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Abstract 

Metabolomics refers to the global study of the metabolome of a biological system 

where comprehensive and systematic profiling of all metabolites in a given biological 

sample (i.e., the metabolome) is performed. As the end product of biological processes, 

the status of metabolites could reflect the physiological state of an organism and provide 

valuable and complementary information to the genomics, transcriptomics and 

proteomics data. However, as a relatively new research field, there are some challenges 

associated with LC-MS-based metabolomics. For example, the total metabolite 

concentrations often vary from sample to sample, which may complicate relative 

quantification of the metabolome changes in comparative studies. Also, the high 

complexity of biological samples makes it difficult to quantitatively extract all 

metabolites and sensitively detect low abundance metabolites.  

Towards these challenges, the objective of my research was two-fold. Firstly, a 

sample normalization method based on UV absorbance measurement was developed to 

allow quantification of the total concentration of chemically labeled metabolites 

(Chapters 2 and 3). This method can be readily applied to any type of biological samples 

for effective correction of sample concentration variations. Application of this 

normalization strategy was demonstrated on human urine and bacterial cell extracts with 

significantly reduced inter-group variations and improved statistical results. Secondly, 

differential isotope dansylation labeling LC-MS metabolomics workflows were 

developed for various biological matrices including bacterial cells, plasma and 

cerebrospinal fluid (Chapter 4 to 6). This labeling chemistry targets at the amine and 

phenol sub-metabolome with improved chromatographic separation and detection 
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sensitivity. The developed protocols enabled the detection of over 1000 putative 

metabolites in each biological sample, and have been applied to bacterial differentiation 

and biofluid disease biomarker discovery studies. Overall, these research activities have 

demonstrated enhanced analytical performance and capability of LC-MS-based 

metabolomics methods for real biological applications.  
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Chapter 1 

Introduction 

1.1 Overview of Metabolomics 

The term “metabolome” was first coined by Olivier in 1998 to refer to the 

complete set of metabolites synthesized by an organism.1 Consequently, the word 

“Metabolomics” describes the comprehensive and systematic analysis, including both 

identification and quantification, of the collection of all metabolites in a given biological 

system.2,3 A related term, “metabonomics”, is defined as the quantitative measurement of 

metabolic responses to pathophysiological stimuli or genetic modification,4 with 

emphasis on differentiation between population groups. While metabonomics is a subset 

of metabolomics, the two terms are often used as synonyms.5 Metabolomics is now a 

rapidly growing field that allows high-throughput profiling of metabolites at the global 

level. As the end product of all biological processes, the status of metabolites could be 

used to reflect the physiological state of an organism as a result of interactions between 

gene/protein expression, and the environment changes (Figure 1.1).6,7 Therefore 

metabolomics often provides valuable and complementary information to the genomics, 

transcriptomics and proteomics data, and it is the “omics” approach closest to the 

phenotype.8 For this reason, metabolomics has gained a growing number of research 

interests in biological applications,9 such as discovery of disease-related biomarkers,10-15 

plant biotechnology 16,17 and toxicology.5,18,19  
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Figure 1.1 Relationship between metabolomics, other “omics” approaches, environment 

and the physiological state. Adapted from Reference 7. 

There are two types of metabolomics studies: targeted and untargeted. In targeted 

analysis, selected metabolites or metabolite classes are examined, which are usually 

associated with one or more particular pathways.20 This approach is usually hypothesis-

driven and is often used to study particular biological questions. Since the properties of 

the investigated metabolites are known, sample preparation protocols and analysis 

methods can be optimized to minimize interferences from the matrix.21 Selected reaction 

monitoring is also often performed to improve sensitivity for compounds of interest.22  In 

contrast, the purpose of untargeted metabolomics is to simultaneously measure as many 

metabolites as possible in a biological system. This approach is hypothesis-generating 

which aims to detect metabolic perturbations in different biological groups and to identify 

pathways responsible for the phenotype variations. Untargeted metabolic profiling is 

more challenging compared to the targeted approach in terms of experimental designs, 

instrument capabilities and data complexity. A typical metabolomics study workflow is 
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shown in Figure 1.2. It starts with an untargeted metabolic profiling to identify 

metabolites that are significantly altered, followed by targeted analysis of selected 

metabolites for verification, quantification and pathway analysis. Since this thesis focuses 

on untargeted metabolomics, all the following discussions are made with an emphasis on 

the untargeted approach unless otherwise specified.  

 

Figure 1.2 A typical metabolomics workflow. Adapted from Reference 21. 

As an emerging field, there are still several analytical challenges associated with 

metabolomics. First of all, there’s limited metabolome coverage by current analytical 

methods and it’s not possible to profile all metabolites with a single method. Unlike 

genes and proteins which are composed of only four nucleotides and twenty amino acids 

respectively, there’s a much greater chemical diversity of metabolites. In addition, there’s 

also a wide metabolite concentration dynamic range. For example, in plasma/serum 

samples the metabolite concentration range is estimated to be 9 orders of magnitude.23  

These problems may be alleviated by the ‘divide-and-conquer’ strategy as applied in 



 

  4  

 

proteomics studies.24 In this context, it means that metabolites may be divided into 

groups according to their structures or properties, and to each group an optimal analytical 

method is applied to address chemical variations such as solubility, reactivity and 

detectability.25 Secondy, the high complexity of biological samples makes it difficult to 

quantitatively extract all metabolites and also poses a challenge for the detection of low 

abundance metabolites. This requires adequate sample preparation methods as well as 

robust and sensitive analytical methods to be performed. Moreover, metabolite 

identification is often considered as the most challenging part, particularly in liquid 

chromatography-mass spectrometry (LC-MS)-based metabolomics studies. It is not 

feasible in practice to obtain authentic standards of every single compound for definitive 

identification. Therefore, putative identifications are often used instead by spectral match 

with database. There are a number of metabolome databases available such as HMDB, 26 

Metlin,27 and MassBank.28 However, there are still difficulties associated with this 

approach. For example, LC-MS and MS/MS spectra vary widely with different 

instruments and experimental conditions, which may lead to erroneous results if not 

examined carefully.29 Run-to-run variations in retention time and the lack of a 

standardized retention index further complicate spectral match in LC-MS-based analysis. 

There’s also limited metabolite coverage in all databases, and in general only less than 30% 

of peaks can be identified uniquely through database search.21 Currently there’s great 

research effort in expanding the metabolome database in order to improve metabolite 

identification.30-32 
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Because of the highly complex nature of metabolites, a variety of analytical tools 

have been applied to approach metabolomics applications. A brief comparison of the 

most commonly used analytical techniques will be discussed in the following section.   

1.2 Comparison of Major Metabolomics Platforms 

Three of the most predominately used techniques are nuclear magnetic resonance 

(NMR) spectroscopy, gas chromatography mass spectrometry (GC-MS) and liquid 

chromatography mass spectrometry (LC-MS). NMR has been widely used in 

metabolomics for its ability to simultaneously identify and quantify a wide range of small 

molecules at medium to high concentration levels.33-35 NMR spectra provide rich 

structural information and are highly reproducible, which is important for unambiguous 

identification of metabolites in complex mixtures.36 It also has the advantages of simple 

sample preparation, instrument automation, and the non-destructive nature, which makes 

it well-suited for non-invasive analysis of biofluids.37 The major drawback of NMR is the 

relatively poor sensitivity, which limits its use for metabolites higher than the micro-

molar range. Unfortunately, many potential metabolic biomarkers have very low 

concentrations, and therefore cannot be detected by NMR. On the other hand, MS-based 

metabolomics technique is more sensitive than NMR by several orders of magnitude. It is 

usually coupled with a high-throughput separation technique such as GC and HPLC to 

reduce spectrum complexity so as to increase the number of detected metabolites. GC-

MS is the method of choice for thermally stable, volatile compounds or metabolites that 

can be made volatile through derivatization. It has been widely used to analyze organic 

acids, amino acids, sugars and fatty acids.37 One advantage of GC-MS is that consistent 

data can be obtained with different instruments and across laboratories because of the 
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highly reproducible electron ionization (EI) fragmentation pattern and the indexed 

retention time.8,25 This enables reliable compound identification through spectra match 

with database. Nowadays the EI spectra library is very comprehensive.38,39 However, on 

the downside, the applicability of GC-MS is limited by the requirement for volatile or 

derivatizable analytes. For metabolites that are labile, nonvolatile or cannot be 

derivatized, include many polar and ionic compounds or large molecules, LC-MS 

becomes the method of choice.  Therefore, LC-MS is considered more comprehensive in 

terms of metabolome coverage. It also provides the advantages of high sensitivity and 

versatility. Several separation modes are available, and the most common ones used in 

metabolomics are reversed-phase (RP) (for moderately polar to non-polar) and 

hydrophilic interaction liquid chromatography (HILIC) (for highly polar to ionic).40  

However, the linear quantification range may be limited by the ion suppression 

phenomenon with electrospray ionization (ESI),25 and the use of an internal standard is 

highly desirable for quantitative analysis. The ESI spectral library is also not as 

reproducible and comprehensive as the EI library, as described above. Since all analytical 

techniques have their strengths and limitations, they are complementary to each other and 

should be combined for a comprehensive metabolomics analysis.41,42 Since my research 

focuses on development of LC-MS methods, the analytical techniques employed in LC-

MS-based metabolomics will be discussed in more detail below.  

1.3 Analytical Techniques in LC-MS-based Metabolomics 

1.3.1 Reversed Phase Liquid Chromatography  

Reversed phase liquid chromatography (RPLC) is the most widely used 

separation means in LC-MS-based metabolomics. In RPLC, the stationary phase is made 
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non-polar by covalently bonding hydrophobic groups such as C18 and C8 onto 

microporous silica particles. The mobile phase is a mixture of water and an organic 

solvent that is miscible with water, most commonly acetonitrile and methanol. Other 

organic solvents such isopropanol and tetrahydrofuran are used less often. There are 

several features of RPLC that make it particularly useful for metabolomics analysis. 

Firstly, the hydrophobic stationary phase allows separation of most moderately polar to 

non-polar compounds, which covers a wide range of metabolites. Secondly, because the 

mobile phase contains water, it is compatible with water-based biological samples such 

as urine and serum, thus minimizes sample preparation. Thirdly, there are a wide range of 

choices for method development, including column dimensions, particle size, stationary-

phase type and mobile phase pH.43 This versatility is especially important for method 

optimization in untargeted profiling, as efficient separation is required to resolve as many 

metabolites as possible.  Narrow bore columns with particle sizes of 3-5 µm have been 

widely used in RPLC. More recently, the use of sub-2 µm columns, known as ultra-high 

performance liquid chromatography (UHPLC or UPLC), have become popular because 

they enable faster separation without compromise in efficiency.44-46 Fast analysis allows 

for improved sample throughput, which is highly desirable in metabolomics studies 

where a large number of samples need to be analyzed to produce statistically meaningful 

data. It should be noted though that the use of smaller particles is at the cost of increased 

column pressure, which requires special equipment. When running at moderate flow rates, 

sub-2 µm columns can also be used on traditional HPLC systems to provide high column 

efficiency. In general, RPLC provides a convenient, versatile, efficient and reproducible 
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approach for metabolite separation, and couples readily with common detection 

techniques such as UV and ESI-MS.  

1.3.2 Ultraviolet-Visible Absorption Spectroscopy 

Ultraviolet-visible (UV-Vis) absorption spectroscopy is the most commonly used 

detection method for HPLC. The principle of UV-Vis absorption is based on the fact that 

valence electrons can be excited to higher energy levels.47 Since all organic compounds 

contain valence electrons, they all have the ability to absorb electromagnetic radiations. 

However, for single bond electrons, absorption occur in the vacuum ultraviolet region (λ 

< 185 nm), which is difficult to measure experimentally because of interferences from the 

atmosphere. The more useful transitions are associated with compounds that have π 

orbitals. The absorption energies for n or π electrons to be excited to π* orbitals 

correspond to bands in the ultraviolet-visible region (190 – 600 nm). Molecules that are 

capable of absorbing energy in this region are known as chromophores. Most metabolites 

are organic compounds with unsaturated functional groups or heteroatoms, and therefore 

can be detected in UV-Vis absorption spectroscopy. 

  UV-Vis absorption spectroscopy is particularly useful for quantitative 

determination of analytes. At low analyte concentrations, the measured absorbance is 

proportional to the sample concentration, as described by Beer’s law: 

                                             A = log I0
I

=  εbc                                                    (1.1) 

Where A is the absorbance, I0 is the incident light intensity, I is the transmitted light 

intensity, ε is the molar absorptivity of the sample, b is the path length, and c is the 

sample concentration. When there is more than one component in the sample solution, 

the absorbance is additive:  
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                          Atotal = A1 + A2 + … + An = ε1bc1 + ε2bc2 + … + εnbcn                         (1.2) 

Although the Beer’s law is useful for quantitative measurement of single or a mixture of 

analytes, it should be noted that it also has certain limitations. For example, at high 

sample concentrations (> 0.01 M), solute-solvent or solute-solute interactions can affect 

the analyte environment and may alter the absorptivity. Other deviations include changes 

in refractive index, compound dissociation or association, interferences from 

polychromatic radiation or stray radiation.47 Therefore, it is important to determine the 

linear range for a particular detection system and to make sure the concentration of 

measured samples falls in the linear range. Nevertheless, today’s UV-Vis detectors can 

easily achieve linear ranges as wide as 105, making it a versatile method for analysis of 

both trace and major components in a sample solution.43 

When coupled with LC, UV-Vis detectors typically adapt a Z-shaped flow cell 

design (Figure 1.3). The light interacts with the liquid stream inside the flow cell, and 

when a sample passes through the tube, any absorption by the sample will reduce the 

light intensity compared to the mobile phase alone. The reduction is then converted to 

absorbance values.  

UV-Vis spectroscopy is not a good method for qualitative identification, and 

therefore is usually not used by itself in metabolomics studies, although there are 

exceptions.48 Nevertheless, because of its ease of operation and excellent quantitation 

capability, it can serve as a useful technique for development of LC-MS-based 

metabolomics methods. For example, it can be used to compare intensity of peaks from 

different sample preparation methods, check reagent or product purity,49 optimize LC 

gradients, quantify sample amounts prior to MS detection,50 and guide 1st dimension 
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fraction collection in offline two-dimensional separations.50,51 In my research LC-UV has 

been used as an important tool for metabolite quantification and biological sample 

normalization prior to LC-MS analysis.  

           

Figure 1.3 Schematic representation of a typical z-shaped flow cell. Adapted from 

reference 43. 

1.3.3 Electrospray Ionization 

Atmospheric pressure ionization (API) interfaces play a key role in the success of 

coupling liquid chromatography to mass spectrometry. The API interface is a specially 

designed spray chamber that takes liquid elutes from LC, performs aerosol generation, 

ionization and solvent evaporation under atmospheric pressure, and directs desolvated 

ions into the vacuum region of the mass spectrometer. Several API techniques have been 

developed, including electrospray ionization (ESI), atmospheric pressure chemical 

ionization (APCI), and atmospheric pressure photoionization (APPI).  Among them, ESI 

has been most widely used for metabolomics analysis and is the technique I have used in 

my research. The use of electrospray as ionization source for mass spectrometry was first 

introduced by Fenn in 1984.52 In general, the ESI process involves three major steps:53,54 

1) production of charged droplets at the capillary tip; 2) shrinkage of charged droplets 
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and repeated droplet disintegration; 3) generation of gas-phase ions.  Each step will be 

elaborated in more detail below. 

The schematic representation of the ESI process is illustrated in Figure 1.4. In the 

first step, a high voltage (2-5 kV) is applied between the metal capillary and the counter 

electrode. At the narrow capillary tip a strong electric field is created (E ≈ 106 V/m), 

which will partially penetrate the liquid at the tip and cause the polarized solvent to 

separate into positive and negative ions. When a positive potential is applied to the 

capillary, positive ions in the liquid will drift towards the liquid surface. Under the 

electric field positive ions are drawn downfield, but they cannot escape from the liquid 

because of surface tension. These two competing forces results in the formation of a 

stable liquid cone, which is known as Taylor cone (named after Geoffery Ingram Taylor 

who first investigated the phenomenon).55 When the field is sufficiently high, the Taylor 

cone becomes unstable and a liquid filament is emitted from the cone. At some distance 

downstream excessive positive charges break the filament into a mist of droplets. At high 

flow rates (>10 µL/min), this process is also facilitated by the strong shear forces created 

by the nebulizing gas, which is introduced into the spray chamber coaxially through a 

tube that surrounds the capillary needle.  

In the second step, a counter flow of neutral heated drying gas (usually nitrogen) 

is used to assist evaporation of solvents from the droplets. The evaporation process 

decreases the droplet diameter, thus increasing the charge density on each droplet. As 

droplets continue to shrink, they would eventually meet the Rayleigh limit in which the 

columbic repulsion just becomes sufficient to overcome surface tension. The parent 

droplets then become unstable and undergo fission to emit a tail of much smaller 
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offspring droplets. The volume of offspring droplets is only about 2% of parent droplets, 

but they inherit ~15% of the charges.54 This much higher charge-to-mass ratio forces the 

offspring droplets to undergo further disintegrations. The shrink-and-fission process 

repeats until the resulting charged droplets become sufficiently small to produce gas-

phase ions directly. 

The last step is generation of gas-phase ions from highly charged nanometer-sized 

droplets. Two mechanisms have been proposed for this step: the charged residue model 

(CRM) and the ion evaporation model (IEM). The charged residue model was first 

proposed by Dole.56 This model suggests that the repeated shrink-and-fission process 

eventually results in the formation of extremely small droplets that contain only one 

analyte molecule. Consecutive solvent evaporation leads to conversion to gas-phase ions 

with charges originates from the vanished droplet. This mechanism is best used to 

describe gas-phase ion formation for macromolecules such as proteins, and the resulting 

ion is multiply charged. The ion evaporation model was proposed by Iribarne and 

Thomson,57 which states that when the radii of the droplets decrease to less than 10 nm, 

direct ion emission will occur instead of Coulomb fission. This mechanism was 

supported experimentally by the fact that Na+ and hydrated Na(H2O)k
+  (k = 1-3) were 

observed in large abundance in ESI of NaCl solutions in addition to large ion aggregates. 

In general the ion evaporation mechanism supports gas-phase ion formation for small 

molecules.  

ESI is a soft ionization method that does not involve localized heating during the 

ionization process. Since there’s very little internal energy transferred to the molecular 
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ions, the molecular ions often remain stable. Therefore the ESI process is particularly 

useful for molecular weight determination.  

 

Figure 1.4 Schematic representation of the ESI process. Adapted from Reference 53. 

1.3.4 Fourier Transform Ion Cyclotron Resonance Mass Spectrometer 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS) 

has received considerable attention in metabolomics because it offers the highest possible 

resolution among all mass spectrometers.58,59 High resolution allows distinction between 

metabolites with very small mass differences and leads to high mass accuracy for 

molecular formula determination. This is particularly important for comprehensive 

analysis of complex samples. FT-ICR-MS is fundamentally based on the theory of ion 

cyclotron resonance developed by Lawrence in the 1930s.60 The first ICR-based mass 

spectrometers were developed in the 1950s.61 However, the popularity of using ICR as 

the basis for mass detection is largely attributed to the incorporation of Fourier transform 

into ICR-MS by Comisarow and Marshall. 62,63 

The analyzer cell is the most important component of a FT-ICR-MS instrument, 

in which ions are stored, analyzed and detected.64 It consists of three pairs of electric 

plates. The two electrodes at the ends of the cell are called trapping plates, which are 
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perpendicular to the magnetic field and create a potential well to confine ions inside the 

cell. The other two pairs of plates are for excitation and detection, respectively.  

As ions enter a unidirectional magnetic field, they experience Lorentz force that 

causes ions to move circularly in the plane perpendicular to the magnetic field. This is 

known as the cyclotron motion and is characterized by its cyclotron frequency 

                                                             𝑓𝑐 = qB
2πm

                                                            (1.3) 

Where q and m are the charge and mass of the ion, respectively, and B is the strength of 

the magnetic field. Since the magnetic field is always held constant in a particular 

instrument, the m/z of an ion determines its cyclotron frequency, and ions with different 

m/z can therefore be resolved by measuring fc. An important feature of the cyclotron 

frequency is that it is independent of the velocity (or kinetic energy) of the ion. This is 

one of the reasons why FT-ICR-MS can achieve such high resolutions.   

The FT-ICR-MS operation involves four major steps. In the following discussion, 

we will assume operation in the positive mode. The first step is quenching, which is used 

to eliminate any ions remained from a previous experiment. This is achieved by creating 

a potential difference between the trapping plates, with the exit plate being more negative. 

After quenching, a new set of ions needs to be introduced into the cell. When coupled to 

ESI, ions are generated outside the high vacuum region and need to be transported into 

the cell through a series of ion transfer optics. The next step is ion excitation. The radius 

of the initial ion cyclotron orbital is usually very small (in the order of sub mm). 

Therefore, ions need to be excited into larger orbital in order to produce a measurable 

signal. This is accomplished by applying an RF voltage to the excitation plates with a 

frequency that is in resonance with the ion cyclotron frequency. The resonance energy 
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transfer activates ions and allows them to spiral outward and expand their orbital. Ions 

with the same m/z will be excited coherently and form an ion packet. When the ion 

packet passes the detection plates, an image current is produced as ions attract electrons 

to the plates.65 As ions continue to move in circuit a sinusoidal image current will be 

produced with a frequency equal to the cyclotron frequency of this ion packet (or more 

precisely the difference between the cyclotron and magnetron frequency). In the ion 

detection step, ions with different mass-to-charge ratios are excited simultaneously by 

applying a rapid frequency sweep (RF chirp). This produces a composite of imaging 

signals with different frequencies and amplitudes. The frequency components is 

mathematically extracted by Fourier transform to covert the time domain transient to the 

frequency domain spectrum, which can be readily translated into a mass spectrum by 

applying a calibration formula derived from eqn (1.3). Since the performance of FT-ICR-

MS depends heavily on its resolving power, it is important to understand the factors that 

affect the resolution. The following equation can be used to describe the resolving power 

of FT-ICR-MS instrument66 

                                         m
∆m

= 1.274 ×107 Bt
𝑚/𝑧

                                                       (1.4) 

Where B is the strength of the magnetic field and t is the data acquisition time. This 

equation reveals the dependence of mass resolution on the strength of the applied 

magnetic field and the length of the transient recorded. For this reason, today’s FT-ICR-

MS instruments usually use superconductive magnets that provide much stronger 

magnetic fields than permanent magnets and electromagnets. Nowadays, FT-ICR-MS 

with magnetic field of as high as 21 Tesla is made commercially available. The 

acquisition time is also an important parameter that affects resolution. In practice the 
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length of transient is limited by signal decays as a result of collision between ions and 

neutral molecules in the analyzer cell. Therefore, ultra-high vacuum condition (10-9 – 10-

10 Torr) is required to minimize collisions and to improve the resolution. Other factors 

may also affect the mass resolution such as the presence of magnetron frequency,64 and 

space charge effects.67   

In my research work I have used the Bruker apex-Qe 9.4 Tesla FT-ICR-MS 

instrument, which consists of four main sections: the ion source (including both ESI and 

MALDI), the Qh-interface, ion transfer optics and the analyzer cell (Figure 1.5). Six 

differential pumping stages, including two roughing pumps and four turbo-molecular 

pumps were used to achieve ultra-high vacuum environment inside the cell. Under these 

conditions, the mass resolution is around 50,000 for small molecules with m/z of a few 

hundreds Da, and mass accuracy of 5 ppm can be easily achieved using external 

calibration.            
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Figure 1.5 Schematic diagram of Bruker apex-Qe 9.4 Tesla FT-ICR-MS. By courtesy of 

Bruker Daltonics, Bremen.  

1.3.5 Quadruple Time-of-flight Mass Spectrometer  

Quadruple Time-of-flight Mass Spectrometer (Q-TOF-MS) is a tandem-in-space 

mass spectrometer that combines the high performance of time-of-flight analysis with 

MS/MS capability68 The Q-TOF-MS configuration can be considered as addition of a 

linear quadrupole mass analyzer to an orthogonal acceleration time-of-flight instrument. 

Q-TOF-MS is a powerful instrument for metabolomics analysis, as it offers high 

sensitivity, resolution and mass accuracy in both MS and MS/MS modes, which greatly 

facilitates metabolic profiling as well as metabolite identification. The Q-TOF instrument 

is also commonly known as QqTOF, where the q refers to a quadruple (or a hexapole in 

some commercial instruments) located between the mass-resolving quadrupole and the 

time-of-flight analyzer. In the MS mode, both Q and q are operated in the RF-only mode 

to serve as ion guides for transmission of a broad mass range. The transmitted ions are 

then re-accelerated in orthogonal direction to the required energies and enter the TOF 

analyzer for spectra recording. In the MS/MS mode, Q acts as a mass filter that only 

allows selected precursor masses to be transmitted, while q serves as the collision cell 

where the energized precursor ions collide with neutral gas molecules and undergo 

collision-induced dissociation (CID). The resulting fragment ions, as well as any 

remaining precursor ions will then be analyzed in the second MS stage (i.e. the TOF 

analyzer). In my research I have used the Bruker maXis impact Q-TOF-MS, and a 

schematic diagram of this instrument is shown in Figure 1.6. In the following text the 
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three major components (Q, q and TOF) of this instrument will be discussed in more 

detail.  

1.3.5.1 Quadrupole Mass Spectrometer 

 A quadrupole mass analyzer consists of four parallel rod electrodes. To each pair 

of opposite electrodes is applied a superimposed potential consists of a time-independent 

DC component (U) and a time-dependent AC component (Vcos(ωt)). The potentials 

applied on the two pair of rods are the same in magnitude but opposite in sign. Only ions 

within a certain mass region can have stable trajectory inside the quadrupole and get 

detected. The ion trajectory can be described quantitatively using the Mathieu equation,69 

and the solution to the Mathieu equation depends on the reduced Mathieu parameters a 

and q: 

a = 4eU
ω2r02 (𝑚 𝑧⁄ )

 ,   q = 2eV
ω2r02 (𝑚 𝑧)⁄                                            (1.5) 

where e is the charge of an electron, U is the value of the DC voltage, V is the amplitude 

and ω is the angular frequency of the AC component, and r0 is the radius of the 

quadrupole. The solution can be represented graphically by the a-q stability diagram 

(Figure 1.7). Ion with a particular m/z corresponds to a specific point in the a-q diagram, 

and only ions that fall into the stable region will be detected.  When the quadrupole is 

operated as a narrow bandpass mass filter, the ratio of U/V is held constant so that all 

ions will lie on one straight line (the mass scan line) with slope equals to a/q or 2U/V. 

The narrow bandpass mass filter can be created by adjusting the slope so that the mass 

scan line intersects at the sharp tip of the a-q diagram (usually unit resolution). The 

bandpass region is scanned by simultaneously increasing U and V to allow ions with 

increasing m/z move to the tip of the a-q diagram and become detected. When the 
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quadrupole is operated in the RF-only mode, the DC potential is removed so that the 

mass scan line has a slope of zero. This means that all ions with m/z higher than a given 

limit fall within the stability region of the a-q diagram, and the quadrupole serves as a 

broad bandpass filter for efficient ion transfer. In general, quadrupole mass analyzers are 

characterized by its mechanical simplicity, low cost, reasonably high scan rates, and ease 

to couple with chromatography.   

 

     

Figure 1.6 Schematic diagram of Bruker maXis impact Q-TOF-MS. By courtesy of 

Bruker Daltonics, Bremen.  
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Figure 1.7 The a-q stability diagram. 

1.3.5.2 Collision Cell 

The collision cell contains a quadrupole enclosed in a chamber with small 

entrance and exit apertures.  A neutral gas molecule, usually nitrogen or argon, is 

introduced into the chamber at about 10-2 mbar. In MS/MS mode, ions are accelerated to 

an energy of 20-200 eV by increasing the DC voltages in front of the collision cell. 

During fragmentation the lens voltages are set to block ion transmission. Inside the 

reaction chamber, the energized parent ion undergoes collision with gas molecules to 

convert translational energy of ions into internal excitation. When the acquired internal 

energy exceeds the dissociation energy of chemical bonds, ions may dissociate into 

fragments. The efficiency of conversion from translational energy into internal energy is 

a function of several factors, including the magnitude of injection voltage (collision 

energy), molecular structure and mass of the parent ion, as well as the molecular mass of 

the collision gas. In particular, the collision energy is an important user-specified 

parameter which can be optimized to obtain the most abundant fragment information. If 
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the collision energy is too low, only a few product ions can be observed. On the other 

hand, too much collision energy may result in loss of some useful fragment peaks. It is 

also possible to use more than one collision energy in one scan and combine the results to 

provide maximum information in the fragment spectra.  Finally, the quadrupole in the 

collision cell serves as an ion guide to focus both parent and product ions onto the axis of 

the collision cell and allow efficient ion transfer into the TOF analyzer. 

1.3.5.3 Time-of-flight Mass Spectrometer 

In contrast to a quadrupole mass spectrometer where ions are continuously 

introduced into the analyzer, the TOF instrument works in pulsed mode, which makes it 

challenge to couple with a continuous ion source such as ESI. This problem is solved 

using orthogonal acceleration. After the ions leave the collision cell, there are two steps 

inside the orthogonal accelerator. The first step is the fill phase, in which the collision 

cell exit lens is open to allow ions enter the extraction volume in their original direction 

as a parallel beam. At this stage the accelerator voltages are switched off. The time slot 

for the transfer process is an adjustable parameter that limits the transferred mass range. 

The next step is the extraction phase, in which the accelerator voltages are switched on to 

push ions in the orthogonal direction into the flight tube. During this process the 

accelerated ions gain electric potential energy Ep = zeUacc, where z is the number of 

charges of the ion, e is the charge of an electron and Uacc is the accelerator voltage. This 

potential energy is converted to kinetic energy Ek = ½ mv2 before ions enter flight tube.  

The flight tube is a vacuum enclosure free of electrical fields. Inside the flight 

tube, ions fly uniformly with the velocity v until they hit the detector. If the length of the 

flight tube is L, then the flight time t can be expressed as 
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                                     t =  L
v

= L� m/z
2eUacc

                                                          (1.6) 

The flight time is thus a function of m/z of the ion and is used to resolve ions with 

different masses.  

The ion beam introduced into the accelerator is not a single line but has a radial 

dimension. During extraction, ions located closer to the repeller plate gain more energy 

than those further away. This situation creates initial kinetic energy and spatial 

distributions in the direction of flight tube, which limits the mass resolution. For this 

reason, a reflector is often used in the TOF instrument to correct for this difference. A 

reflector consists of a series of electric plates, each with a slightly more positive voltage 

(for positive ions) than the former. Ions entering the reflector experience a decelerating 

field, slow down until the velocity reduces to zero and finally get reaccelerated towards 

the detector. More energetic ions enter the reflector earlier, but penetrate deeper and 

spend more time inside the reflector. The longer path length of faster ions compensates 

for their shorter flight time in the flight tube so that they arrive at the detector 

simultaneously with slower ions. The use of a reflector effectively corrects for the spatial 

and energy spread and leads to substantially improved mass resolution. Nowadays the 

mass resolution of TOF instruments can easily achieve 50,000. Other advantages of TOF-

MS include its high mass accuracy (with calibration), high mass range, excellent 

sensitivity, and fast spectra acquisition rate.     

1.4 Sample Preparation in Metabolomics 

The selection of a proper sample handling procedure for metabolomics studies is 

of critical influence on the detected metabolite composition.70,71 It involves all upstream 

steps prior to LC-MS analysis, including biological medium selection, sample collection, 
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transport and storage, metabolite quenching and extraction, as well as any sample cleanup, 

concentration and derivatization procedures. Although there are some discussions on 

standardization of metabolomics workflows,72,73 to date there’s still lack of standardized 

sample preparation protocol for biofluids or cells, and the choice of sample preparation 

methods is often made depending on the particular biological question to be investigated 

and the analytical platform to be used. Regardless of the protocol selected, it is important 

to keep consistent for handling the samples within the same study in order to minimize 

sample variability.  

The first step in designing a metabolomics experiment is to select the appropriate 

biological medium. Several biofluids can be used, depending on the analytical problem 

under study.  Urine and blood are the two most widely used biofluids because of their 

ease of collection and the fact that they usually reflect the state of the whole organism. 

Urine contains relatively polar metabolites that are cleared from the body and represents 

the result of the catabolic process.74 Blood samples are usually centrifuged first to remove 

blood cells.75 The resulting fluid is either plasma (without clotting) or serum (with 

clotting), which may be used interchangeably as they give very similar metabolic profiles 

in some studies76,77, although in most studies it is preferred to use the same type.  Plasma 

or serum reflects the instantaneous metabolic status of the whole organism at the time of 

sampling, which includes both anabolic and catabolic processes. Other biofluids are more 

specific for studies of certain diseases. For example, cerebrospinal fluid is the preferred 

medium when neurological disorders are investigated,78,79 and saliva is of interest when 

studying oral diseases.80 In addition to biofluids, metabolome analysis of tissue or cell 

culture is also common, which provide more localized description of the metabolite 
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distribution. They are also less affected by biological variations, such as differences in 

age, gender and food intake. However, the sample preparation process is often more 

challenging and is therefore more prone to cause experimental variations.   

The next step is sampling and storage of collected samples. Rapid sample 

collection and handling is desirable, especially when metabolites with fast turnover rates 

are of interest. To this end, sampling is often performed at reduced temperatures. 

Occasionally, rapid inactivation of metabolism at the time of collection (metabolic 

quenching) is also required. Samples are usually stored at -80°C so as to minimize 

metabolite degradation. However, it should be noted that frequent freeze/thaw cycles may 

have an influence on the metabolic profile. It is therefore recommended to aliquot the 

samples at the time of collection in order to minimize the number of freeze/thaw cycles.   

The metabolite extraction step is perhaps the most critical part in the entire 

sample preparation process. For metabolomics studies, it is desirable to detect as many 

metabolites as possible; however, this is often achieved with an increased risk of lower 

extract purity. Therefore a good balance should be made depending on the application. 

The metabolite extraction protocol varies with the biological medium, and herein the 

most common ones will be discussed. Urine samples are mostly filtered to remove 

bacterial contamination, followed by the dilute-and-shoot strategy, in which the sample is 

simply diluted prior to LC-MS analysis.  Plasma and serum samples contain a large 

amount of proteins, and organic solvent-based protein precipitation procedures are often 

required. Methanol is one of the most commonly organic solvents that provides a good 

metabolite coverage.81,82 For liquid samples classical extraction techniques such as 

liquid-liquid extraction (LLE) and solid phase extraction (SPE) are also often employed 
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to improve sample quality. For example, LLE separates the liquid sample into polar and 

non-polar portions, which can be analyzed independently to expand the metabolite 

coverage. LLE is used more often in lipidomic studies, using chloroform and methanol as 

the extraction solvents.83 SPE is an effective method for selective extraction and 

enrichment of target compounds or for sample cleanup (e.g. desalting), thus enabling 

higher detection sensitivity for targeted analysis.84 Because of its selectivity SPE may 

seem less appropriate for untargeted profiling. Nevertheless, it is possible to use different 

SPE cartridges for the same sample (e.g., cation exchange and anion exchange), analyze 

each eluent separately and then combine the results to obtain the comprehensive 

metabolic profile. For cell cultures, disruption of cell membranes is needed to release 

intracellular metabolites. Several methods can be used for this purpose, such as freeze-

thaw cycle, ultrasonication, or direct addition of a cold or hot extractant. Commonly used 

extractants include organic solvents (e.g., methanol, ethanol or acetonitrile), acidic or 

basic solutions (e.g., perchloric acid or KOH solutions).85 For untargeted profiling, 

organic solvents are preferred because they are less specific, easy to evaporate, and able 

to precipitate proteins. The exact extraction protocol varies for different studies and 

there’s no consensus on which method works the best. Therefore, it is recommended that 

for a specific study, several extraction methods should be compared to determine the 

most appropriate method.21 Finally, after extraction, metabolites may be directly analyzed 

or undergo treatments such as dilution, concentration or derivatization, with the aim of 

obtaining optimal detectability in LC-MS analysis.  

1.5 Biological Sample Normalization 
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Metabolomics studies usually involve parallel assessment of the metabolite levels 

of individual samples from two or more biological groups to reveal the metabolic 

differences. In order to extract meaningful biological information from the quantitative 

comparisons, it is important to ensure that unwanted concentration variations in 

biological samples are minimized. In statistical analysis, samples within the same 

demographic groups or the same phenotypes may be artificially separated according to 

their concentrations. These intra-group variations often obscure the true inter-group 

metabolic changes that are of interest and complicate identification of differentially 

expressed metabolites.86,87 Therefore, an effective sample normalization strategy is 

required before data analysis in order to compensate for the total concentration variations. 

This step is particularly critical for urinary metabolome profiling, because urine volumes 

can vary by up to 15-fold upon water consumption or other physiological factors.88 The 

need for normalization has also been widely recognized in metabolic profiling of various 

types of cell extracts with unknown cell numbers. Although less investigated, there are 

many other biological media such as sweat, bronchial lavage fluid and fecal samples, in 

which the metabolite levels are variable and therefore normalization of the sample 

concentration is highly desirable for improved quantitative analysis.  

Compared to genomics and proteomics, normalization in metabolomics is more 

challenging because of the greater diversity of metabolite structures. To date, there’s no 

standard method for measuring the total amount of metabolites directly, and many 

approaches have been proposed to determine the total sample amount as the 

normalization factor. The performance of a normalization strategy in metabolomics is 

often evaluated by its ability to correct for unwanted sample amount variations and 
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subsequent improvements in statistical results. In addition, there are a few other factors to 

be considered before selecting an appropriate normalization method for a particular 

application. Firstly, it is important to consider whether the normalization step is 

performed pre-acquisition or post-acquisition.89 In pre-acquisition methods, the volumes 

of biological samples are adjusted so that the same amounts (or concentrations) of sample 

are taken for LC-MS analysis. One advantage of pre-acquisition normalization is that 

similar instrumental responses can be obtained for all samples. In electrospray ionization, 

responses of individual metabolites are often nonuniform at different concentrations 

because of charge competition and ion suppression. As a result, the analyte signals may 

not necessarily be linearly scaled with the metabolite concentration in a complex 

biological matrix. Thus, by adjusting all comparative samples to the same concentration, 

more accurate quantitative results will be produced.  In addition, pre-acquisition methods 

also allow control of the sample injection amount. It is important to keep the injection 

amount optimal for detecting low concentration metabolites in order to reduce missing 

values,90,91 while avoiding problems brought by overinjection such as signal saturation 

and sample carryover. Comparisons between pre-acquisition and post-acquisition 

methods have been investigated. For example, Chen et al. showed that for five serially 

diluted urine samples, post-acquisition normalization methods failed to overcome urine 

variability because of the nonlinear response to sample dilution caused by ion 

suppression or saturated metabolites. On the other hand, pre-acquisition correction was 

effective for reducing variations introduced by different urine concentrations. They also 

demonstrated that pre-acquisition injection volume calibration is superior in reducing 

intra-group bias in the presence of biological variations.92 Similarly, the study performed 
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by Edmands et al. suggested that pre-acquisition normalization is a better choice for 

biological information recovery as it identified the largest number of discriminant MS 

features when compared to three post-acquisition normalization methods.89 However, the 

downside of pre-acquisition normalization is that additional experimental procedures are 

required. For this reason, post-acquisition approach has been used as an alternative 

because of its convenience, and it is preferred when high-throughput is of primary 

concern. Nevertheless, it should be kept in mind that the performance of post-acquisition 

may be compromised by variations in detection responses, as described above.  

The second factor to be considered is the ease of operation, particularly for pre-

acquisition normalization, since an extra step is required. In metabolomics larger sample 

sizes are preferred in order to create valid statistic models and to obtain accurate 

biological information.93 However, the sample size is often limited by availability of 

biological samples and analytical instruments, complexity of sample preparation 

protocols, as well as length of analysis time per sample. In this regard, it is desirable to 

keep the normalization method simple, quick and convenient to perform, so that it would 

not restrain the use of larger sample sets.  

Moreover, the selection of normalization methods also depends on the type of 

biological sample to be analyzed. Some approaches are only applicable to specific 

biological media while others are more generic. For example, normalization to creatinine 

is based on the relatively constant excretion rate of creatinine through glomerular 

filtration, and is therefore only applicable to urine specimens. On the other hand, 

normalization to MS “total useful signal” (MSTUS) uses the total intensity of peaks that 

are present in all samples under study as the normalization factor, and it is thus more 
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universally applicable. While specific approach may be more efficient on occasions for 

its targeted biological medium, a generic normalization method is usually more desirable 

because of its adaptability to sample types in which a specific normalization method is 

not available, and the ease of method transfer from one type of biological matrix to 

another. In the following sections, we will review some recently reported normalization 

strategies for MS-based metabolomics studies (Table 1.1), and discuss their performance 

in terms of concentration variation reduction and biological information recovery.  

Table 1.1 Overview of normalization strategies in MS-based metabolomics 

Sample Type Normalization 
Methods 

Pre- or Post-
acquisition  

Recommended 
method  

Reference 
No. 

Cattle urine Specific gravity 
Freeze-drying 

MSTUS1 

Pre 
Pre 
Post 

Similar 
performance for 
all three methods 

116 

Human urine Specific gravity 
Specific gravity 

Median fold change 
Urine volume 

Pre 
Post 
Post 
Post 

Pre-acquisition 
normalization to 
specific gravity  

89 

Rat urine Urine volume 
Osmolality 
Creatinine  
MSTUS 

Post 
Post 
Post 
Post 

Osmolality and 
MSTUS  

88 

Rat urine Total intensity 
Median fold change 

Quantile 
LOESS2 

Post 
Post 
Post 
Post 

Median fold 
change  

86 

Rat urine All MS signals 
MSTUS 

Creatinine value 
Creatinine peak area 

Creatinine value 
Creatinine value + 

all MS signals 
Creatinine value + 

MSTUS 

Post 
Post 
Post 
Post 
Pre 

Pre + Post 
 

Pre + Post 

Creatinine value 
+ all MS signals 
and Creatinine 

value + MSTUS 

92 

Human urine MSTUS Pre - 90 
Human urine Conductivity 

LOESS 
Post 
Post 

LOESS 120 

Human urine UV absorbance Pre - 125 
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Adherent cell 
line 

(OVCAR-8) 

Total protein 
Cell count 
Total DNA 

Post 
Post 
Post 

Total DNA 136 

Adherent cell 
line (MDCK) 

Protein content 
Metabolic markers 

Post  
Post 

Similar 
performance for 

both methods 

128 

Adherent cell 
line (MCF-7) 

Cell count 
Sum of peak areas 

Post 
Post 

Similar 
performance for 

both methods 

130 

Cyanobacteri
al strains 

Chlorophyll a 
Total protein 

Glycogen 
sIC5 

sIC.906 
sIC.AA7 

Post 
Post 
Post 
Post 
Post 
Post 

Similar 
performance for 
all six methods 

133 

E. coli UV absorbance Pre - 137 
Human fecal 

samples 
UV absorbance Pre - 143 

1. MSTUS: MS total useful signal; 2. LOESS: Locally weighted scatter plot smoothing; 3. 

MSTS: MS total signal; 4. MSGUS: MS group useful signal; 5. sIC: selected ion count 

for all metabolites; 6. sIC.90: selected ion count for 90% of the non-extreme metabolite 

pools; 7. sIC.AA: selected ion count for the total amino acid content. 

1.5.1 Normalization of urine samples 

Urine is one of the most commonly investigated biofluids in metabolomics 

because it can be easily and non-invasively collected in large quantities, and the sample is 

relatively clean which requires simple pre-treatment procedures.94 Unfortunately, urinary 

solute concentrations often vary widely depending on hydration status, time since 

previous urination, dietary intake or other physiological factors.95,96 For example, a recent 

study carried out in our group (Canadian and Chinese Metabolome Database) has 

revealed up to 18-fold difference in urinary concentration collected from 100 healthy 

people. In fact, the majority of research efforts on normalization method development 

target specifically at urine samples. The most widely accepted approach for urine volume 
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correction is to express metabolite levels relative to creatinine concentration,97-99 because 

the rate of creatinine excretion through glomerular filtration is relatively constant under 

normal conditions within or across individuals.100 However, the assumption of constant 

creatinine excretion is often invalid, as creatinine excretion was found to vary across 

individuals due to age, gender, race and muscle mass differences or disease states.101-104 

Even within the same individual, the urine creatinine level may change depending on 

diet, time of day, level of exercise, and physiological conditions.105-107 As a result, the 

validity of using creatinine concentration as the normalization factor is often 

challenged.108 As an example, Burton et al. showed that normalization of urinary 

pteridines to creatinine did not improve differentiation between benign and malignant 

breast cancer samples, and the authors suggested that alternative renal dilution factors are 

needed.109 In addition, it is also questionable whether it is sufficient to normalize the wide 

range of metabolites based on a single compound.110 Nevertheless, in a recent study it 

was demonstrated that injection volume calibration based on creatinine value prior to LC-

MS analysis is effective in adjusting urinary solute concentrations to similar levels. This 

pre-acquisition normalization method significantly reduces intra-group variations as 

indicated by better clustering in PCA score plots and reduced peak area RSDs in intra-

group comparisons.92 

Urine osmolality is a direct measure of the total urinary solute concentration that 

is only affected by the number of dissociated particles in urine. Therefore, it is often 

considered as a gold standard for estimating urinary concentration,111 and has been used 

as a valid scaling factor for urinary solutes.112,113 Application of osmolality normalization 

in urinary metabolomics analysis has been reported, which showed better separation 
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between different biological groups as well as reduced variations within biological 

replicates when compared to no normalization or normalization to urine volume and 

creatinine.88 However, the procedure of measuring osmolality is often not practically 

available, and specific gravity is used usually measured instead as a fair estimation of 

osmolality.111 Urine specific gravity is the ratio between the density of urine and that of 

pure water at constant a constant temperature, which can be measured either directly by 

gravimetry or indirectly by refractometry. Specific gravity has been used as a 

normalization method for urinary metabolites in many applications.95,114,115 Recently, the 

feasibility of using specific gravity as a normalization strategy in urine metabolomics has 

been assessed by Jacob et al.,116 in comparison with freeze-drying, a valid normalization 

strategy for anabolic practices in cattle.117,118 The authors have showed that normalization 

by specific gravity improved separation between two study groups and revealed the same 

differentiating ions as the freeze-drying method, and they thus proposed that specific 

gravity can be used as an alternative to the time-consuming freeze-drying for urine 

metabolome normalization. Besides creatinine, osmolality and specific gravity, other 

conventional urine normalization methods include normalization to 24-hour urine volume, 

88,119 conductivity120 and flow rate correction,121 but these methods are used less often and 

will not be further elaborated here.  

Data-driven normalization approaches have been used for some metabolomics 

studies in recent years. Warrack et al. have proposed the idea of using the total intensity 

of peaks that are common to all samples, known as MS “total useful signal” (MSTUS), as 

the scaling factor.88 This concept is similar to the use of total integrated proton signal for 

normalization in proton NMR-based metabolomics analysis.122  Incorporation of only 
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“useful signals” ensures that contributions from xenobiotics and artefacts are minimized. 

The authors have compared MSTUS normalization to other common normalization 

approaches in the non-targeted metabolomic profiling of rat urine from different dose 

groups. They recommended both MSTUS and osmolality for detection of significant 

metabolic changes as these methods are most efficient in differentiation between high and 

low dose groups. Since reported in 2009, MSTUS normalization has been employed in 

several applications.90,123 In addition to MSTUS, more sophisticated statistical strategies 

have been introduced. For example, Veselkov et al. have compared four normalization 

techniques.86 The first two methods, total intensity and median fold change, assume that 

metabolite peak intensities vary linearly with concentration, while the other two 

approaches, quantile and locally weighted scatter plot smoothing (LOESS), consider 

peak-intensity-dependent scaling factors (i.e. in the presence of ion suppression or 

saturation). They found that for the majority of urinary metabolites, the peak intensities 

did not respond differentially to dilution, which supports validity of the first two methods. 

In terms of normalization performance, all four methods are equally well in the absence 

of biological variation. However, when biological variation is considered, the 

performance of total intensity normalization is slightly inferior due to variations in total 

metabolite output between samples. Despite the comparative effectiveness of the other 

three methods, the authors recommended the median fold change approach because of its 

relaxed assumption with regard to the proportion of asymmetrical metabolite changes. 

More comprehensive evaluations of statistical treatments have been discussed by Ejigu et 

al..124 In general, the advantage of data-driven approaches over conventional urine 

normalization methods is that the methodology is not restricted to urine samples and can 
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be readily adapted to other types of biological matrices. However, since the scaling factor 

is based on MS data, the normalization processed has to be performed after LC-MS 

analysis. As discussed before, post-acquisition normalization cannot control the amount 

of sample injected into the mass spectrometer, and therefore cannot be used to alleviate 

problems associated with varying injection amount such as signal saturation and missing 

values. Although pre-acquisition MSTUS has been proposed by Mattarucchi et al. to 

improve the quality of extracted LC-MS data,90 it requires LC-MS acquisitions to be 

performed for all samples prior to metabolomics analysis in order to obtain MSTUS 

values. This would increase the workload considerably and is not practical for large 

sample sizes.   

Another concept for sample normalization is to determine the UV absorbance of 

the sample solution as a measure of the total concentration of solutes that absorb at the 

specific wavelength. This type of normalization approach is more representative of the 

overall sample composition compared to the use of a single compound such as creatinine, 

and is independent of the biological medium. In addition, UV measurement can be 

performed prior to LC-MS analysis to allow injection amount adjustment. Kemperman et 

al. has reported normalization of urine samples to the area under the curve at 214 nm 

(AUC214) and showed that this method is preferred to creatinine normalization for 

minimizing peak area and intensity variations of peptides.110 More recently, we have 

developed a general approach of determining the total metabolite concentration based on 

the use of chemical labeling to attach a UV absorbing dansyl moiety to amines and 

phenols, followed by a rapid step-gradient LC-UV detection of the labeled metabolites at 

338 nm (Chapter 2).125 This method was incorporated into the differential isotope 
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labeling LC-MS metabolome profiling workflow to ensure similar and optimal amounts 

of sample are injected.  We showed that this normalization strategy effectively corrects 

for the dilution effect in intra-day urine samples and minimizes artificial separation 

caused by the variations in the original urine concentrations. Moreover, although parallel 

comparison with other normalization methods was not performed, we did observe a good 

correlation between the UV absorbance and creatinine or osmolality values. However, as 

pointed out by Kemperman et al., one potential drawback of UV-based normalization is 

that the peak area may be dominated by a single compound.110 Nevertheless, the main 

purpose of pre-acquisition normalization is to ensure similar amounts of sample are 

injected into LC-MS, while the data quality can always be further improved by post-

acquisition curative. For example, Chen et al. have illustrated that the combination of pre-

acquisition injection amount calibration based on creatinine values and post-acquisition 

MSTUS normalization provides the best results in overcoming urine sample variability.92 

1.5.2 Normalization of cell culture 

Cell metabolomics plays an important role in systems biology and has found 

applications in many areas such as toxicology and preclinical drug testing, in which ex 

vivo models are required.126,127 In cell metabolomics, it is often of interest to investigate 

quantitative metabolic changes in response to different environmental stimuli. 

Unfortunately, it is difficult to control the amount of cells harvested from different 

culture plates due to variations in seeding density and/or treatment conditions.128 For 

example, exposure to toxic compounds such as 2,3,7,8-tetrabenzodi-p-dioxin (TCDD) 

may lead to decreased cell proliferation rate and subsequently lowered overall metabolite 

level.129 The same problem is also encountered in microbial metabolomics, for 
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comparative analysis of bacterial species under different environmental conditions or for 

microorganism differentiation and identification. Therefore, normalization of mammalian 

and microbial cells will be discussed together in this section. For mammalian cells, cell 

counting using a hemocytometer is commonly used for cell amount normalization. 

However, the normalization performance of this method is often impaired by direct 

scraping of adherently growing cells, as high variability can be introduced during cell 

aliquot and transfer.127,130 This procedure is also difficult to implement for bacterial cells 

because of their small sizes. Alternatively, optical density at 600 nm (OD600) is often 

determined as a measure of the light scattered by a culture, and the OD600 value is then 

correlated to a known colony number to estimate the amount of cells. As an example, 

Marcinowska et al. have showed that normalization to OD600 values provides a robust 

basis for quantitative analysis and differentiation of clinically relevant bacterial cells.131 

While this method is applicable to homogeneous cell suspensions, it may not be as 

convenient for adherent cell cultures. Also, since this method is usually performed at the 

time of harvest, it would delay subsequent quenching procedure and may result in 

alterations in the metabolic profile. Other conventional approaches for cell amount 

determination include measurement of the dry weight of cell debris and quantification of 

the total protein content.132 The dry weight method is time-consuming and is not 

preferred for metabolomics studies in which a large number of samples need to be 

processed. Also, relatively large errors may be introduced in dry weight measurement 

when the sample amount is small.133 The protein amount can be readily determined using 

well-established colorimetric methods such as Bicinchoninic acid (BCA) assay and 

Bradford assay, and has been widely used in several applications for study of metabolic 
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changes.134,135 However, Silva et al. have showed that the protein concentrations of both 

the metabolite extraction solution and the remaining cell pellet failed to produce expected 

correlations with seeded cell number, due to poor protein recovery in metabolomics-

compatible solvents and incomplete protein resolubilization from the pellet.136 Therefore, 

assaying the protein amount would require a separate experiment to be performed in 

order to obtain accurate quantitation results, which is not desirable as it consumes part of 

the samples and prolongs the sample preparation process. Instead, the authors have 

proposed the use of DNA concentration as the normalization factor for metabolomic data, 

as they have demonstrated good correlation between DNA concentration of the cell pellet 

and seeded cell number for four adherent cell lines. Despite the reported efficiency and 

robustness of this method, examples of how normalization to DNA concentration could 

improve statistical analysis in metabolomics were not given in this work.   

In recent years, several data-based normalization strategies have also been 

introduced for cellular metabolomics. One approach involves the use of specific 

metabolic markers as the cell amount indicator,128,129,133 with the assumption that the 

concentrations of these selected metabolites are directly proportional to the cell number 

and are independent of the treatment conditions under study. For example, Cao et al. has 

identified pantothenate and inositol as the best candidate markers for normalization of 

Madin–Darby canine kidney (MDCK) cells based on three criteria: good linearity 

between the metabolite signal intensity and the cell amount for serially diluted cell 

suspensions; high linear correlation between the metabolite abundance and the protein 

content for cells seeded at different concentrations; improved separation between two cell 

lines and closer clustering within each cell line. In general, the use of single or a few 
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metabolic markers is simple, fast and convenient. However, it should be noted that the 

same metabolite markers are not necessarily applicable in other cellular systems, as their 

cell line and treatment independence may not always hold true. Therefore, the validity of 

these metabolic markers for other studies requires further assessment, which poses a 

limitation to the utility of this normalization method. Alternatively, the use of total 

metabolite intensity is often considered as a more robust way of estimating the cell 

number. Huege et al. have evaluated the normalization effects of three data-based 

parameters, namely the intensity sum of all metabolites, the intensity sum of 90% non-

extreme metabolites and the intensity sum of amino acids and their conjugates, in 

cyanobacterial metabolomics.133 They compared these intrinsic parameters with three 

cellular constituents (chlorophyll a, total protein and glycogen), and it was concluded that 

these six normalization factors are essentially equivalent in terms of their influence on 

sample cohesion within strain groups and separation among different strains. 

Hutschenreuther et al. have also evaluated the performance of peak area sum 

normalization in comparison to cell count.130 They observed a good linear correlation 

between sum of peak areas and cell count within a specified linear range. However, they 

noted that this normalization method should only be applied when the cell extract 

concentration in two comparative sample sets differ by less than two-fold, as otherwise 

the number of “false significants” would increase to over 10%. This is likely attributed to 

the fact that not all metabolites exhibit linear response with concentration (e.g. presence 

of borderline metabolites and ion suppression effect). Therefore, the authors suggested 

that similar extract concentrations should be used for comparison in cellular 
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metabolomics. This conclusion is in accordance with our earlier discussion on the 

importance of pre-acquisition normalization.   

As we discussed in Section 1.5.1, normalization to UV absorbance of the sample 

solution is independent of the biological matrix and is performed prior to MS acquisition, 

which makes it a promising approach for cell amount adjustment. In addition, when 

incorporated into the LC-MS metabolome profiling workflow, this normalization step is 

usually carried out immediately before LC-MS (i.e., after all initial sample preparation 

steps). This is particularly advantageous to cell metabolomics for two reasons. Firstly, 

there’s no extra procedure during the cell harvest stage, so that metabolite quenching can 

be performed without any delay. Secondly, metabolite extraction from cells often 

involves more steps compared to biofluids, which makes it more prone to experimental 

errors.  The UV normalization can also be used to correct for concentration variations 

introduced during the sample workup process. Application of the chemical labeling UV 

normalization method on microbial metabolomics has been demonstrated on bacterial 

differentiation (Chapter 4) and the study of butanol tolerance in Staphylococcus warneri 

SG1.137,138 More recently, we have adapted this UV absorption method into a dansylation 

metabolite assay (DMA), which measures absorbance of labeled metabolites using a 

microwell plate reader instead of the more expensive LC-UV system (Chapter 3).139 The 

DMA improves throughput by allowing simultaneous measurement of multiple samples 

within a short period, and can be readily implemented because of the low cost and simple 

procedures. We showed good linear relationships between the UV absorbance values and 

the cell suspension volume or the protein amount. The validity of this normalization 

strategy for metabolomics has been demonstrated by the improved separation between 
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two E. coli strains as well as decreased %RSD values within each strain. Although this 

UV absorbance normalization approach has so far only been applied to microbial 

metabolomics, we envisage that it should in principle be equally applicable to 

mammalian cells.  

1.5.3 Normalization of other biological samples 

Compared to urine and cellular samples, the need for sample amount 

normalization in other biological media is far less explored. While most biofluids, such as 

blood and cerebrospinal fluid, are considered homeostatically regulated, there are still a 

number of sample types in which proper control of the solute concentration is absent. For 

example, the sample volume of sweat can often vary depending on the water content, 

which can be affected by several factors such as ambient temperature and relative 

humidity. There’s also large variation in sweat production for different individuals.140 As 

commented in a recent review on sweat metabolomics, the absence of proper 

normalization methods to account for the sample volume variations presents a major 

drawback in the quantitative analysis of sweat.141 To address this problem, Appenzeller et 

al. has proposed the use of sodium and potassium concentrations as normalization factors 

for sweat, which is similar to normalization of urine samples to their creatinine 

content.142 They found that the potassium concentration was highly variable within both 

females and males, making this species unsuitable for determination of the sweat volume. 

In contrast, the authors recommended the use of sodium as an internal standard for sweat 

volume correction because of its low inter-individual variability. However, similar to the 

limitations of creatinine normalization, this method is also subject to disease states, and 

the use of a single species for normalization may not be appropriate in metabolomics. 
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Fecal samples represent another biological medium in which proper normalization 

is required, because they contain both solid and liquid materials with varying 

proportions.143 Even with the same sample weight or volume, the metabolite 

concentration can be different depending on the liquid content and solid density. 

Unfortunately, there’s few discussion on normalization of fecal samples. In this case, 

normalization in fecal metabolomics can only be performed with universal approaches 

such as post-acquisition statistical methods or pre-acquisition UV absorbance 

measurement. As an example, Xu et al. has applied the LC-UV-based normalization 

method described in Chapter 2 for the profiling of human fecal metabolome.143 They 

observed a wide total concentration distribution from 0.60 to 6.37 mM. Even within the 

same individual at three different days, the total metabolite concentration can vary by 

more than 3-fold. This result highlights the importance of sample amount normalization 

in quantitative fecal metabolomics.          

1.6 Differential Isotope Labeling in LC-MS-based Metabolomics 

Although LC-MS analysis of metabolites can be performed conveniently without 

chemical derivatization, the addition of a derivatization step is still widely applied for 

improved metabolite detection and quantification. For MS analysis, the derivatization 

step typically involves reaction of a labeling reagent and its isotopic counterpart to two 

comparative samples respectively, which is known as “differential isotope labeling” 

(DIL). A judiciously chosen differential isotope labeling reagent can benefit LC-MS-

based metabolomics analysis in several ways. Firstly, one form of the isotope reagent 

(usually the heavier isotope) can be used to label a reference sample that has the same 

composition as the samples to be analyzed (e.g. a pooled sample) to serve as the internal 
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standard.144 The labeling procedure thus creates an internal standard for every labeled 

metabolite, which effectively accounts for instrumental variations such as ion suppression 

in ESI and improves quantification accuracy. Secondly, by incorporating a non-polar 

moiety into the labeling reagent, the polar or ionic compounds in biological samples can 

be made more hydrophobic, resulting in better separation by RPLC columns and reduced 

ion suppression caused by co-elution. Thirdly, derivatization can provide enhanced 

ionization efficiency if the labeling reagent has a chargeable functional group (e.g. 

amines in positive mode) and/or good surface activity. In general, compounds with good 

hydrophobicity are associated with higher ionization efficiency because non-polar ions 

prefer the droplet air interface (better surface activity).145 In addition, hydrophobic 

compounds are usually eluted out at a relatively high percentage organic mobile phase, 

which promotes the ESI desolvation process and thereby improves ionization 

efficiency.146 Finally, the addition of a labeling reagent shifts low-mass metabolites to 

higher mass region. Low-mass region is usually associated with high background noises 

caused by solvent clusters or other contaminants.147 By shifting molecules to the high-

mass region, the background spectrum is cleaner and as a result signal-to-noise ratio is 

improved. Despite the many great features brought by chemical derivatization, it 

inevitably requires an extra step in sample preparation in which analytical errors may be 

introduced. Therefore, it is important to evaluate the performance of the selected labeling 

reagent and the chemical reaction beforehand, including the reagent purity, reaction 

conditions, labeling efficiency and repeatability, in order to obtain high quality DIL 

results.  
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There are many isotope labeling reagents developed for metabolomics research, 

targeting at different metabolite groups. The most frequently labeled functional groups 

are amines,146,148,149 carboxylic acids,150,151 fatty acids152 and carbonyls,153 which cover 

the majority of metabolites. In my research I mainly work with dansylation reaction, 

which is a classical derivatization technique for primary amines, secondary amines and 

phenols (Figure 1.8).146 In this derivatization method, two 13C isotopes are introduced 

into the dimethylamino group of dansyl chloride, which results in mass shift of 2 Da from 

the natural 12C isotope. A peak pair picking algorithm has been developed to selectively 

pick the differential-isotope-labeled peak pairs with high accuracy (low false positive 

rate).154 This derivatization strategy provides 10-1000 fold increase in sensitivity as well 

as good quantification precision. Application of this labeling approach for metabolomics 

analysis has been successfully demonstrated in a variety of biological samples, such as 

urine, cerebrospinal fluid and saliva.49,155,156   

      

Figure 1.8 Reaction scheme for chemical derivatization of primary/secondary amines 

using dansyl chloride as the labeling reagent.  

1.7 Overview of Thesis 
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Based on my research objective, this thesis can be divided into two parts. The first 

part (Chapters 2 and 3) aims to develop a convenient, robust and universally applicable 

pre-acquisition normalization approach to account for sample concentration variations in 

comparative metabolomics. The second part (Chapters 4-6) focuses on development of 

differential isotope dansylation labeling metabolomic workflows for various biological 

matrices including bacterial cells, plasma and cerebrospinal fluid (CSF), as well as 

applications of the optimized protocols to bacterial differentiation and discovery of 

disease-related biomarkers in plasma and CSF. 

Specifically, Chapter 2 describes a general approach of determining the total 

concentration of metabolites based on the use of chemical labeling to attach a UV 

absorbent to the metabolites to be analyzed, followed by rapid step-gradient LC-UV 

detection of the labeled metabolites. Chapter 3 presents a modified total metabolite 

quantification method that involves solvent extraction of the labeled metabolites followed 

by UV absorbance measurement with a microplate reader instead of using the LC-UV 

system, in order to enhance the cost- and time-effectiveness. Both methods were shown 

to be effective in generating reliable metabolome profiles for comparison between 

different sample groups. In Chapter 4 a robust and sensitive differential isotope labeling 

LC-MS workflow for comprehensive profiling the amine- and phenol-containing sub-

metabolome of bacteria cells is reported, which allows over a thousand peak pairs or 

putative metabolites to be detected from bacterial cells in one LC-MS run. This workflow 

is then applied to the differentiation of three bacterial species in cultured media and 

spiked human urine samples. Chapter 5 focuses on application of the differential isotopic 

labeling LC-MS technique for the discovery and validation of metabolic signatures in 
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autism spectrum disorder (ASD). Significant differences were observed in the metabolic 

profiles of ASD patients and healthy controls, and a set of metabolic signatures were 

identified with high prediction accuracy. Chapter 6 demonstrates the high analytical 

performance of the differential isotopic labeling LC-MS platform in parallel metabolomic 

profiling of CSF and serum. This workflow is then applied to the study of metabolic 

changes induced following spinal cord injury in both biofluids. Finally, Chapter 7 

provides a conclusion of the thesis as well as a brief discussion on the future research 

directions.  
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Chapter 2 

Determination of Total Concentration of Chemically Labeled 

Metabolites as a Means of Metabolome Sample Normalization and 

Sample Loading Optimization in Mass Spectrometry-Based 

Metabolomics  

2.1 Introduction 

Liquid chromatography mass spectrometry (LC-MS)-based metabolomic 

techniques have been widely applied to the qualitative and quantitative analysis of 

biofluids, cells or tissue extracts for biological studies and biomarker discovery with high 

sensitivity, high resolution and wide metabolite coverage.157-160 However, for quantitative 

studies, variation in total metabolite concentration among different samples can 

complicate the relative quantification of the metabolome changes in comparative 

metabolomics.86 This is particularly true for urinary metabolome profiling. Urinary 

metabolite concentrations can be governed by many factors, such as kidney filtration and 

water consumption, and up to 15-fold variations in urine volume can be observed for 

normal individuals.161 This variation can be even greater due to disease or drug effects. 

The changes of the overall concentration can often obscure specific changes of 

metabolites that are of interest in metabolomic studies.87 Although the collection of urine 

samples from an individual over a long period (e.g., 24-hr) may account for the variation 

of total concentration, the collection and storage process is often inconvenient and 

cumbersome in practice. Therefore, a good sample normalization strategy is required to 

compensate for variations in the overall urine concentration.  For other biofluids, such as 
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bronchial lavage fluid and saliva, as well as metabolome extracts of various types of cells 

with unknown cell numbers, it is also desirable to normalize the sample concentration 

prior to sample workup and quantitative analysis. 

For urine samples, various normalization methods have been reported in the 

literature. The most common one is creatinine normalization,162-164 95because the rate of 

creatinine formation and excretion is relatively constant under normal conditions. In this 

method, the concentrations of metabolite analytes are normalized relative to the 

concentration of creatinine. However, the assumption of constant creatinine excretion is 

often not valid because creatinine excretion does vary among individuals due to age, 

gender, lean body mass differences, and even within the same individual, the urine 

creatinine level can change due to variables such as creatinine intake, time of day, level 

of exercise, and disease states.94 Normalization to osmolality or specific gravity has also 

been used.111,112,163 This method measures the total solute concentration of urine samples 

for normalization. However, the solute concentration includes contributions of all 

dissolving solids and may not directly reflect the total urinary metabolite output. 

Statistical normalization strategies have also been routinely used for NMR data87,165 and 

in LC-MS studies a similar normalization method based on the use of MS “total useful 

signal” (MSTUS) has been recently reported by Warrack et al,88 which uses the total 

intensity of peaks that are present in all samples as the normalization factor. This method 

avoids contribution from xenobiotics and artifacts and has been demonstrated to be useful 

in detecting statistically significant changes in the endogenous metabolite profile of urine 

samples and reduces variation between biological replicates. However, this method does 

not allow the adjustment of relative sample amounts for mixing in the cases where two 
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comparative samples (e.g., sample vs. control) need to be mixed prior to MS analysis. 

Furthermore, this method does not offer a means of controlling the amount of samples to 

be injected into a mass spectrometer for analysis.  The amount of sample injected can be 

very important for metabolite detection. If the injection amount is small, the low 

concentration metabolites will not be detectable because their concentration level 

becomes lower than the detection threshold of the instrument.90 On the other hand, if a 

large injection amount is used, the electrospray ionization (ESI) source and the detector 

will be easily saturated with ions, and the high abundance peaks can obscure small peaks 

and make them undetectable. Because each normalization method has its strengths and 

limitations, there is no consensus on which normalization method works the best for LC-

MS metabolome studies. 

In this work, we present an alternative strategy for sample normalization while 

offering the possibility of controlling and optimizing the sample injection for optimal 

mass spectrometric metabolome detection.  This method is based on the use of LC-UV 

for quantifying the total concentration of the chemically labeled metabolites to be 

analyzed in any type of biological samples including urine.  We note that the use of LC-

UV for quantification of the total peptides generated from a proteome digest has been 

reported earlier, using a probing wavelength of 214 nm that corresponds to the carbonyl 

group in the peptide backbone.50 Unlike proteins and peptides, which have a relatively 

uniform backbone structure, metabolites have a wide variety of structures and thus very 

different UV absorptivity. As a result, it is very difficult to choose a single wavelength 

for detection. Most of the studies using LC-UV quantification of metabolites are focused 

on the analysis of a certain class of compounds.166-168 To the best of our knowledge, there 
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is no report of using LC-UV as a general tool for the quantification of a metabolome or a 

subset of the metabolome (e.g., all the metabolites with each containing an amine group, 

i.e., the amine-containing metabolome). 

Although metabolites have very different structures, the use of labeling chemistry 

can somehow ‘unify’ the metabolites by attaching the same functional group to each 

molecule. If this labeling group has a very specific absorption wavelength, then it is 

possible to quantify the labeled metabolites based on absorption at this wavelength. 

Recently, our group reported a 12C/13C-dansylation labeling technique for absolute and 

relative quantification of the amine- and phenol-containing metabolome by LC-MS.146 

This labeling strategy allows separation of polar or ionic metabolites on a reversed phase 

(RP) column, as well as provides signal enhancement of 10 to 1000-fold over the 

unlabeled counterparts.  Experimental variation can also be compensated for by using a 

pooled 13C-labeled sample as the internal standard. Another advantage of this technique 

is that the aromatic ring structure of the dansyl group can also act as a good chromophore 

to facilitate UV quantification. In this work, we report a LC-UV method to quantify all of 

the labeled metabolites in urine samples using a fast step-gradient elution. The 

quantification results were then used to normalize the urine samples, and to optimize the 

sample injection amount. We describe the procedures and rationales for selection of 

detection wavelength in LC-UV, appearance of chromatographic peak profiles and 

method of peak area integration in step-gradient LC, selection of calibration standards 

and calibration method for relative and absolute quantification of the total labeled 

metabolites, and strategy of optimizing the sample injection amount in LC-MS.  Finally, 
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integration of the LC-UV method into a differential isotope labeling LC-MS workflow 

for improved metabolome quantification is discussed.   

2.2 Experimental  

2.2.1 Chemicals and Reagents.  

12C-dansyl chloride (DnsCl) and amino acid standards were purchased from 

Sigma-Aldrich Canada (Markham, ON, Canada).  The isotopic compound used to 

synthesize 13C-dansyl chloride was purchased from Cambridge Isotope Laboratories 

(Cambridge, MA, USA). 13C-dansyl chloride was synthesized in our lab as described 

previously,146 and the other chemicals used to synthesize this isotope reagent were also 

purchased from Sigma-Aldrich. LC-MS grade water, acetonitrile (ACN) and formic acid 

were purchased from Thermo Fisher Scientific (Edmonton, AB, Canada). 

2.2.2 Urine Sample Collection.  

Urine samples were collected from two individuals of each gender in three 

consecutive days. An informed consent was obtained from individual volunteers and 

ethics approval was obtained from the University of Alberta in compliance with the 

University of Alberta Health Information policy. On each day three samples were taken 

with a collection interval of 1 hr, denoted as A, B and C. Between collection of A and B 

the individuals were instructed to refrain from drinking water, while between collection 

of B and C the individuals were asked to drink a large amount of water (1 L for 

individual 1 and 0.5 L for individual 2). The samples were stored at 4°C immediately 

after collection. The urine samples were centrifuged at 4,000 rpm for 10 min, and the 

supernatant was filtered twice through a 0.2 μm filter. The filtered urine was aliquoted 

and stored at -80°C until further use.  



 

  51  

 

2.2.3 Dansylation Labeling Reaction.  

The frozen urine samples were thawed in ice-bath and then diluted two-fold prior 

to the labeling reaction. Fifty μL of urine or amino acid standard solution was mixed with 

sodium carbonate/sodium bicarbonate buffer (pH 10,3) and ACN. The solutions were 

vortexed, spun down and mixed with 50 μL freshly prepared 12C-dansyl chloride solution 

(18 mg/mL) (for light labeling) or 13C-dansyl chloride solution (18 mg/mL) (for heavy 

labeling). The reaction was allowed to proceed for 1 hr at 60°C. After 1 hr, NaOH was 

added to the reaction mixture to quench the excess dansyl chloride. The solution was then 

incubated at 60°C for another 10 min. Finally, formic acid in 50/50 ACN/H2O was added 

to consume excess NaOH and to make the solution acidic. The 12C- or 13C-labeled 

mixtures were centrifuged at 14,000 rpm for 10 min before injecting onto the ultra-high 

performance liquid chromatography (UPLC) column for UV quantification. For MS 

analysis, the 12C- and 13C-labeled mixtures were combined in a ratio determined by the 

quantification results.  

2.2.4 LC-UV Quantification.  

A Waters ACQUITY UPLC system with a PDA detector was used for the 

quantification step. Two μL of the labeled urine or amino acid solution was injected onto 

a Waters ACQUITY BEH C18 column (2.1 mm × 5 cm, 1.7 μm particle size, 130 Å pore 

size) for a fast step-gradient run. Solvent A was 0.1% (v/v) formic acid in 10% (v/v) 

acetonitrile, and solvent B was 0.1% (v/v) formic acid in acetonitrile. The gradient started 

with 0% B for 1 min and was increased to 95% within 0.01 min and hold at 95% B for 1 

min to ensure complete elution of all labeled metabolites. The gradient was restored to 
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0% B in 0.5 min and hold at this condition for 3.5 min to re-equilibrate the column. The 

flow rate used was 0.45 mL/min. 

2.2.5 LC-FTICR-MS Analysis.  

The labeled urine samples were analyzed using a Bruker 9.4 Tesla Apex-Qe 

Fourier transform ion-cyclotron resonance (FTICR) mass spectrometer (Bruker, Billerica, 

MA) linked to an Agilent 1100 series binary HPLC system (Agilent, Palo Alto, CA). The 

samples were injected onto an Agilent reversed phase Eclipse Plus C18 column (2.1 mm 

× 10 cm, 1.8 μm particle size, 95 Å pore size) for separation. Solvent A was 0.1% (v/v) 

formic acid in 5% (v/v) acetonitrile, and solvent B was 0.1% (v/v) formic acid in 

acetonitrile. The chromatographic conditions were: t = 0 min, 20% B; t = 3.5 min, 35% 

B; t = 18 min, 65% B; t = 21 min, 95% B; t = 21.5 min, 95% B; t = 23 min, 98% B; t = 24 

min, 98% B; t = 26.5 min, 99% B; t = 28.5 min, 99% B; t = 29.5 min, 20% B. The flow 

rate was 180 μL/min and the flow from LC was split 1:3 before entering the electrospray 

ionization (ESI) source. All MS spectra were obtained in the positive ion mode. The 

resulting MS data were processed using R language program based on XCMS24 written 

specifically for 12C-/13C-peak pair picking.51 The program eliminated many false positive 

peaks, such as isotopic peaks, common adduct ions, and multiply charged ions, and only 

the protonated ion pairs were exported for further analysis.  

2.2.6 Statistical Analysis.  

The extracted peak pair data for the two individuals’ three-day urine samples was 

aligned by retention time and accurate mass, and only those peak-pair features shared by 

no less than 50% of the samples were retained for multivariate analysis. The resulting 

multivariate dataset contains 108 observations (individual urine samples) and 467 
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variables (peak-pair features). The multivariate analysis was performed by 

Metaboanalyst169 (www.metaboanalyst.ca) and SIMCA P+12 (Umetrics, Umeå, Sweden) 

and the data were mean-centered and auto-scaled (unit variance) prior to analysis. 

Principal component analysis (PCA) was applied first to evaluate general clustering of 

normalized and un-normalized data for two different individuals. Supervised partial least 

square-discriminate analysis (PLS-DA) was then used to reveal subgroups within an 

individual. 

2.3 Results and Discussion 

2.3.1 Wavelength Selection.   

Dansylation is a well-studied labeling chemistry that works for primary amines, 

secondary amines and phenols. The aromatic ring structure of the dansyl group makes it a 

good chromophore with very characteristic absorptions. Figure 2.1 shows the absorption 

spectra of four standards, dansyl-tryptophan, dansyl-alanine, dansyl-putrescine and 

dansyl-threonine, from 210 – 400 nm. The spectra features are very similar, suggesting 

that the dansyl group plays a major role for the absorption. As expected for aromatic 

hydrocarbons, three sets of bands were observed that originate from π→π* transitions: 

one strong absorption band centered at ~220 nm, one weaker band at ~252 nm, and a 

weakest one at ~338 nm.47 The absorption spectra of other 17 labeled amino acid 

standards as well as several labeled urine samples were examined (data not shown).  It 

was found that the peak wavelength could shift up to about 20 nm for more complex 

mixtures (urine), indicating that the presence of other functional groups can have minor 

effects on the overall absorption. For example, for the weakest band, the peak wavelength 

http://www.metaboanalyst.ca/
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can vary from 326 to 349 nm. Since only one wavelength should be chosen for 

quantification, the median value of each set of bands was used for comparison. 

 

Figure 2.1 Absorption spectra of (A) dansyl-tryptophan (0.25 mM), (B) dansyl-alanine 

(0.5 mM), (C) dansyl-putrescine (0.25 mM), and (D) dansyl-threonine (0.5 mM).  

There are several considerations when selecting a proper wavelength for 

quantification. Firstly, the absorption should be specific to the dansyl group. Because UV 

absorbance is additive, absorption of other functional groups in a metabolite would also 

contribute to the measurement, which can affect accuracy of quantification. Many 

common organic chromophores, such as carbonyl, carboxyl and phenyl, have absorption 

peaks under 300 nm, but very few functional groups absorb at higher wavelengths. This 

can be illustrated by the overlaid chromatograms of 17 unlabeled amino acids at 220, 252 

and 338 nm (Figure 2.2). All amino acids elute out between 0.2 to 0.6 min. It is clear that 

significant absorption was observed at 220 and 252 nm, but not at 338 nm. Thus, using a 
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wavelength of 338 nm for detection can provide the least interference from other 

chromophores. Secondly, the high absorbance at 220 and 252 nm can easily saturate the 

UV signal at practically useful concentrations, such as for a two-fold diluted urine 

sample, as shown in Figure 2.3. Finally, the rapid solvent change can lead to a non-flat 

background because of the differences in absorption coefficients and refractive indexes of 

different solvents. The background change would affect the accuracy for peak integration 

and should be kept as small as possible. Comparing the background change at these three 

wavelengths in Figure 2.2, it is apparent that the change in background is smallest at 338 

nm. Taken together, 338 nm was chosen as the probing wavelength for all of the 

following quantification work.  

2.3.2 Calibration of Labeled Amino Acid Standards.   

Since the main purpose of this method is to quantify all the labeled metabolites in 

a sample, a step-gradient was used to elute all compounds together. By using the UPLC 

system, it is possible to run at a high flow rate to increase the throughput. Figure 2.4A 

shows the overlaid elution profiles of the mixtures of 17 labeled amino acid standards 

(17-aa-std) at different concentrations. The early eluting peak corresponds to the 

quenched dansyl chloride (Dns-OH), which does not retain on the column well. The 

peaks between 1.4 min to 2.0 min are from the labeled amino acids. As shown in Figure 

2.4A, the step-gradient allows fast elution of all labeled compounds in 2 min while 

separation of these compounds from the quenched DnsCl is achieved to avoid reagent 

interference in the UV measurement. The peak area increases accordingly with increasing 

amino acid concentration, and the elution profile is very similar for different 

concentrations. Figure 2.4A (inset) also shows that the peak area of the quenched DnsCl 
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decreases with increasing amino acid concentration, because there is less excess DnsCl at 

higher concentrations of analytes. Even with a sharp solvent change in 0.01 min, there is 

still a slight separation of the amino acids, as evident from several peaks shown in each 

elution profile (see Figure 2.4A between 1.4 and 2.0 min). This is due to the wide variety 

of side-chains in amino acids that can interact differently with the column. Nevertheless, 

the total area of the labeled amino acid peaks can be readily integrated using the 

Empower software of the LC-UV instrument.  

 

Figure 2.2 Overlaid chromatograms of unlabeled 17 amino acid standards at 220 nm (red), 

252 nm (blue) and 338 nm (black). Inset: Comparison between 252 nm and 338 nm only.  
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Figure 2.3 UV signal saturation at 220 nm (red) and 252 nm (blue) for two-fold diluted 

urine; saturation does not occur at 338 nm (black).  

It should be noted that although the baseline of the chromatograms is relatively 

flat at 338 nm, there is a very small negative peak that appears at 1.43 min due to the 

rapid solvent change. This system peak is very reproducible, with a retention time shift of 

less than 0.06% and a peak area variation of 2.32% in five replicate runs. Therefore, the 

peak area difference was used for quantification of the metabolites, which was calculated 

from the peak area measured for a given sample minus the system peak area measured in 

a blank run. Here the system peak area has a negative value so the peak area difference is 

actually the sum of the sample peak area and the absolute value of the system peak. 

Integration was made from 1.43 to 2.0 min to ensure every peak from the sample has 

been included. While not tested in this work, other manufacturers' LC-UV instruments 

and LC columns may likely give different profiles.  However, the strategy of integrating 

the entire elution peak including the system peak as described above should be applicable 

to other systems.   
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Figure 2.4 (A) Overlaid UV chromatograms of a mixture of 17 labeled amino acid 

standards (17-aa-std) at different concentrations.  Inset: zoom-in region of 0.4 – 0.55 min.  

(B) Overlaid UV chromatograms of a labeled pooled urine sample at different 

concentrations. 
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Figure 2.5A shows the calibration curve of peak area versus the concentration of 

17-aa-std. The curve is linear from 0.02 mM to 6.25 mM amino acids with very good 

correlation (R2 = 0.9992). In this case, a series of diluted 17-aa-std solutions were 

prepared and labeled individually. A similar curve was obtained when 6.25 mM standard 

solution was diluted after labeling, indicating that one can establish the calibration curve 

by preparing diluted solutions either before or after labeling. As dilution after dansylation 

is more convenient and consumes fewer reagents, this strategy was used for all the 

subsequent works. However, it should be noted that, if too high concentrations of 

analytes (>6.25 mM standard solution) were used to prepare the stock solution, a non-

linear response was observed due to the decreased dansylation efficiency as the relative 

amount of the dansyl chloride reagent was not sufficient. The dansyl chloride used for the 

reaction was 3.35 μmol, while the deviation from linearity became significant from 1.75 

μmol of amino acids and no UV signal saturation was observed at these concentrations. 

Therefore, in order for the dansylation reaction to be complete, the amount of dansyl 

chloride needs to be more than ~2-fold in excess. The low end of this linear range was 

limited by the formation of side products, such as Dns-NH2 and Dns-N(CH3)2.170 

However, the acquired linear range of the calibration curve was adequate for 

quantification of most urine samples, as it will be discussed later.  

Because the analyte composition of biological samples can be very different, it is 

important to investigate how well a calibration curve established from one sample can be 

used to quantify the amount of metabolites in another sample. To do this, we compared 

the calibration curves of the 17-aa-std and a mixture of 15 other labeled amine and 

phenol standards (15-std-mix) with varying structures (see Figure 2.6). These curves 
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were obtained independently based on the actual concentration of standards used. 

Similarities in UV absorptivity were evaluated by comparing the slopes (sensitivity) of 

the two calibration curves using a modified student t-test at 95% confidence level171 and 

the result showed that there was no statistical difference between these two slopes. In 

addition, if we use the linear regression equation obtained from the 17-aa-std to calculate 

the concentration of the 15-std-mix, the error was less than 4%. These results indicate 

that although the absorptivity of individual dansyl metabolites at 338 nm can be different 

(some evidences are shown in Figure 2.1), the average absorptivity of a mixture of many 

dansyl labeled metabolites can be very similar, because the high absorption of some 

metabolites can be averaged out by other low absorption compounds. Finally, as it is 

shown below, there is no significant difference between the slopes of the 17-aa-std and 

the labeled urine curve. Therefore, we can use the calibration curve of the 17-aa-std to 

determine the absolute concentration of the total labeled metabolites in biological 

samples. We note that, mixtures of amino acids can be purchased from chemical 

suppliers and readily prepared for dansyl labeling, providing a convenient means of 

establishing a calibration curve.  
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Figure 2.5 (A) Calibration curve of the mixture of 17 labeled amino acid standards (17-

aa-std) from triplicate labeling experiments at each concentration. The labeled amino acid 

mixtures were diluted before dansylation.  (B) Calibration curve of a labeled urine sample 

from a series of dilution of the highest urine concentration which was labeled in triplicate 

experiments.  The concentration of the labeled metabolites in each diluted sample of the 

labeled urine was calculated from the undiluted labeled urine concentration determined 

from Figure 2.5A multiplying by the dilution factor at each data point.   
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Figure 2.6 Slope comparison for two standard mixture solutions. ‘17 aa stds’ refers to the 

amino acid standards solution containing L-alanine, L-arginine, L-aspartic acid, L-cystine, 

L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-

phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine and L-valine. The ‘15 stds 

mix’ solution contains L-asparagine, cystathionine, ethylamine, trans-ferulic acid, L-

glutamine, γ-glutamylcysteine, glycylproline, homocitrulline, homovanillic acid, 4-

hydroxy-3-methoxyphenyllactic acid, ornithine, phenol, pantothenic acid, L-tryptophan 

and xanthurenic acid. The two linear regression lines were obtained independently. The 

slopes were not statistically different using the modified student t-test at 95% confidence 

level (t = 0.07 < tcrit = 4.30).  
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2.3.3 Quantification of Labeled Metabolites in Urine.  

Figure 2.4B shows the elution profile of the labeled urine, which is different from 

that of the labeled amino acids, because there are so many metabolites in the urine sample 

that elute out closely together, which tends to smooth the chromatographic peaks. As a 

result, fewer peaks were observed for urine. The calibration curve for urine samples was 

established from a pooled urine sample, with dilution from 1.3 to 200 fold (see Figure 

2.5B). In this case, a pooled urine sample was labeled with dansyl chloride and the peak 

area of the labeled urine was measured by LC-UV. The total concentration of the 

dansylated metabolites in the labeled urine was determined using the calibration curve 

shown in Figure 2.5A, assuming that the absorptivity of the labeled urine is the same as 

that of the labeled 17 amino acid standards. The labeled urine was then diluted to produce 

a series of diluted samples for LC-UV measurements. The concentration of each diluted 

sample was calculated by the concentration of the undiluted sample multiplying by the 

dilution factor or 1/dilution-fold.   

As it is shown in Figure 2.5B, a linear relationship was observed between peak 

area and the labeled urine concentration. In this case the original urine concentration lies 

well within the linear range of the labeled amino acid standards.  However, we note that, 

in using this method for quantification of labeled urine metabolites, occasionally the 

original urine concentration of an individual sample could be slightly higher than 6.25 

mM (the upper limit of the calibration curve shown in Figure 2.5A), which can result in 

incomplete labeling. Therefore, in our work, all of the original urine samples were diluted 

2-fold prior to dansylation reaction to ensure the labeling was complete. For dansylation 

reaction, there was no matrix effect from the urine sample. If the matrix of urine (or any 
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biofluid) affected the dansylation reaction, the extent of matrix effect would be dependent 

on the urine concentration. The higher the urine concentration the larger the matrix effect 

would be. A simple procedure was applied to check the presence of any matrix effect on 

dansylation. In this procedure, a series of dilutions of a urine sample (undiluted, 2.5×, 5×, 

and 10×) are prepared and individually labeled by dansylation, the resultant labeled 

samples are analyzed by LC-UV. The peak area of the labeled samples is plotted as a 

function of the dilution factor or 1/dilution-fold (Figure 2.7A).  In a control experiment, 

the undiluted urine sample is labeled by dansylation and then the labeled concentrated 

sample is diluted by 2.5-, 5- and 10-fold.  The peak areas measured from the diluted 

samples are plotted against the dilution factor (Figure 2.7B).  If the dilution calibration 

curves obtained from the two experiments are found to be statistically the same, then we 

can conclude that there is no matrix effect from the urine sample on the dansylation 

reaction.  In this particular case, we found that the calibration curves shown in Figures 

2.7A and 2.7B were statistically the same and thus there was no matrix effect of urine on 

dansylation reaction. 

It should be noted that chemical labeling to "unify" the absorptivity of a known 

metabolite mixture (used as the calibration standard) and the urine samples is critical for 

determining the total concentration of the urinary metabolites. Without labeling, total 

metabolite quantification by UV absorbance measurement is not possible. For example, it 

is anticipated that some metabolites in urine would have functional groups that can 

absorb at 338 nm. Indeed, if the chromatogram at 338 nm of unlabeled urine was 

examined, there was a small peak that has a similar retention time as the dansyl labeled 

peaks. Since this peak area was also proportional to urine concentration, we investigated 
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the ability of using unlabeled urine for quantification. We compared the slopes of the 

calibration curves established at different wavelengths and retention time windows for 

three individuals’ urine samples (Figure 2.8). We found there were several problems 

associated with direct quantification of the unlabeled urine. Firstly, the slopes of curves 

depend heavily on the wavelength used. For example, for the peak at 1.43 – 1.5 min, the 

slopes at 338 nm were all similar for three individuals (Figure 2.8C). However, at 280 nm 

the slope for individual B becomes different from individual A and C (Figure 2.8B), and 

at 254 nm all three slopes are significantly different from each other (Figure 2.8A). 

Likewise, for the peak at 0.22 − 1.3 min, the slopes at 254, 280 and 338 nm are also very 

different (Figure 2.8D-F).  As a result, it is very difficult to choose a wavelength at which 

the absorptivity is similar for all different individuals. Secondly, although the slopes at 

338 nm and 1.43 – 1.5 min were similar for all three individuals, the peak area was much 

smaller compared to the dansyl peaks (<5%), therefore the linear range was significantly 

reduced at the lower end. Moreover, since there is no good standard for calibration, it 

would be difficult to determine the total concentration of the metabolites. Thus, 

determination of total metabolite concentration cannot be done by direct UV analysis of 

urine samples.  
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Figure 2.7 (A) Plot of peak area as a function of dilution factor for individually labeled 

urine samples. (B) Plot of peak area as a function of dilution factor for urine samples 

diluted after labeling.  
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Figure 2.8 Slope comparison between three individuals’ unlabeled urine samples: (A) 254 

nm, 1.43-1.5 min; (B) 280 nm, 1.43-1.5 min; (C) 338 nm, 1.43-1.5 min; (D) 254 nm, 

0.22-1.3 min; (E) 280 nm, 0.22-1.3 min; (F) 338 nm, 0.22-1.3 min. The majority of peaks 

were eluted out between 0.22 to 1.3 min under isocratic condition. The compounds that 

elute out at high organic condition were eluted out as a single peak from 1.43 to 1.5 min. 

The urine concentration was determined by labeling the urine sample and then calculating 

the concentration from the calibration curve shown in Figure 2.5B. 
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2.3.4 Optimization of Sample Loading to LC-FTICR-MS.  

The ability of the LC-UV method for quantification of labeled metabolites allows 

us to control the amount of sample to be injected into the LC-ESI-FTMS instrument. In 

order to investigate the effect of sample injection amount on the FTMS results, the same 

sets of pooled urine samples (in triplicate) used to establish the calibration curve were 

injected into the instrument with an injection volume of 2 µL. The urine samples were 

prepared by mixing equal amount of 12C- and 13C-labeled solutions, which will give peak 

pairs with a mass difference of 2.0067 in the FTMS run. The number of peak pairs 

obtained was plotted against the labeled urine concentration as shown in Figure 2.9. It is 

clear that the number of peak pairs increases as the labeled urine concentration increases, 

because at lower concentrations, the low abundance peak pairs would be buried in the 

background and thus either becomes undetectable or be filtered out during the data 

processing step (i.e., S/N<10).  

As Figure 2.9 shows, when the labeled urine concentration is sufficiently high, the 

number of peak pairs levels off. This can be explained by considering the dynamic range 

of FTICR and the ion suppression effect of the ESI source. Compared to some other mass 

spectrometers, such as quadrupole MS, FTICR-MS has relatively small ion detection 

dynamic range.172 If the sample concentration is too high, it is possible that the detector 

cell will be overloaded with ions, which can obscure the detection of small peaks from 

low abundance or less ionizable metabolites eluted out close together. The ESI source 

also poses an upper limit on the number of ions, because at high concentrations 

competition for either space or charge becomes important. In this case, the number of 

peak pairs comes to a plateau at a labeled urine concentration of 3.4 mM with 2 µL 
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injection. Therefore, in the subsequent metabolome profiling work, the urine amount was 

adjusted to be equal to this value for optimal sample injection.  

 

 

 

Figure 2.9 Number of peak pairs detected by LC-FTICR-MS vs. labeled urine metabolite 

concentration (n=3). The MS data was pre-processed to exclude peak pairs with ratios of 

larger than 1.5 or smaller than 0.67, as well as peaks with intensity of less than 25000 

counts (i.e., S/N<10). 

2.3.5 Normalization of urine sample concentrations for differential isotope labeling 

LC-MS.   

The LC-UV quantification method was applied to the normalization of two individuals’ 

three-day urine samples. For each day, three urine samples were collected and denoted as 
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A, B and C. Sample B was collected 1 hr after sample A without drinking water. Sample 

C was collected 1 hr after sample B, but a large amount of water was taken during this 

interval. It is therefore expected that the urine concentration of sample A should be 

similar to sample B, and sample C would be much diluted. Indeed, the chromatographic 

peak area of sample C was significantly smaller than that of A and B for all three-day 

samples of the two individuals (data not shown). Triplicate experiments of dansylation 

were done for each sample and the peak area variation was found to be in the range of 

0.2-6.6%, which indicates good reproducibility for the labeling reaction. The peak areas 

obtained from the LC-UV measurement were compared to creatinine assay and 

osmolality measurement results of the same set of urine samples (Figure 2.10). Since this 

is a relatively simple set of samples that only involve two healthy individuals in three 

consecutive days, it is unlikely to have a large variation in creatinine excretion. As Figure 

2.10 shows, a good correlation was obtained in both cases, which is quite reassuring on 

the validity of the LC-UV method for sample normalization. However, LC-UV 

quantification is more reproducible than creatinine assay and osmolality measurement, as 

the relative standard deviation for those two methods can be as high as 20%.  Moreover, 

the LC-UV method can potentially be applied to many different biofluids. As indicated in 

the Introduction, the creatinine normalization method cannot be applied to samples where 

the concentration of creatinine itself varies due to biological processes or creatinine is 

totally absent in a sample (e.g., in cell extracts). The osmolality method also has 

shortcomings, such as inaccuracy due to salt content variations in samples.    

We have incorporated this LC-UV sample normalization method into the 

differential isotope labeling LC-MS metabolome profiling workflow. The isotope 
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labeling strategy allows us to use a 13C-labeled pooled urine as the internal standard, 

while each individual sample is 12C-labeled. For quantitative analysis, we can compare 

the metabolite concentration in two samples by comparing their 12C-/13C-peak ratio, if the 

same amount of 13C-labeled pooled urine was used.146 In a previous work the pooled 

urine was prepared by adding equal volume of each individual sample. However, the 

problem of this pooling strategy is that the contribution of each sample would be different 

due to different concentrations, and some of the low abundance metabolites in low 

concentration samples may be lost. By taking advantage of the quantification method 

described here, we can prepare a pooled urine sample by adjusting the volume of 

individual samples so that an equal amount of each sample was aliquoted for pooling. 

This procedure can alleviate the bias towards high concentration samples. More 

significantly, when a 12C-labeled individual sample is taken to mix with the 13C-labeled 

pooled urine, the volume or concentration of the individual sample can be normalized 

based on its labeled urine concentration to ensure an equal amount of an individual 

sample and the pooled urine is mixed.  
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Figure 2.10 Correlation between (A) UV peak area and creatinine concentration, and (B) 

UV peak area and osmolality. 
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In order to examine the effect of normalization, two sets of samples were 

prepared. The first set of samples were un-normalized (denoted as UN). These samples 

were prepared by mixing equal volume of each 12C-labeled urine sample with the 13C-

labeled pooled urine. The second set of samples was normalized (denoted as NOR) by 

measuring the concentration of the labeled urine metabolites in each sample with the use 

of the calibration curve shown in Figure 2.5B and the peak area of the eluted labeled 

metabolites in LC-UV and then adjusting the volume of each sample to ensure an equal 

sample amount was mixed with the pooled sample. At the same time, the volume was 

calculated to ensure the total amount of the 12C- and 13C-labeled samples was the same 

before mixing. In both cases, the same pooled urine sample was used with a 

concentration of 3.4 mM. The injection volume was adjusted to account for the volume 

variation after mixing so that the injection amount in each case remained optimal. 

Figure 2.11 shows the representative mass spectra of a selected peak pair and the 

calculated 12C/13C ratios. This peak pair was identified to be Dns-alanine by matching the 

accurate mass and retention time with the amino acid standard solution in our standard 

library. For the un-normalized samples, the ratio for sample C was much smaller than 

samples A and B, while the ratios were all similar for the normalized samples. Since the 

13C-labeled pooled urine amount was the same in each sample, we can calculate the ratios 

of A/B, B/C and A/C from their 12C/13C ratios. For the un-normalized samples, the ratios 

were A/B = 1.57, B/C = 2.34, A/C = 3.68, and the ratios for the normalized samples were 

A/B = 0.92, B/C = 1.06, A/C = 0.97. Because the samples were collected in 2 hr, one 

would expect that the amount of most metabolites would not change significantly, and 

therefore the ratios should be close to 1. This was the case for the normalized samples. 
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But for the un-normalized samples the B/C and A/C ratios were clearly skewed due to the 

dilution of sample C.  

Similar observations were obtained when we examined the intra-day sample peak 

ratio distributions using box plots, as shown in Figure 2.12. The log ratios between the 

intra-day samples should be close to 0 for most metabolites under the reasonable 

assumption that there are little biological variations during the 2-hr collection interval, 

which should result in a box with a small spread around 0. This is illustrated to be the 

case in the box plot of the normalized samples (Figure 2.12A) for both individuals. For 

the un-normalized samples (Figure 2.12B), the log A/B ratio was still close to 0 because 

the concentrations of samples A and B were similar. However, the log ratios for A/C and 

B/C show significant deviation from 0, due to the dilution effect in sample C. Thus, there 

would be a large error, if we used these ratios for metabolite quantification.  

The whole set of data were analyzed by multivariate analysis. The unsupervised 

PCA was first applied to the normalized and un-normalized samples to generate an 

overview on how the data was scattered, as illustrated in panels A and B of Figure 2.13, 

respectively. It can be seen that separation between the two individuals was observed in 

both cases. However, for the normalized samples, the data was scattered more randomly, 

and the difference between the two individuals was mostly reflected by the first principal 

component. On the other hand, the separation between individuals of un-normalized 

samples was mainly attributed to the second principal component, and subgroups within 

each individual were observed due to different sample concentrations. In particular, the 

low concentration samples from the two individuals tend to gather together to form a 

third group, as shown on the middle right of Figure 2.13B. In order to better visualize 
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these subgroups within each individual, supervised PLS-DA was utilized to make the 

classification of the two individuals. Figure 2.13C shows the 3D plot established by using 

this model. The index number (Num) was used as one axis in order to separate the 

different sets for easier visualization. The PLS-DA fit criteria for the normalized samples 

were found to be R2 = 0.978 and Q2 = 0.941, indicating an excellent model, and over-

fitting is not a main concern here because this model is not forced to show separation of 

the subgroups.173 It is clear from the plot that without normalization (blue and yellow), 

different subgroups were artificially created based on sample concentrations. On the other 

hand, the normalized samples (red and green) only show separation of two individuals, 

with no further division into sub-groups. These results illustrate that the LC-UV sample 

normalization strategy can overcome the problem of artificial separation caused by the 

variations of the original urine concentrations in relative quantification of urine 

metabolomes using differential isotope labeling LC-MS.  
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Figure 2.11 Representative mass spectra showing the ratios of a selected peak pair 

belonging to Dns-alanine. 



 

  77  

 

 

Figure 2.12 Box plots of the log intra-day ratio for individuals 1 (in red) and 2 (in blue): 

(A) normalized data and (B) un-normalized data. The range of the box is 25 to 75 

percentile. The line in the box represents the median value and the mean value is shown 

as a dot in the box. 
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Figure 2.13 PCA plots for (A) normalized urine samples and (B) un-normalized urine 

samples: 1_NOR (in red), normalized urine samples from individual 1; 2_NOR (in green), 

normalized urine samples from individual 2; 1_UN (in red), un-normalized urine samples 

from individual 1; 2_UN (in green), un-normalized urine samples from individual 2.  (C) 

PLS-DA plots of normalized and un-normalized urine samples: 1_NOR (in red), 

normalized urine samples from individual 1; 2_NOR (in green), normalized urine 

samples from individual 2; 1_UN (in blue), un-normalized urine samples from individual 

1; 2_UN (in yellow), un-normalized urine samples from individual 2.   
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2.4 Conclusions 

A strategy of determining the total concentration of chemically labeled metabolites 

and its incorporation into a differential isotope labeling LC-MS workflow have been 

developed and demonstrated for improved relative quantification of urine metabolomes. 

Quantification of total concentration of labeled metabolites can be done by using a fast 

step-gradient LC-UV method, in combination with chemical labeling to "unify" the UV 

absorptivity of diverse metabolites in a metabolome sample.  In the present work, 

dansylation chemistry was used to label the metabolites containing amine and phenol 

groups, followed by LC-UV detection at 338 nm of the labeled sample in about 2 min. 

Knowing the total concentration of the labeled metabolite analytes, sample volume or 

concentration during the metabolome sample workup can be normalized to account for 

concentration variations in different metabolome samples.  In addition, the amount of the 

sample injected into the mass spectrometric detection system can be optimized and 

ultimately controlled to maximize the metabolite detectability to improve metabolome 

coverage. Detailed workflow incorporating this LC-UV metabolite quantification strategy 

into the LC-MS metabolomics analysis of human urine samples has been discussed. It 

was demonstrated that concentration normalization among different samples with varying 

total metabolite concentrations was critical for generating reliable metabolome profiles 

for comparison. While this present work focuses on urinary metabolome profiling using 

isotope labeling LC-MS, this dansyl labeling LC-UV method, in principle, should be 

applicable to any other biological samples and MS platforms where knowing the total 

concentration of metabolites is desirable for optimal metabolome analysis. 

 



   

 

Chapter 3 

Dansylation Metabolite Assay: a Simple and Rapid Method for Sample 

Amount Normalization in Metabolomics    

3.1 Introduction 

In recent years, liquid chromatography mass spectrometry (LC-MS)-based 

metabolomics techniques have become a popular choice for the study of biological 

processes and biomarker discovery.21,174 In LC-MS-based metabolomics, individual 

samples from two or more groups are analyzed to study the metabolome profile 

differences among these samples. Because the total concentration of metabolites can vary 

significantly from sample to sample,86,87,128 sample amount normalization to equalize the 

amounts of individual samples prior to quantitative analysis is required in order to 

generate accurate and precise results. In this paper, the term "normalization" refers to 

adjust either the volume or concentration of an individual sample so that the same amount 

is taken from all the individual samples used in a metabolomics study.  

Ideally a good normalization strategy for metabolome analysis should have the 

following features. Firstly, it should be convenient to perform and should not add too 

many extra steps or cost to the overall sample processing procedure. Secondly, it is 

desirable to carry out normalization after the initial sample preparation steps so that any 

variations during the sample work-up process can be accounted for. Thirdly, it is 

preferable to perform sample normalization before LC-MS analysis to ensure similar 

instrumental responses are obtained for all samples. Because of non-uniform responses of 

individual metabolites, analyte signals obtained from different concentrations of samples 

cannot be linearly scaled. Thus, using the same concentration of samples for LC-MS will 
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produce more accurate results. Fourthly, normalization can provide information on the 

absolute concentration of the samples, relative to a standard.125 This would allow a user 

to control the sample injection amount into LC-MS precisely to ensure that an optimal 

amount is injected. This is important for detecting low concentration metabolites in a 

sample and avoiding over-injection that can cause problems such as column saturation 

and sample carry-over from one run to another. Finally, the normalization method should 

be universally applicable to all biological media.  

There are several normalization methods reported in the literature for metabolomics. 

Normalization to creatinine or osmolality has been used for urine samples.92,112,162,163 

However, in some cases, creatinine itself may vary according to the disease state.109 

Normalization to cell counts, total protein concentration or DNA concentration has been 

described for cultured cells;130,134,136 the cell counts or protein/DNA amounts were shown 

to be useful as sample amount indicators. However, these methods were targeted at 

specific biological media and cannot be readily extended to other biological samples such 

as saliva, cerebrospinal fluid (CSF) and fecal samples. For these types of samples, using 

the same volume or weight does not guarantee that the same total amount of metabolites 

is taken from each sample. Post-analysis data normalization strategy has also been 

reported in recent years. The advantages of this strategy are that it is convenient to 

perform (i.e., no extra experimental procedures required) and widely applicable. Various 

forms of this strategy has been reported, including normalization to the sum of all 

metabolite abundance,175 normalization to the MS “total useful signal”,88 as well as 

normalization to specific metabolic markers.128,133 However, the major disadvantage of 

this strategy is the lack of control of the sample amount injected into a mass spectrometer. 
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As a result, uneven LC-MS responses may be generated from samples of different 

concentrations, which can compromise the accuracy and precision of metabolite 

quantification as well as the metabolome coverage. 

We have recently reported a sample normalization method based on the use of LC-

UV for quantifying the total concentration of chemically labeled metabolites.125 In this 

method, metabolites were first labeled with 12C-dansyl chloride and the absorbance was 

measured at 338 nm targeting the dansyl chromophore; dansylation labeling is a robust 

and proven method used in techniques such as LC-UV, LC-fluorescence, and MS.176-180 

A fast step-gradient was applied to allow co-elution of all labeled metabolites, and the 

total absorption was measured to determine the sample concentration. This method can 

be readily applied to any type of biological samples and has been demonstrated to be 

useful as a sample normalization strategy in various applications.137,138,156,181 However, 

one major drawback of this method is that it requires an expensive LC-UV system to 

perform the analysis. The cost per analysis can be relatively high, considering the high 

consumption of HPLC grade solvents (and columns). Another drawback is that sample 

throughput is not high. For a large scale metabolomics study, this can be a concern. 

In this work, we report a dansylation metabolite assay sample normalization 

method that measures absorbance of labeled metabolites using a microwell plate reader, 

instead of an LC-UV system. Microwell plate reader is relatively inexpensive and 

commonly used in biological laboratories for measuring total concentration of proteins or 

DNA. The dansylation metabolite assay allows simultaneous measurement of multiple 

samples within a very short period, which greatly increases the throughput. It also 

requires less lab consumables and instrument maintenance. Herein we describe the 
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workflow of this assay and discuss the rationale and procedure of each step involved. We 

report the performance of the assay in terms of quantification linearity, linear range and 

reproducibility. We demonstrate an application of this method to quantify the total 

labeled metabolites in cultured Escherichia coli (E. coli) cells for a metabolomics study 

using a chemical isotope labeling LC-MS platform.  

3.2 Experimental  

3.2.1 Chemicals and reagents.  

Chemicals were purchased from Sigma-Aldrich Canada (Markham, ON, Canada).  

The isotopic compound used to synthesize 13C-dansyl chloride was purchased from 

Cambridge Isotope Laboratories (Cambridge, MA, USA). 13C-dansyl chloride was 

synthesized in our lab as described previously.146 The BCA assay kit was from Pierce. 

(Rockford, IL, USA). 

3.2.2 Cell culture and harvest conditions.  

For quantification linearity test, E. coli (ATCC 47076) cells were grown in 75 mL 

Luria-Bertani (LB) medium (0.5% yeast extract, 1% tryptone, 1% NaCl) at 37°C and 225 

rpm in a shaking incubator for ~18 h. The cell density was estimated to be 4.4 × 109 

cells/mL by measurement at OD 600. Three portions of 20 mL cell culture were taken 

and spun at 3900 ×g for 10 min at 4°C. For each 20 mL portion, the supernatants were 

removed and the pellets were washed twice with 20 mL of ice-cold 0.9% NaCl. The 

washed cell pellets were resuspended in 20 mL of ice-cold 0.9% NaCl and were divided 

into 8, 4, 2, 1, 0.5 and 0.25 mL aliquots. Each aliquot was spun down at 3900 ×g for 10 

min at 4°C and the pellets were stored at -80 °C until further use.  
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For method validation test, 5 individual colonies of E. coli (ATCC 47076) were 

streaked from one LB plate (0.5% yeast extract, 1% tryptone, 1% NaCl, 1.8% agar) onto 

5 LB plates with one colony per plate. Similarly, 5 individual colonies of E. coli (ATCC 

9637) were streaked from one nutrient agar plate (0.2% yeast extract, 0.1% beef extract, 

0.5% peptone, 0.5% NaCl, 1.8% agar) onto 5 nutrient agar plates with one colony per 

plate. All plates were incubated at 37°C for ~18 h. During harvest, different amounts of 

cells were scraped from the plates and washed twice with 1 mL 0.9% NaCl. The cell 

pellets were resuspended in 1 mL 0.9% NaCl and were aliquoted into two 350 μL (for 

absorbance measurement in duplicate) and one 100 μL (for BCA assay) portions. After 

centrifuging for 10 min at 3900 ×g and 4°C, the supernatants were discarded and the 

pellets were stored at -80°C until further use.  

3.2.3 Determination of protein amount.  

The protein concentration was determined using a BCA assay kit. 500 μL of 1% 

SDS in PBS buffer were added into the cell pellets from the 100 μL portion, followed by 

sonication on ice (2 × 10 s pulses) to disrupt the cells. 25 μL of the lysate was mixed with 

200 μL of the working reagent and incubated at 37°C for 30 min. The absorbance 

measurement was made at 562 nm. A series of diluted bovine serum albumin (BSA) 

standards were used to establish the calibration curve. The protein amount calculated for 

this 100 μL portion was then multiplied by a factor of 3.5 to obtain the protein amount in 

the 350 μL portions. 

3.2.4 Metabolite extraction.  

Metabolites were extracted by adding 1 mL of 50% MeOH (-20°C) into the cell 

pellets, followed by ultrasonication-assisted disruption in a Branson ultrasonic cleaner 
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1510-MT (Branson Ultrasonics Corporation, Danbury, CT, USA) with ice bath for 10 

min. The resulting suspensions were centrifuged at 20817 ×g for 10 min at 4°C. The 

extraction procedure was repeated with another 1 mL 50% MeOH and the two 

supernatants were combined, dried using a SpeedVac and resuspended in 150 μL water. 

The resulting solutions were used for the labeling step. 

3.2.5 Dansylation labeling reaction.  

Dansylation reaction was done according to the reported protocol.28,29 Fifty μL of 

the extracted solution was mixed with sodium carbonate/sodium bicarbonate buffer and 

ACN. The solutions were vortexed, spun down and mixed with 50 μL freshly prepared 

12C-dansyl chloride solution (18 mg/mL) (for light labeling) or 13C-dansyl chloride 

solution (18 mg/mL) (for heavy labeling). The reaction was allowed to proceed for 1 hr at 

60°C. After 1 hr, NaOH was added to the reaction mixture to quench the excess dansyl 

chloride. The solution was then incubated at 60°C for another 10 min. Finally, formic 

acid in 50/50 ACN/H2O was added to consume excess NaOH and make the solution 

acidic. For method validation test, 20 μL of each extracted solution was pooled and 

labeled with 13C-dansyl chloride to serve as the reference sample. 

3.2.6 LC-UV quantification of extracted solutions.  

The LC-UV method used for determining extraction efficiency was the same as 

that described previously.125 Briefly, two μL of the extracted solution was injected onto a 

Phenomenex Kinetex C18 column (2.1 mm × 5 cm, 1.7 μm particle size, 100 Å pore 

size). Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent B was 

0.1% (v/v) formic acid in acetonitrile. The gradient started with 0% B for 1 min and was 

increased to 95% within 0.01 min and hold at 95% B for 1 min. The gradient was 
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restored to 0% B in 0.5 min and hold for 3.5 min before the next run. The flow rate was 

450 μL/min. The wavelength used for the absorbance measurement was 338 nm. 

3.2.7 Microplate quantification of labeled metabolites.  

To extract the labeled metabolites into the organic layer, three volumes of ethyl 

acetate were added to the labeled solution followed by vortex for 30 s and centrifugation 

at 5220 ×g for 2 min. For quantification of labeled amino acid standards, 25 μL of the 

organic layer was pipetted into a Greiner UV-Star 384-well microplate (Monroe, NC, 

USA) and absorbance measurement was made at 340 nm on a SpectraMax 340PC plate 

reader from Molecular Devices (Sunnyvale, CA, USA), while 50 μL of the organic layer 

was added into the plate for quantification of labeled metabolites in E. coli. 

3.2.8 LC-MS analysis and data processing.  

For un-normalized analysis, the 12C- and 13C-dansyl labeled solutions were 

combined in 1:1 volume ratio. For normalized analysis, the 12C- and 13C-labeled 

metabolites were mixed in a ratio determined by the quantification results. The combined 

mixture was analyzed using a Bruker Maxis Impact QTOF mass spectrometer (Billerica, 

MA, USA) linked to an Agilent 1100 series binary HPLC system (Palo Alto, CA, USA). 

The LC-MS conditions were the same as those reported.154 For each LC-MS run, masses 

were calibrated to the spectrum that contained the dansyl-amine peaks at m/z 242.57160 

(two tags two charges), m/z 484.13592 (two tags one charge) and m/z 971.27799 (dimer) 

using the Data Analysis software and the calibration result was applied to all the other 

spectra in the same LC-MS run. The resulting MS data were processed using a peak-pair 

picking software, IsoMS.154 The level 1 peak pairs were aligned from multiple runs by 

retention time within 30 s and accurate mass within 5 ppm. Only the common peak-pairs 
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were retained for statistical analysis. Principle component analysis (PCA) and volcano 

plot analysis were performed by Metaboanalyst (www.metaboanalyst.ca).169 The data 

were mean-centered and auto-scaled (unit variance) prior to analysis.  

3.3 Results and Discussion 

 Figure 3.1 shows the overall workflow of the dansylation metabolite assay (DMA) 

for normalization of biological samples using a microplate reader. The assay involves 

three key steps: dansylation labeling of amines and phenols in a sample, extraction of the 

labeled metabolites using ethyl acetate, and UV absorbance measurement of the organic 

extract. Based on the measured total concentration of the labeled metabolites, same 

sample amount is taken from all the samples. To measure the absolute concentration of 

labeled metabolites relative to a standard in a sample, a calibration curve of a standard 

(e.g., a mixture of 17 dansyl labeled amino acid standards) can be used. In developing 

this assay, several experimental parameters and procedures were considered, which are 

described below. The assay was then applied to a cellular metabolomics study to evaluate 

its performance. 

 

http://www.metaboanalyst.ca/
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Figure 3.1 Dansylation metabolite assay (DMA) workflow for sample amount 

normalization.   

 

3.3.1 Extraction of labeled metabolites.  

After the dansylation labeling reaction, excess dansyl chloride is quenched with 

sodium hydroxide to form the hydrolyzed product (Dns-OH). To quantify the labeled 
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metabolites, Dns-OH has to be removed from the labeled solution prior to quantification. 

In LC-UV125, Dns-OH elutes at the high aqueous phase and the labeled metabolites elute 

at the high organic phase and thus a step-gradient elution can be used to separate them. 

This LC retention behaviour also indicates that Dns-OH is much more hydrophilic 

compared to other labeled metabolites, suggesting the possibility of their separation by 

using a simple liquid-liquid extraction (LLE) method. We evaluated the performance of 

LLE with ethyl acetate, a commonly used extraction solvent with moderate insolubility, 

relatively high boiling point, and low toxicity. 

Figure 3.2A compares the step-gradient LC-UV chromatograms of a solution of 

17 dansyl labeled amino acid standards (17-Dns-aas) before and after extraction. The 

early eluting peak corresponds to Dns-OH and the peaks between 1.4 min to 2.0 min are 

from the labeled amino acids. Comparing the areas of the 17-Dns-aas peaks, it can be 

seen that after extraction the majority of Dns-aas has been removed from the aqueous 

solution, indicating a successful separation of the quenched reagent from the labeled 

metabolites by LLE. The Dns-OH peak is higher after extraction, likely due to the fact 

that the final labeled solution was in 50/50 ACN/H2O, and during the extraction some of 

the ACN was distributed into the organic layers, making the remaining aqueous solution 

more concentrated. The LC-UV chromatogram of the organic extract is shown in Figure 

3.2B. This chromatogram confirms the presence of the labeled metabolites with very little 

Dns-OH in the organic extract. The extraction efficiency of the labeled metabolites was 

calculated as the % peak area difference before and after extraction in the aqueous layer. 

In the example shown in Figure 3.2A, the extraction efficiency was found to be 91%. 

 



 

  90  

 

 

Figure 3.2. Step-gradient LC-UV chromatograms of a mixture of 17 dansyl labeled amino 

acid standards (17-Dns-aas) before and after ethyl acetate extraction: (A) comparison 

between un-extracted solution and the aqueous layer after extraction and (B) comparison 

between un-extracted solution and the ethyl acetate layer after extraction. Comparison of 

extraction efficiencies under different extraction conditions: (C) with different ethyl 

acetate to aqueous solution ratios and (D) with different numbers of extractions while the 

total volume of ethyl acetate was held constant (1Ex, 2Ex and 3Ex refer to extraction 

once, twice and three times, respectively). 
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The extraction condition was then optimized using different organic-to-aqueous 

solvent ratios and different numbers of extractions. We compared extraction with four 

different organic-to-aqueous solvent ratios: 1:1, 2:1, 3:1 and 4:1 and the results are shown 

in Figure 3.2C. The extraction efficiency increases from the 1:1 solvent to the 2:1 solvent, 

but there is no significant difference for the 2:1, 3:1 and 4:1 solvents. In the 4:1 solvent, 

the standard deviation is larger than the other solvents for an unknown reason, but is still 

less than ±2%. For a microplate, a larger working volume is desirable to increase the 

absorption signals and generate more reproducible results. Therefore, a higher organic-to-

aqueous ratio is preferred. However, if the ratio is too high, the metabolites may be too 

diluted and organic solvent consumption is also increased. We chose the 3:1 solvent to 

balance these two factors. The extraction efficiency also increases with the number of 

extraction if the total organic volume is held constant, as shown in Figure 3.2D. However, 

the sample throughput would be reduced considerably with each additional extraction. As 

there was only about 1-2% increase in extraction efficiency from 1 to 3 extractions, we 

decided to perform only one extraction in order to maintain a high throughput. As a result, 

the final extraction protocol involves a one-time extraction with 3 volumes of ethyl 

acetate and 1 volume of labeled solution, which gives an extraction efficiency of ~93% 

for the labeled amino acid standards. It should be noted that in the dansyl metabolite 

assay the labeled metabolites are dissolved in ethyl acetate, while in LC-UV they are 

present in the elution solvent composed of mainly ACN, water and FA. These solvent 

systems do not absorb at 338 nm (for LC-UV) or 340 nm (for microplate UV 

measurement) so there is no solvent interference.  

3.3.2 Absorbance measurement.  
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The absorbance of dansyl labeled metabolites was measured at 340 nm, which is 

the smallest detection wavelength available on the SpectraMax 340PC plate reader. This 

wavelength is close to 338 nm used in the LC-UV sample normalization method.125 

Figure 3.3 shows the absorption spectrum of 17-Dns-aas; the absorbance starts to 

decrease at higher wavelengths than 340 nm. The measurement was done using a UV-

transparent 384-well plate with low background absorbance at 340 nm. This plate also 

shows good resistance to ethyl acetate with an optimal working volume of 15-110 μL, 

which matches with our applications.  

 

Figure 3.3. Absorption spectrum of a mixture of 17 dansyl labeled amino acid standards 

(17-Dns-aas) (6.3 mM) from 340 to 400 nm.  

We prepared a series of diluted 17-aas solutions and labeled them separately to 

evaluate the linearity and linear range of this quantification method. In this case, 10 μL of 

labeled amino acid solutions were extracted with 30 μL of ethyl acetate, and 25 μL of 

each extracted solution was added into the 384-well plate. Figure 3.4 shows the 
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calibration curve generated which is linear from 0.04 mM to 6.25 mM with good 

correlation (R2 = 0.9981); note that the three points at the lower end departs from this 

linear curve to some extent. As in the case of our LC-UV work, the upper end of this 

linear curve was limited by the decreased dansylation labeling efficiency at higher 

analyte concentrations. Increasing the reagent amount relative to the analyte amount can 

extend the upper limit, but this is not needed as the upper limit shown in Figure 3.4 is 

already sufficient for normalization of metabolomic samples. The lower end was limited 

by the formation of side products that produced the background signals. We note that the 

lower end of this linear curve (0.04 mM) was higher than that could be achieved with 

LC-UV (0.02 mM), since the sensitivity (slope) of the current method was lower; the 

absorbance of 0.02 mM standard was close to the absorbance of a labeled blank solution. 

Nevertheless, the linear range of this calibration curve should be sufficient for 

quantification of most real biological samples. Decreasing the detection limit of the assay 

is not necessary, as the total concentration of labeled metabolites in most metabolomic 

samples would be in the range of high µM to mM.  In addition, the sensitivity can be 

improved by increasing the path length (i.e., increasing the volume of solution added into 

a well). From our working experience with different types of samples, we suggest that the 

volume of a solution used for the microplate reader measurement be adjusted, depending 

on the type of biological samples analyzed. For example, we found that 25 μL was 

generally sufficient for quantification of human urine samples, while a larger volume 

(e.g., 50 μL) was optimal for analyzing the extracts of bacterial cells in which the total 

metabolite concentration is lower than urine. 
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Figure 3.4 Calibration curve of a mixture of 17 dansyl labeled amino acid standards (17-

Dns-aas) from triplicate labeling experiments at each concentration. Labeled metabolites 

were extracted with three volumes of ethyl acetate. Absorbance was measured at 340 nm 

with 25 µL of the organic extract placed in a microplate well. 

Method reproducibility was evaluated in terms of experimental reproducibility 

and run-to-run reproducibility. Table 3.1 shows a summary of the results obtained. In this 

case, experimental reproducibility was determined from three experimental replicates that 

should account for variations during labeling, extraction, solution transfer and absorbance 

reading. As Table 3.1 shows, the %RSD values at different 17-Dns-aas concentrations are 

all below 10%, indicating a good experimental reproducibility. Run-to-run 

reproducibility was determined by measuring absorbance at 0, 5 and 10 min after the 

samples were added into the plate. In practice, there will be a time interval between the 

first added sample and the last added one. Although ethyl acetate has a relatively high 

boiling point, compared to other organic solvents, some evaporation might still occur 
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during this time period. Therefore, we evaluated the run-to-run reproducibility within a 

10-min period to see whether solvent evaporation would affect the measurement. As 

shown in Table 3.1, the %RSD values within a 10-min period were only 1-3%, indicating 

that solvent evaporation would not cause a problem for absorbance measurement of 

samples added within a 10-min interval. This usually allows approximately 30 samples to 

be processed and measured at the same time. Using a multichannel pipette should 

increase the number of samples handled in 10-min interval. 

 
 Table 3.1. Summary of reproducibility of absorbance measurements. 

17-dns-aas 
concentration 

(mM) 

Run-to-run 
reproducibility 

(%RSD) 

Experimental 
reproducibility 

(%RSD) 
0.042 2.5 5.4 
0.10 3.5 1.9 
0.21 2.4 3.5 
0.42 3.0 6.7 
1.0 2.0 1.1 
2.1 1.5 5.2 
3.1 2.4 3.9 
4.2 1.2 4.4 
6.3 1.3 6.4 

 

3.3.3 Quantification of labeled metabolites in E. coli.  

As an example of applications of DMS for sample amount normalization, we 

applied this method for metabolomic profiling of E. coli cells. We first determined the 

linearity between the measured absorbance and the cell amount. E. coli cells from the 

same culture medium were aliquoted into 0.25, 0.5, 1, 2, 4 and 8 mL portions, and 

metabolites in each portion were extracted and labeled under the same conditions. A good 

linear relationship (R2 > 0.99) was observed between the absorbance of the labeled 

metabolites and the volume of the cell suspensions (Figure 3.5) (note that the last point at 
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the lower end departs from the linear curve to some extent), indicating that the total 

amount of extracted metabolites correlates very well with the cell amount. Thus, in real 

world applications where the number of cells is not known, the DMA quantification 

results can serve as a surrogate of the cell amount. To validate this, we compared the 

metabolite measurement results obtained by our assay to the protein amounts measured 

using a well-established BCA quantitative method. 

In this work, two different E. coli strains (ATCC 47076 and ATCC 9637) were 

each grown on five agar plates. During harvest, different amounts of cells were collected 

from each plate. Because of the small size of E. coli cells, cell counting using a 

microscope is difficult. Instead, we measured the protein concentrations as the cell 

amount indicator and then compared the absorbance values of the labeled metabolites 

measured by the dansylation assay with the measured protein amounts. The results are 

shown in Figure 3.6A, B for E. Coli ATCC 47076 and ATCC 9637, respectively. Figure 

3.6 shows that there is a good linear correlation between the absorbance and the protein 

amount for both strains. It is interesting to note that the linear regression equations for 

these two strains were very close to each other, indicating that the two E. coli strains have 

similar amounts of labeled metabolites at the same protein levels. 

 

 



 

  97  

 

 

Figure 3.5 Determination of linearity between absorbance of labeled metabolites and E. 

coli cell amount. Different cell suspension volumes were taken from the same culture and 

thus the cell amount should be proportional to the suspension volume. Labeled 

metabolites were extracted with three volumes of ethyl acetate. Absorbance was 

measured at 340 nm with 50 µL of the organic extract placed in a microplate well. The 

blank absorbance was 0.6201, which was not subtracted out in the total absorbance 

shown in x-axis. 
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Figure 3.6. Determination of linear correlation between absorbance of labeled metabolites 

and protein amounts for (A) E. coli strain ATCC 47076 and (B) E. coli strain ATCC 9637. 

Labeled metabolites were extracted with three volumes of ethyl acetate. Absorbance was 

measured at 340 nm with 50 µL of the organic extract placed in a microplate well. The 
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blank absorbance in (B) was 0.6201, which was not subtracted out in the total absorbance 

shown in x-axis.  

3.3.4 Sample amount normalization in E. coli.  

To evaluate whether the labeled metabolite absorbance measurement could serve 

as a valid normalization strategy for metabolomics, we compared the metabolomic 

profiles of the two E. coli strains with and without normalization. A differential isotope 

dansyl labeling LC-MS platform137,146,154 was used to profile the amine/phenol 

submetabolome differences of the two strains. The un-normalized set of samples was 

prepared by mixing equal volume of each 12C-labeled sample with a 13C-labeled pool, 

while the second set of samples was normalized based on the absorbance values of 12C-

labeled individual samples. It is important to note that there is background absorbance 

from a labeled solution, which is likely caused by the presence of by-products of the 

labeling reagent (e.g., dimerization). Therefore, a blank subtraction step must be carried 

out first, which can be done using a pre-determined calibration curve, where the y-

intercept reflects the background absorption (see Table 3.2). Column 2 in Table 3.2 

shows the results of the absorbance measurement from the 12C-dansylation metabolite 

assay. The absorbance values after blank subtraction is shown in Column 3. To mix an 

equal amount of 12C-labeled sample with the 13C-labeled pooled sample, the volume of an 

individual sample was determined by the absorbance value after blank subtraction. These 

volumes are shown in Column 4. 
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Table 3.2. Normalization of the sample amounts from two E. coli strains  

E. coli sample* Before 
blank subtraction 

After 
blank subtraction** 

Normalized 
volume (μL) 

47076_1 0.914 0.294 14.5 
47076_2 0.810 0.190 22.5 
47076_3 0.757 0.137 31.2 
47076_4 1.002 0.382 11.2 
47076_5 1.179 0.559 7.64 
9637_1 0.721 0.101 42.3 
9637_2 0.730 0.110 38.8 
9637_3 0.823 0.203 21.0 
9637_4 0.965 0.345 12.4 
9637_5 1.100 0.480 8.88 

Pooled sample 0.904 0.284 15.0 
*The number after the strain number indicates the culture plate number. 

**Blank absorbance was determined from the y-intercept of a pre-determined calibration 

curve: y = 2.154x + 0.6201. 

3.3.5 Metabolome comparison of two E. coli strains.  

In comparative metabolomics studies, it is common to perform statistical analysis 

of the metabolome data to identify metabolites that are differentially expressed in two or 

more groups. For example, it is often of interest to investigate cellular metabolome 

changes under different culture conditions or specific treatments. One prerequisite for a 

fair comparison between different sample groups is that the variation within each group 

should be small.128 In this example of comparing the metabolome profiles of two E. coli 

strains, we first applied a PCA model to the two metabolome datasets (Figure 3.7). As 

Figure 3.7A shows, for the un-normalized sample dataset, separation between the two 

strains is attributed to the second principal component (19.7% of the total variation), 

while the most important variation reflected by the first principal component is the cell 

amount (65.8% of the total variation). In contract, for the normalized sample dataset 

(Figure 3.7B), the two strains are clearly separated on the first principal component 
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which represents 43.2% of the total variation, indicating that metabolic difference 

between the two strains is the major variation in the dataset. These PCA score plots 

illustrate that our sample normalization strategy is effective in reducing the artificial 

variation caused by different sample amounts used in the un-normalized dataset.  

We further analyzed the two datasets using the volcano plot statistical analysis. 

Figure 3.8 shows the volcano plots generated by examining the differentiating 

metabolites with the criteria of fold change (FC) > 2 or FC < 0.5, and p < 0.01. Only 29 

metabolites were found to be differentially expressed using these criteria in the un-

normalized samples, while there were 145 metabolites at significantly different levels in 

the normalized dataset. Much lower identification rate in the un-normalized dataset is 

mainly due to the large variations within each strain caused by the sample amount 

differences. Figure 3.9 shows the %RSD values of relative metabolite quantities 

measured from multiple samples within each strain. In the normalized data, the %RSD 

values were lowered by almost 50%. These results again confirm that the variations 

within each strain have been reduced through this normalization process to allow 

identification of a larger number of differentiating metabolites between the two strains.  

In Figure 3.8A, there are fewer metabolites on the left-hand-side of the volcano 

plot (FC < 0.5) in the un-normalized set. This is probably because the average cell 

amount is higher in the ATCC 47076 strains (Figure 3.6), which could disguise 

metabolites expressed at lower levels in this strain. Therefore, in addition to perform 

normalization within one group, it is also important to adjust the sample amount of all 

comparative groups to the same level in order to avoid any bias created by the amount 

differences between the sample groups. In our normalization strategy, the total metabolite 



 

  102  

 

amounts in all samples were adjusted to be equal to that of the pooled reference sample. 

As a result, a more even distribution of differentiating metabolites was observed in the 

normalized set (Figure 3.8B).  

The above example demonstrates that sample amount normalization is very 

important for comparative metabolomics and the dansylation metabolite assay can be 

used as a simple and rapid normalization method. It should also be noted that this assay is 

not destructive if the dansyl labeled sample is used for metabolome profiling, as in the 

case of using differential dansyl labeling for profiling the amine/phenol submetabolome. 

After metabolite quantification is finished, the solution can be re-collected for further 

analysis. Although this assay only measures the total concentration of labeled 

amine/phenol submetabolome, the large diversity of amines and phenols in a metabolome 

sample ensures that the measured concentration is a good representation of the total 

metabolome concentration. This assay should be applicable to many types of biological 

samples including biofluids. One potential limitation of this assay is that the UV 

measurement is done at 340 nm and thus if a sample contains high concentrations of 

chemicals that absorb at 340 nm, interference from these chemicals may cause errors in 

the measurement of the labeled metabolites. However, considering that the total 

concentration of labeled metabolites is in the mM range for many samples, lower 

concentrations of 340-nm absorbing compounds present in a sample should not affect the 

quantitative results significantly.  
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Figure 3.7 PCA score plots for (A) un-normalized dataset and (B) normalized dataset. 

Red triangles and green crosses represent E. coli strain ATCC 47076 and 9637 harvested 

from 5 different agar plates, respectively. 
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Figure 3.8. Volcano plots for metabolome comparison between two strains from (A) un-

normalized dataset and (B) normalized dataset. Fold change (FC) was expressed as the 

average peak pair ratio in strain ATCC 47076 over that in strain ATCC 9637. The 

horizontal dotted line represents cutoff at p = 0.01 and the vertical dotted line represents 

cutoff at FC = 2 and FC = 0.5.  
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Figure 3.9 Box plot showing the %RSD of un-normalized and normalized data in (A) 

ATCC 47076 and (B) ATCC 9637. The range of the box is 25 to 75 percentile. The line 

in the box represents the median value and the mean value is shown as a dot in the box.  
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3.4 Conclusions 

 We have developed a dansylation metabolite assay for sample amount 

normalization in quantitative metabolomics. It uses a microplate reader to measure the 

absorbance of labeled metabolites at 340 nm in a sample after dansylation labeling of the 

metabolites and ethyl acetate extraction to remove the quenched excess dansyl reagent. 

This method is simple, rapid and easy to implement. We envisage the application of this 

dansylation metabolite assay, analogy to the widely used BCA assay in quantitative 

proteomics, as a robust sample normalization method in metabolomics.  
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Chapter 4 

Development of Isotope Labeling LC-MS for Metabolic Profiling of 

Bacterial Cells and Its Application for Bacterial Differentiation 

4.1 Introduction 

Metabolomics refers to the comprehensive detection and quantification of all 

metabolites present in a given biological sample, such as urine, plasma, tissues and cells.2 

Since metabolites are the end product of all regulations, the study of the metabolite levels 

can provide valuable and complementary information to the genomics, transcriptomics 

and proteomics data.182-185 In recent years, the study of microbial metabolomics has 

received growing research interest because of its potential applications in a wide range of 

microbial research fields including metabolic engineering.186,187 There are at least two 

major research areas in microbial metabolomics.131 The first one is to investigate changes 

of the metabolic profile under different environmental conditions or look for the key 

metabolic changes in a mutant strain.188 The second one is to generate a metabolic 

fingerprint of various bacterial species for the purpose of microorganism identification or 

differentiation.131,189-191 In both cases, a robust and sensitive method capable of detecting 

and quantifying a large number of metabolites is desirable. 

The major analytical platforms currently used for metabolomics studies include 

nuclear magnetic resonance (NMR),192-194 and mass spectrometry (MS) coupled with gas 

chromatography (GC),195,196 liquid chromatography (LC)197-200 and capillary 

electrophoresis (CE).201-203 Among these, LC-MS, particularly reversed phase LC-MS 

(RPLC-MS) has been widely used because of its high sensitivity, high resolution, and 

wide metabolite coverage. However, the performance of RPLC-MS for detecting very 
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polar and ionic metabolites, which are highly abundant in biological samples, is not as 

good. To address this problem, our group has reported a 12C/13C-dansylation labeling 

technique for the analysis of the amine- and phenol-containing sub-metabolome; dansyl 

labeling allows separation of polar and ionic metabolites on a RP column while providing 

a signal enhancement of 10- to 1000-fold.146 This method enables detection of hundreds 

to over a thousand of metabolites using one dimensional LC-MS and has been shown to 

be useful for metabolic profiling of biofluids such as urine,146 cerebrospinal fluid49 and 

saliva.156 

However, differing from biofluid analysis, cellular metabolome profiling is a 

much more challenging task. Prior to metabolite analysis by NMR or MS, several sample 

preparation processes are needed, including (1) separation of cells from the growth 

medium; (2) washing procedure to remove any interfering compounds from the cell 

surface; (3) rapid quenching to stop cellular activity; (4) extraction of intracellular 

metabolites and (5) disruption procedure to enhance the extraction process.186 A number 

of studies have been reported with a focus on evaluating the sample preparation methods 

for microbial metabolome analysis.131,200,204-208 The cells are usually separated from the 

growth medium by centrifugation or filtration, or scraped off the plates if grown in agar 

medium. The choice of an improper washing solution (e.g., distilled water) might result 

in leakage and loss of intracellular metabolites, and it was recommended to use a washing 

solution with salt content matching the ionic strength of the medium.208,209 The quenching 

step is usually applied to rapidly arrest metabolic activity and is particularly important for 

detecting metabolites with high turnover rates and in flux analysis.210 The most 

commonly used quenching agent is -40°C 60% (v/v) MeOH/H2O,205 either alone or with 
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the addition of a buffer such as HEPES to reduce leakage.209,211 Following quenching of 

the metabolism, the intracellular metabolites need to be extracted. Various extraction 

solvents have been evaluated, including cold and hot organic solvents with different 

percentages of water, acid (e.g., perchloric acid), and base (e.g., potassium 

hydroxide).132,182,204-206,212,213 It was found that cold organic solvents, such as methanol 

and acetonitrile (50-100% v/v in H2O), generally show less bias and less degradation 

products. Finally, a disruption procedure can be applied after addition of the extraction 

solvent to facilitate cell breakage and metabolite extraction, although this step is often 

omitted in many works. The most commonly employed disruption method is freeze-thaw 

cycle,132,204 but other mechanical methods, such as mill/beads, microwave and ultra-

sound, have also been used with varying degree of success.131,214 

 It is clear that a variety of sample preparation methods may be used for microbial 

metabolome analysis. However, the analytical performance of each method is very likely 

dependent on the type of metabolites analyzed and the detection method used. For 

example, evaluating the performance of a method by analyzing a few metabolites does 

not provide a complete assessment of the method for profiling a large number of 

metabolites present in a metabolome sample. 

 In this work, we describe a method based on differential isotope dansylation 

labeling LC-MS, in combination with a fast step-gradient LC-UV quantification method 

for sample amount normalization,125 for microbial metabolome profiling. This method 

allows the detection and quantification of thousands of putative metabolites from a 

bacterium with high precision and accuracy, compared to current methods of detecting 

less than 300 putative metabolites in general. This high level of detectability allows us to 
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evaluate various sample preparation methods more completely in order to determine the 

optimal conditions for microbial metabolome profiling. As an example of potential 

applications of this method for microbial metabolomics, we demonstrate the ability of 

this method for differentiation of three model organisms, Escherichia coli (E. coli), 

Bacillus subtilis (B. subtilis) and Bacillus megaterium (B. megaterium), as well as 

identification of the important metabolites that contribute to the differentiation. The 

possibility of employing this isotope labeling LC-MS method for identifying bacteria in 

clinical samples is assessed by analyzing bacteria spiked in human urine samples. To our 

knowledge, most reported studies of using metabolomics for bacterial identification were 

based on the use of GC-MS.190,191,215 

4.2 Experimental   

4.2.1 Chemicals and Reagents. 

12C-dansyl chloride (DnsCl) and formic acid were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). The isotopic compound used to synthesize 13C-dansyl 

chloride was purchased from Cambridge Isotope Laboratories (Cambridge, MA, USA). 

13C-dansyl chloride was synthesized as described previously146 and the other chemicals 

used to synthesize this isotope reagent were purchased from Sigma-Aldrich. LC-MS 

grade water, acetonitrile (ACN) and methanol (MeOH) were purchased from Thermo 

Fisher Scientific (Edmonton, AB, Canada).  

4.2.2 Cell Culture and Harvest Conditions.  

For the method optimization work, E. coli (ATCC 47076) cells were grown in 

nutrient broth (0.3% beef extract, 0.5% peptone) at 37°C and 225 rpm in a shaking 

incubator for ~24 h. All cultures were harvested at OD600 of 1.5 and were spun at 
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4640×g for 10 min at 4°C. The pellets were resuspended in 1 mL of ice-cold 0.9% NaCl, 

and spun in an Eppendorf 5415C microcentrifuge at 16 000×g for 1 min at 4°C. The 

cell pellets were flash frozen in a dry ice/ethanol bath and stored at -80 °C until further 

use. For the cell differentiation study, E. coli (ATCC 47076) cells were grown at 37°C on 

nutrient agar plates (0.3% beef extract, 0.5% peptone, 1.8% agar) for ~24 h.  B. subtilis 

(ATCC 9372) and B. megaterium (ATCC 14581) cells were grown at 30°C on the same 

nutrient agar plates for ~24 h. For the urine experiments, E. coli was grown overnight at 

37°C in LB medium (1% tryptone, 0.5% yeast extract) to an OD600 of ~4 and then 

diluted to 1×105 cells/mL in each urine sample. Ten μL of the spiked urine was diluted to 

100 μL in water and then spread onto the nutrient agar plate and incubated overnight at 

37°C. Cells from the plates were scraped into 1 mL 0.9% NaCl and rapidly centrifuged in 

an Eppendorf 5415C microcentrifuge at 16 000×g for 1 min. The cell pellets were 

resuspended in 1 mL 0.9% NaCl and spun again. The final cell pellets were stored at -

80°C until further use.  

4.2.3 Metabolite Extraction.  

The performance of three solvent systems were evaluated in this work: 50/50 

MeOH/H2O (MeOH), 50/50 ACN/H2O (ACN), and 40/40/20 MeOH/ACN/H2O (MAW). 

Each solvent extraction experiment was carried out in triplicate. For each extraction, the 

cell pellets were resuspended in 1 mL of the corresponding solvent system (0°C for ACN 

and -20°C for MeOH and MAW), and disrupted using ultrasonication, as described 

below. The resulting suspensions were centrifuged at 16 000×g for 10 min. The 

supernatants were dried using a SpeedVac and resuspended in 250 mL water. The 

resulting solutions were used for the labeling step. 
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 Three cell disruption methods were compared, together with a control experiment 

(i.e., no disruption, CT). They were ultrasonication (SN), microwave (Mic) and freeze-

thaw cycle (FT). Each disruption method, as well as the control experiment, was carried 

out in triplicate. Prior to disruption, the cell pellets were resuspended in 1 mL of 50/50 

MeOH/H2O. For the ultrasonication-assisted extraction, the cell suspensions were placed 

in a Branson ultrasonic cleaner 1510-MT (Branson Ultrasonics Corporation, Danbury, 

CT, USA) with ice bath for 10 min. Microwave-assisted extraction was performed for 10 

min at 240 W power with a 1200 W microwave oven (Panasonic, Toronto, ON, Canada). 

For freeze-thaw cycle extraction, the cell suspensions were rapidly dipped into liquid 

nitrogen bath for 30 sec and thawed on ice for 1 min. This procedure was repeated 3 

times. All of the resulting suspensions were centrifuged at 16 000×g for 10 min. The 

supernatants were dried and resuspended in 250 mL water.  

4.2.4 Dansylation Labeling Reaction.  

Fifty μL of the extracted solution was mixed with sodium carbonate/sodium 

bicarbonate buffer and ACN. The solutions were vortexed, spun down and mixed with 50 

μL freshly prepared 12C-dansyl chloride solution (18 mg/mL) (for light labeling) or 13C-

dansyl chloride solution (18 mg/mL) (for heavy labeling). The reaction was allowed to 

proceed for 1 hr at 60°C. After 1 hr, NaOH was added to the reaction mixture to quench 

the excess dansyl chloride. The solution was then incubated at 60°C for another 10 min. 

Finally, formic acid in 50/50 ACN/H2O was added to consume excess NaOH and to 

make the solution acidic. 

4.2.5 LC-UV Quantification.  
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For the cell differentiation experiment, an LC-UV quantification step was carried 

out prior to mass analysis in order to control the amount of sample used for metabolome 

comparison. The LC-UV method used has been described previously.125 Briefly, two μL 

of the labeled solution was injected onto a Waters ACQUITY BEH C18 column (2.1 mm 

× 5 cm, 1.7 μm particle size, 130 Å pore size). Solvent A was 0.1% (v/v) formic acid in 

10% (v/v) acetonitrile, and solvent B was 0.1% (v/v) formic acid in acetonitrile. The 

gradient started with 0% B for 1 min and was increased to 95% within 0.01 min and hold 

at 95% B for 1 min. The gradient was restored to 0% B in 0.5 min and hold at this 

condition for 3.5 min to re-equilibrate the column. The flow rate used was 0.45 mL/min. 

4.2.6 LC-MS and Data Analysis.  

The labeled metabolites were analyzed using a Bruker 9.4 Tesla Apex-Qe Fourier 

transform ion-cyclotron resonance (FTICR) mass spectrometer (Bruker, Billerica, MA) 

linked to an Agilent 1100 series binary HPLC system (Agilent, Palo Alto, CA). The 

samples were injected onto an Agilent reversed phase Eclipse Plus C18 column (2.1 mm 

× 10 cm, 1.8 μm particle size, 95 Å pore size) for separation. Solvent A was 0.1% (v/v) 

formic acid in 5% (v/v) acetonitrile, and solvent B was 0.1% (v/v) formic acid in 

acetonitrile. The chromatographic conditions were: t = 0 min, 20% B; t = 3.5 min, 35% 

B; t = 18 min, 65% B; t = 21 min, 95% B; t = 26 min, 95% B. The flow rate was 180 

μL/min. All MS spectra were obtained in the positive ion mode. The resulting MS data 

were processed using our in-house peak-pair picking software, IsoMS, written in R 

language.154 This program eliminated the false positive peaks, such as isotopic peaks, 

common adduct ions, and multiply charged ions. Only the protonated ion pairs were 

exported for further analysis. The extracted peak-pair data were aligned by retention time 
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and accurate mass, and only those peak-pair features shared by no less than 50% of the 

samples were retained for multivariate analysis. Heatmap comparison, ANOVA and 

multivariate analysis was performed by Metaboanalyst169 (www.metaboanalyst.ca) and 

the data were mean-centered and auto-scaled (unit variance) prior to analysis. 

4.3 Results and Discussion 

 The major objective of this work is to develop an analytical method for 

quantitative profiling of as many microbial metabolites as possible in bacterial cells. One 

key step for achieving a high metabolome coverage is to optimize the sample preparation 

process leading to the isotope labeling and LC-MS analysis. In this work, dansylation 

chemistry is used to label the amine- and phenol-containing metabolites. However, the 

sample preparation process should be equally applicable to other labeling chemistries 

targeted at the analysis of other sub-metabolomes, such as acid-containing metabolites.150 

Differential isotope dansylation labeling combined with LC-MS offers three unique 

attributes for developing an optimal sample preparation process for microbial 

metabolome profiling. First of all, this detection scheme is much more sensitive than 

direct LC-MS without labeling. Thus a larger number of metabolites can be profiled to 

provide a more complete view of the performance differences among different conditions 

under investigation. Secondly, with differential isotope labeling, differences in metabolite 

quantities in samples prepared under different conditions can be evaluated. Finally, high 

detection precision can be obtained with isotope labeling LC-MS and therefore subtle 

differences in analytical performance among different experimental conditions used can 

be revealed. In the following section, the optimization and performance of each key step 

involved in the sample preparation of bacteria cells are described, followed by the 

http://www.metaboanalyst.ca/
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demonstration of an application of the developed method for differentiation of different 

bacteria in cultured samples as well as spiked urine samples based on the metabolome 

fingerprints of these microorganisms.     

4.3.1 Effect of Cell Washing.  

Since we are interested in intracellular metabolite profiling, it is important to 

ensure that the metabolites detected are from inside of the cells rather than from the 

growth medium. In this work, after the cells were scraped off the dish, they were washed 

twice with 0.9% NaCl solution to remove any extracellular compound potentially stuck to 

the surface of the cells. The isotonic 0.9% NaCl solution was selected because it would 

not cause significant leakage131 and was reported to be effective for quenching the cell 

metabolism.182 

 Panels A-C in Figure 4.1 show a comparison between the base peak 

chromatograms of the washing solutions and the E. coli cell extract. By comparing the 

first and second wash solutions (panels A and B in Figure 4.1), we can see a significant 

decrease in signal intensity for most of the peaks, suggesting that the washing step is 

effective to remove the extracellular metabolites from the cells while not causing 

observable cell lysis (i.e., no leaking of metabolites from inside of the cells). A 

comparison between the second washing solution (Figure 4.1B) and the cell extracts 

(Figure 4.1C) reveals that there are fewer peaks detected in the washing solution with 

much lower intensities. Figure 4.1C shows that many metabolite peaks are observed and 

distributed across the entire gradient elution window. At a given retention time, a number 

of peak pairs from the differentially labeled metabolites can be observed in a mass 

spectrum. One example is shown in Figure 4.1D where several peak pairs with different 
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absolute intensities are detected. The expanded mass spectra at different intensity levels 

(see panels E-G in Figure 4.1) show a wide intensity dynamic range (from 1×105 to 

3×107 counts) from which peak ratio of each peak pair can be determined. In this 

particular case, 943 peak pairs were detected from the cell extract, while 65 peak pairs 

were found in the 2nd washing solution. Among them, only 16 ion pairs have overlaps, 

which is less than 1.7% of the detectable peak pairs from the cell extracts and the 

intensities of these 16 ion pairs found in the washing solution are much lower than those 

from the cell extracts. The large chromatographic peaks observed at the front (at ~1.4 

min) in both the washing solution and the cell extract were from the quenched reagent 

(dansyl-OH). The large peak observed at 23.7 min is from a singlet mass peak with m/z 

457.2772, which indicates that it is from a background compound, not a metabolite. One 

possible source of this peak is the sodium adduct of polysorbate 60 based on the mass 

match; peaks corresponding to its H and NH4 adducts were also observed in the mass 

spectrum. The comparison results obtained, as shown in Figure 4.1, give us confidence 

that compounds from the medium would not interfere and almost all detected metabolites 

in the ion chromatograms shown in Figure 4.1C should be originated from the cells. 
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Figure 4.1 Base peak chromatograms of (A) the first wash solution, (B) the second wash 

solution and (C) the metabolites extracted from E. Coli. Mass spectra of (D) full scan at 

the retention time of 15.6 min in (C) and the expanded regions showing a peak pair with a 

12C-dansyl labeled metabolite (E) at m/z 365.1531 identified as isoleucine, (F) at m/z 

399.1375 identified as phenylalanine and (G) at m/z 329.1060 identified as 

diaminopimelic acid.  
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4.3.2 Metabolism Quenching.  

Although a quenching step is usually recommended before carrying out the 

extraction in order to stop further metabolism, the use of a quenching solution (typically 

60% methanol) can often lead to metabolite leakage that can be as large as 60%.208 The 

quenching procedure is more critical for studying metabolites with fast turnover rates, 

such as those involved in the energy metabolism (e.g., ATP) and glycolic pathways (e.g., 

glucose-6-phosphate).216 Since our study focuses more on the general metabolic profile of 

the bacterial cells, rather than studying their metabolite fluxes, we decided not to include 

any additional quenching solutions in our experiment. Nevertheless, as noted before, we 

used cold 0.9% NaCl solution to rapidly wash the cells, which could at the same time 

serve as the quenching step. Although the extent of metabolism quenching during the cell 

washing step is unknown, as it will be shown below, the relative quantities of most of the 

putative metabolites detected in biological replicate experiments are reproducible, 

suggesting that any further metabolism during the sample handling process, if present at 

all, does not significantly affect the overall metabolic profiles. This may be due to the 

fact that, prior to metabolite extraction, the amine- and phenol-containing metabolites 

profiled by dansylation LC-MS do not undergo further metabolism extensively.   

4.3.3 Comparison of Extraction Solvents.  

As both methanol (MeOH) and acetonitrile (ACN) have been reported to be the 

optimal solvent for extraction of intracellular metabolites for different types of cells,182,213 

we have compared these two solvents (1:1 organic:water) to see which one works better 

for extracting the amine- and phenol-containing sub-metabolome from bacterial cells, 

using E. coli as the model system. In addition, a combination of the two solvents in water 
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(2:2:1 MeOH:ACN:H2O, MAW) was also compared to see if a mixture of solvents can 

perform better than the use of a single solvent, with an expectation that a pure solvent and 

a solvent mixture may have different metabolite extraction and solubility properties. The 

performance of the extraction solvents was evaluated according to three criteria,206 

namely the number of peak pairs detected, the relative intensity of each peak pair and the 

reproducibility of each extraction method. In this experiment, each individual sample was 

labeled with 12C-dansyl chloride and a pooled sample was labeled with 13C-dansyl 

chloride to serve as the internal standard. 

 The number of peak pairs detected in each extraction solvent is plotted in Figure 

4.2A. More than 1000 peak pairs were detected for each extraction solvent; this is a much 

larger number, compared to around 300 peaks detectable in similar cellular samples 

reported in the literature.204,206 Since only the labeled amine- and phenol-containing 

compounds present in both the individual samples and the pooled sample can be picked 

up as peak pairs, the dansylation isotope labeling LC-MS detection scheme eliminates 

artifacts from the instrument217 and other interferences (e.g., impurities leached from the 

plastic container). Moreover, we have also used a built-in function in the peak extraction 

software to filter the peak pairs found in the method blanks, thereby eliminating 

contributions from dansyl products of solvents, reagents and any impurities present 

therein. Therefore, each of the resulting peak pairs extracted by the software should 

represent a true metabolite. Since many of them were not identified, each peak pair 

detected is considered to be from a putative metabolite. Figure 4.2A shows that ACN and 

MeOH extractions gave a similar number of peak pairs. The use of solvent combination 
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(MAW), on the other hand, was not capable of extracting as many metabolites as the use 

of ACN or MeOH.  

 The relative intensity of each peak pair was calculated by taking the 12C/13C ratio, 

i.e., ratio of each individual sample to the pooled internal standard. Only those peaks 

commonly detected across all three extraction solvents were used for comparing the 

relative intensity. Figure 4.3 shows the number distributions of the peak pairs detected 

within a solvent (triplicate) and among the three solvent systems. From the combined 

results of all 9 runs, 2381 unique peak pairs or putative metabolites were detected. 

Among them, 851 peak pairs were found in all three extraction solvents. Figure 4.2B 

shows the relative intensity of 10 selected amino acids with different type of side-chains 

(i.e., hydrophobic, polar, acidic and basic) and Figure 4.2C compares the relative 

intensity of 10 other compounds encompassing a variety of classes (e.g., purine and 

pyrimidine derivatives, amino acid derivatives, dipeptide, amino sugar). These 

metabolites were identified based on the accurate mass and retention time matches with 

those of the dansyl labeled standard compounds. It can be seen that in most cases the 

results from these three solvents were comparable, with MeOH performing slightly better 

on average. For some compounds, the performance of MeOH extraction was significantly 

better than ACN or MAW (e.g., pyridoxal 5'-phosphate, adenosine), but it is difficult to 

observe specific trends on which class of compounds are more favorable in each solvent.  

 In addition to comparing the relative intensity of representative compounds, we 

have also carried out a heatmap comparison of all commonly detected peak pairs in order 

to avoid any bias. The heatmap comparison results are shown in Figure 4.4 where more 

red colored features indicate higher signal intensities. It was found that MeOH extraction 
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in general could give higher intensities for most of the peak pairs detected, compared to 

ACN or MAW extractions. These results indicate that MeOH is a better extraction 

solvent in terms of the relative intensity of the extracted metabolites. 

 To compare the reproducibility of different solvents, box plots showing the 

distributions of relative standard deviations of peak pairs were constructed and they are 

given in Figure 4.5. For all three solvents, the relative standard deviations for the 

majority of peak pairs were below 20%, indicating a good reproducibility. The mean 

values (represented by the dots) were 12.6% 10.2% and 9.8% for MeOH, ACN and 

MAW, respectively. The results from t-test of these values indicate that ACN and MAW 

were not significantly different, while MeOH's mean value was different from those of 

ACN and MAW. Thus, ACN and MAW gave slightly better reproducibility than MeOH. 

However, the reproducibility of all of these methods should be sufficient for most 

metabolic profiling applications.  

 The above results indicate that the three solvent systems studied detected a similar 

number of peak pair with similar number reproducibility. In terms of signal 

reproducibility, ACN and MAW were slightly better than MeOH. However, MeOH was 

more effective in getting higher amounts of compounds. Since the purpose of the work is 

to do metabolic profiling of bacteria cells, it is desirable to get as high yields as possible 

from the extraction process. Therefore, MeOH was chosen as the extraction solvent for 

all the subsequent experiments.  
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Figure 4.2 Comparison of (A) average number of peak pairs detected, (B) relative 

intensities of 10 amino acids and (C) relative intensities of 10 other selected compounds 

extracted by the three solvent systems. Compounds labeled with an asterisk (*) indicates 

level 2 identification (see Text). All the other compounds were definitively identified 

(level 1).  
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Figure 4.3 Distributions of the number of ion pairs detected in cell extracts prepared 

using three different solvent systems. 
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Figure 4.4 Clustered heatmap showing comparison of the relative intensity of each peak 

pair in three solvent extraction methods.  More red colored features indicate higher signal 

intensities. 
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Figure 4.5 Box plot showing distribution of %RSD for three solvent extraction methods. 

The range of the box is 25 to 75 percentile. The line in the box represents the median 

value and the mean value is shown as a dot in the box. 

 

4.3.4 Comparison of Sample Disruption Methods.  

In addition to the selection of an appropriate extraction solvent, it is also 

important to use an effective disruption method to facilitate metabolite extraction into the 

extraction solvent. In this work, four protocols were evaluated: no disruption (or control, 

CT), freeze-thaw cycle (FT), ultrasonication (SN) and microwave (Mic). In many of the 

cellular metabolomics studies reported,204,205 freeze-thaw cycle or no cell disruption was 

applied. Ultrasonication has also been used, but mostly with a sonicator containing a 

metal tip. However, this way of ultrasonication is very time-consuming as only one 
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sample can be processed at a time and may cause cross-contamination if the tip is not 

washed thoroughly. In our work, we used an ultrasonic cleaner which is capable of 

handling multiple samples without direct contact with the sample. The use of microwave 

has also been demonstrated to be efficient for extracting metabolites from biological 

samples.218,219 

 The same three criteria have been applied to evaluate the performance of the 

sample disruption methods. Figure 4.6A shows the number of peak pairs detected in each 

method. Among these four protocols, ultrasonication and microwave gave slightly higher 

numbers of peak pairs. Comparison of the relative peak intensity was also carried out on 

the commonly detected peak pairs (i.e., 834 out of a total of 2484 peak pairs from 12 runs, 

Figure 4.9). The relative intensities of 20 selected compounds are shown in panels B and 

C of Figure 4.6. The heatmap showing the comparison of relative intensities of all the 

peak pairs commonly detected in the four disruption methods is shown in Figure 4.7. It is 

apparent that ultrasonication gave higher intensities for most of the compounds, followed 

by microwave. The performance of freeze-thaw cycle was very similar to the control, 

which is not surprising considering that the control samples were flash frozen and stored 

under -80°C before the extraction, and therefore cell lysis is expected to occur to some 

extent through this freeze-thaw process. The heatmap shown in Figure 4.7 indicates that 

the extraction with no disruption or freeze-thaw gave low amounts for the majority of the 

peak pairs. Applying a disruption procedure appears to be essential in order to achieve 

high efficiency of extraction. Our results also suggest that the commonly used freeze-

thaw cycle procedure is insufficient for metabolite extraction. The performance of 
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ultrasonication and microwave was similar, indicating that both methods can be used to 

effectively break the cells and facilitate metabolite extraction into the extracting solvent.  

 The reproducibility of the four disruption methods was also examined and the 

results are shown in Figure 4.8. For most of the metabolites the relative standard 

deviation of peak intensity from triplicate experiments was below 20%. The mean values 

for CT, FT, SN and Mic were 15.2%, 16.2%, 12.9% and 12.6%, respectively. The larger 

relative standard deviation values for CT and FT is another indication of insufficient 

extraction of the metabolites into the solvents; with low extraction efficiency, the level of 

metabolites can more randomly vary from one experiment to another, compared to a 

more completed extraction. Therefore, in terms of intensity reproducibility, SN and Mic 

were found to be better disruption methods than CT and FT. We also compared the 

reproducibility of the number of peak pairs detected among these methods. Figure 4.9 

shows the distributions of the number of peak pairs detected from the four disruption 

methods. The average number of peak pairs detected was 981±46, 1012±50, 1111±61 and 

1058±70 for CT, FT, SN and Mic, respectively. There was no significant difference in 

terms of peak pair reproducibility. Based on the overall consideration of the three criteria 

examined, it can be concluded that the use of SN or Mic is a better choice to facilitate the 

metabolite extraction. Because SN is very convenient to do, compared to Mic, we used 

ultrasonication with a sonicator to perform solvent extraction for the subsequent 

experiments.     
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Figure 4.6 Comparison of (A) average number of peak pairs detected, (B) relative 

intensities of 10 amino acids and (C) relative intensities of 10 other selected compounds 

extracted in 1:1 MeOH:H2O in combination with one of the four disruption methods. 

Compounds labeled with an asterisk (*) indicates level 2 identification (see Text). All the 

other compounds were definitively identified (level 1).  
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Figure 4.7 Clustered heatmap showing comparison of the relative intensity of each peak 

pair in four disruption methods. More red colored features indicate higher signal 

intensities. 
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Figure 4.8 Box plot showing distribution of %RSD for four disruption methods. The 

range of the box is 25 to 75 percentile. The line in the box represents the median value 

and the mean value is shown as a dot in the box. 

 

It should be noted that the entire process of sample extraction with sonication, 

dansylation labeling and LC-MS analysis can be accomplished within 5 hours. For a 

trained researcher, 8 samples can be processed simultaneously for the metabolite 

extraction and 50 samples can be labeled in one batch. This procedure thus allows routine 

processing of tens to hundreds of samples within one day and the LC-MS analysis of 

these samples with automatic running sequences to be done within a few days at a rate of 

30 min per sample including column washing in between runs. The sample throughput 

should be expandable with the use of a multi-channel pipette and a larger or more 
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sonicators for sample processing and the use of a faster, high resolution mass 

spectrometer, such as time-of-flight MS, instead of FT-ICR-MS, for collecting the LC-

MS data.  

4.3.5 Bacterial Differentiation: Sample Amount Normalization.  

The application of the extraction-labeling method described above is 

demonstrated on the differentiation of three different bacteria cells, namely E. coli (EC), 

B. subtilis (BS) and B. megaterium (BM), based on their metabolic profiles. These 

bacteria were chosen as the model system because they include both Gram (+) (B. subtilis 

and B. megaterium) and Gram (-) (E. coli) species. Each cell was analyzed in a total of 9 

biological replicates, including 3 inter-day replicates and 3 intra-day replicates on each 

day. In addition to the biological replicates, one additional experimental replicate was 

carried out for each of the three bacteria on each day. These replicate experiments were 

designed to demonstrate the robustness of this method, which is an important prerequisite 

for studying the differences in metabolic profiles. If the metabolic profiles of each cell 

type obtained from all these replicates are similar, we will then be confident to apply our 

method to study the metabolic differences among different cells, i.e., either the same cell 

type grown under different conditions to investigate the effect of cellular perturbation 

(e.g., via a stimulus) for biological studies, or different cell types for bacteria 

differentiation or identification.   
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Figure 4.9 Distributions of the number of ion pairs detected in cell extracts prepared 

using four different sample disruption methods. 
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 Since the cells were scraped off the plates, it is difficult to control as well as count 

the number of cells harvested. For fair comparison of the metabolic profiles of the same 

or different cells, sample amount normalization among the different comparative samples 

is needed. We recently reported a normalization method based on the use of dansylation 

labeling LC-UV for determining the total amount of the labeled metabolites in a sample, 

followed by adjusting the sample volume of individual samples to mix with a control 

sample (i.e., a pooled sample from several individual samples).125 In this work, we 

applied this method to normalize the metabolite amounts among the comparative cell 

samples. After dansylation labeling of the extracted metabolites from each cell sample, a 

LC-UV quantification step was carried out to determine the total amount of the labeled 

metabolites.  

 The quantification results are shown in Table 4.1, which illustrates that although 

the sample amount within each cell type was similar in most cases, a variation of as large 

as 2-fold could still be observed. This indicates that a sample amount normalization step 

is very important in order to minimize the contribution of the sample amount variation to 

the metabolic profiles of comparative cells. Table 4.1 also shows that the amount of 

metabolites extracted from B. subtilis and B. megaterium was considerably larger than 

that extracted from E. coli. This is due to the larger number of cells harvested, because B. 

subtilis and B. megaterium grow better in the growth medium (nutrient agar) than E. coli. 

In this work, to compare the metabolic profiles of different cell species, we took the same 

total amount of the labeled metabolites from each sample and assumed that any 

difference observed from their metabolic profiles solely came from differences in the 
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abundances of individual metabolites. As it will be discussed later, this assumption was 

proved to be valid for the purpose of differentiating cell types. 

 

Table 4.1 Quantification results of bacterial samples by UV absorbance. 

 Peak area  Concentration 
(mM)* 

Volume needed 
(μL) 

EC D1_1# 1208390 0.99 70.3 
EC D1_2 1377843 1.12 62.2 
EC D1_3 887078 0.75 93.3 
EC D2_1 1234665 1.01 68.9 
EC D2_2 1465343 1.19 58.8 
EC D2_3 1385553 1.13 61.9 
EC D3_1 626914 0.55 126.9 
EC D3_2 1023379 0.85 82.0 
EC D3_3 1240886 1.02 68.6 
BS D1_1 3091836 2.43 28.8 
BS D1_2 3199967 2.51 27.8 
BS D1_3 3118720 2.45 28.5 
BS D2_1 3230289 2.54 27.6 
BS D2_2 3451369 2.70 25.9 
BS D2_3 4257265 3.32 21.1 
BS D3_1 2477912 1.96 35.6 
BS D3_2 3178666 2.50 28.0 
BS D3_3 3336383 2.62 26.7 
BM D1_1 3364010 2.64 26.5 
BM D1_2 4661662 3.63 19.3 
BM D1_3 4673824 3.64 19.2 
BM D2_1 3519363 2.76 25.4 
BM D2_2 2844405 2.24 31.2 
BM D2_3 3789028 2.96 23.6 
BM D3_1 4192583 3.27 21.4 
BM D3_2 4032917 3.15 22.2 
BM D3_3 4467401 3.48 20.1 

Pooled sample 2962148 2.33 30.0 
 

*The concentrations were calculated using a pre-determined calibration curve 
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#EC: E. coli; BS: B. subtilis; BM: B. megaterium. D1, D2, D3 refer to samples collected 

on day 1, day 2 and day 3, respectively. The numbers after the underline indicate the 

intra-day replicates.  

4.3.6 Bacterial Differentiation: Data Analysis.  

To produce a reference sample from which all the individual samples can be 

compared to, aliquots of individual extracts from the three different cells were mixed to 

generate a pooled sample which was subsequently labeled by 13C-dansyl chloride. An 

equal amount of 12C-dansyl labeled individual sample and 13C-dansyl labeled pooled 

reference sample was mixed, followed by LC-MS analysis. The peak ratios of individual 

peak pairs found in the mass spectra were calculated. Since the same reference sample 

was used, the peak ratios of an individual peak pair obtained from different samples 

reflected the concentration differences of the putative metabolite in these samples.  

 Among the comparative samples, there are a total of 704 peak pairs or putative 

metabolites with ratios detectable in at least 50% of the samples. These ratios were used 

for the principal component analysis (PCA) and the resulting PCA score plot is shown in 

Figure 4.10. The score plot clearly demonstrates that the three different bacteria can be 

well separated. Although B. subtilis and B. megaterium belong to the same Bacilli genus, 

there are still substantial differences in their metabolic profiles, which are reflected by the 

second principle component. These results indicate the potential of this method for 

differentiating bacteria at the species level. Of course, the specificity and applicability of 

the method for differentiating a great variety of bacteria species and strains, including 

clinically relevant microorganisms, requires further investigation. 
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 The distribution of the intensity ratio of the peak pairs detected from each sample 

that were used for the PCA analysis is shown in Figure 4.11 (only the data from 

biological replicates were plotted). It is interesting to note that the intensity ratio 

distributions of all 9 E. coli samples were larger than those of B. megaterium and B. 

subtilis, while the distributions of B. megaterium and B. subtilis were very similar. The 

median of the intensity ratios for each sample ranges from 0.67 to 1.56 with a mean value 

of 1.06. Thus, many of the metabolites have similar ratios, which are expected as they are 

likely involved in essential metabolisms common to different cell types. The most 

important variables that contribute to the differentiation were determined by PLS-DA 

analysis. Table 4.2 lists the top 20 metabolites (i.e., with the highest VIP scores). The 

metabolites were identified either by matching the accurate mass and retention time with 

authentic standards (level 1) or our standard library51 (level 2), or by searching the 

accurate mass against the human metabolome database (HMDB)26 (level 3). Table 4.2 

also shows the average 12C/13C ratio of these metabolites in each species, with the %RSD 

included in the parentheses. We can see that the %RSD is generally in the range of 10-

30%, indicating a good reproducibility was obtained, despite the combined variations 

from biological replicates, sample preparation and instrumental analysis. However, we 

note that for some compounds (e.g., compound 16), the %RSD is considerably large for 

all three species, and a detailed examination of the data variations reveals that the large 

%RSD is mainly attributed to the biological variations (data not shown). Therefore, 

compounds like this one should not be selected as a discriminator, if one or several 

individual metabolites are used for differentiating the cell type.   
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 From the above results of the median peak ratio analysis of individual metabolites 

and the PCA/PLS-DA analysis of the metabolic profiles, we can conclude that the 

proposed sample amount normalization method can be used for bacterial metabolic 

comparison to reveal subtle differences. We noticed that some of the metabolite 

distribution patterns among the three different cells can be rationalized. For example, 

diaminopimelic acid, a key component of the bacterial cell wall that is incorporated into 

the peptidoglycan structure of Gram (-) bacteria and Gram (+) bacilli,220 has been 

detected in all three species, with the ratios in the two Gram (+) species being markedly 

larger than in E. coli (Figure 4.12). This can be explained by considering that Gram (+) 

bacteria have thicker cell wall structures and that peptidoglycan is highly abundant in 

Gram (+) bacteria cell wall.220,221 We also found that this ratio is larger in B. megaterium 

than in B. subtilis, possibly because of the larger size of B. megaterium. For many other 

compounds, for example, glutamine, it is difficult to provide a simple explanation for the 

different amounts present in the three species because glutamine is involved in several 

metabolic pathways. However, as long as the amount found in each bacteria species is 

very consistent and that they are significantly different from the other species (as 

indicated by the p-values), this compound can still serve as a good marker for bacterial 

identification. Thus, by matching the ratios of many of these marker metabolites obtained 

in an unknown sample with the data generated from a known species, we would be able 

to identify the unknown species with high confidence.  

Of course, the applicability of this approach of bacterial identification depends on 

the presence of an informative library containing specific panels of metabolite-markers 

from a wide variety of bacteria species that are of interest to a practical application. For 
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example, for diagnosis of bacterial infection, a metabolite-marker library of bacteria 

found in clinical samples may be constructed. This strategy is similar to the use of 

protein-markers for bacterial identification that is done mainly using matrix-assisted laser 

desorption ionization (MALDI) MS222-224 and has been adapted in some clinical diagnosis 

laboratories.23,225-227 Metabolite-based analysis may offer an alternative or 

complementary tool to the protein-based method for bacterial differentiation or 

identification. 

 

 

Figure 4.10 PCA score plots for three standard bacterial cultures. BM, B. megaterium, in 

red; BS, B. subtilis, in green; EC, E. coli, in blue. For each species, 9 biological replicates 

and 3 experimental replicates were presented. 
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Figure 4.11 Distribution of the intensity ratios of all peak pairs detected in at least 50% of 

the samples for each biological replicate. BM, B. megaterium, in red; BS, B. subtilis, in 

blue; EC, E. coli, in black.  
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Figure 4.12 (A) Molecular structure of diaminopimelic acid; (B) One structure unit of the 

cell wall peptidoglycan; (C) Column plot showing the average ratio of diaminopimelic 

acid detected in the three bacteria species. 
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Table 4.2. Summary of the top 20 discriminant metabolites (VIP score>1.5) determined 

by PLS-DA for differentiation between E. coli, B. Subtilis and B. Megaterium. 

 
Rt 

(min) 
m/z light 12C/13C 

in BM* 
12C/13C 
in BS 

12C/13C 
in EC 

Compound ID ID 
level# 

1 14.87 329.1059 1.49 (20) 0.55 (9) 0.10 (17) Diaminopimelic acid 1 
2 5.84 380.1274 1.28 (18) 0.82 (24) 0.06 (14) Glutamine 1 
3 16.90 352.0996 0.51 (18) 1.03 (13) 1.50 (11) Methionyl-Serine, 

Serinyl-Methionine 
3* 

4 9.59 478.1645 1.57 (20) 0.45 (31) 0.02 (25) Hydroxyprolyl-
Hydroxyproline, 

(2S,4S)-Pinnatanine 

3 

5 9.73 323.1053 1.23 (19) 0.54 (18) 0.12 (17) Alanine 1 
6 20.31 389.1277 0.52 (17) 0.65 (21) 2.62 (22) Histidine 1 
7 13.90 346.0855 0.04 (27) 0.74 (29) 2.19 (27) Uracil 3* 
8 18.68 300.1031 1.11 (26) 0.93 (20) 0.09 (29) Ornithine 1 
9 8.40 394.1432 1.08 (21) 1.02 (22) 0.19 (13) Alanyl-Alanine, 

4-Acetamido-2-
aminobutanoic acid 

 

10 7.95 353.1164 1.11 (20) 0.60 (23) 0.08 (18) Threonine 1 
11 11.41 399.0681 0.29 (23) 1.26 (15) 3.09 (16) Unknown \ 
12 12.37 315.1161 1.76 (23) 0.71 (17) 0.21 (17) 2-Methylpyrrole 3 
13 19.41 367.6065 0.45 (28) 0.71 (26) 3.36 (32) Adenosine, 

Deoxyguanosine, 
Vidarabine 

3* 

14 5.64 440.1488 0.40 (23) 0.12 (12) 5.34 (12) Serinyl-Threonine, 
Threoninyl-Serine 

3 

15 10.44 453.1693 0.69 (14) 0.71 (18) 2.98 (18) Pantothenic acid 1 
16 7.22 438.1333 1.75 (33) 0.21 (51) 0.02 (46) Aspartyl-Alanine, 

Alanyl-Aspartate,   
5-L-Glutamylglycine 

3 

17 13.98 393.1352 1.91 (21) 0.11 (25) 0.64 (12) Unknown \ 
18 24.29 378.0830 0.65 (18) 0.64 (24) 3.33 (20) Unknown \ 
19 22.46 384.6401 0.07 (27) 0.48 (46) 1.49 (22) Unknown \ 
20 11.19 392.1275 1.14 (15) 1.29 (13) 0.23 (20) 1-(Hydroxymethyl)-

5,5-dimethyl-2,4-
imidazolidinedione 

3* 

*the number in parenthesis refers to %RSD. 

#an ID level labeled with an asterisk (*) indicates an unlikely match due to the lack of a 

correct number of amine or phenol functional groups in the structure. The criteria for 

accurate mass match is within a mass error of less than 5 ppm.  
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4.3.7 Analysis of Bacteria in Human Urine.   

In addition to the presence of a library of metabolite markers, a reliable 

identification process also depends on the consistent detection of the bacterial metabolic 

profiles in various real samples. In order to investigate whether a single bacterial strain 

isolated from a real biological sample can give a similar metabolic profile as the standard 

cultures, we spiked 1×105 cells/mL of E. coli cultured in LB medium into 1 mL of human 

urine samples and spread the urine sample onto the nutrient agar plates to isolate pure E. 

coli strains, as a model system to mimic a real clinical sample (denoted as ECU). This 

was done with three healthy individuals’ urine samples, each with three replicate 

experiments. The use of urine samples from different people can provide us an insight 

into whether differences in urine would have an effect on the metabolic profile of the 

bacteria. The isolated E. coli strains were then extracted, labeled and analyzed in the 

same way as the standard bacteria cultures. The resulting data were compared with the 

data obtained from the three standard cultures using PCA, as shown in Figure 4.13. It can 

be seen that E. coli strains isolated from spiked urine samples can still be clustered close 

together with the standard E. coli cultures, and that they can be clearly separated from the 

two Bacilli ‘false strains’. In addition, there is no significant distinction between the E. 

coli strains obtained from the three different urine samples, indicating that the 

composition of urine would not affect the bacterial metabolite profile.  

 The PCA score plot is useful for visual inspection of the data. However, in order 

to obtain a more confident conclusion on the similarity of the ‘real sample bacteria’ to the 

standard bacteria cultures, a comparison of the ratios of all commonly detected peak pairs 

was carried out. For a total of 454 commonly detected peak pairs, we assigned a score of 
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1 to the closest match and a score of 0 to the other two non-matches for each peak pair. 

This procedure gave a score of 83 for B. megaterium, 89 for B. subtilis and 282 for E. 

coli. The much higher score for E. coli is another indication that this urinary bacteria can 

be differentiated from the ‘false strains’ and thus be correctly identified.  

 As an example, Table 4.3 shows the ratios of 10 definitively identified 

metabolites (level 1) detected in the four bacteria strains, from which we can see that for 

all these 10 metabolites, the average ratios found in the urinary bacteria were closest to E. 

coli and were significantly different from that of B. subtilis and B. megaterium. The 

%RSDs for different urinary bacteria samples were all below 30%, indicating again that 

the metabolic profile of bacteria cells was largely independent of the urine composition.  

 The success of identifying the bacteria strain in the spiked urine samples is an 

important illustration on the prospect of our method to practical applications, which 

requires sample-independent, un-biased analyses. Our hypothesis was that regardless of 

the source of the bacteria, by growing the cells on the same medium under exactly the 

same conditions, similar metabolic profiles could be obtained. The results of the current 

experiment support this hypothesis, leading to the possibility of using this method for real 

sample analysis which we will undertake in the future.  
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Figure 4.13 PCA score plots for three standard bacterial cultures plus the urinary bacteria. 

BM, B. megaterium, in red; BS, B. subtilis, in green; EC, E. coli, in blue; and ECU, E. 

coli from urine, in light blue. Only the 9 biological replicates were shown for each 

species. 
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Table 4.3. Comparison of the average 12C/13C ratio in urinary bacterial samples with 

standard cultures. 

Compound Name 12C/13C in 
BM* 

12C/13C in BS 12C/13C in EC 12C/13C in 
ECU 

Pantothenic acid 0.69 (14) 0.71 (18) 2.98 (18) 2.91 (14) 
Diaminopimelic acid 1.49 (20) 0.55 (9) 0.10 (17) 0.13 (23) 

Glutamine 1.28 (18) 0.82 (24) 0.06 (14) 0.08 (29) 
Serine 0.72 (19) 1.18 (25) 0.19 (32) 0.28 (24) 

Ornithine 1.11 (26) 0.93 (20) 0.09 (29) 0.13 (27) 
Threonine 1.11 (20) 0.60 (23) 0.08 (18) 0.12 (25) 

Alanine 1.23 (19) 0.54 (18) 0.17 (14) 0.21 (21) 
Histidine 0.52 (17) 0.65 (21) 2.62 (22) 2.87 (21) 

Lysine 0.10 (17) 1.17 (9) 2.51 (20) 2.85 (19) 
Glutamic acid 0.33 (24) 2.11 (2) 0.13 (23) 0.12 (14) 

 

*the number in parenthesis refers to %RSD. 
 

4.3.8 Detection Sensitivity.  

In this study, we have not carried out the specific experiments to determine the 

sensitivity of this method, but we note that cells grown under the conditions indicated in 

the Experimental Section for a period of 24 hours, which corresponds to the order of 

1×109 cells, could generate sufficiently high signals (i.e., more than 1000 peak pairs 

detected with S/N > 20). We also noticed that although E. coli was used as the model 

species for method optimization, the peak intensity for the majority of peaks were on the 

same order of magnitude for all three bacteria species, indicating that this extraction-

labeling method works equally well for Gram (+) and Gram (-) species. 
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4.4 Conclusion 

 A method for quantitative metabolome profiling of bacterial cells with relatively 

high metabolome coverage has been developed. The optimized method involves the 

following major steps: cell sampling and washing, methanol extraction with 

ultrasonication, isotope labeling of the extracted metabolites, LC-UV quantification of 

the labeled metabolites, mixing of the isotope-differentially labeled sample and control, 

LC-MS analysis of the mixture, and data analysis of the peak pairs or putative 

metabolites found in comparative samples. We have targeted the analysis of amine- and 

phenol-containing metabolites by applying the dansylation labeling strategy and have 

optimized the extraction solvent and disruption method for detection of the dansyl-

labeled compounds. This method has also incorporated a LC-UV quantification step 

targeting the labeled metabolites, which is very straight-forward and simple to use. We 

demonstrated that this method allows the detection of an average of 1052±58 peak pairs 

of putative metabolites from E. coli using a 25-min LC-MS run and over 2484 unique 

peak pairs from a combination of different solvents and sample disruption methods. 

Application of this method was successfully demonstrated on the differentiation of three 

different bacteria species, as well as identification of bacteria cells spiked in urine 

samples. The possibility of applying the current method in clinical applications has been 

discussed, which will be our future research focus. We envisage that another important 

application of this method is in the area of biological metabolomics where specific 

changes of the metabolome within cells after exposing to different environmental 

conditions can be probed for functional studies of cellular metabolisms and networks.  
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Chapter 5 

Metabolic Signature of Autism Spectrum Disorders Revealed by High 

Performance Isotope Labeling LC-MS 

5.1 Introduction 

  Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders 

developed in the early childhood. It is characterized by impaired social interaction and 

communications, as well as abnormal behaviors like restricted and repetitive activities. 

There’s been a growing research interest in the study of ASD because of its increasing 

prevalence over recent years, which is estimated to affect 1 in 50 children in 2011-

2012.228 The exact pathophysiology of autism is still not well understood,229 and the 

disorder is believed to be related to a complex interaction of genetic and environmental 

factors, with the heritability accounting for approximately 40-60%.230,231 Diagnosis of 

ASD is largely determined by clinical evaluations of observed behaviors, which is 

inevitably subject to the expertise of clinicians. In addition to abnormal behaviors, 

autistic patients were often found to exhibit altered functions and metabolisms in the 

body’s basic systems including the neurologic, gastrointestinal, immunologic and 

toxicologic systems.232 Comorbid conditions like epilepsy and depression are also 

commonly observed in autistic individuals.233 Because of the complexities in the 

pathogenesis of this disorder and the high clinical heterogeneity, it is necessary to 

establish a more objective method for diagnosis of ASD based on biological markers. 

However, to date, there’s still lack of reliable biomarkers that can be used clinically for 

diagnosis of autism. In recent years, several studies have been reported that aims to 

identify specific proteins or metabolites as potential biomarkers for clinical diagnosis.234-
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238 However, most of these studies were based on a relatively small sample size (less than 

50 autistic patients and healthy controls) and a validation phase based on an independent 

sample set is often absent.  

Metabolomics is now a rapidly growing field that allows high-throughput 

profiling of metabolites at the global level. As the end product of all biological processes, 

the status of metabolites could be used to reflect pathophysiological changes in diseases, 

and consequently disease-specific metabolic signatures could be readily identified by 

metabolomics studies.239 In addition, the comprehensive analysis of the metabolome 

allows simultaneous detection and quantification of multiple metabolite signatures which 

when combined together, could provide a better diagnostic performance compared to the 

use of a single biomarker. Because of the high complexity of biological samples, a robust 

and sensitive analytical method capable of detecting and quantifying a large number of 

metabolites is required for metabolomics studies. To this end, our group has developed a 

12C/13C-dansylation labeling technique for the analysis of the amine- and phenol-

containing sub-metabolome, which allows separation of polar and ionic metabolites on 

RPLC while providing a signal enhancement of 10- to 1000-fold.146 This method enables 

detection and relative quantification of hundreds to over a thousand of metabolites and 

has been applied in the metabolic profiling of various biofluids including urine,146, 

cerebrospinal fluid49 and saliva.156 

In this work, we applied this dansylation labeling technique for metabolomic 

profiling of 427 plasma samples from children aged 2-10 with ASD and age-matched 

controls (Table 5.1). Plasma, compared to other biofluids such as urine and cerebrospinal 

fluid (CSF), has the following features for studying disorders related to the neurological 
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system: 1) it is less invasive than CSF and can be readily obtained in clinical laboratories; 

2) the metabolite levels in plasma were found to be correlated to those in CSF239 and 

therefore it may provide more valuable information on the neurological system compared 

to urine samples; 3) plasma metabolite concentrations are highly regulated so that 

metabolite levels can be directly quantified and compared across different samples. In 

addition to the selection of biofluid type, a few more considerations were made to ensure 

a more homogeneous sample set. Firstly, children were preferred subjects than adults 

because metabolite levels in adult patients are more likely affected by disease duration.240 

Secondly, healthy control samples were carefully chosen so that both the age and gender 

match with the autistic group. Finally, since the metabolite profile is sensitive to 

exogenous treatments such as medication, only drug-naïve subjects were recruited. Our 

results demonstrate a significant difference in the metabolic profiles of ASD patients and 

controls and a set of metabolite signatures were identified and validated. To the best of 

our knowledge, this is the largest sample set that has been reported for metabolomics 

studies of ASD.  

Table 5.1 Clinical characteristics of study participants 

 First set Second set Blind test set 

 HC* ASD  HC  ASD  HC ASD 

Number of samples 100 100 100 100 19 8 

Age (years) 6.2 ± 2.5 5.3 ± 2.6 5.9 ± 2.4 4.6 ± 2.4 5.2 ± 2.7 2.9 ± 0.8 

Male/Female 50/50 50/50 80/20 80/20 10/9 5/3 

*HC: Healthy control; ASD: Autism spectrum disorder 

5.2 Experimental 

5.2.1 Chemicals and Reagents.  
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12C-dansyl chloride (DnsCl) and formic acid were purchased from Sigma-Aldrich 

Canada (Markham, ON, Canada). The isotopic compound used to synthesize 13C-dansyl 

chloride was purchased from Cambridge Isotope Laboratories (Cambridge, MA, USA). 

13C-dansyl chloride was synthesized as described previously146 and the other chemicals 

used to synthesize this isotope reagent were purchased from Sigma-Aldrich. Dipeptide 

standards were purchased from Sigma-Aldrich, MP Biomedicals(Santa Ana, CA, USA) 

and Chem-Impex (Wood Dale, IL, USA). All the other standards were purchased from 

Sigma-Aldrich. LC-MS grade water, acetonitrile (ACN) and methanol (MeOH) were 

purchased from Thermo Fisher Scientific (Edmonton, AB, Canada).  

5.2.2 Clinical sample collection.  

Children, aged 2 to 10 years, suspected and diagnosed with ASD were recruited 

from the Department of Paediatrics and Adolescent Medicine, Duchess of Kent Children 

Hospital in Hong Kong. The diagnosis of autism was made by developmental 

pediatricians based on the diagnostic criteria in The Diagnostic and Statistical Manual of 

Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). Samples were collected 

with informed consent from both non-autistic and autistic children using the same 

procedure, and handled in accordance with the Declaration of Helsinki’s “Ethical 

Principles for Medical Research Involving Human Subjects”. Altogether 400 patient 

samples (200 each for non-autistic and autistic children) were collected and used in 

system training and validation. 

Venous blood samples were collected, by single-use venipuncture device in 1-mL 

tubes containing lithium heparin as anticoagulant. After collection, blood samples were 

inverted 5 times for adequate mixing of blood and anticoagulant. Samples were 
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centrifuged at 3500 g for 20 min at 4oC. De-identified plasma samples from autistic and 

non-autistic children were obtained and stored at -20oC until analysis.  

For the blind test, additional 27 patient samples were collected following the 

above samples collection procedures.  

5.2.3 Plasma Metabolite Extraction and Labeling.  

Metabolites were extracted from plasma samples via protein precipitation with 

methanol. Three volumes of ice-cold methanol were added into 30 μL of plasma, 

vortexed and incubated on ice for 15 min. This was followed by centrifugation at 20 817 

g for 15 min. The supernatants were dried using a SpeedVac and resuspended in 30 μL of 

5:1 v/v water:ACN. For the labeling step, the extracted solution was mixed with sodium 

carbonate/sodium bicarbonate buffer and ACN. The solutions were vortexed, spun down 

and mixed with 25 μL freshly prepared 12C-dansyl chloride solution (18 mg/mL) (for 

light labeling) or 13C-dansyl chloride solution (18 mg/mL) (for heavy labeling). The 

reaction was allowed to proceed for 1 hr at 40°C. After 1 hr, NaOH was added to the 

reaction mixture to quench the excess dansyl chloride. The solution was then incubated at 

40°C for another 10 min. Finally, formic acid in 50/50 ACN/H2O was added to consume 

excess NaOH and to make the solution acidic. Experimental duplicate was carried out for 

each plasma sample.  

5.2.4 Preparation of Labeled Samples for LC-MS Analysis.  

Aliquots of individual plasma samples were mixed together to generate a pooled 

sample which was subsequently labeled by 13C-dansyl chloride to serve as the reference 

sample. The individual samples were then labeled with 12C-dansyl chloride and combined 

with an equal amount of 13C-labeled reference sample prior to LC-MS analysis. Quality 
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control samples were prepared by 1:1 volume mix of a 12C-labeled and a 13C-labeled 

pooled sample.  

5.2.5 LC-MS-based Metabolic Profiling.  

The labeled metabolites were analyzed using a Bruker Maxis Impact QTOF mass 

spectrometer (Bruker, Billerica, MA) linked to an Agilent 1100 series binary HPLC 

system (Agilent, Palo Alto, CA). The samples were injected onto an Agilent reversed 

phase Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 μm particle size, 95 Å pore size) 

for separation. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent 

B was 0.1% (v/v) formic acid in acetonitrile. The chromatographic conditions were: t = 0 

min, 20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 24 min, 99% B; t = 28 min, 99% 

B. The flow rate was 180 μL/min. All MS spectra were obtained in the positive ion mode 

with a scan range of 150 to 1000 m/z. The capillary voltage was 4500 V and nebulizer 

pressure was 1.8 bar. The dry gas flow was set to 8 l/min and the dry gas temperature was 

set to 230 oC. Quality control samples were analyzed between every 25 sample runs to 

monitor the instrument performance. 

5.2.6 Data Process and Statistical Analysis.  

Data obtained from LC-MS acquisition was internal-mass calibrated and 

processed using our in-house peak-pair picking software, IsoMS, written in R language. 

This program eliminated the false positive peaks, such as isotopic peaks, common adduct 

ions, and multiply charged ions. Only the protonated ion pairs with S/N greater than 10 

were exported for further analysis. The peak ratios of individual peak pairs were 

calculated by the program as a measure of the concentration differences of the putative 

metabolites. Average values of experimental duplicates were used for data analysis in 
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order to minimize variations during sample preparation, data acquisition and data 

processing. The extracted peak-pair data from LC-MS were aligned by retention time 

within 30 seconds and accurate mass within 5 ppm. Only those peak-pair features shared 

by no less than 50% of both sample groups were retained for statistic analysis. Principle 

component analysis was performed using SIMCA P+12 (Umetrics, Umeå, Sweden) and 

volcano plot was performed by Metaboanalyst (www.metaboanalyst.ca)241 using the 

criteria of p < 0.01 and fold change > 2. The online tool ROC Curve Explorer and Tester 

(www.roccet.ca)242 was employed for receiver operating characteristic (ROC) curve 

analysis and model evaluation. The data were mean-centered and auto-scaled (unit 

variance) prior to analysis. 

5.2.7 Metabolite Identification and Quantification.  

The accurate masses of selected metabolites were searched against the human 

metabolome database (HMDB)26 to provide a list of amine- or phenol-containing 

compounds within 5 ppm accuracy. The MS/MS fragmentation patterns were then 

obtained for these selected metabolites using scheduled MRM with a mass window of ±1 

Da and collision energy of 23 eV. The scan range was 80 to 800 m/z. The fragmentation 

data were interpreted to narrow down the list to only one or a few candidates and 

standards correspond to these candidate compounds were purchased if available. 

Metabolite identification was carried out by running standards under exactly the same 

chromatographic conditions and matching the accurate mass, retention time and 

fragmentation patterns with that of the samples. For matched metabolites, 10 μM 

standard solutions were first labeled with 12C dansyl chloride and combined with 13C 

labeled pooled plasma. The concentration of metabolites in the pooled sample was 

http://www.metaboanalyst.ca/
http://www.roccet.ca/
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estimated based on the 12C/13C ratio. Then the standard solutions were diluted to 2, 1, 0.5, 

0.25 and 0.125 folds of the estimated concentration to ensure the actual concentration 

falls in this range. The 12C labeled serially diluted standard solutions were mixed with 13C 

labeled pooled sample and a calibration curve of 12C/13C ratio versus the standard 

concentration was built for each standard. The threshold metabolite concentration was 

calculated from the corresponding calibration curve and the optimal threshold ratio 

(Table 5.4).  

5.3 Results and Discussion 

The major objective of this work is to identify a set of metabolite signatures to 

distinguish ASDs from the controls. In this work, differential isotope dansylation labeling 

combined with LC-MS has been used as the analytical platform. Aliquots of individual 

plasma samples were mixed together to generate a pooled sample which was 

subsequently labeled by 13C-dansyl chloride to serve as the reference sample. The 

individual samples were labeled with 12C-dansyl chloride and combined with an equal 

amount of 13C-labeled reference sample for LC-MS analysis. The peak ratios of an 

individual peak pair found in the mass spectra were calculated to measure the 

concentration differences of the putative metabolite in these samples. This differential 

isotope labeling strategy offers three unique attributes for discovery of metabolite 

signatures. First of all, a larger number of metabolites can be profiled which allows a 

more comprehensive search for the differentiating metabolites. Secondly, metabolite 

quantities can be evaluated and compared with minimum bias from instrumental 

fluctuations as each metabolite can be referenced to the same 13C internal standard. 
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Finally, data acquired from different batches or even different LC-MS platforms can be 

readily compared by adjusting different reference samples to the same reference value.  

5.3.1 Analytical and biological variability.  

One challenge associated with human metabolomics analysis is the analytical 

variability caused by the analytical method used to generate the metabolome data and the 

biological variability due to inherent metabolome differences of different subjects within 

the same group. In biomarker discovery, it is typical to apply empirical thresholds to 

select metabolites that show significant changes between two or more phenotypic groups. 

However, the importance of evaluating the effect of analytical and biological variability 

on selection of differentiating metabolites is often overlooked. If the variability in the 

sample set is very large, a more stringent threshold should be applied to avoid false 

biomarker discovery caused by analytical and biological variations. In this study, because 

of the use of a relatively large number of subjects in one group, the analytical variations 

of the analysis platform and the biological variations of the sample set were evaluated 

prior to performing the statistical analysis.  

Table 5.2 summarizes the measured analytical and biological variations. For 

analytical variations, four experimental replicate runs were performed for one plasma 

sample in the control group and one sample in the ASD group. The coefficient of 

variations (CV) was calculated using peak ratios of the peak pairs commonly detected in 

all four replicate runs. The mean CV was 18% for a control sample and 19% for an ASD 

sample. The distribution of CVs for analytical variations was plotted in Figure 5.1A and 

C, which shows a high density at below 20%. This result indicates a good precision of the 
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current analytical platform, and the reproducibility is comparable to other LC-MS 

analytical platforms typically employed for metabolomics analysis.243 

Table 5.2 Measured analytical and biological variations in plasma samples 

Sample phenotype* Replicate type Mean CV (%) Median CV (%) 

HC Analytical 18 14 

ASD Analytical 19 14 

HC Biological 48 45 

ASD Biological 49 40 

*HC: Healthy control; ASD: Autism spectrum disorder 

 

For biological variations, CV was calculated from all 100 samples that belong to 

the same group. A mean CV of 48% was obtained for the control group and 49% for the 

ASD group, and Figure 5.1B and D show the distribution of CVs for the biological 

variations. Compared to the analytical variations, there is a wider envelope of the 

distribution with the center shifts far to the right. This suggests that the biological 

variations are more significant, which would more likely cause false discoveries than 

analytical variations. Therefore, the magnitude of significant changes caused by 

biological variability was evaluated. To do this, 100 samples of the same group were 

randomly divided into two groups of 50 and a volcano plot was generated based on this 

random grouping (Figure 5.2). It can be seen that for both groups, a p-value of less than 

0.01 could preclude most of the features from being significantly different, and when a 

filter of greater than two-fold change is applied, all features were excluded. Based on this 

result, a filter of p < 0.01 and fold change (FC) > 2 was applied as the threshold for 

discovery of metabolite signatures between two different groups, which should in 

principle exclude most of the biological variations inherently present in the sample sets.  
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5.3.2 Metabolomic profiling of plasma samples.  

Metabolomic profiling was performed independently on two batches of plasma 

samples collected at the biomarker discovery and verification phases, each consists of 

plasma from 100 ASD children and 100 aged-matched controls. Experimental duplicate 

was carried out for each sample. On average, 760 ± 102 peak pairs or putative 

metabolites were detected from one sample. Principle component analysis (PCA) was 

first applied to the two batches to provide an overview of the dataset (Figure 5.3).  

 

Figure 5.1 Distribution of coefficient of variations (CV) for (A) analytical variations in 

control group; (B) biological variations in control group; (C) analytical variations in ASD 

group; (D) biological variations in ASD group.  
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Figure 5.2 Volcano plot for within-group comparisons based on random grouping: (a) 

comparisons within control group; (b) comparisons within ASD group. The horizontal 

dotted line represents cutoff at p = 0.01 and the vertical dotted line represents cutoff at 

FC = 2.   
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Figure 5.3 PCA score plots for (A) sample batch 1 and (B) sample batch 2. Red diamonds 

and green boxes represent health control and ASD groups, respectively. Quality control 

samples were shown as blue dots. One sample with significant deviation (circled) is 

identified in sample batch 1.   
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Three observations were made from the PCA score plot. First of all, the QC 

samples were clustered close together for both batches, indicating that the instrument 

performance was stable during the entire LC-MS analysis. Secondly, one significant 

outlier was detected from the first batch based on the Hotelling’s T2 (Figure 5.3A) and 

distance to model (DModX) measure (Figure 5.4), which was found to be caused by an 

experimental error. Therefore, this data was rejected from data analysis. No other data 

points were identified as outliers. For the following data analysis, average values of 

experimental duplicates were used in order to minimize variations during sample 

preparation, data acquisition and data processing. Since the outlier was removed from the 

sample set, only one experimental replicate was used for that sample. Finally, for both 

data sets, the control group and the ASD group were well separated, and the score plot 

did not show specific trends for other biological features such as age and gender (Figure 

5.5). This suggests that there’s a significant difference in their metabolic profiles and that 

the difference between the two phenotypes overwhelms other biological differences.  

The data was then interrogated using volcano plot based on the criteria of FC > 2 

and p < 0.01. As shown in Figure 5.6, 53 metabolites were selected from the first batch 

while 44 metabolites were selected from the second batch, with an overlap of 32 

metabolites that covers 49.2% of the total number of differentially expressed metabolites. 

For the 33 metabolites that were selected by only one batch, 30 (90.9%) of them were 

still significantly different (p < 0.01) in the other batch, with a fold change between 1.4 

and 2. This result illustrates good consistency between the two data sets. For discovery 

and identification of metabolite signatures, only the 32 common metabolites were studied 
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as they are expected to exhibit better discrimination power and therefore better prediction 

performances. A summary of these 32 metabolites is listed in Table 5.3.  

 

Figure 5.4 Distance to model analysis of (A) sample batch 1 and (B) sample batch 2. The 

x-axis represents individual observations and y-axis shows the residual standard deviation 

(DModX) value. Color coding is the same as in Figure 5.3. One sample with significant 

deviation (circled) is identified in sample batch 1.   
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Figure 5.5 PCA score plots color coded by (A) gender in batch 1; (B) age in batch 1; (C) 

gender in batch 2; (D) age in batch 2.  For gender, red and green represent female and 

male respectively. Age is divided into four intervals: 2-4, in red; 4-6, in green; 6-8, in 

blue; 8-10, in yellow.  
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Figure 5.6 Volcano plot for inter-group comparisons: (A) comparisons for the first batch; 

(B) comparisons for the second batch. Metabolites that were up-regulated or down-

regulated with p < 0.01 and FC > 2 were shown in red and green, respectively.    
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Table 5.3 Summary of the 32 discriminant metabolites. 

 Rt 
(min) 

Neutral 
mass 

FC in 
1st set 

p-value 
in 1st set 

FC in 
2nd set 

p-value 
in 2nd set 

Compound ID ID 
level* 

1 2.17 169.00304 0.43 1.92E-32 0.27 8.67E-57 Cysteic acid 2 
2 2.65 179.0778 2.23 7.76E-08 2.33 2.55E-19   
3 3.27 234.08364 4.24 4.16E-63 3.40 3.64E-29 γ-Glutamyl-serine 2 
4 3.95 276.09451 4.15 2.46E-27 6.16 6.00E-20 γ-Glutamyl-glutamic 

acid 
1 

5 3.99 248.09949 3.38 2.40E-36 3.49 7.38E-22 γ-Glutamyl-threonine 2 
6 4.01 204.07329 5.18 1.99E-61 4.70 1.88E-46 γ-Glutamyl-glycine 1 
7 4.76 165.04492 3.81 1.66E-33 4.72 1.14E-22 Methionine sulfoxide 1 
8 5.33 218.0889 2.20 2.64E-14 2.43 3.46E-18 γ-Glutamyl-alanine 1 
9 5.63 133.03675 4.10 5.37E-34 2.45 1.56E-09 Aspartic acid 1 

10 6.77 100.06326 0.35 5.02E-31 0.50 1.62E-23 Glutamine – HCOOH 1 
11 7.25 218.12419 2.30 1.71E-18 2.73 6.05E-18   
12 7.69 246.12038 15.08 1.74E-87 9.62 1.08E-29 γ-Glutamyl-valine 2 
13 7.72 203.03522 0.34 1.46E-54 0.48 8.50E-21   
14 8.15 212.11482 4.16 2.94E-31 3.67 1.32E-16   
15 9.35 260.13574 9.23 1.08E-68 5.59 9.38E-25 γ-Glutamyl-leucine 2 
16 9.48 129.04156 3.62 1.17E-57 2.33 9.08E-14 Glutamic acid – H2O 1 
17 9.99 188.11474 3.05 4.91E-07 3.17 3.03E-10 Leucyl-glycine 1 
18 10.45 426.08553 0.26 9.30E-27 0.26 7.93E-15 Cysteineglutathione 

disulfide 
1 

19 11.42 149.05013 0.26 1.86E-26 0.36 1.56E-27 Methionine 1 
20 11.59 261.13035 2.19 4.31E-13 2.22 3.19E-10   
21 11.89 275.14576 5.58 2.29E-34 4.56 1.71E-14 γ-Glutamyl-ε-lysine 1 
22 11.92 112.02626 0.43 1.55E-20 0.35 1.24E-14   
23 12.31 261.13037 3.89 1.60E-39 3.30 7.58E-23 γ-Glutamyl-ornithine 2 
24 13.07 275.14557 4.32 1.51E-37 3.56 7.56E-21 γ-Glutamyl-lysine 2 
25 13.09 297.04293 0.21 1.37E-59 0.20 3.83E-25 Cysteinylglycine 

disulfide 
1 

26 14.75 240.02169 0.27 4.52E-48 0.26 2.50E-21 Cystine 1 
27 16.29 100.01529 0.34 2.86E-43 0.36 4.61E-35   
28 16.37 244.17733 2.73 2.72E-15 2.93 4.03E-16 Leucyl-leucine 1 
29 21.40 167.06835 2.51 4.01E-12 4.79 2.65E-14   
30 23.48 195.00143 0.37 2.79E-31 0.37 1.11E-17   
31 24.15 195.00144 0.17 7.12E-62 0.25 7.21E-21   
32 25.09 228.96167 0.21 2.49E-56 0.31 4.85E-24   

*ID level 1: Identification based on accurate mass, retention time and fragmentation 
match to standards; ID level 2: Identification based on fragmentation interpretation 
and/or prediction of retention behavior without standards. 
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  Identification of the 32 common metabolites was based on accurate mass search 

within 5 ppm against the human metabolome database (HMDB), retention time 

information as well as MS/MS fragmentation. 21 metabolites were successfully 

identified, in which 14 of them were matched with authentic standards. For identification 

without standards, the best hit was given in the table among all isomers based on 

fragmentation interpretation and prediction of retention behavior. γ-Glutamyl dipeptides 

were identified based on the characteristic fragment peak at m/z 363.101, which is found 

to be absent or with very low intensity in their α-glutamyl isomers. Figure 5.7 compares 

the MS/MS spectra of three γ-glutamyl dipeptides and their corresponding α-glutamyl 

isomers. It can be seen that the fragment peak at m/z 363.101 is evident in all three γ-

glutamyl dipeptides but is almost absent in the MS/MS spectra of α-glutamyl dipeptide. 

One proposed structure for the peak at m/z 363.101 in the γ-glutamyl dipeptide is 

 

A possible explanation for the absence of this peak in the α-glutamyl isomer is 

that the corresponding structure is not as stable since the CO group may be readily lost by 

the following mechanism, and as a result the m/z 363.101 cannot be observed. 
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Figure 5.7 MS/MS spectra of (A) γ-Glutamyl-glycine; (B) α-Glutamyl-glycine; (C) γ-

Glutamyl-glutamic acid; (D) α-Glutamyl-glutamic acid; (E) γ-Glutamyl-ε-lysine; (F) α-

Glutamyl-lysine. 

It is noted that some of these compounds were identified as derivatives of a 

metabolite (e.g., glutamic acid – H2O), which is most likely formed during the labeling 

reaction as the same behavior was observed with the standards. Nevertheless, the levels 

of these derivatives are always positively correlated with the original metabolites and 
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therefore a significant change in these derivatives suggests that there’s also a significant 

change in the original metabolite. The original metabolites were present at high levels in 

the sample, and as a result the mass signals were saturated. This possibly explains why 

these original metabolites were not picked up by the volcano plot. Thiol-containing 

metabolites are easily oxidized under the labeling conditions and were detected almost 

exclusively in the disulfide form.244 Therefore, the amount of cystine should represent the 

total amount of cysteine and cystine in the sample. Cysteineglutathione disulfide and 

cysteinylglycine disulfide are most likely formed from their corresponding free thiols in 

plasma. As glutathione and cysteinylglycine are present at much lower levels in the 

plasma than cysteine, the plasma cysteineglutathione disulfide and cysteinylglycine 

disulfide levels should be positively correlated with glutathione and cysteinylglycine 

levels.  

5.3.3 Evaluation of metabolite signatures.  

In principle, all these differentially expressed metabolites could serve as 

metabolite signatures of ASD. However, in practice, it is always desirable to use a small 

set of metabolites for building a prediction model. In this experiment, data from two 

batches of samples were acquired and analyzed independently. The first data set was used 

as the discovery set to build the model, while the second data set served as the validation 

set to evaluate the prediction performance of the model. For each batch, the 13C-labeled 

reference was produced by pooling equal amount of all individual samples within that 

batch. The peak ratios used for comparison between the control and ASD group were 

calculated by taking ratios between the 12C and 13C peaks. However, for different batches, 

the 13C reference samples may be different and therefore the peak ratios are not directly 
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comparable. In order to compare the two sample sets, we prepared two adjustment 

samples: the first sample combines 12C-labeled pool from second batch (12C P2) and 13C-

labeled pool from first batch (13C P1) in 1:1 ratio, while the second sample is a 1:1 mix of 

12C and 13C-labeled second batch pool (12C P2 and 13C P2). The ratios of individual 

samples in the second batch (12C I2) to the 13C reference in the first batch (13C P1) can be 

calculated using the following equation: 

                                    
12𝐶 𝐼2
13𝐶 𝑃1

 =  
12𝐶 𝐼2
13𝐶 𝑃2

 ×  
12𝐶 𝑃2
13𝐶 𝑃1

 ÷  
12𝐶 𝑃2
13𝐶 𝑃2

                                              (5.1)      
                                                                                                

where the three fractions on the right of the equation are obtained from peak ratios of 

batch 2 and the two adjustment samples. The result is then directly comparable to the 

peak ratios of the first batch.  

 Model building and performance evaluation were accomplished using the online 

tool ROC Curve Explorer & Tester.242 in two steps. In the first step, only the discovery 

set was used. ROC curve analysis was performed on individual metabolites. For each 

metabolite, the AUC value, optimal threshold and threshold concentration, as well as 

specificity and sensitivity at the optimal threshold were listed in Table 5.4. It should be 

noted that this differential isotope labeling strategy enables absolute quantification by 

using the 13C-labeled sample as the internal standard. In this work, standard solutions 

were prepared at five different concentrations, and a calibration curve of 12C/13C ratio 

versus the standard concentration has been established for each standard (see Figure 5.8 

for examples of leucyl-glycine and aspartic acid). The metabolite concentration in each 

sample can then be calculated using its corresponding 12C/13C ratio. Similarly, absolute 

concentration at the threshold has been calculated from the determined optimal threshold 

ratio.  
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Table 5.4 Summary of ROC curve analysis of 32 discriminant metabolites 

 Rt 
(min) 

Neutral 
mass 

AUC 
(95% CIs) 

Optimal 
threshold 

Sensitivity 
 

Specificity 
 

Threshold 
Conc. 
(μM) 

1 2.17 169.00304 0.955 (0.926-0.977) 0.745 0.90 0.87  
2 2.65 179.0778 0.787 (0.722-0.849) 0.832 0.64 0.91  
3 3.27 234.08364 0.989 (0.969-1) 0.606 1.00 0.96  
4 3.95 276.09451 0.999 (0.997-1) 0.188 0.98 0.99 0.42 
5 3.99 248.09949 0.951 (0.92-0.973) 0.665 0.92 0.82  
6 4.01 204.07329 0.974 (0.944-0.995) 0.720 0.97 0.95 2.6 
7 4.76 165.04492 0.917 (0.87-0.951) 0.618 0.80 0.91 10 
8 5.33 218.0889 0.814 (0.748-0.872) 0.878 0.70 0.82 0.83 
9 5.63 133.03675 0.924 (0.884-0.954) 0.740 0.79 0.93 18 
10 6.77 100.06326 0.939 (0.902-0.967) 0.905 0.86 0.88 520 
11 7.25 218.12419 0.913 (0.858-0.961) 0.798 0.94 0.90  
12 7.69 246.12038 1(1-1) 0.355 1.00 1.00  
13 7.72 203.03522 0.995 (0.988-0.999) 0.613 0.95 0.98  
14 8.15 212.11482 0.935 (0.896-0.964) 0.505 0.81 0.93  
15 9.35 260.13574 0.999 (0.996-1) 0.439 0.99 0.99  
16 9.48 129.04156 0.983 (0.966-0.993) 0.712 0.90 0.97 150 
17 9.99 188.11474 0.868 (0.813-0.915) 0.167 0.76 0.87 0.017 
18 10.45 426.08553 0.972 (0.954-0.987) 0.522 0.88 0.92 0.23 
19 11.42 149.05013 0.891 (0.841-0.934) 0.615 0.75 0.95 8.0 
20 11.59 261.13035 0.883 (0.832-0.932) 0.571 0.78 0.84  
21 11.89 275.14576 0.937 (0.895-0.967) 0.411 0.88 0.83 0.32 
22 11.92 112.02626 0.844 (0.779-0.894) 0.728 0.84 0.72  
23 12.31 261.13037 0.971 (0.944-0.991) 0.583 0.94 0.93  
24 13.07 275.14557 0.949 (0.912-0.975) 0.655 0.94 0.88  
25 13.09 297.04293 0.997 (0.99-1) 0.476 0.97 1.00 3.8 
26 14.75 240.02169 0.985 (0.967-0.997) 0.610 0.96 0.98 23 
27 16.29 100.01529 0.964 (0.937-0.987) 0.712 0.94 0.92  
28 16.37 244.17733 0.983 (0.966-0.993) 0.492 0.92 0.94 0.069 
29 21.40 167.06835 0.929 (0.883-0.96) 0.188 0.95 0.84  
30 23.48 195.00143 0.986 (0.964-0.998) 0.678 0.98 0.96  
31 24.15 195.00144 0.99 (0.974-1) 0.587 1.00 0.97  
32 25.09 228.96167 0.988 (0.968-1) 0.727 0.99 0.97  
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Figure 5.8 Calibration curves of 12C/13C ratio versus standard concentration for (A) 

leucyl-glycine and (B) aspartic acid. 

Metabolites signatures were then selected using forward selection: metabolites 

were added to the classifiers based on decreasing AUC values one at a time until there’s 

no significant improvement in the prediction performance as assessed by Monte-Carlo 

cross-validation. Linear supporter vector machine (SVM) was used as algorithm for 

creating and evaluating the classifier. As a result, the final model was built with 3 

metabolites: γ-Glutamyl-valine, γ-Glutamyl-leucine and Cysteinylglycine disulfide 

(Figure 5.9).  
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Figure 5.9 Box plots showing peak ratios of (A) γ-Glutamyl-valine; (B) γ-Glutamyl-

leucine and (C) Cysteinylglycine disulfide in health control (HC) and autism spectrum 

disorder (ASD) groups. The range of the box is 25 to 75 percentile. The line in the box 

represents the median value, and the mean value is shown as a dot in the box.  



 

  174  

 

 

In the second step, the two data sets were combined and uploaded into ROCCET. 

The first set served as model builder and the second set was specified as the “hold-out” 

sample set which did not participate in model creation but acted solely as model 

evaluator. The prediction performance was evaluated using the three selected metabolite 

signatures. The model has yielded a highly robust area under the curve (AUC) of 1 for 

the discovery phase and 0.992 for the validation phase (Figure 5.10A).The result showed 

that 190 out of 200 samples (accuracy = 0.95) were correctly classified, with a sensitivity 

of 0.99, a specificity of 0.91 and AUC value of 0.992. Permutation test also indicated that 

the model is significant with p < 0.001 based on 1000 permutations.  

Since the selected metabolic signatures were differentially expressed with FC > 2 

and p < 0.01 in both the discovery phase and the verification phase, it may not seem 

surprising to have such high prediction accuracy on the verification dataset. In order to 

have a better assessment on the clinical utility of these potential biomarkers, we 

performed a blind test on an additional set of 27 samples that is completely independent 

of discovery and verification phases. The 27 plasma samples from healthy and ASD 

children were distributed in random orders and the experiments were performed with no 

information on the sample type. By using the model created based on the three selected 

metabolic signatures in the discovery set, we were able to correctly identify all 27 

samples (accuracy = 1) and obtain an AUC of 1 (Figure 5.10B). This analysis suggests 

the promise of using these metabolic signatures as biomarkers for clinical diagnosis of 

ASD with high prediction accuracy.  



 

  175  

 

 

 

Figure 5.10 Receiver operating characteristic (ROC) analysis for classification 

assessment. The discovery phase was used to create the classifier model, which was 
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applied to (A) the validation phase (in pink), and (B) the blind test set (in pink). For the 

discovery phase, an ROC curve was also created, based on the averaged results of 100 

cross-validations (in blue).  

5.3.4 Biological implications of differentiating metabolites.  

Autism spectrum disorder is a complex neurodevelopmental disease that is 

thought to be associated with a number of metabolism dysregulations. In this study, 

significant alterations of peripheral plasma metabolite levels have been observed, 

suggesting perturbations of several metabolic pathways, including those related to 

neurotransmission and oxidative stress.  

We observed a significant increase of glutamate and aspartate and a decrease of 

glutamine in plasma of children with ASD. This finding is consistent with other studies 

and supports the hyperglutamatergic hypothesis of autism.240,245,246 Glutamate is the 

major excitatory neurotransmitter in the brain which plays a key role in modulating 

synaptic plasticity and maintaining memory and learning functions. However, excess 

glutamate can cause excitotoxin damage and lead to abnormal development of the central 

nervous system.247 The blood glutamate level has been shown to be positively correlated 

with brain glutamate levels.248 Therefore, the high glutamate level in plasma suggests an 

excess amount of brain glutamate that would activate the glutamate receptors and result 

in neurotoxicity and neuron death. Aspartate is also an important excitatory amino acid 

which can bind to glutamate receptors and therefore may play a similar role in causing 

excitotoxic cell death in the brain. The increased glutamate and decreased glutamine are 

indicative of increased gliosis in the brain of subjects with autism.240 Increase in gliosis is 

characterized by activation of astrocytes and microglia, which dysregulates the 
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glutamine/glutamate cycle by down-regulating expression of glutamine synthetase and 

up-regulating expression of glutaminase,249,250 causing excessive conversion of glutamine 

to glutamate.  

Increased oxidative stress has been reported to play a role in the pathogenesis of 

autism.251 Many of the metabolite changes detected in this study are associated with 

increased oxidative stress in ASD children. One commonly observed reaction under 

oxidative stress conditions is the oxidation of methionine, wherein methionine can react 

readily with reactive oxygen species to produce methionine sulfoxide.138 In accordance 

with this mechanism, our data show a remarkable reduction in methionine levels in 

combination with a significant increase in methionine sulfoxide concentration in autistic 

children. The low methionine concentration was also shown to be related to oxidative 

inactivation of methionine synthase252 as well as reduced methylation capacity,253 but the 

concurrent increase of methionine sulfoxide may suggest that oxidative stress is a key 

factor in modulating methionine concentrations.  

One remarkable observation in our study is that 10 out of the 21 identified 

metabolites are γ-glutamyl dipeptides and all of them were up-regulated in children with 

ASD. In addition, we found reduced concentrations of total cysteine, glutathione and 

cysteinylglycine in plasma as reflected by down-regulation of their disulfides. This is an 

indication of dysregulation of the γ-glutamyl cycle. Under oxidative stress conditions, the 

activity of the membrane-bound enzyme γ-glutamyl transferase (GGT) is increased to 

speed up degradation of extracellular glutathione.254 This process transfers the γ-glutamyl 

moiety of glutathione to an amino acid to produce a γ-glutamyl dipeptide and 

cysteinylglycine. The cysteinylglycine produced breaks down further into cysteine and 
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glycine. For autistic patients, flux from the transsulfuration pathway is reduced, leading 

to a decrease in cellular cysteine levels.255 Therefore, production and uptake of 

extracellular cysteine into the cells is important for maintaining the intracellular redox 

homeostasis. The increased γ-glutamyl dipeptide levels and decreased total cysteine, 

glutathione and cysteinylglycine levels observed in this study are consistent with this 

mechanism. The fact that more than half of the identified metabolites are involved in the 

γ-glutamyl cycle indicates that this cycle has been strongly affected under oxidative stress 

conditions for patients with ASD and therefore may provide useful mechanistic 

information on the metabolite biomarkers discovered in this work. 

5.4 Conclusion 

In the present study, a robust and sensitive differential isotope labeling LC-MS 

method has been applied for the metabolic profiling of 400 plasma samples from children 

with ASD and age-matched controls. The observed metabolite changes were consistent 

with the proposed mechanisms of autism and some novel metabolite signatures were 

identified. Validation performance of these metabolite signatures has been evaluated, 

which shows a high accuracy. We envisage the potential of these metabolite signatures as 

candidate biomarkers for clinical diagnosis of ASD. Future work will focus on translation 

of the current technique into a high-throughput targeted monitoring method, as well as 

extensive validations on samples from different clinical laboratories across the world.  
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Chapter 6 

Development of High-Performance Chemical Isotope Labeling LC-MS 

for Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum in 

Acute Spinal Cord Injury 

6.1 Introduction 

Acute spinal cord injury (SCI) has emerged as a major public health issue in 

modern society. In Canada, the incidence of acute traumatic SCI is over 1,500 per year,256 

and the estimated annual expense on SCI is over $2 billion.257 Acute SCI often causes 

severe paralysis and disability, for which there are no effective treatments. Clinical 

assessment of SCI relies on functional measures of neurologic impairment, which are 

inherently imprecise, slow, and often impossible to assess in the acute setting.258 Because 

of the difficulties associated with current clinical testing in acute SCI, there is clearly an 

urge to identify biomarkers that can accurately classify injury severity and precisely 

predict neurologic outcome, in order to facilitate clinical evaluation and treatment. The 

pathophysiologic mechanism triggered after SCI is complex and involves multiple 

disturbances in the human metabolic network, including oxidative stress, 

neuroinflammation, glycolysis, amino acid and lipid metabolism.259-262 This emphasizes 

the importance of performing global profiling of the metabolic network in the biomarker 

discovery process. 

Metabolomics is an emerging field for high-throughput global profiling of the 

collection of all metabolites in a biological system (i.e., the metabolome). Recently, it has 

been shown that metabolomic screening of rat plasma samples can be used to establish an 

injury severity evaluation model based on the identified metabolomic fingerprints.263 
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However, metabolomic analysis of human SCI samples has not been widely reported. 

While cerebrospinal fluid (CSF) is considered as a more appropriate biofluid for study 

SCI because of its proximity to the central nervous system and its metabolic 

simplicity,264,265 it is not easily accessible in practice. In contrast, blood (plasma or serum) 

samples are used more widely in clinical applications because of their relative ease of 

collection. Although the metabolic profile in blood has been reported to resemble that in 

CSF in other neurological diseases,239,266 the relationship between metabolic changes in 

CSF and blood following SCI, and whether these changes are significant, remain to be 

investigated.  

Here we demonstrate, for the first time, parallel metabolomic profiling of CSF 

and serum from human patients for discovery of SCI biomarkers using differential 

dansylation isotope labeling LC-MS. This method targets at the amine- and phenol-

containing sub-metabolome, and has been reported to generate high metabolome 

coverage for human CSF using 1:1 mixing of the same 12C and 13C-labeled CSF samples 

(i.e., 12C/13C peak ratio of 1).49 However, the quantitative performance of this method in 

the case of non-uniform 12C/13C ratios, and the optimal injection amount for serum and 

CSF samples have not be studied. In this work, the analytical aspects of this method were 

first examined, including repeatability and peak detectability, to evaluate capability of 

this approach for high-performance metabolomic profiling of CSF and serum. The CSF 

and serum metabolome were then compared in terms of metabolite concentration and 

coverage. Finally, statistically significant metabolic changes associated SCI were 

identified and correlated in these two biofluids.  

6.2 Experimental  
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6.2.1 Chemicals and Reagents.  

All chemicals and solvents were purchased from Sigma-Aldrich Canada 

(Markham, ON, Canada) unless otherwise stated. The isotopic compound used to 

synthesize 13C-dansyl chloride was purchased from Cambridge Isotope Laboratories 

(Cambridge, MA, USA). 13C-dansyl chloride was synthesized in our lab as described 

previously.146  

6.2.2 Clinical Sample Collection.  

Intrathecal catheters were inserted into acute SCI patients with AIS A (n = 10), B 

(n = 11) and C (n = 7) injury severities and left in place for 5 days, during which 

CSF/serum samples were drawn approximately every 8 hrs. The CSF and serum samples 

were centrifuged at the bedside and the supernatant was immediately frozen on dry ice. 

The collected samples were shipped on dry ice and stored at -80°C until further use. 

6.2.3 Metabolite Extraction and Labeling. 

Metabolites were extracted from serum and CSF samples via methanol protein 

precipitation. Three volumes of ice-cold methanol were added into 25 μL of serum/CSF, 

vortexed and incubated on ice for 15 min. This was followed by centrifugation at 20 817 

g for 15 min. The supernatants (75 μL for serum and 90 μL for CSF) were dried using a 

SpeedVac and resuspended in 25 μL of water. The labeling step was performed as 

described in Chapter 5.  

6.2.4 Preparation of Labeled Samples for LC-MS Analysis.  

In the analysis of analytical variability, a 90 μL aliquot was taken from one CSF 

sample of each patient group (AIS A, B, C and healthy control). Three of the 25 μL 

portions from each sample were labeled with 12C-dansyl chloride as three experimental 
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replicates, while the remaining liquids were mixed together to generate a pooled sample 

which was subsequently labeled by 13C-dansyl chloride. The same procedure was 

performed for serum samples. In all other studies, aliquots of all individual CSF/serum 

samples were mixed together to generate a pooled CSF/serum sample. For comparison 

between the serum and CSF metabolome, equal aliquots of pooled CSF and serum were 

combined and labeled with 13C-dansyl chloride, while the pooled CSF and pooled serum 

samples were labeled with 12C-dansyl chloride. For metabolomic profiling of the entire 

sample set, all individual samples were labeled with 12C-dansyl chloride, and the pooled 

CSF and pooled serum samples were labeled with 13C-dansyl chloride. Prior to LC-MS 

analysis, the 12C-labeled samples were combined with an equal amount of the 

correponding 13C-labeled reference. Quality control samples were prepared by 1:1 

volume mix of a 12C-labeled and a 13C-labeled pooled sample.  

6.2.5 LC-MS Analysis and Data Processing.  

The labeled metabolites were analyzed using a Bruker Maxis Impact QTOF mass 

spectrometer (Bruker, Billerica, MA) linked to an Agilent 1100 series binary HPLC 

system (Agilent, Palo Alto, CA). The LC-MS conditions were the same as described in 

Chapter 5. Quality control samples were analyzed between every 20 sample runs to 

monitor instrument performance. The resulting data was internal-mass calibrated and 

processed as described in Chapter 3.  

6.2.6 Statistical Analysis.  

The extracted peak-pair data from LC-MS were aligned by retention time within 

30 seconds and accurate mass within 5 ppm. Only those peak-pair features shared by no 

less than 50% of the samples were retained for statistic analysis. Principle component 
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analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed 

using SIMCA P+12 (Umetrics, Umeå, Sweden). The threshold for selection of significant 

features in PLS-DA is VIP > 1.5. Volcano plot was performed using Excel with the 

criteria of p < 0.01 and fold change > 1.5, and analysis of variance (ANOVA) was 

performed by Metaboanalyst (www.metaboanalyst.ca)241 with p < 0.05. The data were 

mean-centered and auto-scaled (unit variance) prior to analysis. Metabolite identification 

was based on accurate mass and retention time search against the dansyl standard library 

with mass difference of less than 5 ppm and retention time shift of less than 20 seconds.  

6.3 Results and Discussion 

Figure 6.1 illustrates the overall differential isotope labeling metabolomic 

profiling workflow. In this workflow, CSF and serum samples were analyzed in parallel. 

Prior to LC-MS analysis, each 12C-labeled individual CSF or serum sample was 

combined with an equal amount of the corresponding 13C-labeled pooled reference 

sample. The LC-MS data was processed by the in-house software IsoMS154 to extract 

peak ratio information for each individual peak pair found in the mass spectra, and the 

missing values were retrieved using the zero-fill program.267 Finally the processed data 

was subjected to statistical analysis for discovery of differentiating metabolites. Since 

each sample was only analyzed once (i.e., no experimental replicates), it is important to 

ensure a good peak detectability and repeatability of this analytical platform. Therefore, 

these parameters were first examined prior to the metabolomic profiling analysis.  

http://www.metaboanalyst.ca/
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Figure 6.1 Overall workflow for differential isotope labeling metabolomic profiling of 

CSF and serum.  

6.3.1 Evaluation of the Analytical Platform.   

To evaluate the analytical variability, the coefficient of variation (CV) was 

determined from three experimental replicates that is a combination of variations 

introduced during protein precipitation, labeling, solution mixing, LC-MS detection and 

data processing. The CV values were calculated by using peak ratios of all peak pairs 

commonly detected in three replicate runs. Table 6.1 lists the median and average CV 

values for each sample. For all eight samples, good experimental repeatability was 

observed, with a median CV of less than 15% and a mean CV of 17% or less. In addition 

to determination of the CV values, we also examined the percentage of commonly 

detected peak pairs from experimental triplicates. The non-common peak pairs, or 

missing values, in replicate runs are usually caused by the presence of borderline 

metabolites, false positive peak pair identification, or other situations in which the peak 

picking criteria are not met (e.g., large retention time or mass shift). Therefore, the 

percentage of common peak pairs reflects both the reproducibility of measurements and 
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the robustness of the data analysis procedure. Figure 6.2 shows the number distributions 

of the peak pairs found in three experimental replicates for all eight samples. The 

percentage overlap of detected metabolites between three experimental replicates was 

over 92% for all samples examined, suggesting a good reproducibility of this analytical 

platform. Overall, analysis of the analytical variability indicates the capability of this 

differential isotope labeling approach for high performance metabolomic profiling of 

CSF and serum samples.  

 

Table 6.1 Measured analytical variations in CSF and serum samples 

Biofluid Sample group Mean CV (%) Median CV (%) 

CSF AIS A 17 12 

AIS B 13 11 

AIS C 17 14 

Control 16 14 

Serum AIS A 16 12 

AIS B 17 14 

AIS C 16 12 

Control 17 14 
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Figure 6.2 Distributions of the number of ion pairs detected in three experimental 

replicates for (A) serum AIS A; (B) serum AIS B; (C) serum AIS C; (D) serum control; 

(E) CSF AIS A; (F) CSF AIS B; (G) CSF AIS C; (H) CSF control. 
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In LC-MS analysis, the sample injection amount plays an important role on the 

number of metabolites detected. For small injection amounts, metabolites with 

concentrations close to the instrument detection threshold (known as borderline 

metabolites)92 may not be detected. On the other hand, with large injection amounts, 

signals from low abundance metabolites co-eluting with a high intensity metabolite may 

be suppressed. Moreover, column saturation and sample carryover problems may occur.  

In this work, we examined the relationship between the number of peak pairs detected 

and the injection volume using the pooled CSF and serum samples (Figure 6.3). The 

injection amount can be calculated by multiplying the injection volume with the nominal 

total metabolite concentrations of CSF and serum determined from the calibration curve 

established with a mixture of 17 amino acid standards. For CSF, the number of peak pairs 

increases by 20% when the injection amount increases from 6 μL to 12 μL, and then 

levels off. This significant increase in the number of peak pairs is likely attributed to the 

low metabolite concentration levels in CSF samples, since many of the borderline 

metabolites cannot be detected when the injection amount is not sufficiently high. In 

contrast, for serum samples, by increasing the injection amount from 6 μL to 10 μL, the 

number of peak pairs increases only by 5%, and further increase in the injection amount 

leads to a decrease in the peak pair number. Compared to CSF, the metabolite levels in 

serum are considerably higher, and consequently the percentage of borderline metabolites 

is smaller. On the other hand, at higher injection amounts, ion suppression from high 

abundance ions becomes noticeable in serum samples.268 The effect of ion suppression at 

higher injection amounts is illustrated in Figure 6.4. In this example, the signals of the 

low abundance peak pair 318.560 and 320.567 increases when the injection amount 
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increases from 6 μL to 8 μL, and decreases as the injection amount increases further. At 

an injection amount of 14 μL, this peak pair falls below the detection threshold and 

becomes almost non-detectable. Considering both effects (borderline metabolites and ion 

suppression), the optimal injection amount was chosen as the point at which the number 

of peak pairs levels off or starts to decrease. Based on Figure 6.2, the optimal injection 

volume was determined to be 12 μL for CSF and 10 μL for serum (the corresponding 

injection amount was 3.3 nmole and 5.7 nmole), which gave 1213 and 2316 peak pairs 

for CSF and serum, respectively. It is not surprising to see a smaller number of 

metabolites in CSF compared to serum. As the primary carrier of small molecules in the 

body, the metabolite composition in serum is much more complex than CSF, and it also 

contains a greater number of exogenous compounds. On the other hand, the type of 

metabolites present in CSF is restricted by the blood brain barrier, and it includes mainly 

neurotransmitters or related metabolites. The current CSF and serum metabolome 

database contains 468 and 4651 identified metabolites, respectively.269,270 The number of 

peak pairs (or putative metabolites) we detected is higher than the number of identified 

metabolites in the CSF metabolome database. The high coverage of CSF metabolome is 

not surprising since many of the neurotransmitters or related metabolites are amines, and 

can be readily labeled with dansyl chloride. In contrast, more than 3000 serum 

metabolites are phospholipids and glycerolipids, which are not the targets of our isotope 

labeling approach. When lipids are excluded, the number of putative metabolites detected 

in serum using our method is also higher compared to the number of identified 

compounds in the database, indicating that our analytical platform provides a good 

coverage of both the CSF and serum metabolome. 
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Figure 6.3 Plot of the number of peak pairs detected against the injection volume for (A) 

CSF and (B) serum. 
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Figure 6.4 An example showing ion suppression effect with larger injection amounts for 

the peak pair 318.560 and 320.567. The injection amounts are (A) 6 μL; (B) 8 μL; (C) 10 

μL; (D) 12 μL and (E) 14 μL.  

6.3.2 Comparison of the CSF and Serum Metabolome. 

Figure 6.5 shows the overlapped base peak chromatograms (BPCs) for CSF and 

serum. Most of the high abundance peaks correspond to labeled amino acids (indicated 

by stars). It is noted that while the majority of the peaks were common to CSF and serum, 
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the metabolite intensity in serum is much higher than that in CSF. For example, among 

the fifteen identified amino acids in Figure 6.5, only glutamine gives higher signal in CSF 

compared to serum, while all the other fourteen amino acids have much higher abundance 

in serum. In addition, since serum is a lipid rich biofluid, we also observed several 

phospholipid peaks in the BPC of serum (labeled with dots), which were barely 

detectable in CSF. These unlabeled compounds appear as singlet peaks in the mass 

spectra and therefore will not be considered in the current metabolomic profiling 

workflow.  

 

Figure 6.5 Base peak chromatograms of CSF (red) and serum (black). Peaks labeled with 

a star correspond to amino acids, and peaks labeled with a dot correspond to 

phospholipids. The first amino acid peak (eluted out at 4 min) is glutamine. 

The BPC only shows metabolites with the greatest signal intensities. To compare 

the relative quantities of all metabolites common to CSF and serum, a “pooled pool” 

reference sample was generated by combing the pooled CSF and serum samples and then 

labeled with 13C dansyl chloride. The 12C-labeled CSF and serum pool samples were 

combined with the 13C-labeled “pooled pool” reference in 1:1 volume ratio, so that the 

relative intensities of individual metabolites can be assessed based on the 12C to 13C peak 

ratios of each peak pair. Figure 6.6 shows a scatter plot that compares the relative 
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metabolite intensities in CSF and serum. For more than half of the peak pairs, the 12C/13C 

peak ratio is larger in serum than in CSF, indicating higher metabolite concentration in 

serum. In contrast, only less than 30% of the metabolites have higher concentrations in 

CSF. Moreover, there are a number of data points located along the y = x curve, which 

correspond to metabolites that have similar intensities in CSF and serum. In addition to 

these common metabolites, there were 190 and 27 peak pairs which could only be 

detected in serum and CSF, respectively. Altogether, we have identified 84 metabolites 

based on accurate mass and retention time match with our current standard library, which 

are listed in Table 6.2 according to their distributions in CSF and serum.  

 

Figure 6.6 Comparison between the relative metabolite intensities in serum and CSF, 

expressed as 12C/13C peak ratios. Each dot represents a peak pair (or putative metabolite).  

While CSF is often considered as an ideal biofluid for studying neurological 

disorders, the low metabolite concentration in CSF can pose a challenge to the biomarker 

discovery process, as the concentrations of some biologically meaningful metabolites 
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may fall below the instrument detection limit. For example, we found that serotonin, an 

important neurotransmitter, was detected as a borderline metabolite with our method. On 

the other hand, the higher overall metabolite concentration in serum allows for more 

sensitive detection and identification of biomarkers. In addition, serum also has the 

advantage of easy accessibility, which makes it an attractive alternative for studying 

central nervous system disorders.239 Nevertheless, some of the metabolites can only be 

detected in CSF (e.g., the brain-specific dipeptide homocarnosine). For investigating 

metabolic changes associated with these compounds, analysis of CSF is necessary. 

Therefore, in order to obtain the most comprehensive metabolic coverage, parallel 

metabolomic profiling of CSF and serum of the same individuals should be the best 

approach.  

6.3.3 Metabolomic Profiling of CSF and Serum in Spinal Cord Injury.   

In this work, we performed parallel metabolomic profiling of CSF and serum to 

study the metabolic changes occur after acute spinal cord injury and to find 

discriminating metabolites in different injury scales. Principle component analysis (PCA) 

was first applied to provide an overview of the dataset. Figure 6.7 shows the PCA score 

plots for all serum and CSF samples analyzed. Quality control (QC) samples were run at 

the beginning, in the middle (after 18 samples) and at the end. As shown in Figure 6.7, 

the three QC samples were clustered close together, indicating good instrument stability 

throughout the LC-MS analysis. In addition, a good separation between uninjured 

controls and injured patients was observed for both serum and CSF samples. 
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Table 6.2 List of metabolites identified based on accurate mass and retention time match 

with dansyl standard library 

Group 1a Phe-Phe, Homogentisic acid, Desaminotyrosine 
Group 2 3-Methylhistidine or 1-Methylhistidine, Taurine, Arginine, Homoarginine, 

Asparagine, Citrulline, Methionine sulfoxide, Serine, Threonine, 4-

Hydroxyproline, Glutamic acid, Aspartic acid, Aminoadipic acid, Beta-

Alanine, 3-Aminoisobutyric acid, 2-Aminobutyric acid, Glycine, Alanine, 

5-Aminopentanoic acid, Sarcosine, Methylcysteine, Proline, Methionine, 

Valine, Tryptophan, Phenylalanine, Pipecolic acid, Cystathionine, 5-

Hydroxylysine, Isoleucine, Leucine, Cystine, Theophylline, Salicylic acid, 

Ornithine, 3-Hydroxyphenylacetic acid, p-Hydroxyphenylacetic acid, 

Vanillylmandelic acid, Lyine, Histidine, 2-Aminooctanoic acid, Indole-3-

carboxylic acid, Tyrosine, 3,4-Dihydroxybenzeneacetic acid, Serotonin, 

Phenylephrine or 3-Methoxytyramine, Cysteine-glutathione disulfide, 

Deoxyepinephrine 

Group 3 Methylguanidine, Homoserine, N6-Acetyllysine, N-Alpha-acetyllysine, 

Glycylproline, Uridine, Pantothenic acid, Ribothymidine, Hypoxanthine, 

Uracil, Hydroxyphenyllactic acid, 2-Aminobenzoic acid, Acetaminophen, 

Homovanillic acid, 4-Hydroxybenzoic acid, Putrescine, Cadaverine, 

Guaiacol, Phenol, o-, m- or p-Cresol, 4-Ethylphenol, Ephedrine, 5-

Hydroxytryptophan, Thymol 

Group 4 Phosphoethanolamine, Glutamine, Ethanolamine, Gamma-Aminobutyric 

acid, Xanthine, 5-Hydroxyindoleacetic acid, Cysteamine 

Group 5 Homocarnosine, gamma-Aminobutyryl-lysine 
aGroup 1: Metabolites detected only in serum; Group 2: Metabolites with higher serum 

concentration; Group 3: Metabolites that have similar concentration in serum and CSF (p > 

0.05); Group 4: Metabolites with higher CSF concentration; Group 5: Metabolites 

detected only in CSF.  
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However, within the injured samples, there was no clear distinction between the 

three impairment scales. This indicates that significant metabolic perturbance occurs 

when spinal cord injury is triggered, but the metabolic changes have a relatively small 

dependence on the injury severity. The PCA score plots also revealed outliers in the 

model. For serum, a severe outlier was identified, which corresponds to an AIS C sample. 

We examined the most significant metabolites that differentiate this sample from others, 

and putatively identified (based on accurate mass search in HMDB) a drug metabolite 

(likely from the drug Venlafaxine) that has been highly elevated in this sample. This 

suggests that the metabolic differences may be attributed to drug consumption. Since this 

sample showed strong deviation from all other samples, it was excluded from the 

statistical analysis. We also observed an outlier in CSF, which belongs to the AIS B 

group. Nevertheless, this deviation is not as significant and it still falls in the Hotelling T2 

ellipse with 99% confidence level (data not shown). Therefore, this sample is retained in 

the following analysis because of the relatively small sample cohort involved in this 

study.  

We first interrogated the data to identify metabolic differences between injured 

and uninjured samples using PLS-DA and volcano plot. For both serum and CSF, the two 

sample groups were well separated on the first principle component in the PLS-DA score 

plots with high R2 and Q2 values (Figure 6.8). 425 and 283 statistically significant 

putative metabolites were chosen from serum and CSF respectively, based on VIP score 

of greater than 1.5. In addition to PLS-DA, univariate analysis was also performed using 

t-test with p < 0.01and fold change (FC) > 1.5, which resulted in the selection of 288 and 

301 putative metabolites from serum and CSF. In order to improve the confidence of 
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picking the true differentiating metabolites, only the metabolites commonly selected by 

PLS-DA and volcano plot were selected for further analysis. The overlap includes 269 

and 246 putative metabolites in serum and CSF, respectively, among which 8 metabolites 

have been identified in each biofluid based on dansyl library search (Table 6.3). Most of 

the observed metabolic changes have not been reported before in spinal cord injury, but 

some of the changes can be rationalized. For example, O-phosphoethanolamine is a 

precursor in phospholipid synthesis, and decreased level of this metabolite suggests a 

decline in the phospholipid metabolism. This observation is consistent with the reported 

decrease in phospholipid levels following traumatic spinal cord injury in rat models.271 

Another example is the up-regulation of homocarnosine, which is an important brain-

specific dipeptide with antioxidant activity.272 Oxidative stress is known to contribute to 

the damage in spinal cord after injury and increased levels of other antioxidants have 

been observed in related studies.273 In addition, because of the antioxidant activity, 

homocarnosine is also known to be neuroprotective,274 and its elevation may be 

associated with prevention of neuronal cell death following the injury. While these 

metabolic changes are location specific (i.e., only observed in one of the biofluids), we 

have also found 33 (7%) differentiating metabolites common to both biofluids. This 

overlap is considerably small, suggesting that the majority of metabolic changes are not 

the same in these two biofuilds. Nevertheless, among the 33 commonly detected 

differentiating metabolites, 27 of them have similar fold changes in serum and CSF. This 

indicates that for most of the common differentiating metabolites, changes in their serum 

metabolic profile correlate positively with those in CSF. As an example, uridine was 

down-regulated to almost the same extent in serum (FC = 0.39) and CSF (FC = 0.29) in 
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SCI patients. These metabolites can therefore serve as potential biomarkers in SCI 

diagnosis regardless of the biofluid to use, which provides some flexibility in clinical 

applications.  
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Figure 6.7 PCA score plots for (A) serum and (B) CSF. Red triangle: uninjured control; 

blue diamond cross: AIS A; blue circle: AIS B; blue star: AIS C; black diamond: quality 

control.  
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Figure 6.8 PLS-DA score plots for (A) serum (R2 = 1, Q2 = 0.93) and (B) CSF (R2 = 0.999, 

Q2 = 0.931). Red triangle: uninjured control; blue dot: injured patients.  
 

Table 6.3 Summary of differentiating metabolites between injured and uninjured samples 

in serum (top) and CSF (bottom) 

Metabolite ID VIP score Fold changea p value 

Uridine 2.73 0.39 1.85×10-10 

Acetominophen 2.73 0.11 1.33×10-10 

Phenylalanine 2.66 1.57 5.80×10-10 

4-Hydroxyproline 1.94 0.64 3.94×10-4 

2-Aminooctanoic acid 1.86 0.51 1.70×10-4 

O-Phosphoethanolamine 1.73 0.65 1.27×10-3 

Hydroxyphenyllactic acid 1.59 1.51 5.17×10-3 

Glycylproline 1.52 3.00 4.30×10-3 

Metabolite ID VIP score Fold change p value 

Uridine 2.65 0.29 4.74×10-13 

Acetominophen 2.52 0.12 5.96×10-10 

Arginine 2.22 0.59 1.87×10-7 

Lysine 1.78 0.63 1.17×10-4 

N-methylaspartic acid 1.73 0.56 1.84×10-4 

Alpha-aminobutyric acid 1.64 1.85 1.83×10-3 

2-Aminooctanoic acid 1.59 0.58 4.07×10-3 

Homocarnosine 1.50 3.40 1.97×10-3 

aFold change was calculated as the ratio of the average peak pair ratio in injured samples 

to that in uninjured controls.  

 
We then investigated whether there are metabolic signatures for evaluation of the 

injury scale. We compared the metabolic profiles of AIS A, B and C samples using PLS-
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DA and ANOVA. As discussed before, the difference between the three injury levels is 

much smaller compared to the difference between injured and uninjured samples, and no 

clear separation was observed in the unsupervised PCA score plot (Figure 6.7). 

Nevertheless, as shown in Figure 6.9, when the supervised PLS-DA model was applied, 

the three different patient groups can be separated with good prediction of the testing 

samples using 7-fold cross-validation (Q2 > 0.5). We extracted metabolites with VIP 

score > 1.5 and determined their p values using ANOVA to evaluate whether there’s 

statistical significance between group means. As a result, 57 and 29 putative metabolites 

were selected using the criteria of p < 0.05, which include metabolites that are 

significantly elevated in group A, B and C, respectively, or changed progressively from A 

to C. These metabolites may therefore be used as potential biomarkers for evaluation of 

injury severity. As an illustration, in each case one metabolite was selected and the 

average ratio distributions are plotted in Figure 6.10. However, none of these metabolites 

could be matched with the dansyl standard library, and putative identification based on 

accurate mass search against HMDB usually gives several possible structures or no 

matched entries. For example, the accurate mass search results for the four peak pairs 

illustrated in Figure 6.10 are summarized in Table 6.4, which shows that three of them 

are matched with more than one compound and the other one could not be matched with 

any compound within the specified error (5 ppm). For more confident identification, 

MS/MS experiments and authentic standards will be required. Nevertheless, since major 

objective of this work is to demonstrate the capability of this isotope labeling technique 

for SCI severity differentiation and to compare the CSF and serum metabolic profile, 

further metabolite identification was not performed at this stage. Finally, we have 
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detected 5 (6%) putative metabolites that were common to serum and CSF, with similar 

inter-group ratio distributions in the two biofluids. This overlap percentage is similar to 

what we observed previously for uninjured vs. injured samples, which again indicates a 

relatively large difference in the metabolic changes at different locations of the body in 

response to SCI.  
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Figure 6.9 PLS-DA score plots for (A) serum (R2 = 0.999, Q2 = 0.633) and (B) CSF (R2 = 

1, Q2 = 0.857). Blue diamond cross: AIS A; blue circle: AIS B; blue star: AIS C.  

 

 

 

Figure 6.10 Column plot showing the average ratio of four peak pairs that show 

significant differences among three injury groups. The accurate mass of the four 

metabolites are (A) m/z 101.0918; (B) m/z 204.0729; (C) m/z 178.1095; (D) m/z 103.0634. 
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Table 6.4 Summary of accurate mass search results for the four peak pairs illustrated in 

Figure 6.10. 

Peak pair m/z HMDB search resulta Mass error (ppm) 

A 101.0918 / / 

B 204.0729 Alanyl-Aspartate 3.9  

  5-L-Glutamylglycine 3.9 

  L-beta-aspartyl-L-alanine 3.9 

  Aspartyl-Alanine 3.9 

C 178.1095 Glycinexylidide 2.6 

  Pseudooxynicotine 2.6 

D 103.0634 N-Ethylglycine 0.3 

  O-Acetylethanolamine 0.3 
aOnly metabolites containing a primary/secondary amine or phenol group are listed. The 

list is further filtered by eliminating metabolites that have different retention times as in 

the dansyl standard library. 

6.4 Conclusion 

In this study, differential isotope labeling LC-MS has been applied to the 

metabolomic profiling of serum and CSF samples, which was shown to have good 

analytical repeatability and peak detectability. While the metabolic compositions in 

serum and CSF are similar, metabolite concentrations can vary largely in these two 

biofluids, and therefore parallel metabolomic profiling of CSF and serum is 

recommended to obtain the most comprehensive metabolite coverage. As an example of 

the parallel metabolomic analysis, metabolic changes associated with spinal cord injury 

have been examined in both serum and CSF, and a set of differentiating metabolites 

common to both biofluids has been discovered. Future work will focus on metabolite 
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identification, validation on additional sample sets, as well as time-course analysis of the 

differentiating metabolites, with the aim of getting a deeper insight into the 

pathophysiology of the injury and discovering more specific biomarkers of SCI.  
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Chapter 7 

Conclusion and Future Work 

LC-MS-based metabolomics provides a sensitive and robust methodology for 

comparative analysis of small molecules in different groups of biological samples. It 

allows simultaneous detection and quantification of a wide range of metabolites, and has 

been increasingly applied in biomarker discovery and system biology research. However, 

because of the great chemical diversity of metabolites, it is difficult to identify and 

quantify the entire metabolome in one shot. To address this problem, our group has 

undertaken the divide-and-conquer strategy to increase the metabolome coverage. The 

metabolome is divided into several sub-metabolomes depending on the functional groups 

present in the metabolites, and chemical derivatization of specific functional groups is 

employed to improve chromatographic separation and detection sensitivity of the LC-MS 

platform. In addition, chemical derivatization enables incorporation of an isotope tag into 

each metabolite, which can serve as an internal standard to compensate for matrix effect 

and instrument drift. Currently, our group has successfully developed a differential 

12C/13C-isotope dansylation labeling approach for the amine- and phenol-containing sub-

metabolome. My thesis research focuses on applying this labeling approach to biological 

and clinical samples. Based on the research objectives, my thesis work is composed of 

two parts. The first part aims at developing a simple and fast dansyl labeling UV-based 

normalization method for correction of concentration variations in biological samples. 

The second part emphasizes on real metabolomics applications of this differential isotope 

labeling technique, including bacterial differentiation and disease biomarker discovery. 

The major achievements of each research project are summarized below. 
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Chapter 1 provides an overview of the basic concepts of metabolomics, LC-MS 

techniques, sample preparation and normalization, as well as isotope labeling techniques. 

In particular, a comprehensive review of major normalization methods used in MS-based 

metabolomics is included in this chapter.  

In Chapter 2, a general approach of determining the total concentration of 

metabolites is developed. It is based on the use of dansyl labeling to attach a UV 

absorbent to the metabolites to be analyzed, followed by rapid step-gradient LC-UV 

detection of the labeled metabolites. It has been shown that quantification of the total 

labeled analytes in a biological sample facilitates the preparation of an appropriate 

amount of starting materials for MS analysis as well as the optimization of the sample 

loading amount to a mass spectrometer for achieving optimal detectability. LC-UV 

quantification of the labeled metabolites could be optimally performed at the detection 

wavelength of 338 nm. A calibration curve of a mixture of 17 dansyl-labeled amino acid 

standards was used to determine the total concentration of the labeled metabolites in a 

sample. A workflow incorporating this LC-UV metabolite quantification strategy was 

then developed in which all individual urine samples were first labeled with 12C-

dansylation and the concentration of each sample was determined by LC-UV. The 

volumes of urine samples taken for producing the pooled urine standard were adjusted to 

ensure an equal amount of labeled urine metabolites from each sample was used for the 

pooling. The pooled urine standard was then labeled with 13C-dansylation. Equal amounts 

of the 12C-labeled individual sample and the 13C-labeled pooled urine standard were 

mixed for LC-MS analysis. This way of concentration normalization among different 



 

  207  

 

 

samples with varying concentrations of total metabolites was found to be critical for 

generating reliable metabolome profiles for comparison. 

Chapter 3 describes a simpler and more rapid method for sample amount 

normalization. It is also based on dansylation labeling of the amine and phenol sub-

metabolome of an individual sample, but the procedure is followed by solvent extraction 

of the labeled metabolites and ultraviolet (UV) absorbance measurement using a 

microplate reader. The volume of an aliquot taken from each sample is adjusted 

according to the measured concentrations so that the same sample amount is taken for 

subsequent metabolome comparison. As an example of applications, this dansylation 

metabolite assay method was shown to be useful in comparative metabolome analysis of 

two different E. coli strains using the differential isotope labeling LC-MS platform. 

Because of the low cost of equipment and reagents and the simple procedure used in the 

assay, this method can be readily implemented and is applicable to many types of 

samples for quantitative metabolomics. 

In Chapter 4, a simple and robust method for profiling the amine- and phenol-

containing sub-metabolome of bacterial cells is described. The overall workflow consists 

of methanol-based cell lysis and metabolite extraction with ultrasonication, differential 

isotope dansylation labeling of cellular metabolites, and analysis of the labeled 

metabolites by LC–MS. Over a thousand peak pairs or putative metabolites can be 

detected from bacterial cells in a single LC–MS run and near 2500 putative metabolites 

can be found in one bacterium from combined results of multiple analyses. After careful 

examination and optimization of the sample preparation process, this method was shown 

to be effective for both Gram-positive and Gram-negative bacteria. The idea of applying 
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LC–UV detection to quantify the total amount of labeled metabolites was shown to be 

effective for normalizing the amounts of metabolites present in different samples for 

metabolome comparison. The use of differential isotope labeling allowed relative 

quantification of each individual metabolite, which facilitates comparative metabolomics 

studies and the generation of a metabolic fingerprint of a bacterium. Finally, this method 

was demonstrated to be useful for the differentiation of three bacterial species in cultured 

media and spiked human urine samples. 

In Chapter 5, the differential isotope labeling LC-MS technique is applied for the 

metabolite profiling of plasma samples from autistic children (n = 200) and their age- and 

gender-matched controls (n = 200). A detailed biomarker discovery workflow, including 

evaluation of analytical and biological variations, statistical analysis, metabolite 

identification and absolute quantification, has been discussed. As a result, the levels of 32 

metabolites were found to be significantly altered in autistic children compared to the 

neurotypical controls (p < 0.01). A total of 21 differentiating metabolites were identified, 

including several amino acids such as glutamic acid, glutamine and methionine, as well 

as a number of γ-glutamyl dipeptides. Alterations of these metabolites were thought to be 

related to perturbations in neurotransmission and increased oxidative stress in autistic 

patients. The validation performance of these metabolite signatures was evaluated and 

high prediction accuracy (0.95) can be achieved by using a combination of three of the 

metabolites. Overall, this work has lead to the promise of using these metabolites as 

potential biomarkers for clinical diagnosis of ASD.  

Chapter 6 demonstrates application of the differential isotope labeling LC-MS 

approach for parallel metabolomic profiling of two important biofluids, CSF and serum, 
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from patients with acute spinal cord injury. Good analytical repeatability was achieved 

for both biofluids, based on assessment of coefficient of variation and percentage overlap 

between three experimental replicates. The effect of sample loading amount to the mass 

spectrometer was evaluated, and it was found that at high injection amounts, ion 

suppression became noticeable in serum samples. The optimal injection amount was 

determined to be 3.3 nmole for CSF and 5.7 nmole for serum. A comparison between the 

CSF and serum metabolome suggests that the chemical compositions of these two 

biofluids are similar, but there are large differences in their metabolite levels. Finally, 

metabolomic profiling of CSF and serum has revealed significant metabolic changes in 

both biofluids following spinal cord injury and moderate differences in the metabolic 

profiles of different injury severities.  

Today metabolomics is still a relatively young research field that requires 

unceasing advances. While the research work described in this thesis has made positive 

progresses in the development and applications of the differential dansylation isotope 

labeling LC-MS approach for metabolomics studies, there are still ways in which the 

methodology can further improve. Here three important future directions will be 

addressed. Firstly, the metabolome coverage can be increased further in two ways. The 

first approach is to develop and apply new labeling chemistries that target at functional 

groups other than amine and phenol. For example, our group has developed 

dimethylaminophenacyl labeling for carboxylic acids and dansylhydrazine labeling for 

aldehydes and ketones. These different labeling strategies can then be applied in 

combination in one metabolomics study to increase the overall metabolome coverage. 

This is particularly useful for discovering specific biomarkers (i.e., casting a wider net to 
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increase the chance of detecting one or a set of specific metabolite biomarkers) as well as 

pathway analysis, as each metabolic pathway can involve several different classes of 

metabolites. However, one potential limitation of chemical derivatization methods is the 

matrix effect in biological samples, which may cause variations in reaction efficiency. 

One way to reduce the matrix effect is to perform a metabolite extraction step before 

labeling, so that only the metabolites of interest are subjected to derivatization. Therefore, 

the future work can also focus on development of metabolite extraction methods prior to 

chemical derivazation in order to improve labeling specificity and efficiency. Another 

way is to use two-dimensional LC prior to MS analysis. Two-dimensional LC allows 

better metabolite separation of complex biological samples, and is expected to improve 

mass spectrometric detection of low intensity metabolites through reduced ion 

suppression and matrix effects. 

The second future direction is to improve metabolite identification. In our dansyl 

labeling applications, metabolite identification still presents a bottleneck that limits 

biological interpretation of observed metabolic changes. Currently we have already built 

a dansyl standard library containing over 280 amine and phenol compounds. However, 

considering the huge size of the metabolome, expanding the library by purchasing or 

synthesizing more standards is needed. In addition, MS/MS spectra interpretation is also 

helpful in identification of some dansyl-labeled metabolites, such as dipeptides. However, 

this approach may fail when the dansyl fragment ions dominate the spectrum or when the 

metabolite intensity is too low. Another possible way to improve identification is to 

concentrate unknown metabolites by fraction collection, followed by structure analysis 

with NMR. 
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The third future direction is to combine the untargeted metabolomic profiling with 

the targeted workflow. Targeted metabolomic analysis provides improved sensitivity and 

quantification. Once one or more metabolites associated with a certain pathway are 

identified to be altered by untargeted metabolomic profiling, changes in other metabolites 

in the same pathway can be monitored using the targeted approach. Such analysis could 

provide a more comprehensive picture of the biological processes of interest. Moreover, 

when one or more potential biomarkers have been identified, development of a high-

throughput targeted metabolite monitoring approach would be required for large-scale 

validation and clinical applications.   
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