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A bstract

In  th is thesis, we study chemotaxis models and mesenchymal transport models. 
By a novel choice o f the so called squeezing probability, we try  to  incorporate the 
semi-elastic properties of cells in to  the volume fillin g  chemotaxis model and estab
lish the global existence of solutions. For th is choice o f squeezing probability, we 
examine the s ta b ility  o f homogeneous equilibrium  and analyze the underlying b ifu r
cations. In  addition, we present one-dimensional numerical sim ulations and observe 
merging and emerging process of pattern form ation. For a chemotaxis model w ith 

out diffusion o f the chemical signal, we study the shock structures for both the 
a ttractive  and the repulsive case. We show the existence o f travelling waves and 
furtherm ore prove th a t the traveling speed is identical to  the shock speed. Then we 
prove th a t the traveling waves converge to  the shock waves when the viscosity o f the 
system vanishes, which implies tha t the shock wave adm its a structure. For the one
dimensional mesenchymal m otion transport models, we provide a detailed analysis 
for the qualita tive  behavior o f solutions. We establish the global existence of classi
cal solutions and show the existence o f weak lim its  of solutions to  the parabolic and 
hyperbolic rescaled models. Moreover, we establish the existence of traveling wave 
solutions and nonexistence o f pattern form ation. Some new questions and research 
directions are proposed in  the thesis.
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Chapter 1 

INTRODUCTION

A  characteristic feature o f liv ing  organisms is tha t they sense the environment 
in  which they reside and response to  it. The response generally involves movement 

toward or away from  an external signal (stim ulus), and such a response is called taxis, 
which originates from  the Greek taxis, meaning to  arrange. The purpose of taxis 
ranges from  movement toward food and avoidance of noxious substances to  large- 
scale aggregation for the purpose o f survival. There are many types o f taxis such as 
aerotaxis, chemotaxis, geotaxis, haptotaxis, and others (see [95]). Any taxis involves 
two m ajor components: (1) an external signal and (2) the response o f the organism 

to  th is signal. The response, in  tu rn , involves two m ajor steps: (i) detection o f the 
signal and (ii)  transduction o f the external signal in to  an in terna l signal th a t controls 
the pattern o f movement. In  th is thesis, I am p rim arily  concerned w ith  chemotaxis, 
which describes the characteristic movement or orientation o f an organism or cell 
along a chemical concentration gradient. Depending on whether it  is toward or 
away from  the external signal th a t affects the pattern o f movement, the external 
signal is characterized as chem oattractant or chemorepellent. The characteristic 
consequences of chemotaxis are cell aggregation and pattern form ation. There are 
two m ajor chemotaxis models. One is called Patlak-Keller-Segel (PKS) model due 
to  the pioneering works by Patlak [101] as well as Keller and Segel [67, 68]. The 
other is called kinetic transport model which was proposed by A lt [2, 3] and further 
developed by Othm er et al [93]. The PKS type model is based on macroscopic scales 
and describes the collective behavior o f particles which in teract w ith  external signals. 
The kinetic transport model, which describes the behavior o f ind ividua l cells, can 
incorporate microscopic level inform ation on cell signal transduction. These two 
type models have most extensively been studied in  the lite ra tu re  of chemotaxis. The 
prim ary part o f my thesis w ill be focused on some existing PKS type chemotaxis 
models and mesenchymal transport models, which were established in  the lite ra ture  
[98, 95, 75, 47].
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1.1 M a in  Results o f the Thesis

This thesis is focused on the study o f analytical and num erical properties of PKS 
type chemotaxis models and mesenchymal transport models. The organization of 
th is  thesis is as follows.

C h a p te r 1. This is an in troductory chapter where I  b rie fly discuss the m oti
vation o f the study and the main results obtained for each chapter. Also I  make a 

survey of chemotaxis models and transport models, o f some results already obtained 
for these models, and of the techniques involved.

C h a p te r 2. This chapter deals w ith  the volume fillin g  chemotaxis mode which 
incorporate the elastic properties o f cells. The fin ite  blow-up phenomenon o f clas
sical the PKS model has been w idely studied in  the lite ra ture, as seen in  the next 
section. However, the blow-up solution is not consistent w ith  pattern form ation 
by bacteria and have lim ited  biological relevance although it  is of interest mathe
m atically. I t  is therefore desirable to  study bio logically relevant and m athem atically 
useful m odifications o f the classical chemotaxis model th a t allow the global existence 
of solutions. There are numerous mechanisms developed toward th is end, including 

saturation effects (e.g. O thm er and Stevens [95], Rivero et al, [106], A ida et al. [1]), 
cell kinetics (e.g. M im ura and Tsujikawa [81], Osaki et al. [91]), attraction-repulsion 
mechanism (e.g. Luca et al. [78] and H illen et al [55]), volume fillin g  effect (e.g. 
Painter and H illen [51, 98]), fin ite  sampling radius (e.g. H illen et al. [53]), nonlin
ear m o tility  parameter and nonlinear chemosensitivity (e.g. Hortsmann [59]) and 
nonlin ear diffusion rate (see [70]). In  Chapter 2, I w ill develop the volume fillin g  
chemotaxis model proposed in  [51, 98] further. The fundam ental standing point 
o f the volume fillin g  effect is tha t cells have a fin ite  volume and can’t  move in to  
regions which are already filled  by other cells. Hence the p robab ility  o f making a 
jum p by a cell depends upon the ava ilab ility  of space in to  which it  can move. The 
global existence and asym ptotic behavior o f solution as well as pattern form ation 
have been studied in  the lite ra ture  [27, 51, 98, 124, 125] for a very general volume 
fillin g  chemotaxis model. B ut in  a ll these papers, the squeezing p robab ility  q(u), the 
p robab ility  of a cell finding space at its  neighboring site, is chosen w ith  assumptions 
th a t cells behave like solid blocks. B u t cells are not solid blocks. They are elastic 
and can squeeze in to  open spaces. In  th is chapter, I include the elastic properties of 
cells in to  the model by means o f a nonlinear squeezing p robab ility  function q(u). I 
prove the global existence of classical solutions and study pattern form ation o f the 

resulting model. I  give the general conditions for pattern form ation and analyze the 
underlying bifurcations. Numerical simulations are presented and interesting merg
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ing (jo in ing o f two neighboring maxima) and emerging (insertion o f new maxima 
between two local m axima)) patterning process are observed. These patterns are 
sim ila r as patterns obtained in  paper [98] and I conclude th a t merging and emerging 
process is a typ ica l patterning process of the volume fillin g  chemotaxis model.

C h a p te r 3. In  Chapter 3, I continue to  study the volume fillin g  chemotaxis 
model w ith  another novel choice for squeezing p robab ility  which s till reflects the 
elastic properties o f cells. B ut the nonlinear diffusion rate o f the resulting model 
has a singularity at the crowding capacity and then the corresponding PDE theory 
used in  Chapter 2 no longer applies. I  call th is a fast d iffusion problem although it  

is s ligh tly  different from  the conventional notion of fast diffusion (see, for example, 
[80]). As an open question, I  leave the global existence of solutions to  be studied 
in  the future. In  th is chapter, I  investigates pattern form ation and the underlying 
b ifurcation  for the resulting chemotaxis model. The num erical sim ulations in  one 
dimension for both zero kinetics and non-zero kinetics are presented. I t  turns out 
th is  novel choice o f squeezing p robab ility  does not bring significant difference in  

patte rn  form ation compared to  the choice made in  Chapter 2 and we s till observe 
the typ ica l merging and emerging patterning process. However m athem atically th is  
different choice raises an open question o f global existence o f solutions and bring 
new challenges to  nonlinear analysis.

C h a p te r 4. This chapter treats another chemotaxis model w ithout diffusion of 
external signal. In  the lite ra ture, pattern form ation and blow up phenomenon of the 

classical chemotaxis model are extensively studied. However, another phenomenon,

i.e., shock form ation, was rarely investigated except num erically in  [95, 75]. Shock 
form ation m ight indicate a propagating disturbance of cell movement which is gen
erated by the interaction o f cells w ith  the ir environment. Due to  the lack of food, 
adaption o f environment and some other reasons, cells make a fast chemotactic ag
gregation and then collapse down to  a lower level aggregation instead o f blowing 
up. M athem atically th is also leads to  a new interesting direction which has never 
been investigated before. In  th is chapter, u tiliz in g  the theory o f hyperbolic system 
of conservational laws, I study the shock structure for a chemotaxis model which 

was developed by Othm er and Stevens [95]. In  th is model, it  is assumed th a t there 
is no diffusion (transport) o f the chemical signal. I firs t establish the existence of 
shock waves for the model w ithout viscosity. Then I  prove th a t the traveling waves 
fo r both the a ttractive  and the repulsive cases exist and tha t the traveling speed 
is identical to  the shock speed. Eventually I  show th a t traveling waves converge 

to  the given shock waves as the viscosity vanishes. Furtherm ore, I  e xp lic itly  find 
an entropy pair for the repulsive case, which thus ensures the uniqueness o f the
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weak solutions (shock solutions) for the repulsive chemotaxis model of O thm er and 
Stevens [95].

C h a p te r 5. In  Chapter 5, I  w ill tu rn  to  the study of transport models. The 

k ine tic transport equation plays an essential role in  bridging ind ividua l and popula
tio n  behavior in  chemotaxis. By choosing appropriate multi-scales, I  can integrate 
microscopic level inform ation on signal transduction in to  population level or tissue 
level models. The tu rn ing  kernel in  th is model plays a crucial role and determines 
the com plexity and diversity th a t the macroscopic lim it equation could have. There 
are many applications of kinetic transport equation in  modeling cell movements such 

as mesenchymal m otion [47] and m o tility  of amoeboid cells [33]. This chapter is fo
cused on the study o f the mesenchymal m otion models which were derived by H illen 
[47] where the macroscopic lim its  and some applications are discussed as well. Nu
merical schemes and pattern form ation in  n-dimensions are studied by Painter [97]. 
In  case o f chemotaxis, a system of a transport equation and a parabolic equation 
for the chemical signal was studied by Chalub et al. [17] and Hwang et al. [63, 62]. 

Their arguments for the global existence of solutions as well as macroscopic lim 
its  axe based on L°°- estimates of the turn ing  kernel. In  the case of mesenchymal 
m otion models, the tu rn ing  kernel is given by the fibre d is tribu tion  q (t,x ,9 )  which 
is allowed to  be a delta d is tribu tion  q{9) =  Sb(9) for a to ta lly  aligned tissue in  d i
rection o f b € R” . As a result, the fibre d is tribu tion  is not necessarily bounded in  
L°°. In  particu la r, assumption (AO) in  paper [17] does not apply and hence the ir 
results can not be applied d irectly to  the case discussed here. The global existence 
analysis is quite technically involved and challenging. So far the global existence 
o f solutions and convergence o f macroscopic lim its  remains open. In  th is  chapter, 
I  give a detailed analysis for the one dimensional mesenchymal m otion model and 
establish the global existence of classical solutions. In  addition, I  prove the exis
tence of a weak lim it o f solutions for parabolic and hyperbolic scaled equations and 
prove the existence o f traveling waves as well as nonexistence of pattern form ation. 

M athem atically the high dimensional mesenchymal transport models have signifi
cant difference from  the one dimensional case. The approaches used in  th is chapter 

for the one dimensional case is no longer valid fo r the higher dimensional case. In  a 
collaboration [58] w ith  T . H illen and P. Hinow, the theory o f semigroups o f opera
tors w ill be applied to  show the global existence o f solutions in  a measurable Banach 
space for high dimensional mesenchymal transport models. The details w ill not be 
provided in  th is  thesis.

C h a p te r 6 . This is a discussion chapter. I b rie fly summarize the results obtained 
in  th is  thesis and po in t out future research directions th a t I  am going to  pursue.
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1.2 Introduction o f the Models

1.2.1 Patlak-Keller-Segel Model (population level)

Let u(t, x ) and v(x, t ) denote the cell density and the concentration of the external 
signals (chem oattractant) at the position x  € Cl and tim e t  >  0, respectively, then 
a sim plified version of PKS model reads

ut =  V (.D V u — uVip(v)), (x, t)  € f i  x  (0, oo) 
rv t =  kcA v  +  g(u,v),
d u d v  (1.2.1)

=  0, x  G <9i2
on on
u(x, 0) =  u0(x), v(x, 0) =  -uo(z),

where £1 is a bounded domain o f M "(n >  1), g(u ,v) describes the production and 
degradation o f external signal v and <p(v) is called potentia l function describing the 
signal detection. The numerous results associated w ith  various PKS type models 
are m ostly summarized in  three survey articles [60, 61, 52]. In  the follow ing, I  b rie fly 
review some results regarding the fin ite  tim e blow up solutions and global solutions 
to  PKS type chemotaxis models.

Model (1.2.1) has been extensively studied in  various aspects and a large number 
o f results in  the lite ra tu re  deal w ith  the case where <p(v) =  x v and g(u, v) — au — 'yv 
w ith  positive constants y, 7  and a, here x  is commonly called chemosensitivity. Na- 
jundiah [90] was firs t to  suggest th a t aggregation of cells may eventually lead to  
the form ation o f a delta function in  cell density, a phenomenon called chemotactic 
collapse in  th a t paper. More often, i t  was referred as blow up in  the lite ra ture. His 
argument, however, d id not consider the possible dependence o f such collapse on the 
dimension o f the space in  which aggregation happens. This viewpoint was developed 
by Childress and Percus [21, 20], who showed th a t singular behavior was not possible 
in  one dimension. W hile in  higher dimension (n >  2), they confirmed N anjundiah’s 
argument th a t collapse (blow up) can occur. They furtherm ore argued tha t, in  two 

dimensions (n =  2), chemotactic blow up requires a threshold number o f cell mass. 
Precisely, there exists two numbers c* and c* such th a t the solution exists globally 
in  tim e if  the in itia l mass H'UolUqn) <  c*, and forms a 5-function singularity in  fin ite  
tim e if  ||u0||ii(f!) >  c*. However, these results are heuristic based on numerical com
putations for the steady states. Subsequently, for the parabolic-e lliptic case ( r  =  0) 
Jager and Luckhaus [65] proved th a t rad ia lly symmetric solutions in  two dimensions 

can blow up for suitable in itia l data uq by constructing a rad ia lly  symm etric lower 
solution for the firs t equation of PKS model. Precisely, they showed th a t there exists 
a c ritica l number 0 such th a t
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(1) if  fn u0dx <  6, the solution (it, v) exists globally in  tim e, and
(2) i f  f Q UQdx >  9, the solution u blows up in  a fin ite  tim e,

where is a bounded domain in  R2 w ith  the C 1 boundary d fl. Furthermore, Nagai 
[83] refined the above work by identifying th is  c ritica l number w ith  8nkc/(a x )-  He 
showed th a t blowup cannot occur i f  n  =  1, or if  n =  2 and f l  is a ball and uq(x ) 
is rad ia lly  symm etric such tha t Jn uodx <  8nkc/(a x ) ,  whereas blowup occurs if  
f Quodx >  8wkc/(a x ) .  Herrero and Velazquez [42, 43, 44] firs t considered the same 
u-equation ( r  >  0) as in  [83] and showed th a t i f  0  is an open ba ll in  R2 w ith  radius r , 
then one can obtain radia l solutions (u(r, t ), v(r, t))  such th a t u(r, t ) blows up exactly 
a t the orig in r  =  0 at tim e t  =  T  >  0 in  such a way th a t u(r, T ) =  ~ ^-d (r) +  f ( r )
as r  —> 0 having a concentrated mass equal to  87tkc/(a x ) ,  where S(r) is the D irac
measure centered at r  =  0 and f ( r )  =  5[e_2l log(r)ll/2( l+ o ( l) )  w ith  a positive constant 

C  depending on x- G lobal existence or blowup results for nonradial solutions or for 
general domain D, can also be found in  references [26, 85, 86, 87, 89], a ll o f which deal 
w ith  parabolic-e llip tic versions ( r  =  0) of the PKS model w ith  different sensitivity 

functions. There are many works devoted to  analysis o f steady states o f the PKS 
model. The landm ark in  th is d irection was the paper by Najundiah [90] again, 
in  which the H opf’s maximum princip le was applied to  the steady state system to  
derive the re lation between u and v and consequently the steady state system was 
reduce to  a scalar parameter-dependent e llip tic  problem. In  [109], Schaaf showed 
th a t the stationary problem o f more general PKS models than the cases studied by 
N ajundiah can also be reduced to  a scalar parameter-dependent e llip tic  equation. 
The linear and logarithm ic chemotaxis sensitivity functions are considered there. 
Furtherm ore, Schaaf gave a s tab ility  analysis for the constant stationary solutions 
o f the PKS model. L in  et al [77] established conditions w ith  logarithm ic sensitivity 
function for system to  have both nonconstant and constant stationary solutions. 
Based on the varia tional techniques introduced by Struwe et al [118], Wang et al 
[122], Senba et al [111] and Hortsmann [59] independently proved the existence of 
non triv ia l stationary solutions w ithout symm etry assumptions. Coming to  the fu ll 
PKS model ( r  >  0), Nagai et al [89, 88] proved tha t rad ia lly  symm etric solutions 

exist globally in  tim e provided the in itia l mass satisfies ||uo||li(q) <  8Trkc/(a x )-  As 
for the general solutions (non-radial sym m etric), they gave ||uo||z,i(o) <  4irkc/(a x )  
as a criterion for the existence o f global solutions. B ile r [11] and Gajewski et al [39] 
independently obtained the same criterion as above for the global existence of non
rad ia l solutions by constructing a Lyapunov function. Moreover, Gajewski et al [39] 
showed th a t the solutions asym ptotically approximate stationary solutions for some 
sequence o f tim e moments. The long tim e behavior o f global in  tim e solutions was
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recently obtained by Feireisl et al [35]. I t  is clear th a t there is a discrepancy between 

the radia l threshold 8nkc/ {a x )  and the non-radial threshold (Ankc/(a x ))-  This gap 
was filled  by subsequent works [88, 85, 111, 110]. They showed th a t i f  there is a 

solution th a t blows up in  fin ite  tim e for in k c/(a x )  <  H'UolUqij) <  8nkc/(a x ) ,  then 
the blowup (for u ) has to  happen at the boundary of the domain. Furthermore, in  a 
book by Suzuki [119], when n — 2, the quantized, blow up mechanism was discussed. 

I t  was shown th a t the solution w ill blow up in  fin ite  tim e if  the in itia l mass ||uo||i,i(o) 
is greater than a quantized mass m *(x0) which is defined as

j  8Trkc/ax, xQ € Cl,
m J x 0) =  <

|  47tkc/ax, x0 € dCl,

where Cl is a bounded domain in  R2. Beside the analysis o f the PKS model on 

a bounded dom ain, Nagai [84] studied the problem on the whole space Cl =  R2. 
He showed th a t for HuoIIlmr2) <  47tkc/(a x ) ,  the solution exists globally in  tim e 
using the Lyapunov function and furtherm ore found several decay properties o f the 
solution.

Most o f the studies mentioned above are focused on the two dimensional case. 

So what is known for the case n — 1 or n >  3? For the case n =  1, the paper by 
Osaki et al [92] and H illen et al [54] filled  the gap of the missing global existence 
proof using different approaches for the classical PKS model. For the case o f higher 
space dimensions n >  3 and a bounded domain, the solution w ill blow up [83] if  the 
in itia l data uq is rad ia lly  symm etric and small. In  [12], i t  was shown th a t i f  n >  2 
and Cl C Rn is a bounded star-shaped domain w ith  respect to  origin, then solutions 

blow up for sufficient large in itia l mass ||u0| Uqn)- When Cl =  R3, for any T  >  0 
and constant C >  0, there exists a radial solution (U ( t , r ) ,V ( t , r ) )  such th a t the 
rad ia l solution blows up a t the orig in r  — 0 and t =  T  and J]x|<r U(T, s)ds —> C  (see 
[42, 43, 44]). For more detailed results about the PKS model, I refer to  the survey 
articles [60, 61]. For n >  3 and non radial symmetric solutions w ith  general bounded 
domain, H illen et al [55] showed tha t IP  solutions (p >  1 + n /2 ) globally exist when 
in itia l data ||wo||Lp(n) is sufficient small. Recently, some interesting results about 
the unbounded domain for n  >  2 are obtained. Corrias et al [23, 22] showed tha t 
in  dimension n >  2, L n/2(R” ) is the c ritica l space: there exists a constant K \ (n), 
such th a t when in itia l norms ||uo||l«/2(R") <  K \(n )  there are global weak solutions 
and solutions decays to  zero for the e llip tic  case ( r  =  0), while solutions decay to  
G (t) * Uq for the parabolic case ( r  =  1), where G (t,x ) denotes the heat kernel. 

For large in itia l data ||«o||i,n/2(R>*) >  K 2(n )(> >  K \  (n )), the solutions blow up (see 
Perthame [103]). C learly there is a gap between two thresholds K i(n ) and K ^in ),
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which has not been filled  yet so far.

1.2.2 K inetic Transport Model (individual level)

Bacterial m o tility  is commonly provided by flagella, which are long, spiral-shaped 
prote in rods th a t stick out from  the surface o f the cell [108]. The examples of 
flagellated bacteria are enteric bacterium  E. coli, bacterium  S. typhimurium  and soil 
bacterium  A. vinelandii. The physical mechanism o f movement o f the flagellated 
bacteria is well known [9]. There are two models o f movement pattern based on 

counterclockwise (CCW ) and clockwise (CW ) flagellar ro ta tion . When the flagella 
tu rn  counterclockwise, they jo in  together and form  a synchronous bundle th a t causes 
the flagella to  point in  one direction and pushes the body steadily forward. This 
forward m otion is called ‘run ’. The speed of running is s =  10 — 20/rm/sec. A 

clockwise ro ta tion  o f each flagellum  causes the bundle to  come apart and the flagella 
tu rn  independently, moving the cell body th is  way and th a t in  a h ighly erratic 

manner. In  th is  case, the cell is said to  ‘tum ble’. I  sim ply characterize these motions 

as “run and tum ble” . Tum bling reorients the cell so th a t i t  can move in  a new 
direction when running starts again. The ‘run and tum ble’ process is very sim ilar 
to  th a t of scattering for neutrons th a t ‘run ’ along stra ight fines u n til they encounter 
an atom and then are ‘scattered’ in  a new direction. The governing equation is 
therefore reminiscent to  the Boltzm ann equation [24, 102],

For E. coli, the duration o f both run and tum ble are exponentially d istributed 
w ith  means o f 1 sec and 0.1 sec respectively i f  an extracellu lar chemical signal is not 
present [13]. Under the influence of an external signal (chem oattractant or noxious 
substance), the cell increases its  tim e on running in  a favorable direction. Since 
these bacteria are too small to  detect spatial differences in  the concentration o f an 
external signal on the scale of a cell length, they choose a new direction essentially 
at random at the end o f a tum ble, although it  has some bias in  the direction of the 
preceding run [10, 31]. Therefore, from  mathematical po in t o f view, the movement 
o f flagellated bacteria can be viewed as a biased random walk. As the mean tim e 
for tum bling is ten times smaller than the mean tim e of running, the tum bling tim e 

is negligible and consequently we can model the movement o f the bacterium  by a 
stochastic process called a velocity jum p process which was introduced by A lt [2] 
and further developed in  [93, 50, 94, 116]. A  kinetic transport model to  describe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

th is  velocity jum p process is as follows (see [93])

where p ( t ,x ,v ) denotes the density o f cells at position x, moving w ith  velocity 

v € V  C l n a t tim e t. T  is an operator modeling the  change of d irection of 
cells and tu rn ing  kernel T , depending on the density S o f external signal, gives the 
p robab ility  o f a velocity jum p from  v' to  v if  a jum p occurs. In  [2, 3, 50, 94], it

be obtained as the diffusion lim it o f the transport equation (1.2.2), thus allowing 

to  determine the diffusion m atrix  D  and the chemotactic sensitivity y . The global 
existence, blow-up and macroscopic lim its  o f the one-dimensional version o f model 
(1.2.2) have been studied in  [57, 56, 49, 64]. In  higher dimension, the global existence

the rigorous proof o f parabolic lim its  was subsequently supplied in  [63, 62], where a 
more general turn ing  kernel T  was considered.

A ll o f the above results either heuristica lly describe the macroscopic process, 
or, if  using a transport model, assume th a t the tu rn ing  kernel only depends on 
the signal concentration but not on its  gradient, and not on in ternal variables. 
However, a bacteria population is comprised o f m illions of ind iv idua l bacteria and 
collective behavior o f the bacterial population involves individual-level response to  
signals. The machinery o f signal transduction and adaption for some bacteria (e.g., 
E. coli) has been well characterized [7, 14, 115], which leads to  the question of 
how to  incorporate the ind ividua l behavioral rules in to  population level models. A  
significant progress on fillin g  the gap between microscopic and macroscopic models 
has been made in  [31, 32]. Assume tha t the in ternal variables £ £ Z  C Mn involved 
in  the signal transduction evolve according to  the equations

where rj(-, S) : Z  —> Mm and S(t, x) denotes the extracellular signal as above and 
x (t)  is the cell path. Then the governing equation w ith  in terna l state variables in 
the jum p velocity process is given by (see [31, 32])

was shown th a t parabolic chemotaxis equation, such as the PKS model (1.2.1), can

of solutions and parabolic lim its  to  equation (1.2.2) was given in  [17] for a given S. 
When the equation for external signal S is coupled in to  transport equation (1.2.2),

(1.2.3)

-X7 +  v '
dp

V p  +  V *fap ) =  -A (£ )p  +  [  m n v ,  v', £)p(t, X ,  v', £ )d t/, (1.2.4)
Jvdt
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where p(t, x, v, £) is the density of cells w ith  in ternal state £ at position i e l "  w ith  

velocity v € V  C R " at tim e t  >  0. Here it  is assumed th a t the random velocity 
changes follow  a Poisson process w ith  rate A(£) and the tu rn ing  kernel satisfies the 

norm alization condition f v T (v ,v ',£ )d v ' =  1. Applying the perturbation methods 
and moment closure approach, the authors o f [31, 32] use a cartoon model for the 
in terna l state £ =  (£i, £2)

d f i _ s ( S ( r ) ) - ( 6 + 6 )  #2  g ( S ( T ) ) - h
d r  r e ’ d r A(0 = Ao-6£i. (i-2-5)

as an example to  show how aspects of the signal transduction and response e xp lic itly  
enter in to  the macroscopic equations v ia  chemotactic sensitiv ity function by studying 
the parabolic and hyperbolic lim its  o f equation (1.2.4), where Ao is the basal turn ing  
frequency for a fu lly  adapted cell and b is a positive constant. Their analysis showed 
how parameters th a t characterize signal transduction and response in  ind iv idua l cells 
are embedded in  the macroscopic chemotaxis PKS model through the sensitivity 
function x  in- Specifically, they derive th a t the macroscopic density p(t, x ) evolves 
according to  the follow ing chemotaxis equation

|  =  V . ( D V p - p . # ) V S )  

where the macroscopic density p (t, x) is defined by

p ( t ,x ) =  p(t,x,v,£)dvdZ,
Jz Jv

and the diffusion rate and the chemosensitivity x  3X6 given, respectively, as

s2

d  =  — , X(S) =  g '(S (x )):
bs2r a

nA0’ nA0( l  +  A0r o) ( l +  A0r e) ’

Their argument was further developed in  [33] for the more complex type of be
havioral response characteristic of crawling cells, which detects a signal, extract 
directional inform ation from  a scaler concentration fie ld, and change the ir m otile 
behavior accordingly. The numerical approaches for solving (1.2.4) was explored 
in  [30] and the global existence o f solutions to  equation (1.2.4) and (1.2.5) in  one 
dimension coupled to  the equation for external chemical S(t, x) was obtained in  [29]. 
In  papers [2, 3, 31, 32, 33], the tu rn ing  kernel T  is assumed to  be independent of 
in terna l or external variables due to  the technical d ifficu lty  for deriving macroscopic 
lim its . In  the work [28], the authors studied the almost same model as (1.2.4) w ith  a 
generalization th a t tu rn ing  kernel T  depends on the spatial and tem poral gradient. 
By essentially assuming th a t the boundary condition p(t, x, v, £) =  0 for £ € d Z  and
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applying moment closure method, the authors o f [28] reduce equation (1.2.4) into 
the follow ing two equations w ithout the internal variable gradient

f t  +  v • V /  =  f (:T [S } f  -  T * [S ]f)d v \  (1.2.6)
Jv

(,pz)t +  V * ■ Jv v fd v 'j =  prj(z, S), (1.2.7)

where

f ( t , x ,v )  =  /  p(t,x ,v ,£ )d£ , p ( t , x ) =  /  f ( t ,x ,v )d v ,
Jz Jv

and z(t, x) denotes the average values o f the in ternal variables determined by

z (t,x )  =  \  [  I  £p(t,x,v,£)d£dv,
P Jv  Jz

and turn ing  kernel T  is given by T[S] =  (p(St +  v • V S ) w ith  an assumption th a t
<p : R —»• M is a m onotonically decreasing smooth function possessing positive lower

and upper bound.
The hydrodynam ic lim its  of equations (1.2.6) and (1.2.7) are rigorously derived 

in  [28]). The numerical results for the macroscopic chemotaxis equations o f models
(1.2.6) and (1.2.7) were investigated as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

Chapter 2

VOLUME FILLING CHEMOTAXIS MODEL W ITH  
NONLINEAR SQUEEZING PROBABILITY1

2.1 In tro d  uction

Chemotaxis is the characteristic movement or orientation o f an organism or cell 
along a chemical concentration gradient either toward or away from  the chemical 
stim ulus. In  the firs t case, the chemical is called a chem oattractant, and in  the sec
ond case it  is said to  be a chemorepellent. The term  chemotaxis is used broadly in  
the m athem atical lite ra tu re  to  describe general chemosensitive movement responses. 

Models for chemotaxis have been successfully applied to  the aggregation patterns 
in  bacteria [120, 121, 123], slime molds [37], skin pigm entation patterns [100], an- 
giogenesis in  tum our progression and wound healing [16] and many other examples. 
A  classical and very im portant chemotaxis model was proposed by Keller and Segel 
[67] in  1970 to  describe the aggregation process o f cellular slime mold by chemical 
a ttraction . A  special case o f the Keller-Segel model reads

ut =  V (V u  — ux(v )V v), (x, t) € f t  x  (0, oo)
vt =  eA v +  g(u,v),

< 9 u _ d v _  (2-1.1)
dn dn  

. u (x ,0) =  u0(x ) ,u (x ,0) =  v0(x),

where is a bounded domain of M” , u(t, x) denotes the particle  density and v(t, x) 
stands for the concentration of chem oattractant, £ is a positive constant, x  is called 
chem osensitivity and g(u, v ) describes production and degradation of the chemoat
tractan t.

Model (2.1.1) has been extensively studied in  great deta il in  the lite ra ture  (e.g., 
see the survey articles o f Hortsmann [60, 61]). O f particu lar interest is the tendency 
o f solutions to  exh ib it fin ite-tim e blow-up. I t  has been shown th a t possib ility of blow

up o f the solutions to  system (2.1.1) essentially depends on the space dimension.

1The result in this chapter is a collaboration with Thomas Hillen and has been accepted for 
Chaos.
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For constant chemosensitivity x ( v ) — X and linear reproduction and degradation 
g{u, v) =  uu — 5v, fin ite-tim e blow-up never happens in  1-dimension (unless there 

is no diffusion of the chem oattractant v) bu t can occur in  n-dimension for n  >  2. 
The 2-dimensional case is im portant and several thresholds (for rad ia lly  symmetric 
solutions and for non-symmetric solutions) were found. I f  the in itia l d is tribu tion  
exceeds th is  threshold, the solution w ill blow up in  fin ite  tim e. When the in itia l 
mass is below th is  threshold the solution exists globally.

There are various m odifications o f (2.1.1) which prevent blow up. For example, 
M im ura and Tsujikawa (1996) presented a chemotaxis-growth model which reads

ut =  aAu  -  V (u x (v )V v )  +  /(« )  in  x  [0, oo),

■ T=btvi r Sv’ < 2 x 2 )
dn  d n  5

. t i( z ,0) =  U q( x ) , v ( 0 , x )  =  Vo (a:),

where f ( u )  is a smooth function o f u such th a t / ( 0) =  0 and

f ( u ) =  (— +  C)u for sufficiently large u.

The function f ( u ) describes cell pro liferation and cell death. For space dimension 
n =  1,2, Osaki et a/.(2002) showed tha t the solutions of problem (2.1.2) exists 
globally due to  the d issipa tiv ity of the growth of cells. Moreover, saturation effects in 

the chemotactic component x(v)  occur very natura lly i f  cell surface receptor kinetics 
is taken in to  account. Chemotaxis models w ith  saturation effects can prevent blow 

up and have been used in  many applications (B iler [11], Ford et al. [19], O thmer 
and Stevens [95]). A  chemotaxis model w ith  fin ite  sampling radius by incorporating 
a non-local sampling in to  the classical model was studied recently by H illen et al 
[53]. The global existence o f the solution for any space dimension and numerical 
sim ulation o f pattern form ation are shown in  [53]. When cells demonstrate both 

chem oattraction and chemorepulsion according to  m ultip le  environmental signals, 
the classical model can be extended in to  an attraction-repulsion chemotaxis model. 
This type o f model has been studied by a number o f authors [78, 98, 99]. The general 
conditions for blow up or global existence to  some specials cases of the a ttraction- 
repulsion model were identified in  a recent work [55]. O ther strategies o f preventing 
blow up are reviewed in  a forthcom ing paper [52],

Painter and H illen [98] introduced the mechanistic description of the volume 

fillin g  effect. In  the volume fillin g  effect, it  is assumed th a t particles have a fin ite  
volume and th a t cells can not move in to  regions which are already filled  by other
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cells. F irs t we give a b rie f derivation of the model below. For a fu ll derivation we 
refer to  paper [98].

The derivation of the model begins w ith  a master equation for a continuous-time 
and discrete-space random walk (O thm er and Stevens [95])

Ou’
~q.Y =  +  Ti+1Ui+i —  (7T+ +  )uu (2.1.3)

where rq is defined to  be the conditional p robab ility of a walker at i  € Z  at tim e t, 
conditioned at i  =  0 at t  =  0 and 7’± axe the transitiona l probabilities per u n it of 
tim e for a one-step jum p to  i  ±  1.

In  the volume fillin g  approach, the probab ility of making a jum p is assumed 
to  depend on the ava ilab ility  of space in to  which cells can move. The transitiona l 
p robab ility  then takes the form

T t  =  Q(ui± i) («  +  P[T(vi± l)  -  t(u 4)]), (2.1.4)

where q(u) denotes the squeezing probability o f a cell finding space at its  neighboring 

location, a  and f3 are constants and r  represents the mechanism of the signal detec
tion . I t  was assumed tha t only a fin ite  number of cells, say u, can be accommodated 
at any site, and the function q is stipulated by the condition

q(ii) =  0, w ith  0 <  q(u) < 1  for 0 <  u <  u.

Moreover, the squeezing p robab ility  is zero when the cell density exceeds u. A  logical 
immediate choice for q(u) is

{ 1 — 3 , 0 <  u <  u,
u (2.1.5)

0, u >  u,

which says th a t the probab ility o f a cell finding a space at its  neighboring site 
decreases linearly in  the cell density at tha t site. The linear choice (2.1.5) for q(u) 
says th a t the p robab ility  of a cell finding spaces is proportional to  the number 
o f occupants (see [118, 98, 104]). This corresponds to  the situation where cells 

behave like solid blocks and are not squeezable. However, some cells are plastic 
and deformable and can change the ir shapes to  squeeze in to  openings. Hence the 
p robab ility  q(u) o f a cell finding space should be a nonlinear function which is 
greater than a linear d is tribu tion  as define by (2.1.5). Under th is consideration, a 
more realistic form  of squeezing probab ility  q(u) tha t takes in to  account the plastic 

properties of cells is
7q(u)

I  u
1 — ( — ) , 0 < u < i 2,

W  -  ~  (2.1.6)
0, u >  u,
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where 7 >  1 is called the squeezing exponent in  th is  paper. 

1.2
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Figure 2.1: Illu s tra tion  of linear and nonlinear squeezing p robab ility  q(u), where we 
assume th a t -0 =  1. Case (I) corresponds to  the situation th a t cells are solid blocks 
and the p robab ility  of a cell finding space is proportional to  the available space. 
Case ( II)  and ( III)  correspond to  the case th a t cells are plastic and can deform to  
f it  in to  open space. Hence the squeezing probab ility is pointwise larger than in  the 
linear case (I). Case (IV ) describes th a t a cell consists o f a flu id  th a t can f ill a ll open 
space w ithout restriction.

S ubstitu ting (2.1.4) in to  the master equation (2.1.3), applying Taylor expansion 
(see [98]), and converting the discrete equation in to  a continuous equation, we end 
up w ith  the follow ing equation

Ut — V -  (d i(g (u ) -  q '(u )u )V u -  q (u )u x (v )V v), (2.1.7)

where

di =  ka, x (v) =  2 k (5 ^ ^ - ,

and k is a scaling constant.
Another possible choice of squeezing probab ility  q(u) which also reflect plastic 

cell property is given as

q(u) =  <
0,

0 <  u <  u, 

u >  u,
(2.1.8)

q(u)=1 (IV)

^ q (u )= 1 -u Y(y>1) (II) 

q(u)=(1-u)r(1<r<1) (III)

q(u)=1-u (I)
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w ith  0 <  r  <  1. For th is choice of q{u), the derivative q'(u) —> — oo as u —► u (see 
Figure 2.1), which leads to  a singularity in  the diffusion coefficient (see (2.1.7)). In  

th a t case the model becomes a fast diffusion parabolic equation and the classical 
theory for global existence of nonlinear parabolic equations no longer applies. Hence 
we w ill use (2.1.6) as an example in  the follow ing analysis. We can, however, do a 
sim ilar pattern form ation analysis fo r (2.1.8) and also find  merging and emerging 

dynamics sim ilar as (2.1.6) does (shown in  chapter 3).
There are some flu id  cells th a t can unrestrictedly f ill a ll open space. In  th is 

situation, the squeezing probab ility q(u) is defined as follows

. . I 1, 0 <  u <  u,
q =  \  n "  t2' 1'9)1 0 , u >  u.

I t  is worthwhile to  point out th a t a ll above choices fo r squeezing p robab ility  are 
made according to  the biological relevance instead o f mechanical jus tifica tion . The 
graph for a ll these choices are p lo tted in  Figure 2.1 and comparisons are given in  
the caption.

I f  we combine the chemotaxis equation (2.1.7) w ith  the dynamic equation for the 
external signal and incorporate the b irth  and death dynamics of cells and external 
signals, denoted by f (u ,v )  and g(u ,v), respectively, we obtain a form ulation o f the 
volume fillin g  chemotaxis model

f  ut =  V  • (d i(g (u ) -  q'(u)u)V u -  q {u )ux(v)V v) +  f (u ,  v), J
\  vt =  d2A v  +  g(u,v),

on a bounded smooth domain Q. Moreover, the zero-flux boundary conditions are 

prescribed as follows

(d i(q(u) -  q’ (u)u)S7u) ■ n  -  q(u )ux(y)V v ■ n  =  0,
V v  • n  =  0,

where n  denotes the u n it outward normal vector at the boundary dVt.

The global existence o f solutions to  a volume fillin g  chemotaxis model was firs t 
obtained in  paper [51], where cell pro liferation was not taken in to  account. Recently, 
Wrzosek [124] proved the global existence of the solution to  system (2.1.10), (2.1.11) 
w ith  cell kinetics and a smooth squeezing p robab ility  q(u). Furthermore, he proved 
the existence of a global a ttracto r o f system (2.1.10), (2.1.11) in  any space dimension 
n  >  1 for the special linear form  o f q(u) as in  (2.1.5). In  th is  paper, we consider 
a more realistic squeezing p robab ility  q(u) which reflects the semi-plastic property 
o f cells and more general kinetic forms /  and g. We prove the global existence
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of classical solutions and study pattern form ation to  system (2.1.10) and (2.1.11) 
under our novel choice o f squeezing probability. For pattern form ation, we extend 
the analysis in  [98] by generalizing the squeezing p robab ility  function q(u) to  the 
form  o f (2.1.6) for 7 >  1. I t  is worthwhile to  note th a t the choice o f (2.1.6) w ith  
7  >  1 in  (2.1.10) results in  density dependent diffusion (nonlinear diffusion) in  the 
firs t equation o f (2.1.10) , which is in  contrast to  choice (2.1.5) th a t results in  a 
constant diffusion (linear diffusion).

The rest of paper is organized as follows. In  section 2, we give the basic as
sumptions for squeezing probab ility q(u) as well as the kinetic functions /  and g 

and prove the global existence of classical solutions to  the system (2.1.10), (2.1.11). 
The results are obtained based on Am ann’s theory o f parabolic systems [5, 4, 6] by 
making a smooth extension for q(u). In  section 3, we w ill identify the conditions for 

pattern form ation o f the general system (2.1.10) w ith  zero-flux boundary conditions 
(2.1.11) by perform ing the standard linear s tab ility  analysis. In  section 4, we con
sider (2.1.6) and derive the dispersion relation. Based on th is dispersion relation, 

we investigate the bifurcations of the chemosensitivity Xi the growth rate v and 
the death rate S o f the chem oattractant. We also study the influence o f crowding 

capacity 7 on pattern form ation. In  section 5, we show numerical sim ulations for 
system (2.1.10) and (2.1.11) and compare the patterns obtained for the choice of
(2.1.6) versus (2.1.5). We close w ith  a discussion in  section 6.

2.2 Global Existence

To study the local and global existence of the solutions to  problem (2.1.10), (2.1.11), 

we assume th a t nonnegative in itia l data are given as

u(x, 0) =  Uo(x) >  0, v(x, 0) =  vo(a;) >  0 for x  € SI. (2-2.1)

Moreover, we make the follow ing assumptions.

( A l)  dr and d,2 are positive constants, x  € C 2(M, M) and x (v ) >  0- 
(A 2 ) The squeezing probab ility  q{u) € C3([0, il))  satisfies the follow ing condi

tion :

(1) there exists a c ritica l number u such tha t 
^(0) =  1 ,q{u) =  0, and 

0 <  q(u) <  1 for u € (0 ,u ) and q(u) =  0 fo r a ll u >  u.

(2) q(u) is nonincreasing, i.e., q'{u) <  0. Moreover 

|<7'(u )| is bounded and q"(u) <  0 for a ll u € [0, u].
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Hereafter we call u the crowding capacity.

(A 3 ) /  G C2( l  x 1 ) satisfies the quasi-positivity condition, i.e., /(0 , v) >  0 for 
v >  0. Moreover, there exists a constant uc >  0 w ith  uc <  u such th a t fo r a ll v >  0

f ( u c, v) — 0 and f (u ,  v) <  0 for u >  uc, (2.2.2)

we call uc the carrying capacity.

(A 4 ) g G C 2(M. x M) is bounded and satisfies the quasi-positivity condition: 
g(u, 0) >  0 for u >  0. In  addition, there exists a constant v >  0 such th a t

g(u,v) <  0 for 0 <  u <  u. (2.2.3)

Standard examples for q are (2.1.5) and (2.1.6). A  typ ica l choice for the cell kinetic 
function f (u ,  v) is logistic growth f (u ,  v ) =  fj,u(l — u /u c) and for g it  is linear growth 
and death g(u , v) =  v u —Sv. A  more general choice w ill be discussed la ter (see (2.2.4) 
and (2.2.5)).

R e m a rk  2 .2 .1 . Here we assume that the crowding capacity u is larger than the 
carrying capacity uc. The carrying capacity denotes a critica l density beyond which 
there is not enough nutrients available to support further population growth, whereas 
the crowding capacity gives only a volume constraint o f how many particles can be 
squeezed into a unit area (o r volume). Hence it  is reasonable to assume u >  uc.

R e m a rk  2 .2 .2 . From assumption (A2), we see that the squeezing probability func

tion q{u) in  not differentiable at u =  u. Later on, we w ill show that the solution u 
satisfies 0 <  u <  u. So here q'(u) represents the left derivative o f q(u) at u =  u,
i.e., q'(u) =  lim  q'(u).

u —>u~

R e m a rk  2 .2 .3 . The condition q"{u) <  0 fo r  0 <  u <  u means q(u) is concave 
in  [0, u]. So q(u) is pointwise larger than the linear case in  (2.1.5) fo r  u € [0, u], 
which is used to reflect the plastic properties o f cells. As the same reasons stated in  

Remark 2.2, here we define q"(u) as the left derivative o f q'(u) a tu  =  u. Note that 
the condition <f{u) <  0 is sufficient but not necessary fo r  global existence.

R e m a rk  2 .2 .4 . We now compare the above assumptions (A l) - (A f )  with the con

ditions imposed by Wrzosek in  [124]■ I n fl®4]> Q(u ) =  <l(u )(u ~  u ) and Q(u ) >  
0 ,q(u) G C 3(M) fo r  a ll t i G K .  Clearly our assumptions fo r  q(u) are different from  

the above assumptions given by Wrzosek. The argument applied in  [124] can n° t  be 
used directly here. Particularly q(u) is allowed to be not differentiable at u =  u in  
our assumption. Even in  the domain [0, u) in  which q(u) is smooth, our assumptions
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do not fu lf i ll the assumptions in  [124]- For example, the choice of (2.1.6) fo r  7 being 
an integer greater than 1 satisfies both our assumptions and Wrzosek’s assumptions 

fo r u  6  [0, u). However, when 7  >  1 is not an integer, (2.1.6) can not be represented 

in  the form  in  [124]  even f or u £ [0, u).

For the cell k inetic term  f (u ,  v), in  paper [124], f (u ,v )  =  uh{u) is independent 
o f the chem oattractant concentration v where h(u) <  0 for u >  u. However, the 
cell kinetics m ight depend on the concentration o f the signal. Many growth factors 

have been shown to  stim ulate such dual activ ity, for example, vascular endothelial 

growth factor (VEG F) mediates both endothelial cell p ro liferation and chemotaxis. 
An example from  [98] for th is  behavior is

f (u ,v )  =  r u v ( l  -  (2.2.4)

where i t  is assumed tha t the chemical mediates both cell m igration and cell p ro life r

ation, where uc <  u. For the signal kinetics g(u, v), in  paper [124], g(u, v) =  g i(u ) — 

vg2(v) where gu g2 <E C72(R ),g i >  0,ch(0) =  0,g2 >  0 and lim  yg2{y) =  + 00. In
y - * + o o

fact, g(u ,v) can be more general and the conditions can be relaxed to  (2.2.3). A  
standard example is o f b irth-death structure, i.e.,

g(u ,v) =  g !(u ,v )u  -  g2(u ,v)v, (2.2.5)

w ith  bounded b irth  rate gi >  0 and death rate g2 >  n fo r some positive constant «. 
Then there exists a v such th a t g (u ,v ) satisfies condition (2.2.3).

Under the assumption (A 1)-(A4), we can im m ediately prove th a t v is nonnegative 
and bounded above by v i f  0 <  u <  u. This is shown in  the follow ing Lemma.

Lem m a 2 .2 .1 . Let assumption (A1)-(A4) hold and (u,v) be a solution o f system

(2.1.10), (2.1.11). I f 0 < u < u ,  then it  follows that 0 <  v <  v.

Proof. We define an operator £  by

£ v  =  vt — d2A v  — g(u, v).

Then v =  0 is a lower solution o f the v-equation in (2.1.10) since for 0 <  u <  u

£v =  ~gi(u,0) < 0,

and v is a upper solution of the w-equation due to

£ v  =  —g(u,v) >  0.
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Then it  follows from  the comparison principle tha t 0 <  v <  v.

□
In  what follows, we are devoted to  proving the global existence o f classical so

lutions to  system (2.1.10), (2.1.11). Note th a t q(u) is not smooth at u =  u, which 
causes some trouble in  applying the theory for nonlinear parabolic equations. Hence 
we firs t consider a smooth extension o f q(u) in  the interval [—e, u+e \ for some e >  0, 
denoted by q(u), such th a t q(u) is concave and smooth at u =  0 and u =  u, and 
furtherm ore

{ 1, u <  0
q(u), 0 <  u < u .

< 0, u >  u,

Then we consider the follow ing auxilia ry problem

ut =  V  • (d1(q(u) -  q j(u)u)Vu -  uq(u )x(v)V v) +  f (u ,v ) ,
(2.2.6)

vt =  d2A v  +  g(u,v),

Next, we w ill employ Am ann’s results [5, 4, 6] to  prove the global existence of 
solutions to  the auxilia ry problem (2.2.6) and (2.1.11) and show th a t 0 <  u <  u if  
0 <  Uo <  u. Since q{u) =  q(u) for a ll 0 <  u <  u and 0 <  u <  u for 0 <  Uq <  u,

we autom atically obtain the global existence o f solutions fo r the orig inal problem
(2.1.10) and (2.1.11). The zero flux boundary condition (2.1.11) is equivalent to  
the Neumann boundary condition. Am ann’s results on global existence apply for 
both D irich le t and Neumann boundary conditions. Hence for a given function rj € 
C(dQ,, {0 ,1 }), we consider more general conditions given by

f)qj
r]u +  ( \  — rj)—  =  0 on dd,

£  (2.2.7)
nv +  (1 — n )—  =  0 on d fi, 

on
where n  represents the outer u n it normal vector on 50.

Let p 6 (n ,+ o o ), then the space VT1,p(0 ; M2) is continuously embedded in  the 
continuous function space C (0 ; R2). We define

W l ' p : =  j w e  W ^ O j R 2) r]w\dQ =  o | ,

By assumption (A2) and the defin ition of the extension q(u), we know th a t d(u) =  

di(q(u) — q'(u)u) >  0 and d(u) is smooth for u € [—£,u  +  £]■ Note th a t q{0) — 1. 
Then it  is easy to  verify tha t

d{u) >  g?i for u €E [—£, u +  e\. (2.2.8)
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Now we can choose an open subset Q C R2 such tha t

X i C Q c  X2,

where

X i  =  {(u , v) € R2| 0 <  u <  u ,v  >  0}

and

I 2  =  6  1 2 | — £ < U < £  +  u \ .

We consider the solution in  the follow ing solution space

X  :=  \  w =  (u ,v) e W l'p w (fl)  € g

Under the above m athem atical set up, we have the follow ing local existence theorem.

assumptions (A1)-(A4) be satisfied. Then we have

(i)  For any in itia l data (uo,vo) € X , there exists a positive constant T (uo, vq) 
depending on the in itia l data (uo,vo) such that problem (2.2.6), (2.2.1) and (2.2.7) 

has a unique maximal classical solution (u (x ,t) ,v (x ,t) )  defined on f i x  [0,T(«o,uo)) 
satisfying

from  the set { ( f ,  (u ,u ))|(u ,u ) € X , 0 <  t  <  T (uq, vo) }  to X .

(Hi) Ifu o  > 0,v0 >  0, then u > 0, v > 0.
(iv) I f  || (u, ?;)(•,£) ||i°c(Q) is bounded away from  the boundary ofG  fo r  each time t 

with 0 <  t  <  T (u 0, Uo), then T (uq, Uo) =  +oo> i-e-, (u, v ) is a global solution in  time. 
Furthermore, (u , v) € C e{[0, + 00); fo r  any 0 <  9 <  a <  1.

Proof. The proof of local existence is sim ilar to  the proof in  [59, 124]. Let 
w — (u ,v) e M2. Then (2.1.10), (2.2.1) and (2.2.7) can be rew ritten  as

Lem m a 2 .2 .2 . Let Q be a smooth bounded domain of Rre with boundary d f l and the

(■u, v) € C([0, T(uo, v0)); X )  n  C2' \ f l  x (0, T (u 0, v0)); R2).

( ii)  Let (j){t, ( u q , v q )) be the unique solution obtained above. Then 4> is a C0,l-map

wt =  V  • (a(w )Vw ) +  lF(w) in  x  [0, + 00)

Bw  =  0 on d fl x  [0, + 00), 

in  f l,

(2.2.9)

where
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and

Bw  =  7}W — (1 —
ov

Since for (u ,v) G G, d(u) =  d flq(u) — q'(u)u ) >  0, the eigenvalues o f A(w) are 
positive. Therefore, (2.2.9) is norm ally e llip tic  [5]. Then (i ) and ( ii)  follows from  
Thm . 7.3 and C orollary 9.3 in  paper [5]. The pos itiv ity  ( in )  follows from  Thm . 15.1 
o f [6]. Since (2.2.9) is a triangu lar system, (iv ) follows from  Thm . 5.2 of [4]. □

To obtain the global solution, from  the results in  (iv) o f Lemma 2.7, it  remains to  

prove th a t u, v are L°°-bounded away from  the boundary of Q. By the defin ition of 
Q, it  suffices to  show th a t u is bounded below by 0 and above by u. In  the follow ing 
Lemma, we show th a t 0 <  u <  u provided th a t 0 <  uo <  u.

Lemma 2.2.3. Assume that 0 < u o < u .  Let (u ,v) be a solution obtained in  Lemma
2.2.2 with zero flu x  boundary condition (2.1.11). Then i t  follows that 0 <  u <  u.

Proof. We use a comparison princip le for nonlinear parabolic equation to  prove 
the existence of upper and lower bounds for u. Indeed, the lower bound 0 has been 
obtained in  Lemma 2.2.2 (Hi). We only need to  show the existence of the upper 
bound u. Given v G C2,1(Q x  (0, T (u 0, v0))), we can easily verify from  the firs t 
equation of system (2.2.6) tha t the operator P  is uniform ly parabolic (see [76]) on 
r  =  R x R " x R x R ,  where

P u — P(u, V u, A rt, ut )

=  tit — V  ■ (d flq(u) — q[(u)u)Vu — uq(u)x(v)V v) — f(u ,  v).

For any solution (u, v) of system (2.2.6) obtained in  Lemma 2.2.2, we have Pu — 0. 
However, for u =  u, we have from  assumptions (A2) and (A3) tha t

Pu >  0.

On the boundary dQ, we have =  0. Hence u — u is a supersolution o f system
(2.2.6) w ith  Neumann boundary conditions. Following the comparison principle, we 
obtain th a t u <  u. Together w ith  the p o s itiv ity  property obtained in  Lemma 2.2.2, 
one has 0 <  u <  u.

□
Note th a t we only can show the boundness o f u for zero flu x  boundary condition. 

So the global existence o f solutions to  the auxilia ry system (2.2.6) are obtained only 
for zero flu x  boundary condition. For 0 <  u <  u, we have q(u) =  q(u). Then
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combining Lemma 2.2.2, Lemma 2.2.3 and Lemma 2.2.4, we obtain the follow ing 
global existence and boundedness theorem to  system (2.1.10) w ith  zero flux bound

ary condition (2.1.11).

Theorem 2.2.5. For any (uo, Vo) € X  with 0 <  uo <  u, 0 <  vo <  v on Q, the 
initial-boundary value problem (2.1.10), (2.1.11)  and (2.2.1)  has a unique positive 
solution (u ,v) satisfying

(i)  (u ,v) € C ([0,+ o o ) ;X )n C 2’1(Q x  (0,+ o o );K 2).

( ii)  u ( t ,x ) and v (t,x )  are bounded on S ix  [0, +oo) with 0 < u < u ,  0 <  v <  v. 
(Hi) The solution semigroup <f>(t, (uo,vQ)) forms a semi-dynamical system on X .

2.3 P attern  Formation

Pattern form ation in  mathematics refers to  the process th a t, by changing a bifurca
tio n  parameter, the spatia lly homogeneous steady states lose s tab ility  to  spatia lly 
inhomogeneous perturbations, and stable inhomogeneous solutions arise. In  th is 
section, we investigate pattern form ation for system (2.1.10). The approach applied 
here is very routine. We look for the spatial homogeneous steady states by setting 
the kinetics on the righ t hand side o f (2.1.10) to  be zero

f ( u 3, va) =  0, g(ua, va) =  0. (2.3.1)

We suppose th a t (u$,vs) is a nonnegative solution of (2.3.1). That is, (us, vs) is a 

homogeneous steady state of system (2.1.10). We assume th a t in  the absence of 
any spatia lly varia tion the homogeneous steady state is linearly stable. We firs t 
determine the conditions for th is  to  hold.

W ith  no spatial variation, u and v satisfy

ut =  f (u ,  v), vt =  g(u, v). (2.3.2)

The linearization o f (2.3.2) at (tta, vs) is

wt =  Aw, A  =  (  | (2.3.3)
\ 9u  9v )

where A  is the community  (Jacobian) m a trix  of system (2.3.2) at steady state 
(us,v a). Hereafter, we shall take the p a rtia l derivative o f /  and g to  be evalu
ated at the steady state unless stated otherwise. Then the conditions for which

(u3, vs) is linearly stable can be easily determined by

t rA  =  f u +  gv <  0, \A\ =  f ugv -  f vgu >  0. (2.3.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

I f  there are some parameters in  /  and g, then the steady states (ua, vs) are functions 
o f these parameters. Hence inequalities (2.3.4) impose certain constraints on the 
parameters.

In  what follows, we shall consider the fu ll chemotaxis model (2.1.10). We examine 
small perturbations from  the spatia lly homogeneous steady state [ua, vs) o f the form

u =  ua +  eu(x,t), v — vs +  ev{x,t), (2.3.5)

where e < <  1.

S ubstitu ting (2.3.5) in to  (2.1.10), we end up w ith

eut =  e V (d i(q(ua +  eu) -  rf{ua +  eu){ua +  eu))Vu

< -e (u a +  eu)x(va +  ev)q{ua +  eu)Vv) +  f ( u a +  eu, va +  ev), (2.3.6)

evt =  ed2A v  +  g(ua +  eu, va +  ev).

Equating firs t order terms w ith  respect to  e, neglecting higher-order terms, and 

dropping the tild e  for the convenience, we obtain the follow ing linearized system for 
(2.1.10)

ut =  d i{q(ua) -  q'(ua)ua)A u  -  uaq(ua)x(va)A v  +  u fu +  v fv,
(2.3.7)

vt =  d2 A v  +  ugu +  vgv.

Hereafter we abbreviate d =  q(ua) — q'(ua)ua and g =  —x(vs)u3q(us). The va in  

x (va) w ill be often abbreviated for notational convenience unless stated otherwise,

i.e., x  =  x (vs)- Since we assume th a t q'(u) <  0 for 0 <  u <  u, we have •& >  0. The 
chemotactic sensitiv ity x  is always assumed to  be nonnegative and hence g <  0.

In  the follow ing, we assume th a t the domain is a one dimensional bounded do
main although a ll analysis s till holds for any dimensional bounded domain. Then 
follow ing the standard argument {e.g., see [82]), the dispersion re lation associated 

w ith  system (2.3.7) can be determined as

A2 +  a(k2) A +  b{k2) =  0, (2.3.8)

where k is the spatial eigenvalue which is commonly referred to  as the wavenumber 
and A is the eigenvalue which determines tem poral growth and depends on the 
wavenumber k. The a{k2) and b(k2) are given, respectively, as

a{k2) =  {M \ +  d2)k2 -  ( / „  +  gv),
(2.3.9)

b(k2) =  M xd2k4 +  (ggu -  d2f u -  M ig v)k2 +  f ugv -  f vgu.
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The dispersion re lation (2.3.8) gives A(k) as a function o f wavenumber k at steady 
state (us, vs). For the steady state to  be unstable, we require th a t R e \(k ) is positive 

for some k ^ 0 .  Since a{k2) >  0 due to  (2.3.4), the in s ta b ility  can only occur if  b(k2) 

becomes negative for some k  so tha t equation (2.3.8) for A has one positive and one 
negative root. Referring to  (2.3.9), the condition b(k2) <  0 requires tha t

ddxd2k4 +  (ggu -  d2f u -  ddxgv)k2 +  f ugv -  f vgu <  0. (2.3.10)

Since it  is required in  (2.3.4) tha t \A\ =  f ugv — f vgu >  0, a necessary condition for
(2.3.10) is

Q9u ~  d2fu ~  ddigv <  0. (2.3.11)

For (2.3.10) to  be the case for some nonzero k, the discrim inant o f equation 
b(k2) =  0 must be positive since the coefficient ddxd2 o f k4 is positive. In  other 
words, for the existence of an in terval of unstable modes, we require tha t

{Q9u ~  d2f u ~  ddxgvf  -  4ddxd2( f ugv -  f vgu) >  0. (2.3.12)

Applying (2.3.11), we obtain from  (2.3.12) tha t

Q9u d2f u ddxgv <  2,y/dd\d2( f ugv fvQu)- (2.3.13)

To recap, we have now obtained conditions for the generation of spatial patterns for 
the volume fillin g  chemotaxis model (2.1.10) and (2.1.11). For the convenience we 
reproduce them  here. Remembering tha t a ll derivatives are evaluated at the steady 

state (us,vs), they are

fu  T  9v <  0, fuQv fv9u ^  o, ggu d2f u dd\gv < 0 , (2 3 14)
(Q9u ~  d2f u -  ddxgv)2 -  4ddxd2( f ugv -  f vgu) > 0,

where d =  q(us) — q'(us)us, g =  —x(vs)usq(us). The importance o f the chemotaxis 
term  in  the chemotaxis model is th a t i t  leads to  a A v  term  in  the u equation, so- 
called cross-diffusion. This removes the need for dx and d2 to  be sufficiently different 
in  order to  obtain spatial patterns. The strength of the chemotactic sensitivity x  
plays a crucial role in  pattern form ation. Generally there exists a c ritica l value Xc 

such tha t there is no pattern form ation if  x  is below th is c ritica l value Xc, while 
pattern form ation can be expected if  x  is larger than th is c ritica l value Xc- In  our 
problem, we can e xp lic itly  determine th is c ritica l value i f  a ll parameters are fixed in 
system (2.1.10) except for the chemotactic sensitivity x- Indeed, from  the foregoing 
analysis, we know th a t the b ifurcation occurs when

ggu -  d2fu -  ddxgv =  -2 ^ /d d id 2( fugv -  f vgu). (2.3.15)
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S ubstitu ting q =  —xuaq(us) in to  (2.3.15) and solving the resulting equation for x, 
we obtain the c ritica l chemosensitivity Xc

2v /i9d1d2(fu9v ~  fv9u) ~  d2f u -  ddxgv
X c -----------------------------------} \ • (z .o .lo j

guusq{us)

A t th is b ifurcation value, the corresponding c ritica l wavenumber is given by

,.2  d 2 fu  +  ddxgv -  ogu
2fM1d2 ‘ (2.3.17)

Whenever b(k2) <  0, (2.3.8) has a solution A which is positive for the range of
wave numbers. When x  >  Xc ,  from  (2.3.9), the range o f unstable wave numbers 
k2 <  k2 <  k \ is obtained from  the zeros k2 and k% o f b(k2) =  0 as

, 2 C -  {C 2 -  A M l d2{ f u9v -  f v9u) y / 2 „ ,  2 
fcl “  2M kd2

^ 7.2 C +  {C 2 -  ^ddid2( f ugv -  f vgu) } l/2
< k 2 ~  2d d J 2 ’ (2'3-18)

where C  =  d2f u +  ddigv — ggu denotes the coefficient o f k2 in  equation b(k2) =  0.
Whenever conditions (2.3.14) are satisfied and there is a range o f wavenum- 

bers k ly ing  w ith in  the bound defined by (2.3.18), then the corresponding spatial 
eigenfunctions are linearly unstable and pattern form ation can be expected. I t  is 
worthwhile to  point out th a t for an in fin ite  domain there is always a spatial pat
tern  i f  0 <  k2 <  k2 in  (2.3.18). In  th is  situation, conditions (2.3.14) are sufficient

conditions fo r pattern form ation to  system (2.1.10) and (2.1.11). W hile for a fin ite  
domain, the possible wavenumbers k and corresponding spatia l wavelengths are dis
crete and depend in  part on the boundary conditions. I f  there does not exist discrete 
wavenumber k2 ly ing  between k \ and &2, then there is no spatial pattern form ation 
even if  (2.3.14) is satisfied. Some examples w ill be given in  the forthcom ing sections.

We summarize the main results obtained in  th is  section in  the follow ing theorem.

T h eo re m  2 .3 .1 . Let (us,vs) be a spatially homogeneous steady state o f system
(2.1.10). Let / „ ,  f v and gu,gv denote the partial derivatives evaluated at steady state 
(u„, vs). Then pattern form ation o f system (2.1.10) with zero-flux boundary condition
(2.1.11) is possible i f  (2.3.14) is satisfied. Furthermore, the critica l chemosensitiv

ity  Xc  is determined by (2.3.16). When x  <  X c  there is no spatial pattern, whereas 
pattern form ation can be expected i f  x >  Xc and the range of unstable wavenumbers 
is given by (2.3.18).
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2.4 Analysis for Nonlinear Squeezing Probability

By the global existence and boundedness obtained in  Theorem 2.4, we know tha t 

0 <  u <  u i f  0 <  Uo <  u. Then as we mentioned in  the Introduction, a logical 
choice for the squeezing p robab ility  function q(u) which reflects the plastic property 
o f particles is

q(u) =  1 — ^^0 , 7 >  1, 0 <  u <  u. (2-4.1)

In  th is section, we w ill discuss the dynamics of system (2.1.10) w ith  q{u) which has

the nonlinear form  (2.4.1). For sim plicity, we suppose th a t the cell and chemoat- 
tractan t kinetics have the follow ing form  extensively used in  the lite ra ture  (e.g., 
[98, 124])

f ( u ,v )  =  g u ( l — u /u c), g (u ,v) — uu — 8v, (2.4.2)

where the cell kinetics follows the logistic growth w ith  carrying capacity 0 <  uc <  u
and g >  0, the chem oattractant grows w ith  rate v and decays w ith  rate 8 due to  
d ilu tion . Applying (2.4.1), (2.4.2) in to  (2.1.10), (2.1.11), we obtain

ut =  V  • (D (u )V u  -  x v (u )V v )  +  gu( 1 -  ^ ) ,  

vt =  d2A v  +  v u -  5v, 4
(.D (u )V u  — x ^ (u )V u ) • n  =  0, V v  • n  =  0, 

v u(x, 0) =  uo(x) >  0, u(a;,0) =  v0(x ) >  0, 

where n, as usual, denotes the u n it outward norm al vector at the boundary o f the 
domain and D (u) and tp(u) are denoted by

D (u ) =  d\ 1 +  ( 7  -  1 ) , <p(u) u l - [ ^u
(2.4.4)

As a special case of (2.1.10), the global existence and boundedness o f the solution 
to  (2.4.3) has been given by Theorem 2.4.

Clearly, the spatia lly homogeneous steady states o f system (2.4.3) are (0,0) and 
(uc, vuc/ 8). Furthermore, by linearization, one can easily determine th a t the steady 

state (0, 0) is a saddle point and hence unstable, while the steady state (uc, vuc/ 8) 
is stable to  the corresponding homogeneous system of (2.4.3) w ith  two negative 
eigenvalues —v and —8. Therefore, we focus on the stable steady state (ua,vs) =  

(uc,uuc/ 8) to  study pattern form ation for system (2.4.3). F irs t we linearize the 
system (2.4.3) about the steady state (uc,uuc/ 8) and obtain

ut =  V  • (£>(uc)V u ) -  V  • (x^(w c)V v) -  gu. 
vt =  d2A v  +  vu — 8v,
(T>(uc)V u  — ;\y (u c)V v) • n  =  0, Vu • n  =  0,

„ u(x, 0) =  uo(x) >  0, v (x ,0) =  v q ( x ) >  0,
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Perform ing the linear s ta b ility  analysis as before, we find  the corresponding disper
sion relation

A2 +  a(k2)X +  b(k2) =  0,

a(k2) =  (D (u c) +  d2)k2 +  (/x +  <5), (2.4.5)

b{k2) — D (uc)d2k4 + (fid2 +  SD(uc) -  xv^p{uc))k2 + /x<5.

Prom the analysis in  the previous section, the condition (2.3.14) has to  be satisfied 
to  obtain pattern form ation. In  the situation discussed in  th is  section, we know tha t 

fu  +  9v =  — (fi +  £) < 0  and f ugv — f vgu =  fj.6 >  0. Then we only need the th ird  and
fourth  condition in  (2.3.14) to  hold. This requires tha t (see 2.3.13)

lid 2 +  SD(uc) — yr'tp(uc) <  - 2^/d2fiSD(uc). (2.4.6)

Then (2.4.6) gives a necessary condition for pattern form ation of system (2.4.3). I f  
we regard the wavenumber as a continuous variable in  spite of the fact the wavenum
ber is discrete, (2.4.6) then gives a sufficient and necessary condition for pattern 
form ation of system (2.4.3) w ith  zero flux boundary condition.

In  the remainder o f th is section, we w ill investigate the influence of the squeezing 
exponent 7 , chem osensitivity y , growth rate u and death rate S o f chem oattractant 
on the pattern form ation o f (2.4.3).

2-4-1 Bifurcations with Chemotactic Sensitivity x

Prom the previous analysis, i f  we th in k  o f the chem osensitivity y  as the b ifurcation 
parameter, then the b ifurcation value y c is determined by (see 2.3.16)

2^ d 2nSD(uc) +  /xd2 +  SD(uc) A ^
X c  —  7 \  ■ { Z . Q . i )

V<p{uc)

The corresponding c ritica l wavenumber kc is determined from  (2.3.17) by

, 2 =  - M ;  ~  SD(uc) +  Xcvtp(uc) (2 4 8)
c 2d2D (uc)

When y  >  y c, we have b(k2) <  0 for some wavenumbers k2 and hence there exists a 
positive solution A of (2.4.5) for some k =£ 0. Moreover, the range of unstable wave 
numbers k2 <  k2 <  k2 can be obtained as

2 =  S - { S 2 - ^ 5 d 2D {uc) y i 2
1 2 d2D (u c)
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(a) .(b)

Figure 2.2: (a) A  sketch o f b(k2) against k2 defined by (2.4.5). When the chemosen
s itiv ity  strength x  increases beyond the c ritica l value Xc, b(k2) becomes negative 
for a fin ite  range of k2. (b) P lo t of the real part o f eigenvalue A(k2) as a func
tion  of k2 defined in  (2.4.5). When x  >  X c ,  there is a range of wavenumbers 
k2 <  k2 <  k2 such th a t the steady state is unstable. The parameters are chosen as 
7 =  1, di =  0.1, d2 =  1.0, uc =  2.0, u =  4.0, p =  4.0, v =  5.0, 5 =  10.0.

and
l2 S +  {S 2 -  4/j,5d2D (u c) } 1/2

l i k l )  ■ <2A10>
where S =  —fid2 — SD(uc) +  x^<p(uc)-

Then the c ritica l value is (kc, X c )  such tha t b(k2) >  0 for a ll k2 i f  x  <  Xc ,  however 
b(k2) <  0 for a range of wavenumbers k2 <  k2 <  k \ i f  x  >  X c -  Figure 2.2(a) shows 
how b(k2) varies as a function of k2 for various x  and Figure 2.2(b) shows how the 
eigenvalue A varies as a function of k2 for various x- A  s ta b ility  curve for b(k2) =  0 
for 7 =  2 in  Figure 2.3 im m ediately gives us some inform ation we need to  know. 
When x  Xc ,  b(k2) >  0 and consequently no positive wavenumbers correspond to  
%. As x  increases and exceeds the critica l value Xc, there must exist wavenumbers k 
between the two curves (dashed and solid portion o f the curve in  Figure 2.3). These 
wavenumbers define unstable modes.

As we mentioned in  the previous section, the condition x >  X c  does not guarantee 
pattern  form ation since th e  allowable wavenum bers k  are d iscrete for a  fin ite dom ain. 

Generally the pattern form ation can be achieved by increasing the domain size. So a 
question arises as how can a necessary and sufficient condition be derived to  generate 

the spatial pattern for a fixed domain. Indeed, the b ifurcation diagram Figure 2.3
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Figure 2.3: A  sketch of b(k2) =  0 in  (2.4.5) in  the (k2, x)-plane, where parameters are 
chosen as 7 =  2 ,d i — 0.1, rfe =  1.0,u c =  2.0, u =  4.0, / i =  4.0, v =  5.0, S =  10.0 
and consequently k2 =  17.889, Xc =  1.296. The dashed portion  denotes k2 and solid 
portion  represents k2.

has given us some useful clues already. We study the difference for k2 and k2

r ,  n  ,2 72 [(fJ-d2 -  8D (uc) +  vx<f(uc))2 ~  4/j,6d2D (uc) ] 1/2
M X >", 5) =  k2 - k x =  ±--------------------------  ----------------------- i— .

d2D (u c)

Here we consider the difference as a function o f x , v and 6 since we w ill investigate 
the influence o f x> v and 6 on the pattern form ation in  the follow ing. I t  is easy 
to  verify th a t /C(x> z', S) is a increasing function of x  and v. So pattern form ation 
can be supported by increasing the valve o f x  or v. B iologically, we expect pattern 
form ation if  the growth rate v of the chem oattractant or the chemosensitivity x  
is big enough. On the other hand, /C(x, v,5) is a decreasing function o f S. Hence 
pattern form ation also can be supported by decreasing the decay rate 6 o f the signal.

We now derive a sufficient and necessary condition for the chemosensitivity x  
for pattern form ation in  a one dimensional domain [0, £]. On [0,£| w ith  non flux 
boundary conditions, the corresponding wavenumbers k are given by k =  n n / i,  
where n — 0, ±1 , ±2 , • • •. The requirement (2.3.18) in  terms o f modes n  becomes

n \ < n 2 <  n l,  (2.4.11)

where n i =  k id /n  and n,2 =  k^l/'K. Now we want to  find an appropriate value 
of x  such th a t there exists at least one integer n satisfying (2.4.11). W ithou t loss 
o f generality, we look at positive wavemodes only and other cases can be analyzed 

analogously. For x  =  X c ,  we have k\ =  k2 =  kc and hence k i l / n  =  We
can easily check th a t k2(x) as a function o f x  is decreasing and tha t, k2(x) is
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Figure 2.4: (a) A  sketch o f b(n2n2/£2) =  0 in  (2.4.5) in  the (n, x)-plane, where the 
domain is chosen as [0,£] w ith  £ =  4 and parameters are chosen as 7 =  2, di =  
0.1, d,2 =  1.0, uc =  2.0, u =  4.0, / i =  4.0, v =  5.0, 8 =  10.0 and consequently 
nc =  5.38, Xc =  1-296. (b) A  comparison of wavenumbers w ith  respect to  squeezing 
exponent 7 . Parameters are chosen as in  (a) except 7 .

increasing. As a consequence, n i is decreasing (see dotted portion  o f the curve in  
Figure 2.4(a)) and ri2 is increasing (see solid portion of the curve in  Figure 2.4(a)) 
as a function o f x ■ Now we look for the conditions such th a t there exists at least one 
integer n  between n i and n2. A t the c ritica l value Xc as obtained above, we define 
nc :=  n i(xc) =  n2(x c). Then we have two cases to  consider.

Case (a). nc is an integer. Then we increase x  from  Xc, and any increment 

o f x  w if i lead to  n i(x )  <  nc <  n2(x ) due to  the m onotonicity of n i and n2. We 
im m ediately get an unstable mode n — nc (see Figure 2.4(a)). In  th is  case, Xc is 
a b ifurcation value, such tha t pattern form ation is obtained when x  >  X c  and no 
pattern form ation evolves when x  <  X c -

Case (b). nc is not an integer number. Since n i(x )  is continuously decreasing 

w ith  respect to  x  and n2(y ) —*• 00 as x  001 there must exist a m inim um  number 

o f x, denoted by x b > such tha t Xb >  X c  and n i(x s ), or n 2(x s ), or both are integer. 
For x  >  X b , we obtain an unstable mode n such tha t n j(x )  <  n <  n2(x)-

We therefore end up w ith  the follow ing theorem.

T h eo re m  2 .4 .1 . Assume 7  >  1. Let xb  >  X c  be the firs t number o f x  su°8 that 
either k i i / n ,  or is an integer. Then X b  is a bifurcation number and x >  X b  

is a necessary and sufficient condition fo r  pattern form ation o f system (2.4-3).

/
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Next, we examine the relationship between the critica l value Xc and the crowding 
squeezing exponent 7 , from  which we can understand the influence o f 7 on the 
dynamics o f system (2.4.3). We give the follow ing theorem.

T h eo re m  2 .4 .2 . The critica l value Xc, as a function o f squeezing exponent 7 , is 
decreasing.

Proof. For convenience, we denote a =  ucju  <  1 and M {7 ) =  X_ (L )7 — y rfy  >  
1, then (2.4.7) can be rew ritten  as

Note th a t 0 <  uc/u  <  1. Then function M  is non-increasing w ith  respect to  7 . Next 
we prove th a t function 7<t7M (7 ) is a decreasing function o f 7 . To see th is, we define 
h(7 ) =  7cr7M (7 ). Then we have

Since a <  1, it  is easy to  verify th a t 1 — a1 +  7 In <7 <  0 for a ll 7 >  1. So hi^f) is 
decreasing w ith  respect to  7 . Consequently the c ritica l chem osensitivity value Xc is 
a decreasing function o f squeezing exponent 7 .

R e m a rk  2 .4 .3 . Biologically, Theorem f.2  tells us that cells are apt to aggregate 
when the squeezing exponent 7 is increased since the squeezing probability q(u) is. 
increasing with respect to 7 . When the squeezing probability is bigger, cells are more 
motile and hence pattern form ation is easier to form.

S. 4.2 Bifurcation with Growth Rate v

In  th is  subsection, we consider growth rate v as the b ifurcation parameter, and 
therefore fix  a ll other parameters in  system (2.4.3). Note th a t varying v affects 
the value of the steady state (us,vs). We want to  understand the influence of 
the dynam ical parameter v on pattern form ation of system (2.4.3). The tem poral 
eigenvalues A of the linearization at (us, vs) are the roots of equation (2.4.5).

We compute the critica l value vc for v from  (2.4.5)

1
^ 2-y/'/xW id2M (7 )-y/ l  +  7<77M  (7 ) +  fld2M (  7 ) +  5 d i( l +  7CT7M (7 ))^

(2.4.12)

dh cr7( l  — a7 +  7 In a)
d'y (1 — <r7)2

□

2y/d2pSD(uc) +  pd2 +  SD(uc) 

X<p(uc)
(2.4.13)
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Figure 2.5: (a). Dispersion relation (2.4.5) as the parameter u passes through the 
b ifurcation  value vc =  10.18, where 7 — 4, d\ =  0.1, — 1.0, uc — 2.0, u =  4.0, n  =
4.0, 8 =  10.0, x  =  0.5. (b) Dispersion re lation (2.4.5) as the parameter 8 passes 
through the b ifurcation value 8C =  4.04, where 7 =  2 ,d i =  0.1, d2 =  1.0, uc =
2.0, u =  4.0, / i =  10, v =  20, x  =  0.5.

such th a t no unstable modes exist i f  v is below th is c ritica l number vc, whereas 
unstable modes are possible when v  is beyond th is c ritica l value vc (see Figure 
2.5(a) for the dispersion re lation). Furthermore, if  we consider vc as a function of 
7 and recall the proof o f Theorem 4.2, we can show th a t the c ritica l value vc o f the 
growth rate decreases as the parameter 7 increases. This outcome is consistent w ith  
the biological context th a t increasing the growth rate v o f chem oattractant, result 
in  higher concentration o f chem oattractant which makes the system more unstable.

Remember th a t the c ritica l number vc is not necessary a b ifurcation value due to  
the discrete nature of the unstable modes. B ut we can form ally obtain the desired 
b ifurcation value for v by perform ing the same analysis as for x  in section 4.1 and 
obtain a b ifurcation theorem sim ilar w ith  Theorem 4.1. To avoid repetition, we do 

not provide details here.

2-4-3 Bifurcation with Decay Rate 5

In  the model (2.4.3), the parameter <5 stands for the decay (degradation) rate of the 
chem oattractant, and the uniform  steady state (us, vs) depends on 8. I f  we perform  
the sim ilar linear s ta b ility  analysis as we did in  previous sections, it  is easy to  derive 

a c ritica l value for 8 as
=  I v W v W .  (2.4.14)

d iD (u c)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

such th a t when 8 >  8C, there does not exist unstable modes, whereas unstable modes 
can be expected when 8 <  8C. Now if  we regard the death rate 8 as a dynamical 
parameter, the dispersion re lation o f (2.4.5) as 8 passes through the c ritica l value 
8C is shown in  Figure 2.5(b). Here the p lo t o f the dispersion re lation for 8 in  Figure 
2.5(b) has some difference in  appearance compared to  the p lo t of the dispersion 

re lation for v in  Figure 2.5(a). From Figure 2.5(a), we see th a t a ll eigenvalues A 
take the same value at k2 =  0 for any dynamical parameter v. However, Figure 
2.5(b) shows th a t the eigenvalue A has different value at k2 =  0 for each different 
dynamical parameter 8. In  fact, from  equation (2.4.5), when k2 =  0, we have

A2 +  (^t +  5)A +  fA +  8 — 0. (2.4.15)

I t  is clear th a t equation (2.4.15) is independent of parameter v bu t dependent on 
parameter 8.

Now we examine the relationship between the c ritica l value 8C and squeezing 
exponent 7 . We s till use the notation in  Section 4.1 and rew rite (2.4.14) as follows

s l' 2 =  \ j  M r r h 'k m  ~ w )  ■
In  section 4.1, we have shown th a t function M (7 ) and 7<r7M (7 ) are decreasing w ith  
respect to  7 . Then it  is easy to  see th a t 8C, as a function of 7 , is increasing which 
is in  contrast to  the c ritica l growth rate vc tha t is a decreasing function of 7 . This 
is in  agreement w ith  the biological in terpretation. When increasing the squeezing 

exponent, the c ritica l death rate becomes larger and hence pattern form ation can 

allow faster d ilu tion  of chemicals. As a consequence, patte rn  form ation is easier to  
form .

2.5 Num erical Simulation in One-Dimension

In  th is  section, we w ill num erically investigate pattern form ation for model (2.4.3). 
The M A TLA B  PDE solver, pdepe, is a powerful too l to  solve in itia l-boundary value 
problems for systems of nonlinear reaction diffusion type PDEs in  the one space 
variable x  and tim e t. The pdepe solver converts the PDEs to  ODEs using a second- 
order accurate spatial discretization based on a set o f nodes specified by the user. 
The discretization method is described in  paper [112], where the consistency o f the 
discretization can be adjusted by refining the mesh. The pdepe solver is applied 
here to  solve the in itia l-boundary problem (2.4.3).

Unless stated otherwise, throughout th is section, we assume zero flu x  boundary 
condition. For 7 =  1, numerical solutions have been shown by Painter and H illen
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Figure 2.6: Space-time evolution o f cell density for model (2.4.3) w ith  zero-kinetics 
w ith  in itia l value th a t is set as the small perturbation o f the homogeneous solution 
uq =  0.2 and w ith  J =  10, €1 =  1.0, uc =  0.5, efe =  1-0: (a) v — 40, di =  0.25,7 =  
1, x  =  2. (b) v =  40, d\ =  0.25,7  =  2, % =  2. (c) v =  30, d\ =  0.01,7  =  2, % =  1.

in  [98]. In  the case o f zero kinetics (f ( u ,v ) =  0), Painter and H illen found a typ ica l 
behavior of merging of local peaks (also called coarsening process). In  the paper 
by Potapov and H illen [104], these local peaks were identified as metastable steady 
states and in  the paper by Dolak and Schmeiser [27], a singular perturbation analysis 
around th is transient patterns was given. These patterns are sim ilar to  coarsening 
patterns obtained for the Brusselator model [69], where a nonlinear s ta b ility  analysis 
was performed. I f  cell kinetics are included in to  the model, in  addition to  the merging 
of peak patterns, the emerging o f new local maxima was observed also by Painter and 

H illen [98]. In  th is article, we particu la rly  focus on the effect o f nonlinear squeezing 
p robab ility  q(u) =  1 — ( | ) 7 through 7  >  1 on the merging and emerging process. 
We obtain sim ilar patterning process as the linear diffusion case (7 =  1) in  [98] and 
our results confirm  tha t merging and emerging processes are very typ ica l patterning 
processes for volume fillin g  chemotaxis model.
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2.5.1 Zero Cell Kinetics

In  th is  subsection, we w ill consider the nonlinear diffusion volum e-filling chemotaxis 

model (2.1.10) w ith  cell kinetics f{u ,  v) =  0 and g(u, v) — p u — Sv  as well as nonlinear 
squeezing p robab ility  function q(u) =  1 -  (u /u )1, 7 >  1. Then the cell density is 
conserved due to  no cell growth and death. Again, we look at the s ta b ility  o f the 
homogeneous steady state (us, vua/S). Note th a t condition (2.3.4) is not satisfied in  
the case of /  =  0. However the in s ta b ility  region can be e xp lic itly  determined by 
perform ing standard linear s tab ility  analysis as before:

gy +  ( 7 - i M <M ( 251)
Uav H { l f i  — U s )  V

Under th is  condition, unstable wavemodes can be expected. Prom (2.5.1), we see 
th a t the cell density is crucial for pattern form ation. A t high or low in itia l cell 
density us, the system tends to  be stable to  spatial perturbations.

Some typ ica l numerical sim ulation examples are shown in  Figure 2.6. In  Figure 
2.6(a), we choose squeezing exponent 7  =  1 and then the diffusion of the system
(3.8) becomes linear. In  Figure 2.6(b), we choose 7  =  2 and the diffusion o f the 

system (3.8) is then nonlinear. For both cases, we observe some in itia l merging 
process, which stops and a new time-independent peak patte rn  appears. Actually, 
sim ilar merging dynamics appear for other crowding squeezing exponents 7  >  1 (not 
shown).

In  Figure 2.6(c), we significantly reduce the cell diffusion parameter d\, which 

leads to  a persistent steady state w ithou t observable merging dynamics.

2.5.2 Non-Zero Cell Kinetics

From the above numerical analysis, we see th a t w ithout cell kinetics we obtain 
m ultip le  aggregations which undergo a merging process. In  th is section, we include 
the effect o f cell kinetics in to  the model and explore whether or not stable m u lti

peak aggregation patterns can develop. We suppose th a t cells follow  logistic growth 
f (u ,  v) =  f iu ( l — u /u c). Production term  g(u, v) and squeezing p robab ility  q(u) are 
chosen as before. Then the model is the same as (2.4.3).

The non triv ia l uniform  steady state of (2.4.3) is given by (us,vs) =  (uc,v u c/ 8), 
and the in s ta b ility  region of th is steady state is determined by condition (2.4.6). The 
graph of the dispersion relation now corresponds to  Figure 2.2(a). Thus, low wave

modes m ight be stable to  spatial perturbation, and higher wavemodes may develop 
m ulti-peak solutions, which is contrast to  the case of zero kinetics where low wave
modes m ight be unstable. We choose a set of parameters such th a t the in s tab ility
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Figure 2.7: Space-time evolution of cell density for model (2.4.3) for different choices 
o f parameters, (a) di =  0.25, d2 =  1, v =  10,5  =  10, u — 1.0, uc =  0.25, n  =  0.5, x  
10.7 =  2. Simulations indicate tha t a fixed spatial pattern  exists as peaks persist 
and grow. Here are 7 peaks, (b) di =  0.25, d2 =  l , v  =  10,8 =  10, u =  1.0, uc =  
0.25, fj, =  0.5, x  =  20,7  =  2. (c)d i =  0.01, d2 =  l , v  =  10,6 =  10, u =  1.0,u c =  
0.25,/ i =  0.5, x  =  1,7 =  2. In  (b) and (c), typ ica l merging and emerging patterns 
develop. The parameters chosen in  (a) are closer to  the s ta b ility  region than those 
chosen in  (b) and (c). A ll simulations use the domain size as [0 20].

condition (2.4.6) is satisfied and present the numerical sim ulation in  Figure 2.7. We 
firs t choose parameters deep in  the in s tab ility  region and it  was shown th a t m ultip le 
peaks develop and these peaks exist indefin ite ly (see Figure 2.7(b)-(c)). Numerical 
sim ulation shows th a t a time-independent persistent spatial pattern m ight not ex

is t and patterns demonstrate an interesting pattern interaction process o f merging 
and emerging, where neighboring aggregations jo in  to  form  a single aggregation re
sulting in  a large in terval of low cell density. In  the low density regions, new cell 
aggregations subsequently arise, which is in contrast to  th e  zero k inetics case in 

which only merging process was observed. When the parameters are chosen close 
to  the s ta b ility /in s ta b ility  boundary, solutions can stabilize in to  a time-independent 

spatia l pattern (see Figure 2.7(a), where a seven peak patte rn  evolves). However, 
there are not local peaks emerging during the evolution. In  Figure 2.7(c), we choose
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Figure 2.8: Evolution of merging and emerging local peaks, (a) Zero cell kinetics, 
where v =  40,6 =  10, u =  1.0, uc =  0.5, di — 0.25, cfo =  1-0,7  =  1>X =  2. (b) 
Nonzero cell kinetics, where d1 — 0.25, d2 =  l , v  =  10,5 =  10, u =  1.0, uc — 0.25, /x =  
0.5, x  =  20, 7 =  2.

very small diffusive rate d\ and get more complex pattern due to  high chemotactic 
effects.

The evolution o f merging and emerging peak solutions is presented in  Figure 2.8. 
We see th a t peaks are capped by the crowding capacity u  due to  the volume fillin g  
effects. For zero kinetics, (see Figure 2.8(a)), after some tim e, peaks merge in to  
some stationary peaks. For nonzero kinetics case (see Figure 2.8(b)), we see tha t 

in itia lly  solution tends to  blow up (very sharp) bu t the volume fillin g  mechanism 
prevents blow up and then solutions stay bounded to  form  complex merging and 
emerging patterns.

2.6 Discussion

In  th is  chapter, we include a nonlinear squeezing p robab ility  function q(u), which 
reflects plastic properties o f cells, in to  a volume fillin g  chemotaxis model and prove 
the global existence o f classical solutions to  the resulting model. We show tha t the 
cell density w ill stay below the crowding capacity u if  the in itia l cell density is less 
than th is crowding capacity. We carry out conditions o f pattern form ation for the 
general volume fillin g  chemotaxis model. Moreover, we apply a particu la r choice
(2.4.1) o f q(u) in to  the model to  perform  the linear s ta b ility  analysis and study the 
underlying b ifurcation for different parameters. One dimensional num erical simu
lations are presented for both zero cell kinetics and nonzero cell kinetics. Merging
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and emerging dynamics are observed under different parameter values. We find tha t 
the squeezing exponent 7 has no huge effects on the spatio-tem poral dynamics. The 
merging and emerging process can be observed for a ll values o f 7 >  1, the lim it 
state, however, depends on 7 .

The parameter 7 has been included to  describe plastic properties o f cells. The 
case of 7 =  1 corresponds to  solid blocks (see the car-parking problem in  [118]), 
whereas 7 —> 00 corresponds to  cells being fluids which can f ill a ll open space. The 
c ritica l chem osensitivity Xc is decreasing in  7 , hence increasing 7 is destabilizing the 
system. I f  7 is large, chemotaxis has a large effect and more cells can s till enter in to  
a crowded region and make chemotactic aggregation more pronounced.

The merging pattern form ation had been experim entally observed in  Dd (Die- 
tyostelium discoideum) cell movement [36]. This patterning process describes the 
dynamics between cell aggregations. A  cell aggregation is a swarm of ind ividua l 
cells. However merging pattern form ation denotes two swarms merging to  form  one 
larger aggregation. This process is beneficial to  particles for survival o f harm ful s it
uations or avoiding predators. The emerging pattern form ation is the insertion o f a 
new aggregation in to  a free area triggered by cell kinetics, which is beneficial to  op
tim a lly  use available resources. These new aggregations can then merge w ith  other 
neighboring aggregations to  form  stronger aggregations for some reasons described 
above. The emerging pattern form ation is possibly related to  the chemotactic pat
tern  form ation by m otile Azotobacter vinelandii [96] although a fina l confirm ation 
needs to  be made.

Comparing Figure 2.8(a) and (b), we can conclude th a t the emerging process is 
due to  cell growth. I t  is of interest to  further study the merging and emerging process 
in  more details. The merging and emerging patterns in  Figure 2.7(b) seem to  have a 
dom inating wave length so th a t neither too many nor too few local maxima arise. In  
paper [104], some scaling analysis and numerical analysis were applied to  describe the 
transition  region and the local peaks were identified w ith  metastable steady states. 

For the merging process (no kinetics), a qualita tive analysis was given by Dolak and 
Schmeiser [27] using a singular perturbation argument. I t  would be interesting to  

apply the ir methods to  study the merging-emerging process as observed above. A  
detailed analysis w ill be given in  a forthcom ing paper [48].
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Chapter 3

PATTERN FORMATION FOR A VOLUME FILLING 
CHEMOTAXIS MODEL W ITH FAST DIFFUSION

3.1 Introduction

Taking in to  account the plastic cell properties, q(u) should be pointwise larger than 
the linear case. To do th is, we make the assumption q"{u) <  0 and (2.1.6) and
(2.1.8) are two exp lic it choices. In  chapter 2, we study the case of (2.1.6). In  th is 
chapter, we continue to  consider case (2.1.8). For convenience, we rew rite  (2.1.8) 
again here

q(u)

r

1 — - 1 , 0 <  u <  u,
u )  -  -  (3.1.1)

0, u >  u,

Hereafter, we call the parameter r  the crowding exponent. This chapter discusses 
the dynamics o f system (2.1.9) w ith  q(u) which takes the nonlinear form  (3.1.1). We 
s till assume th a t the cell kinetics follows the logistic growth w ith  carrying capacity 
uc <  u, the chem oattractant grows w ith  rate v and decays w ith  rate 6 as in  Chapter

2. Then we obtain the follow ing system w ith  zero flux boundary conditions

Ut =  V  • (d ,( 1 -  f r H l  -  4 £ } ) V u )  -  V  • («(1 -  I y XV v) +  1 -  £ ) ,
vt =  d2& v  +  v u -  Sv, . .
(dx( l  -  IY ~ \1  -  ^ ) V «  -  x <  1 -  | ) rV n) • n  =  0, V v  • n  =  0, 1 ‘ ’ j
u(x, 0) =  uo(x) >  0, v(x, 0) =  vo(x) >  0,

where (x, t) G Q X (0, oo) and n, as usual, denotes the u n it outward norm al vector 
at the boundary o f the domain Q.

I t  is easy to  see th a t nonlinear diffusion function in  the firs t equation o f (3.1.2) 
tends to  oo when u —»• u, which is called a fast diffusion problem although it  is d if
ferent from  the conventional concept (see [80]), which refer to  the follow ing problem

Pi — A tt1+'5, — 1 <  6 <  0,

When <5 >  0, the above problem is called slow diffusion problem. The case 6 =  0 
is the linear heat equation. For fast diffusion the solution decays to  zero in some
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fin ite  tim e which depends on the in itia l data, whereas the solution decays to  zero 

in  in fin ite  tim e for slow diffusion. This is the essential difference between fast and 

slow diffusion. So far, we are not able to  biologically explain why the choice (3.1.1) 
m ight result in  a fast diffusion. B ut we expect tha t the solution is bounded away 
from  u and then the fast diffusion m ight be avoided. However, th is needs to  be 
m athem atically proven.

Am ann’s theory requires the diffusion function to  be a C 2 function. Since 0 <  

r  <  1, (1 — | ) r_1 —► oo as u —► u and the diffusion of the system (3.1.2) blows up 
at u — u. Hence Amann’s theory [5, 4, 6] as applied in  Chapter 2 no longer applies 
here. The global existence o f system (3.1.2) remains open and need to  be explored 
in  the future using new m athem atical techniques. One of possible approaches is 
apply a m odifier to  smooth diffusion w ith  a small parameter e and then prove the 
convergence of solutions as e —> 0. However, we s till can study pattern form ation 
regardless o f the open question of global existence.

In  th is Chapter, we w ill e xp lic itly  give the conditions for pattern form ation of 

system (3.1.2) and find the c ritica l values for various parameters in  the system. Also 
we study the relation between those c ritica l values and crowding exponent r. The 
num erical sim ulations in  one dimension for both zero kinetics and non-zero kinetics 
are presented. I t  turns out the novel choice (3.1.1) of squeezing p robab ility  q(u) 
does not bring significant difference in  pattern form ation compared to  the choice 
made in  Chapter 2. Here we s till observe merging and emerging patterning process. 

The reason th a t we s till study the pattern form ation for the choice (3.1.1) is tha t we 
may th a t the singularity in  diffusion m ight make a difference in  pattern form ation. 
B ut afterwards we know th a t there is no significant difference.

To investigate pattern form ation o f system (3.1.2), we need to  find the homoge
neous steady states o f system (3.1.2), which are (0,0) and (uc, vuc/ 8). Furthermore, 
by linearization, one can easily determine tha t the steady state (0, 0) unstable, while
the steady state (uc, vuc/ 8) is stable to  the corresponding homogeneous system of
(3.1.2). Therefore, we take steady state (us,vs) =  (uc, vucj 8) to  study pattern for
m ation for system (3.1.2). F irs t we linearize system (3.1.2) about the steady state 
(uc,vu c/ 8) and obtain

' ut =  V  • (dx( l  -  f  )r- 1( l  -  i^ ) V u )  -  V  ■ ( * iic ( l 
vt =  d,2A v  +  vu — 8v,

(d r( 1 -  f  y - ' i l  -  )V u  -  Xuc( 1 -  f ) rV u) • n
u (x ,0 )  =  uq(x) >  0, v(x, 0) =  uq(x) >  0.

f  yvv )  -  nu,

0, Vu • n  =  0,
(3.1.3)
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Then the tem poral growth rate A satisfies

A + p + u - t r ' a - ^ R f c 2 - x m i - f n 2 = n
- v  A +  5 +  d2k2 '

and hence the corresponding dispersion relation is 

A2 +  a{k2) A +  b(k2) =  0,

a(k2) =  ((1 -  S fr~ i( l -  ^ H ) d l +  d2)k2 +  &* +  *),
(3.1.5)

6(A;2) =  (1 -  ^ - 1 ( 1  -  ^ H ) d 1d2ki

+ ( - X ^ c( 1 -  f  )r +  /xd2 +  (1 -  f  y -H l -  ^ ^ ) 5 d 1)k2 +  fjtf.

From the analysis in  the previous Chapter, a necessary condition for pattern forma
tio n  o f system (3.1.2) is

- x ^ c(i -  f  )r + M i + Mi(i -  %y- \ i  -
,-------------------------------------------  (3.1.6)

<  ~ 2VA1 -

I f  we regard the wavenumber as a continuous variable in  spite of the fact the 
wavenumber is discrete, (3.1.6) then gives a sufficient and necessary condition for 
pattern form ation of system (3.1.2) w ith  zero flu x  boundary condition.

In  the remainder of th is Chapter, we w ill investigate the influence of the crowding 
exponent r , chem osensitivity y , growth rate v and death rate 5 of chem oattractant 
on the pattern form ation o f system(3.1.2).

3.2 Bifurcation Analysis

3.2.1 Bifurcations with Chemotactic Sensitivity x

From the previous analysis, i f  we th in k  of the chem osensitivity y  as the b ifurcation 
parameter, then the b ifurcation value y c is determined by

2^(1 -  -  ^ H ) d 1d2fiS + i*d2 + ̂ ( i  -  f  y-'p . -

(3.2.1)
The corresponding critica l wavenumber kc is determined (see (2.3.17)) by

, 2  -  M i( i -  t r ' a  -  +  • 'x M i  -  W  ,,,,,
2(1 -  f  J - H l -  ■ 1 '
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when x  >  Xc, we have b(k2) <  0 and hence there exists a positive solution A of
(3.1.5) for some k ^  0. Moreover, the range of unstable wave numbers k2 <  k2 <  k% 
can be obtained as

2 S -  {S* -  4 p M i4 ( l -  f  r ‘ ( l  -  

1 2(1 -

and
/;2 5  +  {S 2 -  4 /1 & W 1  -  -  ^ i^ ) } 1/2

2 2(1 -  ^ ) - i ( l  -  ^ l ) d 1d2

where S =  - f id 2 -  S d ^ l -  7f ) r_1( l “  Mc(a~r) ) +  ~  itY -
Then the b ifurcation value is (kc, Xc) such tha t b(k2) >  0 for a ll k2 i f  x  <  Xc, 

however b(k2) <  0 for a range o f wavenumbers k2 <  k2 <  k2 i f  x  >  Xc-

As we mentioned in  the previous Chapter, the condition x  >  Xc does not guar
antee pattern form ation since the allowable wavenumbers k are discrete for a fin ite  
domain. That is, the c ritica l value Xc is not necessary a b ifurcation number. How
ever, the b ifurcation value of x  can be obtained as in  Theorem 2.4.1 in  the Chapter

2. To avoid repetition, we om it the details.
Next, we examine the relationship between the c ritica l value Xc and the crowding 

exponent r , from  which we can understand the influence of r  on the dynamics of 
system (3.1.2). Indeed, if  we set M  =  >  1> then (3.2.1) can be rew ritten  as

X c  — —— ( 2 ^ ii6 d id 2J M *  +  % M r+1 +  pd2M T +  <M i(l +  — r ) ) (3.2.5)
uuc \  V u u — uc /

I t  is easy to  see th a t Xc, as a function o f r , is an increasing function.

3.2.2 Bifurcation with Crowding Exponent r

In  th is subsection, we shall derive a condition on r  such th a t pattern form ation is 
possible. Toward th is end, we rearrange inequality 3.1.6 and get

(1 -  f  r ^ l  -  ^ 1)Sd1 +  2yJ(1 -  f  y - i ( i  -  ^ ^ ) d 1d2p6

<  x ^ c ( l  -  f Y  -  pd2,

which im m ediately requires tha t

(3.2.6)

Xvuc[ 1 — ^  ) >  M s- (3.2.7)

Since uc <  u, we have tha t
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4.5

4

3.5

V c
3

2.5

20 0.2 0.4 0.6 1
x y

(a) (b)

Figure 3.1: (a) A  p lo t of a stable solution of system (3.1.2), where parameters are 
chosen as r  =  0 .0 2 ,^  =  0.1, d® =  10, uc =  2.0, u =  4.0, / i =  4.0, v =  5.0, 6 =
10.0, x  =  2.75. (b) The p lo t of the critica l number vc as a function o f crowding 
exponent r . The figure shows th a t vc is an increasing function o f r.

Applying the above inequality, we can derive the follow ing inequality from  (3.2.6)

(1 _  + Vvddjd2  . g  2

u v x uc — fidi ’

w ith  a condition v x uc ~  <^i >  0. I t  is easy to  check th a t condition (3.2.8) covers 
condition (3.2.7).

Noting th a t the carrying capacity uc is less than the crowding capacity u, the 
function (1 — ^ ) r is decreasing w ith  respect to  r  when 0 <  r  <  1 and hence 
y ' l  — ^  <  y / ( l  — ^ ) r <  1. The inequality (3.2.8) im m ediately gives a necessary 
condition on parameters for pattern form ation

+ a/fj,Sdid2 < vxuc ~ ddi.

I f  we fix  a ll parameters in  (3.2.8) except r , then we have the follow ing possibilities 

to  solve (3.2.8) for r.

(1). I f  y/1 — ^  a, then (3.2.8) holds for any r  w ith  0 <  r  <  1. 
As a consequence, the pattern form ation is possible.

(2). I f  y ^ l — ^  <  V <  1, then we can solve (3.2.8) for r  to  obtain 

th a t ____
2 \/HVXUcdj+y/uuidldg

r  <  _________ vxuc-S d i /o  o  O')

ln(l -  f ) ■ ( "  }
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MkV
-1 ,5

50

(a) r  =  \  (b) r  =  1

Figure 3.2: (a) The p lo t o f dispersion re lation (3.1.5) w ith  v =  14.28 and v =  11.68
for r  — 1/2. (b) Dispersion relation (3.1.5) w ith  v =  19.8 and v =  16.2 for r  =  1.
Where d\ =  0.1, d2 =  1-0, uc =  2.0, u — 4.0, p =  4.0, <5 =  10.0, x  =  0.5.

We confirm  our results by numerical simulations. In  Figure 3.1(a), we choose ap
propriate parameter values such tha t

0.7071 =  , / I T T  <  v / T O A  + y g M  =  o.9938 <  j.
V u vxuc —

and ------- , , " XUr~5dl------  =  0.0179. From the above analysis, we know tha t if
ln ( l -  f )

r  >  0.0179, then the solution w ill be stable and no pattern form ation is possi

ble, as shown in  Figure 3.1(a), where we chose r  =  0.02.

In  summary, we obtain the follow ing theorem.

T heo re m  3 .2 .1 . Let all parameters in  (3.1.2) be fixed except fo r  r .  I f  6d i — v x uc <  
0, then we have the following results:

(i). I f  parameters are chosen such that d2 >  1; then there is no
pattern form ation fo r  any r  with 0 <  r  <  1.

(ii). I f  <  V & ife <  i .  Then the following inequality gives a

necessary condition fo r  pattern form ation o f system (3.1.2)

2 \n (y /p u xu cd2 +  \ffiSdid2 ) -  2 \n {y x u c — Sdx) 

r <  '

(Hi). I f  y j l  — ^   ̂ îien pattern form ation is possible fo r

r  e (0, 1].
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Figure 3.3: Evolution o f the solution (u (x , t), v(x, t)) to  system (3.1.2) w ith  r  =  1/2, 
v =  11.68 and di =  0.1, d2 — 1.0,u c =  2.0, u =  4.0,/r =  4 .0 ,6 — 10.0, x  =  0.5 by 
a random perturbation (denoted by the dots) of the stable steady state (u8,v8) =  
(2,3.336). The solid curves represents the solution u (x , t ) and v (x ,t)  at t  — 4.

3.2.3 Bifurcation with Growth Rate v

In  th is  subsection, we investigate the influence of the dynam ical parameter v on 
pattern form ation o f system (3.1.2). The tem poral eigenvalues o f the linearization 
at (u8,v 8) are the roots of equation (3.1.5).

We visualize A(k2) in  Figure 3.2(a) for two particu la r values o f the growth rate 

o f chem oattractant, namely v =  14.28, for which we obtain a range o f positive 
eigenvalues, and v =  11.68 for which a ll eigenvalues are negative, where we choose 
r  =  1/2. In  other words, the uniform  steady state (us,v8) obtained w ith  v =  14.28 
is unstable and pattern form ation can be expected, whereas the uniform  steady 
state (us,v3) obtained w ith  u =  11.68 is stable and no patterns evolve. Figure 
3.2(b) plots the dispersion relation (3.1.5) w ith  r  =  1. When r  =  1, then d =  1 
and the firs t equation of (3.1.2) is significantly reduced and the diffusion of cells 
becomes linear. W hile, when 0 <  r  <  1, the diffusion o f cells is really nonlinear 
and has a singularity at u =  u. This means th a t cells w ill diffuse very fast when 

the cell density is high. M athem atically, the singularity m ight introduce different 
phenomena or m athem atical d ifficulties, bu t here we observe not much difference 
compared to  the linear case. We can understand th is from  both m athem atical and 
biological po in t o f view. M athem atically the diffusion is a stabilizing force in  the 
chemotaxis model, the solution tends to  be stable when the diffusion of cells is big. 
B iologically, when cells diffuse quickly, the possibility of cell aggregation is re latively 
small and the cell density w ill be controlled. Second, if  we compare the dispersion
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U (X , t )  2

0.5

4
X X

Figure 3.4: Evolution of the solution (u (x , t ), v(x, t))  to  system (3.1.2) w ith  r  =  1/2,
v — 20 and d i =  0.1, d2 =  1.0, uc — 2.0, u =  4.0, fj, =  4.0,5 =  10.0, x  =  0-5 by a
random perturbation (denoted by the dots) o f the unstable steady state (us, vs) =  
(2 ,4). The solid curves represents the solution u (x , t ) and v (x ,t)  a t t  =  4.

re lation (3.1.5) as shown in  Figure 3.2(a) and Figure 3.2(b), we find th a t there are no 
significant differences for both r  =  1 and r  =  | .  Actually, numerical plots show tha t 
the dispersion re lation does not have significant differences for r  =  1 or any other 
value of r  € (0,1) (not shown). The only difference we can see is in  the possible 
b ifurcation value o f v. We w ill examine the influence of r  on the c ritica l value of v 
below.

For v =  11.68, we expect no pattern form ation as shown in  Figure 3.3. A l

though v =  14.28 satisfies the necessary condition for instab ility , there is no discrete 
wavenumber k which satisfies k \ <  k2 <  k \ for the fin ite  domain [0,4], where k2 
and fcf are given by (3.2.3) and (3.2.4), respectively. Hence we observe no pattern 
form ation for u =  14.28 (sim ulation not shown). However, i t  is easy to  verify tha t 
the difference o f k2 and k j is increased by further increasing v. In  Figure 3.4, we 
choose v — 20 and we do observe pattern form ation.

We now compute the c ritica l value uc for v from  (3.1.5)

2^ (1  -  f  y - \ l  -  Z & z l ) d ld2fxS +  Md2 +  5dx{ 1 -  f  ) - 1(l -  ^ )

x « c (i -  t r
(3.2.10)

such tha t no unstable modes exist i f  v is below th is c ritica l number vc, whereas 
unstable modes are possible when v is beyond th is c ritica l value vc (see Figure 
3.5(a) for the dispersion re lation). Furthermore, if  we consider vc as a function of 
r , we can show from  (3.2.10) th a t v'c(r)  >  0. This im plies th a t the c ritica l value of
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u=u /
/

instability -> y^V=(Vc/5)U

v>vc

<Us'Vs>

<- stability
/ v<vc

4 -  V > V

V<W

(a) (b)

Figure 3.5: (a). Dispersion re lation (3.1.5) as the parameter v passes through the 
b ifurcation value vc =  12.98, where r  =  1/2, di =  0.1, g?2 =  1.0, uc — 2.0, u =
4.0, =  4.0,8 =  10.0, x  =  0.5. (b). B ifurcation diagram for the s ta b ility  o f the
spatial homogeneous steady state (us,v s) as the growth rate v o f chem oattractant 
varies. The solid portion  o f the line u =  uc denotes the stable uniform  steady states, 
and the dotted portion  o f the line u =  uc represents the unstable uniform  steady 
states. The intersection o f two lines represents the uniform  steady states at the 
b ifurcation value vc.

the growth rate v increases as the parameter r  increases (see Figure 3.1(b)).
Remember th a t the c ritica l number vc is not necessary a b ifurcation value due to  

the discrete nature o f the unstable modes. B ut we can form ally obtain the desired 
b ifurcation value for v by perform ing the same analysis as for x  in section 4.1 and 
obtain a b ifurcation  theorem sim ilar w ith  Theorem 2.4.1. To avoid repetition, we 
do not provide details here. So we assume the b ifurcation value is obtained and s till 
denoted by uc, then the b ifurcation diagram for the steady state (us, va) obtained 
from  the intersection of line u =  uc and line v =  ju  is illustra ted  in  Figure 3.5(b). 
When v is small, the steady state is stable (denoted by the solid portion  o f the 

line u =  uc). The slope o f line v =  ju  increases as v increases (or equivalently, 
increase as 5 decreases), and as it  passes through the value vc/ 5, the resulting steady 
state becomes unstable (denoted by the dashed portion  o f the line u =  uc). This 
outcome is consistent w ith  the biological context tha t increasing the growth rate 
v o f chem oattractant w ill result in  higher concentration o f chem oattractant which 
makes the system be more unstable.
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8>8,

instability —> 
8<8,
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Figure 3.6: (a). Dispersion re lation (3.1.5) as the parameter 8 passes through the 
b ifurcation value 8C =  29.22, where r  =  \ , d i  =  0.1, =  1.0, uc =  2.0, u =  4.0, p =
4.0, v =  20, x  — 0.5. (b). B ifurcation graph for the s ta b ility  of the spatial homo
geneous steady state (us,va) as the death rate 8 o f chem oattractant varies. The 
solid portion  of the line u =  uc denotes the stable uniform  steady states, and the 
dotted portion  o f the line u =  uc represents the unstable uniform  steady states. The 
intersection o f two lines represents the uniform  steady states at the b ifurcation value 
<5c-

3.2.4 Bifurcation with Death Rate 8

In  the model (3.1.2), the parameter 5 stands for the death (degradation) rate of the 

chem oattractant, and the uniform  steady state (us, vs) depends on 8. So 8 m ight be 
a potentia l dynam ical parameter. In  th is section, we w ill understand the influence 
o f the parameter 8 on the pattern form ation of system (3.1.2).

I f  we perform  the sim ilar linear analysis as we did in  previous sections, it  is easy 
to  derive a c ritica l value for 8

=  ( M ( l  - u c/ u y - f ^ ) 2 (3 2 n )

4 (1  -  * ) '- ■ ( !  -

such th a t when 8 >  8C, there does not exist unstable modes, whereas unstable modes 
can be expected when 8 <  8C. Now if  we regard the death rate 8 as a dynamical 
parameter, the dispersion re lation o f (3.1.5) as 8 passes through the c ritica l value 8C 
is shown in  Figure 3.6(a).

Now we examine the relationship between the c ritica l value 8C and crowing ex

ponent r. For convenience we denote p =  1 — uc/u . Under condition (3.2.11), we
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can rew rite (3.2.11) as follows

yWr
Note th a t 0 <  p <  1 and hence pr~l  is decreasing w ith  respect to  r . Then it  is easy 
to  see th a t Sc, as a function of r, is decreasing. Therefore, the c ritica l death rate S o f 
chem oattractant decreases w ith  respect to  crowing exponent r . This is in  contrast 
to  the c ritica l growth rate vc which is an increasing function of r.

Due to  the discrete property of unstable modes, Sc is not necessarily the bifurca
tio n  value which can be form ally obtained such tha t either k\Z/7r2, or reaches
an integer number as a function of S. We skip the deta il since it  uses the same ar
gument as finding the b ifurcation number for x  in section 4.1. I f  we s till denote 
th is  b ifurcation value by 8C, the b ifurcation diagram w ith  respect to  parameter 6 for 
the steady state (us, vs) can be graphed in  Figure 3.6(b), which is in  contrast to  the 
case for parameter v. When S is small, the steady state is unstable (denoted by the 

dotted portion  o f the line u — uc). The slope of line v — ju  decreases as 5 increases, 
and as it  passes through the value uc/S, the resulting steady state becomes stable 
(denoted by the solid portion  o f the line u =  uc).

3.3 Num erical Simulation in One-Dimension

In  th is  section, we w ill num erically investigate pattern form ation for the model
(3.1.2). We s till use M ATLAB PDE solver pdepe as we used in  chapter 2 to  solve 
the model (3.1.2). For r  =  1, numerical solutions have been shown by Painter 
and H illen in  [98]. In  case of zero kinetics (f ( u ,v ) =  0), Painter and H illen  found 
a typ ica l behavior o f merging of local peaks (also called coarsening process). As 
before, we consider zero kinetics and non zero kinetics separately.

3.3.1 Zero Cell Kinetics

In  th is  subsection, we w ill consider system (3.1.2) w ith  cell kinetics (p =  0). Un
less stated otherwise, throughout th is  section, we shall assume zero flux boundary 
condition. In itial conditions w ill be set as sm all perturbation of th e  hom ogeneous 

steady state. For in itia l conditions u(x, 0) =  us (constant), the in s ta b ility  region 
can be e xp lic itly  determined according to  (3.1.6) by the follow ing inequality

( u -  us)r +  ru su~2(u -  ua)r_1 diS (3 3 1)
us{u -  us)r v
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(d) (e) (f)

Figure 3.7: E arly evolution o f m ultiple-peak patterns for model (3.1.2) w ith  zero 
cell kinetics f (u ,  v) — 0 and g(u, v) =  vu — Sv and w ith  different in itia l cell density. 
In  (a), (b) and (c), we take r  =  1/2 and diffusion is nonlinear. In  (d), (e) and (f), 
we take r  =  1 and diffusion is linear, (a) In itia l cell density=0.5, at T  =  O(dot), 
150(dash) and 400(solid). (b) In itia l cell density=0.2, at T  =  O(dot), 320(dash) and 
400(solid). (c) In itia l cell density=0.9, no patterns form, (d) In itia l cell density=0.5, 
at T  — O(dot), 50(dash) and 400(solid). (e) In itia l cell density=0.2, at T  =  O(dot), 
400(dash) and 500(solid). (f) In itia l cell density=0.9, at T  =  O(dot), 30(dash) and 
400(solid). O ther parameters: d\ =  0.25, efe =  l , v  =  50,5 =  10, u =  1.0; uc =  
0.5, x  =  0.6.

Under th is condition, unstable wavemodes can be expected. From (3.3.1), we see 
th a t the cell density is crucial for pattern form ation. A t high or low in itia l cell 
density us, the system tends to  be stable to  spatial perturbations.

Typical num erical sim ulation examples are shown in  Figure 3.7 (a -f) for a range of 
different in itia l cell densities. In  these examples, we assume the crowding capacity u 
to  be 1. As expected from  the condition (3.3.1), for the in itia l density close to  0 or 1, 
there is no spatia l patterning. In  the region of in s tab ility  a series o f cell density peaks 
form . B ut the growth at the peak is capped due to  the volume fillin g  mechanism, 
which results in  the form ation of density plateaus. By varying the in itia l cell density 
o f the cell population (as shown in  Figure 3.7 for us =  0.2, us =  0.5, us =  0.9), the 

varia tion in  the thickness and in ter-w id th  o f these plateaus can be controlled. Hence 
the volume fillin g  mechanism forms a robust approach of generating variations in
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Figure 3.8: Space-time evolution o f cell density for model (3.1.2) w ith  zero-kinetics 
subject to  different chemosensitivity %■ (a) X — 1- (b) X =  2. (c) x  =  3. The 
other parameters are chosen as v =  50,5 =  10, um =  1.0,u c =  0.5, uo =  0.9, di =  
0.25, o?2 =  1.0, r  =  1/2. Numerical simulations show th a t, when there is no cell 
kinetics, only a merging process is observed, whereas the emerging process does not 
appear. We also observe th a t for a larger chemosensitivity, there is more merging.

cell density o f varying thickness. Comparing Figure 10(c) and Figure 3.7(f), we 
see the difference between linear cell diffusion and nonlinear cell diffusion. When 

the cell density is close to  the crowding capacity, nonlinear cell diffusion w ill play 
a more crucial role than linear diffusion does and cells w ill not aggregate due to 
the high diffusion effect. In  the sim ulations o f Figure 3.8, we observe merging 
process at in itia l stage, which stops at a later stage and new time-independent 
persistent peak patterns appear subsequently. Also, we observe th a t the greater 

the chem osensitivity is, the earlier the peak patterns arise. This is not unexpected 
since biologically cells take a shorter tim e to  aggregate when the external signals are 
stronger. Moreover, numerical simulations (see Figure 3.8) show th a t the number 
o f peaks arising in itia lly  w ith  larger chemosensitivity is larger than the number of 
peaks w ith  smaller chemosensitivity. This is in  agreement w ith  our analysis obtained 
in  section 4.1 since we would get more unstable modes by increasing x- The number 
o f unstable modes is proportional to  the peak patterns developing in itia lly . B ut
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Figure 3.9: E arly evolution of peak patterns fo r model (3.1.2) w ith  zero cell kinetics 
(/x =  0) for a range of r. (a) r  =  0.125, at T  =  0(dot), 150(dash) and 400(solid).
(b) r  — 0.25, at T  =  0(dot), 300(dash) and 400(solid). (c) r  =  0.75, at T  =  0(dot), 
30(dash) and 400(solid). O ther parameters: d\ — 0.25, d2 =  l , u  =  1,S =  l , u  — 
1.0; uc =  0.5, x  =  5.

over tim e, the unstable modes w ill decrease due to  the consumption o f external 
chemicals and the number of peaks w ill decrease accordingly. As a consequence, 
merging process happens and solutions stabilize in to  a time-independent spatial 

patterns (a 5 peak pattern  in  Figure 3.8).
Figure 3.9 demonstrates the dynamics of pattern form ation for different value of 

crowding exponent r. Since the cell kinetics is zero (or equivalently to  say /x =  0), 
the inequality (3.2.8) is satisfied. As expected from  Theorem 4.2, spatial patterning 
is possible. In  Figure 3.9, we choose parameters w ith in  the in s ta b ility  region and 

p lo t a tim e evolution of the peak patterns for a range o f values of r . The dynamics 
o f pattern form ation can be simulated sim ila rly for other parameters (v and 6) but 
the numerical simulations are not shown here.

3.3.2 Non-Zero Cell Kinetics

In  th is  section, we include the effect o f cell kinetics in to  the model and explore 

whether stable m ulti-peak aggregation patterns can develop. We suppose tha t cells 
follow  logistic growth f (u ,  v) =  /m ( l — u /u c). Then the model is the same as (3.1.2).

The non triv ia l uniform  steady state of (3.1.2) is given by (us,vs) =  (uc, vuc/ 8), 
and the in s ta b ility  region o f th is  steady state is determined by condition (3.1.6). 
We choose a set o f parameters such th a t the in s tab ility  condition (3.1.6) is satisfied 
and p lo t the results in  Figure 3.10. The tim e sequence p lo t shows th a t m ultip le 
peaks develop and numerical simulations indicate tha t these peaks exists indefinitely. 
Simulations also show th a t a time-independent persistent spatial pattern m ight not 

exist and solutions demonstrate an interesting pattern interaction process o f merging
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Figure 3.10: Tim e sequence showing cell density evolution for model (3.1.2) w ith  
H ±  0, where di =  0 . 2 5 , =  1 ,^  =  1,<J =  1 ,u  =  1.0,uc =  0.5,fj, =  5 ,r  =  1 /4 , x  =  
50.

and emerging. Tim e evolution shows a tem porarily oscillating pattern as some peaks 
collapse together (see T  =  120 — 160) or new peaks arise (see T  =  160 — 400). 
B ut when the parameters are chosen close to  the s ta b ility /in s ta b ility  boundary, 
solutions can stabilize in to  a time-independent spatial pattern (see Figure 3.11(a), 
where a 7 peaks pattern evolves persistently). This m ight provide a mechanism to  
generate stripe pattern in  two dimension. Examples for a variety of parameter values 

deep in  the in s tab ility  region are shown in  Figure 3.11(b)-(c), where neighboring 
aggregations jo in  to  form  a single aggregation resulting in  a large space o f low cell 
density. In  the low density regions, new cell aggregations subsequently arise.

3.4 Discussion

In  th is  chapter the volume fillin g  chemotaxis model which including a different 
squeezing probability q(u) than  th e  one chosen in th e  previous chapter. T he new  

choice o f q(u) leads to  an unbounded diffusion rate when cell density approach the 
crowding capacity. From m athem atical point o f view, th is  behavior w ill make system 

more stable and the global in  tim e solutions should exist although we are not able to  
prove th is so far. However, we study the pattern form ation for the resultant system.
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Figure 3.11: Space-time evolution of cell density for model (3.1.2) fo r different 
choices of parameters, (a) d\ =  0.25, d% =  l , v  =  10, <5 =  10, u =  1.0, uc — 0.25, =
0.5, x  =  10, r  =  1/2. Simulations indicate th a t a fixed spatia l pattern exists as 
peaks persist and grow. Here are 7 peaks, (b) di =  0.25, dz =  1, v =  10,6 =  10, u =
1.0,uc =  0.25, n  =  0.5, x  — 20,r  =  1/2. (c)di =  0 . 0 1 , =  I , 2'  =  10,6 — 10,rt =
1.0, uc =  0.25, f i =  0.5, x  =  1-5, r  =  1/2. In  (b) and (c), typ ica l merging and emerg
ing patterns develop. The parameters chosen in  (a) are closer to  the s ta b ility  region 
than those chosen in  (b) and (c). A ll simulations use the domain size as [0 20].

We observe sim ilar patterning process as we had in  chapter 2. In  the case of zero 
kinetics, we find merging process, while we observe merging and emerging process 
for nonzero cell kinetics. This again confirms the conclusion th a t the emerging 
process is due to  cell kinetics. For the case o f zero cell kinetics, we find  th a t in itia l 
cell density is im portant for pattern form ation. There is no pattern form ation for 

high or low cell density. Note tha t we observe very sim ilar patterning process for 
the choices o f squeezing p robab ility  q(u) described in  both chapter 2 and chapter 
3. However c ritica l values o f chemosensitivity and growth and degradation rate on 
pattern form ation are quite different, as we have seen from  our analysis. Moreover, 
the choice o f q(u) in  th is chapter leads to  an open question of fast diffusion problem, 
which is m athem atically interesting and challenging.
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Chapter 4

SHOCK FORMATION IN A CHEMOTAXIS MODEL 1

4.1 Introduction

In  many biological system, an organism navigates in  response to  a diffusible or oth
erwise transported signal. In  its  simplest form  th is can be modeled by diffusion 
equations w ith  advection terms of the form  firs t derived by Patlak [101]. However, 
other systems are more accurately modeled by random walkers tha t deposit a nondif- 
fusible signal th a t modifies the local environment for succeeding passages and there 
is litt le  or no transport o f the m odifying substance. Examples include myxobacteria 
which produce slime over which the ir cohorts can move more readily, and ants, which 
follow  tra ils  le ft by predecessors. In  either case, the question arises as to  whether 
aggregation is possible w ith  such s tric tly  local m odification or whether some form  
of longer range communication is necessary. To answer th is question, O thm er and 
Stevens [95] have developed a number o f mathematical chemotaxis models. They 

illus tra te  th a t w ith in  the framework o f pa rtia l d ifferential equation models, stable 
aggregations can occur w ith  local m odulation of the transition  rates, th a t is, w ithout 
long range signaling via  a diffusible chemical. One of these chemotaxis models in 
one-space dimension reads

aP - DJL ( » r
dt dx \  dx \  \<p(w) j  j  /  (4 1 1 )

i r - * » » > .
w ith  no-flux boundary condition

9  'I n  ( )  ) =  0 at x  =  0, I, (4.1.2)
dx  \  \<(>(w)

as well as in itia l conditions

p(x, 0) =  po(x) >  0, w(x, 0) =  u>o(x) > 0  fo r 0 <  x <  I. (4.1.3)

1 The result in this chapter is a collaboration with Thomas Hillen and has been published online 
in Math. Methods. Appl. Sci. at http://www3.interscience.wiley.com/cgi-bin/jissue/106560971.
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Here p(x, t)  is the particle density o f a particu lar species and w(x, t) is the concen
tra tio n  o f th a t active agent. The chemotactic potentia l <j> and signal reproduction 
and decay term  R  are given as

*(« ,) = ( ^ ± £ ) ° ,  R M  =  + - 3 * - -  ^  (4,1.4)
\ w  +  7 /  ’  h  + w  k2 + p  v ’

were /?,7 , k, k i,k 2, A, j r ,p  and D  are a ll nonnegative constants w ith  D  and A being 
s tric tly  positive and a  =£ 0. Here the defin ition for potentia l function 4>(w) in  (4.1.4) 

corresponds to  a so called barrier mode which describe a saturation effect o f external 
signals in  the receptor binding reaction. The choice of k inetic terms R(p, w) describe 
the saturation in  the production of the external signal (see [95]).

O thm er and Stevens [95] num erically show th a t a variety o f dynamics o f system 
(4.1.1)-(4.1.4) are possible, which include aggregation, blowup or collapse depending 
on whether the dynamics adm it stable bounded peaks, whether solutions blow up in  
fin ite  tim e, or whether a suitable spatial norm of the density function is asym ptot
ica lly  less than its  in itia l value. In  [75], Levine and Sleeman present the analytical 
results th a t support the numerical observations presented by Othm er and Stevens 
[95]. Furtherm ore some additional numerical computations axe made in  [75]. Local 
and global existence of solutions of the Othmer-Stevens model (4.1.1)-(4.1.4) has 
been studied in  [126] and in  a recent paper [127]. In  [127] the authors apply the 
existence theory of Ladyzhenskaya et al [71] to  obtain a very general result on local 
and global existence of solutions. In  [113] asym ptotic expansions are used to  prove 
the existence and s ta b ility  of spike solutions for the case of saturation in  the signal 
production term .

I t  should be pointed out tha t since the firs t equation of (4.1.1) is parabolic in  p, 
i t  is easy to  observe tha t p(x, t) >  0 provided tha t the in itia l value is nonnegative. 
To sim plify model (4.1.1) and gain some insight in to  the Othmer-Stevens model, it  
is w orthwhile to  consider special cases which were considered in  [75]. The results 
we obtain in  th is paper are for a sim plified version of the Othmer-Steven model. 

To sim plify equations (4.1.1), we firs t apply the representation of <j)(w) in  (4.1.4) to  
deduce th a t from  the firs t equation o f (4.1.1)

%  =  D
d2p d  f  a (7 — (3)p dw
dx2 d x \(u ; +  7 )(?n +  /?) dx )]

From th is  expression, we observe th a t i f  7 > >  w »  f3, the coefficient of wx is 
nearly a /w , whereas if  (3 »  w »  7 , the coefficient is —a /w . These two extreme 
cases can be modelled by taking <j>{w) =  w~a where a  can be positive or negative. 
Throughout th is  paper, we consider 7r =  0, 4>{w) =  w~a and R(p, w) =  Xpw — pw.
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S ubstitu ting these choices in to  system (4.1.1)-(4.1.4), we end up w ith  the follow ing 
sim plified system

{  P t  =  D  ( p x x  +  a  ( p — )  )  , 0 <  x  <  I, t >  0,
)  \  \  w ) x)  (4.1.5)
[  W t  —  \ p w  —  p W ,  

w ith  boundary condition

a —  +  —  =  0 for x  =  0,1, t >  0, (4.1.6)
w  p

and in itia l data

p ( x ,  0) =  p o ( x )  >  0, w ( x ,  0) =  w 0 ( x )  > 0  for 0 <  x  <  I. (4.1.7)

Here the firs t equation of (4.1.5) becomes a classical Patlak-Keller-Segel type. The 
substance w  is generally refereed to  as a ttractant for a  <  0 and repellent for a  >  0. 

Furthermore, w ith  these sim plifications, using scaling theory by w riting  t  =  
~  and setting p! — 4 ^ ,  A' =  4 ^ ,  we fin d we may take D  =  1 in  (4.1.5). 

I f  we m u ltip ly  the firs t equation o f (4.1.5) by A we observe th a t we may replace p
by p' =  \p  . Moreover, if  we define w' — w exp(pt), we see th a t we may take p =  0
in  (4.1.5) i f  replacing w by w'. A fte r these rescalings, we can recast the system
(4.1.5)-(4.1.7) to  the follow ing in itia l-boundary problem by dropping the prim e for 
convenience

{ P t  =  P x x  +  ol [ P — ) , (x, t )  e  (0 ,1) x  (0, oo),
\  w / x  ( 4 . 1 . 8 )

w t  =  p w ,  

w ith  boundary condition

a —  +  — =  0 for x  =  0 , l , t > 0 ,  (4.1.9)
w  p

and in itia l data

p ( x ,  0) =  P o ( x )  >  0, w ( x ,  0) =  w q ( x )  > 0  for 0 <  x  <  I. (4.1.10)

From the second equation of (4.1.8), it  follows tha t w ( x , t )  >  0 since w q ( x )  > 0 as
long as the solution ( p ,  w )  exists in  tim e. So it  makes sense to  le t t ) =  In w ( x ,  t )

Vi)
and consequently ipx =  Moreover it  follows from  the second equation o f (4.1.8)

w
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th a t 4>t — —̂  =  p. We therefore obtain the follow ing form  from  (4.1.8)-(4.1.10)

£ $  =  -  aipttxx  =  ipxxt, (x, t) E (0, 1) x (0, oo),

+  i ’xt =  0, for x  =  0, 1, t  >  0,
(4.1.11)

^ (x ,  0) =  V’oOc) =  lntno(a;), for 0 <  x <  I

ipt(x, 0) =  po(^), for 0 <  x <  I.

The operator £  defined by the firs t equation o f (4.1.11) is a quasilineax second- 

order d ifferentia l operator. The damping term  ipxxt here does not really affect the 
overall structure o f the solution. So we can specify the type of the operator £  by 
determ ining the sign of the discrim inant

A  =  a V *(® , t) +  4ai/jt (x, t ),

at a point (x, t). The operator £  w ill be hyperbolic at the point (x, t) on a function 

4> if  A >  0, while e llip tic  i f  A <  0. When A =  0, we say £  is parabolic. Since 
we have tha t p (x ,t)  =  ipt (x ,t)  >  0, it  follows tha t A  >  0 i f  a =  1 (or a >  0) 
and we refer to  th is case as hyperbolic. When a =  —1 (or a <  0), the sign of the 
discrim inant can change and we refer to  th is case as m ixed-type case.

When a =  1, Levine and Sleeman [75] construct solution pairs (p, w) for which 
p >  0 and p collapses to  a constant in  fin ite  tim e exponentially. When a =  — 1, 

they show th a t there are solution pairs (p, w ) for which p >  0 but for which p blows 
up on the parabolic boundary in  fin ite  tim e and the power spectrum converges to  
th a t of delta function in  fin ite  tim e. Furthermore, they construct an exp lic it fam ily 
o f such solutions (see section 3 o f [75]). Moreover, Levine and Sleeman argued tha t 
the system (4.1.5) contains the seeds o f shock form ation which can be obtained in  
the “zero diffusion” lim its  i f  D  —> 0, a  —*• oo in  such a way tha t a D  =  constant. 
B ut they did not provide the rigorous justifica tion  for th is  contention. One o f the 

purposes o f th is  paper is to  present the analytical jus tifica tion  for the ir assertion. 
Beyond th is, we study the shock structure by examining the traveling wave and 

prove th a t the shock speed is identical to  traveling speed. Furthermore, we find the 
entropy inequality for a ttractive case (a  >  0) and then the uniqueness of weak shock 
solution of a ttractive  case is obtained.

The organization o f the rest of th is chapter is as follows. In  Section 2, we show 
th a t for both a ttractive  case (a <  0) and repulsive case (a >  0), there exist shock 
solutions for the chemotaxis model (4.1.5), (4.1.6) and (4.1.7) w ithout diffusion in  
the sense of a D  =  constant. We start w ith  the Rankine-Hugonoit condition to
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e xp lic itly  find  the shock curves in  parameterized forms th a t connect le ft and righ t 
states through a shock solution. Furthermore we observe the difference between the 

attractive  case and the repulsive case and p lo t the Hugoniot locus for both cases. 
In  addition, we b rie fly discuss the general Riemann problem for system (4.1.5)-
(4.1.7) w ith  zero diffusion. The shock structures w ill be examined in  Section 3 by 
studying the traveling waves to  system (4.1.5)-(4.1.7) for small D  >  0. We show the 
existence o f nondecreasing traveling waves for the a ttractive case and nonincreasing 
traveling waves for the repulsive case. Essentially, we prove the traveling speed is 
identical to  the shock speed. Num erically we confirm  the existence o f the traveling 

wave solutions. In  Section 4, an entropy condition for the repulsive case (a  >  0) is 
identified and the uniqueness of the shock solutions follows. In  the fina l Section 5, 
we provide some discussion for fu rther research.

4-1.1 Hyperbolic Systems

To make the paper self-contained and for the convenience to  read, in  th is subsection, 

we would like to  introduce some basic definitions and associated notations related 
to  the theory of hyperbolic conservation laws (see [15, 73, 74]).

Let Q C M" be an open set and /  : —*■ M" a smooth vector field. The Riemman
problem for the system o f conservation laws in  one-space dimension

Ut +  f ( u ) x =  0, x  € M, t  >  0, (4.1.12)

consists in  finding a weak solution u (x , t ) €E 0  o f (4.1.12) w ith  piecewise constant 

in itia l data o f the form

{ u~, i f  x  <  0,
(4.1.13)

u+, i f  x >  0,

where u~ ,u+ € f i,  u~ ^  u+ . Then we have the follow ing notions for (4.1.12) and

(4.1.13).

Definition 4.1.1. We say that (4.1.12) is a hyperbolic system of partia l differ

ential equations i f  fo r  each u € f l  the Jacobian matrix A(u) =  D f(u )  has n real 
eigenvalues X ffu) <  A2 ( « ) < • • •  <  An(u) together with a basis o f right eigenvectors 
ri(u)i<i<n. The eigenvalues are also called the wave speeds or characteristic 
speeds associated with (4-1.12). The pa ir (Ai,n) is referred as the i-th  charac
teristic field. Furthermore, the system is said to be strictly hyperbolic i f  its 
eigenvalues are distinct: Ai  (u) <  A2 ( «)<■•■ <  An(u).
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Definition 4.1.2. For i  € 1, • • • , n, we say that the i-th  characteristic fie ld is gen
uinely nonlinear i f

r i •  A fin ) /  0 for a ll u € Q 

and linearly degenerate i f

^  •  Ai(u ) — 0 for a ll u € Cl,

where r i^ X fiu ) means the directional derivative o f the function  Afiu ) in  the direction 
of the vector r f iu )  defined by

n  •  Ai(u ) =  VA i(u ) ■ r f iu )  =  lim  M ^  +  gr*(u))— _
£—►O £

Definition 4.1.3. F ix the point u~ e M”. The set o f the points u+ which can 

be connected to u~ by a discontinuity satisfying the Rankine-Hugoniot jum p  
condition

f ( u +) -  f(u ~ )  =  s(u+ -  u~)

fo r  some s is often collectively called the Hugoniot locus fo r  the point u~, where 
s is called the shock speed, the speed at which the discontinuity travels. I f  u f  lies on 
the Hugoniot locus through u~, we say that u f  and u f  are connected by an i-shock.

Definition 4.1.4. A smooth function (j],p) : M”  —» M2 is called an entropy pa ir i f  
any smooth solution u o f (4-1.12) and (4-1.13) satisfies the additional conservation 

law

rj(u)t +  p(u)x =  0,

where the functions rj and p are called entropy and entropy flux  respectively.

Definition 4.1.5 ([114]). We say that the shock wave o f system (4.1.12) with 
(4-1.13) “admits structure” i f  the viscous equation

Ut +  f ( u ) x =  euxx, e > 0 ,  X  € R, t  >  0,

admits a traveling wave solution o f the form

'x  — st
u =  u

£

which tends to the given shock wave solution (u~, u+ -,s) as £ —> 0.

The follow ing theorem established in  [15] w ill be useful in  the present paper.
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T h eo re m  4.1 .6 . (Theorem 5.1[15]). Let the system (4-1.12) be strictly hyperbolic. 
Then, fo r  every uq e  there exist <ro >  0 and n smooth curves : [—<r0, cr0] —► Q, 
together with scalar functions A* : [—er0, er0] —> M (i =  1, • • • ,n ), such that

f(S i(cr)) -  f ( u 0) =  Ai(cr)(5i(cr) -  u0), a E [-0o,<7O]- (4.1.14)

Moreover, the parametrization can be chosen so that \dSi/da\ =  1 and

Si(0) =  Uq, A j(0) =  A i(if0), (4.1.15)

Si(a)
da

4-1.2 LaSalle’s Invariant Principle

=  r 4(uo). (4.1.16)
(7=0

Asym ptotic or global s ta b ility  of a dynamic system is often an im portant property 
to  be determined. I t  is well know th a t the Lyapunov s ta b ility  theorem is a powerful 
approach to  determine the s tab ility  or in s tab ility  of a system. However, the Lya
punov s tab ility  theorem is often d ifficu lty  to  establish the asym ptotic properties, as 
the derivative o f the Lyapunov function candidate V  is only negative semi-definite, 
namely, V  <  0. B ut th is  does not mean tha t the equilibrium  of the dynamic system 
is not asym ptotically stable. In  th is kind of situation, it  is s till possible to  draw 
conclusions on asym ptotic s tab ility  by invariant set theorems, which are due to  the 
pioneering work o f LaSalle [72]. In  th is  subsection, we introduce LaSalle’s invariant 
principles as stated in  [8, 45].

Definition 4 .1 .7  (Invariant set). Consider an autonomous dynamic system

x =  f ( x ) .  (4.1.17)

Then a set S is called an invariant set fo r  the above system (4-1.17) i f  every
trajectory x (t) starting from  a point in  S remains in  S fo r  a ll time.

Theorem 4.1 .8  (LaSall’s invariant princip le). Consider an autonomous system of 
the form  (4-1.17) with f  locally Lipschitz. I f  there exists a continuous differentiable 

function V (x ) : M”  —» M fo r  which
(i)  fo r  some I >  0, the set Cli =  {a; E Mn : V (x ) <  1} is bounded.
( ii)  V {x ) <  0 fo r  all x  in  L!;.

Define R  =  {x  E  Mn : V (x ) =  0} and let M  be the largest invariant set contained in

R. Then fo r  each xq E  Qj, the u - lim it set w (x0) is contained in  M .
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4.2 Shock Solutions

4-2.1 The Hugoniot Locus and Existence o f Shocks

Following the argument by Levine and Slemann [75], we assume firs t a D  — C in  the 

O thm er and Stevens model (4.1.5)-(4.1.7), where C is a constant. In  th is  situation, 
the negative constant (C <  0) corresponds to  a ttractive  chemotaxis and positive one 
(C > 0) to  repulsive chemotaxis. W ithou t loss o f generality we may assume tha t 
C =  ±1 . The spatial domain is extended to  be I  =  M. There are two cases to  follow 
regarding the sign of the constant C.

Case 1: Attractive case (a =  — ̂  <  0). Following th is condition, applying 
the same scaling technique used in  the in troduction, we reform ulate system (4.1.5) 
to  the follow ing equivalent equations

( Pt =  Dpxx -  ( p ^ ) x , (X , t ) e l x  (0, oo), ^  2

[  wt =  pw.

We define q — (In w)x and reform ulate system (4.2.1) to  obtain the follow ing form

f p t + p q x +  qpx -- 
1 q t =  P x -

. Then the system (4.2.2)Let u — (p , q)T and A(u) =  ^  1 0 y ’ ^  =

becomes

Ut +  f(u )x  — ut +  A (u)ux =  D ux

where f ( u )  =  f(p , q) =  (pq, —p)T. To study the shock form ation o f system (4.2.3), 
we le t D  =  0 such th a t system (4.2.3) becomes the follow ing conservation law

ut +  A{u)ux =  0, (x , t)  € I  x  (0, oo). (4.2.4)

The characteristic equation o f A(u) is easily computed as A2 — qX +  p =  0. Thus 

when q2 — Ap >  0, the m a trix  A(u) has two real d istinct eigenvalues \ \  (u) <  X2(u) 
given by ______

w  , q q2 — Ap j  w  , q , v V  -  4p 
A i(u) =   ---------    and A2(u) — -  H  ------ ,

w ith  corresponding eigenvectors which are

n (u )  =  (—A i(«), 1)T and r 2(u) =  (A2(u ), - 1 ) T,

respectively. This means the conservational law (4.2.4) is s tric tly  hyperbolic for 
q2 — Ap >  0. Furthermore it  is straightforward to  obtain th a t V A i(u ) • r \{u ) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

 . + 1  ^  0 as well as VA2(u )- r2(u) =  . : +  l  ^  0 and A i(u ) <  A2(u)
\ /q 2 -A p  y/q2 -  Ap

due to  p >  0. Hence the characteristic fields (A i( it) ,r i(u ))  and (A2(w ),r2(u )) are 

genuinely nonlinear which motivates us to  look for shock solutions for system (4.2.4). 

To investigate the shock solution, we augment the system (4.2.4) w ith  Riemann 
in itia l value

{ u~, x <  0,
(4.2.5)

u+ , x  >  0,

where u~ — (p~,q~), u+ — (p+ , q+).
We suppose here th a t u+ ^  u~. Otherwise the characteristic speeds are constant 

Ai(u ) =  Ai(u~) — Xi(u+) and therefore VA i(u ) =  0. This is the case o f linear 
degeneracy in  which the shock wave and rarefaction wave coincide w ith  each other 
and we refer to  th is  situation as a contact discontinuity (see [15]). In  th is  work, we 
restrict our a ttention to  the case of u+ ^ u ~ .

Recall th a t i f  a d iscontinuity propagating w ith  speed s has constant u~ and u+ 
on either side o f the discontinuity, then the Rankine-Hugoniot jum p condition must 
hold

f ( u +) -  f(u ~ ) =  s(u+ -  u~). (4.2.6)

Now le t us fix  a state u~ and attem pt to  determine the set of states u+ tha t can 
be connected to  u~ by a d iscontinuity satisfying (4.2.6) fo r some s. To th is  end, we 

rew rite the Rankine-Hugoniot condition (4.2.6) as

s(p+ ~  p~) =  p+q+ ~  P~q~,
(4.2.7)

s(q+ - q  ) =  - p + + p  .

Observe th a t system (4.2.7) gives a system of two equations in  three unknowns: 
p+ , q+ and s. This enables us to  expect a one parameter fam ily o f solutions. Here

we take q+ as the free parameter. Then it  follows from  the second equation o f (4.2.7)
tha t

p+ = p ~  - s ( q + -q ~ ) .  (4.2.8)

S ubstitu ting (4.2.8) in to  the firs t equation of (4.2.7) yields

—s2(q+ — q~) =  p+q+ — p~ q~. (4.2.9)

Applying (4.2.8) in to  (4.2.9) gives tha t

(q~ — q+)(s2 — q+s +  p~) =  0. (4.2.10)
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I t  is worthwhile to  note here tha t q+ ^  q~. Otherwise it  follows from  the second 
equation o f (4.2.7) tha t p+ — p~ which im plies tha t u+ =  u~ and violates our 

assumption. Therefore we end up w ith

s2 — q+s +  p = 0.

and get the shock speed
_ q+ , V q +'2 ~  4p~ s _  2 ±  _ ) (4.2.11)

here we have assumed th a t (q+)2 — 4p >  0. As a consequence we obtain p+ from
(4.2.8)

p+ =  p~ -  I  (q+  ±  y jq+2 -  4p-^j (q+ -  q~ )t (4.2.12)

where ±  signs in  these equations give two solutions, one for each fam ily. Since p+ 
and s can be expressed in  terms of q+ , we can parameterize these curves by taking

q+ =  ( l  +  a)q , (4.2.13)

where a is a parameter.
Therefore given u~ € f l,  we obtain the shock curves for the firs t characteristic 

fields which are parameterized by

(
(i +  a )q -  v ^ 1 +  a )2<i~ 2 ~  4P"

\

w ith  shock speed

s1( a , u )  =  ^ ^ - q  -  W ( l  +  o - ) V 2 - 4 p ~ .
2 ’  2

The shock curves for the second characteristic fie ld is

/

Si2((T, u  )  =  u  +  a
(1 + a )q  +  y j ( l  +  cr)2q~2 ~  4p~

w ith  shock speed

) = ii£^g + |\/( l + <7)2q~2 — 4p~.
2 2

Here we w rite  Si(cr,u~) =  u f(a ,u ~ ) , i =  1,2 and u f(a ,u ~ )  denote the solutions 
corresponding to  the shock speed s*. We thus obtain two shock curves through any
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point u~, one for each characteristic fam ily. By denoting the corresponding shock 
speed by sfia, u~) we parameterize these curves by Sfia, u~) w ith  Si(0, u~) =  u~. To 

make notations simpler, we w ill frequently substitute Sfia) for Sfia,u~) and Si(cr) 
for Si(a, u~) when the point u~ is clearly understood. Replacing u+, s by Sfia), sfia) 
respectively in  the Rankine-Hugoniot condition (4.2.6), we find tha t

f (S f ia )) -  f [u ~ ) =  si (cr)(6 'i (c7) -  u~). (4.2.14)

D ifferentia ting the expression (4.2.14) w ith  respect to  a and evaluating at a — 0 
yields

f(u -)S fiO ) =  sfiO)S'fiO) (4.2.15)

so th a t £ '(0) must be a scalar m ultip le  of the eigenvector rf iu ~ )  o f f ( u ~ )  since here 
the speed Sj(0) coincides w ith  the corresponding characteristic speed, i.e., Sj(0) =  
\ f iu ~ ) .  However, w ith  the above notations, it  is evident to  check tha t

Q _ _
— Sfi0,u ) =  q rfiu~) <xrfiu~), sfi0,u~) =  \ f iu ~ ) , i  =  1,2. (4.2.16)

as required.
Now le t us examine the conditions which the parameter a  needs to  satisfy. For 

the shock curves S fia ,u ~ )(i =  1,2) to  be well defined, it  is required tha t (1 +  
cr)2q~2 — 4p~ >  0. B u t i t  has been required th a t q~2 — 4p~ >  0 to  get a s tric tly  
hyperbolic conservation law which was discussed at the beginning o f th is  section. 
Hence we require th a t |1 +  er| >  1 which implies two situations: either o >  0 or 

a <  —2. For — 2 <  a <  0, the system (4.1.5)-(4.1.7) is not s tric tly  hyperbolic and 
the Hugoniot locus has a gap (see Figure 4.1(a)). Therefore, when — 2 <  a <  0, the 
shock curves are not well defined and hence we only consider the domain a >  0.

From the preceding construction, we obtain, by standard arguments (see [15, 
114]), the existence o f shock solutions o f the Riemann problem (4.2.4) and (4.2.5) 
w ith  le ft and righ t states u~ and u+ for the a ttractive case. The existence theorem is 

summarized in  the follow ing and the Hugonoit locus of the a ttractive  case is p lotted 
in  Figure 4.1(a).

T h eo re m  4 .2 .1 . Let a. =  — T  and f l  be an open set o /M 2. For each u~ € with 
q~ — 4p~  > 0, the re  ex ists a p a ra m e te r a  such th a t f o r  each o  w ith  a  > 0, the

pa ir {u~ , S i(a ))( i — 1,2) satisfies the Rankine-Hugoniot conditions (4-2.14) and the 
function

{ u~, i f  x  <  s fia fi,
(4.2.17)

Sfia), i f  x >  s fia fi,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

is a weak solution o f the system (4-2.4) which satisfies the Riemann condition (4-2.5) 
with u+ =  Si(a).

Case 2: R e pu ls ive  case (a  =  ^  >  0). S ubstitu ting 1 /D  for a  in  system
(4.1.5) and rescaling the resulting system, we end up w ith

Pt =  Dpxx +  (p — )  , (x ,t)  € /  x  (0, oo),
\  W  /  x

wt =  pw.

S im ilarly by defining q =  (lnu ;)^, the system (4.2.18) can be reduced to

Pt ~  (pq)x =  Dpxx,

, q t-P x  =  0. 

or w ritten  by

(4.2.18)

(4.2.19)

ut +  A(u)ux =  D uxx, (4.2.20)

where u =  (p,q)T and A{u) =  ^  ^  D  =  ^  ^  ^ ^ . Then system

(4.2.20) for D  =  0 becomes a conservation law

ut +  K u)x =  ut +  A {u)ux =  0, (x, t) e I  x  (0, oo), (4.2.21)

where f (u )  =  f(p ,q ) =  (—pq, —p)T and f ' iu )  =  A(u). The characteristic equation
of A(u) is X2 +  q \  — p =  0. N oticing p >  0, it  is clear th a t the discrim inant q2 +  4p 
o f the characteristic equation is always positive. Therefore the m a trix  A(u) has two 
real d is tinct eigenvalues A i(u ) and A2(u) which are given by

- q y jq2 +  4p ~ q y/q2 +  4p
A i(u) —  ---------    and A2(u) -  - -  4--------   .

The corresponding eigenvectors are determined by

h (u )  =  ( -A i(u ) , 1)T and r 2(u) =  (A2(u), - 1 ) T

respectively. I t  is obvious tha t A i(u ) <  0 <  A2(u) which implies th a t the conserva- 
tiona l law is s tric tly  hyperbolic. Furthermore, we easily verify th a t V A i(u ) • r i(u )  —

1 <  0 and VA2(u) • r 2(u) =  . g — 1 <  0 because o f p >  0.
y V  +  4p y/q2 +  4p

Hence the characteristic fields (A j(u ),fi(u )) and (A2(u ) ,r2(u )) are genuinely nonlin
ear. Then the Rankine-Hugoniot jum p condition

f ( u +) -  f(u ~ ) =  s(u+ -  u~)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

takes the form

s(p+ - p  ) =  -p + q + + p  q , 

H q + - q ~ )  =  ~ P + + P ~ -

(4.2.22)

System (4.2.22) consists o f two equations in  three unknowns: p+ , q+ and s. We thus 
can regard one unknown, say q+ , as a parameter to  get from  the second equation of 
(4.2.22) tha t

p+ =  p~ — s(q+ — q~). (4.2.23)

We substitute (4.2.23) in to  the firs t equation of (4.2.22) and obtain the follow ing 
equation

- s 2(q+ -  q~) =  - p +q+ +  p~q~ ■ (4.2.24)

A pplying (4.2.23) in to  (4.2.24), we have

(.q+ - q  )(s2 +  q+s — p ) =  0.

Note th a t q+ ^  q~. We obtain an equivalent equation to  (4.2.25)

s2 +  q+s — p ~ =  0. 

and therefore the shock speed can be found

9+ , \ !  +  4p~
T  --------2-------- '

Then we substitute (4.2.26) in to  (4.2.23) and get

(4.2.25)

(4.2.26)

P ■ p - - \ ( - q + ±  y j  q+2 +  4p ~ ) (q+ -  q~), (4.2.27)

where the ±  signs in  these equations give two solutions, one for each fam ily. Since 
p+ and s can be expressed in  terms o f q+, we can assume a  to  be parameter and le t

(1 +  a)q . (4.2.28)

Then we substitute (4.2.28) in to  (4.2.26) and (4.2.27) to  get the shock curves. For 
the firs t characteristic field, we find the shock curves

Si(<7, u ) =  u +  a

(  a~ (1 +  a)q +  ^ (1  +  a )2q~2 +  4p~

q~
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w ith  shock speed

For the second characteristic fie ld we find the shock curve

(  - f 'S f ia ,u  ) — u +  a  2

V

w ith  shock speed

—  (1 +  a)q -  y j ( l  +  a )2q -2 +  4p~

q

where we denote Sfia, u~) =  u f  (a ,u ~ ),i =  1,2

Perform ing the same analysis as we did for case 1, we obtain the follow ing the
orem sim ilar to  Theorem 4.2.1.

<7o >  0 such that fo r  each a G [—<r0, cr0]? the pa ir (u ,S i(a ))( i =  1,2) satisfies the 
Rankine-Hugoniot jump conditions and the function

with u+ =  S fia).

R e m a rk  4 .1 . We observe from  the above analysis that there are shock solutions 
in  both attractive and repulsive cases. In  the firs t case, we need the additional 
assumptions q2 — Ap >  0 and q+2 — 4p~ >  0 and hence a >  0. However, in  the 
second case, there was no such restriction on p, q and hence on a to ensure the 
form ation o f the shock. Indeed, from  the definition o f Si and Si given above, it  is 
evident that the real-valued solution S fia) (* =  1,2) exists only fo r  |l+ c r| >  2y / jr /q ~  
while S fia) takes real values fo r  any a.

R e m a rk  4.2 . From (4-2.16), i t  is clear that the Hugoniot locus S fia) is tangent 
to the eigenvector rfiu ~ ) at the point u~ . In  a sim ilar manner, the Hugoniot locus 

Sfia) is tangent to the eigenvector f f iu ~ ) at the point u~ . Then the Hugoniot locus 
of the state u~ fo r  both attractive and repulsive cases can be sketched in  Figure 4-1.

T h eo rem  4 .2 .2 . Assume a =  4 . For each u G 0 , there exists a parameter a and

(4.2.29)

is a weak solution o f the system (4-2.21) satisfying the Riemann condition (4-2.5)
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q

r - ( u  )

q

p p

(a) (b)

Figure 4.1: (a) Hugoniot locus for the le ft state u~ =  (2 ,3) for a ttractive  case 
where rfyu- ) =  (—1,1), r2(ii- ) =  (2 ,-1 ); (b) Hugoniot locus for the le ft state 
u~ =  (2,3) for repulsive case where r \(u ~ ) =  f i(u ~ )  =  (3 .56 ,1 ),r 2{u~) =  fy fy ” ) =  
(0.56,1), S i(u~) =  Si(u~) and ^ ( u - ) =  §2(u~).

4-2.2 General Riemann Problem

Next, we attem pt to  solve the Riemann problem graphically by drawing the Hugoniot 
locus for each states u~ and u+ and looking for intersections. As illustra ted  in  [74], 
we can accomplish th is by finding an interm ediate state um such th a t u~ and um 
are connected by a d iscontinuity satisfying the Rankine-Hugoniot condition and so 

for um and u+ .
Let us firs t examine the a ttractive  case, i.e., the Riemann problem (4.2.4) and

(4.2.5). Note th a t A i(u) <  A2(u) which requires the jum p from  u~ to  um to  travel 
more slowly than the jum p from  um to  u+ . Precisely speaking, the um must be 
connected to  u~ by a 1-shock S\ while u+ connected to  um by a 2-shock S2. We 
replace u+ by um in  (4.2.6) and go through the same calculation as we did in  Case 

1 to  derive th a t the 1-shock connected to  um has speed

and consequently S i(a,um) <  s2(cr,um) for a ll a. In  a sim ilar fashion, it  is stra ight
forward to  deduce th a t sfycr, um) <  h ie ,  um) for the repulsive case. Figure 4.2 gives

while 2-shock has speed
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p

( a )  ol =  - i  ( b ) a  =  ±

Figure 4.2: Construction of a shock wave for the general Riemann problem w ith  le ft 
state u~ and rig h t state u+. (a) is for a ttractive case and (b) is for repulsive case. 
Both (a) and (b) give two points of intersection, labeled um and u*m, but only um 
gives a single-valued solution to  the Riemann problem since the requirement tha t 
the jum p from  v r  to  um moves more slowly than the jum p from  um to  u+ due to  
A i(u ) <  A2 (u) and Ai (it) <  ^ (u ) .

two points o f intersection for each case, labeled um and u*m, but only um gives a 
single-valued solution to  the general Riemann problem since we require the jum p 
from  u~ to  um to  travel more slowly than the jum p from  um to  u+ due to  the 

convention A i(u ) <  A2 (u) and A i(u ) <  A2 (u).

4.3 Traveling Wave w ith Shock Profile

In  th is section we w ill investigate the structure o f the shock solution by considering 
the traveling wave for the problem

ut +  B(u)ux = Duxx, (4.3.1)

where B(u) =  A(u) in  the a ttractive case and B(u) = A(u) in  the repulsive case 
discussed in  Section 2.

We define the traveling wave ansatz u(x — ct) := u(z) w ith  traveling speed c. 
In  th is  paper, we restrict ourself to  c >  0 since the shock speed s is nonnegative 
and we shall prove tha t c is identical to  s la ter to  show the existence o f a traveling 
wave w ith  shock profile. B ut it  turns out from  our analysis th a t c can be negative 
and hence a standing wave (c =  0) is adm itted if  we ignore the biological relevance.
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S ubstitu ting the ansatz in to  equation (4.3.1), one has tha t

(B (u) -  c l2)v! =  Du", (4.3.2)

where the prim e means the differentiation w ith  respect to  variable 2 and the / 2 is 
the 2 x 2 ide n tity  m atrix. Assume now tha t the le ft state u~ and the rig h t state u+ 
are given and satisfy

Later we shall prove the traveling speed c coincides w ith  the shock speed s, i.e., the 
traveling wave carries the shock profile u(z) =  u(x — st). Hence, if  we define

le ft state u~ and the rig h t state u+. The purpose o f th is section is to  carefully study 
the form  o f s and traveling wave u(z) to  gain more detailed insight in to  the structure 
o f the shock for positive but small D. Again, we consider two cases corresponding 
to  the sign o f a.

4-3.1 Traveling Wave fo r  Aggregative Case (a <  0)

In  th is  subsection, we w ill study the traveling solution o f system (4.3.1) for a  <  0. 
As we point out before, when a  <  0, B (u) =  A (u), where A(u) is as defined in  Case 

1 in  Section 2. We take up A(u) and expand (4.3.2) to  get

lim  u =  u , lim  u =  u+ , lim  u' =  0.

the lim it as D  —► 0 of solution to  (4.3.2) then gives us a shock wave connecting the

(4.3.3)

Introducing v — p' and deducing from  the second equation o f (4.3.3) th a t q' =  — ,

V I  7) \
we obtain equation v' =  — [ q  c ) from  the firs t equation o f (4.3.3). Coupling

D \  c )
these equations gives rise to  the follow ing system

< (4.3.4)(4.3.4)
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Observe tha t p and q have an invariant of m otion: p' +  cq' =  0. Then p +  cq =  q i, 
where Qi is a constant determined by the le ft state u~ =  (p~, q~) and the righ t state 
u+ =  (p+ ,q+ ), i.e.,

Q i = p ~  +  cq~ =  p+ +  cq+, (4.3.5)

which is an agreement w ith  the iden tity  (4.2.8) if  c =  s. Using the invariant of 
m otion, the system (4.3.4) is reduced to

,
P =  v,

(4.3.6)
k t /  =  -a v (p  -  /?),

,  2 ei c2
where <7 = - , , ? = ^ - - .

I t  is clear th a t system (4.3.6) has a continuum  of steady states (9 ,0), where 9 >  0
due to  the particle  density p >  0. The corresponding com m unity m a trix  about the
steady state (9 ,0) is

j - [ °  1 1
0 a ( p - 0 )

and hence the eigenvalues o f J  are

Ai =  0, A2 =  a(@ -  9), 

w ith  corresponding eigenfunctions, respectively,

1 '  1 1
r i  =

0 , r 2
a2 i

1b1
i

In  the follow ing, we shall study the existence o f a traveling solution to  nonlinear 
system (4.3.6) for fixed traveling speed. We give a class o f equilibria  in  which two 
equilibria  can be appropriately chosen to  generate a nonnegative heteroclinic o rb it 
connecting the two equilibria. To th is  end, we firs t investigate the s ta b ility  of the 

linearized system o f (4.3.6).
Note th a t the eigenvector r \  corresponding to  zero eigenvalue Ai is in  the direc

tion  o f the p axis v =  0 and every point (9,0) on the p axis is a steady state. To 
determine the s ta b ility  of the linearized system, we only need to  determine the sign 
of the second eigenvalue. Since cr >  0, we have the follow ing relation

9 < f i= >  A2 >  0,
0 =  p ^ X 2 =  0, (4.3.7)

9 >  /3 =¥■ A2 <  0.
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Therefore 6 =  0 is a c ritica l point which separates the steady states in to  stable parts 
and unstable parts. So a heteroclinic connection is possible fo r the linearized system. 

Note th a t it  has been mentioned in  the Introduction th a t p, as the particle density, 
preserves the positiv ity. So p >  0 and hence p~,p+ >  0. To have the biological 
relevance, we require th a t 0 >  0 to  obtain a real unstable m anifold corresponding 
to  A2. This requires tha t

c2 <  Qi — p~ +  cq~. (4.3.8)

In  (4.3.8), we ta c itly  adm it tha t p~ +  cq~ >  0. Indeed from  the defin ition of q, we 
know q can be negative and hence q~ and q+ can be negative as the lim its  o f q. 
Therefore it  gives an additional requirement

p~ +  cq~ >  0. (4.3.9)

Observe tha t inequality (4.3.9) holds true for a ll q~ >  0. We only worry about the
case o f q~ <  0 which yields th a t from  (4.3.9)

c <  . (4.3.10)
Q~

Then using (4.3.10) and solving (4.3.8) gives a maximum shock speed c* such tha t

0 <  c <  c*, (4.3.11)

where

q- +^ (g; )2+4p- , for q~ >  0,
/  p- q~+y/{q-)2+ip- \  t -  (4.3.12)

max | <r ’ ----  2 f ’ for? <0>

Then we can obtain a local s ta b ility  theorem of linearization of system (4.3.6).

Lem m a 4 .3 .1 . Let the traveling wave speed c satisfy (4-3.11) and (4-3.12). Then 
0 > 0 and the steady state (0,0) of the linearized system of (4-3.6) is stable fo r  
6 >  0  whereas unstable fo r  6 <  0 .

So far, we have obtained the s tab ility  of the lineariazation o f the nonlinear system
(4.3.6). B ut i t  is s till not clear about the s ta b ility  even local s ta b ility  o f the orig inal 
nonlinear system (4.3.6) since there is a zero eigenvalue. To find  an o rb it connecting 
a stable m anifold and an unstable manifold, we need to  proceed to  study the s tab ility  
o f system (4.3.6). We shall apply LaSall’s invariant princip le introduced in  section
4.1.2 to  prove the existence of a heteroclinic connection.
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Since the p axis v =  0 (p >  0) is a continuum  of steady states, it  splits the p — v
plane in to  two parts: v >  0 and v <  0. When v >  0, p' >  0 and hence p grows 
which requires th a t p~ <  p+ . Analogously, p~ >  p+ when v <  0. We shall show 

th a t the m onotonically decreasing traveling fron t wave does not exist. Whereas an 
increasing traveling front wave exists for v >  0 and p~ <  p+ using a constructive 
approach. We firs t give the follow ing result.

Lem m a 4 .3 .2 . Let (4-3.11) and (4-3.12) be satisfied. Assume that v <  0 and 
p~ >  p+ . Then all solutions o f the system (4-3.6), have an u - lim it set that is 
contained in  the following set

Proof. Define a function V(p, v) by V(p, v) =  p. Since p(z) >  0 for a ll z, then 
V (p (z ),v (z )) >  0 and ^  =  p' — v <  0 thanks to  the firs t equation of (4.3.6). For 
any L  >  0, we now define Ql  =  {(p , v) : p >  0, V(p, v) <  L }  =  {(p ,v ) : 0 <  p <  L }.  
From the system (4.3.6), we can solve for v in  terms of p  such tha t

where C  is a constant of integration. I t  then follows from  the above equation tha t 
v is bounded for any 0 <  p <  L. Hence for any L  >  0, the set Ql  defined above is 

bounded. Moreover, it  has th a t ^  =  v <  0 due to  the assumption v <  0.
Now we define another set

Therefore L i =  {(p, v)\p >  0, v =  0 }. Then L i is invariant since it  is comprised of 
steady states only. W ith  the help o f LaSall’s invariant principle (Theorem 4.1.8), 
every solution of the system (4.3.6) starting  in  f 1/ for any L  >  0 converges to  L i 

as 2 —> +oo. Indeed, we can describe the asym ptotic behavior o f the solution more 
precisely. We know tha t A2 >  0 for a ll 0 <  p <  (3. Hence the m anifold o f system

L  =  {(p ,u )| u =  0, p >  (3}

and the a - lim it set is contained in

M  =  {(p, v)| v =  0,0 <  p <  p }.

v{p) =  - | p 2 +  crf3p +  C,

(4.3.13)

From the firs t equation o f (4.3.6), we have tha t

(4.3.14)
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(4.3.6) corresponding to  eigenvalue A2 >  0 is unstable and a ll orbits w ill leave the 
neighborhood of the set L 2 defined by.

L 2 =  {(p ,u )| v <  0,0 <  p <  (3}.

Therefore, every solution o f the system (4.3.6) converges to  the set as 2 —* +00

L  =  L i \ L 2 =  {(p ,v )| v =  0,p  >  /?}.

S im ilarly, if  we study the problem backward on variable z, we can show th a t a ll 

solutions o f the system (4.3.6) converge to  the set M a s z - t  —00, which completes 
the proof.

□
Now we are in  a position to  state the non-existence theorem of decreasing trav

eling solutions for system (4.3.6).

T heo re m  4 .3 .1 . Let (4.S.11) and (4-3.12) be satisfied. Assume that v <  0. Then 

there is no traveling wave solution fo r  system (4-3.6).

Proof. (By contraction). Assume th a t there exists a traveling wave solution 
(p ,v) for system (4.3.6). Since pf =  v <  0, the traveling wave p is non-increasing. 
So p (—00) =  p~ >  p+ =  p (+ 00). By Lemma 4.3.2, i t  follows th a t (p+ ,0) G L  
and (p“ ,0 ) G M . Thus p+ >  {3 and 0 <  p~ <  (3 and hence p~ <  p+ . This is 
contradictive. So the system (4.3.6) has no traveling solutions.

□
Below we shall investigate the existence of traveling wave solutions o f system

(4.3.6) for v >  0. We provide a constructive proof to  show the existence of a 
traveling solution and sketch the phase p o rtra it and num erically p lo t the traveling 
solution of system (4.3.6). To th is end, we firs t w rite  (4.3.6) as

! = - * & > - » •

Integrating the equation gives rise to

v (p) =  P2 +  vfiP +  82 =  ~J)(.P2 +  ~  °2}p +  £>2> (4.3.15)

where Q2 is constant of integration to  be determined.
Noting th a t p' =  v. Then

P' =  “ | p 2 +  *Pp +  02- (4.3.16)
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Figure 4.3: (a) A  p lo t of phase p o rtra it for system (4.3.6), where c =  1, D  — 1 and 
hence <7 =  2. The value o f (3 =  ^  — y  depends on the choice o f Q\, here we choose 
Pi =  3.5 and then (3 =  1.25. (b) A  p lo t o f phase p o rtra it for system (4.3.28) w ith  
c =  4, D  =  1 and a =  0.5. The value of /3 =  y  +  y  depends on the choice of <?i, 
here we choose Qi — —10.5 and hence (3 — 2.75.

Solving equation (4.3.16), one obtains the solution

p =  a2 H-------------— —------------\ ------- . (4.3.17)
Co exp I - ( a 2 - a i ) z  \ -  1

where a i =  (3 -  f32 +  a^ — 13+ \Jf32 +
Note th a t — ai >  0. Then the lim its  of (4.3.17) are

p (-o o ) =  a i, p(+oo) =  a2. (4.3.18)

By the boundary condition p (—oo) =  p~ ,p(+oo) =  p+ , i t  follows tha t

o i = p ~ ,  a,2 = p + - (4.3.19)

Then p~ <  p+ which is consistent w ith  the fact p' =  v >  0. Moreover, from  the firs t 
equation of system (4.3.6), i t  follows tha t

t>(±oo) =  lim  p1 =  0,
£--►±00

which implies th a t system (4.3.6) has a pulse wave in  v. Therefore, applying (4.3.15), 

we have tha t

v (p~) =  v (p+) =  0- (4.3.20)
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Recovering a and j3 and applying (4.3.20) in to  (4.3.15) gives tha t

(4.3.21)

as well as

(4.3.22)

Since we have p~ <  p <  p+ , then v as a quadratic o f p (see (4.3.15)), is uniform ly 
bounded. From (4.3.18), (4.3.19) and (4.3.20), we know there exists a nonnegative 
heteroclinic o rb it to  system (4.3.6) connecting the le ft state (p- ,0 ) and righ t state 

(p+ , 0). Given any one of end states, the other one can be determined by iden tity
(4.3.22). The phase p o rtra it o f system (4.3.6) can be sketched by using (4.3.15) 
which gives rise to  a parabola (see Figure 4.3 (a)). The traveling solution o f system
(4.3.6) is num erically given in  Figure 4.4, where we employed the ODE solver of 
M atlab to  solve the equations.

By above analysis, we obtain a traveling wave (p,v) for system (4.3.6). U tiliz in g  
the re lation between v and q, we can connect the results to  system (4.3.1) and obtain 
the follow ing existence theorem for shock wave solutions to  system (4.3.1).

T h eo re m  4.3 .2 . Let a — — j j  <  0, then there exists a nondecreasing traveling wave 
solution u(z) =  u(x  — ct) fo r  system (4-3.1) , such that c =  s, where s is the shock 
speed. The traveling wave u(x — s t) connects left state u~ and right state u+ i f  
and only i f  u+ € Si(u~), where Si(u~) denotes the Hugoniot locus fo r  left state u~ . 

Furthermore, the shock structure near z — 0, i.e., x  =  st, is given by

where Q i — p  +  s q  =  p +  +  c q + .

Proof. From the above analysis, i t  only remains to  prove th a t the traveling wave 

speed c is identical to  the shock speed s .  Note tha t Q i  —  p ~  +  c q ~ .  Feeding th is 
expression in to  (4.3.22) yields tha t

which is an agreement w ith  the reform ulated Rankine-Hugonoit jum p condition
(4.2.10). This im plies th a t the traveling speed c and the le ft state u~ =  (p~,q~) 

as well as the righ t state u+ =  (p+ ,q+) agree w ith  the Rankine-Hugoniot jum p 
condition (4.2.6). Hence c — s and (4.3.23) is obtained d irectly  from  (4.3.6), (4.3.15)

c 2 q  —  c 2q +  — q + q  —  q +2 +  q  p  —  q + p  =  0, (4.3.24)

and (4.3.21). □
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Figure 4.4: The traveling wave (p, q) determined by (4.3.23) for the case a  =  —T  < 
0, where we choose s =  1, D  — 2,p~ =  0.5, q~ =  3 and tim e t — 0 ,5 ,10,15,20,25. 
The wave moves from  le ft to  righ t.

4-3.2 Traveling Wave fo r  Repulsive Case (a >  0)

In  th is  section, we shall consider the traveling wave solutions o f system (4.3.1) for 
the repulsive case, which is an opposite case compared to  the preceding subsection. 
Here we have B {u ) =  A(u), where A{u) is as defined in  Section 2 for the repulsive 
case. In  th is subsection, many details w ill be om itted since they are analogous to  
the analysis o f the preceding subsection. We denote the traveling speed by c to  
distinguish it  w ith  the traveling speed c used for the case a  <  0. Then we use the 
re lation (4.3.2) to  derive tha t

—qp' — pq1 — cp' =  Dp", 

-p f  -  cq' =  0.
(4.3.25)

By the second equation of (4.3.25), we get th a t p +  cq =  Qi w ith  a constant Qi 
determined by the two end states (p~,q~) and (p+ , q+)

Q i—P + cq  = p + +  cq+ - 

Then using the invariant of motion, we obtain from  (4.3.25) tha t

' h

(4.3.26)

Dp" =  \
c P ~

c
2 + 2 P- (4.3.27)

Denoting v =  p', a =  and 0  — +  7- , we convert (4.3.27) in to  a system
Dc 2 2

p =  v,

av(p -  p)
(4.3.28)
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Clearly system (4.3.28) has a continuum  o f steady states {9 ,0) w ith  9 >  0 and the 
eigenvalues o f the linearized system about equilibria  (9 ,0) are

Ai =  0, A2 =  a{9 -  P).

We have the follow ing observation due to  a >  0

9 <  (3 =4> A2 <  0,

e =  p ^ \ 2 =  0, (4.3.29)

9 >  P =4- A2 >  0.

Due to  the biological relevance, it  is required tha t j3 >  0 to  obtain a heteroclinic 
connection. Then we have

c2 +  01 =  c2 +  cq+ +  p+ >  0. (4.3.30)

Note th a t p+ >  0. Hence (4.3.30) holds fo r a ll c >  0 i f  q+ >  0. For q+ <  0, by

solving (4.3.30), we find a sufficient condition (q+)2—Ap+ <  0 to  obtain a nonnegative 
traveling speed c satisfying (4.3.30). So we assume tha t

q+ <  0, (<?+)2 -  4p+ <  0 (4.3.31)

and solve (4.3.30), to  obtain tha t

c <  c <  c, (4.3.32)

where
~q+ ~  V (V +)2 ~  4P+ -  ~Q+ +  \ / (^ +)2 ~  4P+ ,ao o o \

C — -  , C — -  .

Then by the very routine argument as we used in  Section 3.1, we easily obtain the 
follow ing results for the corresponding linearized system of (4.3.28).

Lemma 4.3.3. Let either q+ >  0,c >  0 or (4.3.31), (4-3.32) and (4-3.33) hold. 
Then the linearized system of (4-3.28) is locally stable fo r  9 <  (3 and unstable 9 >  ().

Next, we study the s tab ility  of the nonlinear system (4.3.28). As before, we 
separate p — v space in to  two regions: v >  0 and v <  0. We firs t look a t the case 
v <  0 and give the follow ing theorem.

Lemma 4.3.4. Let either q+ >  0 ,c >  0 or (4-3.31), (4-3.32) and (4-3.33) hold.
Assume that v <  0 and p~ >  p+ . Then the u i-lim it set o f a ll solutions of the system
(4-3.28), is contained in  the set

¥  =  {(p,w )| v =  0,0 <  p <  ($},

and converge, as z —> —00, to the set

W  =  {(p, v)| v =  0,p >  /3}.
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Figure 4.5: The traveling wave (p , q) determined by (4.3.36) for the case a =  >  0,
where we choose s =  1, D  =  4 ,p+ =  2, q+ =  — 2 and tim e t  =  0,5,10,15,20,25. The 
wave moves from  le ft to  righ t.

Proof. By defing a function V(p, v ) by V (p , v) =  p, we can use the same approach 
as in  the proof of Theorem 4.3.2 by using the LaSall’s invariant princip le to  get the 
results. The details are om itted.

□
W ith  Lemma 4.3.4 in  hand, we shall show the existence o f a non-increasing 

traveling solution for system (4.3.28).

Lem m a 4 .3 .5 . Let the assumptions in  Lemma 3.6 hold. Then there exists a uni

form ly bounded, negative heteroclinic orbit (  fo r  v) connecting equilibria (e i, 0) and 
equilibria (e2, 0) fo r  system (4-3.28), where e\ <  /3,e2 >  [3. As a consequence, there 
exists a traveling pulse in  v and a non-increasing traveling fron t in  p.

Proof. According to  Lemma 4.3.4, we only need to  prove th a t the solution v as 

a function o f p  is bounded. To th is end, we firs t w rite  (4.3.28) as

Integrating the equation gives rise to

v (p) =  ^ P 2 -  jfz {Q i +  c2)p +  h ,  (4.3.34)

where a  and ,3 has been recovered and Q2 is a constant o f integration which can be
determined by the boundary conditions of p and q,

h  =  -J f~ (P +)2 +  +  ? )P + - (4.3.35)

Sincep' =  v <  0, p is decreasing. By the boundary condition p (-o o ) = p ~ , p(+oo) =

p+ , if  follows th a t p+ < p  <  p~ and hence p is uniform ly bounded. Therefore v, as 
a quadratic form  of p, is uniform ly bounded as well. This finishes the proof.
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□
Connecting the traveling wave solutions obtained above w ith  the shock solution 

obtained in  Section 2, we have the follow ing existence theorem for a traveling wave 

w ith  shock profile u(x — ct), i.e., c =  s, where s is the shock speed discussed in  
Section 2 for case a >  0.

T h eo re m  4 .3 .3 . Let a  =  jy >  0 and the assumptions in  Lemma 3.1 hold, then 
there exists a non-increasing traveling wave solution u(z) — u(x — ct) fo r  system 
(4-3.1) such that c =  s, where s is the shock speed. The conditions that p~ and p+ 
lie on the same parabola v(p) given by (4-3.34) is identical to the Rankine-Hugoniot 

condition. The traveling wave connects left state u~ and right state u+ i f  and only 
i f  u+ € Si(u~), where u+ € Si(u~) denotes the Hugoniot locus fo r  left state u~ 
obtained in  Section 2. Furthermore, the shock structure near z =  0, i.e., x  =  st, is 
given by

( sq =  Q1 - p ,

I  p' = ib 2 -  U *  + s2)p -  ^i(p+)2 + Mei +
w h e r e  Q i  =  p ~  +  s q ~  —  p +  +  s q + .

Proof. System (4.3.36) is obtained from  (4.3.28), (4.3.34) and (4.3.35) d irectly 
i f  we replace c by s. So by Lemma 3.7, it  only remains to  prove th a t the traveling 
speed c is identical to  the shock speed s. Since v(p~) =  v(p+) =  0, we have from  

(4.3.34) tha t

+  i5 S « > +  -  ~ w X )2 +  M ^ '  +  * * +• (4 3 '37)

Hence substitu ting Qi =  p~ +  cq~ in to  (4.3.37) and canceling D  out yields tha t

c(q+)2 -  p~q+ — cq~q+ +  c2q+ +  p~q~ — c2q~ =  0, (4.3.38)

which is the same as the reform ulated Ranking-Hugoniot jum p condition (4.2.25).

Hence c =  s, as required. □

A  phase p o rtra it o f system (4.3.28) is given in  Figure 4.3 (b) and a numerical 
traveling solution is p lo tted in  Figure 4.5. In  the remainder of th is section, we 
w ill investigate the traveling solutions for the other case v >  0. I t  turns out tha t 
traveling wave solutions do not exist for v >  0. To prove th is, we firs t derive from  

(4.3.28) tha t

p' =  jrdp2 — cr/3p +  fa- (4.3.39)
z
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Note tha t

P - 2- f  =  \(e> +  c2 - 2p - ? > 0.

Then we solve equation (4.3.39) to  get tha t

p — a2 + (4.3.40)

where h  =  /? -  a2 =  (3 +

I t  is clear tha t &i — a2 <  0. Taking the lim its  for (4.3.40), we have th a t

p(z) —*■ a2 as 2 —> —oo, 
p(z) - + f li a s z ->  +oo.

(4.3.41)

Using (4.3.41), we can show the nonexistence of traveling solutions o f system (4.3.28) 
fo r v >  0.

T h e o re m  4 .3 .4 . Assume that eitherp+ >  0 ,c >  0 or (4-3.31), (4-3.32) and (4-3.33) 
hold. Then there is no traveling wave solution to system (4-3.28) fo r  v >  0.

4.4 Entropy Solution

As is well known, weak solutions o f the Cauchy problem of a system of conservation 
laws are generally non-unique and a so-called “ entropy condition” is required to  
pick out the physical relevant viscosity solution [15]. One condition which picks a 
physical solution is th a t i t  should be the lim itin g  solution o f the viscous equation 
as the viscosity coefficient tends to  zero [34]. Another approach to  the “entropy 
condition” is to  define an entropy pair for which an additional conservation law 
holds for smooth solutions th a t becomes an inequality for discontinuous solutions. 

In  th is  section, we are devoted to  developing a convex entropy and an entropy 
flu x  pa ir (rj, p) for the case of a  =  j j  >  0. Toward th is  end, we firs t rew rite  the 
conservation law (4.2.21) in  the form

Pt -  (pq)x =  0, 

Q t-P x  =  0,
(4.4.1)

or

ut +  f ( u ) x =  0, (4.4.2)

where u =  (p, q) and f (u )  =  (—pq, —p).
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From the D efin ition 4.1.4 given in  the Introduction, we know th a t the entropy 

pa ir (rj, p) satisfies an additional conservation law for any smooth solution u — (p, q) 
to  system (4.4.1)

rj(u)t +  p{u)x =  0. (4.4.3)

S ubstitu ting (4.4.2) in to  (4.4.3), we end up w ith

V'(u) ■ f ( u )  =  p'(u), (4.4.4)

where ' denotes the derivative w ith  respect to  vector u =  (p, q). Expanding (4.4.4)
gives the follow ing relation

‘  Pp =  -Vq -  grip,
(4.4.5)

Pq =  -PVp- 

E lim inating  rj from  (4.4.5) gives tha t

Vqq +  QVpq -  Wlpp =  0. (4.4.6)

We assume th a t the entropy rj{u) o f the conservation law (4.4.2) has the follow ing
form

P(P,Q) =  \ q 2 +  9(p), (4.4.7)

where g(p) is expected to  be a convex function.
S ubstitu ting (4.4.7) in to  (4.4.6) yields tha t

1 -  pg"(p) =  0. (4.4.8)

Solving (4.4.8) gives

9{p) = p ln p  — p +  k ip  +  k-i, (4.4.9)

where k i,k 2 are a rb itra ry  constants.
Then S ubstitu ting (4.4.7) and (4.4.9) in to  the firs t equation of (4.4.5) enables us 

to  find  p{p , q) as

Pip-, Q) =  -P tfln p  -  h pq  +  fa, (4.4.10)

where fa is an a rb itra ry  constant.
I f  we particu la rly  choose fa =  fa =  fa =  0, we obtain an entropy-entropy flux 

pair (77, p) which reads

v{p,q) =  W  + p f o p - p ,
(4.4.11)

p(p,q) =  -Pfllnp.
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Accordingly, g(p) =  p ln p  — p and i t  is easy to  verify th a t g"(p) =  1/p >  0 due

quadratic form . That is r)(u) is a convex function.
The entropy r}{u) is conserved for smooth solutions o f (4.4.2) by its  defin ition. 

For discontinuous solutions (shock solutions), however, the m anipulations performed

interested in  how the entropy behaves for the vanishing viscosity weak solution, we 
look at the related viscous problem

and le t the viscosity coefficient D  tend to  zero.
Since the solutions o f equation (4.4.12) are always smooth, we can derive the 

corresponding evolution equation for the entropy follow ing the same procedure ap
p lied for smooth solutions for the inviscid equation (4.4.2). Therefore we m u ltip ly
(4.4.12) by g'{u) to  obtain from  (4.4.4) tha t

Applying a standard argument (e.g. p.604-606 in  [34]), we end up w ith  the follow ing

The fact th a t inequality (4.4.15) holds for any I and T  is summarized by saying tha t 
r)(u)t +  p(u)x <  0 almost everywhere. We are led to  the follow ing theorem.

T h eo rem  4 .4 .1 . (Entropy solution). Any solution (p ,q ) of (4-4-2) which is the 

l im it o f the viscosity equation (4-4-12)  satisfies

In  th is  chapter, we establish the shock structure for a sim plified version o f a chemo
taxis model (4.1.1), (4.1.2), (4.1.3) and (4.1.4) for both a ttractive  (a >  0) and

to  p >  0. As a consequence, the second derivative o f rj{u) is a positive definite

above in  general are not valid, i.e., 7?(it) is not conserved. Since we are particu la rly

'ht -F /(w )z — D uxx, (4.4.12)

r](u)t +  p(u)x =  D rj'(u )uxx. (4.4.13)

T hat is

r](u)t +  p(u)x =  D rj(u )xx -  D r f{u )u 2x. (4.4.14)

inequality
•T

(4.4.15)

v(p, q)t + pip, q)x < o, (4.4.16)

in  the weak sense, where r](p,q) and p(p,q) are given by (4-4-H )-

4.5 Discussion
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repulsive (a  <  0) cases. The shock curves are given in  parameterized forms. The 
requirements on the choice o f the parameter a  are different for the cases of a  >  0 
and a  <  0. Moreover, we discuss the general Riemann problem. We show tha t, for 
the a ttractive  case, there exists only nondecreasing traveling waves, and for the re
pulsive case there exists only nonincreasing traveling waves. Furthermore we prove 
th a t the traveling wave speed is identical to  the shock speed and the traveling waves 
converge to  the given shock waves as the viscosity constant D  —> 0, which means 
the sharp transition  o f cell movements (movement disturbance) from  one state to 
the other as viscosity vanishes. This is indeed expected. When viscosity turns to  

zero, the chemotactic movement becomes dom inant and cell aggregation or dispersal 
is more pronounced, which m ight lead to  a sharp transition  corresponding to  the 
occurrence o f shocks.

For the uniqueness of the weak solutions (shock solutions), we also find an 
entropy-entropy pair for the repulsive case. For the a ttractive  case, the question 
o f uniqueness of weak solutions is s till open.

When a =  —1 (or <  0), i t  has been proven by Levine and Sleeman [75] tha t there 
are solutions (p, w ) for which p >  0 blows up in  fin ite  tim e and an exp lic it fam ily of 
such blow-up solutions has been constructed in  the section 3 o f [75]. B ut there are no 
results available about the global existence or non-existence o f solutions for a >  0. 
To show the global existence for model (4.1.5)-(4.1.7) is not an easy problem. Below 
we give a reform ulation of the problem tha t leads to  D irich le t boundary conditions. 
We hope it  can provide some useful clues for the global existence for the solution.

The boundary condition (4.1.2) or (4.1.6) seems like a Neumann boundary con
d ition . B ut i t  is not the standard form  of a Neumann boundary condition. We 
w ill firs t reform ulate the form  of boundary conditions. A  direct calculation shows 
th a t the boundary condition (4.1.2) is weaker than the non-flux boundary condi
tio n  px(0, t) =  px( l, t )  =  0. However, for those solutions of the sim plified problem
(4.1.5)-(4.1.7) for which th is stronger condition holds, one m ight be able to  ap
p ly  the argument in  [105] to  obtain the local-in-tim e existence and the uniqueness 
of solution as well. Furthermore, from  the second equation of (4.1.5), i t  follows 

th a t (lnu>)t =  Ap — p. Hence at the domain boundaries x  =  0,1, we have tha t
VJ

(lnu;)tx =  Apx =  —Aap—  =  —Aa;(lnu;)x, i.e., (ln u ;)tx -|-Aa!(lnu>)x =  0. Solving th is
w

equation gives the solution

(lnrw)x =  —  =  exp (  — \ a  f  p(x, t ) c I t \  , a t x =  0, 1,
w w {x ,0) \  Jo J

From th is  point, we know th a t if  wx =  0 in itia lly  at the domain boundaries, both
p and w have zero flux on the boundary in  the entire existence tim e interval. We
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therefore always have the local existence and uniqueness for problem (4.1.5)-(4.1.7) 
such th a t either p or w  in itia lly  satisfies the zero flux boundary condition. And 
consequently we get the zero flux  boundary condition for either p  or w. Therefore 
i t  is plausible to  suppose tha t wx(0,t)  =  wx( l , t ) =  0 for a ll t  >  0.

In  addition, we can sim plify system (4.1.8)-(4.1.10) as well. As usual we let 
q =  (lnu>)x. Then from  the second equation of (4.1.8) it  follows tha t qt — (In w)xt =

=  px. Together w ith  the boundary condition discussed above, we translate

transform ations in to  (5.1)-(5.3) and dropping the bar for c larity, we obtain the 
follow ing non-dimensional form

system (4.1.8), (4.1.9) and (4.1.10) in to  the follow ing nicer form

Pt =  Pxx +  oc(pq)x, (x , t) e (0 ,1) x  (0, oo),
(4.5.1)

Qt =  Px,

w ith  boundary condition

p(0 ,t) =  M , q(0,t) =  q (l,t) =  0, (4.5.2)

and in itia l data

p(x, 0) =  P o { x )  >  0, q ( x ,  0) =  q o ( x )  for 0 <  x  <  I , (4.5.3)

where M  is a positive constant.

I f  a  >  0, we introduce the new variables by t

and redefine in itia l data by po(x) S ubstitu ting these

Pt ~  (pq)x =  Pxx, (x ,t)  E (0,1) x (0, oo) 

Q t~ P x  =  0,
(4.5.4)

w ith  boundary condition

p(0,t)  =  1, q(0,t)  =  q ( l, t )  =  0, for t  >  0, (4.5.5)

and in itia l data

p(x, 0) =  po(x) >  0, q(x, 0) =  qo(x) for 0 <  x  <  1. (4.5.6)
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I t  is worthwhile to  point out th a t the spatial domain has been rescaled to  [0,1]. By 
ignoring the diffusion term  in  (4.5.4), we obtain

Pt ~  (pq)x =  0, (x, t) E (0,1) x  (0, oo),
(4.5.7)

k Qt ~  Px =  0,

I t  is easy to  get the characteristic equation o f system (4.5.7) which reads A2—Aq—p =  
0 where A denotes the eigenvalues. So the discrim inant A  =  q2 4- 4p is positive due 
to  p >  0. Hence, system (4.5.7) is a hyperbolic system which is consistent w ith  the 
discussion in  section 1.1.

The problem (4.1.8)-(4.1.10) now is reduced to  nondimensional system (4.5.4)- 
(4.5.6). One of the d ifficulties to  consider the global existence o f the solution to
(4.1.5)-(4.1.7) is th a t the second equation of (4.5.4) missed the diffusion component. 
Novel ideas need to  be developed to  deal w ith  such an issue.
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Chapter 5

MESENCHYMAL MOTION MODELS IN ONE
DIM ENSION 1

5.1 Introduction

Mesenchymal m otion is a form  of cellular movement through tissues which are 
formed from  fibre networks. An example is the invasion o f tum or metastases through 
collagen networks. The cell movement is guided by d irectiona lity  of the networks 
and in  addition, the networks is degraded by m atrix-degrading enzymes (protease) 
which are released by cells.

One o f the examples of mesenchymal m otion is reported in  a review article by 
Friedl and Brocker [38]. They find th a t the movement of amoeboid cells on a surface 
is significantly different from  the ir movement in a tissue m atrix. On a two dimen
sional surface, cells are free to  move in  any direction. However, in  three dimensional 
tissues, cells are embedded inside the tissue and the ir movement is constrained. For 
example, some tum or cells appear elongated and spindle shaped and send out th in  
pseudopods for d irectional guidance from  the ambient m atrix. Moreover, cells can 
excrete some tissue degrading enzyme (for example, protease) to  degrade tissues by 
cu tting  for moving through. Such a movement is called mesenchymal m otion in  [38].

Mesoscopic and macroscopic models for mesenchymal m otion were derived by 
H illen [47] in  a tim e ly varying network tissue. The mesoscopic models are based on 
a transport equation for correlated random walk and consist o f a transport equation 
for the cell movement coupled to  an ordinary d ifferential equation for the tissue 
fibres. The macroscopic models have the form  o f a d rift-d iffus ion  equation where 

the mean d rift velocity is given by the mean orientation o f the tissue, and the 
diffusion tensor is given by the variance-covariance m a trix  of the tissue orientation. 
The tissue m a trix  is divided in to  the undirected and the directed tissues according to  
the d is tribu tion  o f fibre orientation. In  undirected tissues, the fibres are symm etrical 
along the ir axis and both fibre directions are identical. For example, collagen fibres 
are undirected and they form  the basis for many human and animal tissues. For 
directed tissues, the fibres are unsym metrical and the two ends can be distinguished

1 This is a collaboration with Thomas Hillen and Michael Li.
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(positive/negative, forward/backward, north /south). D irected components do not 
play a m ajor role for cell movement in  tissues, however, directed fibres occur inside

movement o f cells.
In  th is  chapter, I w ill present a detailed analysis of the one-dimensional model for 

mesenchymal m otion, including existence o f solutions, macroscopic lim its , traveling 
waves as well as results on pattern form ation. F irs t, o f course, we present the original 
model derived by H illen [47].

5.1.1 Models fo r  Mesenchymal Motion

As in  [47], we le t S1”-1 denote the u n it sphere in  Rn and 0 the fibre orientation in  
Sn~l . Let Q be n-dimensional spatial domain. We denote the d is tribu tion  o f fibre 
orientations at tim e t  >  0 and at location x  G by the p robab ility  density q(t, x, 6), 
which na tu ra lly  satisfies the norm alization condition for a ll f  >  0, x € 0

The function q(t, x, 9) can be understood as the p robab ility  density th a t cells decide

velocities o f moving cells and p (t,x ,v )  the population density of cells tha t have 
velocity v a t tim e t  a t location x. V  is assumed to  be rad ia lly  sym m etric and can 

be w ritte n  as

where [s i,s 2] is the range o f possible speeds. We define v as the u n it vector in 
direction o f a vector v G V. That is

- _  v 
in r

In  addition we define a weight parameter u  such tha t

Let a constant p  >  0 denote the turn ing  rate and a constant k >  0 the cu tting  
efficiency (rate o f fibre degradation). Then the model for mesenchymal m otion of 
cells for undirected tissues consists o f a transport equation for cell m otion and an

cells (such as m icrotubules and actin filam ents). Branching collagen fibre networks 
can also be considered directional i f  the branching points are o f significance for the

(5.1.1)

to  choose a new direction 6 € Sn 1 i f  it  occurs. Let V  denote the set of a ll possible

V  =  [s i, s2] x S n \  0 <  Si <  s2 <  oo,

for s i <  s2, 
for s i =  s2 =  s.

(5.1.2)
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equation for the fibre d istribu tion , which reads (see [47])

f  o(t x  Ol
P t(t,x ,v ) +  v -V p ( t ,x ,v )  =  -p p ( t ,x ,v )  +  p ................ .. -p(t, x, v')dv', (5.1.3)

Jv u

qt (t, x, 0) =  K(Uu(t, x, 0) -  Au(t, x ))p (t, x)q(t, x, 0), (5.1.4)

where p(t, x) denotes the macroscopic density o f cells

p ( t ,x ) =  I  p (t,x ,v )dv ,
Jv

I Iu( t , x ,6) denotes the mean projection of the cell movement d irection onto a given 
fibre orientation 0

I I u( t , x ,9 ) =  1 [  |0 • v\p (t,x ,v )dv ,
P{t, x) J v

and A u( t ,x ) is the mean value o f these mean projections over a ll fibre directions

A u( t , x ) =  I  I I  u(t,x ,9 )q (t,x ,9 )d9 .
Jsn~1

The mesenchymal m otion model for directed tissues is sim ilar to  the undirected case, 
which is (see also [47])

pt (t, x, v) +  v • V p (t,x ,v )  — —p p (t,x ,v ) +  p  — — — p(t,x,v ')dv',(5.1.5)
Jv U

qt (t,x ,9 )  =  « (IId(t,x ,0 ) -  A d(t,x ))p (t,x )q (t,x ,9 ),  (5.1.6) 

where the projection operator n^t, x, 9) for directed tissue is defined by

nrf(t, x, 9) =  1 f  9 -v  p (t,x ,v )dv ,
PV": x) Jv

and the corresponding mean value Ad(t, x, 0) of a ll mean projections is determined 

by

A d( t , x ) =  [  Ud(t,x ,9 )q (t,x ,9 )d9 .
Jsn~1

In  the paper by H illen [47], three scaling arguments are used to  study the macro
scopic lim its o f system (5.1.3) and (5.1.4) for undirected tissues and (5.1.5) and
(5.1.6) for directed tissues. These are the moment closure, the parabolic scaling and 
the hydrodynam ic scaling. The resulting macroscopic models have the form  of d rift- 

diffusion equations where the mean d rift velocity is given by the mean orientation of 
the tissue and the diffusion tensor is given by the variance-covariance m a trix  of the 
tissue orientations. Some examples and applications are also discussed in  [47]. The
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num erical schemes and pattern form ation in  n-dimension are obtained by Painter 
[97]. The steady state analysis is investigated by H illen (2007). However, the global 
existence o f solutions and rigorous derivation o f macroscopic lim its  are not known 
so far.

In  case o f chemotaxis, a system of a transport equation for the cell m otion and a 
parabolic equation for the chemical signal was studied by A lt [2], Chalub et al. [17] 
and Hwang et al. [63, 62]. However, the ir arguments are based on L°° estimates 
of the tu rn ing  kernel. In  case of mesenchymal m otion models, the tu rn ing  kernel is 
given by the fibre d is tribu tion  q(t, x, 0) which is a delta d is tribu tion  q{6) =  5^(0) for 
a to ta lly  aligned tissue in  direction o f b G Mn. As a result, the fibre d is tribu tion  is 
not necessarily bounded in  L°°. In  particu lar, assumption (AO) in  paper [17] does 
not apply and hence the ir results can not be applied d irectly  for the case discussed 

here. The global existence analysis is quite technically involved.
In  th is chapter, the one dimensional models are fu lly  analyzed. We study the 

global existence of solutions, macroscopic lim its , traveling waves and pattern forma
tion . We can gain some fundamental and instructive insight in to  the mechanisms 
involved in  the model. For example, we find the existence of traveling pulse solutions 
for the cell population and no pattern form ation is observed.

This chapter is organized as follows. In  the rest of th is  section, we w ill present 

the one dimensional mesenchymal m otion models derived in  [47] and discuss the 
telegraph process in  more detail. In  section 5.2, we w ill classify the system (5.1.8) 
and (5.1.9) as degenerated hyperbolic system and verify th a t there are no shock 
solutions. In  section 5.3, the global existence of classical solutions are obtained 
along characteristics using a fix  point theorem. In  section 5.4, we non-dimensionalize 
system (5.1.3), (5.1.4) and find appropriate tim e and space scales which lead to 
parabolic and hyperbolic scalings. Furthermore, we prove the existence o f weak 
lim its  of solutions to  rescaled equations. In  section 5.5, we study the traveling wave 
solutions and find the traveling pulse solution for the cell population. In  section 5.6, 

we perform  the s tab ility  analysis and conclude th a t there is no pattern form ation 
for the one dimensional model. In  the fina l section 5.7, we summarize and compare 

our results w ith  the results obtained in  [47].

5.1.2 One Dimensional Models fo r  Mesenchymal Motion

The one-dimensional mesenchymal m otion models correspond to  the case where the 

fibre orientations are to ta ly  aligned in  the tissue. A lthough the higher dimensional 
models have significant difference than in  the one-dimensional models, the one
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dimensional models are s till very instructive and provide many basic insight in to  
the mechanism involved. For example, the existence o f travelling pulse solutions 

and macroscopic lim its  and so on th a t we w ill demonstrate in  the follow ing sections.
We firs t trea t the directed case and the undirected case follows easily. Following 

the argument in  [47], we fix  speed to  |u| — s, i.e., v =  ±s . In  a one-dimensional 
domain, cells can only move to  the righ t or the le ft. For notations! convenience, we 
denote

p+ (t, x ) =  p(t, x, +s), p~(t, x) =  p(t, x, - s),

respectively. The d is tribu tion  q(t, x, 6) describes a bias o f choosing rig h t over le ft 
and vice versa. In  one dimension, S° =  {+ 1 , —1} and 0 =  ±1 , and we define

q+ {t, x) =  q(t, x, + 1), q~(t, x) =  q(t, x, - 1).

Then it  follows from  (5.1.1) tha t

q+ (x ,t)  +  q~ (x ,t) — 1. (5.1.7)

The pro jection operator n<j(f, x, 0) can be e xp lic itly  obtained in  one dimension

I l d( t , x ,6) =  ^  (9p+ -  9p~),

which gives the follow ing projection for righ t and le ft d irection, respectively,

n ±  =  n rf( f , z ,± i)  =  4 r ^p + + p

Then the mean projection Ad is obtained as

A d(t,x )  =  U+q+ +  U^q~ =  P , P (<1+ ~ < f ) -
r  ' Jr

S ubstitu ting a ll these results in to  the model (5.1.5) and (5.1.6), we obtain the one

dimensional mesenchymal transport model for the directed case (see [47])

V t  +  sp+ =  - fx p + +  fJ.q+ (P+ + P ~ ) ,

P i ~  sP i =  ~PP~ +  M ~(P+ + P “ )» /5 j  g}
q t  =  «(p+ -  p ~ )(q~ - q + +  1)q+ >

?r =  k (p + -  p ~ )(q~ - q+ -  i)? - -

For the undirected case, it  is easy to  calculate the projection and the mean projection 

as

at = k  = i.
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p t  +  sp t  = - p p + +  pq+ (p+ + p ~ ) ,

iiVi1 -p p ~  + p q ~ ( p +  + p ~ ) ,

q t  = o,

q i  = o,

Consequently the one-dimensional mesenchymal transport model in  undirected tis 
sue has the form  (see [47])

(5.1.9)

where (t, x ) £ [0, oo) x  SI and S7 is an interval in  K . A ll above results are from  paper 
[47] and we recommend readers to  see details in  it.

Now we investigate the connections between the one dimensional mesenchymal 
m otion models and well known Goldstein-Kac model [40, 66] which describes the 
correlated random walk in  one space dimension. We use condition (5.1.7) to  sub
s titu te  q ~  =  1 — q +  in to  the firs t two equations o f (5.1.8) or (5.1.9) and obtain 
th a t

Pt +  spt =  - P { l - Q +)P+ + M +P~, (5 U 0 )
Pi -  sP i =  M i -  q+)p+ -  m +p~-

The model (5.1.9) for the undirected case is simpler than the directed case. B ut it  
possesses some very interesting phenomena. We know tha t, in  undirected tissues, 
the fibres are sym m etrical along the ir axis and both fibre directions are identical. 
Hence q +  =  q ~  =  Then the model (5.1.10) becomes the Goldstein-Kac model 
[40, 66]

Pt +  spt =  77 (M ~P +),

_  . V +> ( M - U )Pt ~ sPx =  — 2 (p - P  )■

The parabolic scaling for the Goldstein-Kac model, which leads to  a parabolic equa
tion , has been discussed in  [41] and references therein.

For directed tissues, we define A+ =  / i ( l  — q + ) ,  A-' =  j i q + , then (5.1.10) is 
converted in to

p t  +  spi =  ~ x+p+ +  x~p~, (5112^
P i  ~  s p ~  =  \ + p + - \ - p ~ ,

which is a m odification o f the Goldstein-Kac model. The extension of Goldstein- 
Kac model and the local and global existence of the solution to  the extended model 
has been extensively investigated in  reference [56, 57, 64]. The results obtained in 
[56, 57, 64] can be applied to  system (5.1.12). The telegraph process of (5.1.12) has
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been b rie fly  discussed by Erban and Othm er [32] recently. In  the next subsection, 
we w ill discuss the telegraph process o f mesenchymal m otion models for the directed 

case.

We supply the system (5.1.8) and (5.1.9) w ith  in itia l condition

^ ( 0 , x ) = p f ( x ) ,  =  q f (x), x  e fh  (5.1.13)

Due to  the biological interest and condition (5.1.7), we make the follow ing assump
tions for the above in itia l data.

(ic) p f  >  0, 0 <  q f ,q j  <  1 and q f  +  q j  =  1. For undirected tissues, we assume 
the in itia l data is symm etrical, i.e., q f =  q j =

In  th is chapter, Here we consider two types o f boundary conditions.
(b c l) Q — R and p f( x ) ,q f ( x )  have compact support in  f l  
(bc2) =  [—1, 1] and zero flux boundary condition

j ( t ,  ± I ) =  0, i.e., p+(t, ± I ) =  p~(t, ± 1).

5.1.3 Nonhomogeneous Steady State

In  th is section we firs t review some associated results from  [47] and give some further 
discussion. We firs t present a second-order telegraph equation which is derived from  

system (5.1.8) or (5.1.9). To th is  end, we add and subtract the firs t two equations 
of (5.1.8) or (5.1.9) and obtain equations for the to ta l population p — p+ + p ~  and 
the population flux j  — s(p+ — p~)

P t + { x =  ° ’ _ (5.1.14)
j t  +  s2px =  - p j  +  p(q+ - q  )sp.

w ith  in itia l conditions p (0 ,x ) =  Po(x) and j(0 , x) =  jo {x ), where po and jo  are 
determined from  the in itia l d is tribu tion  of p+ and p~. We differentiate the firs t 

equation of (5.1.14) w ith  respect to  t  and the second equation w ith  respect to  x. 
A fte r tha t, we subtract the resulting equations and end up w ith  a damped wave 

equation w ith  d rift term  (see [47])

P t t  +  P P t  +  p ( s E q p ) x  =  s 2 p x x ,  ( 5 . 1 . 1 5 )

where the d rift velocity is given by the expectation o f q denoted by E q  =  q+ — q~. 
The equation (5.1.15) is a form  of telegraph equation which describes electrical 

transm ission in  a telegraph cable when current leak to  the ground. A  drift-d iffusion  
equation can be approximated by taking the lim it p  —► oo, s —* oo w ith  diffusion
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constant D  =  s2/p  and d rift velocity sEg. The same drift-d iffus ion  equation also 
can be obtained by rescaling space and tim e variables appropriately as done in  [47].

Suppose th a t the equations (5.1.14) are defined in  the interval Q =  and 
satisfies the boundary condition (bc2). In  terms of cell population density, the 
zero flu x  boundary condition is equivalent to  p+(± l)  =  p ~ {± l)  =  ~p (± l). We 
want to  know under what conditions, if  any, these equations have time-independent, 
nonconstant solutions for p± . The steady state condition j x =  0 of the firs t equation 

o f (5.1.14) im plies th a t j  is a constant and zero flu x  boundary condition j ( ± l )  =  0 
furtherm ore gives tha t j  =  0. Consequently the second equation o f (5.1.14) becomes

Px =  - { q + -  q~)p. 
s

This is a firs t order equation for p whose solution can be easily found

p(x) =  p ( - l ) exp 0  J  (q+ (0  -  q~(€))d£j . (5.1.16)

The vanishing flu x  j  =  0 gives tha t p+ =  p~ and hence

p±(x) =  ^ L - ile x p  ^  J (q+ ( 0  ~ q ~ (0 )d £ j - (5.1.17)

Here the above integrals are bounded since q+ and q~ are bounded by 1 which 
w ill be proven in  section 5.3. From the above equations, one can see how the 
d is tribu tion  o f fiber orientations q± affect the d is tribu tion  o f cell population p and 
p± . In  particu la r, i f  p  ^  0 and q+ ^  q~, then p and p^  are nonconstants which 

correspond to  the nonhomogeneous steady states of the system (5.1.14).
P articu lary in  undirected tissues, q+ =  q~ =  \  due to  symmetry, then p  and 
are constants and p+ =  p~ =  which means th a t there is no aggregation of 

cells.
I f  q+ =  1, q~ =  0, then

p±(x) =  exp +  0 )  •

The cells accumulate at the end x  — I. This is not unexpected since a ll cells bias 
to  move to  the righ t and eventually accumulate at the righ t end due to  zero-flux 

boundary condition.
S im ilarly, i f  q+ =  0, q~ =  1, then

p±(x) =  exp ( - j ( z  +  0 )  .

and p± atta ins the maximum at x  — —I since a ll cells bias to  move to  the le ft.
Therefore here we identify a mechanism which can lead to  aggregation, namely, 

p, 7̂  0 and the tissue orientation of the righ t and the le ft are different.
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5.2 Classification as Hyperbolic System

We show th a t both systems (5.1.8) and (5.1.9) are hyperbolic and we discuss shock 

solutions. To th is end, we rew rite (5.1.8) in  a m a trix  form

ut +  Qux — H (u ), (5.2.1)

where 0  and H  (u) is defined as follows

' p+ ' s 0 0 0 ' - p p + +  pq+ (p+ +  p~)

u = p~ ,©  =
0 —s 0 0

,H (u ) =
- f ip ~  +  pq-{p+ + p ~ )

q+ 0 0 0 0 K(p+ — P~)(q~ — q+ +  1 )q+

. < r . .  0 0 0 0 . . K(p+-  p -)(q~  -  q + -  l)q~  .

The d rift term  is linear and hence the system (5.2.1) cannot create shock solutions. 

The 4x4  m a trix  © in  th is equation has eigenvalues Ai — — s <  0, A2 =  A3 =  0, A4 =  s, 
which satisfy Ai <  A2 =  A3 <  A4 provided th a t s >  0. This implies system (5.2.1) 
and hence (5.1.8) is hyperbolic but not s tric tly  hyperbolic. The same argument 
applied to  system (5.1.9) shows tha t (5.1.9) is hyperbolic as well. The eigenvectors 
t i  corresponding to  eigenvalues A*, i  =  1 ,2 ,3 ,4  are

' 0  ' '  0 ■ '  0 ‘ '  1 ‘
1 0 0 0

, r 2 = = , n  =
0 1 0 0

.  0 . .  0 . _ 1 _ .  0 .

I t  can be verified th a t V A j(u ) • r i(u ) =  0 for £ =  1 ,2 ,3 ,4 , where VAj(w) • r*(u ) means 
the directional derivative of the eigenvalues A * in  the direction of the eigenfunction 
r t as defined in  chapter 4. Hence a ll characteristic fie ld (A i,r*) are linearly degen
erated [15, 73]. Thus a shock which separates intersecting characteristics defining 
a d iscontinuity does not exist and however the solution m ight contain a contact 
d iscontinuity i f  data are discontinuous (see [15]).

The characteristic slopes are determined from  the eigenvalues o f the 4 x 4  m atrix
dx

© in  the equation (5.2.1) by —  =  A,, which is never in fin ite , so the line t  =  0 is
dt

nowhere tangent to  a characteristics. Therefore if  in itia l data for p+ ,p ~ ,q + ,q~  is 
given along the line t  — 0, the resulting Cauchy problem should be well-posed for 
boundary condition (b c l). This is verified in  the next section.

5.3 Global Existence

In  th is  section, we w ill prove the global existence o f solutions to  in itia l-boundary 
problem  for the system (5.1.8) subject to  the in itia l condition (ic) and boundary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



condition (bcl). The global existence of solutions to system (5.1.9) thus is proven

existence w ill be much more complicated than unbounded domain and is le ft open 
to  be fu rther explored in  the future. In  the rest of th is  chapter, we w ill focus on 
unbounded domain and denote 0  =  R for the convenience o f presentation.

The system (5.1.8) is a coupled system o f two pa rtia l d ifferentia l equations and 
two ordinary d ifferentia l equations. To prove the global existence of solutions to  the 
system (5.1.8), we firs t prove the nonnegativity property o f solutions.

Lem m a 5.3.1 . Let p f  >  0 and q f  >  0 with q f  +  q j =  1. Assume that p± ,q± £ 
L °°(0 ,T ; L°°(Q)) is a solution to system (5.1.8) fo r  some T  >  0, then p± >  0 and 

0 <  q± (t, x) <  1 with q+ +  q~ — 1.

Proof. We firs t show tha t q+ +  q~ =  1. Toward th is  end, We firs t define two 

new quantities: q =  q+ +  q~, £ =  q+ — q~. Then we add and subtract the th ird  and 
fourth  equations o f (5.1.8) to  obtain equations for q and £ as follows:

I t  is straightforw ard to  verify th a t the vector fie ld F (Q ) E C ^ R 2) and hence is 
locally Lipschitz continuous w ith  respect to  Q for given p± £ T °°(0, T ; L °°(0 )).

existence-uniqueness theorem. On the other hand, q =  1 is a solution of the firs t 
equation (5.3.1). Hence the system (5.3.1) and (5.3.3) has a unique solution (q =  

1, £) where £ can be determined by the equation

as a special case o f (5.1.8) for k — 0. For bounded domain, the analysis for global

qt =  - K(p+ - p  ) ( q -  1)£, 

& =  k (p+ - p ~ ) ( q - £ ,2),
(5.3.1)

which can be rew ritten  as a m atrix  form

Qt =  -K (p + -p ~ )F ( Q ) (5.3.2)

where

Then the in itia l data o f the system (5.3.1) is given by

Qi =  Qi +  Qi =  1, £/ =  Qi ~  Qi • (5.3.3)

Then the Cauchy problem (5.3.1), (5.3.3) has a unique solution by the fundamental

& =  n(q+ - q  )(1 -  £2), £j =  q f - q i .
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I t  is worthwhile to  point out tha t we here provide an idea to  prove tha t q =  1 and 
the existence (local) of q and £ for the given p± 6 L°°(0, T ; L °°(fl))  only, which w ill 
be used la ter in  the proof for the Theorem 5.2.

We proceed to  show th a t solutions q± preserve the positiv ity . Substituting q~ =  
1 — q+ in to  the th ird  equation o f (5.1.8), we have

q + =  2k (p+ - p ~ ) { l - q +)q+. (5.3.4)

There are three cases to  proceed.
Case 1: q f  =  1. Then we have th a t q+ — 1 is a solution to  equation (5.3.4)

w ith  in itia l condition q f =  1. Since the righ t hand side of equation (5.3.4) is
loca lly Lipschitz continuous w ith  respect to  q+ , the solution o f the equation (5.3.4) 
is unique. Hence q+ (t,x )  =  1 for a ll t ,x .

Case 2: q f =  0. Using the sim ilar argument as in  Case 1 we can show tha t 
q+ ( t ,x ) =  0 to  the equation (5.3.4).

Case 3: 0 <  q f  <  1. Then integrating the above equation (5.3.4) w ith  respect
to  t  from  0 to  t, one has

exp ^  2 k ( p + ( t ,  •) -  p~ (r, - ) )d r^ .

Note th a t 0 <  q f  < 1 . Then one has tha t

I t  follows im m ediately from  the above equality tha t 0 <  q+ <  1. Combining Case 
1, Case 2 and Case 3, we have th a t 0 <  q+ <  1 provided th a t 0 <  q f  < 1 . Applying 
q+ =  1 — q~ in to  the fourth  equation o f (5.1.8) and using the same approach we can 

show tha t 0 <  q~ <  1.
F ina lly  we come to  the proof for the p o s itiv ity  of cell density p± (t, x). We use a 

theory of invariant princip le in  paper [46] for the hyperbolic random walk system to 
achieve th is goal. To th is end, we firs t w rite  the firs t two equations of the system

(5.1.8) in  a m a trix  form

<f>t =  G<l> +  Bcf> +  F(<f>), (5.3.5)

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

and

\  m  ip+ + p  ) - p p + J

Let A =  [0, oo) C  M. Then A is closed and convex and for each z e  <9A, A has on 
out norm al vector. Moreover, define E =  A x A. Let 4> € <9E and w ithou t loss of 
generality we assume th a t 4> =  ($, 0) w ith  t? >  0. Then for the out norm al vector 
r](4>) =  (0, —1) o f (f>, we have

v(4>) ■ (B<p +  F{4>)) =  -p q ~ d  <  0,

where we have used the p o s itiv ity  o f q~. Then by the theory in  [46] (Theorem 2), 
the set E is positively invariant for the system (5.3.5), which shows the p o s itiv ity  of 
p± . The proof is completed.

□
By the Lemma 5.3.1, we obtain the follow ing theorem.

T h eo re m  5.1. The set {  (p+ ,p~,q+ ,q~) j p± >  0, >  0,q+ +  q~ =  1} is invari
ant to the system (5.1.8) provided tha tp ± ,q± €E L°°(0, oo; L°°(Q)).

R e m a rk  5.1. For p+ >  p~, the term p+ — p~ > 0  and q+ w ill increase while q~ 

decreases. Hence directionality is enhanced by equations (5.1.8)3 and (5.1.8)4.

Next, we are devoted to  proving the global existence o f solutions to  system
(5.1.8). Due to  the Theorem 5.1, we can reformulate the system (5.1.8) as a three 

dimensional system

P t  +  s p t  =

Pt ~  sPz =

St =

where q+ and q~ are given by

< t =  q~ = ^  (5.3.7)

I t  is worthwhile to  note th a t here £ represents the expectation o f fibre orientation in  

one dimension. We seek the global solutions of the system (5.3.6) in  the follow ing 
space

X (0 ,T ) :=  {(p + ,p - ,O I P+ ,P~  e L ° ° ( fV U  G C (0 ,T ; 

where Qt  =  [0, T) x  f l,  L°°(Qt ) =  L°°(0, T ; L°°(Q)). In  the follow ing, we denote 

the norm ||u(£)||oo :=  \W(t, -)llx,~(n) for u(t, •) € L°°(Cl) fo r the sake o f convenience.

One of our main results is given as follows.

~PP+ +  M + (P+ +P ~),
-p p ~  +  pq~(p+ + p ~ ),  (5.3.6)

k (p+ - j t ) ( 1  - ^ 2),
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T h eo re m  5.2. Let p f , q f  >  0 and qi =  q f  +  q j =  1. I f  p f , q f  G then
the system (5.3.6) subject to boundary condition (bcl) admits a unique solution 

(p+ ,p~ ,£ ) G X(0, oo) such that —1 <  £ (t,x ) <  1.

Proof. The proof consists of five steps. In  Step 1, we show for any p+,p~ G 

L°°(Q t ), the solution £ of the th ird  equation of (5.3.6) is uniform ly bounded. The 
existence of £ follows the idea in  the proof for the Lemma 5.3.1. In  Step 2, we show 
th a t i f  £ G L°°(Q t ), then the functions on the rig h t hand side of the firs t and second 
equation o f (5.3.6) are Lipschitz continuous. In  Step 3, we use the £ obtained in  Step 

1 and results proved in  Step 2 to  show th a t the solution o f the firs t two equations of

(5.3.6) satisfies p+ ,p~ G L 00( ftr ) -  In  Step 4, we prove the existence o f local solutions 
w ith  the help o f contraction mapping principle. The global solutions w ill follow in  

Step 5.
Step 1. We define a vector o =  (p+ ,p~) and denote

||£»||l-(0t ) =  m ax{||p+ ||L*»(nT), |b~||z,oo(nr ) },

where

l|P+ IU«»(nT) =  SUP lb +(0lloo» ||P~||l°°(J2t ) =  sup |b _ (t)||oo- 
o<t<r o <t<T

For a given w =  (w+, w~) € L°°(Q t) x  L°°(Q t), we consider the equation for £

£t =  k (w+ -  u T )( l - £ 2). (5.3.8)

Under the assumptions for in itia l data, we can use the same argument as in  the 

proof for Lemma 5.3.1 to  easily derive th a t — 1 <  £ <  1. We om it details here.
Step 2. W ith  the £ obtained in  Step 1, we consider equations

P t  +  sp t =  -P P + +  f  (X +  £)(P+ +  P~)> (5-3-9)

P t - s P x  =  ~PP~ +  ^ (1  — f,)(f { p + + P - )» (5.3.10)

For the sake o f presentation, we define rj =  (p+ ,p~) and

/i(«7» £) =  M p + ,p ~ , 0  =  - w + +  ^ (1 +  0 (p + +  p")>

/2 (p ,£ ) =  /2(p+ ,p “ ,£) =  -p p ~  +  | ( i  - £ ) (p + +P~)-

Then for given 771 =  (p t,P i ),P2 =  (ptiPz  )> we have th a t

fi(m,p) ~ h(v2,p) = - |( i - €)(Pi -p t)  + f  (! + 0 (?r -P2)•
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Note th a t — 1 <  £ <  1. Then it  is easy to  deduce tha t

P) ~  M m , p)\ <  2 /x -m a x {|p f- v i l \ P x  ~  P2 W / , , i n  
^  o i i (5.3.11)<  2// • max \rji — %|-

This implies th a t /1 is Lipschitz continuous for p+,p~ w ith  Lipschitz constant 2/i. 

In  a sim ilar way, we can easily prove th a t f 2 is Lipschitz continuous for p+ ,p~ w ith  
the same Lipschitz constant 2/i. The Lipschitz continu ity o f / x and /2 w ill be used 
in  the follow ing step.

Step 3. I t  is straightforward to  show th a t system (5.3.9) and (5.3.10) is s tric tly  

hyperbolic w ith  two d istinct uniform  bounded eigenvalues A i,A 2 satisfying — s =  
A i <  A2 =  s. Then for each * =  1,2 and each point ( t , £ )  in  the t  — x  plane, the 
characteristic equation o f (5.3.9) and (5.3.10) defined by

dx
—  =  A^ x ( t )  =  a,

has a unique solution defined for a ll t  >  0, describing the i  — th  characteristic 

through po in t (r, a). We denote such a solution by 1 1-> X j(t; r ,  <7), where X j(f; t ,  cr) =  
a +  Xi(t — t ) .  Following the argument in  [15], we define

V  =  {  ( t ,x )  | 0 <  t  <  l/s , —I +  st <  x <  I — s t} .

Note tha t I can be a rb itra rily  large since the domain is unbounded. Then for every 
(r, £ )  G T> and every i  €  { 1, 2}, the characteristic curve { ( t ,  x , ( t ;  r , cr))| 0 <  t  <  t }  is 

entire ly contained inside V  w ith  2̂ (0; r , a) € [—I, I}. Such a set V  is called a domain 
o f determ inacy (see [15]).

The system (5.3.9), (5.3.10) has two independent characteristics. We integrate
(5.3.9) along the second characteristic curve X2( t ; r ,  cr) and (5.3.10) along the firs t 
characteristic X i( f ;r ,  cr), (5.3.9) and (5.3.10) can be rew ritten  as an ODE system

—  =  - f ip + (t, x 2(f; r , a)) +  fiq+ (t, x 2(f; r , a ))(p^{t, x 2(t; r , cr)) +  p~(t, x 2(t; r , a )))
(5.3.12)

dp~
—  =  - n p + (t, X i(t; r , a)) +  nq~(t, x x(t; r , a))(p+ (t, X j(t; t ,  a)) +  p~(t, X i(t; r ,a ) ) )

(5.3.13)
For each (r, cr) € V  and Xi(0-,T,a) G [—/,/], we integrate (5.3.12) and (5.3.13) w ith  
respect to  t  over [0, t] to  obtain tha t

p + (T,<7 ) =  p+ (x2(0; t, cr))+
CT (5.3.14)/  f i { p + ( t , X 2 ( t - , T , a ) ) , p ~ ( t , x 2( t - , T , a ) ) , Z ( t , X 2 ( t \ T , G ) ) ) d t .

J  0
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and

p - ( r ,a )  =  p_(x1(0;t,ct))+
r  (5.3.15)
/  f 2(p+ (t,X i( t;T ,a )) ,p ~ (t,X i( t- ,T ,a )) ,£ (t,x 1(t;T ,cr)))dt.

Jo
Note th a t in  the follow ing, we call (p+ ,p~) a broad solution (see [15]) from  the 
domain of determ inacy V  in to  M2 for Cauchy problem (5.3.9) and (5.3.10) if  p+ 
and p~ satisfy (5.3.14) and (5.3.15), respectively, at almost every po in t (r, £) € 
T>. Taking L°°-norm  on both sides of (5.3.14) and (5.3.15), using the fact tha t 
f i  is Lipschitz continuous w ith  Lipschitz constant 2p proven in  Step 2, and using 
f i ( 0 ,0,£) =  0 for i  =  1,2 and r?2 =  (0,0) in  (5.3.11), we have tha t

lb + (r)||oo < C  +  2p, f |b(t)||oodt,
Jo

and

IIP" ( r )  ||oo <  C  +  2p f |b(<) ||oodt,
Jo

where C  is a constant such th a t ||p/||oo <  C*.
Hence

lb + (r)||oo +  ||p -(r)||o c  <  2 C  +  4 /i f  (||p+ (0Hoo +  | |p '(< ) l |o c )* .
Jo

The application o f G ronwall’s inequality to  the above inequality gives us tha t

l|P+ (r)||oo +  | |p - ( r ) | |0o < 2 C e 4̂ ,

which im plies for any r  w ith  0 <  r  <  T, p^  is bounded.

Step 4• In  step 1, for every w =  (w+ ,w ~) G L°°(Qt ) x  L°°(Qt ), we obtain a 
solution £ o f equation (5.3.8) satisfying — 1 <  £ <  1. Then we can define a mapping 

H x : L°°(Qt ) ’ L°°(Qt ) by H iw  — £. Let m >  1, then H \ maps from  Bm(0) to
B i(0 )

Hx : Bm(0) -  B i(0 ),

where

Bm(0) =  {<j> =  {fa , fa ) € L °°(0 T) x  L ° ° ( Q t ) |  I b l U -  <  m ,fa 0) =  (p /,p 7 )}-

In  step 3, we prove th a t for every £ w ith  — 1 <  £ <  1 obtained in  Step 1, the 
solution p =  (p+ , p- ) of (5.3.9) and (5.3.10) satisfies |b(t)||oo <  2C e^. So for 
any 0 <  t  <  T , the solution p is bounded. Then we can define another mapping 

#2  : by =  p. Hence for same m  as above, it  holds tha t

#2 : B j ( 0 ) B m(0).
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We now define a composite mapping: H  — H 2o H x \ Bm(0) —*• Bm(0). Then we have 
H (w ) =  77. We want to  show th a t w =  77. To th is  end, we only need to  show th a t H  
is a contraction on Bm(0) for some T  >  0. We consider two functions Wi, w2 G Bm(0) 
and denote the images by H w \ — u ,H w 2 =  U, respectively, where w\ =  (wx ,w x ) 
and w2 =  The corresponding solutions of equation (5.3.8) are denoted by
£1 and £2, he., £1 =  H xwx,^2 =  H xw2. We denote

\  u2 — U2, J

where ux =  H ( w i) ,u 2 =  H (w x ),U i =  and U2 — H iw ^ )-  Then from  the
analysis in  Step 3, along the characteristic curves, we have tha t

Ui -Ui = f f i { w f ( t , x 2) ,w 1 ( f , x 2) , £ i )  -  f i ( w f ( t , x 2),w 2 ( t ,x 2),£2)dt 
Jo

=  ~ C )K +(^ x 2) - w £ { t , x 2))

+  7 (̂1 +  0 ( wl -  W2 (t,X2))^dt,

as well as

u2 — U2 =  f  f 2( w l( t , x i ) ,w 1 ( t , x i) , ^ )  -  f 2(w $ { t,x i) ,w 2 ( t ,x i) ,£ 2)dt 
Jo

=  I  ( “  2 ^  +  ~

+ | ( !  - 0 ( w r ( ^ x i )  - ^ ( t , X ! ) ) ^ d t ,

where X j  =  X j ( f ;  r , cr), i  =  1,2.

Using the result — 1 <  & <  1 for i  =  1,2, we derive from  the above two inequal
ities for any 0 <  r  <  T  tha t

lu -U llo o  =  \ \H u > i- H w ^ lo o  <  fJL f  ( 1 1 ^ - ^ 2 1 1 0 0  +
Jo

k l  -  w2 lloodt

<  2/xT sup ||tci w2 j100■
0 < t< T

Let T  be small, then H  is a contraction mapping on Bm(0). Due to  the contraction 
mapping principle, there exists a unique fixed point o f H  which corresponds a unique 

solution (p+ ,p~ ,£ ) € X (0,T ) such th a t p± ,£ € L °°(fh r)- Prom the th ird  equation 
o f (5.3.8), it  is easy to  see th a t € L°°{VlT). Due to  the standard regularity results 
(see [107]), it  follows th a t £ € C(0, Tmax;L °°(D )).
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Step 5. We have shown th a t system (5.3.6) has a unique local solution (p+ ,p~ ,£ ) € 
X(0, T ). Now we suppose tha t the maximal tim e of existence for solution o f (5.3.6) 

is Tmax and Tmax <  oo. From the step 1, we know th a t — 1 <  £ <  1 for any t  w ith

0 <  t  <  Tmax. Hence according to  the well known alternative results (for example,
see [79, 107]), one has tha t

lim  | b + ( * ) | |o o  =  oo or lim  | b “ ( 0 l lo o  =  oo. (5.3.16)
t  >1 m a x  t — ► im a x

On the other hand, when — 1 <  £ <  1, we have proven in  Step 2 and Step 3, tha t 

for any T  >  0, it  holds tha t

||p+ (i)lloo +  lb - OOI|oo <  2Ce4»T, 0 <  t  <  T,

which is obviously contradictive to  (5.3.16). This contradiction, in  tu rn  confirms 
th a t Tmax =  oo and hence a global solution follows.

□
Next, we additionally assume th a t p f  € L ^ O ), and show the global existence of 

solutions in  the follow ing space

M (0,T ) :=  {(p + ,p ~ ,0 1 p+ ,p~ € L oo(0, r ; L 1 n L “ ( f i ) ) , f  € C (0,T ; L°°(Q ))}

The result is given in  the follow ing theorem.

T h eo rem  5.3. L e tp f  6 L 1 D L°°(Q,) and assumptions in  Theorem 5.2 hold. Then 

the system (5.3.6) has a unique global solution (p+ ,p~ ,Q  € M (0,oo).

Proof. By Theorem 5.2, we only need to  show tha t (p+ ,p~, £) € L°°(0, oo; L 1(f2)). 
The local well-posedness result can ba obtained by using a sim ilar as above and we 
skip the details. I t  only remains to  derive a L 1 global bound for p± . From Theorem 
5.2, it  is known tha t (p+ ,p~ ,£ ) G T°°(0, oo; L°°(Q,)) and — 1 <  £ <  1. Then we take 
Z^-norm  of (5.3.6)i and (5.3.6)2 along the characteristic curves to  deduce tha t

lb + (T -)IU i <  ||j>o (O IIl1 + 2M [  (IIP+ (*.0 IU 1 +  \ \ P ~ ( t , - ) \ \ n ) d t  (5.3.17)
Jo

and

<  lb o (-)IU i + 2/ i f  (Ib + ^ .O IU 1 +  \\p~ (t,-)\\^ )d t. (5.3.18)
Jo

The addition o f (5.3.17) and (5.3.18) gives us tha t

\\p+ ( t , - ) \ \ l i  +  |b “ (r ,-) l|L i <  2M  +  4 /i f  (\\p+ (t, - ) ||li +  |b “ b , (5-3.19)
Jo
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where M  is a constant such th a t ||p /H l1 <  M .
A pplying Grownwall’s inequality to  (5.3.19), we obtain for each t  >  0

IP+(r, O IIli +  I\p ~ ( t , - ) ||li <  2M e4"4, (5.3.20)

which gives the existence of global solutions in  L°°(0, oo; L 1( fl) )  for p± . The proof 
is finished.

□
Coming back to  the orig inal system (5.1.8), we thus have the follow ing global 

existence result for the system (5.1.8).

Theorem 5.4. Let q f( x ) >  0 and q f  +  q j  =  1. Assume p f  G L 1 f l L°°(Q). Then 
there exists a unique solution to the system (5.1.8) such that q± >  0, q+ +  q~ — 1 
and p± £ L°°(0, oo; L 1 f l L°°(fl)).

When cu tting  efficiency k  =  0, the system (5.1.8) becomes system (5.1.9). Hence 
the global existence of solutions to  (5.1.9) autom atically is obtained. Due to  the 
assumption q+ (t,x )  =  q~ (t,x ) for undirected tissues, we obtain the follow ing global 
theorem for system (5.1.9).

Theorem 5.5. L e tq f(x )  >  0 a n d q f =  q j =  1/2. Assume p f  € L 1nL°°(Q ). Then 
there exists a unique solution to system (5.1.9) such tha tp± G T°°(0, oo; L 1n L °° (fl)) 
and q+ =  q~ =  | .

Since the functions on the righ t hand side of (5.1.8) are continuously differentiable 
w ith  respect to  p+ ,p~,q+ and q~, by a theory for semilinear hyperbolic system in  
[15] (see Theorem 3.6 in  [15]), the broad solution o f Cauchy problem (5.1.8) obtained 
in  Theorem 5.4 is indeed a classical solution provided th a t the in itia l data (5.1.13) is 
continuously differentiable. This result is precisely given in  the follow ing theorem.

Theorem 5.6. Let the assumptions in  Theorem 5-4 or 5.5 hold. In  addition, we as
sume that the in itia l data in  (5.1.13) are continuously differentiable. Then the broad 
solution u : T> —> R2 obtained in  Theorem 5-4 or 5.5 provides a classical solution. 

Moreover, i f  in itia l data in  (5.1.13) are nonnegative, the solution is nonnegative. 
Its partia l derivatives ut , ux are broad solutions o f the following semilinear system, 

respectively,

( a ( ) t  =  H u ^ H  G  - ( u f ) x ,

( ^ x ) t  =  H u 'O 'x  G  • ( U x ^ jx t  

where H u denotes the derivative o f H  with respect to u.

Proof. The proof is sim ilar to  the argument in  [15]. We om it the details.
□
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5.4 Macroscopic Lim its

For the given fibre d is tribu tion  q ^ (t,x ), form al parabolic and hydrodynam ic lim its  

were derived in  [47] for the mesenchymal m otion models (5.1.8) and (5.1.9) for 
n (n  >  1) dimensions. Here we carry out the macroscopic lim its  for system (5.1.8) 
and (5.1.9) coupled to  equations for fibre d istribu tion  q± ( t ,x ) using the argument 
sim ilar as in  paper [64] and prove the existence o f weak lim its  of solutions to  rescaled 
equations. As before, we consider the system (5.1.8) only and the corresponding 
results can be taken over to  (5.1.9) equally.

To see which scales should be chosen to  give rise to  appropriate macroscopic lim 
its, we depart w ith  non-dimensionalization of system (5.1.3) and (5.1.4) by choosing 
a reference tim e £*, length a;*. Dimensionless quantities are determined according to

x  =  x*x, t  =  £*£, v =  u*u, oj =  o;*u), 

p (t,x ,v )  = p * p ( ^ - ,— , — \  q ( t ,x ,6) =  q ( ^ - , — , 6, \

n( t ,x ,e)  =  A u( t ,x) =  a * a u ( ^ , p{t,x) =  p* p { j - , —
yt* •£* J 3C* J *C*

where u* is a typ ica l speed for velocities in  V. Both quantities are assumed to  be 
bounded.

We now choose other reference quantities such tha t

n 1̂ n* =  V*, p* =  —— , p* =  — , W* =  U* ,
0*11* 17*

where n  is the dimension o f set V.
Define a parameter s — I f  we fix  the length scale such tha t t* =  ( ) r ) 2, then 

we obtain a parabolic scaling and can rew rite the system (5.1.3), (5.1.4) as follows 
after substitu ting above transform ation in to  (5.1.3), (5.1.4) and dropping the bar

o dp dp q
£ — + £ V —  =  -p p  +  pp—,

dt g r  ™  (5.4.1)
=  k ( IIu A u)pq.

However, i f  we fix  the length scale such tha t f * =  ^ , we obtain a hyperbolic scaling 
and derive the follow ing nondimensional version of (5.1.3), (5.1.4)

dp dp q
£—  +  £ V —  =  - p p  +  pp~ ,

d t g r  ^  (5.4.2)
~  K( f lu A u)pq.
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O ur main scaling assumption in  th is section is the smallness o f the dimensionless
parameter e. In  the follow ing, we w ill present a derivation of parabolic and hyper

bolic lim its  for one dimensional version o f the above systems (5.4.1) and (5.4.2) by 
the regular perturbation methods.

5-4-1 Parabolic L im it

Prom the system (5.4.1), we know th a t the parabolic scaling leads to  the follow ing 

one dimensional model w ith  in itia l data

£2% ” +  £Sl f r  =  + M t i P t +  P7)> (5-4 -3)

=  - W *  + Pe)’ (5-4 4 )

=  «(p* — P7)( l - ^ ) »  (5-4-5)

qe( 0,-) = g/(-) = 1>&(O,O = 9/'-07> (5.4.6)
where

1 + 6  -  1 - 6
2 2

Note th a t the global existence of solutions to  the above system has been established
in  section 5.3 for each e >  0 and furtherm ore it  holds tha t

0 < g + , g r < l , - l < 6 < l .  (5.4.7)

Using (5.4.7) and denoting Je =  p f  -  p~, we obtain by adding and subtracting 
(5.4.4) from  (5.4.3)

+ “ §  -  O' <5'4'8>

£2~ ^ +£S ~Ex =  ^ePe ~  l*Je, (5.4.9)

where 6  =  q f  — q~. We define the follow ing expansions

p£ =  p0 +  e p i+ O (£ 2),

—  Jo +  £J\ +  T2 J2 +  0 (£ 3), 

q f = q t +  £q t +  £2q t + 0 (e3), (5.4.10)
q i  =  qo +  £q7 +  £2&  +  o (s 3),
6  =  6  +  £6  +  £26  +  0 (e 3),

where £o =  q f  -  % ,6  =  Qi ~  6  =  q f ~  97- Our aim  is to  derive equations for
the leading order terms of expansion (5.4.10). To proceed, we make an assumptions

on the fibre networks d is tribu tion  q± (t,x ).
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Assumption 5.1. T h e  l e a d i n g  o r d e r  t e r m s  q^ a r e  b a l a n c e d  a n d  s t r i c t l y  p o s i t i v e ,  

i . e . ,

Qo =Qo >  Co >  0,

w h e r e  Co i s  a  p o s i t i v e  c o n s t a n t .

Next, we derive the equation for the leading order term  p o -  Toward th is end, 
we substitute (5.4.10) in to  (5.4.8), (5.4.9) and compare terms o f equal order in  e to  
obtain

{ 0 =  p & P o  ~  p J o -  ( 5 ' 4 1 1 )

e1 : \  ° ^ SdX’ (5-4.12)
s dT =  A^oPi +  -  M -

e : \  (5.4.13)
i t  +  s =  +  P&P2 +  P42P0 ~  d’h-

By the assumption 5.1, one has £o — 0. Then from  the second equation o f (5.4.11), 
we have

Po6 — Jo =  0.

Hence Jo =  0 due to  £o =  0. This is consistent w ith  the firs t equation o f (5.4.12). 

Furtherm ore, we have from  the second equation of (5.4.12) tha t

J i= S iP o - £ ^ ,  (5.4.14)
p  o x

where we again use £o =  0. By the second equation of (5.4.13), it  holds th a t

J2 =  £ iP i+  &Po -  (5.4.15)
p  o x

Now we substitute (5.4.14) in to  the firs t equation o f (5.4.13) to  derive an equation 
for the leading order term  p 0

Sk + S (5 4 1 6 )
d t  o x  p  O x 1

This equation compares to  the form ulation given in  paper [47] w ith  an equation for 

£1 obtained from  the equation (5.4.5) and (5.4.14)

d i x  k s  d p 0
S i = ̂  -  J S i-
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The form al lim its  o f (5.4.8) is (5.4.16). Now we axe in  a position to  prove the 
convergence o f the solution p£ and J£ as e —* 0. I t  suffices to  derive a uniform  esti

mates for the solutions of system (5.4.8) and (5.4.9), which is given in  the follow ing 
Lemma.

Lem m a 5 .4 .1 . Assume po G L 1 f l L 2(Ll). Let the assumption 5.1 hold. Assume 
fu rthe r that there exists a constant C\ >  0, independent o f s, such that

Then the solution (p£,q£) o f system (5.4-3)-(5.4-6) satisfies, uniform ly in s , that

Proof. We use the energy methods to  prove the Lemma. M u ltip ly in g  the equation

where we have used the assumption (5.4.17). Applying Young’s inequality \C\S l p£J£| <  
1{s~2\J£\2 +  C 2\pe\2) in  (5.4.18), we have

0 <  p f  <  p£- Due to  the boundary assumptions (b c l) or (bc2), it  is easy to  see from
(5.4.8) th a t mass o f p£ conserves, i.e., ||p£(t)||z,i =  Ibollz,1- Then the firs t assertion 
of Lemma 5.4.1 is proved.

The boundedness o f 6  is clear since we can use the same argument as in  the

161 <  ClS. (5.4.17)

pe € L £ !(0 ,o o ;L 1n L 2(fi) ) , 

6  ^  C([0, oo) x L °°(fl)).

(5.4.8) by p£ and the equation (5.4.9) by J£, adding the resultant equations and 
integrating it  over [0, t) x  R, we end up w ith  the follow ing equality

\  f  (be l2 +  \Je\2)dx +  [  [  ps 2\Js\2dxdr 
1 Jn Jo Jq

=  J [  (bo |2 +  \Jo\2)d x +  [  f  p s -2££p£J£dxdT (5.4.18)

^  \  [ (b o l2 +  \Jo\2)d x +  f  (  pC i\e lp£J£\dxdr,

[ (be l2 +  \ J e ? ) d x  +  [  f  p e  2\ J £ \2d x d r

6  [ ( \ p o \2 +  \Jo\2)dx +  pC f [  [  \pe\2dxdr.
(5.4.19)

By Grownwall’s inequality, we get a L 2-estimate of p£ and J£ independent of e from  
the above estimate. Hence we obtain L 2-bounds o f p f  also independent o f s since

previous section to  show tha t — 1 <  <  1. Then the proof o f Lemma 5.4.1 is

finished.
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□
The follow ing theorem gives the convergence of solutions of the system (5.4.3)-

(5.4.6) as £ —► 0.

T h eo rem  5.7. Let the assumptions in  Lemma 5-4-1 hold. Then the solution (p£, q£) 
o f system (5-4-3)-(5.4-6) satisfies, after extracting an appropriate subsequences, uni
form ly in  s,

p£ -> P0, weakly in  L ^ c(0, oo; L 1 n  T 2(Q)),

J£ —y Jq, weakly in  L & (0 ,o o ;L 2(fi) ) ,

lj? )  ^  ( s °’ 1 ? )  ’ weak* in c^0, °°^x
Proof. The mass conservation and uniform  boundedness of the L 2-norm  of p£ 

confirms the weak convergence of p£ to  Po by the compactness theorem. The second 
assertion is confirmed d irectly by the fact tha t — 1 <  <  1.

□
R e m a rk  5.2. The theorem 5-4-1 only gives the weak convergence o f the solution o f 
the system (5-4-8) and (5-4-9). We did not show that the lim it Pq satisfies the lim it 
equation (5-4-16). So the rigorous proof o f convergence o f lim it Pq to the solution of 

lim it equation is s till open. The uniform estimates fo r  higher order derivative o f p£ 
are needed fo r  convergence. We leave this to be done in  the future.

5-4-2 Hyperbolic L im it

The hyperbolic scaled system (5.4.2) in  one dimension is as follows

£^ + £ s ^QfT =  - w t  +  w £ ( p t  +P7)> (5.4.20)

£^ ~ £s~fa =  ~ m  +  + P 7 )i (5.4.21)

^  =  K (p t - P 7 ) (  1 - 4 2), (5-4-22)

pe(0, •) =  p7(-), £e(0, •) =  ? / -  q j  (5.4.23)

where q f  — 3ŝ L, q f =  as usual. Then we get the follow ing equations for

Ps =  P t +  P t, ■ h = p f  - p f ,  and £ e - q ?  ~  q t

sp£ + J J 1  =  0i (5A 24)
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To derive the macroscopic lim its , we define, as before, the asym ptotic expansion 

Pe =  Po +  epi +  0 (e 2), J£ =  Jo +  eJi +  0 (s 2'), q£ =  q£ +  eqf, q~ =  % +  eqf. This 

defin ition  gives th a t =  fo + e fi, where q0 =  q£+qo,q i =  q t+ q f,£ o  =  qo~Qo >£i =  
q t  — q-[ ■ Next we derive the equations for the leading order terms o f ps and J£. For 
th is  purpose, we substitute these expansions in to  (5.4.24) and (5.4.25) and equate 
coefficients o f the terms o f equal order in  s , and obtain

e° : (  ° =  ° ’ (5.4.26)
( 0 =  p£oPo ~ pJo-

{ Qm +  — f)
*  Sx ’ (5.4.27)

=  r f o P i  +  p£iPo ~  p J i -

From the second equation o f (5.4.26), one has th a t Jo =  £oPo- Substituting th is in to  
the firs t equation o f (5.4.27), we obtain the equation for the leading order term  po

w + s^ $ r 1 = 0’ < - 28>
which is the form al lim it equation for q£ and is comparable to  the equation derived 
in  paper [47] w ith  an equation for £o as follows

~  =  < 0(1 -  £o)po,

which can be obtained from  the equation (5.4.22).
The follow ing Lemma gives the uniform  boundedness of the solutions ps, J£ and 

for the system (5.4.24) and (5.4.25).

Lem m a 5 .4 .2 . Assume that there exists a constant C i >  0, independent o f e, such 
that

l& l2 <  C~i£- (5.4.29)

I f  Po € L 1 f l L 2(tt), then the solution (pe,q£) o f system (5.4-20)-(5.4-23) satisfies, 

uniform ly in  e, that

?e e i “ c( o .o o jL 'n L 2^ ) ) ,

Je E L£c(0 ,o o ;L 2(n )),

&  € C ([0 ,oc) x L ~ (fi) ) .

Proof The proof is the same as the proof of Lemma 5.4.1 and hence we skip the 
details. The only difference is th a t we have different smallness assumptions for £e.

□
Applying the Lemma 5.4.2, we have the follow ing compactness results.
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T h eo rem  5.8. Let the assumptions in  Lemma 5.4-2 hold. Then the solution (p£, qs) 
o f system (5.4-20)-(5.4-23) satisfies, up to an appropriate subsequences

P e  Po, weakly in  T~c(0, oo; L 1 n  L 2(fl) ),

J e - ^ J o ,  weakly in  L£c(0, oo; L 2(fl) ) ,

(^£’ ~ d f) ( S°’ ~ & f) ’ W6ak* in °°^ X

Proof. The proof is the same as the proof o f Theorem 5.7 and hence the details 
are om itted.

□
R e m a rk  5.3. As we mention fo r  parabolic lim its in  Remark 5.2, here we only get 

the weak lim its fo r  solutions of the system (5-4-24) and (5.4-25). We s till need to
prove that the lim it Pq satisfies the lim it equation (5-4-28), which is left fo r  future

research.

5.5 Traveling Wave

Since the system (5.1.8) models the invasion of cells through tissues, it  is of interest 
to  look for the traveling wave solutions for (5.1.8) and see what kinds of movement 
patterns are used by ind ividua l cells for invasion. To th is end, we firs t use the 
invariant m otion q+ +  q~ =  1 to  rew rite system (5.1.8) as follows

P t  +  j x =  0,
j t  +  s2px =  - p j  +  ps(2q+ -  l)p , (5.5.1)

Ok
q f  =  ^ j ( l  - q +)q+,

where p =  p+ + p ~ , j  =  s(p+ — p~), as usual.
We introduce the wave variable

z =  x  — ct,

where c >  0 denotes the wave speed. Then we can define the wave profile by

p{z) =  p (t,x ) = p (x  -  ct),

j ( z) =  j ( t , x )  =  j ( x  -  ct), (5.5.2)
q+ (z) =  q+ (t,x )  =  q+ (x -  ct).
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S ubstitu ting (5.5.2) in to  (5.5.1), we convert (5.5.1) into an ODE system 

-c p z +  jz  =  0,
- c j z +  s2pz =  -p , j +  ns{2q+ -  l)p , (5 .5 .3 )

9  K
- c q i  =  ^ j (  l - q +)q+.

We assume the traveling wave ansatz

pi. oo) =  p(+oo) =  0, g+ (-o o ) =  q f, q+ i+oo) =  q+, (5.5.4)

where q f  and q(T are constants and satisfy 0 <  q f, q+ < 1  and q f >  q+. That is, we

look fo r the traveling pulse for p and decreasing traveling fron t for q+ .
Due to  (5.5.4) we have

j( - o o )  =  j(+ o o ) =  0. (5.5.5)

Applying (5.5.4) and (5.5.5), we obtain an invariant o f m otion for j  and p from  the 
firs t equation of (5.5.3)

j  =  cp. (5.5.6)

Then the system (5.5.3) is reduced to  the follow ing two dimensional system by the 
substitu tion of (5.5.6)

(c? - s 2)pz =  np[c -  s(2q+ -  1)],

+ 2k n  + (5-5 J ) q j  == p ( l - g +)?+ .

I t  is obvious th a t (5.5.7) becomes a singular problem when c =  s. I t  is stra ight

forward to  show th a t th is  singular problem has no solution satisfying the traveling 
wave ansatz (5.5.4). Hence we assume c /  s from  now on. Then (5.5.7) can be 
rew ritten  as

pz =  - a p [c - s (2 q + -  1)],

qt  =  - M i  -  q+)q+- 1 }
Lb 2/̂

where a =  —  ---------- 8 =  —  > 0 . Due to  the biological interest, we only consider
— s2 s

nonnegative solutions. Hence, we are only interested in  those heteroclinic orbits 
th a t remains nonnegative, where p >  0 and 0 <  q± <  1.

5.5 .1  Phase P la n e  A n a ly s is

I t  is easy to  determine th a t system (5.5.8) has a continuum  of steady state (0,0), 
where 0 <  9 <  1. The Jacobian m a trix  linearized about the steady state (0,0) is

- a ( c - s ( 2 0 - f y )  0 
-(3(1 -  0)0 0
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The eigenvalues o f Js are

Ai =  - a ( c  -  s(29 -  1)), A2 =  0. (5.5.9)

The corresponding eigenvectors axe

A, ’  0 '

n  =

1

11
1

, r 2 =
1

When c ^  s, we have two cases to  consider corresponding to  the sign of eigenvalue 
Ai-

Case 1. I f  c >  s >  0, then a  <  0. I t  is easy to  determine th a t Ai >  0 which 
indicates the steady state (0 ,9) is unstable and there is no nonnegative heteroclinic 
connection due to  the lack of the stable m anifold. We thus have th a t 0 <  c <  s is 
a necessary condition for the existence o f a traveling wave and s is then a critica l 
traveling speed. Thus, in  the follow ing, we always assume th a t c <  s otherwise 
stated.

Case 2. I f  0 <  c <  s, then a  >  0. We firs t fix  traveling speed c and solve 
c — s(26* — 1) =  0 to  get 6* =  C learly it  follows th a t 0 <  9* <  1 and we 
furtherm ore have the follow ing relation

9 <  9* => Ai <  0,
0 =  9* =» Ax =  0, (5.5.11)
9 >  9* =s> Ai >  0.

Next, we are devoted to  proving th a t there exists a pair o f equ ilibria  which produce 
a heteroclinic connection for each fixed c satisfying 0 <  c <  s. From (5.5.11), it  
is easy to  see th a t the steady state (0 ,9) w ith  0 <  9 <  9* has one stable m anifold
corresponding to  eigenvalue Ai <  0 and the steady state (0 ,9) w ith  9* <  9 <  1 has
one unstable m anifold associated w ith  eigenvalue Ai >  0, and the other m anifold 
has a zero eigenvalue and acts in  the direction o f the q+ axis p =  0. The existence 

o f an unstable m anifold as z —> oo and a stable m anifold as 2 ^  —00 corresponds 
to  the existence o f a traveling wave (heteroclinic o rb it) connecting the two states.

Note th a t every steady state (0,9) w ith  0 <  9 <  1 has two manifolds one of 
which is a one dimensional center m anifold corresponding to  zero eigenvalue A2. 
Since each center m anifold is invariant under the flow o f the system (5.5.8) and 
the set {(p, q+) : p =  0,0 <  q+ <  1} consists of a ll steady states and is invariant, 

hence the center m anifold of each steady state is q+ axis where 0 <  q+ <  1. So 
the heteroclinic connection is only determined by the stable and unstable manifolds 
corresponding to  eigenvalue Ai as discussed above.
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4.5

3.5 q  = 0

CL 2.5

0.5

0.2 0.4 0.6 0.8
+q

Figure 5.1: The phase p o rtra it for the system (5.5.8), where c =  1, s =  2, p =  2, k =  
1 and consequently 9* =  0.75. The arrow denotes the orientation of trajectories of 
the system (5.5.8).

5.5.2 Asymptotics of Solutions

To show th a t unstable m anifold can be connected by stable m anifold, we need to  
investigate the global s tab ility  of the orig inal non lin ear system (5.5.8). Below we 
shall apply LaSall’s invariant princip le (see Theorem 4.1.8) to  study the asymptotics 

o f solutions o f the system (5.5.8). We firs t give the follow ing Lemma which describes 

the asym ptotic behavior o f solutions to  the system (5.5.8) in  the set where p >  0, 0 <  
q+ <  1.

Lem m a 5 .5 .1 . Assume 0 <  c <  s. Then the u - lim it set o f a ll solutions to the 
system (5.5.8) is contained in  the following set

N  -  { ( p ,  <?+ )| P =  0, 0 <  q+ <  9*}, (5.5.12)

and a - lim it set is contained in  the set

G  =  {(p ,q+)| p =  0, 9* < q + <  1 }, (5.5.13)

where 9* =

Proof. We define a function V (p, q+) by V (p, q+) =  q+ . Then for a ll z, we can 
verify from  (5.5.8) th a t V  >  0 and ^  <  0 in  the set {(p ,q +)| p >  0,0 <  q+ <  1}.
Moreover, we see th a t the set N i =  {(p , q+) \ j^  =  0,0 <  q+ <  1} consists of the
continuum  of steady states (0,9) only, where 0 <  9 <  1. Also N i is invariant due 
to  a ll elements o f N i are steady states. According to  LaSall’s invariant principle, a ll
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Figure 5.2: The traveling wave for the system (5.5.8), where c =  1, s =  2, p =  2, k — 
1. The waves travel from let to right and c denotes the traveling speed and time 
t  =  0,5,10,15,20.

solutions of system (5.5.8) converge, as 2 —> +oo, to the set Ni. From the second 
equation of (5.5.8), we know that

However, from (5.5.11), we know that for all 6 >  0* with 0* < 1, the equilibrium 
(0 ,0) is unstable and hence all trajectories will emanate out of the equilibrium at 
(0 ,6) where Q > 6*. So the set Ni excludes the set

which implies all solutions of system (5.5.8) converge to the set N =  Ni \  N2 as 
z —► + 00 . In a similar fashion, we can prove all solutions of (5.5.8) converge to the 
set G as 2 —► — 00 . This completes the proof.

Remark 5.4. I t  is easy to verify that q+ =  0 or q+ — 1 is a solution o f the system
(5.5.8) and furthermore i t  holds that

(a) I f  q+ =  0, then p —»• 0 as z —> + 00 .
(b) I f  q+ =  1, then p —► + 0 0  as z —► + 00 .

Therefore, the orbit neither q+ — 0 nor q+ — 1 can form  a heteroclinic connection

although q+ — 0 is the unstable manifold o f the equilibrium  (0,1) and q+ =  0 is the
stable manifold o f the equilibrium (0,0).

dV
dz

=  0 <t= »p  =  0 or q+ =  0 or q+ =  1.

□
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5.5.3 Existence o f Traveling Waves

The Lemma 5.5.1 and the Remark 5.4 show tha t any tra jecto ry  of the system (5.5.8) 

starting  from  a neighborhood of an equilibrium  (0 ,6) w ith  6* < 0  <  1 converges, as 
z —>• Too, to  another equilibrium  (0 ,6) w ith  0 <  6 <  6*, which gives a nonnegative 
heteroclinic connection (traveling wave) between these two equilibria. We come to  
our main result o f th is  section.

T h eo re m  5.9. Let us consider the system (5.5.8). For each traveling speed c with 
0 <  c <  s, there exists a bounded, nonnegative heteroclinic orbit connecting an 

equilibrium (0, Ci) to the other equilibrium (0, c2), where 9* <  c\ <  1 and 0 <  c2 <  9* 
with 9* =  zfjf. That is, there exists a traveling solution (p ,q+) o f system (5.5.8) 
connecting (0, c i) and (0,c2). Particularly, system (5.5.8) admits a standing wave 
fo r  c — 0.

Proof. The result is a direct consequence o f the above analysis.
□

Note th a t the ODE system (5.5.8) has a one dimensional m anifold {(0 ,0 ) : 0 <  
9 <  1} o f equilibrium . Therefore, we may expect a fam ily o f traveling wave solutions 
parameterized by the le ft state q f  o f fibre orientation where 9* <  q f  < 1 . We need 
to  determine how the righ t state q f  depends on the le ft state q f.  That is, we need 
to  find the re lation between q f  and q f.  To th is end, we divide the firs t equation of
(5.5.8) by the second equation to  obtain tha t

Ap_ a(c +  s) 1 2as 1
dq+ (3 (1 -q + )q +  (3 1 - ? + ' K V

Note th a t here we assume q+ and q+ ^  1. Otherwise, there is no traveling wave 
as discussed in  Remark 5.4. Integrating (5.5.14) and recovering a  and (3 yie ld a firs t 
integral

[ ln ( l — q+) ln<7+us
P =  ¥n

+  a u  (5.5.15)
c +  s c — s\

where tri is a constant which can be determined by the in itia l data of q+ given in 
(5.5.4).

The phase p o rtra it can be precisely plotted by using the level curve function 
defined by (5.5.15) (see Figure 5.1). The p lo t o f traveling solution (p, q+) o f system
(5.5.8) is given by Figure 5.2. From the defin ition o f p and the relation (5.5.6) and

(5.1.7), i t  is easy to  get

+ a T C  _ S C _ . / .  r . m
P 2s~P’ P = ~2s~P ,q  = 1 ~ 9  ’ J =  cp. (5.5.16)
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which gives the traveling waves in  j , p + ,p~ and q~ in  terms of p and q+. The p lo t of 
the traveling structures o f them are given in  Figure 5.3 and Figure 5.4. An example 
o f the standing wave is numerical given in  Figure 5.5.

From the equation of (5.5.1), we know tha t to ta l mass o f cells is conserved and 
so travelling pulse is expected as we found analytica lly and num erically above. The 
num erical sim ulation for p in  Figure 5.1 indicates tha t ind iv idua l cells can move to 

le ft or righ t, bu t the whole cell group w ill move to  righ t continuously. However, when 
the waves travel through, the fibre orientations are m odified by cells and alignm ent to  
cell movement d irection is enhanced, which is indicated by the numerical sim ulation 
for q+ in  Figure 5.1.

Indeed, an exp lic it heteroclinic connection can be derived from  (5.5.15). By the 
Lemma 5.5.1, it  is known th a t p (q f) =  p (q f) — 0, which gives rise to

l n ( l  ~  4 )  l n  Qi M l  - Q r )  l n  Qr

c +  s c — s c +  s c — s
Rearranging the above iden tity  yields tha t

1 4 - \  s—c /  + \  s+c

-&) ' • • • •

which relates the two end states q f  and q f. Given any end state o f q 
end state can be determined by (5.5.17).

From the second equation of (5.5.8), we know th a t the solution q

(5.5.17) 

the other

,+ starting

from  any in itia l po int q f(0  <  q f <  1) decreases. So q+ is bounded away from  1 
and consequently the term  ln^~^  ̂ is bounded. From Theorem 5.9, we know every
tra jecto ry is bounded. Therefore, it  is also of interest to  find the upper bound for 
each o rb it where 0 <  q+ <  1. In  the follow ing, we w ill e xp lic itly  find the upper 
bound which depends on the le ft states q f.  Indeed, by (5.5.14), we have a unique 
c ritica l po in t q+ =  0* such th a t ^ r | q+=g* =  0. The second derivative o f p w ith  
respect to  q+ is

cPp

dq+2
ps
2 k

+
_(c +  s )( l -  q+)2 (s - c ) q + \

(5.5.18)

Noting tha t 0 <  c <  s. Then it  is easy to  verify th a t <  0 at q+ — 6*. Moreover 
we know tha t p (q f) =  p (q f) =  0. Hence p atta ins the m axim al value at q+ =  6*

Pmax  —
ps 
2 K

ln ( l — 6*) hid*
c +  s c — s + 0 2 ,

where

02 =  - 7 T
ps
2 k

ln ( l — q f)  In qj,+ l
c +  s c — s

c +  s 
2s '

(5.5.19)

(5.5.20)
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Figure 5.3: The traveling wave of population density p+ and p~, where c =  1, s =  
2 ,p  =  2,K =  1. The waves travel from  let to  righ t and c denotes the traveling speed 
and tim e t  =  0,5,10,15,20. Care should taken to  the scale used here.

R e m a rk  5.5. From the above equation, we know that the upper bound pmax of p 

depends on the left states q f  o f q. Also, we can easily verify that upper bound pmax 
increases with respect to q f >  6* — (see Figure 5.1).

R e m a rk  5.6. The results obtained above fo r  traveling waves are only valid fo r the 
case of directed tissues. For undirected tissues, there does not exist traveling wave. 

Indeed, in  the undirected case, we know that q+ =  q~ =  |  and system (5.5.8) is 

reduced to a scale equation
pz — —acp. (5.5.21)

Clearly, there is no solution satisfying boundary conditions (5.5-4) f or (5.5.21) and 
furthermore p(z) —»■ +oo as z —► +oo.

5.6 N o P attern  Formation

In  the section 5.3, we prove the global existence of classical solutions to  the system
(5.1.8). So there is a nature question to  system (5.1.8) as a model describing a 
biological phenomenon: is there pattern  form ation ? In  th is section, we w ill show, 
w ith  the help o f linear s ta b ility  analysis, th a t the one-dimensional mesenchymal 
m otion models do not adm it pattern form ation. Below we brie fly discuss the s tab ility  

o f steady state of system (5.1.8).
We firs t find  four homogeneous steady states for system (5.1.8): Si =  (0,0, c i, 1 — 

c i), <52 =  (0,c2,0 ,1 ),S 3 =  (c3, 0 ,1 ,0 ) and S4 =  (c4,c4,§ , | ) ,  where 0 <  c4 <  1 and 
C2,c3, c 4 are positive constants. Let ( p f , p j , q f , q f )  denote the homogeneous steady
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Figure 5.4: The traveling wave o f flu x  j  and p robab ility  function q~, where c =  
1, s =  2, fj, =  2, k =  1. The waves travel from  le t to  rig h t and c denotes the traveling 
speed and tim e t  =  0,5,10,15,20.

state o f (5.1.8). Then the linearization of the system (5.1.8) about the homogeneous 
steady state is as follows

P i  +  ■
Pt -  SPx

Qt

Qt

,+  —

-p p + + pqt{p+ + p~) + pq+(p f + PJ),

~PP~ +  M 7 (P + +  P~)PQ~(pt +Ps)>

* ( P t  ~  P s)( .Q s  ~ Q t  +  1 )Q +  +  K (P +  ~  P ~ ) ( Q 7  ~  Q t  +  l ) Q t  

+ n { p t  - p t ) { < T  ~ Q + ) Q t ,

K ( p t  ~  P 7 ) ( Q 7  ~ Q t  ~  ! ) q ~  +  « ( P +  -  P ~ ) ( Q 7  ~  Q t  

+K(p+ -  p f)(q~  -  q+)q~.

Then the linearization o f the above system at the steady state Si is

(5.6.1)

P t  +  sP t 
P 7  ~  * P 7  

Qt 
Qt

=  - (1  -Ci) iip+ +  Cinq~,
=  (1 -c i ) / ip +  - c x f i q - ,

=  2 k c 1 ( 1 - c i ) ( p + - p ~ ) ,

=  - 2 « c i( l -  c i)(p + -  p~).

Applying Fourier transform  ^  to  the above system gives rise to

ut =  Au,

where u and A  are given by

" p+ ' —isk  — (1 — Ci) Ci/i 0 0 '

p~ ,A  =
isk  +  (1 — Ci) - c ip 0 0

Q+ 2k c i(1 — c i) —2k c i(1 — c i) 0 0

. Q~ . —2 /tc i( l — c i) 2 k c i ( 1  —  c i) 0 0 .

1 ) 0 7

(5.6.2)
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Figure 5.5: An example of a standing wave for system (5.5.8), where s =  2 ,/i =  
2, k  =  1 and tim e t  — 0, 5,10,15, 20.
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Here k is the frequency o f Fourier transform  and i  is the im aginary number. I t  is clear 

th a t m a trix  A  has four eigenvalues A i =  A3 =  A4 =  0 and A2 =  — Ci/x <  0. Hence 

the steady state Sy is stable. Using the same argument, we can find eigenvalues for 
a ll other three steady states S2, S3, £4 and determine th e ir stab ility . We summarize 
the results in  the follow ing table.

Steady State Xy A2 A3 A4 S tab ility

Si 0 - c in 0 0 Stable

s2 —p  — isk isk —2c2k - c2k Stable

S3 —isk —p  +  isk -C 3K —2C3K Stable

S4 —/i/2 0 0 0 Stable

Table 1: Summary of the eigenvalues and s tab ility  o f steady states for the system
(5.1.8), where Ai ,A2,A3 and A4 represent the eigenvalues corresponding to  steady 
states S i, 52, S3 and £4, respectively.

From table 1, we see th a t a ll homogeneous steady states are stable to  a small 
spatia l perturbation, which implies th a t there is no pattern form ation for the system
(5.1.8).

5.7 Conclusions

In  th is  chapter, we establish the global existence o f classical solutions to  the one 
dimensional mesenchymal m otion models for both directed and undirected tissue. 
P articu larly  we show th a t the model (5.1.9) for undirected tissues in  one dimension 
has a constant solution for fibre orientation d is tribu tion  such tha t q (t,x ,+ s )  =  
q(t,x , —s) =  | ,  which means cells have no preference in  choosing direction to  move 
and have equal p robab ility  to  move to  the rig h t and the le ft side.

We prove the existence of a weak lim it o f solutions for parabolic and hyperbolic 
rescaled equations of the one dimension mesenchymal m otion models. Moreover, we 
study the traveling wave solutions and establish the existence o f traveling pulse in 
to ta l cell population p(t, x) and traveling front waves in  fibre orientation d istribu
tio n  q ^ it, x). The standing wave (c =  0) is adm itted in  our analysis. This is not 

unexpected since cells can move in  two directions (le ft and rig h t) and two traveling 
waves w ith  opposite direction can elim inate each other to  result in  a standing wave. 
By linear s ta b ility  analysis, we show th a t there is no pattern form ation for the one 
dimension mesenchymal m otion models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

In  paper [47], for a given d istribu tion  of fibre orientation q^(t, x), the parabolic 
scaling and hydrodynam ic scaling were used to  derive the corresponding macroscopic 
models which describe a population of cells as a whole. These macroscopic models 

typ ica lly  take the form  of d rift-d iffu s io ii equations. The parabolic scaling £ =  ex, r  =  
e2f leads to  a d rift-d iffusion  equation w ith  diffusion constant s2/p  and d rift velocity 
sEg (see [47])

pT +  (sE ,(t , O p)t =  — P«> (5.7.1)
p

which compares to  the lim it equation (5.4.16) derived in  the section 5.4 of th is chap

te r where we consider the coupled system consisting o f equations for cell m otion and 
for fibre d is tribu tion  . Here Eq represents the mean fibre direction. The hyperbolic 
scaling f  =  ex, r  =  ef gives rise to  a pure d rift equation d rift velocity sEg

pT +  (sEg(r, f  )p)c =  0, (5.7.2)

which corresponds to  the lim it equation (5.4.28).

I t  is worthwhile to  po in t out th a t one dimensional mesenchymal m otion models 
have significant difference from  the higher dimensional models. In  one dimension, 
fibre orientation q(t, x, 9) only has two direction and hence is bounded due to  the 
norm alization condition (5.5.1). However, in  higher dimension, fibres have in fin ite  
many d is tribu tiona l directions and typ ica lly  q (t,x ,9 ) can be a delta function along
u n it sphere 5 "_1 by condition (5.5.1). Hence the approaches applied in  th is chapter

does not apply for higher dimensional situation. In  a forthcom ing paper [58], we 
w ill study the existence of solutions for the high dimensional mesenchymal m otion 
models in  a measurable Banach space using semigroup theory.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Chemotaxis models and mesenchymal transport equations are studied in  th is the
sis. I  establish the global existence o f solutions, pattern form ation and underlying 
b ifurcation for the volume fillin g  chemotaxis model w ith  a nonlinear squeezing prob
a b ility  which reflects the elastic properties o f cells. For a chemotaxis model w ithout 

transport o f chemicals, I  fu lly  analyze the shock structures for both the attractive  
and the repulsive cases. For the one dimensional mesenchymal m otion transport 
model, the qua lita tive behavior o f solutions is analyzed. I  show th a t global classical 
solutions exist but no pattern form ation evolves. In  addition, I  prove the existence 

o f weak lim its  o f solutions to  parabolic and hyperbolic rescaled equations. The 

existence of traveling wave solutions is established.
In  Chapter 2 and Chapter 3, numerical simulations demonstrate a very interest

ing patterning dynamics: the merging and emerging process. The sim ilar patterning 
process was also observed in  some other chemotaxis models o f cancer cell invasion of 
tissue [18] and a model o f turbulence-shear flow interaction [25] as well as the Brus- 
selator model [69]. These models show a complicated interaction o f two neighboring 

maxima th a t jo in  to  form  a single maximum (merging). Insertion (emerging) of new 

maxima arises between two existing maxima. When cell kinetics is zero ( /  =  0), 
local maxima a ttrac t each other and merge in to  larger and broader maxima (see 
Figure 2.6(a)). The underlying in s ta b ility  has been investigated by Potapov and 
H illen [104], where it  is shown th a t the merging process corresponds to  transient 
dynamics along metastable steady states. In  a paper by Dolak and Schmeiser [27], 
the merging process was analyzed using singular perturbation methods for a small 

diffusion parameter. Roughly speaking, two local maxima need to  be close enough 
to  “feel” each other and come together.

Since the merging and emerging process have appeared in  many models which 
describe different physical or biological phenomena, it  would be interesting to  pro
vide the underlying m athem atical mechanism for these interesting patterns. The 
m athem atical analysis in  [27, 104] are very pre lim inary and a fu ll analysis for the 
merging and emerging process w ill be d ifficu lt and complicated. Some novel ideas 
are proposed in  [48] to  analyze the dynamical behavior, s ta b ility  o f steady states and
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periodic orb its as well as asymptotics to  these local maxima. W ithou t cell kinetics 
( /  =  0), we w ill prove the c ritica l length lm for merging w ill play an im portant role. 

When cell kinetics are present ( /  /  0), then in  addition to  the merging we observe 
the emerging o f new local maxima (see Figure 2.7). The emerging of local max
ima is driven by a re latively high growth rate in  small population density regions. 
Related to  the Lyapunov function given by Wrzosek [124, 125], we expect th a t the 
situation is completely different from  the case o f zero kinetics ( /  =  0). We can not 
expect these local maxima converge to  steady states and the succession o f merging 
and emerging m ight indicate a chaotic behavior. However, we expect there exists 

a c ritica l emerging length le such th a t emerging appears only for a distance larger 
than le. The details w ill be provided in  the forthcom ing paper [48].

In  Chapter 3 ,1 choose another different squeezing p robab ility  function q(u) which 
leads to  a singularity in  the diffusion component. In  spite o f open question of global 
existence, I  investigate the pattern form ation and the underlying bifurcations. The 
sim ilar merging and emerging pattern form ation as in  Chapter 2 are observed. This 

im plies tha t volume fillin g  chemotaxis model produces a typ ica l patterning process: 
the merging and emerging process. I t  is well known th a t diffusion is a dissipative 
effect in  general and hence global in  tim e solutions should exist. B ut novel ideas 
need to  be developed to  ju s tify  th is assertion. One possib ility is to  use a m odifier to  

smooth the singularity and construct a regularized squeezing p robab ility  function qe. 
Then I  would use standard PDE theory to  obtained global existence and uniform  
boundedness o f solutions ut for the m odified system. Eventually I  w ill prove the 

convergence o f the solution ut as e —► 0.
In  Chapter 4, I  show tha t the chemotaxis model o f O thm er and Stevens [95] 

adm its a shock structure for both the a ttractive  and the repulsive case, namely, 
the travelling waves w ith  travelling speed equal to  shock speed converge to  the 
shock waves as the viscosity vanishes. This gives the precise inform ation for the 
lim it of travelling waves when viscosity tends to  zero. Hence when the viscosity 

is effectively small, the travelling speed can be approximated by the shock speed 
th a t can be easily obtained from  Rankine-Hugoniot jum p condition, which provide 
a easier way to  estimate the particle travelling speed.

The mesenchymal transport model, introduced by H illen  [47], is analyzed in 
Chapter 5. The qua lita tive  behavior of the solution to  the one dimensional model 
can be quite well understood. I prove the existence of classical solution and traveling 

wave solutions, weak lim its  of solutions for rescaled equations and nonexistence of 
patte rn  form ation. However, the higher dimensional mesenchymal transport models 
have significant difference compared to  one dimensional case. The prim ary d iffer
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ence is the number o f directions o f fibre orientations. In  higher dimension, there are 

in fin ite  fibre orientations and hence the p robab ility  density q(t, x, 9) can be a delta 

function q(9) =  Sb(6) w ith  respect to  6 as the tissues are to ta lly  aligned in  some 
d irection b. Hence the analysis o f L°° argument used in  [17, 62] is no longer valid for 
mesenchymal transport models. In  a forthcom ing paper [58], we th in k  o f the orien
ta tio n  d is tribu tion  q as a signed Borel measures on S'"-1 and establish the existence 
o f m ild  and classical solutions in  the Banach space of regular signed real-valued 
Borel measures w ith  to ta l variation norm using semigroup theory of operators. The 
details are om itted since th is work is s till in  preparation.

As I  mentioned in  the Introduction, the kinetic transport model can integrate 
microscopic level inform ation on signal transduction in to  population level or tissue 
level models. In  the transport equation, the turn ing  kernel, plays a crucial role 
and determines the com plexity and diversity th a t the macroscopic lim its  could be. 
Relying on on specific situation, the turn ing  kernel can depend on the chemical 
concentration, and the spatial or tem poral variation o f the chemical concentration. 

In  the model (1.2.6) and (1.2.7) derived by Dolak and Schemeiser [28], the tem poral 
derivative is only form ally included in to  the turn ing  kernel due to  the assumptions of 
uniform  boundedness of tu rn  kernel. In  paper [117], we w ill tru ly  include tem poral 
derivative in to  the tu rn  kernel and establish the global existence o f weals solutions 
and rigorously derive the macroscopic lim its  in  one dimension. For higher dimension, 
it  is s till an open question. From our analysis, the estimates for global bound of 
local solutions are optim ally obtained and new techniques are need to  be developed 
to  trea t higher dimensional case.
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