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ABSTRACT 

The advent of autonomous vehicles promises to address key challenges faced by the transportation and 

traffic safety sectors, particularly concerning the high incidence of traffic fatalities and injuries. The full-

scale deployment of autonomous vehicle fleets is contingent upon public acceptance, which is concerned 

about the available models' safety levels, evidenced by the multiple reported AV-related traffic incidents. 

Achieving the necessary safety standards for autonomous vehicles necessitates comprehensive and 

rigorous testing. Virtual simulations take precedence over road and track testing, as they expedite AV 

development by enabling safe, cost-effective, and large-scale testing.  

AVs face a big data problem stemming from the vast volume of collected sensory information data 

surpassing real time processing capabilities. This mismatch often leads to driving errors and traffic 

collisions. Although different models to quantify the complexity of the environment have been explored, 

they often lacked objectivity, ignored the physics of the simulated sensors, and failed to utilize robust 

LiDAR data. Hence, this study aims to develop a framework that can transform the complexity of the 

environment into easy-to-understand values while accounting for the drawbacks of the existing 

frameworks. 

This study conducted virtual simulations on 34 kilometers of LiDAR-based digital environments sourced 

from two-way-two-lane rural roads in Alberta, Canada. The complexity of the environment was assessed 

by calculating the required real time data rates essential for AVs to maintain their regular navigation 

functions. The data rate requirements encompass the sensor's specifications, the surrounding 

environment's dynamicity, and weather conditions in its calculations. Furthermore, this study focused on 

the static physical environment only, dividing the analyzed environments into RRFs and FE to isolate and 

study the impact of general road geometry features such as vertical curves, horizontal curves, and roadway 
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width on the complexity of the environment and quantify the extra computational burdens incurred from 

the analysis of the entire section to highlight the problem of WVC for AVs. 

This study employed two distinct approaches to demonstrate the versatility of the implemented 

framework and explore diverse perspectives on environment perception for AVs: the primary occupancy 

method and the secondary volumetric method, where the advantages and drawbacks of each method are 

highlighted. 

The study analyzed fluctuations in data rate requirements along the vehicle's trajectory by dividing the 

surveyed roadways into distinct frames and generating novel synthetic viewpoints to faithfully replicate 

real-world situations. This process was facilitated using the open-source Vista simulator. The analysis 

revealed that the environment could be deemed complex in two scenarios. Firstly, when data rate values 

spiked, it indicated a substantial volume of information that needed processing. Secondly, when data rates 

plummeted, it signified a significant loss of information, potentially jeopardizing the vehicle's operations. 

The analysis results indicated that the roadside features are anticipated to escalate environmental 

complexity by 140-400% based on density. Additionally, widening the roadway by adding an extra lane was 

observed to raise processing requirements by 12.3-16.5%. Concerning road alignment, crest vertical curves 

were found to decrease data rates by up to 4% due to occlusion challenges at these points, while sag 

curves increased requirements by 7% due to enhanced visibility. In horizontal curves, roadside occlusion 

contributed to a decrease in data rate requirements by up to 19%. As for the weather conditions, heavy 

rain increased the AV's processing demands by a significant 240% when compared to normal weather 

conditions. 

The developed framework and results, supported by statistical testing, can help AV developers make more 

informed decisions by understanding the impact of the different road elements. Moreover, government 
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agencies and IOOs can also exploit the findings of this study to accommodate AV requirements in the 

current human-tailored road designs and optimize future designs for AV deployment. 
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Part of the work presented in this thesis is being prepared for journal publication. 

• Abohassan, M., El-Basyouny, K. " Utilizing Lidar-Based Digitized Infrastructures to 

Estimate the Influence of the Static Road Features on the Performance of Autonomous 

Vehicles " 
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1 INTRODUCTION 

1.1 BACKGROUND 

Recent technological advancements have promised to revolutionize the world and accelerate the 

ongoing transition toward a more Artificial Intelligence (AI)-driven future. From a transportation 

and traffic safety standpoint, AI technology continues to evolve and become more intricate, leading 

to its successful integration into various transportation fields. That is why it is expected, in the 

coming years, to play a leading role in addressing some of the most pressing challenges in the 

transport sector, such as public health and safety concerns, the increase in travel demand, and 

environmental problems [1]. 

Traffic injuries have long been a significant public health issue, which has been the case 

ever since the advent of automobiles and the very first recorded traffic death in the late 19th century 

[2]. In 2018, the World Health Organization reported that 1.35 million people die on the road 

prematurely every year, which means that there are over 3,500 traffic-related deaths in the world 

daily [3], not to mention the tens of millions who suffer from debilitating injuries caused by road 

collisions. What is even more concerning about these figures is that the prime subjects for deaths 

from road traffic injuries are mainly people aged between 5 and 29, meaning that they are primarily 

children and economically productive young adults [3]. In the U.S., for example, the 2021 toll of 

vehicular accidents is a staggering $498 billion [4]. Furthermore, the government of Canada 

revealed that 1768 road fatalities occurred in the year 2021 [5]. 

Engineers have managed to attenuate the cost of traffic accidents by adopting a paradigm 

shift in how they view traffic collisions. This shift has changed the definition of collisions from 

random and inevitable to predictable and preventable. It has also shifted the responsibility of traffic 

safety from the transportation sector to become multidisciplinary, requiring different stakeholders' 

expertise. Accommodating human errors and providing road systems that are forgiving in nature 

was also a vital part of the paradigm shift and has helped to change many policies in multiple 

countries [6]. Despite the success achieved in decreasing the number of collisions through the 

paradigm shift in recent years, human driving errors remain a persistent problem that pushed 

researchers to look elsewhere for more innovative solutions that could provide safer road 

environments [7].  
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Numerous elements play a role in road accidents, as highlighted in [8]. Among these, 

vehicle malfunctions, environmental conditions, and human factors are the primary instigators. To 

further emphasize the harmful role of human driving errors on traffic safety, it has been well 

documented that human errors were the leading cause of traffic collisions, with an overwhelming 

94% of errors leading to collisions through actions like speeding, driving under the influence, and 

distracted driving [7]. The number of fatalities and injuries is staggering, reflecting the gravity of 

the situation and the necessity to find solutions. 

Autonomous Vehicles (AVs) offer a solution to dissociate humans from vehicles, thus 

eliminating human driving errors by operating independently without any human intervention [8] 

[9] [10]. Also, with the tremendous improvement in both research and industry that the AVs have 

witnessed in the past decade, they present themselves as a solid alternative that can potentially 

change the future of transportation. That is why this topic has captured the attention of experts 

from both the public and private sectors and infrastructure owners/operators (IOO) worldwide 

[11]. 

AVs have many advantages, particularly because they offer the promise to provide safer 

roads. A recent study has shown that with the elimination of human error, the current traffic 

collision figures would go down by 70% in 25 years [12]. The adoption of AVs will also contribute 

to increased road capacity, reduced parking costs, reduced energy consumption, reduced driver 

stress, and increased productivity [13]. Additionally, AVs would provide people with disabilities, 

like visual impairments, the opportunity to travel safely [14]. Though there might be potential 

drawbacks to the deployment of AVs like increased vehicle and infrastructure costs, reduced 

security and privacy, and concerns about system failures, which might be detrimental to the whole 

premise of AVs [13], researchers are closing these gaps and addressing the concerns with AVs at 

rapid speeds. Therefore, prominent automakers such as Ford and General Motors, leading IT 

companies like Apple and Google, and popular ride-hailing platforms such as Uber and DiDi have 

dedicated substantial resources to develop advanced autonomous vehicle (AV) models in order to 

secure a strong foothold in the market [6]. 

AVs commonly rely on answering three questions for their navigation operations: first, 

where is the vehicle located? Second, what objects surround the vehicle? And third, what is the 

safe action to take in its next move? [15]. AVs draw upon the capabilities of the equipped sensors 
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to answer these questions by continuously gathering information about the environment in a 

manner that is analogous to human drivers, then relaying it to the onboard computer, which 

processes the assimilated data and executes the required manoeuvres, including, steering, 

swerving, speeding and stopping [15]. Ergo, high-quality sensory information is the linchpin for 

robust and reliable AV operations. AVs usually carry multiple sensors for real time data acquisition 

and environment perception. These sensors typically include LiDAR, Radar, and cameras, among 

others. 

Light Detection and Ranging (LiDAR) is an advanced optical remote sensing technology 

that collects information about the surrounding environment. LiDAR uses laser scanners, sensors, 

Global Navigation Satellite System (GNSS) receivers, and Inertial Measurement Units (IMU) to 

collect their data. The basic working principle for LiDAR is the constant emission of laser beams 

from the laser scanners that are reflected off objects to measure their distance. Thousands of beams 

are emitted per second, resulting in millions of distance measurements, ultimately creating a 3D 

point cloud map of the surrounding environment [16]. LiDAR has been in high demand in recent 

years owing to its accurate and robust measurements and high scanning speed, enabling it to collect 

more than 200,000 points per second, depending on the unit model [17]. Hence, the revenues from 

LiDAR sales are anticipated to skyrocket, reaching figures close to $6910 million by 2025 [17]. 

Radio Detection and Ranging (Radar) relies on emitting electromagnetic waves with 

specific frequencies. The scattered waves are then collected to collect range information about the 

targets in range. The Doppler property of EM waves is exploited to determine the relative speed 

and position of the detected targets around the radar [18]. On the other hand, cameras are one of 

the most used and widely available technologies for perceiving surroundings. The basic principle 

of camera operations is detecting light from the surroundings. They provide AVs with high-

resolution coloured images [17]. 

Each of these sensors possesses strengths and weaknesses. For example, radar is unaffected 

by lighting conditions, whereas cameras are sensitive to external lighting conditions [19]. LiDAR 

and cameras are susceptible to bad weather, unlike radar, which is not [19]. Radar outputs are 

usually characterized by their low resolution [19]. LiDAR, on the other hand, is superior in range 

accuracy and angular resolutions [20]. Finally, LiDAR is the most expensive option, whereas 

cameras are the cheapest [19]. Sensor redundancy occurs when multiple sensors address a task. 
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Thus, state-of-the-art AV models maximize the robustness and reliability of their performance by 

sporting different sensors to complement each other and achieve high levels of sensor redundancy 

[21]. 

The onboard computer is the cornerstone of autonomous systems. It plays a pivotal role in 

their operations as it makes sense of the surroundings and executes the appropriate actions to 

maintain safe operations. Typically, the computer must perform four core, interconnected tasks to 

achieve safe autonomous driving. These tasks can be summarized as follows: environment 

perception, localization and mapping, decision-making and planning, and vehicle control [22]. 

The initial task, known as environment perception, involves collecting information about 

the surroundings and extracting the relevant features. These features might be static, like road 

obstacles and signs, or they can be dynamic, like the movements of the other road users. This task 

is done through the assimilation and fusion of data provided by the equipped sensors of the AVs 

[23]. For highway environments, AVs generally prioritize detecting obstacles within the road itself 

rather than all the potential obstacles in the entire scene [24]. 

This task entails two primary assignments. First, the object detection assignment is 

responsible for accurately detecting the different road objects, even under challenging road and 

weather conditions [25]. The second assignment is related to lane detection, an essential feature in 

all ADAS since it allows AVs to stay within the lane boundaries and avoid different obstacles [26]. 

Currently, deep-learning techniques have dominated this task as much research has been directed 

toward developing algorithms that have faster and more accurate results [27] [28] [29] [30]. 

Localization and mapping are the second core tasks in autonomous driving. Localization 

involves finding the accurate location of the ego vehicle relative to a map [31]. As for the mapping, 

the AV builds multilayer HD maps for path planning [32]. The onboard computer ensures effective 

navigation and manoeuvring by maintaining an accurate position on the road. GPS-IMU-based 

localization methods are the most common. However, the accuracy of this system does not fulfill 

complex environmental requirements [33]. More recently, prebuilt HD maps have been proven to 

be more practical and more accurate than traditional maps, offering more functionalities to the AV 

by supporting its perception and localization modules through the extraction of the critical static 

properties such as roads, traffic lights, road markings, buildings and trees [34].  
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Furthermore, SLAM (simultaneous localization and mapping) has received much attention 

recently, especially in AVs [35]. SLAM attempts to construct maps and localize the ego vehicle 

simultaneously [36]. This algorithm can be LiDAR-based, like LOAM [37], which can be executed 

in real time, or IMLS-SLAM, which prioritizes the reduction of the accumulated drift [38]. 

Otherwise, SLAM can be camera-based by implementing frame-to-frame matching [39], achieved 

through feature-based matching [40] or direct matching [41]. 

The third task involves decision-making and planning. To optimize the decision-making 

task, the AV is expected to predict the driving patterns of the surrounding road users and assess 

the corresponding risks [42]. The HMM model (hidden Markov Model) is commonly used by 

autonomous systems in anticipating a target vehicle’s actions on the road [43]. Planning an 

expedient route from an origin to a destination on the map is done through local planners seeking 

to balance the sampling size with the computation efficiency to refine the shortest and safest path 

to the ego vehicle [44].  

Upon collecting all the necessary information and planning the vehicle’s route, the final 

task is vehicle control. This task is done through lateral and longitudinal controllers expected to 

handle different road surfaces. Control laws dictate the output commands given to the AV based 

on the state of the vehicle and its trajectory. Various models of control laws attempt to optimize 

different parameters, such as fuzzy control, PID control, Stanley control, and model predictive 

control (MPC) [45] [46] [47]. 

AVs, in terms of operation, can be classified into two systems: modular-based and end-to-

end-based [48]. The modular-based system treats each module individually. As such, localization, 

perception, control modules, etc., are decoupled, which facilitates bringing people from different 

backgrounds together [49]. Additionally, this model is more interpretable as each module is well-

defined. Nevertheless, they are susceptible to wasting computations on unnecessary tasks like 

identifying objects unrelated to driving tasks and error propagation [49]. 

On the other hand, the end-to-end-based system highly relies on artificial intelligence, 

where machine learning is used to process the sensor data and then generate the necessary 

commands. End-to-end systems offer more efficient computations as they are self-optimizing, a 

sought-after trait for autonomous systems. However, the black-box nature of deep learning renders 

their results unverifiable [49]. 
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The perception of the environmental task is of utmost importance in autonomous driving. 

It serves as a fundamental step because the onboard computer must comprehensively understand 

the surroundings through environment perception to achieve optimal results in subsequent tasks, 

such as decision-making and planning. AVs can make informed decisions and plan actions by 

accurately perceiving the environment, leading to safe and efficient autonomous driving [22]. The 

main goal of this task is to extract the relevant features necessary for navigation operations due to 

the big data problem caused by the vast amount of data fed by the different sensors, increasing the 

computational complexity in processing this volume of data [50] [51] [52] [39]. This task is 

typically done by pruning the irrelevant features of the road through preprocessing techniques as 

part of intelligent data prioritization mechanisms [51]. The pertinent features mainly comprise road 

surfaces like lanes and boundaries, traffic signs and signals, vehicles, and pedestrians [22] [23].  

According to the recently published ITF report, experts agreed that having a network that 

only serves AVs would solve various problems by providing highly controlled environments. 

However, this option was deemed infeasible due to the lack of available space, particularly within 

urban areas, to build new networks solely dedicated to AVs [53]. Furthermore, it is believed that 

having parallel networks for AVs would disincentivize their use of shared road networks, 

precluding the possibility of achieving many benefits promised by AVs [53]. Accordingly, AVs 

will almost certainly use the available road networks and will have to circumvent their limitations 

[53]. 

What’s more, AVs’ operations, at present, have been limited to testing and piloting 

initiatives; their activities have been confined to specific regions where road conditions are known 

and the environments are reasonably predictable [53]. Developers have embraced this approach to 

ensure repetitive experiences lead to continual enhancements. This iterative process holds the 

potential to fully capitalize on the advantages of automation [53]. Nevertheless, this approach has 

also limited the areas where AVs can be confidently deployed. The current data acquired from 

laboratory-based approaches and typical test tracks are insufficient to assess AVs' safety. Some 

estimates believe that, for AVs to achieve a 95% confidence that their failure rates are better than 

human driver failures, they must drive over 275 million miles [54]. The most optimistic projections 

believe this feat can be achieved in 84 years [55]. 
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1.2 MOTIVATION 

While the development of level 5 full automation has not progressed at the anticipated pace [56], 

there has been significant progress in achieving advanced technical improvement. Thus, the vision 

of attaining level 4 automation on the roads became a reality, although the journey proved arduous. 

On the other hand, the dreams of deploying level 5 autonomous vehicles, for now, still seem to be 

far-fetched [57]. 

Nevertheless, significant setbacks have also been encountered along the way. System 

failures for levels four and five driving have been reported to cause collisions on multiple 

occasions. One occasion involved an ADS in a crash due to rain during the Hyundai competition 

[58]. Another collision occurred when Google’s ADS failed to estimate the speed of a passing bus 

when performing a lane change [59]. A failure of onboard sensors was reported to be a key cause 

of a collision for another automated vehicle [60]. In 2018, a fatal collision was reported in Tempe, 

Arizona, between a human and an automated vehicle run by Uber [61]. And a Tesla autopilot failed 

to recognize a truck, killing the truck driver in the collision [62]. In California, where AV testing 

is permitted on public roads, there have been 303 reported AV collisions between 2015 and April 

2021 for different AV models operating in autonomous mode or right after disengaging from 

conventional mode [63]. Therefore, it is paramount to understand how AVs perceive their 

surroundings and identify their targets to execute their manoeuvres safely since the public 

acceptance of AVs is intricately linked to their ability to prevent traffic collisions [64].  

One category of collisions that demands the attention of AV developers is Wildlife-Vehicle 

Collisions (WVCs). These collisions have far-reaching consequences as they seriously threaten 

the safety of drivers and animals involved. Every year, disconcerting statistics emerge from the 

US concerning the repercussions of WVCs. These incidents contribute to a troubling toll, with 

over 59,000 injuries and more than 440 human fatalities attributed to this type of collision [65]. 

The average cost of such collisions was reported as $885 per collision [66], and the associated 

costs amounted to around $6 to 12 billion [67]. In the year 2018, the state of California documented 

a staggering material damage cost of $76 million resulting from significant WVCs [68]. Similarly, 

in Sweden, the annual expenses attributed to WVCs amounted to a substantial estimate of around 

$406 million [69]. In Alberta, it was reported that WVCs contributed to 60% of all reported vehicle 

accidents transpiring on its rural highways [70]. 
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Predominantly, the object detection algorithms integrated into AVs prioritize the road 

lanes, road signs and signals, vehicles, pedestrians, and cyclists [71] [72]. However, a notable 

imbalance exists in the attention given to developing methodologies for animal detection [73] [74]. 

AVs deployed in busy urban areas will experience complex scenarios that require advanced 

decision-making, such as crossing crowded intersections [75]. Likewise, AVs are expected to 

encounter complicated situations to handle WVC in rural areas safely [78]. 

Animal detection necessitates high detection precision and rapid response time to avert 

potential collisions with wildlife effectively. First, The AV has to discern the presence of an animal 

near the driving lanes. Subsequently, vigilant monitoring of the detected animal's movements 

ensues, and predictive analysis is applied to anticipate its trajectory, thus gauging the risk of 

collision. This predictive analysis will ultimately allow the ego vehicle to make informed decisions 

that prevent impending collisions [76]. Hence, in environments with roadside vegetation, the AV 

has to be able to spot animals lurking in the bushes before they enter the road by processing this 

region of the road. 

For domains where safety is of the utmost importance, such as AVs, simulation-based 

approaches are indispensable for developers and researchers [77]. Such approaches can offer a safe 

context to conduct necessary large-scale testing and validations through the digitization of the 

environment [78]. In addition, since physical testing for AVs is generally banned inside most cities, 

the only real-life substitute would be time-consuming and expensive field tests, which are also 

hard to reproduce and often seen as inconvenient [72]. Simulations are often considered the better 

approach to off-road and inaccessible environment tests [79].  

Moreover, virtual simulations are both labour-saving and cost-effective [80]. The high-

fidelity 3D point cloud data from LiDAR is particularly effective due to its millimeter-level 

accuracy [11]. This LiDAR data can be used to create Digital Twins [81] of the physical 

environment and opens the door for risk-free simulation environments, especially since the sought-

after safety levels cannot be achieved until billions of kilometres of testing by the AVs under 

different weather conditions [82]. An analysis conducted by Kalra and Paddock [82] has 

statistically shown that achieving a reliability level that can guarantee a fatality rate of 1.09 per 

160 million kilometres, with a confidence level of 95% along with an 80% power that the AV 

failure rates are at least 20% better than humans, will require approximately an extra 500 years.  
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There are two types of LiDAR data with respect to their mode of collection: first, aerial 

collection using drones or helicopters, and second, terrestrial collection, which can either be static 

by mounting the LiDAR on a tripod or mobile by setting up the system on a moving platform. 

Mobile laser scanning (MLS) has been widely recognized to be the more expedient form of LiDAR 

data as it is known for the high level of detail for its outputs, cheap cost of operation, high point 

density, and the ability to scan below bridges and inside tunnels [83]. 

The tremendous amount of information that is relayed to the AV through its equipped 

sensors poses a great challenge for their real time processing capabilities which are not yet 

advanced enough to handle this surge of data [73] [39]. Hence, it is essential to understand the 

factors that influence the processing demands and how will they vary under different road and 

weeather conditions. 

In an attempt to accelerate the progress of autonomous driving, a recently published white 

paper by Neural Propulsion Systems [84] has explored the feasibility of developing a scanning 

system to eliminate preventable roadway deaths for level 4 AVs. The vehicle would have to see 

well enough to enable zero roadway deaths to have this system in place. In other words, this system 

must handle a massive surge of sensor data to assimilate and process in real time. Principles of 

physics and information theory were implemented to develop an equation that estimates the 

amount of data that would allow the vehicle to see well enough. This equation delineates the 

amount of data required to recreate the scene around the AV with enough frequency and fidelity 

to provide the vehicle with sufficient stopping sight distance, thus preventing the possible collision 

with any obstacles along its path. The required data rate values are contingent upon the density of 

the points around the vehicle or, in other words, the complexity of the surroundings. The data 

requirements are expected to be dynamic as they would vary with the change of the scene around 

the vehicle at any instant. 

This research fundamentally attempts to bridge the existing gap within the literature by 

presenting a framework to facilitate an understanding of the surrounding environment's influence 

on AVs' performance. To accomplish this, the study implements a simulation-based, disaggregated 

approach that breaks down the virtual environment made of LiDAR point cloud data into 

individual frames. The reconstruction of the scenes around the vehicle at any instant on the road 

allows for the thorough analysis of each scene separately to determine the necessary data rates 
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required to guarantee the safe operation of the AVs. This microscopic and detailed analysis offers 

a powerful tool to see through the vehicle's sensors and understand the intricacies of the 

surroundings. Within this study, LiDAR is used as the sole visionary sensor in the simulations 

since it’s the preferred sensor in most driverless vehicles [85] [86] [87]. 

This algorithm uniquely captures environmental complexity, something not previously 

implemented in prior studies. By basing its calculations on real-world conditions and commercially 

available sensors, this approach transforms what was once a generic value into a specific, 

deterministic representation. The nuanced approach offered here not only differentiates this study 

from past work but also enables an explanation of the intricacies within the environment, setting a 

new standard in understanding complexity in this domain. 

1.3 OBJECTIVES 

This thesis attempts to gain a better and deeper understanding of the processing demands for AVs 

under different road and weather conditions by examining the dynamic nature of data rate 

requirements. More specifically, this research takes a unique approach by quantifying the impact 

of different road components, including vertical and horizontal curves, roadway width, and 

roadside features. It then translates them directly into processing requirements for AVs. This 

method simplifies the identification of critical sections, facilitating a more strategic approach to 

AV deployment. 

The primary objective of this research is to develop a framework that explains the 

interaction between the static environment and the performance of AVs by utilizing a 

transformation function that captures the complexity of the surrounding environment and weather 

conditions, translating them into interpretable data rate requirements. In fulfilling the main 

objective, several secondary objectives regarding the possible factors that might affect the 

complexity of the environment will be addressed such as: 

• Investigating the effect of occlusion on AV performance and data rate requirements. 

The occlusion challenge can be investigated by utilizing the proposed methodology. 

Occlusions occur when an object in the foreground blocks the vision of a target in the 

background [88] and AVs occlusion handling is, to date, one of the most challenging tasks 

[89]. Such a problem is bound to have implications on the data rate requirements and the 
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performance of the AVs in general. The proposed method can be used to investigate this 

problem and identify its potential causes, like horizontal curves, vertical curves, and 

vehicles on the road or roadside elements like vegetation. 

• Evaluating the impact of altering roadway width on the performance of AVs. Grasping 

the implications of varying roadway widths on the complexity of the environment is 

paramount for ensuring the seamless integration of AVs into diverse urban landscapes. 

Quantifying this effect is crucial as it provides tangible data, enabling researchers and 

developers to design AV systems that can adeptly traverse different road environments 

where the number of driving lanes is bound to change occasionally.  

• Analyzing how roadside features affect the environmental complexity. Roadside 

elements, particularly vegetation, can be notably inconsistent in their distribution, creating 

challenges for AVs in different scenarios. Understanding this variability is crucial as it 

directly affects the AVs' ability to handle wildlife collisions. Uneven distribution of 

vegetation can obstruct visibility and sensor signals, making it challenging for AVs to 

detect and respond to wildlife effectively. By delving into the intricacies of these roadside 

features, researchers and developers can gain valuable insights into how AVs can adapt to 

diverse environments and overcome the excess computational requirements of processing 

them in real time. 

● Comparing simulation outcomes based on different LiDAR sensors. The presented 

framework can demonstrate the performance of various LiDAR sensors available within 

the virtual environment simulations. As such, the influence of the LiDAR sensors and their 

field of vision is simulated through the visual environment, and a direct comparison is 

made possible. Consequently, users can gain insights into the effectiveness and reliability 

of different LiDAR. 

● Investigating the implications of different weather conditions on the necessary 

processing power for AVs. Exploiting the virtual environment can offer unparalleled 

versatility in simulating different weather conditions by manipulating the signal-to-noise 

ratio variable. Under favourable weather conditions, a high SNR value is expected. While 

in adverse weather situations, this value dramatically decreases to simulate the challenges 

of processing incoming data from the environment. This effect further highlights the 



12 

 

importance of employing a simulated approach since the on-field testing is often limited to 

favourable weather conditions for obvious safety concerns. 

Adopting a simulation-based approach that utilizes LiDAR as the primary sensor for data 

acquisition and environment perception makes it possible to model AVs' performance under 

varying driving conditions. This ability, in turn, has the potential to predict the performance of 

AVs prior to deployment. Furthermore, achieving this research's primary and secondary objectives 

could yield invaluable insights for IOOs regarding infrastructure readiness for AVs. 

1.4 RESEARCH CONTEXT 

This investigation used LiDAR point cloud data sourced from highways in Alberta, Canada, 

employing the advanced PSP-7000 scanning vehicle equipped with double RIEGL VMX-450 laser 

scanners. The study predominantly focuses on the intricate dynamics of two-lane-two-way roads. 

The analysis was conducted in rural settings as their general layout is less complicated which 

facilitates the isolation of the different physical road features so that their influence on the 

performance of the AVs can be investigated. 

34 km of highways were considered, encompassing diverse layouts, including an 11 km stretch of 

road featuring varying vertical grades, to delve into the profound impact of vertical curves. 

Additionally, 15 km of roads were scrutinized for their varying widths. Furthermore, 8 km of 

segments with critical horizontal curves were meticulously examined. 

Furthermore, in the applied simulations, the autonomous vehicles' visual perception was 

replicated using different Velodyne sensors owing to their wide adoption in AVs [90], ensuring an 

accurate representation of the environment. To simplify the analysis, the research excludes the 

consideration of dynamic objects such as pedestrians, cyclists, and vehicles. This decision was 

made to reduce the intricacy of tracking moving objects and anticipating their behaviour, 

particularly in busy driving environments [91] [92]. Moreover, none of the currently implemented 

algorithms used to detect pedestrians are advanced and reliable enough to operate in real time and 

with high accuracy [93]. Therefore, this study focuses on rural environments and limits the analysis 

to two-way-two-lane roads for consistency.  
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1.5 THESIS STRUCTURE 

The remainder of this thesis is divided into five chapters. Chapter two reviews the literature on 

several topics, including Autonomous Vehicles, Simulations on Autonomous Vehicles, 

Applications on Digitized infrastructure using LiDAR point clouds, and Quantification of the AVs’ 

environment complexity. Chapter three outlines the adopted methodology in this research along 

with the introduction to the tested road segments. Chapter four discusses the results of different 

simulations with a summary of the main findings. Chapter five offers a comprehensive overview 

discussion on the results of its previous chapter. Finally, Chapter six highlights the study's main 

findings and the research contributions and defines the research limitations along with future 

research prospects. 
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2 LITERATURE REVIEW 

2.1 AUTONOMOUS VEHICLES 

The notable advancement of technology has helped to alter the goal of vehicles from a mere means 

of transportation to the inclusion of comfort, safety, and convenience. The extensive research in 

the field of vehicles, where the incorporation of breakthrough technologies and improvements has 

been thoroughly discussed, concluded that introducing the idea of self-driving vehicles is the next 

groundbreaking innovation that would serve as the pinnacle of exhaustive research in this field. 

Attempts to develop a self-driving vehicle started with the advent of the 20th century. In 

New York City, the Linriccan Wonder was a model equipped with an antenna controlled by a 

following vehicle using radio impulses. These radio signals dictated the model’s movements and 

directions, making it one of the earliest attempts and rudimentary forms of AVs [94]. This model 

was later improved and renamed Phantom Auto and was displayed in December of 1926 in 

Milwaukee by Achen Motors. 

Others attempted to develop embedded-circuit-powered electric vehicles. Typically, 

circuits were embedded in the test roadways or labs and were controlled by radio waves. This 

strategy was demonstrated by the efforts of GM (General Motors) when they promoted Norman 

Bel Geddes’s Futurama at the World’s Fair in 1939 [94]. RCA Labs developed something similar 

where embedded wires controlled their developed small-scale model on a laboratory floor. A 

larger-scale deployment of the RCA model was soon followed by Leland Hancock, where the 

experiment was carried out on a 121.92m section of an actual highway [94]. 

The United Kingdom’s Transport and Road Research Laboratory demonstrated the success 

of driverless vehicles with a Citroen DS model on a test track in 1960. The vehicle relied on 

magnetic cables embedded into the road for its navigation. It was reported that the vehicle managed 

to maintain a speed of 130 kph without any significant deviation of either speed or direction 

through different weather conditions, surpassing the human control capabilities at that time [94]. 

Comparably, The Phileas electronic guidance system in Eindhoven, Netherlands, contributed to 

the success of one of the earliest autonomous public transport systems in the early 1990s. The 

magnetic system allowed the vehicles to operate at speeds that reached 70 kph and provided two 
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modes of operation, either fully autonomous or semi-autonomous, by exploiting the embedded 

magnetic markers inside the road surface to guide the vehicles through the streets [94]. 

Video monitors and video tape recorders were used for navigation in 1991 when the 

University of Bundeswehr Munich tested out the twin robot vehicles VaMP and Vita-2 on a three-

lane highway in Paris for more than 1000 km under standard traffic conditions and with speeds 

that exceeded 120 kph. During this experiment and with occasional human interventions, they 

showcased the ability of their models to change lanes, follow other vehicles closely, and even pass 

other vehicles [95]. 

The introduction of computer vision technology was first adopted by the Autonomous Land 

Vehicle Project, funded by the U.S. Department of Defence. The developed models relied on 

LiDAR and autonomous control to navigate at speeds that reached 31 kph [96]. Later on, HRL 

Laboratories tested the AVL model along 610m of an off-road setting. During the test, the vehicle 

maintained a speed of 3.1 kph while navigating through natural obstacles, vegetation, and steep 

slopes. This experiment emphasized the potential of LiDAR technologies in autonomous 

navigation [97]. In another test in 1995, Dickmann’s autonomous S-class Mercedes-Benz 

embarked on a roundtrip between Germany and Copenhagen, where the vehicles drove on the 

Autobahn with speeds exceeding 175 kph. The vehicles incorporated radar-based computer vision 

technologies and microprocessors with memories, allowing real time reactions. The models were 

reported to achieve a solid 95% autonomous driving whilst successfully carrying out a wide range 

of driving manoeuvres [98]. 

Machine learning algorithms were first introduced in 1995 to assess their potential to 

improve autonomous driving performance. Navlab of Carnegie Mellon University developed a 

semi-autonomous car that utilized neural networks to control the steering manoeuvres. The 5 km 

cross-country trip known as “No Hands Across America” or NHOA demonstrated the ability of 

the vehicle to attain 98.2% autonomous driving, albeit the braking and throttle tasks were still the 

onus of humans [94]. 

The Defense Advanced Research Project Agency (DARPA) launched a competition in 

2003 that required the participating AVs to complete an off-road desert course without the aid of 

road markings [99]. Although no vehicles completed the first Challenge held in 2004, five AVs 

succeeded in the 2005 grand DARPA challenge, marking a huge milestone for the research 
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community [100]. The DARPA urban challenge took place in 2007 to address the more complex 

tasks, such as driving in urban areas with heavy traffic and frequent intersections [99]. Four 

vehicles successfully met the challenge, including teams from Carnegie Mellon University, 

Stanford University, Virginia Polytechnic Institute and State University, and the Massachusetts 

Institute of Technology. The competing teams used different sensing, localizing, and perception 

techniques [101]. 

The VisLab Intercontinental Autonomous Challenge (VIAC) initiated a more advanced test 

challenge in 2010 to expose AVs to a more realistic real-world environment, including common 

obstacles such as pedestrians and cyclists. Two AVs (a leader and a follower) were involved in 

this challenge, driving across multiple European and Asian countries. The vehicle encountered 

different urban, highway, and offroad scenarios throughout this challenge. In addition, the 

following vehicle detected the leading vehicle and employed platooning techniques. They were 

successful in completing this challenge with the absence of any prior knowledge of the road 

information.  [102]. 

The heavy reliance on priori information like HD maps, which carry static information 

about the surrounding environment [103], has been observed by several AV developers such as 

Google [104]. Although this approach helps tremendously in decreasing the computational 

demands on the AV, it also restricts the adaptability of the AVs to novel situations like construction 

zones and potholes [103]. One potential solution to this problem is connecting the AVs to their 

surroundings by allowing vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) 

communication. The vehicle can acquire invaluable information about road geometry, speed 

limits, and traffic light information from the infrastructure [105]. Likewise, through contact with 

other vehicles, the positioning, lane-changing intentions, and vehicle states can be exchanged 

[105]. 

 In 2011, a challenge was held in the Netherlands under the name of the “Grand 

Cooperative Driving Challenge” (GCDC) in an attempt to accelerate and advocate for cooperative 

driving through both V2I and V2V communications [103]. A similar challenge called the European 

Truck Platooning Challenge took place in 2016, where the V2V technology was tested in a larger-

scale, real-world environment. In this challenge, the AVs successfully platooned behind human-
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driven cars in a course that covered different European cities like Sweden, Germany, Belgium, and 

the Netherlands [103]. 

The ongoing developments in autonomous driving prompted the Society of Automotive 

Engineers (SAE) to define six levels of driving automation [106]. No automation is provided for 

level 0. Rudimentary automation functions such as adaptive cruise control and anti-lock braking 

system (ABS) are offered in level 1. The integration of crash avoidance systems and emergency 

braking can be found in level 2 [107]. Partial automation up to level 2 has been successfully 

realized and is readily available in the market. However, the real challenge starts with level 3 

automation [42]. Conditional automation begins with level 3, where the driver’s attention is only 

called to respond to emergencies, whereas, during normal driving conditions, the human is not 

required to control the vehicle. Automated driving systems (ADS), in general, have their 

restrictions, defined as Operational Design Domain (ODD) [93]. For instance, level 3 automation 

only applies under specific weather conditions and road types, as it also considers the vehicle’s 

hardware and software capabilities. They are expected to work in normal weather conditions on 

highways [42]. Human supervision is not required for levels 4 and 5 of automation. The only 

difference is that level 4 is operational in some ODDs since it needs the support of detailed maps 

and the existence of certain types of infrastructures. If these conditions go unmet, the vehicles 

automatically park themselves to stop the trip as a part of a fail-safe system [108]. On the other 

hand, level 5 is designed to have full automation without any human intervention. 

By the early 2000s, level 2 driving automation became more prominent and commercially 

available. Audi's autonomous TTS research vehicle introduced driver assistance functions like 

adaptive cruise control and side monitoring for safer lane-changing. Equipped with multiple 

sensors that range from radars, laser scanners, and ultrasonic sensors, this $40 million system, 

funded by the European Union’s HAVEit (Highly Automated Vehicles for Intelligent Transport) 

project, demonstrated its ability to navigate bends on the road safely by adopting slower speeds 

[109]. This milestone model ushered a new era towards collision-free autonomous driving.  

Recently, Toyota utilized laser and radar technologies to engineer its model so that system 

failures do not contribute to collisions [110]. On the other hand, Nissan developed the Infiniti Q50 

model using cameras and radars for its navigation. Actuators and sensors were employed to assess 

collision avoidance and cruise control systems [111]. That said, Nissan had plans to produce their 
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fully autonomous vehicle in 2020 [112]. Audi’s Q7 vehicle, with the help of multiple radar and 

camera sensors, provides traffic jam assistance, utilizing both adaptive cruise control and lane-

keeping, and functions at speeds up to 60kph. It also has predictive control features that use 

standard GPS navigation systems along with information extracted about the road's curvature, 

roundabouts, and crossings. [113]. 

In 2018, Audi provided the public with the first level 3 autonomous vehicle [114]. As for 

Volvo, they initiated their pursuit of autonomous driving in 2006. And in 2017, a significant 

milestone was achieved with the release of their autonomous vehicle (AV) test model [109]. They 

outlined their ambitious goal of bringing a fully autonomous model to the commercial market by 

2021 [110]. Similarly, Google started its pursuit of full automation in 2009 and managed to 

complete about three million miles in four states in the U.S. using the WAYMO model [109]. 

Meanwhile, Tesla planned to equip all their models with advanced self-driving technologies in 

2014; presently, all available models in the market possess the Autopilot feature [112]. 

Nevertheless, Tesla envisions that fully autonomous models will be available by 2025 [112]. 

Forecasts often disagree on those anticipated launch dates of fully autonomous vehicles 

disclosed by different automotive companies, seen as somewhat optimistic. Realistically, experts 

suggest it will be at least a decade before level 5 autonomous vehicles are ready for deployment 

[115]. Table 1 summarizes the projected dates for achieving AV models capable of level four and 

five autonomous driving and the infrastructure's preparedness for Connected Autonomous Vehicle 

(CAV) technology. It is readily evident from the anticipated timelines that level 5 autonomous 

vehicles are more likely to be available within the next 10 to 20 years. Comprehensively 

transforming the infrastructure to support CAV technologies, on the other hand, is thought to be 

realistically available within 20 to 60 years.  

Moreover, the expected market penetration suggests that half of the newly produced 

vehicles will be autonomous by 2045, expanding to half of the entire vehicle fleet by 2060, 

according to Litman [13]. As for the anticipated benefits projections, reduced driver stress and 

independent mobility can be attained for wealthy customers when the AVs are limited, and their 

market price is relatively high. On the other hand, achieving the same benefits for moderate-

income customers and having affordable autonomous taxis and micro-transit services can be 
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fulfilled if AVs are common and affordable. Finally, improving traffic mobility and reducing 

congestion will only materialize if dedicated lanes are provided to permit platooning.  

Table 1. Summary of Forecasts for Realizing Fully Autonomous Driving Technology. 

Source Level 4 Level 5 CAV Environment 

Zmud [116] 2021 2025-2030 - 

Litman [13] 2020-2030 2020-2040 2060-2080 

Bloomberg [114] 2018-2020 2028-2030 2040-2060 

Kuhnert [117] 2020-2030 2025-2030 - 

Gehrke [114] 2018-2021 2018-2021 2040-2050 

Shaheen [118] 2018-2021 2023-2040 2045-2070 

Currently, some AV models, indeed, operate on level 4 autonomous driving [115]. 

However, due to the lack of adequate infrastructure and supporting legislation, their deployment 

has been restricted to a few small regions with urban environments with a speed limit of only 50 

kph [115]. Such regulations prompted these models to be used primarily for ridesharing purposes. 

WAYMO, NAVYA, and Magna are among the presently available level 4 AVs [115]. 

Numerous companies, including Audi, Lyft, Uber, WAYMO, Tesla, Apple, Renault, and 

Ford, have openly acknowledged their ongoing efforts to test level 5 autonomous vehicles for 

future public use. However, no level 5 autonomous vehicle has yet been released for commercial 

use [115]. Despite this, these companies have successfully identified the technology and technical 

specifications required to attain level 5 autonomous driving [115]. 

Several challenges impede the full realization and deployment of fully autonomous 

vehicles, encompassing technological, safety, ethical, and political aspects [112]. A significant 

technological hurdle arises from the immense data influx into the AV's onboard computer, 

primarily from sensors like LiDAR, which complicates real time data processing and subsequently 

impacts the vehicle's efficiency and safety. The concept of vehicle-to-anything communication 

(V2X) holds promise as a solution to this challenge. However, the current infrastructure cannot 

support this technology yet, and existing networks lack the robustness needed to support the 

anticipated high volume of data exchange [112]. Additionally, safeguarding the privacy of the 

extensive data collected by AVs is a vital concern [119]. The need to ensure the security of 
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transmitted information, with cyberattacks posing risks to sensing, communication, data, and 

control security, is vital [120]. 

Another aspect that poses a hurdle to commercializing autonomous vehicles is their 

environmental perception. Avs’ development level is determined primarily by the robustness and 

reliability of their sensing technologies [121]. And since the adopted sensors are still not fully 

developed to maintain the required reliability levels, any trivial mistakes can be catastrophic [112]. 

An example of the immaturity of equipped systems is the Tesla-related fatality, where the 

Autopilot system failed to identify a white truck, confusing it with the ambient clouds, thus killing 

the driver [122]. Furthermore, the correct and timely response to unforeseen loss-of-control 

incidents like skidding is not on par with human reactions [123]. 

Unmanned autonomous vehicles face a significant challenge in matching or improving 

upon human factors, such as ethical decision-making on the road. While these vehicles excel at 

following traffic rules and safe navigation, they lack the "Human Touch" needed to make moral 

decisions in complex situations that involve human emotions, morals, and judgment [112]. This 

lack raises concerns about potential biases in the algorithms or AI used in AVs  [112]. It is a 

concern because it is believed that the public will only switch from manned to unmanned once the 

ethical principles guiding AVs are clear [54]. 

 A different facet that impedes the progress of AVs is the current policies and regulations. 

Liability, in particular, emerges as a pivotal concern for the widespread adoption of AVs. 

Currently, drivers are typically liable for any car-involved collisions [124]. However, determining 

the primary responsible party becomes rather unclear in the context of accidents involving 

unmanned vehicles. In such cases, multiple entities come into play, including the driver, car 

manufacturers, software developers, and AV developers, further complicating the liability 

landscape [125]. 

2.1.1 Summary 

The advent of AVs carries many promises, ranging from significantly enhanced road safety and 

improved traffic efficiency to fostering inclusivity for the elderly and individuals with disabilities. 

Additionally, their positive impact on environmental conservation cannot be overstated. In 

essence, the evolution of AVs not only represents a technological milestone but also holds the 
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potential to revolutionize societies, making transportation safer, more efficient, and accessible 

while contributing positively to the environment and economy. Understanding the challenges and 

solutions in this transformative journey is crucial to harnessing the full benefits of this 

groundbreaking technology. 

This section offers a comprehensive exploration of the evolution of AVs, tracing their 

development from inception to their cutting-edge present state. Delving into the historical context, 

it highlights the key milestones and innovations that have shaped the trajectory of AV technology. 

Additionally, the text addresses the contemporary challenges that have hindered AVs' progress and 

widespread deployment. It delves into these obstacles, shedding light on complex issues ranging 

from technological hurdles to ethical considerations and legal frameworks. Crucially, this section 

highlights the challenges and examines the innovative solutions proposed in existing literature. 

Investigating these proposed solutions provides valuable insights into the strategies and 

technologies that hold the potential to overcome the obstacles, thereby paving the way for the full 

realization of AVs. 

2.2 AUTONOMOUS VEHICLE SIMULATIONS ON REALISTIC LIDAR DATA 

Achieving a meticulous replication of the intricate physical road infrastructure and an exacting 

simulation of the physics involved in sensing processes is critical to bridging the substantial divide 

between theoretical simulations and real-world applications [85]. Closing this gap not only refines 

the development of AV technologies but also augments their reliability, safety, and efficiency. 

 Before LiDARs, laser finders and camera images were used to simulate a virtual 

environment where autonomous land vehicles controlled by a sophisticated 3-layer back-

propagation neural network were tested for their ability to execute road-following tasks  [126]. 

The results demonstrated the vehicle’s ability to effectively navigate real roads under specific field 

conditions. 

 Neuhaus et al. [127] utilized the 3D point cloud data captured by Velodyne HDL-64E 

LiDAR sensor in assessing autonomous navigations in unstructured environments. Drivable areas 

are analyzed using an innovative algorithm that evaluates local terrain roughness. This data is 

valuable for path planning algorithms, enabling them to perform non-binary decisions such as 
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choosing between different terrains, providing a more detailed and context-aware understanding 

of the terrain, and enhancing the precision of autonomous path planning. 

 In attempting to close the gap between AV simulations and the real world, Fang et al. [90] 

managed to develop an innovative framework for generating highly realistic 3D point data 

annotated for training Deep Neural Network (DNN) models by utilizing mobile LIDAR scanners, 

typically employed in land surveys, to directly capture detailed 3D scans of road scenes, 

eliminating the need for constructing artificial environmental models. The team developed data-

driven methods to accurately determine obstacle poses and shapes to enhance the simulation's 

authenticity and reduce costs. Actual traffic scene data was utilized to synthesize obstacle 

placements within the virtual environment. Additionally, a novel LIDAR renderer, incorporating 

physical models and real hardware statistics, was developed, resulting in simulated LIDAR point 

clouds virtually indistinguishable from real-world data. This approach significantly narrowed the 

performance gap between simulated and real LIDAR data to a remarkable 1~6% across diverse 

applications, achieved without fine-tuning or blending real and simulated data. Furthermore, 

incorporating a mere 10%~20% additional real data for model fine-tuning led to substantial 

improvements in the model's performance. 

 A similar work that realized the importance of leveraging real-world data in the simulations 

was conducted by Manivasagam et al. [85]. Through their work, the researchers advocate for 

leveraging real data collected by their self-driving fleet in diverse cities to enhance simulation 

realism. They curated an extensive catalogue of 3D static maps and dynamic objects from real-

world situations. Using this catalogue, they devised an innovative simulator that integrates 

physics-based and learning-based approaches. This simulator employs ray casting across 3D 

scenes and a deep neural network to introduce deviations from physics-based simulations, resulting 

in genuine LiDAR point clouds. The resulting tool, LiDARsim, proved invaluable for testing 

perception algorithms in rare scenarios and evaluating safety-critical situations through 

comprehensive end-to-end closed-loop assessments. Significantly, this framework differs from 

that conducted in [85] in adopting a standard LiDAR sensor for their data acquisition, which 

allowed their mapping to be more cost-effective and highly scalable. 

 Li et al. [128] proposed augmented autonomous driving simulation (AADS) by combining 

LiDAR and cameras to scan real street scenes. Then, they introduced foreground vehicles and 
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pedestrians to their 3D virtual environment using CG models. However, the overall simulated 

traffic flows were based on real trajectories collected from the scanned data. The annotation of 

their data was performed by a third party to facilitate their scan-to-simulation approach. In contrast 

to traditional approaches, their method offers more scalability and realism. Likewise, Fang et al. 

utilized MLS data to create a virtual environment that can directly reflect the complexity and 

diversity of real-world geometry [129]. Then, by applying CAD models to capture the obstacles’ 

poses, such information was incorporated into the virtual environment to enrich and enhance the 

AV simulations. This method demonstrated that a combination of real and simulated data can attain 

over 95% accuracy in the simulations. 

 In contrast, several other works have used synthetic LiDAR data in their AV simulations 

since they do not require the same heavy manual annotation work as the scanned LiDAR data. 

Hence, they promise to streamline and increase the efficiency of AV simulations [87]. For instance, 

Yue et al. extracted their synthetic LiDAR annotated datasets from the famous computer game 

(GTA-V), simulating a virtual scanning vehicle within the game’s environment to capture realistic 

driving scenes [87]. Their proposed method improved the validation accuracy for point cloud 

segmentation using a neural network model by 9% on the real-world benchmark. 

Wang et al. [130], motivated by the recent success of deep learning in 3D data analysis that 

relies on large volumes of annotated data, developed a framework that simulated LiDAR sensors 

in the CARLA [77] autonomous urban driving simulator to generate synthetic LiDAR data. Their 

approach was inspired by the notable achievements of deep learning in 3D data analysis, which 

often relies on extensive volumes of annotated data. This method demonstrated that incorporating 

synthetic data significantly improves the performance and accuracy of AVs in simulation 

environments. 

2.2.1 Summary 

In summary, the literature shows the benefits of utilizing real-world LiDAR point clouds in the 

simulations because they can bridge the gap between sim-to-real. Open-source simulators, such as 

those presented in [77] and [131], rely on handmade 3D features and implement inadequate physics 

assumptions, resulting in ill-conceived representations of real-world sensory data. Real time 

graphics engines, such as Unreal [132] and Unity [133], also exhibit a sizeable sim-to-real gap 
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mainly because the generated environment lacks diversity and does not accommodate important 

sensor simulation features. The frameworks discussed were actively used to enhance the 

perception modules of the AVs in an attempt to improve their overall safety. Similarly, the 

framework proposed here seeks to achieve the same goal by quantifying environment complexity 

for AVs based on real-world data to bolster the accuracy and validity of the results. It is also worth 

noting that the use of synthetic LiDAR data in simulations is yet to be on par with using realistic 

data since it was shown to have diminished accuracy [90]. 

2.3 APPLICATIONS OF LIDAR INFRASTRUCTURE DIGITIZATION IN 

TRANSPORTATION ENGINEERING  

LiDAR is an acronym for light detection and ranging. As an optical remote sensing technique, it 

relies on emitting thousands of laser beams from its laser scanners to sense its surroundings by 

collecting the information from the reflected beams, carrying valuable information about the 

position of the hit targets. The continuous scanning operations result in highly detailed 3D point 

clouds replicating the surrounding environment digitally. LiDAR is also equipped with navigation 

sensors like GNSS receivers and IMUs to help with the system localization and correctly calculate 

its geo-referenced position  [134]. GNSS provides position and timing information for LiDAR for 

it to locate itself [135], whereas IMU sensors can measure both linear accelerations and spin rates, 

which can be used to identify the orientation and 3D position of objects [136]. 

The accuracy and density of LiDAR data are highly dependent on the collection method. 

The data can be collected aerially using drones or helicopters or terrestrially, either statically by 

mounting the LiDAR on a tripod or making it mobile by mounting the system on a moving 

platform like a car or truck. Mobile laser scanning (MLS) has been widely recognized to be the 

more expedient form of LiDAR data as it is known for the high level of detail for its outputs, cheap 

cost of operation, high point density, and the ability to scan below bridges and inside tunnels [83]. 

Other factors can also influence the density of the point cloud data, such as the sensor’s range and 

the incidence angle, known as density anisotropy [137]. The weather and environmental conditions 

can also impact the point density and the speed by which the data was collected [138]. 

The appeal of using LiDAR technologies in the transportation field has increased over the 

past decade owing to the meticulousness of its outputs and the high degree of convenience of their 
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collection methods [139]. LiDAR is an appealing alternative to traditional surveying tools, which 

are slow, often inaccurate, and disrupt traffic operations. Since LiDAR performs its scanning while 

complying with highway speed limits, outputs are faster or more time-efficient and do not cause 

any tangible disruption to traffic operations. Further benefits include their 360-degree field of 

vision, ensuring minimal loss of detail regardless of the device’s orientation and active sensing, 

giving them the flexibility to operate under different lighting conditions [139]. 

The prospective utilization of LiDAR data in different road inventory applications has long 

been discussed in the literature [140]. Williams et al. [83] and Landa et al. [141] have demonstrated 

the potential of LiDAR data in different road inventory applications, which can be classified into 

the extraction of road pavement, lane marking, road edge, alignment information, and vertical and 

lateral clearances  [139]. Even though extracting semantic information from LiDAR data can be 

cumbersome, researchers have recognized the value of the extracted information, leading to 

significant dedication to extensive research in this area. 

The isolation of road surface points from the rest of the point cloud data is recognized as 

an essential step for two reasons. One is the provision of a reference point for extracting other 

features and minimizing the data size for further processing operations [139]. Lam et al. [142] used 

Kalman filtering to capture the segmented planes of the road, and then mathematical models were 

fitted to the extracted planes through Random Sample consensus (RANSAC). It was reported that 

the results were satisfactory. More recently, the RANSAC algorithm was utilized by Hu et al. to 

extract the road surface plane from ground points [143]. After that, a point density threshold was 

set to facilitate the extraction of road surface points. On the other hand, Wang et al. [144] first 

defined the profile of the road and then captured its edges based on the height difference of specific 

road segments. The results were not clearly demonstrated for this study. 

More recently, Yadav et al. [145] tested a method of splitting the point cloud into ground 

and non-ground points in India with a correctness of 98.3%. Even more so, they have managed to 

identify the road surface and non-road surface points from the extracted ground points. This was 

done in three stages. First, they applied data structuring and ground filtering techniques where a 

2D grid representation of points was implemented to get a primary set of ground points. Then, the 

road surface extraction was carried out using the intensity and density of points to filter out ground 
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points, followed by region growing and road point recovery. Finally, they concluded with road 

boundary refinement. 

The LiDAR scanlines were analyzed by Zhou et al. [148] to differentiate between the 

ground and non-ground points by tracing the scanlines of different points. On a similar note, an 

overlapping cylinders representation of points was introduced by Yadav et al. [146], where the 

ground points were identified at the bottom base of the developed cylinders. The identified points 

were then subjected to a refinement process by employing a height roughness-based approach. 

Other researchers pursued voxel-based approaches [147] [148] [149]. For example, Yu et al. [150] 

proposed a method that segmented the point cloud into a 2D XY grid, and then an upward-growing 

voxel approach was applied to connect voxels with their upward neighbours. The ground elevation 

was compared to the constructed voxels to identify the ground and non-ground points based on a 

defined threshold. 

The extraction of lane markings and road edges has been a point of interest for researchers, 

particularly those invested in developing AVs. Typically, AVs rely on detecting the road's edge 

and lane marking for guidance and navigation. Generally, in urban settings, curbs facilitate the 

extraction of road edges, unlike in rural settings where curbs are often absent. Additionally, such 

information is in high demand in other geospatial applications such as road safety evaluation, 

traffic accident analysis, and intelligent transportation systems [151]. 

One of the proposed methods by researchers for curb extraction was presented by Zhou 

and Deng [152], and it involved the identification of sudden height differences where the 

maximum difference was calculated to locate the curbs of the road. This method was tested on 

point clouds obtained from aerial laser scanning (ALS) and MLS, where the completeness figures 

varied between 53% and 92% for ALS. As for the MLS data, the figures ranged between 54% to 

83%. 

A real time road edge and surface extraction procedure was presented by Zhang [153], 

where elevation filters were applied along with pattern recognition techniques. A false positive 

rate of 0.83% was reported in detecting most road-curb and road points. Nevertheless, the details 

of the testing environment were not clearly demonstrated, whereas Serna and Marcotegui [154] 

presented a framework that utilized a range of images for curb extraction. The λ-flat zones 

algorithm was employed for ground and non-ground segmentation. They relied on the height and 
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elongation attributes in the identification of curbs. The data sets used in this study were collected 

from France and the Netherlands where the completeness results ranged from 54% to 65%, while 

a 91% to 95% range was seen in terms of correctness. 

An average precision of 84.49% and recall rate of 82.87% for curb detection was reported 

by [155]. The authors opted to apply a plane-based method for on-road and off-road point 

segmentation. The algorithm was tested on LiDAR data collected by an AV, where the curbs were 

identified based on their spatial properties. Jaakkola [156], on the other hand, proposed a 

framework that used image processing tools and heuristic thresholds on a TIN surface generated 

from LiDAR point clouds to extract pavement markings and curbstones. Different pavement 

marking types were extracted using this method, such as pedestrian crossings, and the authors 

reported around an 80% detection rate. However, Kumar et al. [162] sought to extract the road's 

edges by employing point cloud rasterization techniques, Gradient Vector Flow (GVF), and Ballon 

Parametric Active Contour Models. The authors tested this method on 50m road sections, where 

they reported that the failure in road edge detection was attributed to low point density near the 

edges. 

Range-dependent thresholding was adopted by [157]-[158]. Intensity-based thresholding 

coupled with binary morphological operations was used to extract lane marking information [157]. 

The authors reported that 86% of markings were identified accurately. However, Guan et al. [158] 

carried out the road edge identification by the height difference analysis of the extracted blocks of 

data from the point clouds as a final step. Segmentation filters with multiple thresholds were 

applied for lane marking extractions. The authors tested their framework in two road segments 

where 96% completeness and 83% correctness values were reported. 

More recently, deep learning and spatial statistics techniques were implemented by [159] 

in detecting road edges. The method used the pre-trained RandLA-net for the semantic 

segmentation of the point cloud data and then applied voxelization and spatial statistical analysis 

to detect the road edges. Additionally, the authors reported the capability of their proposed method 

in identifying the locations of objects that belong to the car class to overcome the occlusion 

problem of parked vehicles. Meanwhile, [160] utilized both the spatial and geometric information 

of the input point cloud data to extract curbs in complex scenes to aid city managers in monitoring 
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the status of the roads and urban street reconstruction. The authors reported values north of 98% 

in both completeness and correctness measures. 

Mi et al. [151] proposed a framework that relied on generating super voxels to extract 

potential curbs with high efficiency. Supervoxels are a series of spatially adjacent voxels that share 

common properties [161]. The methodology entailed grouping the prospective super voxel curbs 

and producing a continuous boundary for the road. After that, the extracted road boundaries were 

fitted, tracked, and completed to obtain geometric parameters such as boundary location, roadway 

widths, turning radius, and slopes. The authors reported the high success of this method through 

precision and recall scores, which amounted to 95% and 91%, respectively. 

Traffic sign extraction is another useful application for the digitization of infrastructure. 

Owing to the valuable information that the signs carry for drivers, governments have been actively 

seeking ways to streamline the monitoring and maintenance process for these signs [162]. Hence, 

the literature reveals several research efforts to optimize the extraction of traffic signs using 

LiDAR data. For instance, Vu et al. [139] proposed a method to identify and classify traffic signs 

in real time using intensity filtration techniques and Principle Component Analysis (PCA).  The 

authors applied their method in a test track and reported high success rates that ranged from 84% 

to 96%. 

Weng et al. [139] proposed a framework using intensity filtering techniques, hit count, and 

elevation information. By leveraging these methods, they obtained the geometric shapes and 3D 

shape context and then used them for traffic sign identification and classification. Nevertheless, 

not much information is known about the success rate of this method. Earlier, Ai and Tsai [163] 

explored the success of implementing a framework that again looked to filter their point cloud by 

applying intensity filtering techniques and hit counts but coupled them with MUTCD offset values 

in detecting and classifying traffic signs. The authors reported a 94% detection rate in urban 

highways compared to 91.4% in rural areas. The false positives were linked to several factors such 

as low retro-reflectivity, insufficient height, and occlusions. 

In Alberta, Canada, Gargoum et al. [164] attempted to both detect the traffic signs and map 

them using an assortment of different techniques, including intensity filtering, density-based 

clustering (DBSCAN), geometric filtering, used to clear clusters outside a defined threshold and 

buffer zone filtering, implemented to remove any clusters located in unreasonable locations for 
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road edges. The authors applied their method on three highways and reported staggering detection 

rates ranging from 94% to 100%. On a different note, the premise of Guan’s work [165] in 

detecting traffic signs stood on the previous knowledge of sign pole heights and roadway widths 

from LiDAR data. First, the point cloud was voxelated, and then the geometric properties of 

adjacent voxels were obtained to identify the potential sign candidates. Finally, different intensity, 

size, and position filtering were applied to the elected voxel clusters to extract the signs. The noise 

was addressed by applying Euclidean distance clustering algorithms. An 86.8% detection rate was 

observed in this study. 

A different approach was adopted by Javanmardi [166], where traffic signs and light poles 

were detected through the implementation of surface reconstruction algorithms coupled with k-

means clustering. In the proposed method, objects with high elevations were captured by 

introducing a sliding cuboid, and a RANSAC algorithm was employed to filter out false 

candidates. Success rates of 94.5% were reported by the authors in detecting traffic signs. More 

recently, Gouda [162] explored the efficiency of adopting machine learning techniques to extract 

traffic signs. The proposed method was to improve the performance of the PointNet++ neural 

network in outdoor scenes. Using data collected from seven highway segments in Alberta, Canada, 

the author reported high success rates with a 99.2% recall and a 98% F1 score, demonstrating the 

adopted framework's efficiency and accuracy. 

In similar works, a fully automated algorithm was developed by Gouda et al. [167] to detect 

the positions of the light poles on the road owing to their increased safety concerns if not placed 

correctly in the designated roadside clear zones. Using MLS data of 28 km of highways in Alberta, 

Canada, the proposed algorithm scored north of 98% in precision, recall, and F1 metrics, outlining 

its effectiveness. 

One more application for the MLS data in the field of transportation is the extraction of 

geometric features of the road, such as slopes, horizontal and vertical curves, sight distances, and 

clearances. There are ample guidelines that regulate the cross-sectional design of the road. For 

instance, the superelevation value on horizontal curves and the curve's radius are governing design 

factors that ensure the stability of vehicles. The minimum length of the vertical curves is also 

essential in highway design and for its safe operations. LiDAR data present a valuable and viable 
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alternative to conventional data collection methods for their time efficiency, minimal disruption 

of traffic, and high accuracy [139]. 

The cross-sectional information has been captured by [168] through the modification of 

the orientation of the laser scanner. A region of interest (ROI) was identified perpendicular to the 

road, and the points within this region were exposed to linear regressions to estimate the cross 

slopes. The study was conducted in a controlled environment and demonstrated results within 

0.28% of the digital readings. In a different study, Holgado-Barco proposed a semi-automatic 

algorithm to extract slope information from LiDAR data [169]. First, the segmentation of the 

ground surface was achieved using height thresholds. They applied intensity-based filters to extract 

lane markings, which were used to calculate the slope information by considering the lane width 

and the difference in elevation between their ends. The authors reported minor variations in their 

estimations when the algorithm was tested on two highway segments. 

More recently, A fully automated algorithm to estimate the cross and side slopes was 

presented by Gargoum [170]. First, points that juxtaposed the road’s axis were extracted. Then, 

Multivariate Adaptive Regression Splines and linear regressions were applied to identify the points 

that had a change in slope. The authors applied their method on two highway segments in Alberta, 

Canada, and a difference of 0.08% to 0.22% was reported in the cross-slope calculations. 

One of the earliest studies that attempted to extract vertical alignment information from 

LiDAR data was carried out by Souleyrette [171]. ArcGIS was used to localize the road’s 

centerline, and then multiple linear regressions were applied to estimate the grade information. 

The findings of this study showed a significant deviation in their calculations when compared with 

field measurements. Adopting a similar method, Zhang [172] attempted to refine the detection of 

the road edges and centerlines. That, in turn, yielded a 5% accuracy in the grade estimation. 

A later study by Higuera de Frutos and Castro [173] involved GNSS data collected along 

a road’s centre line to reconstruct its vertical profiles. The authors attempted to automate acquiring 

different elements of a road’s vertical profile information using the collected centre line points by 

obtaining grade points, parabolic curve points, and border points from classifying the points along 

the profile. A mean error of 8cm was reported in the study when the algorithm was tested on a 

rural highway in Spain. Earlier studies have also attempted to use the same principle of exploiting 
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the GNSS data in extracting vertical profile information [174]. It is important to note that GNSS 

data are one of the outputs of MLS systems, which is the main focus of this literature review. 

Similar efforts have been directed toward the extraction of horizontal alignment 

information. Holgado et al. [175] proposed a semi-automatic method for curve extractions. The 

point cloud data was subjected to segmenting, parametrizing, and filtering. The lane markings were 

distinguished in the segmentation step, and then the data was classified into straight segments, 

circular arcs, and clothoids (which exhibit a variation in curvature). After that, the radii and 

transition lengths were estimated. On data collected from a Spanish highway, the algorithm 

demonstrated a 2% error in the length of circular arcs and 0.4% in the circular radius compared to 

topography calculations.  

The attributes of the horizontal curves had an average difference of less than 3% when 

tested on different LiDAR segments in a study by Gargoum [176]. The authors captured the 

endpoints on the curve by analyzing the change in azimuth along the trajectory of the road. The 

point of intersection and deflection angles of the curve were identified using Linear regression 

models. Then, the point of curvature (PC) and point of tangency (PT) were identified, enabling the 

authors to calculate the radius of the curves. A recent study by Shalkamy [177] proposed a 

framework for detecting horizontal curve elements on a network level using LiDAR data. This 

large-scale, fully automated algorithm followed the principles outlined in [176]. It achieved high 

accuracy attainment levels ranging from 96% to 100% when tested on 242 km of highways in 

Alberta, Canada. 

Sight distance assessment studies using LiDAR have seen a growing interest from 

researchers owing to the time and effort hurdles when traditional methods are used. In a study by 

Castro et al. [178], the sight distance requirements were assessed using ArcGIS, where digital 

terrain models (DTM) with viewsheds for observers were developed. The visible parts of the 

viewshed were converted to polygons, and the intersection between these polygons and the 

trajectory of vehicles was identified. Then, the distance between the intersections and the observers 

was measured to quantify the available sight distance. The results were compared to the Trivium 

software, and it was found that there is no statistical significance in the differences between the 

two results. Later on, the same authors [179] attempted to improve the automation level of the 

method by overlaying the observer and target points onto the DTM models directly from GPS 
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surveys. The findings were compared to their earlier results. However, differences were found to 

be not statistically significant. 

Finally, assessments of vertical clearances for bridges and tunnels are also possible using 

LiDAR data. Typically, this work is done manually from site inspections using tools like 

theodolites and total stations. However, this process can benefit greatly from the advantages of 

utilizing LiDAR data, which promises to streamline this process, cause no disruption to traffic 

operations, and eliminate human errors [139].  

Puente et al. [184] implemented a semi-automated framework to assess the vertical 

clearance in tunnels in Spain. The process begins by capturing cross-sections of the tunnel at 

regular intervals. Subsequently, an algorithm was employed to detect lane markings, pinpointing 

the boundaries of the travel lanes within the tunnel. Convex hulls are applied to assess clearance, 

creating a semicircular representation of the tunnel’s cross-section and achieved by connecting 

points along the road edges to corresponding points on the tunnel roof. The effectiveness of these 

algorithms was rigorously evaluated across multiple cross-sections within the tunnel. Remarkably, 

the results demonstrated a negligible error rate, with the variance between the clearance estimated 

through this innovative method and the actual measurements taken in the field not surpassing 1% 

for most cross sections. 

With emphasis on vertical overhead objects’ vertical clearance assessment in Alberta, 

Canada, Gargoum et al. [180] proposed a framework that involved delineating the road's path and 

eliminating non-ground points from the highway data. A Nearest Neighbour search method was 

employed to identify objects above the road surface. Subsequently, these overhead objects were 

organized into distinct groups using a density-based clustering algorithm. A statistical kurtosis 

assessment was applied to categorize these objects, distinguishing between bridges and non-

bridges. Additionally, the algorithm calculated the minimum clearance for each identified object. 

The effectiveness of this methodology was verified through testing on three diverse highways, one 

of which was a lengthy 242 km highway corridor. 

2.3.1 Summary 

In recent years, LiDAR point clouds have become a focal point in transportation, evident in their 

widespread applications across various tasks within the field. Infrastructure digitization through 
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LiDAR technology has ushered in a revolutionary era, offering automated and semi-automated 

methods that surpass traditional techniques. These advanced methods ensure safety and 

significantly enhance accuracy, all without disrupting regular operations. 

This section is a valuable resource, shedding light on cutting-edge techniques employed in 

current research to maximize the potential of LiDAR data. The literature resoundingly attests to 

the effectiveness of LiDAR-based approaches in diverse applications. They excel in on-road tasks 

such as extracting road surfaces, lane markings, and road edges. Similarly, they prove adept at 

capturing crucial roadside details, including traffic signs, vegetation, and pole-like objects. 

Moreover, LiDAR technology has demonstrated exceptional capabilities in assessing vital road 

geometric features, such as vertical and horizontal alignments, sight distances, and vertical and 

lateral clearances. 

Finally, the advent of LiDAR-based algorithms marks a significant leap forward in 

transportation. These advancements are poised to fundamentally transform transportation 

infrastructure, creating safer, more reliable road networks and facilitating smoother traffic 

mobility. 

2.4 QUANTIFYING THE COMPLEXITY OF THE AV ENVIRONMENT 

The onboard computer equipped by the AVs, which is required to operate in real time, has the onus 

of perceiving the environment surrounding the AV, processing the incoming information, and 

making the most apt decisions to ensure the safe operations of the ego vehicle. The traffic 

environment poses a big challenge for autonomous systems as they are typically open, non-

deterministic, hard to predict, and dynamic [181]. Identifying the complex situations is essential 

in advancing AVs' safety, which would expedite their mass adoption. 

Wang et al. [182] proposed a modelling and assessment framework that can quantify the 

complexity of the AV’s environment. Their approach involved establishing fundamental and 

additional environment complexity models systematically evaluating four key environmental 

aspects: road conditions, traffic features, weather conditions, and potential interferences. The 

overall environment complexity can be calculated using a preset scoring system for the different 

environment features based on experts’ judgment. The Analytic Hierarchy Method (AHM) 

determined the relation between different attributes. A weighting scheme based on subjective and 
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objective considerations was implemented to calculate the overall complexity of the environment. 

Taking both subjective and objective considerations in the analysis, two tests involving lane 

changing and crossing a simple intersection were conducted to validate this method and show its 

effectiveness in estimating the complexity of the environment. 

A similar, automated framework that bases its measured complexity on the road type (RT), 

scene type (ST), challenging conditions (CC), and traffic elements was developed by Wang et al. 

[183]. Traffic elements focus exclusively on vehicles, considering a maximum of the closest eight 

neighbouring vehicles. The calculation criteria centred on performance for the teams participating 

in the Intelligent Vehicle Future Challenge (IVFC). The main tasks considered were lane keeping, 

detection of vehicles, pedestrians, and signals. Using both LiDAR point clouds and image data, a 

Support Vector Regression (SVR) was implemented to train a machine-learning algorithm to 

predict the complexity of the scenes. With an accuracy of 93.23% and 68.7% for the training and 

test data, respectively, the proposed framework was validated using three experiments that 

modelled different road and traffic conditions. 

Gravity models were proposed by Zhang [184] to assess the complexity of the surrounding 

environment, where the level of driving complexity was measured as the extra cognitive burdens 

exerted by the traffic environment on the drivers. That said, the proposed method could not directly 

obtain the complexity values, and many relevant parameters were miscalibrated in the calculations. 

Following the same concept, Yang et al. [185] divided the environment into static and dynamic 

elements to develop their environment complexity model. The static features were studied using 

the grey relation analysis. At the same time, the complexity of the dynamic elements was 

quantified based on the improved gravitation model, adding an extra explanatory variable into the 

function to explain the degree of contribution of the driving strategy. The proposed method was 

validated on a car-following driving scenario based on the 2018 World Intelligent Driving 

Challenge. The proposed static and dynamic models were compared to the existing models and 

were more convenient and efficient. 

Focusing on the dynamic traffic elements only, [186] proposed a framework that captured 

the objective human drivers’ judgment on the complexity of the driving environment. In this 

method, the complexity of the environment was defined based on the interactions of the ego vehicle 

with the vehicles surrounding it. The proposed model can be established by first designating the 
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influence area around the ego vehicle where the lateral distance is taken as a specific number of 

lanes, while the longitudinal distance considers the event of rear-end collisions by adopting the 

theory of Responsibility-Sensitive Safety (RSS). Second, using information entropy theory, the 

vehicle pair complexity is studied by considering the encounter angle, relative velocity, and 

relative distance between vehicles. Lastly, the vehicle pair complexities are aggregated. Data 

collected from multiple sensors, including radar and video cameras, were used to validate the 

efficacy of this method. On applying this framework to three case studies that involved lane 

changing, car following, cutting in, and cutting out, the results showed that the produced 

complexity curves managed to quantify and time the changes in environmental complexity. One 

drawback to this method is its inability to describe the static environment complexity. 

Multiple researchers utilized the potential field theory in their models. A highway potential 

field function was proposed by Wolf et al. [187] to aid the AV’s obstacle avoidance system. This 

function constructed the potential field as a wedge while considering the velocity potential of other 

vehicles. A novel concept of driving risk-field was presented by Wang et al. [188], where three 

different fields were established for the moving objects, road environment, and driver 

characteristics. The characteristics of traffic agents and traffic rules were considered in developing 

a potential field model proposed by Tu et al. [189] to aid in the lateral planning module of AVs in 

urban environments. Likewise, a model predictive path planning controller, based on the potential 

field concept, was developed by [190] for obstacle avoidance. Based on Lennard-Jones potential, 

the safety risk of CAV platooning and vehicle following were considered in the unified vehicle 

function developed by Jia et al. [199].  

Similarly, Cheng et al. [191] based their environmental complexity evaluation model on 

the potential field theory. The environment elements are represented by a positive point charge or 

uniformly charged wires that create a potential field in their vicinity. The total potential field of a 

particular environment can be calculated by superimposing individual fields. The quantified 

complexity is determined by the impact of the defined static and dynamic environmental elements 

on the AV based on the viewpoint scene. The virtual electric quantity of the different environment 

elements is calibrated using the AHM, where non-motorized vehicles have the highest values and 

static traffic elements like lane markings have the lowest values. This method was verified on 

virtual traffic environments using the PreScan software and on real traffic scenarios using driving 
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videos of the Huawei AV. The quantified complexity was found to be consistent with the 

complexity of the given scenes. Finally, when comparing this method to expert scoring, the error 

percentage was within ± 5%, again demonstrating the efficiency of the proposed model. 

2.4.1 Summary 

In summary, multiple attempts have been dedicated to quantifying the complexity of the 

environment surrounding the AV. Generally, there are objective and subjective quantification 

methods. Some methods relied on implementing experts’ subjective evaluations and AHP’s [182]; 

others sought to base their quantifications on road semantic and traffic element complexities to 

model static and dynamic elements [183]. Gravity models were proposed to develop quantitative 

models[184] [185]. Other researchers based their calculations on the spatial-temporal interactions 

between different vehicles and implemented the concept of information entropy theory to explain 

the non-linear relationship between them [186]. Finally, the most commonly implemented models 

were based on the potential field theory and were adopted by researchers in [191] [192].  

Nevertheless, the existing literature's evaluation of the surrounding environment's 

complexity has limitations. Using predefined subjective ratings for various road and weather 

conditions, relying on expert opinions is simplistic and lacks comprehensiveness, failing to capture 

an accurate perception of AVs. Moreover, the literature predominantly focuses on camera and 

video data, overlooking the potential of LiDAR point clouds in assessing complexity. Additionally, 

existing models calculate complexity in regions of interest around the AV without accounting for 

the specific sensor specifications. Consequently, the proposed framework aims to offer a more 

insightful understanding of the static environment's complexity. It achieves this by accurately 

simulating the actual perceived environment using commercially available LiDAR sensors through 

digital twin environments, addressing the aforementioned limitations. Furthermore, the complexity 

of the environment is captured through the estimation of the required processing data rates, which 

also anticipates the AVs’ level of performance in different driving environments and weather 

conditions. 
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3 METHODOLOGY 

This research examines the interaction between the AV and the surrounding static environment. It 

aims to study and quantify the impact of relevant road features on the computational requirements 

of AVs. Specifically, the study calculates the expected data rate that the AV needs to process in 

real time to ensure safe operations under ideal weather and driving conditions. 

The analysis will be conducted in two ways: first, it will encompass the entire scanned 

environment, including all road and roadside features. Second, it will focus solely on the right-of-

way section of the road, containing pertinent road features. This dual approach aims to effectively 

gauge the influence of the road's geometry (including vertical and horizontal curves and roadway 

width) on the AV’s performance. The contrasting data rate requirements between the 

comprehensive scene and the relevant road features will also be highlighted. 

The implemented methodology adopts an end-to-end system approach, wherein the 

operational modules are not treated in isolation but as interconnected. The calculated required data 

rates are directly linked to the data collected by the AV sensors, meaning that the data rate values 

encompass all the necessary operations, starting from perception and extending through the 

decision-making and planning stages. The more points collected at an individual frame, the higher 

the required processing power for safe AV operations, or in other words, this location would be 

more challenging to navigate by the ego vehicle. Inversely, the frames with low data rate 

requirements would mean less processing power would be required and, by extension, easier to 

navigate. That said, locations that exhibit low data rate values can also indicate a loss of 

information for the AV, which might be critical for its operations. Hence, more emphasis will be 

directed towards the frames that exhibit the highest and lowest values at any given road section. 

An overview of the implemented methodology will be presented in this section. The 

general high-level framework is illustrated in Figure 1. 
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Figure 1. High-Level Framework for Methodology 

3.1 POINT CLOUD DATA 

The primary input of this method is the 3D LiDAR point cloud data generated from mobile laser 

scanners (MLS). This data is known for its points' density and accuracy, making them the most 

suitable data for this type of simulation. Aerial laser scanner (ALS) data can also be used. 

However, their low point densities, especially at underpasses, below bridges, and underneath 

canopies, make them less convenient. 

The data used in this research was collected by Alberta Transportation using Tetra Tech 

PSP-7000, a proprietary multifunction pavement surface profiling vehicle. This vehicle is 

equipped with a REIGL VMX-450 system [193] that can collect 360° LiDAR data using 2 RIEGL 

VMX-450 laser scanners, producing up to 1.1 million measurements/sec and has up to 400 

lines/sec scanning rate. This system has two GNSS antennae and an IMU system to provide 

accurate georeferencing information. Additionally, the system can be supplemented with a camera 

system that provides images that can be integrated with the LiDAR data to get RGB information 

about the surroundings. This system is mounted on top of the vehicle's roof rack to maximize the 

field of view for the sensors. 
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The density of the point cloud data can be influenced by multiple factors like LiDAR sensor 

specifications, where the precision and rotational speeds can impact the density of the points. 

Furthermore, the speed of the moving vehicle where the LiDAR sensor was mounted during 

scanning also dictates the point cloud densities, where lower speeds would result in higher point 

densities. For that reason, the scanning was conducted at normal traffic flow speeds of up to 100 

kph. 

The National Cooperative Highway Research Program (NCHRP) [194] has put forth some 

guidelines that define the level of granularity for the point cloud density and the accuracy needed 

for different LiDAR point cloud applications. It has indicated that for purposes that involve 

autonomous navigations, the minimum recommended point cloud density is between 30-100 

𝑝𝑡𝑠 𝑚2⁄ . It was also suggested that any value between 0.05 to 0.2m would be accepted for the 

accuracy of the scanning sensor,  

The pavement was sliced into tiles of known areas to investigate the input point cloud 

density. An area of 20x10 𝑚2 was used in the calculations, and then the number of points was 

recorded to estimate the number of points per square meter for each sliced area. The used data 

averaged values north of 150 𝑝𝑡𝑠 𝑚2⁄ , which exceeds the recommended values by a margin. The 

RIEGL sensor operates with an accuracy of 8 mm [193], marginally satisfying the accuracy 

requirements and validating the data quality used in this research.  

3.2 PREPROCESSING 

The point cloud data was manually checked and verified to ascertain their integrity by comparing 

them to the real environment and ensuring no discernable loss of road information. Any excess 

road points are filtered to prepare the point clouds for later calculations. Figure 2 illustrates the 

validation of a road section with its point cloud counterpart to ensure that the sudden gap in the 

right-side vegetation was natural and that the virtual environment accurately reflects the actual 

scene. 
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Figure 2. Validation of Surrounding Environment 

3.2.1 Point Cloud Filtration 

Point cloud filtration addresses any issues the sensors might have encountered during their 

scanning operations, like malfunctions or complete occlusion due to moving vehicles. Scanned 

points not associated with the road or the environment, like rain, snow, or dust particles, were 

manually removed from the point clouds. Additionally, since this framework focuses on the 

interaction between the ego vehicle and the statical environment only, the influence of moving 

targets like vehicles, pedestrians, and cyclists was ignored. Hence, they were manually removed 

from the point clouds as they can influence the calculations by occluding some road points beneath 

and behind them. 

 

Figure 3. Excess Points in The Point Cloud 
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Figure 4. Vehicle in The Point Cloud 

3.2.2 Relevant Road Features Trimming 

After cleaning the road sections, the relevant road features region (RRFs) is then trimmed out and 

extracted from the original point cloud. A Python code was developed to generate bounding boxes 

ℬi that are centred and rotated around the trajectory points 𝒓𝒊 , which are uniformly spaced across 

the point cloud 𝒫 (road points extraction procedure is explained in detail in section 3.4). Each 

bounding box ℬi is defined with a set length and width; no constraints are imposed for the z 

direction. By aggregating the bounding boxes at each road point along the trajectory, a smooth 

region that simulates the right-of-way region can be extracted from the original point cloud 𝒫. The 

width of the bounding box typically depends on the road itself. Nevertheless, it should encompass 

the width of the driving lanes, road shoulders, and an extra space beyond the shoulder that can 

extend to a couple of meters to accommodate roadside clear zones [195], such that all road and 

traffic signs are present in the analysis. Algorithm 1 outlines the procedures implemented for right-

of-way trimming. 

 

Figure 5. Trimmed Road Section (Highlighted in Purple) 
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Figure 6. Algorithm (1) - Right of Way Trimming  

3.3 TEST SEGMENTS 

Throughout this analysis, multiple test segments with varying terrains and road geometries were 

used for various simulations to better understand the AV performance in different driving 

environments. Table 2 summarises the different road sections used in this analysis. Specifically, 

an 8 km stretch from Highway AB-816, situated southeast of Red Deer in a rural setting, was 
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chosen to analyze rolling terrain and vertical curve effects. Similarly, a 3 km section from AB-32, 

located in the rural west-central area of Alberta, was utilized for the same vertical curve 

assessments. 

Moving on to roadway width variations, a 15 km portion from AB-3, also known as 

Crowsnest Highway in southern Alberta, was analyzed. Lastly, a 4 km segment from Highway 

AB-11 (David Thompson Highway) in central Alberta, amidst mountainous terrains near Banff 

National Park, was investigated to study horizontal curves. A 4 km stretch of Highway AB-1A, 

connecting Canmore to Calgary, was also selected for the horizontal curve analysis due to the 

environment's mountainous nature. 

Table 2. Summary of Test Segments. 

ID Highway ID Length (km) Terrain Characteristics 

1 AB-816 4 Rolling Vertical Curves 

2 AB-32 3 Rolling Vertical Curves 

3 AB-816 4 Rolling Vertical Curves 

4 AB-3 4 Level Roadway Width  

5 AB-3 4 Rolling Roadway Width  

6 AB-3 3 Level Roadway Width  

7 AB-3 4 Level Roadway Width  

8 AB-11 2 Mountainous 
Horizontal 

Curves 

9 AB-11 2 Mountainous 
Horizontal 

Curves 

10 AB-1A 4 Mountainous 
Horizontal 

Curves 
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3.4 TRAJECTORY GENERATION 

The sensor has to be placed in its natural position in the virtual environment, typically on top of 

the AV, to generate accurate simulations. So, first, the position of the AV with respect to the road 

itself in the virtual environment has to be identified. Once this is done, the sensor's location can be 

specified to be above ground by a certain distance. 

In this analysis, it was assumed that the AV would follow the trajectory of the data 

collection vehicle, done by capturing the road points that had a scan angle rank of zero, or in other 

words, the road points that lie directly beneath the vehicle that collected that point cloud data. A 

parametric curve then smoothed the trajectory �⃗� (t). By setting a uniform spacing of 1m between 

the trajectory points that lie on �⃗� (t), a set of road points 𝒓 = {𝒓𝟏, 𝒓𝟐, …, 𝒓𝒏} was created, achieved 

by reparametrizing �⃗� (t) using the arc length, resulting in a function �⃗� (s) where s has a value of 0, 

1, …, 𝑁. 

Three direction vectors are defined for each road point 𝒓𝒊 on the parametric curve �⃗� (t): 

forwards 𝑓𝑖⃗⃗  ⃗, leftwards 𝑙𝑖⃗⃗  ⃗, upwards  𝑢𝑖⃗⃗ ⃗⃗ . These vectors are essential in identifying the orientation of 

the road points. The upward vectors U = { 𝑢1⃗⃗⃗⃗  ⃗,  𝑢2⃗⃗ ⃗⃗  ⃗, …,  𝑢𝑁⃗⃗⃗⃗⃗⃗ } can be derived by calculating the 

normal of the positive z component for a plane that contains nearby points and is centred around 

any given road point 𝒓𝒊 . The best least square fit for the defined plane is used to get accurate 

estimates of the upward vectors. As for the search range for nearby points, it is defined by a cube 

that has an edge length of 2 m. The forward vectors F = { 𝑓1⃗⃗⃗⃗ ,  𝑓2⃗⃗⃗⃗ , …,  𝑓𝑁⃗⃗⃗⃗  ⃗} were obtained using the 

upward component and the parametric curve �⃗� (t) using this equation:  𝑓𝑖⃗⃗  ⃗ =   �⃗� (t) -  𝑢𝑖⃗⃗ ⃗⃗  ⋅ 
 �⃗� (𝑡) ⋅ 𝑢𝑖⃗⃗⃗⃗  ⃗

 𝑢𝑖⃗⃗⃗⃗  ⃗⋅ 𝑢𝑖⃗⃗⃗⃗  ⃗
 . 

Last but not least, the leftwards vectors L = { 𝑙1⃗⃗⃗⃗ ,  𝑙2⃗⃗⃗⃗ , …,  lN⃗⃗⃗⃗ } were obtained by having the cross-

product of the upward and forward vectors  𝒍𝒊⃗⃗  ⃗ =  𝑢𝑖⃗⃗ ⃗⃗  ×  𝑓𝑖⃗⃗  ⃗. All the directional vectors were 

normalized to have a magnitude of 1. 

After calculating the direction vectors for each point, observer points can be obtained by 

translating the road points upwards by a fixed distance of 1.8m, which takes into account the height 

of the ego vehicle and an additional clearance to accurately capture the position of the LiDAR 

sensors on top of vehicle’s roof. AV models typically mount LiDARs at elevations close to this 
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figure [196] [197]. The translated observer points will inherently have the directionality of the 

leftward, forward, and upward vectors of the road points.    𝒐𝒊⃗⃗ ⃗⃗  =  𝒓𝒊 + 1.8 ⋅  𝒖𝒊⃗⃗⃗⃗  ⃗. 

 

Figure 7. Road Point Vs Observer Point 

 

Figure 8. Trajectory Points Demonstration 
 

3.5 VISTA VIEWPOINT SYNTHESIS 

The primary objective of this research is to investigate the dynamic nature of the surrounding 

environment and how AVs will interact with it. To achieve this, the FOV of the AV has to be 

simulated at different observer points along the road to capture what the AV would perceive from 

separate locations. By doing so, the data rate values required to process the scenes at each position 

or observer point can be determined effectively. 
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The VISTA simulator is one of many open-source, data-driven simulators available to 

researchers capable of implementing simulation-based techniques to develop sound algorithms for 

mobile agents [198]. VISTA is mainly sought-after for its ability to rapidly generate novel 

viewpoints and simulate sensors like cameras, LiDAR, and event-based cameras [198]. The 

generated perspective-based viewpoints exhibit excellent fidelity and precision based on 

predefined sensor configurations, allowing for a meticulous visualization of the surroundings 

around the vehicle at any instant along its trajectory. 

First, the perspective must shift to a local road point to produce accurate synthesized 

viewpoints by applying a rigid transformation to the point cloud. The point cloud has to be rotated 

and translated using the trajectory information to implement such a transformation. For a road 

point 𝑟𝑖 , the shifted point cloud from this point’s perspective will be 𝒫𝒾 = 𝒫 × 𝑅𝑖 + 𝑡𝑖, where 𝒫 

is the original point cloud, 𝑅 is the rotation matrix 𝑅 ∈ ℝ3𝑥3 and 𝑡 stands for the translation of the 

point cloud using the coordinates of the road point. Once done, the Euclidean distance between 

the newly found origin and the road points is calculated to cull all points not within the predefined 

sensor range. Finally, the elevation of the culled road points is subtracted by 1.8m to shift the 

perspective from a road point into an observer point. The culled range can be seen in Figure 9. An 

overview of this process is outlined in Algorithm 1. 

 

Figure 9. Culled Points Within the Sensor Range. 

Once the global 3D point cloud is shifted into a local view from the perspective of the 

synthesized sensor viewpoint located at the previously defined observer point through rigid 

transformation, some of the road points that were once visible in the original 3D point cloud data 
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will likely be occluded due to the difference in perspective. Hence, an algorithm is needed to 

prevent blending points in the foreground with those in the background. 

 

Figure 10. Algorithm (2) - Point Cloud Preparation for VISTA  

VISTA converts the 3D space view into a 2D image with polar coordinates representation 

where each pixel is represented by yaw (⍺) and pitch (𝛽) angles. In addition to that, the ray distance 

(d) that connects between the observer point location and each pixel is calculated. The size of each 
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pixel will be equivalent to the horizontal and vertical accuracies of the used sensor. Additionally, 

the total number of pixels in each direction will be the range of yaw or pitch angles divided by the 

accuracy of each respective direction. If the resolution is high, more pixels and fewer points will 

be found within each pixel. 

⍺ = arctan(
𝑃𝑖,𝑦

𝑃𝑖,𝑥
)  𝛽 = arcsin(

𝑃𝑖,𝑧

𝑑
)   d = ||𝑃𝑖||  (1) 

 For pixels that contain multiple points with variable depth values inside them, VISTA 

prioritizes the point that has the least depth and assigns its value to the whole pixel.  This process, 

in principle, is similar to traditional raycasting techniques [130], which handle occlusions by 

electing points closest to the sensor and filtering out the points in the background. 

 

Figure 11. Image Representation Polar Coordinates with Yaw (⍺) And Pitch (𝛽) Angles 

 

Figure 12. Image Representation from Local Observer Point Perspective with Depth Values 

Unlike traditional ray casting algorithms, the occlusion handling from VISTA is more 

advanced as it adds an extra layer of robustness in identifying the occluded pixels. To determine 

whether a pixel is visible or occluded using VISTA, its distance (d) is compared to the average 

distance of its neighbouring rays. If the average distance of neighbouring pixels is less than the 

depth of the pixel in question, this means that there are points in the foreground of this pixel that 

occlude it from the sensor’s perspective, and hence, this pixel is removed from the image. 
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Compared to traditional raycasting, the qualitative enhancement in VISTA's synthesized 

outputs is evident in Figure 13. Despite the sensor being positioned within the central circle of the 

road, the highlighted tree at the bottom of the frames should be occluded due to a line of trees 

obstructing the sensor's line of sight. Strikingly, it remains visible in the raycasting output. 

Moreover, the raycasting output displays an unreasonably high vegetation density at the frames' 

top, where self-occlusion should occur naturally. In contrast, VISTA shows a much lower density 

in this area. This discrepancy arises because raycasting sometimes allows rays to pass between 

neighbouring points that should be considered obstacles. Consequently, VISTA emerges as a more 

reliable tool for handling occlusion calculations, producing outputs that are considerably more 

accurate. 

  

Figure 13. Vista Outputs (White) vs. Raycasting Output (Colored) 
 

VISTA utilizes a variable called Culling Radius (λ) to define the region of neighbouring 

pixels for processing. The culling radius determines the number of neighbouring pixels to include 

in the calculations, thereby providing flexibility for users to choose the most suitable culling radius 

value that matches their data and the type of sensor used in simulations. 

 A culling radius of 0 will result in traditional raycasting outputs, as the algorithm will not 

use information from the surrounding pixels to check the visibility of the pixel in question. A value 

of one would mean that the algorithm will create a search radius one pixel wide around the queried 

pixel, as seen in Figure 14. VISTA then calculates the average depths of the surrounding pixels 

and compares it to the depth of the pixel in question to make a more informed decision about its 

visibility. That said, if the culling radius value is too high, it leads to inaccurate point cloud 

representations. When the search radius widens, the algorithm loses its locality and incorporates 

more distant points in its average neighbouring depth calculations. Naturally, this invites more 
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noise into the calculations, resulting in unstable outputs. For example, points far from the sensor 

are often sparse and low in numbers. By increasing (λ), far points are more susceptible to 

occlusions as the algorithm would include more neighbouring pixels, which will probably have 

shorter depths. Conversely, points located near the sensor are more densely packed, and if the 

search radius is increased, there is a bigger chance they would remain visible to the sensor. 

 

Figure 14. Culling Radius = 1 for the Middle Pixel (Neighboring Pixels in Blue) 

Although the differences might be subtle through the visual examination of the outputs, 

Figure 15 to Figure 20 show the discrepancies in the VISTA outputs using different culling radius 

values. The output with a culling radius of 0 is very dense, as shown in the number of captured 

points (401,655). Such a number is unrealistic from this perspective. Using a culling radius of 8 

returned a total of (238,167) points for the same frame. However, it was observed in the outputs 

that the level of detail is heavily obscured in the mid to far regions, which again does not accurately 

capture the outputs from this perspective. Finally, using a value of 2 for the culling radius produced 

more consistent and reasonable outputs along the sensor’s range where the density of points was 

most fitting for the analysis. Hence, it was adopted for this study. 
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Figure 15. VISTA Image Representation with λ = 
0 

 

 

Figure 16. VISTA Outputs with λ = 0 

 

 

Figure 17. VISTA Image Representation with λ = 
2 

 

 

Figure 18. VISTA Outputs with λ = 2 

 

 

Figure 19. VISTA Image Representation with λ = 
8 

 

Figure 20. VISTA Outputs with λ = 8 

Once the VISTA simulator is finished removing the occluded pixels, it proceeds with 

converting the points from the image representation back to the cartesian coordinate system by 

transforming the calculated (⍺𝑖), (𝛽𝑖), and (𝑑𝑖) of each pixel back to (x, y, z) by applying the inverse 
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of the transformation used in equation 1. Algorithm 3 presents an overview of the VISTA 

viewpoint synthesis. 

 

Figure 21. Algorithm (3) - Synthesized Viewpoints from VISTA 
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3.6 DATA RATE CALCULATIONS 

After developing the synthesized viewpoints for each observer point along the vehicle’s trajectory 

and removing the occluded points based on each unique perspective, the following step in the 

framework is to quantify the data rate requirements for the AV for each frame or scene based on 

the distribution of points within each frame. 

A recently published report estimated the data rate requirements that would prevent AVs 

from causing roadway fatalities. The report established that to achieve such a goal, the AV had to 

possess the ability to see sooner, clearer, and farther. In order to provide the AV with such 

capabilities, the onboard computer had to process a tremendous amount of sensor data in real time 

to reconstruct the entire scene around the ego vehicle with sufficient accuracy and frequency that 

would enable the AV to evade any possible obstacles in its path. The report developed an equation 

that captured all the necessary elements for estimating the required data rates [84]. 

Since there has not been much literature regarding the development of equations that would 

enable the rough estimation of the AV’s expected performance under different weather and driving 

conditions, the authors of this paper opted to adopt the equation developed by the aforementioned 

report and use it not to report on definite, absolute data rate values. Instead, the goal is to use the 

equation to explain AVs' performance when encountering different driving environments and how 

their equipped LiDAR sensors are expected to interact with such environments. Additionally, the 

research’s attention is directed toward the static environment and does not consider the other 

dynamic objects on the road, like vehicles, cyclists, or pedestrians. 

The adopted equation had some assumptions which were also considered in this research. 

The first assumption is that calculations would be performed to simulate an end-to-end model for 

the onboard computer, meaning that for the onboard computer to complete the four core tasks of 

environment perception, localization, decision-making, and vehicle control, it would have to 

process the estimated data rate requirements in real time. The second assumption is that the sensors' 

point cloud data must be voxelated to calculate delta (Δ), which is the percentage of occupied 

voxels. Additionally, the equation suggests that the onboard computer will implement atomic norm 

compressed sensing, reducing the required calculations by the fraction of occupied voxels. 
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Compressed sensing algorithms like the Atomic Norm are known for their ability to handle 

signal processing problems by exploiting the signals' sparsity, allowing them to reduce the required 

number of measurements while maintaining a certain level of performance [199] [200]. Since AVs 

are naturally equipped with sensors that operate by transmitting and receiving signals like LiDAR 

and radar [201], this algorithm was incorporated to address the big data problem caused by LiDAR 

sensors by minimizing the needed computations. 

For each frame (i) in the point cloud, the corresponding data rate value can be calculated 

using Equation 2. 

𝒅[𝑖] =
𝑅(θℎ − θ𝑙)(ϕℎ − ϕ𝑙)

δ𝑅δθδϕ
⋅
32𝐹𝑏Δ𝑖 log (

1
2Δ𝑖

)

3SNRmax range
(2) 

  The adopted equation considers multiple factors instrumental in estimating the required 

data rates for the AV to process its surroundings. And since the ego vehicle's primary source of 

sensory vision is the LiDAR, the considered factors are mainly related to the LiDAR equipped 

with the AV. In the proposed equation, R is the maximum sensor’s range in meters, θ is the azimuth 

or horizontal angle of the sensor, ϕ is the elevation or vertical angle of the sensor, and they are 

both in degrees, δ𝑅, δθ, δϕ are the range, azimuth, and elevation precisions, respectively, which 

are also in meters and degrees. F is the refresh rate for the used sensor in hz. 

Analog-to-digital (ADC) LiDAR digitizes the oncoming signals to obtain range 

information [208], and b is the accuracy in bits for each sampled signal, which measures the 

required data rates in bits/s. For this study, a value of 12 is used. Turning to delta (Δ), it is the 

percentage of occupied voxels, and finally, SNRmax is the signal-to-noise ratio at the maximum 

range in dB. 

All the terms of the equation are sensor-specific except for the delta (Δ), meaning that they 

can be treated as constants unless the sensor is changed because each sensor has its operational 

field of view that is dictated by its range (R), its horizontal (θ) and vertical angles (Ø) along with 

their precisions. The frame rate is also sensor-related as it denotes the frequency by which the 

sensor captures a scene. 

The signal-to-noise ratio (SNR) is a term that enables the simulation of weather conditions 

in the analysis. It is established that LiDAR operating on higher SNR levels will enhance their 



55 

 

detection range and precision [202]. Furthermore, it is understood that in inclement weather 

conditions, the performance of LiDAR is affected significantly as the medium through which the 

signals of the LiDAR travel tend to carry a lot of noise. Especially at longer ranges, the signal's 

power reflected off a target is heavily attenuated, which might cause mis-detections if the signal 

strength falls below the noise strength [203], thus increasing the number of computations to 

process the surroundings accurately and, by extension, increase the data rate requirements. For 

instance, as the rain intensity increases, the point cloud perceived by the LiDAR decreases, directly 

affecting the AV’s ability to detect and track objects [204]. To maintain optimal performance 

levels, the strength of the signal has to be higher than the strength of the ambient noise, resulting 

in a minimum SNR of more than one. A value of 12 dB, which simulates a signal-to-noise power 

ratio of 16, has been used in this analysis to simulate normal weather conditions [205]. 

As outlined in [206], heavy rain weather causes attenuation to 905nm LiDAR’s signal 

strength with a rate of 35 𝑑𝐵 𝑘𝑚⁄ . It was reported that LiDAR  lose 10-15 dB from the strength of 

their signals within 50 m of fog [207]. Meanwhile, in a controlled lab experiment, the received 

signal power for lasers operating on 905nm wave length through thick fog and smoke was observed 

to be approximately -30 and -40 dB, respectively [208]. 

𝑆𝑁𝑅(𝑑𝐵)  =  10 ∙ log(
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
) (3) 

Delta is a variable that captures the density and complexity of the surrounding environment 

from the perspective of the equipped LiDAR sensor. It can be calculated by first voxelating the 

point cloud space and then finding the portion of the voxels occupied by points. In this framework, 

a voxel is either occupied or empty, so if a single voxel is occupied by more than one point, only 

a single point is kept, and the rest of the points are removed from the calculations. 

Voxelization of point clouds is a process that is typically used to reduce the volume of the 

point cloud data by their discretization into a 3D grid in space where the point cloud is represented 

by a set of voxels  [146]. Typically, voxels are laid out in a cartesian space where their geometry, 

length, width, and height are usually defined by a single value that dictates the voxel size, which 

also defines the resolution of the point cloud as a whole [209]. However, in this framework, 

voxelization was carried out in spherical coordinates to simulate the ring pattern of LiDAR and 

the inherent sparse nature of points that are distant from the sensor [210]. 
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In this spherical system, the voxel size will be smallest near the sensor and largest at the 

end of the sensor’s range. By doing so, there will be more voxels in the near range to accommodate 

the higher number of points and fewer voxels in the far range to match the lesser number of points 

at the periphery, thus minimizing the loss of information or points during the analysis while 

maintaining efficient and accurate results [211]. The voxel size is contingent on the precision of 

the used LiDAR sensor in the simulations, and a demonstration of voxel sizes along the sensor 

range using a spherical coordinate system is shown in Figure 22. 

 

Figure 22. Varying Voxel Sizes Along the Sensor’s Range 

In the spherical coordinate system, each point in space is defined by azimuth (θ) and 

elevation (∅) angles, along with the range (ρ), which is the Euclidean distance from the observer 

point. Converting the cartesian system to the spherical system can be done through the following 

equations, where 𝜃 is measured counterclockwise from the positive x-axis, and its values range 

from 0° to 360°, while 𝜙 is calculated from the negative z-axis and can have values between 0° 

and 180°. Figure 23 demonstrates a voxel in the spherical grid space. Note that the angles 

calculated in this equation are in degrees. 

𝓟(𝑥, 𝑦, 𝑧) ⇒ 𝓟(𝜌, 𝜃, 𝜙)

{
 
 

 
 𝜃 = tan−1 (

y

𝑥
)

𝜙 = cos−1 (
𝑧

√𝑥2 + 𝑦2
)

𝜌 = √𝑥2 + 𝑦2 + 𝑧2

(4) 
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Figure 23. Voxels in Spherical Coordinates 

Identifying the locations of all occupied voxels in the space involves calculating the indices 

of each occupied voxel. Then, the floor of the indices is taken since they correspond to specific 

locations on the spherical grid; hence, they have to be integers. In doing so, the points are grouped 

into their respective voxel. The voxel index corresponds to the location of the occupied voxel in 

the spherical grid and can be obtained by dividing the spherical coordinates of each point by their 

respective precisions (δ𝑅 , δθ, δϕ) to get their projection inside the spherical grid system defined 

by the sensor configuration. Finally, after flooring the voxel indices, they are reverted to their 

spherical coordinates by multiplying them with the defined precisions. 

The density of the points at any region is dictated by the angular precision, which, in 

principle, controls the minimum gap between two consecutive distinguishable points in the cloud, 

as seen in Figure 24 and Figure 25. Naturally, the spacing between two neighbouring laser beams 

increases away from the sensor since they are all fired from the location. Hence, this gap reaches 

its biggest value at the maximum sensor range, leading to a notable reduction in point density. The 

gap is minimal when close to the sensor, resulting in significantly higher point cloud densities 

[212].  

𝑮𝒂𝒑 = 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒕𝒐 𝒕𝒉𝒆 𝒕𝒂𝒓𝒈𝒆𝒕 𝒙 𝐭𝐚𝐧 (𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏) (5) 
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Figure 24. Top View for Sensor’s Angular 
Resolutions (Horizontal Precision) 

 

Figure 25. Side View for Sensor’s 
Angular Resolutions (Vertical Precision) 

Figure 26 showcases a planar view of the voxelated space in polar coordinates, where the 

points captured by the sensor are in blue, the occupied voxels are in red, and the green points 

correspond to the unique base point of the voxel. 

 

Figure 26. Planar View for Occupied Voxels and Their Base Points 

Upon voxelating the point cloud, there are two approaches to calculating the percentage of 

occupied voxels. In this research, the analysis will be mainly carried out using the occupancy 

approach, and the second approach (volumetric approach) will highlight the difference between 

the two methods. 
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3.6.1 Occupancy Method 

The primary methodology employed for this analysis centres around the occupancy method. This 

approach effectively complements using a spherical coordinate system for voxel representation. It 

considers the characteristic ring pattern effect produced by LiDAR sensors, where point density is 

notably greater near the sensor and decreases with distance. In this method, the calculation of the 

delta involves determining the ratio of the total number of occupied voxels (𝑘) to the total number 

of voxels within the space. Points are assigned equal contribution weights regardless of their 

position from the sensor in this approach. However, the proximity of points to the sensor results 

in a higher contribution due to their dense presence. Conversely, the contribution of more distant 

points is lower, attributable to their sparser distribution. The delta value for each frame (i), 

following the occupancy approach, can be calculated using Equation 6. 

Δ𝑖 =
𝑘

⌊
𝜃ℎ − 𝜃𝑙
𝛿𝜃

⌋ × ⌊
𝜙ℎ − 𝜙𝑙
𝛿𝜙

⌋ × ⌊
𝑅
𝛿𝑅
⌋

(6)
 

3.6.2 Volumetric Method 

The volumetric method adopts a different approach in calculating delta where more weight is 

assigned to the distant points rather than the closer ones to account for the scarcity in their numbers. 

This calculation is done by utilizing the voxel size, which is maximum at the sensor’s maximum 

range and minimum in the vicinity of the sensor. Hence, the contribution of the distant points will 

be high owing to their bigger size. This method attempts to simulate the complexity of processing 

distant points as they are typically scarce in numbers and will require higher sampling rates to be 

accurately probed by the sensor. Such points pose a significant challenge for AVs because 

recognizing and responding to them accurately is inherently difficult [213]. 

The corresponding delta can be calculated by dividing the aggregate volume of all occupied 

voxels 𝒱𝒾 by the total volume (V) defined within the bounds of the sensor's field of view (FOV). 

To obtain 𝒱𝒾, the voxel indices must revert to spherical coordinates by multiplying the voxel 

indices by their respective precisions, resulting in the base points 𝑝𝑖 of all occupied voxels where 

𝑝𝑖 = {𝑝1, 𝑝2, … , 𝑝𝑘}(θ,ϕ, ρ). From the voxel representation 𝒗𝒊, for each unique voxel’s base point 

(j), the volume of the occupied voxel can be calculated through integration by knowing the 
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precisions of the sensor. Upon calculating the volume of all occupied voxels up the 𝑘th base point, 

𝒱𝒾 can then be obtained by summing the volume of the occupied voxels as seen in the following 

equation: 

𝒱𝒾 =∑∫ ∫ ∫ 𝜌𝑗
2

𝜃𝑗+𝛿𝜃

𝜃𝑗

sin𝜙𝑗

𝜙𝑗+𝛿𝜙

𝜙𝑗

𝜌𝑗+𝛿𝜌

𝜌𝑗

𝑘

𝑗=1

 𝑑𝜃 𝑑𝜙 𝑑𝜌 (7) 

Finally, delta can be calculated using the volumetric approach by dividing the volume of 

occupied voxels by the total volume covered by the sensor FOV using Equation 5. 

Δ𝑖 =
𝒱𝒾

∫ ∫ ∫ 𝑅2 sin𝜙
𝜙ℎ
𝜙𝑙

𝜃ℎ
𝜃𝑙

𝑅ℎ
𝑅𝑙

 𝑑𝜙 𝑑𝜃 𝑑𝑅
(8) 

3.7 PADDING REGIONS 

Owing to the 360° vision of the LiDAR sensor, the surroundings can be effectively scanned both 

ahead and behind the sensor, with a distance equivalent to its operational range. Hence, to 

overcome the problem of having a start and an end to the test segments, where at the beginning of 

the road section, the region behind the sensor is typically empty, and conversely, at the end of the 

road section, the region ahead of the senor is also vacant, a solution is devised through the 

introduction of padding regions at these extremities of the test segments. These regions are 

introduced at both the start and the end of the road section and have a range equivalent to the 

sensor’s range. In doing so, the consistency of the calculations will not be compromised, as this 

will ensure that the calculation region for each frame along the road section is constant and equal 

to twice the sensor’s range. Figure 27 shows an example of road section padding. 
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Figure 27. Padded Regions in Blue at The Ends of a Road Section 

3.8 SENSOR SPECIFICATIONS 

The various parameters of the sensor specifications used in the simulations were modelled on real-

world sensors. In particular, The state-of-the-art Velodyne Alpha Prime LiDAR [214] sensor, also 

known as (VLS-128), is used as the primary sensor for this framework. Table 3 illustrates the 

adopted values for the range of the sensor (R), the ranges for both the horizontal (θ) and vertical 

angles (ϕ), along with the sensor’s precisions (δ) and operating rotational rate (𝐹). Figure 29 and 

Figure 30 demonstrate a graphical representation of the sensor’s FOV. 

 

Figure 28. Velodyne Alpha Prime (VLS-128) LiDAR 

Table 3. VLS-128 Sensor Specifications. 

Parameter 𝑹 𝛉𝒉 𝛉𝒍 𝛟𝒉 𝛟𝒍 𝛅𝑹 𝛅𝛟 𝛅𝛉 𝑭 

Value 245m 180° -180° 15° -25° 0.03m 0.11° 0.11° 20hz 
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Figure 29. Sensor Field of Vision (Top View) 

 

 

Figure 30. Sensor Field of Vision (Side View) 
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4 ANALYSIS AND RESULTS 

The simulations implemented in this analysis are divided into two folds. The first fold comprises 

the full environment (FE) analysis, and the second fold focuses on the road's main relevant features 

(RRFs). This approach enables a comparative evaluation of results, elucidating the extent of 

additional computational demands arising from extraneous roadside elements like vegetation. 

Also, this analysis is dedicated to attempting to understand the relationship between the 

anticipated performance of the AV in different road environments in terms of the required 

processing power that the AV has to possess to traverse the road safely. The dynamic objects such 

as pedestrians, vehicles, and cyclists were neglected to reduce the analysis's complexity and isolate 

the different elements of the road geometry to better explain their influence on the ego vehicle’s 

performance. Moreover, the impact of occlusion will also be demonstrated and discussed. 

 The foundation of this analysis rests on the premise that the ego vehicle predominantly 

relies on a LiDAR sensor as its primary sensory input, situated at a height of 1.8 meters above road 

level. Furthermore, ideal weather conditions are presumed throughout the analysis. Lastly, the 

specifications for the LiDAR sensor values are drawn from Table 3. The outputs of this analysis 

measure the expected values for the data rate requirements at each frame of the road section. The 

analyzed frames are spaced 1m apart across the road section. Furthermore, images from Google 

Maps Street View [221] will be provided along with the graphical data rate requirements outputs 

to validate that the analysis findings are reflected in the real-world environment. 

4.1 VALIDATION OF IMPLEMENTED METHOD 

Before engaging in the principal analysis, some validations were required to ascertain the quality 

of the proposed framework. Some control sections were extracted from the LiDAR point cloud 

data to this end. Such control sections were selected to match specific criteria, mainly the sections' 

flatness and the absence of any potential noise in the data that might cause random output 

fluctuations. Knowing that the vertical grade is rarely flat for highways, the selected road sections 

mostly lay on a steady vertical grade. Additionally, the analysis ignored the roadside elements due 

to the inherent randomness in their densities. Through this analysis, the variation in the collected 

LiDAR point cloud densities can be demonstrated and quantified, and their impact on the data rate 
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requirements can be assessed. In this analysis only, the range of the sensor was assumed to be 

100m as the road sections that were fit to use as control sections were often short in length. 

 Using Cloud Compare software [215], the point cloud density (𝒹) can be measured for 

every point within the road section. This was achieved by establishing a search radius (ℛ) and then 

dividing the number of points within this region (𝒩) by the corresponding volume of the defined 

neighbourhood. This tool was used to check for the consistency of road point densities for all the 

road sections used in this analysis; an arbitrary value of 0.5m for the search radius was used 

throughout the calculations. 

𝒹 =
𝒩

4
3 ∙ 𝜋 ∙ ℛ

3
(8) 

Four control sections were used for this analysis, with lengths between 600 and 800 m. The 

change in the vertical gradient was minimal across the analyzed sections, as shown in Figure 31 

and Figure 35. The chosen road sections had no significant crest or sag vertical curves that might 

cause major disturbance on the outputs. Additionally, there were no horizontal curves in the control 

sections to maintain the integrity of the analysis. 

From the point density calculations, it was clear that the region surrounding the road 

trajectory had the highest point density, whereas the regions farthest from the road trajectory had 

lower values, as seen in Figure 32 and Figure 36 because the path chosen for the simulated vehicle 

and sensor was modelled to mirror the course of the scanning vehicle. The regions closest to the 

LiDAR sensor naturally have higher point densities, also reflected in the simulations. Moreover, 

it was also observed that the different point density regions had variations in their values across 

the road sections, reflected in the data rate calculations, and influenced the change in the data rate 

values. In addition, the extracted trajectory used in the analysis is not perfectly straight and can 

sometimes deviate slightly, adding to the fluctuations of the data rate values. 

 On comparing the different calculation approaches, it was noticed that the data rate values 

recorded by the occupancy method were consistently higher than those of the volumetric method 

because of the difference in methodology between the two approaches, as seen in the results. This 

is because the ring effect of LiDAR sensors and the implementation of a spherical coordinate 

system for the voxels prompts the density of the point cloud in the vicinity of the sensor to be 
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much higher. Therefore, the number of occupied voxels will also be much higher than those on the 

periphery of the sensor. Consequently, in the volumetric method, the voxels with higher 

contribution are few, resulting in lower (∆) delta values and overall lower data rate values, unlike 

the occupancy method where all voxels are given the same weight, which means that the high 

number of occupied voxels in the near end will have more influence on the data rate calculations. 

 Moreover, it can be inferred from this analysis that the volumetric method is much more 

sensitive to fluctuations in values as it relies on the point density around the sensor along their 

distribution in space compared to the occupancy method, seen in the range of changes in values 

between the two approaches in the different road sections where higher variations were reported 

using the volumetric method. 

Table 4 demonstrates the recorded maximum deviations from the average data rate values 

across the four control sections using the occupancy and volumetric approaches. Following the 

occupancy method, the recorded change in values for the control sections ranged from 0.6% to 

1.1%, with an average of approximately 0.85% change in the data rate values. On the other hand, 

the volumetric method, being more sensitive to fluctuations, produced slightly higher variations in 

the data rate values that ranged from 1.6% to 3%, which amounted to an average of 2.3%. 

From this analysis, it was understood that the input point cloud density for the road points, 

along with the generated trajectory, influenced the fluctuations in the output data rate values but 

only slightly. These variations were seen to be insignificant using the occupancy approach, which 

is the primary calculation method adopted in this analysis. In contrast, the volumetric method has 

a more observable impact on road point density. Nonetheless, even this impact can be regarded as 

minimal overall. 
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Table 4. Data Rate Calculations for Different Control Sections. 

Control 

Section 
Length 

% Maximum Deviation Using 

Occupancy Method 

% Maximum Deviation 

Using Volumetric Method  

1 800m 0.6% 2.8% 

2 600m 1.16% 2.6% 

3 850m 0.86% 1.6% 

4 700m 0.84% 3% 

 

 

Figure 31. Vertical Profile for Control Section 
(1) 

 

Figure 32. Point Density for Control Section 
(1) 

 

Figure 33. Occupancy Approach Data Rate 
Values for Control Section (1) 

 

 

Figure 34. Volumetric Approach Data Rate 
Values for Control Section (1) 
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Figure 35. Vertical Profile for Control Section 
(2) 

 

Figure 36. Point Density for Control Section 
(2) 

 

Figure 37. Occupancy Approach Data Rate 
Values for Control Section (2) 

 

Figure 38. Volumetric Approach Data Rate 
Values for Control Section (2) 

 
Figure 39. Occupancy Approach Data Rate 

Values for Control Section (3) 

 
Figure 40. Volumetric Approach Data Rate 

Values for Control Section (3) 
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4.2 VERTICAL CURVES 

The primary objective of this analysis is to examine the impact of vertical curves on data rate 

requirements in road sections. Vertical curves, which are common features found in most 

roadways, present a challenge for AVs because of their potential to compromise the line of sight 

or reduce visibility due to occlusions. Understanding the implications of these curves is crucial for 

ensuring AVs' safe and efficient operation.  

 

Figure 41. Road Section (1) FE Layout 

 

Figure 42. Road Section (1) RRFs Layout 

 

Figure 43. Road Section (2) FE Layout 

 

Figure 44. Road Section (2) RRFs Layout 

 

Figure 45. Road Section (3) FE Layout 

 

Figure 46. Road Section (3) RRFs Layout 
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To conduct a comprehensive investigation, the analysis compared the vertical curve impact 

once on the relevant road features (RRFs) and once on the full environment (FE). The analysis 

employed LiDAR vision simulations on three road sections (1-3) with varying vertical grades to 

simulate real-world scenarios; Figure 41 to Figure 46 showcase the general layout of the analyzed 

road sections. This analysis aims to investigate the influence of the vertical curves on the data rate 

requirements and overall performance of AVs in a controlled environment. 

4.2.1 Vertical Curves (RRFs) Analysis 

The average values of the data rate requirements at the flat road sections will be compared to their 

counterparts at vertical curve locations, including sag and crest curves, to isolate the vertical 

curves' influence on the AVs' performance. 

 On studying the data rate requirements graph for the road sections, a pattern was observed 

where the data rate values were, on average, lower at the crest vertical curves when compared to 

the sag vertical curves due to occlusion from the road geometry. For instance, the lowest values in 

the first road sections were traced to different crest locations, such as frames 665 and 1525. 

Conversely, the highest values on the graph, for example, at frames 480 and 881, were located on 

sag curves. These frames are demonstrated from Figure 50 to Figure 53. The lowest data rate value 

at crest locations was approximately 1.01𝑥108 𝑏𝑖𝑡𝑠/𝑠 while the highest value at the sag locations 

was 1.104𝑥108 𝑏𝑖𝑡𝑠/𝑠. Knowing that the average values at flat sections of the road were 

1.05 × 108 𝑏𝑖𝑡𝑠/𝑠, a 5.1% increase in values was observed in sag curves, and a 3% decrease was 

seen at crest locations for the first road section. The sudden drop in values around the 2500m mark 

was due to an on-road vehicle occluding some road points. 

Similar trends were evident in the second road section. Once again, on average, the data 

rate values at sag curve locations outperformed those at crest curves. In the second road section, 

the lowest recorded value at crest curves, exemplified by frames 824 and 1621, stood at 

0.98𝑥108 𝑏𝑖𝑡𝑠/𝑠, whereas the highest at sag curves, represented by frames 600 and 1135, reached 

1.04𝑥108 𝑏𝑖𝑡𝑠/𝑠. When these values are compared to the average value at flat sections, which 

averaged 1.01𝑥108 𝑏𝑖𝑡𝑠/𝑠, an increase of 8.3% at sag curves and a 4.4% decrease in values at 

crest curves was observed. 
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Figure 47. Data Rate Requirements for Road 
Section (1) 

Figure 48. Data Rate Requirements for Road 
Section (2) 

 

Figure 49. Data Rate Requirements for Road Section (3) 

This consistent pattern persisted in the third road section, where frames such as 257 and 

1700 exhibited the lowest values, primarily due to their location on crest curves, averaging 4.4% 

lower than values observed on flat road sections. Conversely, frames like 543 and 1240 recorded 

the highest values, with a maximum increase of 7% compared to flat sections. 

Naturally, the visible range of the sensor is controlled by the geometry of the road, where 

the grade percentage is a crucial feature. For instance, the first road section's crest curve at frame 

1525 was characterized by +3.6% and -0.8% tangents, respectively. As illustrated in the VISTA 

outputs in Figure 62, the range of vision on the -0.8% slope extended to approximately 200 meters, 

while the range on the +3.6% slope was restricted to 72 meters. Similarly, the crest curve at frame 

1743 in the third road section was formed by +3.24% and -0.5% tangents. Upon examination of 

the VISTA outputs, shown in Figure 63, it was noted that the range of vision ranged between 115 

meters at the +3.24% grade and 190 meters at the -0.5% grade, demonstrating that the road's 
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geometry indeed occludes parts of the road, typically those lying beyond the sensor's short range 

(beyond 50-60 meters). 

By investigating the number of points captured within the sensor's short range and 

comparing them to the total number of points within an individual frame, it was established that, 

as a general trend, when only the RRFs are considered, approximately 95-97% of the captured 

points are located within the initial 50-60 meters around the sensor. 

 

Figure 50. Road Section (1) - Frame 1525 
(Crest) Location on The Road Section 

 

Figure 51. Road Section (1) - Frame 1525 
Location on Google Maps 

 

 

Figure 52. Road Section (1) - Frame 480 (Sag) 
Location on The Road Section 

 

Figure 53. Road Section (1) - Frame 480 
Location on Google Maps 

 

 

Figure 54. Road Section (2) - Frame 1621 
(Crest) Location on The Road Section 

 

Figure 55. Road Section (2) - Frame 1621 
Location on Google Maps 
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Figure 56. Road Section (2) - Frame 1135 
(Sag) Location on The Road Section 

 

Figure 57. Road Section (2) - Frame 1135 
Location on Google Maps 

 

 

Figure 58. Road Section (3) - Frame 257 
(Crest) Location on The Road Section 

 

Figure 59. Road Section (3) - Frame 257 
Location on Google Maps 

 

 

Figure 60. Road Section (3) - Frame 543 (Sag) 
Location on The Road Section 

 

Figure 61. Road Section (3) - Frame 543 
Location on Google Maps 

This observation is exemplified by comparing frames 2552 and 665 in the first road section, 

situated on sag and crest curves, respectively. As shown in Figure 64, the VISTA outputs of frame 

2552 (depicted in white) revealed a range of vision extending to 200 meters on each side, whereas 

it was constrained to 93 meters in frame 665 (shown in red). Frame 2552 contained 44,500 points, 

while frame 665 held 41,300 points. The number of points beyond the 90m range of vision in 

frame 665 amounted to only 756 points. This quantity constitutes a mere 1.6% of the total points 

in frame 2552. Such observations align with the typical behaviour of LiDAR sensors, wherein the 
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number of points in the far range is significantly lower than those close to the sensor, thus 

explaining why there are small margins among the data rate values in the vertical curve analysis, 

especially when considering the RRFs only. 

  

Figure 62. Road Section (1) - Frame 1525 
VISTA Outputs (Vision Range = 72 - 200m) 

Figure 63. Road Section (2) - Frame 1743 
VISTA Outputs (Vision Range = 115 - 190) 

 

 

Figure 64. Road Section (1) - Comparing the Extent of Vision Between Frame 2552 Located on 
a Sag Curve (Depicted in White) and Frame 665 Located on a Crest Curve (Depicted in Red) 

4.2.2 Vertical Curves (FE) Analysis 

This analysis will compare the data rate requirements of the full environment (FE) and the relevant 

road features analysis (RRFs). Two distinct observations became apparent in this comparison. 

Firstly, the influence of vertical curves, whether sag or crest curves, was generally masked, and 

the previously established patterns were hardly visible. Secondly, data rate requirements increase 

substantially if the analysis considers the full scene.  

Within the FE analysis, roadside features, particularly vegetation, will mainly exercise 

control over data rate values. The highest data rate value in the FE analysis is expected to be 

primarily found at locations with high vegetation density near the AV. Road geometry will now 
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serve as an auxiliary feature that can either boost or reduce data rate requirements at various 

vertical curve locations. 

For instance, in road section (1), it was observed that the data rate requirements have 

experienced a fivefold increase in the FE analysis compared to the RRFs analysis. As for the data 

rate values, frame 880 was situated on a sag curve, resulting in a high value in the RRFs analysis. 

However, in the FE analysis, the density of surrounding vegetation was low, and the right side of 

the road was occupied by a waterbody, as demonstrated in Figure 66 and Figure 67, leading to a 

reduction in the total number of points captured by the sensor and, consequently, a decrease in 

overall data rate requirements. On the contrary, frame 480 yielded high values in both the RRFs 

and FE analyzes because it was located not only on a sag curve but also in an area with high 

vegetation density. These factors, in turn, contributed to it marginally having the highest data rate 

requirements in this road section. 

On analyzing the second road section, the vegetation density was generally higher than the 

first and third sections. Consequently, a notable increase in data rate values was observed across 

the entire road section, particularly within the first 1.5 km, where vegetation density on both sides 

of the road remained consistently high. As a result, minor fluctuations were encountered in data 

rate values within this region. Figure 69 and Figure 70 illustrate the differences in the environment 

layout and vegetation density. Frame 1100 exhibited the highest data rate value, primarily due to 

its location's relatively high vegetation density. Meanwhile, frame 1600 recorded one of the lowest 

data rate values, owing to that area's comparatively lower vegetation density. Moreover, the 

positioning of frame 1100 on a sag curve likely contributed to its high value. Similarly, a crest 

curve at frame 1600 likely contributed to its low value.  

However, this is not always the case. When examining the data rate values of frames 600 

and 824, which were situated on a sag curve and a crest curve, respectively, frame 600 naturally 

had a higher value than frame 824 in the RRFs analysis. Nevertheless, in the FE analysis, it was 

observed that data rate requirements at frame 824 were higher than at frame 600, indicating that 

the primary determinant of data rate values is vegetation density, which was slightly higher at 

frame 824. 
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Figure 65. Road Section (1) FE (Purple + Left Axis) vs RRFs (Yellow + Right Axis) 

  

Figure 66. Road Section (1) - Frame 880 
VISTA Output 

Figure 67. Road Section (1) - Frame 880 
Location on Google Maps 

 

Figure 68. Road Section (2) FE (Purple + Left Axis) vs RRFs (Yellow + Right Axis) 
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Figure 69. Road Section (2) – High Vegetation 
Density on Both Sides of Frame 1100 

Figure 70. Road Section (2) – Low Vegetation 
Density on One Side of Frame 1600 

Finally, in the third road section, similar observations were made as the first two, with data 

rate values being approximately five times higher. Regarding the influence of the vertical curve 

on the full environment (FE), frames 257 and 543 serve as prime examples to illustrate the limited 

impact of road geometry in the presence of roadside features. Frame 257, positioned on a crest 

curve, yielded lower data rate values than frame 543, situated on a sag curve in the RRFs analysis. 

Nevertheless, this pattern was reversed in the FE analysis since the vegetation density at frame 543 

was the lowest across the entire road section, which resulted in recording the lowest data rate 

requirements. Figure 72 and Figure 73 show the difference in the vegetation density in frames 257 

and 543. 

 

Figure 71. Road Section (3) FE (Purple + Left Axis) vs RRFs (Yellow + Right Axis) 
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Figure 72. Road Section (3) – High Vegetation 
Density of Frame 257 

Figure 73. Road Section (3) – Low Vegetation 
Density of Frame 543 

4.2.3 Summary 

LiDAR has limitations in its scanning operation regarding the vertical FOV. As mentioned 

previously, the distance between two consecutive LiDAR beams increases the further they travel 

away from the sensor owing to the resolutions of the azimuth and elevation angles, meaning that 

the number of points collected at the far end of the range will be significantly lower than those 

near the sensor. Additionally, owing to the 360° vision of the LiDAR sensor, at positive or negative 

grades, the forward vision of the sensor will have a different perspective than the backward vision. 

For example, suppose the vehicle is going up on a positive grade. In that case, the forward portion 

of the FOV will generally have a limited range because the points ahead are at higher elevations 

and will be more likely to occlude each other, unlike the backward portion, which will have more 

range due to the elevated position of the sensor relative to the road points below minimizing the 

occlusion problem. Typically, this balances out the total number of points captured by the sensor, 

whether the sensor is at an upgrade or a downgrade, and by extension, the data rate requirements 

would be similar. 

A clear pattern of peaks and drops throughout the tested road sections was observed 

throughout the analysis of vertical curves, which closely resembles the inverse of the vertical 

geometry of the roads themselves. Frames found at the crests of the vertical curves have, on 

average, lower values than frames found at straight sections. On the other hand, frames at the 

centre of sag curves will have higher values than straight sections on average because, at sag 

locations, the LiDAR sensor can hit more points as the vertical angle of the sensor at this position 
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covers a higher portion of the road. On top of the crest curve, in addition to the self-occlusion of 

the road, it is expected that an increased number of the beams fired from the sensor would land 

beyond the sensor range, and hence, fewer points will be hit. Therefore, the sensor will have less 

point density in total. 

 However, using the occupancy method in the calculations, where all points are assigned 

equal weights regardless of their position, has resulted in minor differences between the values at 

the crest curves and sag curves because even though there might be occlusions that occlude some 

parts of the road, the number of occluded points from the LiDAR vision have low impact compared 

to the bulk of points within the visible short range of the sensor. Hence, their influence on changing 

the data rate values is weak. Table 5 compares the values at the different vertical curve types to 

those at the flat section of the road, where a maximum of 7% increase in values is recorded at sag 

curves. As for crest curves, a maximum of 4.2% decrease in values was recorded. 

Table 5. Summary of Change in Data Rate Requirements for Vertical Curves RRFs Analysis. 

Section 
Min Value 

(Crest) 

Average Value 

(Flat) 

Max Value 

(Sag) 

% Change 

Relative to Flat 

Values 

1 1.01𝑥108 1.05𝑥108 1.104𝑥108 -3.9% → +5.1% 

2 0.98𝑥108 1.01𝑥108 1.04𝑥108 -3% → +3% 

3 0.96𝑥108 1.0𝑥108 1.07𝑥108 -4.2% → +7% 

Regarding the FE analysis, it was observed that the density of the roadside features dictates 

the data rate values. Areas with high vegetation density scored the highest data rate requirements 

and vice versa, masking the effects of the road geometry. From the perspective of AVs, processing 

environments with heavy vegetation to eliminate some hazards, such as wildlife collisions, would 

require them to process, on average, almost 4.8 times more data than they should if they only 

consider the RRFs for their navigation, as outlined in Table 6.  
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Table 6. Vertical Curves Calculations for FE and RRFs Analysis. 

Section 
RRFs Maximum 

Value 

FE Maximum 

Value 
% Increase 

1 1.1𝑥108 5.1𝑥108 363% 

2 1.05𝑥108 5.25𝑥108 400% 

3 1.08𝑥108 5.25𝑥108 386% 

4.3 ROADWAY WIDTH 

The volume of data to be processed by the AV is subject to change, influenced by the surrounding 

environment and the road's geometry. One specific aspect of road geometry that warrants 

investigation is roadway width. Therefore, the primary research question for this study centres on 

how alterations in roadway width affect the data rate requirements, especially in areas where the 

number of lanes increases or decreases. Two separate analyzes addressed this issue: one 

encompassing the FE and another focusing solely on the RRFs. The influence of the variation in 

the roadway width will be assessed with and without the roadside elements, and expected changes 

in the data rate requirements will be quantified. 

This study examined four distinct road sections, each with a length of 4 km, situated on the 

same highway, all mainly configured as two-way, two-lane roads with passing lanes. The average 

data rate requirements in the 2-lane zones will be compared to those in the 3-lane zones to quantify 

the extent of change in the data rate requirements between the two distinct zones. 

4.3.1 Roadway Width (RRFs) Analysis 

Road section (4) began with a standard two-lane configuration, and approximately halfway 

through this section, an extra lane was introduced in one direction. This change is vividly depicted 

in the data rate value graph, presented in Figure 80, which clearly illustrates an increase in data 

rate values as the AV enters the three-lane zone. In the two-lane zone, data rate values ranged from 

1.26 × 108 to 1.35 × 108, with an average of approximately 1.30 × 108. In contrast, within the 

three-lane zone, data rate values ranged from 1.43 × 108 to 1.49 × 108, with an average value of 

roughly 1.46 × 108, indicating an average increase in data rate values of approximately 12.3%. 
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It's important to note that the graph displayed several abrupt drops in data rate values near the 

500m and 2000m marks, associated with temporary loss of road information due to obstructing 

vehicles during data collection, as shown in Figure 84. These localized drops were not factored 

into any of the calculations. 

  

Figure 74. Illustration of 3-Lane Zones from 
Google Maps 

Figure 75. Illustration of 2-Lane Zones from 
Google Maps 

  

Figure 76. Road Section (4) Layout Figure 77. Road Section (5) 

 
 

Figure 78. Road Section (6) Figure 79. Road Section (7) 



81 

 

In road section (5), a notable drop in data rate values became evident around the 2.3 km 

mark, as seen in Figure 81. The segment preceding this point featured three lanes, while the region 

beyond this mark had just two lanes. The influence of a vertical curve in the three-lane zone was 

observed around the 1 km mark, where there was a decrease in the data rate values at the crest 

curve, followed by an increase at the sag of the vertical curve as the sensor’s field of vision is 

augmented in this region and hence the data rate requirements increase.  

Again, the data rate values within the three-lane zone ranged from 1.29 × 108 to 

1.39 × 108, with an average of approximately 1.34 × 108. In contrast, data rate values within the 

two-lane zone were in the range of 1.11 × 108 to 1.20 × 108, averaging around 1.15 × 108. 

Consequently, this marked an approximate 16.5% value increase between the two zones. 

  

Figure 80. Data Rate Requirements for Road 
Section (4) 

Figure 81. Data Rate Requirements for Road 
Section (5) 

  

Figure 82. Data Rate Requirements for Road 
Section (6) 

Figure 83. Data Rate Requirements for Road 
Section (7) 
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Similar patterns were observed in road section (6), which started with two lanes and ended 

with three. That is why the graphs showed that the second half of the data rate graphs was higher 

than the first. The average value at the 3-lane zone was equal to 1.38 × 108 while that at the 2-

lane zone was equal to 1.20 × 108 resulting in an average 17.4% increase in the data rate values 

between the regions. It is worth noting that the drop observed around the 1.2 km mark, shown in 

Figure 85, was attributed to a big truck on the road occluding a part of the road pavement, resulting 

in an abrupt drop in the data rate values. Nevertheless, as mentioned previously, this region was 

not regarded in the calculations. 

 Finally, road section (7) exhibited the same pattern regarding the change in data rate values 

at the two separate zones. The average value at the 2-lane zone was 1.20 × 108 and that at the 3-

lane zone was 1.37 × 108 meaning that there is an average 13.2% increase in data rate values. 

  

Figure 84. Gaps in Road Section (4) Figure 85. Void in The Pavement of Road 
Section (6) 

4.3.2 Roadway Width (FE) Analysis 

On analyzing the full road environment for the same four road sections, the first observation that 

was clear from incorporating the roadside features in the calculations is that the data rate 

requirements more than doubled. The scene becomes more complex for the AV to process in real 

time, albeit most of the points collected by the AV’s sensor in its point cloud are irrelevant to its 

navigation operations.   
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 Furthermore, the previously observed patterns when the roadway width increases had been 

masked by the addition of the roadside elements in the analysis, as witnessed in Figure 86. It was 

also observed in Figure 91, which compares the data rate requirements with and without the 

irrelevant roadside elements. Also, the roadside features have heavily influenced the data rate 

values. For example, in road section (4), the density of the point cloud was highest around the 1.7 

km mark; therefore, the data rate requirements were maximum. On the other hand, around the 0.5 

km mark, the low density of the point cloud prompted the data rate values to plummet. Figure 87 

and Figure 89 demonstrate the difference in the environment at these designated regions, where it 

was observed that the surrounding environment has more elements like grass or buildings near the 

1.7 km mark. Another observation was that the region that recorded the highest data rate values 

was composed of only two lanes, which again highlights the fact that with the addition of the 

roadside elements, the patterns seen in changing the width of the road become insignificant. 

Generally, an approximate increase of 128% was recorded when the FE was included in the 

analysis. 

 

Figure 86. Section (4) FE Analysis (Purple + Left Axis) vs RRFs Analysis (Yellow + Right Axis) 

The same inferences can be drawn from the analysis of the other road sections. Again, by 

investigating the impact of the roadside features on the second road section, it was readily apparent 

that the established patterns in the variation of the roadway width are nonexistent. Even more so, 

it was observed that the two-lane region, on average, had higher values than the rest of the road 

section.  
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Figure 87. Environment for Road Section (4) at 
the 0.5 km Mark 

Figure 88. VISTA Output for Frame 500 

  

Figure 89. Environment for Road Section (4) at 
the 1.7km Mark 

Figure 90. VISTA Output for Frame 1700 

The magnification in the data rate requirements has been quantified to be around 145%. 

Moreover, the VISTA outputs show that the roadside elements chiefly control the calculated values 

using the whole environment. The hike in the data rate values around the 1 km mark, previously 

reported in the analysis of the relevant features, was exacerbated with the inclusion of roadside 

features, which coincidentally were high in density in this region. Additionally, the position of this 

region on a sag curve contributed to this jump in values. On the other hand, the VISTA output at 

frame 500 demonstrated the relatively lower point density of the surrounding environment, 

lowering the data rate requirements. 

The impact of the roadside features in the analysis is summarised in  Table 8. The expected increase 

in data rate requirements for four road sections included in this analysis ranged from 128% to 

148%, demonstrating that for the AV to safely navigate this highway under favourable weather 

conditions and evade any possible WVC, it would need to process an extra amount of data that is 

more than twice the amount it would need for its primary navigation operations that rely on the 

relevant road features. 
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Figure 91. Road Section (5) FE Analysis (Purple + Left Axis) vs RRFs Analysis (Yellow + Right 
Axis) 

 

  

Figure 92. Environment for Road Section (5) 
at the 0.5 km Mark 

Figure 93. VISTA Output for Frame 500 

  

Figure 94. Environment for Road Section (5) 
at the 1 km Mark 

Figure 95. VISTA Output for Frame 1000 
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Summary 

This analysis highlights the impact that the road's width has on the AVs' performance. More often 

than not, the general layout of the road geometry changes along any trip. In the RRFs analysis, it 

has been established that the addition of an extra lane would require the AV to process 12.3-16.5% 

additional data to maintain its safe operations. 

Additionally, the FE analysis has revealed that including roadside features increases the 

complexity of the scene surrounding the AV due to increasing the total number of points that must 

be processed in real time by the onboard computer. For the four analyzed road sections, generally, 

the surrounding environment had low vegetation density, and as a result, the data rate requirements 

were seen to increase around 2.3 times only. Therefore, it would be easier for the AV to process 

its surroundings and less susceptible to wildlife collisions. Finally, the patterns established in the 

RRFs analysis on adding an extra lane had been masked in the FE analysis owing to the 

randomness and inconsistency of the vegetation throughout the analyzed road sections. 

Table 7. Summary of RRFs Data Requirements for Roadway Width Analysis. 

Section 
2-Lane Zone 3-Lane Zone Increase 

Percentage From To Average From To Average 

4 1.26𝑥108 1.35𝑥108 1.3𝑥108 1.43𝑥108 1.49𝑥108 1.46𝑥108 12.3% 

5 1.10𝑥108 1.2𝑥108 1.15𝑥108 1.29𝑥108 1.39𝑥108 1.34𝑥108 16.5% 

6 1.15𝑥108 1.25𝑥108 1.20𝑥108 1.35𝑥108 1.40𝑥108 1.38𝑥108 15% 

7 1.15𝑥108 1.25𝑥107 1.20𝑥108 1.34𝑥108 1.39𝑥108 1.37𝑥108 14.1% 
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Table 8. Roadway width Calculations for FE and RRFs analysis. 

Road 

Section 
RRFs Max Data Rate Values FE Max Data Rate Values 

% 

Increase 

4 1.49𝑥108 3.4𝑥108 128% 

5 1.39𝑥108 3.4𝑥108 145% 

6 1.42𝑥108 3.3𝑥108 132% 

7 1.39𝑥108 3.45𝑥108 148% 

4.4 HORIZONTAL CURVES 

The following analysis delves into the crucial aspect of horizontal curves and their influence on 

the data rate requirements of AVs while considering their surroundings with a focus on the full 

environment around AVs, including challenging off-road conditions characterized by buildings, 

vegetation, and mountains. The presence of sight obstructions can lead to critical situations at these 

curves, affecting sight distance and causing occlusion, which, in turn, creates an area where there 

is a high loss of information for AVs and ultimately leads to a decline in data rate requirements.  

A modified analysis is conducted in the attached Appendix where the roadside features were kept 

only on the side of the road that caused the occlusions to attenuate the influence of roadside 

features. 

Horizontal curves play an essential role in AVs' navigation and safety. They require careful 

deliberation and planning, including speed, steering, and data processing adaptation to ensure a 

smooth and secure driving experience. Understanding how horizontal curves affect data rate 

requirements is paramount for enhancing the performance and reliability of autonomous driving 

systems. The analysis encompasses the complete surrounding environment around AVs. Unlike 

controlled environments, real-world scenarios often present challenges like buildings, dense 

vegetation, and towering mountains. These features obstruct sightlines, rendering horizontal 

curves even more critical for human drivers and AVs. Therefore, it is necessary to account for such 

obstructions to derive accurate conclusions regarding the impact of horizontal curves on data rate 

requirements because AVs rely heavily on sensor data and real time processing to navigate these 

curves safely. When sight distance is compromised, AVs experience occlusion, leading to a loss 
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of crucial information, such as road information, potential obstacles, and the presence of other 

vehicles. 

Three road sections comprising critical horizontal curves and situated on a mountainous 

terrain were considered for this analysis. Although the presence of the vegetation and other offroad 

elements in the analysis are expected to have random variations on the data rate values as their 

density is inconsistent and unevenly distributed along the road, the effect of the critical horizontal 

curves was clearly evident, primarily due to the anticipated occlusions at these locations. 

 

Figure 96. Road Section (8) Layout 

 

Figure 97. Road Section (9) Layout 
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Figure 98. Road Section (10) Layout 

The average data rate values from the areas close to the critical curve were calculated and 

compared to those at the horizontal curve locations as they would have a comparable layout. In 

order to quantify the influence of the horizontal curves on the data rate values, the analysis focused 

on the entrance and the exit of the curve. The regions just before and right after the curves, when 

compared to the entrance and exit of the curve, respectively, will exhibit an evident change in 

patterns of the data rates and will showcase the influence of occlusion on the vehicle's 

performance. If the roadside elements’ density increases, a further rise in the data rate values at 

that location will be expected inside the curve itself. 

4.4.1 Horizontal Curves Analysis 

By examining the layout of road section (8), it was clear that the left side of the road had few 

roadside elements since much of that side was occupied by a waterbody, reflected as a clear space 

in the input point cloud. Consequently, low data rate values were recorded along the first kilometre 

of the road. More importantly, the data rate values started to decrease near the entrance of the 

horizontal curve as the occlusion started to affect the forward vision of the vehicle by hiding some 

road information from the sights of the vehicle. At frame 795, it was observed that only 120 m of 

the road ahead was visible when compared to the 180 of the backward vision. This disparity was 

responsible for the drop in the data rate values by 16% as the values went from 2.48𝑥108 𝑏𝑖𝑡𝑠/𝑠 

to 2.13𝑥108 𝑏𝑖𝑡𝑠/𝑠. Once the vehicle was inside the curve, the vehicle could capture more of the 
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roadside elements, which in this case are mountains on both sides of the road, as seen in Figure 

107. A slight increase in values was observed. 

At the exit of the curve, the data rate values were seen to increase again because as the 

vehicle moves away from the curve, occlusion's influence on the sensor's backward vision 

dissipates, and the vehicle regains its operating vision capacity. Around frame 952, located near 

the curve's exit, the sensor's backward vision was limited to about 110m, while the unhindered 

forward vision was approximately 175m. From the graphs, the data rate values just after the curve, 

where the general layout of the environment was similar to that at the curve, were 2.43𝑥108 𝑏𝑖𝑡𝑠/𝑠 

while the value at the exit of the curve was 2.11𝑥108 𝑏𝑖𝑡𝑠/𝑠, which means there is about a 15% 

drop in data rate values at this position. 

 

Figure 99. Data Rate Requirements for Road Section (8) 

 

Figure 100. Water Body Along Section (8) Left Side 
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Figure 101. Road Section (8) - Frame 795 
Location on Google Maps 

Figure 102. Road Section (8) - Frame 795 
(Forward Vision Hindered) 

 

Figure 103. Road Section (8) - Frame 795 VISTA Outputs 

  

Figure 104. Road Section (8) - Frame 952 
(Behind the Sensor) Location on Google Maps 

Figure 105. Road Section (8) - Frame 952 
(Backward Vision Hindered) 
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Figure 106. Road Section (8) - Frame 952 VISTA Outputs 

 

Figure 107. Road Section (8) – Surrounding Environment Inside the Hz Curve 

Similar to road section (8), which had water bodies covering some parts of it, section (9) 

also had water bodies covering regions on both sides of its road, as seen in Figure 112, explaining 

the gaps within the input point cloud. The observed pattern around the critical Hz curves was seen 

again when road section (9) was analyzed. This section's data rate requirements were highest just 

before the horizontal curve's entrance. However, the roadside mountain occluded forward vision 

once the vehicle entered the horizontal curve. The VISTA outputs showed that around 142m of 

the road ahead was visible. On the other hand, the vehicle could see around 200m behind it. This 

was translated into a drop in the data rate values from 2.75𝑥108 𝑏𝑖𝑡𝑠/𝑠 to 2.45𝑥108 𝑏𝑖𝑡𝑠/𝑠 which 

is equivalent to 12.2%. The data rate values increased slightly and stabilized for a few meters 

because, within the horizontal curve itself, the vehicle could see more of the mountains on both 

sides of the road, which naturally have high point densities. However, as the vehicle headed 

towards the exit, the data rate values started to decrease again and dropped to their lowest at frame 

1156, where the backward vision was affected by occlusion, and the vehicle could see only 145m 

of the road behind it, whereas, in front of it, it could see around 210m. By comparing the data rate 
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values just after the horizontal curve and at its exit a drop of 12.7% was observed as the data rate 

values decreased from 2.32𝑥108 𝑏𝑖𝑡𝑠/𝑠 and 2.06𝑥108 𝑏𝑖𝑡𝑠/𝑠. 

 

Figure 108. Data Rate Requirements for Road Section (9) 

  

Figure 109. Road Section (9) - Frame 844 
Location on Google Maps 

Figure 110. Road Section (9) - Frame 844 
(Forward Vision Hindered) 

 

Figure 111. Road Section (9) - Frame 844 VISTA Outputs 
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Figure 112. Waterbody Along Road Section (9)  

  

Figure 113. Road Section (9) - Frame 1156 
(Behind the Sensor) Location on Google Maps 

Figure 114. Road Section (9) - Frame 1156 
(Backward Vision Hindered) 

 

Figure 115. Road Section (9) - Frame 1156 VISTA Outputs 
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Figure 116. Road Section (9) - Environment Inside the Hz Curve 

The last section comprised two horizontal curves, one at the start of the road section and 

the other near the end. The second horizontal curve was identified as critical due to roadside sight 

obstructions.  Following a similar pattern as the previous two sections around the critical horizontal 

curve, at the entrance of the curve, the data rate values were seen to drop from 3.7𝑥108 𝑏𝑖𝑡𝑠/𝑠 to 

3.2𝑥108 𝑏𝑖𝑡𝑠/𝑠. While at the exit of the curve, the data rate values jumped from 3.7𝑥108 𝑏𝑖𝑡𝑠/𝑠 

to 4.3𝑥108 𝑏𝑖𝑡𝑠/𝑠. Inside the curve, the roadside element density increased as the vegetation 

turned into a rocky slope, so an increase in the data rate values at the centre of the curve was 

observed. At the end of the road section, a water body replaced the vegetation on one side, resulting 

in a sudden drop in the data rate near the section’s edge. The drop seen at the entrance of the curve 

was around 15.6%, whereas the increase in the data rate values at the exit of the curve was 

approximately 16.2%. Again, the regions used for comparison are found in immediate proximity 

before or after the curve since the overall environment would be very similar. 

It is also worth noting that the first horizontal curve encountered in this road section did 

not exhibit the established pattern purely because it was not as tight as the rest of the analyzed 

curves. As seen in the data rate graph of  Figure 117, the values were stable at the first horizontal 

curve location around the 2.2 km mark. No variations were observed, meaning that on safe 

horizontal curves with no roadside obstructions, the change in the vegetation density solely 

controls the data rate values. There is little to no influence of occlusion. 
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Figure 117. Data Rate Requirements for Road Section (10) 

  

Figure 118. Road Section (10) - Frame 3336 
Location on Google Maps 

Figure 119. Road Section (10) - Frame 3336 
(Forward Vision Hindered) 

 

Figure 120. Road Section (10) - Frame 3336 VISTA Outputs 
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Figure 121. Road Section (10) - Frame 3516 
(Behind the Sensor) Location on Google Maps 

Figure 122. Road Section (10) - Frame 3516 
(Backward Vision Hindered) 

 

Figure 123. Road Section (10) - Frame 3516 VISTA Outputs 

4.4.2 Summary 

This analysis emphasizes the expected influence of horizontal curve occlusions on AV 

operations through dynamic environments of the same mountainous nature where the layout of the 

surroundings is different for each section. Generally, a decrease in the data rate requirements was 

observed owing to occlusions at horizontal curves, which limit the AV's vision and line of sight, 

both forwards and backward, indicating the loss of valuable information that could be critical for 

its safe navigation. The average loss of information for the three-road section, as listed in Table 9 

was 12.2-15.6% at the entrance of the curve and 12.7-19% at the exit. 

The mountainous terrain has proved to be challenging for the AV owing to their critical 

horizontal curves. The loss of information occurring at these locations can put it at risk. Not 

knowing what is around the corner can be detrimental to the AV’s operations. The drop in data 

rate values can represent the percentage of road and surrounding information for the AVs, 

especially at the entrance of the horizontal curves, where the forward vision is hindered. For 

instance, wildlife incidents will be threatening at these locations. It is expected that the AV will 

not have enough time to react and avoid these collisions. 
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Table 9. Summary For Change in Data Rate Values at Horizontal Curves. 

Section 

Hz Curve Entrance Hz Curve Exit 

Min 

Value  

Max 

Value 

Average 

Drop  

Min 

Value  
Max Value 

Average 

drop  

8 2.1𝑥108 2.5𝑥108 14% 2.1𝑥108 2.4𝑥108 19% 

9 2.45𝑥108 2.75𝑥108 12.2% 2.06𝑥108 2.32𝑥108 12.7% 

10 3.2𝑥108 3.7𝑥108 15.6% 3.7𝑥108 4.3𝑥108 16.2% 

 

Table 10. Horizontal Curves Calculations for FE and RRFs analysis. 

Road 

Section 
RRFs Max Data Rate Values FE Max Data Rate Values 

% 

Increase 

8 1.1𝑥108 3.3𝑥108 200% 

9 1.15𝑥108 2.86𝑥108 149% 

10 1.12𝑥108 5.4𝑥108 382% 

 

4.5 SENSITIVITY ANALYSIS 

This section explores how the change in different parameters of the data rates equation can 

influence the results. To that end, different weather conditions will be modelled by changing the 

signal-to-noise ratio variable in the equation. An additional sensor will also be simulated, and the 

results will be compared to the primary sensor used in this analysis. 

4.5.1 Signal-to-Noise Ratio 

This study aims to quantify the extent to which data rate requirements are affected by changes in 

the SNR value. As previously mentioned, the SNR delineates the ratio between the power of the 

reflected signal and the ambient noise. Favourable weather conditions are maintained throughout 
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the analysis. In this section, an additional heavy rain environment will also be modelled to 

showcase how much of an impact it would have on the calculations. The relationship between the 

SNRmax range parameter and data rate requirements are inversely proportional, as equation (2) 

outlines. Hence, for instance, a 10% increase in the SNRmax range value will be reflected as a similar 

10% decrease in the data rate requirements. 

Following the observations of Zhang et al. [206] and knowing that the sensor's max range 

is 245m, the SNR is expected to decrease by approximately 8.5 dB. Therefore, the new 

SNRmax range will be 12-8.5 = 3.5 dB. Figure 124 shows the data rate values for the same section 

on the same graph. Through the analysis of road section (1) with the full environment, it can be 

noticed that using an SNRmax range value of 3.5 dB to simulate the effects of heavy rain, the data 

rate values have increased by approximately 3.4 times. Worse weather can impose conditions 

where the signal power might be less than the ambient noise. Assuming that the noise is ten times 

stronger than the signal, the SNRmax range will be 0.1 according to equation (3). Consequently, the 

data rate requirements are expected to drastically increase by 120 times. At such elevated rates, 

the performance of the AV is bound to be unstable as it would not be able to process such 

monumental data rates in real time. 

 

Figure 124. Road Section (1) FE Analysis. SNR=3.5 dB (Yellow Curve) Vs SNR = 12 dB (Purple 
Curve) 
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4.5.2 Alternative LiDAR Sensor  

To demonstrate how variations in LiDAR sensor specifications can impact data rate calculations 

and affect the performance of AVs, the Velodyne-32E LiDAR will be considered an illustrative 

example [216]. The specifications for this sensor are detailed in Table 11. Notably, this sensor, 

also known as (HDL-32E) has a shorter range, limited to 100 meters, a distinct vertical field of 

view (FOV) distribution, and reduced vertical resolution. However, it has a slightly better range 

precision and matches the horizontal angle precision of the VLS-128. 

The reduced vertical angular resolution of the HDL-32E LiDAR will significantly decrease 

the number of data points it can capture. This limitation arises because the gap between consecutive 

laser beams widens as the vertical angle increases. The shorter range also reduces the total number 

of captured data points. Consequently, the scenes captured by this sensor will generally be less 

complex for the onboard computer to process, containing a lower volume of information than the 

VLS-128 model, evident when comparing the data rate requirements for both sensors for the same 

road sections. In road section (2), for example, the maximum drop in the data rate requirements 

has been quantified as approximately 620%. This dramatic drop in data rate values means that the 

scenes captured by the HDL-32E LiDAR will be much less detailed than those of the VLS-128 

sensor. This means that the AV might not be able to fully comprehend its environment from the 

scarce information it receives from the sensor and this in turn can increase the safety risks. 

 For comparison, the analysis will keep the default padding region of 245 meters instead of 

using 100 meters to focus on the same areas of interest as those considered in the VLS-128 model 

calculations, facilitating a direct comparison between the two LiDAR sensors. 

Table 11. LiDAR Sensors Specifications. 

Sensor 
𝑹 𝛉𝒉 𝛉𝒍 𝛟𝒉 𝛟𝒍 𝛅𝑹 𝛅𝛟 𝛅𝛉 𝑭 

VLS-128 245m 180° -180° 15 -25° 0.03m 0.11° 0.11° 20hz 

HDL-32E 100m 180° -180° 10.7° -30.7° 0.02m 1.33° 0.11° 20hz 
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4.5.2.1 HDL-32E Vertical Curves Analysis 

As seen from Figure 125 and Figure 126 for road section (2), the established vertical curve pattern 

was missing from the RRFs and FE results, due in large part to the short range of the sensor, where 

it did not seem to be impacted by occlusion from the road geometry. In addition, the number of 

captured points in the far range of the sensor is expected to be significantly lesser than those 

captured in the long range by the VLS-128 sensor. Hence, the impact will be reduced even moreso 

on the occluded part of the road. 

The VISTA outputs for frame 1135 are presented to highlight the disparity in scene 

perception by the AV using various sensors. This particular frame was selected because it yielded 

the highest data rate value when using the VLS-128 sensor, serving as a prime illustration of the 

contrast between the sensor outputs. Figure 127 and Figure 128 managed to showcase the disparity 

between the range of the captured points and, more importantly, the density of point cloud captured 

by the two sensors where the VLS-128 sensor, undoubtedly, carries much more information for 

the AV and hence will exert bigger burdens on the onboard computer. 

  

Figure 125. HDL-32E RRFs Data Rate 
Requirements for Road Section (2) 

Figure 126. HDL-32E FE Data Rate 
Requirements for Road Section (2) 
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Figure 127. Road Section (2) Frame 1135 FE 
VISTA Outputs for HDL-32E 

Figure 128. Road Section (2) Frame 1135 FE 
VISTA Outputs for VLS-128 

 

4.5.2.2 HDL-32E Roadway Width Analysis 

Through the analysis of road section (5), using the occupancy method calculations with the HDL-

32E sensor, the same established pattern between the two-lane and three-lane zones is manifested. 

The average value in the two-lane zone is 3.55𝑥107𝑏𝑖𝑡𝑠/𝑠 whereas that of the three-lane zone is 

4.01𝑥107𝑏𝑖𝑡𝑠/𝑠, thereby, there is a 12.9% change in the data rate values. However, the VLS-128 

sensor’s version affects a 17.4% change in values, as discussed in section 4.3.1, showing that even 

for short-ranged and less accurate sensors, the onboard computer will experience a surge in data 

rate requirements when the roadway width increases. 

 

Figure 129. HDL-32E RRFs Data Rate Requirements for Road Section (5) 
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4.5.2.3 HDL-32E Horizontal Curve Analysis 

This analysis employs the same configuration previously applied to road section (9), as detailed in 

4.4. Notably, the HDL-32E sensor, as illustrated in Figure 131, exhibited a distinct pattern due to 

its limited range. It did not encounter any horizontal curve occlusions, and as a result, it did not 

experience a reduction in data rate requirements upon entering the horizontal curve (at frame 844). 

In contrast, this location saw a discernible increase in data rate requirements. Upon exiting the 

curve, an increase in values was naturally expected, but this elevation was primarily attributed to 

changes in roadside vegetation density. 

The shifts in data rate values will be compared to showcase the difference between the 

HDL-32E and the VLS-128 sensor at horizontal curves. The VLS-128 sensor demonstrated a 28% 

increase in values, whereas the HDL-32E sensor witnessed a more moderate 15% increase. This 

observation highlights that while the surrounding roadside features undeniably influence changes 

in data rate requirements, horizontal curve occlusion also significantly shapes data rate patterns. 

In summary, the shifts in data rate values in the HDL-32E sensor's results are predominantly driven 

by changes in roadside features, whereas in the VLS-128 sensor's results, both roadside features 

and horizontal occlusions are pivotal factors influencing the data rate values. 

  

Figure 130. VLS-128 Road Section (9) Data 
Rate Requirements 

Figure 131. HDL-32E Road Section (9) Data 
Rate Requirements 
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5 DISCUSSION 

Within this study’s comprehensive analysis, encompassing diverse road sections set in multiple 

environmental contexts and varying sensor specifications, a central conclusion emerges: reporting 

absolute data rate requirements for static environments is exceedingly challenging. This 

complexity arises from many influential factors, including the quality and density of the point 

cloud data employed in simulations, the specifications of the utilized sensors, variables related to 

road terrain and occlusions, and, not to be overlooked, the prevailing weather conditions. 

Additionally, it is worth noting that the chosen calculation methodology, whether based on 

occupancy or volumetric considerations, can significantly impact the resulting data rate 

requirements. Consequently, the primary goal of this research is to establish patterns and trends 

for the different static road environment elements and study their impact on AV performance in 

terms of expected computational demands. 

On the subject of the determined data rate values, they exhibited an intriguing characteristic 

where their correlation with the complexity of the surrounding environment is not as 

straightforward. Recognizing that an increased data rate requirement does not necessarily signify 

a more intricate environment is essential. To illustrate this phenomenon's counterintuitive nature, 

consider locations at vertical crest curves or horizontal occlusions. At first glance, their decreased 

data rate requirements might suggest a reduced level of complexity. However, in reality, these 

locations present challenges for AV operations. In such instances, it becomes apparent that the 

term "decrease in data rate requirements" does not fully encapsulate the situation's complexity. 

Instead, assessing the percentage of missing information provides a more suitable and accurate 

descriptor. Consequently, this approach extends beyond identifying locations with high data rate 

requirements. Also, locations with a notable and unexpected decline in data rate values were 

prioritized. These locations represent critical points in the landscape for AV operations. 

Considering the prevailing literature aiming to assess the complexity of the environment 

surrounding AVs, it is evident that a prevailing narrative suggests that the closer an element is to 

the AV, the more challenging the situation becomes for the onboard computer. In alignment with 

this narrative, the occupancy method has been established as the primary calculation approach in 

this research, as it effectively mirrors this perspective. Nevertheless, it is important to note that, 

for long-range detections, an alternative viewpoint, represented by the volumetric method, also 
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exists. This perspective proposes the opposite scenario, contending that, from an operational 

standpoint, objects situated at a greater distance from the AV pose heightened challenges for 

detection. Consequently, they demand increased computational resources from the AV. 

5.1 POINT CLOUD DENSITY 

Broadly speaking, assessing the quality of input LiDAR point cloud data involves measuring its 

density, which serves as a key determinant of how closely it mirrors the actual physical 

environment. A higher point cloud density lends greater authenticity to virtual simulations. The 

density of the point cloud is directly influenced by the capabilities of the LiDAR sensor used for 

scanning the physical surroundings. The more advanced and precise the LiDAR sensor, the greater 

the point cloud density it can achieve. Consequently, data rate values are intricately linked to the 

density of the employed point clouds, with higher point cloud densities necessitating increased 

data rate requirements. Furthermore, as highlighted in Section 4.1, there is an evident fluctuation 

in point cloud density. This variation manifests as minor, indiscernible fluctuations in data rate 

requirements, primarily because points directly beneath the scanning vehicle exhibit higher density 

due to their proximity to the sensor. Accordingly, if simulations are conducted in an alternate lane, 

it is essential to recognize that the results will similarly undergo alterations. 

5.2 SPECIFICATIONS OF THE USED SENSOR 

Environment perception for AVs is carried out using onboard LiDAR sensors, which are essential 

for its navigation operations owing to their accurate object detection and tested reliability [217] 

[85] [86] [87]. Hence, it is used as the primary sensor in this virtual simulation. The AV will 

perceive its surroundings differently depending on the capabilities of the LiDAR sensor used in 

the simulations.  

The primary sensor specifications that affect the AV’s ability to view the environment are 1- 

Maximum range, 2- Range precision, 3- Field of view, and 4- angular resolution. Typically, longer-

range sensors can capture more of the surrounding environment and will be subject to higher data 

rate requirements. Similarly, higher range precisions will result in more dense representations of 

the environment, increasing the data rate requirements. On a similar note, the bigger the field of 

view and the finer the angular resolutions will augment the perception of the AV, increasing the 
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point cloud density and, ultimately, raising the data rate values. An exercise was carried out in 

detail in Section 4.5.2, which compares two different LiDAR sensors and demonstrates how the 

AV's performance would change with changing the equipped sensor. 

5.3 VOLUMETRIC APPROACH 

The volumetric method is unique in its approach and exploits the spherical coordinate system used 

for voxelization. This method assigns more weight to objects that have larger volumes. Following 

the voxelization process implemented in this research, the voxel size increases the further its 

position is from the sensor. Hence, the biggest voxels will be located at the maximum range of the 

used sensor. In calculating the percentage of occupied voxels by volume to get the delta, voxels of 

bigger size will have more influence on the results, meaning that this method directs its attention 

to the distant points rather than the points near the sensor. 

This approach assumes that the further the point is from the sensor, the harder it would be 

to process in real time due to the scarcity of points at long ranges. Additionally, since the points 

close to the sensor are already big in numbers, it would be easier to identify objects from them. 

Consequently, they will not have much processing power from the onboard computer. 

Regarding the analysis of the vertical curves, the volumetric method managed to heighten 

the effects of the occlusions in both the RFFs and FE road layouts, while maintaining the same 

patterns. The percentage of increase in data rates at the sag curve was 42%, 20%, and 18.8%, 

respectively. In comparison, the decrease at crest locations was -40%, -18.7%, and -22.5%, 

respectively, for the three road sections. Similarly, in the FE analysis, the rates were +34%, +15%, 

and +29%, respectively, at the sag locations and -51%, -15.8, and -39.5%, respectively, at the crest 

locations. The higher grades of road section one increased the disparity between values on the 

curves and the flat road sections of the road, as evident in the recorded change percentage in the 

data rate values. Finally, on comparing the data rate requirements between the FE and RRFs 

analysis in the volumetric method, a gigantic increase was observed due to the presence of roadside 

features, which prompted the percentages to reach 1300%, 1950%, and 1475%, respectively, 

among the three road sections. 
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Figure 132. RRFs Data Rate Requirements for Section (1) Using Volumetric Method 

The previously established pattern found in the occupancy method calculations was again 

observed in the roadway width analysis. It was seen to an even greater extent in both the RRFs and 

FE layouts. In the RRFs, the 3-lane zones exhibited a 20% increase in the data rate requirements. 

In contrast, the increase percentage was 30% in the FE analysis, with the visible influence of 

vegetation on the results. For the road sections involved in the analysis, the increase in data rate 

requirements between the RRFs and FE analysis ranged between 600-700%, significantly lower 

than that recorded in the vertical curve road sections, due to the overall lower vegetation density 

witnessed in these sections. 

 

Figure 133. RRFs Data Rate Requirements for Road Section (4) Using Volumetric Method 

Lastly, in the horizontal curve analysis of the modified sections, naturally, the pattern 

persisted but with much more significant variations in the values owing to the presence of the 
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roadside elements. The drop in data rate requirements reached 491% and 367% at the exit and the 

entrance of the curves of road sections (8-9), respectively. 

 

Figure 134. Data Rate Requirements for Road Section (8) Using Volumetric Method 

  As evident from the results of the volumetric method calculations, it is more 

compatible with RRFs road layouts rather than FE ones. Since it is sensitive to changes in the point 

densities and point distributions, the presence severely affects its results. Generally, the AV will 

be more concerned with far road points than it would with the vegetation found on its periphery. 

Hence, using this method to explain the AVs' performance will be unsuitable if the offroad 

elements are included in the analysis. It, nevertheless, provides robust results in the RRFs analysis 

as it explains, in the vertical curves, for example, the loss of road information at crest curves due 

to the limited range of vision or the increase in data rate requirements at sag locations owing to the 

augmented vision at this location. The horizontal curve analysis is a prime example of the 

shortcomings of the volumetric method, where it reports exaggerated percentages of loss of road 

information owing to the enormous influence of roadside elements. As a result, the volumetric 

method is not well-suited for the analysis of the horizontal curve. The attached Appendix contains 

an in-depth analysis of the volumetric method. 

5.4 FULL ENVIRONMENT ANALYSIS 

The objective of conducting a full environment (FE) analysis in this study is to quantify how 

roadside features influence the performance of AVs. Although these features may not typically 

affect standard AV driving operations, they remain within the scope of the vehicle's sensors, and 
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the onboard computer must process them for scenarios such as Wildlife Vehicle Collisions 

(WVCs). For instance, detecting animals concealed within roadside vegetation demands a 

comprehensive environmental assessment, which requires the AV to undertake more intricate 

computational tasks. A useful illustration to gauge the additional computational load on the 

onboard computer involves comparing the necessary data rates between FE and relevant road 

features (RRFs) analyzes, in contrast to the default computations primarily focused on driving 

lanes and road shoulders in case of emergency parking or manoeuvres. This comparison serves as 

an effective means to quantify the increased computational demands placed on the AV's onboard 

system. 

 Since the road environments are dynamic, multiple road environments with different 

roadside layouts have been analyzed. Rural environments with open fields and little vegetation 

scored the lowest data rate requirements. An example of such environments is road sections (4-7), 

which scored a mean value of 3.0𝑥108 𝑏𝑖𝑡𝑠/𝑠 and a maximum value of 3.3𝑥108 𝑏𝑖𝑡𝑠/𝑠. On 

comparing the FE to the RRFs analysis for these sections to isolate the influence of the roadside 

features, it was found that they increased the data requirements by an average of 138%. On the 

other hand, rural environments that have higher vegetation densities, such as road sections (1-3), 

averaged data rate values of 4.47𝑥108 𝑏𝑖𝑡𝑠/𝑠 with a maximum value of 5.25𝑥108 𝑏𝑖𝑡𝑠/𝑠. In this 

case, the roadside elements contributed an average 380% increase in the data rate values. Finally, 

two of the three studied mountainous terrain road sections (8 and 9) were situated in locations 

close to bodies of water, which lowered the data rate requirements considerably for most of these 

road sections. As a result, the average data rate requirements were found to be 2.6𝑥108 𝑏𝑖𝑡𝑠/𝑠 and 

had a maximum value of 3.3𝑥108 𝑏𝑖𝑡𝑠/𝑠. As for road section (10), the absence of water bodies 

and the presence of mountains and vegetation alongside this road prompted it to exhibit the highest 

data rate requirements with a maximum value of 5.4𝑥108 𝑏𝑖𝑡𝑠/𝑠. 

Wildlife detection could, therefore, become a monumental task for AVs, seeing that the 

data rate requirements can increase fivefold. Additionally, animals are often occluded from the 

view of the AV, especially in rural areas with heavy vegetation [218]. One countermeasure known 

for its effectiveness in addressing this problem is the installation of animal fencing [66]. However, 

it has some drawbacks. It is naturally infeasible to fence entire road networks due to financial 

constraints. Additionally, they are often installed at locations with high mortality rates for wildlife. 
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Finally, they require frequent maintenance [219]  [220]. Another proposed countermeasure is to 

install roadside LiDAR that, among many tasks, can monitor and detect animals [221]. However, 

covering an entire road network with roadside LiDAR is impractical, as it will be exceedingly 

costly. 

5.5 STATISTICAL TESTING 

To validate that the variation in the data rate requirements around the curves and at locations of 

varying roadway width was not due to chance or from random variables within the environment a 

statistical 2-tailed T-Test has been conducted. For such analysis, the null hypothesis is that the 

mean data rate values do not change at vertical curves, horizontal curves, or varying roadway width 

locations. Whereas the alternative hypothesis is that there is a variation in the data rate values at 

these locations. First, the t-statistic is calculated and by knowing the degrees of freedom and 

significance level, the critical p-value can be estimated. The null hypothesis will be rejected if the 

calculated critical p-Value is less than the adopted significance level. 

 Rejecting the null hypothesis for the vertical curve analysis would require the variations in 

the values between the flat and curved locations to be statistically significant on the 99% 

confidence level. By conducting this analysis on road section (2), the calculated p-values for crest 

vs. flat and sag vs. flat scenarios were below the 1% significance level. Consequently, the null 

hypothesis was dismissed, indicating that there are indeed statistically significant variations in data 

rate values at the vertical curve locations. 

As for horizontal curves, road section (7) was segmented into straight sections and portions 

corresponding to the horizontal curves. Upon analysis, the observed p-value was again below the 

significance threshold, leading to rejecting the null hypothesis. This result indicates a 99% 

confidence level that the average values at the horizontal curve significantly differ from those 

outside, thus underscoring the impact of horizontal curve obstructions, distinct from the 

surrounding environment, on both data rate requirements and the vehicle's overall performance. 

Similar results were again seen in the test conducted on the roadway analysis between the 2-lane 

and 3-lane zones. 
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Table 12. T-Test for Vertical Curves Analysis. 

Location Crest Flat Sag 

Number of Samples 2015 2074 1115 

Mean Value 9.70𝑥107 9.72𝑥107 9.74𝑥107 

Standard Deviation 1.67𝑥106 1.42𝑥106 1.38𝑥106 

Absolute t-statistic 3.2 9.3 

p-Value 1.3𝑥10−3 0 

Table 13. T-Test for Horizontal Curves Analysis. 

Location Straight Curved 

Number of Samples 1001 243 

Mean Value 2.15𝑥108 1.94𝑥108 

Standard Deviation 2.06𝑥107 5.95𝑥106 

Absolute t-statistic 27.8 

p-Value 0 

Table 14. T-Test for Roadway Width Analysis. 

Location 2 Lanes 3 Lanes 

Number of Samples 1480 2031 

Mean Value 1.16𝑥108 1.32𝑥108 

Standard Deviation 2.11𝑥106 2.54𝑥106 

Absolute t-statistic 204 

p-Value 0 
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6 CONCLUSION 

6.1 SUMMARY 

Integrating AVs is a pivotal advancement in the ever-evolving transportation landscape, promising 

unparalleled safety, efficiency, and accessibility. The potential to revolutionize travel for disabled 

individuals and optimize traffic systems is profound. However, the path to widespread AV 

deployment is marked by a critical challenge: ensuring public confidence in their safety. 

Documented collisions involving AVs have highlighted the imperative need for rigorous testing 

before large-scale deployment. Virtual simulations emerge as a vital solution to meet this demand, 

offering a secure environment for extensive AV testing with the added benefit of cost-

effectiveness. By leveraging virtual environments, researchers and developers can achieve 

significant milestones in enhancing the safety of AVs by conducting simulations equivalent to 

billions of real-world driving kilometres, which is a prerequisite to achieving the desired safety 

standards. 

 Understanding the interactions between the AVs and the dynamic physical environment is 

paramount for ensuring their safety. This study delves into the static surroundings of AVs, aiming 

to unravel complex scenarios they might encounter. Typically, AVs disregard off-road areas 

beyond the road shoulders, as these regions do not disrupt their navigational abilities or emergency 

stops. These irrelevant areas are filtered out from sensor data to streamline processing and reduce 

computational loads, allowing the vehicle to concentrate on pertinent road features. However, 

particular challenges, such as Wildlife Vehicle Collisions (WVCs), demand a holistic approach. 

Detecting and avoiding animal collisions requires processing the entire environment and ensuring 

operational safety. Therefore, the analysis is conducted twice: first, by incorporating all roadside 

features, and second, by excluding them. This dual approach provides a comprehensive 

understanding of the individual impact of each element on the environment's complexity. It also 

sheds light on the additional computational burdens incurred by processing the entire environment, 

offering invaluable insights into optimizing AV operations. 

This research has developed a framework leveraging LiDAR point cloud data from various 

highways in Alberta, Canada, to create a virtual testing environment. Specifically, this analysis 

covered 34 kilometres of diverse highway sections, concentrating on two-way-two-lane rural 
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roads. These sections were chosen strategically to represent varied terrains, including flat, rolling, 

and mountainous landscapes, aiming to model a range of driving environments. 

This proposed framework delves into the complexity of the surrounding environment by 

estimating the real time data processing requirements of AVs to maintain their navigational 

integrity under different weather conditions and driving environments. Other LiDAR sensors were 

also simulated to understand their impact on the calculations. The core principle guiding this 

analysis is the understanding that the complexity of the environment is directly related to the 

volume of data that AVs must process. This complexity can be captured by first voxelating the 

point cloud data surrounding the AV and then calculating the percentage of occupied voxels using 

the parameter delta (∆). To ensure accuracy and reliability, the captured scenes are replicated from 

the vehicle's perspective along its trajectory through its sensors using the VISTA simulator. 

Assessing the complexity of the environment is done through two distinct approaches in 

calculating (∆). The first method prioritizes objects close to AVs and employs the occupancy 

method calculations. In contrast, following the volumetric method, the second approach assigns 

greater weight to distant objects. This weighting simulates the challenge of processing data from 

these remote objects instead of the closer ones, which generally have higher point densities and 

are easier to process. 

6.2 MAJOR FINDINGS 

In an effort to comprehend the intricacies of AVs’ performance when engaging with the static 

environment and their safety implications, extensive research was conducted. This investigation 

involved studying variations in data rate requirements across diverse road environments and 

weather conditions. Numerous pivotal findings were uncovered by pursuing several objectives 

outlined below. 

Vertical Curves 

The impact of the vertical curves was investigated by analyzing three different road sections with 

a total of 11 km of rolling terrain. Vertical curve occlusion was found to play a role in dictating 

the complexity of the surroundings through the variations found in the calculated data rate 

requirements. A consistent pattern was evident across all analyzed sections which was amplified 
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when utilizing the volumetric approach. The complexity of the surroundings at sag locations can 

increase by up to 7%. Similarly, crest locations indicate increased complexity, quantified to reach 

4.2%, as AVs face challenges due to the loss of road information in these areas. 

Horizontal Curves 

Critical horizontal curves with tight radii are susceptible to occlusion, especially when off-road 

elements like vegetation encroach into the road's right of way. While analyzing three distinct road 

sections containing four horizontal curves, three were identified as critical due to sensor vision 

impairment caused by off-road obstructions. Results demonstrated a substantial contribution to 

horizontal curve occlusion, with a drop in data rate values ranging between 21-29% using the 

occupancy method for the modified version of the analysis, while 12-19% was recorded in the 

original analysis. 

Roadway width 

The analysis of four distinct road sections, spanning 14.5 km and featuring frequent transitions 

between 2 and 3 lanes, unveiled a noteworthy trend: the scene surrounding the AV became notably 

more complex in the 3-lane zones. According to occupancy method calculations, there was an 

average increase in data rate requirements ranging from 12.3% to 16.5%. The volumetric method, 

conversely, reported a slightly higher average of 20%. 

LiDAR Sensor Specifications 

When utilizing less advanced sensors characterized by limited range and lower angular resolution, 

it was observed that, unlike their sophisticated counterparts, these sensors did not follow the 

established trends at both vertical and horizontal curves, as occlusions from road geometry had 

minimal impact on their outputs. Furthermore, the direct comparison between the data rate values 

of the same road section using different sensor models revealed that the outputs of the less 

advanced were seven times lower than those of the more advanced sensor. Such analysis concluded 

that equipping a sensor with inferior specifications will greatly hinder the environment perception 

capabilities of the AV which can jeopardize its operations and increase the safety risks. 

Weather Conditions 
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Irrespective of the inherent complexity of the surrounding environment, weather conditions 

present unique challenges to the operations of AVs. Through the modelling of different signal-to-

noise ratios, operating in favourable weather conditions has been shown, from the analysis results, 

to alleviate the burdens on AVs by decreasing the data rate requirements. For instance, when heavy 

rain is simulated by reducing the signal-to-noise ratio from 12 dB to 3.5 dB, data rate requirements 

surge by 3.4 times, underscoring the profound influence of weather on AV performance. 

Moreover, when noise levels exceed the signal strength by tenfold, data rate requirements 

skyrocket by 120 folds, representing an astronomical surge in the data that necessitates processing 

by the onboard computer. 

Roadside Features 

The omnipresence of roadside features through almost all of the driving environments necessitates 

the study of their impact on the performance of the AV. Especially when a problem like WVCs 

has to be addressed. The added complexity accompanying a higher volume of offroad elements 

has been quantified through different road environments. The average increase in data rate 

requirements in environments with low vegetation density was in the range of 140%. Whereas in 

high vegetation density areas, the increase was calculated to be in the ballpark of 400%. Hence, 

confined space areas such as tunnels are expected to be less complex for AVs than open-space 

environments. 

Statistical Testing 

The conducted T-test significantly bolsters the validity and reinforces the analysis's credibility. It 

demonstrates, with a 99% confidence level, that data rate requirement values at vertical curve 

locations differ significantly from those at flat locations. Similarly, the average data rate values 

between horizontal curve areas contrast starkly with those in straight areas. While external factors 

such as slight variations in point density, road width, or other road features might influence the 

results, the occlusion issue, whether due to vertical or horizontal curves, distinctly impacts the 

change in data rate requirements for AVs. Consequently, it also affects the complexity of the 

vehicle's surroundings. Likewise, the change in road width is directly related to increasing the 

scene complexity. 
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6.3 RESEARCH CONTRIBUTIONS 

The primary contribution of this work is the development of a framework that leverages LiDAR 

point cloud data to create a virtual environment tailored for AV simulations where the 

quantification of real time data processing requirements under standard driving conditions is 

estimated by capturing the environment's dynamic nature. This investigation aimed to assess the 

complexity of the surrounding physical environment, thereby shedding light on scenarios 

presenting higher difficulty levels for AVs. By addressing this question, it is anticipated that AV 

safety protocols and current road design will be enhanced, leveraging the insights gained from this 

research. 

 The discoveries made in this thesis, supported by statistical testing, offer insights to AV 

developers, enhancing their comprehension of how the driving environment impacts AV functions. 

Through quantitative analysis, developers can pinpoint road segments demanding above-average 

processing power. This knowledge empowers them to accurately assess processing needs for 

distinct road sections before AV deployment, thus preventing potentially hazardous situations. 

Additionally, critical points prone to loss of road information or a decline in data rate requirements 

are presented, enabling proactive measures to avoid collisions stemming from information gaps. 

Moreover, comprehending the influence of weather conditions on AV performance empowers 

informed decision-making regarding tackling and mitigating associated challenges. 

  This study also allows developers to assess different commercially available LiDAR 

sensors, evaluate their performance, and accurately estimate the required processing power for the 

simulated models. Furthermore, the simulation environment developed in this research can be used 

as testing grounds for AV development where the data processing requirements can be optimized. 

Government agencies and IOOs can benefit from this research by evaluating the 

preparedness of existing infrastructure for AV deployment. Currently, road networks are designed 

for human-operated vehicles, necessitating thorough reassessments before AV deployment [222]. 

Insights from this thesis shed light on the impact of road geometry, roadside features, and roadway 

width on AV performance. This knowledge is crucial for informing future road designs and 

ensuring they are optimized for AV usage. 



117 

 

The presented analysis indicates that simplifying the surrounding environment, such as 

reducing the number of lanes, results in a less complex environment for AVs. Additionally, 

lowering the density of roadside elements, such as environments with open fields, is recommended 

to enhance AV operations and minimize challenges related to wildlife detection. Furthermore, 

decreasing road grades and eliminating roadside obstructions at horizontal curves emerge as potent 

strategies to accommodate AVs effectively. 

Integrating (HD) maps empowers AVs with valuable foreknowledge, enabling them to 

anticipate potential obstacles and proactively counteract information loss, which can be achieved 

by actively providing AVs with potentially occluded elements [34]. Simultaneously, establishing 

a robust communication network between AVs and infrastructure is a powerful solution to enhance 

sensor capabilities and computational limitations by facilitating seamless information exchange 

among various vehicles and infrastructure components. As such, AVs can dynamically adapt to 

their surroundings, particularly in critical areas [71]. This extended reach ensures that AVs receive 

pertinent information beyond their immediate proximity, significantly enhancing their overall 

awareness and responsiveness. 

This comprehensive framework addresses fundamental questions about AV performance 

and provides actionable transportation and traffic engineering insights. It supports informed 

decision-making, promotes safety, and guides infrastructure design, making it a valuable asset for 

advancing AV technology within the transportation sector. 

6.4 LIMITATIONS AND FUTURE RESEARCH 

While the presented framework is a robust tool for understanding the interaction between AVs and 

their surrounding environment and anticipating complexity levels in various road and weather 

conditions, it has limitations in specific regions. One of the limitations lies in the assumptions 

endorsed by the implemented algorithm, which might not be universally applicable to all AV 

models. However, the methodology's flexibility allows for integrating more advanced and 

exhaustive algorithms, offering a deeper understanding of AV performance and environmental 

complexity. Additionally, to authenticate the validity of the framework’s results, this will require 

the deployment of an AV in the field which is both costly and has safety risks.  
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For future endeavors, this framework can be modified to incorporate other sensory 

information such as cameras and radars. Furthermore, a more holistic approach is necessary to 

comprehensively model the intricacies of dynamic agent interactions with AVs, especially in urban 

environments where such dynamic objects abound. Additionally, parametric models can be 

developed to accurately quantify and predict the influence of the different vertical grades and the 

radii of the horizontal curve on the data rate requirements. 

This framework can be further enhanced by adopting a more nuanced approach where the 

input sensor specification variables can be assumed to follow a probability distribution instead of 

using deterministic values. Moreover, modelling different sensor heights can also be conducted in 

the future to assess how it can impact the environment perception and consequently, the data rate 

requirements of the AVs. 

Last but not least, this work can also be expanded to perform network-level studies, where 

the most critical locations can be identified to facilitate the optimization process of assigning 

roadside sensors which can relay real time information for the AVs on the road to assist them in 

mitigating potentially critical situations. 
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APPENDIX 

VOLUMETRIC METHOD CALCULATIONS 

The volumetric method is unique in its approach and exploits the spherical coordinate system used 

for voxelization. This method assigns more weight to objects that have larger volumes. Following 

the voxelization process implemented in this research, the voxel size increases the further its 

position is from the sensor. Hence, the biggest voxels will be located at the maximum range of the 

used sensor. In calculating the percentage of occupied voxels by volume to get the delta, voxels of 

bigger size will have more influence on the results, meaning that this method directs its attention 

to distant points rather than points in the vicinity of the sensor. 

This approach assumes that the further the point is from the sensor, the harder it would be 

to process in real time due to the scarcity of points at long ranges. Additionally, since the points 

close to the sensor are already big in numbers, it would be easier to identify objects from them. 

Consequently, they will not have much processing power from the onboard computer. 

 That said, this method can be rather unstable in FE analysis because the scattered residue 

of roadside elements, like vegetation, in the outskirts of the sensor vision can significantly 

influence the data rate values while not being necessary for the AV navigations. However, it could 

used to intelligibly highlight the occlusion problems in the RRFs analysis, witnessed in locations 

that have vertical or horizontal curves. Although the missing points will be few owing to the ring 

artifact of the LiDAR sensor, they will have more influence on the anticipated performance of the 

AV. 

 Finally, it should be noted that overall lower magnitudes are generally expected in 

volumetric method calculations when compared to the occupancy method because the number of 

occupied voxels situated at the far range of the sensor, and consequently possessing larger 

volumes, is considerably smaller compared to the occupied voxels located closer to the sensor, 

which tends to have smaller volumes, was discussed. Therefore, it is anticipated that lower data 

rate values will be achieved on the whole when the volumetric method is employed. On average, 

it was noticed that the data rate requirements using the volumetric calculations are lower than that 

of the occupancy method. 
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Vertical Curves 

The volumetric calculations for road sections (1-3) will be demonstrated in this section. For both 

RRFs and FE considerations, to illustrate how this approach influences different road layouts. 

Volumetric Method (RFFs) Vertical Curves Analysis 

The volumetric method can better accentuate the differences between sag and crest vertical curves. 

As seen in the data rate requirements results for the three road sections, the graphs are more 

defined, and the value difference is more discernable.  

 As illustrated in Table A 1, the biggest disparity between the values at sag or crest curves 

and the average value at flat road sections was reported in the first road section, where there is a 

40% decrease in data rate values at the crest location and a 42% increase in values at the sag 

location. For the second and third road sections, the maximum sag locations increased by 2x% and 

18.8%, respectively, whereas the minimum crest locations decreased by 16.7% and 22.5%, 

respectively. The main reason behind the difference in these values is the grade of the vertical 

curve. The grade of the first road sections is steeper than the other grades, and hence, the degree 

of increase or decrease in road information is amplified. 

 

Figure A 1. Data Rate Requirements for Section (1) Using Volumetric Method 
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Figure A 2. Road Section (1) Frame 1500 (Lowest Value on Crest Curve) vs Frame 1000 (Highest 
Value on Sag Curve) 

 

Figure A 3. Data Rate Requirements for Section (2) Using Volumetric Method 

 

Figure A 4. Road Section (2) Frame 1500 (Lowest Value on Crest Curve) vs Frame 1000 (Highest 
Value on Sag Curve) 
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Figure A 5. Data Rate Requirements for Section (3) Using Volumetric Method 

 

Figure A 6. Road Section (3) Frame 257 (Lowest Value on Crest Curve) vs Frame 1400 (Highest 
Value on Sag Curve) 

Table A 1. Volumetric Method RRFs Change in Data Requirements for Vertical Curves. 

Section 
Min Value 

(Crest) 

Average Value 

(Flat) 

Max Value 

(Sag) 

% Change 

Relative to Flat 

Values 

1 2.1 × 106 3.5 × 106 5.0 × 106 -40% → +42% 

2 3.75 × 106 4.5 × 106 5.5 × 106 -16.7% → +22% 

3 3.1 × 106 4.0 × 106 4.75 × 106 -22.5% → +18.8% 
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Volumetric Method (FE) Vertical Curves Analysis 

As previously outlined in Section 4.2.2, the data rate requirements in the FE analysis are 

highly dictated by the presence of roadside features. Additionally, since the volumetric method is 

already sensitive to the density and distribution of points in the point cloud, it is expected that the 

geometry of the road will have little control over the data rate values. Furthermore, comparing the 

volumetric calculations of the RRFs analysis with the FE analysis, the jump in data rate 

requirements is expected to be much higher than that witnessed in the occupancy method 

calculations. The maximum increase in data rate requirements as per the volumetric method 

calculations, as listed in Table A 3, are 1300%, 1950%, and 1475% for the three road sections, 

respectively, meaning that the data rate values will increase by an average of 16.7 times in case 

the AV attempts to process the entire environment. This increase is much higher than that recorded 

in the occupancy method calculations, shown in Table 6, which averaged only 4.8 times more 

processing power. 

As for the established pattern for the data rate values in this analysis, it was observed that 

it is still visible at multiple locations throughout the road sections. However, some deviations still 

emphasize the control of roadside features in this type of analysis. For example, road section (1) 

had similar patterns as in the RRFs analysis, unlike sections (2) and (3), where more deviation has 

been noticed in accordance with the different distribution of vegetation. Nevertheless, since this 

method puts more emphasis on the far objects rather than the closer ones, it is natural that its results 

for vertical curves are consistent regardless of the road layout, as in the FE analysis, the crest 

locations will naturally have lower point densities at the far end in contrast to sag locations which 

will help the sensor capture more points at long distances. 
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Figure A 7. Road Section (1) Volumetric Method FE (Purple + Left Axis) vs RRFs (Yellow + Right 
Axis) 

 

Figure A 8. Road Section (2) Volumetric Method FE (Purple + Left Axis) vs RRFs (Yellow + Right 
Axis) 
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Figure A 9. Road Section (3) Volumetric Method FE (Purple + Left Axis) vs RRFs (Yellow + Right 
Axis) 

Table A 2. Volumetric Method FE Change in Data Requirements for Vertical Curves. 

Section 
Min Value 

(Crest) 

Average Value 

(Flat) 

Max Value 

(Sag) 

% Change 

Relative to Flat 

Values 

1 2.5 × 107 5.2 × 107 7.0 × 107 -51% → +34% 

2 0.8 × 108 0.95 × 108 1.1 × 108 -15.8% → +15% 

3 3.5 × 107 5.8 × 107 7.5 × 107 -39.5% → +29% 

 

Table A 3. Vertical Curves Volumetric Method Calculations for FE and RRFs Analysis. 

Section Max RRFs Values Max FE Values % Increase 

1 5.0 × 106 7.0 × 107 1300% 

2 5.5 × 106 1.1 × 108 1950% 

3 4.75 × 106 7.5 × 107 1475% 
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Roadway width 

The analysis of the variation of the roadway width using the volumetric method while considering 

RRFs and FE will be demonstrated in this section. 

Volumetric Method (RRFs) Roadway Width Analysis 

Using the volumetric method approach in quantifying the expected increase in data rate values 

upon increasing the number of lanes for road section (4) is illustrated in Figure 133. The same 

pattern of the jump in the data rate values in the region where the number of lanes is increased to 

three instead of two was witnessed again. The average data rate value in the two-lane region was 

4.4𝑥106𝑏𝑖𝑡𝑠/𝑠 and that at the three-lane region was 5.3𝑥106𝑏𝑖𝑡𝑠/𝑠, meaning that on average, 

there is a 20% increase in the data rate values.  

 

Figure A 10. RRFs Data Rate Requirements for Road Section (4) Using Volumetric Method 

Volumetric Method (FE) Roadway Width Analysis 

In the FE analysis, the established pattern has been significantly attenuated due to the masking 

effect of the roadside features. As seen in Error! Reference source not found., the difference 

between the 2-lane and 3-lane regions is somewhat obscured, unlike in the RRFs analysis. 

However, except for frame 1000, where the roadside features had much higher density than the 

rest of the road, the 3-lane zone still reports about 30% more data rate values than its 2-lane zone 

counterpart. Figure A 12 and Figure A 13 showcase the difference in the surrounding environment 

between the highest and lowest frames in the road section. More importantly, on comparing the 

percentage increase in data rate values if the roadside elements were to be considered in the 
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analysis, about 600-700% increase is expected using the volumetric method calculations, which 

translates to around an 8-fold increase in the data rate values. 

 

Figure A 11. FE Data Rate Requirements for Road Section (4) Using Volumetric Method 

 

Figure A 12. Road Section (4) Frame 1000 (Highest Data Rate Value) VISTA Outputs 
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Figure A 13. Road Section (4) Frame 750 (Lowest Data Rate Value) VISTA Outputs 

Horizontal Curves Analysis 

Given that this analysis is being conducted on the entire environment surrounding the AV, it is 

essential to note that a significant influence on the data rate results will be exerted by stray points 

in the cloud that pertain to various roadside elements, primarily vegetation. Due to the 

inconsistency of the roadside features and their continuously changing density, the volumetric 

method is expected to yield erratic data rate values and experience high fluctuations. Nonetheless, 

the ability to capture shifts in data rate values at critical horizontal curves is still retained. To 

demonstrate this capability, the data rate values for sections 8 and 9 are presented in the figures 

below. 

In road section (8), the previously observed patterns in the occupancy method calculations 

at the entrance and exit of the horizontal curve are once again visible in the volumetric method 

calculations. Notably, there is a 127% drop in values at the entrance of the curve, while the drop 

in values at the exit of the curve is more dramatic, with an approximate decrease of 491% since 

the road environment ahead of the curve was very rich in roadside elements. Similarly, in road 

section (9), a similar trend around the horizontal curve is observable, with a significant drop in 

values of 367% at the entrance of the road section and a 33% decrease at the curve's exit. 

The primary factor controlling the resulting data rate values is the roadside elements, which 

is apparent when comparing the Vista outputs of frames 800 and 1000, as shown in Figure A 16 

and Figure A 17, which represent the lowest and highest data rate values in section (8). The 
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distribution and density of points between these two frames explain the stark contrast in values. 

Frame 1000 contains a greater number of points than frame 800, and more importantly, there is an 

increased concentration of points at the extremes of the frame, resulting in higher data rate values 

due to greater contributions from large voxels. The same pattern can also be explained in road 

section (9) from the Vista outputs, depicted in Figure A 18 and Figure A 19, of frames 600 and 

1000 to show the difference between the lowest and highest values. Finally, from the listed figures, 

it is apparent that frame 600 of road section (9) will have the highest data rate values in both road 

sections, judging from the density and distribution of its points. 

 

Figure A 14. Data Rate Requirements for Road Section (8) Using Volumetric Method 

 

Figure A 15. Data Rate Requirements for Road Section (9) Using Volumetric Method 
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Figure A 16. Section (8) Frame 800 VISTA 
Outputs 

 

Figure A 17. Section (8) Frame 1000 VISTA 
Outputs 

 

 

Figure A 18. Section (9) Frame 1000 VISTA 
Outputs 

 

Figure A 19. Section (9) Frame 600 VISTA 
Outputs 

MODIFIED HORIZONTAL CURVE ANALYSIS 

Since the goal is to ultimately isolate the horizontal curves themselves to better understand their 

impact, this analysis attempts to attenuate the influence of the roadside elements on the data rate 

values and get a better estimation of the contribution of horizontal occlusions. An investigation 

was conducted where the roadside features were kept only on the side of the road that caused the 

occlusions. To illustrate the change in the values, Road sections (8) and (9) were reanalyzed based 

on the aforementioned criteria. The previously recorded shift in values for section (8) of 15 and 

16% at the horizontal curve's entrance and exit, respectively, have now increased to 21 and 29%. 
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Similarly, the change in values for section (9) is now 23 and 28% instead of 12.2 and 12.7% for 

the entrance and exit of the curve. 

 

Figure A 20. Road Section (8) Modified Section Data Rate Requirements 

 

Figure A 21. Road Section (9) Modified Section Data Rate Requirements 

 

 


