of Investigation.

The design of structural frames to resist forces
induced during an earthquake motion or blast disturbance
is generally a semiempirical procedure with the forces
specified being based primarily on dynamic analyses of
simplified structures and modified in the light of obser-
vations of past failures. 1In order to design on a more
rational basis, it is first necessary to have available a
procedure for the analysis of complex structures; this
procedure is the subject of this dissertation.

The analytical procedure presented herein is able to
determine the inelastic response of rigidly connected
multibay multistory planar frames using a large capacity
diéital computer. Interest is focused on steel frames with
or without shearwalls, although with minor modifications
in the input data, concrete frames may also be treated.
The disturbance applied to a structure may be either an
earthquake motion or blast loading.

The secondary moments produced by the vertical loads
acting through the sway displacements of the frame are
treated together with the effects of inelastic action

(including strain-hardening) of the members. The effects

1



of semirigid connections, shear deformations of joint panels
and shear deformation of the members can also be taken into
account without increasing the complexity of the procedure.
The above effects are treated in an approximate manner due
to the complexity of the overall problem.

The second objective of this dissertation is to present
the results of a behavioral study, performed using the
analytical procedure. The following factors are specific-
ally considered in the study.

a) The effects of beam stiffness and column stiffness

distributions over the height of a structure on the

natural periods.

(b) The effects of various types of blast loads on

the response of a structure.

c) The effects of beam stiffness and column stiffness

distribution over the height of a structure on the

response of the structure (both in elastic and inelas-
tic ranges) to a blast load.

These factors are examined by investigating the re-
sponse of several steel frames having differeht structural
arrangements. By analyzing the results of the behavioral
study, a tentative design procedure, which leads to an

efficient design against blast loading, is proposed.



1-2 Previous Studies.

The objective of this section is to locate the present
study in the stream of current research; the section is not
intended to be a complete survey of the literature in this
field. The discussion is oriented in such a way that one
can realize the necessity of the present type of study and
understand the background on which certain assumptions are
made in the present analysis. The discussion is also
limited to the literature published in English, although
many reports in Japanese (and possibly in other languages)
are available in the field of dynamic analysis.

The section is divided into three parts. The study of
the static response of both member elements and entire
frames is first discussed, since this knowledge has great
influence on the analytical model on which a dynamic
ahalysis is performed. A clear understanding of the charac-
teristics of dynamic loads is also highly desirable. The
present state of this knowledge is briefly discussed in
the second part of the review. In the final part, the
technique used to solve the equations describing the dynamic
response are reviewed. Current topics in the field of

dynamic analysis are also introduced.
1-2-1 Member and Frame Response to Static Load.

In order to analyze a frame, it is necessary to prepare



an end moment-end rotation relationship for every member for
an assumed value of the axial force.

Such an end moment-end rotation relationship for a
steel member has often been represented by an elastic-
perfectly plastic relationship as shown in Fig. 1-1 or by
a bilinear relationship having a negative slope as shown
in Fig. 1-2; depending upon whether the P-A effect is
included at this stage.

The role of strain-hardening, which was ignored in
the above models, has been taken into account by
Jennings and Husidl and Thomaides? in their dynamic
analyses. The end moment~end rotation relationship em-
ployed was a bilinear relationship with a positive second
branch as shown in Fig. 1-3. It has been observed that
under reversals of loading, the strength of column members
increases with an increased number of load applications.3’4’5
Kato and Akiyama3 have shown that the strength increase is
caused partly by the residual P-A moment and partly by
strain-hardening and have proposed a hysteresis rule of
the type shown in Fig. 1-4. The present study complies
with this idea.

Jennings6 and Goel and Berg7 have used the Ramberg-
Osgood function (Fig. 1-5) to approximate the moment-
curvature relationship and derived a very similar function

to approximate the end moment-end rotation relationship.



The prime advantage of this approach is in the easy mathe~
matical treatment when considering hysteresis loops.
However, the negative portion of the end moment-end rotation
relationship (due to axial force) can not be represented by
this function.

A number of different methods have been used for the
nonlinear analysis of the complete frame. Oden8 has dis-
cussed the advantages and disadvantages of each presently
available method. Rajasekaran and Murray9 have classified
these methods according to the mathematical technique
involved and suggested the recommended method to be used
for solving an individual problem according to the physical
nature. The method described in Chapter 3 is an incremental
loading method in principie, although it may not be seen
clearly in the process of solving dynamic equations.

The P-A effect has been investigated by Yarimci, Yura
and Lu10 on steel frames and by Majumdar, MacGregor and

Adamsll

on coupled steel frame-shearwall structures. The
analytical method used in these studies was to apply an

additional lateral load in an attempt to produce the same
column end moment as the actual case. It has been shown
both theoretically and experimentally that the reduction
in load carrying capacity is significant in both types of

frames. In the present analysis, the P-A effect is con-

sidered by introducing an equivalent rotational spring at



each member end} the new system is proposed to eliminate
‘the iterative procedure.

Naka, et al.12 have studied the effect of shear defor-
mation of the joint panels and have indicated that the
elastic response calculated by taking this effect into
account could be as much as 30% greater than the elastic
response for a frame with properly reinforced joints or
than an elastic response ignoring the effect. Munse, Bell
and Cherson13 have pointed out that the response could also
be increased when beam to column connections are not
perfectly rigid. In the present analysis, these secondary
effects, together with the effect of shear deformation of
a member, can also be taken into account in conjuntion with

the previously mentioned rotational spring, although in an

approximate manner.
1-2-2 Characteristics of Dynamic Loads.

The characteristics of blast waves have been investi-
gated by the United States Department of Defence and other
affiliated agencies and research institutes. Refs. 14
through 20 provide useful information concerning the
magnitude of the blast loads which should be applied to a
structure at a particular site. Brode21 and Newmark22 have
reviewed the studies in this field and have added new remarks.

The blast loads applied to the example frames in this



dissertation have been determined by summarizing the above
information as shown in Appendix E.
Only a few records of the grouhd motion induced by

strong earthquakes were available before the 1950's.23

The strong motion accelerograph networks started recording
ground motions in the U.S.A. and Japan in the late 1950's.
The digitized data for recent earthquake motions have been
published by the California Institute of Technology,24 the

25 and the Ministry of Transport of Japan.26 Jennings,

SERAC
Housner and Tsai27 proposed artificial ground motions to be
used for the analysis of a structure. In spite of efforts

made by many researchers, it is still impossible to predict

‘the ground motion which a future earthquake might produce

at a particular building site.

1-2-3 1Inelastic Response of
Steel Frame to Dynamic Load.

The equations describing the response of a structure
to an earthquake motion and to a blast load are very

similar and hence the same numerical techniques can be used

to achieve a solution in both cases. The Runge-Kutta's

method modified by Gill,28 Milne's method,29 the linear
acceleration method18 and Newmark's method30 are typical
techniques used to solve the second order coupled differen-

. . 31 .
tial equations. Ralston™  presented an excellent comparison



among these methods. In the present study, the linear
acceleration method is used because of its numerical
stability.

The early studies of the response of a structure in
the inelastic range used single degree-of-freedom

2,32,33  3p4 were gradually extended to more complex

34,35

systems
multidegree-of-freedom structures. In these studies,
the importance of ductility and hysteretic damping (energy
absorption) was emphasized; however, because of the highly
idealized models, it was impossible to study various struc-
tural effects more specifically.

Jennings and Husidl investigated the significance of
gravity load in a study of single degree-of-freedom systems
subjected to artificially generated ground accelerations.

In this study, the important parameters were the height of
the structure, the ratio of the earthquake strength to the
yield level of the structure and the slope of the second
branch of the bilinear end moment-end rotation relationship.

Clough, Benuska and Wilson36’37

developed a computer

program to analyze more complex structures. In these

studies, a 3-bay, 20-story frame was analyzed by assuming a

bilinear type of end moment-end rotation relationship. The

structure was subjected to the N-S component of the El ,

Centro 1940 earthquake. One of the important conclusions

from this study was that plastic deformation will be



concentrated in the weaker members, thus sudden changes in
stiffness should be avoided.

Goel and Berg7 analyzed multistory, single bay
structures (symmetric) allowing inelastic action in the
girders (Ramberg-Osgood function) but not in the columns.
It was shown that the inelastic action of the girders alone
can be a potential source of energy dissipation in unbraced
steel frames during a strong earthquake motion. Very simi-
lar conclusion was also obtained from the study of Walpole

38 Goel39 further studied the P-A effect

and Shepherd.
during the earthquake motions using the same structural
model. From this, it was concluded that the P-A effect on
the inelastic response was insignificant.

Sun40

also investigated the gravity load effect on
dynamic stability using one or two degree-of-freedom systems
with bracing members whose force-displacement relationship
was assumed to be an elastic-plastic system of the slip
type. In order to study the P-A effect more gquantitatively,
the equation describing the relationship between the yield
or collapse of the system and the amount of input energy was
proposed using the P-A effect parameter (defined as axial
load divided by the product of stiffness and height).
Lionberger and Weaver41 showed that nonrigid beam to

column connections can influence both the lateral trans-

lation and the member end moments. The study was pérformed
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on a 10-story, 2-bay symmetric frame subjected to an
idealized blast load.

The analytical procedure presented in this disserta-
tion is an attempt to provide a tool to analyze complex
frames taking many secondary effects into consideration
within a feasible computational effort.

Experimental verification of analytical results has

42 .
reported a series of reson-

been rather sparse. Nielsen
ance tests of a nine-story steel frame building at the time
when the frame works were completed. Using the test
results, the method to evaluate the elements in the stiff-
ness matrix and the coefficient of damping for each mode was
introduced. Jennings, Matthiesen and Hoerner43 conducted
tests on a 22~story steel frame building. The main ob-
jective was to determine first three coupled modes; i.e.,
the fundamental modes in two orthogonal phases and the
fundamental torsional mode, all coupled, whose natural
periods are close together. Tests using simulated ground
motions have reéently become possible within a limited
capacity. The results of such tests on reinforced concrete
frames have been reported.

Hoerner45 indicated that a rectangular building with
small eccentricities and a smooth, uniform dispersion of
columns could have nearly équal fundamental periods in the

three directions of motion. A strong modal coupling, which
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might include both rotational and beating effects, resulted
in significant increases in the elastic response of such
structures.

Nigam46 studied the inelastic response of space~frame
structures. An example calculation for a simple space-
frame (a rigid floor supported by four columns at corners)
subjected to sinusoidal ground excitations in two perpendic-
ular directions, indicated that mode coupling causes yield-
ing at force levels lower than an analysis of uncoupled
planer motion would indicate. Wen and Farhoomand47
presented the analysis of truss structures, where the
masses were concentrated at each nodal point and plastic
hinges (of finite length) were assumed to occur at member
ends. The importance of yielding condition (interaction
relationship) was also emphasized.

Toridis and Khozeimeh48 introduced a finite element
method to solve a three dimensional structure subjected to
a dynamic load. The stresses can be checked segment wise
for each step of the calculation thus enabling each segment
to follow its moment-curvature relationship more closely
than any other lumped models. However, in order to enjoy
the advantage of this method, each segment must be reason-
ably small and hence the number of degrees of freedom could

become very large for even a relatively simple frame.
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The present study has made no attempt to examine these

many facts of the problem.
1-3 Scope of Dissertation.

This dissertation is divided into three major parts.
The first part (Chapters 2 and 3) describes an analytical
procedure to analyze plane structures subjected to a dynamic
disturbance. The results of the behavioral study are des-
cribed in the second part (Chapter 4). The third part con-
tains the recommended design procedure (Chapter 5).

To obtain the member response for inclusion in a
structural analysis, the material properties must be ideal-
ized to reduce the computational effort. This is especially
important when a dynamic analysis is to be performed. 1In
the present study, the material is assumed to have a tri-
linear type of stress-strain relationship which accounts for
hysteresis under strain reversals. Based on this stress~
strain relationship, moment-curvature relationships are
derived for various cross-sections. These are not used in
the normal fashion to obtain the overall member response;
instead each member is modeled as an elastic bar having
nonlinear rotational springs at either end. The character-
istics of the springs are selected to reflect the behavior
of the actual member, while the bars are assumed to remain

elastic. The pertinent derivations are included in

Chapter 2.
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The frame to be analyzed then consists of an assemblage
of elastic members connected by means of rotational springs
to the joints. The standard slope deflection equations are
modified in Chapter 3 to account for the properties of the
springs. The dynamic equilibrium equations are then formu-~-

lated for the frame. In order to check the assumptions

~ made in the analysis, the equations are specialized to

determine the response of a given frame to the application
of static loads.

For the dynamic analysis, either an earthquake motion
or a blast loading may be considered. The differences
between the two disturbances are briefly discussed in the
béginning of Chapter 4, which is assigned for the behavioral
study. The study is largely focused on the dynamic response
of steel frames, with or without shearwalls, to blast load-
ings. The selection of design blast loads for a particular
structure is presented in Appendix E by summarizing the
available information. The parameters studied are listed
in Sec. 1-1. Based on the results of the behavioral study,
proposals are made in Chapter 5 for the design of structures
subjected to blast loads.

In Chapter 6, conclusions from the study are stated.
The Appendices consist of supplementary explanations of the
statements and equations made in the main text. The com-
puter programs used to perform the behavioral‘study are also

listed in this section.
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Chapter 2.

MEMBER RESPONSE DURING STRUCTURAL VIBRATION

2-1 Introduction.

The objective of this chapter is to examine the inelastic
response of members in a structure in an attempt to develop
a simple model which is appropriate for use in a dynamic
analysis.

The first stage is to determine the stress-strain rela-
tionship for the material of the member element. A trilinear
type of stress~strain relationship is assumed. The moment-
curvature-thrust relationships can then be calculated for
various cross sections, and they are again approximated by
trilinear relationships to reduce the subsequent computa-
tional effort. The relationships between cross sectional
area and moment of inertia, plastic section modulus and
- moment of inertia, and the plastic moment capacity in the
presence of axial force are initially formulated for a
wide flange section. Thus all the necessary cross sectional
properties are determined by specifying the nominal size,
the moment of inertia and the amount of axial force.

If, in an actual frame, the portion of a column or
beam between the point of inflection and the connection
was extracted, it would be equivalent to a cantilever

column subjected to a transverse load applied at top of

19
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the column and an axial thrust. The behavior of such a
cantilever column is obtained by integrating the moment~
curvature-thrust relationship. This behavior is simulated
in this study by that of a model consisting of an elastic
‘bar with a nonlinear rotational spring at the end and sub-
jected to the transverse load only. The properties of the
rotational spring are selected to reflect the inelastic
behavior and strain reversals of the actual member, which
occur during a severe motion of a frame. The thrust is
eliminated in this model, and only the actual transverse
load is applied to obtain the second order inelastic
deflection. An iterative procedure is not required in this
model for the inclusion of P-A effect in contrast with

3,39
presently used approximate methods. '

2-2 Material Properties.

In the present analysis, it is assumed that the stress-
strain (o-¢) relationship, in either tension or compression,
has three distinct regions as shown in Fig. 2-1; i.e., the
initial elastic region, OA, the plastic plateau, AB, and
the strain-hardening region, BC. This representation is
typical for a wide range of steels used for building

3,49,50
structures.

The initialelastic relationship terminates at point A;

i.e., the yield point (the yield stress is oy and the yield
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strain is ey). The slope of this elastic region is the
modulus of elasticity (Young's modulus), E. The plastic
plateau extends to point B where strain-hardening starts
(the strain at this stage is e€gt). The point C corresponds
to the stage at which the material attains its ultimate
strength, o,. The strain-hardening modulus, Eg¢, is taken
as the slope of the straight line which connects points B
and C,

By assuming that the amount of plastic flow is zero
or that the strain-hardening modulus is zero, a bilinear
stress-strain relationship or an elastic~perfectly plastic
stress-strain relationship can be represented, respectively.

Under conditions producing strain reversal, the stress-
strain relationship of any element will remain elastic
until the element is deformed beyond the yield point, oy.
If an element is deformed beyond this limit, say to point D
in Fig. 2-2, and then subjected to strain reversal, it is
assumed that the unloading will take place along the line
DE, which has a slope equal to that of the initial branch,
OA. If the reversal continues, the stress-strain relation-
ship is obtained by extending the line DE to the yield
point F, where ¢ = —Oy- Thereafter the stress-strain
relationship will follow the curve FGH, which is symmetric

to the curve ABC about the midpoint of OE (Fig. 2-2).
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If the element is reloaded between points D and F, the
stress-strain relationship is assumed to retrace the line
DF to point D, then returns to the initial relationship on
branch DC. If reloading takes place beyond point F, say
point I in the same figure, the material is assumed to have
the initial elastic rigidity, E, up to point D', where the
stress is equal to that at point D. The stress-strain
relationship will then follow the curve D'C', obtained by

a parallel shift of the curve DC.

For subsequent loadings, it is assumed that the
material will behave in a similar fashion. The usable limit
of the material is assumed to be reached when the unused
strain~hardening portion of the initial curve (in the above
example, the portion DC in the positive direction, or the
portion IH in the negative direction) is exhausted. (If
Egy # 0, this corresponds to the stage at which the stress
reaches the ultimate value, fcu.)

This method of tracing hysteresis loops, previously
adopted by Kato and Akiyama,3 produces a reasonable approxi-

51,52

mation to the actual behavior except that the Bauschinger

effect is neglected,
2-3 Geometrical Characteristics of Wide Flange Sections.

To simplify the development of the moment-curvature-
thrust relationship, it is first necessary to determine the

relationship between the cross sectional area, A, and the
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moment of inertia, I; the plastic section modulus, Z, and
the moment of inertia, I; and the axial thrust, P, and the
reduced plastic moment capacity, Mpc, for a variety of
cross sectional shapes.

In this section, these relationships are determined
for standard wide flange sections, since they are used
extensively in the behavioral study in Chapter 4.

2-3-1 Relationship Between Cross
Sectional Area and Moment of Inertia.

The relationship between the cross sectional area, A,
and the moment of inertia, I, was examined for standard
wide flange sections.53 A similar study has been done by
Nakamura and Litle.54

Figs. 2-3 and 2-4 plot the relationships between these
properties for each series of wide flange shapes. The
equations describing the regression lines (calculated

between log A and log I) for each group are:

for W36X A= 0.0210 1 0-84
W33X A =o0.0198 1 0-86

W30X a=0,0287 1 0-83 (2-1)
W27X A = 0.0257 1 °-86
0.83

wW24X A =0.04041I



for

W21X

W1l8X

WleX

Wl4x

W1l2X

W1l0X

W8X

A

= 0.03311I

= 0,0397 I

= 0.0419 I

= 0.0843 I

= 0.0751 I

= 0.0998 I

= 0.1457 I

24

0.83 (2~-1)
cont'd

0.88

0.89

0.88

The slopes of these lines have a mean value of 0.87.

If these lines are adjusted to maintain the best fit while

holding the slope at 0.87,

for

W36X

W33X

W30X

W27X

W24X

W21X

W1l8X

A

the following equations result:

= 0,0159 I

= 0.0179 1

= 0.0209 I

= 0,0243 I

= 0.0283 I

= 0.0353 I

= 00,0442 T

0.87

0.87

0.87

(2-2)

0.87

[P,
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for W16X A=0.0531 1 287
W14x A =0.0630 1 287
Wl2X A =o0.0804 1 287 éé;i{d
W1l0X A = 0,1087 I 0.87
W8X A =o0.1515 1 087

This set of equations may be expressed by:
A = zigg 10'87, (2-3)
are

where d represents the nominal depth in inches. The lines
shown in Figs. 2-3 and 2-4 are those given by Eq. 2-3.

2-3-2 Relationship Between Plastic
Modulus and Moment of Inertia.

The correlation between the plastic section modulus,

54’55 is shown by the plots

Z, and the moment of inertia, I,
of Figs. 2~5 and 2-6. The equations for the regression lines

for each series of wide flange sections are found to be:

for W36X g = 0.102 T 2°9°

W33X 7 = 0.100 T 278
(2-4)

W30X 7 = 0.120 T 2?3

W27X z = 0,114 T 0-°°
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for wW24Xx 7 = 0.148 I 0.94 W
W21X 7z = 0,141 1 0-26 ?
W18X z = 0,162 1 2+26 |
W16X z = 0.169 1 27

(2-4) 7
W14X 7 = 0.273 1 0°9%2 cont'd s
W12X z = 0.250 1 0°9
W10X 7 = 0,285 1 29
Wex 7z = 0.346 1 0%

Proceeding as before, the equations can be approximated

by the formula:
7 = ——— T . (2_5)

The lines shown in Figs. 2-5 and 2-6 are those given
by Eqg. 2-5.
2-3-3 Plastic Moment Capacity

in the Presence of Axial Force. |

The plastic moment capacity, Mpc, under an axial force, ;
P, must be determined for various cross sectional configura-
tions. Fig. 2-7 shows the interaction curves for strong
axis bending of wide flange sections, using the nondimension-

alized parameters, Mpc/Mp and P/Py. The quantities, Mp and
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and Py are the full plastic moment capacity and the yield

axial load, respectively; i.e.,

and

curves A and B in this figure indicate the upper and
lower envelopes of interaction curves among the standard
wide flange sections, respectively. Based on this observa-

tion, the following relationships are used in the present

study.
P 1
For 1 3@“};2_'3—,
Mpe _ 1.20-B (2-8)
Mp Py '
1 P
and for 3 > §§ >0,
M
DTPE =1 - 1.8(§—)2 , (2-9)
P Y

which is indicated by curve C in Fig. 2-7.

~ This relationship is almost identical to the one
recommended by the ASCE56 for‘P/Py greater than one third,
but the present relationship gives a slightly better approx-
imation to the actual results when P/Py is less than one

third.
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2.4 Moment-Curvature-Thrust Relationship.

Assuming that a cross section which is plane before
deformation will remain plane during the loading process, a
theoretical moment~curvature-thrust relationship for a given
cross section may be determined either for the elastic-

57,58

perfectly plastic stress-strain relationship or for the

~trilinear stress-strain relationship of Fig. 2-1,3/59
2-4-1 Empirical Moment~
Curvature~Thrust Relationship.

Using the method given in Ref. 3, empirical moment-
curvature-thrust relationships have been generated for the
present study. The method described below is applicable to
wide flange sections bent about their strong axes and having
a stress-strain relationship similar to that shown in
Fig. 2-1., The effect of residual stresses is ignored.

The moment~curvature relationship in the absence of
axial thrust is first calculated and is approximated by a
trilinear relationship such as curve A in Fig. 2-8. Moment
is proportional to curvature up to point a. The moment at ;
this point is the full plastic moment, Mp, defined by

Eg. 2-6. The corresponding curvature, ¢p, is given by

Pop = " (2-10)

where K represents the elastic flexural rigidity of the
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cross section, or the slope of the line oa; i.e,, letting I

be the moment of inertia,
K = EI . o (2-11)

It is assumed that plastic flow starts at point a and ends
at point b where some rigidity is recovered due to strain-
hardening. The curvature at point b is s@p, where s is the
vratio of the strain at the onset of strain-hardening to the

yield strain (Fig. 2-1); i.e.,

s = €St/ey. (2-12)

After reaching point b, the moment increases at a rate of
EstI per unit of curvature, until the ultimate moment,

M, (point e), is reached. My is given by:

Curve B in Fig. 2-8 represents the response of a cross
section subjected to a constant axial load, P, as well as a
bending moment, M, for s 2 3 (which is typical for mild
steelso). A trilinear moment-curvature relationship is also
assumed for this case with the elastic stiffness the same as
that for the pure bending case; i.e., K. The proportional
limit (point a') is the reduced plastic moment capacity,

Mpc, which is calculated using the method described in the



30

preceding section. The corresponding curvature, @pc, is

given by

Ppc = M%ﬂp . (2-14)

The length of the plastic plateau, a'b', is given by @st

minus @pc, where

Pst = [s - 0.5/1-m(s+1)1@p , (2~15)
and
m = opc
Mp . (2~16)

It is assumed that the locus of point b' for various m
(0 £m £ 1) forms a parabola having its vertex at point b
and an axis of symmetry parallel to the M- axis and inter-

secting the @~ axis at 0.5(s-1)@p. The coordinates of

point b', (@Fst, Mpc), satisfy:

. - 2
Mpe = M- (2{ESESE00)) Ty, (2-17)

The flexural rigidity after point b' for Mpc/Mp = 0 (pure
compression) is twice that for Mpc/Mp = 1 (pure bending).
(See Sec. 2-4-2 for the rationale for this statement.) The
rigidity for an arbitrary value of m = Mpc/Mp, which is

represented by Kst, is obtained by interpolation as:

Kst = (2-m)EstI . (2-18)
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The increase in moment between point b' and the ultimate
condition (point c') is equal to that for the pure bending
case, regardless of the value of m. The ultimate moment,

Myc, under this axial thrust is, therefore,
Myc = Mpc + Mu - Mp (2-19)

If the quantity s is between 1 and 3 (which is possible
for high strength steel), the locus of point b' in the above
procedure is modified for m less than %(3 + 2s - s2).

In this case, @st is given by:
Pt = I[m+ 0.5(s-—l)]¢p . (2-20)

The moment-curvature-thrust relationship obtained in
this manner is compared with the exact solution3 in Fig. 2-9.
The stress-strain relationship used in this calculation was
a trilinear type such as that shown in Fig. 2-1; the perti-
nent data are shown in Fig. 2-9. The cross sectional con-
figuration is also shown in the inset to the figure. When
using Egqs. 2~3 and 2-5; d = 6 and I = 57.1 were input. The
relationships calculated using the present method are shown
by broken lines while the solid lines represent rigorous

relationships.
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2-4~2 Derivation of Approximate Formulae.

Some of the quantities used in the formulae above may
be explained briefly by considering a wide flange section
represented by the model shown in Fig. 2-10(a). All of the
cross sectional area is concentrated in two flanges, each
having an area A/2, and placed a distance, 4, apart.

Figs. 2~10(b) and (d) show the strain distributions for
various loading conditions. Diagram 1 corresponds to
point a in Fig. 2-8; i.e., the attainment of the full
plastic moment capacity under pure bending. Diagram 2
corresponds to point b in the same figure, the onset of
strain hardening. The corresponding curvatures, @; and

g, , are:

o

g, =

_  (A/2)deyE
B 23A7253§725’E

g

0,
~
(N

"

m‘E
H['O

(2~-21)

and

@, = az

= S¢1 (2—22)

[P,

—
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respectively, which provide the rationale for Eq. 2-10,
Diagram 3 shows the strain distribution for a section
yielded undér pure compression; i.e., the case when

P/Py = 1.0 or m = 0. If this section is subjected to
additional bending, plastic flow takes place without the
development of resisting moments until the strain condition
indicated by diagram 4 is reached. The curvature at this

stage, @y , is

n
1
—

= =5 %p (2-23)

which can also be obtained from Eq. 2-15 by letting m = 0.
For an arbitrary value of m, the curvature at the onset of
strain-hardening is assumed to have a locus which is a
parabola connecting this point and point b as described
previously.

Fig. 2-10(c) shows the equilibrium of internal forces
when the cross section is deformed into the strain-hardening
range for the pure bending case and corresponds to the
strain distribution of diagram 5 . The bending moment is

increased from that at the onset of strain-hardening by an
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amount:

§M = Ge+Egt -%--d, (2-24)

while the increase in curvature is:

se (2-25)

8 = a7z
Therefore the slope of the moment-~curvature relationship in

the strain-~hardening range is:

M §e+Egten/2-d
3 T se/(ds2)

Egt*A/2+(d/2) 2.2

EgtI (2-26)

-as shown in Fig. 2-8. On the other hand, starting from the
strain condition shown in diagram 4. (for the case P/Py =
1.0), in order to increase the moment by the amount given
by Eq. 2-24, the equilibrium of internal forces must be that
shown in Fig. 2-10(e), which corresponds to the strain dis-
tribution of diagram 6 in Fig. 2-10(d). The increase in
the compressive force in the top flange is equal to the
decrease in force in the bottom flange, thus if the decrease
in strain in the bottom flange is §e',

sg-Est.A/Z = §e'E.A/2

se' = —%E Se . (2-27)

I
O
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Since the value, de', is small compared with 8¢, the change
in curvature to increase the moment by the amount given by
Eq. 2-24 is approximately

$

™

88 = = - (2-28)
Therefore the slope in this case is:
SM _ S8e+Est-nr/2-.d
5g de/d
= 2Eg¢I (2-29)

Egq. 2-18 is derived by interpolating the values given by
Egs. 2-26 and 2-29 for an arbitrary value of m. Some of
these quantities are explained in the derivation of the
rigorous solution given in Ref. 3.

2-5 Use of Rotational Spring to Simulate
Member Inelastic Action and P-A Effect.

In accordance with the scope given in the beginning of
this chapter, the behavior of a cantilever column, subjected
to a transverse load and an axial load, is examined. The
actual behavior of this column, which is obtained using the
moment-curvature-thrust relationships derived in the pre-
ceding sections, is simulated by the response of an elastic
bar having a nonlinear rotational spring at the lower end.

The bar is subjected to the same transverse load but is not
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subjected to an axial load. The objective of employing a
rotational spring is to simplify the treatment of inelastic
action with strain reversals and to include the P-A effect.
(In Sec. 3-3, the function of this rotational spring is

expanded to include other secondary effects.)
2-5-1 Analysis of Cantilever Column.

If a cantilever column is subjected to a constant
axial load, P, and a varying transverse load, Q, as shown
in Fig. 2-11, the column will behave elastically, until the

moment at the lower end, Mb’ given by:
M, = QL + PA (2-30)

reaches the reduced plastic moment capacity, Mpc. In this
expression, L is the column length and A is the deflection
at the top of the column.

The moment-curvature relationship for the column under

the given axial load is assumed to be that shown in Fig. 2-12.

This relationship may be obtained by the approximate method
explained in the previous section if the column has a wide

flange section. For other types of cross sections (or also

for a wide flange section), moment-curvature-thrust relation-

ships may be obtained by employing other reasonable

methods3’56'59'60 or by modifying the pertinent equations

above to fit the individual case.

[—
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The deflection at the top of the column, A, is:

3 -
(uL)
UM
for o = mﬁ% (2-32)

implying that the column behaves elastically. In the above

expressions,

u = VYP/K . (2-33)

If the column is forced to deflect beyond this limit,
the inelastic region spreads from the lower end of the
column, resulting in an increased end moment because of
strain~hardening in this region, in accordance with the
relationship shown in Fig. 2-12. The deflection, A, in this

case is expressed as

A = Ay + bp, (2-34)

where Mp~ . OL
he = & -1 (2-35)

|
and tanvL
- 9 2
Ap = P (-—T' Lp)

+ M-li;(»sinszztanvL2+c05vL2-l), (2-36)

for the value of Q such that the inelastic region increases

in length. 1In the above equations:
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v =/IT1->-—, (2-37) ?’

st

Ly = the length of the column which behaves
elastically, and

L, = the length of the column which has
strain hardened,

as shown in Fig. 2~11. Obviously,
Ly +Ly = L. (2-38)

-Further, Mij represents the intercept on the moment axis
shown in the moment curvature relationship of Fig. 2-12. 1In
the inelastic range, the transverse load, Q, may decrease,
particularly if the axial load, P, or the column length, L,
is relatively high or the stiffness in the strain hardening
range Kgt, is comparatively small.

Since the length of the inelastic zone, Lj, is dependent
on the value of the transverse load, Q, or vice versa, the
following relation between Q and L, must be introduced in

order to determine the Q-A relationship in this range.

cosvli2

pcm - MjvainvLa (2-39)

Q =

Once the value of Ly has been selected, Q is calculated
using the above equation, and the corresponding A is obtained
from Egs. 2-34, 2-35 and 2-36.

Similar load deflection relationships must be computed

for special cases: when the axial load, P, is zero; when the [
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stiffness in the strain hardening range is zero (i.e., the
elastic-perfectly plastic case); and when the column is not
fixed at the lower end but is connected to an elastic foun-
dation. The Q-A relationships for these cases, as well as
the derivation of the appropriate equations are given in
Appendix A.
2-5-2 Use of Egquivalent Rotation Spring to
Simulate the Actual Column Behavior.

The behavior of the actual member discussed above can
be approximated by considering the system shown in Fig. 2-13.
The spring at the base of the column is forced through a
rotation, 8§6g, for a given transverse load, Q (corresponding
to a moment in the spring, Mg = -QL). The spring is selected

so that the deflection at the top of the column is equal to

that given by Eq. 2-31 or Eqg. 2-34 even though the axial

load is eliminated. The stiffness of the column is assumed
to remain equal to the elastic stiffness, K, throughout the
complete column length, regardless of the end moment at the
base of the actual column.

In order to satisfy the preceding conditions, the
spring at the base of the column must produce a rotation,
§0s (which will be called a relaxation angle), that should
satisfy:

3
= QL -
A §0 L + == (2-40)
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in which A is the value given by either Eq. 2-31 or Eqg. 2-34
depending upon the condition of the actual column. There-
Vfore the member end moment, Mg, and the relaxation angle,

aes, are related by:

MgL
3R * (2-41)

Hi>
+

50 =

The end moment and the relaxation angle are both posi-

tive in a clockwise sense, thus the relationship
Mg = -QL (2-42)

is used to obtain Eq. 2-41.

Some typical moment-relaxation angle (Mg-366g) relation-
ships for the rotational springs are shown in the upper
portions of Fig. 2-14a to 2-14d by the full lines. 1In these
relationships, the slope in the elastic range is calculated
as below. From Egq. 2-31, A is given in terms of end moment
(moment in thé spring), Mg, by:

2
MgL -
A = §K . 3(tanuL-pL) (2-43)
(up) 3

Substituting this into Eq. 2-41,

ML - MgL
565 = S 3(tanuL-uL) + 8

3K (uL) 3 3K

3 (tanpL-uL) _ l]MsL

(2-44)
(un) 3 3K

-




41

Thus the slope is:

-1171 . (2-45)

Ms _  _3K3(Laml-yulL)
()3

§ 6g L
And the limit of elastic behavior of this spring, (Mg-y,

Ges_y), is given by:

= L _l L _ub -
60~y = [PL (PL + 3K)' tanuL]MPc » (2-46)
and
= M -
Mgy taniL Mpc - (2-47)

For the inelastic region, points on the Q-A relationship
(given.by Eq. 2-34) correspond to similar points on the
Mg-686g curve through the relationships given by Egs. 2-41
and 2-42. The broken lines in the Mg-§6g curves represent
the behavior in the absence of strain-hardening. The slopes

of these lines, %, are given by:

r = PL . (2-48)
(1 + PL2/3K)

By selecting the MS—GGS relationship as shown above,
the model shown in Fig. 2-13 produces a load-deflection
(0-4) curve exactly the same as that of the actual column

‘shown in Fig. 2-11.
2-5-3 Characteristics of Mg-88g5 Curves.

Fig. 2-14a shows the Mg-80g relationship when the axial

load, P, is zero. The section considered here is a W12X85.
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The column length is 60 inches. The moment-curvature
relationship used in this calculation is also shown in this
figure. This was obtained by assuming a stress-strain
relationship typical of G40.12 steel (oy = 44 ksi, 04 =
l.350y, E = 29600 ksi, E/Egt = 40, s = 10). In this case,
805 is zero until Mg reaches the plastic moment capacity of
the member, Mpc = Mp. If strain-hardening occurs, the
spring moment is increased until it reaches the ultimate
moment, Myc = My, with a corresponding increase in the
relaxation angle, §6g4.

The effect of axial load on the Mg-§6g5 relationship is
shown in Figs. 2-14a, 2-14b, and 2-1l4c, where the applied
axial load is 0.0, 0.3Py, and 0.6Py respectively. Other
properties are the same for comparison. With an increase
in the axial load, the slope of the elastic branch of the
curve is reduced and the yield moment of the spring, Mg-y,
is decreased. For relatively high axial loads, the Mg-§6g
relationships exhibit negative slopes in the inelastic
range, although strain-hardening does provide an increased
strength relative to the elastic-perfectly plastic case
(Note the difference between the solid curves and the broken
lines). The contribution of strain-hardening is relatively
greater for columns subjected to higher axial loads.

Figure 2-14d shows an M -86g curve with the same axial

load (0.3Py) as in Fig. 2-14b, but the column length is
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increased by 50% (90 inches). The other parameters are the
same in both cases. The comparison between these two curves
indicates that the increase in column length has a small
effect on the yield moment of the spring, Mg-y. although the

inelastic¢ curves are somewhat different.
2-5-4 Consideration of Reversals of Load.

The M -6 relationship can account for reversals of

s
load by using a method analogous to that discussed in

Sec. 2-1, used to account for strain reversals when consider~-
ing the stress-strain relationship of the material.

For a symmetric column section, the initial Mg-686s
relationship is also symmetric about the origin as shown by
curve Bl—Al—O—Ai-Bi in Fig. 2-15(a). When the reversals of
load are within the elastic range (between point A3 and
point Ai), the Mg-86g relationship need not be modified.

Once the moment has reached the yield moment, Ms-y or -Mg-y,
and unloading occurs between A; and By (for example, at
point Sl), the M -66g curve must be changed to that shown
by Bl—Sl—Aé—B; in the same figure. In this figure, the
dashed lines have slopes given by Eq. 2-48. The line Sl-A;
is assumed to be parallel to the line Al"Ai' where point Aé
'

1 ]
is on the dashed line passing through point Ay Curve A,-B,

1-B

is obtained by a translation of curve Al

L)
lo
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1]
If subsequent reversals of load are within line Sl—Az,

this curve need not be changed.

If after reversals of load, however, the moment in the
opposite direction exceeds that corresponding to point A;,
and unloading is to take place at, for example, point S;,
the Mg-66g curve must be modified to that shown as
B;-S;—Sz—B2 in Fig. 2-15(b). Again the unloading stiffness
corresponds to the initial loading stiffness. The point S,
lies on the dashed line passing through point Sl’ with a
slope given by Egq. 2-48. Curve SZ_BZ is again obtained by
a translation of curve Sl—Bl.

A similar process is repeated for subsequent reversals
of load. Collapse is assumed to occur when the above /7é
procedure is no longer possible; that is, when the M -86g
curve in either direction is completely exhausted.

This method of tracing the response of a member implies
that the member strength may be increased under an increased
number of reversals of load in the inelastic range. This
3,61-68

phenomenon has been reported in several references.

The present method is based on the theoretical explanation

by Kato and Akiyama;3
2-6 Computer Program

In this section, a brief explanation of the computer

program developed to construct the Mg-§8g relationships



45

for a wide flange section with the stress-strain curve
shown in Fig. 2-~1 will be presented. This section also
serves as a summary of this chapter.

The necessary input data for the program are as
follows:

| (1) E : Modulus of elastiqity,

(2) Oy 3 Yield stress,

(3) s : egt/ey as in Fig. 2-1,

(4) Eg¢/E : as in Fig. 2-1,

(5) ou/oy : as in Fig. 2-1,

(6) 4 : Nominal size of wide flange section,

(7) I : Moment of inertia of the section,

(8) P

Axial force, and

(9) L : Column length.

The first five parameters are necessary to describe the
stress-strain relationship. The column section is described
only by its nominal size and moment of inertia. The cross
sectional area, A, is calculated using the relationship given
by Eq. 2-3. The ratio of axial load, P, to the yield load,
Py, is then computed. The plastic section modulus, 2, is
found from the relationship of Eq. 2~5. The moment-curvature
relationship under pure bending corresponding to curve A in
Fig. 2-8 is next computed. The reduced plastic moment
capacity, Mpc, under the axial load, P, is found from

curve C in Fig. 2-7 or from Egq.- 2-8 or 2-9. Once the
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value of Mpe is determined, the moment-curvature relationship
for the given axial load is constructed according to the pro-
cedure described in Sec. 2-3.

The properties of the rotational spring (Mg-86g rela-
tionship) are determined as expalined in Secs. 2-4-1 and
2-4~-2, The resulting Mg-66g relationships are drawn by the
CalComp Plotter (Model 770/663) as shown in Figs. 2-1l4a

to 2-14d. The computer program is listed in Appendix B.
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Chapter 3.

FORMULATION OF EQUATIONS OF MOTION

3-1 Introduction.

In this chapter, an actual frame is represented by an
analytiéal model which consists of elastic members, rigid
bars and equivalent rotational springs, which account for
the inelastic properties and the P-A effect, as described
ih Chapter 2. The function of a rotational spring is ex-
panded to include the influence of semi-rigid connections,
deformation of joint panels and shear deformation of
members.

In order to solve the equations of motion, it is first
necessary to evaluate the static load~-deflection relation-
ship. The standard slope deflection equations must be
modified for a member with nonlinear rotational springs.
It is only necessary to change some of the coefficients
in the modified slope deflection equations, when the Mg-§0g
relationship of a rotational spring is changed from one
stage to another. Because of this simplicity, the inelastic
response with reversals of load is calculated efficiently.
The static load-deflection relationships obtained from this
method have been checked against the published test results.
When the static load-deflection curve is known, the equa-
tions of motion can readily be solved. A linear acceler-

ation method is used to integrate the equations of motion.
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3-2 Analytical Model.

The frame to be analyzed is modeled as shown in
Fig. 3-1. The number of stories, Ng, and the number of
bays, N, as well as the story height for each story and
the bay width for each bay in the model correspond to those
of the original frame.

The stiffness of a member in the modeled frame is
taken to be equal to the elastic stiffness of the corres-
ponding member in the actual frame and is assumed to be
unchanged throughout the response regardless of the stress
level. A rotational spring of the type explained in
Chapter 2 is placed between each member and the correspond-
ing joint (or a rigid stub) as shown in the figure, to
account for the inelastic action of the member and the
secondary effects. The procedures used to determine the
properties of this spring will be discussed in the follow-
ing section. If a shearwall is present, it is simulated by
a column which has a bending stiffness and strength equiva-
lent to those of the original shearwall and is attached to
the adjacent beams through rigid stubs. The stub length
simulates the wall width effect.69 This column is then
treated in the usual manner.

The bottom story columns are attached to the foundation
by elastic rotational springs in an attempt to account for

the flexibility of the foundation. The secondary effects



67

produced by axial shortening or elongation of the columns
are ignored. Uniformly distributed loads may be applied
to the beams although the possibility of forming a plastic
zone within the span length of a member is not checked.

The masses are assumed to be concentrated at each
floor level and to translate in a horizontal direction only
as shown graphically in Fig. 3-1. A mass concentrated at
a floor level is denoted by mj, in which the subscript i
identifies the floor level.

Damping forces are assumed to be developed by the
relative motion of adjacent floors.70 Thus the damping
force at the i-th story is expressed as cj (xj-Xj+1), in
which c;j represents the damping coefficient which is con-
stant throughout the motion within a story; and ii and §i+l
represent the velocities‘relative to the ground at immediate
upper and lower floors, respectively, with respect to this
story.

Each nodal point and member are numbered as shown in
Fig. 3-2. Floors and stories are numbered from the top.
Bays and columns are numbered from the left. The joint of
the i-th floor (from the top) and the j-th column row
(from the left) is called the {(Np+1) (i-1)+j}-th joint.

The beam of the i-th floor and the j-th bay is called the
{ (2N +1) (i-1) +j}~th member and the column of the i-th story

and the j-th column row is similarly called the
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{ (2Np+1) i=- (Np+1)+j}~-th member. Thus a Np-bay, Ng-story

frame consists of (Np+1l)Ng joints and (2NL+1)Ng members.
3-3 Egquivalent Rotational Springs in Modeled Frame.

Equivalent rotational springs are placed at the ends of
each member of the frame (Fig. 3-1) to account for the
influence of axial load and the inelastic behavior (includ-
ing the strain-hardening effect) of the actual member.

The properties of these rotational springs are deter-
mined in the following steps. The axial load and the point
of inflection are estimated for each member in the actual
frame . (Fig. 3-3). These values are then assumed to remain
constant during the motion of the frame. Undér these
conditions, the portion from the point of inflection to
the joint (for instance, the portion a-b in Fig. 3-3) would
be equivalent to the system shown in Fig. 2-11., This canti-
lever column is then simulated by the system shown in
Fig. 2-~13, in which the properties of the rotational spring
is‘obtained in accordance with the method discussed in
Sec. 2~5. It is the above-obtained rotational spring that
is placed between the member and the corresponding joint
in the model of Fig. 3-1.

In the actual frame, the positions of the points of
inflection and the values of axial forces are not known

beforehand, and moreover may change during the loading
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processes. Consequently it is impossible to account exactly
for these effects by the present method. Generally, how-
ever, these values would not change drastically during the
motion of a structure, especially for the interior members
of regular frames. Reasonably small changes in the equiva-
lent cantilever column length, L in Fig. 2-11, (the length
from the point of inflection to the joint, a-b in Fig. 3-3)
produce rélatively small changes in the Mg—-66g relationship
as discussed in Sec. 2-5-3. Thus the Mg-§0g relationship
is primarily a function of the axial load and the material
and cross sectional properties.
3-4 Influence of Semi-Rigid Connections, Deformation

- of Joint Panels, and Shear Deformation of Members.

Thé Mg-86g relationship obtained in the manner discussed

in the preceding section (for example, curve A in Fig. 3-4)

- will be modified to include the influence of semi-rigid

connections, deformation of joint panels, and shear deforma-
tion of members.

The connection of members at a joint may not be rigid;
i.e., a relative rotation between ends of adjacent members
will be observed, for example, in a bolted joint13 as shown
in Fig. 3-5. The relaxation angle is a function of the end
moment and may be represented by curve B in Fig, 3-4.

The shear deformation in a joint panel may sometimes
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have a significant influence on the overall response of a
frame.12/71The moment diagram shown in Fig. 3-6(a) can be
expected when a frame is subjected to lateral loads. The
stress condition in a joint panel is shown in Fig. 3-6(b)
corresponding to the moment diagram of Fig. 3-6(a), and
the deformed shape of the panel in Fig. 3-6(c). Curve C
in Fig. 3~4 indicates the average end moment vs. change in
angles between the ends of beams and columns. (In the case
where combined vertical and lateral loads are to be con-
sidered, it would become difficult to relate the relaxation
angle to the end moment.)

Shear deformations of a member may also be taken into
account, if desired. The deflection due to shear for the

- member shown in Fig. 2-11 is given by (ref. Fig. 3-7):

= K& -
where G is the modulus of rigidity, A is the cross sectional

72 Therefore, the end

area, and K is the shape factor.
moment, Mg = QL, and the relaxation angle, 8§65 = A/L, are
related by:

_  GAL
Mg = - 668 . (3-2)

This relationship is shown schematically by curve D in
Fig. 3-4,.
If the curves A through D are combined, the resulting

curve is that shown by curve E in Fig. 3-4. If the
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rotational spring at the end of the member has an M -§6g
relationship which follows this curve, it is then possible
to approximate all of these secondary effects together with
the inelastic action of the member.

The unloading of the member will be considered by
applying the procedure described in Sec. 2-5-4 to the result-

ant Mg-§0g curve.

3-5 Stiffness Matrix for Frame.

3-5-1 Slope Deflection Equations for Members with
Rotational Springs and Rigid Stubs.

rThe actual structure has been modeled according to the
prqcedure described in the previous sections (Sec. 3-2 to
3-4). 1In order to calculate the response of the frame, it
is first necessary to modify the standard slope deflection
quﬁations to accomﬁodate the presence of rotational springs
at the member ends and, if required, the presence of rigid
stubs which simulate the wall width effect.

The member, a-c-d-b, shown in Fig. 3-8 is considered
as a general example. The entire member length is denoted
by L and the rigid stubs placed at the left and right ends
have lengths of )L and AjL, respectively. Thus the length

of the elastic portion of the member is )3L, where

A1t a2+t a3 = 1
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and

Ay > 0; Az > 0; k3 > 0.

A sway rotation, p (between the end a and the end b), is
permitted for a column but not for a beam. A uniformly
distributed load, w, may be applied to a beam over its
entire length. Equivalent rotational springs are located
at the ends of the rigid stubs at points ¢ and d. The
portion c-d is assumed to remain elastic regardless of the
deflected shape of the member.

The Mg-§6g relétionship for the rotational spring for
each member end has been determined by the method described
in Secs. 3-3 and 3-4. These relationships are now approxi-
mated by the tfilinear relationships as shown in Fig. 3-9

to simplify the calculations. Thus the additional angle

change at point ¢, -§6¢, and the end moment, Msq, are related

by:

Mca = %1(-86g) + By (3-3)
and similarly at point d:

Mge = %2(-806g) + By (3-4)

with appropriate values of %3, B3, %5, and B, depending upon
which branch of the moment-relaxation angle relationship is
describing the present condition.

The end moments, M, and Mpa, are calculated as:
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(3-22)

where K = EI. (3-23)
If the sway rotation, p, is get equal to zero in the
preceding equations, the behavior of a beam is simulated.

If

and

A].:)\ =0;}\3=l

are substituted, the equations simulate the action of a
column; The derivation of Egs. 3-5 and 3-6 is detailed in
Appendix C.

It is nofed that the inelastic behavior (in this case,
the Mg-66g relationships for the rotational springs deviate
from the initial linear branch passing through the origin)
is expressed by the same equations, by changing the co-
efficients a; and B; or a, and B, in Egs. 3-3 and 3-4, and

in Egs. 3-5 and 3-6.
3-5-2 Stiffness Matrix for the Frame.

When the end moments for each member have been expressed
by Egs. 3-5 and 3-6, it is possible to formulate the moment
equilibrium condition at each nodal point and the shear

equilibrium equation for each story. In these equations,



76

the joint rotations and story shears are written in terms
of the horizontal deflections at each floor level.

Using the notation defined in Sec. 3-2, the number of
unknowns is equal to the sum of the number of stories, Ng,
and the number of joints, Ng(Np+l); i.e., a total of
Ng (Np+2) . The coefficient matrix, [R], is therefore
Ng (Np+2) X Ng(Np+2) in size. Letting the vector {6} denote
the unknowns (consisting of joint rotations and story

shears), the equilibrium equations are expressed as:
[R]}{6} = ({B} (3-24)

where the vector {B} consists of fixed end moment terms and
the sway rotation terms, By arranging the equilibrium
equations in an appropriate order, the coefficient matrix
[R] becomes a band matrix with a width of 2Np+3 and will
have the diagonal elements deminant in most cases. Then,
the LU decomposition of [R] by Gaussian elimination without
pivoting technique can be employed without losing
accuracy.73’74Thus, by preparing a space for an array of

Ng (Np+2) * (2Np+3) for the matrix [R], Eg. 3-24 is solved
for any right hand side vector {B}. If a multiplier, in
the process of Gaussian elimination, grows greater than one,
there is a possibility that accuracy is lost by one digit

and if it grows greater than ten, the loss of accuracy

could be 2 digits. Should it be the case that the loss of
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accuracy could be more than two digits in this process,
the computer program is made to indicate this situation.
This critical condition, however, has not happened through-
out the behavioral study included in this study.

The horizontal loads (or story shears) compatible with
the assumed deflected shape used to obtain the vector {B}
are determined by extracting the story shear terms from
the solution {6}. If the vector {B} is computed by aséum—
ing the sway rotations are zero at every story, the story
shears (the sum of the horizontal loads applied at floor
levels above a particular story) required to restrain the
frame in this position are calculated. This vector is
denoted by‘{no}, which is a zero vector unless the uniformly
distributed loads on the beams produce lateral sways. If
the vector {B} is calculated by permitting a unit displace-
ment only at the i-th floor level (from the top), the story
shears required to maintain the other floor levels in the
undeflected position can be calculated as {ni}. Then, the

i-th column of frame stiffness matrix, [G], is given by

'{ni}, which is:

;b o= {ngd - {ng} . (3-25)

Repeating the computation of {ni} for i = 1 to Ng, the
elements of the complete frame stiffness matrix are obtained.

Thus the story shears {Q}, and the corresponding deflections
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at each floor level, {x}, are related by:
{e} = [G] ({x} - {Eo}) (3-26)

where the vector {go} is the initial deflection at each
floor level produced by vertical loads alone applied to the

beams, and is obtained by:
g} = -1617 ) (3-27)
0 0" -

Eq. 3-26 is valid if the M -864 relationship for every
rotational spring in the frame remains elastic. If any
of the rotational springs are forced into the inelastic
branches of the M -86g relationships, the stiffness matrix
must be adjusted. Let the vector {£} be the deflections at
each floor level and let the vector {n} be the story shears i
at the instant that changes are required in the stiffness >
matrix. Equilibrium equations, similar to Eq. 3-24, are
constructed using new branches of the Mg-864 relationships
(substituting a new set of ag and Bl or a new set of a, and
82 in the modified slope deflection equations) at the perti-
nent member ends. The new stiffness matrix, [G], is calcu-
lated in exactly the same manner as before. The deflection
at the floor levels, {x}, and the story shears, {Q}, are

now related by:
{o} = [61({x} - {g}) + {n}. (3-28)

This procedure is repeated as required to obtain
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the updated stiffness matrix and the corresponding relation-

ship between the story shears and deflections.
3-6 Static Responses.

In order to check the adequacy of the static load-
deflection relationships obtained from the present models,
they have been compared with the published results of

11,75 It has been con-

experimentally obtained responses.
cluded that the present procedure can simulate the actual
behavior satisfactorily.

One example is given in Fig. 3-10. The frame analyzed
by Yarimci75 is shown in the inset. The ordinate represents
the horizontal load at each floor, H, and the abscissa the
sway at the first floor (from the bottom in this case), A.
The solid curve shows the test result and the broken line A
the theoretical calculation by Yarimci. The result from
the present calculation is shown by broken line B.

When calculating the response by the present method,
the concentrated loads on beams were replaced by the uni-
formly distributed loads that were to produce the same
fixed end moments. The M -66g relationship for the equiva-
lent rotational springs were calculated assuming the points

of inflection at midpoint of each column. The axial loads

on the columns were assumed as follows for the purpose of
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calculating the Ms—des relationships.

3rd Story (top) : Q + P = 43 kips (per column)

2nd Story : Q + 2P 66 kips

It

lst Story (bottom): Q + 3P 89 kips

Other secondary effects such as the shear deformations of
members and joint panels were ignored. The M -§6g relation-
ships obtained in this manner are the same for the top and
bottom ends of a column within a story. Axial loads were
taken to be zero and the points of inflection were assumed
at midspan when calculating the Mg~665 relationships for
each beam end. The effect of strain-hardening was ignored
in both this analysis and the original analysis.

Thus it is seen that the present method can trace
"the actual behavior reasonably well, in spite of the fact
that the assumptions made to determine the properties of

rotational springs have been somewhat crude.
3-7 Equations of Motion.
3-7-1 Formulation of Equations of Motion.

If the masses, m;, are assumed to be concentrated at
each floor level and damping is assumed to be developed by
the relative motion of adjacent floors as stated in Sec. 3-2
or as shown in Fig. 3-1, the equations of motion are formu-

lated as outlined below.
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Let Xxj, ii, and ii be the deflection, velocity and
acceleration, respectively, at the i-th floor relative to
the ground and let vectors {x}, {x}, and {x} represent sets
of such values from the top floor to the bottom floor at
any instant during the motion.

The restoring shear at the i-th story, Qj, is the i-th
element of the vector {Q}, which is a function of {x} and

is expressed in general by Eq. 3-28; i.e.,
{o} = [Gl({x} - {g}) + {n}

where the stiffness matrix, [G], and the vectors, {£} and
{n},depend upon the behavioral history of the frame from
the‘initiation of motion to the instant under consideration.

If the acceleration of the ground motion is given by
§O(t), the acceleration at the i~th floor with respect to
the absolute axis is ii + §0, and thus the inertia force
due to D'Alembert's principle is —mi(ﬁii + §0).76

The evaluation of the damping effect is complex.
However, it is simply assumed here that the damping force
is proportional to the relative velocity of adjacent

floors'® and is given by ci(ii—i ), where the damping

i+l
coefficient, Cy» is taken as:

2h; Gyy
c, = —=+ ii (3-29)
1 U)l

in which Gii is the i-th diagonal element of the initial
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stiffness matrix [G] (which is expressed in terms of story
shears), and wy is the circular frequency in the first
natural mode of the undamped frame; hj; is an arbitfary con-
stant serving the same purpose as does the percentage of
‘critical damping in the analysis of single degree-of-freedom
systems.

Since the applied loads (inertia forces) must be in
equilibrium with the frame restoring forces and the forces
developed by damping as shown in Fig. 3-11, the following
conditions must be satisfied.

At the first story:

-my (X + ¥,) = 0 ({x}) + ) (x -%,) (3-30)
At the i-th story (i = 2, 3, ... , Ng-1):

i - " ..

jEl{—mj(xj + yo)} = Qi({x}) + e (xy-x; 4) (3-31)

At the bottom story (the Ng-th story):

Ns . X3 °
—— = -32
jﬁl{ mj(xJ + yo)} QNS({x}) + chst (3-32)

Or in a concise form:

. _ l . _
X, = -ﬁ;{cixi + Qi({x}) + Si(t)} (3-33)

for i =1, 2, ... , Ns' These equations are termed the

equations of motion. Where:
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S;(t) = CMA, + yo(£) - CSM; = ¢k, (3-34)

and the last term, C.X, , is zero for i = N.. CMA. and
1i7i+l S i

CsM; are given by:

for i=1 : CMA. = 0 ; CSM, = m;

i i
i-1
for i = 2 to N _~1 : CMA, = I m.X.;
s i P By
j=1
i (3-35)
CSMi = X m
3=1 7
-1
Ng , Ng
for i = Ng : CMAl = T m.X. ; CSMi = Im
j=1 JJ j=1 J

The equations of motion under a blast loading are
obtained in a similar manner, if the loads are assumed to
be concentrated at each floor level and to vary in propor-

41 In the actual

tion to one another during the blast.
case, pressures act on all surfaces of the structure.

Both the dynamic pressure and the overpressure have distri-
butions which depend upon the characteristics of the blast,
distance of the structure from the blast, the terrain sur-
rounding the building and the shape of the structure. 7,78
It is possible in many cases to approximate the ratio of
the blast loads acting on each floor level.

Let the vector {r} denote this ratio. The blast load

applied at the i-th floor is then expressed by Z(t)ri,
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where Z(t) is a function of time and represents the blast
load applied at the floor level where the value of r, is
equal to one. Evaluation of Z(t) will be explained

in Appendix E. The external loads which are in equilib-
rium with the inner forces (restoring frame forces and the
forces developed by the damping action) are the sum of the
blast loads and the inertia forces; i.e., at the i-th

floor, —miﬁi + Z(t)ri. Defining a vector {CR} such that

i
CR., = L r. ' (3-36)
i jo1 3
for i =1, 2, ... , N, and replacing §0(t) and CSM; - in

Eg. 3-34 by -2Z(t) and CR; respectively, Eq. 3-33 now
represents the equations of motion under blast loading

conditions.
3-7-2 Numerical Integration.

To solve the coupled second order differential equa-
tions such as Eg. 3-33, a numerical integration method is
employed. The linear acceleration method18 is used in
this study.

The acceleration at any floor is assumed to change
linearly within the time interval, At; i.e., if the accel-
eration at a time nAt (from the initiation of vibration;

n is an integer) at the i~th floor is §i(n) and the accel-

eration at time At later at that floor is ii(n+l), then
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the derivative at time nAt, §i(n), is assumed to be:

%. (n+1) - x. (n)
%, (n) = = = , (3-37)
At

and the fourth (and higher degree) derivative of X vanishes.
Therefore, assuming that xi(t) is differentiable for at
least three times between nAt and (n+l)At, Taylor's expan-

sion is written as:

ser

x; (n) x; () 5 X (n) 4

x,(n+l) = x,(n) + At + AT + At (3-38)

1 1 1 1 1

1. 2! 31

and by differentiating:
. . X, (n) X, (n)
x, (n+l) = x,(n) + At + AT . (3-39)
* * 1! 2!

Substituting Eq. 3-37 into Egs. 3-38 and 3-39, xi(n+l) and

ii(n+l) are, respectively, expressed as:

_ . lu 2 l.. 2 _
xi(n+1) = xi(n) + xi(n)At + §xi(n)At + gxi(n+l)At (3-40)
and
%. (n+1) = %, (n) + L%, (n)At + =x. (n+l) At (3-41)
i i 271 291 *

Egs. 3-40 and 3-41 together with Eq. 3-33 determine the
deflection, velocity and acceleration at each floor at every
instant of the motion. For determination of these values,
héWever; an iterative procedure is required. The chart

shown in Fig. 3-12 describes this procedure.
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The computer program which is used to perform the
dynamic analysis of a frame shown in Fig. 3-1, using the

above method of numerical technique, is listed in Appendix D.
3-7-3 Natural Periods of Vibration.

It is sometimes necessary to know the smallest natural
period of a frame to select a proper time interval for the
numerical integration process. When the linear acceleration
method is used to solve Eqg. 3-33, the time step, At, in
Egs. 3-40 and 3-41 must be less than approximately one-
tenth of the smallest natural period in order to obtain
convergence.

The natural periods are also used as reliable param-
eters to classify the overall stiffness of frames. For
this purpose, however, only the first two or three modes
would be sufficient.

In the computer program listed in Appendix D, the
minimum natural period and the first three natural periods
and their corresponding natural modes are calculated prior
to the response calculation. The smallest and the largest
natural periods are computed using Stodola's method 18
(power iteration method). Knowing the first eigenvalue
(largest natural period) and the corresponding eigenvector
(mode) , the second and the third eigenvalues and the corres-
ponding eigenvectors are obtained successively using

74
Wielandt's deflation method.
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Fig. 3-7 Shear Deformation of Member
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Start Calculation of
the n+l-th Time Step

Y
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Sii(n+l)old ii(n)

xi(n+l)old Xi(n) for all i

xi(n+l)old xi(n)

O——

Yes
] \ I
><151>N§?/ )(} J
‘lNo | !

xi(n+l)new = xi(n) + ki(n)At -

a

- |

+ %_ liéi(n)Atz

2

1 .
g X D) 48T Eq. 3-40

Ry (D)= & (n) + 5 %, (n) At

w
1l ..
+ 5 Xi (n+1)

Y

1) ) - 1 . :
X;(n+1) o = ﬁz[cixi(n+l)ne

t o, ({x}) +s.(0)1 Eq. 3-33

Y

< i«i+1

o1d®t ... Eq. 3-41

*1
w

Fig. 3~12 Chart for Numerical Integration
(to be continued)
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xi(n+l)old < xi(n+l)new

.‘ L] !
xi(n+l)old < Xi(n+l)new for all i

xi(n+l)Old < xi(n+1)new
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Y

Calculation Completed
For This Step

*]1 When calculating Qi({x}) and Si(t), new values
of ﬁj(n+l), ij(n+l) and xj(n+l) are used for
j o< i.

Notes:

. .
2 In the computer program, xi(n+1)new and xi(n+l)new

are overwritten on }'{i(n+l)Old and xi(n+l)Old as

soon as they are calculated.

Fig. 3-12 (continued) Chart for Numerical Integration



Chapter 4.

BEHAVIORAL STUDY

4-1 Introduction.

After a brief discussion of the relationship between
the response of a structure to an earthquake motion and to
a blast load, the behavioral study included in this chapter
is focused on the response of a steel frame to blast loads.

The theme of this portion of the study is to investi-
gate the general pattern of response of various structures
under different loading situations, so that the structure
can be designed to respond to dynamic loads in a satis-
factory manner. In keeping with this theme, the following
factors were considered:

1) The use of an approximate method to estimate the
fundamental natural period.

2) The effect of the shape of the pressure-time
curves (due to blast loads) on the response of a structure.

3) The relationship between the applied load and the
base shear.

4) The effect of variations in column stiffness on
the overall response; the effect of beam stiffness on the
overall response; and the response characteristics of shear-

wall structures.

100
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5) The relationship between the maximum story shear
and the required strength.

6) A comparison of overall behavior among various
structures in search of an optimum design.

The structures studied in this chapter are limited to
10 stories in height and 4 bays in width. The effect of
strain-hardening and the P-A effect are included in the
analyses; however these effects are not evaluated specif-
ically. Other secondary effects are ignored in the present
behavioral study.

4-2 Relationship Between

Blast Loads and Earthquake Motions.

The lateral loads that a structure may experience dur-
ing its lifetime are, in general, of two different types.
One type is the result of pressure applied to the exterior
walls of the building. The pressure could be a dynamic
pressure (wind pressure) or a combination of dynamic pres-

. . 14,22
sure and an overpressure induced by nuclear explosions,™ '

80,81 The magnitudes of the

gas ekplosions22 or sonic booms.
lateral loads caused by these pressures depend upon the area
of the exterior walls, the type of cladding, the width and
height of the frontal wall and the depth of the building.

The duration of the loading for nuclear blasts, gas explo-

sions or sonic booms is relatively short, however, the
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intensity of the pressure could be very high in the immedi-
ate neighborhood of an explosion site.

The second type of lateral load is caused by the
motion of the ground on which the building is situated.
Earthquakes or underground explosions are sourcés of this
motion. The lateral loads induced by the ground motion
are inertia forces, and thus the magnitudes of these forces
depend upon the distributions of mass and stiffness in the
building and the intensity of ground acceleration.

In general, lateral loads caused by nuclear blasts
and those produced by earthquake motions may be compared
as follows:

1. The duration of the portion of high pressure of
a blast load is usually shorter than the nétural period in
the first mode of most common highrise buildings. On the
other hand, the ground motion due to an earthquake occurs
over a period many times longer than the natural period of
the building; the intensity varies during the motion and
the most severe vibration would be of short duration. A
blast load may be regarded as a single shock or impulse
while an earthquake disturbance may be regarded as a series
of shocks occurring successively.

2. The distribution of lateral loads over the height
of a building will not be drastically different from the

two types of loads, that is, the vector {CSM} in Eq, 3-35

vl

e
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and the vector {CR} in Eq. 3-36 are rather similar.

3. Because of these factors, structures which are
well designed to resist blast loads are generally aléo
suitable to resist earthquake motions, and vice versa, if
the input energy in each case is approximately the same.

4. In an earthquake, resonance could become a
problem if peaks of loading are repeated with a frequency
that is approximately equal to the natural frequency of
vibration of the structure. This would not be the case
for blast loading since the pressure application is usually
completed within a short time and would not be repeated.

5. - The acceptability of structural damage could also
be different for the two types of loadings since many
political, financial and social judgements are differently
involved.

In the following sections of this chapter, the re-
sponses of different types of steel frames to blast loads
are presented. The method of determining the blast load on
a structure is explained in Appendix E. A design proced-

ure against blast loads is proposed in Chapter 5.
4-3 Empirical Formula for the Fundamental Natural Period.

The natural period in the fundamental mode is one of
the most important structural parameters when a dynamic

analysis is to be performed, and yet the existing
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18,76 to estimate this property are rather crude,

formulae
resulting in some cases in more than 100% error.

The present study has suggested the necessity of
having a more accurate formula to predict the fundamental

natural period of a structure. The following empirical

formula is proposed:

= ' B . Ns -
Tl—Toha—-]—_-o— (4-1)

where T1 : the estimated fundamental natural period of

a given frame (in seconds),

the value read from the chart given in Fig. 4-la
or 4-1b, depending upon the value of v,

Y Kb/Kc’ where Ky is the average stiffness of .

beams; i.e.,

_ L EI _
Ky = {for all(_f)b}/(Ns * Nb) (4-2)

beams
in which (E%)b is the stiffness of an individual
beam, and Kc is the average stiffness of

columns; i.e.,

EI :
K. = { = (=) I/{N_(N,_ + 1)}  (4-3)
¢ for all L ¢ 8"b
columns

in which (-E-:%'-)C is the stiffness of an individual

column,



Ns

Nb :
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the ratio of the average story height to a
standard height of 12 feet (144"); i.e.,

H

h 142 W, (4-4)

in which H is the overall height (in inches) of

the structure,

the ratio of the average stiffness of columns to
a standard value of stiffness of .500 x 106
Kipein; i.e.,

o = 2Kc/106 , (4-5)

the ratio of the average story mass per column,
m, to a standard value of mass (70/g kip-secz/in)

adjusted by the number of bays; i.e.,

_mg . (Ny + 0.4)
g =4 NG (4-6)

~

in which g is the acceleration of gravity
(=386 in/sec?),
the number of stories, and

the number of bays.

This formula has been tested on many regular types of

frames; the deviation from the rigorously calculated value

is usually less than 5% as seen in Fig. 4-2. Example frames

plotted here include 5 frames used by Goel,55 4 frames used

by Blume,82

1 frame by Lionberger and Weaver,4l 1 frame by
76

Newmark and Rosenblueth and 10 frames from the present
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study. The frames tested ranged from 2 to 40 stories and
1l to 4 bays.

The application of this formula to a structure with
unusual framing schemes is explained in Appendix F, where
some example calculations are also displayed.

4-4 Correlation Between Input Blast

Load and Structural Response.

The blast load applied to a structure is a function
of the magnitude and height of the detonation, the location
(distanée from ground zero) and the type of the building.
In this section, various types of blast loads are applied
to an example structure and the responses are analyzed to

find a correlation between input loads and responses.
4-4-1 Example Blast Loads on a Structure.

It is assumed that a 10-story building shown in Fig.
4-3 is exposed to a nuclear blast (perpendicular to the
frontal exterior wall). The building has a width and depth
of 100 feet each and a height of 120 feet. Structurally,
it consists of 5 bents in either direction. Exterior walls
and windows are made strong enough to resist the pressure
caused by a possible blast, but do not contribute to the
frame action, It is assumed that the pressure is trans-

mitted to the frames at each floor level and that each one

[ —
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of five bents (whose dimensions are shown in Fig. 4-4) will
carry the same amount of lateral load at every instant
during a vibration. The relative ratio of the load applied
at each floor level is simply assumed to be proportional to
the tributary area as indicated in Fig. 4-4. This ratio
corresponds to the vector {r} mentioned in Sec. 3-7-1.

If a detonation, whose energy yield is 1 MT, TNT
equivalent, takes place at 5,000 feet above the ground
level and 42,000 feet away from the building, the blast
load applied to a standard floor (where r, = 1l in Fig. 4-4)
of each frame is calculated as shown in Fig. 4-5. This
curve is a function of time as explained in Sec. 3-7-1.

The calculations used to obtain this curve are fully demon-
strated in Appendix E. This blast load-time function,
Z(t), will be referred to as 'Blast Load Type A-105.2',
hereafter..

If the same building is exposed to the same detonation
but at 29,000 feet away from G.Z., the same frame will now
be subjected to the blast load shown in Fig. 4-6. The cal-
culation required to obtain this curve is very similar to
the previous example. This blast load-time function will
be referred to as 'Blast Load Type B-212.5', hereafter.

A new case is the previous building with the
windows which occupy 40% of the exterior surface)

that are now assumed (partially open box-like structure).
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Assuming the average distance from the center of a wall
section to an open edge (window) of the wall is 7 feet, the
blast load applied to each of the frames is now calculated
as shown in Fig. 4-7. 1In this calculation, the detonation
is assumed to be the same as before but the building is
located at 15,000 feet away from G.Z. (Ground Zero). This
load-time function will be referred to as 'Blast Load
Type C-358"'. |

In addition to these blast loads, three more types
of blast loads are used for the response calculations for
the purpose of comparison. They will be refered to as
'Blast Load Type AA-105.2', 'Blast Load Type BA-212.5', and
'Blast Load Type CA-358'. Their load-time functions coin-
cide with the major portions of type A-105.2, type B-212.5
and type C-358 blast loads respectively, but are truncated at

a shorter duration as shown in Figs. 4-8 through 4-10.
4-4-2 Properties of Example Frame.

The frame shown in Fig. 4-4 is assumed to have the
structural properties as listed in Table 4-1 (FRAME#1AA) .
The stress-strain relationship assumed for this example is
shown in Fig. 4-11. 1In this example, the values for both
the strain-hardening modulus and the ultimate strength are
deliberately taken rather lower than usual, since no attempt

is made to evaluate the effect of strain-hardening
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specifically in this chapter and it is not desirable to
over estimate this effect. Based on this curve, the

Mg-86g relationships are calculated using the program
listed in Appendix B. For the purpose of this calculation,
the axial load in each column within a story is assumed to
be equal; the point of inflection is assumed at the midpoint
of each member. Thus the Mg-86g relationships are the same
for either end of a member within a story. The M -686g4
relationships are shown in Figs. 4-12a through 4-12c¢, for
some examples. 1In these calculations, the effects of shear
deformations of members and joint panels, and the effect of
the connection flexibility are ignored.

In addition to these static properties, some dynamic
properties are evaluated. The damping coefficient, Cyv is
calculated assuming hi = ,005 (refer to Eg. 3-29) for each
story. (Most of the damping coefficients used in the
example calculations in this chapfer have been obtained
assuming hi = 0.005 or 0.01.) Observations have indicated
that the maximum damping force developed by assuming hi =
0.005 is usually less than 5% of the maximum resistance
due to frame action and that developed by assuming hi =
0.01 less than 8%. The elastic, undamped natural period of

FRAME#1AA was calculated to be 2.24 sec. when the P-A effect

was ignored and 2.25 sec. when it was included.
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4-4.3 Effect of Blast Load-Time
Function on Elastic Response.

The blast loads prepared in Sec. 4-4-1 were applied
to the example frame shown in Sec. 4-4-2. Responses were
calculated using the program listed in Appendix D. The
MS-GGS relationships were represented by trilinear rela-
tionships.

The responses to blast loads type B-212.5, type BA-
212.5 and type C-358 were inelastic. For these types of
blast loads, the intensity was then reduced so that the
maximum intensities were 130 kips, 130 kips and 200 kips
respectively (in other words, the Z(t) values for these
types of blast loads were multiplied by 130/212.5, 130/212.5
‘and 200/358, respectively) and were called 'Blast Load Tyﬁe
B~130', 'Blast Load Type BA-130' and 'Blast Load Type C-200'
respectively. The responses to the blast loads of reduced
intensities were elastic.

The results of the response calculations are shown in
Fig. 4-13. The maximum base shear developed due to frame
action, Qp s is plotted against the total impulse, I, which

is defined by:
N
. . (4—7)

I = [ Z{t)dt - L i

0 i

™M

The ratios of the maximum base shear to the total impulse

of the applied blast load for type AA-105.2, BA-130 or
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CA-358 blast loads are similar (this ratio for blast load
type AA is shown in the figure).

The observation that theselratios for type A-105.2,
B-130 and C-200 blast loads are smaller than those for other
types indicates that the elastic response is significantly
influenced by the initial, major portion of the blast load-
time functions. For this reason, the modified total impulse,

I*, for an input blast load is defined as:

[oo] NS
I* = J f(t)z(t)dt = ry , (4-8)
0 i=1
where
T
:-2L-(l+c04%lr-t) for-z-}-?_tzo
f(t) = 1 T (4-9)
LO for t > 2—1
and Ty is the fundamental natural period of the frame to

which the blast load is being applied. The modified impulse
ignores the effect of the portion of load that is applied
after-one half of the fundamental period of the frame, and
more emphasis is placed on initial portion of the loading.
The correlation between the maximum base shear, Qb’ and the
modified total impulse, I*, is found to be much stronger
than before as shown in Fig.4-14. The average ratio of
maximum base shear to modified total impulse for FRAME
#1AA is calculated to be 1.97, or

Q = 1.97 1* , (4-10)
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which is also shown in the figure. In fact, the strong
correlation has also been found in other frames throughout
the behavioral study. The same was true of the relation-
ship between the deflection (either maximum roof deflection
or maximum relative displacement) and the modified total
impulse. As one example, the maximum roof deflection is
plotted against the modified total impulse in Fig. 4—15.
Thus the elastic response does not depend significantly
on the shape of a blast load-time function, but depends
strongly on the value of the modified total impulse; since
the major portion of a blast load is within say, one quarter
of the fundamental natural period of a frame. This is the
case under most of the situations considered in this study.
For this reason, the subsequent behavioral study has been
performed against a limited number of blast load-time
functions, although the intensity has been amplified or
reduced as in the case of type B-212.5 and type B-130.
(Hereafter, the alphabetic letter indicates the type of

load-time function; the digits indicate the maximum inten-
sity.)

4-4-4 Effect of Blast Load~Time
Function on Inelastic Response.

The effect that a different type of blast load might
have on the inelastic response is examined in this section.

The responses of FRAME#1AA to blast load type A and type AA,
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with the intensity varied in several steps, so that varying

degrees of inelastic response are observed, are shown (up

to collapse) in Fig. 4-16. The collapse of a structure is
defined as the point where any one of the Ms—des relation-
ships of the equivalent rotational springs comes to the
failure point; which is defined in Sec. 2-5-4.

The plot shows the relationship between maximum base
shear and modified total impulse. The ratio of the maxi-
mum base shear to the modified total impulse is similar to
that in the eléstic range, where the inelastic action is
minor or rather moderate. (Say, up to point X; i.e., the
response to the blast load type A-212.5 (I* = 325 kip-+sec);
or point Y; i.e., the response to blast load type AA-300
(I* = 371 kip-.sec), in Fig. 4-16. The locations of member
ends where the elastic limit was exceeded during the
responses corresponding fo points X and Y are shown in
Figs. 4-17 and 4-18, respectively.)

The maximum base shear is a little greater when the
structure is subjected to blast load type A than to type
AA with the same amount of modified total impulse, up to
about these points; hereafter, however, the situation re-
verses. The modified total impulse corresponding to col-
lapse of the structure is almost the same regardless of
the type of blast load. The base shears corresponding to

collapse are also approximately the same in both cases.
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The response of a structure thus may be described in
terms of the modified total impulse, in the inelastic range.

Thus the shape of a blast load-time function is not an

important factor.

4~5 Relationship Between Modified Total

Impulse and Maximum Base Shear.

In the preceding section, it was shown that the ratio
of the maximum base shear due to frame action, Qb’ to the
modified total impulse of the blast load, I*, is constant
for a frame up to the point of moderate inelastic response
(say, up to point X or point Y in Fig. 4-16) , regardless
of the type of blast load. 1In this section, a closer inves-
tigation of this ratio is performed.

The responses of FRAME #1AA with damping coefficient,
hi = .001 or .01 for every story (in the previous example
calculations, hi was assumed to be .005) were calculated
for several blast loads. The same degree of correlation
was found between Qp and I*; the average ratios of Qb/I*
were 2.25 and 1.84 for hi = ,001 and .01, respectively, in
comparison with 1.97 for hi = ,005. Thus it is shown that
the degree of damping causes slight change in the ratio of
Q. to I*,

The average ratios of Q, to I* have been obtained for
many example frames, whose basic properties are listed in

Tables 4-2 through 4-8. (Other properties are the same
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unless otherwise noted or may be derived in the same manner
as for FRAME#1AA. A frame is classified by a number fol-
lowed by two letters. Those frames that have the same
numbering have the same dimensions. The first letter indi-
cates the type of column design and the second the type of
beam design.) The ratios of Qb to . I* for these frames are
listed in Table 4-9 (natural periods listed here are deter-
mined by rigorous calculations); and are also plotted
against the fundamental natural period of the frame in
Fig. 4-19.

The plot in Fig. 4-19 suggests that the ratio, Qb/I*
is inversely proportional to the fundamental natural period,

T,, of the frame. Assuming that Qb’ I* and Tl have a rela-

1
tionship of the form

0, = % (4-11)

the quantity, p, is calculated for each frame and listed

in the last column of Table 4-9. The coefficient, p, has

a value between 4 and 5, where the variation is caused by
the differences in the damping characteristics and in the
type of structure.

Eq. 4-11 may be used to predict the maximum base shear

(up to the range of moderate inelastic response) for a
frame whose natural period is known (by either a rigorous

calculation or by the approximate method explained in
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Sec. 4-3) against a given blast load. The value of I* is
calculated by Eq. 4-8, if the blast load-time function and
the natural period of a frame are known. However, it would
be convenient to prepare a chart which gives the value of
modified impulse for a given natural period. Such charts
are shown for type A and type AA blast loads in Figs. 4-20
~and 4-21. The value in ordinate axis iﬁdicates the modi-
fied impulse, i*, per story where r, = 1, for a blast load
whose maximum intensity is equal to unity. The total modi-

fied impulse, I*, is then given by:
Ng

* = 1 % —_
I ( El ri) i Zmax (4-12)

i
where ZmaX is the maximum intensity of the blast load being
considered. The value of p ranges from 4.0 to 5.0 and may
be selected in accordance with the expected damping situa-

tion and the type of structure.
4-6 Difference in Response for Various Frame Designs.

In this section, the discussion focuses on the differ-
_ences between the responses of frames having varying column
stiffnesses and those having column stiffnesses which are
relatively constant over the height of the building; and
between the responses of frames with Strong and stiff beams
and those with weak and flexible beams. A brief discussion

of shearwall structures is also included.

|
[E——
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4~6~1 The Effects of Variation in Column Stiffness.

The effect of variation in column stiffness on the fun-
damental natural period is minor for the frames considered,
as shown by the comparisons between FRAME#2AA and FRAME#2BA
or between FRAME#2AB and FRAME#2BB. (The ratio of column
stiffness at the bottom story to that at the top story is
8.46 for FRAME#2AA and FRAME#2AB, while the corresponding
ratio is 1.55 for FRAME#2BA and FRAME#2BB.)

The responses of FRAME#2AA and FRAME#2BA subjected to
various intensities of blast load type BA are compared in
Fig. 4-22. As seen here, the maximum base shears developed
are almost the same for the two frames in the elastic or
moderately inelastic range. Initial yielding occurred at
a maximum intensity of approximately 20 kips for FRAME#2AA
and 40 kips for FRAME#2BA.

The maximum base shear in FRAME#2AA increased in an
almost linear manner up to the collapse point, as the
applied blast load intensity was increased. On the other
hand, the ratio of maximum base shear to the applied blast
load intensity decreased substantially in the case of
FRAME#2BA as yielding progressed through the frame.

The blast load intensity corresponding to the collapse
of FRAME#2BA is approximately 1.5 times that for FRAME#2AA.

Locations where inelastic action occurred during the
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response to type BA-45 blast load are shown in Fig. 4-23.
The inelastic action is more concentrated for FRAME#2AA,
thus leading to collapse at a relatively low intensity of
blast load. Thus FRAME#2BA is considered to be superior
to FRAME#2AA.

Similar studies have shown that the desirable range
of the ratio of column stiffness at the bottom story to
that at the top story is approximately 2 to 5 for l0-story
buildings and approximately 1 to 3 for 5-story buildings.
For instance, this ratio for FRAME#1AA is 3.7. In this
case, the ratio of the maximum resisting base shear to the
blast load intensity gradually decreased as shown in Fig.
4-16, indicating the gradual spread of inelastic action in

the frame.
4-6-2 The Effect of Beam Stiffness.

FRAME#1BC contains beams having stiffnesses 3 to 4
times those for the beams of FRAME#1BA. The other members
are the same for the two frames. The response of these
frames are compared in Fig. 4-24.

As expected from the preceding studies, a much higher
resisting base shear was recorded in FRAME#1BC than in
FRAME#1BA, when subjected to the same intensity of blast
load; since FRAME#1BC is stiffer than FRAME#1BA. In fact,
the value of p, as seen in Table 4-9, is also higher for

FRAME#1BC than the other, which may indicate the inefficiency

e

|
b e
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(in this sense) of frames with higher beam stiffness.

The maximum resisting base shear vs. input blast
load intensity relationship for FRAME#1BC is almost linear
up to collapse, while a gradual reduction is observed for
FRAME#1BA at higher load intensities. It is normally true
that a higher strength is attained by the use of stiffer
members. However, by doing so, the force attracted to the
frame, for the same blast load, increases as discussed in
Sec. 4-5. It is often observed that the increase in force
developed in the frame is greater than the increase in
strength; thus a stiffer frame comes to collapse earlier
than the more flexible frame. This fact is clearly seen in
Fig. 4-24.

Thus it is not desirable to make the beam stiffness
high except when the deflections must be controlled. At
the other~extreme, if the beams are too flexible, the
moments to be resisted by the’column become excessive, and
the overall resisting capacity is again lost. The responses
of many frames with various beam stiffnesses were compared.
The observation indicated that the desirable stiffness for
beam members is slightly below the average column stiffness
(say, 50% to 100% of the average column stiffness), with

little variation along the height.
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4-6-3 The Effect of Shearwalls on the Frame Response.

The equation proposed to predict the fundamental
natural period (Eqg. 4-1) was also found to be applicable
to frames with shearwalls, although some parameters will
need to be modified as explained in Appendix F.

Assuming the relationship between the maximum resist-
ing base shear and input blast load is also expressed by
Eq. 4-11, the quantity, p, has been evaluated for about 10
frames with shearwalls. As seen in two typical examples
(FRAME#4AB and FRAME#4BB, whose properties are shown in
Table 4-6), p for such frames generally lies below the med-
ian (which is about 4.4); as indicated in Table 4-~9.

Although the deflections of a structure can sometimes
be controlled by using shearwalls, it should be noted again
that the intensity of a blast load that the frame can with-
stand does not increase proportionally as the strength |
provided in the frame increases; and that severe inelastic
action could take piace at beam ends which are attached to
shearwalls. If shearwalls are located in an asymmetric
manner in a building, the torsional effect may become domi~
nant.83 When a frame with shearwalls is designed, these

factors must be considered from both technical and econom-

ical points of view.
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4-7 Required Strength of Frame.

Since the normal design for static loads is based on.
strength, it would be very convenient if the required
strength of a frame against an assumed blast load could be
determined. In this section, the relationship between the
maximum resisting story shear at every story and the column
strength provided is examined for a regular type of frame.

The maximum story shears developed durihg the response
of FRAME#1BA to type AA-250 blast load are shown in Fig.
4-~25, 1In this case, the frame exhibited moderate inelastic
action (point X in Fig. 4-24). The shapes of the corres-
ponding diagrams for other 10~story frames are similar over
a wide range of frame configurations. That is, the average
diagram of maximum story shears would indicate the ratio
of a maximum story shear to the maximum base shear as about
.9 at the seventh floor, .6 at the third floor, and between
.15 and .3 at the first (top) floor, as shown by curve A in
Fig. 4-26. The corresponding diagram for 5-story frames is
also shown by curve B in the same figure.

It has been shown in Sec. 4-5 that the maximum base
shear can be predicted for an assumed blast load. There-
fore it is now possible to predict the maximum shear for
every story for the assumed load.

The correlation between the maximum story shears and
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the required column strengths is best explained in the fol-
lowing example calculation. FRAME#3AB (l0-story, 3-bay
frame) was designed against blast load type AA-105.2,
allowing moderate inelastic action (the range indicated by
point X or Y in Fig. 4-16). The example calculation is an
attempt to determine if the assumed frame is adequate with-
out performing a dynamic analysis.

The fundamental natural period of this frame was cal-
culated to be 1.24 sec. Assuming the vector, {r}, is the
same as that shown in Fig. 4-4 (i.e., Zri = 9.5), the modi-
fied total impulse, I*, is calculated, using the chart given

in Fig. 4-21, as:

I* = 2 i* Ir,
max i

105.2 x .125 x 9.5

= 125. (kip*sec)

Then, the expected base shear, Qb’ is given, assuming

0= 4.5, as:
oI*
Q =
b Tl
4.5 x 125
- 1.24
= 450. (kips)

The maximum story shears divided by the number of columns
per story (4 in this case) are now assumed as shown by

curve A in Fig. 4-27.

If the shears shown here develop simultaneously, the

pan—
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moments in columns would be those shown by diagram (1) if
the stiffness of beams are zero; or by diagram (2) if the
beams are infinitely rigid and strong. 1In the actual frame,
the moments developed in columns lie between these two dia-
grams, depending upon the actual moment capacities of the
beams.

A part of the moment diagram for a frame in which the
beams here reached their plastic moment capacities is shown

in Fig, 4-28., 1In this figqure, the following symbols are

used:-
Mgc : Moment at the bottom of upper column #i,
Mic : Moment at the top of lower column #i,
vM? : Plastic moment capacity of beam #i,
Mgc : Average moment at the bottom of upper columns,
and
Mic : Average moment at the top of lower columns.

The latter two quantities are given by:

Nb+l
uc 1 uc
M T T M (4~13)
a Nb + 1 i=1 i
Nb+1
M;C = N——i—l ) Milc (4-14)
b i=1

Adding the equilibrium equations at each joint, the follow-

ing equation is obtained:
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Nb+l e Nb+l le Nb b
IoMc+ I MCS+23 M =0
i=1 i=1 i=1 *
or,
2N
uc le _ _ b
M© o+ M C = N1 M (4-15)

where Mp is the average plastic moment capacity of the beams
at this floor. This equation indicates that the difference
between the moment at the bottom of the column immediately
above a given beam and the moment at the top of the column
immediately below the beam can not be greater than the
amount shown in the right hand side of Eq. 4-15, on the av-
erage. In the present case, Ny = 3, therefore the differ-
ence in moments between two adjacent column ends is not

more than 1.5 Mp, on the average.

Based on this consideration, the minimum required
moment capacities for the columns are obtained as shown by
diagram (3) in Fig. 4-27. Starting from the top story; if
the difference between the moments at two adjacent column
ends in diagram (2) is less than 1.5 Mp, diagram (3) is
assumed to coincide with diagram (2); however, if the dif-
ference is greater than 1.5 Mp in diagram (2), then diagram
(3) at a particular story is drawn by sliding diagram (2)
in parallel toward diagram (1), so that the difference be-
tween the moment at the bottom of the upper column and the

moment at the top of the column of this story becomes
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1.5_Mp;_as seen in the 5th and the lower stories.

The moment capacities provided by the columns are
shown by diagram (4). Since the required strengths are
within the provided capacities, it may be concluded that
the frame would be adequate for this blast locad. From the
way diagram (3) was constructed, it may also be possible
to predict that the inelastic action in the beams would
take place at the 5th and the lower floors.

In the derivation of Eqg. 4-15, the beams were assumed
to have reached their full plastic moment capacities, which
might seem unconservative. However, as seen in Fig. 4-17
or 4-18, many beam ends do reach their plastic moment capa-
cities in the range of the expected response. On the other
hand, the maximum story shears do not occur simultaneously
in each story and therefore the approximate moment diagram
is somewhat conservative.

A dynamic analysis was performed to see how well a
frame designed using the above procedure would resist the
blast loads. The response to the given blast load was lo-
cated at point X in the maximum base shear vs. the intensity
of blast load relationship in Fig. 4-29. The maximum story
shears recorded during the dynamic analysis are shown by
curve B; these may be compared with the assumed values shown
by curve A in Fig. 4-27. As expected, inelastic action was

observed in the 5th and lnwer floor beams.
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One more rather crude estimate of the required average

strength of a column at the bottom story, My is given by:

M = QbL/(Nb+l) (4-16)

b

where L is equal to 70% to 100% of the bottom story height.
This equation is derived assuming that the moment diagram

shown by diagram (3) in Fig. 4-27 is typical for a regular
frame. This equation may be useful for the first estimate

of the required member sizes.
4-8 Comparison of Various Designs.

When a structure is designed against any type of load-

ing, it must develop sufficient strength to withstand the

applied loads and in addition the deflections must be within

the specified limits. Among many possible designs which
satisfy these two criteria, some effort is usually made to
find the most economical frame.

If a frame is designed for a static loading condition,

adding more strength (which is usually accompanied by addi-

tional stiffness) can be expected to reduce the deflections.

On the other hand, when a frame is designed to resist
a dynamic loading, an increase in the stiffness (and
strength) of the members to reduce the deflections during
the motion does not automatically mean that the intensity
of dynamic loading which the frame can withstand is in-

creased. In fact, as seen in the responses of FRAME#1BA

'

[US———
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and FRAME#1BC (Fig. 4-24), by making a frame stiffer, the
intensity of a blast load that the frame can withstand was
decreased, although there was a slight decrease in the ob-
served displacements. Thus the two design criteria often
conflict with one another.

The job of finding the most economical frame involves
many factors when a frame is designed to withstand a dynamic
loading. The next example shows one comparison of two
frames both designed against similar blast loads. The
frames compared are FRAME#5AA and FRAME#5BB. FRAME #5AA
possesses about 35% more static strength than FRAME#5BB,

" at the bottom story. The average column stiffness of
FRAME#5AA is 1.15 times that of FRAME#5BB, and the average
beam stiffness of the former frame is 2.90 times that of
the latter. The total weight of material used in the
structural members of FRAME#5AA is 1.28 times that used in
FRAME#5BB.

The maximum base shears are shown as functions of
the intensity of applied loads (Blast Load Type AA) for
both FRAME#5AA and FRAME#5BB in Fig. 4-30. The relation-
ship between the intensity of applied blast load and the
maximum relative displacement of any two adjacent floors
are shown for the same frames in Fig. 4-31.

When these two frames are compared, the intensity of

blast load that each frame can withstand is approximately
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the same (frames having stiffnesses between those of the
two example frames had a reduced capacity to withstand
blast loads); but the maximum relative displacement in
FRAME#5BB is approximately twice that developed in

FRAME#5AA subjected to the same intensity of blast load.

Thus it may be said that FRAME#5AA is superior to FRAME#5BB.

However, before making the final selection, the economical
factors must be taken into consideration.

Suppose the cost of the structural components of
FRAME#5AA is $W and that the corresponding cost for
FRAME#5BB is $X. For similar type of framings, the cost
may be assumed to be proportional to the weight of material
used for columns and beams, thus, W = 1.28X. Suppose also
the total of the cost of cladding (including windows),
partitioning and other non-structural elements; and the

cost of constructing and installing them is $Y for

FRAME#5AA, If this cost is 'a' times the cost of structural

components of the same frame, Y = aW. The corresponding
cost for FRAME#5BB may be estimated equal to bY, where

b > 1 if the deflection of FRAME#5BB is greater than the
allowable limit set on the basis of the design of FRAME#5AA
(because a new detail and careful installation are required
to ensure enough deflection capacities for the windows,
precast exterior walls and other elements in order to avoid

dislodgement); otherwise b = 1.
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The total cost for FRAME#5AA, C is then calculated

5AA’
as:
CSAA = W+ Y
= 1.28(1 + a)xX (4-17)
The corresponding cost for FRAME#5BB, CSBB’ is similarly
calculated as:
Cepg = X + bY
= (1 + 1.28ab)X . (4.18)

The economy of two frames may be decided by comparing

Egs. 4-17 and 4~18, 1If, for instance, a = .70 and b = 1.2

are assumed, CSAA and C5BB are calculated respectively as:
Coan = 1.28(1 + .70)X
= 2.18X,
and
Copg = (L + 1.28 * 0.70 * 1.2)X

2.07X.
Thus it is seen FRAME#5BB is more economical under these
conditions.

By designing claddings and non-structural elements so
that they can follow a larger deflection, a more flexible
frame may safely be designed with a reduction in cost.
Further, if, as in the above discussion, the quantities 'a'
and 'b' are obtained as function of the type of frame, the

frame stiffness (or the fundamental natural period), the



130

required maximum relative displacement and so on, it would
be possible to obtain an optimum design for a given blast

load by repeating comparisons similar to that shown here.

4-9 Summary.

The behavioral study included in this chapter was per-
formed using the procedure developed in chapter 3. The
study focussed on the dynamic behavior of steel frame sub-
jected to various types of blast loads. The results of the
study are summarized as follows.

1) An empirical formula to predict the fundamental

natural period was proposed as shown in Eq. 4-1; i.e.,
N
= /B S
Ty =TohV 5 1o

in which the symbols are explained in Sec. 4-3. This
formula has been tested on many frames ranging from 2 to

40 stories and 1 to 4 bays, and resulted in close agreement
with the period computed from a rigorous analysis.

2) The shape of blast load-time function, Z(t), does
not significantly affeét the response either in the elastic
range or in the inelastic range. The response is mainly
influenced by the modified total impulse of the blast load,
I*, which is defined in Eq. 4-8; i.e.,

I* = | £(£)2(t)dt I r,
Jo i=1 *

g
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where T
1 27 1 > >
7(1 + COA-T—I t) for -2-'- -t -0

f£(t) =

N!lﬂ
=

0 for t >

Therefore a subsequent study was performed using a limited
number of blast load-time functions. The frames used in
the study had 5 or 10 stories and ranged from 1 to 4 bays.
Some frémes had a shearwall.

3) The maximum base shear developed, Qb, can be

estimated by Eq. 4-11; i.e.,

pI*
Q =
b Tl

where P has a value between 4 and 5 with its median approx-
imately 4.4. This formula is valid both in the elastic
range and for moderate inelastic action.

4) The variation in column stiffness along the height
should be as small as practicable. The recommended value
for the ratio of the column stiffness at the bottom story
to that at the top story ranges from 2 to 5 for ten-story
frames, and 1 to 3 for five-story frames.

The average stiffness of beam members should be less
(say, 50% to 100%) than the average stiffness of column
members.

Although the deflection of a structure can sometimes

be controlled by stiffening the members or by introducing
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shearwalls, it should be noted that the intensity of a
blast load that the frame can withstand does not increase
proportionally (sometimes, even decreases) as the strength
provided in the frame increases.

5) The maximum resisting shear for every story is
distributed approximately as shown by curve A for ten-
story frames,ﬂand by curve B for five~-story frames; both
in Fig. 4-26.

Using this fact together with the relationship in
moments between two adjacent column ends (refer to Eg. 4-15),
it was shown, in Sec. 4-7, that a frame can be checked to
ensure adequate strength against a given blast load.

A crude estimate of required strength for the bottom

story columns, My is given by Eq. 4-16; i.e.,

Q
M, = D

N x 1L
b Nb * 1

on the average, where L may be taken equal to 70% to 100%
of the bottom story height.

6) A structure must develop sufficient strength to
withstand the applied loads and in addition the deflection
must be within the specified limits. When a frame is sub-
jected to dynamic loads, the two design criteria often con-
flict with one another, One comparison between two frames
designed against the same type of blast loads is shown in

Sec, 4-8.
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Table 4-9 Response of various frames

Size T k7 *

FRAME (Story x bay) (sec.) hj Op/1 P
1AA 10 x 4 2.248 .001 2.25 | 5.05
1AA " " .005 1.97 | 4.43
1AA " " .01 1.84 | 4.14
1BA " 1.588 .005 2.64 | 4.19
1BA " " .01 2.61 | 4.14
1BB " 1.273 .01 3.50 | 4.45
1BC " 1.065 .005 4.80 | 5.10
1BC " " .01 4.30 | 4.58
1BD " .784 .01 6.59 | 5.15
2AA 10 x 2 2.388 .01 1.93 | 4.60
2AB L 2.986 .01 1.50 | 4.49
2BA " 2.304 .01 1.87 | 4.31
2BB " 2.931 .01 1.44 | 4.21
3AA 10 x 3 1.241 .005 4.10 |5.09
3AB " 1.326 .005 3.66 | 4.85
4aB*2 10 x 2 .994 .01 4.06 | 4.04
4BB*2 " 1.294 .01 3.14 | 4.07
5AA 5 x 3 .539 .05 8.35 | 4.50
5BB " .779 .05 5.60 | 4.36
6AA 5 x 4 1.165 .005 4.00 | 4.66

*1 Same value is assumed throughout the stories.

*2 Contains a shearwall.
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Chapter 5.

DESIGN PROCEDURE

5-1 Introduction.

Based on the knowledge obtained from the behavioral
study, a design procedure for steel frames required to
resist blast loads is proposed in this chapter.

If this procedure is followed, a designer should be
able to select a proper (if not optimum) set of members
for columns and beams with relatively few steps. After
the members are selected, the details should be designed
carefully enough so that the ductility is not reduced by
premature lateral or local buckling or by connection fail-
ure,

Special attention should be paid to irregular struc-
tures as the present procedure may require modification

and additional checks for these structures.

5~2 Design Procedure.

The procedure presented in this section attempts to
assist in selecting member sizes for a frame subjected to
a blast load. The frame determined by this procedure is
expected to have a résponse characterized by moderate
inelastic action with yielding occurring mainly in the

beam members (the response as indicated by point X or Y
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in Fig. 4-16, or by point X in Fig. 4-24). The frame will
have, in addition, a reserve capacity to withstand a
blast load with an intensity at least twice that of the
design blast load.

The procedure may also be used for checking the ade-
quacy of existing frames against possible blast loads.
However, if the structural arrangement of the frame is
very different from that recommended in Sec. 4-6, there is
a possibility that the procedure is not applicable. It is
advisable to carry out a detailed dynamic analysis for such
a frame.

The procedure is described in the next eight steps.
These steps are also shown in the format of a flow chart
diagram in Fig. 5-1.

STEP 1l: Determine the configuration of the building,
the dimension of the frames and the type of exterior walls.

The first step in a design is to determine the overall
dimensions, number of stories and number of bays. It is
also necessary to investigate if the finished building
would act as a closed box=-like stucture or a partially
open box-like structure when subjected to a blast load.

STEP 2: Determine the average pressure~time function
of the possible blasf. Determine the vector {r} and the
function Z(t) in the sense explained in Sec. 3-7-1.

The magnitude of the detonation and the location of
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the building must be specified. Then, the blast load func-
tion, Z(t), and the vector, {r}, are calculated in accord-
ance with the procedure shown in Appendix E.

STEP 3: Estimate the fundamental natural period, Tl’
of the structure.

It should be noted that for the usual type of blast
load, the more flexible the frame, the smaller is the
required resistance of the fréme members. Therefore, it is
often better to select a flexible frame (i.e., a frame with
a longer fundamental natural period) if the deflections due
to static loads are within the allowable limits.

STEP 4: Calculate the modified total impulse, I*, of

the blast load for the frame with the assumed natural period.

The modified total impulse, I*, is calculated using
Eq. 4-8. If the chart showing the relationship between the
modified impulse per standard floor, i*, and the fundamen-
tal natural period (similar to that shown in Fig. 4-20 or
4-21) is available, I* can be calculated using Eq. 4-12.

STEP 5: Estimate the maximum base shear, Qb'

The estimation of the maximum base shear, Qb’ is given
by Eq. 4~11. When using this equation, the value of p
between 4 and 5 may be selected depending upon the amount
of damping expected and the type of frame. (The median for

p is approximately 4.4.)

et
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STEP 6: (For the first trial only.) Select the
member sizes for the frame.

This step is initiated by calculating the required
strength at the bottom story using Eq. 4-16. The column
sizes for the bottom stories are first selected, then for
the other stories in turn. The ratio of column stiffness
at the bottom story to that at the top story should be
approximately between 2 and 5 for ten-story frames or
between 1 and 3 for five-story frames; and the average
stiffness of the beam members should be slightly less
(say, 1/2 to 1) than the average stiffness of column mem-
bers, as discussed in Sec. 4-6.

" The natural period of the frame is then computed using
the empirical formula given by Eq. 4-1. If this value of
the natural period is approximately the same as that
assumed in Step 3, proceed to Step 7. If the difference
between the assumed and the calculated natural periods is
rather large, go back to Step 4 with this new value of the
natural period (it is also possible to select a new design
at this stage and calculate the natural period of this
frame; then go back to Step 4). Or else, if the difference
is minor, the frame members may be modified (mainly the
beams) so that the natural period of the frame becomes
practically the same as that assumed in Step 3, and pro-

ceed to Step 7.



180

STEP 7: Check if the assumed frame is adequate with
respect to strength.

Based on the maximum base shear, Qb’ obtained in
Step 5, the maximum shears at other stories are estimated
according to Curve A in Fig. 4-26 for ten-story frames or
curve B in the same figure for five-story frames. For other
structures the proportion may be obtained by interpolation.

When the maximum story shears are determined, it is
possible to check if the required strength is within that
provided, by following the procedure used in the example
calculation in Sec. 4-7.

If the frame is adequate, the design then proceeds
to Step 8. If not, a new set of member sizes is selected,
the fundamental natural period is calculated using

Eq. 4-1, and the design returns to Step 4,

STEP 8: Perform dynamic analysis.

It is always advisable to perform a dynamic analysis
on a model which represents the actual frame reasonably
well, in order to see if the frame designed above does
~ behave as expected. (If the selection of frame conforms
to the recommendations given in Secs. 4-6-1 and 4-6-2, the
dynamic analysis may be omitted as the frames obtained in

the above steps should behave satisfactory against given

-

[
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blast loads.)
In practice, two or three possible designs may be
compared here. The final selection should be based on

the results of such an analysis as shown in Sec. 4-8.
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Fig. 5-1 Design Procedure (to be continued)
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Chapter 6.

SUMMARY AND CONCLUSIONS

In Chapters 2 and 3, a procedure for the dynamic
analysis of a frame deformed into the inelastic range has
been presented. A computer program based on this proced-
ure is presented in Appendix D. The main features of this
method are listed as follows:

1) The analytical model can have as many stories
and bays as the actual frame has. The frame need not be
symmetric. A shearwall structure can also be considered.

2)  Either a blast load or an earthguake motion may
be applied to the frame as an external disturbance.

3) Inelastic action and reversals of strain are
taken into account. An equivalent rotational spring devel-
oped to consider these factors makes the inelastic dynamic
calculation simpler, thus a dynamic analysis of multistory,
multibay frame is performed within a reasonable computation
time.

4) A trilinear moment-curvature relationship is
assumed for all members. The hysteresis rule used in the
analysis (shown in Fig. 2-15) is similar to that proposed
by Kato and Akiyama3.

5) The P-A effect is considered in an approximate

manner. The properties of an equivalent rotational spring
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are prepared to include this effect.

6) The effect of shear deformations of beams and
columns, the effect of semi-rigid joints, and the effect of
shear deformations in the joint panels can be considered by
modifying the characteristics of the equivalent rotational
spring.

7) Uniformly distributed loads may be applied to
beams. Thus, it is possible to analyze the combined effect
of both gravity loads and dynamic loads.

8) The bases of the bottom story columns are
attached to the foundations by elastic rotational springs.

9) The preparation of input data (determination of
the characteristics of equivalent rotational springs) is
simplified by using a separate program developed for this
purpose (Computer Program I, Appendix B).

A behavioral study was performed in Chapter 4 using
the above procedure. The study was focussed on the dynamic
behavior of steel frames subjected to blast loads. Re-
sponses of such frames, designed under various conditions,
were obtained in search of a suitable design procedure.

The sizes of frames studied here were 5 or 10 stories in
height and between 1 and 4 bays in width. (The empirical
formula for the natural period was checked against frames
ranging from 2 to 40 stories and 1 to 4 bays.) The con-

nections between the lower ends of the bottom story columns
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and the ground are assumed to be completely fixed. The
effect of strain-hardening and the P-p effect were taken
into account, but these effects were not evaluated speci-
fically. Other secondary effects were ignored. The con-
" clusions from this study are listed as follows.

1) The fundamental natural period, Tl’ of a frame

can be estimated using Egqg. 4-1; i.e.,
T, = Toh/67a . Ns/lO

in which symbols are as explained in Sec. 4-3.

2) The shape of blast load-time function, Z(t),
does not significantly affect the response; the response
is mainly influenced by the modified total impﬁlse of the

blast load, I*, which is defined in Eq. 4-8; i.e.,

[+ NS
I* = Jf(t)z(t)dtz r,
(0] i=1
where
1 2m Tl
(1 + cosg— t) for = > t > 0
1
f(t) =
T
0 for t > fi

3) The maximum base shear developed, Qb' can be

estimated by Eq. 4-11; i.e.,

pI*
Q =
b T1

where p is approximately 4.4. This formula is valid in




187

the elastic range and for moderate inelastic action.

4) The variation in column stiffnesses along the
height should be as small as possible. The recommended
value for the ratio of stiffness at the bottom story to
that at the top story ranges from 2 to 5 for ten—storyv
frames and from 1 to 3 for five-story frames.

5) The average stiffness of beam members should be
a little less (say, 50% to 100%) than the average stiffness
of column members.

6) The maximum response shear for every story is
distributed approximately as shown by curve A for ten-
story frames and by curve B for five-story frames, both
in Fig. 4-26.

7) It is possible to check if a frame has enough
capacity to resist the assumed blast load in accordance
with the procedure explained in Sec. 4-7. A crude esti-
mate of required strength for the bottom story columns,
My (on the average) is given by Eq. 4—16; i.e;,

9
N+ 1
where L may be taken equal to 70% to 100% of the bottoﬁ
story height.

Based on the knowledge obtained from the behavioral
study, a tentative procedure for a design of building

against a blast load has been proposed in Chapter 5.
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Appendix A

SUPPLEMENTARY EXPLANATION OF SECTION 2~5~1

The load-deflection (Q~A) relationship for a cantilever
column has been derived for both the elastic and inelastic
range in Sec. 2-5-1. The column end is fixed at the base
and the material is assumed to have a trilinear M-g relation-
ship. The derivation of Egs. 2-35, 2-36 and 2-39 is ex-
plained in detail in this section. The load-deflection
relationships for special cases are also demonstrated later

in this section.
A-1 Derivation of Egs. 2-35, 2-36 and 2-39.

The derivation of the Q~-A relationship in the elastic
range is trivial and the proof is omitted here.

When the moment at the base of the column reaches the
plastic moment capacity, the system may be represented as
shown in Fig. 2-11. This system will be described using
two sets of coordinates as shown in Fig. A-1. The first set
of coordinates (x~-y coordinates) have their origin at point
A where the loads are applied and the second (X-Y coordi-
nates) at point C where the moment in the section is equal
to the plastic moment capacity, Mpc'
The moment, M, at a distance X from point C is given
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M = Mpc + QX + PY (A-1) ‘

The corresponding curvature, @; i.e.,

g = ~¥ (a-2) '
is on the third branch of the moment-curvature relationship
of Fig. 2-12., Therefore, the moment and the curvature are
related as follows: .

M = K_@+ (Mpc—Mi) (a-3)

Substituting Eqs. A-1 and A-2 into Eq. A-3, the differential
equation describing equilibrium of the portion BC is obtained

as:

K Y + PY = -0X - M, (A-4) ,

As the boundary conditions are

Y=0 at X =0

. (A-5)
Y=0 at X = L2
Eq. A-4 is solved as
90, M

Y = Clcova + CysinvX ~ 5X = 5= (A-6) ;

where,
Mi ;
C., = (M, tanvl, + —2—} (A-8)
2 P 2 veosvl, !

and v is as defined in Eg. 2-37. The deflection at point C,

Ap’ is obtained by substituting X = L, in Eq. A-6, or
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. M,
= C. ; -9 -1
Ap = Clc04vL2 + Czb&nsz PL2 B
_ g(fta.}’l\)Lz - )
P Vv 2
M

+ ﬁi(éinsziansz + coasz - 1)

which is Eq. 2-36. The slope at point C, ec, is calculated

as:

<
i
e

o] x=0

M

= Q1 __ - i ~9)
= PlaomEy T Dt g vtant, (2-9)

The differential equation describing the elastic portion
AC is written as:
Ky + Py = -Ox (A-10)
As the boundary conditions are

y=0 at x =20

y = Gc at x = Ly
the equation is solved as:
y = CLhc08pX + C,s4nux - gx (A-12)
3 4 P »
where
C; = 0 | (A-13)
- Qy -
Cy = (6,35 / pco»suLl (A-14)

The condition that the moment at point C is equal to the

plastic moment capacity, M__, yields the following equation:

PC
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Mpc = QLl + PAe (A-15)

where Ae is the deflection of point A relative to point C,

and is obtained by substituting x = Ll into Egq. A-12; or

A, = CybinuL, - Qr, (A-16)

e 1l P11

Substituting Eq. A-16 into Eg. A~-15 and also substituting

Eg. A-14 for Cyr the following equation results. .

Mpc = (Po_ + Q) tanuLl/u (A-17)

If Egq. A-9 is substituted for ec in the above equation, the

relationship between the applied load, Q, and the length of

the inelastic portion, Lz(or alternately the length of the

it

elastic portion, Ll) is obtained as:

COb\)Lz

- M-véinsz

Q = uMpctanuLl i

which is Eq. 2-39. Ae may be calculated using Eq. A-16;
however, the following expression is simpler
M - QL
A = _LC_—__].
P

which is derived from Eq. A-15, and is given in Eq. 2-35.
Thus by assuming the length of inelastic portion, Lo,
- the corresponding transverse load, Q, and the total deflec-

tion, A; ipel[
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as in Eq. 2~34, is determined. If by increasing the inelas-

tic length, L2, the moment at the bottom of the column, Mb'

Mb = QL + PA (A-18)

reaches the ultimate moment, Muc’ collapse of the column is

assumed to occur.

A-2 Load-Deflection Relationship
When Axial Load is Absent.

The load-deflection (Q-A) relationship in the elastic

rénge is given by:

L3
A = 3R 0] (A-19)
for
< Mp
o = = (A-20)

When the moment in the lower portion of the column
exceeds the full plastic moment capacity, Mp, the system is
similar to that shown in Fig. 2-11. The differential equa-
tions can be constructed in a similar manner and only the
results are shown here. The notation is the same as that
used in the main text.

The total deflection, A, is given by

A = Ae + AP ’
where
QL13 QL22 MiLZ
Ae = + Ll(2K + z ) (A-21)
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and
QLz3 MiL22
A = + (A-22)

P 3Kst 2Kst

The relationship between the load, Q, and the length of the
inelastic portion, LZ’ (or the length of the elastic portion,

Ll) is given by the next formula.

The complete Q-A relationship is obtained as before
‘except that Egs. 2-35, 2-36 and 2-39 are now replaced by
Egs. A-21, A-22 and A-23.

A-3 Load-Deflection Relationship When the Moment-

Curvature Relationship is Elastic-Perfectly Plastic.

The system shown in Fig. 2-11 is considered once more,
however, the moment~curvature relationship is now assumed to
be elastic~perfectly plastic. 1In the elastic range, the
behavior of this column is the same as that described in
Sec. 2~5-1.

After the moment at the bottom of the column reaches

the plastic moment capacity, M it is usually assumed

pc’
that an infinite rotation capacity is available at the bot-
tom of the column. Then the load-deflection (Q-A) relation-

ship is written as

QL + PA = Mpc

e
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or

P Moc
Q = - EA + I (A~24)

It is not possible, however, to relate the deflection to

the curvature as in previous examples. Thus, in order to
estimate the maximum deflection for a given value of the

ductility ratio, additional factors must be taken into

ac_count .

A-4 Load-Deflection Relationship When the Base of
the Column is Restrained by a Rotational Spring.

In Fig. 2-11, it is now assumed that the base of the
column is now attached to the foundation by an elastic
rotational spring having a spring constant, k. Otherwise,
the conditions are the same as those in Sec. 2-5-1.

If the entire length of the column remains elastic,

the Q~A relationship is given by:

QL3.3(tanuL—uL) + 9L, tanulL
3K ( L)3 k u
A = u (A-25)
1 - P LtanuL
k m
This formula is valid for Q such that
H P
Q =< Mpc(faﬁﬁf - E) (A-26)

Once the moment at the base of the column reaches the plastic
moment capacity, the behavior is described as shown in Sec.

A-1l. The differential equation describing the elastic portion
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is as shown in Eg. A-10 and that describing the inelastic
portion is shown in Eq. A-4. The differences occur only in
the boundary conditions. The resulting equations are shown

below:

as in Eq. 2-34, where

A = _pc "1 (A-27)

which has the same expression as in Eq. 2-35. Ap is given

by:
A = C,’'c0sVL, + C,’s4inyL, - 9—1. - M-i (A~-28)
P 1 2 2 Vi T P2 TP f
where
Mi 3
’ _ — -
C1 = 5 ’ (A=-29)
and
My o 0 .1 -
o §—véanL2 + > + E{Mpc - Mi(l-covaz)}
C2 = B (A-30)
\)C,O/b\)L2 - -Eézu’l\)Lz

The equation describing the relationship between the length

of the inelastic portion, L2, and the applied load, Q, is

given as:
cosVL
Q = uMpCZZZﬁfI - MivAanLz
- P{M - M, (l-cosvL,) +uM fﬁfﬁi&}
k' pec i 2 pctanpl,

.e. (A-31)
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Using these equations, the complete load-deflection
curve is obtained as before. In the above equations, if
the value of k is set equal tovinfinity, the equations

shown in Sec. 2-5-1 are obtained.
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Appendix B,
COMPUTER PROGRAM T
B-1 Description of the Program.

This program has been developed to determine the pro-
perties of an equivalent rotational spring. The resulting
MS—GGS relationships together with the pertinent input data
can be plotted by the CalComp Plotter as shown in Figs.
2-14a through 2-14d., The theoretical background is’

explained in Chapter 2.
B-2 Input Data.

First Card: SN, SI, P, H, STN, STK, D, ¥YS
The input format is: (8F10,0)

Second Card: E, NDIV
The input format is: (F10.0, I5).

The above pair 6f cards are repeated for each system
to be solved. To indicate the end of the problem, two
blank cards are added at the end. The variables used here
are as follows. .

SN : Nominal size of wide flange section (inch),
ST : Moment of inertia (in4),
P : Axial load. If P > 1.0, it indicates the

axial load itself (kips); if P < 1.0, it
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STN

STK

¥YS

NDIV

208

indicates the ratio of applied axial load
to yield axial load,

Height of the equivalent cantilever column,
s as in Eg. 2-12,

Est/E, where E, Est are defined in Sec. 2-2,
cu/oy, where Iy Oy are defined in Sec. 2-2,
Yield stress, oy (ksi),

Modulus of elasticity (ksi), and

Any integer which is greater than about 50,
The greater this number, the more accurate

the result. (NDIV < 100 is usually satis-

factory.)

B~-3 Description of Subprograms and Flow Charts,

(1) MAIN PROGRAM,

Description: MAIN PROGRAM initiates CalComp

Plotter, selects origin for the figure, calls
subroutine KEISAN for the calculation of the
Q0~-A relationship, and calls subroutine CHANGE
to convert the Q-A relationship to the MS-GBS
relationship. Input data and the MS—GGS
relationship are plotted by calling subrou-

tines DRAW1l and DRAW2.

Calls: KEISAN, CHANGE, DRAW1l, DRAW2 and CalComp

subroutines,



(2)

(3)

(4)
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Flow Chart: Shown in Fig. B-1l.

SUBROUTINE KEISAN.

Description: KEISAﬁ determines the cross section-
al area and the plastic section modulus for
the given values of the nominal depth and
the moment of inertia based on Egs. 2-3 and
2-5, respectively, and then the moment—
curvature~-thrust xelationship in accordance
with the description in Sec. 2-4-1. The Q-A
relationship for the cantilever column is
calculated using the procedure shown in Sec.
2-5-1 or Appendix A,

Called By: MAIN,

Calls: CalComp subroutines.

Flow Chart: Shown in Fig. B-2.

SUBROUTINE CHANGE.

Description: CHANGE converts the Q-A relationship
to the Ms~des relationship using the proced-
ure shown in Sec. 2-5-2.

Called By: MAIN,

Flow Chart: Omitted.

SUBROUTINE DRAW1,

Description: DRAWl draws the MS—GGS relationship
as shown at the upper part of Fig. 2-14.

Called By: MAIN,



(5)

(6)

(7)
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Calls: IFOX and CalComp subroutines.

Flow Chart: Omitted.

SUBROUTINE DRAW2.

Description: DRAW2 draws the moment-curvature-
thrust relationship as shown in the lower
left-hand side in Fig. 2-14, then calls
LABEL to enter the labels and titles and to
show the column properties.

Called By: MAIN.

Calls: 1IFOX, LABEL and CalComp subroutines.

Flow Chart: Omitted.

SUBROUTINE LABEL.

Description: LABEL puts labels on the moment-
curvature-thrust relationship, and then
draws the column with pertinent properties
and loading situation as shown in the lower
right~hand side of Fig. 2-14.

Called By: DRAW2.

Calls: CalComp subroutines.

Flow Chart: Omitted.

FUNCTION IFOX

Description: IFOX defines the function y = [x].

Called By: DRAWl and DRAW2.

Flow Chart: Omitted.
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B~4 Listing of the Program.
The listing of the program appears on page 215

through 227
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Initiate CalComp Plotter

Y

Read input data
(2 cards at a time)

Y

Select origin of the figure

Y

Yes
< Are data cards blank? >————>

T

Call KEISAN

Y

Yes

_ \
<4ils NFAIL—l?AA/

+No

Call CHANGE

Y

Print out the Ms-des
relationships

Y

Call DRAW1

Y

Call DRAW2

Fig. B-1 MAIN PROGRAM
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Set NFAIL=0

Y

Calculate cross sectional area and plastic
section modulus for a given nominal depth
and moment of inertia

Y

Determine the ratio of axial load to yield
axial load

Calculate the reduced plastic moment capacity

Y

Yes Was there any mistake
in input data?

( Set NFAIL=1 > *No

Does strain-hardening No
exist?

{ers

Determine the onset point, Calculate the
regidity and terminal point of Q-A relationship

strain- hardening in moment- as explained
curvature- thrust relationship in Appendix A

Fig. B-2 SUBROUTINE KEISAN (to be continued)
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Divide the column into segments

'

Set i=0

Y

Assume inelastic column length, Ly, in Fig.2—llv
as i x (length of segment)

!

Calculate Q and A corresponding to the assumed
inelastic length using Egs. 2-34 and 2-39

Calculate the moment at the bottom
of the column

Is this moment greater than or equal to
the ultimate moment capacity or is it
smaller than that obtained in previous step?

i No
Yes
- Set i=i+l '

Fig. B-2 (Continued) SUBROUTINE KEISAN
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LISTING OF PROGRAM I

DIMENSION QL (201),DF(201) ,GRAPH (1024)
CALL PI1OTS (GRAPH,4096)
NELOT=0 :
100 NELCT=NPLOT+1
READ (5, 110) SN,SI,P,H,STN,STK,D,YS,E,NDIV
110 FORMAT (8F10.0/F10.0,15)
IF (NELOT .GE. 2) GO TO 120
cALL SYMBOL (0.0,0.0,0.1,3,0.0,-1)
CALL SYMBOL (8.5,0.0,0.1,3,0.0,-1)
GC TO 140
120 ICH=2Z% (NPLOT/2)
IF (NELCT .EQ. ICH) GO TO 130
CALL ELOT (6.6,-14.3,-3)
CALL SYMBOL (8.5,0.0,0.1,3,0.0,-1)
GO TO 140
130 CALL PLOT (~1.9,7.7,-3)
140 IF(SN .LT. 0.1) GO TO 200
CALL SYMBOL (0.0,11.0,0.1,3,0.0,~-1)
CALL SYMBOL (8.5,11.0,0.1,3,0.0,-1)
CALL SYMBOL (0.3,1.5,0.05,'PRODUCED WITH PROG#24, BY MASAAKI SUKO'
1,90.0,38)
CALL KEISAN (IP,ISTH,NFAIL,STK,P,E,SI,EI,SWN,%Z,YS,FPN,CY,AREA,FAL,F
1p,FM,STN,STND,STKD, UM,D,PM,QMAX, QMIN,NDIV,H,NDEND,QL,DF,SPT)
IF (NFAIL .EC. 1) GG TO 200
CALL CHANGE (QL,DF,QMAX,QMIN,NDEND,SPT,H,EI,P,IP)
WEIGHT=3.4*AREA
NSZ=IFIX (SN+0.5)
NRT=IFIX (WEIGHT+O0.5)
WRIIE (6,150) NSZ,NWT,SI,P
150 FORMAT (1H1, 1X,'*% W',6I3,'X',I3,4X,'MOMENT OF INERTIA=',F9.1,4X,
1*AXIAL LOAD=',F8.1//T17,'MOMENT',T28, 'RELAXATION ANGLE"')
DO 170 K=1,NDEND
WRITE (6,160) QL (K) ,DF (K)
160 FORMAT (10X, 2E15.5)
170 CONTINUE
WRITE(6,180) SPT _
180 FORMAT (/1X,'SLCPE OF DASHED LINE =',E12.5)
CALL CRAW1 (QL,DF,QMAX,QMIN,NDEND,SPT,ISTH,IP)
CALL CRAW2 (IP,ISTH,STK,P,SI,EI,SN,FPHM,CY,FP,FN,STN,STND,STKD,UH,D
1,PM,H,WEIGHT)
CALL FACTOR (1.0)
GO TO 100
200 IF(NELOT .EQ. ICH) CALL PLOT (1.9,-11.0,-3)
CALI PLOT(10.0,0.0,-3)
PLNG=8.5%FLOAT (ICH/2+1) +3.5
WKITE(6,300) PLNG
300 FORMAT (1H1, 'REQUIRED PLOTTING PAPER LENGTH=',F4.0,'INCHES')
CALL PLOT (0.0,0.0,999)
STCE

END ,
SUBROUTINE KEISAN (IP,ISTH,NFAIL,STK,P,E,SI,EI,SN,Z,YS,FPM,CY,AREA

1,FAL,FP,FM,STN,STND,STKD,UM,D,PH,CMAX,QNIN,NDIV,H, NDEND,QL,DF, SPT)
DIMENSION QL (201),CF(201)

ip=1

ISTH=1

NFAIL=0

IF(STK .LE. 0.000001) ISTH=0



150
160

200
220

230

260
300

310

320

IF(F .LE. 0.000001) IP=0
EI=E*SI

2=1.79%SI%*%0, 95/SN**0.8
FEM=2%YS

CY=FEM/EI’ ,
AREA=3.4*SI*%0.87/SN**1,5
FAL=AREA*YS

IF(P .GE. 1.000001) GO TO 150

FE=E

P=FP*FAL

GO TO 160

FP=P/FAL

SET==-E/H

IF(FP .GT. 1.000001) GO TO 220
IF (FF .GE. 0.333333) GO TO 200
FM=1.0~1.8%FpP**2

GO TC 230

FM=1.2%(1.0-FP)

GO TO 230

NFAIL=1

CALL SYMBOL (1.0,1.5,0.1,'GIVEN DATA ARE NOT PROPER',0.0,25)
RETURN

IF (ISTH .EQ. 0) GO TO 310
IF(STN .GE. 3.0) GO TO 260

UN= (3.04STN* (2.0~-STN)) /4.0

IF (FM .GE. UN) GO TO 260
STND=FM+ (STN-1.0) /2.0

GO IC 300

STND=STN-0.5%SQRT (1.0-FM+1.0E-20)* (STN+1.0)
STKD= (2.0-FM) *STK .
EIST=STKD*EI

UM= (FM4D-1.0) *FPM
SAM=STND*STKD*FPM

PM=FM*FPM

QMAX=0.0

QMIN=1.0E-20

IF (ISTH .EQ. 0) GO TO 410
IF(IF .EQ. 0) GO TO 320

A=SQRT (P/EI)

B=SQRT (P/EIST)

HD=H/FLOAT (NDIV)

ND=NDIV+1

GMOLT=0.0

DO 400 I=1,ND

NDEND=I-1

"HB=HD*FLOAT (I-1)

HU=H-HE

IF(IF .EQ. 0) GO TO 350
SNA=SIN (A*HU)

CSA=CCS (A*HU)

SNB=SIN (B*HB)

CSE=COS (B*HB)
TNA=SNA/CSA

TNB=SNB/CSB
Q=A*FM*CSB/TNA-SAM*B*SNB
C1=SAM/P
C2=(C1*B*SNB+Q/P) /B/CSB
ALEHA=C2%B-Q/P A
C4=C2#%B/A/CSA
DU=CU4*SNA-Q*HU/P

216 .
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390

400
410

420
430

100

110
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DB=C1*CSB+C2*SNB-Q*HB/P-SAM/P
DEL=LU+DB

GM=F*DEL+Q*H

GC 10 390

Q=FM/HU

DB= (C*HB**3/3,. 0+SAM*¥HB**2/2,0) /EIST
ALPHA= (Q*HB**2/2.,04+SAM*HB) /EIST
DU=Q*HU**3/3.0/EI+ALPHA*HU
DEL=DU+DB

GM=Q*H

IF (GM .GT. UM) RETURN

IF(GM .LT. GMOLD) RETURN
GMCLD=GHM

QL (I)=Q

DF (I) =DEL

IF(QMAX .LT. Q) QMAX=Q
IF(CMIN .GT. Q) CMIN=Q
CONTINUE

RETUEN

NCEND=2

IF(IF .EQ. 0) GO TO 420
A=SQRT (P/EI)

QL (1) =A*PM*COS (A*H) /SIN (A*H)
DF (1) =(PM-QL (1)*R) /P

GC 10 430

QL (1) =EM/H -

DF (1) =QL (1) *H**3/3.0/E1

DF (2) =20.0%DF (1)

QL (2) =QL (1) -P*19.0%DF (1) /H
IF(IF .EQ. 0) QL (2)=QL (1)

CMAX=CL (1)

IF(CL(2) .LT. 0.0) QMIN=QL(2)
RETURN

END

SUBFOUTINE CHANGE (QL,DF,QMAX,QMIN,NEND,SPT,H,EI,P,IP)
CIMENSION QL (201),DF (201)

DO 100 I=1,NEND

X=DF (I)

Y=QL (I)

QL (I)=Y*H

DF (I) =X/H-Y*H*%*2/3.0/EI

CCNTINUE

IF(CF(1) .LE. 1.0E-25) DF(1)=0.0

QMAX=CMAX*H

QMIN=CMIN*H

IF(IF .EQ. 0) GO TO 110

SPT=-H/ (H**2/3.0/EI+1.0/P)

RETUEN

SET=0.0

RETURN

END

SUBROUTINE DRAW1 (QL,DF,QMAX,QMIN,NEND,SPT,ISTH,IP)
DIMENSION QL (201) ,DF(201)

CALL FIOT (1.9,6.0,-3)

CALL FACTOR (0.9)

CALL SYMBOL (1.1,-0.57,0.1,'END MOMENT~-RELAXATION ANGLE RELATIONSH
11F*,0.0,40)

I¢=1FOX (ALOG10 (QMAX-QMIN)-0.478)

NQA=IFIX (QMAX/10.0%%IQ)+1

‘NGB=IFCX (QMIN/10.0%**IQ)
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UNL=4.0/FLOAT (NQA-~NQB).
NC=IFIX (0.3/UNL) +1
QLAB=FLOAT (NQ)
UNL=QLAB*UNL
BAIC=CLAB*10.0%*IQ/UNL
INIC==-NQB/NQ
YGEN=UNL*FLOAT (INTC)
IWA=-INTC*NQ .
IF (IWA .NE. NQB) YGEN=YGEN+UNL/2.0
CALL PLOT (0.0,0.0,3)
CAlLL E1OT (0.0,4.0,2)
CALL PLOT (0.0,YGEN,-3)
IF(I¢ .GE. 3) GO TO 200
IF(IQ .LE. -2) GO TO 210
QLAB=CLAB*10.0%%IQ
Jo=¢
GC TC 250
200 QLAB=CLAB*100.0
J0=IQ-2
GO 10 250
210 QLABE=CIlAB/10.0
JOo=IQ+1
250 CALL SsyMBoL (0.0,0.0,0.1,16,90.0,-1)
TETC=NGA/NQ+1
IF(IQ .LE. =-1) GO TO 252
CALL SYMBOL‘(-0.61-0005'001'. 0.,0‘0'6)
GC 10 253
252 CALL syMBOL (~0.6,-0.05,0.1,' 0.0',0.0,5)
253 INIC=INTC+1
po 270 I=1,INTC
IF (UNL .LT. 0.6) GO TO 255
YT=UNL*FLOAT (I-1) +UNL/2.0
IF (YT .GT. YGEN) GO TO 280
¥YI=-Y1
CALl SYMBOL (0.0,YT7,0.1,16,90.0,-1)
255 YT=UNL*FLOAT(I)
IF(YT .GT. YGEN) GO TO 280
YT=-YT
CAlLL syMBOL (0.0,YT,0.1,16,90.0,-1)
Y'.'[:Y'I'0.0S
YLA=CLAB*FLOAT (I)
IF(IQ .LE. -1) GO TO 256
KETA=IFIX (ALOG10 (YLA+0.00001)) +1
KBL=4~-KETA
256 YLA=-YIA
CALL syYMBOL (-0.6,Y7,0.1,' *,0.0,1)
IF({I¢C .LE. -1) GO TO 266
IF(KBL .EQ. 0) GO T0 265
DC 260 J=1,KBL
CALL SsYMBOL (-0.0,-0.0,0.1,* *,0.0,1)
260 CONIINUE
265 CALL NUMBER (-0.0,-0.0,0.17,YLA,0.0,-1)
GC TC 270
266 CALL NUMBER (-0.0,-0.0,0.1,YLA,0.0,1)
270 CCNTINUE
280 YELUS=4.0-YGEN
pc 300 I=1,IPTC
IF(UNL .LT. 0.6) GO TO 285
YTI=UNL*FLOAT (I-1) +UNL/2.0
IF(YT .GT. YPLUS) GO TO 350
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CAll SyYMBOL (0.0,Y¥7,0.1,16,90.0,~1)
285 YT=UNL*FLOAT (I)
IF(YT .GT. YPLUS) GO TO 350
CAI.I. SYMBOL (0-0,YT,0.1'16'9010'-1)
YT=YT-0.05
YLA=QLAB*FLOAT (I)
IF(IQ .LE. -1) GO TO 286 »
KETA=IFIX (ALOG10 (YLA+0.00001)) +1
KBL=5-KETA
286 CALL syMBoL (-0.6,YT,0.1,* ',0.0,1)
IF(IQ .LE. -1) KBL=1
DC 290 J=1,KBL
CALLI syMBOL (-0.0,-0.0,0.1,* *,0.0,1)
290 CCNTINUE
IF(1Q0 .LE. -1) GO TO 295
CALL NUMBER (~0.0,-0.0,0.1, YLA 0 0,-1)
GO 10 300
295 CALL NUMBER (-0.0,-0.0,0.1,YLA,0.0,1)
300 CCNTINUE
350 IF(JO .EQ. 0) GO TO 400
YJO=FLOAT (JO) '
YT=YPLUS+0.1
CALL -SYMBOL (-0.5,YT,0.1,'X10',0.0,3)
YI=YT+0.07
CALL NUMBER (-0.0,YT,0.08,YJ0,0.0,-1)
400 YTI=YFLUS
CALL SyYMBOL (0.1,¥T7,0.12,'4',0.0,1)
CALL SYMBOL (-0.0,-0.0,0.1,' ( KIP-IN )',0.0,11)
CALL ELOT (0.0,0.0,3)
CAIL ELCT (5.8,0.0,2)
LMAX=LF (NEND)
ID=IFOX (ALOG10(DMAX)-0.478)
NDA=IFIX (DMAX/10.0%*ID) +1
UND=S.€E/FLOAT (NDA)
ND=IFIX (0.4/UND) +1
DLAB=FIOAT (ND)
UND=DLAB*UND
BAIL=CLAB*10.0%*ID/UND
IF(ID .GE. 3) GO TO 410
IF(IL .LE. -3) GO TO 420
DLAE=CLAB*10.0**1D
Jo=0
GO T0 450
410 DLAB=L1AB*100.0 .
Jo=1D-2
GC TO 450
420 DLAB=CLAB/100.0
JO=ID+2
450 IDIC=NLA/ND+1
Do 500 I=1,IDTC
IF(UND .LT. 0.8) GO TO 455
XT=UNC*FLOAT (I-1) +UND/2.0
IF(XT .GT. 5.8) GO TO 510
- CALl SYMBOL (XT,0.0,0.1, 15, -90.0,-1)
455 XT=UNC*FLOAT(I)
IF (XTI .GT. 5.8) GO TO 510
CALL SYMBOL (XT'0-05001'15'-90.0'-1)
XLA=CLAB#FLOAT (1)
XT=XT-C.1 .
IF(ID .EQ. O .AND. XLA .LE. 9.99) XT=XT+0.05



460
500
510

550

600

605
610

620

630

635

640

645

6u9
650
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IF(IC .LE. -1) GO TO 460

CALIL NUMBER
GO TO0 500
CALL NUMBER
CCNTIINUE

(XT,-0.2,0.1,XLA,0.0,=1)
(XT,’O-'2'001'XLA'000'2)

IF(JO .EQ. 0) GO TOC 550

CAIL SYMBOL

5.9,-0.05,0.1,'X10%,0.0,3)

XJO=FLOAT (J0O)

CAILI NUMBER
CALL SYMBOL
CALL SYMBOL
CALL SYMBOL
QYLL=CIL (1)
DYID=LF (1)

(-0.0,0.02,0.08,%30,0.0,~1)
(4.9,0.1,0.12,43,0.0,-1)
(-0.0,-0.0,0.12,37,0.0,-1)
(-0.0,-0.0,0.1,% ( RAD. })',0.0,9)

SLCEE=SPT*BAID/BAIQ

CALL ELOT (0.0,0.0,3)

DG 600 I=1,NENLC

QL (1) =QL(I) /BAIQ

DF (I) =DF (I) /BAID

CALL ELOT (DF(I),QL(I),2)

CCRIINUE

XT=2.0%DF (1) +0.2

¥Y1=0.3

IF(ISTH .EQ.

0) GO T0 620

1IF (IF .EQ. 0) GO TO 605
YENLC=-YGEN+0.3

XEND= (YEND+SLOEE*DF (1) -QL (1)) /SLOPE
1F (XEND .LE. 5.5) GO TO 610

XEND=E.5

YENLC=SLOPE* (XEND-DF (1)) +QL (1)
CALL ELOT(DF(1),0L(1),3)

CALL LCASHPT
CALL SYMBOL
GC 1C 630

CALL SYMBOL

(XEND,YEND,0.06)
(X7,¥7,0.1,*SLOPE OF DASHED LINE=",0.0,21)

(X1,¥T,0.1,*SLOPE OF SECOND BRANCH=',0.0,23)

IF(IF .EQ. 0) GO TO 635
KETA=IFIX (ALOG10 (-SPT)) +1
IF(KETA .GE. 6) GO TO 640

IN=3-KETA
IF(KETIA
KETA=0
GO TO 645
IN=1

KETA=0

GO 1IC 645
IN=-1
KETA=KETA-3

.GE.

3) IN=-1

FK=FLOAT(KETA)
SPI=SET/10.0%*KETA

CALL NUMBER

(-0.0,-0.0,0.1,SPT,0.0,IN)

IF (KETA .EQ. 0) GO TO 649

YTU=YT+0.07
CALI SYMBOL
CALL NUMBER
Y1=YT+40.25

YTD=Y1-0.05
CALI SYMBOL
CALL SYMBOL
CALL SYMBOL
CALL SIMBOL

(-0.0,-0.0,0.1,7X10*,0.0,3)
(-0.0,YTU,0.08,FK,0.0,~1)

(XT,¥T,0.12,43,0.0,-1)
(-¢.0,-0.0,0.12,37,0.0,-1)
(-0.0,Y7D,0,08,*S-YIELD',0.0,7)
(-€.0,¥7,0.1,'=7,0.0,1)




655

660

IF(IP .EQ. 1 .ANLC. LYLD .GT. 1.0E-25) GO TO 655
CALL symMBoOL (-0.0,-0.0,0.1,%0.0',0.0,3)
GO 10 €90
KETA=IFOX (ALOG10 (CYLD)) +1
IF(KEIA .LE. 1) GO TO 660
N=-1
GO TO 680
IF(KETA .LE. ~3) GO TO 670

" IN=Z-KETA

670
680

690

GC TO 680

IN=3

DYLD=LYLD/10.0**KETA

CALL NUMBER (-0.0,-0.0,0.1,DYLD,0.0,IN)
IF (KETA .GE. -2) GG TO 690

YTI0=Y1+0.07

CK=FLCAT (KETA)

CALL syMpoOL (-0.0,-0.0,0.1,'X10°,0.0,3)
CALL NUMBER (-0.0,YT0,0.08,DK,0.0,-1)
YI=YT+0.25

!'IB=YT"'0005

' CALL SYMBOL (XT,¥7,0.1,'4*,0.0,1)

700
710

150
160

180

CALL SYMBOL (-0.0,YTD,0.08,*S-YIELD',0.0,7)
CALL symMBOL (-0.0,¥T,0.1,°'=',0.0,1)
IN=-1

IF(I¢ .LE. 1) IN=2-IQ

CALL NUMBER' (-0.0,-0.0,0.1,QYLD,0.0,IN)
IF (YGEN .GE. 0.1) GO TO 710

CALL sysBoL (0.0,0.0,0.1,15,-90. 0,‘1)
IF(IC .LE. -1) GO To 700

CALL SYMBOL (-0.05,-0.2,0.1,'07,0.0,1)
GO TC 710

CALI SYMBOL (‘C.1,-0-2,0.1,'0-0',0.0,3)
CALLl ELOT (0.0,-YGEN,-3)

RETURN

END
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SUBFOUTINE DRAW2 (IP,ISTH,STK,P,SI,EI,SN,FPM,CY,FP,FM,STN,STND,STK

1i0,U%,C,EN,H,WEIGHT)
CAIL ELOT (0.0,-3.2,-3)
IF (ISTH .EQ. 0) p=1.0
IF{L .LE. 1.2) GO T0 150
13=2.0 :
Yi=z.0/D
GC T0 160
Y1=1.¢
13=1.5%D
YU=Y1*FM :
IF (ISTB .EQ. 0) UM=El
YE=Yu*UM/PH
IF (ISTH .EQ. 0) GO TO0 180
BEEM=SIN+(D-1.0) /STK
X3=3.3

=3,3/PHM
X2=STN*X1
X4=X1*FM
X5=X1*STND
EHMD=SIND+ (D-1.0) /STKD
X6=X1*EFHMD
GO TO 200
X3=3.3
X1=0.33



200

210

215
220

230
235

240

250

255

- 260

X4=0.33%FN

X6=3.3

CALL ELOT (0.0,2.1,2)
CALL ELOT (3.5,0.0,3)
CALL EICT (0.0,0.0,2)
CALL ELOT (X4,Y4,2)

IF(IF .EQ. 0) GO TO 215
CALL LASHPT (X1,Y1,0.06)
CALI ELOT (X1,%1,2)

IF (ISTH .EQ. 0) GO TO 210

"CAIL CASHPT (X2,Y1,0.06)

CALL FLOT(X2,Y1,2)

CAII LASHPT (X3,Y3,0.06)

CALI ELOT(X3,Y3,2)

CAIL EIOT (X&,14,3)

IF(ISTH .EQ. 0) GO TO 220

CALL ELOT (X5,Y4,2)

CALL ELOT (X6,16,2)

CALLI SsymMBOL (-0.2,-0.2,0.1,'0',0.0,1)
CALL SYMBOL (0.0,Y1,0.1,16,90.0,-1)
2=Y1-0.05

CALL SYMBOL (-0.3,2,0.1,'M',0.0,1)
2=2-0.05

CALLI syMBOL (-0.0,2,0.08,'P',0.0,1)
IF(IF .EQ. 0) GO TO 240

CALL SYMBOL (0.0,Y4,0.1,16,90.0,-1)
YSA=Y1-YU4

IF(¥YSA .LT. 0.15) GO TO 230
2=Y4-0.05

GO T0 235 .

CALY ELOT (-0.06,Y4,3)

Z=Y4-0.2

CALLI ELOT (~0.3,%,2)

Z=Z‘0a1 .

CALL SYMBOL (-0.3,2,0.1,'M',0.0,1)
2=2-0.05

CAlL SsymMBOL (-0.0,2,0.08,'PC',0.0,2)
IF(ISTH .EQ. 0) GO TO 270

CALL SYMBOL (0.0,¥3,0.1,16,90.0,-1)
¥sa=y3-11 :
IF(¥SA .LT. 0.15) GO TO 250
Z=Y3*0.0S

GO 10 255

CALL ELOT (-0.06,Y3,3)

2=13+40.2

CALL ELOT (-0.3,2,2)

CAIL SyMBOL (-0.3,2,0.1,'4',0.0,1)
2=2-0.05 '

CALL SyMBOL (-0.0,2,0.08,'0',0.0,17)
IF{IF .EQ. 0) GO TO 270

CAIL SymBOL (0.0,Y6,0.1,16,90.0,-1)
IF(¥6 .GE. Y1) GO TO 260

YSA=Y1-Y6

YYS=Y6-Y4

IF (¥SA .GE. 0.15 .AND. YYS .GE. 0.15) GO TO 265

GO 10 270
YSA=Y3-16
YYS=Y€-Y1

IF(¥SA .GE. 0.15 .AND. YYS .GE. 0.15) GO TO 265

GO 10 270

222

[n




265

2=Y6+0.05
CALL sysBOL (-0.3,2,0.1,'M4',0.0,1)

- '2=2-0.05

270

275

280

285

290

295

CALL SYMBOL (-6.0,%,0.08,°UC',0.0,2)
CALL SYMBOL (-0.05,2.15,0.12,'M',0.0,1)
CALL sYmMBOL (X1,0.0,0.1,15,-90.0,~1)
CAll sSyYMBOL (X1,-0.2,0.1,36,0.0,-1)

CALI SYIMBOL (-0.0,'0.25,0.08,'P',0.0," ‘
IF(IP .EQ. 0) GO TO0 280

CALL.SYMBOL (x“'0-0'°c1'15'-9000'-”
XSA=X1-X4

IF(XSA .LT. 0.1) GO TO 275

XT=X4-0.05

"CALL syYMBOL (XT7,-0.2,0.1,36,0.0,-1)

CALL SYMBOL (-0-0,-0-25'0008"PC',0.0'2)
GO TIC 280

CALL PLOT (X4,-0.06,3)

XT=X4<0.1

CAIL ELOT (XT,-0.2,2)

XI=X1-0.1 -

CALL SyYMporL (xT1,-0.3,0.1,36,0.0,-1)
Call syMBOL (-0.0,-0.35,0.08,*PC*,0.0,2)
IF(ISTH .EQ. 0) GO TO 290

XSA=X2-X1

IF(XSA .LT. 0.3) GO TO 290

CALL SYMBOL- (X2,0.0,0.1,15,-90.0,~1)
X7=X2-0.05

CALL SYMBOL (XT,-0.2,0.08,'S',0.0,1)
CALL sympBOL (~C.0,-0.2,0.1,36,0.0,-1)
CAll syMBOL (-0.0,-0.25,0.08,'P',0.0,1)
IF(IF .EQ. 0) GO TO 290

CALL s¥mBOL (X5,0.€,0.1,15,-90.0,~1)
XSA=X2-X5

IF(XsSA .LT. O.J) GO TO 285

XT=X5-0.05

CALL SYMBOL (XT,-0.2,0.1,36,0.0,-1)

CALl sysBOL (-0.0,-0.25,0.08,'sT',0.0,2)
GO T0 290

CAII EIOT (X5,-0.06,3)

XT=X5-0.1

CALLI ELOT (XT,-0.2,2)

XT=XT°0.1

CAll syWBOL (XT7,-0.3,0.1,36,0.0,-1)

CALL syMBoL (-C.0,-0.35,0.08,'sT',0.0,2)
CAIL SYMmBoL (¥3,0.0,0.1,15,-90.0,-1)
X1=%3~-6.05

CALL SYmBOL (XT7,-0.2,0.1,36,0.0,-1)

CALL SYMBOL (-C.0,-0.25,0.08,'0',0.0,1)
IF(IF .EQ. O .CR. ISTH .EQ. 0) GO TO 300
CALL SYMBOL (X6,0.0,0.1,15,-90.0,-1)
XSA=X3:-X6

IF(XSA .LT. 0.25) GO TO 295

XT=X6-0.05 '

CAll symBOL (X17,-0.2,0.1,36,0.0,-1)

CALL SyMBoL (-0.0,-0.25,0.08,*0C',0.0,2)
GO 10 300

CALL ELOT (X6,-0.06,3)

XT1=X6-0.1

CALL PLOT (XT,-O 2,2)

XI=XT-0.1

223
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CALL SYMBOL (XT,-0.3,0.1,36,0.0,-1)
CALL SYMBOL (‘0.0,‘0435,0.08,'UC',0.0,2)
300 CALL SymMBOoL (3.6,-0.05,0.12,36,0.0,-1)
XI=£I1,1000.0
IF(FM .GT. 0.4) GO TO 310
¥YI=(Y1+4Y4) /2.0-0.1
G0 1C 315
315 170=Y1+0.07
CALL SYMBOL (X1,YT,0.1,'EI=',0.0'3)
CALL NUMBER (~0.0,-0.0,0.1,XI,0.0,-1)
CALL SYMBOL ('0.0,‘0.0,0.1,'x10',0.0,3)
CalL SYMBOL (-0.0,YTU,0.08,73',0.0,1)
IF(ISTIH .EQ. 0) GO TO 330
IF(IF .EQ. 0) GO TO 320
EST=EI*STKD/1000.0
YT= (Y6+Y4) /2.0-0.3
YIC=Y1-0.05
YTU=Y1+40.07
XT=X5+40.47
CALL SYMBOLv(XT,YT,0'1,'K',0.0,1)
CALL SYMBOL (‘0.0,YTD,0.0B,'ST',0.0,2)
CALL SYMBOL (’O.C,YT,0.1,'=',Oo0,1)
CALL MNUMBER ('0.0,‘0-0,0.1,EST,0.0,‘1)
CALL SYMBOL (-0.0,-0.0,0.1,'X10',0.0,3)
CALL SYMBOL- (-0.0,YTU,0.08,'3",0.0,1)
320 IF(FM .GT. 0.4) GO TO 325
X1=%X2+40.2
¥1=Y1-0.1
GC 10 326
325 X1=X2-0.4
YI=Y3+40.1
326 Y1D=Y1-0.05
. YTU=YT+0.07
EST=EI*STK/1000.0
CALL SYMBOL (XT,YT,O.1,'E',0.0,1)

" CALL SYMBOL (‘0.0,YTD,0.08,'ST',0.0,2)
CALL SYMBOL ('0.0,YT,0.1,'I=',0.0,2)
CALIL NUMBER (‘C.0,-0.0,0.1,EST,0.0,-1)
CALL SYMBOL ('0.0,‘0.0,0.1.'X10‘,0.0,3)
CALL SYMBOL (’0.0,YTU,0.08,'3',0.0,1) ‘

330 CALL LABEL (IP,ISTH,P,SI,SN,FPM,CY,FP,FM,STN,STND,UM,D,PH,H,PHM,PH
1ML,XZ2,X1,WEIGHT)
RETUERN
ERLC
SUBROUTINE LABEL (IP,ISTH,P,SI,SN,FPH,CY,FP,FH,STN,STND,UM,D,PM,H,
1EHY ,PHMD,X2,X1,WEIGHT) '
YI=-0.5
YTL=Y1~0.05
CALL SYMBOL (0.2,YT,0.1"M',0.0,1)
CALIL SYMBOL (—0.0,YTD,0.0S,'P',0.0,1)
CALL SYMBOL (-0.0,YT,0.1,'=',0.0,1)
CALL NUMBER (‘0-Q,‘0.0,0.1,FPH,0.0,1)
IF(ISTH .EQ. 0) GO TO 310
CALL SYMBOL (-0.0,-0.0,0.1%,°, M*,0.0,3)
CALL SYMBOL ('O-C,YTD,0.0B,'U',0.0,1)
CALI SYMBOL (‘0.0,YT,0-1,'=',0.0,1)
UMC=D*FPNM ’
CALL NUMBER (-0.0,-0.0,0.1,U4D,0.0,1)
310 IF(IF .EQ. 0) GO TO 320




320

325

330

YT=Y1-0.25

YID=Y1-0.05

CALL SYMBOL (0.2,YT,0.1,'M',0.0,1)
CALL SymBOL (-0.0,YTD,0.08,'PC',0.0,2)
CALL SyYMBOL (-0.C,YT,0.1,°'=',0.0,1)
CAII NUMBER (-000,-000'001,EM,0-0'1)
IF(ISTH .EQ. 0) GO TO 320 :
CALL symBOL (~0.0,-0.0,0.1,¢, M',0.0,3)
CALL SYMBOL (-0.0,YTD,0.08,'0UC*',0.0,2)
CALLI SsyMBoL (-0.0,YT,0.1,'=',0.0,1)
CALL NUMBER (-0.0,-0.0,0.1,04,0.0,1)
YI=YT-0.25 :

YTL=Y1-0.05

YIU=Y1+0.07

CALL syYMBOL (0.2,¥Y7,0.1,36,0.0,-1)
CALL symBOL (-0.0,YTD,0.08,'P',0.0,1)
CALL SYMBOL (-0.0,Y1,0.1,'=',0.0,1)
€CYC=CY¥*1000.0

CALL NUMBER (-0.0,-0.0,0.1,CY0,0.0,3)
CAIl SYMBOL (-C.0,-0.0,0.1,'X10',0.0,3)
CALL SYMBOL (-0.0,Y7TU,0.08,'-3*,0.0,2)
XSA=Xz-X1

IF(ISTH .EQ. 0) GO TO 330

IF(XSa .LT. 0.3) GO TO 325

CALl SymBOoL (-0.0,YT,0.1,*, ',0.0,2)
CALL syYymBOL (-0.0,-0.0,0.08,'s5',0.0,1)
CAll SsymBOL (-0.0,-0.0,0.1,36,0.0,-1)
CALL SYMBOL (-0.0,YTD,0.08,t'P',0.0,1)
CALL SYMBOL (-OIO'YT'0.1"=.'000,1)
CALl MNUMBER (-0.0,-0.0,0.1,STN,0.0,1)
CALL syMBOL (-C.0,-0.0,0.1,36,0.0,-1)
CALL SYMBOL (-0.0,YTD,0.08,'P',0.0,1)
CALL SYMBOL (-C.0,YT,0.1,', ',0.0,2)
CALL SYMBOL (-0.0,-0.0,0.1,36,0.0,-1)
CALL SYMBOL (-0.0,Y¥7D,0.08,'U',0.0,1)
CALL SYMBOL (-0.C,Y¥T,0.1,¢=',0.0,1)
CALL NUMBER (~0.0,-0.0,0.1,FHM,0.0,1)
CALL symBOL (-0.0,-0.0,0.1,36,0.0,-1)
CALl symBOL (-0.0,YTD,0.08,'P',0.0,1)
IF(IP .EQ. 0) GO TO 340 ,
Y1=11-0.25

YIL=Y1~-0.05

YTU=YT1+0.07

CYL=CY*FM*1000.0

CALL SYMBOL (0.2,Y7,0.1,36,0.0,-1)
CAll syMBoL (-C€.0,YTD,0.08,'PC',0.0,2)
CALL SYMBOL (~0.0,YT,0.1,'=¢,0.0,1)
CALL NUMBER (-0.0,-0.0,0.1,CY¥D,0.0,3)
CAll syMBOL (-6.0,-0.0,0.1,'X10',0.0,3)
CALI SYMBOL (-0.0,YTU,0.08,'-3%,0.0,2)
IF(ISTH .EQ. 0) GO TO 340

IF(XSA .LT. 0.3) GC TO 335

SU=STNL/FM

CALL SYMBOL (=0.0,YT7,0.1,', *,0.0,2)
CALL syMBoL (-0.0,-0.0,0.1,36,0.0,-1)
CAll symsBoL (~0.0,¥YTD,0.08,'ST*,0.0,2)
CALL SYMBOL (~0.0,YT,0.1,'=1,0.0,1)
CALL NUMBER (—0.0’-0-0'001'5[]'0-0,1)
CALL symBOL (-0.0,-0.0,0.1,36,0.0,~1)
CALL SYMBOL (-OOC’YTD'OQOB"PC"000'2)
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335 SU=EHMD/FM

CALL SYMBOL (-0.0,YT,0.1,', ',0.0,2)
CALL SYMBOL (-0.0,-0.0,0.1,36,0.0,-1)
CALL SYMBOL (—C.O,YTD,0.0S,'UC',0.0,2)
CALL SYMBOL (-0.0,¥T,0.1,%=*,0.0,1)

CALL NUMBER (-0.0,-0.0,0.1,50,0.0,1)

CALL sYMBOL (-C.0,-0.0,0.1,36,0.0,-1)
CAIL SYMBOL (-0.0,YTD,0.0B,'PC',0.0,2)

340 YT=YT-0.35
CALL SYmBoL (0.4,YT,0.1,'MOMENT CURVATURE RELATIONSHIP',0.0,29)

YI=YI‘O. 6
CALL SYMBOL (1.0,¥T,0.12,'CROSS SECTIONAL PROPERTIES AND M-',0.0,3
13)

CALL SYMBOL (-0.0,-0.0,0.145,43,0.0,-1)
CALL SYMBOL (-0.0,-0.0,0.145,37,0.0,-1)
CAIL SYMBOL (~0.0,+0.0,0.12,' RELATIONSHIP',0.0,13)
CALL FLOT (0.0,-0.25,-3)
CALL SYMBOL (4.3,-0.6,0.1,'UNIT OF FORCE: KIP.',O0. 0,19)
CAIl SYMBOL (4.3.,-0.85,0.1,'UNIT OF LENGTH: IN.',0.0,19)
"CALL ELOT (4.5,0.0,3)
CALI ELOT (5.3,0.0,2)
CALL ELOT(4.8,0.0,3)
CAIL ELOT (4.8,1.8,2)
CALL PLOT (4.9,1.8,2)
CALL FLOT (4.9,0.0,2)
Do 350 I=1,10
XT=4.5+0.07*FLCAT (I)
CALL SYMBOL (XT7,0.0,0.1,15,-45.0,=1)
350 CCNTINUE '
CALL ELOT (4.8%5,-0.15,3)
CALL ELOT (4.85,-0.3,2)
CALL PLOT (5.1%5,-0.3,2)
CAIL ELOT (5.08,-0.27,2)
CALL FLOT (5.C&,-0.33,3)
CAIL ELOT (5.15,-0.3, 2)
CALL SYMBOL (5.25,-0.3,0.12,52,0.0,-1)
IF(IF .EQ. 0) GO TC 360
CALL FLOT (4.6%,2.3,3)
CALL FICT (4.85,1.85,2)
CALL ELOT (4.7€,1.95,2)
CALL ELOT (4.92,1.95,2)
CALL PLOT (4.85,1.85,2)

CALL SYMBOL (4.8,2.35,0.12,'P*,0.0,1)
CALL SYMBOL (-C. 0,-0 0 0 1,v=1,0.0,1)
CALL NUMBER (-O. 0,-0 0,0.1,2,0.0,1)

CALL SYMBOL (4.9,2.15, 0 1,'=,0.0,1)

CALL NUMBER (—0.0,—0 0,0.1,FP,0.0,2)
CAIL S¥YMBOL (-0.0,-0.0,0.1,'P',0.0,1)
CALL SYMBOL (-0.C,z.1, 0 08,'!',0.0,1)

360 CAIL ELCT (4.3,1.8,3)
CALL ELOT (u.75,1.e,2)
CALL PLOT (4.65,1.€7,2)
CALI EIOT (4.65,1.73,2)
CALL PLOT (4.7%,1.8, 2)
CALL SYMBOL (4.3,1.9,0.12,'Q',0.0,1)
CALL SYMBOL (5.3,1.8,0.3,16, 90.0,-1)
CALL EICT (5.3,1.4,3)
CALL ELOT (5.3,1.8,2)
CALL ELOT (5.27,1.73,2)
CALL ELOT (5.33,1.73,3)
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CALL FELOT (5.3,1.8,2)
CAIl EICT (5.3,0.9,3)
CAIl FLCT (5.3,0.0,2)
CALL FLOT (5.27,0.€7,2)
CALL EICT (5.33,0.07,3)
CALL EFLOT (5.3,0.0,2)

CALL SYMBOL
CALL NUMBER
CALL SYMBOL
CALL NUMBER
CALL SYMBOL
CALL NUMBER
CALL SYMBOL
CALI NUMBER

(5.2,1.1,0.1,%L=",0.0,2)
(-¢.0,-0.0,0.1,H,0.0,-1)
(5.4,0.5,0.1,'%',0.0,1)
(=0.0,-0.0,0.1, SN ,0.0,-1)
(-0.0,-0.0,0.1,'X",0.0,1)
(-0.0,-0.0,0.1,¥EIGHT,0.0,-1)
(5.4,0.25,0.1,'I=1,0.0,2)
(~0.0,-0.0,0.1,51,0.0,1)

CALL FLOT (0.0,0.u45,-3)

EETURRN
END

FUNCIICN IFOX (X)
IF(X .LT. 0.0) GO T0 100

IFCR=1IFIX (X)

RETURN

IFOX=IFIX (X)-1

EETURN
ERD
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Appendix C.

DERIVATION OF MODIFIED SLOPE DEFLECTION EQUATIONS

The standard slope deflection equations have been mod-
ified in order to accommodate the special end conditions
incurred during the modeling process of a frame for the
dynamic analysis, as discussed in Chapter 3. 1In the model,
a member end is restrained by a rotational spring. The
member end may also consist of a rigid stub, as shown in
Fig., 3-8. The final formats of such equations are shown in
Egqs. 3-5 and 3,6. The derivation of these equations is
shown in this appendix.

The sway rotation, p, between points a and b in Fig.
3-8 is temporarily assumed to be zero. If the joint rota-
btions at points a and b are ea and eb, respectively, the

end rotations of the member cd at points c¢ and d are

Mg=f1
ea - a
1
and
Mac"B2
eb - o
2

respectively, as explained in Egs. 3-3 and 3-4. If p is

zero, the sway rotation between points ¢ and 4, Ped’ is

given by:
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Therefore the end moments, Mcd and Mdc’ are expressed by:

M __-B M, -B
_ 2K __cd "1 _ _dc "2
3 1 2
. 3xlea+xzeb} ' c
X3 cd
M _-B M, ~B
2K cd "1 dc 2
M = = {(8 ) + 2(6, - )
dec A3L a al b a,
A.0 +)X.0
l'a "2b
+ 3 A3 } + Cac

(c-1)

(c~-2)

where K, Ccd and Cdc are as defined in Egs. 3-23, 3-7 and

3-8, respectively. Solving Egs. C-1 and C-2 for M_g and

M
dc’
A 6).K
2K 1 6K 1 ,
M = [Z—{(2 + 3— + + )8
cd A5L A3 apAsL a2A32L a

A 6)1,K B

+ (1 + 373 + ———3-2-—)9b + (2 + 6§ L)—-l +
3 Gara L GpAz™ O3

273
R s /7

a213L c -a2A3L dc

(c-3)
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AL 6)1.K A
M. o= 2RO+ 3 s —1 0+ (2 + 32
dc oL X 29, X
3 3 o, A.%L 3
113
61,K B B
+0L61)fL+ 22)9b+&l+(2+a61;L)62}
123 0 25" 1 173 2
2K 4K
- alngccd + (1 + a;ng)cdc]/A7 (C-4)

where A, is defined in Eg. 3-22.

The end moments, M and M, , and the end moments, M
ab ba , cd

and M cr are related as follows.

d
In general, shear forces at the member ends (see Fig.
C-1) are given, ignoring the secondary moments produced by

axial force, by

_ 1 1 _

Ql = f(Ml+M2) + --W2 L (C-5)
1 1

Q = - F (M +My) -~ WL (C-6)

Here the uniformly distributed load, w, is assumed to be

applied throughout the member length, L. Therefore the

shear force at the right end of member ac, Qac’ is
— 1 v _ 1
Qac - AiL(Mab+Mca) §WA1L

and the shear force at the left end of member cd, ch, is

= - 1 1
Qqa = A3L(Mcd+Mdc) + 5WA 4L
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The equilibrium condition at this point requires that the
above two shear forces are the same. Thus,

xl
M = M + Xg(Mcd+Mdc)

1 2

cd

In the above, the equilibrium of moments:

Mca +_Mcd = 0 (C-8)

is used. A similar process at point d yields:

= M, + -A-Z(M M, ) 4+ WA, (1-A,) L2 (C-9)
Mpa = dc A3 cd Tdc kD) 1
As Mcd and Mdc are calculated in'Eqs. C-3 and C-4, the
end moments Mab and Mba are obtained using Egs. C-7 and C-9.

Substituting Eqs. C-3 and C-4 into C-7, Mab is obtained as:

2K(a 6_+A 0 +A Liac2) 4 ac
, : AL 1%a “2°b T4 50, 6 cd
M = 3 1 2 + AD
ab 8 ab
Aq
an e (C—lo)
and similarly, My, as:
g B
2K ' 'YL, 72 !
Tgf(Azea Aleb+A56z+A4E;) + ACyql '
M, = + AD
a A 8" ba
7
... (C-11)

! ' ! '
where Al, Al, A2, A4, Ay, A5, A5, AG’ A6’ Aqgy A8Dab and

y
A8Dba are as defined in Sec. 3-5-1. When deriving these
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equations, the relationship,

C = — C (C—lZ)

cd dc
was used.
If the sway rotation, p, is present, the end moments,
, will be expressed in the forms shown in Egs.

M and M

ab ba
3-5 and 3~-6. The end moments observed when the joint
rotations at both ends of the member are zero and only the
sway rotation, p, exists are the same as the moments observed
when the joint rotations at both ends are equal to -p and
the sway rotation is zero. Therefore the coefficients of
oF A3’and A;, in Egqs. 3-5 and 3-6, respectively, are given
by:

Ay = -(Ap t+ Ay)
and

A3

-(Ai + A,)

as shown in Egs. 3-14 and 3-15. 1In other words, Egs. 3-5
and 3-6 are the expressions for the end moments under an
arbitrary member position as shown in Fig. 3-8.

The lower ends of the bottom story columns are con-
nected to the foundation through elastic rotational springs.
The slope deflection equations must be modified to accommo-
date this situation. The derivation of modified slope
deflection equations for this case is, however, similar to
that shown above, thus the explanation has been omitted

here.
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Fig. C-1 Equilibrium of Forces



Appendix D.

COMPUTER PROGRAM II

D-1 Description of the Program.

This program has been developed to perform an inelastic

dynamic analysis of a multistory, multibay frame subjected

to either a blast load or an earthquake motion. The proced-~

ure employed in the program complies with the statements
made in Chapter 3.

The MS—6GS relationship must be prepared beforehand
for each member end. This may be done using PROGRAM T
shown in Appendix B. In the present program, the input
statement is made by assuming that the initial M =80
relationships are the same at both ends of a member. The
data describing the external disturbance may be input
through a deck of cards or through a file stored in the
computer disk.

The results of the entire response may be printed out
or may be either punched out or stored in the disk so that
the results can be plotted by CalComp Plotter using a pro-

gram written especially for this purpose.

D-2 Input Data.

Card Group l: NS, NB, NCAL, MXIT, NTOBU, NSAI, LTP,

234
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IGPH, TIMELT, DELTAT, GOSA. The input format is (8I5, 10X,

3F10.0).

The numbering convention and other symbols are as

defined in Chapter 3. The variables used here are as follows.

NS

NB

NCAL

MXIT

NTOBU

NSAI

LTP

IGPH

»
e

Number of stories (Ns),
Number of bays (Nb)’
Number of integration steps,
Maximum number of iterations allowed for
each step of integration procedure.
(20 < MXIT < 50),
Results are printed out for every NTOBU-step
of integration,
Number of subdivisions. If there is any
change in the value of Gy Bl' Ay, OF 62 in
the modified slope deflection equation or
if the convergence was not obtained, the
integration is done for smaller time incre-
ments as specified by this. (2 < NSAI < 5)
Type of external disturbance.

LTP < 4 ... Barthquake

LTP > 5 ... Blast Load
Indicates the type of output.
IGPH > 6 ... Results are printed out; however
they are neither punched out nor stored in

the disk.



TIMELT

DELTAT

GOSA
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IGPH

1 ... Results are punched out.

2 ... Results are stored in the disk.

IGPH
Two files must be created in the disk, and
the output code numbers must be assigned in
the following manner.

2 file name 1

3 = file name 2

In the file name 1, entire behavior is
stored; and in file name 2, the maximum
values are stored.

This value must be equal to the prepared
total computation time minus 0.3 or 0.4 min-
utes. If the total computation time assigned
for this job is not enough to perform all

the response calculation, the response cal-
culation is cut off after TIMELT (min) is
spent, and the maximum values so far obtained
are printed out and the results stored in the
disk are saved in the tape.

Incremental time step in the integration step
(At),

Convergence limit, It is usually adequate

to specify this value between 0.001 and

0.0001.

P

(S EE—



237

"Card Group 2: EM, GR, SEICO, IDISC, THAJI, TOWA.

FORMAT (3F10.0, I5, 25X, 2F10.0).

EM :

GR :
SEICO :
IDISC :
THAJI and

Modulus of elasticity (E)

Acceleration of gravity (g)

Input data of external disturbance is mul-
tiplied by this value. If the input data
for an earthquake is prepared so that the
maximum value of acceleration is equal to
the acceleration of gravity, SEICO corres-
ponds to the seismic design coefficient in
a static analysis. If the input data for
a blast load is prepared so that the maxi-
mum value is 1.0, SEICO shows the maximum
load at the standard floor.

Indicates if the data describing the exter-
nal disturbance are input through a deck of
cards (IDISC # 0) or through a file stored
in the disk (IDISC = 0). If the data are
given through the disk, the file must be
éalled by the input code number 4.

TOWA : The results for every story are
printed out regardless of the indication of
IP(i) (See Card Group 4) for the time period
from THAJI (sec) to TOWA (sec).

If these places are left blank, the function
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is ignored.
Card Group 3: SB(j), for j =1 to N - FORMAT
((8F10.0)) .
SB(j) : Length of the j-th bay (from column center
to column center)
Card Group 4: For i =1 to NS; sM(i), H(i), SH(i),
IP(i). FORMAT (3F10.0, I5).

SM(i) : Weight concentrated at the i-th floor

(m:.L X g)
H(i) : Damping factor (hi)
SH(i) : Story height of the i-th story
TP(i) : Indicates if the print out of the result for

the i-th floor is required (IP(i) > 0) or
not (IP(i) £ -1).

Card Group 5: For i =1 to Ngi RP(i,j), for j =1 to

N, + 1. TFORMAT ((8F10.0)).

RP(i,j) : Length of the rigid stub at the right end of
the beam at the i-th floor and the j-1l-th bay
which is assumed to be equal to the length of
rigid stub at the left end of the beam at the
i-th floor and the j-th bay.

Card Group 6: For i = 1 to Ns; BMI(i,j), for j =1 to
N, . FORMAT ((8F10.0)).

BMI(i,3j) : Moment of inertia of the beam at the i-th

.

floor and the j-th bay.
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Card Group 7: For i = 1 to N i CMI(i,j), for j =1 to
N, + 1. FORMAT ((8F10.0)).
CMI(i,j) : Moment of inertia of the column at the i-th
story and the j-th row.
Card Group 8: SPR(j), for j =1 to N, + 1. FORMAT
((8F10.0)).
SPR(j) : Spring constant of the foundation at the
bottom of the j-th column. (for fixed end
30)

Card Group 9: For i =1 to N_i UDL(i,j), for j =1

+ 1.0 x 10

to N . FORMAT ((8F10.0));
UDL(i,j) : Uniformly distributed load applied to the
beam at the i~th floor and the j-th bay.
Card Group 10: Part a; IKUTSU, NES(k), for k = 1 to
IKUTSU. FORMAT ((16I5)).
_ Part b; TEMPO(i), for i = 1 to 6,
SLPLS (k). FORMAT (7F10.0).
IKUTSU : Number of members which have the same
MS-GGS relationships.

NES (k)

Member number which was referred above.

TEMPO (1)

Temporary variable. Used to show the coord-
inates of points A, B and C in Fig. 3-9; i.e
(TEMPO (1) , TEMPO(2)) ... Point A
(TEMPO(3) , TEMPO(4)) ... Point B

(TEMPO(5) , TEMPO(6)) ... Point C

LA 4
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The next relationship must be satisfied.
TEMPO(5) > TEMPO(3) > TEMPO(1l) > 0
If the theoretical wvalue of TEMPO(l) is zero,

30 should be input in

a value like 1.0 x 10
the computer.
SLPLS (k) : Quantity, ¢, defined in Eq. 2-48.

Part a and part b are repeated until the MS—GGS relation-

ships are input for all members.

Card Group 11 (Only when LTP > 5; i.e., for blast load) :

CSM(i), for i = 1 to Ns' FORMAT ((8F10.0)).
CSM(i) : The i-th element of vector {r } which is
defined in Sec. 3-7-1.
Card Group 12 (Only when IGPH = 1 or 2): MSKIP, INSA,
NPCH, IPCH(j), for j = 1 to NPCH. FORMAT (10I5).
MSKIP : Results are either punched out (if IGPH = 1)
or stored in the disk (if IGPH = 2) for every
MSKIP-steps of integration.

INSA Tndicates if the print out of results is

required (INSA > 5) or not (INSA < 4)
together with punched out cards or files
stored in the disk.

NPCH

out. (NPCH < 5).

IPCH (3) Floor number for which the results are

punched out.

Number of floors for which results are punched

'
Sp——
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If IGPH = 2, neither NPCH nor IPCH(]j) need to be
specified as the results of every floor is stored in the
disk.

Card Group 12: TSEI(i), for i =1 to 20. FORMAT
(20Rn4) .

TSEI(i) : Identification of external disturbance.

Card Group 13: GA(j), for j = 1 to NCAL. FORMAT
((7F10.0)).

GA(j) : Data of external disturbance. Seven data

are input at a time.

Some general remarks are listed as follows:

1. One unit each for length, mass and time should be used
throughout the preparation of data. As far as this
reqgulation is observed, either customary (English)
system or the SI (international) system may be used.

2. If IDISC = 0 in Card Group 2, the data given in Card
Groués 12 and 13 are assumed to be stored in the disk
in the same formats as shown here,

3. Total time for which the response calculation is per-

formed is NCAL X DELTAT.
D-3 Presentation of Results.

The results of response calculation are presented in
various manners according to the specified values of IGPH

and INSA in the preparation of input data.
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(1) Those which are printed out regardless of the values

of

a.

IGPH and INSA.

First three natural periods and the smallest
natural period. |

Locations of member end where inelastic action
was experienced.

Locations of member ends where collapse was
indicated.

Maximum values in displacement relative to the
ground, displacement relative to the lower floor,
velocity relative to the lower floor, absolute
acceleration, resisting force due to damping,
resisting force due to frame action, shear coef-
ficient and the total (damping and frame action

combined) resisting force; for every floor.

(2) bAdditional results which are printed out when IGPH 2

6; or IGPH = 1 or 2,and INSA 2 5.

e.

Displacement relative to the ground, displacement
relative to the lower floor, velocity relative to

the lower floor, absolute acceleration, resisting

force due to damping, resisting force due to frame

action and shear coefficient; for the specified
floors by IP(i), for every NTOBU-steps of inte-

gration,

[———
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(3) Results which are punched out when IGPH = 1.

£. Floor number (counted from the bottom--only in
this case), time, displacement relative to the
ground, displacement relative to the lower floor,
velocity relative to the lower floor, absolute
acceleration, resisting force due to damping,
resisting force due to fréme action and shear
coefficient; for the specified floors by IPCH(3),
for every MSKIP-steps of integration. The out-
put format is (I2, F8.3, 1P7E10.3).

g. Maximum values in displacement relative to the
lower floor, the time it was recorded, velocity
relative to the lower floor, the time it was
recorded, shear coefficient and the time it was
recorded; for every floor starting from the bot-
tom. The output format is (3 (1PE10.4, OPF10.3)).

(4) The results stored in the disk when IGPH = 2,

h, The same variables as listed in article f above,
by the same output format; except that they are
recorded for every floor,

i. The same variables indicated in article g above,

by the same output format.
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Description of Subprograms and Flow Charts.

MAIN PROGRAM,

Description: MAIN PROGRAM is functioned to set ini-
tial values for some variables and to assemble
subroutines.

Calls: TIME, SAKURA, STIFF, SHUKI, KIKU and JISHIN.

Flow Chart: Shown in Fig. D-1.

Variables in Common Statements (in order of appearance):
NS, NB, SH(i), SPR(i), SB(i), RP(i,j), UDL(i,j) and
SLPLS(i) : As explained in the preparation of

~input data,

STF(i) : Stiffness of the i~th member, 2EI/L,
where L is either column length or bay
length (column center to center),

IOP(i,j) : Indicates if, in the Ms—des relation-
ship in Fig. D-2, branch #2 exists (IOP = 1)
or has been exhausted during the process of
reversals of loading and branch #3 comes after
branch #1 (IOP = 2); at the i-th member and
the j-th end. End number 1 indicates the
upper end of a column or the left end of a
beam, End number 2 indicates the other end,

ION(i,j) =: Similar to IOP(i,j); indicates if
branch #4 still exists (ION = 1) or has been

absorbed (ION = 2),
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SLP(i,k) : o, or a, as appears in Egs. 3-3 and

1 2
3-4 for the i-th member. If k = 1, the slope
of branch‘#l; if k = 2, the slope of branch
#2 or #4; and if k = 3, the slope of branch
#3 or #5 in Fig. D-2,

BETA(i,j,k) : Bj as appears in Eg. 3-3 and
3-4, for the i-th member. Subscript k indi-
cates the branch number as shown in Fig. D-2,

THETA(i,j,k) : The value of 668 at points A, B,
c, A', B', and C', respectively, correspond-
ing tok =1, ... 6 at the i~-th member and
the j-th end,

IMA(i,j) : Indicates the branch in the Ms—ées
relationship where the preseht values of
(Ms, GGS) lie, at the i-th member and the
j-th end. If they are on branch #1, IMA = 0;
if on branch #2, IMA = 1; if on branch #3,
IMA = 2; if on branch #4, IMA = -1; and if on
branch #5, IMA = -2, in Fig. D-2,

PMO(i,j,k) : The values of M, at points A and
A' in Fig. D-2, for k = 1 and 2, respective-
ly, at the i-th member and the j-th end.

HXD(i) : Vector {£} defined in Eq. 3-28, and

HNL(i) : Vector {n} defined in Eq. 3-28.
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Other Variables (Only the important ones):

GOSA, NCAL, MXIT, NTOBU, NSAI, GR, DELTAT, SEICO,

IP(i), THAJI, TOWA, LTP, IGPH and IDISC : As
explained in the preparation of input data,

C(i) : Identical to H(i) as explained in the
preparation of input data until KIKU is
called; thereafter, c; as defined in Eq.
3-29,

SM(i) : Mass concentrated at the i-~th floor,

CcsM(i) : CsM; as defined in Eq. 3-35 or ~CR; as
defined in Egq. 3~36, depending upon the type
of external disturbance,

ITIME : TIMELT expressed in terms of milli-
seconds,

IA ; Number of unknowns (dimension of {6}) in
Eq. 3-24,

Q(i,1) Stiffness matric [G] in Eq. 3-28,

L]

A(i,j) : Matric [R] in Eq. 3-24. Stored for
only the band width of 2Nb + 3,

"ISHUT : Indicates if the Gaussian elimination

process was done without having numerical

problems (ISHUT = 0) or not (ISHUT = 1), and

GOME : l/wl, where w, as defined in Sec. 3-7-1.

[SS——

L ]
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(2) SUBROUTINE SAKURA

Description: SAKURA reads in most of the input data
and prints out the important frame properties
necessary for the identification of the problem.

Called By: MAIN.

Flow Chart: Omitted.

New Variables:
SM(i) : Weight at first, later converted to

mass, concentrated at the i-th floor, and
TEMPO (i) : Témporary variables.
(3) SUBROUTINE STIFF

Description: STIFF is called whenever a new stiffness
matrix [G] as in Eq. 3-28 is necessary to be cal-
culated. Matrix [R] as in Eq. 3-24 is constructed
by calling FUJI. LU decomposition (Gaussian elim-
ination) of matrix [R] using Doolittle's method
(without pivoting) is performed. Then, by calling
YURI, Eq. 3~24 is solved for the stiffness matrix
in the manner as described in Sec. 3-5-2.

Called By: MAIN, JISHIN and SAIBUN.

Calls: FUJI and YURI.

Flow Chart: Shown in Fig. D-3.

New Variable:
INIT : Indicates if this subroutine is called

to calculate the initial stiffness matrix by
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MAIN (INIT = 0) or not (INIT = 1).
(4) SUBROUTINE FUJT.
Description: FUJI assembles the elements of matrix
[R] defined in Sec. 3-5-2. The coefficients of

ea and 6, in the modified slope deflection equa-

b
tions as in Egs. 3-5 and 3-6 are obtained by
calling IZU.

Called By: STIFF.

Calls: IZU.

Flow Chart: Omitted,.

New Variables:

VA : Coefficient of ea in Eq. 3~5 or 3-6,

VB : Coefficient of eb in Eq. 3~5 or 3-6,

MA : Member number indicating the column which
connects from above to the joint where the
equilibrium of moments is being considered,

ML : Member number indicating the beam which
connects from left to such a joint,

MR : Member number indicating the beam which
connects from right to such a joint,

MB : Member number indicating the column which
connects from below to such a joint,

FRl : A, as defined in Sec. 3-5-1, and

1

FR2 A. as defined in Sec. 3-5-1.

2
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(5) SUBROUTINE IZU.
Description: IZU calculates the coefficients of ea

and eb in Eq. 3-5 or 3-6 when called by FUJI, or

those in Eq. C-3 or C-4 when called by KYOTO. If

IZU is called with respect to the equilibrium of

story shears by FUJI, the corresponding values

are calculated from the combined equation, Myp

My o obtained from Eqs. 3-5 and 3-6. The formu-

lae used in the actual computation sometimes look

different than given in the mentioned equations,
depending upon the values of 0q and 0, -

Called By: FUJI and KYOTO.

Flow Chart: Omitted.

New Variables:

II : Indicates if the present calculation should
be done using Eq. 3-5 or C-3 (II = 1), or
using Eq. 3-6 or C-4 (II = 2). Further, if
II = 3, the combined equation, Mab + Mba’
should be used,

IASHI : Indicates if the member being considered
is the column of bottom story (IASHI = -1) or
not (IASHI = 1), and

IGO : 1Indicates if this subroutine was called by

FUJI (IGO = 1) or by KYOTO (IGO = ~-1).
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(6) SUBROUTINE YURI

Description: YURI assembles the right hand side, {B},
of Eq. 3-24 by calling B, and solvesfor {6} by
calling SOLVE. It then constructs the stiffness
matrix [G] as described in Sec. 3-5-2. If it is
the calculation of the initial stiffness matrix,
the vector {no} defined in Sec. 3-5-2 is also
evaluated.

Called By: STIFF.

Calls: B and SOLVE.

Flow Chart: Omitted.

(7) FUNCTION B

Description: B assembles the i-th element of vector
{B} in Eq. 3-24 by calling UHEN for given values
of vector {x}.

Called By: YURI and KYOTO.

Calls: TUHEN.

Flow Chart: Omitted.

New Variables:

MA, ML, MR, MB FR1l and FR2 : As defined in IZU,
IJ : Indicates the element number in vector {B},
SXD(i) : Displacement relative to the ground;

i.e., the vector {x} defined in Sec. 3-7-1,
and

R : Sway rotation, p, as defined in Sec. 3-5-1.

I

[



(8) FUNCTION UHEN

Description: UHEN sums the rest of the terms that are
eXcluded either by 6, term or 6, term in Eq.
3-5 or 3-6 when called by B, or the corresponding
terms in Eg. C-3 or C-4 when called by KYOTO. If
UHEN is called with respect to the equilibrium of
story shears by B, the corresponding value is cal-
culated from the combined equation, Mab + Mba'
obtained from Egs. 3-5 or 3-6. The formulae used
in the actual computation, sometimes looks differ-
ent than given in the mentioned equations depend-
ing upon the values of oy and Oy -

‘Called By: B and KYOTO.

Flow Chart: Omitted.'

New Variables:
ITI and IASH : as defined in IZU,
M : Member number,
S : Member length, and
iGO : Indicates if this function was called by

B (IGO = 1) or by KYOTO (IGO = -1).
(9) SUBROUTINE SOLVE

Description: SOLVE solves for {6} in Egq. 3-24 by back
substitutions.

Called BY: YURI and KYOTO.

Flow Chart; Omitted.



252 .

New Variables:

A(i,j) : Lower and upper matrices that have been
obtained by LU decomposition of matrix [R] in
Eq. 3-24 (done in STIFF) are now stored,
instead of [R] itself,

W(i) : Vector {B} in Eq. 3-24 at the beginning;
then changed to (L] 1{B} using forward elim-
ination. When the calculation is finished,
it is the solution {6} in Eq. 3-24, and

C(i) : Story shear terms in the solution {6}
in Eq. 3-24.

(10) SUBROUTINE SHUKI
Description: SHUKI computes the first three undamped
natural periods and the minimum natural period; -
and corresponding modes.
Called By: MAIN
Calls: TOKYOl.
Flow Chart: Omitted.
(11) SUBROUTINE TOKYOl
Description: TOKYOl is used to change a matrix to its
inverse matrix as it goes through.
Called By: SHUKI and KIKU.
Flow Chart: Omitted.

(12) SUBROUTINE KIKU
Description: KIKU calculates the damping coefficients,

c;, as defined in Eq. 3-29. It also calculates
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the initial deflection, {&0} as in Egq. 3-27.

Called By: MAIN.

Calls: TOKYOl.

Flow Chart: Omitted.

SUBROUTINE JISHIN

Déscription: JISHIN is the most important subroutine
as it solves the equations of motion by calling
SUCHI, checks member end moments,aMs, and relax-
ation angles, GGS, if they are within the assumed
branches of the MS—GGS relationship by calling
KYOTO and if they are not, a new stiffness matrix
is calculated in SAIBUN. The MS-GGS relationships
are updated in the manner as described in Sec.
2~5-4, by calling NARA. The results are output
in various formats according to input specifica-
tions.

Called By: MAIN.

Calls: STIFF, SUCHI, SAIBUN, KYOTO, NARA and TIME.

Flow Chart: Shown in Fig. D-4.

New Variables:
GA(i), TSEI(i) : As defined in the preparation

| of input data,
AX(i) : Acceleration relative to the ground
({X} as in Sec. 3-7-1),

VX(i) : Velocity relative to the ground ({x1}),
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XD(i) : Displacement relative to the ground ({x1}),

RX(i) : Displacement at the i~th floor relative to
the i+l-th floor,

RV(i) : Velocity at the i-th floor relative to the
i+l-th floor,

AA(i) : Absolute acceleration ({X} + io{l} for an

earthquake; {¥} for a blast load),

CQ(i) : Shear coefficient,

RESC(i) : Resisting force due to damping,

RESQ(i) : Resisting force due to frame action,
RXMX (1) : Maximum value in relative displacement,
RVMX(i) : Maximum value in relative velocity,

COMX (i) : Maximum value in shear coefficient,
XDMX (i) : Maximum value in displacement relative to

the ground,

AAMX (i) : Maximum value in absoluate acceleration,

RCMX(i) : Maximum value in resisting force due to
damping,

ROMX (i) : Maximum value in resisting force due to

frame action,
TRMX (i) : Maximum value in total resisting force,
TRX(i) : Time when the maximum relative displacement
was recorded,
TRV(i) : Time when the maximum relative velocity was

recorded,

[*ET
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TCQ(i) : Time when the maximum shear coeffici-
ent was recorded,
ORAX(i) : Acceleration ({X}) obtained in the
previous step of integration,
OVX(i) : Velocity ({ij) obtained in the previ-
ous step of integration,
OXD(i) : Displacement ({x}) obtained in the
| previous step of integration,
FT(i,j) : Present value of relaxation angle,
, GOS, at the i-th member and the j-th end,
KOSAN(i,j) : Indicates if the rotational spring
has experienced inelastic action (KOSAN = 1)
or not (KOSAN = 0) at the i-th member and
the j-th end,
GAl : External disturbance at t = tp - 2At
where tp is the value of time axis for which
the present step of calculation is being done,

GA2 : External disturbance at t = tp - At,

GA3 : External disturbance at t

tp’
GA4 : External disturbance at t = tp + At, and
TP : Value of time axis for which the present
étep of calculation is being done.
(14) SUBROUTINE SAIBUN

Description: SAIBUN reperforms the numerical integra-

tion by calling SUCHI with a smaller value of
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time increment, when the calculations failed to
converge with regular value of At or when the
MS—AGS relationships at any member ends are being

changed from one branch to another.

' Ccalled By: JISHIN.

Calls: SUCHI, KYOTO, STIFF and NARA.
Flow Chart: Shown in Fig. D-5.
New Variable: |
GAP : Present value of external disturbance
obtained by interpolating GAl, GA2, GA3 and
GA4.
SUBROUTINE SUCHI
Description: SUCHI solves the equations of motion us-
ing the linear acceleration method as explained
in Sec. 3-7-2.
Called By: JISHIN and SAIBUN.
Calls: QQ.
Flow Chart: Shown in Fig. D-6.

New Variable:

TSAT : Indicates if the equations of motion were
solved successfully; i.e., numerical integra-
tion procedure converged (ISAI = 10) or not

(ISAT = ~10).
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(16) FUNCTION QQ
Description: QQ calculates Qi({x}) in Eq. 3-33.
Called By: SUCHI.
Flé& Chart: Omitted.
(17) SUBROUTINE KYOTO
Description: KYOTO calculates the present value of
relaxation‘angle at every member end and checks
_if it is within the assumed branch of the Ms—ﬁeS
relationship (set ICHI = 0) or not (Set ICHI > 1).
Called By: JISHIN and SAIBUN.
Calls: B, SOLVE, IZU and UHEN.
Flow Chart: Shown in Fig. D-7.
New Variablgs:

EM(j) : End moment at the j-th end of the member
being considered; i.e., M.q and Mye 2S
defined in Egs. C-3 and C-4, and

ITQ : 1Indicates if this subroutine was called by
JISHIN (IIQ = 1) or by SAIBUN (IIQ = 2).

(18) SUBROUTINE NARA
Description: NARA updates the Ms—aes relationships by
using the procedure described in Sec. 2-5-4. It
also prints out the location of member end when
it experiences the inelastic action for the first
time or when the collapse is indicated.

Called By: JISHIN and SAIBUN.
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Flow Chart: Shown in Fig. D-8.

New Variable:

KDIS : Indicates if any rotational springs have
indicated collapses (KDIS = -10) or not
(KDIS = 10).

(19) SUBROUTINE TIME
Description: TIME is a standard MTS (Michigan Termi-
nal System - IBM/360 at the University of Alberta)
subroutine which allows the user easy access to
the elapsed time, CPU time used, time of day, and
the date in convenient units.

Called By: MAIN and JISHIN.

D-5 Listing of Program.
The listing of the program appears on pages 271

through 300




Call TIME

 —

Call SAKURA

el

Call STIFF

—

\ Yes

< Is ISHUT=1 ? s

No

et

\7Print out the initial stiffness matrix /

-

Call SHUKI

<

éall KIKU

Y

Call JISHIN

Fig. D-1 MAIN PROGRAM

259
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Mg A END MOMENT

B8
BRANCH #3

\BRANCH # 2

A

BRANCH #1

—>

BRANCH #5

Fig. D-2

RELAXATION
ANGLE, 86

BRANCH #4

MS—GGS Relationship in General Situation
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Set ISHUT=0

!

Call FUJI

!

Perform LU decomposition of matrix A(i,J)

Y

<7Was there any pivotal element that is zero? )

y o

No Lo Yes
Was any multiplier

?
greater than 1007 Set ISHUT=1

t Yes

Print out such a multiplier to warn
that accuracy may be lost in the
subsequent calculations

Y

' Call YURI

= v

Fig. D-3  SUBROUTINE STIFF
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Set INSA=10

+ Error in

<——Yes—< Is IGPH>5? > input data
*rNo * No
\ No
< Is IGPH=1? - ){( Is IGPH=2? >

+ Yes * Yes

Input for MSKIP, INSA, NPCH Input for MSKIP
and IPCH(J) - and INSA

Y
Y

No
Is IDISK=07? >*
+ Yes
Set data reference number Set data reference number
equal to 4 for the input equal to 5 for the input
of TSEI(i) and GA(jJ) of TSEI(i) and GA(])

Y Y
v

\ Input TSEI (i) /

Print out important parameters
among the input data

Fig. D-4 SUBROUTINE JISHIN (to be continued)



263

Call STIFF

Y

Yes
<7 Is ISHUT=1? Return
¥ vo

Set ISAI=10

Y

Set initial values for {x}, {x}, {%} and so on

Y

Set i=1

No -
4-———( Is i=1 or a multiple of 7?2 ><—@
+'Yes

Read in the values of external disturbance,
GA(j), for next 7 steps of computation

Y

l'—— 3] Dpetermine GAl, GA2, GA3 and GA4

Y

Preserve the values of AX(k), VX(k) and
XD(k) of previous step in OAX(k), OVX(k)
and OXD (k) , respectively

Fig. D-4 (continued) SUBROUTINE JISHIN
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Call SUCHI

Y o

< Is ISAI20? > n
+'Yes
Call KYOTO No Restore old values, OAX(k),
—»1 OVX (k) and OXD(k) into
+ AX(k), VX(k) and XD (k)

< Is ICHI=0? >— +

Call SAIBUN

Yes +

No / :
B { Is ISHUT=1 or KDIS<0? >
Calculate absolute acceleration, Yes

shear coefficients, etc.

+ Yes
< Is INSAZ5? 3——»

No

\ Print out results/

Check maximum values p——

Fig. D-4 (continued) SUBROUTINE JISHIN

et eng]

e



265

" Yes

Is IGPH257? }

e

< Is IGPH=1? . Then IGPH=2
l Yes | "

Store results in
\Punch out results] the disk

Y

Y

Y

Call NARA

Y

Yes /
o4 — Is KDIS<07? >
] v
Call TIME

Y

tes Is computation time used up to this point
greater than TIMELT?
| I v
" No / 3
- \ Is 1<NCAL? >
*Yes
Set i=i+l

Fig. D-4 (continued) SUBROUTINE JISHIN



©

Y
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\ Print out maximum values /4——-@

Yes

Y

Fig.

<{ >
{ Is IGPH25? >

I

No
( Is IGPH=1 ? >-—-——>

Yes

K Punch out maximum values /

Y

Store maximum values
in the disk

D-4

(continued)

SUBROUTINE JISHIN

[ROT—

N1
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Set j=1

* .

Calculate the value of external disturbance by

interpolation

Y

Call SUCHI

Y

Call KYOTO

Y

Yes
/ =07?
\ Is ICHI=07 >

¥~

Set new values for HXD(k) and HNL(k)

Y

Call STIFF

*- Yes ¢
< Is ISHUT=1 ¢ Return

No

No -
< Is j<NSAI? >——> Set ISAI=10
* Yes

Call NARA

Y

Yes
>< Is KDISs<0? Return
¥ o

Set j=j+1

Fig. D-5 SUBROUTINE SAIBUN
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Perform numerical integration procedure
as shown in the chart in Fig. 3-12

Y

Yes Has the computation been successful?
Has the convergence been obtained within
specified number of iterations?

o
No

| < Is\ISisIZO? >_>
Yes

Y Set ISAI=-10

Y | Y

Set the latest Print out indicating that the
values as the convergence was not
solution for obtained

this step

Fig. D-6 SUBROUTINE SUCHI



269

Set ICHI=0

Y

Calculate the right hand side vector {B} in Eq. 3-24
for the present deflection, SXD(i)

A

Y

Solve for {8} in Eq.r3—24 by calling SOLVE

Y

Calculate relaxation angle, FT(i,j), at
both ends of the member being considered

Y

Is the relaxation angle within the assumed branch
of the Mg-66g relationship at either end?

Iy

Set ICHI=ICHI+1

Y

< Is IIQ=1? > >

J v

Select a new branch where the present (Mg, 86g)
values 1lie, i.e., set a new value of IMA{i,])

Yes

No 44/[ﬁas the checking procedure been Y

\\completed for all members?

Yes

Fig. D-7 SUBROUTINE KYOTO



Set KDIS=10

Y

270

Yes
- { Is IMA(i,j)=07 )
¥ Yo
No
o { 1Is KOSAN(i,3)=0? )

+’Yes

YPrint out the location where yielding is recorded/

Y

Set KOSAN(i,j)=1

Y

!—->< Is collapse declared at this member end?}

J v

Update the M -§
relationship

Y

Yes

Os

Set KDIS=-10

Y

Y

Thi

s is the end of

the procedure for this member end

Y

Has the updating procedure been completed

at all member ends?

Fig. D-8

Yes

SUBROUTINE NARA

No
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LISTING OF PROGRAM II

COMMON NS,NB, STF (225) ,SH(25),SPR( 5),SB( 4) ,RP(25, 5),UDL(25, )
CCMMCN IOP(225,2),I0N(225,2),SLPLS (225),SLP(225,3),BETA (225,2,5),
1THETA (225, 2, 6) ,IMA (225,2) ,PM0(225,2,2) ,HXD(25) ,HNL(25)
DIMENSION A (150, 11),CSM(25),Q(25,25),C(25),5M(25),1IP(25)
CALL TIME(0)
CALL SAKURA (GOSA,NCAL,MXIT,NTOBU,NSAI,GR,DELTAT,SEICO,C,SHM,IP,CSM
1,THAJI,TOWA,LTE,IGPH,ITINE, IDISC)
IA= (NB+2) *NS
DO 100 I=1,NS
HXT (I)=0.0
HNI (I)=0.0
100 CONTINUE
CAI1 STIFF(Q,0,3,IA,ISHUT)
IF(ISHUT .EQ. 1) STOP
WRITE (6,200)
200 FORMAT (/1X,'STIFFNESS MATRIX FOR THE FRAME -- IN TERMS OF TOTAL ST
10REY SHEAR.')
IF(NS .LE. 8) GO TO 230
DC 220 I=1,NS
WRITE (6,210) I, (Q(I,Jd),Jd=1,NS)
210 FORMAT (3X,*ROW',I3,8E15.6/(9X,8E15.6))
220 CCNIINUE
GO 10 260
230 DO 250 I=1,NS
WRITE(6,240) I,(Q(I,J),J=1,NS)
240 FOFMAT (3X,'ROW',I3,8E15.6)
250 CCNTINUE
260 CALL SHUKI (Q,SH,GOMNE)
CALL KIKU (DELTAT,C,GOME,Q,GOSA,GR,NCAL)
CALL JISHIN (SM,CSM,C,IP,IGPH,GR,GOSA,NCAL,DELTAT,MXIT,NSAI,NTOBU,
1THAJI,TOWA,SEICO,Q,IA,A,LTP,ITIME,IDISC)
STOE ‘
END :
SUEROUTINE SAKURA (GOSA,NCAL,MXIT,NTOBU,NSAI,GR,DELTAT,SEICO,H,SH,
1IP,CSM,THAJI,TOWA,LTP,IGPH,ITIME,IDISC)
CCMMGN NS, NB, STF(225) SH(25) ,SPR{ 5) »SB{ 4) ,RP (25, 5), UDL(25, 4)
CCEMON IOP (225,2) ,ION (225,2), SLPLS (225) ,SLP (225, 3) ,BETA (225,2,5) ,
1THEIA(225,2,6),IMA(225,2),PMO(225,2,2),HXD(25),HNL(ZS)
DIMENSION PMC (225),BMI (25, 4),CMI (25, 5),SM(25),IP(25),H(25),CSM (2
15) , NES (225) , TEMPO (225) ,NESS (225)
10 FCEMAT (1H1)
20 FOEMAT (1H )
COMMENT : INPUT STATEMENT
READ(5,100) NS,NB,NCAL,MXIT,NTOBU,NSAI,LTP,IGPH,TIMELT,
1DELTAT,GCSA,EM,GE,SEICO, IDISC, THAJI, TOWA
100 FOEMAT( 8IS, 10X,3F10.0/3F10.0,I5,25X,2F10.0)
IF (IIMELT .LT. 0.000001) TIMELT=60.0
ITIME=IFIX (TIMELT*60000.0)
NE1=NB+1
NBE=2#NB+1
NEET=NBB*NS
COMMENT : INPUT STATEMENT
REAL(5,110) (SB(J) ,J=1,NB)
110 FOFMAT ((8F10.0))
DC 130 I=1,NS
CCMMENT : INPUT STATEMENT
READ(5,120) SM(I),H(I),SH(I),IP(I)



120 FOEMAT (3F10.0,1I5)
130 CCNIINUE
DC 140 I=1,NS
COMMENT : INPUT STATEMENT
" READ(5,110) (RP(I,Jd),J=1,NB1)
140 CCNTINUE
DO 150 I=1,NS
CCMMENT : INPUT STATEMENT
REAL (S,110) (BMI(I,J),J=1,NB)
150 CONTINUE
LC 160 I=1,NS
COMMENT : INPUT STATEMENT
REAL (5, 110) (CMI(I,J),Jd=1,NB1)
160 CONTIKUE
DO 190 I=1,NS
po 170 J=1,NB
IJ=NBE* (I-1) +J
STF (IJ)=2.0%EM*BMI (I,J)/SB(J)
170 CCNTINUE
pc 180 J=1,NB1
IJ=NBB* (I~1) +NB+J
STF (IJ)=2.0%EM*CHI (I,J)/SH(I)
180 CCNTINUE
190 CCNTINUE
COMMENT : INPUT STATEMENT
READ (5,110) - (SER(I) ,I=1,NB1)
CSM (1) =SH (1)
IF (NS .EQ. 1) GO TO 220
po 210 I=2,NS
CSM(I)=CSM (I-1)+SM(I)
210 CCNIINUE
220 DO 230 I=1,NS
COMMENT : INPUT STATEMENT
~ REAL (5,110) (UDL(I,J),J=1,NB)
230 CCNTINUE
I150=0
KUMI=0
COMMENT : INPUT STATEMENT
240 REAL (5,241) IKUTSU, (NES(K),K=1,IKUTSU)
241 FORMAT ((1615))
K=10000000
pO 231 J=1,IKUTSU
IF(NES(J) .GE. K) GO TO 231
K=KES (J)
IF(J .EQ. 1) GO TO 231
NES (J) =NES (1)
NES (1) =K
231 CCNTIINUE
COMMENT : INPUT STATEMENT
REDD (5,242) (TEMEO(I),I=1,6),SLPLS (K)
242 FORMAT(7E10.5)
KUMI=KUMI+1
DO 245 J=1,IKUISO
JJ=NES (J)
NESS (JJ) =KUMI
245 CCNIINUE
SLE (K, 1) =TEMPO (2) /TEMPO (1)
SLE (K,2) = (TEMPC (4) ~TEMPO (2)
SLE (K, 3) = (TEMPO (6) ~TEMPO (4)
BETA (K,1,1)=0.0

— -

/ (TEMPO (3) -TEMPO( 1))
/ (TEMPO (_5) ~TEMPO(3))

272
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260

265
270

275
280
290

300
301

304
303

273

BETA (K, 1,2)= (TEMPO (3) *TEMPO (2) -TEMEO (1) *TEMPO (4) ) / (TEMPO(3) ~TEMPO( .
1))

BETA (K, 1,3) = (TEMPO (5) *TEMPO (4) ~TEMPO (3) *TEMPO (6) ) / (TEMPO (5) ~TEMPO(
13))

BETA(K,1,4)=-BETA (K,1,2)

EETA (K, 1,5) =-BETA (K, 1, 3)

THETA (K, 1, 1) =TEMEO (1)

THETA (K, 1,2) =TEMPO (3)

THETA (K,1,3)=TEMEOC (5)

THETA (K, 1, 4) ==TEMPO (1)

THETA (K,1,5)=-TEMEO (3)

THETA (K, 1, 6) ==TEMPO (5)

EMC (K, 1,1) =TEMEO (2)

EMC (K, 1, 2) =-TEMPO (2)

DC 270 I=1,IKUTSU

KI=NES (I)

DO 260 J=1,2

ICE(KI,J) =1

ICK (KI,Jd)=1

IMA (KI,J) =0

IF(I .EQ. 1 .AND. J .EQ. 1) GO TO 260
LO 255 L=1,6

THETA (KI,J,L)=THETA (K, 1,L)

IF(L .GE. 6) GO TO 255

BETA (KI,J,L)=BETA(K,1,L)

IF(L .GE. 3) GO TO 255

EMC (KI,J,L)=EMC(K,1,L)

CCNTINUE
CCNTINUE

IF(I .EQ. 1) GO TO 270
SLELS (KI)=SLPLS (K)

LO 265 L=1,3

SLE (KI,1)=SLP (K, L)
CCNTINUE

CCNTINUE

TRETA (K, 1, 5) =TEMPO (4)
THETA (K,1,6)=TEMPO (6)
ITSU=ITSU+IKUISU

IF(ITSU .EQ. NBBT) GO TO 275

GO 10 240

WRITE (6,10)

WRITE (6,280)

FORMAT (1X,**%* INPUT DATA **!)

WEITE (6,290) '
FOERMAT (/1X,"BEAMS !',5X,*PLASTIC MCMENT ** STIFFNESS (2EI/L) ** U.D
1.10.) !

KAKU=1

JS= (KAKU-1) *3+1

IF(NE .LE. KAKU*3) GO TO 301

JE=JS+2

KAKU=KAKU+1

GO IC 302

JE=NB

KAKU=-1

JES=JE+1-JS

GO 10 (304,303,302), JES

WEITE(6,307) (J,Jd=JS,JE)

GO IC 308

WRITE (6,306) (J,J=JS,JE)

GC 10 308



302
305
306
307
308

310

315
320

325

WRITE (6,305) (J,J=JS,JE) .

FOFMAT (3X, '*FLCCR',3 (10X, *~-=~ BAY NO. (',I3,' ) ==-==1,7X))
FOFMAT (3X,'FLOCR',2 (10X, '=-=- BAY NO. (',I3,¢ ) =----1,7X))
FORMAT (3X, 'FLOOR', 10X,*=---- BAY NO. (',I3,! ) =--=-1)

DC 320 I=1,NS

IJ=NBE* (I-1) +JS
13J=1J4JE-JS

LO 310 K=J5,JE
KK=IJ-JS+K
TEMEO (KK) =UDL (I, K)
CGNTINUE

WKITE(6,315) I, ((EMO(J,1,1),STF (J),TEMPO(J)) ,J=1d,13J)

FCEMAT (1X,I6,1%,3(2X,3E13.5))

CCNTINUE

WRITE (6,325) (SB(J),J=Js,JE)

FOEMAT (3X, 'BAY LENGTH',10X,E13.5,2 (28X,E13.5))
IF (KAKU .GE. 0) GO TG 300

WRITE (6,330)
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330 FOEMAT(//1X,'CCLUMNS',5X,'PLASTIC MOMENT ** STIFFNESS (2EI/H) ** LE

340

341

344
343
342
345
346

347
348

350
360
370

380

390

400

1NGTIH CF RIGID ZONE (EACH SIDE OF CCLUMN)?')
KAKU=1

JS= (KAKU=1) *3+1

IF(NB1 .LE. KAKU#*3) GO TO 341
JE=JS+2

KAKU=KAKU+1

GO 10 342

JE=NB1

KAKU=-1

JES=JE+1-JS

GC 10 (3u44,343,342), JES
WRITE(6,347) (J,J=3S,JE)

GC 10 348

WRITE(6,346) (J,J=JS,JE)

GC 1C 348

WRITE(6,345) (J,d=JS,JE)

FOEMAT (3X, 'STOFEY!,3(9X,'~-- COLUMN NO. (',I3,!
FOEMAT (3X, 'STOREY',2(9X,'~-- COLUMN NO. (',I3,!
FORMAT (3X,'STOFEY', 9X,*'--- COLUMN NO. (*,I3,"

LO 360 I=1,NS
IJ=NBB* (I-1) +NB+JS
13J=IJ+JE-JS

LO 350 K=JS,JE
KK=IJ-JS+K
TEMEO (KK) =RP (I,K)
CCNTINUE

)
)
)

-==1,70))
-==1,70))

---l)

WRITE(6,315) I,((PMO(J,1,1),STF(J),TEMPO(J)) ,J=1J,1IdJ)

CCRTIINUE
WRITE (6,370) (SPR(I),I=JS,JE)

FCEMAT (3X,*BASE SPRING CCNST.',2X,E13.5,2(28X,E13.5))

IF (KAKU .GE. 0) GO TO 340

WRITE (6,380)

FCRFAT (//1X,'OTHER STRUCTURAL PROPERTIES®)
1F(LTEF .GE. 5) GO TO 420

WRIIE (6,390)

FORMAT( 3X,'STOREY',5X,'HEIGHT',9X,*WEIGHT"',4X, 'CUMULATIVE WT.*,2

1X,'CAMEING COEEF. ')

DO 410 I=1,NS

WRITE (6,400) I,SH(I),SM(I),CSM(I),H(I)
FCFMAT (1X,16,8E15.5)

SM(I) =SM(I)/GR

[

[ —
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CSM (I)=CSM(I)/GR
410 CCNTINUE
' GC T0 445
COMMENT : INPUT STATEMENT. (ONLY WHEN BLAST LOADING)
420 REAL (%, 110) (CsM(I) ,I=1,NS)
WRITE (6,430)
430 FORMAT( 3X,'STOREY',5X,"HEIGHT',9X,*'WEIGHT',5X, 'DAMPING CCEF.',3X
1,*1CAL FACTOR') )
DO 440 I=1,NS _
WRITE (6,400) I,SH(I),SM(I),H(I),CSM(I)
SM(I)=SM(I)/GR
CSM(I)=-CSNH(I)
IF(I .EQ. 1) GC TO 440
CSM(I)=CSHM (I-1)+CSH(I)
440 CCNIINUE
445 WRITE (6,450)
450 FCEMAT(//1X,'THE SPRING TO SIMULATE THE PLASTIC BEHAVIOUR AND/OR A
1XIAL LOAD EFFECT HAS A MOMENT-THETA RELATION GIVEN BELOW?')
DC 500 L=1,KUMI
IKUTS0=0
DC 460 LL=1,NBET
IF(NESS(LL) .NE. L) GO TO 460
IKUTISU=IKUTSU+1
NES (IKUTSU) =LL
460 CCNTIINUE
K=NES (1)
IF(IKOISU .LE. 22) GO TO u481
WRITE (6,480) (NES(I),I=1,IKUTSU)
480 FCEMAT (3X,'FOR THE MEMBER NO.!,22(I4,',')/(6X,25(1I4,%,%)))
GC 10 490 .
481 WRITE (6,482) (NES(I),I=1,IKUTSU)
- 482 FOEMAT(3X,'FOR THE MEMBER NO.',22(I4,',%))
490 WRITE(6,491) THETA(K,1,1),PMO(K,1,1),THETA (K,1,2),THETA(K,1,5),
1THETA(K,1,3),THETA (K,1,6) ,SLPLS (K)
491 FOFMAT (3X, 'THETA~-MOMENT*, 3 (2X,2E13.5,';'),3X,"PLASTIC SLOPE',E14.5
1)
THETA (K, 1,5)=-THETA (K, 1,2)
THETA (K,1,6)=-THETA (K,1,3)
500 CCRTINUE
FETURN
ENL '
SUERQUTINE STIFF (Q,INIT,A,IA,ISHUT
CCMMON NS,NB,STF(225),SH(25),SPR( 5) ,SB( %) ,RP(25, 5),UDL(25, 4)
CCEMCN IOP(225,2),I0N(225,2),SLPLS (225),SLP(225,3),BETA(225,2,5),
1THETA (225,2,6) ,I1A (225,2) ,PMO(225,2,2) ,HXD (25) ,HNL (25)
DIMENSICN A(15C,11),0(25,25)
ISHUI=0
CALL FUJI(A,IA)
N1=NB+1
NZ=NB+2
N3=NB+3
NE=Z*NB+3
DC 260 I=1,NS
DC 250 J=1,N1
IJ=N82* (I-1)+J
LO 240 K=1,N2
IR=IJ+K
NZS=NZ*NS+1
IF(IK .GE. N2S) GO TO 250
NK=NZ-K



210
220
230
240
250
260

270
280

- 290

90
100

110

120
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N3d=N3~-J

IF(K .GE. N3J) NK=NK+1

IF(ABS (A (IK,NK)) .IT. 1.0E-30) GO TO 240
IF(ABS(A(IJ,N2)) .LT. 1.0E-30) GO 10 270
A(IK,NK)==-2A(IK,NK)/A(IJ,N2)

I1F (ABS (A(IK,NK)) .LT. 1.0E2) GO TO 220
WRITE (6,210) A (IK,NK)

FOFRMAT (/1X,'WARNING - ACCURACY LCSS IN CALCULATING STIFFNESS MATRI
1X -~ MULTIPLIER=!,E12.4)

DC 230 L=N3,NE

NL=KK+I~-N2

A(IK,NL)=A(IK,NL)+A (IK,NK)*A(IJ,L)
CCNTIMNUE

CCRTINUE

CCNTINUE

CCNTIINUE

GC 1C 290

WRITE (6,280)

FORMAT (/1X,*DIVISICN BY ZERO WHEN FINDING STIFFNESS MATRIX')
ISHUT=1

RETUEN

CALL YURI(Q,A,IA,INIT)

EETUERN

ENL

SUERCUTINE FUJI(2,IA)

CCMMCN NS,NB,STF (225),SH(25),SPR( 5),SB( 4),RP(25, 5),UDL(25, 4)
CCF¥MCN IOP(225,2),I0N(225,2),SLPLS (225),SLP (225,3),BETA(225,2,5),
1THETA (225,2,6) ,IMA (225,2) ,PMO(225,2,2) ,HXD (25) ,HNL (25)
DIMENSION A(150 11)

N1=NB+1

N2=NB+Z

N3=KB+3

NEE=Z2*NB+1

NE=NBE+2

pCc 100 I=1,IA

DC 90 J=1,NE

A(1,J3)=0.0

CCRIIXNUE

CCNTINUE

pDC 260 I=1,NS

DO 250 J=1,N2

IJ=N82% (I=1)+J

IF(J .EQ. N2) GO TO 200

IF(I .EQ. 1) GC TO 110

MA=NBE* (I-1)-N1+J

CALL I20(VA,VB,MA,2,0.0,0.0,1,1)

A(1IJd, 1)=Vva

A(IJ,N2)=VB

IF(J .EQ. 1) GO TO 120

ML=NBB* (I-1)+J-1

FE1=KE(I,J-1)/SB(J-1)

FE2=RE (I,J)/SE (J-1)

CALL IZU(VA,VB ML,:,FR1 FR2,1%,1)
A(IJd,N1)=VaA

A(Id, N2)= A(IJ,N2)+VB

IF(J .EQ. N1) GO TC 130

ME=NBE#* (I-1) +J

FE1=FE(I,J)/SB{J)

FRz=RE (I,J+1) /SB (J)

CALl IZU(VA,VB,MR,1,FR1,FR2,1,1)

'
[ e—




130

140

200

210
220

250
260

111
112

113
120

‘A (13,N3)=VB

A(13,N2)=A(IJ,N2)+VA
ME=NEB*I-N1+J

IF(1 .EQ. NS) GO TO 140

CALL IZU(VA,VB,MB,1,0.0,0.0,1,1)
A (1J,NE)=VB

A(I3,N2)=A(IJ,N2)+VA

GO TO 250

CALL 12U (VA,VB,MB,1,0.0,0.0,-1,1)
A(1J,NZ)=A(IJ,N2)+VA

GO 10 250

LC 220 K=1,N1

KK=NBB*I-N14K

KBE=N14K

IF(I .EQ. NS) GO TC 210 _
CALL 12U (VA,VB,KK,3,0.0,0.0,1,1)
A(1J, K)=VA

A(1J,KE)=VB

GC 1C 220

CALL IZU(VA,VB,KK,3,0.0,0.0,-1,1)
A(1J, K)=VA

CCNTINUE

A (IJ,NE)=SH(I)

CCNTINUE

CCNTINUE

FETUEN

END

SUBROUTINE IZU(VA,VB,M,II,FR1,FR2,IASHI,IGO)

CCMMCH NS, NB,STF (225) ,SH(25),SPR( 5),SB( 4) ,RP (25, 5),UDL(25, 4)
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CCMMCN IOP(225,2),I0N(225,2),SLPLS (225),SLP(225,3),BETA(225,2,5),

1THETA (225,2,6) ,IMA (225,2) ,PH0(225,2,2) ,HXD (25) ,HNL (25)
FR3=1.0-FR1-FR2

FEA=FER1

FRE=FF2

IF(I160 .LT. O .AND. II .EQ. 1) FR1=0.0

IF(16C .LT. O .AND. II .EQ. 2) FR2=0.0

IF(IASHI .LT. 0) J=M- (2*NB+1)* (NS-1)-NB
IF(IMA(M,1) .LE. =1) GO TO 111

ICCN=IMA (M,1)+1

W=SLE (M, ICON)

GO 10 112

ICON=1-IMA (M, 1)

W=SLE (¥,ICON)

IF(IMA(M,2) .LE. -1) GO T0 113

ICCN=IMA (M,2)+1

Y=SLE (M, ICON)

GC 1C 120

ICCN=1-1IMA (M, 2)

Y=<LE(M,ICON)

IF (ABS(W) .LT. STF(M) .OR. ABS(Y) .LT. STF(M)) GO TO 130
IF(% .LT. 1.0E30 .AND. Y .LT. 1.0E30) GO TO 105
BUN=ALOG (W) +ALOG (Y)

IF (EUN .LT. 150.0) GO TO 105
DEN=1.0+42.0%STF (M) * (1.0/W+1.0/Y) /FR3

GC 10 110

105 DEN=1.042.0*STF (M) * (1.0/W+1.0/Y) /FR3+3.0* (STF(4) /FR3/W) * (STF (M) /FR

110

13/Y)
IF (IASBI .LT. 0) GO TO 125

VC=(1.0+3.0% (FR14FR2) /JFR3+6.0*FR1*FR2/FR3**2+3,0*#STF (M) * (FR1/W+FR2
1Y) JFE3%*#%2+43, 0*FER1#FR2*STF (M) * (1.0/W+1.0/Y) /FR3%%3) *STF (M) /FR3/DEN



121

122
123

124

125

126

130

131

132
133

134

135
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1F(I1I .EQ. 2) GO TO 122

VE=VC

IF(IGO .LT. 0) FE1=FRA
VA=2.0+3.0%FR1/FR3+3.0%STF (M) * (1.0+FR1/FR3) /FR3/Y

IF(IGC .LT. 0) GO TO 121

VA=VA+3.0% (1.042.0%FR1/FR3) *FR1/FR3+¢3.0%STF (M) * ((1.0+FR1/FR3) *FR1/
1FR3#*Z/Y+FR1%*Z/FRI**3 /W) :
VA=VA*STF (M) /FF3/DEN

IF(II .EQ. 1) EETURN

VA=VA+YVC

GG TO 123

Va=VC

IF(IGC .LT. 0) FR2=FRB
VB=2Z.C+3.0%FR2/FR3+43.0%STF (M) * (1.0+FRZ/FR3) /FR3/W

IF(IGC .LT. 0) GO TO 124
VB=VB+3.0%(1.0+2.0%FR2/FR3) *FR2/FF3+3.0%STF (M) * ( (1. 0+FR2/FR3) *FR2/
1FER3#%2/W+FR2%*2/FR3%%3/Y)

VB=VB#*STF (M) /FE3/DEN

IF(II .EQ. 2) EETUEN

VE=VE+VC

RETURN

G=SER (J) *DEN+STF (M) * (2.0+3.0%STF (M) /W)

VA= (2.043.0%STF (M) /Y-STF (M) /G) *STF (1) /DEN

1F(I1I .LE. 2) RETURN

IF(SPE(J) .GT. STE(M)) GO TO 126

VA=VA+SPR (J) *STF (M) /G

RETUEN

G=CEN+STF (M) * (2.0+3.0%STF (M) /W) /SPR(J)

VA=VA+STF (M) /G

KETURK :

IF(AES(W) .LE. STF(M)) GO TO 140

DEN=Y+2.0%STF (M) * (L/W+1.0) /FR3+3.0% (STF (#) /FR3/W) *STF (M) /FR3

1F (IASHI .LT. C) GO TO 135 .

VC= (Y#*(1.0+3.0% (FR1+4FR2) /FR3+6.0¥FE1*FR2/FR3%*%2) +3, 0*STF (M) * (FR1*Y
1/W4ERZ) yFR3%%243 . 0*FR1*FR2*STF (M) * (Y/W+1.0) /FR3**3) *STF (M) /FR3/DEN
1F(II .EQ. 2) GO TO 132

VB=VC

IF(IGO .LT. 0) FR1=FRA

VA=Y* (2.0+43.0%FR1/FE3) +3.0%STF (M) * (1.0+FR1/FR3) /FR3

IF(IGC .LT. 0) GO 10 131
VA=VA+3.0%Y*(1.042.0%FR1/FR3) *FR1/FR3+3.0%STF (M) * ((1.0+FR1/FR3) *FR
11/FR3#%2+Y*FR1#*2/FR3%¥%*3/H)

VA=VA#STF (M) /FE3/DEN

IF(II .EQ. 1) EETUEN

VA=VA+VC

GC 1C 133

VA=VC

IF (IGC .1T. 0) FF2=FRB
VE=Y*(2.043.0%FRZ/FR3+3.0%STF (4) * (1. 0+FR2/FR3) /FR3/¥)

IF(IGC .IT. 0) GO TO 134 _ :
VB=VB+3.0%Y#* (1.042.0%FR2/FR3) *FR2/FR3+3.0*STF (1) * (Y* (1.0+FR2/FR3) *
1FEZ/FE3%%2/W+FR2%%Z/FR3%%3)

VE=VE#*STF (M) /FE3/DEN

IF(II .EQ. 2) RETURN

VB=VB+VC

EETURN

G=SER (J) *DEN+Y*STF (M) * (2. 0+3. 0%STF (4) /W)

VA= (2.0%Y+3,0%STF (M) - Y**2%STF (M) /G) *STF () /DEN

IF(II .LE. 2) EETUEN

1F (SPR(J) .GTI. STF(M)) GO TO 136

o

JES——
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VA=VA+SPR (J) *Y*STF (M) /G
EE1CGEN
136 G=LEN+Y*STF (M) *(2.0+3.0%STF (M) /%) /SPR (J)
VA=VA+Y*STF (4) /G '
‘ EETUEN
140 IF(ABS(Y) .1E. STF(M)) GO TO 150
DEN=W+2.0%STF (M) * (1.0+W/Y) /FR3+3.0%* (STF (M) /FR3) * (STF (M) /FR3/Y)
IF(IASHI .LT. 0) GO TO 145 ‘
VC= (W* (1.0+3.0%(FR14FR2) /FR3+6 . 0*FR1*FR2/FR3%%2) +3.0%STF (M) * (FR1+F
1R2#*W/Y) /FR3#%2+43, 0#FR1*%FPR2*STF (M) * (1.0+W/Y) /FR3%%3)*STF (M) /FR3/DEN
IF(II .EQ. 2) GC TC 142
VE=VC
IF(IGO .1LT. 0) FR1=FRA
VA=W*(2.0+3.0*%FR1/FR343.0%STF (M) *(1.0+FR1/FR3) /FR3/Y)
IF(IGC .IT. 0) GC TO 141
VA=VA+3.0%W* (1.042.0%¥FR1/FR3) *FR1/FR3+3.0%STF (M) * (W* (1.0+FR1/FR3) *
1FE1/FE3%%2/Y+FR1%%*Z/FR3%*3) ‘
141 VA=VA*STF (M) /FF3/DEN
IF(II .EQ. 1) EETUEN
VA=VA+VC
GC 10 143
142 VA=VC
IF(16C .LT. 0) FE2=FRB
143 VB=W* (2.04¢3.0%FR2/FR3) +3.0%STF (M) * (1.0¢FR2/FR3) /FR3
IF (IGO0 .LT. 0) GO TO 144
VB=VB+3.0%W* (1.042.0%¥FR2/FR3) *FR2/FR3+3, o*er(n)*((1 0+FR2/FR3) *FR
12/FR3#*24W*FR2**2/FR3%*%*3/Y)
144 VE=VB*STF (M) /FR3/DEN
IF(II .EQ. 2) EETUEN
VE=VB+VC i
RETUEN
145 G=SFR(J) *DEN+STF (M) * (2.0%W+3,0%STF (#))
VA=W#* (2.0+3.0%STF (M) /Y-W*STF (M) /G) *STF (M) /DEN -
IF(1I .LE. 2) EETORN
IF(SPE(J) .GT. STF(M)) GO TO 1U6
VA=VA+SPER (J) *W*STF (M) /G
RETUEN
146 G=LEN+STF (M) * (2.0%W+3.0%STF (1) ) /SPR(J)
VA=VA+H*STF (M) /G
RETUEN
150 CEN=W*Y+2.0%STF (M) * (W+Y) /FR3+3.0% (STF (M) /FR3) **2
IF(IASHI .LT. 0) GO TO 155
VC= (W*Y*(1.043.0%* (FR14FR2) /FR3+6.0*¥FE1%¥FR2/FR3*%2) +3. 0% STF (M) * (FR1
1*Y+FRZz*W) /FR3*%#2+3. 0*FR1*FR2*STF(M)*(W+Y)/FR3**3)*STF(M)/FR3/DEN
IF(II .EQ. 2) GO IC 152
VE=VC
IF(I6C .LT. 0) ER1=FRA
VA=W* (Y% (2.043.0*FF1/FR3) +3.0%STF (M) * (1. 0+FR1/FR3) /FR3)
IF(IGC .LT. 0) GC 10 151
VA=VA+3.0%W*Y*(1.042.0%FR1/FR3) *FR1/FR343.0%STF (M) * (W*x (1.,0+FR1/FR3
1) *FF1/FR3%%2+ Y*FR1%%*2/FR3%*3)
151 VA=VA*STF (M) /FR3/DEN
IF(II .EQ. 1) EETUEN
VA=VA+VC
GC 1IC 153
152 VA=VC
IF (IGO0 .LT. 0) FE2=FRB
153 VB=Y* (W*(2.0+3.0%FR2/FR3) +3.0%STF (M) * (1.0+FR2/FR3) /FR3)
IF(IGC .LT. 0) GO T0 154
VE=VB+3.0%4*Y* (1.042.0%FR2/FR3) *FR2/FE3+3.0%STF (M) * (Y*(1.0+FR2/FR3



154

156

100

110

120
130
140

150

160

170
180
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1) *FF2/FR3%%2+§#+FR2%%2/FR3%*3)

VB=VB*STF (M) /FF3/DEN

IF(1I .EQ. 2) RETURN

VB=VB+VC

KETUEN

G=SER (J) *DEN+Y*STF (H) * (2.0*R+3 . 0%STF (M))

VA=W#* (2.0%Y+3.C*STE () ~WkY**2%STF (M) /G) ¥STF (M) /DEN

IF(II .LE. 2) EETUEN

1F (SPF (J) .GTI. STF(M)) GO TO 156

VA=VA+SPR (J) *W*Y*STF (M) /G

EETUEN

G=CEN+Y*STF (M) * (2.0#W+3.0*STF (M) ) /SPR (J)

VA=VA+W*Y*STF (¥) /G _

RETUEN

ENC . _

SUEFOUTINE YURI (Q,AI,IA,INIT)

CCKEON NS,NB,STF (225) ,SH(25),SPR( 5),SB( 4),RP(25, 5),UDL(25, 4)
CCEMCN IOP (225,2),ION(225,2),SLPLS (225),SLP(225,3) ,BETA(225,2,5),
1THETA (225,2,6) ,IMA (225,2) ,EM0(225,2,2) ,HXD (25) ,HNL (25)
LIMENSICN SXD (25),C (25,25) ,AI(150,11),BH(150) ,BB(150) ,QTEM (25)
IF(INIT .NE. C) GO TO 130

po 100 I=1,NS

SXL (1)=0.0

CCNIINUE

oc 110 J=1,IA

BB (J) =B (J, SXD)

CCNTIINUE

CAIL SCLVE (AI,EE,CTEM)

LC 120 I=1,NS

HNL (I)=CTIEM(I)

CCNTINUE

DO 140 I=1,NS

SXT (I) =HXD (I)

CCNIINUE

pC 150 I=1,IA

BH (I) =E (I,SXD)

CCNTINUE

pc 180 I=1,NS

SXL (I)=HXD(I)+1.0

pC 160 K=1,IA .

EE (K) =B (K, SXD) ~BH (K)

CCNTINUE

CAIL SCLVE (AI,BE,CTEN)

pc 170 J=1,NS

¢ (3,I)=QTIEN(J)

CCNTINUE

SXC (I)=HXD (I)

CCNTINUE

RETUEN

ENT

FUNCTIION B (IJ,SXD)

CCMMON NS,NB,STF (225) ,SH(25) ,SPR( 5),SB( 4) ,RP(25, 5),UDL(25, 4)
CCrYCK IOE(225,2),I0N(225,2),SLPLS (225),SLP (225,3) ,BETA (225,2,5),
1TBETA (225,2,6) ,IHA (225,2) ,PMO (225,2,2) ,HXD (25) ,HNL (25) _
DIMENSION SXD(Z5)

B=0.0

NE1=NB+1

NE2=NE+2

I=(1J-1)/NB2+1

J=I3~NE2* (I-1)

sl e

et



110

120

130

140

200

210
220

1F(J .EQ. NB2) GO TO 200

IF(I .EQ. 1) GO TO 110

MA= (2*NB+1) * (I-1) ~NB1+J

S=SH(I-1)

F= {SXL (I-1) =SXL(I))/SH (I-1)

E=UBEN (MA,S,2,0.0,R,0.0,0.0,1,1)
IF(J .EQ. 1) GC TC 120

ML= (2#NB+1) * (I-1) +J~1

FE1=RE (I,J-1) /SB(3-1)
FE2=KE (I,J) /SB (J=1)

UL=UCL(I,d-1)

S=SE (J-1) : :
E=E+UHEN (ML,S,Z%,0L,0.0,FR1,FR2,1,1)
IF(J .EC. NB1) GC TO 130

ME= (2*NB+1) * (I-1) +J

FE1=KE (I,J) /SB (J)

FE2=RE (I,J+1)/SB (J)

UL=UCL (I,J)

S=SE (J)

B=E+UEEN (MR,S,1,UL,0.0,FR1,FR2,1,1)
MB= (2*NB+1) *I-KB1+J

S=SH (1)

IF(I .FQ. NS) GO 1C 140

R= (SXL (I) -SXD (I1+1) ) /SH(I)
B=E+UEEN(MB,S,1,0.6,R,0.0,0.0,1,1)
FETURN :

R=SXD (NS) /SH(NS)

B=E+UHEN (4B,S,1,0.0,R,0.0,0.0,-1,1)
RETURN

DO 220 K=1,NB1 ,

KK= (24NB+1) *I-NB1+K

S=SH (1)

IF(1 .EQ. NS) GO TG 210

R= (SXL (I) -SXD (I1+1) ) /SH(I)

B=E+UHEN (KK,S,3,0.0,R,0.0,0.0,1,1)
GC 1C 220

R=SXL (NS) /SH(NS)

B=E+UREN (KK,S,3,0.0,R,0.0,0.0,-1,1)
CCETINUE

RETUEN

ENC

FUNCTION UHEN(M,S,II,UL,R,FPR1,FR2,IASHI,IGO)

CCMMON NS,NB,STF (225),SH(25),SPR( 5) ,SB( 4) ,RP(25, 5),UDL(25, 4)
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CCMMCN IOP(225,2),ICN(225,2),SLPLS (225),SLP(225,3),BETA(225,2,5),

1TEETA (225,2,6) ,IMA (225,2) ,ENO(225,2,2) ,HXD (25) ,HNL (25)
UBEN=0.0

FR3=1.0-FR1-FE2 .

IF(I6C .LT. 0 .AND. II .EQ.1) FR1=0.0

"IF(I60 .LT. O .AND. II .EQ.2) FR2=0.0

FEFD=UL* (FR3*S)*%*2,/12.0

FEEC=-FEMD

AFC=-0.5*%UL*FR1* (1.C-FR2) *S*%2

AFL=0.5*UL*FR2* (1.0~FR1) %S%*2

IF (IASHI .LT. C) J=M- (2%NB+1)* (NS-1) -NB
CEF=2.01*STF (M)

IF(IMA(M,1) .LE. -1) GO TO 111

ICCN=IMA (M, 1) +1

W=SLEF (¥,ICON)

IF(IMA(M,1) .EQ. O .AND. W .GE. CER) GO TO 112
X=BETA (M,1,ICCK)
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GC 1C 112
111 ICCN=1-IMA (M,1)
W=SLE (M, ICON)
ICCN=ICON+2
X=BETA (M, 1, ICON)
112 IF(IMA(M,2) .1E. -1) GO TO 113
ICCN=IMA(M,2)+1
Y=SLP (M,ICCN)
IF(IMA(M,2) .EQ. O .AND. Y .GE. CER) GO TO 115
Z=EETA (M,2,ICON)
GC 10 115
113 ICCN=1-IMA(M,2)
Y=SLP (M, ICON)
ICCN=ICCN+2
Z=BETA (M, 2, ICON)
115 CEF=2.0%STF (1)
1F (ABS (W) .LT. STF(M) .OR. ABS(Y) .LTI. STF(M)) GO TO 130
IF(% .LT. 1.0E30 .AND. Y .LT. 1.0E30) GO TO 105
EUN=ALOG (W) +ALCG (Y)
IF(BUN .LT. 150.0) GO TO 105
CEN=1.042.0%STE (M) * (1.0/W+1.0/Y) /ER3
GG 10 110 :
105 DEN=1.0+2.0%STF (M) * (1.0/W+1.0/Y) /FR3+3.0%* (STF (M) /FR3/W) * (STF (H) /FR
13/1)
116 IF(IMA(M,1) .EQ. O .AND. W .GE. CER) GO TO 116
ICK=X/W -
GC TC 117
116 IP=I0E (M,1)
XACK=EMC (M,1,1) /JW~-THETA (4,1, IP)
117 IF(IMA(M,2) .EQ. O .AND. Y .GE. CER) GO TO 118
72C1=2/1
GC TO0 120
118 IE=ICE(M,2)
ZOY=EMO (M, 2, 1) /Y~THETA (4,2,IP)
120 IF(IASHI .LT. €) GO TO 125
IF(II .EQ. 2) GO TO 121
VD=2.0% (1.0+STF (¥) /Y) *R
VL=VL- (2.0+3.0%FR1/FR3+3.0%STF (M) * (1.0+FR1/FR3) /FR3/Y) *XOW
VD=VL- (1.0+3.0*%FF1/FR343.0*STF (M) * FR1/FR3%*2/W) *Z0Y
VL=VL*STF (M) /FE3
UREN= (VD-FEMC* (1.0+3.0%STF (M) * (1.0+FR1/FR3) /FR3/Y~3,0*STF (M) *FR1/F
1R3*%2/%)) /DEN-AFC
IF(II .EQ. 1) EETUEN
121 VD=3.0% (1.0+STF (M) /W) *R
VL=VD- (1.043.0%FR2/FR3+3. 0*STF (M) *FR2/FR3*%2/Y) *XOW
VL=VL-(2.0+3.0%FF2/FR3+3.0%STF (M) * (1.0+FR2/FR3) /FR3/W) *Z0Y
VL=VL*STF (M) /FF3 ,
UHEN=OBEN+ (VD-FEMD# (1.0+3.0%STF (M) *(1.0+FR2/FR3) /FR3/W-3,0*STF (1) *
1FFz/FE3%%2/Y) ) /DEN-AFD
RETURN
125 G=SER (J) *DEN+STF (M) * (2. 0+43.0%STF (M) /W)
VL=3.C* (1.04STF (M) /Y=STF (M) * (1.0+STF () /¥) /G) *R
VL=VD- (2.04STEF (M) *(3.0/¥-1.0/G) ) *X0W
VLI=VL~(1.0-STF (M) * (2.0+3.0%STF (M) /W) /G) *Z0Y
UHEN=VD*STF (M) /DEN
IF(II .LE. 2) BETUEN
VD=3.0% (1.04STF (M) /W) *R=XOW- (2.043 .0*STF (M) /W) *Z0Y
IF (SPF(J) .G1. STF(M)) GO TO 126
UHEN=UBEN+VD*STF (M) *SPR (J) /G
FETUEN

FES— [R—

v
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126 G=LCEN+STF (M) * (2. 0+3. O*STF(M)/W)/SPR(J)
UEEN=UHEN+VD*STF (M) /G
EETUEN

130 IF (ABS(W) .LE. STF(M)) GO TO 140

' CEN=Y+Z.0*STF (M) * (Y/W+1.0) /FR3+3.0% (STF (M) /FR3/W) *STF (M) /FR3
IF(IMA(M,1) .EG. O .AND. W .GE. CER) GO TO 132
30W=X/H '
GO T0 133

132 IE=IO0E(M,1)
XCW=EMC(M,1,1) /WH~THETA (M, 1,IP)

133 IF(IASHI .LT. €) GO TO 135
IF(II .EQ. 2) GO TC 131
VD=3,0% (Y+STF (M) ) *F
VD=VL- (Y*(2.0+3.0%FR1/FR3) +3.0%STF (M) * (1.04FR1/FR3) /FR3) *XOW
VE=VL- (1.043.0%FFE1/FR3+3. 0%STF (M) *FR1/FR3*%2/}) %2
VD=VL*STF (M) /FE3
UHEN= (VD-FEMC* (Y+3.0%STF (M) * (1.04FR1/FR3) /FR3-3. 0%Y*STF (M) *FR1/FR3
1#%Z /W) ) JDEN-AFC
"IF(II .EQ. 1) KETUEN

131 VL=3.C*Y*(1.0+STF (M) /H) *R
VD=VL- (¥*(1.043. 0%FR2/FR3) +3.0%STF (M) *FR2/FR3%*2) *XOW
VL=VI-(2.0+3.0*FR2/FR3+3,0%STF (M) * (1.0+FR2/FR3) /FR3/W) *Z
VLC=VLC*STF (M) /FF3
UEEN=UHEN+ (VD-FEMD* (Y* (1.0+3.0%STF (M) * (1.0+FR2/FR3) /FR3/H) ~3.0%STF
1(#) *FE2/FR3%%2)) /DEN-AFD
EETURN

135 G=SER (J) *DEN+Y*STF (M) * (2.0+3.0%STF (M) /W)

=3,0% (Y#STF () -Y**2%STF (M) * (1.0+STF (M) /W) /G) *R

VL=VL~- (2.0%Y+STF (M) * (3.0~ Y*%2/G) ) *XOW
VD=VL~- (1. 0-Y*STF (M) *(2.0+3.0%STF (M) /W) /G) *Z
UHEN=VC*STF (M) /DEN _
IF(II .LE. 2) BETURN
YD=3.0%Y* (1.0+STF (M) /W) *R~Y*XOW~ (2.0+3.0%STF (M) /W) *Z
IF(SEE(J) .GTI. STF(M)) GO TO 136
UEEN=UKEN+VD*STF (V) *SPR (J) /G
RETUEN

136 G=CEN+Y*STF (M) *(2.0+43.0%STF (M) /W) /SPR (J)
UEEK=UHEN+VD*STF (M) /G
RETUEN

140 IF (ABS(Y) .LE. STF(M)) GO TC 150
CEN=K+2.0%STF (M) * (1.0+W/Y) /FR3+3.0% (STF (M) /FR3) * (STF (M) /FR3/Y)
IF(IMA(M,2) .EC. O .AND. Y .GE. CER) GO TO 142
20Y=2/Y
GO TC 143

142 IE=ICE (H,2)
20Y=EMC (M, 2,1) /Y-THETA (M, 2, IP)

143 IF(IASEI .LT. C) GC TO 145

. IF(II .EQ. 2) GO TO 141

VE=3.C*W* (1.0¢STF (M) /Y) *R
VD=VL- (2.043.0%FE1/FR3+3.0%STF (M) * (1.0¢FR1/FR3) /FR3/Y) *X
VL=VL- (W* (1.0+3.0%FR1/FR3) +3.0%STF (M) *FR1/FR3%%*2) *20Y
VD=VD*STF (M) /FE3 '
UHEN= (VD-FEMC* (W* (1.0+3.0%STF (M) * (1. 0+FR1/FR3) /FR3/Y) -3 .0% STF (M) *F
1K1/FE3#%2)) /DEN-AFC
IF(II .EQ. 1) FETUEN

- 141 VD=3.C» (W+STF (M) ) *R

VD=VD~-(1.0+43.0#FF2/FR3+3.0%STF (M) *FR2/FR3%%2/Y) *X

VE=VL- (W* (2.0+43.0%FR2/FR3) +3. 0*STF (M) * (1.0+FR2/FR3) /FR3) *20Y
VD=VL*STF (M) /FF23

UHEN=UGBEN+ (VD-FEMD* (W+3.0*STF (M) * (1. 0+FR2/FR3) /FR3+3. 0% W*STF (M) *FR



145

146

150

151

15¢&

156
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12/FE3*%2/Y)) /DEN-AFD
FETURN
G=SER (J) *DEN+STF (M) * (2.0%W+3.0%STF (M) )
VL=3.0% (Wk (1.04STF (M) /Y) - R*STF (M) * (4+STF (1) ) /G) *R
VD=VL- (2.0+STF (M) * (3. 0/Y-W/G) ) *X
VE=VEC-W* (1.0-STF (M) % (2.0*%W+3.0*STF () ) /G) *20Y
UKEN=VD#STF (M) /DEN
IF(II .LE. 2) BETUEN
VD=3.0% (W+STF (M) ) *R-X~ (2. 0% W+3.0*STF (M) ) ¥20Y
IF(SEK(J) .GI. STF(M)) GO TO 146
UKEN=UHEN+VD*STF (M) *SPR (J) /G
EETURN
G=LEN+STF (M) * (2. 0%W+3.0%*STF (M) ) /SPR(J)
UEEN=UHEN+VD*STF (M) /G
EETUEN
DEN=W*Y+2.0*STF (M) * (R+Y) /FR3+3.0% (STF (M) /PR3) **2
IF (IASHI .IT. 0) GC TO 155
IF (II .EQ. 2) €GO TO 151
D=3.0%W* (Y+STF (M) ) *R
VD=VL- (Y* (2.043.0%FR1/FR3) +3.0%STF (M) * (1.0+FR1/FR3) /FR3) *X
VL=VD- (W*(1.0+¢3,0%FR1/FR3) +3.0%STF (M) *FR1/FR3%*2) *Z
VL=VD#STF (M) /FF3
UHEN= (VD-FEMC* (H*¥Y+3.0%H%STF (M) * (1.0+FR1/FR3) /FR3-3. 0%Y*STF (M) *FR1
1/FE3#%2)) /DEN-AFC
IF(II .EQ. 1) EETUEN
VL=3.0%Y* (R+STF (M) ) *R
VD=VD~ (Y*(1.043.0#FR2/FR3) +3.0%STF (M) *FR2/FR3%%2) *X
VL=VL- (W* (2.043.0%FR2/FR3) +3.0%STF (M) * (1.0+FR2/FR3) /FR3) *2Z
VL=VL#STF (M) /FR3
UBEN=UHEN+ (VD-FEND* (W*Y+3.O#Y#STF (M) * (1.0+FR2/FR3) /FR3-3. 0*WkSTF (M
1) *FFZ/FR3%*%2)) yDEN-AFD
EETUEN
G=SER (J) *DEN+Y#STF (M) * (2.0%H+3.0%STF (M)) :
VYD=3.0% (W* (Y+STF (M) ) ~Y**2%W*STF (M) * (H+STF (M) ) /G) *R
VL=VD- (2.0%Y+STF (M) % (3.0-WxY*%*2/G) ) *X
VD=VD+W%(1.0~Y#STF (M) * (2.0%W+3.0%STF (M) ) /G) *Z
UHEN=VL*STF (M) /DEN
1F(I1I .LE. 2) FETURN
VD=3.0%Y* (W+STF (M) ) #*R-X*Y~- (2.0%W+3.0%STF (M) ) *2
IF(SPE(J) .GTI. STF(M)) GO TO 156
UHEN=GHEN+VD*STF (M) *SPR (J) /G
FETURN
G=CEN+Y*STF (M) *(2.0%W+3,0%STF (M) ) /SPR (J)
UHEN=CUHEN+VD*STIF (M) /G
EETUEN
END
SUBEOUTINE SOLVE (A,%,C)
CCEMCN NS,NB,STF (225) ,SH(25),SPR( 5),SB( 4),RP(25, 5),UDL(25, 4)
CCMMCN IOP (22%5,2),I0N(225,2),SLELS (225),SLP (225,3) ,BETA(225,2,5),
11HETA (225,2,6) ,IMA (225,2) ,EMO (225,2,2) ,HXD (25) ,HNL (25)
CIMENSICN A(150,11),W(150),C(25)
N1=NB+1
N2=KB+2
N3=NB+3
NE=Z#NE+3
£C 300 I=1,NS
CO 290 J=1,N2
TI=N2* (I-1) +J
K1=1J-N2
IF(J .EC. N2) K1=K1+1
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K2=K1+N1
IF(I .EC. 1 .AND. J .LE. N1) GO TO 240
M=C .
1=0
1S=N3-J
IF(J .EQ. N2) LS=N2
DC 230 K=K1,K2°
L=1+1
IF(L .EQ. 1IS) GO TC 230
M=M+1
W(IJ)=W(IJ)+A(1J,H)*N (K)
230 CCNTINUE
GC 1C 290
240 1F(J .EQ. 1) GG 10 290
W(J)=W(J)+A (J,81) *R (J-1)
290 CCNTINUE
300 CCXTINUE
pc £0C 11=1,NS
I=NS~-1I1+¢1
LO 49C JJ=1,N82
J=N3-JJ
IJ=NZ*(I-1) +J
IF(I .EQ. NS) GO TO 45
K1=1J+1
IF(J .EQ. N2) GO TO 440
K2=IJ+N2
1=N2
M=N2Z
LE=RE-J+1
LO 430 K=K1,K2
L=I+1
IF(L .EC. LS) GO TO 430
M=M+1
, W(13)=W(IJ)=-2(1J,M4)*H(K)
430 CCKRIIXNUE )
) W(1IJ)=W(IJ) /A (1J,N2)
GC 10 490
440 K2=1J+N1
I=N1 :
LC 445 K=K1,K2
1=1+1
W(1J)=W(IJ)-A(1J,L) *W (K)
445 CCNTIINUE
GO T0 480
450 IF(J .EQ. N2) GO TO 480
K1=1J+1
K2=1J+M1=J
IF(J .EQ. N1) GO TO 470
I=N2
LO 460 K=K1,K2
1=1+1
W (IJ)=W(IJ)-A(1J,L)*W (K)
460 CCNTIINUE
470 W(IJ)=W(IJ)/A(1J,NZ)
GC 10 490
480 W (1J) =% (1J) /A (1J,NE)
C(I)=W(1J)
490 CCNTINUE
500 CCNTIINUE
FETURN
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END
SUEKOUTINE SHUKI (Q,SM,GOME)
CCMMCN NS, NB,STF (225) ,SH(25),SPR( 5),SB( 4) ,RP (25, 5),UDL(25, 4)
CCMMON IOP (225,2),I0N(225,2),SLPLS (225),SLP(225,3) ,BETA(225,2,5),
1THETA (225,2,6) ,IMA (225,2) ,PH0(225,2,2) ,HXD (25) ,HNL(25)
CIMENSION SM(25),Y (25).,YY(25),H(25,25),HH(25,25),C(25,25),D(25,25)
1,2(25),0(25,25)
N=KS
EI=3.141593
IF(N .EC. 1) GC TO 210
ro 110 1=1,N
DC 100 J=1,N
C(1,d)=0(1,3)
L (I,J)=SH(J)
IF(J .GT. I) D(I,J)=0.0
100 CCNIINUE
110 CCNTINUE
CALL TCKYO1 (N,C)
CLC 140 I=1,N
DO 140 K=1,N
ABC=0.0"
LC 150 J=1,N
AEC=AEC+C(I,J) *D (J ,K)
150 CCNTIINOE
BH(1,K)=ABC
H (I,K)=ABC -
140 CCNIINUE
KK=0
NA=N
10 CC 20 I=1,NA
Y(1)=1.0
20 CCNTINUE
KK=KK+1
KA=2% (KK/2)
1F (KK .EQ. KA) Y (NA)=-1.0
-~ B=(.000001
40 DC S0 I=1,NA
1Y (1) =0.0
LO 60 J=1,NA
YY (I) =YY (I)+H(I,d)*Y(J)
60 CCNTINUE
IF(I .EQ. 1) A=YY(I)
5C CCNTINUE
IF (ABS(A) .GT. 10.0E-15) GO TO 56
LC 55 I=1,NA
Y (I)=Y (I)+FLOCAT (I)
55 CCNTINUE
GC 10 40
56 LG 70 I=1,NA
1(I)=YY(I)/A
7C CCNTINUE
S=a/E
E=A
IF(S .GT. 1.00001) GO TO 40
IF(S .LT. 0.9959S) GO TO 40
IF (KK .EQ. KA) GC TO 75

AA=A ,
o 71 I=1,NA
Z (1) =Y (I)

71 CCNIINUE




75

76
80

200

210
220
230

240

250

260

27¢C
275

280
285
300

310
315

320

330

340

GO TO 10

IF(A .GE. AA) GO TO 80
A=Ap

DO 76 I=1,NA

Y (I)=2 (1)

CCKTINUE :
IF(KK -EQ. 2) GO TO 200
IF (KK .EQ. 4) GO TO 300
IF(KK .EQ. 6) GO TO 400
IF (KK .EQ. 12) GC TO 510

Al=2
GCYE=SQRT (A)
GC 10 220

A=SM(1)/0(1,1)

GCME=SQRT (A)

T=2.0*FPI*GOME

WRITE(€6,230) T

FORMAT (/1X, *NATURAL PERICD OF FIRST MODE
IF(N .EQ. 1) RETURN

WEITE (6,240) (¥(I),I=1,N)

Is',F7.3,"

SEC. ')

FCEMATI (" 3X,*COFRESPCNDING MODE -- TOP TO BASE'/(3X,7E18.6))

IF(N .EQ. 2) GC TO 280
DC 260 I=1,NA

LC 250 J=1,NA
c(1,d)=H(I,d)

CCNTINUE
C(1,I)=C(I,I)~a1l
Z(1)=E(1,1)

CCKTINUE

NA=NA-1

DC 275 I=1,NA

DC 270 J=1,NA
B(I,3)=H(I+1,3+1)-Y (I+1)*2Z (J+1)
CCNTINUE

CCKIINUE

GC 10 10

DO 285 I=1,NA
B(1,I)=H(I,I)-A1
CCKTINUE

GC 10 10

IF (K .EC. 2) GC TO 375
AZ=A

A=SCRT (A)

T=2.0%EI*A

WRITE (6,310) T

FOFMAT (/1X,*NATURAL PERIOD OF SECCND MODE IS',F7.3,!

DC 320 I=1,NA

2 (141) =Y (I)

CCNTINUE

Z(1)=0.0

CC 340 I=1,N

Y (1)=C.0

DC 330 J=1,N

Y (I)=Y(I)+C(1,J) *2(J)
CCNTINUE

IF(I .EQ. 1) A=Y (1)

Y (I)=Y(I)/A

CCNTINUE

WRITE(6,240) (Y(I),I=1,N)
1F (KK .EQ. 6) GO TO 500

SEC. ')
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345

350

355
360

365
370

3758

400

410

420

430
43¢

440

IF(N .EQ. 3) GC TC 365
LC 350 I=1,NA

Y (1)=2(I+¢1)

DO 345 J=1,BA-
L(I,J)=H(I,J)

CCNIIKUE
L(1,I)=D(I,I)~A2

2 (I)=E(1,I)

CCNTINUE

NA=NA-1

DO 60 I=1,NA

DC 355 J=1,KA
H(I1,J)=H(I+1,3+1)~-Y(I+1)*Z(J+1)
CCNIINUE

CCNTINUE

GC 1C 10

Lc 370 1=1,NA
H(I,I)=H(I,I)-A2
CCNTIINUE

GC 10 10

A=A+31

A=SCRT (A)

T=2.0%FI*A
WRITE(6,310) T

WRITE (6,240) (Y(I),I=1,N)
RETUEN :

IF(N .E¢. 3) GO TO 440
A3=1

A=SCR1 (4)

T=2.0%FI*A
WERITE(€,410) T

FORMAT (/1X,*NATURAL PERICD OF THIRD MGDE
DO. 420 I=1,NA
Z(I+1)=Y(I)

CCNTINUE

Z2(1)=0.0

N2=NA+1

DC 43¢ I=1,N2

Y(1)=C.0

DC 430 J=1,N2
Y(I)=Y(I)+D(I,Jd)*Z(J)
CCNIINUE

CCATINUE

NA=N2

GC 10 315

A=A+A2

- A=SCRT (A)

500

505
50¢€

T=2.0*EI*A
WRITE(6,410) T

GC 1C 315

IF(N .LE. 3) RETURN
CAIL 1CKYO1 (N,HH)
NA=N

pC 5C6 I=1,N

£LC £05 J=1,N
H(1,J)=HH(I,J)
CCKRTINUE

CCNIINUE

KK=10

GC 10 10

Is*,F7.3,' S5SEC.')
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510

520

50

60

70

80

100

130
140

150
160

340
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A=SCET (A)
T=2.0%EI/A

WRITE (6,520) T

FOEMAT (/1X, 'THE MININUM NATURAL PERIOD IS',F7.3,' SEC.')
WEITE (6,240) (Y(I),I=1,N) ‘

FEETUEN

END

SUEFOUTINE TOKYC1 (NO,A)

DIMENSICN AC(25) ,AE(25),A(25,25)

NO1=NC-1 '

A(1,1)=1.0/32(1,1)

IF (NC .EQ. 1) RETURN

DC 80 N=1, NO1

LC 50 I=1,N

AB(I)=0.0

AC(I)=0.0

DC S0 J=1,N

AB (I) =AB(I) +A (I,J)*A (J,N+1)

AC(I)=AC(I) +A(K+1,Jd)*A(J,I)

CCNTINUE

ACE=0.0

CO €0 I=1,N

ACE=ACB+AC (I)*A(I,N+1)

CCNTINGE

A(N+1,N¢1)=1.0/(A(X+1,N+1) ~ACB)

DG 70 I=1,N

A(N¢1,I)=-A(N+1,N+1) *AC(I)

A(I,N41)=-AB (I)*A (N+1,N+1)

CCXTIKUE

LC €0 I=1,N

DC €0 J=1,N

A(I,J)=A(I,J)=-A(I,N+1)*AC (J)

CCNTINUE

RETURN

END '

SUERCUTINE KIKU (DELTA1T,C,GOME,Q,GOSA,GR,NCAL)

CCEMCN NS,NB,STF(225) ,SH(25),SER( 5),SB( 4),RP (25, 5),UDL(25, 4)
CCrMCN IOP(225,2),ION(225,2),SLPLS (225),SLP (225, 3) ,BETA (225,2,5),
1THETA (225,2,6) ,IMA (225,2) ,PMO (225,2,2) ,HXD (25) ,HNL (25)
DIMENSICN C(25),€(25,25)

DC 100 I=1,NS

C(I)=2.0%C (I)*C (I,I)*GOME

CCKTINCE

NCS1=XS

CALL TOKYO1(NOST,Q)

DC 140 I=1,NS

HXC (1) =0.0

Do 130 J=1,NS

BXD (I) =HXD (I) -Q(I,J) *HNL (J)

CCNTINUE

CCNTINUE

£o 150 I=1,NS

BKI (I)=0.0

CCHTINUE :

WRITE (6,160) (BXD(I),I=1,NS)

FOEMAT (/1X,'INITIAL DEFORMATICN -- TOP TO BOTTOM'/(6X,8E14.5))
TLAST=CELTAT*FLOAT (NCAL)

WRITE (6,340) DELTAT,TLAST,GR,GOSA

FCEMAT (/1X, 'CALCULATIONS WILL BE DCNE EVERY',F6.3,' SEC. UNTIL',
1FS.1,* SEC.', 4X, YACCE
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2LEEATICN OF GRAVITY IS',F8.3,4X,'CCNVERGENCE LIMIT IS',F9.6)

FETUERN

ENL A

SUEROUTINE JISHIN (SM,CSM,C,IP,IGPH,GF,GOSA,NCAL,DELTAT,MNXIT,NSAT,
1NTCBU,THAJI,TOWA,SEICO,Q,IA,AL,LTE,ITINE,IDISC)

CCENCK NS,NB,STF (225) ,SH(25),SPR( 5),SB( 4),RP (25, 5),UDL(25, #4)
CCEMCN IOP(225,2),I0N(225,2),SLPLS (225),SLP(225,3) ,BETA (225,2,5),
ATHETA (225,2,6) ,IMA (225,2) ,PHO (225,2,2) ,HXD (25) ,HNL (25) o
DIMENSION GA(7),SM(25),CSH(25),C(25),IP(25),TSEL(25) ,AX(25),VX(25)
1, XT (25) , RX (25) RV (25) ,AA (25) ,CQ (25) ,RESC (25) ,RESQ(25) (RXMX (25) , RV
ZX (25) ,CCMX(25) ,TRX (25) , TRV (25) ,TCQ (25) ,0AX (25) ,OVX (25) ,0XD (25) ,
3¢ (25,25) ,AI(150, 11),FT(225,2),K0OSAN (225,2),IPCH(5) ,XDMX (25) ,AAHX(
425) ,ECMX (25) ,RQMX (25) , TR (25) ,TRMX (25) ,ZZ (25)

INSA=10

IF (IGEH .GI. §) GO TO 10

GC 10 (1,2), IGPH
COMMENT : INPUT STATEMENT (ONLY WHEN PUNCHING OUT TEE RESULTS)

1 REAL(%,100) MSKIE,INSA,NPCH, (IPCH(J),Jd=1,NPCH)
GO 10 10
2 REAL (5,100) MSKIE,INSA
NECE=NS -
100 FORFAT (10I5)
COMMENT : INPUT STATEMENT
10 INE=5
IF (IDISC .EQ. C) INP=4
READ (INP,15) (ISEI(I),I=1,20)
15 FCEMAT (Z0AU)
IF (LTE .IT. 5) GC TO 30
WRITE (6, 20) (1SEI(I),I=1,20)
20 FOEMAT (/1X, 'BLAST . LOADING MODEL USED IN THIS CALCULATION : ',2024)
WRITE (6, 25) SEICO
25 FORMAT(/1X, 'MAXINUM BLAST LCAD IS',F8.2,' AT THE LEVEL WHERE THE L
1CAT FACTIOR IS EQUAL TO 1.0'))
. GC 10 45
30 WERITE (6, 35) (TSEI(I),I=1,20)
35 FOEMAT (/1X,'SEISMIC MODEL USED IN THIS CALCULATICN : ',20A4)
WEITE (6, 40) SEICO
40 FCEMAT (/1X, 'MAXIMUM GRCUND ACCELERATION IS',F6.3,' OF GRAVITY ACCE
1LEFATION'/)
45 IF (IGEH .GT. 5) GC TO 60
TKAN=LELTAT*FLCAT (MSKIP)
GC 10 (46,56), IGPH
46 WEITE (6,50) TKAN, (IPCH(J) ,J=1,NPCH)
50 FOFMAT( 1X,'THIS PROGRAM EUNCHES OUT THE RESULTS OF EVERY',F6.3,
1' €EC. FOR THE STOREY NO.',5(I5,',')/)
WEITE (7,55) TKAN,NS,NPCH, (IPCH(J),Jd=1,NPCH)
GC IC 60
56 WKITE (6,57) TKAN
57 FCEMAT(1X,'THE RESULT OF EVERY',F6.3,'SEC.,FOR EVERY STOREY IS STO
1FEL IN THE DISK'))
WRITE (2,55) TKAN ,NS
55 FCRMAT(F10.3, SX,'PRODUCED BY PROG.# 40',5X,7I5)
60 WEITE (6, 65)
65 FCEMAT( /1X,'** RESPONSE **1)
IF(INSA .LT. 5) GO TO 111
IF(LIF .GE. 5) GO TO 75

WRITE (€, 70)
70 FCRMAT (/2X,'TIME®,3X, 'GRND acc/',3%X,'LISP TO GRND',3X,'RELIV pIsp!

1, 4X,'RELTV VELC' ,4X,*ABS ACCEL',3X,'RESIS (DAMP)',2X,'RESIS (SPRN)
2',33%,'SHEAR CCEF',3X,'TIME',7X,'ITER")
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GC 10 85
75 WRITE (€, 80)
80 FCEMAT (/2X, 'TIME*,3X,'BLAST LD/',3X,*DISP TO GRND',3X,'RELTV DISP'
. 1,4X,'RELTV VELOC',4X,'ABS ACCEL',3X,'RESIS (DAMP)',2X,'RESIS (SPRN)
2¢,3%,'SHEAR CCEF',3X,'TIME',7X,'ITER')
85 WEITE (6, 90)
90 FCFMAT (12X, *STOREY!')
111 CALL STIFF(Q,1,AI,IA,ISHUT)
IF (ISHUT .EQ. 1) RETURN
ISAT=10
LO 120 K=1,NS
AX (K)=0.0
VX (K)=0.0
IF (ABS (HXD(K)) .IT. 1.0E-06) HXD(K)=0.0
_ XI (K) =EXD (K)
EXMX (K)=0.0
TEX (K)=0.0
RVMX (K) =0.0
TEV (K)=0.0
CCrX (K)=0.0
TCG (K)=0.0
TEMX (K) =0.0
XCMX (K) =0.0
AAMX (K)=0.0
ECMX (K) =0.0
RCEX (K)=0.0
2% (K) =GR/1.0E+15
120 CCNTINUE
MEMB= (2*NB+1) *NS
DC 125 I=1,MEME
LC 124 K=1,2
KCSAN(I,K)=0
124 CCNIINUE
125 CCNTINUE
DC =0C I=1,NCAL
IF(I .EC. 1) REAL (INP,130) (GA(J),J=1,7)
130 FORMAT (7F10.0) :
IYONU=T% (I/7)
IF(1 .EQ. IYOMU .AND. I .LT. NCAL) READ(INP,130) (GA(J),Jd=1,7)
II=I-7*((I-1)/7)
IF(I-1) 140,140,150
140 GA1=0.0
GAZ=0.0
GA3=GA (II)*SEICO
IF (NCAL .GT. 1) GO TO 141
GA4=C.0
"~ GO 1IC 160
141 GAU=GA (II+1)*SEICO
GG 1C 160
15C GA1=GA2
GAZ=GA3
GAZ=Ga4
IF(I .EQ. NCAL) GC TO 151
IF(II .EQ. 7) GO TO 152
GA4=GA (II+1)*SEICC
GC 1C 160
151 GAU=0.0
6C 1IC 160
152 GA4=GA (1) *SEICC
160 GAE=GA:



190

205

206

210

214

215

220
225
22¢€

22¢
230

238

240
250
255

26C
27¢

TE=FLCAT(I) *DELTAT
Lc 150 K=1,NS
CAX (K) =aX (K)

OVX (K)=VX (K)

CXL (K) =XD (K)
CCKIINUE

292

CALL SUCHI (AX,VX,XD,RX,RV,SM,C,CSH,GAP,DELTAT,KAZU,RESC,RESQ,MXIT

1,1¢,ISAI,G0SA,C,22Z)

IF(ISAI .GE. C) GO T0 210
DC 206 K=1,NS

AX (K) =CAX (K)

VX (K) =CVX (K)

XL {(K) =0XD (K)

CCN1INUE

CALL SAIBUN (ISAI,AX,VX,XD,NSAI,TP,DELTAT,RX,RV,SM,C,CSM,KAZU,RESC

1,RESQ,HXIT,GOSA,GA1,GA2,GA3,GA4,C,IA,AI,KDIS,FT,KOSAN,ISHUT,ZZ)

IF (ISHOT .EQ. 1) GO TO 510
IF (KDIS .LE. 0) GO TO 510
GC 10 214

CAIL KYOTO (XD,IA,AI,ICHI,FT,1)
IF(ICHI .LE. 0) GO 10 214
GC 10 205

IF(LTE .GE. 5) GO TO 225
LC 215 K=1,NS

AR (K) =AX (K) +GAE

CCNTINUE

CCK=0.0

CO 220 N=1,NS
CCN=CCN=SH (N) *AA (N)

TR (K) =CCN .

CC(N) =RESQ (N) /CSH (N) /GR
CCNTINUE

GC 70 230

LC 226 K=1,NS

AR (K) =AX (K)

CCNTINUE

TCIN=C.0

CCK=0.0

LO 228 N=1,NS
TCIM=TOTM+SH (N)
CCK=CCN=-SM (N) *AA (N)

TR (N) =CCN-CSHM (N) *GAF

CC (N) =RESQ (N) /TOTM/GR
CCNIINUE

IF(INSA .LT. 5) GO 10 275
IF (NICBU .EQ. 0) GC TO 239
NIC=I/NTOBU

NIC=NI1C*NTOBU

IF(NIC .NE. I) GO TO 275
pCc 27C K=1,NS

IF(K .NE. 1) GC TO 250

WRITE (6,240) TE,GAP,XD(1) ,RX{(1),
1TE,KAZ0
FCRMAi(1X,F6.3,1X,F10.5,1P7E14.5,0PF7.3,I10)

GO 1IC 270

IF (1P .GT. THAJI .AND. TP .LT. TOWA) GO TO 255

IF(IE(K) .LT. C) GO TO 27¢

WRITE (6,260) K,XD(K),RX(K),RV(K),AA(K),

FCEMAT (13%,15,1P7E14.5)
CCNIINUE

RESC (K) ,RESQ (K) ,CQ(K)

RV (1) ,AA (1) ,RESC (1) ,RESQ(1),CQ(1),

[



27¢

310

320
325
326
327
328

330
350

335

360

370
380
450

500
510
520

530

540
550
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LC 350 K=1,NS

IF (ABS (RXMX (K)) .GE. ABS(RX(K))) GO TO 310
EXMX (K) =RX (K) . -

TRX (K)=TE

IF (AES (RVMX(K)) .GE. ABS(RV(K))) GC TO 320
RVMX (K) =RV (K)

TEV (K) =TP

IF (ABS (TRMX (K)) .GE. ABS(TR(K))) GO TO 325
TEMX (K) =TR (K)

IF (ABS (XDMX (K)) .GE. ABS(XD(K))) GC TO 326
XILMX (K) =XD (K)

IF (ABS (AAMX (K)) .GE. ABS(AA(K))) GO TO 327
AAMX (K) =AA (K)

IF (ABS (RCMX (K)) .GE. ABS(RESC(K))) GO TO 328
RCMX (K) =RESC (K) ,

IF (ABS (RQMX(K)) .GE. ABS (RESQ(K))) GO TO 330
ROMX (K) =RESQ (K)

CCMX (K) =CQ (K)

TCQ (K) =TP

IF (ZZ (K) .GE. ABS(AX(K))) GO TO 350

22 (K) =ABS (AX (K))

CCNTINUE

IF(IGEH .GT. 5) GO TO 450

NTC=¥SKIP* (I/MSKIP)

IF (NTC .NE. I) GC 10 450

DC 380 N=1,NPCH

GC TO (335,36C), 1GPH

K=IECH (¥)

KETH=NS-K+1

WRITE (7,370) KBTH,TE,XD(K),RX(K) ,RV(K),AA(K),RESC (K) ,RESQ(K) ,CQ (K)
GC 10 380

K=NS=K+1

KETH=N :
WRITE (2,370) KETM,TP,XD(K),RX(K) ,RV(K),AA(K),RESC (K),RESQ(K) ,CQ(K)
FCEMAT (I2,F8.3,1P7E10.3)

CCNTINUE

CALL NARA(KDIS,FT,KOSAN,TP)

IF (KDIS .LE. 0) GC TO 510

CALL TIME(1,0,LTIME)

IF(LTIME .GE. ITIME) GO TO 510

CCNTINUE

WRITE (6,520)

FOEMAT (//1X,'LIST OF MAXIMUM VALUES')

WEITE (6,530)

FOFMAT (/3X,'STIRY',2X,'DISP TO GND',3X,"RELTV DISP - WHEN',4X,'RELT

1V VELC - WHEN',U4X,*ABS ACCEL',3X,'DAMP RESIS',3X,'SPRN RESIS',3X,'
2SHEAR COEF-WHEN',2X,'TCTAL SHEAR')

LC £50 K=1,NS
WRITE (6,5u0) K,XDMX (K) ,RXMX (K) ,TRX (K) ,RVMX (K) ,TRV (K) ,AAMX (K) ,RCHX(

1K) ,ECMX (K) ,CCMX (K) ,TCQ (K) , TRMX (K)

FCEMAT (2X,14, 1P2§13.3,2(0PF8.3,1PE13.3) ,1P2E13.3,0PF10.4,F8. 3,

11EE13.3)

CCNTINUE

IF (IGEH .GT. 5 ) GC TO 600
1F(IGEH .EQ. 1) 60 TO 553
IXXXXX=0 .
XXXXXX=0.0

DCc €52 J=1,Ns

LO 551 JJd=1,4
WRITE (2,370) IXXXXX,XXXXXX
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551 CCNTINUE
552 CCNIINUE
WRITE(3,555)
GC 10 557
5§53 WRITE(7,5595)
555 FCRMAT (T55,*MAXIMUM VAIUES, PEOG.# 40')
557 DO £70 J=1,NS

K=NS=-J+1

RXMX (K) =ABS (RXMX (K))

RVMX (K) =ABS (EVMX (K))

CCMX (KR) =ABS (CCHM3X (K))

IF (IGEB .EQ. 2) GO TO 558

WRITE(7,560) RXMX (K) , TRX (K) ,RVMX (K) , TRV (K) ,CQMX (K) ,TCQ(K)

GC 1C 570 : _

558 WRITE (3,560) RXM3 (K) , TRX (K) ,RVMX (K) , TRV (K) ,COMX (K) , TCQ (K)

560 FCFMAT (3(1PE10.4,0PF10.3))

570 CCNIINUE

600 IF(LTIME .GE. ITIME) WRITE(6,610) 1P

610 FCEMAT (//1X,'%** CALCULATICN OF RESPONSE WAS TERMINATED BECAUSE PRE
1EAFEC COMPUTATION TIME HAD BEEN EXPIRED. ** Tp=1,F7.3/)

WEITE (€,999)

99¢ FCEFAT (1H1)

RETURN

END

SUEFOUTINE SAIEUN (ISAI,AX,VX,XD,NSAI,TP,DELTAT,RX,RV,SH,C,CSH,
1Kazu,RESC,RESQ,MXIT,GOSA,GA1,GA2,GA3,GAu.Q,IA,AI,KDIS,FT,KOSAN,
2ISBUT,22)

CCMNCK NS,NB,STF (225) ,SH(25),SPR( 5),SB( 4),RP(25, 5) ,UDL (25, 4)

CCFMCN IOP(225,2),ION(225,2),SLPIS(225),SLP(225,3),BETA(225,2,5),
1IHEIA(225,2,6),IHA(225,2),PMO(225,2,2),HXD(25),HNL(25)

LIMENSICN AX(25),VX(25),XD(ZS),RX(25),RV(25),SM(25),C(25),CSM(25),
1RESC (25) ,RESQ(25) ,Q (25,25) ,AI (150, 11) ,F1(225,2) ,KOSAN(225,2),
222 (25) )

SAIN=FLOAT (NSAIX)

TE=TE-DELTAT

LO 460 J=1,NSAI

TBUN=FLOAT (J) /SAIN

TE=TP+DELTAT/SAIN

GAP=(GAQ‘B.0*GA3+3.0*GA2—GA1)*TBUN**3/6.0+(GA3-2.0*GA2+GA1)*TBUN**
12/2.0—(GAu-s.0*@A3+3.0*GA2+2.0*GA1)*IBUN/6.0+GA2 '

CALL SUCHI (AX,VX,XD,RX,RV,SM,C,CSM,GAP,DELTAT/SAIN,KAZU,RESC,RESQ,
1,M4%¥11,1F,ISAI,COSA,¢,22)

CALL KYOTO (XD,IA,AI,ICHI,FT,2)

IF (ICEI .LE. 0) GC TO 456

LC 455 K=1,NS

HXT (K) =XD (K)

HXL (K) =RESQ (K)

455 CCXTINUE
CALL STIFF(Q,1,AI,IA,ISHUT)
IF (ISHUT .EQ. 1) RETURN
45¢ IF(J .EQ. NSAI) GO T0 460
CALL KARA (KDIS,FT,KCSAN,TE)
IF(KLC1S .LE. 0) RETURN
460 CCRIINUE

1sa1=10

EETURN

ENL

SUBEFOUTINE SUCHI (SAX,SVX,SXD,RX,RV,SM,C,CSH,GAP,DELTAT,KAZU,RESC,
1RESC, MXIT,TP,ISAI,GOSA,Q,Z72)

CCFFCE NS,NB,STF (225),SH(25) ,SPR( 5) ,SB( 4) ,RP (25, 5),UDL(25, 4)
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140

150
160

200

400

405

406
410
411
412
415

420
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CCEMCN IOP(225,2),10N(225,2),SLELS (225),SLP (225,3) ,BETA (225,2,5),
1THETA (225,2,6) ,IMA(225,2) ,PMO (225,2,2) ,HXD (25) ,HNL (25)
CIFENSION UX(25),UA(25),RX(25),RV(25),5hX (25),5SXD(25),SVX(25),
1S4 (25) ,C(25) ,CSM (25) , ICOL (25) ,RESC (25) ,RESQ (25) , UV (25) ,U(25) ,
2C(25,25) ,22(25)

KAZU=0

MXIJ=MXIT/2

LC 100 N=1,NS

UA(K) =SAX (N)

CCKIINUE

KAZU=KAZU+1

DC 120 N=1,NS

UV (N) =SVX (N) + (SAX (N) +UA (N) ) *DELTAT /2.0

UX (K)=SXD (N) + (SVX (N) + (SAX (N) /3.0+UA (N)/6.0) *DELTAT) *DELTAT
CCNTINUE _

DO 200 N=1,NS

NN=N-1

CEA=0.0

IF(N .EQ. 1) GO 10 140

DG 130 K=1,NN

CHMA=CMA+SM (K) *UA (K)

CCNTINUE

IF(N .NE. NS) €O TO 150

ST=CMA+GAP*CSH (N)

GC 10 160

ST=CMA+GAP*CSH (N) ~C (N) *UV (N+1)

EESC (¥) =QQ (N,Q,0X)

U (§) == (C (N) *UV (N) +KESQ (N) +ST) /SH (N)

CCNTINUE

JHAN=0

CC 400 N=1,NS

ICCL (N)=0

EUNBO=ABS (U (N)-UA (N)) /GOSA/100.0+1.0E-35
SHI=1.01*ABS (U (N)-UA(N))/ (ABS (U (N) ) +EUNBO)

IF(SHI .LT. GOSA) GO TO 400
SHI=10.0%ABS (U (N)~UA(N))/ZZ (N)

IF(SHI .LT. GOSA) GO TO 400

JHAN=JHAN+1

ICCL (N) =ICOL (N) +1

CCNTINUE

IF(JHAN .EQ. 0) GO TO 450

IF (KAZU .LT. MXIT) GO TO 420

IF(ISAI .LTI. 0) GO TO 405

ISAI==10

GC 10 450

MXII=MXIT+1

IF(KAZU .EQ. MXII) GO TO 411

5O 410 N=1,NS

IF(ICOL(N) .EQ. 0) GO TO 410

WRITE (€,406) N

FGEMAT (1X, 'CONVERGENCE IS NOT ENOUGH AT STOREY NO.',I3)
CCNTINUE

CO 415 N=1,NS

IF(ICCL(N) .EQ. 0) GO TO 415

WEITE (6,412) TP,N,UX(N),UV(N),U(N),RESQ(N) ,KAZU

FCEMAT (1X,F6.3,6X,15,1PE14.5,7X,E14.5,7X,E14.5,14X,E14.5,21X,0PI 10
1)

CCNTINUE

IF (KAZU .EQ. MXII) GO TO 450

IF(KAZU .EQ. MXIJ) GO TO 440
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45¢

460

46=
47¢c¢

100

100

110
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DC 430 N=1,NS

UA(N) =U (N) '

CCNTINUE

GC 10 110

DC 445 N=1,NS

UA (N) = (UA(N) +U (N)) /2.0

CCNTINUE

MXIJ=MXIJ+(MXIT-MXIJ)/2

GC 10 110

DO 45 N=1,NS

SAX (N)=U (N)

SVX (N) =UV (N)

SXD (N) =UX (N)

CCNTINUE

CC 470 N=1,NS

IF(N .EQ. NS) GO TO 460

RX (N) =SXD (N) -SXD (N+1)

EV(N) =SVX(N) -SVX (N+1)

GC 10 465

RX (NS) =SXD (NS)

RV (NS)=SVX (NS) .

RESC (N) =C (N) *RV (N)

CCNTINUE

RETURN

END

FUNCTICR QQ (N,Q,SXD)

CCEFCE NS,NB,STF (225) ,SH(25) ,SPR( 5) ,SB( 4) ,RP (25, 5),UDL(25, 4)
CC¥MCN IOP(225,2) ,10N(225,2),SLPLS (225) ,SLP(225,3) ,BETA(225,2,5),
1THETA (225,2,6) »IMA(225,2) ,EMO(225,2,2) ,HXD (25) ,HNL (25)
CIFENSION Q(25,25) ,SXD(25)

cC=C.C

pc 100 I=1,NS

SEXTL=SXD(I)-HXL (I)

CC=CQ+C (N,I)*SHXD

CCNTINUE :

GC=HNI (N) +Q¢

KETUEN

END

SUEFOUTINE KYOTIO (SXD,IA,AI,ICHI,FT,IIQ)

CCMMCK NS,NB,STF (225) ,SH(25),SER( 5),SB( 4) ,RP(25, 5),UDL(25, &)
CCMMCN TOP (225,2),10N(225,2),SLPLS (225) ,SLP(225,3) ,BETA(225,2,5),
1THETA (225,2,6) ,1MA (225,2) ,ENO(225,2,2) ,HXD (25) ,HNL (25)
CIFENSION SXD(25) ,EB(150) ,AI(150,11),FT(225,2) ,EN(2),CCC(25)
1CHI=C

LO 100 I=1,IA

EE (I) =E (I, SXD)

CCNTINUE

NE1=NB+1

NB2=NB+2

NEE=2%*NB+1

CAIL SCLVE (AI,EB,CCC)

pc 30€ I=1,NS

IF(I .EQ. NS) GO TC 110

E=(SXL (I) -SXD (I1+1))/SH(I)

GC 1¢ 120

R=SXL (NS) /SH(NS)

DC 25C J=1,NBB

M=NEE#* (I~-1) 4J

IF (STEF(4) .LT. 1.0E-30) GO TO 250

JJ=J-NB .

"
[ e

'
[or——

'
—

PRV,



130

140

150

155

16C

16¢
170

175

180

190

19¢

200
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IF(J .GE. NB1) GO TO 130
KA=NB2* (I-1) +J

KBE=KA+1

GC 1C 140

KA=NBZ* (I-1) +J-NB

IF(I .EQ. NS) GO TC 140

KE=KA+NB2

EA=EE (K3)

IF(I .EQ. NS .AND. J .GE. NB1) GO 10 150
EE=EB (KB)

1F(J .GE. NB1) GO TO 160

SE£=SB(J)

FR1=RE (I,J)/SS
FR2=RE (I,J+1)/SS
FR3=1.0-FR1-FRZ
U1=UCL ¢I,J)

DC 158 K=1,2
CALL 120 (VA,VE,M,K,FR1,FR2,1,-1)

EM(K) =VA*PA+VB*PE-UEEN (4, SS,K,UL,0.0,FR1,FR2,1,-1)

CCNIINUE

FEM=-UL* (FR3%*SS) **2/12.0

FI(M,1)=~(2.0%EM (1) ~EM(2) ~3.0%FEM) *FF3/STF (M) /3.0+ (1.04FR1/FR3) *PA
1+FFZ*EB/FR3 '

FT (M, 2) =< (2.0%EM (2) -EH (1) +3.0%FEH) *FR3/STF (1) /3.0+FRT*PA/FR3+ (1.0+
1FEZ/FF3) *PB

GG 10 180

SE€=SH (I)

IF(1 .EQ. NS) GO TO 170

DC 165 K=1,2

CALL 12U (VA,VE,M,K,0.0,0.0,1,-1)

EM(K) =VA*PA+VE+PE-UBEN (M,SS,K,0.0,E,0.0,0.0,1,-1)

CCNTINUE

GC 1C 175

CALL IZU (VA,VE,M,1,0.0,0.

0, 1)
EM(1)=VA*PA-UHEN(M,S5,1,0.0

0

0

1,-
,0.0,0.0,-1,-1)
CALL 12U (VA,VE,M,3,0.0,0.0,-1,-1)
EM(Z) =VA*PA-UHEN (M,SS,3,0.0,R,0
IF (SPE(JJ) .LE. 1.0E-5) GO 1
EB=-EF (2) /SPR (JJ)
FTI(M,1)=-(2.0%EM (1) -EN (2) ) /STF (4) /3.04PA-R
IF(I .EQ. NS .AND. SPR(JJ) .LE. 1.0E-5) GO TO 180
FT(M,2) =~ (2.0%EM (2) -EM (1) ) /STF (M) /3.0+PB-R
LC 220 K=1,2
IF(I .EQ. NS .AND. J .GE. NB1 .AND. SPR(JJ) .LE. 1.0E-5) GO TO 220
IF (IMA(M,K)) 210,200,150 -
ICCN=IMA (M,K)
IF(FT(M,K) .GE. THETA(M,K,ICON) .AND. PT(M,K) .LE. THETA(M,K,ICON+
11)) GC TO 220
IF(FT(M,K) .GE. THETA (M,K,ICON+1)) GO TO 195
ICHI=ICHI+1 ,
IF(II¢ .EQ. 1) GO TC 220
IMA (M,K) =IMA(M,K)~IOP (M,K)
6C 1IC 220
IF(IMA(M,K) .EC. 2) GO TO 220
ICHI=ICEI+1
IF(IIC .EQ. 1) GO TO 220
IMA(M,K)=IMA (M,K)+1
GO T0 220
IF (EM(K) .GE. EMC(M,K,2) .AND. EM(K) .LE. PMO(M,K,1)) GO TO 220
ICBI=ICHI+1

0,0.0,-1,-1)-EN (1)

'R
P
,R -
10 175



‘210

215

220
250
300

298

IF(II¢ .EQ. 1) GO TO 220
IF (EM(K) .LE. PMO(M,K,2)) IMA(M,K)=-ION(4,K)

IF (EM(K) .GE. EMO(M,K,1)) IMA(M,K)=IOE(M,K)

GO 1C 220

ICCN=3-IMA (M,K)

IF(F1(M,K) .GE. THETA(M,K,ICON+1) .AND. FT (4,K) .LE. THETA(M,K,ICO
1N)) GC TO 220

IF (FTI(M,K) .LE. THETA(M,K,ICON+1)) GO TO 215

ICEI=ICHI#1 ,

IF(II¢ .EQ. 1) GO TO 220

IMA (M,K)=IMA (M,K)+ION(N,K)

GO 1IC 220

IF (IMA(M,K) .EC. -2) GO TO 220

ICHI=ICHI+1

IF(IIC .EQ. 1) GC TG 220

IMA (M,K)=IMA(M,K)-1

CCNTINUE

CCNTINUE

CCNTINUE

FETURN

END

SUEEOUTINE NARA (KDIS,FT,KOSAN,TP)

CCMMCN NS,NB,STF (225),SH(25),SPR( 5) ,SB( 4) ,RP (25, 5),UDL(25, )
CCMMCN IOP (225,2),10N(225,2),SLPLS (225),SLP(225,3) ,BETA(225,2,5),

-1IHEIA(225,2,6),IMA(225,2),EHO(225,2,2),HXD(ZS),HNL(ZS)

100

110

111
112

115
11é
120

121
122

CIFENSION FT(225,2) ,KOSAN(225,2)
KL1S=10

NE1=NB+1

NEZ=NB+2

NBE=2#*NB+1

LO 360 I=1,NS

DO 350 J=1,NBB

M=NBE* (I-1) +J

CEF=2.5%STF (M)

DC 340 K=1,2 -

IF (IMA(M,K)) 100,340,100

1F (KCSAN(M,K) .EC. 0) GO TO 110
IF (IMA (M,K) .GI. 0) GO TG 130
GO 10 170

KOSAN (M,K) =1

IF(J .GE. NB1) GO TO 120

Go 10 (111,115), K

WRITE (€,112) 1,J,TP
FCEMAT (1X, 'YIELD AT THE LEFT END CF THE BEAM
1 EAY NO.',I3,'; TIME',F7.3,' SEC.')
GC 10 128

WEITE (6,116) I1,J,TP

]
¢

STOREY NO.',I3,!,

STOREY NO.',I3,¢,

FCEMAT (1X, 'YIELD AT THE RIGHT END OF THE BEAN -~
1 EAY NO.',I3,'; TIME',F7.3,' SEC.!')

GC 10 128

JC=J~NB

GC 10 (121,125), K

WEITE(€,122) 1,JC,1TP

FCRMAT (1X,*YIELD AT THE TOP CF THE COLUMN
1 cCL. NO.',I3,'; TIME',F7.3,' SEC.')

GO 1C 128

STOREY NO.',I3,',

12% WRITE(6,126) I,JC,TP

126 FCRMAT (1X,'YIELD AT THE BCTTCM CF THE COLUMN -

STOREY NO.',I3,¢,
1 COL. NO.',I3,'; TIME',F7.3,' SEC.Y)

128 IF(IMA(M,K) .GI. 0) GO TO 130

—
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GO 1C 170
130 IF(FI(M,K) .GE. THETA(M,K,3)) GG 10 210
IE=IMA(M,K) ~
ICE (M,K) =IP
IN=ICK (M, K)+3
THETA (M,K, IP)=FT (M,K)
YB=SLE (M,IP+1) *FT (M,K) +BETA (M, K, IP+1)
EMC (M,K, 1) =YB
IF(SLE(M,1) .GE. STF(M)) GO TO 140
CX= (SLP (M, 1) * (FT (M,K) -THETA (M,K,IN))-YB+PNO (M,K,2))/ (SLP (4, 1) -SLPL
1s(®))
GC 10 150 .
140 CX=(FI(M,K)-THETA (M,K,IN)-(YB-PMO (M,K,2))/SLP(M,1))/ (1.0-SLPLS (M)/
1SLE (4,1))
150 CY=SLELS (M) *DX
EMC (M,K,Z2) =PMO (M,K, 2) +DY
IF(SLE(M,1) .GI. CER) GG TO 155
_EETA(M,K, 1) =YB~-SLE (M, 1) *F1T (4, K)
155 DO 160 KK=IN,6
THETA (M,K, KK) =THETA (M, K,KK) +DX
IF (KK .EQ. 6) GO TQO 160
INN=IN=2
CE=DY-DX*SLP (¥,INN)
EETA (M,K,IN)=BETA(M,K,IN) +DB
160 CCNTINUE
GO 10 340
170 IF (FI(¥,K) .LE. THETA(M,K,6)) GO TO 210
© IN=-IMA(M,K)
ICK (M,K)=IN
1E=IOE (M,K)
THETA (M,K,IN+3)=FT (,K)
YB=SLE (M, IN+1) #*FT (M,K) +BETA (4,K,IN+3)
EMC (M,K,2)=YB
1F(SLE(M,1) .GE. STF(M)) GO TO 180
DX= (SLP (M, 1) * (FT (M,K) -THETA (M,K,IP))-YB+PMO (M,K, 1))/ (SLP (M, 1) -SLPL
15 (1))
GC 10 190
180 DX=(F1(M,K)~-THETA (M,K,IP) - (YE-ENC (M, K, 1))/SLP(H 1))/ (1.0~SLPLS (M) /
1SLE (M, 1))
19C DY=SLELS (M) *DX
EMC (M,K,1)=EMC(M,K, 1) +TY
IF(SLP(M,1) .GI. CER) GO TO 195
BETA (M,K,1) =YB=-SLE (M, 1) *FT (¥,K)
195 LC 20C KK=IP,3
THETA (¥,K,KK) =THETA (M, K, KK) +DX
IF (KK .EQ. 3) .GO TO 340
CE=LY-DX*SLE (M,IE+1)
EETA(M,K,IP+1) =BETA (M,K,IP+1) +DB
200 CCNIINUE
GO 10 340
210 RDIS=-10
IF(J .GE. NB1) GO TO 260
GC 1C (220,240), K
220 WRITE(6,230) I,J,TE

230 FOErAT (/1X,'COLLAESE AT THE LEFT END OF THE BEAM -~ STOREY NO.',I
1s,*, EAY NO.',I3,'; TIME',F7.3,' SEC.!')
GC 10 340

240 WKITE(6,250) I1,J,TP

250 FOEMAT (/1X,*CCLLAESE AT THE RIGHT END OF THE BEAM -- STOREY NO.¢,I

13,', EAY NO.',I3,'; TIME',F7.3,' SEC.!)



GC TC 40
26C JC=J-)B
GO TO (270,290), K
27C WRITE (6,280) I1,JC,TP
280 FORMAT(/1X,'COLLAPSE AT THE TOP
13,*, cCoL. NO.*,I13,'; TIME!',F7.3,'
GC 10 340 .
290 WRITE (6,300) I,JC,TP
300 FOFMAT(/1X,'COLLAESE AT THE BOTTCH
13,', COL. NO.',I3,*'; TIME',F7.3,°
340 CCNTINUE
350 CCNTIIXNUE
360 CCNTIXOE
RETUEN
END

300

OF THE COLUMN -- STOREY NO.',I
SEC. ')

OF THE COLUMN -- STOREY NO.',I
SEC. ')




Appendix E.

BLAST LOADS ON A STRUCTURE

E-1 Determination of Blast Loads on a Structure.

The blast loads considered in this dissertation are
assumed to be caused by blast waves accompanying a nuclear
explosion in the air. The characteristics of blast waves
have been investigated by the United States Department of
Defence and other affiliated agencies and research insti-
tutes. Refs. 14 through 22 provide useful information
concerning the nature of blast waves and the magnitude of
the blast loads which could be applied to a structure at a
particular site.

Summarizing the available information, the following
steps are used to determine the blast loads acting on
structures for the purpose of the present investigation.

STEP l: Estimate the size of burst, W (KT, TNT),
height of burst, h (feet), the location of the building
from.G.Z. (éround zero), d (feet), and the orientation of
the building. Here G.Z. is the point on the earth's surface
immediately below the point of detonation.

The objective of Steps 2 to 9 is to find the over-
pressure, p(t) (psi), dynamic pressure, q(t) (psi), and the
shock front velocity, U (ft/sec), at the site of the build-
ing. These values do not depend upon the shape or type of

building. 301
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STEP 2: Find the scaled height of burst, hl (feet),

as:

h]_ = WT? . (E-1)

A 1 KT (TNT equivalent) burst at height hl would produce
the same effect as a W KT burst at height h when observed
at the site immediately below the point of detonation,
according to the scaling law.

STEP 3: Find the scaled distance from G.3Z., dl (feet),

as:

dl = ;q—m (E—Z)
The pressure at the distance dl from G.Z. for a 1 KT burst

at height h., would be the same as the pressure obtained at

1
the distance d from G.Z. for a W KT burst at height h,

according to the scaling law.

STEP 4: Find the maximum overpressure, p (psi), using
the pertinent graph prepared for a 1 KT burst. Depending
upon the values of scaled height and distance, the following

figures are used.

For dl < 1200, hl < 1000 ... Fig. E-la
For dl < 7000, hl < 500 ... Fig. E-1b
For surface burst, hl=0 ... Fig. E-2

STEP 5: Find the horizontal component of the peak

dynamic pressure, q (psi), using Fig. E-3, prepared for a
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1 KT.burst, by entering with the scaled height and distance.

The values p and g obtained in the preceding two steps
are also the peak overpressure and the horizontal component
of the peak dynamic pressure, respectively,. for the burst
and building location described in Step 1.

STEP 6: Find the positive phase duration of the over-
pressure, t+p1 (sec), and the dynamic pressure, t+ql (sec),
for an equivalent 1 KT burst using Fig. E-4. Then apply
the scaling law to find the actual durations of the over-
pressure, t (sec), and the dYnamic pressure, t (sec),

+p +q
for the W KT burst as:

t = t (E-3)

+p +pl

t = t (E-4)

+q +gl

STEP 7: Determine the overpressure, p(t) (psi), and

the horizontal component of dynamic pressure, q(t) (psi),
as functions of time using Fig. E-5 and Fig. E-6, respect-
ively. Both are functions of peak overpressure, p, and are

expressed by:

pl) = p(l -5 e ¥p (E-5)
+p
and
qg(t) = gq(l - EE—)ze _z(t/t+q) (E-6)
+q

respectively, which are valid approximately when the peak
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overpressure is less than about 10 psi. In the above
equations, t (sec) is the elapsed time after the arrival
of the shock front. The peak overpressﬁre is assumed to
occur almost instantaneously with the arrival of the shock
front.

STEP 8: Find the shock front velocity, U (ft/sec),
using Fig. E-7. This is also a function of the peak
overpressure, p.

STEP 9: The arrival time is obtained from Fig. E-8.
This value is not necessary to find the blast loads on a
structure but it may give useful information in designing
the building. For instance, the availability of warning
time may change the design attitude.

Knowing both the overpressure function, p(t), and the
dynamic pressure function, g(t), at the location of the
building, the blast loads on the building, assumed in this
case to be a closed box-like structure oriented parallel to
the direction of the wave, are calculated as follows.

Steps 10 to 12 determine the average horizontal load
to be applied to a structure.

STEP 10: Find the reflected overpressure, P, (psi),
from Fig. E-9. The angle of incidence, o, is as shown in

Fig. E-10. For the present investigation, o is assumed to

be zero.

JE—



305

STEP 11: Find the time required for stagnation, tS

(sec), as:
t, = 3s/U, | (E-7)
where S (feet) is equal to H or B/2, whichever is less. H,
L, and B denote the height, depth and width of the building
in feet as shown in Fig. E-11.

STEP 12: Plot the average pressure, p,, applied to
the front surface as shown in Fig. E-12. The reflected
overpressure, p,, is developed instantaneously with the
arrival of the shock front; this corresponds to the origin
of the time éxis. This pressure decays to stagnation

pressure, pg, which is given by:
pg = Plty) + qlt)) (E-8)

in a linear manner in time tg, calculated in the preceding
step. Beyond a time tg, the front surface pressure is the
sum of the overpressure and the dynamic pressure. The
drag coefficient, C4q, is taken equal to 1 in this case.
This curve is expressed mathematically as follows:

For tg 2 t 2 0:

t
Py Pr = (PrPglgs - (E-9)

For t > ts:

P, = Pp(t) + qlt) . (E-10)
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The average loading on the back surface is determined
according to the following two steps.
STEP 13: Compute the time, t2, required for the shock

front to travel the length (depth) of the building as:

t, = L/U . (E-11)

At this time, the loading on the back surface is initiated.
Compute the time, tyr required for the pressure to build

up to the surrounding overpressure and dynamic pressure as:

t, = 4S/U (E-12)

where S is as defined before.

STEP 14: Plot the average pressure, p,, applied to
the back surface of the building as shown in Fig. E-13.
The loading starts at t = ty and increases linearly up to

Pp which is given by:
P, = P(t) + Cq alt)) , (E-13)

by taking an additional time tb' Beyond this time, the
pressure is the sum of the overpressure and the dynamic
pressure multiplied by the drag coefficient, qi (tabulated
in Table E-1). The curve is represented mathematically as
follows:
For t, 2t 2 0:
p, = 0, (E-14)

e



M

307

2 b 2
t—t2
Py, = P, (E-15)
b
For t > t2 + tb:
P, = p(t—tz) + qu(t—tz). (E-16)

The net horizontal load is calculated as follows.

STEP 15: Substract the back surface pressure, Py
from the'front surface pressure, Py to obtain the net
horizontal load, Py’ applied to the structure. This corres-
ponds to the shaded area in Fig. E-l4a or equivalently in
Fig. E-14b. The total load on the structure is obtained by
multiplying the surface area, HxB, by the above pressure.
The load may be distributed at each floor level in propor-
tion to the tributary surface area. It is seen from
Fig. E-14a or E-14b that the most substantial loading is
applied within (t2+tb) sec. or (L+4S)/U sec., thus it may
be regarded as a shock or an impulse.

The loading on the sides or roof may be found in a
similar manner. The loading on a partially open structure,
open frame structure, or cylindrical structure can also be

calculated by consulting the same references.14'18'19'20
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E-2 Example Calculation of the
Blast Load on a Structure.

The building considered in this example is the one shown
in Fig.4-3. It is a ten-story Euilding and has four bays
in either direction. The plan is a square with its sides
100 feet long. Story height is constant throughout the
stories and is 12 feet, thus the total height is 120 feet.
Exterior surfaces are assumed to be covered with concrete
panels with relatively small openings for windows. Thus
this building may be classified as a closed box-like
structure.

The blast load on this building will be determined as
follows in accordance with the steps described in the
previous section.

STEP 1: Estimated size of burst: W = 1 MT = 1000 KT.

Estimated height of burst: h = 5000 ft.
Assumed location of the building fron G.Z.:
d = 42,000 ft. (about 8 miles).
STEP 2: Scaled height of burst: hl = 5000/(1000)1/3
= 500 ft.
. STEP 3: Scaled distance from G.2Z2.:
a, = 42000/(1000) /3 = 4200 £¢.
STEP 4: Maximum overpressure (use Fig. E-1b):
p = 1.47 psi.
STEP 5: Horizontal component of the peak dynamic pres-

sure (use Fig. E-3): g = .32 psi.

S—

s
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STEP 6: Positive phase duration of the overpressure
and the dynamic pressure for an equivalent 1 KT burst (use

Fig. E~4): t+p1 = .4 sec. and t+ql = ,45 sec. respect-~

ively. Apply scaling law to obtain actual duration of
= . 1/3

t+p = .4 - (1000)

= 4.0 sec. and t, = .45 - (1000) 173

STEP 7: Use the pertinent curves from Fig. E-5 and

= 4.5 sec.

Fig. E-6 to obtain the overpressure function, p(t), and
the dynamic pressure function, g(t), respectively.
STEP 8: Shock front velocity (use Fig. E-7):
U = 1170 ft/sec.
STEP 9: Arrival time for an equivalent 1 KT burst
(use Fig. E-8): tal = 3,2 sec.
Apply scaling law to obtain the actual arrival time:
e, = 3.2 - (200017 = 32 sec.
STEP 10: Angle of incidence: o = 0.
Reflected overpressure (use Fig. E~9): pr/p = 2.07,
therefore p,, = 2.07 * 1.47 = 3.05 psi.
STEP 11: H = 120 ft., B = 100 ft., therefore S = 50 ft.
Time required for stagnation: tg = 3 - 50/1170 = .13 sec.
STEP 12: Average pressure applied to the front surface

is plotted as shown by curve A in Fig. E-15. Here the

stagnation pressure, Pg s is given as follows:

tg/ty, = 0.13/4.0 = 0.0325,
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Using Fig. E~5, p(ts)/p = 0.95, therefore p(ts) = 1.40 psi

and

ts/t+q = 0.13/4.5 = 0.029 .

Using Fig. E-6, q(ts)/q = 0.9, therefore q(ts) = .30 psi.

Stagnation pressure is then: Py = p(ts) + q(ts) 1.70 psi.
STEP 13: Time required for the shock front to travel
the depth of the building: t, = 100/1170 = 0.085 sec.
Time reqﬁired for the pressure to build up to the surround-
ing pressure at the back surface of the building:
t, = 4 - 50/1170 = 0.17 sec.
STEP 14: Average pressure applied to the back surface

is plotted as shown by curve B in Fig. E-15. Here Py is

calculated as follows:

ty/ty, = 0.17/4.0 = 0.043 .

Using Fig. E-5, p(tb)/p = 0.93, therefore p(tb) = 1,37.
And, tb/t+q = 0.17/4.5 = 0.038.
Using Fig. E-6, q(tb)/q = .85, therefore q(tb) = .27 psi.
Therefore: py = 1.37 - 0.4 - .27 = 1.26 psi
where the drag coefficient, Cd’ is ~-0.4 in this case
(Table E-~1).

STEP 15: Net horizontalyload (in terms of average

pressure) shown in Fig. E-16 is obtained by taking the

difference between curve A and curve B in Fig. E-15.
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If it is assumed that the pressure is distributed
uniformly over the exterior surface and that each of the
five bents takes an equal amount of horizontal load at any
instant, the loading to any one bent is determined as
follows: The tributary area per floor per bent for the
'2nd floor to the 10th floor is 12 - 0% = 240 £t%, or
34,560 inz. At the first floor (top floor), the tributary
area is one half of the other. Therefére the loading at
the 2nd floor to the 10th floor is obtained by the net
horizontal pressure in Fig. E-1l¢ multiplied by 34.56 (in
terms of kips) and at the 1lst floor, by 17.28. In accord-

ance with the description in Sec. 3-7-1, the vector {r} is:

r. = 0.5, for i=1,

r. 1.0, fori=2,3, ..., 10,

1

and the function, Z(t), is expressed by the curve in Fig.
E-16 where the quantity in ordinate is multiplied by 34.56;

or as shown in Fig. 4-5.



Table E-1 Drag Coefficient : Cq

Dynamic Pressure

Drag Coefficient
(side, Top, Back)

0 - 25 psi
25 - 50 psi

50 - 130 psi
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DISTANCE FROM GROUND ZERO (FEET)
Fig. E-2 Peak Overpressure and Peak Dynamic

Pressure for 1-KT Surface Blast
Due to Ref. 14
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NORMALIZED OVERPRESSURE, p(t)/p

N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
'NORMALIZED TIME, t/t,

Fig. E-5 Rate of Decay of Pressure with Time for
various Values of the Peak Overpressure

Due to Reg. 14
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0.8

NORMALIZED DYNAMIC PRESSURE, q(t)/q

Fig. E-6

0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0

NORMALIZED TIME, t/t,

Rate of Decay of Dynamic Pressure with Time
for Various Values of the Peak Overpressure
Due Zo Ref. 14
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W

DIRECTION OF BLAST WAVE

REFLECTING
SURFACE

Fig. E-10 Angle of Incidence, a, of Blast
Wave with Reflecting Surface



Fig. E-11

Closed Box-Like Structure
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p(t)+aq(f)

Fig. E-12 Average Front Surface Pressure, Py
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ty=L/U

ty= 45/U

p(t-ty) +Cyalt-ty)

0 bttty tep*ts

Fig. E~13 Average Back Surface Pressure, P,
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Fig. E-l4a

Fep, fep*t tr

Net Horizontal Load (Pressure)
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Appendix F.

EMPERICAL METHOD FOR THE
DETERMINATION OF THE NATURAL PERIOD

F-1 Emperical Formula for Natural Period.

In Sec. 4-3 an empirical formula for the calculation
of the fundamental natural period of a regular frame was
proposed. If the frame contains shearwalls and/or non-
rigidly framed members, the quantities defined in Sec. 4-3
must be modified.

(1) Frame Containing Shearwalls.

Such a frame may be represented by the model shown in
Fig. F=1. Rigid stubs simulate the wall width effect. 1In
this case, the stiffness of the beam members attached to
the shearwall is calculated using the effective length, Lgs
instead of the column center to center length, L, used in
Sec. 4~-3. The effective length, Le’ is defined as:

2
L, = (1 - ZjElAj)L (F-1)

\J

where AlL and AZL represent the lengths of the rigid stubs
at the left and right ends of the beam, respectively. The
natural period may then be determined using Eq. 4-1.
(2) Frame Containing Non-Rigidly Framed Members.

If a beam is connected to its supporting columns by

331



332

pinned joints, the bending stiffness of this beam is taken
as zero. If only one end has a pinned connection, the
stiffness of the beam may be calculated using an effective
length, Le’ equal to twice the actual length.

If interior columns have pinned ends as shown in Fig.
F-2a, these columns may completely be ignored. Therefore
the example in Fig. F-2a may be regarded as a single bay
frame (Nb = 1 is assumed in Eqg. 4-1). The beam stiffness
is based on the average moment of inertia of left and right
beams with the length of beam equal to the total of the two
beam lengths.

. If exterior columns have pinned ends as shown in Fig.
F-2b, the example is again considered as a single bay frame
(N, =.1 in Eq. 4~1). The average beam stiffness, Kb’ is

~calculated as:

K, = [ I (%—I—)
for all beams

in regular bays

b

T ELy1/N N, (F-2)
for all beams in ~€

special bays

in which a special bay is the exterior bay where the exter-

jor ends of the beams are pinned. Regular bays are all

other bays. The effective beam lengths, Lgs in special bays
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are taken as twice the actual beam lengths. Ny is the num-
ber of bays which is equal to the actual number of bays

minus the number of special bays.
F-2 Examples.

(1) Example Calculation on FRAME#1AA.
The properties necessary in Eq. 4-1 are found in

Table 4-1. The calculations proceed as follows:

EY

K, = Z(f._)b / NN
= .1973 x 10® kip-in
K, = z(%—I-)C / N, (N +1)
= .5266 x 10° kip.in
Thus; ;
y = ;9 = .375
C

Then T, is read from the chart in Fig. 4-la, as

T0 = 1.83 sec.

The average story height is 144", thus,
h = =—— = 1.0.

The quantity, is given by:

Q
-

o = 2K.x 107 = 1.053



The average weight per story, per column is 95 kips and

Nb = 4, then B is calculated as:
_ 95 4 + 0.4 _
B = J0 X - = 1.49

Substituting above values in Eq. 4-1, the fundamental

natural period of the frame is calculated as:
N
= B ., s
T, = TohJ/CT 10

1.83 x 1.0 x

e}

= 2.18 sec.

334

The rigorous calculation resulted in Tl = 2.25 sec., which

indicates the error in empirical formula is about 3% in

this case.

(2) Example Calculation on a Frame Shown in Fig. F-3.

The frame shown in Fig. F-3 contains a shearwall as

well as exterior columns whose ends are pin connected.
Dimensions and necessary properties are inserted in the
figure. The empirical formula is used to estimate the
fundamental natural period in the following manner.
kR, = [z Ehpy+ 3 ED 1/ w Ny,
left bay "e right bay e
(2.651 + 1.326) x 10%/10 x 1

.3977 x 10° kip-in

In the above, the effective length, Le’ for the beams in

et
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the left hand bay is taken, according to Egq. F-1, as
Le = 300 - 2x60 = 240 inches

and for the beams in the right hand bay:

Le = 2 x (300 - 2x60) = 480 inches,
respectively.
_ EI '
K, = z(i—)c / N (N +1)

4.736 x 10° xip.in

Thus,
K
- b . L3977 _ g,
Y K, 1,736 y
Then, T0 is read from the chart in Fig. 4-1b, as
T0 = 3.34 sec,.

The quantity, o, is given by:

o = 2K_ x 107 = 9.472 .

The average weight per story per column is 87 kips and

Nb = 1, therefore;

_ 87 1+ 0.4 _
B = '—]‘b'x—-l—- = .1.74

The average story height is 144", thus
h = 1.0

Substituting these values into Eq. 4-1, the fundamental

natural period for this frame is calculated as:

335
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T = T h E . 1..\1_5_
1 0 o 10
_ /.78 _ 10
= 3.34 x 1.0 x mx 10
= 1.43 sec.

The rigorous calculation indicated the natural period
to be 1.54 sec. The error in the empirical formula when
applied to this rather irregular type of frame is approx-

imately 7%.
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Fig. F-2 Frames with Pinned-End Columns




Example Frame

EI (kip-in.2)
44.4 x10° 44.4
r——- -9
71.0 | | 568.3
44.4 e 4.4 |
71.0 | | 568.3
44.4 e 44.4 !
71.0 ; | | 568.3
59.2 e 59.2 —
130.2 502 | lhoare S
. e 592 1 =
130.2 | (10419 S
59.2 1__| 592 ) §
1302 | | |10a1.9 s
74.0 - 740 | 3
195.4 | |1562.9 %
74.0 e 74.0 5 -
195.4 | |1562.9
88.8 - 888 |
260.5 | [2083.8
88.8 H_I 88.8 |
260.5 | [2083.8
R I b
60" —>fe>— 60"
. 300" . 300"
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