
Traffic Management in Mixed Autonomy with CAVs:
Sensing, Signal Optimization, and Trajectory Control

by

Fan Wu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Transportation Engineering

Department of Civil and Environmental Engineering

University of Alberta

© Fan Wu, 2024



Abstract

Global vehicle numbers continue to climb alongside population growth and eco-

nomic expansion, resulting in increased traffic congestion, air pollution, and

accidents. Major cities worldwide estimate that drivers lose considerable work-

ing hours annually to congestion, leading to wasted time, fuel, and increased

air pollution levels which impact road users’ comfort. Consequently, address-

ing traffic congestion, reducing vehicle emissions, and ensuring road safety are

imperative for sustainable urban development. Intelligent transportation sys-

tems (ITS) are vital for smart cities and sustainable urban development, lever-

aging emerging technologies such as the connected vehicle (CV) technology,

the automated vehicle (AV) technology, the connected and automated vehicle

(CAV) technology, the vehicle-to-everything (V2X) communication, and the

mobile edge computing (MEC). These innovations integrate vehicle automa-

tion, real-time communication, and extensive computing resources, offering

opportunities for improved traffic management and more efficient real-time

traffic control.

Conventional human-driven vehicles (HDVs) and pedestrians are still key

players in shaping traffic dynamics today. As such, we must acknowledge the

reality of an extended coexistence among various road users, including conven-

tional HDVs, connected vehicles (CVs), connected automated vehicles (CAVs),

pedestrians, and cyclists, creating what is termed as a ’mixed-autonomy’ or

’mixed-traffic’ system. However, there is a tendency to overlook the benefits
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of pedestrians or conventional vehicles when adopting new CAV technology.

Therefore, while emerging technologies hold promise, integrating them into

real-world transportation scenarios is essential for effectively managing this

dynamic traffic system.

Given the complexities of mixed-autonomy traffic and the advancements

of CAV technology, this dissertation focuses on enhancing traffic management

strategies. It aims to achieve this through the development of methods for

predicting and sensing traffic states, optimizing traffic signal control, and im-

plementing trajectory control approaches for CAVs. The overall goal is to

ensure road users’ safety, improve traffic efficiency, reduce vehicular emissions

within mixed-autonomy traffic scenarios, and consider the benefits of emerging

technologies for all types of road users in mixed traffic. To achieve this goal,

the research is structured into three main parts:

The first part develops a precise and efficient method for estimating traf-

fic states using sparse trajectory data from CVs on mixed traffic scenarios

involving conventional HDVs and CVs or CAVs, suitable for various road seg-

ments such as freeways, highways, or urban arterials. The goal is to pre-

dict comprehensive traffic states for both HDVs and CVs, supporting subse-

quent signal optimization and trajectory control. The study introduces a novel

model that utilizes Gaussian processes (GP). By employing a kernel rotation

re-parametrization scheme, a standard isotropic GP kernel is transformed into

an anisotropic one, allowing for better modeling of traffic wave propagation

in flow data. This method effectively estimates traffic states from sparse sens-

ing data collected from fixed sensors, probe vehicles, and CVs. The results

demonstrate superior performance of the estimating model in terms of accu-

racy, efficiency, and robustness.

The second part introduces adaptive signal optimization methods for mid-
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block crossings, tailored for scenarios involving conventional HDVs and pedes-

trians, as well as scenarios with a mix of HDVs, CVs, and pedestrians. This

aims to enhance traffic efficiency along an arterial road, particularly focusing

on the urban arterial level with a midblock crossing. It ensures pedestrians’

safety while minimize the impact of frequent crossing requests on the arterial

traffic flow. The proposed models utilize the signal control status of adjacent

intersections and leverage real-time vehicle location information obtained from

CVs to optimize pedestrian waiting time. The optimization model ensures

pedestrian safety while enhancing signal coordination between the midblock

crossing and downstream intersections. The approach effectively reduces both

vehicle and pedestrian delays.

The final section provides an innovative approach to trajectory control

specifically tailored for CAVs, with a focus on improving fuel efficiency, safety,

and overall traffic performance. This method is developed to handle diverse

traffic scenarios involving a combination of HDVs, CAVs, and pedestrians at

intersections. The trajectory planning framework integrates a deep reinforce-

ment learning (DRL) algorithm with a multi-agent control strategy. Using the

deep deterministic policy gradient (DDPG) algorithm, the proposed method

enables CAVs to learn optimal control policies within the complexities of mixed

traffic environments. Through thorough evaluations, the proposed framework

demonstrates significant enhancements in traffic efficiency, a reduction in ve-

hicle emissions, and an improvement in traffic safety.

The dissertation presents comprehensive research on traffic management

within mixed-autonomy traffic environments. The models and algorithms in-

troduced offer effective means to enhance traffic efficiency, minimize vehicle

emissions, and prioritize safety. The findings contribute to methodological

and practical insights into sustainable and efficient mixed traffic management.
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Chapter 1

Introduction

1.1 Background

The transportation system holds a significant role in the life of residents, eco-
nomic growth, and urban development. Comprising various modes like road,
rail, air, and water, it forms a complex network vital for societal functioning.
Among these modes, road transportation stands as the most widely utilized,
facilitating daily travel for residents worldwide. By 2023, the global vehicle
count stands at approximately 1.475 billion, impacting a vast portion of the
world’s population [1]. This number continues to rise alongside with the pop-
ulation growth and the economic expansion. However, the increasing number
of vehicles also brings a series of problems, such as traffic congestion, air pol-
lution, and traffic accidents. For instance, in Canada, the nation’s largest city,
Toronto, endured an annual loss of 118 hours, ranking as the 6th highest delay
city in 2022 due to traffic congestion [2]. This congestion not only results in
time and fuel wastage but also contributes to increased air pollution levels.
According to the United States Environmental Protection Agency (EPA), the
transportation sector emerged as the largest contributor to greenhouse gas
(GHG) emissions in 2021, accounting for approximately 29% of total emis-
sions [3]. Therefore, traffic congestion mitigation, vehicle emission reduction,
and the protection of all road participants’ safety are crucial for sustainable
urban development.

Many cities worldwide launched the smart city initiative to address these
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challenges. Smart cities leverage information and communication technologies
(ICT) to enhance urban management and services, aiming to improve the qual-
ity of life for residents, reduce environmental impact, and promote economic
growth [4]. The transportation sector is a key focus of smart city initiatives,
to improve traffic efficiency, reduce emissions, and enhance road safety. To
achieve these objectives, smart cities have implemented various technologies,
such as intelligent transportation systems (ITS) utilizing some emerging tech-
nologies. These technologies encompass a range of advancements, such as
connected vehicle (CV), automated vehicle (AV), connected and automated
vehicle (CAV), vehicle-to-everything (V2X) communication, and mobile edge
computing (MEC). These innovations integrate vehicle automation, communi-
cation, computing resources, and road infrastructure, paving the way for the
next generation of ITS.

Traffic management system (TMS) represents a crucial branch of ITS, gar-
nering significant attention from both researchers and engineers. For example,
signal coordination and optimization has been one of the main techniques
for improving the performance of arterial traffic management. In the past
decades, much research has been done to improve the performance of signal
coordination, such as actuated coordinated control. Most traffic management
strategies rely on loop detectors and cameras to collect data and improve the
performance of signal timing, and most methods are based on offline opti-
mizations. Therefore, existing methods are insufficient in capturing real-time
information of each vehicle along an arterial and only give attention to simpli-
fied scenarios like macroscopic arterial traffic smoothness. There is still a long
way to go for real-time traffic management.

Emerging technologies generate a substantial volume of data, including
real-time trajectory data, which serves as a valuable resource for developing
advanced traffic management strategies. Examples include optimizing traffic
signal control and estimating traffic states using sensor data. Effective and
real-time traffic management requires accurate and timely knowledge of traffic
state over the entire network. However, current fixed sensors like loop detec-
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tors are point sensors and are unable to provide global vehicle information.
Although we can collect data from mobile vehicles and infrastructure with the
support of V2X technology, the challenge is that not all vehicles are equipped
with V2X devices. Therefore, it is essential to develop efficient and robust
sensing methods to capture the full map of real-time traffic information and
improve traffic management strategies from limited sensing trajectories from
probe vehicles or connected vehicles (CVs).

Moreover, it’s important to note that the scope of ITS extends beyond
CAV alone. Conventional human-driven vehicles (HDVs) and pedestrians also
play pivotal roles in influencing traffic dynamics and transportation infrastruc-
ture today, and they should be served equally. According to [5], automated
vehicles (AVs) or connected and automated vehicles (CAVs) may not domi-
nate the traffic stream until the 2040s to 2050s, indicating a prolonged period
of coexistence between conventional HDVs, CVs, CAVs and other road users
within what can be termed a ’mixed autonomy’ traffic system.

While these emerging technologies offer great potential for revolutioniz-
ing the transportation system, their integration also presents new challenges.
Therefore, it is essential to seamlessly integrate these new techniques with
existing transportation domain knowledge to thoroughly comprehend and ad-
dress traffic issues. This study includes tackling the complexities of mixed-
autonomy traffic systems and developing more efficient and sustainable traffic
management and control strategies to adapt to these transformative changes.

1.2 Research Motivations and Questions

CVs have introduced the convenience of accessing real-time vehicle data and
hold promise for enhancing traffic management strategies. However, their
deployment is still in its early stages, with a low penetration rate. Additionally,
the coexistence of CAVs, CVs, and HDVs within the same traffic environment
is an ongoing reality that must be addressed. Managing this dynamic traffic
ecosystem is crucial. In essence, while emerging technologies offer potential
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solutions, it is imperative to integrate them with transportation engineering
knowledge to effectively address traffic challenges. This approach ensures the
optimization of traffic systems. Consequently, this section outlines the research
motivations and questions.

1.2.1 Research motivations

• Understanding the mixed autonomy traffic system with CAVs.
Most of the research about CAV controls is based on individual vehicle
control, which is not enough for the real-world traffic system which cov-
ers multiple vehicles; most of the research about intersection/segment
traffic operation or driving behavior is based on the assumption that all
vehicles are CAVs, which is also not practical for the real-world traffic
system. Consequently, most current traffic management algorithms are
based on the assumption of a 100% CAV market penetration rate or a
fully traditional traffic environment. According to [5] and [6], HDVs,
CVs, and CAVs will coexist for the next 20-30 years, with the market
penetration rate of CAVs not expected to reach 100% until the 2040s to
2050s. Therefore, it is crucial to comprehend the mixed autonomy traffic
system to inform data sensing, signal optimization, and vehicle control
strategies effectively in real-world traffic scenarios.

• Describing the heterogeneous and dynamic nature of the mixed
autonomy traffic system. The mixed autonomy traffic system com-
prises a multitude of interacting agents, representing various types of
road users. These agents range from intelligent entities like CAVs and
traffic signals to physical entities such as HDVs, pedestrians, and cy-
clists (smart entities as well but less controllable than intelligent enti-
ties), contributing to the system’s diversity. Additionally, each agent or
road user possesses distinct preferences, leading to dynamic interactions
within the transportation system. As highlighted by Wu et al. [7], the
mixed autonomy system exhibits characteristics such as high stochastic-
ity, cascading effects, nonlinearity, discontinuity, hybridity, and network
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dynamics. Understanding the heterogeneity and dynamism of the mixed
autonomy traffic system is essential for further development of efficient
and sustainable traffic management strategies to improve mobility.

• Leveraging limited sensing data from CVs and the limited intel-
ligence from controllable AVs. ITS heavily relies on traffic informa-
tion collected from various detectors like loop detectors, video cameras,
probe vehicles, and more recently, CVs. However, each detector type has
its limitations regarding coverage and data completeness, often due to
installation costs or data processing constraints. Despite advancements
allowing flexible data collection from CVs and infrastructure through
V2X technology, not all vehicles are equipped with V2X devices, limit-
ing sensing data availability. However, comprehensive traffic information
is essential for real-time and accurate traffic operation. Additionally, in
a mixed autonomy traffic scenario with CAVs, the intelligent agents are
constrained due to the low penetration rate of CAVs. These challenges
impede the comprehensive capture of real-time traffic information and
hinder the enhancement of traffic management strategies. Therefore,
developing estimation methods to glean traffic state information from
limited sensing data and devising intelligent control approaches lever-
aging the presence of limited CAVs are imperative for enabling more
precise traffic control and management within ITS.

• Enhancing advanced, efficient, and robust signal optimization
and control methods for mixed autonomy traffic. CAVs offer
real-time trajectory data, providing a distinct advantage over aggregated
data from fixed detectors. With their information access from multiple
sensors and control capabilities, CAVs enable the perception of traffic
flow, enhancing traffic signal optimization and trajectory control. Con-
sequently, research on signal optimization and traffic control in CAV
environments has gained traction. Studies by [8] argued that most work
has primarily focused on traffic signal control within fully CAV environ-
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ments, while some researchers have explored potential models for mixed
traffic control, only emphasizing vehicle-side factors such as CAV driving
policies and non-CAV driving behaviors. Control methods aimed at en-
hancing mixed traffic efficiency often entail a significant computational
burden. Meanwhile, distributed control methods have been introduced
to optimize the advantages of individual CAVs, however, the studies are
even without due consideration for the benefits of non-CAVs [9]. Artifi-
cial intelligence (AI) can facilitate the approach development and solve
complex real-world traffic scenarios better than analytical traffic models.
Therefore, developing advanced, efficient, and robust signal optimiza-
tion and control methods that adapt the mixed autonomy traffic system
leveraging AI techniques is essential.

• Ensuring the benefits extend to various types of road users in
mixed autonomy traffic. Among the advancements in ITS, particu-
larly with the introduction of CV and AV, there’s a clear acknowledg-
ment of the benefits these vehicles can derive from advanced strategies.
Their ability to sense, process, and act on information holds promise for
enhancing performance. However, as we transition into a prolonged pe-
riod of mixed autonomy traffic systems, encompassing HDVs, CVs, CAVs,
and pedestrians, it’s imperative to consider the diverse needs of all road
users. Most of the concepts focus on tailoring policies and approaches
to better serve CAVs, such as initiatives of dedicated lanes, however, we
must not overlook the significance of pedestrians and HDVs in shaping
traffic dynamics. Despite lacking the special characteristics to perceive
and decide like connected and automated vehicles, these road users have
their own rights in the transportation system. As such, the scope of ITS
should not be limited to CAVs alone but should consider all entities on
the road, both physical and intelligent, in order to better manage the
traffic system. ITS should strive to enhance overall traffic management
and try to ensure the benefits of emerging technologies for all road users
involved.
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1.2.2 Research questions

In light of the challenges and motivations outlined in the preceding section,
this study aims to address the key research question: How to achieve effi-
cient and sustainable traffic management strategies covering sensing,
signal optimization and trajectory control in the mixed autonomy
with HDVs, CVs, CAVs, and pedestrians? To better solve this research
problem, it can be divided into the following sub-questions:

• How can we accurately predict comprehensive traffic states using sparse
or limited vehicle trajectories gathered from CVs to facilitate signal op-
timization and trajectory control?

• How can real-time trajectory data from CVs, combined with V2I commu-
nication, effectively optimize signal control and enhance traffic efficiency
along an arterial with a pedestrian crossing?

• How to propose an intelligent distributed trajectory control for effectively
implementing CAV driving through an intersection with minimized delay,
conflicts and emission?

• How can we achieve traffic efficiency and sustainability in a mixed au-
tonomy environment with CAVs through traffic management strategies
that consider various types of road users?

1.3 Research Scope and Objectives

To address the research questions outlined earlier, the dissertation defines its
scope and objectives.

1.3.1 Research scope

• The research focuses on mixed autonomy traffic scenarios, encom-
passing HDVs, CVs, CAVs, and pedestrians. The methodology in Chap-
ter 3 applies to mixed traffic with HDVs and CVs or HDVs and CAVs,
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extending beyond CV trajectory data to include sparse data from other
detectors. Chapter 4 addresses mixed traffic with HDVs, CVs, and pedes-
trians, along with proposing a method for scenarios with HDVs and
pedestrians. The approach developed in Chapter 5 is designed for mixed
traffic involving HDVs, CAVs, and pedestrians.

• The research addresses both segment and intersection levels. Chap-
ter 3 introduces a methodology suitable for traffic flow on road segments
of freeways, highways, or urban arterials. Chapter 4 concentrates on
the urban arterial level, encompassing a road segment with two adjacent
intersections. Chapter 5 delves into the intersection level.

• The research underscores methodological innovations incorporat-
ing traffic characteristics, drawing inspiration from artificial intelli-
gence techniques. While not all chapters focus solely on control-based
approaches, Chapter 5 advances an intelligent distributed trajectory con-
trol method rooted in reinforcement learning (RL). Chapter 3 employs
a machine learning (ML) approach, specifically an anisotropic Gaussian
process, for traffic state estimation. In Chapter 4, two adaptive push-
button traffic signal optimization methods are introduced, grounded in
optimization theory.

• The research primarily aims to enhance traffic efficiency and sus-
tainability, particularly by reducing traffic delays, and vehicular emis-
sions, and improving pedestrian crossing efficiency while ensuring safety.
It is noticeable the focus is not on improving safety or reducing traffic ac-
cidents. Chapter 4 contributes to reducing traffic delays and enhancing
pedestrian crossing efficiency while maintaining safety standards. Simi-
larly, Chapter 5 focuses on reducing traffic delays and vehicular emissions
while improving traffic safety.

• The research operates under the assumption that all CVs consistently
provide accurate information without communication loss, a premise
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applied in Chapter 3 and Chapter 4. Additionally, CAVs are presumed to
be controllable and capable of adhering to control commands from the
traffic management system, with the communication assumption men-
tioned above simultaneously.

• The research does not design the microscopic driving behaviors of HDVs,
CVs, and CAVs, such as car-following and lane-changing behaviors. The
research focuses on the macroscopic traffic management strategies
like traffic operation and control.

1.3.2 Research objectives

This dissertation aims to enhance traffic sensing, improve traffic efficiency, and
reduce vehicular emissions in mixed autonomy traffic scenarios. The specific
objectives related to Chapter 3, 4 and 5 will be achieved by implementing traf-
fic state estimation, traffic signal optimization, and vehicle trajectory control,
leveraging V2X communication and CAV technology. The summary of objec-
tives, structure, and primary contributions of the dissertation is diagrammed
in Fig. 1.1.

• Develop a precise and efficient traffic state estimation method
using sparse trajectory data from CVs to predict comprehensive traffic
states for both HDVs and CVs, supporting subsequent signal optimiza-
tion and trajectory control efforts.

• Propose adaptive midblock crossing signal optimization meth-
ods for scenarios featuring exclusively HDVs and pedestrians, as well
as scenarios involving HDVs, CVs, and pedestrians to enhance traffic
efficiency along an arterial, improving pedestrian crossing efficiency.

• Provide an intelligent distributed trajectory control method
for CAVs in a mixed traffic of CAVs, HDVs and pedestrians to improve
performance in terms of fuel consumption, safety, and efficiency to enable
efficient intersection control.
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Figure 1.1: Summary of objectives, tasks, and dissertation organization.

1.4 Dissertation Contribution

Each chapter of the dissertation contributes methodologies, algorithms, and
integrates domain knowledge with emerging technologies to the existing litera-
ture. The traffic management strategies for mixed autonomy traffic developed
in this research offer valuable insights and practical guidance for implementa-
tion. The detailed contributions of the three main chapters in this dissertation
are outlined as follows.

• Contribution i: Sensing. This dissertation delves into the challenges
and requirements of sensing in mixed autonomy traffic systems. While
only a fraction of vehicles is equipped as CVs or CAVs, accurately esti-
mating real-time traffic states for all components is essential for effec-
tive traffic management. Chapter 3 proposes a novel method leveraging
Gaussian processes (GP) to tackle this challenge. Through a kernel
rotation re-parametrization scheme, a standard isotropic GP kernel is
transformed into an anisotropic one, better modeling traffic wave prop-
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agation in flow data. This method can effectively estimate traffic states
from sparse sensing data obtained from fixed sensors, probe vehicles, and
CVs. Additionally, it provides statistical uncertainty quantification, en-
hancing reliability. Extension to a multi-output GP allows simultaneous
estimation of traffic states for multiple lanes. Results demonstrate supe-
rior performance compared to state-of-the-art methods in accuracy, ef-
ficiency, and robustness. Applicable to segments of freeways, highways,
or arterials, this approach contributes to the mixed autonomy traffic
system involving HDVs, CVs, and CAVs. The work in this chapter has
been published in Wu et al. [10]. The contributions of this work carry
significant implications for real-time and cost-effective traffic monitoring,
particularly in the near-term mixed autonomy traffic.

• Contribution ii: Optimization. Given the fundamental role of sig-
nal control in V2I applications, this dissertation tackles the complexi-
ties of traffic signal optimization within mixed autonomy traffic systems.
Specifically, it addresses challenges posed by scenarios involving HDVs,
CVs, and pedestrians. A typical real-world scenario illustrating this
complexity is an arterial road with two adjacent intersections and a mid-
block crossing between them. In such scenarios, pushbutton control is
often employed for midblock crossings, resulting in significant traffic flow
interruptions due to frequent pedestrian crossing requests. Chapter 4 in-
troduces two adaptive midblock crossing control methods (AMCC-band
and AMCC-vehicle). The AMCC-band method utilizes the signal con-
trol status of adjacent intersections, such as signal phase and timing
(SPaT), while AMCC-vehicle leverages real-time vehicle location infor-
mation, such as that obtained from CVs. Compared with baseline mod-
els, these methods, while ensuring pedestrian safety, improve signal co-
ordination between the midblock crossing and downstream intersections,
thereby effectively reducing both vehicle and pedestrian delays. The
work in this chapter has been published in Wu et al. [11]. The con-
tributions of this work broaden the application scope of conventional
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pushbutton control methods and offer insights into designing a more ef-
ficient mixed autonomy traffic system that caters to the needs of both
vehicles and pedestrians.

• Contribution iii: Control. The dissertation illustrates that the pres-
ence of a mixed traffic composition, including both CAVs and HDVs,
introduces distinct system dynamics compared to homogeneous traf-
fic scenarios. Focusing on intersections accommodating HDVs, CAVs,
and pedestrians—an increasingly common scenario—the dissertation ad-
dresses the complexities of vehicle trajectory control in mixed autonomy
traffic systems. Chapter 5 introduces an intelligent distributed trajectory
control method for CAVs, leveraging RL to enable intelligent decision-
making at intersections. This method significantly reduces traffic delays,
traffic conflicts, and vehicular emissions, particularly in scenarios involv-
ing a mix of HDVs, CAVs, and pedestrians. The contributions of this
research provide valuable insights into the development of effective and
sustainable traffic management strategies for mixed autonomy traffic
systems, particularly in the near-term context.

1.5 Dissertation Organization

This dissertation comprises six chapters, where Chapters 3 to Chapter 5 are
based on articles that were either published or under review by peer-reviewed
mainstream journals. Below is a concise overview of the chapter-level organi-
zation:

• Chapter 1 outlines an introduction to the background, motivation, ques-
tions, scope, objectives, and contributions of this thesis. It also explains
the connections between each chapter.

• Chapter 2 gives a comprehensive literature review covering emerging
technologies and related research, summarizing the state-of-the-art and
identifying research gaps.
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• Chapter 3 presents a novel and efficient traffic state estimation method
utilizing sparse trajectory data from CVs to predict comprehensive traffic
states for both HDVs and CVs. This method surpasses state-of-the-art
techniques in terms of estimation accuracy, efficiency, and robustness,
thereby enhancing support for signal optimization and trajectory control.

• Chapter 4 proposes two adaptive pushbutton traffic signal optimization
methods: one tailored for scenarios involving only HDVs and pedestrians,
while the other for HDVs, CVs, and pedestrians when trajectory from
CVs is available. These methods enhance the traffic efficiency of an
arterial and improve pedestrian crossing efficiency while ensuring safety.

• Chapter 5 develops an intelligent distributed trajectory control method
to facilitate CAV navigation through an intersection, effectively reducing
traffic delays, traffic conflicts, and vehicular emissions in mixed auton-
omy traffic scenarios involving HDVs, CAVs, and pedestrians.

• Chapter 6 summarizes the final conclusion, discusses research limita-
tions, and outlines future directions.

1.6 Conclusion

This chapter serves as a foundation for the dissertation, providing an overview
of the research background, motivations, questions, scopes, objectives, and
contributions essential to navigating the dissertation. It briefly summarizes
the challenges and technical opportunities in related research fields, laying the
groundwork for the research goals. This chapter also serves as a connection
between introductory concepts and forthcoming content. As subsequent chap-
ters go deeper, this connection maintains a coherent narrative, facilitating a
transition from conceptual groundwork to practical research.
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Chapter 2

Literature Review

This chapter provides a comprehensive review of the literature on supported
emerging technologies, traffic management and control. Through extensive
exploration and analysis, it delineates the current state-of-the-art in intelli-
gent traffic management within mixed autonomy environments. By collating
relevant research articles and categorizing them based on methodological de-
velopments, this chapter aims to offer insights into the field, identify research
gaps, and point out potential areas for further investigation, laying the ground-
work for subsequent analyses and discussions.

The chapter is structured into five sections, each addressing key aspects
of the literature review. The first section offers an overview of emerging tech-
nologies pivotal to the next generation of ITS, setting the groundwork for the
research discussed in this dissertation. Following this, the second section delves
into a review of state-of-the-art traffic state estimation methods, highlighting
their data acquisition role in facilitating intelligent traffic management and
control. In the subsequent section, the focus shifts to intelligent traffic control
systems, particularly their applications in arterial traffic management, while
also identifying the oversight of pedestrian considerations in such systems. To
address this gap, the fourth section concentrates on signal optimization at mid-
block crossings within arterials. Moving forward, the fifth section, investigates
trajectory control in mixed autonomy scenarios, with a specific emphasis on
the intersection level. Finally, the concluding section offers a concise summary
of the literature review’s key findings.
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2.1 Emerging Technologies

As described in the previous section, the transportation system is undergo-
ing a significant transformation due to the emergence of various technologies.
Communication, vehicle automation, and computational resources integrated
with fundamental road infrastructures form the next generation of ITS. This
section provides an overview of the key technologies that are shaping the next
generation of ITS.

2.1.1 Connected vehicle

CAVs have garnered widespread recognition for their transformative poten-
tial and have experienced rapid development, fueled by advancements in au-
tonomous vehicle manufacturing and communication technologies. CAVs are
an integration of CVs and AVs. In this section, we will discuss the CVs and
their potential in the transportation system first.

CVs are equipped with wireless communication devices, enabling them to
communicate with other vehicles, road infrastructure, and traffic management
centers. This communication enables the exchange of real-time traffic infor-
mation, such as vehicle speed, location, and acceleration. For example, CVs
can provide real-time traffic information to drivers, alerting them to potential
hazards and traffic congestion. CVs can also be used to improve traffic signal
control, by providing real-time traffic information to traffic signal controllers,
enabling them to adjust signal timing to reduce traffic congestion and improve
traffic safety.

It is worth noting that the drivers in CVs are not necessarily replaced by
automation, and human drivers can still control the vehicle. In other words,
CVs refer more to the vehicle with only communication technology.

2.1.2 Vehicle-to-everything

V2X allows vehicles to communicate with any part of the surrounding traf-
fic system, also known as connected vehicle-to-everything-communication. It
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mainly includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-
to-pedestrian (V2P), vehicle-to-network (V2N), and other communication ap-
plication scenarios. In this way, the real-time information exchange of related
entities is realized. As a result, it supports the management of modern traffic
systems, reduces traffic accidents, eases traffic congestion, reduces emissions,
and provides related information services.

A related concept is the Internet of Vehicles (IoV), which originated from
the Internet of Things (IoT). The IoV and V2X seem to be the same, and both
represent the connection between the vehicle and the outside world. However,
there are still some nuances. For example, the IoV is a concept at the upper
layer, therefore, it is a manifestation of a network system. As for V2X, it is
more of a slightly lower level of technical support. More precisely, we empha-
size the connection method or communication technology to achieve beyond
the line of sight, therefore we often call it V2X technology. Therefore, in this
research, it is called V2X technology and referred as a specific communication
support. Moreover, it is necessary to understand that Dedicated Short-Range
Communication (DSRC) and Cellular-Vehicle to Everything (C-V2X) are two
technical directions in V2X technology, or two sets of communication technol-
ogy standards.

DSRC is a wireless communication technology that enables vehicles to
communicate with each other directly without involving cellular or other infras-
tructure. Vehicle-to-vehicle and vehicle-to-road communication are its main
applications. Each vehicle sends its position, direction, and speed ten times
per second securely and anonymously, and all surrounding cars receive the
message. This technology can realize the identification and two-way commu-
nication of high-speed moving objects (cars) in a specific area (usually tens
of meters) and transmit information in real-time [12], [13]. The DSRC series
of standards include Institute of Electrical and Electronics Engineers (IEEE)
802.11p [14], IEEE 1609 series, and Society of Automotive Engineers (SAE)
J2735 and J2945 standards.

The DSRC series of standards include IEEE 802.11p [14], IEEE 1609 series,

16



and SAE J2735 and J2945 standards. The DSRC standardization process can
be traced back to 2004. First, IEEE formulated new vehicle communication
standards under the 802.11 wireless local area network standard series; around
2007, IEEE framed 1609.x series of standards as the security architecture of
V2X. The above IEEE 802.11p and 1609.x were for safety. Then SAE J2735
and SAE J2945, which define the information carried in the message packet,
including incoming position, the direction of travel, speed, and braking infor-
mation, were motivated to improve the traffic efficiency.

C-V2X is a new generation of vehicle communication technology based on
the evolution of cellular network communication technologies such as 3G/4G/5G.
While DSRC was a mature technology for V2X communications in the past,
C-V2X was proposed and gained attention recently [15], [16]. C-V2X is a
cellular vehicle connection, a wireless communication technology for vehicles
based on the evolution of cellular network communication technologies such
as 3G/4G/5G. C-V2X is a communication technology based on the 3rd gen-
eration partnership project (3GPP) unified standard, broadly including long
term evolution (LTE) (and enhanced LTE-V2X) and 5G-V2X.

C-V2X has two communication interfaces: one is to realize short-distance
direct communication between people, vehicles and roads through PC5 (direct
communication interface, terminal-to-terminal). The characteristics are low
latency, high capacity and highly reliable communication; the other is based
on Uu (cellular network communication interface, terminal and base station),
characterized by realizing long-distance and larger-range reliable communica-
tion. When the terminal equipment supporting C-V2X is within the coverage
of the cellular network of the base station, Uu can be used under the control
of the cellular network. Still, the PC5 interface can be used regardless of
whether there is cellular network coverage so that the Uu interface and the
PC5 interface form an effective complementary.

The 3GPP R14 version standard supporting LTE-V2X was officially re-
leased in 2017; the 3GPP R15 version standard supporting LTE-V2X enhance-
ment (LTE-eV2X) was formally completed in June 2018; the 3GPP R16+ ver-
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sion standard supporting 5G-V2X was announced in research that began in
June 2018 and will form a complementary relationship with LTE-V2X/LTE-
eV2X.

Overall, it can be seen that DSRC is a relatively mature and stable technol-
ogy with an earlier layout. Compared with LTE-V2X in C-V2X, it has a huge
advantage of low latency, but the communication distance is short; the current
version of C-V2X is LTE-V2X and the technical layout is late, but the interface
is flexible and can support more scene applications. Compared with DSRC, it
has the advantage of high bandwidth, which can support longer distance com-
munication. Therefore, in this dissertation, we study all the problems based
on a C-V2X scenario to support the traffic management.

2.1.3 Automated vehicle

An automated vehicle, also referred to as an autonomous vehicle or self-driving
vehicle, possesses the capability to perceive its surroundings and operate with-
out direct human intervention. In this study, the term ”automated vehicle”
is employed to denote such vehicles, emphasizing their focus on enhanced ve-
hicle automation. Analysts point out that by the year 2025, approximately
8 million AVs or semi-AVs will traverse roadways. However, before fully in-
tegrating onto road networks, some AVs progress through six distinct levels
of driver assistance technology advancements or some go directly to a certain
level. These levels, delineated by SAE, span from no automation (Level 0)
to full automation (Level 5) [17]. The hierarchical progression of automation
levels is illustrated in the accompanying Fig. 2.1.

At Level 0, human drivers maintain complete control of the vehicle while
remaining responsible for monitoring the driving environment. Progressing to
Level 1, the vehicle introduces limited automated control, often in longitudinal
or lateral modes. Level 2 marks a significant advancement, where the auto-
mated system assumes full control over both longitudinal and lateral functions,
although drivers must remain alert and ready to intervene if needed. Moving
forward, Level 3 builds upon Level 2 by incorporating an additional monitoring
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Figure 2.1: SAE J3016 levels of automation. Source: SAE International [17].

agent to oversee the driving environment. At Level 4, the vehicle gains the abil-
ity to operate without driver intervention, albeit within specific environmental
and conditional constraints. Finally, Level 5 represents the full automation,
with the vehicle capable of operating autonomously in all environments and
conditions, without any reliance on human intervention.

2.1.4 Connected and automated vehicle

In the preceding section, we outlined the six levels of automation for AVs. The
level of automation correlates with the advanced driver-assist system (ADAS).
Various ADAS functions are integrated into different levels of automation. For
instance, adaptive cruise control (ACC) and lane keeping assist system (LKAS)
are incorporated into Level 2 automation. A crucial marker of autonomy is the
transition from ADAS to a fully automated driving system (ADS). Vehicles at
Levels 0 to 2 are equipped with ADAS, while those at Levels 3 to 5 feature
ADS. Currently, ADAS is widespread in vehicles, with many manufacturers
like Tesla, BMW, Volvo, and GM equipping new vehicles with ADAS up to
Level 1 or 2 [18]. The proliferation of AVs at Levels 4 and 5 is experiencing
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rapid growth, and commercial deployment is transitioning from technological
feasibility to reality. In this study, especially of trajectory control, we need
AVs to be fully controlled, thus, Levels 0 to 2 represent vehicles that cannot
transmit whole environmental data or are fully controlled by agents, precluding
them from being defined as CAVs. Conversely, vehicles at Levels 3 to 5 possess
the capability of V2X, thus qualifying as CAVs in this research.

CVs and AVs are combined to revolutionize transportation mobility. CVs
utilize communication technologies to establish connections with both au-
tonomous and non-autonomous vehicles, roadside infrastructures, and other
road participants. This connectivity facilitates the sharing of driving infor-
mation, aiding human or automated agents in making informed decisions by
leveraging data collected through V2X communication. On the other hand,
AVs perform driving tasks by relying on a variety of sensors and systems,
gradually reducing the need for human intervention based on their autonomy
level. Within the transportation community, to some degree, CVs can serve
as enablers of AVs, with CV technology exerting a significant influence on the
development and effectiveness of AVs [19]. The integration of both AV and
CV technologies in CAVs offers manifold benefits, surpassing those achievable
with either technology in isolation. Overall, this research focuses on CAVs
with an autonomy level ranging from Level 3 to 5 and equipped with V2X
communication capabilities.

2.1.5 Mobile edge computing

MEC, also known as Multi-access Edge Computing, is a transformative tech-
nology that relocates the cloud computing platform from the mobile core net-
work to the edge. This ”edge” refers to computing, storage, and network
resources positioned along the path from data sources to the cloud computing
center. Combining MEC with V2X can provide a more efficient and reliable
communication environment for CAVs. MEC aggregates and stores vehicle-
side and road-side data from various intelligent equipment, such as cameras,
millimeter-wave radar, traffic lights, and lidar. By doing so, it reduces the
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network burden on the traffic management center (TMC) while facilitating
fast computing and message distribution to the on-board unit (OBU) and the
road-side unit (RSU).

A critical connection between CAVs and traffic management lies in the
underlying road infrastructure, enabling V2I communication. V2I function-
alities, such as signal control and route guidance, necessitate real-time data
processing, optimization, decision-making, and message distribution for CAVs.
Traditionally, CAV data is sent to the cloud for processing, resulting in sig-
nificant delays unsuitable for real-time applications. However, MEC offers a
solution by enabling real-time data processing from both the vehicle and in-
frastructure sides. In the context of the next generation of ITS, each CAV
is equipped with an OBU responsible for data storage, computing, and mes-
sage distribution. Road-side units (RSUs) are deployed along the roadside to
collect additional information such as signal timing and environmental data.
These RSUs, acting as edge servers or MECs, play a crucial role in provid-
ing computational resources for processing real-time data from both vehicles
and infrastructure, thus facilitating the advancement of traffic management
strategies.

2.2 Traffic State Estimation Approaches

As highlighted earlier, traffic state estimation (TSE) stands as an important el-
ement in the evolution of ITS, particularly in extrapolating the comprehensive
traffic dynamics of both HDVs and CAVs from sparse CV trajectories. TSE
refers to the process of inferring the traffic state, such as vehicle speed, density,
and flow, from the available traffic data. In this section, we will review the
state-of-the-art TSE methods and discuss their potential applications in the
next generation of ITS.

We can broadly classify existing TSE models into model-based and data-
driven methods, specifically model-based, data-driven, and streaming data-
driven strategies [20]. Model-based approaches adopt macroscopic traffic flow
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models to depict the traffic states; these models include first-order traffic mod-
els like the Lighthill-Whitham-Richards (LWR) model [21], [22], high-order
traffic models like Payne-Whitham (PW) model [23], [24] and the Aw-Rascle-
Zhang (ARZ) model [25]–[27], and their extensions. The model-based ap-
proach often performs the Data Assimilation (DA) or estimation with the traf-
fic observation via a filter-based method. The most utilized one is the Kalman
filter (KF) and its variants - KF-like techniques (e.g., the extended/unscented/
ensembled Kalman filter) [28]–[33]. Other methods are not oriented from
the Kalman filter, such as particle filter (PF) [34], adaptive smoothing fil-
ter (ASF) [35], or others. A comprehensive review of the above methods can
be found in [20]. Although the model-based techniques can follow the traf-
fic principles, these models rely heavily on the assumptions of traffic physics
that can lead to numerical biases or approximation errors when the premises
are not coherent with real-world data. In addition, model-based methods re-
quire substantial prior information on traffic dynamics, such as free flow speed,
minimum gap, etc.

Due to the availability of massive traffic data and the development of
machine learning techniques, data-driven models have received more atten-
tion. Data-driven models usually utilize statistical or machine-learning ap-
proaches to infer traffic states from the spatiotemporal characteristics ex-
tracted from historical data (e.g., from sensors like loop detectors, cameras, or
connected vehicles). For example, various research incorporates the spatiotem-
poral features into data-driven models utilizing the following techniques like
the auto-regressive integrated moving average (ARIMA) [36], Bayesian net-
work (BN) [37], Kernel regression (KR) [38], k-nearest neighbors (kNN) [39],
convolutional neural networks (CNN) and deep neural networks (DNN) [40]–
[45], graph embedding generative adversarial network (GE-GAN) [46], ten-
sor decomposition [47], and principal component analysis [48] et al. Besides,
streaming-data-driven approaches are regarded as more robust against uncer-
tainties while requiring a large amount of streaming data to perform the pre-
diction. Some research contributes to the streaming-data-driven models, such
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as [49] and [50]. One of the advantages of data-driven models is that they
require less prior info on traffic dynamics and can be more accurate than
model-based methods. The other advantage is that they do not need rigid
assumptions for traffic principles, which may cause unexplainable estimation.
Meanwhile, the data-driven models often depend on a large amount of training
data.

In terms of data sources, most of the research discussed thus far utilized
static data from fixed-location sensors like loop detectors or static data com-
bined with mobile data obtained from probe vehicles [28], [51], [52]. Recently,
more and more researchers investigated the trajectory-based TSE methods
from trajectory data. For example, [51], [53], [54] utilizes the trajectory data
of probe vehicles or CAVs to estimate the traffic state of freeways. Moreover,
there is a trend that combines model-based and data-driven models to develop
“physics-informed” machine learning models for TSE [44], [45], [55].

Traditional fixed sensors are expensive to install and maintain throughout
the road. With the development of CV technology, there exists an opportunity
that such moving sensors can provide data sources at a relatively cheaper cost
all over the road. Therefore, we still have to deal with the scenario where
data is sparse because not all cars are CVs that provide information. There
is some research about the TSE using CV technology. Chen and Levin [56]
estimated traffic states like flow, density, and speed by proposing an algorithm
based on CV basic safety message (BSM) data. This study tested the Kalman
Filter and cell transmission algorithm in a simulator. Fountoulakis et al. [57]
proposed microscopic simulation research of the TSE with mixed traffic (CVs
and conventional vehicles) via CV and spot-sensor data. At the same time,
Bekiaris-Liberis et al. [58] developed a model-based TSE approach for per-
lane density estimation and an on-ramp and off-ramp flow estimation in the
presence of connected vehicles. There have also been works discussed online
and offline TSE with CV data in a Bayesian model [54].

As presented here, the most similar research to our work in Chapter 3 is
the adaptive smoothing interpolation (ASM) by Treiber et al. [59]. The au-
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thors used the anisotropic features of traffic waves and developed a smoothing
method to estimate the traffic speed profile. The interpolation of ASM is a
weighted sum of a free-flow component and a congested component. Schreiter
et al. [60] proposed two fast implementations of ASM by efficient matrix oper-
ations and Fast Fourier Transform (FFT), bringing improvements in computa-
tion time by two orders of magnitude. The classical ASM lacks a well-defined
method to determine the model parameters. Yang et al. [61] reformulate ASM
using matrix completion, which can estimate the weight parameter by the Al-
ternating Direction Method of Multipliers (ADMM) algorithm. Yang et al. [62]
proposed a neural network based on ASM, which can learn its parameters from
sparse data of road sensors. In our study, the proposed GP approach is a prob-
abilistic model that can learn the parameters and uncertainties from the data.
Additionally, the proposed method can be applied to the TSE problem on a
continuous space without defining grids.

2.3 Intelligent Traffic Control System

It is well known that a traffic control system is closely related to an intelli-
gent transportation system. Many cities implemented various dynamic traffic
signal control systems in the past decades. For example, the early developed
SCOOT [63], [64] and SCAT [65] systems are variants of TRANSTY [66]; they
are developed based on active traffic coordination. The above systems uti-
lize traffic demand, optimize traffic signals in a network (arterials and a road
network), and provide more green time for vehicles.

Although these systems work well, they also have some drawbacks. Firstly,
implementing and maintaining these systems is costly. As mentioned above,
these systems use current traffic demand, so in the past they relied heavily
on loop detectors, which are expensive and hard to maintain. Now, it is
more convenient to use high-resolution cameras, which are also high in cost.
Secondly, these control systems are centralized control systems, which rely on
an extensive communication system.
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After the early versions of intelligent traffic control systems, various kinds
of algorithms developed depending on different methods and data sets. For
example, much work has been done with the coordination of actuated arterial
signal control, such as [67]–[70]. Hu and Liu [71] utilized the high-resolution
traffic signal data to optimize the actuated signal coordination along the ar-
terial, and a data-driven model was developed to adjust the offset. Another
kind of intelligent traffic signal control, like adaptive signal control, belongs
to a smart traffic control system. The adaptive traffic signal control system
is the most recently developed algorithm, and most of these studies aim to
utilize real-time data to improve the system’s efficiency [72]–[76]. Besides, an
increasing number of researchers have concentrated on adaptive control and
real-time offset optimization for the arterial coordination system, such as [77]–
[81]. However, its implementations are rare now, because this kind of imple-
mentation requires a higher level of infrastructure like high-resolution data,
and we can obtain corresponding vehicle data simultaneously.

2.4 Arterial Traffic Management

Arterial traffic management is a critical aspect of overall traffic management
strategies. The research primarily focuses on arterials rather than networks,
a common approach in traffic management strategies. It can be divided into
two parts when it comes to arterial traffic management. The first part is how
to improve arterial progression; there is no doubt that the signal coordination
strategy is one of the most effective methods to solve arterial passage. The
second part is evaluating the arterial progression effects or performance.

2.4.1 Arterial signal coordination strategies

Much research has been done to improve arterial progression and signal coordi-
nation that can be divided into two classifications. One can be generally called
the band-based method; its function is to maximize the bandwidth along the
arterial. The other is often called the flow profile method [82] (or is sometimes
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referred to as delay-based method or other index-based method). The major
objective of the flow profile method is to minimize the total delay or other
indices like travel time of the system.

Some representative studies in band-based methods are as follows. In the
1960s, Morgan and Little [83], [84] advanced the signal coordination by devel-
oping a bandwidth maximization model using mixed-integer linear program-
ming. In the 1970s, Messer et al. [85] developed a well-known band-based tool
PASSER II. Later, Little et al. [86], Chang et al. [87] extended their previous
work and formed MAXBAND and the variant MAXBAND-86 for networks.
Next, to tackle the same band problem for all links of MAXBAND, Gartner et
al. [88], Stamatiadis and Gartner [89] proposed the MULTIBAND package to
generate progression bands with varying widths; they also proposed a variant
called MULTIBAND-96 to realize network control. In recent years, Zhang et
al. [90] introduced an AM-BAND model by relaxing the asymmetrical progres-
sion band.

Regarding flow profile methods, in the 1960s, Hillier and Rothery [91] col-
lected arrival timing data for four neighboring intersections to minimize total
delay and achieve the optimal offset. Gartner et al. [92] also tried to minimize
average delay on coordinated roads. D’Acierno et al. [93] generated optimal
offset by minimizing total delay in a two-way coordinated arterial.

Overall, these two categories include two steps: optimization at individual
intersections and then coordination. Flow profile methods are more flexible
than band-based methods in several respects. However, delay-based models
are more difficult to solve.

2.4.2 Arterial traffic performance evaluation

The performance measures are essential for evaluating and analyzing traffic
characteristics and progression quality along the corridor. Moreover, visualiz-
ing the performance measurement is important for engineering practice. The
performance measure visualization changes according to the data source and
requirements of reality. Day et al. [82] recently divided graphic performance
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measure tools into three categories: time-space diagram, flow profile concept,
and Purdue coordination diagram (PCD); the time-space diagram and PCD
are the two primary performance measure visualization tools.

The time-space diagram became a long-standing standard method or tool
for signal timing visualization, demonstrating the status between traffic move-
ment and signal according to [82]. This graphic measure came into use because
of data collection difficulties and cost in the 1960s by Gazis [94]. Anwar et
al. [95] showed the time-space diagram and its significance in the era of data
abundance with application in bus routes. What’s more, time-space diagrams
are utilized to help with different transportation research like evaluating sig-
nal coordination and traffic prediction, such as [96]–[99]. Flow profile is also
widely used and dates back to [91], showing vehicle arrival information at the
intersection.

The PCD originated from the concept of arrival type. Later, Day et
al. [100], Brennan Jr et al. [101] developed the PCD combining advance de-
tection data and signal timing. It was utilized to illustrate vehicle arrival on
green (AOG) or arrival on red (AOR) characteristics cycle by cycle related to
a signal at one intersection, intended to help visualize and diagnose the traf-
fic control performance of the site. Then the original PCD was developed in
different studies to better reveal the signal coordination performance. Wang
and Abbas [102] introduced a colored PCD that can not only illustrate the
arrival pattern but also show the speed passing detectors. They also proposed
a new performance measure called VT number. As PCD is a cycle by cy-
cle one-day measurement, Huang et al. [103] enhanced the PCD to aggregate
PCD (APCD), applying it to a multi-day display using advanced data analyt-
ics. In order to quantify the continuous smoothness traveling along a corridor
considering speed variation, Beak et al. [104] introduced smoothness of the
flow of traffic (SOFT) replacing percent on green (POG), travel time, and
delay. In addition, they introduced connected vehicle PCD (CV-PCD) since
they utilized CV trajectories rather than advance detector data. Furthermore,
PCD has been widely used for engineering and research about coordination
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performance visualization and evaluation, such as [105]. The studies discussed
here worked with advance detector data. However, the performance measure
changed significantly with the coming of new data sources like vehicle posi-
tions. For current research, vehicle trajectory data which is spatialtemporal
shows great potential according to [82].

In summary, PCD is the visualization for one intersection but is not enough
for indicating continuous arterial evaluation. What has proven more difficult
is the visualization of large quantities of data in a time-space diagram.

2.5 Signal Control at Midblock Crossings

Most research above discussing arterial traffic management has predominantly
focused on vehicles or drivers. However, it’s essential to recognize that all
road users, including pedestrians and cyclists, play a crucial role in the arterial
system. A significant scenario arises in arterials with midblock crossings, where
pedestrians are active. Consequently, there is a pressing need to examine
midblock crossing control strategies within arterials.

Firstly, let’s delve into pushbutton control, renowned for its application in
midblock crossings. The Forest City Electronic Company invented the first
pushbutton system in 1931 [106]. Since then, various types of pushbutton
control systems have been developed. Based on previous studies [107], [108],
we categorize major midblock crossing signal control systems into six types:
fixed phase and timing control, simple pushbutton (i.e., Forest City pushbut-
ton), pedestrian light-controlled (Pelican), high intensity activated crosswalk
(HAWK, also known as pedestrian hybrid beacon (PHB)), pedestrian user-
friendly intelligent (Puffin), and pedestrian actuated (PA). Features of these
midblock crossing signalizations are summarized in Fig. 2.2. PHB and PA
are commonly utilized in North America, while Pelican and Puffin are found
in Europe [109]. PHB is a modified version of Pelican to adapt for Amer-
ica and is recommended in the Manual on Uniform Traffic Control Devices
(MUTCD) [110]. Both PHB and Pelican allow vehicles to pass the midblock

28



during the end of a pedestrian clearance phase (flashing period) if pedestrians
have already crossed the street. Therefore, they are recommended for high
vehicle demand situations [111]. In addition, Puffin and PA can detect if all
pedestrians have crossed the street and extend the pedestrian phase when
needed. Puffin relies on the pushbutton and detector, while PA depends solely
on the detector.
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Figure 2.2: Visual differences of major midblock crossing signalizations.

Much research has studied the efficiency and the safety of pushbutton con-
trol at midblock crossings. For example, Lu and Noyce [112] utilized fuzzy
logic to control the right-of-way at midblock crossings. The authors reported
their method improves efficiency and safety over Puffin. Godavarthy [111] eval-
uated the unnecessary delay (vehicles unable to move even once pedestrians
have crossed) at a midblock crossing. They found PHB can reduce unnecessary
delay compared with other pushbutton control methods. Ma et al. [113] de-
veloped a signal optimization model for two-stage midblock crosswalks, where
the two-stage pedestrian phases are coordinated. The cycle length and offset
of the two pedestrian phases are optimized by mixed-integer linear program-
ming (MILP). Kim et al. [108] compared fixed phase and timing controls with
pushbutton controls at midblock crossings. They concluded that the push-
button system is more efficient based on their case study. Recently, Yang et
al. [114] proposed using pedestrian detectors at upstream sidewalks to reduce
pedestrian wait time at a midblock crossing. However, their method increases
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vehicle delay and is more suitable for situations with low pedestrian demand.
Along with studies on midblock crossings, researchers have also extensively
investigated signal optimization at an isolated intersection considering pedes-
trian phases [115]–[118].

The research discussed thus far analyzed the midblock crossing as an iso-
lated system. However, Teketi and Pulugurtha [119] found that midblock
crossing control (PHB in their paper) could significantly increase the delay
and queue length at nearby intersections. Furthermore, only a few studies
have jointly considered a midblock crossing with adjacent intersections. In
two such studies, Ma and Yang [120] and Zheng et al. [121] proposed mod-
els to coordinate midblock crossings with adjacent intersections using fixed
phase and timing controls. In addition, Yu et al. [122] proposed an opti-
mization framework to simultaneously determine the quantity, location, and
signalization of midblock crossings on an arterial, also adopting a fixed phase
and timing control at midblock crossings. However, a notable gap in research
of pushbutton-type midblock crossing control with consideration of adjacent
intersections is still evident.

2.6 Trajectory Control with Full HDVs/CAVs

The evolution of vehicle trajectory control traces back to the car-following
models, which describe longitudinal interactions among vehicles, such as car-
following traffic flow, Newell’s model, the Gipps model, and the Intelligent
Driver Model (IDM) [123]–[126], demonstrating the progression over time. Ini-
tially tailored for HDVs rather than mixed autonomy scenarios, these models
laid the groundwork for subsequent research in trajectory control aimed at
enhancing traffic efficiency. One such strategy is eco-driving, which optimizes
speed profiles to reduce vehicular emissions. Furthermore, the implementation
of Green Light Optimized Speed Advisory (GLOSA) systems [127], [128] has
emerged as a notable advancement, coordinating vehicle speeds with traffic
lights to minimize stops and improve overall traffic flow. Subsequently, many
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researchers have favored employing diverse optimal control methods to refine
vehicle trajectory planning [129], [130]. These models typically treat accel-
eration/deceleration or vehicle speed as the primary control variables. This
evolution highlights the development of vehicle trajectory control within a
traditional traffic environment, predominantly comprising fully HDVs.

The rise of CAVs has increased significant interests in CAV trajectory
control and optimization. ACC is a solution to dynamically adjust vehi-
cle speed, ensuring a safe distance from preceding vehicles. This advanced
driver-assistance system is now standard in most vehicles [131]. Additionally,
with inter-vehicle communication facilitated by V2X communication, coop-
erative adaptive cruise control (CACC) has been introduced. CACC utilizes
exchanged data to compute relative distance, speed, and acceleration, enabling
more cooperative and responsive control [132]. These advancements primarily
focus on optimizing for a full CAV environment.

Building upon the aforementioned studies, researchers have devised algo-
rithms to enhance road traffic management at signalized intersections. Malakorn
and Park [133] integrate CACC with intelligent traffic signals to optimize ve-
hicle trajectories. The approach divides the trajectory into acceleration and
cruising segments, ensuring vehicles arrive at green lights efficiently. He et
al. [134] introduced a multi-stage optimal control framework aimed at optimiz-
ing vehicle speed trajectories, considering constraints such as queue impacts
and traffic light statuses at intersections. Yao et al. [135] devised a trajectory
smoothing method tailored for signalized intersections, coordinating variable
speed limits with signal timing to enable vehicles to traverse the intersection
without stops. Yu et al. [136] proposed a MILP model to optimize vehicle
trajectories and traffic signals within a unified framework, accounting for all
vehicle movements and optional lane changes in a CAV environment. Feng et
al. [137] utilized optimal control theory to regulate the trajectory of platoon-
leading vehicles, focusing on minimizing fuel consumption and emissions. Liu
et al. [138] developed an intersection control algorithm comprising an optimal
traffic signal control algorithm and a trajectory planning function. Their inter-
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section controller aimed to maximize intersection throughput while enhancing
vehicle energy efficiency. Collectively, these studies represent the advancement
of trajectory planning designs integrating signal timing at signalized intersec-
tions within a full CAV environment.

Research has also explored intersections without signals in a full CAV en-
vironment, commonly referred to as ’signal-free’ intersections which follow the
all-way stop rule. Much of this research has centered on autonomous intersec-
tion management (AIM), often employing reservation-based schemes. A preva-
lent strategy is the ’first-come, first-serve’ (FCFS) approach, where vehicles
submit requests to a central controller for space and time allocations. This
concept has been explored in various studies, including those in [139]–[142].
Other researchers have utilized optimization models or formulated optimal
control problems to enhance AIM, aiming to maximize intersection through-
put, minimize total delay, and reduce vehicle emissions [143]–[147]. Addition-
ally, intelligent AIM approaches leveraging deep learning (DL) or RL have
been proposed to enhance CAV control and enable learning from traffic envi-
ronments at signal-free intersections, thereby improving traffic efficiency and
collision avoidance [148]–[150]. While these methods enable CAVs to navigate
intersections automatically, trajectory control often remains at the individual
CAV level or is studied under low-traffic demand scenarios within a full CAV
environment.

2.7 CAV Trajectory Control with Mixed Au-
tomnomy

The coexistence of HDVs, CVs, and CAVs has been a reality in recent years.
Therefore, numerous research has been done to optimize CAV trajectories at
the intersection. Studies in [151]–[153] have leveraged model predictive con-
trol (MPC) techniques to optimize CAV velocity or acceleration rates. By
predicting HDV behavior and adjusting CAV trajectories accordingly, these
approaches aim to enable CAVs to arrive during green signal phases with fewer
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stops, thereby reducing fuel consumption. Pourmehrab et al. [154] proposed
a joint optimization of incoming vehicle trajectories and SPaT, resulting in
optimized trajectories and reduced travel time. Guo et al. [155] integrated
dynamic programming with a shooting heuristic algorithm to optimize CAV
trajectories, accounting for interactions between CAVs, human-driven vehicles,
and intersection control, achieving fuel consumption savings. Other research
has explored various centralized or decentralized control methods, as well as
RL, to optimize CAV trajectories in mixed traffic at isolated signalized in-
tersections, as evidenced by studies, such as [156]–[158]. While these studies
have demonstrated the effectiveness of trajectory optimization strategies in
reducing traffic delay and fuel consumption in mixed-traffic environments, it’s
important to note that they primarily focus on signalized intersection scenar-
ios.

As described above, despite the extensive exploration of vehicle trajec-
tory planning at unsignalized intersections within fully CAV environments,
there remains a scarcity of studies addressing trajectory planning for CAVs at
unsignalized intersections under mixed traffic conditions. This gap in research
was highlighted in a recent review by Li et al. [9]. In the mixed traffic of CAVs
and HDVs, the predominant approach has been to treat CAVs as individual
control units, with a focus on maximizing their benefits. In [159], CAVs were
tasked with adjusting their speed to prevent collisions with HDVs, assuming
no cooperation between CAVs and HDVs at intersections. The effectiveness
of this approach was demonstrated through the utilization of an MPC con-
troller, which yielded positive outcomes for CAVs. Chen et al. [160] explored a
different strategy, employing CAVs as traffic regulators to enhance overall effi-
ciency in mixed traffic scenarios and built a MILP model to optimize the entry
times of CAVs, strategically controlling subsequent HDVs to improve traffic
efficiency. RL and graph neural networks (GNN) offer promising avenues for
enhancing mixed traffic efficiency by mitigating vehicle delays, especially con-
sidering uncertainties in human drivers’ intentions, as demonstrated in [161].
In addition to research on mixed traffic of CAVs and HDVs at unsignalized

33



intersections, there are also studies focusing on the interaction between CAVs
and pedestrians or cyclists. Much of this research has centered on learning for
autonomous driving control, with the objective of maximizing CAV benefits
while considering human interaction; [162]–[164] are notable examples in this
domain.

In summary, extensive research has addressed trajectory control in fully
HDV or fully CAV environments. However, most optimal control approaches
encounter computational challenges under high traffic demand, whether at
signalized or unsignalized intersections. In mixed-traffic environments, stud-
ies have predominantly focused on optimizing CAV benefits alone, often in
scenarios involving CAVs with HDVs or pedestrians. Notably, there exists a
research gap wherein investigations into mixed traffic scenarios encompassing
CAVs, HDVs, and pedestrians are imperative.

2.8 Conclusion

This chapter serves as a comprehensive exploration on emerging technologies,
traffic state estimation, intelligent traffic control, signal optimization at mid-
block crossings, and CAV trajectory control under mixed autonomy, which are
important components of ITS.

The emergence of technologies such as CV, AV, CAV, V2X, and MEC
signifies important advancements in transportation infrastructure. It is im-
perative to sketch the evolution of each of these technologies, underpinning
the transition toward the next generation of ITS. This chapter explains the
transformative impact of each technology and their interconnectedness and
respective roles within the infrastructure landscape.

A comprehensive examination of TSE reveals that model-based approaches
may fall short in accuracy due to their inability to fully capture the complex
details of real-world traffic dynamics. Conversely, leveraging vast traffic data
and machine learning methodologies opens avenues for achieving TSE in a
purely data-driven fashion. Nonetheless, employing a data-driven approach
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typically necessitates a substantial external training dataset and a comprehen-
sive validation dataset. However, acquiring an appropriate training dataset
may prove challenging, and the external dataset may not accurately represent
road segments with missing data. Hence, this dissertation identifies a neces-
sity to develop a data-driven TSE methodology in lack of external training
datasets. In scenarios where observed data is exceedingly sparse, it becomes
imperative for TSE to provide statistical uncertainty estimates. Especially,
in the context of mixed traffic with CVs, trajectory data can be leveraged to
enhance TSE accuracy and reliability.

This chapter also explores intelligent traffic control systems, including con-
ventional ones like SCOOT and SCAT, which face challenges such as high
economic costs and reliance on fixed loop detectors, leading to maintenance
issues. Furthermore, effective intelligent traffic control algorithms require ac-
cess to high-resolution data. Thus, this chapter identifies an opportunity to
address these challenges by leveraging emerging communication technologies
and trajectory data from CVs to enhance traffic control systems and develop
more intelligent control algorithms.

Additionally, the chapter investigates the significance of arterial traffic
management, stressing the importance of assessing arterial progression and
performance. Moreover, the chapter highlights the critical role of signal control
at midblock crossings, particularly in arterials with active pedestrian crossings,
given the diverse mix of road users. Various pushbutton control systems and
their applications in midblock crossings are discussed, emphasizing the impor-
tance of efficient and safe signal control strategies. Furthermore, the chapter
identifies a research gap in the integrated consideration of midblock crossings
with adjacent intersections, highlighting the necessity for enhanced arterial
traffic management to accommodate mixed autonomy, including pedestrians.

Finally, the chapter concludes with a discussion on CAV trajectory con-
trol under mixed autonomy, highlighting the importance of developing trajec-
tory control strategies capable of effectively managing mixed traffic scenarios.
While existing studies primarily focus on CAV control strategies in either pure
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CAV environments or in mixed autonomy scenarios involving CAVs and HDVs,
this chapter identifies a research gap in the trajectory control of CAVs within
a mixed autonomy environment, encompassing CVs, HDVs, and pedestrians.
To address this gap, this dissertation aims to develop a trajectory control strat-
egy for CAVs in such environments, leveraging CV data, V2X communication
technologies, and AI algorithms to enhance traffic management strategies.
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Chapter 3

Traffic State Estimation from
Vehicle Trajectories utilizing
Anisotropic Gaussian Processes

3.1 Introduction

Intelligent transportation systems rely heavily on traffic state information,
which is typically collected using a variety of detectors, such as loop detec-
tors, video cameras, probe vehicles, and, more recently, CVs. However, each
type of detector has its limitations in terms of coverage and completeness of
data. For instance, loop detectors are stationary sensors that only provide data
at fixed locations, while video cameras require significant time and resources
to process footage and must be installed on a high building or a gantry. As a
result, these sensors are sparsely distributed in the traffic network, resulting
in limited spatial coverage. In recent years, mobile sensors such as probe ve-
hicles and CVs that can provide real-time traffic information, including speed
and location, are playing an ever-important role in TSE. However, because of
the low penetration rate of CVs, the trajectories of CVs are sparse in both
space and time. Therefore, an imputation method is needed to obtain the traf-
fic state information in the entire spatiotemporal space, which would enable
more accurate traffic control and management in ITS.

Traffic state estimation refers to the inference of traffic state variables, such
as density, speed, or other relevant variables, in a spatiotemporal domain by
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utilizing partially observed traffic data from detectors [20]. Generally, there
are two types of TSE approaches: model-based and data-driven. Model-based
TSE methods rely on traffic flow models and require strong prior knowledge,
such as the capacity of the road, to accurately infer traffic state variables. Typi-
cal methods include first-order Lighthill-Whitham-Richards (LWR) model [21],
[22] and high-order Payne-Whitham (PW) model [23], [24]. However, a model-
based TSE may not always be accurate because it may not fully capture the
complexity of real-world traffic. Conversely, with massive traffic data and
machine learning techniques available, TSE can be achieved in a purely data-
driven manner, as demonstrated by some recent works [41], [47]. However, the
training of a data-driven approach typically requires a large external training
dataset and a validation dataset with full information. For example, many
deep-learning-based TSE models [41] are first trained on a traffic simulation
dataset, and then applied to a real-world TSE problem. However, it may not
always be possible to obtain an appropriate training dataset, and the external
dataset may not be representative of the road segment with missing values.
Therefore, there is a need to develop a data-driven TSE method without any
external training dataset. For cases where the observed data is extremely
sparse, we expect the TSE could also be able to provide statistical uncertainty
quantification for the estimation.

To address the above research gap, we propose using Gaussian processes
(GPs) [165] for TSE. GPs are non-parametric Bayesian models that have been
widely used for spatiotemporal kriging/imputation, providing a data-driven
TSE approach that does not require an external training dataset. Addition-
ally, GPs offer statistical uncertainty quantification for TSE. There are some
studies that utilize the GPs in the calibration and evaluation of traffic flow
models [166]–[170]. However, conventional GP models are inadequate in mod-
eling traffic flow data due to the non-stationarity and anisotropy caused by
traffic wave propagation. Taking Fig. 3.2 (a) as an example, the congestion
wave propagates backward, generating directional spatiotemporal correlations
that traditional GP kernels cannot model. To capture the anisotropic corre-
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lation in traffic wave propagation, we re-parameterized the GP kernel with a
rotation angle. The kernel rotation angle indicates the speed of congestion
propagation in traffic waves and can be estimated from partially observed
data. We address the scalability issue of the GP model with variational sparse
GP. Moreover, we propose using a multi-output GP model to simultaneously
enable TSE on multiple lanes, rather than using several individual GPs. To
test the TSE performance, we compare the proposed rotated GP with other
imputation methods in NGSIM and HighD datasets under different types and
percentages of observed traffic information, which can also be regarded as
CV penetration rates in the mixed traffic environment. We also use simu-
lated data to test the TSE performance under a traffic bottleneck scenario.
Experimental results demonstrate that the proposed rotated GP significantly
outperforms other methods regarding accuracy and robustness for TSE under
low CV penetration rates.

The contributions of this chapter are summarized as follows:

• A new approach is proposed for TSE using Gaussian process models with
rotated anisotropic kernels that can capture the anisotropic correlation
in traffic wave propagation. The rotation angle can be estimated from
partially observed data, offering valuable insights into the speed of con-
gestion propagation within traffic waves. Our approach elegantly merges
statistical modeling with traffic flow theory.

• The proposed GP-based TSE method is a purely data-driven approach
that does not require an external training dataset and provides statistical
uncertainty quantification for the estimation, which is important for TSE
under low CV penetration rates.

• The results from extensive experiments demonstrate the adaptability of
our GP-based TSE method across different CV penetration rates and
types of detectors, achieving state-of-the-art accuracy in scenarios with
sparse observation rates.
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• The multi-output GP model is proposed for TSE on multiple lanes, which
leverages the correlation between the traffic states of different lanes to
improve TSE accuracy.

3.2 Methodology
3.2.1 Problem formulation

We aim to estimate the traffic state (speed in this paper) of a highway seg-
ment over a period of time, using data collected from fixed or moving sensors
such as loop detectors and CVs. For a single lane of the highway segment, we
denote s as the spatial coordinate on the segment, t as the temporal coordi-
nate, and y(s, t) as the traffic speed at location s and time t. In practice, s
and t are usually defined as discrete values on an S × T spatiotemporal grid.
However, for our purposes, we can consider a general continuous space with
a subscript i such that yi = y(xi), where xi = [si, ti]⊤ is a vector representing
the spatiotemporal coordinate.

Assume we can obtain the traffic speed yo = {yi}ni=1 at a set of spatiotem-
poral locations Xo = {xi}ni=1 using loop detectors or probe vehicles, where n is
the number of observations. Our goal is to estimate the traffic speed distribu-
tion of y∗ = {yi}n+u

i=n+1 at unknown spatiotemporal locations X∗ = {xi}n+u
i=n+1

given the observed data {Xo,yo}, where u is the number of points/locations
whose traffic state is unknown. For a highway segment with multiple lanes,
the problem becomes estimating the joint distribution p

(
y1
∗, · · · ,yL

∗
)
from ob-

servations
{
X1

o ,y
1
o, · · · , XL

o ,y
L
o

}
, where L is the number of lanes.

3.2.2 Gaussian process regression

For a single lane of the highway segment, we assume the observed traffic state
yi consists of a ground truth value fi and a noise term εi:

yi = fi + εi, (3.1)

where ε is an independent and identically distributed (i.i.d.) Gaussian noise
with zero mean and variance σ2

ε .
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Assume the ground truth traffic state f is a function of the spatiotemporal
coordinate x. We can impose a GP prior [165] to the function f(x) ∼ GP (µ, k).
A GP is a distribution over functions (or in other words, a distribution with
an infinite number of random variables). The ground truth traffic state that
occurred within the spatiotemporal range being examined can be considered
as a sample drawn from the GP. With the GP prior, any finite collection
of f ∈ RN at spatiotemporal location X is assumed to follow a multivariate
Gaussian distribution:

f = f(X) = [f(x1), · · · , f(xN)]
⊤ ∼ N (µ, K), (3.2)

where the mean is often set to be zero µ = 0, and the covariance matrix
K is defined by a kernel function k such that K [i, j] = k(xi,xj). For example,
the commonly used squared exponential (SE) kernel takes the form:

kSE(xi,xj) = σ2 exp

(
− 1

2ℓ2
∥xi − xj∥2

)
, (3.3)

where the length scale ℓ determines how far apart two points in the input space
can still be considered similar; the kernel variance σ2 determines how far the
function values can be from the mean. The kernel hyper-parameters and the
noise variance θ = {σ2, ℓ, σ2

ε} can be estimated from the observed data using
Maximum Marginal likelihood (MML) estimation.

Taking advantage of the conditional Gaussian distribution, the posterior
distribution of traffic state f∗ at the unknown spatiotemporal locations X∗

given observed data can be obtained by:

p (f∗|X∗, Xo,yo) ∼ N
(
f̄∗, cov(f∗)

)
, (3.4)

f̄∗ = K⊤
n∗
(
Knn + σ2

εI
)−1

yo, (3.5)

cov(f∗) = K∗∗ −K⊤
n∗
(
Knn + σ2

εI
)−1

Kn∗, (3.6)

where matrices Knn, K∗∗, and Kn∗ represent the kernel matrices evaluated at
observed locations (size n×n), unknown locations (size u×u), and between ob-
served and unknown locations (size n×u), respectively. Next, the distribution
of y∗ can be readily obtained by Eq. (3.1).
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3.2.3 Rotated anisotropic kernel

Most GP kernels, such as the SE kernel in Eq. (3.3), are isotropic, meaning
the covariance is only a function of ∥xi−xj∥ and is invariant to the directions
between xi and xj. The traffic wave, however, exhibits anisotropic behavior
as it propagates along a specific direction. Although an isotropic kernel can
have anisotropic properties by using different length scales on different dimen-
sions (i.e., implementing Automatic Relevance Determination (ARD) [171]),
the ARD kernel is a very limited form and is still incapable of modeling the
correlation propagates along a spatiotemporal direction.

Without loss of generality, let us consider the “squared distance” between
xi and xj in an ARD kernel:

d(xi,xj)
2 = (xi − xj)

⊤M(xi − xj), (3.7)

where M is a diagonal matrix with the d-th diagonal element being ℓ−2
d , speci-

fying the dimension-specific length-scale. The diagonal structure of M makes
the length-scale along the spatial and temporal directions independent. To
account for the traffic wave propagation, we introduce a rotation angle α, a
new hyper-parameter, which is the angle between the traffic wave and the
space direction, as shown in Fig. 3.1. Then, we can measure the directional
covariance using the following rotated squared distance:

drot (xi,xj)
2 = (R (xi − xj))

⊤ M (R (xi − xj))

= (xi − xj)
⊤ (

R⊤MR
)
(xi − xj),

(3.8)

R =

[
cosα − sinα
sinα cosα

]
. (3.9)

The matrix R is a rotation matrix. Eq. 3.8 can be used in general kernel
functions. For example, the rotated squared distance can be used to define a
rotated anisotropic squared exponential (SE) kernel:

kSE(xi,xj) = σ2 exp

(
−1

2
drot(xi,xj)

2

)
. (3.10)
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Figure 3.1: Illustration of the rotated coordinates.

The same transformation applies to other kernel functions, such as Matérn
kernels and the rational quadratic kernel.

A graphical illustration of our method is shown in Fig. 3.1. The intuition
behind the proposed kernel is the rotation of the coordinates. The rotation
angle α can be used to measure the speed of congestion propagation in the
traffic wave. Similar to other hyper-parameters, the angle α can be estimated
from the observed data.

3.2.4 Model inference with variational sparse GP

The computational complexity of an MML estimation of GP scales cubically
with the number of data points, which limits its applicability to large datasets.
Therefore, we use the variational sparse GP (VSGP) [172] for scalable inference.
VSGP introduces a set of m inducing points at Z = {z1, · · · , zm} that act as
a sparse approximation to the full Gaussian process. The model assumes that
the function values at the inducing points follow the same GP prior, and the
posterior distribution of the function values is approximated by a Gaussian
distribution conditioned on the inducing variables. The locations of inducing
points can be optimized as other hyper-parameters.

The model parameters, including hyper-parameters θ and the locations of
inducing variables Z, are learned by maximizing the evidence lower bound
(ELBO), which is a lower bound of the log marginal likelihood of the observed

43



data. The ELBO of VSGP derived by Titsias [172] is:

log p(yo) ≥ logN
(
yo|0, Qnn + σ2

εI
)
− 1

2σ2
ε

tr (Knn −Qnn) , (3.11)

where Qnn = KnmK−1
mmK

⊤
nm, matrices Kmm and Knm are the kernel evalu-

ated at the inducing points, and between the observed locations and inducing
points, respectively. We can interpret the ELBO as the sum of the approx-
imate log marginal likelihood and a regularization term − 1

2σ2
ε
tr (Knn −Qnn).

The regularization term minimizes the squared error of predicting the training
latent function values fn from the inducing variables. Eq. (3.11) can be sim-
plified with the Woodbury matrix identity, and the time complexity of VSGP
is O(mn2).

The posterior distribution of function values at unknown location x∗ is
given by the integral p(f∗) =

∫
p(f∗|fz)p(fz)dfz, which is a Gaussian distribution

with the mean and covariance:

f̄∗ = K∗mK
−1
mmf̄z, (3.12)

cov(f∗) = K∗∗ −K⊤
m∗K

−1
mmKm∗ +K⊤

m∗K
−1
mmΛK

−1
mmKm∗, (3.13)

where f̄z = σ−2
ε Λ−1K−1

mmKmnyo is the posterior mean of the inducing variables,
and Λ = K−1

mm+σ−2
ε K−1

mmKmnKnmK−1
mm is the posterior precision matrix of the

inducing variables.

3.2.5 Multi-output GP

The traffic states of neighboring lanes of the same road are highly correlated,
because drivers can choose a less congested lane to travel and thus the traffic
state of the neighboring lane reaches a similar condition. The TSE in a highway
segment with multiple lanes can be naturally modeled using a multi-output GP
model [173], [174], also known as a coregionalized GP or co-kriging. Unlike
using independent GP models for each lane, a multi-output GP model can
leverage the correlation between the traffic states of different lanes to improve
estimation accuracy. In Section 3.3.8, we will demonstrate that the multi-
output GP model can estimate traffic speed during a long period that has no
observations in a lane, by utilizing information from the other lane.
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The probe vehicles from different lanes locate at different spatiotemporal
locations, which is referred to as heterotopic data in the multi-output GP
literature. We model the traffic states of L different lanes as a multi-output
function f (x) =

[
f 1(x), · · · , fL(x)

]⊤ with a GP prior. The covariance of the
i-th output at x and the j-th output at x′ is given by the kernel function:

kmulti

(
f i(x), f j(x′)

)
= k(x,x′)B [i, j] , (3.14)

where B is an L× L symmetric and positive-definite matrix parametrized by
B = AA⊤, and A ∈ RL×r is a parameter to learn, r is the rank of A. This
kernel parametrization is also called the intrinsic model of coregionalization
[173] in the geostatistics literature. One can view the multi-output kernel
kmulti as functions on an extended input space with the index of the lane,
which allows for using the same inference procedure as the single-output GP
model.

3.3 Case Study

We evaluate the proposed GP-based TSE method on two real-world datasets
and one simulated dataset: the NGSIM [175] traffic trajectory data and the
HighD [176] naturalistic vehicle trajectory data and a simulated dataset for
traffic bottleneck scenario. In Section 3.3.3, we compare the TSE performance
of the proposed model with a set of benchmark models under different CV
penetration rates. In Section 3.3.4, we evaluate the TSE performance when
assuming using loop detector data. The uncertainty quantification and compu-
tational time of the proposed method are further analyzed in Section 3.3.6 and
3.3.7. Finally, we also explore the use of a multi-output rotated GP for TSE
on multiple lanes. The code and data associated with this paper are available
at https://github.com/Lucky-Fan/GP_TSE.

3.3.1 Data and experimental setup

We test the proposed rotated GP for TSE using the trajectories from two real-
world datasets, namely NGSIM [175] and HighD [176] as well as a simulated
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dataset. Both real-world datasets provide detailed information about each
vehicle’s trajectory, such as vehicle ID, recording frame, time, location, velocity,
lane, etc. This allows us to use the ground truth traffic state to evaluate the
accuracy of TSE. In the case of NGSIM, we focus on the traffic data from lane
2 of US Highway 101. For HighD, we utilize data from two lanes of a German
highway. These lanes are selected as they display some very representative
stop-and-go traffic waves. The simulated traffic data in a bottleneck scenario
is utilized to ensure its effectiveness in broader contexts. The specific details
of the three datasets are provided below:

• The NGSIM data: We use vehicle trajectories extracted from video cam-
eras on lane 2 of US highway 101. In contrast to the previous work by
Wang et al. [47], our experiment covers a longer road segment of 600
meters and a larger time range of 2500 seconds. We extract the com-
plete data and focus on the traffic state at a 200 × 500 spatiotemporal
grid with a resolution of 3 meters and 5 seconds, where the traffic state
is defined as the average vehicle speed in each grid cell. Fig. 3.2 (a)
and (b) show the traffic speed maps of the entire dataset and samples
of observed trajectories under a 5% penetration rate, respectively.

• The HighD data: This dataset provides naturalistic vehicle trajectories
recorded on German highways using drones. The dataset includes 60
recordings from six different locations; each recording is identified by
track ID. In our study, we focus on the recording with track ID 25. Where
the full drive length of vehicles during the road segment is 1120346.1
meters, and the time range is 80676.08 seconds. To make the most of
the data, we extract traffic state in a spatiotemporal grid of size 100×220

with a resolution of 4 meters and 5 seconds, representing a domain of
400 meters and 1100 seconds. The average vehicle speed is calculated to
describe the traffic state at each cell. We use the data from lane 4 for
the TSE of a single lane in Table 3.2, and we use the data from lane 3
and lane 4 to test using multi-output GP for TSE.
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• The simulated data: We construct and simulate a bottleneck scenario in
SUMO [Simulation of Urban MObility, 177]. This scenario spans 1000
meters over 3600 seconds. Initially, the speed limit is 100 km/h for the
first 750 meters, followed by a 250-meter bottleneck segment where the
speed limit decreases to 20 km/h. Vehicle arrivals conform to a Poisson
process with an expected rate of 720 veh/h. Moreover, we introduced
two peak periods with vehicle demand set at 2160 veh/h and 1800 veh/h
during the time intervals of 800 to 1000 seconds and 2000 to 2200 seconds,
respectively, to induce shockwaves. Our focus is solely on the midsection,
excluding the warm-up and end times. This simulated data serves as a
means to assess the TSE performance in a traffic bottleneck scenario.

When using CVs as probe vehicles, we set 5%, 10%, 20%, 30%, 40%, and
50% as the penetration rate of CVs and assume only the trajectories of CVs are
observed (i.e., the training data). Under each CV penetration rate, we repeat
the experiment 10 times with different random draws of trajectories. Note that
we define spatiotemporal grids to make an easy comparison with other models,
although GP can make TSE on a continuous space without defining grids.
Overall, the NGSIM, HighD datasets and the simulated dataset provide rich
sources of data for evaluating the effectiveness and efficiency of our approach
and baselines under different scenarios.

3.3.2 Baseline models and hyper-parameters

In the following, we refer to the proposed GP based on rotated kernels as
“GP-rotated”. We use the following baselines to compare the performance of
GP-rotated with other methods:

• The adaptive smoothing interpolation method (ASM) [59]: It is an in-
terpolation method for estimating traffic states. This method resembles
the proposed rotated GP in terms of considering the traffic wave propa-
gation using an anisotropic interpolation. We set the propagation speed
of congestion traffic to be -19.87 km/h and -17.86 km/h for the NGSIM
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and HighD datasets, respectively, which is based on the estimated hyper-
parameters of the GP-rotated method (see discussion in Section 3.3.3).
The space smoothing width and time smoothing width are set as 200 m
and 10 s, respectively, based on an initial setting suggested by [59] and
a quick validation. Other parameters adopt the settings of [59].

• Spatiotemporal hankel low-rank tensor completion (STH-LRTC) [47]: It
transforms the original speed matrix into a tensor using spatial and tem-
poral delay embedding. Then, the approach estimates the traffic state
matrix by conducting inverse Hankelization on the delay-embedding ten-
sor imputed by a low-rank model. The key parameters include the em-
bedding lengths τs and τt. We adopt the same hyper-parameter settings
τs = 40 and τt = 30 as the authors. But we do find the method produces
poor results in certain cases with extremely low CV penetration rates.
Therefore, we increase the τs and τt with case-specific tuning, as noted
in Table 3.5.

• Gaussian process regression with standard ARD kernels (GP-ARD): It
extends the basic GP by allowing the kernel function to have a sepa-
rate length scale parameter for each input dimension, which enables the
model to automatically determine the importance of each input variable
in predicting the output variable. The hyper-parameters are learned
from data using the VSGP approach.

We use Matérn kernel [165] as the basic kernel function for all GP models.
We set the number of inducing points m = min (0.02n, 500), and the initial lo-
cations of inducing points are randomly distributed on the grid. As introduced
in Section 3.2.4, the hyper-parameters of GP-rotated can be learned from the
observed data, which could be time-consuming for a large dataset. However,
one may not need to repeatedly learn the hyper-parameters for the same high-
way segment in reality. Therefore, we also test the performance of the proposed
GP using pre-trained hyper-parameters, referred to as ”P-GP-rotated”. Please
note that we do not include comparisons with deep-learning-based models as
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many of them depend on external training datasets and are not available as
open-source.

It’s worth noting that the training data (obtained from CVs) and test data
(obtained from all vehicles) for a cell with CV trajectories may differ since the
speed may be calculated from different numbers of vehicles in the training and
test data. TSE values are only used for the cells without any CV trajectories.
For cells with observed trajectories, we directly use the speed from the training
data, because we found that observed values on these cells are closer to the test
data than the estimated value, no matter what TSE method is used. This can
be attributed to the utilization of high-quality datasets. Finally, we use the
root mean squared error (RMSE) and mean absolute error (MAE) as shown
in the following to evaluate the performance of different TSE models:

RMSE =

√∑
l

∑
s

∑
t(y

l(s, t)− ŷl(s, t))2

STL
, (3.15)

MAE =

∑
l

∑
s

∑
t |yl(s, t)− ŷl(s, t)|
STL

. (3.16)

3.3.3 TSE from vehicle trajectories

We begin by visually examining the TSE performance of different methods un-
der a 5% CV penetration rate using the NGSIM dataset. Fig. 3.2 displays the
results. Fig. 3.2 (a) shows the ground truth traffic speed map of all trajectories,
exhibiting complex traffic dynamics evolution with shockwaves, making it a
suitable dataset for experimentation. Fig. 3.2 (b) displays one of the randomly
selected 5% training datasets from ten independent experiments.

By comparing Fig. 3.2 (e) and (f), we can observe that the proposed GP-
rotated captures the directional traffic speed correlations that traditional GP-
ARD cannot model. When comparing the ASM in Fig. 3.2 (c) with the pro-
posed GP-rotated, we can find they both capture the congestion propagation
in the traffic wave because they both use the idea of anisotropic kernels. How-
ever, the congestion speed estimated by the ASM is generally lower than the
ground truth speed, which is caused by the “smoothing” operation in the ASM.
The STH-LRTC in Fig. 3.2 (d) also captures the congestion propagation in
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Figure 3.2: A TSE experiment on the NGSIM dataset with 5% CVs penetra-
tion rate. The observed trajectories are superimposed on the TSE results. (a)
The traffic speed of the full dataset. (b) The traffic speed of observed trajec-
tories. (c) The traffic speed estimated by the ASM method. (d) The traffic
speed estimated by the STH-LRTC method. (e) The traffic speed estimated
by the GP with ARD Matérn5

2 kernel. (f) The traffic speed estimated by the
GP with the proposed rotated Matérn5

2 kernel.

the traffic wave, but it performs poorly when there is a long period without
CV trajectories (e.g., 550s-750s).

Next, we perform more extensive experiments to quantify the performance
of the proposed method and the baselines under different penetration rates
(percentage of trajectories). For each penetration rate (5%, 10%, 20%, 30%,
40%, and 50%), we repeat the experiments ten times with randomly selected
vehicle trajectories from the complete dataset as the training set (see Sec-
tion 3.3.1). The experiments were conducted on the NGSIM and HighD
datasets. Table 3.1 and Table 3.2 display the average MAE (m/s) and RMSE
(m/s) with standard deviation for each method under various penetration rates
and datasets.
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Table 3.1: TSE accuracy for the NGSIM dataset under different penetration
rates: mean (std).
Method ASM STH-LRTC GP-ARD GP-rotated P-GP-rotated

Rate MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0.05 5.11
(0.32)

7.04
(0.54)

5.51
(1.36)

7.94
(2.38)

6.02
(0.36)

8.62
(0.56)

4.85
(0.31)

6.74
(0.56)

4.97
(0.29)

6.74
(0.47)

0.10 4.09
(0.15)

5.72
(0.26)

4.19
(1.39)

7.43
(5.62)

4.35
(0.30)

6.42
(0.58)

3.82
(0.22)

5.44
(0.47)

3.79
(0.13)

5.19
(0.22)

0.20 3.28
(0.10)

4.82
(0.14)

3.01
(1.26)

6.16
(7.14)

3.07
(0.14)

4.61
(0.26)

2.81
(0.10)

4.10
(0.19)

2.98
(0.08)

4.28
(0.12)

0.30 2.73
(0.06)

4.26
(0.09)

2.09
(0.05)

3.17
(0.12)

2.43
(0.06)

3.77
(0.11)

2.27
(0.05)

3.43
(0.10)

2.48
(0.05)

3.75
(0.08)

0.40 2.29
(0.06)

3.83
(0.09)

1.75
(0.05)

2.81
(0.12)

2.03
(0.06)

3.35
(0.11)

1.92
(0.05)

3.08
(0.09)

2.09
(0.05)

3.37
(0.09)

0.50 1.87
(0.05)

3.41
(0.09)

1.43
(0.04)

2.46
(0.11)

1.67
(0.04)

2.96
(0.10)

1.58
(0.04)

2.71
(0.09)

1.71
(0.04)

2.98
(0.07)

Table 3.2: TSE accuracy for the HighD dataset under different penetration
rates: mean (std).
Method ASM STH-LRTC GP-ARD GP-rotated P-GP-rotated

Rate MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

0.05 4.44
(0.31)

6.03
(0.50)

55.9
(29.3)

121.5
(51.1)

5.18
(1.59)

7.19
(2.04)

4.48
(0.50)

6.27
(0.94)

4.43
(0.27)

6.06
(0.43)

0.10 3.32
(0.14)

4.67
(0.22)

3.19
(0.10)

4.49
(0.21)

3.22
(0.17)

4.55
(0.28)

3.18
(0.16)

4.45
(0.25)

3.55
(0.18)

5.00
(0.30)

0.20 2.55
(0.08)

3.79
(0.11)

2.15
(0.11)

3.12
(0.18)

2.23
(0.09)

3.26
(0.15)

2.23
(0.09)

3.25
(0.13)

2.43
(0.07)

3.52
(0.11)

0.30 2.08
(0.03)

3.30
(0.05)

1.65
(0.04)

2.49
(0.06)

1.71
(0.05)

2.62
(0.10)

1.71
(0.05)

2.61
(0.10)

1.89
(0.05)

2.90
(0.09)

0.40 1.68
(0.04)

2.85
(0.07)

1.31
(0.04)

2.07
(0.07)

1.36
(0.04)

2.14
(0.09)

1.35
(0.03)

2.14
(0.08)

1.49
(0.03)

2.39
(0.06)

0.50 1.37
(0.05)

2.49
(0.10)

1.05
(0.03)

1.75
(0.07)

1.09
(0.03)

1.80
(0.07)

1.09
(0.03)

1.80
(0.06)

1.19
(0.03)

2.03
(0.05)
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Table 3.1 and Table 3.2 illustrate that the performance of the STH-LRTC
method is the best when the proportion of observed trajectories (penetration
rate) is over 30%. This is because the GP-based methods cannot capture the
fine-grained texture in traffic flow, which is shown in Section 3.3.6. However,
for the cases with sparse observations (CV penetration from 5% to around
20%), our proposed GP-rotated performs the best on both NGSIM and HighD
datasets. As the CV penetration rate decreases, the STH-LRTC may fail due
to a large block of missing information, which can be observed in the HighD
data under the 5% rate. The corresponding MAE and RMSE values can be
as high as 55.9 m/s and 121.5 m/s, respectively. The STH-LRTC may be
unstable under low penetration rates, with high standard deviation in MAE
and RMSE values. In contrast, our proposed GP method provides a very
robust estimation, regardless of the percentage of probe vehicles. In the early
stages of a mixed traffic environment with a low CV penetration rate, such as
5% to 20%, our proposed method is a suitable choice.

Our proposed method consistently outperforms the ASM benchmark. An
advantage of ASM is that it considers the traffic propagation of both conges-
tion and free flow. Therefore, ASM could produce a more natural traffic flow
pattern, as demonstrated in the high-speed region (top left corner) of Fig. 3.2
(c). However, the ASM is not as good as the GP-rotated in estimating small
shockwaves during the first 500 seconds (bottom left corner). The proposed
GP-rotated outperforms ASM in most cases (except for the highD dataset
with 5% penetration rate). The gaps between ASM and GP-rotated increase
with a larger CV penetration rate.

We also compare the GP-ARD and GP-rotated methods using the Matérn5
2

kernel in Tables 3.1 and 3.2. Our results show that the GP-rotated method
consistently outperforms the GP-ARD method in terms of average MAE and
RMSE, regardless of whether we use the pre-trained parameters or not. This
can be attributed to the fact that the ARD kernel is isotropic, meaning it uses
distance to measure covariance. However, traffic waves are anisotropic and
propagate in spatiotemporal directions. Although GP-ARD can apply different
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length scales to different dimensions, it still fails to capture the directional
covariance of traffic waves. On the other hand, our proposed anisotropic GP-
rotated method with a directional hyper-parameter α accurately models the
directional covariance of traffic waves. Furthermore, we observed that the
numerical differences in MAE and RMSE between GP-ARD and GP-rotated
decrease with an increase in the observation rate. This is because, with more
observed trajectories, the GP-ARD method can utilize more information to
overcome the directional limitation based on length scale adjustments.

We observe that the P-GP-rotated method can also achieve satisfactory
TSE results and even outperform the GP-rotated in some low-penetration
scenarios, possibly due to the overfitting of GP-rotated when the number of
observed trajectories is small. However, as the CV penetration rate increases,
the performance of P-GP-rotated is not as good as GP-rotated, likely because
the inducing point locations in P-GP-rotated are not optimized.

The GP-rotated kernel hyperparameters, α, represent the angle between
the traffic wave and the spatial direction, and values learned from the data are
around α = 0.108 = 6.20◦ for the NGSIM dataset and α = 0.160 = 9.16◦ for
the HighD dataset. After unit conversion with the size of cells, our estimation
shows that the congestion propagation speed is approximately -19.87 km/h
and -17.86 km/h for the NGSIM and HighD datasets, respectively, which is
faster than the -15 km/h value used in [59].

To ensure a fair comparison between ASM and GP-rotated, we set the
congestion propagation speed of ASM in this study using the value derived
by α. Additionally, we assess the RMSE of TSE using ASM with various
congestion propagation speeds, as depicted in Fig. 3.3. We observe that the
speed estimated by GP-rotated (-19.87 km/h) is close to the optimal value
(around -19 km/h) with minimum RMSE evaluated on the full NGSIM data
(illustrated by the blue curve with dot marks). It’s important to note that
during the training phase, only 5% of trajectories are observed. Consequently,
while the best congestion propagation speed of ASM on the training set hovers
around -17 km/h, it may not yield optimal performance for the full data. The

53



insights from Fig. 3.3 indicate that GP-rotated offers a promising approach
for estimating congestion propagation speed from sparse vehicle trajectories.

Figure 3.3: When observing 5% trajectories, the RMSE error of ASM when
using different congestion propagation speed in the NGSIM dataset.

3.3.4 TSE from loop detectors

The proposed TSE method can also be used when traffic flow information
is obtained from loop detectors. Loop detectors are commonly deployed at
select road segments to gather specific traffic data, including vehicle count
and density. Subsequently, these data points are leveraged to conduct traffic
analysis. The installation of loop detectors is often sparse because of the high
cost. Therefore, it is critical to utilize these sparse observations from loop
detectors to perform TSE to reconstruct the complete traffic conditions on the
whole road.

Our experiment commences by conducting TSE exclusively with loop de-
tector data. For the NGSIM dataset, three virtual detectors are positioned at
distances of 30 meters, 300 meters, and 570 meters from the starting point,
as is shown in Fig. 3.4 (b). For the HighD dataset, the locations of the three
detectors are 40 meters, 200 meters, and 360 meters from the starting point.
Only the traffic speed at the location of the loop detectors can be observed.

Fig. 3.4 showcases the TSE results of the NGSIM dataset. Fig. 3.4 (a)
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Figure 3.4: A TSE experiment on the NGSIM dataset with observation at
three detectors.

presents the ground truth traffic speed map for the entire road segment. Fig. 3.4
(b) portrays the observed traffic states at the three specific locations where loop
detectors are installed. Notably, STH-LRTC fails in this case because of blocks
of missing rows in the matrix. Upon closer examination of Fig. 3.4 (c) and
(f), both ASM and GP-rotated produce an accurate reconstruction of traffic
speed, and the success of these methods is largely attributed to the accurate
estimation of the congestion propagation speed. By comparing Fig. 3.4 (e) and
(f), it is strikingly evident that our proposed GP-rotated method accurately
captures congestion propagation and directional traffic wave correlations. This
starkly contrasts with the traditional GP-ARD model, which fails to achieve
the same level of precision in these aspects.

Table 3.3 presents the MAE and RMSE values measured in m/s for each
method applied to the two study areas. These findings align with the per-
formance trends depicted in Fig. 3.4. The proposed GP-rotated method out-
performs the others when dealing with limited data obtained from specific
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Table 3.3: TSE accuracy with observations at three detectors.
Dataset NGSIM HighD

Method MAE RMSE MAE RMSE

ASM 4.45 5.78 3.05 4.10
STH-LRTC 34.90 38.22 29.15 34.14
GP-ARD 5.16 6.80 3.05 4.11
GP-rotated 4.36 5.59 2.96 4.01

loop detectors. For instance, when comparing the STH-LRTC method with
GP-rotated, the former yields an MAE of 34.90 m/s and an RMSE of 38.22
m/s on the NGSIM dataset, whereas our proposed method achieves a signif-
icantly lower MSE of 4.36 m/s. This marked difference in performance is
attributed to the incapacity of STH-LRTC to function effectively under such
conditions. In comparing the GP-ARD and GP-rotated models, the latter
demonstrates superior accuracy over the traditional GP model, with gaps in
MAE (m/s) and RMSE (m/s) ranging from 0.1 to 1.2 m/s. Although the
absolute gaps do not seem vast, the relative difference cannot be ignored. It is
vividly shown in Fig. 3.4. The ASM’s accuracy surpasses that of GP-ARD but
slightly lags behind GP-rotated. While it is possible to further enhance ASM
performance by fine-tuning other parameters, such as the smoothing widths
and the free-congested transition speed, this process is heavily dependent on
prior knowledge; given that detectors offer only limited information to verify
these parameters, achieving significant improvements for ASM is challenging.

3.3.5 TSE at a bottleneck

We further validate the performance of our proposed method using simulated
traffic data in a bottleneck scenario to ensure its effectiveness in broader con-
texts. The simulation was executed in SUMO with the Intelligent Driver
Model [IDM, 126] chosen as the car-following model. The total road length
spans 1 km, with a speed limit of 100 km/h for the initial 750 m, followed by
a bottleneck segment of 250 m with a speed limit reduced to 20 km/h. Vehicle
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arrivals follow a Poisson process with an expected rate of 720 veh/h. Addition-
ally, we introduced two peak periods with vehicle demand set at 2160 veh/h
and 1800 veh/h during the time intervals 800–1000 seconds and 2000–2200
seconds, respectively, to induce shockwaves. The simulation duration spans
3600 seconds, and we only focus on the midsection excluding the warm-up and
end times. Average speeds are calculated using a 5-second × 5-meter grid,
and the resulting speed profile is illustrated in Fig. 3.5 (a). We test the TSE
performance using detector data, CV trajectories, or both data sources. The
four detectors are located at 100 m, 400 m, 770 m, and 900 m, respectively.
We randomly select the trajectories of 5% vehicles for TSE. The location of
detectors and trajectories are shown by white dots/lines in Fig. 3.5. We set
τs = τt = 50 for STH-LRTC. For ASM, the propagation speed of congestion
is set as -10 km /h by measuring from the graph; the space smoothing width
and time smoothing width are set as 100 m and 50 s, respectively.

By comparing the estimation results in Fig. 3.5 with Fig. 3.2, we observe
that reconstructing the traffic state at a bottleneck presents greater challenges.
This is attributed to how congestion not only propagates backward but also
forward as it returns to a free-flow state. Similar findings are discussed in
Section 3.3 of the work by [59]; the detector data alone is not sufficient for
accurately estimating the margins of shockwaves. Using more observations
and a fusion of different data sources are required to obtain a good TSE for
this complex scenario. Additionally, we note that the estimated rotation an-
gle in GP-rotated no longer aligns with the backward propagation speed of
congestion in this bottleneck example (the estimated angle corresponds to a
speed ranging from -15 km/h to - 25 km/h, while the real value is around -10
km/h). This discrepancy arises from congestion propagation not being the
predominant pattern in this scenario. Despite lacking a clear physical inter-
pretation, GP-rotated achieves the best TSE performance in this experiment,
as shown in Table 3.4, showing the versatility of GP-rotated for TSE across
diverse scenarios.
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Figure 3.5: A TSE experiment on a simulated bottleneck. Locations of tra-
jectories and detectors are shown in white lines. (a) The traffic speed of full
simulated data. (b) The traffic speed of observed trajectories. (c) The traffic
speed estimated by the ASM method. (d) The traffic speed estimated by the
STH-LRTC method. (e) The traffic speed estimated by the GP with ARD
Matérn5

2 kernel. (f) The traffic speed estimated by the GP with the proposed
rotated Matérn5

2 kernel.

Table 3.4: TSE accuracy for a simulated bottleneck with different data sources.
Data source Detectors Trajectories Detectors + trajectories
Method RMSE MAE RMSE MAE RMSE MAE
ASM 16.27 11.04 13.09 9.40 11.95 8.27

STH-LRTC 54.97 42.05 22.27 12.51 15.07 8.25
GP-ARD 19.34 13.83 16.80 11.46 12.51 8.99
GP-rotated 13.40 9.55 12.67 8.45 9.75 6.27
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3.3.6 Uncertainty quantification

Our research incorporates uncertainty quantification as a crucial aspect to en-
able reliable and accurate predictions while acknowledging the inherent vari-
ability and unpredictability of the system under investigation, which is a lack-
ing feature in existing methods. The GP framework provides a natural way
to quantify uncertainty through the predictive covariance matrix, as shown in
Eq. (3.13). We can use the diagonal elements of the covariance matrix (i.e.,
variance) to quantify the uncertainty of the TSE at each cell. The comparison
between the TSE residuals and the uncertainty is presented in Fig. 3.6, which
provides a comprehensive understanding of the uncertainties associated with
our findings.

The uncertainties (shown by three standard deviations) of the TSE using
GP-rotated and the observed trajectories are demonstrated in Fig. 3.6 (c).
First, we can find that the uncertainties are larger for regions with no CV
trajectories, such as time ranges of 600 s to 700 s and 1800 s to 1900 s. It
is notable that the uncertainty is anisotropic, propagating along the traffic
wave, highlighting the need for an approach that can accurately capture this
behavior. By comparing Fig. 3.6 (b) and (c), we can find that the predictive
uncertainties are, in general, consistent with the absolute residuals, meaning
the predicted variance of GP-rotated is a reliable indicator for uncertainty
quantification.

Finally, if we look at Fig. 3.6 (a), we can find that there are still spa-
tiotemporal correlations in the residuals, meaning that there is still space for
improvement in the TSE estimation. For example, we can use the addition
of multiple GP kernels, one for the congestion propagation and the other for
the free-flow traffic, to capture the complex traffic dynamics. We have actu-
ally tried to use multiple GP kernels in our research, but the results do not
improve. We believe that this is because the propagation of free flow speed is
not as apparent as the congestion propagation, which does not provide enough
information to improve the TSE estimation. But the correlations in the resid-
uals still indicate that a more capable kernel design is needed to capture the
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Figure 3.6: The uncertainty quantification of the GP-rotated estimation
method on the NGSIM dataset with 5% observed trajectories. (a) The resid-
uals of the estimation. (b) The absolute residuals of the estimation. (c) The
uncertainty and 5% observed trajectories.

complex traffic dynamics.
In conclusion, our research emphasizes the importance of using an approach

that can accurately capture the behavior of traffic waves in TSE. The GP-
rotated method we propose is crucial in accounting for uncertainty propaga-
tion and allows us to provide reliable and accurate predictions. Through our
approach, we can evaluate the validity of our model while also providing a
measure of confidence in our predictions.
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3.3.7 Computational time

In Table 3.5, we present the running time taken by four different methods,
namely ASM, STH-LRTC, GP-rotated, and Pre-trained GP-rotated (P-GP-
rotated), on both NGSIM and HighD datasets. Among these methods, the
P-GP-rotated approach stands out for its significantly shorter computational
time. This is because the P-GP-rotated method uses fixed kernel hyperparam-
eters and random inducing points without any learning process. It is worth
noting that ASM and STH-LRTC also use fixed parameters without a pa-
rameter estimation stage, which makes it appropriate to compare them with
P-GP-rotated rather than GP-rotated.

Table 3.5: Computational time in seconds, mean (std).
NGSIM

Rate ASM STH-LRTC GP-rotated P-GP-rotated
0.05 7.40 (0.57) 908.21 (38.61)a 27.30 (2.92) 3.84 (0.27)
0.1 14.18 (0.43) 850.90 (19.61)a 77.54 (4.68) 9.25 (0.42)
0.2 26.77 (0.92) 206.72 (1.85) 153.07 (3.67) 13.43 (1.68)
0.3 38.38 (1.38) 199.99 (1.77) 204.61 (2.71) 13.97 (0.19)
0.4 48.15 (3.98) 196.09 (2.66) 245.37 (3.76) 14.94 (0.16)
0.5 54.21 (2.83) 191.46 (1.93) 280.01 (5.28) 15.85 (0.26)

HighD
Rate ASM STH-LRTC GP-rotated P-GP-rotated
0.05 0.46 (0.03) 67.61 (3.38) 11.97 (1.89) 0.35 (0.05)
0.1 0.87 (0.04) 823.65 (10.74)b 12.54 (0.29) 0.42 (0.05)
0.2 1.67 (0.07) 54.29 (1.39) 19.86 (0.40) 0.83 (0.16)
0.3 2.30 (0.05) 51.46 (1.06) 29.78 (0.66) 1.25 (0.15)
0.4 2.84 (0.08) 49.50 (0.89) 40.46 (0.86) 1.63 (0.21)
0.5 3.22 (0.09) 48.14 (0.82) 50.93 (1.49) 2.27 (0.21)

a Delay-embedding lengths τs = 50, τt = 50.
b Delay-embedding lengths τs = 60, τt = 50.

We can see the running time in the highD dataset is faster than the NGSIM
dataset. This is because the highD dataset has a smaller grid size. The
computational time of STH-LRTC is considerably higher compared to other
methods. For instance, on HighD data, it takes approximately 20 to 60 times

61



longer than the P-GP-rotated method and 15 to 30 times longer than ASM
computation. Moreover, the computational efficiency of STH-LRTC drops
significantly with a lower the penetration rate. This is mainly due to the
increase in the spatiotemporal delay embedding lengths (τs and τt), which
impacts the computation time substantially. As a result, the computational
cost of STH-LRTC becomes extremely high under such scenarios. However, it
is essential to note that this trend might not always hold, and a slight change
in the parameters of the delay embedding in STH-LRTC could alter the trend.

We observe that the computational time of ASM, GP-rotated, and P-GP-
rotated methods increases as the penetration rate increases. This is under-
standable as more data needs to be processed, leading to higher computation
costs due to the increased traffic information. It’s worth highlighting that
both ASM and GP-based methods can benefit from using a locality approxi-
mation that excludes distant points in the filters/covariance matrices to speed
up the computation [e.g., 178]. Besides, our testing only employs a naive
implementation of ASM. Faster implementations of ASM exist, leveraging ef-
ficient matrix operations and the Fast Fourier Transform (FFT) [60], which
can reduce computation time by two orders of magnitude. Considering these,
while P-GP-rotated demonstrates satisfactory computational efficiency, ASM
can be significantly faster with proper implementations.

3.3.8 TSE on multiple lanes

Most previous works have focused on modeling the TSE of each lane indepen-
dently without considering the correlations and interactions between neigh-
boring lanes. This section demonstrates the multi-output GP introduced in
Section 3.2.5 that enhances the TSE by learning the correlations of traffic
states on multiple lanes. Specifically, we use the trajectories from all lanes as
the input features to the multi-output GP model and predict the traffic state
for each lane as a separate output dimension. By sharing the same covariance
structure across all output dimensions, the multi-output GP model can cap-
ture the correlations and dependencies between the traffic states on different
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lanes, bringing more accurate and robust predictions.
The correlation between traffic speed profiles on different lanes of a highway

segment is evident from Fig. 3.7 (a). The ground truth traffic speed profiles
for Lane 1 and Lane 2 demonstrate that these two lanes are correlated, with
both lanes experiencing congestion during the first 200 seconds and the last
100 seconds of the observed period. From 250 s to 350 s, the traffic speeds on
both lanes are high. However, when we have only 5% of trajectory data for
each lane, accurately and simultaneously estimating the traffic state on these
two lanes becomes challenging.

Figure 3.7: The TSE on multiple lanes on the HighD dataset. TSE errors are
marked on the top-left corner. (a) The traffic speed profile of the full dataset.
(b) The traffic speed profile of the 5% observed trajectories. (c) The traffic
state is estimated by the independent rotated GP method. (d) The traffic
state is estimated by the multi-rotated GP method.
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In Fig. 3.7 (b), it can be observed that either Lane 1 or Lane 2 has a gap
without any observations, lasting from 260 s to 490 s on lane 1 and from 0 to
250 s on lane 2, respectively. When using the independent GP-rotated method
to perform TSE, the resulting traffic state profiles are shown in Fig. 3.7 (c). It
is evident from the figure that the speed map of Lane 1 does not contain much
traffic information during the time period between 250 s and 500 s, while the
speed map of Lane 2 loses most of the traffic information between 0 and 250
seconds. These results demonstrate that performing independent TSE in each
lane cannot achieve high estimation accuracy.

Despite the long periods of missing observations in either Lane 1 or Lane
2, we can observe that the trajectories from the other lane can compensate for
the missing period, which is the main idea behind using a multi-output GP to
output TSE in multiple lanes. Fig. 3.7 (d) shows that the multi-output GP
performs better than the independent GP method. Specifically, during the
period between 0 s and 250 s, the multi-output GP can reconstruct the shock-
wave of Lane 2 using the information from Lane 1, whereas the independent
rotated GP fails to rebuild this shockwave. As shown in the top-left corner of
Fig. 3.7 (c) and (d), the MAE and RMSE error of multi-output rotated GP is
significantly smaller than independent rotated GP.

3.4 Conclusion and Discussions

This study presents a novel approach for traffic speed estimation using Gaus-
sian process regression with a rotated kernel parametrization. The rotated
kernel is designed to model anisotropic traffic flow, allowing for capturing the
directional dependence of traffic wave propagation. The proposed method is a
generalization of the ARD kernel function and can be applied to other kernel
functions like Matérn and rational quadratic kernels. To validate the effec-
tiveness of the proposed method, we conduct experiments on two real-world
datasets from the NGSIM and HighD programs, as well as a simulated dataset
for a traffic bottleneck scenario. The findings from comprehensive experiments
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underscore the capability of the GP-rotated TSE method across varying CV
penetration rates and detector types. Notably, our approach achieves state-
of-the-art accuracy in scenarios with sparse CV penetration rates. Moreover,
GP-rotated offers a promising approach for estimating congestion propagation
speed from sparse vehicle trajectories. The outputs of GP-rotated also pro-
vide statistical uncertainty quantification, which is crucial for data-driven TSE
models, especially under limited training data. We also extend GP-rotated to
capture the speed correlations of multiple lanes, significantly improving the
TSE accuracy for multiple lanes with sparse observations. Overall, the pro-
posed method is a promising approach for traffic speed estimation, offering
improved performance and the ability to capture directional traffic flow pat-
terns.

While the proposed method shows promising results in traffic speed estima-
tion, there are some limitations and potential future research directions. First,
the current model is only tested on the traffic speed estimation problem, and
it may be possible to estimate speed, density, and other traffic state variables
simultaneously using multi-output Gaussian process regression. Second, fu-
ture research can extend the model to assess the traffic wave by incorporating
additional information, such as traffic signals and road geometry, to make the
model suitable for more scenarios. Third, the proposed method is evaluated
on real-world trajectory datasets that simulate the trajectory data obtained
from connected vehicles. To further validate the effectiveness of the proposed
method, it is suggested to test on commercial CV datasets.
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Chapter 4

Adaptive Midblock Crossing
Control for a Traffic-efficient
Arterial via Signal Optimization

4.1 Introduction

Midblock crossings are special crosswalks placed between intersections for
pedestrians and cyclists to cross the road. Midblock crossings provide con-
venient locations for pedestrians to access destinations (such as bus stops and
building entrances) without detouring. In practice, a midblock crossing is usu-
ally set when the distance between the two intersections exceeds four hundred
meters [179]–[181]. In addition, it is common to see safety facilities, such as a
pedestrian island, warning signages or signal control, at midblock crossings.

For signalized midblock crossings, a pushbutton is often installed to offer a
dedicated pedestrian phase after pedestrians push the button. The Forest City
Electronic Company in the UK invented the very early version of the pushbut-
ton system called Forest City System [106]. Subsequently, many variants of the
pushbutton control system developed, such as pedestrian light-controlled (Pel-
ican), pedestrian user-friendly intelligent (Puffin) and high intensity activated
crosswalk (HAWK), sometimes called pedestrian hybrid beacon (PHB) [107],
[109], [182]. These variants are similar in the control logic and have only small
differences caused by regional preferences/manuals. The pushbutton signal
control enhances pedestrians’ safety and has little impact on the traffic flow

66



when pedestrian crossing demand is low. However, the pushbutton-type mid-
block crossing is highly inefficient when the vehicle or pedestrian demand is
high because every crossing request brings a considerable interruption to the
traffic flow [111]. Significantly, the impact of an on-demand pedestrian phase
could propagate to upstream or downstream intersections and break the green
waves of the arterial [119]. Therefore, many midblock crossings with push-
buttons installed use predetermined signal plans (i.e., fixed phase and timing
control), and the pushbutton only works in specific time periods [183]. Be-
cause the fixed signal plans are unresponsive to pushbutton activation and
may constitute a long wait for pedestrians [184], pedestrians may ignore the
signal control once they believe pushbuttons are just “placebo buttons” [185].
Subsequently, this can increase the accident risk [184], [186].

To summarize, pushbutton control is only efficient for low-demand con-
ditions. Fixed phase and timing control is more suitable for high-demand
scenarios, and the mixed “placebo button” approach often causes safety con-
cerns. No existing midblock control method addresses the efficiency and the
safety problem simultaneously. Therefore, we propose an adaptive midblock
crossing control (AMCC) method to bring together the benefits of both while
addressing the drawbacks of each. AMCC is a pushbutton-based control, but
the pedestrian wait time (PWT, the time interval between the button pressed
and the pedestrian phase) is optimized to minimize the interruption to vehicles’
leaving at the downstream intersection. A threshold restricts the maximum
PWT to prioritize the pedestrian phase. We consider a midblock crossing
and two adjacent intersections as an integrated system and develop two types
of AMCC—AMCC-band and AMCC-vehicle—based on the available informa-
tion from transportation facilities. When only the signal control plans of adja-
cent intersections are known, the optimal PWT is obtained by minimizing the
overlap between the pedestrian phase and downstream green bands (AMCC-
band). When vehicles’ locations are also available (e.g., obtained from V2I
communication, CVs, or advanced sensors), the optimal PWT is obtained by
minimizing the number of vehicles projected to be impeded by the pedestrian
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phase (AMCC-vehicle). In the experiment, we test AMCC in an open source
simulation platform - SUMO with a two-intersection traffic network. Results
show that using AMCC at a midblock crossing consistently reduces vehicle
delay under a wide range of traffic conditions compared to Fixed or Pelican.
Meanwhile, pedestrian delay using AMCC is slightly longer than Pelican but
notably shorter than Fixed. We also find that using additional vehicle loca-
tion information in AMCC further reduces PWT. Based on our comprehensive
sensitivity analyses, we conclude that AMCC is an efficient midblock crossing
control method suitable for most traffic conditions. We summarize the advan-
tages of AMCC as follows:

• AMCC is a pushbutton-based midblock crossing control that minimizes
the interruption to the traffic flow;

• AMCC can be applied to synchronized and unsynchronized arterial with
existing signal control plans at adjacent intersections unchanged;

• In most traffic conditions, AMCC has shorter vehicle delay than Fixed
and Pelican and has shorter pedestrian delay than Fixed;

• AMCC avoids the safety concern of mixing the fixed phase and timing
control and the pushbutton control.

4.2 Methodology

This section proposes the AMCC method. To begin, we introduce the problem
and basic notations. Next, we present the two types of AMCCs, depending
on whether the real-time vehicle location information is available. Finally, we
summarize the control logic.

4.2.1 Problem description

This paper considers a road segment with one midblock crossing between two
signalized intersections, as illustrated in the left part of Fig. 4.1. The midblock
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crossing is equipped with a pushbutton control system that provides a dedi-
cated pedestrian phase after a pushbutton activation. We assume the signal
control schemes of intersections 1 and 2 are predetermined. Our goal is to
design an adaptive pushbutton control method at the midblock crossing that
is friendly to both pedestrians and vehicles. We focus on the vehicle travel
time of the target road segment between intersections 1 and 2.

We denote l1 and l2 respectively as the distance between the stop lines at
the midblock crossing and intersections 1 and 2 downstream in either direction,
as shown in Fig. 4.1. We assume that l1 and l2 are not so long so that the
control at the midblock crossing affects downstream intersections; a distance
of fewer than 800 meters is preferred according to MUTCD [110]. The desired
speed of the road segment is v. Without loss of generality, intersections 1 and
2 can have different cycle lengths and are not necessarily synchronized. Be-
cause our midblock crossing control is adaptive to real-time traffic conditions,
we assume we can access the real-time signal status and control scheme of
intersections 1 and 2. In fact, this step can be hard-coded into the program if
the signal control schemes of the two adjacent intersections are predetermined.

The total length of a pedestrian phase is r (including all potential leading
and rear clearance phases). We consider r as a fixed value with no extension
period. After each pushbutton activation, the proposed algorithm seeks the
location of the pedestrian phase within an acceptable interval to minimize the
impact on the traffic flow. Graphically speaking, the decision variable is the
w in Fig. 4.1, representing the pedestrian wait time between a pushbutton
activation and the subsequent pedestrian phase. We hereby name our method
AMCC and introduce AMCC-band and AMCC-vehicle as follows, depending
on whether the system can access the real-time vehicle location information
(e.g., obtained by surveillance cameras, V2I communication, or CVs).

4.2.2 AMCC-band

To begin, we analyze how the midblock crossing affects travel time on the
target road segment. A vehicle’s travel time between intersections 1 and 2 is
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Figure 4.1: An illustration of the adaptive midblock crossing control (AMCC),
solving the best pedestrian wait time (PWT) w given real-time traffic infor-
mation (e.g., the signal status of intersections 1 and 2 or vehicles’ location).

determined by the time when the vehicle leaves the downstream intersection in
its driving direction. For ease of description, we refer to the time when a vehicle
passes through the stop line at the downstream intersection as its exit time.
Vehicles’ exit time can be affected by the pedestrian phase at the midblock
crossing, particularly for vehicles that could have encountered a green light at
the downstream intersection but had to stop at the midblock crossing. This
section uses the green band to evaluate the effect of the pedestrian phase at
the midblock crossing on vehicles’ exit time.

Similar to many arterial coordination methods [83], [84], [86], [88]–[91],
[187], we backtrack the vehicle’s green phase of the downstream intersections
to the midblock crossing using the desired vehicle speed v and distances l1 and
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l2, as shown by the green band of Fig. 4.1. Doing so allows us to know whether
a pedestrian phase at the midblock crossing overlaps with a downstream green
band. A vehicle should encounter a green light at the downstream intersection
if it is within a downstream green band. An overlap between the pedestrian
phase and a downstream green band impedes vehicles from passing through
the target segment and, therefore, should be avoided. AMCC-band aims to
minimize the overlap between the pedestrian phase and flow-weighted down-
stream green bands.

We regard a pushbutton activation as time zero. After a pushbutton activa-
tion, we denote sji to be the j -th backtracked green-start time of intersection
i at the mid-block crossing, and eji to be the j -th backtracked green-end time
of intersection i at the mid-block crossing, as shown in Fig. 4.1. Note we only
consider the green bands after time zero; thus, a negative green-start time is
set to zero when required (e.g., the s12=0 in Fig. 4.1). As shown in Fig. 4.1, the
overlapping period oji between a green band

[
sji , e

j
i

]
and the pedestrian phase

[w,w + r] is:

oji = max
(
0,min

(
eji , w + r

)
−max

(
sji , w

))
. (4.1)

Next, AMCC-band determines the best PWT w by the following optimiza-
tion problem:

min
w

∑2
i=1

∑2
j=1 qio

j
i + λw

s.t. wmin ≤ w ≤ wmax,
(4.2)

where qi is the average flow rate for the traffic traveling towards intersection
i, λ is a non-negative weight factor, wmin and wmax are respectively the lower
and upper bounds for the pedestrian wait time. Note Eq. 4.2 only considers
the first two green bands after time zero because the length of the pedestrian
wait time w should not be excessively long. The objective function in Eq. 4.2
contains two terms. The first term minimizes the total overlapping period
between the pedestrian phase and flow-weighted green bands. The second
term punishes an excessively long pedestrian wait time. Based on a study
by Van Houten et al. [186], we set wmax = 35 seconds, a short value that
is acceptable to most pedestrians. The minimum pedestrian wait time wmin
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relates to whether the minimal vehicle green time is reached, to be discussed
in Section 4.2.4. Because the optimization problem has only one decision
variable w (an integer in practice), it can be solved efficiently by single variable
minimization algorithms (e.g., Brent’s method [188]) or even an enumeration
method.

To clarify, AMCC-band has no restriction to the signal control method of
intersections 1 and 2, although it uses the concept of “green band”. In fact,
various signal control methods, such as fixed phase and timing, coordinate and
adaptive, can be used in intersections 1 and 2 as long as the signal status can be
accessed in real-time. By adjusting the pedestrian wait time w, AMCC-band
maximizes the green band between the midblock crossing and the downstream
intersection to shorten vehicles’ exit time. Our method keeps the original signal
control methods of intersections 1 and 2, which is convenient when adding a
new midblock crossing to existing infrastructure.

4.2.3 AMCC-vehicle

With the help of V2X communication and advanced sensors, it is possible to
improve AMCC with real-time vehicle location and route information. The
idea of AMCC-vehicle is to minimize the estimated number of affected vehicles.
AMCC-vehicle is a more accurate control method that requires a higher level
of infrastructure.

After a pushbutton activation, the first step in AMCC-vehicle is to forecast
when vehicles will reach the midblock crossing assuming no pedestrian phase.
We use intersection 1 in Fig. 4.2 to illustrate the forecast method applied in
this paper (the same for intersection 2). For vehicles already passed the stop
line (i.e., vehicles 4, 5, and 6), their travel time to the midblock crossing is
estimated according to the remaining distance to the midblock crossing divided
by the desired speed. For vehicles still in upstream approaches (i.e., vehicles
1, 2, and 3), we use a random forest [189]

ŷi = F (xi) (4.3)
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to do the forecasting, where F is the random forest model, xi is the feature
vector for vehicle i, and ŷi is the estimated travel time for vehicle i from the
current position to 100 meters ahead of the midblock crossing. As illustrated
in Fig. 4.2, features in xi include the lane of vehicle i, the distance to the
stop bar, the time in a signal cycle, the number of leading vehicles before the
stop bar and the current speed of vehicle i. Because the forecasting model
F is trained using historical observations, the target data ŷi is collected from
100 meters ahead of the midblock crossing to avoid the impact of pedestrian
phases; the travel time on the rest of the 100-meter road will be added to the
final estimated travel time. Note that we use the random forest in this paper
to illustrate the effect of AMCC-vehicle, although any accurate forecast model
can be used in its place in practice.

2

1

5 6

3

4

1

2

3

4

Midblock 
crossing

0 30 s

Signal status of intersection 1
50 m

40 m
30 m Features = [ lane, distance, signal status, #leading vehicles, speed ]

Figure 4.2: An illustration of vehicle location at a pushbutton activation. Only
numbered red vehicles will pass the midblock crossing. For vehicles already
passed the stop line (i.e., vehicles 4, 5, and 6), their travel time to the mid-
block crossing is estimated by the remaining distance divided by the desired
speed. For vehicles in upstream approaches (i.e., vehicles 1, 2, and 3), we in-
put features into a random forest to forecast the travel time from their current
locations to 100 meters before the midblock crossing.

Next, we denote qi(t) as the number of vehicles that will reach the stop
line of the midblock crossing at the t-th second after the time zero for the
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direction with downstream intersection i. We can directly obtain qi(t) from
the estimated travel time of the previous step. The optimization function
of AMCC-vehicle is thus to minimize the number of vehicles that are in a
downstream green band and projected to be impeded by the pedestrian phase

min
w

2∑

i=1

2∑

j=1

min(eji ,w+r)∑

t=max(sji ,w)

qi(t) + λw, (4.4)

where max
(
sji , w

)
and min

(
eji , w + r

)
are the start and end times respectively

of the overlap interval between the j-th green band of downstream intersection
i and pedestrian phase. When max

(
sji , w

)
≥ min

(
eji , w + r

)
, the pedestrian

phase does not overlap with the downstream green band, and the summation
becomes zero. Note the constraint of Eq. 4.2 also applies to Eq. 4.4. The
best pedestrian wait time w of Eq. 4.4 can be solved by the same method as
Eq. 4.2.

4.2.4 Control logic

AMCC-band or AMCC-vehicle is integrated into a control framework that
ensures a minimum vehicle green time at the midblock crossing, as is shown
in Fig. 4.3.

Let gv be the green time for vehicles after the last pedestrian phase at the
midblock crossing. The gv between every two pedestrian phases should be long
enough to empty the queueing vehicles at the midblock crossing. Therefore,
we set a minimum vehicle green time gv,min to control the interval between
two pedestrian phases. Note that gv,min should be a value smaller than the
maximum pedestrian wait time wmax. The minimum pedestrian wait time
wmin is determined by the control logic of Fig. 4.3.

4.3 Experiments

In this section, we describe our testing of AMCC in a SUMO simulation. We
begin with a description of experimental settings and evaluation metrics. Next,
we compare the efficiency of AMCC with Fixed and Pelican controls. Finally,
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(4.2) or (4.4)

Figure 4.3: The flowchart of calculating w after each pushbutton activation.

we outline our sensitivity analyses to these midblock control methods under
various pedestrian and vehicle demands.

4.3.1 Experimental setup

We constructed the network and conducted the simulation in SUMO. The
control models and analyses were implemented in Python. The interaction
between SUMO and Python was realized by the application programming
interface (API). We used a two-intersection network and the detailed network
layout can be found in Fig. 4.4. There were two lanes in each direction and
the distance between the center of the two intersections was 700 meters. The
midblock crossing was in the middle point. We used the default car-following
model in SUMO with the desired speed (free-flow speed) of 50 km/h (13.89
m/s).

The vehicle demand was generated based on a predefined origin-destination
matrix mimicking medium-sized traffic flow initially, shown in Table 4.1. The
representations of numbers are shown in the network layout in Fig. 4.4. The
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Figure 4.4: The network layout in the SUMO simulation.

flow rates of the two directions were not symmetric. The flow rate from inter-
section 1 to intersection 2 on the target segment was 1296 vehicles per hour
(vph) and 864 in the other direction. The crossing demand at the midblock
crossing was set to 40 pedestrians per hour (pph).

Table 4.1: Initial setting of vehicle origin-destination demand.
OD 1 2 3 4 5 6 O
1 0 72 72 72 72 0 288
2 72 0 72 72 432 72 720
3 72 72 0 0 72 72 288
4 36 36 0 0 36 72 180
5 36 360 36 36 0 36 504
6 0 36 36 72 36 0 180
D 216 576 216 252 648 252 2160

The traffic signalization of intersections 1 and 2 was determined by Web-
ster’s method independently; details of the signal phase and timing plans are
listed in Fig. 4.5 and Table 4.2. The cycle lengths were 80 seconds and 70 sec-
onds for intersections 1 and 2, respectively. Note the two intersections were
not coordinated. Although AMCC also works for coordinated arterials, the
“optimal allocation” of pedestrian phases at the midblock was constant in dif-
ferent cycles once given a particular coordination plan. Therefore, we designed
two uncoordinated intersections to test AMCC as a more general case with
increased variability.

The critical step of AMCC is adding a dynamic PWT w to the front of
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Figure 4.5: Signal phase diagrams for the arterial. (a) Signal phase plan of
intersection 1 and 2. (b) Signal phase plan of the midblock crossing.

Table 4.2: Initial signal timing and offset settings in the arterial.
Cycle length Phase A Phase B Offset

Intersection 1 80 31+4 s 41+4 s 0
Intersection 2 70 21+4 s 41+4 s 0*

Mid-block crossing 80 20+5 s 50+5 s 55
*At the initial (0th second) of each simulation.

Green ≥ 𝑔𝑣,min
Amber
(5 s) Red (15 s) Green until next activation

Red Green (15 s) Flashing green3

(10 s) Red

Flashing amber2

(10 s)Vehicle

Pedestrian

Pushbutton 
activation

Red 1

𝑤

1 Show waiting indicator (optional).
2 Vehicles give way to any pedestrians on the crossing.
3 Pedestrians stop start to cross. 

Figure 4.6: The signal phase and timing plan of AMCC.
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a pedestrian phase to protect the smooth running of traffic. We can apply
this step to any pushbutton control methods, and the effect of using AMCC is
similar to these methods. In our experiment, we chose the widely used Pelican
control as the baseline model. And the signal control plan of AMCC is shown
in Fig. 4.6. The phase duration was set according to road width to provide
sufficient crossing time. When w = 0, AMCC is equivalent to Pelican. In total,
we tested and compared the following four midblock crossing control methods
in the experiment:

• Fixed: The cycle length was fixed at 80 seconds; the pedestrian phase
was 20 seconds with additional 5 seconds of amber time. To maximize the
efficiency, the fixed vehicle green phase was coordinated with intersection
1 (see details in Fig. 4.5 and Table 4.2).

• Pelican: A standard pushbutton control method. The signal setting
was the same as Fig. 4.6, with the PWT at zero (i.e., w = 0). The
minimum vehicle green time gv,min was 15 seconds.

• AMCC-band: The signal setting is outlined in Fig. 4.6, where w was
determined by the method described above. We set the λ = 0, and
the maximum PWT wmax was configured at 35 seconds, a reasonable
value according to [186] (a larger value may significantly increase the
probability of pedestrian violations). The minimum vehicle green time
gv,min was 15 seconds.

• AMCC-vehicle: Similar to the AMCC-band, but w was determined
by the method described in Section 4.2.3. The random forest forecast
model was pre-trained using the data from an additional 7200-second
simulation. We implemented the model via the scikit-learn Python pack-
age [190] and used the default model setting. The random forest model
was only trained once and was used in all the experiments with AMCC-
vehicle control.
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4.3.2 Evaluation metrics

The length of each simulation was 7200 seconds. We performed 20 simula-
tions with different initial random seeds for each experimental setting, and
we compared the final results by the mean and standard deviation of the 20
simulations. Specifically, we evaluated the performance of different midblock
control methods by the following metrics:

• Average vehicle travel time: The average travel time of vehicles on
the target road segment.

• Average vehicle delay: It is the average of all vehicles’ delays on the
segment. The vehicle delay is calculated by subtracting the expected
travel time from the actual travel time.

• Average vehicle stops: The average number of vehicles’ stops on the
target segment.

• Average pedestrian delay: It is the average of all pedestrians’ delays.
A pedestrian’s delay is calculated by subtracting the expected travel time
from the actual travel time.

• Average person delay: We regard one vehicle as 1.7 persons based on
the average vehicle occupancy factors suggested by FHWA [191]. So it is
the average delay of the total equivalent person (pedestrians and people
on target segment vehicles).

A lower average vehicle travel time, delay, stops indicate the traffic moves
more smoothly with higher speed, and the green wave on the arterial is less
disrupted. A lower average pedestrian delay means pedestrians wait for less
time. Moreover, a lower average person indicates better performance for a
control method for the whole system.

4.3.3 Traffic efficiency comparisons

This section investigates the performance of AMCC and baseline models. Ta-
ble 4.3 outlines the results when the midblock crossing was under the control of
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Fixed, Pelican, AMCC-band, and AMCC-vehicle. We can observe the AMCC
outperformed both Fixed and Pelican when considering vehicle efficiency. The
better performance can be attributed to the dynamic PWT when considering
the coordination between the midblock crossing and the downstream intersec-
tion.

Table 4.3: Performances (mean (std)) of the four pushbutton control methods.
Midblock crossing

control method
Average vehicle
travel time (s)

Average vehicle
delay (s)

Average vehicle
stops (#)

Average pedestrian
delay (s)

Average person
delay (s)

Fixed 71.96 (0.79) 18.96 (0.79) 1.17 (0.05) 29.21 (2.38) 19.12 (0.78)
Pelican 70.51 (0.88) 17.51 (0.88) 1.09 (0.05) 11.32 (1.21) 17.41 (0.87)

AMCC-band 68.82 (0.74) 15.82 (0.74) 1.01 (0.04) 26.71 (2.05) 15.99 (0.73)
AMCC-vehicle 68.70 (0.82) 15.70 (0.82) 1.01 (0.04) 21.18 (2.05) 15.79 (0.80)

Compared with Fixed and Pelican, two types of AMCC reduce the aver-
age vehicle travel time/average vehicle delay by 2 to 3 seconds, indicating an
improvement to the vehicle’s travel on the target segment. Meanwhile, the
average number of stops for AMCC is around 8 to 13 percent lower than the
Fixed and Pelican, effectively reducing emissions and risk of rear-end collision.
The pedestrian delay for AMCC is higher than Pelican, but it is considerably
lower than the Fixed control. Note that the maximum PWT in our algorithm
is 35 seconds, an acceptable value for pedestrians, according to [186]. Further-
more, although the two types of AMCC have similar performances for vehicles,
AMCC-vehicle is more accommodating to pedestrians as it further reduces the
average pedestrian delay by 20.7 percent, from 26.71 seconds to 21.18 seconds.
Most importantly, the proposed two types of AMCC have the lowest average
person delay, indicating the whole road users (i.e., passengers in vehicles and
pedestrians) can benefit from using AMCCs at the midblock crossing.

Moreover, we selected one group of data to illustrate the cumulative distri-
bution functions (CDFs) of vehicle travel time on the target segment. Fig. 4.7(a)
shows vehicles going from intersection 1 to intersection 2 (west to east) through
the target segment, and Fig. 4.7(b) shows the case for the opposite direction.
Overall, the AMCC performed better than both Fixed and Pelican in both di-
rections. Furthermore, they are much better at reducing the total delays from
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(a) (b) 

 

Figure 4.7: Travel time cumulative distribution functions of vehicles along the
target segment: (a) west to east, (b) east to west.

the west to the east because the AMCC-band method favors the direction with
higher traffic volume and gives optimization priority.

The trajectory plot is an effective tool to visualize vehicles’ movement along
the arterial and the control effect. There were three pushbutton activations
(shown by black cross marks) during the 325-second period. Fig. 4.8 shows
the trajectories along the target segment from intersection 1 to intersection
2 (west to east). The direction from west to east has a more significant flow
rate and is assigned a greater weight in the objective functions (Eq. 4.2 and
Eq. 4.4). We thus focus on west to east to explain the advantages/effects of
AMCC.

We can see the Pelican control switched to a pedestrian phase immediately
after each pushbutton activation. However, there is a possibility of significant
interruption to the traffic flow. For example, we can see that the immedi-
ate Pelican control pedestrian phase blocked vehicles from passing through
the downstream intersection in the third pushbutton activation of Fig. 4.8.
As a result, these blocked vehicles encountered red phases twice (one in the
midblock crossing and the other in intersection 2, as shown by the arrows in
Fig. 4.8), causing considerable delay. By contrast, AMCC-band and AMCC-
vehicle optimized the PWT minimizing the impact on road traffic. The best
example of AMCC-band’s effects is the third pushbutton activation in Fig. 4.8.
There, we can see AMCC-band extended the vehicle phase at the midblock
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crossing to release vehicles that could pass downstream intersection 2 without
stopping, thus avoiding the “twice-red-phases” problem of Pelican. However,
a shortcoming of AMCC-band is unnecessary waiting time for pedestrians.
As shown in the first pushbutton activation of Fig. 4.8, there was a long pe-
riod of unused time (no vehicle passing) in the PWT of AMCC-band. This
shortcoming of AMCC-band can be solved in AMCC-vehicle with the help
of real-time vehicle location information. For the first pushbutton activation,
AMCC-vehicle extended the vehicle phase for a short period and immediately
switched to the pedestrian phase when there was no oncoming vehicle. In
summary, the trajectory plot shows that AMCC methods significantly reduce
vehicle delay compared to Pelican, and the AMCC-vehicle further avoids the
unnecessary PWT in the AMCC-band.

The effect of AMCCs is less evident in the direction of Fig. 4.9 because of
the relatively lower flow rate. Nevertheless, the queueing length in the down-
stream intersection (intersection 1) is notably shorter for the two AMCC meth-
ods than Pelican. In summary, the two trajectory plots show that AMCCmeth-
ods significantly reduce vehicle delay compared to Pelican, and the AMCC-
vehicle further avoids the unnecessary PWT in the AMCC-band.

4.3.4 Sensitivity analysis to pedestrian demands

This section examines the sensitivity of Fixed, Pelican, AMCC-band, and
AMCC-vehicle control algorithms to the pedestrian demand. Fourteen lev-
els of pedestrian demand are tested: 5 to 200 pph with an increment of 15
pph. For each method and each demand level, we performed 20 simulation
runs. The results for average vehicle delay, average pedestrian delay, and aver-
age person delay for each level of pedestrian demand are outlined in Fig. 4.10
and the error bars are the standard deviations of 20 simulations. We can see
AMCC-band and AMCC-vehicle are strikingly similar in terms of impact on
vehicles. The two types of AMCC performed better than Pelican and Fixed
because the AMCC resulted in shorter average vehicle and average person de-
lays under all pedestrian demand levels when compared to Pelican and Fixed.
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Figure 4.8: Vehicle trajectories from intersection 1 to 2 (west to east) in a
selected period. Pelican, AMCC-band, or AMCC-vehicle control the mid-
block crossing. Cross marks represent pushbutton activations. Pelican control
switches to a pedestrian phase immediately after each pushbutton activation,
which causes significant impacts to traffic (e.g., the two successive red phases).
AMCC-band reduces the effect on vehicles but may cause unnecessary PWT
(e.g., the unused time). AMCC-vehicle avoids the problems in Pelican and
AMCC-band.
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Figure 4.9: Vehicle trajectories from intersection 2 to 1 (east to west) in a
selected period. Pelican, AMCC-band, or AMCC-vehicle control the midblock
crossing. Cross marks represent pushbutton activations. The queueing length
in the downstream intersection (intersection 1) is notably shorter for the two
AMCC methods than Pelican.
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The pedestrian delay under Fixed and Pelican was relatively steady, with only
slight fluctuations in a wide range of pedestrian demand testing. The AMCC
consistently produced significantly fewer pedestrian delays than the Fixed and
more than Pelican. Moreover, the average pedestrian delay was much less than
that using AMCC-band when utilizing AMCC-vehicle. Overall, our proposed
AMCC method possesses a wide adaptation range for pedestrian demand.

   
(a) (b)  (c) 

 
 
 Figure 4.10: The average vehicle, pedestrian, and person delay of four midblock
crossing control algorithms under different pedestrian demands. The error bars
are the standard deviations of 20 simulations.

When looking at Fig. 4.10(a), we note that the average vehicle delay under
Fixed was relatively stable at around 19 seconds (with a slight fluctuation)
because the cycle length and phase split determined the average vehicle delay
to some extent. However, when Pelican and AMCC controlled the midblock
crossing, the average vehicle delay grew with increased pedestrian demand.
Moreover, in Fig. 4.10(a), we observe that the vehicle delay caused by AMCC
was always smaller than that caused by Pelican or Fixed, regardless of the
pedestrian demand level, which indicates the AMCC method performs the
best regarding vehicle efficiency. Although in the case of extra-low pedestrian
demand, such as 5 pph, vehicle delay under AMCCs was similar to that under
Pelican. The advantage of AMCC over Pelican was magnified with increased
pedestrian demand, further reducing average vehicle delay. Moreover, it is
noticeable that when the pedestrian flow reaches a certain level, such as 200
pph, the average vehicle delay caused by the AMCC approached the result of
Fixed. However, 200 pph means a pedestrian comes every 18 seconds, which
would be a rare occurrence for a midblock crossing. Therefore, we would not
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continue to test higher pedestrian demand.
It is worth noting that when the pedestrian demand was lower than approxi-

mately 60 pph, Pelican can achieve a better effect than Fixed in causing shorter
vehicle and pedestrian delays. Therefore, for low pedestrian demand, Pelican
is preferred for the midblock crossing control in real-world engineering cases.
Our AMCC resulted in greater pedestrian delay below the pedestrian demand
level of 60 pph but a shorter vehicle delay than Pelican. However, the PWT
caused by AMCC-vehicle was around 20 seconds (indicated in Fig. 4.10(b)),
which is acceptable. By contrast, Fixed had advantages over Pelican when the
pedestrian demand was more than 60 pph since the average vehicle delay was
lower than that of Pelican, indicated in Fig. 4.10(a). Thus, engineers would
apply Fixed to the midblock crossing in real-world engineering cases. However,
the vehicle delay caused by AMCC was always shorter than that caused by
Fixed when pedestrian demand was over 60 pph. What is more, the pedestrian
delay caused by AMCC was always less than that caused by Fixed. Therefore,
the AMCC can reduce vehicle and pedestrian delays simultaneously compared
with Fixed when pedestrian demand is over 60 pph; the AMCC can have a
wide range of adaptions to various pedestrian demands.

Besides, the average pedestrian delay caused by AMCC-band decreases due
to the aggregation effects of more pedestrians with a rise in pedestrian demand,
as is evident in Fig. 4.10(b). Pedestrians that triggered the pushbutton at
different time points can be allowed to cross after the same optimized PWT;
this effect is more subtle when the pedestrian volume is relatively low. It
is worth mentioning that when AMCC-vehicle was applied to the midblock
crossing, the average pedestrian delay was significantly smaller than that under
the AMCC-band, improving the pedestrian-friendly effect.

4.3.5 Sensitivity analysis to vehicle demands

After examining the sensitivity to the pedestrian demand, we further tested
the control effect of Fixed, Pelican, and the two types of AMCC under differ-
ent vehicle demands given a fixed pedestrian demand (40 pph). Because the
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objective functions of AMCC considered the traffic flow of two directions, we
were particularly interested in the control effect of AMCC when the flow rates
of the two directions were imbalanced. To do so, we multiplied the vehicle
demand of the west-to-east (WE) direction (intersection 1 to 2) by a factor
ranging from 0.5 to 1.5 at a 0.1 interval while keeping the vehicle demand of
the other direction unchanged. At the ratio of 0.66, the vehicle demands of
the two directions were more or less balanced. When the ratios were below
0.66, the number of vehicles going from intersection 2 to 1 (east to west, EW)
was greater than from intersection 1 to 2 (WE). On the other hand, when the
ratios were above 0.66, the traffic volume from intersection 2 to intersection 1
was less than that from intersection 1 to intersection 2.

Based on the above setting, Fig. 4.11(a)-(c) shows the performance of the
four control methods under different vehicle demand ratios. As expected, the
vehicle delays under all the control models grew with increased vehicle demand.
However, the advantages of AMCC compared with Fixed and Pelican were
consistent under different vehicle demand ratios, which corroborates the effect
of AMCC in reducing vehicle (and person) delay. As seen in Fig. 4.11(b), the
average pedestrian delay was relatively stable under different vehicle demands.
Pelican resulted in the lowest average pedestrian delay, followed by AMCC-
vehicle and AMCC-band; Fixed still had the highest pedestrian delay.

 

   
(a) (b) (c) 

 

Figure 4.11: The average vehicle, pedestrian, and person delay of four midblock
crossing control algorithms under different vehicle demands. The error bars
are the standard deviations of 20 simulations.

Next, we went one step further to investigate the impact of imbalanced
vehicle demands, as shown in Fig. 4.12. Interestingly, although the overall
average vehicle delay was similar for AMCC-band and AMCC-vehicle, the
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Figure 4.12: The average vehicle delays of each direction for the control meth-
ods (numbers along markers indicate different vehicle demand ratios of west-
to-east direction).

average vehicle delays of the two AMCC methods were different in each direc-
tion. In Fig. 4.12, the curve of AMCC-band is different from the other three
methods—it is the only non-monotonic curve. There is a clear abnormal shift
from a vehicle demand ratio 0.6 to 0.7, and the average vehicle delay suddenly
drops for WE but increases for EW. This is because EW is the primary di-
rection (i.e., the direction with a greater flow rate) when the ratio is 0.6 or
less, while WE becomes the primary direction when the ratio is 0.7 and above.
The AMCC-band always favors the direction with the greater flow rate caused
by its objective function in Eq. 4.2. Favoring the primary direction may not
impact the overall vehicle delay, but it may cause inequitable control [192].
In contrast, AMCC-vehicle—a control with similar average vehicle delay but
low average pedestrian delay—is a more equitable control method because it
optimizes the PWT based on real-time vehicle information and no flow rate
term exists in its objective function Eq. 4.4.

Aside from equitability, we can see the data points of the two types of
88



AMCC are almost always on the left lower side of the other two control meth-
ods under each demand ratio. This indicates the improvement for vehicles’
travel under AMCC was two-directional, which accords with our objective
functions (Eq. 4.2 and Eq. 4.4). Overall, the above results show that the
AMCC method can be applied to imbalanced vehicle demand in two direc-
tions. Therefore, vehicle delay can be effectively controlled using the proposed
AMCC method.

4.4 Conclusion and Discussions

This research proposes two types of adaptive pushbutton traffic signal control
methods (AMCC-band and AMCC-vehicle) for pedestrian midblock crossings.
These two kinds of AMCC methods optimize PWT after each pushbutton
activation to ensure vehicles can leave the downstream intersection without
too much additional delay. On the premise of meeting pedestrian crossing
requirements, the proposed method can improve signal coordination between
the midblock crossing and the downstream intersection. We tested the perfor-
mance of the two kinds of AMCC control methods in SUMO simulations with
extensive sensitivity analyses. Results showed that the two AMCC controls
reduce vehicle delay when compared to Fixed and Pelican controls. AMCC’
pedestrian delay is greater than that of Pelican while much smaller than that
of Fixed. When comparing AMCC-band and AMCC-vehicle, AMCC-vehicle is
superior for smaller pedestrian delay and more equitable for two-direction ve-
hicle delay. Nevertheless, AMCC-band is simpler and perhaps a more feasible
approach under current transportation infrastructure. Overall, the two AMCC
methods are very flexible and can be applied unchanged to synchronized and
unsynchronized arterial with existing signal control plans at adjacent intersec-
tions. Most importantly, AMCC can be applied to a broader range of traffic
conditions, continuously offering relatively low vehicle and pedestrian delay,
thereby complementing existing midblock control methods.

Finally, we propose several directions for future research. First, it is com-
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mon to see pedestrian islands and two-stage midblock crossings on wide roads.
Therefore, a practical problem is how to extend AMCC to multi-stage midblock
crossings. In addition, incorporating extension periods (similar to Puffin and
PA) in pedestrian phases for AMCC is also worth investigating. Second, the
location of a midblock crossing is critical when coordinating with the traffic
signals of adjacent intersections. Therefore, the location choice problem could
be integrated into a midblock control method. Lastly, we tested our approach
on a simulation framework; a field study is highly recommended to learn the
real-world feedback and further improve the algorithm. In particular, acquir-
ing feedback from pedestrians and drivers is necessary when applying a new
control method.
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Chapter 5

CAV Trajectory Control at a
Mixed-traffic Intersection: a
Deep Reinforcement Learning
Approach

5.1 Introduction

With increasing concerns regarding urban congestion, environmental impacts,
and human safety, there is a growing demand for innovative solutions to en-
hance traffic efficiency, reduce vehicle emissions, and improve traveling safety.
In recent years, the rapid advancement of CAV technologies has emerged as an
up-and-coming solution, garnering significant attention. CV technology facil-
itates real-time communication not only between V2V but also between V2I,
while AV technology enables precise control of vehicle trajectories. The inte-
gration of these technologies enables advanced trajectory planning for CAVs
and presents opportunities for innovative approaches to enhance traffic oper-
ations. Furthermore, as highlighted by [5], it is projected that CVs or AVs
may not fully dominate the traffic stream until the 2040s to 2050s. This fore-
cast suggests an extended period of coexistence among conventional HDVs,
CVs, CAVs, and other road users like pedestrians, leading to a mixed traf-
fic environment. Therefore, it becomes imperative to address the complexity
of trajectory control in such mixed traffic scenarios, accommodating HDVs,
CAVs, and pedestrians. This approach is essential for fostering efficient and
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sustainable traffic management.
CAV trajectory control can be broadly categorized into two primary objec-

tives: enhancing traffic efficiency or reducing emissions. Most studies in this
field emphasize the optimal control-based approach. Initially, in fully CAV
environments, significant research has focused on optimizing CAV trajectory
at intersections and exploring joint optimization of CAV trajectory and traffic
signal timing [155]. This effort aims to facilitate CAV passage on green lights
or enable preemptive speed adjustments to avoid unnecessary stops. Mean-
while, to reduce vehicle emissions, CAV trajectory planning is integrated into
the development of eco-driving systems. These systems optimize speed har-
monization based on predictions of preceding vehicles and signal timing. Ex-
amples include eco-cooperative adaptive cruise control (Eco-CACC) [193] and
optimal eco-driving control utilizing CAV communication with traffic signals.
Subsequently, considerable research has been dedicated to CAV trajectory
control in mixed-traffic environments involving both CAVs and HDVs. For
instance, [194] explored cooperative signal timing and trajectory optimization
strategies to enhance traffic efficiency. Additionally, eco-driving optimization
models have been developed to improve energy efficiency at signalized inter-
sections in mixed traffic scenarios [195]. Although much of the aforementioned
research focuses on mixed traffic, the majority of studies are centered around
signalized intersections. Few studies are addressing CAV trajectory control
at unsignalized intersections, such as those employing reservation-based meth-
ods [196] or dynamic controllers utilizing RL policy [197]. Furthermore, be-
yond the mixed traffic of CAVs and HDVs, there are studies examining CAV
control at signal-free intersections when CAVs share the road with pedestrians,
as seen in [198].

To sum up, firstly, it’s important to note that the research discussed above
is primarily conducted in fully CAV environments and focused on signalized
intersections. The evidence presented highlights a notable gap in the litera-
ture regarding mixed traffic scenarios that comprehensively integrate all road
users, including CAVs, HDVs, and pedestrians. Secondly, while much research
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focuses on enhancing traffic efficiency or reducing vehicle emissions, there is a
tendency to overlook the critical aspect of safety improvement. Lastly, a key
limitation in these studies is the assumption that all CAVs possess complete
awareness of other vehicles and can make global decisions. However, the pres-
ence of CAVs from various manufacturers can pose challenges to information
sharing. Moreover, many researchers tend to propose system-optimal controls
based on the aforementioned assumptions. Nonetheless, it’s essential to rec-
ognize that optimal control methods may encounter computational challenges
as traffic demand increases. Instead, there should be a greater emphasis on in-
dividual user considerations, with each vehicle making driving decisions based
on its own best interests.

To address the above research gap, we propose an RL-based trajectory
control algorithm for CAVs in a mixed-traffic intersection. We aim to ex-
amine CAVs’ capabilities in enhancing traffic efficiency, reducing emissions,
improving safety, and how these capabilities are influenced by different CAV
penetration rates. The acceleration of the CAV is optimized through the deep
deterministic policy gradient (DDPG) [199] algorithm to maximize a reward
function that considers safety, energy efficiency, and traffic efficiency. By ver-
ifying the proposed algorithm in SUMO, we found that the proposed CAV
control method significantly improves traffic efficiency and reduces fuel con-
sumption, with a notable reduction in vehicle-vehicle and vehicle-pedestrian
conflicts. To summarize, our major contributions include:

• We propose an RL-based trajectory control algorithm for CAVs in the
mixed traffic scenario.

• We consider multiple control objectives that include enhancing traffic
efficiency, safety, and reducing emission.

• We evaluate the control performances under different CAV penetration
rates to verify the CAV benefits.
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5.2 Problem Formulation
5.2.1 Reinforcement learning

RL has demonstrated remarkable success across a spectrum of domains. A
notable achievement thus far resides in its application to gameplay [200] and
signal control [201], showcasing a program with this approach capable of com-
pleting tasks with certain expertise. RL stands out as a strong technique
within the realm of CAV, offering substantial potential to support safety mea-
sures in self-driving operations. Furthermore, RL represents a flexible ap-
proach, facilitating rapid decision-making and real-time responses. Rooted in
the dynamic interplay between an agent (vehicle) and its surrounding (traffic
environment), RL entails the agent undertaking diverse actions and receiving
corresponding rewards for each action. RL operates as a model-free algorithm,
ignoring the need for detailed probabilistic modeling of the environment. This
attribute empowers RL to adapt to unfamiliar and previously unobserved sce-
narios through trial-and-error learning, making it particularly well-suited for
autonomous driving applications.

RL is an interdisciplinary area of machine learning and optimal control
that serves as a methodology for teaching intelligent agents control strate-
gies in dynamic environments through iterative experimentation as described
by Sutton and Barto [202]. These agents engage with the environment by
executing actions and leveraging ensuing feedback (comprising rewards and
subsequent states) to reinforce behaviors conducive to achieving desired objec-
tives. RL usually states the learning problem in the form of a Markov decision
process (MDP). At each step t, the agent observes a state St in the environ-
ment, chooses an action at, gets a reward rt+1, and the environment transitions
to the next state St+1. An MDP comprises multiple terms (S,A,P ,R) with
the following conditions:

• 1) S is a finite set of all possible states (s ∈ S).

• 2) A is a set of actions that an agent can perform (a ∈ A).
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• 3) P : S × A × S → [0, 1] is the state transition that provides the
probability that an agent in the state will arrive in another state after
acting.

• 4) R : S ×A × S → R is the immediate scalar reward which the agent
will receive when it executes an action in a state and arrives to a new
state.

The probability of taking action at in the state st at a discrete time step t

is called policy π. The primary objective of an agent is to determine a policy
π : S → A, and the probability can be expressed as follows:

π (at | st) = P [A = at | S = st] . (5.1)

Many RL algorithms, such as Q-learning, establish and refine a value func-
tion Q(s, a) : S × A → R, where these values directly signify the potential
returns achievable from various states by taking different actions. Upon dis-
covering the optimal value function Q∗, determining the optimal policy π∗ for
the agent becomes straightforward:

π∗(s) = argmax
a

Q∗(s, a). (5.2)

The RL process entails two primary stages: 1) The agent tries to explore its
environment by taking random actions; 2) The agent exploits prior knowledge
by taking advantage of the exploration phase and follows an optimal policy
π∗ to achieve the best action by maximizing the cumulative future discounted
reward or return:

Rt = rt + γrt+1 + γ2rt+2 + . . .+ γT rt+T =
T∑

k=0

γkrt+k, (5.3)

where γ ∈ [0, 1] represents the discount factor that penalizes future rewards,
rt is the reward at time t, and T represents the end time of the episode.

5.2.2 Deep deterministic policy gradient

In general, RL algorithms can be categorized into two main classes based on
whether the agent learns a model of the environment: model-free RL and
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model-based RL. In model-based RL, the agent utilizes a model of the en-
vironment to make decisions, which can be either learned from data (e.g.,
Model-Based Value Expansion (MBVE) [203]) or a given model (e.g., Alp-
haZero [204]). Alternatively, model-free RL exclusively relies on trial-and-
error learning, eschewing explicit modeling of the environment, and can also
be regarded as deep reinforcement learning (DRL). Within the realm of model-
free RL, we can further classify techniques into two main categories: (i) Q-
learning, characterized by discrete algorithms exemplified by Deep Q-Networks
(DQN) [205]; and (ii) policy optimization, comprising continuous algorithms.
This category includes the stochastic policy approach (e.g., Asynchronous Ad-
vantage Actor-Critic (A2C/A3C) [206]) as well as the deterministic technique
(e.g., Deep Deterministic Policy Gradient (DDPG) [199]).

As to CAV driving, action spaces manifest as continuous variables. For
instance, steering angles can range from -90° to 90°, while acceleration spans
from zero to a certain high value. Traditional value-based methods strug-
gle with such continuous action spaces, often resulting in poor performance.
Consequently, our project employs policy-based methods to navigate these
challenges. Simultaneously, random exploration poses significant risks in au-
tonomous driving, potentially leading to unforeseen outcomes and terrible con-
sequences. To mitigate this, we’ve used the DDPG algorithm in our research.
DDPG offers a deterministic approach to action selection and stochasticity for
a more reliable decision-making process. DDPG stands out by combining the
strengths of deterministic policy gradient algorithms, actor-critics, and deep
Q-networks. This combination empowers our system to solve the complexities
of CAV driving with enhanced stability and performance.

In this research, we employ DDPG which combines actor-critics and DQN
based on the Deterministic Policy Gradient (DPG) algorithm. As to DPG, a
stochastic policy can be defined as:

πθ = P [a|s; θ]. (5.4)
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Then the corresponding gradient is:

∇θJ (πθ) = Es∼pπ ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)] . (5.5)

To explore the environment effectively, the DPG algorithm employs off-
policy learning, drawing inspiration from actor-critic algorithms. In this setup,
DPG consists of two key components: an actor, responsible for learning the
policy, and a critic, tasked with estimating the Q-value function. The actor
generates actions based on the current state of the environment, while the critic
evaluates these actions, providing feedback for improvement. Assuming the
function parameters for the critic and actor are denoted by µ and θ respectively,
the gradient for the deterministic policy is then formulated as follows:

∇θJ (µθ) = Es∼pµ [∇θµθ(s)∇aQ
µ(s, a) | a = µθ(s)] . (5.6)

For exploration of stochastic policy β and off-deterministic policy µθ(s),
we can derive the off-policy policy gradient:

∇θJβ (µθ) = Es∼pβ [∇θµθ(s)∇aQ
µ(s, a) | a = µθ(s)] . (5.7)

The DDPG algorithm closely resembles the DPG algorithm, with one no-
table distinction: it utilizes DQN function approximators for both the actor
and critic. For the actor and critic networks, the parameters w and θ are
updated respectively according to:

θ′ = τθ + (1− τ)θ′, (5.8)

w′ = τw + (1− τ)w′, (5.9)

where τ is the target update rate. This allows for effective learning in large
state and action spaces in an online manner. The DDPG algorithm incorpo-
rates the use of target networks, whereby separate copies of both the actor
and critic networks are created. These target networks serve the purpose of
providing target values during training. The weights of these target networks
are updated at fixed intervals.
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5.2.3 Proposed architecture

This study addresses the challenge of efficiently, safely, and energy-effectively
controlling CAVs as they navigate through a signal-free intersection scenario.
We consider various road participants, including CAVs, HDVs, and pedestri-
ans, in a mixed-traffic condition. Real-world driving is a complex task that
contains multiple modules such as sensing and control. Here, as we focus on
examining the potential of RL-based trajectory control for CAVs in mixed
traffic environments, we simplify the problem to only control the acceleration
of CAVs and assume that the CAVs have perfect sensing and communication
capabilities. The whole proposed architecture is illustrated in Fig. 5.1.

Action

Command

DRL Agent

CAV

HDV

Ped

V2X

State variables:
· Current speed
· Distance to the leading vehicle
· Distance to the intersection
  ...
· PET to the pedestrian

Sensing

Figure 5.1: The illustration of the proposed model for the CAV control.

Following the default setting in the SUMO environment, the action space
at each step for each CAV is in the range of [−4.5, 2.6] m/s2 for acceleration.
Other details of the RL-based CAV trajectory control are elaborated as follows.

State variables:

We assume each CAV can observe the state variables listed in Table 5.1 for
making actions. All state variables with float values are normalized to a com-
parable scale before being fed into the neural network, while one-hot encoding
is used as binary variables. The state variables are fed into the actor-network
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to generate the acceleration action for the CAV.
In contrast to conventional car-following models that only focus on the

leading vehicles, we use a richer set of state variables in our RL-based CAV
trajectory control. For instance, we use the distance to both the leading vehi-
cle and the following vehicle; this enables the algorithm to stabilize the traffic
flow and reduce stop-and-go waves. Moreover, we consider the distance to
the intersection and information regarding whether vehicle conflicts exist at
the junction, allowing the CAV to adjust its speed in advance to avoid po-
tential conflicts. The distance to the nearest pedestrian with conflict and the
expected Pedestrian Encounter Time (PET)[207] are included to take preemp-
tive actions to enhance pedestrian safety, where PET is defined as the time
interval between the moment when a road user (e.g., a pedestrian) leaves the
area of conflict and the moment when another road user (e.g., a vehicle) enters
that same space. These state variables are designed to provide comprehensive
information to the CAV, enabling it to make informed decisions in various
traffic scenarios.

Reward function:

As we aim to enhance traffic efficiency, safety, and energy efficiency, we design
a reward function that considers these objectives. The reward function is
formulated as follows:

R =
∑

i,t

(
wv ∗ vi,t − wfuel × fi,t − wsafe × Sv

i,t − wsafe × Sp
i,t

)
, (5.10)

where vi,t is the velocity (m/s) of vehicle i at the t-th simulation step, fi,t
is the fuel consumption (mg) of vehicle i at the t-th simulation step, Sv is a
safety penalty factor to avoid vehicle-vehicle collisions, Sp is a safety penalty
factor to avoid vehicle-pedestrian collisions. wv, wfuel, and wsafe are the weights
for velocity, fuel consumption, and safety, respectively. The reward function
encourages CAVs to maintain high speeds, reduce fuel consumption, and avoid
conflicts with other vehicles and pedestrians. The weights are adjusted to
balance the trade-offs between these objectives, as well as to normalize units
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Table 5.1: State variables for the RL-based CAV trajectory control.
Description Type
Cumulative delay Float
Current acceleration Float
Current speed Float
Distance to the leading vehicle Float
Distance to the following vehicle Float
The distance to the intersection Float
The direction of the vehicle One-hot encoding to differentiate

going straight, turning left, or turn-
ing right.

The location of the vehicle One-hot encoding to differentiate
the incoming approach, the junc-
tion, and the outgoing approach.

Whether a vehicle conflict at the junc-
tion will exist if the current speed is
maintained

Bool

The distance to the nearest pedestrian
with conflict

Float

The expected PET to the nearest
pedestrian with conflict

Float

into a similar magnitude.
We use the Time-To-Collision (TTC) [207] as a surrogate measure to de-

sign the vehicle-vehicle safety penalty factor. TTC represents the shortest
estimated time until potential collision is observed during a conflict between
two vehicles. According to the literature [208]–[210], we consider 1.5 s and
3 s as the critical and cautionary TTC thresholds, respectively. The vehicle-
vehicle safety penalty factor Sv is a piecewise function that calculates the
penalty based on the TTC value:

Sv1 =

⎧
⎪⎪⎨

⎪⎪⎩

1000 if TTC ≤ 0.2
100 if 0 < TTC ≤ 1.5

10× 3−TTC
1.5 if 1.5 < TTC ≤ 3

0 if TTC > 3

(5.11)

Sv2 =

{
100 if GAP ≤ 2.5
0 if GAP > 2.5

(5.12)

Sv = max(Sv1, Sv2) (5.13)

where GAP is the bumper-to-bumper distance to the front vehicle.
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The calculation of vehicle-pedestrian safety penalty factor is similar to the
vehicle-vehicle safety penalty factor. The pedestrian safety penalty factor Sp

is a piecewise function that calculates the penalty based on the PET value:

Sp1 =

⎧
⎪⎪⎨

⎪⎪⎩

1000 if PET ≤ 0.5
100 if PET ≤ 1.5

10× 3−PET
1.5 if 1.5 < PET ≤ 3

0 if PET > 3

(5.14)

Sp2 =

{
100 if Distance ≤ 1.5
0 if Distance > 1.5

(5.15)

Sp = max(Sp1, Sp2) (5.16)

where Distance is the distance from the vehicle’s bumper to the pedestrian.
Note that it is possible to include other factors, such as the comfort of

the passengers, the smoothness of the acceleration, and the jerk of the vehicle,
into the reward function. However, we focus on the traffic efficiency, safety,
and energy efficiency, thus other factors are preserved for other more specific
research.

5.3 Experimental Setup

We set up an intersection scenario in the SUMO simulation environment to
evaluate the RL-based CAV trajectory control algorithm. The intersection
consists of four approaches: northbound, southbound, eastbound, and west-
bound. Our simulation environment includes 200 meters upstream from the
intersection. Each approach has an incoming lane and an outgoing two lanes,
and the speed limit is set to 50 km/h.

We set the following demand as a base experimental setup: we set the same
vehicle demand of 324 vehicles per hour (vph) for all approaches, with a total
of 1296 vph at the intersection. The vehicles arrive following a Poisson dis-
tribution; the proportion of left-turn, straight, and right-turn vehicles is 2:5:2.
In addition, this research assumes that all vehicles are standard passenger
cars, and thus does not account for the potential variation in NOx emissions
that could arise from different vehicle types, or fleet management practices.
There are pedestrian crossings at approaching lanes of the intersection, and
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the pedestrian demand is set to 36 pedestrians per hour for each of the four
crossings.

The control group (CAV penetration rate of 0%) consists of only HDVs; the
intersection runs in a first come, first served (FCFS) manner for the control
group. While the experimental group includes both CAVs and HDVs, we set
the CAV penetration rate from 10%, 25%, 50%, 75%, and 100% to evaluate the
performance of the RL-based CAV trajectory control algorithm under different
CAV penetration rates.

We set wv = 100, wfuel = 20, and wsafe = 1 to balance the trade-offs between
velocity, fuel consumption, and safety. The learning rate for the actor-network
is set to 0.0001, and the learning rate for the critic network is set to 0.001.
The model is trained by the Adam [211] optimizer for 500 episodes with the
first 20 episodes as a warm-up using the default SUMO control to initialize
the replay buffer. Each episode is a simulation run of 3600 seconds with a
random seed and a random CAV penetration rate from 10%, 25%, 50%, 75%,
and 100%. This is because we aim for the proposed RL framework to result in
a general control model. After training, a single-actor model is applied to all
CAVs regardless of the CAV penetration rate. The actor and the critic models
are neural networks consisting of two fully connected layers with 32 units and
ReLU activation functions. The output of the actor model is normalized into
[-4.5, 2.6] m/s2 to represent the acceleration action, and an adjustment step is
taken to ensure vehicle speeds are non-negative. The target update rate τ is
set to 0.005, the discount factor γ is set to 0.99, and the exploration noise is
0.1.

5.4 Results and Analyses

In this section, we performed 10 simulations with different initial random
seeds for each experimental setting, each simulation lasted 3600 seconds, and
we compared the final results by the mean and standard deviation of the 10
simulations.
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5.4.1 Travel performance

Table 5.2 presents a comprehensive analysis of various traffic performance met-
rics as influenced by different rates of CAV penetration, ranging from 0% to
100%. The table lists the mean values and standard deviations for several
performance indicators: delay per vehicle (in seconds), number of stops per
vehicle, fuel consumption (in kilograms), carbon dioxide emissions (CO2 in
kilograms), and nitrogen oxides emissions (NOx in grams).

There is a clear trend of decreasing delay times as CAV penetration in-
creases. At 0% CAV penetration rate, the average delay is 22.73 seconds per
vehicle, which significantly drops to 12.34 seconds per vehicle at 100% penetra-
tion rate. This suggests that CAVs can effectively reduce the traffic congestion
and decrease the travel time.

Similarly, the number of stops per vehicle decreases as CAV penetration
increases. At 0% CAV penetration, the average number of stops is 1.53 per
vehicle, which decreases to 1.12 stops per vehicle at 100% penetration. This
indicates that CAVs can optimize traffic flow and reduce the frequency of stops,
contributing to smoother traffic operations.

Fuel consumption and emissions also exhibit a decreasing trend with in-
creasing CAV penetration rates. At 0% CAV penetration, the average fuel
consumption is 63.34 kg, which decreases to 59.11 kg at 100% penetration.
Similarly, CO2 emissions decreased from 199.46 kg to 185.33 kg, and NOx

emissions decreased from 82.57 g to 73.83 g, which demonstrates the potential
environmental benefits of fully implementing CAV technologies, contributing
to cleaner air by reducing vehicle emissions. These results suggest that CAV
controlling can enhance energy efficiency and reduce environmental impacts.

Moreover, we find that the benefits of using CAVs increase as the CAV
penetration rate increases. For example, Table 5.2 shows that there are no sig-
nificant differences between the control group (0% CAV penetration rate) and
the 10% CAV penetration rate group in terms of delay, stops, fuel consump-
tion, CO2 emissions, and NOx emissions. However, the benefits of using CAVs
become more apparent as the CAV penetration rate increases. Overall, the
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data from Table 5.2 strongly suggests that increased CAV penetration corre-
lates with improvements in several key traffic performance metrics, including
reduced delays, fewer stops, lower fuel consumption, and decreased emissions.

Table 5.2: Performance (mean(std)) under different CAV penetration rates.
CAV Rate Delay (s/veh) Stops/veh Fuel (kg) CO2 (kg) NOx (g)

0% 22.73 (0.9) 1.53 (0.04) 63.34 (1.2) 199.46 (4.7) 82.57 (1.9)
10% 22.67 (1.0) 1.54 (0.04) 63.52 (1.3) 199.16 (5.0) 82.42 (2.2)
25% 20.23 (0.9) 1.41 (0.03) 62.57 (1.2) 196.18 (4.7) 80.67 (2.0)
50% 17.04 (1.0) 1.37 (0.04) 60.57 (1.3) 189.89 (4.8) 77.22 (2.1)
75% 14.51 (0.9) 1.25 (0.03) 60.36 (1.3) 189.23 (4.5) 76.19 (2.0)
100% 12.34 (0.8) 1.12 (0.03) 59.11 (1.1) 185.33 (4.4) 73.83 (1.9)

Fig. 5.2 comprises two heat maps, representing the velocity profiles of ve-
hicles at an intersection under two different CAV penetration rates: 0% and
100% CAV penetration rates, respectively. Each map is plotted on a Cartesian
coordinate system where the x-axis and y-axis represent the spatial dimensions
of the intersection in meters, and the color scale means vehicle speed in meters
per second.

Fig. 5.2 (a) shows the velocity distribution at 0% CAV penetration rate.
We can see that the incoming lanes have a longer queue of vehicles compared
to the outgoing lanes, which is typical of traditional traffic patterns. Fig. 5.2
(b) illustrates the velocity distribution at 100% CAV penetration rate. In con-
trast to Fig. 5.2 (a), the heat map exhibits a more uniform color distribution,
particularly around the intersection zone. This indicates a more consistent
vehicle speed, suggesting that CAVs maintain steadier speeds even as they
navigate through the intersection.

By comparing Fig. 5.2 (a) with Fig. 5.2 (b), we can observe that the queue
length is significantly reduced at 100% CAV penetration rate. This suggests
that CAVs can effectively optimize traffic flow and reduce congestion at in-
tersections, leading to smoother traffic operations and improved travel times.
Essentially, the improvement of CAV stems from the elimination of human
factors, such as variance in driving behaviors and longer reaction times, which
can contribute to traffic congestion and delays.
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Overall, the figure illustrates how vehicle velocity distribution at an inter-
section can be significantly influenced by CAV integration levels, with full CAV
penetration facilitating a smoother and more consistent traffic flow. This has
broad implications for improving urban transport efficiency, enhancing safety,
and reducing environmental impacts.

Figure 5.2: The vehicle velocity distribution at the intersection.

5.4.2 Safety evaluation

In our study, we employ surrogate safety measures to comprehensively quan-
tify safety outcomes for both vehicles and pedestrians within the traffic system.
For vehicles, we utilize TTC as a primary metric to assess safety performance
in different scenarios, including rear-end conflicts and crossing conflicts at in-
tersections. This metric is particularly useful in evaluating how effectively
CAV technologies can mitigate the risk of collisions under various traffic con-
ditions. For pedestrian safety, we use the PET to evaluate the risk and severity
of crossing conflicts. A lower PET value indicates a higher potential risk of
conflict, making it a critical indicator of the effectiveness of pedestrian safety
measures implemented with CAV technologies.

The provided Fig. 5.3 consists of two charts, labeled (a) and (b), which
illustrate the number of vehicle-vehicle conflicts under varying CAV penetra-
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tion rates. The x-axis of the figure displays CAV penetration rates from 0% to
100% in increments of 10%, while the y-axis indicates the number of conflicts.
Each figure is further distinguished by different TTC thresholds: less than 1.5
seconds for Fig. 5.3 (a) and less than 3.0 seconds for chart Fig. 5.3 (b).

Figure 5.3: The number of vehicle-vehicle conflicts under different CAV pene-
tration rates.

Fig. 5.3 (a) reveals that there is a decreasing trend in the number of conflicts
with increasing CAV penetration rates, indicating that using CAV and the RL-
based control significantly reduced the vehicle-vehicle conflicts when using the
TTC threshold of 1.5 seconds. However, Fig. 5.3 (b) shows the conflict numbers
consistently hovering between 1900 and 2000 when using the TTC threshold
of 3 seconds, suggesting that the CAV penetration rate does not significantly
affect the number of conflicts under this threshold. This indicates that CAVs
can effectively reduce vehicle-vehicle conflicts in critical situations where the
TTC threshold is less than 1.5 seconds, while the benefits are less pronounced
when the threshold is set to 3 seconds.

The provided Fig. 5.4 (a) and (b) detail the number of vehicle-pedestrian
conflicts at various CAV penetration rates, categorized by different PET thresh-
olds. In Fig. 5.4 (a), which considers conflicts with a PET of less than or equal
to 1.5 seconds, there is a visible trend of decreasing conflicts as CAV penetra-
tion increases, starting from approximately 115 conflicts at 0% penetration
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and gradually reducing to around 85 conflicts at 100% penetration. This sug-
gests that higher CAV penetration rates may enhance pedestrian safety at this
critical threshold.

Fig. 5.4 (b), observing the number of conflicts where PET is less than or
equal to 3.0 seconds, exhibits a more constant pattern across different penetra-
tion rates. The conflicts range narrowly from about 300 at 0% CAV penetra-
tion rate to approximately 270 at 100% penetration rate. The slight decline in
conflicts as CAV penetration increases, although modest, supports the notion
that CAV integration could marginally improve pedestrian safety even under
less stringent conditions.

Overall, Fig. 5.4 illustrates a downward trend in vehicle-pedestrian conflicts
as CAV penetration rates increase, indicating the potential safety benefits of
autonomous vehicles in urban traffic environments. The findings from these
observations can contribute to discussions on transportation safety policy and
the role of autonomous technology in enhancing benefits for pedestrians.

Figure 5.4: The number of vehicle-pedestrian conflicts under different CAV
penetration rates.

5.4.3 Sensitivity analysis

To further investigate the impact of CAV at different traffic demand levels, we
conducted a sensitivity analysis by varying the vehicle demand ratio from 0.25
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to 1.5 times the base demand. The CAV penetration rate is set to 0%, 50%
and 100% for this sensitivity analysis. The results regarding the intersection
efficiency and surrogate safety measures are shown in Fig. 5.5 and Fig. 5.6,
respectively.

From Fig. 5.5 (a), we can see that the average vehicle delay increases as
the vehicle demand ratio increases. However, CAVs can effectively mitigate
the delays, as we can see that the delay is lower when there is a higher CAV
penetration rate. For Fig. 5.6 (b), we can find that the control group (0% CAV
penetration rate) reaches the maximum throughput at the vehicle demand ra-
tio of 1.25 and 1.5, while the number of vehicles per hour continues to increase
at these demand ratios with a CAV penetration rate of 50% and 100%. This
indicates that CAVs can optimize traffic flow and reduce congestion, leading
to reduced delays for vehicles.

Figure 5.5: Intersection efficiencies regarding different vehicle demand ratios.

Fig. 5.6 (a) and (b) illustrate the surrogate safety measures regarding dif-
ferent vehicle demand ratios, where we use 1.5 seconds as the threshold for
both the vehicle-vehicle TTC and vehicle-pedestrian PET conflicts. As shown
in Fig. 5.6 (a), the number of vehicle-vehicle conflicts increases with the vehicle
demand ratio. The conflicts remain comparable across various CAV penetra-
tion rates until the demand ratio reaches 1.25. Beyond this point, at a demand
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ratio of 1.5, it is evident that CAVs significantly reduce vehicle-vehicle conflicts.
This is because the 1.5 demand ratio exceeds the maximum throughput of the
control group, exacerbating the stop-and-go waves and increasing the number
of conflicts, whereas the use of CAVs can eliminate the start-up delay, and
thus greatly mitigate the conflicts. A similar trend is observed for vehicle-
pedestrian conflicts in Fig. 5.6 (b), where CAV usage significantly decreases
conflicts, particularly at a demand ratio of 1.5.

Figure 5.6: Surrogate safety measures regarding different vehicle demand ra-
tios.

Overall, we find through the sensitivity analysis that, although the RL-
based CAV trajectory control brings some benefits in the low-demand scenario,
the benefits of using CAVs become more apparent as the vehicle demand ratio
increases, particularly in the case when the traditional intersection control has
reached its maximum throughput.

5.5 Conclusion and Discussions

This study explores how CAVs can enhance traffic efficiency, reduce emissions,
and improve safety using an RL-based trajectory control algorithm for CAVs
at mixed-traffic intersections. Utilizing the deep deterministic policy gradient
algorithm, the CAVs’ acceleration is optimized to maximize a reward function
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that balances safety, energy efficiency, and traffic efficiency. Empirical valida-
tion through SUMO simulations under various CAV penetration rates demon-
strates that our CAV control approach notably enhances traffic efficiency and
reduces fuel consumption while significantly mitigating both vehicle-vehicle
and vehicle-pedestrian conflicts.

While our study provides valuable insights into the potential benefits of
CAVs in mixed-traffic environments, several limitations and future research
directions should be considered. First, our study assumes perfect sensing and
communication capabilities for CAVs, which may not reflect real-world condi-
tions. Future research should consider the impact of sensor noise, communi-
cation delays, and other uncertainties on CAV control performance. Second,
our study focuses on a single unsignalized intersection scenario, and future
research should explore the scalability and generalizability of our CAV con-
trol approach to more complex urban traffic networks. Third, our study does
not consider the impact of human-driven vehicles on CAV performance, and
future research should investigate the interactions between CAVs and human-
driven vehicles in mixed-traffic environments. Moreover, our experiment is
conducted in a simulated environment, meaning the learning outcomes are
based on simulation data, and real-world performance may differ. Therefore,
further validation through field tests is necessary to confirm the effectiveness
of our CAV control approach in real-world traffic scenarios. Additionally, emis-
sions are sensitive to factors such as vehicle types, fleet composition, and fuel
sources, which warrant further real-world testing and analysis to assess the
environmental impacts of CAVs accurately.
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Chapter 6

Final Conclusion and Future
Work

6.1 Summary of Results

With the development of vehicle technology and communication technology,
CAV has huge potential to transform the transportation system. However,
the deployment of a fully CAV environment faces many challenges, and so it is
important to first address the era of mixed autonomy of different road partic-
ipants like CAVs, HDVs, and pedestrians. There are also urgent requirements
to solve traffic-related problems like safety, congestion, energy consumption
and environment. This dissertation is devoted to solving traffic management
problems in the mixed autonomy environment, including sensing from sparse
CAV data, traffic signal control, and trajectory planning for CAVs to provide
a safe, efficient and sustainable transportation system.

Chapter 3 firstly attempts to solve the problem of sensing and accurately
predicting the full traffic state from sparse CV data in mixed traffic. A
novel GP method is introduced to address this challenge. Employing a ker-
nel rotation re-parametrization technique, a conventional isotropic GP kernel
transforms into an anisotropic variant, enhancing the modeling of traffic wave
propagation within flow data. This innovative approach enables the effective
estimation of traffic states using sparse sensing data acquired from fixed sen-
sors, probe vehicles, and CVs, while also offering robust statistical uncertainty
quantification, thereby improving reliability. Furthermore, the extension to a
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multi-output GP facilitates simultaneous estimation of traffic states across mul-
tiple lanes. Experimental results demonstrate its superiority over benchmark
methods in terms of accuracy, efficiency, and robustness. Notably applicable
to various segments of freeways, highways, or arterials, this methodology sig-
nificantly contributes to the realm of mixed-traffic systems, like HDVs mixed
with CVs. The contributions of this study bear substantial implications for
real-time and cost-efficient traffic monitoring, particularly within the context
of near-term mixed-traffic scenarios.

Chapter 4 then focuses on a traffic signal control problem in the mixed
traffic environment. It especially pays attention to a prevalent real-world sce-
nario: an arterial road with a midblock crossing between two intersections
with mixed traffic involving HDVs, CVs, and pedestrians. In such settings,
the conventional pushbutton control for midblock crossings often leads to sub-
stantial traffic disruptions due to frequent pedestrian crossing requests. The
study introduces two adaptive midblock crossing control methods (AMCC-
band and AMCC-vehicle). The AMCC-band method utilizes data from adja-
cent intersections, including SPaT, while the AMCC-vehicle method leverages
real-time vehicle location information, particularly from CVs. These methods,
compared with baseline models, prioritize pedestrian safety while enhancing
signal coordination between midblock crossings and downstream intersections.
This optimization effectively reduces both vehicle and pedestrian delays. This
study contributes to adaptive and efficient traffic signal control in mixed traffic
and expands the application scope of traditional pushbutton control methods,
shedding light on the design of a more efficient mixed-traffic system that caters
to the diverse needs of vehicles and pedestrians.

Chapter 5 shifts the focus to addressing the trajectory planning challenge
for CAVs navigating signal-free intersections in a mix of HDVs, CAVs, and
pedestrians. The chapter presents a pioneering trajectory planning framework
that merges a deep reinforcement learning algorithm with a multi-agent con-
trol strategy. Leveraging the DDPG algorithm, the DRL method empowers
CAVs to learn optimal control policies within the complexities of mixed traffic
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scenarios. The acceleration of the CAV is optimized through the DDPG algo-
rithm to maximize a reward function that considers safety, energy efficiency,
and traffic efficiency. Through evaluation of simulated mixed traffic in SUMO,
the proposed framework showcases notable improvements in traffic efficiency,
reduction in vehicle emissions, and enhancement of traffic safety. This study
contributes significantly to the advancement of intelligent CAVs while offering
a promising efficient, safe, and sustainable solution to the trajectory planning
puzzle within mixed-traffic environments.

6.2 Limitations and Future Work

In addition to the specific limitations summarized in each chapter, there are
some general limitations and future directions for the dissertation. As to Chap-
ter 3 and Chapter 4, the assumed scenario of mixed traffic covers only CVs,
HDVs, and pedestrians. The controllability of AVs has not been utilized in the
two studies. Only the connectivity and controllability of CAVs in Chapter 5
have been utilized. However, to leverage the full potential of CAVs, the con-
trollability of AVs and the connectivity of CVs should be both considered and
used. Second, the methods proposed in Chapter 4 and Chapter 5 are tested
in simulation software due to the limitation of field test conditions and the
complexity of implementing experiments in reality. However, it is important
to implement it in the real world to validate the results and make a difference
in the transportation system. To pave the way for more robust future research
and innovations, specific directions for future work are proposed based on some
specific limitations:

Effective data collection and sensing are vital for the success of our GP-
based TSE methods. The quality and quantity of data directly impact how
well our methods perform. In our research, we examined three datasets to
test how well our methods could adapt to different situations. Looking ahead,
as the penetration rate of CVs increases, we need to explore more advanced
sensors and data collection techniques to gather richer datasets. For instance,
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we could incorporate trajectories obtained from video data to enhance the
accuracy and depth of our analysis.

To improve signal optimization, the adaptive midblock crossing control
methods are tailored for a specific scenario. To make them more widely appli-
cable, we should expand these methods to cover broader scenarios in the future.
As the mixed autonomy specifically covers HDVs, CVs, and pedestrians, gath-
ering input from pedestrians and drivers is essential when implementing a new
control method in future work. Additionally, it’s crucial to test these methods
in real-world settings to assess their effectiveness. While we conducted simu-
lations to validate our approach, conducting field studies is strongly advised
to gather real-world feedback and enhance the algorithm further.

For CAV trajectory planning, we tackled a complex scenario involving
CAVs, HDVs, and pedestrians—a scenario that has received limited attention
in research. Our proposed DRL-based model aims to enhance CAV navigation
through intersections, leading to improved traffic efficiency, reduced emissions,
and enhanced safety. However, we evaluated the proposed trajectory planning
framework solely in a simulated environment. Moving forward, it is impera-
tive to validate the framework’s performance in real-world scenarios. Despite
the scarcity of research in this area, expanding the framework to encompass
even more intricate scenarios is essential for comprehensive evaluation. In ad-
dition to exploring learning-based algorithms, considering alternative control
algorithms could provide additional ground-truth data for training purposes.

Finally, the dissertation has made significant contributions to the field
of mixed traffic management. The proposed methods have shown promising
results in enhancing safety, traffic efficiency, and sustainability. However, there
is still much work to be done to address the limitations and further improve
the proposed methods. By exploring new techniques and validating proposed
models in field tests, we can continue to advance the mixed-traffic systems,
even within a fully CAV environment. Meanwhile, it is necessary to consider
ongoing technology transformations like AI and human interactions, along with
ethical considerations, to ensure seamless adaptation to future transportation.
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