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Abstract

In this thesis, we study chemotaxis models and mesenchymal transport models.
By a novel choice of the so called squeezing probability, we try to incorporate the
semi-elastic properties of cells into the volume filling chemotaxis model and estab-
lish the global existence of solutions. For this choice of squeezing probability, we
examine the stability of homogeneous equilibrium and analyze the underlying bifur-
cations. In addition, we present one-dimensional numerical simulations and observe
merging and emerging process of pattern formation. For a chemotaxis model with-
out diffusion of the chemical signal, we study the shock structures for both the
attractive and the repulsive case. We show the existence of travelling waves and
furthermore prove that the traveling speed is identical to the shock speed. Then we
prove that the traveling waves converge to the shock waves when the viscosity of the
system vanishes, which implies that the shock wave admits a structure. For the one-
dimensional mesenchymal motion transport models, we provide a detailed analysis
for the qualitative behavior of solutions. We establish the global existence of classi-
cal solutions and show the existence of weak limits of solutions to the parabolic and
hyperbolic rescaled models. Moreover, we establish the existence of traveling wave
solutions and nonexistence of pattern formation. Some new questions and research
directions are proposed in the thesis.
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Chapter 1
INTRODUCTION

A characteristic feature of living organisms is that they sense the environment
in which they reside and response to it. The response generally involves movement
toward or away from an external signal (stimulus), and such a response is called tazis,
which originates from the Greek taris, meaning to arrange. The purpose of taxis
ranges from movement toward food and avoidance of noxious substances to large-
scale aggregation for the purpose of survival. There are many types of taxis such as
aerotaxis, chemotaxis, geotaxis, haptotaxis, and others (see [95]). Any taxis involves
two major components: (1) an external signal and (2) the response of the organism
to this signal. The response, in turn, involves two major steps: (i) detection of the
signal and (ii) transduction of the external signal into an internal signal that controls
the pattern of movement. In this thesis, I am primarily concerned with chemotaxis,
which describes the characteristic movement or orientation of an organism or cell
along a chemical concentration gradient. Depending on whether it is toward or
away from the external signal that affects the pattern of movement, the external
signal is characterized as chemoattractant or chemorepellent. The characteristic
consequences of chemotaxis are cell aggregation and pattern formation. There are
two major chemotaxis models. One is called Patlak-Keller-Segel (PKS) model due
to the pioneering works by Patlak [101] as well as Keller and Segel [67, 68]. The
other is called kinetic transport model which was proposed by Alt [2, 3] and further
developed by Othmer et al [93]. The PKS type model is based on macroscopic scales
and describes the collective behavior of particles which interact with external signals.
The kinetic transport model, which describes the behavior of individual cells, can
incorporate microscopic level information on cell signal transduction. These two
type models have most extensively been studied in the literature of chemotaxis. The
primary part of my thesis will be focused on some existing PKS type chemotaxis

models and mesenchymal transport models, which were established in the literature

(98, 95, 75, 47].
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1.1 Main Results of the Thesis

This thesis is focused on the study of analytical and numerical properties of PKS
type chemotaxis models and mesenchymal transport models. The organiZation of
this thesis is as follows.

Chapter 1. This is an introductory chapter where I briefly discuss the moti-
vation of the study and the main results obtained for each chapter. Also I make a
survey of chemotaxis models and transport models, of some results already obtained
for these models, and of the techniques involved.

Chapter 2. This chapter deals with the volume filling chemotaxis mode which
incorporate the elastic properties of cells. The finite blow-up phenomenon of clas-
sical the PKS model has been widely studied in the literature, as seen in the next
section. However, the blow-up solution is not consistent with pattern formation
by bacteria and have limited biological relevance although it is of interest mathe-
matically. It is therefore desirable to study biologically relevant and mathematically
useful modifications of the classical chemotaxis model that allow the global existence
of solutions. There are numerous mechanisms developed toward this end, including
saturation effects (e.g. Othmer and Stevens [95], Rivero et al, [106], Aida et al. [1]),
cell kinetics (e.g. Mimura and Tsujikawa [81], Osaki et al. [91]), attraction-repulsion
mechanism (e.g. Luca et al. [78] and Hillen et al [55]), volume filling effect (e.g.
Painter and Hillen [51, 98]), finite sampling radius (e.g. Hillen et al. [53]), nonlin-
ear motility parameter and nonlinear chemosensitivity (e.g. Hortsmann [59]) and
nonlinear diffusion rate (see [70]). In Chapter 2, I will develop the volume filling
chemotaxis model proposed in [51, 98] further. The fundamental standing point
of the volume filling effect is that cells have a finite volume and can’t move into
regions which are already filled by other cells. Hence the probability of making a
jump by a cell depends upon the availability of space into which it can move. The
global existence and asymptotic behavior of solution as well as pattern formation
have been studied in the literature [27, 51, 98, 124, 125] for a very general volume
filling chemotaxis model. But in all these papers, the squeezing probability ¢(u), the
probability of a cell finding space at its neighboring site, is chosen with assumptions
that cells behave like solid blocks. But cells are not solid blocks. They are elastic
and can squeeze into open spaces. In this chapter, I include the elastic properties of
cells into the model by means of a nonlinear squeezing probability function g(u). I
prove the global existence of classical solutions and study pattern formation of the
resulting model. I give the general conditions for pattern formation and analyze the
underlying bifurcations. Numerical simulations are presented and interesting merg-
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ing (joining of two neighboring maxima) and emerging (insertion of new maxima
between two local maxima)) patterning process are observed. These patterns are
similar as patterns obtained in paper [98] and I conclude that merging and emerging
process is a typical patterning process of the volume filling chemotaxis model.

Chapter 3. In Chapter 3, I continue to study the volume filling chemotaxis
model with another novel choice for squeezing probability which still reflects the
elastic properties of cells. But the nonlinear diffusion rate of the resulting model
has a singularity at the crowding capacity and then the corresponding PDE theory
used in Chapter 2 no longer applies. I call this a fast diffusion problem although it
is slightly different from the conventional notion of fast diffusion (see, for example,
[80]). As an open question, I leave the global existence of solutions to be studied
in the future. In this chapter, I investigates pattern formation and the underlying
bifurcation for the resulting chemotaxis model. The numerical simulations in one
dimension for both zero kinetics and non-zero kinetics are presented. It turns out
this novel choice of squeezing probability does not bring significant difference in
pattern formation compared to the choice made in Chapter 2 and we still observe
the typical merging and emerging patterning process. However mathematically this
different choice raises an open question of global existence of solutions and bring
new challenges to nonlinear analysis.

Chapter 4. This chapter treats another chemotaxis model without diffusion of
external signal. In the literature, pattern formation and blow up phenomenon of the
classical chemotaxis model are extensively studied. However, another phenomenon,
i.e., shock formation, was rarely investigated except numerically in [95, 75]. Shock
formation might indicate a propagating disturbance of cell movement which is gen-
erated by the interaction of cells with their environment. Due to the lack of food,
adaption of environment and some other reasons, cells make a fast chemotactic ag-
gregation and then collapse down to a lower level aggregation instead of blowing
up. Mathematically this also leads to a new interesting direction which has never
been investigated before. In this chapter, utilizing the theory of hyperbolic system
of conservational laws, I study the shock structure for a chemotaxis model which
was developed by Othmer and Stevens [95]. In this model, it is assumed that there
is no diffusion (transport) of the chemical signal. I first establish the existence of
shock waves for the model without viscosity. Then I prove that the traveling waves
for both the attractive and the repulsive cases exist and that the traveling speed
is identical to the shock speed. Eventually I show that traveling waves converge
to the given shock waves as the viscosity vanishes. Furthermore, I explicitly find
an entropy pair for the repulsive case, which thus ensures the uniqueness of the
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weak solutions (shock solutions) for the repulsive chemotaxis model of Othmer and
Stevens [95].

Chapter 5. In Chapter 5, I will turn to the study of transport models. The
kinetic transport equation plays an essential role in bridging individual and popula-
tion behavior in chemotaxis. By choosing appropriate multi-scales, I can integrate
microscopic level information on signal transduction into population level or tissue
level models. The turning kernel in this model plays a crucial role and determines
the complexity and diversity that the macroscopic limit equation could have. There
are many applications of kinetic transport equation in modeling cell movements such
as mesenchymal motion [47] and motility of amoeboid cells [33]. This chapter is fo-
cused on the study of the mesenchymal motion models which were derived by Hillen
[47] where the macroscopic limits and some applications are discussed as well. Nu-
merical schemes and pattern formation in n-dimensions are studied by Painter [97].
In case of chemotaxis, a system of a transport equation and a parabolic equation
for the chemical signal was studied by Chalub et al. [17] and Hwang et al. [63, 62].
Their arguments for the global existence of solutions as well as macroscopic lim-
its are based on L*°- estimates of the turning kernel. In the case of mesenchymal
motion models, the turning kernel is given by the fibre distribution ¢(t, z, 8) which
is allowed to be a delta distribution ¢(8) = 6,(0) for a totally aligned tissue in di-
rection of b € R™. As a result, the fibre distribution is not necessarily bounded in
L*. In particular, assumption (A0) in paper [17] does not apply and hence their
results can not be applied directly to the case discussed here. The global existence
analysis is quite technically involved and challenging. So far the global existence
of solutions and convergence of macroscopic limits remains open. In this chapter,
I give a detailed analysis for the one dimensional mesenchymal motion model and
establish the global existence of classical solutions. In addition, I prove the exis-
tence of a weak limit of solutions for parabolic and hyperbolic scaled equations and
prove the existence of traveling waves as well as nonexistence of pattern formation.
Mathematically the high dimensional mesenchymal transport models have signifi-
cant difference from the one dimensional case. The approaches used in this chapter
for the one dimensional case is no longer valid for the higher dimensional case. In a
collaboration [58] with T. Hillen and P. Hinow, the theory of semigroups of opera-
tors will be applied to show the global existence of solutions in a measurable Banach
space for high dimensional mesenchymal transport models. The details will not be
provided in this thesis.

Chapter 6. This is a discussion chapter. I briefly summarize the results obtained
in this thesis and point out future research directions that I am going to pursue.
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1.2 Introduction of the Models

1.2.1 Patlak-Keller-Segel Model (population level)

Let u(t,z) and v(z,t) denote the cell density and the concentration of the external
signals (chemoattractant) at the position z € 2 and time ¢ > 0, respectively, then
a simplified version of PKS model reads

u; = V(DVu — uVp(v)), (z,t) € Q x (0,00)

U = kAv + g(u, v),
Oou Ov
% = 5/’; = 0, S o0N

u(z,0) = ug(z), v(z,0) = vo(x),

(1.2.1)

where () is a bounded domain of R*(n > 1), g(u,v) describes the production and
degradation of external signal v and ¢(v) is called potential function describing the
signal detection. The numerous results associated with various PKS type models
are mostly summarized in three survey articles [60, 61, 52]. In the following, I briefly
review some results regarding the finite time blow up solutions and global solutions
to PKS type chemotaxis models.

Model (1.2.1) has been extensively studied in various aspects and a large number
of results in the literature deal with the case where ¢(v) = xv and g(u,v) = au—yv
with positive constants x, < and «, here x is commonly called chemosensitivity. Na-
jundiah [90] was first to suggest that aggregation of cells may eventually lead to
the formation of a delta function in cell density, a phenomenon called chemotactic
collapse in that paper. More often, it was referred as blow up in the literature. His
argument, however, did not consider the possible dependence of such collapse on the
dimension of the space in which aggregation happens. This viewpoint was developed
by Childress and Percus [21, 20], who showed that singular behavior was not possible
in one dimension. While in higher dimension (n > 2), they confirmed Nanjundiah’s
argument that collapse (blow up) can occur. They furthermore argued that, in two
dimensions (n = 2), chemotactic blow up requires a threshold number of cell mass.
Precisely, there exists two numbers ¢, and ¢* such that the solution exists globally
in time if the initial mass ||uo||z1(q) < ¢x, and forms a J-function singularity in finite
time if ||uo||z1(qy = ¢*. However, these results are heuristic based on numerical com-
putations for the steady states. Subsequently, for the parabolic-elliptic case (7 = 0)
Jager and Luckhaus [65] proved that radially symmetric solutions in two dimensions
can blow up for suitable initial data ug by constructing a radially symmetric lower
solution for the first equation of PKS model. Precisely, they showed that there exists
a critical number 8 such that
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(1) if [, uodz < 6, the solution (u,v) exists globally in time, and
(2) if [, uodz > 6, the solution u blows up in a finite time,
where () is a bounded domain in R? with the C! boundary ). Furthermore, Nagai
[83] refined the above work by identifying this critical number with 87k, /(azx). He
showed that blowup cannot occur if n = 1, or if n = 2 and  is a ball and u(x)
is radially symmetric such that f,uodz < 8mk./(cx), whereas blowup occurs if
Jq vodz > 8mk./(cx). Herrero and Veldzquez [42, 43, 44] first considered the same
v-equation (7 > 0) as in [83] and showed that if Q is an open ball in R? with radius r,
then one can obtain radial solutions (u(r,t), v(r,t)) such that u(r,t) blows up exactly
at the origin r = 0 at time ¢ = T > 0 in such a way that u(r,T) = %’i"‘&(r) + f(r)
as r — 0 having a concentrated mass equal to 87k./(ax), where §(r) is the Dirac
measure centered at 7 = 0 and f(r) = Ge~? log(M)I"”*(140(1)) with a positive constant
C depending on x. Global existence or blowup results for nonradial solutions or for
general domain € can also be found in references [26, 85, 86, 87, 89|, all of which deal
with parabolic-elliptic versions (7 = 0) of the PKS model with different sensitivity
functions. There are many works devoted to analysis of steady states of the PKS
model. The landmark in this direction was the paper by Najundiah [90] again,
in which the Hopf’s maximum principle was applied to the steady state system to
derive the relation between v and v and consequently the steady state system was
reduce to a scalar parameter-dependent elliptic problem. In [109], Schaaf showed
that the stationary problem of more general PKS models than the cases studied by
Najundiah can also be reduced to a scalar parameter-dependent elliptic equation.
The linear and logarithmic chemotaxis sensitivity functions are considered there.
Furthermore, Schaaf gave a stability analysis for the constant stationary solutions
of the PKS model. Lin et al [77] established conditions with logarithmic sensitivity
function for system to have both nonconstant and constant stationary solutions.
Based on the variational techniques introduced by Struwe et al [118], Wang et al
[122], Senba et al [111] and Hortsmann [59] independently proved the existence of
nontrivial stationary solutions without symmetry assumptions. Coming to the full
PKS model (7 > 0), Nagai et al [89, 88| proved that radially symmetric solutions
exist globally in time provided the initial mass satisfies ||uo||z1(q) < 87k./(ax). As
for the general solutions (non-radial symmetric), they gave ||uollz1(@) < 4mkc/(ax)
as a criterion for the existence of global solutions. Biler [11] and Gajewski et al [39]
independently obtained the same criterion as above for the global existence of non-
radial solutions by constructing a Lyapunov function. Moreover, Gajewski et al [39)
showed that the solutions asymptotically approximate stationary solutions for some
sequence of time moments. The long time behavior of global in time solutions was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



recently obtained by Feireis! et al [35]. It is clear that there is a discrepancy between
the radial threshold 87k./(a;x) and the non-radial threshold (4nk./(ax)). This gap
was filled by subsequent works [88, 85, 111, 110]. They showed that if there is a
solution that blows up in finite time for 47k./(ax) < |luol|z1() < 87k./(ax), then
the blowup (for u) has to happen at the boundary of the domain. Furthermore, in a
book by Suzuki [119], when n = 2, the quantized blow up mechanism was discussed.
It was shown that the solution will blow up in finite time if the initial mass |[uol|z1(q)
is greater than a quantized mass m,(zo) which is defined as

i (25) = 8rk./ax, g€ Q,
o drck./ax, xo € 09,

where  is a bounded domain in R2. Beside the analysis of the PKS model on
a bounded omain, Nagai [84] studied the problem on the whole space Q = R2.
He showed that for |lug||zimey < 4mk./(cx), the solution exists globally in time
using the Lyapunov function and furthermore found several decay properties of the
solution.

Most of the studies mentioned above are focused on the two dimensional case.
So what is known for the case n = 1 or n > 37 For the case n = 1, the paper by
Osaki et al [92] and Hillen et al [54] filled the gap of the missing global existence
proof using different approaches for the classical PKS model. For the case of higher
space dimensions n > 3 and a bounded domain, the solution will blow up [83] if the
initial data uo is radially symmetric and small. In [12], it was shown that if n > 2
and 2 C R” is a bounded star-shaped domain with respect to origin, then solutions
blow up for sufficient large initial mass ||ug||z1(n). When @ = R3, for any T > 0
and constant C > 0, there exists a radial solution (U(¢,r),V(¢,7)) such that the
radial solution blows up at the origin 7 = 0 and ¢ = T and flml < U(T,8)ds — C (see
[42, 43, 44]). For more detailed results about the PKS model, I refer to the survey
articles [60, 61]. For n > 3 and non radial symmetric solutions with general bounded
domain, Hillen et al [55] showed that L” solutions (p > 1 +n/2) globally exist when
initial data [lug||rr(q) is sufficient small. Recently, some interesting results about
the unbounded domain for n > 2 are obtained. Corrias et al [23, 22] showed that
in dimension n > 2, L™2(R") is the critical space: there exists a constant K;(n),
such that when initial norms ||uo||zn/2@mny < Ki1(n) there are global weak solutions
and solutions decays to zero for the elliptic case (7 = 0), while solutions decay to
G(t) * up for the parabolic case (7 = 1), where G(t,z) denotes the heat kernel.
For large initial data |[ug||pn/2@gny = K2(n)(>> Ki(n)), the solutions blow up (see
Perthame [103]). Clearly there is a gap between two thresholds Ki(n) and Ks(n),
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which has not been filled yet so far.

1.2.2 Kinetic Transport Model (individual level)

Bacterial motility is commonly provided by flagella, which are long, spiral-shaped
protein rods that stick out from the surface of the cell [108]. The examples of
flagellated bacteria are enteric bacterium E. coli, bacterium S. typhimurium and soil
bacterium A. winelandii. The physical mechanism of movement of the flagellated
bacteria is well known [9]. There are two models of movement pattern based on
counterclockwise (CCW) and clockwise (CW) flagellar rotation. When the flagella
turn counterclockwise, they join together and form a synchronous bundle that causes
the flagella to point in one direction and pushes the body steadily forward. This
forward motion is called ‘run’. The speed of running is s = 10 — 20um/sec. A
clockwise rotation of each flagellum causes the bundle to come apart and the flagella
turn independently, moving the cell body this way and that in a highly erratic
manner. In this case, the cell is said to ‘tumble’. I simply characterize these motions
as “run and tumble”. Tumbling reorients the cell so that it can move in a new
direction when running starts again. The ‘run and tumble’ process is very similar
to that of scattering for neutrons that ‘run’ along straight lines until they encounter
an atom and then are ‘scattered’ in a new direction. The governing equation is
therefore reminiscent to the Boltzmann equation [24, 102].

For E. coli, the duration of both run and tumble are exponentially distributed
with means of 1 sec and 0.1 sec respectively if an extracellular chemical signal is not
present [13]. Under the influence of an external signal (chemoattractant or noxious
substance), the cell increases its time on running in a favorable direction. Since
these bacteria are too small to detect spatial differences in the concentration of an
external signal on the scale of a cell length, they choose a new direction essentially
at random at the end of a tumble, although it has some bias in the direction of the
preceding run [10, 31]. Therefore, from mathematical point of view, the movement
of flagellated bacteria can be viewed as a biased random walk. As the mean time
for tumbling is ten times smaller than the mean time of running, the tumbling time
is negligible and consequently we can model the movement of the bacterium by a
stochastic process called a velocity jump process which was introduced by Alt [2]
and further developed in [93, 50, 94, 116]. A kinetic transport model to describe
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this velocity jump process is as follows (see [93])

op
& +v- va:p - T(S,p)’

T(S,p) = /V (T(S; v,9")p(t, z,0) — T(S; v,0)p(t, 7, v))d, (22
where p(t,z,v) denotes the density of cells at position z, moving with velocity
v € V C R" at time t. 7 is an operator modeling the change of direction of
cells and turning kernel 7', depending on the density S of external signal, gives the
probability of a velocity jump from v’ to v if a jump occurs. In [2, 3, 50, 94], it
was shown that parabolic chemotaxis equation, such as the PKS model (1.2.1), can
be obtained as the diffusion limit of the transport equation (1.2.2), thus allowing
to determine the diffusion matrix D and the chemotactic sensitivity x. The global
existence, blow-up and macroscopic limits of the one-dimensional version of model
(1.2.2) have been studied in [57, 56, 49, 64]. In higher dimension, the global existence
of solutions and parabolic limits to equation (1.2.2) was given in [17] for a given S.
When the equation for external signal S is coupled into transport equation (1.2.2),
the rigorous proof of parabolic limits was subsequently supplied in [63, 62], where a
more general turning kernel T was considered.

All of the above results either heuristically describe the macroscopic process,
or, if using a transport model, assume that the turning kernel only depends on
the signal concentration but not on its gradient, and not on internal variables.
However, a bacteria population is comprised of millions of individual bacteria and
collective behavior of the bacterial population involves individual-level response to
signals. The machinery of signal transduction and adaption for some bacteria (e.g.,
E. coli) has been well characterized [7, 14, 115], which leads to the question of
how to incorporate the individual behavioral rules into population level models. A
significant progress on filling the gap between microscopic and macroscopic models
has been made in [31, 32]. Assume that the internal variables £ € Z C R™ involved
in the signal transduction evolve according to the equations

&% _
dt

where n(-,S) : Z — R™ and S(t,z) denotes the extracellular signal as above and

(€, S(¢, z(t))) (1.2.3)

z(t) is the cell path. Then the governing equation with internal state variables in
the jump velocity process is given by (see [31, 32])

% +v-Vp+ Ve(np) = -AE)p + /V AET (v, v, E)p(t, z, v, E)dv',  (1.2.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

where p(t, z, v, £) is the density of cells with internal state £ at position z € R® with
velocity v € V' C R™ at time ¢ > 0. Here it is assumed that the random velocity
changes follow a Poisson process with rate A(§) and the turning kernel satisfies the
normalization condition [, T'(v,v,€)dv’ = 1. Applying the perturbation methods
and moment closure approach, the authors of [31, 32] use a cartoon model for the
internal state £ = (&1, &)

% _ 9(5(n)) ;(El +&) %5;2_ _ 2@%, A(€) = Ao — by (1.2.5)

as an example to show how aspects of the signal transduction and response explicitly
enter into the macroscopic equations via chemotactic sensitivity function by studying
the parabolic and hyperbolic limits of equation (1.2.4), where A is the basal turning
frequency for a fully adapted cell and b is a positive constant. Their analysis showed
how parameters that characterize signal transduction and response in individual cells
are embedded in the macroscopic chemotaxis PKS model through the sensitivity
function x in. Specifically, they derive that the macroscopic density p(t,z) evolves
according to the following chemotaxis equation

0
5—? =V - (DVp—p-x(S)VS)

where the macroscopic density p(¢, z) is defined by

plt ) = /Z /V plt,, v, €)dud,

and the diffusion rate and the chemosensitivity y are given, respectively, as

D= 7{'70, X(8) = ¢(S(x))

bs’7,
n)\o(l + )\oTa)(l + )\oTe),

Their argument was further developed in [33] for the more complex type of be-
havioral response characteristic of crawling cells, which detects a signal, extract
directional information from a scaler concentration field, and change their motile
behavior accordingly. The numerical approaches for solving (1.2.4) was explored
in [30] and the global existence of solutions to equation (1.2.4) and (1.2.5) in one
dimension coupled to the equation for external chemical S(¢, z) was obtained in [29].
In papers [2, 3, 31, 32, 33], the turning kernel T is assumed to be independent of
internal or external variables due to the technical difficulty for deriving macroscopic
limits. In the work [28], the authors studied the almost same model as (1.2.4) with a
generalization that turning kernel T depends on the spatial and temporal gradient.
By essentially assuming that the boundary condition p(¢, z,v,£) = 0 for £ € 6Z and
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applying moment closure method, the authors of [28] reduce equation (1.2.4) into
the following two equations without the internal variable gradient

ftv-Vf= /V (TISIf — T*[S)f)dv, (1.2.6)
(p2)s + Vg - (z/vvfdv> = pn(z, S), (1.2.7)

where

f(t,2,v) = /Z p(t,,v,€)d, f(t,x) = /V £(t, 2, v)dv,

and z(t,z) denotes the average values of the internal variables determined by

o(t,7) = % /V /Z ep(t, 2, v, £)dedv,

and turning kernel T is given by T[S] = ¢(S; + v - V.S) with an assumption that
¢ : R — R is a monotonically decreasing smooth function possessing positive lower
and upper bound.

The hydrodynamic limits of equations (1.2.6) and (1.2.7) are rigorously derived
in [28]). The numerical results for the macroscopic chemotaxis equations of models
(1.2.6) and (1.2.7) were investigated as well.
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Chapter 2

VOLUME FILLING CHEMOTAXIS MODEL WITH
NONLINEAR SQUEEZING PROBABILITY!

2.1 Introduction

Chemotaxis is the characteristic movement or orientation of an organism or cell
along a chemical concentration gradient either toward or away from the chemical
stimulus. In the first case, the chemical is called a chemoattractant, and in the sec-
ond case it is said to be a chemorepellent. The term chemotaxis is used broadly in
the mathematical literature to describe general chemosensitive movement responses.
Models for chemotaxis have been successfully applied to the aggregation patterns
in bacteria {120, 121, 123], slime molds [37], skin pigmentation patterns [100], an-
giogenesis in tumour progression and wound healing [16] and many other examples.
A classical and very important chemotaxis model was proposed by Keller and Segel
[67] in 1970 to describe the aggregation process of cellular slime mold by chemical
attraction. A special case of the Keller-Segel model reads

u = V(Vu — ux(v)Vv), (z,t) € Q x (0,00)

vy = eAv + g(u,v),

du _ —0o (2.1.1)

on  On ’

u(,0) = uo(x),v(z,0) = w(z),
where Q) is a bounded domain of R™, u(t,z) denotes the particle density and v(t, )
stands for the concentration of chemoattractant, € is a positive constant, x is called
chemosensitivity and g(u,v) describes production and degradation of the chemoat-
tractant.

Model (2.1.1) has been extensively studied in great detail in the literature (e.g.,

see the survey articles of Hortsmann [60, 61]). Of particular interest is the tendency
of solutions to exhibit finite-time blow-up. It has been shown that possibility of blow-

up of the solutions to system (2.1.1) essentially depends on the space dimension.

1The result in this chapter is a collaboration with Thomas Hillen and has been accepted for
Chaos.
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For constant chemosensitivity x(v) = x and linear reproduction and degradation
9{u,v) = vu — dv, finite-time blow-up never happens in 1-dimension (unless there
is no diffusion of the chemoattractant v) but can occur in n-dimension for n > 2.
The 2-dimensional case is important and several thresholds (for radially symmetric
solutions and for non-symmetric solutions) were found. If the initial distribution
exceeds this threshold, the solution will blow up in finite time. When the initial
mass is below this threshold the solution exists globally.

There are various modifications of (2.1.1) which prevent blow up. For example,
Mimura and Tsujikawa (1996) presented a chemotaxis-growth model which reads

us = alAu — V(ux(v)Vv) + f(u) in Q2 x [0, 00),

v = bAv + vu — v,

du _ v _ (2.1.2)

o — on
’U,(.’E,O) = UO(IL'),’U(O, $) = 'Uo(iL'),

where f(u) is a smooth function of u such that f(0) = 0 and
f(u) = (—€u + ¢)u for sufficiently large wu.

The function f(u) describes cell proliferation and cell death. For space dimension
n = 1,2, Osaki et al.(2002) showed that the solutions of problem (2.1.2) exists
globally due to the dissipativity of the growth of cells. Moreover, saturation effects in
the chemotactic component x(v) occur very naturally if cell surface receptor kinetics
is taken into account. Chemotaxis models with saturation effects can prevent blow
up and have been used in many applications (Biler [11], Ford et al. [19], Othmer
and Stevens [95]). A chemotaxis model with finite sampling radius by incorporating
a non-local sampling into the classical model was studied recently by Hillen et al
[53]. The global existence of the solution for any space dimension and numerical
simulation of pattern formation are shown in [53]. When cells demonstrate both
chemoattraction and chemorepulsion according to multiple environmental signals,
the classical model can be extended into an attraction-repulsion chemotaxis model.
This type of model has been studied by a number of authors [78, 98, 99]. The general
conditions for blow up or global existence to some specials cases of the attraction-
repulsion model were identified in a recent work [55]. Other strategies of preventing
blow up are reviewed in a forthcoming paper [52].

Painter and Hillen [98] introduced the mechanistic description of the volume
filling effect. In the volume filling effect, it is assumed that particles have a finite
volume and that cells can not move into regions which are already filled by other
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cells. First we give a brief derivation of the model below. For a full derivation we
refer to paper [98].
The derivation of the model begins with a master equation for a continuous-time
and discrete-space random walk (Othmer and Stevens [95])
Ou;

5 = oo+ T — (7 + T )ws, (2.1.3)

where u; is defined to be the conditional probability of a walker at ¢ € Z at time ¢,
conditioned at i = 0 at ¢ = 0 and 7;* are the transitional probabilities per unit of
time for a one-step jump to ¢ & 1.

In the volume filling approach, the probability of making a jump is assumed
to depend on the availability of space into which cells can move. The transitional
probability then takes the form

T = q(uim)(@ + Bl (vier) — 7(wi)), (2.1.4)
where g(u) denotes the squeezing probability of a cell finding space at its neighboring
location, o and (3 are constants and 7 represents the mechanism of the signal detec-
tion. It was assumed that only a finite number of cells, say %4, can be accommodated
at any site, and the function ¢ is stipulated by the condition

q(@) =0, with 0<gq(u) <1 for 0<u<a.

Moreover, the squeezing probability is zero when the cell density exceeds 4. A logical

immediate choice for g(u) is
1-2 0<u<ag,
q(u) = u (2.1.5)
0, u > i,

which says that the probability of a cell finding a space at its neighboring site
decreases linearly in the cell density at that site. The linear choice (2.1.5) for ¢(u)
says that the probability of a cell finding spaces is proportional to the number
of occupants (see [118, 98, 104]). This corresponds to the situation where cells
behave like solid blocks and are not squeezable. However, some cells are plastic
and deformable and can change their shapes to squeeze into openings. Hence the
probability g(u) of a cell finding space should be a nonlinear function which is
greater than a linear distribution as define by (2.1.5). Under this consideration, a
more realistic form of squeezing probability ¢(u) that takes into account the plastic
properties of cells is

=1 "~ (%)7’ dsust (2.L6)
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where v > 1 is called the squeezing ezponent in this paper.

C qu)=t (V)

_a=t-ue) oy

0.8} q(u)=(1-u)(1<r<1) (III)-

0.6f
oaf  qu)=1-u ()
0.2+
00 0.2 04 0i6 08 1 1.2

Figure 2.1: Ilustration of linear and nonlinear squeezing probability g(u), where we
assume that % = 1. Case (I) corresponds to the situation that cells are solid blocks
and the probability of a cell finding space is proportional to the available space.
Case (II) and (III) correspond to the case that cells are plastic and can deform to
fit into open space. Hence the squeezing probability is pointwise larger than in the
linear case (I). Case (IV) describes that a cell consists of a fluid that can fill all open
space without restriction.

Substituting (2.1.4) into the master equation (2.1.3), applying Taylor expansion
(see [98]), and converting the discrete equation into a continuous equation, we end
up with the following equation

uy =V - (di(g(u) — ¢ (u)u)Vu — q(u)ux(v)Vv), (2.1.7)

where

dy = kaa X('U) = 2kﬂdg—$))a

and k is a scaling constant.
Another possible choice of squeezing probability g(u) which also reflect plastic
cell property is given as

a(w) = <1‘%)r’ RS (2.18)
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with 0 < r < 1. For this choice of ¢(u), the derivative ¢’(u) — —o0 as u — @ (see
Figure 2.1), which leads to a singularity in the diffusion coefficient (see (2.1.7)). In
that case the model becomes a fast diffusion parabolic equation and the classical
theory for global existence of nonlinear parabolic equations no longer applies. Hence
we will use (2.1.6) as an example in the following analysis. We can, however, do a
similar pattern formation analysis for (2.1.8) and also find merging and emerging
dynamics similar as (2.1.6) does (shown in chapter 3).

There are some fluid cells that can unrestrictedly fill all open space. In this
situation, the squeezing probability ¢(u) is defined as follows

1, 0<u<au
= o= = 2.1.9
9(v) { 0, u > . ( )

It is worthwhile to point out that all above choices for squeezing probability are
made according to the biological relevance instead of mechanical justification. The
graph for all these choices are plotted in Figure 2.1 and comparisons are given in
the caption.

If we combine the chemotaxis equation (2.1.7) with the dynamic equation for the
external signal and incorporate the birth and death dynamics of cells and external
signals, denoted by f(u,v) and g(u,v), respectively, we obtain a formulation of the
volume filling chemotaxis model

{ w = V- (dh(au) ~ ¢ @) Vu - gux(®)¥0) + Fwv) 10
vy = doAv + g(u, v),
on a bounded smooth domain 2. Moreover, the zero-flux boundary conditions are
prescribed as follows

(di(g(v) — ¢ (W)w)Vu) - n - g(u)ux(v)Vv-n =0,

2.1.11
Vv-n=0, ( )

where n denotes the unit outward normal vector at the boundary 9Q).

The global existence of solutions to a volume filling chemotaxis model was first
obtained in paper [51], where cell proliferation was not taken into account. Recently,
Wrzosek [124] proved the global existence of the solution to system (2.1.10), (2.1.11)
with cell kinetics and a smooth squeezing probability ¢(u). Furthermore, he proved
the existence of a global attractor of system (2.1.10), (2.1.11) in any space dimension
n > 1 for the special linear form of ¢(u) as in (2.1.5). In this paper, we consider
a more realistic squeezing probability g(u) which reflects the semi-plastic property
of cells and more general kinetic forms f and g. We prove the global existence
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of classical solutions and study pattern formation to system (2.1.10) and (2.1.11)
under our novel choice of squeezing probability. For pattern formation, we extend
the analysis in [98] by generalizing the squeezing probability function g(u) to the
form of (2.1.6) for v > 1. It is worthwhile to note that the choice of (2.1.6) with
4 > 11in (2.1.10) results in density dependent diffusion (nonlinear diffusion) in the
first equation of (2.1.10) , which is in contrast to choice (2.1.5) that results in a
constant diffusion (linear diffusion).

The rest of paper is organized as follows. In section 2, we give the basic as-
sumptions for squeezing probability g(u) as well as the kinetic functions f and g
and prove the global existence of classical solutions to the system (2.1.10), (2.1.11).
The results are obtained based on Amann’s theory of parabolic systems [5, 4, 6] by
making a smooth extension for g(u). In section 3, we will identify the conditions for
pattern formation of the general system (2.1.10) with zero-flux boundary conditions
(2.1.11) by performing the standard linear stability analysis. In section 4, we con-
sider (2.1.6) and derive the dispersion relation. Based on this dispersion relation,
we investigate the bifurcations of the chemosensitivity y, the growth rate v and
the death rate § of the chemoattractant. We also study the influence of crowding
capacity v on pattern formation. In section 5, we show numerical simulations for
system (2.1.10) and (2.1.11) and compare the patterns obtained for the choice of
(2.1.6) versus (2.1.5). We close with a discussion in section 6.

2.2 Global Existence

To study the local and global existence of the solutions to problem (2.1.10), (2.1.11),
we assume that nonnegative initial data are given as

u(z,0) = ug(z) >0, v(z,0)=ve(z) >0 for z € Q. (2.2.1)

Moreover, we make the following assumptions.

(A1) d; and d, are positive constants, x € C?(R,R) and x(v) > 0.

(A2) The squeezing probability g(u) € C3(|0,a)) satisfies the following condi-
tion:

(1) there exists a critical number % such that
q(0) = 1,9(z) =0, and
0 < g(u) < 1 for u € (0,%) and g(u) =0 for all u > 4.
(2) q(u) is nonincreasing, i.e., ¢'(u) < 0. Moreover
|¢’(w)| is bounded and ¢”(u) < 0 for all » € [0, a).
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Hereafter we call @ the crowding capacity.
(A3) f € C*(R xR) satisfies the quasi-positivity condition, i.e., f(0,v) > 0 for
v 2> 0. Moreover, there exists a constant u, > 0 with u, < @ such that for all v > 0

f(ue,v) =0 and f(u,v) <0 for u > wuc, (2.2.2)

we call u, the carrying capacity.
(A4) g € C*R x R) is bounded and satisfies the quasi-positivity condition:
9(u,0) > 0 for u > 0. In addition, there exists a constant ¥ > 0 such that

9(u,7) < 0for 0 < u < @. (2.2.3)

Standard examples for ¢ are (2.1.5) and (2.1.6). A typical choice for the cell kinetic
function f(u,v) is logistic growth f(u,v) = pu(l —u/u.) and for g it is linear growth
and death g(u,v) = vu—dv. A more general choice will be discussed later (see (2.2.4)
and (2.2.5)).

Remark 2.2.1. Here we assume that the crowding capacity @ is larger than the
carrying capacity u.. The carrying capacity denotes a critical density beyond which
there is not enough nutrients available to support further population growth, whereas
the crowding capacity gives only a volume constraint of how many particles can be
squeezed into a unit area (or volume). Hence it is reasonable to assume T > u..

Remark 2.2.2. From assumption (A2), we see that the squeezing probability func-
tion q(u) in not differentiable at u = 4. Later on, we will show that the solution u
satisfies 0 < u < @. So here ¢/(@) represents the left derivative of q(u) at u = 4,
i.e., ¢'(a) = uli{'zxil— ¢ (u).

Remark 2.2.3. The condition ¢"(u) < 0 for 0 < u < @ means q(u) is concave
in [0,a@]. So q(u) is pointwise larger than the linear case in (2.1.5) for u € [0, 4],
which is used to reflect the plastic properties of cells. As the same reasons stated in
Remark 2.2, here we define ¢"(@) as the left derivative of ¢'(u) at u = @. Note that
the condition ¢"(u) < 0 is sufficient but not necessary for global existence.

Remark 2.2.4. We now compare the above assumptions (A1)-(A4) with the con-
ditions imposed by Wrzosek in [124]. In [124], q(uv) = §(u)(a — u) and §(u) >
0,3(u) € C3(R) for all u € R. Clearly our assumptions for q(u) are different from
the above assumptions given by Wrzosek. The argument applied in [124] can not be
used directly here. Particularly q(u) is allowed to be not differentiable at u = @ in
our assumption. Even in the domain [0, @) in which q(u) is smooth, our assumptions
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do not fulfill the assumptions in [124]. For example, the choice of (2.1.6) for v being
an integer greater than 1 satisfies both our assumptions and Wrzosek’s assumptions
foru € [0,4). However, when y > 1 is not an integer, (2.1.6) can not be represented
in the form in [124] even for u € [0,3).

For the cell kinetic term f(u,v), in paper [124], f(u,v) = uh(u) is independent
of the chemoattractant concentration v where h(u) < 0 for v > @. However, the
cell kinetics might depend on the concentration of the signal. Many growth factors
have been shown to stimulate such dual activity, for example, vascular endothelial
growth factor (VEGF) mediates both endothelial cell proliferation and chemotaxis.
An example from [98] for this behavior is

Flu,v) = ruw (1 - 3), (2.2.4)

Uc

where it is assumed that the chemical mediates both cell migration and cell prolifer-
ation, where u, < @. For the signal kinetics g(u, v), in paper [124], g(u,v) = g1(u) —
vgs(v) where g1,9; € C*(R), g1 > 0,01(0) = 0,9, 2 0 and lim yg5(y) = +o0. In
fact, g(u,v) can be more general and the conditions can bye relaxed to (2.2.3). A
standard example is of birth-death structure, i.e.,

9(u,v) = g1(u, v)u — ga(u, v)v, (2.2.5)

with bounded birth rate g; > 0 and death rate g, > & for some positive constant «.
Then there exists a ¥ such that g(u, v) satisfies condition (2.2.3).

Under the assumption (Al)-(A4), we can immediately prove that v is nonnegative
and bounded above by ¥ if 0 < u < @. This is shown in the following Lemma.

Lemma 2.2.1. Let assumption (A1)-(A4) hold and (u,v) be a solution of system
(2.1.10), (2.1.11). If 0 < u < 4, then it follows that 0 < v < .

Proof. We define an operator £ by
£v = v — doAv — g(u,v).
Then v = 0 is a lower solution of the v-equation in (2.1.10) since for 0 < u < @
£y =—g(u,0) <0,
and 7 is a upper solution of the v-equation due to

£v = —g(u,v) > 0.
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Then it follows from the comparison principle that 0 < v < 7.
O
In what follows, we are devoted to proving the global existence of classical so-
lutions to system (2.1.10), (2.1.11). Note that g(u) is not smooth at u = @, which
causes some trouble in applying the theory for nonlinear parabolic equations. Hence
we first consider a smooth extension of g(u) in the interval [—&, 4 +¢] for some £ > 0,
denoted by g(u), such that g(u) is concave and smooth at u = 0 and u = @, and

furthermore
1, u<0
<0, u > T,

Then we consider the following auxiliary problem

uy =V - (dy(q(v) — 7' (w)u) Vu ~ ud(u)x(v)Vv) + f(u, ), (226)
vy = doAv + g(u,v),

Next, we will employ Amann’s results [5, 4, 6] to prove the global existence of
solutions to the auxiliary problem (2.2.6) and (2.1.11) and show that 0 < u < @ if
0 <wup <@ Since g(u) =G(u) forall0 S u <vand 0 <u <L Gfor 0 <wyy L4,
we automatically obtain the global existence of solutions for the original problem
(2.1.10) and (2.1.11). The zero flux boundary condition (2.1.11) is equivalent to
the Neumann boundary condition. Amann’s results on global existence apply for
both Dirichlet and Neumann boundary conditions. Hence for a given function n €
C(09,{0,1}), we consider more general conditions given by

ou

nu+(1—n)%=00n(’)9, yor
9 (2.2.7)
nv+(1—n)a—n=00n69,

where n represents the outer unit normal vector on 0.
Let p € (n,+00), then the space W*(Q; R?) is continuously embedded in the
continuous function space C(2; R?). We define

nwlaq = 0},

By assumption (A2) and the definition of the extension g(u), we know that d(u) =
d1(g(uw) — @(u)u) > 0 and d(u) is smooth for u € [—¢,@ + €]. Note that g(0) = 1.
Then it is easy to verify that

Wy = {w € Wh*(Q; R?)

d(u) > d; for u € [—&,T + €]. (2.2.8)
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Now we can choose an open subset G C R? such that
X 1 C g C X27

where
X1 = {(u,v) eR’|0<u < @,v >0}

and
Xo={(u,v) €eR’| —e<u<e+a}.

We consider the solution in the following solution space

X = {w = (u,v) € W"*| w(@) € g}.

Under the above mathematical set up, we have the following local existence theorem.

Lemma 2.2.2. Let Q be a smooth bounded domain of R™ with boundary ) and the
assumptions (A1)-(A4) be satisfied. Then we have

(i) For any initial data (ug,vo0) € X, there exists a positive constant T (ug,vo)
depending on the initial data (ug,vo) such that problem (2.2.6), (2.2.1) and (2.2.7)
has a unique mazximal classical solution (u(z,t),v(z,t)) defined on 2 x [0, T (uo, vo))
satisfying

(u,v) € C([0, T (uo,v0)); X) N C>1(Q x (0, T (up, v0)); R?).

(i3) Let ¢(t, (ug,vo)) be the unique solution obtained above. Then ¢ is a C%'-map
from the set {(t, (u,v))|(u,v) € X,0 <t < T(up,v0)} to X.

(#i) If ug > 0,vp > 0, then v > 0,v > 0.

(iv) If ||(u, v) (-, t) || zoo(y s bounded away from the boundary of G for each time t
with 0 < t < T(uo,vo), then T(up, vy) = +00, i.e., (u,v) is a global solution in time.
Furthermore, (u,v) € C%([0, +00); C?*=(Q)) for any0 < <o < 1.

Proof. The proof of local existence is similar to the proof in [59, 124]. Let
w = (u,v) € R%. Then (2.1.10), (2.2.1) and (2.2.7) can be rewritten as

wy =V - (a(w)Vw) + F(w) in Q x [0, +00),
Bw=0 on 0 x [0, +00), (2.2.9)
w(-, 0) = (uo, ’Uo) in Q,

where

() = di(q(u) — 7 (w)u) —ux(v)q(u)
N 0 d
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and

Ow
Bw =nw —(1 —U)E'

Since for (u,v) € G, d(u) = di(g(u) — @ (u)u) > 0, the eigenvalues of A(w) are
positive. Therefore, (2.2.9) is normally elliptic [5]. Then (i) and (i) follows from
Thm. 7.3 and Corollary 9.3 in paper [5]. The positivity (¢i7) follows from Thm. 15.1
of [6]. Since (2.2.9) is a triangular system, (iv) follows from Thm. 5.2 of [4]. O

To obtain the global solution, from the results in (iv) of Lemma 2.7, it remains to
prove that u, v are L*-bounded away from the boundary of G. By the definition of
g, it suffices to show that u is bounded below by 0 and above by . In the following
Lemma, we show that 0 < u < % provided that 0 < ug < .

Lemma 2.2.3. Assume that 0 < ug < @. Let (u,v) be a solution obtained in Lemma
2.2.2 with zero flux boundary condition (2.1.11). Then it follows that 0 < u < @.

Proof. We use a comparison principle for nonlinear parabolic equation to prove
the existence of upper and lower bounds for u. Indeed, the lower bound 0 has been
obtained in Lemma 2.2.2 (i45). We only need to show the existence of the upper
bound %. Given v € C*}(Q x (0,7 (ug,vp))), we can easily verify from the first
equation of system (2.2.6) that the operator P is uniformly parabolic (see [76]) on
I'=R xR" xR x R, where

Pu = P(u,Vu,Au,us)
— = V- (dy(q(w) - 7 () Vu - ugx(v) Vo) — F(u,v).

For any solution (u, v) of system (2.2.6) obtained in Lemma 2.2.2, we have Pu = 0.
However, for u = %, we have from assumptions (A2) and (A3) that

Pu > 0.

On the boundary 9f), we have g—% = 0. Hence u = % is a supersolution of system

(2.2.6) with Neumann boundary conditions. Following the comparison principle, we

obtain that u < 4. Together with the positivity property obtained in Lemma 2.2.2,
one has 0 < u < .

O

Note that we only can show the boundness of u for zero flux boundary condition.

So the global existence of solutions to the auxiliary system (2.2.6) are obtained only

for zero flux boundary condition. For 0 < u < @, we have §(u) = g(u). Then
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combining Lemma 2.2.2, Lemma 2.2.3 and Lemma 2.2.4, we obtain the following
global existence and boundedness theorem to system (2.1.10) with zero flux bound-
ary condition (2.1.11).

Theorem 2.2.5. For any (ug,v0) € X with 0 < ug < @, 0 < vy < T on §, the
initial-boundary value problem (2.1.10), (2.1.11) and (2.2.1) has a unique positive
solution (u,v) satisfying

(i) (u,v) € C([0, +o0); X) N CHL(Q x (0, +00); R2).

(ii) u(t,z) and v(t,z) are bounded on Q x [0,+00) with0 <u <4, 0 <v <.

(#1) The solution semigroup ¢(t, (uo,v9)) forms a semi-dynamical system on X.

2.3 Pattern Formation

Pattern formation in mathematics refers to the process that, by changing a bifurca-
tion parameter, the spatially homogeneous steady states lose stability to spatially
inhomogeneous perturbations, and stable inhomogeneous solutions arise. In this
section, we investigate pattern formation for system (2.1.10). The approach applied
here is very routine. We look for the spatial homogeneous steady states by setting
the kinetics on the right hand side of (2.1.10) to be zero

f(us,vs) =0, g(us,v5) = 0. (2.3.1)

We suppose that (us,vs) is a nonnegative solution of (2.3.1). That is, (us,vs) is a
homogeneous steady state of system (2.1.10). We assume that in the absence of
any spatially variation the homogeneous steady state is linearly stable. We first
determine the conditions for this to hold.

With no spatial variation, u and v satisfy

u = f(u,v), v = g(u,v). (2.3.2)
The linearization of (2.3.2) at (u,, vs) is
w=Aw, A=[ T F (2.3.3)
Gu G

where A is the community (Jacobian) matrix of system (2.3.2) at steady state
(us,vs). Hereafter, we shall take the partial derivative of f and g to be evalu-
ated at the steady state unless stated otherwise. Then the conditions for which
(us, vs) is linearly stable can be easily determined by

trA = fu + gy < 0, IAI = fugv - fvgu > 0. (234)
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If there are some parameters in f and g, then the steady states (u,, v,) are functions
of these parameters. Hence inequalities (2.3.4) impose certain constraints on the
parameters.

In what follows, we shall consider the full chemotaxis model (2.1.10). We examine
small perturbations from the spatially homogeneous steady state (us, vs) of the form

u = us + €t(z,t), v=vs+ €ed(z,t), (2.3.5)

where € << 1.
Substituting (2.3.5) into (2.1.10), we end up with

elly = €V (dy(q(us + €B) — ¢ (us + €i) (us + €8))Vu
—e(us + €t)x(vs + €0)q(us + e&)Vf;) + f(us + €it, v, + €0),  (2.3.6)
€ty = edo AD + g(us + €l vs + €D).

Equating first order terms with respect to €, neglecting higher-order terms, and

dropping the tilde for the convenience, we obtain the following linearized system for
(2.1.10)

Ut = dl(Q(us) - q/(us)us)Au - usQ(us)X(vs)Av + ufu + 'Ufm (2 3 7)
vy = doAv + ugy + vgy. .

Hereafter we abbreviate 9 = g(u,) — ¢'(us)us and 0 = —x(vs)usq(us). The v in
X(vs) will be often abbreviated for notational convenience unless stated otherwise,
i.e., x = x(vs). Since we assume that ¢'(u) < 0 for 0 < u < @, we have ¥ > 0. The
chemotactic sensitivity x is always assumed to be nonnegative and hence g < 0.

In the following, we assume that the domain is a one dimensional bounded do-
main although all analysis still holds for any dimensional bounded domain. Then
following the standard argument (e.g., see [82]), the dispersion relation associated
with system (2.3.7) can be determined as

A2+ a(k*)X + b(k?) = 0, (2.3.8)

where k is the spatial eigenvalue which is commonly referred to as the wavenumber
and A is the eigenvalue which determines temporal growth and depends on the
wavenumber k. The a(k?) and b(k?) are given, respectively, as

a(k?) = (9d1 + d2)k* — (fu + 90),

(2.3.9)
b(k2) = ﬁdld?k‘l + (qu —dafu — 19dlgv)k2 + fugv — foGu-
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The dispersion relation (2.3.8) gives A(k) as a function of wavenumber k at steady
state (us, V). For the steady state to be unstable, we require that Re\(k) is positive
for some & # 0. Since a(k?) > 0 due to (2.3.4), the instability can only occur if b(k?)
becomes negative for some k so that equation (2.3.8) for A has one positive and one
negative root. Referring to (2.3.9), the condition b(k?) < 0 requires that

Idydok®* + (09, — daf, — 9d19,)k* + fugo — fugu < O. (2.3.10)

Since it is required in (2.3.4) that |A| = fugy — fu9. > 0, a necessary condition for
(2.3.10) is
09y — dafu — V¥d1g, < 0. (2.3.11)

For (2.3.10) to be the case for some nonzero k, the discriminant of equation
b(k?) = 0 must be positive since the coefficient 9¥d;ds of k* is positive. In other
words, for the existence of an interval of unstable modes, we require that

(09u — dafu — ¥d1gy)* — 40d1da(fugs — fogu) > 0. (2.3.12)
Applying (2.3.11), we obtain from (2.3.12) that
0%u — d2fu - ﬂdlgv < —2\/"9d1d2(fug'v - fvgu) (2313)

To recap, we have now obtained conditions for the generation of spatial patterns for
the volume filling chemotaxis model (2.1.10) and (2.1.11). For the convenience we
reproduce them here. Remembering that all derivatives are evaluated at the steady
state (us,vs), they are

fu +gv < O, fugv - fvgu > 01 0Gu — d2fu - ﬂdlg'u < O,
(qu - d2fu - ﬂdlgv)z - 4"9d1d2(fugv - fvgu) > 07

where ¥ = q(u,) — ¢'(us)us, 0 = —x(vs)usq(us). The importance of the chemotaxis

(2.3.14)

term in the chemotaxis model is that it leads to a Av term in the u equation, so-
called cross-diffusion. This removes the need for d; and dj to be sufficiently different
in order to obtain spatial patterns. The strength of the chemotactic sensitivity x
plays a crucial role in pattern formation. Generally there exists a critical value x,
such that there is no pattern formation if x is below this critical value x., while
pattern formation can be expected if x is larger than this critical value x,.. In our
problem, we can explicitly determine this critical value if all parameters are fixed in
system (2.1.10) except for the chemotactic sensitivity x. Indeed, from the foregoing
analysis, we know that the bifurcation occurs when

0Gu — d2fu - "9d19v = —2\/"9d1d2(fugv - fvgu)- (2315)
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Substituting ¢ = —xusq(u,) into (2.3.15) and solving the resulting equation for x,
we obtain the critical chemosensitivity .

_ 2\/"9d1d2(fugv - fvgu) - d2fu - 19dlgv
guusQ(us) .

(2.3.16)

Xe

At this bifurcation value, the corresponding critical wavenumber is given by

2 Gofut9digy — ogu
¢ 29d,d, )

(2.3.17)

Whenever b(k?*) < 0, (2.3.8) has a solution A which is positive for the range of
wave numbers. When x > x., from (2.3.9), the range of unstable wave numbers
k? < k? < k2 is obtained from the zeros k? and k2 of b(k?) = 0 as

—_ C - {02 - 4"9d1d2(fugv - fvgu)}1/2 < k?
28d,d,

C + {02 - 4'19d1d2(fugv - fvgu)}1/2
29d,d, ’

where C = da f,, + Y¥d1g, — 09, denotes the coefficient of k% in equation b(k?) = 0.
Whenever conditions (2.3.14) are satisfied and there is a range of wavenum-

ki

<ki= (2.3.18)

bers k lying within the bound defined by (2.3.18), then the corresponding spatial
eigenfunctions are linearly unstable and pattern formation can be expected. It is
worthwhile to point out that for an infinite domain there is always a spatial pat-
tern if 0 < k? < k2% in (2.3.18). In this situation, conditions (2.3.14) are sufficient
conditions for pattern formation to system (2.1.10) and (2.1.11). While for a finite
domain, the possible wavenumbers & and corresponding spatial wavelengths are dis-
crete and depend in part on the boundary conditions. If there does not exist discrete
wavenumber &2 lying between k? and k2, then there is no spatial pattern formation
even if (2.3.14) is satisfied. Some examples will be given in the forthcoming sections.

We summarize the main results obtained in this section in the following theorem.

Theorem 2.3.1. Let (us,vs) be a spatially homogeneous steady state of system
(2.1.10). Let fy, f, and gy, g, denote the partial derivatives evaluated at steady state

- (us,vs). Then pattern formation of system (2.1.10) with zero-flux boundary condition
(2.1.11) is possible if (2.3.14) is satisfied. Furthermore, the critical chemosensitiv-
ity X is determined by (2.3.16). When x < X, there is no spatial pattern, whereas
pattern formation can be expected if x > x. and the range of unstable wavenumbers
is given by (2.8.18).
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2.4 Analysis for Nonlinear Squeezing Probability

By the global existence and boundedness obtained in Theorem 2.4, we know that
0 <u<Luif0<L y < 4 Then as we mentioned in the Introduction, a logical
choice for the squeezing probability function g(u) which reflects the plastic property
of particles is

Y
q(u)zl_(%>, v>1, 0<u<a. (2.4.1)

In this section, we will discuss the dynamics of system (2.1.10) with g(u) which has
the nonlinear form (2.4.1). For simplicity, we suppose that the cell and chemoat-
tractant kinetics have the following form extensively used in the literature (e.g.,
(98, 124])
flu,v) = pu(l —ufue), g(u,v) =vu - dv, (2.4.2)

where the cell kinetics follows the logistic growth with carrying capacity 0 < u, < @
and g > 0, the chemoattractant grows with rate v and decays with rate § due to
dilution. Applying (2.4.1), (2.4.2) into (2.1.10), (2.1.11), we obtain

u =V - (D(u)Vu — xp(u)Vv) + pu(l — )

vy = dpAv + vu — v,

(D(u)Vu — xp(uw)Vv) -n=0, Vv-n =0,

u(z,0) = ug(z) > 0, v(z,0) = vo(z) > 0,

where n, as usual, denotes the unit outward normal vector at the boundary of the

(2.4.3)

domain and D(u) and ¢(u) are denoted by
u\” uw)”
D(u) =dy [1 +(y-1) (5) ] , p(u) = u[l - <5) ] . (2.4.4)
As a special case of (2.1.10), the global existence and boundedness of the solution
to (2.4.3) has been given by Theorem 2.4.

Clearly, the spatially homogeneous steady states of system (2.4.3) are (0,0) and
(4, vuc/d). Furthermore, by linearization, one can easily determine that the steady
state (0,0) is a saddle point and hence unstable, while the steady state (u., vu./d)
is stable to the corresponding homogeneous system of (2.4.3) with two negative
eigenvalues —v and —J. Therefore, we focus on the stable steady state (us,vs) =
(Ue, Yue/d) to study pattern formation for system (2.4.3). First we linearize the
system (2.4.3) about the steady state (., vu./d) and obtain

U =V - (D(uc)Vu) = V - (xp(uc) Vo) — pu.
vy = dpAv + vu — dv,

(D(uc)Vu — xp(u)Vv) -n =0, Vv-n =0,
u(z,0) = up(z) > 0, v(z,0) = vo(z) > 0,
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Performing the linear stability analysis as before, we find the corresponding disper-
sion relation

A2+ a(k?)A + b(k?) = 0,
a(k?) = (D(ug) + da)k? + (u + 6), (2.4.5)
b(k?) = D(uc)dok* + (udz + 6D(u.) — xvo(uc))k? + pd.

From the analysis in the previous section, the condition (2.3.14) has to be satisfied
to obtain pattern formation. In the situation discussed in this section, we know that
fut+go=—(+68) <0and f,9, — fogu = 16 > 0. Then we only need the third and
fourth condition in (2.3.14) to hold. This requires that (see 2.3.13)

pds + 6D(u.) — xvp(ue) < —24/dapd D(uc). (2.4.6)

Then (2.4.6) gives a necessary condition for pattern formation of system (2.4.3). If
we regard the wavenumber as a continuous variable in spite of the fact the wavenum-
ber is discrete, (2.4.6) then gives a sufficient and necessary condition for pattern
formation of system (2.4.3) with zero flux boundary condition.

In the remainder of this section, we will investigate the influence of the squeezing
exponent v, chemosensitivity , growth rate v and death rate ¢ of chemoattractant
on the pattern formation of (2.4.3).

2.4.1 Bifurcations with Chemotactic Sensitivity x

From the previous analysis, if we think of the chemosensitivity x as the bifurcation
parameter, then the bifurcation value x. is determined by (see 2.3.16)

o= 24/ dopd D(u,) + pdy + 6 D(u,) (2.4.7)

¢ vip(uc)

The corresponding critical wavenumber k. is determined from (2.3.17) by

k2 — _ﬂd2 — 5D(uc) + chp(uc)
¢ 2d2D(uc) ’

(2.4.8)

When x > X., we have b(k?) < 0 for some wavenumbers k* and hence there exists a
positive solution A of (2.4.5) for some k # 0. Moreover, the range of unstable wave
numbers k? < k? < k2 can be obtained as

2 S — {S? — 4pédaD(u,) }1/?
1= 2d2D(uc) ’

(2.4.9)
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b(k2) Re A :

=

(a) (b)

Figure 2.2: (a) A sketch of b(k?) against k? defined by (2.4.5). When the chemosen-
sitivity strength x increases beyond the critical value x., b(k?) becomes negative
for a finite range of k2. (b) Plot of the real part of eigenvalue A(k?) as a func-
tion of k? defined in (2.4.5). When x > ., there is a range of wavenumbers
k? < k? < k2 such that the steady state is unstable. The parameters are chosen as
v=1,dy =0.1, dp = 1.0,u, = 2.0, @ = 4.0, py = 4.0, v = 5.0, § = 10.0.

and
2 S+ {5 — 4uédyD(uc)}/?

ke = 54, D) !

(2.4.10)

where S = —pudy — §D(u.) + xv(uc).

Then the critical value is (k,, x.) such that b(k?) > 0 for all k¥ if ¥ < x., however
b(k?) < 0 for a range of wavenumbers k? < k? < k3 if x > x.. Figure 2.2(a) shows
how b(k?) varies as a function of k2 for various x and Figure 2.2(b) shows how the
eigenvalue X varies as a function of k2 for various x. A stability curve for b(k?) = 0
for v = 2 in Figure 2.3 immediately gives us some information we need to know.
When x < X¢, b(k?) > 0 and consequently no positive wavenumbers correspond to
X- As x increases and exceeds the critical value Y., there must exist wavenumbers k&
between the two curves (dashed and solid portion of the curve in Figure 2.3). These
wavenumbers define unstable modes.

As we mentioned in the previous section, the condition x > x. does not guarantee
pattern formation since the allowable wavenumbers k are discrete for a finite domain.
Generally the pattern formation can be achieved by increasing the domain size. So a
question arises as how can a necessary and sufficient condition be derived to generate
the spatial pattern for a fixed domain. Indeed, the bifurcation diagram Figure 2.3
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8 8 8
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Figure 2.3: A sketch of b(k?) = 0 in (2.4.5) in the (k?, x)-plane, where parameters are
chosen as v = 2,dy = 0.1, dy = 1.0,u, = 2.0, 4 =4.0, p=4.0, v =5.0, § = 10.0
and consequently k2 = 17.889, x. = 1.296. The dashed portion denotes k? and solid
portion represents kz.

has given us some useful clues already. We study the difference for k2 and k?

[(udz — 6D(uc) + vxp(uc))? — 4uddaD(uc)]
daD(u.)

K(x,v,0) =ki —k? = .
Here we consider the difference as a function of x, v and § since we will investigate
the influence of x, v and 4 on the pattern formation in the following. It is easy
to verify that K(x,v,d) is a increasing function of x and v. So pattern formation
can be supported by increasing the valve of x or v. Biologically, we expect pattern
formation if the growth rate v of the chemoattractant or the chemosensitivity x
is big enough. On the other hand, K(x,v,§) is a decreasing function of §. Hence
pattern formation also can be supported by decreasing the decay rate 0 of the signal.
We now derive a sufficient and necessary condition for the chemosensitivity x
for pattern formation in a one dimensional domain [0,€]. On [0,¢] with non flux
boundary conditions, the corresponding wavenumbers k are given by k = nw/¢,
where n = 0,41, %2, ---. The requirement (2.3.18) in terms of modes n becomes

n? < n®<nl (2.4.11)

where n; = ki4/m and ny = kyf/m. Now we want to find an appropriate value
of x such that there exists at least one integer n satisfying (2.4.11). Without loss
of generality, we look at positive wavemodes only and other cases can be analyzed
analogously. For x = x., we have k; = ko = k., and hence ki{/m = kol/m. We
can easily check that k?(x) as a function of x is decreasing and that, k2(x) is
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k2 50

(b)

Figure 2.4: (a) A sketch of b(n?m2/¢2) = 0 in (2.4.5) in the (n, x)-plane, where the
domain is chosen as [0,¢] with £ = 4 and parameters are chosen as v = 2,d; =
0.1, d = 1.0,u, = 2.0, & = 4.0, 4 = 4.0, v = 5.0, § = 10.0 and consequently
ne = 5.38, x. = 1.296. (b) A comparison of wavenumbers with respect to squeezing
exponent 7. Parameters are chosen as in (a) except 7.

increasing. As a consequence, n; is decreasing (see dotted portion of the curve in
Figure 2.4(a)) and n, is increasing (see solid portion of the curve in Figure 2.4(a))
as a function of x. Now we look for the conditions such that there exists at least one
integer n between n; and mny. At the critical value . as obtained above, we define
ne = n1(xc) = n2(xc).- Then we have two cases to consider.

Case (a). n. is an integer. Then we increase x from x., and any increment
of x will lead to n1(x) < n. < na2(x) due to the monotonicity of n; and ny. We
immediately get an unstable mode n = n. (see Figure 2.4(a)). In this case, x. is
a bifurcation value, such that pattern formation is obtained when x > X, and no
pattern formation evolves when x < x..

Case (b). n. is not an integer number. Since ny(x) is continuously decreasing
with respect to x and ny(x) — 00 as x — 00, there must exist a minimum number
of x, denoted by xp, such that xg > x. and n1(xB), or na(x5), or both are integer.
For x > xp, we obtain an unstable mode n such that n;(x) < n < na(x)-

We therefore end up with the following theorem.

Theorem 2.4.1. Assume v > 1. Let xg > Xx. be the first number of x such that
either ki£/m, or kyl/m is an integer. Then xp is a bifurcation number and x > xB
is a necessary and sufficient condition for pattern formation of system (2.4.3).
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Next, we examine the relationship between the critical value . and the crowding
squeezing exponent <, from which we can understand the influence of v on the
dynamics of system (2.4.3). We give the following theorem.

Theorem 2.4.2. The critical value Xx., as a function of squeezing exponent v, is
decreasing.

Proof. For convenience, we denote ¢ = u./% < 1 and M(y) =
1, then (2.4.7) can be rewritten as

1 —
(&7 = 17 ~

1
Xe = — <2\/ pédidaM (7)V/1 + 70" M(7) + pdeM(7) + 6di (1 + vo"M (7)))
(]
(2.4.12)
Note that 0 < u./% < 1. Then function M is non-increasing with respect to v. Next

we prove that function yo7M(7y) is a decreasing function of 4. To see this, we define
h{y) = yo"M (). Then we have

dh _0"(1-0"+7Ino)
dy (1—o7)?

Since ¢ < 1, it is easy to verify that 1 —0” + yIno < 0 for all ¥ > 1. So h(%) is
decreasing with respect to . Consequently the critical chemosensitivity value ¥, is
a decreasing function of squeezing exponent ~.

a

Remark 2.4.3. Biologically, Theorem 4.2 tells us that cells are apt to aggregate
when the squeezing exponent vy is increased since the squeezing probability q(u) is.
increasing with respect to v. When the squeezing probability is bigger, cells are more
motile and hence pattern formation is easier to form.

2.4.2 Bifurcation with Growth Rate v

In this subsection, we consider growth rate v as the bifurcation parameter, and
therefore fix all other parameters in system (2.4.3). Note that varying v affects
the value of the steady state (us;,vs). We want to understand the influence of
the dynamical parameter v on pattern formation of system (2.4.3). The temporal
eigenvalues X of the linearization at (us,v,) are the roots of equation (2.4.5).

We compute the critical value v, for v from (2.4.5)

_ 2V/dapdD(uc) + pdp + 6D (ue) (2.4.13)
X (te) B

c
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Figure 2.5: (a). Dispersion relation (2.4.5) as the parameter v passes through the
bifurcation value v, = 10.18, where v = 4,d; = 0.1,ds = 1.0,u. = 2.0,2 =4.0,u =
4.0,6 = 10.0,x = 0.5. (b) Dispersion relation (2.4.5) as the parameter J passes
through the bifurcation value §, = 4.04, where v = 2,d; = 0.1,d; = 1.0,u, =
2.0,2=4.0,u=10,v = 20, = 0.5.

such that no unstable modes exist if v is below this critical number v., whereas
unstable modes are possible when v is beyond this critical value v, (see Figure
2.5(a) for the dispersion relation). Furthermore, if we consider v, as a function of
v and recall the proof of Theorem 4.2, we can show that the critical value v, of the
growth rate decreases as the parameter 7y increases. This outcome is consistent with
the biological context that increasing the growth rate v of chemoattractant, result
in higher concentration of chemoattractant which makes the system more unstable.

Remember that the critical number v, is not necessary a bifurcation value due to
the discrete nature of the unstable modes. But we can formally obtain the desired
bifurcation value for v by performing the same analysis as for x in section 4.1 and
obtain a bifurcation theorem similar with Theorem 4.1. To avoid repetition, we do
not provide details here.

2.4.8 Bifurcation with Decay Rate ¢

In the model (2.4.3), the parameter § stands for the decay (degradation) rate of the
chemoattractant, and the uniform steady state (us, vs) depends on 4. If we perform
the similar linear stability analysis as we did in previous sections, it is easy to derive

_ (Vvxe(ue) — Vidz)?
5o = o . (2.4.14)

a critical value for ¢ as
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such that when § > §,, there does not exist unstable modes, whereas unstable modes
can be expected when § < é.. Now if we regard the death rate § as a dynamical
parameter, the dispersion relation of (2.4.5) as § passes through the critical value
d. is shown in Figure 2.5(b). Here the plot of the dispersion relation for § in Figure
2.5(b) has some difference in appearance compared to the plot of the dispersion
relation for v in Figure 2.5(a). From Figure 2.5(a), we see that all eigenvalues \
take the same value at k> = 0 for any dynamical parameter v. However, Figure
2.5(b) shows that the eigenvalue A has different value at k% = 0 for each different
dynamical parameter §. In fact, from equation (2.4.5), when k% = 0, we have

N+ (p+)A+p+d6=0. (2.4.15)

It is clear that equation (2.4.15) is independent of parameter v but dependent on
parameter 4.

Now we examine the relationship between the critical value é, and squeezing
exponent y. We still use the notation in Section 4.1 and rewrite (2.4.14) as follows

1/2 _ 1 TN — R .
g \/d1(1+707M(7)) (\/T \/udT(v))

In section 4.1, we have shown that function M (y) and yoYM (7y) are decreasing with
respect to . Then it is easy to see that §,., as a function of +, is increasing which

is in contrast to the critical growth rate v, that is a decreasing function of . This
is in agreement with the biological interpretation. When increasing the squeezing
exponent, the critical death rate becomes larger and hence pattern formation can
allow faster dilution of chemicals. As a consequence, pattern formation is easier to
form.

2.5 Numerical Simulation in One-Dimension

In this section, we will numerically investigate pattern formation for model (2.4.3).
The MATLAB PDE solver, pdepe, is a powerful tool to solve initial-boundary value
problems for systems of nonlinear reaction diffusion type PDEs in the one space
variable x and time ¢. The pdepe solver converts the PDEs to ODEs using a second-
order accurate spatial discretization based on a set of nodes specified by the user.
The discretization method is described in paper [112], where the consistency of the
discretization can be adjusted by refining the mesh. The pdepe solver is applied
here to solve the initial-boundary problem (2.4.3).

Unless stated otherwise, throughout this section, we assume zero flux boundary
condition. For v = 1, numerical solutions have been shown by Painter and Hillen
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Figure 2.6: Space-time evolution of cell density for model (2.4.3) with zero-kinetics
with initial value that is set as the small perturbation of the homogeneous solution
up = 0.2 and with § = 10,2 = 1.0,u, = 0.5,ds = 1.0: (a) v = 40,d; = 0.25,7 =
1,x=2. (b) v =40,dy =025,y =2,x =2. (¢c) » =30,d; = 0.01,y=2,x = 1.

in [98]. In the case of zero kinetics (f(u,v) = 0), Painter and Hillen found a typical
behavior of merging of local peaks (also called coarsening process). In the paper
by Potapov and Hillen [104], these local peaks were identified as metastable steady
states and in the paper by Dolak and Schmeiser [27], a singular perturbation analysis
around this transient patterns was given. These patterns are similar to coarsening
patterns obtained for the Brusselator model [69], where a nonlinear stability analysis
was performed. If cell kinetics are included into the model, in addition to the merging
of peak patterns, the emerging of new local maxima was observed also by Painter and
Hillen [98]. In this article, we particularly focus on the effect of nonlinear squeezing
probability gq(u) =1 — (%)7 through 4 > 1 on the merging and emerging process.
We obtain similar patterning process as the linear diffusion case (y = 1) in [98] and
our results confirm that merging and emerging processes are very typical patterning
processes for volume filling chemotaxis model.
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2.5.1 Zero Cell Kinetics

In this subsection, we will consider the nonlinear diffusion volume-filling chemotaxis
model (2.1.10) with cell kinetics f(u,v) = 0 and g(u, v) = vu—dv as well as nonlinear
squeezing probability function g(u) = 1 — (u/@)?, v > 1. Then the cell density is
conserved due to no cell growth and death. Again, we look at the stability of the
homogehepus steady state (us,, vu,/d). Note that condition (2.3.4) is not satisfied in
the case of f = 0. However the instability region can be explicitly determined by
performing standard linear stability analysis as before:
@+ (v = Duy did

X > =) v (2.5.1)

Under this condition, unstable wavemodes can be expected. From (2.5.1), we see
that the cell density is crucial for pattern formation. At high or low initial cell
density u,, the system tends to be stable to spatial perturbations.

Some typical numerical simulation examples are shown in Figure 2.6. In Figure
2.6(a), we choose squeezing exponent v = 1 and then the diffusion of the system
(3.8) becomes linear. In Figure 2.6(b), we choose v = 2 and the diffusion of the
system (3.8) is then nonlinear. For both cases, we observe some initial merging
process, which stops and a new time-independent peak pattern appears. Actually,
similar merging dynamics appear for other crowding squeezing exponents v > 1 (not
shown).

In Figure 2.6(c), we significantly reduce the cell diffusion parameter d;, which

leads to a persistent steady state without observable merging dynamics.

2.5.2 Non-Zero Cell Kinetics

From the above numerical analysis, we see that without cell kinetics we obtain
multiple aggregations which undergo a merging process. In this section, we include
the effect of cell kinetics into the model and explore whether or not stable multi-
peak aggregation patterns can develop. We suppose that cells follow logistic growth
f(u,v) = pu(l — u/u). Production term g(u,v) and squeezing probability g(u) are
chosen as before. Then the model is the same as (2.4.3).

The nontrivial uniform steady state of (2.4.3) is given by (us, vs) = (Ue, VUc/6),
and the instability region of this steady state is determined by condition (2.4.6). The
graph of the dispersion relation now corresponds to Figure 2.2(a). Thus, low wave-
modes might be stable to spatial perturbation, and higher wavemodes may develop
multi-peak solutions, which is contrast to the case of zero kinetics where low wave-
modes might be unstable. We choose a set of parameters such that the instability
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Figure 2.7: Space-time evolution of cell density for model (2.4.3) for different choices
of parameters. (a) d; =0.25,d; = 1,v = 10,6 = 10,4 = 1.0,u, = 0.25,u = 0.5,x =
10,7 = 2. Simulations indicate that a fixed spatial pattern exists as peaks persist
and grow. Here are 7 peaks. (b) dy = 0.25,d, = 1,v = 10,6 = 10,2 = 1.0,u, =
0.25, 4 = 0.5,x = 20,y = 2. (¢)d; = 0.01,ds = 1,¥ = 10,6 = 10,2 = 1.0,u, =
0.25, 4 = 0.5,x = 1,7 = 2. In (b) and (c), typical merging and emerging patterns
develop. The parameters chosen in (a) are closer to the stability region than those
chosen in (b) and (c). All simulations use the domain size as [0 20].

condition (2.4.6) is satisfied and present the numerical simulation in Figure 2.7. We
first choose parameters deep in the instability region and it was shown that multiple
peaks develop and these peaks exist indefinitely (see Figure 2.7(b)-(c)). Numerical
simulation shows that a time-independent persistent spatial pattern might not ex-
ist and patterns demonstrate an interesting pattern interaction process of merging
and emerging, where neighboring aggregations join to form a single aggregation re-
sulting in a large interval of low cell density. In the low density regions, new cell
aggregations subsequently arise, which is in contrast to the zero kinetics case in
which only merging process was observed. When the parameters are chosen close
to the stability/instability boundary, solutions can stabilize into a time-independent
spatial pattern (see Figure 2.7(a), where a seven peak pattern evolves). However,
there are not local peaks emerging during the evolution. In Figure 2.7(c), we choose
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Figure 2.8: Evolution of merging and emerging local peaks. (a) Zero cell kinetics,
where v = 40,0 = 10,@ = 1.0,u, = 0.5,d; = 0.25,ds = 1.0,y = 1,x = 2. (b)
Nonzero cell kinetics, where d; = 0.25,d; = 1,v = 10,6 = 10,4 = 1.0, u, = 0.25, u =
0.5,x =20,y =2.

~—

very small diffusive rate d; and get more complex pattern due to high chemotactic
effects.

The evolution of merging and emerging peak solutions is presented in Figure 2.8.
We see that peaks are capped by the crowding capacity % due to the volume filling
effects. For zero kinetics, (see Figure 2.8(a)), after some time, peaks merge into
some stationary peaks. For nonzero kinetics case (see Figure 2.8(b)), we see that
initially solution tends to blow up (very sharp) but the volume filling mechanism
prevents blow up and then solutions stay bounded to form complex merging and
emerging patterns.

2.6 Discussion

In this chapter, we include a nonlinear squeezing probability function g(u), which
reflects plastic properties of cells, into a volume filling chemotaxis model and prove
the global existence of classical solutions to the resulting model. We show that the
cell density will stay below the crowding capacity @ if the initial cell density is less
than this crowding capacity. We carry out conditions of pattern formation for the
general volume filling chemotaxis model. Moreover, we apply a particular choice
(2.4.1) of g(u) into the model to perform the linear stability analysis and study the
underlying bifurcation for different parameters. One dimensional numerical simu-
lations are presented for both zero cell kinetics and nonzero cell kinetics. Merging
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and emerging dynamics are observed under different parameter values. We find that
the squeezing exponent vy has no huge effects on the spatio-temporal dynamics. The
merging and emerging process can be observed for all values of v > 1, the limit
state, however, depends on 7.

The parameter  has been included to describe plastic properties of cells. The
case of v = 1 corresponds to solid blocks (see the car-parking problem in [118]),
whereas 7y — oo corresponds to cells being fluids which can fill all open space. The
critical chemosensitivity x. is decreasing in <y, hence increasing + is destabilizing the
system. If vy is large, chemotaxis has a large effect and more cells can still enter into
a crowded region and make chemotactic aggregation more pronounced.

The merging pattern formation had been experimentally observed in Dd (Dic-
tyostelium discoideum) cell movement [36]. This patterning process describes the
dynamics between cell aggregations. A cell aggregation is a swarm of individual
cells. However merging pattern formation denotes two swarms merging to form one
larger aggregation. This process is beneficial to particles for survival of harmful sit-
uations or avoiding predators. The emerging pattern formation is the insertion of a
new aggregation into a free area triggered by cell kinetics, which is beneficial to op-
timally use available resources. These new aggregations can then merge with other
neighboring aggregations to form stronger aggregations for some reasons described
above. The emerging pattern formation is possibly related to the chemotactic pat-
tern formation by motile Azotobacter vinelandii [96] although a final confirmation
needs to be made.

Comparing Figure 2.8(a) and (b), we can conclude that the emerging process is
due to cell growth. It is of interest to further study the merging and emerging process
in more details. The merging and emerging patterns in Figure 2.7(b) seem to have a
dominating wave length so that neither too many nor too few local maxima arise. In
paper [104], some scaling analysis and numerical analysis were applied to describe the
transition region and the local peaks were identified with metastable steady states.
For the merging process (no kinetics), a qualitative analysis was given by Dolak and
Schmeiser [27] using a singular perturbation argument. It would be interesting to
apply their methods to study the merging-emerging process as observed above. A
detailed analysis will be given in a forthcoming paper [48].
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Chapter 3

PATTERN FORMATION FOR A VOLUME FILLING
CHEMOTAXIS MODEL WITH FAST DIFFUSION

3.1 Introduction

Taking into account the plastic cell properties, g(u) should be pointwise larger than
the linear case. To do this, we make the assumption ¢”(u) < 0 and (2.1.6) and
(2.1.8) are two explicit choices. In chapter 2, we study the case of (2.1.6). In this
chapter, we continue to consider case (2.1.8). For convenience, we rewrite (2.1.8)
again here

u<a

=2
&
I
N
fum—
|
IS
—
- 3
o
IN

(3.1.1)
0, u > U,

Hereafter, we call the parameter r the crowding exponent. This chapter discusses
the dynamics of system (2.1.9) with g(u) which takes the nonlinear form (3.1.1). We
still assume that the cell kinetics follows the logistic growth with carrying capacity
ue < 1, the chemoattractant grows with rate v and decays with rate ¢ as in Chapter
2. Then we obtain the following system with zero flux boundary conditions

we= V- (d(1 = 11— D) Tu) — V- (u(l ~ B X Vo) + pull ~ £),
= doAv + vu — v,

(di(1 — )11 — U=)Ty — yu(l — £)'Vo) -n=0, Vo n=0,

u(z,0) = uo(z) > 0, v(z,0) = vo(z) >0,

(3.1.2)

where (z,t) € X (0,00) and n, as usual, denotes the unit outward normal vector
at the boundary of the domain ).

It is easy to see that nonlinear diffusion function in the first equation of (3.1.2)
tends to co when u — 4, which is called a fast diffusion problem although it is dif-
ferent from the conventional concept (see [80]), which refer to the following problem

p=Aut —1<6<0,

When § > 0, the above problem is called slow diffusion problem. The case § = 0
is the linear heat equation. For fast diffusion the solution decays to zero in some
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finite time which depends on the initial data, whereas the solution decays to zero
in infinite time for slow diffusion. This is the essential difference between fast and
slow diffusion. So far, we are not able to biologically explain why the choice (3.1.1)
might result in a fast diffusion. But we expect that the solution is bounded away
from 4 and then the fast diffusion might be avoided. However, this needs to be
mathematically proven.

Amann’s theory requires the diffusion function to be a C? function. Since 0 <
r<1,(1-%)"! - 0o as u — @ and the diffusion of the system (3.1.2) blows up
at u = 4. Hence Amann’s theory [5, 4, 6] as applied in Chapter 2 no longer applies
here. The global existence of system (3.1.2) remains open and need to be explored
in the future using new mathematical techniques. One of possible approaches is
apply a mollifier to smooth diffusion with a small parameter £ and then prove the
convergence of solutions as ¢ — 0. However, we still can study pattern formation
regardless of the open question of global existence.

In this Chapter, we will explicitly give the conditions for pattern formation of
system (3.1.2) and find the critical values for various parameters in the system. Also
we study the relation between those critical values and crowding exponent r. The
numerical simulations in one dimension for both zero kinetics and non-zero kinetics
are presented. It turns out the novel choice (3.1.1) of squeezing probability g(u)
does not bring significant difference in pattern formation compared to the choice
made in Chapter 2. Here we still observe merging and emerging patterning process.
The reason that we still study the pattern formation for the choice (3.1.1) is that we
may that the singularity in diffusion might make a difference in pattern formation.
But afterwards we know that there is no significant difference.

To investigate pattern formation of system (3.1.2), we need to find the homoge-
neous steady states of system (3.1.2), which are (0,0) and (u,, vu./d). Furthermore,
by linearization, one can easily determine that the steady state (0, 0) unstable, while
the steady state (u,vu./d) is stable to the corresponding homogeneous system of
(8.1.2). Therefore, we take steady state (us,vs) = (uc, vu./8) to study pattern for-
mation for system (3.1.2). First we linearize system (3.1.2) about the steady state
(te, Vu/d) and obtain

up =V - (di(1 — %)=1(1 — 2E=0)7y) — V- (xue(l — %) Vo) — py,
vy = doAv + vu — dv,

(di(1 — ty—1(1 — L)Yy — yu(1 - %)"'Vo) -n =0, Vv-n=0,
u(z,0) = up(x) > 0, v(z,0) = vp(z) > 0.

(3.1.3)
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Then the temporal growth rate X satisfies

At pt (1= Ly =11 — D) g k2 —yu(1 — Se)k2 |

—v A+d4+dok | 0 (3.1.4)
and hence the corresponding dispersion relation is
A2+ a(B*)A + b(k?) = 0,
a(k?) = (1 - %)~ (1 - =0=D)ds + do)k? + (u + ),
(3.1.5)

b(k?) = (1 — Ye)r=1(1 — 2ellon)) g, gkt
H(=xvue(l — %Y + pdp + (1 = )r=1(1 — 2B7)y64,)k2 + g,

From the analysis in the previous Chapter, a necessary condition for pattern forma-
tion of system (3.1.2) is

Ue \T Ug \T— 'U'c(l_r)
—xVUc(l — %) + pdg + 0dy (1 — %o )m~1(1 — 2=y

u

(3.1.6)

< =24/(1— %y-1(1 - 20, dypis.

If we regard the wavenumber as a continuous variable in spite of the fact the
wavenumber is discrete, (3.1.6) then gives a sufficient and necessary condition for
pattern formation of system (3.1.2) with zero flux boundary condition.

In the remainder of this Chapter, we will investigate the influence of the crowding
exponent r, chemosensitivity x, growth rate v and death rate ¢ of chemoattractant
on the pattern formation of system(3.1.2).

3.2 Bifurcation Analysis

3.2.1 Bifurcations with Chemotactic Sensitivity X

From the previous analysis, if we think of the chemosensitivity x as the bifurcation
parameter, then the bifurcation value . is determined by

2\/(1 — e)r-1(1 — 2T gy dopd + pdy + 8dy (1 — de)r—1(1 — 2ellor)y

Xe = Vuc(l _ %_Lg)r
(3.2.1)
The corresponding critical wavenumber k. is determined (see (2.3.17)) by
- e(l—1
K2 = —pudy — 8dy (1 — %e)r=1(1 — 2U=m)) 4y (1 - %)’" (3.29)

2(1 - w)-1(1 — 2lydidy
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when x > X., we have b(k?) < 0 and hence there exists a positive solution A of
(3.1.5) for some k # 0. Moreover, the range of unstable wave numbers k2 < k? < k2
can be obtained as

2 _ S — {8% — 4pddydp(1 — % )™1(1 - lc.%:_rl)}l/z

. : 3.2.3
! 2(1 = %11 - M?l)dl‘h a2
and 2 1 (A-ry11/2
— 4pbdyda(1 — Be)r—1(1 — Yellor
K= 5+ {S5° — 4pddidy(1 — %) ( =)} , (3.2.4)

2(1 — te)r=1(1 — 2llr)yg, g,

a
where § = —pdy — &dy (1 — %)™ 1(1 - yﬁg—lﬁ:ﬁ) + vxue(l — )"

Then the bifurcation value is (k, x.) such that b(k?) > 0 for all k2 if x < X,
however b(k?) < 0 for a range of wavenumbers k? < k% < k2 if x > x..

As we mentioned in the previous Chapter, the condition x > x. does not guar-
antee pattern formation since the allowable wavenumbers k are discrete for a finite
domain. That is, the critical value . is not necessary a bifurcation number. How-
ever, the bifurcation value of y can be obtained as in Theorem 2.4.1 in the Chapter
2. To avoid repetition, we omit the details.

Next, we examine the relationship between the critical value x. and the crowding
exponent 7, from which we can understand the influence of r on the dynamics of
system (3.1.2). Indeed, if we set M = -171%— > 1, then (3.2.1) can be rewritten as

1 /
Xe = o (2\/ pwodiday | M™ + %TMT'H + pde M" + 6di (1 +
C

It is easy to see that x., as a function of 7, is an increasing function.

Ue

ﬂf r)) (3.2.5)

3.2.2 Bifurcation with Crowding Exponent v

In this subsection, we shall derive a condition on r such that pattern formation is
possible. Toward this end, we rearrange inequality 3.1.6 and get

(1 - y=1(1 - 2=y, 12, /(1 — t)r-1(1 — =0, dypid

(3.2.6)
< xvuc(l — %) — pd,
which immediately requires that
XVUe (1 - E:—_;) > pds. (3.2.7)

Since u. < 4, we have that

B uc(lw— T)

1 S )
u u u
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25¢F

u(x,t) 2 Ve

Figure 3.1: (a) A plot of a stable solution of system (3.1.2), where parameters are
chosen as r = 0.02,d; = 0.1, dy = 10,u, = 2.0, 2 =4.0, u =40, v =5.0, § =
10.0,x = 2.75. (b) The plot of the critical number v, as a function of crowding
exponent r. The figure shows that v, is an increasing function of r.

Applying the above inequality, we can derive the following inequality from (3.2.6)

\/(1 _ Yoy o, VHVXUs + v 10d1dy

, (3.2.8)

) VXU, — 0dy

with a condition vyu, — éd; > 0. It is easy to check that condition (3.2.8) covers
condition (3.2.7).

Noting that the carrying capacity u, is less than the crowding capacity %, the
function (1 — %)" is decreasing with respect to r when 0 < 7 < 1 and hence
V1-% < /(1 - %) < 1. The inequality (3.2.8) immediately gives a necessary
condition on parameters for pattern formation

\/;wxucdz + \/,uédldg < VXUc — 0dy.

If we fix all parameters in (3.2.8) except r, then we have the following possibilities
to solve (3.2.8) for r.

(1). If /1 -%> Viwxuedstyiddidy then (3.2.8) holds for any 7 with 0 < 7 < 1.

vxuc—od1
As a consequence, the pattern formation is possible.

2). If /T — % < YierxuedtVibdids < 1 then we can solve (3.2.8) for r to obtain

vXUc—0dy
that
21n \/;Wﬁ;fzim
< PR — (3.2.9)
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Figure 3.2: (a) The plot of dispersion relation (3.1.5) with ¥ = 14.28 and v = 11.68

for r = 1/2. (b) Dispersion relation (3.1.5) with » = 19.8 and v = 16.2 for r = 1.
Where d; =0.1,dy = 1.0,u, = 2.0,2 = 4.0, p = 4.0,0 = 10.0, x = 0.5.

We confirm our results by numerical simulations. In Figure 3.1(a), we choose ap-
propriate parameter values such that

0.7071 = \/1 e Vixudy + ViShd o oone
u VXUe — ‘Sdl
9 | VEXucdy+/puSdidy
and ln(ijxucz(;l = 0.0179. From the above analysis, we know that if
@

r > 0.0179, then the solution will be stable and no pattern formation is possi-
ble, as shown in Figure 3.1(a), where we chose r = 0.02.

In summary, we obtain the following theorem.

Theorem 3.2.1. Let all parameters in (3.1.2) be fived except for r. If ddi —vxu. <
0, then we have the following results:

(i). If parameters are chosen such that V“”Xf;uaifg d’:w‘az > 1, then there is no

pattern formation for any r with 0 < r < 1.
(i). If J1-% < %{%@ < 1. Then the following inequality gives a
necessary condition for pattern formation of system (8.1.2)

2In(vpvxucdy + Vpddide ) — 2In(vxu, — ddy)
r< I — %) :

(i5). If \J1—% > V””Xf;uaifg d’l‘wlaz, then the pattern formation is possible for
r € (0,1].
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Figure 3.3: Evolution of the solution (u(z,t), v(z,t)) to system (3.1.2) with r = 1/2,
v =11.68 and d; = 0.1,dp = 1.0,uc = 2.0,a = 4.0, = 4.0,6 = 10.0,x = 0.5 by
a random perturbation (denoted by the dots) of the stable steady state (u,,v,) =
(2,3.336). The solid curves represents the solution u(z,t) and v(z,t) at t = 4.

3.2.3 Bifurcation with Growth Rate v

In this subsection, we investigate the influence of the dynamical parameter v on
pattern formation of system (3.1.2). The temporal eigenvalues of the linearization
at (us,vs) are the roots of equation (3.1.5).

We visualize A(k?) in Figure 3.2(a) for two particular values of the growth rate
of chemoattractant, namely v = 14.28, for which we obtain a range of positive
eigenvalues, and v = 11.68 for which all eigenvalues are negative, where we choose
r = 1/2. In other \\Nords, the uniform steady state (us,vs) obtained with v = 14.28
is unstable and pattern formation can be expected, whereas the uniform steady
state (us,vs) obtained with v = 11.68 is stable and no patterns evolve. Figure
3.2(b) plots the dispersion relation (3.1.5) with r = 1. When 7 = 1, then ¢ = 1
and the first equation of (3.1.2) is significantly reduced and the diffusion of cells
becomes linear. While, when 0 < r < 1, the diffusion of cells is really nonlinear
and has a singularity at v = @. This means that cells will diffuse very fast when
the cell density is high. Mathematically, the singularity might introduce different
phenomena or mathematical difficulties, but here we observe not much difference
compared to the linear case. We can understand this from both mathematical and
biological point of view. Mathematically the diffusion is a stabilizing force in the
chemotaxis model, the solution tends to be stable when the diffusion of cells is big.
Biologically, when cells diffuse quickly, the possibility of cell aggregation is relatively
small and the cell density will be controlled. Second, if we compare the dispersion
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Figure 3.4: Evolution of the solution (u(z,t),v(z,t)) to system (3.1.2) with r = 1/2,
v =20 and d; = 0.1,d2 = 1.0,u, = 2.0,7 = 4.0,u = 4.0,6 = 10.0,x = 0.5 by a
random perturbation (denoted by the dots) of the unstable steady state (us,v,) =
(2,4). The solid curves represents the solution u(z,t) and v(z,t) at ¢t = 4.

relation (3.1.5) as shown in Figure 3.2(a) and Figure 3.2(b), we find that there are no
significant differences for bothr =1 and r = % Actually, numerical plots show that
the dispersion relation does not have significant differences for » = 1 or any other
value of 7 € (0,1) (not shown). The only difference we can see is in the possible
bifurcation value of . We will examine the influence of r on the critical value of v
below.

For v = 11.68, we expect no pattern formation as shown in Figure 3.3. Al-
though v = 14.28 satisfies the necessary condition for instability, there is no discrete
wavenumber k which satisfies k2 < k% < k3 for the finite domain [0, 4], where k?
and k2 are given by (3.2.3) and (3.2.4), respectively. Hence we observe no pattern
formation for v = 14.28 (simulation not shown). However, it is easy to verify that
the difference of k3 and k7 is increased by further increasing v. In Figure 3.4, we
choose v = 20 and we do observe pattern formation.

We now compute the critical value v, for v from (3.1.5)

20/(1— %)r=1(1 — SU=0)ddypu6 + pudy + 6y (1 — 2)7-1(1 — 1))
Ve = "
Xuo(1 — )T

(3.2.10)
such that no unstable modes exist if v is below this critical number v,, whereas
unstable modes are possible when v is beyond this critical value v, (see Figure
3.5(a) for the dispersion relation). Furthermore, if we consider v, as a function of
r, we can show from (3.2.10) that »/(r) > 0. This implies that the critical value of
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Figure 3.5: (a). Dispersion relation (3.1.5) as the parameter v passes through the
bifurcation value v, = 12.98, where r = 1/2,d; = 0.1,dy = 1.0,u, = 2.0,7 =
4.0, = 4.0,6 = 10.0,x = 0.5. (b). Bifurcation diagram for the stability of the
spatial homogeneous steady state (us,v,) as the growth rate v of chemoattractant
varies. The solid portion of the line u = u, denotes the stable uniform steady states,
and the dotted portion of the line v = u, represents the unstable uniform steady
states. The intersection of two lines represents the uniform steady states at the
bifurcation value v,.

the growth rate v increases as the parameter r increases (see Figure 3.1(b)).

Remember that the critical number v, is not necessary a bifurcation value due to
the discrete nature of the unstable modes. But we can formally obtain the desired
bifurcation value for v by performing the same analysis as for x in section 4.1 and
obtain a bifurcation theorem similar with Theorem 2.4.1. To avoid repetition, we
do not provide details here. So we assume the bifurcation value is obtained and still
denoted by v, then the bifurcation diagram for the steady state (us,vs) obtained
from the intersection of line u = u, and line v = %X is illustrated in Figure 3.5(b).
When v is small, the steady state is stable (denoted by the solid portion of the
line u = u.). The slope of line v = %u increases as v increases (or equivalently,
increase as ¢ decreases), and as it passes through the value v./d, the resulting steady
state becomes unstable (denoted by the dashed portion of the line u = u.). This
outcome is consistent with the biological context that increasing the growth rate
v of chemoattractant will result in higher concentration of chemoattractant which
makes the system be more unstable.
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Figure 3.6: (a). Dispersion relation (3.1.5) as the parameter & passes through the
bifurcation value 6. = 29.22, where r = %,dl =0.1,ds = 1.0,u, =2.0,2 =4.0,u =
4.0,v = 20,x = 0.5. (b). Bifurcation graph for the stability of the spatial homo-
geneous steady state (u,,v;) as the death rate ¢ of chemoattractant varies. The
solid portion of the line u = u. denotes the stable uniform steady states, and the
dotted portion of the line u = u, represents the unstable uniform steady states. The

intersection of two lines represents the uniform steady states at the bifurcation value
d-

3.2.4 Bifurcation with Death Rate 0

In the model (3.1.2), the parameter § stands for the death (degradation) rate of the
chemoattractant, and the uniform steady state (us,v,) depends on 4. So § might be
a potential dynamical parameter. In this section, we will understand the influence
of the parameter § on the pattern formation of system (3.1.2).

If we perform the similar linear analysis as we did in previous sections, it is easy
to derive a critical value for §

5 = (\/quc(l - U'c/a)r B \//:—Cg)2
© G- )y - ey

(3.2.11)

such that when § > §,, there does not exist unstable modes, whereas unstable modes
can be expected when § < §.. Now if we regard the death rate ¢ as a dynamical
parameter, the dispersion relation of (3.1.5) as § passes through the critical value J.
is shown in Figure 3.6(a).

Now we examine the relationship between the critical value d. and crowing ex-
ponent r. For convenience we denote p = 1 — u./%. Under condition (3.2.11), we
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can rewrite (3.2.11) as follows

/ 1 d
1/2 _ [ a2
50 d1(p+%7’) (VVXUcP p'r—l)'

Note that 0 < p < 1 and hence p™! is decreasing with respect to r. Then it is easy

to see that é., as a function of r, is decreasing. Therefore, the critical death rate ¢ of
chemoattractant decreases with respect to crowing exponent r. This is in contrast
to the critical growth rate v, which is an increasing function of r.

Due to the discrete property of unstable modes, §. is not necessarily the bifurca-
tion value which can be formally obtained such that either k2¢/72, or k2£/n? reaches
an integer number as a function of §. We skip the detail since it uses the same ar-
gument as finding the bifurcation number for x in section 4.1. If we still denote
this bifurcation value by d., the bifurcation diagram with respect to parameter § for
the steady state (us,vs) can be graphed in Figure 3.6(b), which is in contrast to the
case for parameter v. When 4 is small, the steady state is unstable (denoted by the
dotted portion of the line u = u.). The slope of line v = %u decreases as § increases,
and as it passes through the value v./d, the resulting steady state becomes stable
(denoted by the solid portion of the line u = u,).

3.3 Numerical Simulation in One-Dimension

In this section, we will numerically investigate pattern formation for the model
(3.1.2). We still use MATLAB PDE solver pdepe as we used in chapter 2 to solve
the model (3.1.2). For r = 1, numerical solutions have been shown by Painter
and Hillen in [98]. In case of zero kinetics (f(u,v) = 0), Painter and Hillen found
a typical behavior of merging of local peaks (also called coarsening process). As
before, we consider zero kinetics and non zero kinetics separately.

3.3.1 Zero Cell Kinetics

In this subsection, we will consider system (3.1.2) with cell kinetics (# = 0). Un-
less stated otherwise, throughout this section, we shall assume zero flux boundary
condition. Initial conditions will be set as small perturbation of the homogeneous
steady state. For initial conditions u(z,0) = us (constant), the instability region
can be explicitly determined according to (3.1.6) by the following inequality

(@ — uy)" + 1,820 — us)" ' did
us(T — us)" v’

X > (3.3.1)
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Figure 3.7: Early evolution of multiple-peak patterns for model (3.1.2) with zero
cell kinetics f(u,v) = 0 and g(u,v) = vu — dv and with different initial cell density.
In (a), (b) and (c), we take r = 1/2 and diffusion is nonlinear. In (d), (e) and (f),
we take r = 1 and diffusion is linear. (a) Initial cell density=0.5, at T' = 0(dot),
150(dash) and 400(solid). (b) Initial cell density=0.2, at T' = 0(dot), 320(dash) and
400(solid). (c) Initial cell density=0.9, no patterns form. (d) Initial cell density=0.5,
at T = 0(dot), 50(dash) and 400(solid). (e) Initial cell density=0.2, at T" = 0(dot),
400(dash) and 500(solid). (f) Initial cell density=0.9, at T = 0(dot), 30(dash) and
400(solid). Other parameters: d; = 0.25,d; = 1,v = 50,6 = 10,2 = 1.0;u. =
0.5,x =0.6.

Under this condition, unstable wavemodes can be expected. From (3.3.1), we see
that the cell density is crucial for pattern formation. At high or low initial cell
density u,, the system tends to be stable to spatial perturbations.

Typical numerical simulation examples are shown in Figure 3.7 (a-f) for a range of
different initial cell densities. In these examples, we assume the crowding capacity @
to be 1. As expected from the condition (3.3.1), for the initial density close to 0 or 1,
there is no spatial patterning. In the region of instability a series of cell density peaks
form. But the growth at the peak is capped due to the volume filling mechanism,
which results in the formation of density plateaus. By varying the initial cell density
of the cell population (as shown in Figure 3.7 for u; = 0.2,u, = 0.5, u, = 0.9), the
variation in the thickness and inter-width of these plateaus can be controlled. Hence
the volume filling mechanism forms a robust approach of generating variations in
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Figure 3.8: Space-time evolution of cell density for model (3.1.2) with zero-kinetics
subject to different chemosensitivity x. (a) x = 1. (b) x = 2. (¢) x = 3. The
other parameters are chosen as v = 50,0 = 10,u,, = 1.0,u. = 0.5,uy = 0.9,d; =
0.25,d2 = 1.0,7 = 1/2. Numerical simulations show that, when there is no cell
kinetics, only a merging process is observed, whereas the emerging process does not
appear. We also observe that for a larger chemosensitivity, there is more merging.

cell density of varying thickness. Comparing Figure 10(c) and Figure 3.7(f), we
see the difference between linear cell diffusion and nonlinear cell diffusion. When
the cell density is close to the crowding capacity, nonlinear cell diffusion will play
a more crucial role than linear diffusion does and cells will not aggregate due to
the high diffusion effect. In the simulations of Figure 3.8, we observe merging
process at initial stage, which stops at a later stage and new time-independent
persistent peak patterns appear subsequently. Also, we observe that the greater
the chemosensitivity is, the earlier the peak patterns arise. This is not unexpected
since biologically cells take a shorter time to aggregate when the external signals are
stronger. Moreover, numerical simulations (see Figure 3.8) show that the number
of peaks arising initially with larger chemosensitivity is larger than the number of
peaks with smaller chemosensitivity. This is in agreement with our analysis obtained
in section 4.1 since we would get more unstable modes by increasing x. The number
of unstable modes is proportional to the peak patterns developing initially. But
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Figure 3.9: Early evolution of peak patterns for model (3.1.2) with zero cell kinetics
(u = 0) for a range of r. (a) r = 0.125, at T = 0(dot), 150(dash) and 400(solid).
(b) 7 = 0.25, at T' = 0(dot), 300(dash) and 400(solid). (c) r = 0.75, at T" = 0(dot),
30(dash) and 400(solid). Other parameters: d; = 0.25,ds = 1l,v = 1,0 = 1,4 =
1.0; u. = 0.5, x = 5.

cell density
s

over time, the unstable modes will decrease due to the consumption of external
chemicals and the number of peaks will decrease accordingly. As a consequence,
merging process happens and solutions stabilize into a time-independent spatial
patterns (a 5 peak pattern in Figure 3.8).

Figure 3.9 demonstrates the dynamics of pattern formation for different value of
crowding exponent r. Since the cell kinetics is zero (or equivalently to say p = 0),
the inequality (3.2.8) is satisfied. As expected from Theorem 4.2, spatial patterning
is possible. In Figure 3.9, we choose parameters within the instability region and
plot a time evolution of the peak patterns for a range of values of 7. The dynamics
of pattern formation can be simulated similarly for other parameters (v and §) but
the numerical simulations are not shown here.

3.3.2 Non-Zero Cell Kinetics

In this section, we include the effect of cell kinetics into the model and explore
whether stable multi-peak aggregation patterns can develop. We suppose that cells
follow logistic growth f(u,v) = pu(l —u/u.). Then the model is the same as (3.1.2).

The nontrivial uniform steady state of (3.1.2) is given by (us,vs) = (uc, vu./6),
and the instability region of this steady state is determined by condition (3.1.6).
We choose a set of parameters such that the instability condition (3.1.6) is satisfied
and plot the results in Figure 3.10. The time sequence plot shows that multiple
peaks develop and numerical simulations indicate that these peaks exists indefinitely.
Simulations also show that a time-independent persistent spatial pattern might not
exist and solutions demonstrate an interesting pattern interaction process of merging
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Figure 3.10: Time sequence showing cell density evolution for model (3.1.2) with

u# 0, where dy = 0.25,dy = 1,v =1, = 1,4 = 1.0,u. = 05,u =5,r=1/4,x =
50.

and emerging. Time evolution shows a temporarily oscillating pattern as some peaks
collapse together (see T = 120 — 160) or new peaks arise (see T = 160 — 400).
But when the parameters are chosen close to the stability/instability boundary,
solutions can stabilize into a time-independent spatial pattern (see Figure 3.11(a),
where a 7 peaks pattern evolves persistently). This might provide a mechanism to
generate stripe pattern in two dimension. Examples for a variety of parameter values
deep in the instability region are shown in Figure 3.11(b)-(c), where neighboring
aggregations join to form a single aggregation resulting in a large space of low cell
density. In the low density regions, new cell aggregations subsequently arise.

3.4 Discussion

In this chapter the volume filling chemotaxis model which including a different
squeezing probability g(u) than the one chosen in the previous chapter. The new
choice of g(u) leads to an unbounded diffusion rate when cell density approach the
crowding capacity. From mathematical point of view, this behavior will make system
more stable and the global in time solutions should exist although we are not able to
prove this so far. However, we study the pattern formation for the resultant system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

5 10 15
Space x

(a) (b) (c)

Figure 3.11: Space-time evolution of cell density for model (3.1.2) for different
choices of parameters. (a) d; = 0.25,dy = 1,v = 10,6 = 10,% = 1.0,u, = 0.25, 4 =
0.5,x = 10,7 = 1/2. Simulations indicate that a fixed spatial pattern exists as
peaks persist and grow. Here are 7 peaks. (b) d; = 0.25,dy = 1,v = 10,0 = 10,4 =
1.0,uc = 0.25, 4 = 0.5, = 20,7 = 1/2. (c)dy = 0.01,dy = 1,v = 10,6 = 10,@ =
1.0,u, = 0.25, 4 = 0.5, x = 1.5,7 = 1/2. In (b) and (c), typical merging and emerg-
ing patterns develop. The parameters chosen in (a) are closer to the stability region
than those chosen in (b) and (c). All simulations use the domain size as [0 20].

We observe similar patterning process as we had in chapter 2. In the case of zero
kinetics, we find merging process, while we observe merging and emerging process
for nonzero cell kinetics. This again confirms the conclusion that the emerging
process is due to cell kinetics. For the case of zero cell kinetics, we find that initial
cell density is important for pattern formation. There is no pattern formation for
high or low cell density. Note that we observe very similar patterning process for
the choices of squeezing probability ¢(u) described in both chapter 2 and chapter
3. However critical values of chemosensitivity and growth and degradation rate on
pattern formation are quite different, as we have seen from our analysis. Moreover,
the choice of g(u) in this chapter leads to an open question of fast diffusion problem,
which is mathematically interesting and challenging.
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Chapter 4
SHOCK FORMATION IN A CHEMOTAXIS MODEL !

4.1 Introduction

In many biological system, an organism navigates in response to a diffusible or oth-
erwise transported signal. In its simplest form this can be modeled by diffusion
equations with advection terms of the form first derived by Patlak [101]. However,
other systems are more accurately modeled by random walkers that deposit a nondif-
fusible signal that modifies the local environment for succeeding passages and there
is little or no transport of the modifying substance. Examples include myxobacteria
which produce slime over which their cohorts can move more readily, and ants, which
follow trails left by predecessors. In either case, the question arises as to whether
aggregation is possible with such strictly local modification or whether some form
of longer range communication is necessary. To answer this question, Othmer and
Stevens [95] have developed a number of mathematical chemotaxis models. They
illustrate that within the framework of partial differential equation models, stable
aggregations can occur with local modulation of the transition rates, that is, without
long range signaling via a diffusible chemical. One of these chemotaxis models in
one-space dimension reads

%‘t) - Dba—x (p% <1n (%))) ’ (4.1.1)

%w = R(p,w),
with no-flux boundary condition
4 p
= (In{—— = t =01 4.1.2
3 (2 (56)) =0 = =0. (412)
as well as initial conditions
p(z,0) = po(x) > 0, w(z,0) = we(z) >0 for 0 <z <. (4.1.3)

1 The result in this chapter is a collaboration with Thomas Hillen and has been published online
in Math. Methods. Appl. Sci. at http://www3.interscience.wiley.com/cgi-bin/jissue/106560971.
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Here p(z,t) is the particle density of a particular species and w(z, t) is the concen-
tration of that active agent. The chemotactic potential ¢ and signal reproduction
and decay term R are given as

_ (wtBY* _pw | wp
P(w) = (w+7> ,R(p,w)—k1+w+k2+p pw, (4.1.4)

were 3,7, k, k1, k2, A\, v, 4 and D are all nonnegative constants with D and A being
strictly positive and o # 0. Here the definition for potential function ¢(w) in (4.1.4)
corresponds to a so called barrier mode which describe a saturation effect of external
signals in the receptor binding reaction. The choice of kinetic terms R(p, w) describe
the saturation in the production of the external signal (see [95]).

Othmer and Stevens [95] numerically show that a variety of dynamics of system
(4.1.1)-(4.1.4) are possible, which include aggregation, blowup or collapse depending
on whether the dynamics admit stable bounded peaks, whether solutions blow up in
finite time, or whether a suitable spatial norm of the density function is asymptot-
ically less than its initial value. In [75], Levine and Sleeman present the analytical
results that support the numerical observations presented by Othmer and Stevens
[95]. Furthermore some additional numerical computations are made in [75]. Local
and global existence of solutions of the Othmer-Stevens model (4.1.1)-(4.1.4) has
been studied in [126] and in a recent paper [127]. In [127] the authors apply the
existence theory of Ladyzhenskaya et al [71] to obtain a very general result on local
and global existence of solutions. In [113] asymptotic expansions are used to prove
the existence and stability of spike solutions for the case of saturation in the signal
production term. :

It should be pointed out that since the first equation of (4.1.1) is parabolic in p,
it is easy to observe that p(z,t) > 0 provided that the initial value is nonnegative.
To simplify model (4.1.1) and gain some insight into the Othmer-Stevens model, it
is worthwhile to consider special cases which were considered in [75]. The results
we obtain in this paper are for a simplified version of the Othmer-Steven model.
To simplify equations (4.1.1), we first apply the representation of ¢(w) in (4.1.4) to
deduce that from the first equation of (4.1.1)

op =D[§_2£ _ Q(Ma_w)]

ot 9r2  dr\(w+y)(w+p) oz /]|
From this expression, we observe that if v >> w >> [, the coeflicient of w, is
nearly a/w, whereas if § >> w >> +, the coefficient is —a/w. These two extreme
cases can be modelled by taking ¢(w) = w™ where a can be positive or negative.
Throughout this paper, we consider 7, = 0, ¢(w) = w™* and R(p, w) = Apw — pw.
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Substituting these choices into system (4.1.1)-(4.1.4), we end up with the following
simplified system

ptZD(pm—i-a(p%) ),0<m<l, t>0,

@ (4.1.5)
Wy = Apw — pw,
with boundary condition
a%-l—&:() for £=20,1, t >0, (4.1.6)
w p
and initial data
p(z,0) = po(z) > 0, w(z,0) = wy(z) >0 for 0 <z <. (4.1.7)

Here the first equation of (4.1.5) becomes a classical Patlak-Keller-Segel type. The
substance w is generally refereed to as attractant for a < 0 and repellent for a > 0.
Furthermore, with these simplifications, using scaling theory by writing ¢t =

—ELD,x = %;l and setting y' = Wiz%,)\’ = ;f;’-\D—, we find we may take D =1 in (4.1.5).

If we multiply the first equation of (4.1.5) by A we observe that we may replace p
by p’ = Ap . Moreover, if we define w' = wexp(ut), we see that we may take y =0
in (4.1.5) if replacing w by w’. After these rescalings, we can recast the system
(4.1.5)-(4.1.7) to the following initial-boundary problem by dropping the prime for
convenience

Wy
Pt =Pz + (p-l—U—)a:’ (LL', t) € (Oal) X (01 OO),

(4.1.8)
wy = pw,
with boundary condition
o2 P2 _ 0 for 2=0,1,¢> 0, (4.1.9)
w b
and initial data
p(z,0) = po(z) 2 0,w(z,0) = wp(z) >0 for 0 <z <L (4.1.10)

From the second equation of (4.1.8), it follows that w(z,t) > 0 since wo(z) > 0 as

long as the solution (p, w) exists in time. So it makes sense to let ¥(z,t) = Inw(z,t)

and consequently ¢, = —. Moreover it follows from the second equation of (4.1.8)
w
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that ¢, = % = p. We therefore obtain the following form from (4.1.8)-(4.1.10)

([ £9 = Yy — Autfar — OWitae = Vaar, (7,2) € (0,1) X (0,00),

oYy + Yy = 0, for z =0,1,t > 0,
{ (4.1.11)
P(,0) = Yo(z) = Inwy(z), for 0 <z <1

wt(xao) = pO(x)’ for 0 S. z S l.

\

The operator £ defined by the first equation of (4.1.11) is a quasilinear second-
order differential operator. The damping term ,.; here does not really affect the
overall structure of the solution. So we can specify the type of the operator £ by
determining the sign of the discriminant

A = o®P2(z, 1) + doaiu(z, t),

at a point (z,t). The operator £ will be hyperbolic at the point (z,t) on a function
¢ if A > 0, while elliptic if A < 0. When A = 0, we say £ is parabolic. Since
we have that p(z,t) = ¥u(z,t) > 0, it follows that A > 0if a = 1 (or @ > 0)
and we refer to this case as hyperbolic. When a@ = —1 (or a < 0), the sign of the
discriminant can change and we refer to this case as mixed-type case.

When o = 1, Levine and Sleeman [75] construct solution pairs (p,w) for which
p > 0 and p collapses to a constant in finite time exponentially. When oo = —1,
they show that there are solution pairs (p, w) for which p > 0 but for which p blows
up on the parabolic boundary in finite time and the power spectrum converges to
that of delta function in finite time. Furthermore, they construct an explicit family
of such solutions (see section 3 of [75]). Moreover, Levine and Sleeman argued that
the system (4.1.5) contains the seeds of shock formation which can be obtained in
the “zero diffusion” limits if D — 0, & — oo in such a way that aD = constant.
But they did not provide the rigorous justification for this contention. One of the
purposes of this paper is to present the analytical justification for their assertion.
Beyond this, we study the shock structure by examining the traveling wave and
prove that the shock speed is identical to traveling speed. Furthermore, we find the
entropy inequality for attractive case (o > 0) and then the uniqueness of weak shock
solution of attractive case is obtained.

The organization of the rest of this chapter is as follows. In Section 2, we show
that for both attractive case (o < 0) and repulsive case (a > 0), there exist shock
solutions for the chemotaxis model (4.1.5), (4.1.6) and (4.1.7) without diffusion in
the sense of aD = constant. We start with the Rankine-Hugonoit condition to
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explicitly find the shock curves in parameterized forms that connect left and right
states through a shock solution. Furthermore we observe the difference between the
attractive case and the repulsive case and plot the Hugoniot locus for both cases.
In addition, we briefly discuss the general Riemann problem for system (4.1.5)-
(4.1.7) with zero diffusion. The shock structures will be examined in Section 3 by
studying the traveling waves to system (4.1.5)-(4.1.7) for small D > 0. We show the
existence of nondecreasing traveling waves for the attractive case and nonincreasing
traveling waves for the repulsive case. Essentially, we prove the traveling speed is
identical to the shock speed. Numerically we confirm the existence of the traveling
wave solutions. In Section 4, an entropy condition for the repulsive case (o > 0) is
identified and the uniqueness of the shock solutions follows. In the final Section 5,
we provide some discussion for further research.

4.1.1 Hyperbolic Systems

To make the paper self-contained and for the convenience to read, in this subsection,
we would like to introduce some basic definitions and associated notations related
to the theory of hyperbolic conservation laws (see [15, 73, 74]).

Let Q C R™ be an open set and f : Q — R" a smooth vector field. The Riemman
problem for the system of conservation laws in one-space dimension

u+ fu); =0, z€R, t>0, (4.1.12)

consists in finding a weak solution u(z,t) € € of (4.1.12) with piecewise constant
initial data of the form
u-, if <0,

u(z,0) = (4.1.13)
ut, if >0,

where u~,ut € Q,u~ # u*. Then we have the following notions for (4.1.12) and -
(4.1.13).

Definition 4.1.1. We say that (4.1.12) is a hyperbolic system of partial differ-
ential equations if for each u € Q the Jacobian matriz A(u) = Df(u) has n real
eigenvalues A1 (u) < Aa(u) < -+ < Ay(u) together with a basis of right eigenvectors
Ti(U)1<;<,- The eigenvalues are also called the wave speeds or characteristic
speed;—associated with (4.1.12). The pair (N, r;) is referred as the i-th charac-
teristic field. Furthermore, the system is said to be strictly hyperbolic if its
eigenvalues are distinct: \1(u) < Ag(u) < -+ < Ap(u).
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Definition 4.1.2. Fori € 1,--- ,n, we say that the i-th characteristic field is gen-
uinely nonlinear if

r; e M(u) #0 forall ueQ

and linearly degenerate if
;o N(u) =0 forall ueQ,

where r; @ \;(u) means the directional derivative of the function \;(u) in the direction
of the vector r;(u) defined by

i o N(u) = Vi(u) - ri(u) = ll_r,% Ai(u + sri(gu)) - )\i(u).

Definition 4.1.3. Fiz the point u~ € R®. The set of the points ut which can
be connected to u~ by a discontinuity satisfying the Rankine-Hugoniot jump
condition

™) = f(u7) = s(u” —u7)
for some s is often collectively called the Hugoniot locus for the point u™, where

s is called the shock speed, the speed at which the discontinuity travels. If u} lies on
the Hugoniot locus through u; , we say that u; and u; are connected by an i-shock.

Definition 4.1.4. A smooth function (n, p) : R® — R? is called an entropy pair if
any smooth solution u of (4.1.12) and (4.1.18) satisfies the additional conservation
law

n(u)e + p(u), =0,

where the functions n and p are called entropy and entropy flux respectively.

Definition 4.1.5 ([114]). We say that the shock wave of system (4.1.12) with
(4.1.13) “admits structure” if the viscous equation

us + f(u)y = €Uy, €>0, z€ER, t>0,
admits a traveling wave solution of the form

(a:—st)
u=1u ,
€

which tends to the given shock wave solution (u~,u*;s) ase — 0.

The following theorem established in [15] will be useful in the present paper.
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Theorem 4.1.6. (Theorem 5.1[15]). Let the system (4.1.12) be strictly hyperbolic.
Then, for every ug € Q, there exist op > 0 and n smooth curves S; : [—0q,00] — ,
together with scalar functions \; : [—09,00) > R (i=1,--- ,n), such that

F(Si(0)) = fuo) = Xi(0)(Si(0) — w), 0 € [—00,00]. (4.1.14)
Moreover, the parametrization can be chosen so that |dS;/do| =1 and
Si(0) = uo, Ai(0) = As(uo), (4.1.15)

LD = i), (4.1.16)

o=0
4.1.2 LaSalle’s Invariant Principle

Asymptotic or global stability of a dynamic system is often an important property
to be determined. It is well know that the Lyapunov stability theorem is a powerful
approach to determine the stability or instability of a system. However, the Lya-
punov stability theorem is often difficulty to establish the asymptotic properties, as
the derivative of the Lyapunov function candidate V is only negative semi-definite,
namely, V < 0. But this does not mean that the equilibrium of the dynamic system
is not asymptotically stable. In this kind of situation, it is still possible to draw
conclusions on asymptotic stability by invariant set theorems, which are due to the
pioneering work of LaSalle [72]. In this subsection, we introduce LaSalle’s invariant
principles as stated in [8, 45].

Definition 4.1.7 (Invariant set). Consider an autonomous dynamic system
& = f(z). (4.1.17)

Then a set S is called an invariant set for the above system (4.1.17) if every
trajectory x(t) starting from a point in S remains in S for all time.

Theorem 4.1.8 (LaSall’s invariant principle). Consider an autonomous system of
the form (4.1.17) with f locally Lipschitz. If there exists a continuous differentiable
function V(z) : R* — R for which

(i) for some l > 0, the set O = {x € R": V(z) < I} is bounded.

(i) V(z) <0 for all z in Q.
Define R = {z € R*: V(z) = 0} and let M be the largest invariant set contained in
R. Then for each xy € S, the w-limit set w(xo) is contained in M.
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4.2 Shock Solutions

4.2.1 The Hugoniot Locus and Existence of Shocks

Following the argument by Levine and Slemann [75], we assume first oD = C in the
Othmer and Stevens model (4.1.5)-(4.1.7), where C is a constant. In this situation,
the negative constant (C < 0) corresponds to attractive chemotaxis and positive one
(C > 0) to repulsive chemotaxis. Without loss of generality we may assume that
C = £1. The spatial domain is extended to be I = R. There are two cases to follow
regarding the sign of the constant C.

Case 1: Attractive case (o = —3% < 0). Following this condition, applying
the same scaling technique used in the introduction, we reformulate system (4.1.5)
to the following equivalent equations

Wy
{ bt = Dpxx - (p;)x) (l’,t) €lx (O’OO)a

wy = pw.

(4.2.1)

We define ¢ = (Inw), and reformulate system (4.2.1) to obtain the following form

{pt + PGz + qPz = Dy, (4.29)

qt = Px-

Let u = (p,q)T and A(u) = ( ql I()) ), D= ( l()) 8 ) Then the system (4.2.2)

becomes
us + f(w)e = s + A(W)ug = Dy, (4.2.3)

where f(u) = f(p,q) = (pg, —p)T. To study the shock formation of system (4.2.3),
we let D = 0 such that system (4.2.3) becomes the following conservation law

u + A(w)ug =0, (z,t) € I x(0,00). (4.2.4)

The characteristic equation of A(u) is easily computed as A> — g\ + p = 0. Thus
when ¢ — 4p > 0, the matrix A(u) has two real distinct eigenvalues A;(u) < Ao(u)

given by
V& —4p

2 ?

_4_VE-Y
M) =3 2

with corresponding eigenvectors which are

and A(u) = % +
ri(u) = (=M (u), 1) and rp(u) = (Na(u), ~1)7,

respectively. This means the conservational law (4.2.4) is strictly hyperbolic for
g®> — 4p > 0. Furthermore it is straightforward to obtain that VA;(u) - r1(u) =
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-—1 1 # 0 as well as Vqo(u) -ra(u) = a

V@ —4p 2—4

due to p > 0. Hence the characteristic fields (A;(u),1(w)) and (Ax(u),r2(u)) are
genuinely nonlinear which motivates us to look for shock solutions for system (4.2.4).
To investigate the shock solution, we augment the system (4.2.4) with Riemann
initial value

+1 % 0and A\ (u) < Ao(uw)

u”, <0,
u(z,0) = up(z) = (po(x), o(z)) = (4.2.5)
ut, >0,

where v~ = (p~,¢7),ut = (p*,¢").

We suppose here that u™ # u~. Otherwise the characteristic speeds are constant
Ai(u) = N(u™) = AN(uh) and therefore VA;(u) = 0. This is the case of linear
degeneracy in which the shock wave and rarefaction wave coincide with each other
and we refer to this situation as a contact discontinuity (see [15]). In this work, we
restrict our attention to the case of ut # u™.

Recall that if a discontinuity propagating with speed s has constant v~ and u*

on either side of the discontinuity, then the Rankine-Hugoniot jump condition must
hold

fwh) = flu™) =s(ut —u). (4.2.6)
Now let us fix a state u~ and attempt to determine the set of states u* that can
be connected to u~ by a discontinuity satisfying (4.2.6) for some s. To this end, we
rewrite the Rankine-Hugoniot condition (4.2.6) as
s(pt —p7) =p*q" —pq,
(4.2.7)
s(¢"—q7)=-p"+p~.
Observe that system (4.2.7) gives a system of two equations in three unknowns:
pT,q* and s. This enables us to expect a one parameter family of solutions. Here
we take g* as the free parameter. Then it follows from the second equation of (4.2.7)

that
pr=p"-s(¢"-q") (4.2.8)
Substituting (4.2.8) into the first equation of (4.2.7) yields
—s*(¢"—q ) =p*qt —p g (4.2.9)

Applying (4.2.8) into (4.2.9) gives that

(6" —g")(*—g*s+p7)=0. (4.2.10)
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It is worthwhile to note here that ¢t # ¢~. Otherwise it follows from the second
equation of (4.2.7) that p* = p~ which implies that u* = »~ and violates our
assumption. Therefore we end up with

s —qts+p” =0.

and get the shock speed
g

ik

2 2 ’
here we have assumed that (¢*)2 — 4p~ > 0. As a consequence we obtain p* from

(4.2.8)
pr=p — %(q‘“ +4/¢+? - 410‘) (" —q7), (4.2.12)

where + signs in these equations give two solutions, one for each family. Since p*

(4.2.11)

and s can be expressed in terms of g*, we can parameterize these curves by taking
¢dt=0+0), (4.2.13)

where o is a parameter.
Therefore given u~ € (2, we obtain the shock curves for the first characteristic
fields which are parameterized by

q

with shock speed

_ 1
qg — 5\/(1 +0)2q~2 —4p~.

The shock curves for the second characteristic field is

Sa(o,u”)=u" +o _% [(1 toH \/(1 HoPe - 4p‘]

q

with shock speed

1+0
2

1
-\ — It 2,2 _ -
s2(0,u7) = q +2\/(1+0) g —4p.

+

Here we write S;(o,u™) = u}(o,u”),i = 1,2 and u](o,u™) denote the solutions

corresponding to the shock speed s;. We thus obtain two shock curves through any
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point u~, one for each characteristic family. By denoting the corresponding shock
speed by s;(o, u™) we parameterize these curves by S;(o, u~) with S;(0,27) = u~. To
make notations simpler, we will frequently substitute S;(o) for S;(c,u™) and s;(0)
for s;(0, u™) when the point u~ is clearly understood. Replacing u*, s by S;(c), s;(c)
respectively in the Rankine-Hugoniot condition (4.2.6), we find that

f(8i(0)) = f(u™) = si(0)(Si0) — u™). (4.2.14)

Differentiating the expression (4.2.14) with respect to ¢ and evaluating at ¢ = 0
yields

f'(w7)S5;(0) = 5:(0)S;(0) (4.2.15)

so that §;(0) must be a scalar multiple of the eigenvector r;(u~) of f/(u~) since here
the speed s;(0) coincides with the corresponding characteristic speed, i.e., s;(0) =
Ai(u™). However, with the above notations, it is evident to check that

&%S,-(O, uT)=¢q ) xr(uT), s(0,u7)=N{u),i=1,2. (4.2.16)
as required.

Now let us examine the conditions which the parameter o needs to satisfy. For
the shock curves S;(o,u™)(i = 1,2) to be well defined, it is required that (1 +
a)2q"2 — 4p~ > 0. But it has been required that g=> — 4p~ > 0 to get a strictly
hyperbolic conservation law which was discussed at the beginning of this section.
Hence we require that |1 4+ o| > 1 which implies two situations: either ¢ > 0 or
0 < =2. For -2 < ¢ < 0, the system (4.1.5)-(4.1.7) is not strictly hyperbolic and
the Hugoniot locus has a gap (see Figure 4.1(a)). Therefore, when —2 < o < 0, the
shock curves are not well defined and hence we only consider the domain ¢ > 0.

From the preceding construction, we obtain, by standard arguments (see [15,
114)]), the existence of shock solutions of the Riemann problem (4.2.4) and (4.2.5)
with left and right states 4~ and u™ for the attractive case. The existence theorem is
summarized in the following and the Hugonoit locus of the attractive case is plotted
in Figure 4.1(a).

. Theorem 4.2.1. Let a = —} and Q be an open set of R?. For each u™ € Q with
q‘2 — 4dp~ > 0, there exists a parameter o such that for each o with o > 0, the
pair (u™,Si(0))(i = 1,2) satisfies the Rankine-Hugoniot conditions (4.2.14) and the
function

{ v, if z < si(o)t,
u(z,t) = (4.2.17)
Si(o), if z > si(o)t,
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is a weak solution of the system (4.2.4) which satisfies the Riemann condition (4.2.5)
with ut = S;(0).

Case 2: Repulsive case (o = § > 0). Substituting 1/D for a in system
(4.1.5) and rescaling the resulting system, we end up with

w
Pt = Dpgs + (p—”) ; (2,t) € I x(0,00),
w /e (4.2.18)
Wy = pw.
Similarly by defining ¢ = (Inw),, the system (4.2.18) can be reduced to
Pt — (99)z = Dpyq,
(4.2.19)
Gt — Dz = 0.
or written by
u; + A(u)ug = Dug,, (4.2.20)
where u = (p,¢)" and A(U) = ( _ql _é) ), D= ( l()) g ) Then system
(4.2.20) for D = 0 becomes a conservation law
u + f(u)e = us + A(w)u, =0, (z,t) € I x (0,00), (4.2.21)

where f(u) = f(p,q) = (—pq, —p)T and f'(u) = A(u). The characteristic equation
of A(u) is A2 + g\ — p = 0. Noticing p > 0, it is clear that the discriminant ¢% + 4p
of the characteristic equation is always positive. Therefore the matrix A(u) has two
real distinct eigenvalues \;(u) and Ay(u) which are given by

5 V& +4 3 V@ +4
A(u) = —g ———q—2————£ and Ag(u) = __;_+__‘l_é__£_

The corresponding eigenvectors are determined by
F1(u) = (~A(u),1)7 and fy(u) = (Ao(u), —1)T

respectively. It is obvious that A;(u) < 0 < Ap(w) which implies that the conserva-
tional law is strictly hyperbolic. Furthermore, we easily verify that VA;(u) - 71(u) =

q 3 ~ q
——=———= —1 < 0 and VAg(u) - fo(u) = ——=——=== —1 < 0 because of p > 0.
¢ +4p 2(w) - Ta(w) q? +4p

Hence the characteristic fields (X (), 71(x)) and (Xa(u), 72(u)) are genuinely nonlin-
ear. Then the Rankine-Hugoniot jump condition

fh) = fw) =8 —u7)
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takes the form

St —p7)=—-ptq" +p ¢,
(4.2.22)
(¢t —q7)=-p"+p".
System (4.2.22) consists of two equations in three unknowns: p*, ¢ and 3. We thus

can regard one unknown, say g, as a parameter to get from the second equation of
(4.2.22) that

pt=p -3¢ —q) (4.2.23)

We substitute (4.2.23) into the first equation of (4.2.22) and obtain the following
equation

~8(g*-q7)=-pTat +pq. (4.2.24)

Applying (4.2.23) into (4.2.24), we have
(¢t —q )@ +qgt5—p7)=0. (4.2.25)
Note that ¢* # ¢~. We obtain an equivalent equation to (4.2.25)
F+qt5-p =0

and therefore the shock speed can be found

+  \Sgt? -
(AL Ak (4.2.26)

2 2
Then we substitute (4.2.26) into (4.2.23) and get

1
+ - + 2 N
pt=p —-2-<—q /gt +4p )(q q), (4.2.27)

where the =+ signs in these equations give two solutions, one for each family. Since

§=-—

pt and s can be expressed in terms of ¢*, we can assume ¢ to be parameter and let
¢ =(1+0a)g". (4.2.28)

Then we substitute (4.2.28) into (4.2.26) and (4.2.27) to get the shock curves. For
the first characteristic field, we find the shock curves

q_z‘_ [(1 +0)g + \/(T+ o)2q %+ 4p":|

q

Si(o,u")=u"+o

H
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with shock speed

l+o 1
- _ 2,—2 —
54 2\/(l-i-o)q +4p~.

51(0’, u“) = -

For the second characteristic field we find the shock curve

%IO+UM'—JU+GP¢2+@ﬁ

q

§2(a, u)=u +o

with shock speed

l1+o
2

< _ _ 1
S(o,u”) =— q +§\/(1+0)2q‘2+4p‘.
where we denote S;(o,u™) = u (o,u™),i = 1,2
Performing the same analysis as we did for case 1, we obtain the following the-
orem similar to Theorem 4.2.1.

Theorem 4.2.2. Assume a = —115. For each u~ € ), there exists a parameter ¢ and
oo > 0 such that for each o € [—0y,00|, the pair (v, S;(c))(i = 1,2) satisfies the
Rankine-Hugoniot jump conditions and the function

u=, if z <o),

u(t,z) = (4.2.29)

Si(a), if > &(o)t,
is a weak solution of the system (4.2.21) satisfying the Riemann condition (4.2.5)
with u* = Si(0).

Remark 4.1. We observe from the above analysis that there are shock solutions
in both attractive and repulsive cases. In the first case, we need the additional
assumptions ¢ — 4p > 0 and q"'2 —4p~ > 0 and hence o > 0. However, in the
second case, there was no such restriction on p, q and hence on o to ensure the
Sformation of the shock. Indeed, from the definition of S; and S‘; given above, it is
evident that the real-valued solution S;(c) (i = 1,2) exists only for |1+0| > 2¢/p~ /g~
while S;(c) takes real values for any o.

Remark 4.2. From (4.2.16), it is clear that the Hugoniot locus Si(0) is tangent
to the eigenvector ri(u™) at the point ™. In a similar manner, the Hugoniot locus
5}(0‘) is tangent to the eigenvector 7;(u~) at the point u~. Then the Hugoniot locus
of the state u~ for both attractive and repulsive cases can be sketched in Figure 4.1.
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q q
p P
() (b)
Figure 4.1: (a) Hugoniot locus for the left state u~ = (2,3) for attractive case

where r1(u”) = (—1,1),m2(u”) = (2,—1); (b) Hugoniot locus for the left state
u~ = (2,3) for repulsive case where r1(u™) = 71 (u™) = (3.56, 1), r2(u™) = Fa(u™) =
(0.56,1), S1(v~) = S1(v™) and Sa(u~) = Sa(u™).

4.2.2  General Riemann Problem

Next, we attempt to solve the Riemann problem graphically by drawing the Hugoniot
locus for each states v~ and u™ and looking for intersections. As illustrated in [74],
we can accomplish this by finding an intermediate state u,, such that v~ and u,,
are connected by a discontinuity satisfying the Rankine-Hugoniot condition and so
for u,, and ut.

Let us first examine the attractive case, i.e., the Riemann problem (4.2.4) and
(4.2.5). Note that A;(u) < Ag(u) which requires the jump from u~ to u,, to travel
more slowly than the jump from u,, to u*. Precisely speaking, the u, must be
connected to u~ by a 1-shock S; while u* connected to u,, by a 2-shock S;. We
replace u* by u, in (4.2.6) and go through the same calculation as we did in Case
1 to derive that the 1-shock connected to u,, has speed

140 1 140
510, Um) = —5—m — 5\/(1 +0)2g5 — 4pm < —5—m

while 2-shock has speed

l1+o 1 l1+o
$2(0, Up) = —5m + —2-\/(1 +0)2q2, — 4pm > —5m

and consequently s1(0,um) < $2(0,uy,) for all . In a similar fashion, it is straight-
forward to deduce that 3; (0, um) < 32(0, uy) for the repulsive case. Figure 4.2 gives
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(@) a=-3 G a=5

Figure 4.2: Construction of a shock wave for the general Riemann problem with left
state u~ and right state u™. (a) is for attractive case and (b) is for repulsive case.
Both (a) and (b) give two points of intersection, labeled w,, and «},, but only u,,
gives a single-valued solution to the Riemann problem since the requirement that
the jump from 4~ to u, moves more slowly than the jump from u,, to ut due to
/\1(’&) < Az(u) and Al(u) < )\g(u) :

two points of intersection for each case, labeled u,, and u},, but only u,, gives a
single-valued solution to the general Riemann problem since we require the jump
from u~ to u, to travel more slowly than the jump from u,, to u* due to the
convention Ay (u) < Ag(u) and Ap(u) < Aa(u).

4.3 Traveling Wave with Shock Profile

In this section we will investigate the structure of the shock solution by considering
the traveling wave for the problem

us + B(u)ty = Dug,, (4.3.1)

where B(u) = A(u) in the attractive case and B(u) = A(u) in the repulsive case
discussed in Section 2.

We define the traveling wave ansatz u(z — ct) := u(z) with traveling speed c.
In this paper, we restrict ourself to ¢ > 0 since the shock speed s is nonnegative
and we shall prove that c is identical to s later to show the existence of a traveling
wave with shock profile. But it turns out from our analysis that ¢ can be negative
and hence a standing wave (¢ = 0) is admitted if we ignore the biological relevance.
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Substituting the ansatz into equation (4.3.1), one has that
(B(u) — cl)u' = Du”, (4.3.2)

where the prime means the differentiation with respect to variable z and the I is
the 2 x 2 identity matrix. Assume now that the left state 4~ and the right state u*
are given and satisfy

lim v =v", lim v=u", lim v =0.
2——00 z—r400 z—o00

Later we shall prove the traveling speed c coincides with the shock speed s, i.e., the
traveling wave carries the shock profile u(z) = u(x — st). Hence, if we define

{ u-, if z<st,

lim u? t,x) =
D (t,) ut, if z > st,

D—0

the limit as D — 0 of solution to (4.3.2) then gives us a shock wave connecting the
left state 4~ and the right state u*. The purpose of this section is to carefully study
the form of s and traveling wave u(z) to gain more detailed insight into the structure
of the shock for positive but small D. Again, we consider two cases corresponding
to the sign of a.

4.8.1 Traveling Wave for Aggregative Case (a < 0)

In this subsection, we will study the traveling solution of system (4.3.1) for a < 0.
As we point out before, when o < 0, B(u) = A(u), where A(u) is as defined in Case
1 in Section 2. We take up A(u) and expand (4.3.2) to get

v’ +pq —cp' = Dy,
(4.3.3)
—p' —cq = 0.
Introducing v = p’ and deducing from the second equation of (4.3.3) that ¢ = —%,

we obtain equation v’ = % <q — Lc) - c) from the first equation of (4.3.3). Coupling

these equations gives rise to the following system

_ _’U
¢ == (4.3.4)
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Observe that p and g have an invariant of motion: p’ + ¢¢’ = 0. Then p + ¢q = o,
where g; is a constant determined by the left state u™ = (p~,¢™) and the right state
ut = (p*,q%), ie,

a=p +cg =p" +eqt, (4.3.5)

which is an agreement with the identity (4.2.8) if ¢ = s. Using the invariant of
motion, the system (4.3.4) is reduced to

(4.3.6)
v = —ov(p - B),
where 0 = ,ﬂ———c—
It is clear that system (%1 3.6) has a continuum of steady states (6, 0), where § > 0
due to the particle density p > 0. The corresponding community matrix about the

steady state (6,0) is
o 1
0 o(B-0)

and hence the eigenvalues of J are
)‘1 =0, A2 = 0(13 - 9)7

with corresponding eigenfunctions, respectively,

= H 2= m = [—a(el— 6)] |

In the following, we shall study the existence of a traveling solution to nonlinear
system (4.3.6) for fixed traveling speed. We give a class of equilibria in which two
equilibria can be appropriately chosen to generate a nonnegative heteroclinic orbit
connecting the two equilibria. To this end, we first investigate the stability of the
linearized system of (4.3.6).

Note that the eigenvector 7, corresponding to zero eigenvalue JA; is in the direc-
tion of the p axis v = 0 and every point (4,0) on the p axis is a steady state. To
determine the stability of the linearized system, we only need to determine the sign
of the second eigenvalue. Since o > 0, we have the following relation

6<fB= x>0,
0=0=X=0, (4.3.7)
0>08=X<0.
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Therefore § = 3 is a critical point which separates the steady states into stable parts
and unstable parts. So a heteroclinic connection is possible for the linearized system.
Note that it has been mentioned in the Introduction that p, as the particle density,
preserves the positivity. So p > 0 and hence p~,p* > 0. To have the biological
relevance, we require that 3 > 0 to obtain a real unstable manifold corresponding
to Ag. This requires that

E<o=p +cqg . (4.3.8)

In (4.3.8), we tacitly admit that p~ + cg~ > 0. Indeed from the definition of ¢, we
know ¢ can be negative and hence ¢~ and ¢* can be negative as the limits of gq.
Therefore it gives an additional requirement

p +cg” >0. (4.3.9)

Observe that inequality (4.3.9) holds true for all g~ > 0. We only worry about the
case of ¢~ < 0 which yields that from (4.3.9)

c< -2 (4.3.10)

q

Then using (4.3.10) and solving (4.3.8) gives a maximum shock speed ¢* such that
0<e<c, (4.3.11)

where

ﬁ;—+ (q2_)2+4p_ for ¢~ > 0,

’

¢ - -, /T 1312
ma.x{—PL- g+ (q2 )>+4p }, for ¢~ < 0. ( )

q ?
Then we can obtain a local stability theorem of linearization of system (4.3.6).

Lemma 4.3.1. Let the traveling wave speed ¢ satisfy (4.3.11) and (4.3.12). Then
B > 0 and the steady state (6,0) of the linearized system of (4.3.6) is stable for
8 > 3 whereas unstable for 8 < (3.

So far, we have obtained the stability of the lineariazation of the nonlinear system
(4.3.6). But it is still not clear about the stability even local stability of the original
nonlinear system (4.3.6) since there is a zero eigenvalue. To find an orbit connecting
a stable manifold and an unstable manifold, we need to proceed to study the stability
of system (4.3.6). We shall apply LaSall’s invariant principle introduced in section
4.1.2 to prove the existence of a heteroclinic connection.
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Since the p axis v = 0 (p > 0) is a continuum of steady states, it splits the p —v
plane into two parts: v > 0 and v < 0. When v > 0, ' > 0 and hence p grows
which requires that p~ < p*. Analogously, p~ > pt when v < 0. We shall show
that the monotonically decreasing traveling front wave does not exist. Whereas an
increasing traveling front wave exists for v > 0 and p~ < p™ using a constructive
approach. We first give the following result.

Lemma 4.3.2. Let (4.8.11) and (4.3.12) be satisfied. Assume that v < 0 and
p~ > pt. Then all solutions of the system (4.3.6), have an w-limit set that is
contained in the following set

L= {(p7 ’U)I v = Oap > ﬁ}?
and the a-limit set is contained in
M= {(p,v)| v=0,0 <p < B}.

Proof. Define a function V(p,v) by V(p,v) = p. Since p(z) > 0 for all z, then
V(p(2),v(2)) > 0 and % = p’ = v < 0 thanks to the first equation of (4.3.6). For
any L > 0, we now define Qp = {(p,v) : p > 0,V(p,v) < L} = {(p,v) : 0<p < L}.
From the system (4.3.6), we can solve for v in terms of p such that

(o)
v(p) = —§p2 +0oBp+C,

where C is a constant of integration. It then follows from the above equation that
v is bounded for any 0 < p < L. Hence for any L > 0, the set {7 defined above is
bounded. Moreover, it has that % = v < 0 due to the assumption v < 0.

Now we define another set

Ly = {(p,v) %=0, p>0,vs0}. (4.3.13)
From the first equation of (4.3.6), we have that
dv
o = = U. 4.3.14
. O<e=v=0 (4.3.14)

Therefore L; = {(p,v)|p > 0,v = 0}. Then L, is invariant since it is comprised of
steady states only. With the help of LaSall’s invariant principle (Theorem 4.1.8),
every solution of the system (4.3.6) starting in € for any L > 0 converges to L;
as z — +o00. Indeed, we can describe the asymptotic behavior of the solution more
precisely. We know that A; > 0 for all 0 < p < §. Hence the manifold of system
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(4.3.6) corresponding to eigenvalue A, > 0 is unstable and all orbits will leave the
neighborhood of the set Ly defined by.

Ly = {(pav)l v<0,0 <p< ﬂ}
Therefore, every solution of the system (4.3.6) converges to the set as z — 400

L=L:\L ={(p,’U)| 'U=0,p>ﬂ}-

Similarly, if we study the problem backward on variable z, we can show that all
solutions of the system (4.3.6) converge to the set M as z — —o0, which completes
the proof.
O
Now we are in a position to state the non-existence theorem of decreasing trav-
eling solutions for system (4.3.6).

Theorem 4.3.1. Let (4.3.11) and (4.3.12) be satisfied. Assume that v < 0. Then
there is no traveling wave solution for system (4.3.6).

Proof. (By contraction). Assume that there exists a traveling wave solution
(p,v) for system (4.3.6). Since p’ = v < 0, the traveling wave p is non-increasing.
So p(—o0) = p~ > pt = p(4+00). By Lemma 4.3.2, it follows that (p*,0) € L
and (p~,0) € M. Thus p* > f and 0 < p~ < @ and hence p~ < p*. This is
contradictive. So the system (4.3.6) has no traveling solutions.

d

Below we shall investigate the existence of traveling wave solutions of system
(4.3.6) for v > 0. We provide a constructive proof to show the existence of a
traveling solution and sketch the phase portrait and numerically plot the traveling
solution of system (4.3.6). To this end, we first write (4.3.6) as

dv
i (p— D).
Integrating the equation gives rise to
v(p) = —=2p? + afp + o2 = -ip"’ + i(91 — A)p + 02 (4.3.15)
2 Dc Dc ’

where g is constant of integration to be determined.
Noting that p’ = v. Then

o
P =-350"+ofp+o (4.3.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

osf 1 -0.04}

06} -0.08}

-0.12}

~0.18

~0.18

0 0.5 1

o e

—
o
N’

(b)

Figure 4.3: (a) A plot of phase portrait for system (4.3.6), where c=1,D =1 and
hence o = 2. The value of 3 = & — cz depends on the choice of g;, here we choose
p1 = 3.5 and then 8 = 1.25. (b) A plot of phase portra,lt for system (4.3.28) with
¢=4,D =1 and ¢ = 0.5. The value of ﬂ 3— + £ ° depends on the choice of g,
here we choose g; = —10.5 and hence /6 2. 75

Solving equation (4.3.16), one obtains the solution

p=as+ :2 — % , (4.3.17)
Coexp (§(a2 - al)z) -1
where a1 = 8 — /B2 + 22, a3 = f+ 4/ + 22,
Note that as — a; > 0. Then the limits of (4.3.17) are
p(=00) = a1, p(+00) = a. (4.3.18)
By the boundary condition p(—o0) = p~, p(+00) = p™, it follows that
a=p, aa=p". (4.3.19)

Then p~ < p* which is consistent with the fact p’ = v > 0. Moreover, from the first
equation of system (4.3.6), it follows that

v(to0) = lim p =0,

which implies that system (4.3.6) has a pulse wave in v. Therefore, applying (4.3.15),
we have that
v(p~) = v(p*) = 0. (4.3.20)
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Recovering o and 3 and applying (4.3.20) into (4.3.15) gives that

0= —Dl—c(p‘)2 - Dic(é?l —A)p~ (4.3.21)
as well as
1, o, 1 2y, — Voo, 1 2y, +
D@ )+ pole = T = =5 (07) + (e = ) (4.3.22)

Since we have p~ < p < p™, then v as a quadratic of p (see (4.3.15)), is uniformly
bounded. From (4.3.18), (4.3.19) and (4.3.20), we know there exists a nonnegative
heteroclinic orbit to system (4.3.6) connecting the left state (p~,0) and right state
(p*,0). Given any one of end states, the other one can be determined by identity
(4.3.22). The phase portrait of system (4.3.6) can be sketched by using (4.3.15)
which gives rise to a parabola (see Figure 4.3 (a)). The traveling solution of system
(4.3.6) is numerically given in Figure 4.4, where we employed the ODE solver of
Matlab to solve the equations.

By above analysis, we obtain a traveling wave (p,v) for system (4.3.6). Utilizing
the relation between v and ¢, we can connect the results to system (4.3.1) and obtain
the following existence theorem for shock wave solutions to system (4.3.1).

Theorem 4.3.2. Let a = —% < 0, then there exists a nondecreasing traveling wave
solution u(z) = u(x — ct) for system (4.8.1) , such that c = s, where s is the shock
speed. The traveling wave u(z — st) connects left state u~ and right state ut if
and only if u™ € S;(u™), where S;(u™) denotes the Hugoniot locus for left state u™.
Furthermore, the shock structure near z = 0, i.e., x = st, is given by

{ M=a-D (4.3.23)

/

P =—2p+ (e —p+507) - e — A,
where o1 = p~ + sq~ =p* +cqt.
Proof. From the above analysis, it only remains to prove that the traveling wave

speed c is identical to the shock speed s. Note that g1 = p~ + cg~. Feeding this
expression into (4.3.22) yields that

—_ — 2 — _
g —-gt—qtq —¢t " +qp —¢p =0, (4.3.24)

which is an agreement with the reformulated Rankine-Hugonoit jump condition
(4.2.10). This implies that the traveling speed ¢ and the left state u= = (p~,¢7)
as well as the right state u™ = (p*,q*) agree with the Rankine-Hugoniot jump
condition (4.2.6). Hence ¢ = s and (4.3.23) is obtained directly from (4.3.6), (4.3.15)
and (4.3.21). O
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Figure 4.4: The traveling wave (p, q) determined by (4.3.23) for the case a = —§ <
0, where we choose s = 1,D = 2,p~ = 0.5,¢~ = 3 and time ¢ = 0, 5, 10, 15, 20, 25.
The wave moves from left to right.

4.3.2  Traveling Wave for Repulsive Case (o> 0)

In this section, we shall consider the traveling wave solutions of system (4.3.1) for
the repulsive case, which is an opposite case compared to the preceding subsection.
Here we have B(u) = A(u), where A(u) is as defined in Section 2 for the repulsive
case. In this subsection, many details will be omitted since they are analogous to
the analysis of the preceding subsection. We denote the traveling speed by ¢ to
distinguish it with the traveling speed ¢ used for the case a < 0. Then we use the
relation (4.3.2) to derive that

—qp' —pq =& = Dp”
i (4.3.25)
—p —¢cqg =0.

By the second equation of (4.3.25), we get that p + é¢g = 91 with a constant g
determined by the two end states (p~,¢~) and (pt, qt)

b=p +é =p +éq". (4.3.26)

Then using the invariant of motion, we obtain from (4.3.25) that

2 01 ¢€
"'=Zlp—|=+= /. 4.3.27
Dp" = - [p <2 + 2)]1@ (4.3.27)
Denoting v = p/, 6 = — an dj3= + —, we convert (4.3.27) into a system
B (4.3.28)
= 6v(p ~ B),
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Clearly system (4.3.28) has a continuum of steady states (6, 0) with 6 > 0 and the
eigenvalues of the linearized system about equilibria (5, 0) are

A =0, A =0(0-7).
We have the following observation due to & > 0
f<B=X<0,
0=0= =0, (4.3.29)
0>03=X>0.
Due to the biological relevance, it is required that B > 0 to obtain a heteroclinic
connection. Then we have

E+n=8+éeg+pt>0. (4.3.30)

Note that pt > 0. Hence (4.3.30) holds for all ¢ > 0 if g+ > 0. For ¢t < 0, by
solving (4.3.30), we find a sufficient condition (g*)2—4p* < 0 to obtain a nonnegative
traveling speed ¢ satisfying (4.3.30). So we assume that

gt <0, (¢N)?*—4p* <0 (4.3.31)
and solve (4.3.30), to obtain that

c<é<FE, (4.3.32)
where

—at + ST — dp+
c ; o= 7 (2q -4t (4.3.33)

Then by the very routine argument as we used in Section 3.1, we easily obtain the

_q+ - /(q+)2 — 4p+

ol

following results for the corresponding linearized system of (4.3.28).

Lemma 4.3.3. Let either ¢t > 0,¢ > 0 or (4.9.91), (4.3.32) and (4.8.93) hold.
Then the linearized system of (4.8.28) is locally stable for 6 < 3 and unstable § > .

Next, we study the stability of the nonlinear system (4.3.28). As before, we
separate p — v space into two regions: v > 0 and v < 0. We first look at the case
v < 0 and give the following theorem.

Lemma 4.3.4. Let either ¢* > 0, > 0 or (4.3.81), ({.8.32) and (4.3.83) hold.
Assume that v < 0 and p~ > p*. Then the w-limit set of all solutions of the system
(4.8.28), is contained in the set

V = {(p,v)| v=0,0<p<ﬁ},

and converge, as z — —oo, to the set

W = {(p,v)| v=0,p> 3}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

~0.00s!

-0
0018,

-002s|

0|

-oo4)

o ) e []
z z z

Figure 4.5: The traveling wave (p, g) determined by (4.3.36) for the case & = § > 0,
where we choose s =1,D =4,pt = 2,¢q* = —2 and time ¢ = 0, 5, 10, 15, 20, 25. The
wave moves from left to right.

Proof. By defing a function V(p, v) by 17'(]), v) = p, we can use the same approach
as in the proof of Theorem 4.3.2 by using the LaSall’s invariant principle to get the
results. The details are omitted.

O

With Lemma 4.3.4 in hand, we shall show the existence of a non-increasing
traveling solution for system (4.3.28).

Lemma 4.3.5. Let the assumptions in Lemma 8.6 hold. Then there exists a uni-
formly bounded, negative heteroclinic orbit ( for v) connecting equilibria (e1,0) and
equilibria (e, 0) for system (4.3.28), where e; < (3,3 > B. As a consequence, there
exists a traveling pulse in v and a non-increasing traveling front in p.

Proof. According to Lemma 4.3.4, we only need to prove that the solution v as
a function of p is bounded. To this end, we first write (4.3.28) as

dv . ~
priaid (p— 0).
Integrating the equation gives rise to
1, 1, -
= —p® — 4.3.34
v(p) = 530"~ pl@a + E)p + 22, (4.3.34)

where G and 3 has been recovered and 3, is a constant of integration which can be
determined by the boundary conditions of p and g,

~ Lo 1o o o
= — . 433
02 Dé(p ) +D5(91+c )P (4.3.35)

Since p’ = v < 0, pis decreasing. By the boundary condition p(—o0) = p~, p(+o0) =
pt, if follows that p* < p < p~ and hence p is uniformly bounded. Therefore v, as
a quadratic form of p, is uniformly bounded as well. This finishes the proof.
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O

Connecting the traveling wave solutions obtained above with the shock solution

obtained in Section 2, we have the following existence theorem for a traveling wave

with shock profile u(z — ét), i.e., ¢ = §, where § is the shock speed discussed in
Section 2 for case a > 0.

Theorem 4.3.3. Let a = % > 0 and the assumptions in Lemma 3.7 hold, then
there exists a non-increasing traveling wave solution u(z) = u(x — é) for system
(4.8.1) such that ¢ = s, where § is the shock speed. The conditions that p~ and p*
lie on the same parabola v(p) given by (4.8.34) is identical to the Rankine-Hugoniot
condition. The traveling wave connects left state v~ and right state u* if and only
if ut € S;(u™), where ut € S;(u~) denotes the Hugoniot locus for left state u~
obtained in Section 2. Furthermore, the shock structure near z = 0, i.e., T = §t, is
given by

'§q = @1 — D
o o (4.3.36)
{ P = 357 = 55(& + P — (0" + 3@ + P,

where §, = p~ + 8¢~ = p* + 3q*.

Proof. System (4.3.36) is obtained from (4.3.28), (4.3.34) and (4.3.35) directly
if we replace é by 3. So by Lemma 3.7, it only remains to prove that the traveling

speed ¢ is identical to the shock speed 3. Since v(p~) = v(p*) = 0, we have from
(4.3.34) that

oo, 1 0 o _ v, 1o o o
—_ — = —— — . 4.3.37
e )+ @+ E)p e ) + paler +&)p (4.3.37)
Hence substituting 9; = p~ + ¢¢~ into (4.3.37) and canceling D out yields that
g -p gt -2 gt + ¢ +p g — ¢ =0, (4.3.38)

which is the same as the reformulated Ranking-Hugoniot jump condition (4.2.25).
Hence ¢ = 3, as required. O

A phase portrait of system (4.3.28) is given in Figure 4.3 (b) and a numerical
traveling solution is plotted in Figure 4.5. In the remainder of this section, we
will investigate the traveling solutions for the other case v > 0. It turns out that
traveling wave solutions do not exist for v > 0. To prove this, we first derive from
(4.3.28) that

/

P = =5p* — 58p + ba. (4.3.39)

N =
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Note that
20,

p ~
Then we solve equation (4.3.39) to get that

1. -
=Z(g1+c2—2p )2 > 0.

Q*Isz

Gy — Gy

Coexp (g—(&l — &2)2) -1

(4.3.40)

where d; = 3 — ﬁz—%g}, o =0+ 52—2;‘.;’:"1.
It is clear that @; — @ < 0. Taking the limits for (4.3.40), we have that
p(z) — Gg as z — —o0, (4.3.41)
p(2) = @ as z — +o0. o
Using (4.3.41), we can show the nonexistence of traveling solutions of system (4.3.28)
forv>0.

Theorem 4.3.4. Assume that either pt > 0,¢ > 0 or (4.8.31), (4.8.82) and (4.5.83)
hold. Then there is no traveling wave solution to system (4.8.28) for v > 0.

4.4 Entropy Solution

As is well known, weak solutions of the Cauchy problem of a system of conservation
laws are generally non-unique and a so-called “ entropy condition” is required to
pick out the physical relevant viscosity solution [15]. One condition which picks a
physical solution is that it should be the limiting solution of the viscous equation
as the viscosity coefficient tends to zero [34]. Another approach to the “entropy
condition” is to define an entropy pair for which an additional conservation law
holds for smooth solutions that becomes an inequality for discontinuous solutions.
In this section, we are devoted to developing a convex entropy and an entropy
flux pair (7, p) for the case of a = % > (0. Toward this end, we first rewrite the
conservation law (4.2.21) in the form

Pt — (pq)z =0,
(4.4.1)
g —pe =0,
or
ug + f(u)e =0, (4.4.2)

where u = (p, ¢) and f(u) = (~pg, —p).
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From the Definition 4.1.4 given in the Introduction, we know that the entropy
pair (1, p) satisfies an additional conservation law for any smooth solution u = (p, q)
to system (4.4.1)

n(w) + p(u), = 0. (4.4.3)
Substituting (4.4.2) into (4.4.3), we end up with

n'(w) - f'(u) =p'(w), (4.4.4)

where ' denotes the derivative with respect to vector u = (p, q). Expanding (4.4.4)
gives the following relation

Pp = — Mg — qTp,
(4.4.5)
Pq = —Plp.
Eliminating 7 from (4.4.5) gives that
Ngg + Qg — Py = 0. (4.4.6)

We assume that the entropy n(u) of the conservation law (4.4.2) has the following
form

n(p,q) = %qz +9(p), (4.4.7)

where g(p) is expected to be a convex function.
Substituting (4.4.7) into (4.4.6) yields that

1-pg"(p) =0. (4.4.8)
Solving (4.4.8) gives

g(p) = plnp —p+ k1p + ka, (4.4.9)

where ki, ko are arbitrary constants.
Then Substituting (4.4.7) and (4.4.9) into the first equation of (4.4.5) enables us
to find p(p, q) as

p(p,q) = —pqlnp — kipg + ks, (4.4.10)

where k3 is an arbitrary constant.
If we particularly choose k; = ko = k3 = 0, we obtain an entropy-entropy flux
pair (7, p) which reads

n(p,q) = 3¢ + plnp —p,
(4.4.11)

p(p,q) = —pqlnp.
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Accordingly, g(p) = plnp — p and it is easy to verify that ¢”(p) = 1/p > 0 due
to p > 0. As a consequence, the second derivative of n(u) is a positive definite
quadratic form. That is n(u) is a convex function.

The entropy 7n(u) is conserved for smooth solutions of (4.4.2) by its definition.
For discontinuous solutions (shock solutions), however, the manipulations performed
above in general are not valid, i.e., n(u) is not conserved. Since we are particularly
interested in how the entropy behaves for the vanishing viscosity weak solution, we
look at the related viscous problem

U + F()s = Dligs, (4.4.12)

and let the viscosity coefficient D tend to zero.

Since the solutions of equation (4.4.12) are always smooth, we can derive the
corresponding evolution equation for the entropy following the same procedure ap-
plied for smooth solutions for the inviscid equation (4.4.2). Therefore we multiply
(4.4.12) by 7’'(u) to obtain from (4.4.4) that

(W) + p(u)e = Dy (W)t (4.4.13)
That is
n(w) + p(u)y = Dn(w)ze — D" (w)ul. (4.4.14)

Applying a standard argument (e.g. p.604-606 in [34]), we end up with the following
inequality

/ i / (W) + plu)odndt < 0. (4.4.15)
0 0

The fact that inequality (4.4.15) holds for any [ and T is summarized by saying that
n(u): + p(u); < 0 almost everywhere. We are led to the following theorem.

Theorem 4.4.1. (Entropy solution). Any solution (p,q) of (4.4.2) which is the
limit of the viscosity equation (4.4.12) satisfies

n(, ¢ + p(p, @)z < 0, (4.4.16)

in the weak sense, where n(p,q) and p(p,q) are given by (4.4.11).

4.5 Discussion

In this chapter, we establish the shock structure for a simplified version of a chemo-
taxis model (4.1.1), (4.1.2), (4.1.3) and (4.1.4) for both attractive (o > 0) and
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repulsive (o < 0) cases. The shock curves are given in parameterized forms. The
requirements on the choice of the parameter o are different for the cases of & > 0
and o < 0. Moreover, we discuss the general Riemann problem. We show that, for
the attractive case, there exists only nondecreasing traveling waves, and for the re-
pulsive case there exists only nonincreasing traveling waves. Furthermore we prove
that the traveling wave speed is identical to the shock speed and the traveling waves
converge to the given shock waves as the viscosity constant D — 0, which means
the sharp transition of cell movements (movement disturbance) from one state to
the other as viscosity vanishes. This is indeed expected. When viscosity turns to
zero, the chemotactic movement becomes dominant and cell aggregation or dispersal
is more pronounced, which might lead to a sharp transition corresponding to the
occurrence of shocks.

For the uniqueness of the weak solutions (shock solutions), we also find an
entropy-entropy pair for the repulsive case. For the attractive case, the question
of uniqueness of weak solutions is still open.

When a = —1 (or < 0), it has been proven by Levine and Sleeman [75] that there
are solutions (p, w) for which p > 0 blows up in finite time and an explicit family of
such blow-up solutions has been constructed in the section 3 of [75]. But there are no
results available about the global existence or non-existence of solutions for a > 0.
To show the global existence for model (4.1.5)-(4.1.7) is not an easy problem. Below
we give a reformulation of the problem that leads to Dirichlet boundary conditions.
‘We hope it can provide some useful clues for the global existence for the solution.

The boundary condition (4.1.2) or (4.1.6) seems like a Neumann boundary con-
dition. But it is not the standard form of a Neumann boundary condition. We
will first reformulate the form of boundary conditions. A direct calculation shows
that the boundary condition (4.1.2) is weaker than the non-flux boundary condi-
tion p,(0,t) = p;(I,t) = 0. However, for those solutions of the simplified problem
(4.1.5)-(4.1.7) for which this stronger condition holds, one might be able to ap-
ply the argument in [105] to obtain the local-in-time existence and the uniqueness
of solution as well. Furthermore, from the second equation of (4.1.5), it follows
that (Inw); = Ap — u. Hence at the domain boundaries z = 0,/, we have that
(Inw)y = Ap, = —)\ap% = —Aa(lnw),, i.e., (Inw)y + Aa(lnw), = 0. Solving this
equation gives the solution
wy _ we(x,0)

(Inw)s = w  w(z,0)

14
exp (—— )\a/ p(m,T)d'r), at . =0,l.
0

From this point, we know that if w, = 0 initially at the domain boundaries, both
p and w have zero flux on the boundary in the entire existence time interval. We
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therefore always have the local existence and uniqueness for problem (4.1.5)-(4.1.7)

such that either p or w initially satisfies the zero flux boundary condition. And

consequently we get the zero flux boundary condition for either p or w. Therefore
it is plausible to suppose that w;(0,t) = w,(l,¢t) =0 for all ¢t > 0.

In addition, we can simplify system (4.1.8)-(4.1.10) as well. As usual we let

g = (Inw),. Then from the second equation of (4.1.8) it follows that ¢ = (Inw),; =

Wy

~ ] =P Together with the boundary condition discussed above, we translate

systenic (4.1.8), (4.1.9) and (4.1.10) into the following nicer form

Pt = Pz + a(pq)z, (z,t) € (0,1) x (0, 00),

(4.5.1)
4t = Pz,
with boundary condition
p(0,t) = M, ¢q(0,t) = q(l,t) =0, (4.5.2)
and initial data
p(z,0) = po(z) > 0,¢(z,0) = go(z) for 0 < z <, (4.5.3)

where M is a positive constant.
x

t = _ P
b= P= 34 =
1/aM 1./ L M
% and redefine initial data by fo(z) = p(;\(;) ,Go(z) = %(z) Substituting these
M

=
M
transformations into (5.1)-(5.3) and dropping the bar for clarity, we obtain the

If o > 0, we introduce the new variables by t =

following non-dimensional form

Pe — (P9)z = Pezs (2,t) € (0,1) x (0, 00),
(4.5.4)
qGt — Pz = 0,
with boundary condition
p(0,t) =1, ¢(0,t) =¢(1,t) =0, for t>0, (4.5.5)
and initial data
p(z,0) = po(z) > 0, ¢(z,0) = go(z) for 0 <z <1 (4.5.6)
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It is worthwhile to point out that the spatial domain has been rescaled to [0,1]. By
ignoring the diffusion term in (4.5.4), we obtain

bt — (pQ)z' =0, (II?,t) € (0’ 1) x (0,00),
(4.5.7)
QG — Pz = 0,

It is easy to get the characteristic equation of system (4.5.7) which reads >~ \q—p =
0 where ) denotes the eigenvalues. So the discriminant A = ¢? + 4p is positive due
to p > 0. Hence, system (4.5.7) is a hyperbolic system which is consistent with the
discussion in section 1.1.

The problem (4.1.8)-(4.1.10) now is reduced to nondimensional system (4.5.4)-
(4.5.6). One of the difficulties to consider the global existence of the solution to
(4.1.5)-(4.1.7) is that the second equation of (4.5.4) missed the diffusion component.
Novel ideas need to be developed to deal with such an issue.
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Chapter 5

MESENCHYMAL MOTION MODELS IN ONE
DIMENSION !

5.1 Introduction

Mesenchymal motion is a form of cellular movement through tissues which are
formed from fibre networks. An example is the invasion of tumor metastases through
collagen networks. The cell movement is guided by directionality of the networks
and in addition, the networks is degraded by matrix-degrading enzymes (protease)
which are released by cells.

One of the examples of mesenchymal motion is reported in a review article by
Fried! and Brécker [38]. They find that the movement of amoeboid cells on a surface
is significantly different from their movement in a tissue matrix. On a two dimen-
sional surface, cells are free to move in any direction. However, in three dimensional
tissues, cells are embedded inside the tissue and their movement is constrained. For
example, some tumor cells appear elongated and spindle shaped and send out thin
pseudopods for directional guidance from the ambient matrix. Moreover, cells can
excrete some tissue degrading enzyme (for example, protease) to degrade tissues by
cutting for moving through. Such a movement is called mesenchymal motion in [38].

Mesoscopic and macroscopic models for mesenchymal motion were derived by
Hillen [47] in a timely varying network tissue. The mesoscopic models are based on
a transport equation for correlated random walk and consist of a transport equation
for the cell movement coupled to an ordinary differential equation for the tissue
fibres. The macroscopic models have the form of a drift-diffusion equation where
the mean drift velocity is given by the mean orientation of the tissue, and the
diffusion tensor is given by the variance-covariance matrix of the tissue orientation.
The tissue matrix is divided into the undirected and the directed tissues according to
the distribution of fibre orientation. In undirected tissues, the fibres are symmetrical
along their axis and both fibre directions are identical. For example, collagen fibres
are undirected and they form the basis for many human and animal tissues. For
directed tissues, the fibres are unsymmetrical and the two ends can be distinguished

1 This is a collaboration with Thomas Hillen and Michael Li.
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(positive/negative, forward/backward, north/south). Directed components do not
play a major role for cell movement in tissues, however, directed fibres occur inside
cells (such as microtubules and actin filaments). Branching collagen fibre networks
can also be considered directional if the branching points are of significance for the
movement of cells.

In this chapter, I will present a detailed analysis of the one-dimensional model for
mesenchymal motion, including existence of solutions, macroscopic limits, traveling
waves as well as results on pattern formation. First, of course, we present the original
model derived by Hillen [47].

5.1.1 Models for Mesenchymal Motion

As in [47], we let S"~! denote the unit sphere in R™ and 6 the fibre orientation in
S™1. Let Q be n-dimensional spatial domain. We denote the distribution of fibre
orientations at time ¢ > 0 and at location z € Q by the probability density q(t, z, 8),
which naturally satisfies the normalization condition for all ¢ > 0,z € Q

/ olt,z,0)d0 = 1. (5.1.1)
Sn—l

The function ¢(t, z,8) can be understood as the probability density that cells decide
to choose a new direction § € S*1 if it occurs. Let V denote the set of all possible
velocities of moving cells and p(t,z,v) the population density of cells that have
velocity v at time ¢ at location 2. V is assumed to be radially symmetric and can
be written as
V =[81,8] xS"!, 0< s <8y<o00,

where [sq, s5] is the range of possible speeds. We define ¢ as the unit vector in
direction of a vector v € V. That is

N v

D= —

[[v]l

In addition we define a weight parameter w such that

%=L for s; < s,
w=/ﬁ@amw={ " 12 (5.1.2)
v st for sy = 89 = s.

Let a constant p > 0 denote the turning rate and a constant x > 0 the cutting
efficiency (rate of fibre degradation). Then the model for mesenchymal motion of
cells for undirected tissues consists of a transport equation for cell motion and an
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equation for the fibre distribution, which reads (see [47])
pe(t, z,v) + v - Vp(t, z,v) = —up(t, z,v) +u/v q—(z’-(:)&?—)-p(t,m,v’)dv’, (5.1.3)
¢(t,z,0) = k(Il,(t, z,0) — A,(t, x))p(t, )q(t, z,0), (5.1.4)
where p(t,z) denotes the macroscopic density of cells
p(t, z) = /V p(t, z,v)dv,

I1,(t,z,0) denotes the mean projection of the cell movement direction onto a given
fibre orientation 6

_1
P, )

and A,(t,z) is the mean value of these mean projections over all fibre directions

(¢, 2, 0) = / 18- 0lp(t, 2, v)do,
Vv

At z) = / I, (¢, z,0)q(t, z,0)d6.
Sn—l

The mesenchymal motion model for directed tissues is similar to the undirected case,
which is (see also [47])

pe(t,z,v) +v-Vp(t,z,v) = —up(t,z,v)+ ,u/ Mp(t, z,v")dv’ (5.1.5)
v
qt(t’ €T, 0) = H‘(Hd(t’ z, 0) - Ad(ts z))p(t, .’L‘)(](t, z, 9)’ (516)

where the projection operator Il4(t, z, ) for directed tissue is defined by

1
Iy(t, z,0 =————/9-17 t,z,v)dv,
1620 = o ), 00 )

and the corresponding mean value A4(t, z,6) of all mean projections is determined
by

Au(t,z) = /S  TLaft,,O)alt, 7, 6)do.

In the paper by Hillen [47], three scaling arguments are used to study the macro-
scopic limits of system (5.1.3) and (5.1.4) for undirected tissues and (5.1.5) and
(5.1.6) for directed tissues. These are the moment closure, the parabolic scaling and
the hydrodynamic scaling. The resulting macroscopic models have the form of drift-
diffusion equations where the mean drift velocity is given by the mean orientation of
the tissue and the diffusion tensor is given by the variance-covariance matrix of the
tissue orientations. Some examples and applications are also discussed in [47]. The
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numerical schemes and pattern formation in n-dimension are obtained by Painter
[97]. The steady state analysis is investigated by Hillen (2007). However, the global
existence of solutions and rigorous derivation of macroscopic limits are not known
so far.

In case of chemotaxis, a system of a transport equation for the cell motion and a
parabolic equation for the chemical signal was studied by Alt [2], Chalub et al. [17]
and Hwang et al. [63, 62]. However, their arguments are based on L™ estimates
of the turning kernel. In case of mesenchymal motion models, the turning kernel is
given by the fibre distribution ¢(¢, z,0) which is a delta distribution ¢(@) = 6,(6) for
a totally aligned tissue in direction of b € R™. As a result, the fibre distribution is
not necessarily bounded in L*. In particular, assumption (AQ) in paper [17] does
not apply and hence their results can not be applied directly for the case discussed
here. The global existence analysis is quite technically involved.

In this chapter, the one dimensional models are fully analyzed. We study the
global existence of solutions, macroscopic limits, traveling waves and pattern forma-
tion. We can gain some fundamental and instructive insight into the mechanisms
involved in the model. For example, we find the existence of traveling pulse solutions
for the cell population and no pattern formation is observed.

This chapter is organized as follows. In the rest of this section, we will present
the one dimensional mesenchymal motion models derived in [47] and discuss the
telegraph process in more detail. In section 5.2, we will classify the system (5.1.8)
and (5.1.9) as degenerated hyperbolic system and verify that there are no shock
solutions. In section 5.3, the global existence of classical solutions are obtained
along characteristics using a fix point theorem. In section 5.4, we non-dimensionalize
system (5.1.3), (5.1.4) and find appropriate time and space scales which lead to
parabolic and hyperbolic scalings. Furthermore, we prove the existence of weak
limits of solutions to rescaled equations. In section 5.5, we study the traveling wave
solutions and find the traveling pulse solution for the cell population. In section 5.6,
we perform the stability analysis and conclude that there is no pattern formation
for the one dimensional model. In the final section 5.7, we summarize and compare
our results with the results obtained in [47].

5.1.2 One Dimensional Models for Mesenchymal Motion

The one-dimensional mesenchymal motion models correspond to the case where the
fibre orientations are totaly aligned in the tissue. Although the higher dimensional
models have significant difference than in the one-dimensional models, the one-
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dimensional models are still very instructive and provide many basic insight into
the mechanism involved. For example, the existence of travelling pulse solutions
and macroscopic limits and so on that we will demonstrate in the following sections.

We first treat the directed case and the undirected case follows easily. Following
the argument in [47], we fix speed to |[v| = s, i.e., v = £s. In a one-dimensional
domain, cells can only move to the right or the left. For notational convenience, we
denote

p+(t,.’L‘) = p(t,z,+s), p(t,2) = p(t, z, —s),

respectively. The distribution q(t,z,8) describes a bias of choosing right over left
and vice versa. In one dimension, S° = {+1,—1} and § = £1, and we define

gt (t,z) = q(t,z,+1), ¢ (t,z) = q(t,z,-1).
Then it follows from (5.1.1) that
g (z,t) + ¢ (z,t) = 1. (5.1.7)

The projection operator I14(¢, z,6) can be explicitly obtained in one dimension

1

4t z,0) =
a(t; z,0) ot -

(0p+ - Bp‘),

which gives the following projection for right and left direction, respectively,

+ _ pF
pr—p

Of =T10,(t,z,+1) = ——
d a(t, =, £1) o+

Then the mean projection A, is obtained as

+_ —
Aglt,z) =TIqt + 7~ =22 (¢t — ).

pt+p”

(¢

Substituting all these results into the model (5.1.5) and (5.1.6), we obtain the one-
dimensional mesenchymal transport model for the directed case (see [47])

pf+spy = —uwpt +pgt(pt+p7),

pe —spz =~ +pg (Pt +p7), (5.1.8)
¢ = w@E*—p )¢ —q" +1)g",
¢ = k@E*-p)Ne —-¢"—-1)g.

For the undirected case, it is easy to calculate the projection and the mean projection

as
mE=A4,=1.
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Consequently the one-dimensional mesenchymal transport model in undirected tis-
sue has the form (see [47])

pf+spF = —upt+pgt(pt+p7),
py —sp; = —pp~ +pg (pt+p7), (5.1.9)
+ . el
qt - 0)
Qt_ = Oa

where (¢, z) € [0,00) x 2 and € is an interval in R. All above results are from paper
[47] and we recommend readers to see details in it.

Now we investigate the connections between the one dimensional mesenchymal
motion models and well known Goldstein-Kac model [40, 66] which describes the
correlated random walk in one space dimension. We use condition (5.1.7) to sub-
stitute g~ = 1 — ¢ into the first two equations of (5.1.8) or (5.1.9) and obtain
that

i +spf = —p(l—qh)pt+pugtp,

5.1.10
p; —sp; = p(l—qt)pt —pugtp. ( )

The model (5.1.9) for the undirected case is simpler than the directed case. But it
possesses some very interesting phenomena. We know that, in undirected tissues,
the fibres are symmetrical along their axis and both fibre directions are identical.
Hence ¢ = g~ = 3. Then the model (5.1.10) becomes the Goldstein-Kac model

[40, 66]
t gt = Hpm —pt
pt Sp:z: - 2(p p )’
; (5.1.11)
pr —sp; = —5(" —p")

The parabolic scaling for the Goldstein-Kac model, which leads to a parabolic equa-
tion, has been discussed in [41] and references therein.

For directed tissues, we define A* = u(1 — ¢*),\™ = pg™*, then (5.1.10) is
converted into

pi +spf = =Xtpt+XpT,

5.1.12
Py —sp;, = Apt—ATp, ( )

which is a modification of the Goldstein-Kac model. The extension of Goldstein-
Kac model and the local and global existence of the solution to the extended model
has been extensively investigated in reference [56, 57, 64]. The results obtained in
[56, 57, 64] can be applied to system (5.1.12). The telegraph process of (5.1.12) has
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been briefly discussed by Erban and Othmer [32] recently. In the next subsection,
we will discuss the telegraph process of mesenchymal motion models for the directed
case.

We supply the system (5.1.8) and (5.1.9) with initial condition

(0, z) = pE(z), ¢*(0,2) = ¢F(z), = € Q. (5.1.13)

Due to the biological interest and condition (5.1.7), we make the following assump-
tions for the above initial data.

(ic) pf > 0,0 < gf,q; <1andgf +g; = 1. For undirected tissues, we assume
the initial data is symmetrical, i.e., ¢f = g7 = %

In this chapter, Here we consider two types of boundary conditions.

(bcl) Q = R and pf(z), ¢ () have compact support in Q.

(bc2) Q = [—1,1] and zero flux boundary condition

J(t,£l) =0, ie., pt(t,+l) =p (¢, £l).

5.1.8 Nonhomogeneous Steady State

In this section we first review some associated results from [47] and give some further
discussion. We first present a second-order telegraph equation which is derived from
system (5.1.8) or (5.1.9). To this end, we add and subtract the first two equations
of (5.1.8) or (5.1.9) and obtain equations for the total population p = p* +p~ and
the population flux j = s(p* —p™)

P+ .73: = 0’

. . _ (5.1.14)
Je+ 80, = —pj+ulgt —q)sp.

with initial conditions p(0,z) = po(z) and j(0,z) = jo(z), where py and j, are
determined from the initial distribution of p* and p~. We differentiate the first
equation of (5.1.14) with respect to ¢t and the second equation with respect to z.
After that, we subtract the resulting equations and end up with a damped wave
equation with drift term (see [47])

Put + ppe + p(sEgp)y = 5* Pz, (5.1.15)

where the drift velocity is given by the expectation of ¢ denoted by E, = ¢* — ¢~.
The equation (5.1.15) is a form of telegraph equation which describes electrical
transmission in a telegraph cable when current leak to the ground. A drift-diffusion
equation can be approximated by taking the limit y — 00,8 — oo with diffusion
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constant D = s?/u and drift velocity sE,. The same drift-diffusion equation also
can be obtained by rescaling space and time variables appropriately as done in [47].

Suppose that the equations (5.1.14) are defined in the interval Q = [~[,{] and
satisfies the boundary condition (bc2). In terms of cell population density, the
zero flux boundary condition is equivalent to p*(£l) = p~(£l) = 3p(+l). We
want to know under what conditions, if any, these equations have time-independent,
nonconstant solutions for p*. The steady state condition j, = 0 of the first equation
of (5.1.14) implies that j is a constant and zero flux boundary condition j(+!) =0
furthermore gives that j = 0. Consequently the second equation of (5.1.14) becomes

1 -
Dy = —S-(tfr -q7)p.

This is a first order equation for p whose solution can be easily found

o) =(-tewp (2 [ @) - r(enee). (5.116)
The vanishing flux j = 0 gives that p* = p~ and hence
po) =2l (£ [0 - @) 5:1.17

Here the above integrals are bounded since gt and ¢~ are bounded by 1 which
will be proven in section 5.3. From the above equations, one can see how the
distribution of fiber orientations ¢* affect the distribution of cell population p and
p*. In particular, if u # 0 and ¢t # ¢, then p and p* are nonconstants which
correspond to the nonhomogeneous steady states of the system (5.1.14).

Particulary in undirected tissues, ¢t = ¢~ = % due to symmetry, then p and
p* are constants and p* =p~ = @, which means that there is no aggregation of
cells.

If gt =1, =0, then

pE(z) = @exp (g—(w + l)) .

The cells accumulate at the end z = [. This is not unexpected since all cells bias
to move to the right and eventually accumulate at the right end due to zero-flux
boundary condition.
Similarly, if g7 = 0,9~ =1, then
-l
pE(z) = p(2 ) exp (—-’;ﬁ(x + l)) ,
and p* attains the maximum at z = —I since all cells bias to move to the left.

Therefore here we identify a mechanism which can lead to aggregation, namely,
u # 0 and the tissue orientation of the right and the left are different.
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5.2 Classification as Hyperbolic System
We show that both systems (5.1.8) and (5.1.9) are hyperbolic and we discuss shock
solutions. To this end, we rewrite (5.1.8) in a matrix form

us + Ou, = H(u), (5.2.1)
where © and H(u) is defined as follows

pt s 0 00 —pp* + pgt(pt +p7)

-— _ _ — — + -—

u= |7 |o=]0 200 gy pp~ +pg (P +p7)
q* 00 00 st —p )¢ —q" +1)g"
q 0 0 00 st —p )¢ —qt - 1)g”

The drift term is linear and hence the system (5.2.1) cannot create shock solutions.
The 4x4 matrix © in this equation has eigenvalues \; = —s < 0,Aa = A3 =0, s = s,
which satisfy Ay < Ag = A3 < A\ provided that s > 0. This implies system (5.2.1)
and hence (5.1.8) is hyperbolic but not strictly hyperbolic. The same argument
applied to system (5.1.9) shows that (5.1.9) is hyperbolic as well. The eigenvectors
T; corresponding to eigenvalues );, ¢ = 1,2, 3,4 are

0 0 0 1
™= L , T = 0 , T3 = 0 , T4 = 0
0 1 0 0
0 0 1 0

It can be verified that VA;(u)-r;(u) = 0 for i = 1,2, 3,4, where V;(u) - 7;(u) means
the directional derivative of the eigenvalues J); in the direction of the eigenfunction
r; as defined in chapter 4. Hence all characteristic field (\;,7;) are linearly degen-
erated [15, 73]. Thus a shock which separates intersecting characteristics defining
a discontinuity does not exist and however the solution might contain a contact
discontinuity if data are discontinuous (see [15]).

The characteristic slopes are determined from the eigenvalues of the 4 x 4 matrix
dz

© in the equation (5.2.1) by I A;, which is never infinite, so the line t = 0 is
nowhere tangent to a characteristics. Therefore if initial data for p*,p~, ¢, ¢ is
given along the line t = 0, the resulting Cauchy problem should be well-posed for
boundary condition (bcl). This is verified in the next section.

5.3 Global Existence

In this section, we will prove the global existence of solutions to initial-boundary
problem for the system (5.1.8) subject to the initial condition (ic) and boundary
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condition (bcl). The global existence of solutions to system (5.1.9) thus is proven
as a special case of (5.1.8) for x = 0. For bounded domain, the analysis for global
existence will be much more complicated than unbounded domain and is left open
to be further explored in the future. In the rest of this chapter, we will focus on
unbounded domain and denote 2 = R for the convenience of presentation.

The system (5.1.8) is a coupled system of two partial differential equations and
two ordinary differential equations. To prove the global existence of solutions to the
system (5.1.8), we first prove the nonnegativity property of solutions.

Lemma 5.3.1. Let pf > 0 and ¢f > 0 with qf +q; = 1. Assume that p*,q* €
L*®(0,T; L>(Q2)) is a solution to system (5.1.8) for some T > 0, then p* > 0 and
0 < g*(t,z) <1 withqt +q~ =1.

Proof. We first show that ¢* + ¢~ = 1. Toward this end, We first define two
new quantities: ¢ =q* + ¢, £ = q¢* — ¢~. Then we add and subtract the third and
fourth equations of (5.1.8) to obtain equations for ¢ and £ as follows:

¢ = —k(p* —p7)(qg - 1)§,

& = k(" —p7)(q - &), 633
which can be rewritten as a matrix form
Q= —k(p" —p7)F(Q), (5.3.2)
where
q q-1)¢
() mo- ()
Then the initial data of the system (5.3.1) is given by
a=q¢ +aq =lL&=qf —q;. (5.3.3)

It is straightforward to verify that the vector field F(Q) € C'(R?%) and hence is
locally Lipschitz continuous with respect to @ for given p* € L*(0,T;L>®(Q)).
Then the Cauchy problem (5.3.1), (5.3.3) has a unique solution by the fundamental
existence-uniqueness theorem. On the other hand, ¢ = 1 is a solution of the first
equation (5.3.1). Hence the system (5.3.1) and (5.3.3) has a unique solution (g =
1,€) where £ can be determined by the equation

&=nr(gt—q)1-8), &r=qf —q7.
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It is worthwhile to point out that we here provide an idea to prove that ¢ = 1 and
the existence (local) of ¢ and £ for the given p* € L>(0,T; L*°(2)) only, which will
be used later in the proof for the Theorem 5.2.

We proceed to show that solutions g* preserve the positivity. Substituting ¢~ =
1 — g% into the third equation of (5.1.8), we have

g =26(p* —p7)1 - ¢t (5.3.4)

There are three cases to proceed.

Case 1: ¢gf = 1. Then we have that g* = 1 is a solution to equation (5.3.4)
with initial condition ¢f = 1. Since the right hand side of equation (5.3.4) is
locally Lipschitz continuous with respect to g™, the solution of the equation (5.3.4)
is unique. Hence ¢*(t,z) =1 for all ¢, z.

Case 2: gi = 0. Using the similar argument as in Case 1 we can show that
gt (t,z) = 0 to the equation (5.3.4).

Case 3: 0 < ¢f < 1. Then integrating the above equation (5.3.4) with respect
to ¢t from O to £, one has

1 E+q+ =1 z}kq}" exp (/: 26(p™(7,) —p~ (7, '))dT).

Note that 0 < ¢f < 1. Then one has that

+
7 >y
1—qgt—

It follows immediately from the above equality that 0 < ¢+ < 1. Combining Case
1, Case 2 and Case 3, we have that 0 < ¢+ < 1 provided that 0 < q}” < 1. Applying
gt = 1— ¢ into the fourth equation of (5.1.8) and using the same approach we can
show that 0 < ¢~ < 1.

Finally we come to the proof for the positivity of cell density p*(t, z). We use a
theory of invariant principle in paper [46] for the hyperbolic random walk system to
achieve this goal. To this end, we first write the first two equations of the system
(5.1.8) in a matrix form

¢ = Gp + Bo + F(o), (5.3.5)
where
+ 2
¢=<p )’G % ,B=(—“ p )
p 0 s L
Ox
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Fg) = ( uqi“(p: +p:) — pup~ ) _
pg~ (p* +p7) — up*
Let A = [0,00) C R. Then A is closed and convex and for each z € A, A has on
out normal vector. Moreover, define ¥ = A x A. Let ¢ € 92 and without loss of
generality we assume that ¢ = (9,0) with ¥ > 0. Then for the out normal vector
1(¢) = (0, —1) of ¢, we have

n(®) - (Bé + F(4)) = —ug 9 <0,

where we have used the positivity of ¢g~. Then by the theory in [46] (Theorem 2),
the set X is positively invariant for the system (5.3.5), which shows the positivity of
p*. The proof is completed.
O
By the Lemma 5.3.1, we obtain the following theorem.

Theorem 5.1. The set { (p*,p™,q",¢7) | p* > 0,¢* > 0,q* + ¢~ =1} is invari-
ant to the system (5.1.8) provided that p*, ¢* € L*(0, co; L*(Q)).

Remark 5.1. For pt > p~, the term p* — p~ > 0 and ¢t will increase while ¢~
decreases. Hence directionality is enhanced by equations (5.1.8)3 and (5.1.8),.

Next, we are devoted to proving the global existence of solutions to system
(5.1.8). Due to the Theorem 5.1, we can reformulate the system (5.1.8) as a three
dimensional system

pi +spf = —ppt +ugt(pt +p7),
pe —sp; = —up~ +pg (pT+p7) (5.3.6)
& = kK@t -p)1-8),
where ¢* and ¢~ are given by
gt = 1—;—5 7= 1—2§ (53.7)
It is worthwhile to note that here £ represents the expectation of fibre orientation in
one dimension. We seek the global solutions of the system (5.3.6) in the following
space
X(0,7) :==A{(»*,p7,8)| p*.p” € L®(Qr),§ € C(0,T; L=(2))}

where Qr = [0,T) x Q, L®(Qr) = L=(0,T; L>*(2)). In the following, we denote
the norm |u(t)||eo := ||u(t, -)|| () for u(t,-) € L>(Q) for the sake of convenience.

One of our main results is given as follows.
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Theorem 5.2. Let pf,qF > 0 and ¢ = ¢f + ¢7 = 1. If pf,qf € L®(Q), then
the system (5.8.6) subject to boundary condition (bcl) admits a unique solution
(pt,p7,€) € X(0,00) such that —1 < &(t,z) < 1.

Proof. The proof consists of five steps. In Step 1, we show for any p*,p~ €
L*(Q7), the solution £ of the third equation of (5.3.6) is uniformly bounded. The
existence of £ follows the idea in the proof for the Lemma 5.3.1. In Step 2, we show
that if £ € L>°(Qr), then the functions on the right hand side of the first and second
equation of (5.3.6) are Lipschitz continuous. In Step 3, we use the £ obtained in Step
1 and results proved in Step 2 to show that the solution of the first two equations of
(5.3.6) satisfies p™,p~ € L®(dr). In Step 4, we prove the existence of local solutions
with the help of contraction mapping principle. The global solutions will follow in
Step 5.

Step 1. We define a vector ¢ = (p*,p~) and denote

lloll = (2r) = max{||p* || ooz, 1P Loy }»

where

Ip™ llzo@ry = sup [IP*(E)lloos [IP7llzoo(r) = sUD [Ip7(#)lloo-
0<t<T 0<t<T
For a given w = (w*,w™) € L*(Qr) x L*(Qr), we consider the equation for £
& = r(w* —w7)(1- €. (5.3.8)

Under the assumptions for initial data, we can use the same argument as in the
proof for Lemma 5.3.1 to easily derive that —1 < £ < 1. We omit details here.
Step 2. With the £ obtained in Step 1, we consider equations

pf+spr = —ppt+ g(l +&@* +p7), (5.3.9)

Py —Sp; = —pp + g(l - &g (" +p7), (5.3.10)
For the sake of presentation, we define n = (p*,p~) and

fin, &) = A", p7,8) = —pp™ + %(1 +&) " +p7),
£0,) = falp*7,) = —up” + 5A - O +p).

Then for given 1 = (pf,p7),m2 = (3,3 ), we have that

films 0) = falm, p) = =51 = 6T —p) + 51+ O07 —13).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Note that —1 < £ < 1. Then it is easy to deduce that

[f1(m1, 0) = fi(m2, p)| 2u - max{|pf — p3 |, [p7 — P3|}

<
- 5.3.11
< 2p-max|n — ngl. ( )

This implies that f; is Lipschitz continuous for p*,p~ with Lipschitz constant 2.
In a similar way, we can easily prove that f; is Lipschitz continuous for p*,p~ with
the same Lipschitz constant 2u. The Lipschitz continuity of f; and f; will be used
in the following step.

Step 8. It is straightforward to show that system (5.3.9) and (5.3.10) is strictly
hyperbolic with two distinct uniform bounded eigenvalues A;, Ay satisfying —s =
A1 < A2 = s. Then for each i = 1,2 and each point (7,£) in the ¢ — z plane, the
characteristic equation of (5.3.9) and (5.3.10) defined by

dx
dt

has a unique solution defined for all ¢ > 0, describing the i — th characteristic

=\, z(1) =0,

through point (7, o). We denote such a solution by ¢ — x;(¢; 7,0), where x;(t; 7,0) =
o + Ai(t — 7). Following the argument in [15], we define

D={(t,z) |0<t<l/s,—l+st<z<I—st}.

Note that [ can be arbitrarily large since the domain is unbounded. Then for every
(1,€) € D and every 7 € {1, 2}, the characteristic curve {(¢,z;(¢;7,0))| 0 <t < 7} is
entirely contained inside D with z;(0; 7,0) € [—1,1]. Such a set D is called a domain
of determinacy (see [15]).

The system (5.3.9), (5.3.10) has two independent characteristics. We integrate
(5.3.9) along the second characteristic curve x3(¢;7,0) and (5.3.10) along the first
characteristic x1(¢; 7, 0), (5.3.9) and (5.3.10) can be rewritten as an ODE system

% = —upt(t,xa(t; 7,0)) + pgt(t, xa(t; 7, 0)) (0T (t, Xo(; 7, 0)) + p~(t, Xa(t; 7, 0)))
- (5.3.12)
% = —up*(t, %1 (t; 7, 0)) + pg~ (4, %1 (t; 7, 0)) (0 (8, %1 (7, 0)) + 0 (8, X1 (7, 0)))
(5.3.13)

For each (1,0) € D and z;(0;7,0) € [—I,1], we integrate (5.3.12) and (5.3.13) with
respect to ¢ over [0,t] to obtain that

p+(7',0' )= p X2 0 7—70))+

/ Tt x2(t7,0)), 07 (8, X2(t 7, 0)), £ (2, %ot 7, a)))dt.(5'3'14)
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and

p(r,0) = p (x1(0;7,0))+
T . (5.3.15)
/0 Lot (t,x1(t; 7, 0)), 07 (8, x1(t; 7, 0)), £(¢, X1 (¢; 7, 0)) ) dt.

Note that in the following, we call (p*,p~) a broad solution (see [15]) from the
domain of determinacy D into R? for Cauchy problem (5.3.9) and (5.3.10) if p*
and p~ satisfy (5.3.14) and (5.3.15), respectively, at almost every point (7,§) €
D. Taking L®-norm on both sides of (5.3.14) and (5.3.15), using the fact that
fi is Lipschitz continuous with Lipschitz constant 2y proven in Step 2, and using
£i(0,0,&) =0 for i = 1,2 and 12 = (0,0) in (5.3.11), we have that

15" (Do < C+ 2 /0 112) ot

and -
o~ (o < C + 20 / 117(8) ottt

where C is a constant such that ||pF|l. < C.

Hence
I (e + 57w <2 + 4 [ (U @)+ I~ 0t
The application of Gronwall’s inequality to the above inequality gives us that
l2* ()lloo + llp™(7)lloo < 2Ce*7,

which implies for any 7 with 0 < 7 < T, p* is bounded.

Step 4. In step 1, for every w = (wt,w™) € L*®(Qr) x L>*(Q27), we obtain a
solution ¢ of equation (5.3.8) satisfying —1 < £ < 1. Then we can define a mapping
Hy : L®(Qr) — L®(Qr) by Hyw = £ Let m > 1, then Hy maps from B,,(0) to
B1(0)

H, : B, (0) — B4(0),

where
Bn(0) = {¢ = (61, 92) € L®(Qr) x L®(Q7)| [|$llz= < m,$(0) = (p],p7)}-

In step 3, we prove that for every £ with —1 < ¢ < 1 obtained in Step 1, the
solution n = (pT,p”) of (5.3.9) and (5.3.10) satisfies [|7(t)]lc < 2Ce*. So for
any 0 < t < T, the solution 7 is bounded. Then we can define another mapping
Hy : L®(Qr) — L*(Q2r) by Hy¢ = n. Hence for same m as above, it holds that

Hy : B1(0) — By (0).
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We now define a composite mapping: H = Hyo H; : B,,(0) — B,,(0). Then we have
H(w) =n. We want to show that w = 5. To this end, we only need to show that H
is a contraction on B,,(0) for some T' > 0. We consider two functions wq,w, € B,,(0)
and denote the images by Hw; = u, Hwy = U, respectively, where w; = (w{, wy)
and wy = (wF,wy ). The corresponding solutions of equation (5.3.8) are denoted by
&1 and &, ie., & = Hywy, & = Hywy. We denote

U = ( u — Uy )
ug — Uy,

where u; = H(wi),us = H(wy),U; = H(wy) and U = H(w;). Then from the
analysis in Step 3, along the characteristic curves, we have that

u—U; = /OT fi(wi (8. %2), wy (8, %2), 1) — fr(w3 (¢, %2), w5 (¢, %2), &2)dt
_ / ’ <_ L1 - ) (wi (%) — 0} (%))
0
+-/2£(1 + &) (wy (¢,%x2) — wz_(t,xz))> dt,
as well as
up—Up = /0 fa(wf (8 x1), wi (¢, %1),&1) — fo(wd (¢, %1), wz (8, %1), E2)dt
_ / ( - L+t x) - uf %))
0
+E(L - )i (t,x1) — i x1>)) dt,

where x; = x;(t;7,0), i =1,2.
Using the result —1 < §; < 1 for ¢ = 1,2, we derive from the above two inequal-
ities for any 0 < 7 < T that

lu = Ulloo = | Hwr — Hunllo < o / (let = w lloo + 17 — w] oot

< 2uT sup Jjwr — welco-
0<t<T

Let T be small, then H is a contraction mapping on B,,(0). Due to the contraction
mapping principle, there exists a unique fixed point of H which corresponds a unique
solution (p*,p~,&) € X(0,T) such that p*,& € L*(Qr). From the third equation
of (5.3.8), it is easy to see that & € L®°(Qr). Due to the standard regularity results
(see [107]), it follows that & € C(0, Tmax; L2(2)).
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Step 5. We have shown that system (5.3.6) has a unique local solution (p*,p™, &) €
X(0,T). Now we suppose that the maximal time of existence for solution of (5.3.6)
i8 Thax and Ty < 00. From the step 1, we know that ~1 < £ < 1 for any ¢ with

0 <t < Trax- Hence according to the well known alternative results (for example,
see [79, 107]), one has that

. + _ 3 —_ _
Jm P Olo=c0 o lm [ Ole=c0.  (5316)

On the other hand, when —1 < £ < 1, we have proven in Step 2 and Step 3, that
for any T > 0, it holds that

Ip* (®)lloo + lp™ (B)lleo < 2C™T, 0<t<T,

which is obviously contradictive to (5.3.16). This contradiction, in turn confirms
that T},.x = 0o and hence a global solution follows.
O
Next, we additionally assume that p+ € L*(Q), and show the global existence of
solutions in the following space

M(0,T) = {(p*,p™,€)| p*,p~ € L®(0,T; L' N L™(Q)), ¢ € C(0,T; L=(2))}
The result is given in the following theorem.

Theorem 5.3. Let pf € L' N L*(Q) and assumptions in Theorem 5.2 hold. Then
the system (5.3.6) has a unique global solution (p*,p~,&) € M(0, 00).

Proof. By Theorem 5.2, we only need to show that (p*,p~, &) € L*®(0, c0; L1(2)).
The local well-posedness result can ba obtained by using a similar as above and we
skip the details. It only remains to derive a L' global bound for p*. From Theorem
5.2, it is known that (p*,p~,&) € L®(0,00; L*(2)) and —1 < £ < 1. Then we take
L'-norm of (5.3.6); and (5.3.6); along the characteristic curves to deduce that

¥ (7, Mlze < Mg ()llze + 20 /OT (Ilp* & llzs + o~ (¢, I ze) dt (5.3.17)
and

o™ (r, Mlze < llgg (e + 20 / (ot + (6 ) dt. (5.3.18)

The addition of (5.3.17) and (5.3.18) gives us that

2% (7 Mz + P~ (7, e < 2M+4u/0 (™ & )z + lp™ (¢, )llze)dt, (5.3.19)
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where M is a constant such that ||pT||.: < M.
Applying Grownwall’s inequality to (5.3.19), we obtain for each ¢t > 0
(7, Mzs + I~ (7, )l < 2Me™, (5.3.20)
which gives the existence of global solutions in L*(0, c0; L(Q)) for p*. The proof
is finished.
O

Coming back to the original system (5.1.8), we thus have the following global
existence result for the system (5.1.8).

Theorem 5.4. Let ¢F(z) > 0 and g + g7 = 1. Assume pf € L' N L®(Q). Then
there exists a unique solution to the system (5.1.8) such that ¢ >0, ¢* +¢~ =1
and pt € L=(0,00; L' N L®(R)).

When cutting efficiency x = 0, the system (5.1.8) becomes system (5.1.9). Hence
the global existence of solutions to (5.1.9) automatically is obtained. Due to the

assumption g*(¢,z) = ¢~ (¢, ) for undirected tissues, we obtain the following global
theorem for system (5.1.9).

Theorem 5.5. Let ¢ (z) > 0 and ¢f = g7 = 1/2. Assume pi € L'NL>®(Q). Then
there exists a unique solution to system (5.1.9) such that p* € L>®(0, 00; L*NL®())
and gt =q~ = 1.

Since the functions on the right hand side of (5.1.8) are continuously differentiable
with respect to p*,p~,¢" and ¢, by a theory for semilinear hyperbolic system in
[15] (see Theorem 3.6 in [15]), the broad solution of Cauchy problem (5.1.8) obtained
in Theorem 5.4 is indeed a classical solution provided that the initial data (5.1.13) is

continuously differentiable. This result is precisely given in the following theorem.

Theorem 5.6. Let the assumptions in Theorem 5.4 or 5.5 hold. In addition, we as-
sume that the initial data in (5.1.18) are continuously differentiable. Then the broad
solution u : D — R? obtained in Theorem 5.4 or 5.5 provides a classical solution.
Moreover, if initial data in (5.1.18) are nonnegative, the solution is nonnegative.
Its partial derivatives u;, u, are broad solutions of the following semilinear system,
respectively,

(ue)e = Hywy — © - (ug)a,
(U:c)t = Hu'u'a: -0- (ux)xy

where H, denotes the derivative of H with respect to u.

Proof. The proof is similar to the argument in [15]. We omit the details.
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5.4 Macroscopic Limits

For the given fibre distribution g*(t, z), formal parabolic and hydrodynamic limits
were derived in [47] for the mesenchymal motion models (5.1.8) and (5.1.9) for
n(n > 1) dimensions. Here we carry out the macroscopic limits for system (5.1.8)
and (5.1.9) coupled to equations for fibre distribution ¢*(¢,z) using the argument
similar as in paper [64] and prove the existence of weak limits of solutions to rescaled
equations. As before, we consider the system (5.1.8) only and the corresponding
results can be taken over to (5.1.9) equally.

To see which scales should be chosen to give rise to appropriate macroscopic lim-
its, we depart with non-dimensionalization of system (5.1.3) and (5.1.4) by choosing
a reference time ¢,, length z,. Dimensionless quantities are determined according to

T =T,T, t = t,l, V=1,0, w=wd,

t z v t x
) =1 22 ), att0) = a1 2.6,

te’ Tu Vs + Ty

({1t =z — t = B t
H(t,x,ﬁ)—H*H(t*,m* ) Ayt x) = A*Au(z,x—*),p(tiﬁ)-[hﬂ(ayz),

where v, is a typical speed for velocities in V. Both quantities are assumed to be
bounded.
We now choose other reference quantities such that

1 Px

t*n*a Dy = —

— a
U;", (A)*—'U*,

H* = VUyy Px =

where n is the dimension of set V.

Define a parameter ¢ = 2=. If we fix the length scale such that ¢, = (2)2, then

we obtain a parabolic scaling and can rewrite the system (5.1.3), (5.1.4) as follows
after substituting above transformation into (5.1.3), (5.1.4) and dropping the bar

Op q
2
+sv— = —up+ pp—,
gq HpT Ry (5.4.1)
= (Il — Au)pg

However, if we fix the length scale such that ¢, = f}—:, we obtain a hyperbolic scaling
and derive the following nondimensional version of (5.1.3), (5.1.4)

s@ v = ppt ol
% q w (5.4.2)
= &I, — Au)pg
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Our main scaling assumption in this section is the smallness of the dimensionless
parameter €. In the following, we will present a derivation of parabolic and hyper-
bolic limits for one dimensional version of the above systems (5.4.1) and (5.4.2) by
the regular perturbation methods.

5.4.1 Parabolic Limit

From the system (5.4.1), we know that the parabolic scaling leads to the following
one dimensional model with initial data

20 OPC

e Tesgy = —Hpd g (7 +57), (5.4.3)
528&% _“%p?: = —Hp; +ng; (7 + ), (5.4.4)
% = s(pf —p)1-€), (5.4.5)
%(0,) = @()=1&(0,)=q¢ —qr, (5.4.6)
where
+_1+& 1-¢&

C="p =g
Note that the global existence of solutions to the above system has been established
in section 5.3 for each £ > 0 and furthermore it holds that

0<qf,¢0 <1,-1<& <1 (5.4.7)

Using (5.4.7) and denoting J, = p} — p;, we obtain by adding and subtracting
(5.4.4) from (5.4.3)

Ip aJ,
1= = = 5.4.8
&5 +es o 0, ( )
aJ, op,
2 £ _5 - - x.

where & = ¢+ — ¢-. We define the following expansions

pe = po+ep+O(e%),

Jo = Jo+teli+e2Ja+O(e),

¢ = ¢ +edf +e%F +O0(E), (5.4.10)
9 g + &gy +€%g5 + O(e?),

& = &o+ebi+e26+ 0,

where & = ¢t —¢5,61 =¢ — 41, & = g5 — ¢; - Our aim is to derive equations for
the leading order terms of expansion (5.4.10). To proceed, we make an assumptions
on the fibre networks distribution ¢*(¢, z).
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Assumption 5.1. The leading order terms qif are balanced and strictly positive,
i.e.,

a5 =gq5 > Co >0,

where Cy is a positive constant.

Next, we derive the equation for the leading order term py. Toward this end,
we substitute (5.4.10) into (5.4.8), (5.4.9) and compare terms of equal order in € to

obtain
0=
e 0, (5.4.11)
0 = p&opo — po-
0=s%b,
e o (5.4.12)

s% = pgop; + péipo — pi.

& 1 g8h -,
I S (5.4.13)

80 + % = péipy + péops + papo — pla.
By the assumption 5.1, one has & = 0. Then from the second equation of (5.4.11),
we have

oo — Jo = 0.

Hence Jo = 0 due to & = 0. This is consistent with the first equation of (5.4.12).
Furthermore, we have from the second equation of (5.4.12) that

—typy— 2P0
J1 = &1po YIS (5.4.14)

where we again use £ = 0. By the second equation of (5.4.13), it holds that

5 Op

Jo = &ip1+&ap YR (5.4.15)

Now we substitute (5.4.14) into the first equation of (5.4.13) to derive an equation
for the leading order term pg

9o O(&ipo) _ s* &po
ot dr  p Ox2’

(5.4.16)

This equation compares to the formulation given in paper [47] with an equation for
& obtained from the equation (5.4.5) and (5.4.14)

K8 Opo

91 _
ot kpo&1 — 7;"6?
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The formal limits of (5.4.8) is (5.4.16). Now we are in a position to prove the
convergence of the solution p. and J, as € — 0. It suffices to derive a uniform esti-
mates for the solutions of system (5.4.8) and (5.4.9), which is given in the following
Lemma.

Lemma 5.4.1. Assume py € L* N L3(Q). Let the assumption 5.1 hold. Assume
further that there exists a constant Cy > 0, independent of €, such that

.| < Cre. (5.4.17)
Then the solution (pe, q:) of system (5.4.3)-(5.4.6) satisfies, uniformly in €, that

pe € Li(0,00; L' N L*(Q)),
€ € C([0,00) x L=(%)).

Proof. We use the energy methods to prove the Lemma. Multiplying the equation
(5.4.8) by p. and the equation (5.4.9) by J;, adding the resultant equations and
integrating it over [0,t) x R, we end up with the following equality

/ (Ipel? + |J2[2)dz + / / e\, Pdadr

/ (Ipol? + | Jof*)dz + / / pe26.p.J.dzdr (5.4.18)
< 2/(Ipol2+lJo d:v+/ /uClls peJ.|dzdr,

where we have used the assumption (5.4.17). Applying Young's inequality |Cie~1p.J.| <
272 Je|? + C?|pe|?) in (5.4.18), we have

t
/(lps|2+|Je|2)dx+/ /u€_2|J€|2dxdT
& o Ja : (5.4.19)
< [l + 1Pz + 0% [ [ lpPasar
Q 0 Jo

By Grownwall’s inequality, we get a L*-estimate of p. and J. independent of ¢ from
the above estimate. Hence we obtain L2-bounds of pF also independent of ¢ since
0 < pT < pe. Due to the boundary assumptions (bcl) or (bc2), it is easy to see from
(5.4.8) that mass of p. conserves, i.e., ||pe(t)||z: = ||po||z:- Then the first assertion
of Lemma, 5.4.1 is proved.

The boundedness of & is clear since we can use the same argument as in the
previous section to show that —1 < & < 1. Then the proof of Lemma 5.4.1 is
finished.
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O
The following theorem gives the convergence of solutions of the system (5.4.3)-
(5.4.6) as € — 0.

Theorem 5.7. Let the assumptions in Lemma 5.4.1 hold. Then the solution (p, gc)
of system (5.4.3)-(5.4.6) satisfies, after extracting an appropriate subsequences, uni-
formly in ¢,

pe — Py, weakly in L2 (0,00; L' N L3(Q)),

J. — Jo, weakly in L (0,00; L3(Q)),

0=, _ 0% . . -
(ﬁs,%—t—> - (uo,-—ét—>, weak™ in C([0,00) x L*(£2)).

Proof. The mass conservation and uniform boundedness of the L2-norm of p,
confirms the weak convergence of p. to Py by the compactness theorem. The second
assertion is confirmed directly by the fact that —1 <&, < 1.

O

Remark 5.2. The theorem 5.4.1 only gives the weak convergence of the solution of
the system (5.4.8) and (5.4.9). We did not show that the limit Py satisfies the limit
equation (5.4.16). So the rigorous proof of convergence of limit Py to the solution of
limit equation is still open. The uniform estimates for higher order derivative of p.
are needed for convergence. We leave this to be done in the future.

5.4.2  Hyperbolic Limit

The hyperbolic scaled system (5.4.2) in one dimension is as follows

OpF opf _ + +( o+ _
e tes g = —hpe +pg (P +p2), (5.4.20)
op; opt _ o
e s . _ 4.21
e 5y pp; + pgz (o3 +p5), (5.4.21)
B¢, _
%= s -p)-€), (6.4.22)
pe(0,:) = pi(), &0,)) =gf — a7 (5.4.23)

where ¢ = ﬂ%ﬁﬁ, @ = -“%55, as usual. Then we get the following equations for
Pe=p +pf, Je=pf —prand & =q¢f —¢f

Ope 0Je
e —=f = .4.24
€5 +es 5 0, (5 )
aJ. Ope

9P _ e — ple, 4.
€5y +é€s e pepe — . (5.4.25)
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To derive the macroscopic limits, we define, as before, the asymptotic expansion
Pe =po+ep1+O(e?), J. = Jo+eJ1 + O(e?),qF = qf +eqf,q = g5 +eq7. This
definition gives that & = §y+¢£1, where o = ¢f +¢5, 1 = ¢f +¢7, bo = ¢f —¢5 . &1 =
qi — g7 . Next we derive the equations for the leading order terms of p. and J;. For
this purpose, we substitute these expansions into (5.4.24) and (5.4.25) and equate
coefficients of the terms of equal order in ¢ , and obtain

o . §0=0 (5.4.26)
0 = uopo — pnJo-
90 4 g0 — ()

R S (5.4.27)

8 + %0 = péopy + plapo — 1

From the second equation of (5.4.26), one has that Jy = &ypo. Substituting this into
the first equation of (5.4.27), we obtain the equation for the leading order term po

Opo | 9(§opo) _
5 + S ar 0, (5.4.28)

which is the formal limit equation for ¢. and is comparable to the equation derived
in paper [47] with an equation for & as follows

O
'5? = r&o(1 — &)po,

which can be obtained from the equation (5.4.22).
The following Lemma gives the uniform boundedness of the solutions p, J, and
& for the system (5.4.24) and (5.4.25).

Lemma 5.4.2. Assume that there exists a constant Cy > 0, independent of €, such
that
l€]? < Che. (5.4.29)

If po € L' N L2%(R2), then the solution (pe,q.) of system (5.4.20)-(5.4.23) satisfies,
uniformly in €, that
pe € L5, (0,00; L' N L*(92)),
JE € L?:C(Oa S Lz(Q))’
& € C([0,00) x L*(Q)).
Proof. The proof is the same as the proof of Lemma 5.4.1 and hence we skip the
details. The only difference is that we have different smallness assumptions for &.

O
Applying the Lemma 5.4.2, we have the following compactness results.
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Theorem 5.8. Let the assumptions in Lemma 5.4.2 hold. Then the solution (pe, q)
of system (5.4.20)-(5.4.23) satisfies, up to an appropriate subsequences

pe — Py, weakly in L{2(0,00; L' N L3(Q)),

Je — Jo, weakly in Lf2(0,00; L*(92)),

= = 0= . -
(55,—37) — (“‘”W)’ weak™ in C(]0,00) x L*®(Q)).

Proof. The proof is the same as the proof of Theorem 5.7 and hence the details
are omitted.
O

Remark 5.3. As we mention for parabolic limits in Remark 5.2, here we only get
the weak limits for solutions of the system (5.4.24) and (5.4.25). We still need to
prove that the limit Py satisfies the limit equation (5.4.28), which is left for future
research.

5.5 Traveling Wave

Since the system (5.1.8) models the invasion of cells through tissues, it is of interest
to look for the traveling wave solutions for (5.1.8) and see what kinds of movement
patterns are used by individual cells for invasion. To this end, we first use the
invariant motion ¢t + ¢~ = 1 to rewrite system (5.1.8) as follows

Dt + jx = 0,
Ji+8*p, = —étj + us(2¢™ — 1)p, (5.5.1)
L
¢ = —Jil-q"d,

where p =p* +p~,j = s(p* — p~), as usual.
We introduce the wave variable

z =z —ct,
where ¢ > 0 denotes the wave speed. Then we can define the wave profile by

p(z) = p(t,z)=p(z—-ct),
i(z) = jt,z) =4z —ct), (5.5.2)
g (2) = g*(t,z)=q"(z—ct).
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Substituting (5.5.2) into (5.5.1), we convert (5.5.1) into an ODE system

—cp, + jz = 0’
—cj. + 8%p, = —éuj + ps(2¢t — 1)p, (5.5.3)
K .
—og; = —j(l-g")g".
We assume the traveling wave ansatz
p(—00) = p(+00) =0, g*(—00) = ¢, ¢"(+00) =g, (5.5.4)

where g and ¢} are constants and satisfy 0 < ¢ g7 <1land g > g}. Thatis, we
look for the traveling pulse for p and decreasing traveling front for g*.
Due to (5.5.4) we have

J(=00) = j(4+o0) = 0. (5.5.5)
Applying (5.5.4) and (5.5.5), we obtain an invariant of motion for j and p from the
first equation of (5.5.3) ‘

j = cp_ (5.5-6)

Then the system (5.5.3) is reduced to the following two dimensional system by the
substitution of (5.5.6)

(¢ —s¥)p, = ,ué)[c - s(2¢* - 1)],
o = —fp(l —-q")g™.

It is obvious that (5.5.7) becomes a singular problem when ¢ = s. It is straight-

(5.5.7)

forward to show that this singular problem has no solution satisfying the traveling
wave ansatz (5.5.4). Hence we assume ¢ # s from now on. Then (5.5.7) can be
rewritten as

pZ = —ap[c - S(2q+ - 1)]) (5 5 8)
g = —PBp(l-g")gt.
where a = —cz—'usg, 8= _2_/@ > 0. Due to the biological interest, we only consider

nonnegative solutions. Hence, we are only interested in those heteroclinic orbits
that remains nonnegative, where p > 0 and 0 < gt <1

5.5.1 Phase Plane Analysis

It is easy to determine that system (5.5.8) has a continuum of steady state (0, 6),
where 0 < 8 < 1. The Jacobian matrix linearized about the steady state (0, ) is
—afc—s(20-1)) 0

Jo= —B(1-68 0
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The eigenvalues of J; are
A= —a(c —3(26 — 1)), A =0. (6.5.9)

The corresponding eigenvectors are

AL 0
) T1=|:_ﬁ(1_0)ojl,7‘2=l:1:|. (5510)

When ¢ # s, we have two cases to consider corresponding to the sign of eigenvalue
AL

Case 1. If ¢ > s > 0, then a < 0. It is easy to determine that A\; > 0 which
indicates the steady state (0, #) is unstable and there is no nonnegative heteroclinic
connection due to the lack of the stable manifold. We thus have that 0 < c < s is
a necessary condition for the existence of a traveling wave and s is then a critical
traveling speed. Thus, in the following, we always assume that ¢ < s otherwise
stated.

Case 2. If 0 < ¢ < s, then a > 0. We first fix traveling speed ¢ and solve
c—8(20* — 1) = 0 to get 6* = &2, Clearly it follows that 0 < * < 1 and we

2s
furthermore have the following relation

f<6*= X\ <0,
0=6*= X =0, (5.5.11)
0>6 =)\ >0.

Next, we are devoted to proving that there exists a pair of equilibria which produce
a heteroclinic connection for each fixed ¢ satisfying 0 < ¢ < s. From (5.5.11), it
is easy to see that the steady state (0,6) with 0 < 8 < 8* has one stable manifold
corresponding to eigenvalue A\; < 0 and the steady state (0, 8) with 6* < § < 1 has
one unstable manifold associated with eigenvalue A\; > 0, and the other manifold
has a zero eigenvalue and acts in the direction of the g% axis p = 0. The existence
of an unstable manifold as z — 0o and a stable manifold as 2 — —oo corresponds
to the existence of a traveling wave (heteroclinic orbit) connecting the two states.

Note that every steady state (0,6) with 0 < # < 1 has two manifolds one of
which is a one dimensional center manifold corresponding to zero eigenvalue As.
Since each center manifold is invariant under the flow of the system (5.5.8) and
the set {(p,q*) : p = 0,0 < ¢t < 1} consists of all steady states and is invariant,
hence the center manifold of each steady state is g7 axis where 0 < ¢t < 1. So
the heteroclinic connection is only determined by the stable and unstable manifolds
corresponding to eigenvalue A; as discussed above.
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Figure 5.1: The phase portrait for the system (5.5.8), wherec=1,s =2,y =2,k =
1 and consequently 6* = 0.75. The arrow denotes the orientation of trajectories of
the system (5.5.8).

5.5.2 Asymptotics of Solutions

To show that unstable manifold can be connected by stable manifold, we need to
investigate the global stability of the original nonlinear system (5.5.8). Below we
shall apply LaSall’s invariant principle (see Theorem 4.1.8) to study the asymptotics
of solutions of the system (5.5.8). We first give the following Lemma which describes
the asymptotic behavior of solutions to the system (5.5.8) in the set where p > 0, 0 <
gt <L

Lemma 5.5.1. Assume 0 < ¢ < s. Then the w-limit set of all solutions to the
system (5.5.8) is contained in the following set

N={(pq¢")p=0, 0<q" <6}, (5.5.12)
and a-limit set is contained in the set
G={(pg")p=0, 6" <g" <1}, (5.5.13)

* — cts
where 0* = T

Proof. We define a function V(p,¢*) by V(p,¢*) = ¢*. Then for all z, we can
verify from (5.5.8) that V > 0 and 4% < 0 in the set {(p,q*)| p > 0,0 < ¢ < 1}.
Moreover, we see that the set N; = {(p,q™) %‘f = 0,0 < ¢* < 1} consists of the
continuum of steady states (0,8) only, where 0 < § < 1. Also N; is invariant due
to all elements of N; are steady states. According to LaSall’s invariant principle, all
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Figure 5.2: The traveling wave for the system (5.5.8), wherec=1,s =2,y =2,k =
1. The waves travel from let to right and ¢ denotes the traveling speed and time
t=0,5,10,15,20.

solutions of system (5.5.8) converge, as z — +00, to the set Nj. From the second
equation of (5.5.8), we know that

A%
—‘E=O<=>p=0 or ¢t =0 or ¢t =1

However, from (5.5.11), we know that for all § > 6* with 6* < 1, the equilibrium
(0,0) is unstable and hence all trajectories will emanate out of the equilibrium at
(0,6) where 6 > 6*. So the set N; excludes the set

Np = {(p, q*)

p=0,6’*Sq+$1},

which implies all solutions of system (5.5.8) converge to the set N = N; \ Ny as
z — +00. In a similar fashion, we can prove all solutions of (5.5.8) converge to the
set G as z — —oo. This completes the proof.

O

Remark 5.4. It is easy to verify that ¢~ = 0 or ¢* = 1 is a solution of the system
(5.5.8) and furthermore it holds that

(a) If g* =0, then p — 0 as z — +o0.

(b) If gt =1, then p — +o00 as z — +00.
Therefore, the orbit neither ¢* = 0 nor gt = 1 can form a heteroclinic connection
although q* = 0 1is the unstable manifold of the equilibrium (0,1) and ¢* = 0 is the
stable manifold of the equilibrium (0, 0).
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5.5.8 Fzxistence of Traveling Waves

The Lemma 5.5.1 and the Remark 5.4 show that any trajectory of the system (5.5.8)
starting from a neighborhood of an equilibrium (0,6) with 6* < § < 1 converges, as
z — +00, to another equilibrium (0, 6) with 0 < 6 < 6*, which gives a nonnegative
heteroclinic connection (traveling wave) between these two equilibria. We come to
our main result of this section.

Theorem 5.9. Let us consider the system (5.5.8). For each traveling speed ¢ with
0 < ¢ < s, there exists a bounded, nonnegative heteroclinic orbit connecting an
equilibrium (0, ¢;) to the other equilibrium (0,c;), where 8* < ¢; < 1 and 0 < ¢y < 6*
with 0* = &2, That is, there ezists a traveling solution (p,q*) of system (5.5.8)
connecting (0,c1) and (0,cy). Particularly, system (5.5.8) admits a standing wave
forc=0.

Proof. The result is a direct consequence of the above analysis.
a
Note that the ODE system (5.5.8) has a one dimensional manifold {(0,6) : 0 <
6 < 1} of equilibrium. Therefore, we may expect a family of traveling wave solutions
parameterized by the left state ¢ of fibre orientation where §* < g} < 1. We need
to determine how the right state ¢ depends on the left state g;. That is, we need
to find the relation between g;" and g;}. To this end, we divide the first equation of
(5.5.8) by the second equation to obtain that
dp _ afc+s) 1 2as 1

dgt 8 (1-gt)g* + Tm (5.5.14)

Note that here we assume ¢* # 0 and ¢t # 1. Otherwise, there is no traveling wave

as discussed in Remark 5.4. Integrating (5.5.14) and recovering « and 3 yield a first

integral
_ps[In(l—g¢*) Ing*
P= 5 c+s c—38

+ o1, (5.5.15)

where o7 is a constant which can be determined by the initial data of ¢* given in
(5.5.4).

The phase portrait can be precisely plotted by using the level curve function
defined by (5.5.15) (see Figure 5.1). The plot of traveling solution (p, ¢™) of system
(5.5.8) is given by Figure 5.2. From the definition of p and the relation (5.5.6) and
(5.1.7), it is easy to get

+=s+c
p 2s

s§—¢C _ .
PP =P =1 —q*, j=ocp. (5.5.16)
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which gives the traveling waves in j,p™,p~ and ¢~ in terms of p and ¢*. The plot of
the traveling structures of them are given in Figure 5.3 and Figure 5.4. An example
of the standing wave is numerical given in Figure 5.5.

From the equation of (5.5.1), we know that total mass of cells is conserved and
so travelling pulse is expected as we found analytically and numerically above. The
numerical simulation for p in Figure 5.1 indicates that individual cells can move to
left or right, but the whole cell group will move to right continuously. However, when
the waves travel through, the fibre orientations are modified by cells and alignment to
cell movement direction is enhanced, which is indicated by the numerical simulation
for g% in Figure 5.1.

Indeed, an explicit heteroclinic connection can be derived from (5.5.15). By the
Lemma 5.5.1, it is known that p(g") = p(¢}) = 0, which gives rise to

n(l-g) Ingf _ln(l-g) Ing

c+s c—s  c+s c—s
Rearranging the above identity yields that
1—qt s—c +\ stc
(1 ~ Z’_;) = (%) , c<s, (5.5.17)
1 T

which relates the two end states ¢ and ¢;". Given any end state of ¢*, the other
end state can be determined by (5.5.17).

From the second equation of (5.5.8), we know that the solution ¢t starting
from any initial point ¢f (0 < ¢f < 1) decreases. So ¢* is bounded away from 1
and consequently the term ln(c%n is bounded. From Theorem 5.9, we know every
trajectory is bounded. Therefore, it is also of interest to find the upper bound for
each orbit where 0 < ¢t < 1. In the following, we will explicitly find the upper
bound which depends on the left states gi. Indeed, by (5.5.14), we have a unique
critical point ¢t = 6* such that ;‘;%|q+=g* = (. The second derivative of p with

&Pp s 1 1
g2 Tox [(c+ -0 ¢ (5= c)q+2} ’ (55.18)

Noting that 0 < ¢ < s. Then it is easy to verify that ff’, < 0 at ¢g* = 6*. Moreover
we know that p(g;") = p(¢;) = 0. Hence p attains the maximal value at ¢* = 6"

respect to g% is

ps [In(1—6*) In6*
_ s _ 5.1
Pmax 25[ c+s c—s T (5.:5.19)
where m(i-g) Ing
LN e 5.5.20
72 25[ c+s c—s}’ 2s (5.5.20)
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Figure 5.3: The traveling wave of population density p*t and p~, where c = 1,5 =
2,p =2,k = 1. The waves travel from let to right and ¢ denotes the traveling speed
and time ¢ = 0,5, 10, 15, 20. Care should taken to the scale used here.

Remark 5.5. From the above equation, we know that the upper bound pyax of p
depends on the left states git of q. Also, we can easily verify that upper bound pmax
increases with respect to g > 6* = 2 (see Figure 5.1).

Remark 5.6. The results obtained above for traveling waves are only valid for the
case of directed tissues. For undirected tissues, there does not exist traveling wave.
Indeed, in the undirected case, we know that q* = ¢~ = % and system (5.5.8) is
reduced to a scale equation

P, = —acp. (5.5.21)

Clearly, there is no solution satisfying boundary conditions (5.5.4) for (5.5.21) and
furthermore p(z) — 400 as z — +00.

5.6 No Pattern Formation

In the section 5.3, we prove the global existence of classical solutions to the system
(5.1.8). So there is a nature question to system (5.1.8) as a model describing a
biological phenomenon: is there pattern formation ? In this section, we will show,
with the help of linear stability analysis, that the one-dimensional mesenchymal
motion models do not admit pattern formation. Below we briefly discuss the stability
of steady state of system (5.1.8).

We first find four homogeneous steady states for system (5.1.8): S; = (0,0,¢;,1—
¢1),S = (0,¢2,0,1),S53 = (¢3,0,1,0) and Sy = (04,04,§,%), where 0 < ¢; < 1 and
¢, C3, C4 are positive constants. Let (pf,p;, ¢, ¢; ) denote the homogeneous steady
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Figure 5.4: The traveling wave of flux j and probability function ¢—, where ¢ =
1,s =2, = 2,5 = 1. The waves travel from let to right and ¢ denotes the traveling
speed and time £ = 0, 5, 10, 15, 20.

state of (5.1.8). Then the linearization of the system (5.1.8) about the homogeneous
steady state is as follows

P +spf = —upT +pgf(pt +p7) + pgt(p +p5),
P —sp; = —up~ +pg; (pt +p7)pg (pF +p7),
¢ = k(pF -p7)@5 —¢F + gt +kpt —p7) (g —gF + Vg (5.6.1)
+k(pf —pi)e” —a")g;,
¢ = s&pf-p;)e ~¢f - Dg +slp"—p7)e —¢ — Va7

+6(pF — )™ —ah)g; .

Then the linearization of the above system at the steady state S; is

P +spi = —(1—c)up* + g,
= - n L R
by sﬁx (1 Cl)MP _fl‘uq_, (562)
@ = 2kc(l—ci)(pt —p7),
g = —2kci(l—-c))(pt—p7).

Applying Fourier transform ~ to the above system gives rise to

’l:\l,t = A’&,
where u and A are given by
pt —isk — (1 —c1) cilt 0 0
v P A isk+(1—¢) —C1p 0 0
gt |’ 26c1(l—¢1) —2ka(l—c¢) 0 O
q -2kc1(l1=¢1) 26kc1(l1—ec1) O O
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Figure 5.5: An example of a standing wave for system (5.5.8), where s = 2,4 =
2,x =1 and time ¢t = 0, 5, 10, 15, 20.
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Here k is the frequency of Fourier transform and i is the imaginary number. It is clear
that matrix A has four eigenvalues A\; = A3 = Ay = 0 and Ay = —c;u < 0. Hence
the steady state S; is stable. Using the same argument, we can find eigenvalues for
all other three steady states Ss, Ss,S4 and determine their stability. We summarize
the results in the following table.

Steady State A A2 A3 A4 Stability
S1 0 —cip 0 0 Stable
So —u — isk isk —2cok  —cok  Stable
S3 —isk —u+isk —csk —2c3k  Stable
Sy —p/2 0 0 0 Stable

Table 1: Summary of the eigenvalues and stability of steady states for the system
(5.1.8), where A1, Ao, A3 and A4 represent the eigenvalues corresponding to steady
states Sp, S, 53 and Sy, respectively.

From table 1, we see that all homogeneous steady states are stable to a small
spatial perturbation, which implies that there is no pattern formation for the system
(5.1.8).

5.7 Conclusions

In this chapter, we establish the global existence of classical solutions to the one
dimensional mesenchymal motion models for both directed and undirected tissue.
Particularly we show that the model (5.1.9) for undirected tissues in one dimension
has a constant solution for fibre orientation distribution such that ¢(¢,z,+s) =
q(t,z,—s) = %, which means cells have no preference in choosing direction to move
and have equal probability to move to the right and the left side.

We prove the existence of a weak limit of solutions for parabolic and hyperbolic
rescaled equations of the one dimension mesenchymal motion models. Moreover, we
study the traveling wave solutions and establish the existence of traveling pulse in
total cell population p(¢, x) and traveling front waves in fibre orientation distribu-
tion ¢*(¢,z). The standing wave (¢ = 0) is admitted in our analysis. This is not
unexpected since cells can move in two directions (left and right) and two traveling
waves with opposite direction can eliminate each other to result in a standing wave.
By linear stability analysis, we show that there is no pattern formation for the one
dimension mesenchymal motion models.
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In paper [47], for a given distribution of fibre orientation ¢*(¢, z), the parabolic
scaling and hydrodynamic scaling were used to derive the corresponding macroscopic
models which describe a population of cells as a whole. These macroscopic models
typically take the form of drift-diffusioni equations. The parabolic scaling £ = ez, 7 =
€2t leads to a drift-diffusion equation with diffusion constant s?/u and drift velocity

sE, (see [47]) \

m+®&h@%=%ﬂa (5.7.1)

which compares to the limit equation (5.4.16) derived in the section 5.4 of this chap-
ter where we consider the coupled system consisting of equations for cell motion and
for fibre distribution . Here E, represents the mean fibre direction. The hyperbolic
scaling £ = ex, T = €t gives rise to a pure drift equation drift velocity sE,

pr + (SEq(r,E)p)e = 0, (5.7.2)

which corresponds to the limit equation (5.4.28).

It is worthwhile to point out that one dimensional mesenchymal motion models
have significant difference from the higher dimensional models. In one dimension,
fibre orientation ¢(t,z,6) only has two direction and hence is bounded due to the
normalization condition (5.5.1). However, in higher dimension, fibres have infinite
many distributional directions and typically q(¢, z,8) can be a delta function along
unit sphere S"~! by condition (5.5.1). Hence the approaches applied in this chapter
does not apply for higher dimensional situation. In a forthcoming paper [58], we
will study the existence of solutions for the high dimensional mesenchymal motion
models in a measurable Banach space using semigroup theory.
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Chapter 6
CONCLUSIONS AND FUTURE WORK

Chemotaxis models and mesenchymal transport equations are studied in this the-
sis. I establish the global existence of solutions, pattern formation and underlying
bifurcation for the volume filling chemotaxis model with a nonlinear squeezing prob-
ability which reflects the elastic properties of cells. For a chemotaxis model without
transport of chemicals, I fully analyze the shock structures for both the attractive
and the repulsive cases. For the one dimensional mesenchymal motion transport
model, the qualitative behavior of solutions is analyzed. I show that global classical
solutions exist but no pattern formation evolves. In addition, I prove the existence
of weak limits of solutions to parabolic and hyperbolic rescaled equations. The
existence of traveling wave solutions is established.

In Chapter 2 and Chapter 3, numerical simulations demonstrate a very interest-
ing patterning dynamics: the merging and emerging process. The similar patterning
process was also observed in some other chemotaxis models of cancer cell invasion of
tissue [18] and a model of turbulence-shear flow interaction [25] as well as the Brus-
selator model [69]. These models show a complicated interaction of two neighboring
maxima that join to form a single maximum (merging). Insertion (emerging) of new
maxima arises between two existing maxima. When cell kinetics is zero (f = 0),
local maxima attract each other and merge into larger and broader maxima (see
Figure 2.6(a)). The underlying instability has been investigated by Potapov and
Hillen [104], where it is shown that the merging process corresponds to transient
dynamics along metastable steady states. In a paper by Dolak and Schmeiser [27],
the merging process was analyzed using singular perturbation methods for a small
diffusion parameter. Roughly speaking, two local maxima need to be close enough
to “feel” each other and come together.

Since the merging and emerging process have appeared in many models which
describe different physical or biological phenomena, it would be interesting to pro-
vide the underlying mathematical mechanism for these interesting patterns. The
mathematical analysis in [27, 104] are very preliminary and a full analysis for the
merging and emerging process will be difficult and complicated. Some novel ideas
are proposed in [48] to analyze the dynamical behavior, stability of steady states and
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periodic orbits as well as asymptotics to these local maxima. Without cell kinetics
(f = 0), we will prove the critical length 1,,, for merging will play an important role.
When cell kinetics are present (f # 0), then in addition to the merging we observe
the emerging of new local maxima (see Figure 2.7). The emerging of local max-
ima is driven by a relatively high growth rate in small population density regions.
Related to the Lyapunov function given by Wrzosek [124, 125], we expect that the
situation is completely different from the case of zero kinetics (f = 0). We can not
expect these local maxima converge to steady states and the succession of merging
and emerging might indicate a chaotic behavior. However, we expect there exists
a critical emerging length [, such that emerging appears only for a distance larger
than [.. The details will be provided in the forthcoming paper [48].

In Chapter 3, I choose another different squeezing probability function g(u) which
leads to a singularity in the diffusion component. In spite of open question of global
existence, I investigate the pattern formation and the underlying bifurcations. The
similar merging and emerging pattern formation as in Chapter 2 are observed. This
implies that volume filling chemotaxis model produces a typical patterning process:
the merging and emerging process. It is well known that diffusion is a dissipative
effect in general and hence global in time solutions should exist. But novel ideas
need to be developed to justify this assertion. One possibility is to use a mollifier to
smooth the singularity and construct a regularized squeezing probability function g..
Then I would use standard PDE theory to obtained global existence and uniform
boundedness of solutions u, for the modified system. Eventually I will prove the
convergence of the solution u. as € — 0.

In Chapter 4, I show that the chemotaxis model of Othmer and Stevens [95]
admits a shock structure for both the attractive and the repulsive case, namely,
the travelling waves with travelling speed equal to shock speed converge to the
shock waves as the viscosity vanishes. This gives the precise information for the
limit of travelling waves when viscosity tends to zero. Hence when the viscosity
is effectively small, the travelling speed can be approximated by the shock speed
that can be easily obtained from Rankine-Hugoniot jump condition, which provide
a easier way to estimate the particle travelling speed.

The mesenchymal transport model, introduced by Hillen [47], is analyzed in
Chapter 5. The qualitative behavior of the solution to the one dimensional model
can be quite well understood. I prove the existence of classical solution and traveling
wave solutions, weak limits of solutions for rescaled equations and nonexistence of
pattern formation. However, the higher dimensional mesenchymal transport models
have significant difference compared to one dimensional case. The primary differ-
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ence is the number of directions of fibre orientations. In higher dimension, there are
infinite fibre orientations and hence the probability density ¢(¢, z,6) can be a delta
function ¢(f) = 6,(f) with respect to # as the tissues are totally aligned in some
direction b. Hence the analysis of L> argument used in [17, 62] is no longer valid for
mesenchymal transport models. In a forthcoming paper [58], we think of the orien-
tation distribution q as a signed Borel measures on S®~! and establish the existence
of mild and classical solutions in the Banach space of regular signed real-valued
Borel measures with total variation norm using semigroup theory of operators. The
details are omitted since this work is still in preparation.

As I mentioned in the Introduction, the kinetic transport model can integrate
microscopic level information on signal transduction into population level or tissue
level models. In the transport equation, the turning kernel, plays a crucial role
and determines the complexity and diversity that the macroscopic limits could be.
Relying on on specific situation, the turning kernel can depend on the chemical
concentration, and the spatial or temporal variation of the chemical concentration.
In the model (1.2.6) and (1.2.7) derived by Dolak and Schemeiser [28], the temporal
derivative is only formally included into the turning kernel due to the assumptions of
uniform boundedness of turn kernel. In paper [117], we will truly include temporal
derivative into the turn kernel and establish the global existence of weak solutions
and rigorously derive the macroscopic limits in one dimension. For higher dimension,
it is still an open question. From our analysis, the estimates for global bound of
local solutions are optimally obtained and new techniques are need to be developed
to treat higher dimensional case.
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