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Abstract

The Kalman filter algorithm and its variants have been widely applied to the multi-

sensor data fusion problems to provide joint state estimation, which is more accurate

than estimations from individual sensors. The performance of the Kalman filter based

fusion relies on the accuracy of the models as well as process noise statistics. Devi-

ations from correct system models and violations of noise assumptions may lead to

unsatisfied sensor fusion results and even divergence. Two types of measurements

are typically utilized to estimate process quality variables. One is frequent measure-

ments, which are available at a fast and regular sampling rate, but suffer from lower

accuracy and higher measurement noises. The other type is infrequent measurements

that are available at a slower sampling rate. The infrequent measurements, such as

lab analysis results, have less availability but higher accuracy, and are usually used as

references to improve state estimation. The objective of this thesis is to develop new

multirate sensor data fusion algorithms that can compensate for model inaccuracies

and violations of noise assumption to improve the online sensor fusion performance.

To fulfill this objective, a dual neural extended Kalman filter (DNEKF) algorithm is

proposed by employing two neural networks to improve state estimation and output

predictions. Using both frequent and infrequent measurements enables the DNEKF

to provide more reliable training for the neural networks and hence to provide more

robust and reliable sensor fusion results.

Additionally, infrequent measurements are usually subject to irregular sampling

rate and time-varying time delays. To address these problems while preserving the

estimation accuracy, a fusion method that fuses frequent DNEKF estimates with
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infrequent estimates from the state model compensation NEKF (SNEKF) is proposed.

In this approach, frequent and infrequent estimates are fused in the fusion center when

the delayed infrequent measurements arrive. The weights and biases of the state

model compensation neural network (SNN) are shared between the two synchronized

estimation processes.

In the primary separation cell (PSC) used for oil sands bitumen extraction, the in-

terface level estimation is based on various sensors. Image processing based computer

vision system, which uses a camera to capture sight glass vision frames, is considered

to be the most accurate among these sensors. Although the accuracy of computer

vision interface level estimation is high, its qualities are influenced by abnormalities,

such as vision blocking, stains, and level transition between sight glasses. Under such

abnormal scenarios, a sensor fusion strategy, which adaptively updates the fusion

parameters, is proposed and integrated with the image processing based computer

vision system.

The performance of the proposed fault-tolerant multirate sensor fusion algorithms

is demonstrated using numerical examples and case studies with industrial process

data. The factory acceptance test (FAT) was conducted for the sensor fusion and

computer vision integrated system in the computer process control (CPC) industrial

research chair (IRC) lab under industrial environmental conditions and it demon-

strated the improved estimation accuracy under various process abnormalities.
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Chapter 1

Introduction

1.1 Motivation

Multisensor data fusion techniques are widely applied in process industry to improve

reliability, robustness, and integrity of quality variable estimation. The extended

Kalman filter (EKF) is a commonly used technique to perform sensor fusion. How-

ever, accuracy of the EKF fusion might be degraded by low-quality state and output

models. The model deficiencies need to be compensated during the online estimation

processes to prevent the errors from being accumulated, leading to unsatisfactory

fusion performance. Furthermore, even though the EKF algorithm handles process

randomness effectively, it assumes that in its state space formulation, process states

and measurements are contaminated by white noises, so that colored noises can lead

to poor estimation accuracy and even divergence of the EKF estimates. Model in-

accuracies and deviations from noise assumption are difficult to model. Therefore,

data-driven models, such as artificial neural network, have been applied to describe

complex nonlinear relationships [1]. As an example, the neural EKF (NEKF) [2] was

proposed to utilize a neural network to improve the state prediction, and the neu-

ral network parameters were estimated through the EKF. However, the NEKF only

compensates either state or output model deficiency but not both, and are limited to

single-rate samplings.

Generally, two types of measurements are commonly utilized in industrial pro-

1



cesses. Frequent measurements, which are available at a fast and regular sampling

rate, usually have lower accuracy and larger noise. Infrequent measurements, which

are expensive and time-consuming to collect, typically have higher accuracy and

smaller noise. When performing the EKF based multirate sensor fusion, effective

compensation of model inaccuracies and violations of noise assumption during online

implementation can help achieve more robust and reliable state estimation. Usually,

the infrequent measurements are subject to irregular sampling rate and time-varying

time delays, which need to be considered while performing multirate sensor fusion.

In the oil sands extraction process, the primary separation cell (PSC) is used to

separate bitumen from oil sands slurry. The interface level between froth and mid-

dlings layers inside the PSC is a critical control variable related to bitumen recovery.

Different types of sensors are utilized to measure this quality variable. Generally,

among all the sensors, the image processing based computer vision system, which

uses a camera to capture sight glass visions, is considered to be the most accurate.

However, its performance highly depends on qualities of captured visions, which are

easily affected by visual blocking, stains, and sight glass transition regions, etc. When

computer vision results are not reliable, fusion of the measurements from other sensors

can be utilized to continuously providing alternative interface level estimation.

In this thesis, model inaccuracies and violations of noise assumption are addressed

for the EKF based multirate sensor data fusion. Besides, irregular sampling rate

and time-varying time delays in infrequent measurements are considered. At last, a

compatible and simpler version of sensor fusion approaches for image processing based

computer vision system is applied for practical implementation and has successfully

passed factory acceptance test.

1.2 Thesis Outline and Contributions

This thesis is devoted to providing improved multirate sensor fusion methods based

on the traditional EKF algorithm combined with neural networks. The irregular
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and infrequent measurements with time-varying time delays are also considered in

this thesis. A sensor fusion approach, which continuously providing reliable froth-

middlings interface level estimation when the computer vision system is unreliable,

is proposed and implemented in industry. The overall problem objectives, current

methods, proposed algorithms, and case studies are summarized in Figure 1.1.

Figure 1.1: Schematic thesis structure.

In Chapter 2, the dual neural extended Kalman filter (DNKEF) algorithm is pro-

posed. This approach employs two neural networks to enhance state estimation

and output measurement predictions, and also fuses frequent and infrequent mea-
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surements to improve the online sensor fusion accuracy. The two neural networks

are named as state model compensation neural network (SNN) and measurement

model compensation neural network (MNN), respectively. In the DNEKF, the EKF

is employed to estimate process state and train neural networks simultaneously. The

weights and biases of neural networks are estimated online through state vector aug-

mentation. A multirate parameter update strategy is proposed in the DNEKF, using

frequent and infrequent measurements to calibrate the weights and biases of MNN

and SNN, respectively, and hence to provide more effective neural network training.

In chapter 3, based on the proposed DNEKF approach, a general situation, where

the infrequent measurements are irregularly sampled and have time-varying time

delays, is considered. The EKF based parallel fusion is on longer applicable in this

condition due to the measurement time delays. To address the irregular sampling rate

and time-varying time delays in infrequent measurements, estimations with different

sampling rates are performed. Their estimates are fused in the fusion center when

the infrequent measurements arrive. In this approach, regular frequent estimation

and irregular infrequent estimation are proceeded synchronously using the DNEKF

and the state model compensation NEKF (SNEKF), respectively. The weights and

biases of SNN are shared between the two estimation processes.

In Chapter 4, an introduction to the image processing based computer vision sys-

tem for PSC interface level estimation is first provided. Other available sensors, such

as differential pressure (DP) cell, profiler, and an integrated sensor do not rely on

sight glass visions, and their measurements can be fused to provide alternative inter-

face level estimation. The computer vision system provides indications of reliability

and quality of its estimation of the interface level. Based on the available sensors, a

simplified version of sensor fusion approaches, which recursively updates the fusion

parameters, is proposed and integrated with the computer vision system to improve

the interface level estimation. When the computer vision results are reliable and of

high-quality, the fusion parameters are recursively calibrated. If the computer vision
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results are not reliable or of low-quality, instead of holding the latest estimates, the

fusion parameters remain the same as the last updated values to continuously pro-

viding interface level estimation. Industrial environment simulations are conducted

at the computer process control (CPC) industrial research chair (IRC) lab at the

University of Alberta, demonstrating improvement of the estimation robustness and

accuracy of the sensor fusion and computer vision integrated system.
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Chapter 2

Multirate Sensor Data Fusion
based on Dual Neural Extended
Kalman Filter

2.1 Introduction

The extended Kalman filter (EKF) has been widely applied to solving multisensor

data fusion problems. This algorithm uses the newly received measurements to cor-

rect last predicted states while considering process noises during online estimation [3].

In the EKF based sensor fusion process, fusion accuracy depends on the precision of

state and output models that are used to describe the system dynamics. The model

inaccuracies need to be compensated during online operation to prevent inaccurate

fusion results [4]. Furthermore, even though the EKF algorithm handles process ran-

domness effectively, it assumes that in its state space formulation, process states and

measurements are contaminated by white noises, and violations of this assumption

may cause the EKF estimates to be inaccurate or even divergent [5, 6].

To address the above problems, much work has been conducted. In [7], the Kalman

filtering-based robust state estimation was proposed to deal with deterministic errors

caused by sensor calibration problems, measuring instrument failures, and sensor ac-

curacy limitations. However, this method requires to derive error models in advance,

and optimal state estimates are obtained only after an iterative process. A decentral-
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ized, two-layer, Kalman filter based fusion structure was designed in [8] to compensate

for sensor failures. This fusion filter is tolerant to failures from some of the sensors,

while resulting in a poor precision when all sensors have some types of defectiveness.

Xu et al. [9] put forward the idea of using a first-order Gauss-Markov process to

compensate for inaccurately modeled accelerations in the Kalman filter-based orbit

determination. However, this method is limited to solving specific orbit determination

problems. In [10], the problem of colored noise instead of white noise was considered

for sensor fusion using the Kalman filter. The adaptive fuzzy logic system (AFLS)

was applied to prevent Kalman filter estimates from diverging. Lee and Johnson

[11] proposed using Gaussian process (GP) regression models to estimate the state

of colored noise systems. The GPs learn through the output residuals between GP

models and parametric models to characterize the distribution of the differences. In

[12], an innovation-based adaptive estimation (IAE) method was proposed to update

the noise covariance based on a remodification algorithm according to measurement

reliability specifications. However, the above methods that compensate for violations

of noise assumption are not applicable to solving model inaccuracy problems. Over-

all, these errors are difficult to capture using simple linear time-invariant models. An

effective online compensation technique for model inaccuracy and violations of noise

assumption is desirable to ensure the fusion results to be accurate and reliable.

In [2], a combination of the EKF algorithm and artificial neural network was pro-

posed as the neural EKF (NEKF) technique for online model compensation and ad-

justment. In [13–15], the NEKFs were used for online target tracking and improving

the state estimation accuracy in the feedback loop. In [16] and [17], the NEKFs were

used for online sensor calibration and sensor modeling. However, the NEKF only has

either state or output measurement model compensated by an artificial neural net-

work but not both, and is divided into state model compensation NEKF (SNEKF) and

measurement model compensation NEKF (MNEKF). The neural networks utilized by

the NEKFs are named as state model compensation neural network (SNN) and mea-
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surement model compensation neural network (MNN) accordingly. If both state and

output measurement models have model-plant mismatches, the NEKF approach will

be inadequate. Additionally, the above mentioned noise assumption compensation

and model calibration approaches assume all sensors have the same sampling rate.

In reality, infrequent measurements, such as lab analysis, are commonly employed

to provide more accurate measurements for quality variables. Online measurements

that are frequently sampled and inexpensive to obtain, usually lack precision. Taking

advantage of both frequent and infrequent measurements can help increase fusion

accuracies [18], [19].

When applying multirate sensor fusion, compensations for model deficiencies and

violations of noise assumption are desirable as they achieve more robust and reliable

real-time state estimation. To fulfill this objective, in this chapter, the dual NEKF

(DNKEF) approach is proposed. The DNEKF uses multirate measurements to com-

pensate for inadequate process knowledge through simultaneous state and parameter

estimations. The existing NEKFs are limited to single-rate samplings and use fre-

quent measurement residuals to train both SNN and MNN. This training approach

will not be effective when the frequent measurements are inaccurate. In the DNEFK,

however, a multirate parameter update strategy is proposed, where MNN is trained

using frequent measurement residuals and SNN is trained according to infrequent

measurements. Involving infrequent but accurate measurements enables the DNEKF

to calculate differences between predicted states and reliable measurements, which in

turn allows the DNEKF to provide a more effective neural network training than the

NEKF algorithm. When infrequent measurements are not available, the weights and

biases of SNN remain unchanged. Meanwhile, the state estimate is used as input to

SNN to continuously providing compensated outputs.

The organization of this chapter is as follows. Section 2.2 introduces the EKF

based parallel sensor fusion algorithm. Section 2.3 explains the problems caused by

model inaccuracies and violations of noise assumption when applying the EKF based
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sensor fusion. Section 2.4 provides a detail description of the DNEKF approach. In

section 2.5, the DNEKF fusion technique is applied to two numerical examples as well

as one industrial primary separation cell (PSC) interface level estimation problem to

demonstrate its advantages over the traditional EKF based fusion and the NEKF

algorithm. Finally, section 2.6 concludes this chapter.

2.2 EKF based Parallel Sensor Fusion

Measurements from different sensors can be fused in parallel using the Kalman fil-

ter algorithm by augmenting the output vector to provide fusion results for quality

variables [20], [21]. Two steps are involved in the Kalman filter algorithm, namely,

prediction and correction. The EKF linearizes the nonlinear models around the cur-

rent state to make the linear Kalman filter applicable [22]. Consider a nonlinear

process:

xt = f(xt−1) + wt−1 (2.1)

yt = h(xt) + vt (2.2)

where f(·) and h(·) represent the nonlinear state and output models, xt is state, and

yt denotes measurements from different sensors. Process and measurement noises are

denoted as wt and vt, which are assumed to be zero-mean, uncorrelated, Gaussian

white noises. Their corresponding covariance matrices are Q and R, respectively.

Then the following procedures are performed according to the EKF based parallel

fusion algorithm [23].

Prediction :

x̂−
t = f(x̂t−1) (2.3)

P−
t = Ft−1Pt−1F

T
t−1 +Q (2.4)

where x̂t−1 and x̂−
t are posterior and prior estimation of the state, and Pt−1 and

P−
t represent corrected and prior state estimation error covariance. The Jacobian
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matrix, Ft−1, is obtained through linearization of the nonlinear state model, f(·), at

x̂t−1, namely, Ft−1 =
∂f
∂x x̂t−1 .

Correction :

In correction steps, the Kalman gain is computed as:

Kt = P−
t HT

t (HtP
−
t HT

t +R)−1 (2.5)

where Ht is the Jacobian matrix representing linearization of nonlinear output model,

h(·), at x̂−
t , and it is calculated as Ht =

∂h
∂x x̂−

t
. Then the posterior state estimation,

x̂t, is computed as:

x̂t = x̂−
t +Kt(yt − ŷt) (2.6)

where yt represents actual measurements, and ŷt denotes model predicted output

values, which can be calculated as:

ŷt = h(x̂−
t ) (2.7)

Then the corrected state estimation error covariance is

Pt = (I −KtHt)P
−
t (2.8)

During multiple sensor data fusion process, each sensor has its own output mea-

surement model. If m sensors are utilized, then m measurements are given by:

y1,t = h1(xt) + v1,t

y2,t = h2(xt) + v2,t

...

ym,t = hm(xt) + vm,t

(2.9)

The corresponding predictions can be obtained as:

ŷ1,t = h1(x̂
−
t )

ŷ2,t = h2(x̂
−
t )

...

ŷm,t = hm(x̂
−
t )

(2.10)
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The Jacobian matrix, Ht, can be calculated as:

Ht =

⎡⎢⎢⎢⎢⎢⎢⎣
∂h1

∂x x̂−
t

∂h2

∂x x̂−
t

...

∂hm

∂x x̂−
t

⎤⎥⎥⎥⎥⎥⎥⎦ (2.11)

Then the standard EKF procedure can be applied to perform sensor fusion through

matrix augmentation [23]. Accordingly, predicted measurements, ŷt, and correspond-

ing covariance matrix, R, become:

ŷt =

⎡⎢⎢⎢⎢⎢⎢⎣
ŷ1,t

ŷ2,t
...

ŷm,t

⎤⎥⎥⎥⎥⎥⎥⎦ and R =

⎡⎢⎢⎢⎢⎢⎢⎣
R1 0 . . . 0

0 R2 0
...

...
. . .

...

0 0 . . . Rm

⎤⎥⎥⎥⎥⎥⎥⎦
2.3 Problem Statement

The EKF algorithm has been widely applied to finding the fusion criterion in solving

multisensor data fusion problems. The inaccurate process models and noise assump-

tions can degrade the accuracy of the EKF estimates. Consider a nonlinear system

in equation (2.1) and (2.2), with slightly different model notations:

xt = ftrue(xt−1) + wt−1 (2.12)

yt = htrue(xt) + vt (2.13)

where ftrue(·) and htrue(·) indicate the true process state and output models. Several

reasons can lead to model mismatches. First, inadequate process knowledge may

cause large deviations between models and actual processes. Besides, process con-

dition changes such as seasonal shifts can result in deviation of the current system

dynamics from the previous. Moreover, the EKF algorithm is developed based on

the white noise assumptions in the state space model. Colored state or measurement

noise can lead to the inaccurate state estimation or even divergence [5, 6].
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Typically, two types of measurements are utilized in industrial processes. Compar-

ing with frequent measurements, infrequent measurements normally have less avail-

ability but have higher accuracy. In Figure 2.1, the small ticks represent the frequent

sampling instant, t, and the squares represent the infrequent sampling instant, s. The

infrequent measurement, yi, is available at regular multiple of the frequent sampling

intervals. The objective is to design an online multirate sensor data fusion algorithm

Figure 2.1: Sampling time strategy for frequent and infrequent measurements.

that is able to compensate for model inaccuracies and violations of noise assumption.

2.4 DNEKF Approach for Multirate Sensor Data

Fusion

2.4.1 DNEKF Procedure

The proposed DNEKF approach is an extension of the NEKF approach and it is

applied to solving multirate sensor fusion problems. The DNEKF employs both SNN

and MNN simultaneously to improve state estimation and output predictions using

multirate measurements. The violations of noise assumption are also handled by

the DNEKF method. As mentioned in section 2.3, several reasons can lead to the

inaccuracies of system models. The relations between predictions and actual values

with inaccurate state and output models may be written as:

xt = f(x̂t−1) + dt−1

= x̂−
d,t + dt−1

(2.14)

yt = h(x̂−
t ) + lt

= ŷd,t + lt
(2.15)
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where x̂t−1 and x̂−
t are posterior and prior state estimation from the EKF algorithm,

f(·) and h(·) represent inaccurate state and output models, which result in the in-

accurate predictions, x̂−
d,t and ŷd,t, respectively. The deviations between inaccurate

predictions of state and outputs and their corresponding true values, are denoted as

dt and lt, respectively. These deviations can also include errors caused by violations

of noise assumption. To compensate for the inaccuracies, neural networks, which do

not require the pre-defined model structure, are utilized. The modified predictions

become

x̂−
t = f(x̂t−1) +NNx(x̂t−1, ϕ̂x,t−1) (2.16)

ŷt = h(x̂−
t ) +NNy(x̂

−
t , ϕ̂

−
y,t) (2.17)

where x̂−
t and ŷt are the modified state and output predictions. NNx and NNy are

the outputs from SNN and MNN, with posterior state estimate, x̂t−1, and modified

prior state estimate, x̂−
t , as their inputs, respectively. ϕ̂x and ϕ̂y are weights and

biases of SNN and MNN, respectively. The relations between modified predictions

and actual values are:

xt = x̂−
t + εt−1 (2.18)

yt = ŷt + µt (2.19)

where εt and µt are the prediction deviations after adding NNx and NNy compensa-

tions. Comparing with x̂−
d,t and ŷd,t, the modified predictions, x̂−

t and ŷt, are expected

to have smaller differences from the accurate process states and measurements as they

are compensated by the neural network models, namely, ∥εt∥ ≪ ∥dt∥, ∥µt∥ ≪ ∥lt∥.

The structure of SNN and MNN can be chosen as feed-forward neural networks with

user-defined activation functions.

The DNEKF first uses a SNN to compensate for state prediction inaccuracy, then

uses a MNN to improve frequent output predictions. To obtain accurate compensated
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results, proper weights and biases need to be trained for the two neural networks.

The DNEKF estimates process states and neural network parameters simultaneously

through state vector augmentation, and updates the weights and biases for SNN and

MNN through a multirate strategy. In the NEKF method, single sampling rate mea-

surement residuals are used to provide neural network training references. However,

using the frequent measurement residuals to train SNN will usually not be as reli-

able and accurate as that for MNN. As aforementioned, the frequent measurements

are of lower accuracy and models can have significant mismatches. Reducing the

frequent measurement residuals cannot ensure smaller state prediction errors. With-

out proper references, the parameters of SNN cannot converge to correct values, and

its predictions will not be accurate. In the DNEKF approach, a multirate parame-

ter update strategy is proposed to update ϕx and ϕy using respective measurement

residuals. Frequent measurement residuals are used to train MNN parameters, while

the training of SNN is according to infrequent measurements. In the DNEKF, the

state vector is augmented as x̄ =
[︂
x ϕx ϕy

]︂T
. During online implementation, ϕy

is updated at frequent sampling rate, while ϕx is updated only when the infrequent

measurements arrive. In this thesis, since we are fusing multiple sensor estimations

for a single quality variable, a single-dimension nonlinear state space equation with

multi-dimension nonlinear output equation is considered, but the proposed algorithm

can be easily extended to higher dimensional state space equations. The DNEKF

procedure is illustrated in Figure 2.2.

The similar name convention as in [24, 25] is adopted in this thesis, that is, minor

instants mean the time instants when only frequent measurements are available,

and major instants are the time instants when both types of measurements become

available. At minor instants, infrequent accurate measurements are unavailable.

The neural network parameters, ϕx and ϕy, are treated as states to be estimated, and

remain unchanged in the prediction step. Then the state and output predictions are

14



Figure 2.2: Graphical illustration of the DNKEF approach.

obtained as:

x̂̄−
t =

⎡⎢⎢⎢⎣
f(x̂t−1) +NNx(x̂t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (2.20)

ŷt = h(x̂−
t ) +NNy(x̂

−
t , ϕ̂

−
y,t) (2.21)

where x̂̄−
t is augmented prior state estimation. As neural network parameters are not

updated in prediction, ϕ̂
−
t = ϕ̂t−1. The predicted outputs from m frequent sensors are

ŷ =
[︂
ŷ1,t ŷ2,t . . . ŷm,t

]︂T
. The state estimation error covariance in equation (2.4)

is

P−
t = F̄ t−1Pt−1F̄

T
t−1 +Q (2.22)
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where F̄ t−1 is the augmented Jacobian matrix [26], which is calculated as:

F̄ t−1 =

⎡⎢⎢⎢⎣
∂(f+NNx)

∂x x̂t−1

∂(f+NNx)
∂ϕx ϕ̂x,t−1

∂(f+NNx)
∂ϕy ϕ̂y,t−1

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Ft−1 +

∂NNx

∂x x̂t−1

∂NNx

∂ϕx ϕ̂x,t−1

∂NNx

∂ϕy ϕ̂y,t−1

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Ft−1 +

∂NNx

∂x x̂t−1 0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
(ϕx+ϕy+1)×(ϕx+ϕy+1)

(2.23)

In equation (2.23), ∂NNx

∂ϕx ϕ̂x,t−1
= ∂NNx

∂ϕy ϕ̂y,t−1
= 0 since weights and biases of SNN

and MNN are not updated when infrequent measurements are not available. Pos-

terior state estimation, x̂t, is used as input to SNN to continuously modifying state

predictions at minor instants. The Kalman gain matrix in equation (2.5) is

Kt = P−
t H̄

T
t (H̄ tP

−
t H̄

T
t +R)−1 (2.24)

where the augmented Jacobian matrix, H̄ t, is

H̄ t =
[︂
∂(h+NNy)

∂x x̂−
t

∂(h+NNy)

∂ϕx ϕ̂
−
x,t

∂(h+NNy)

∂ϕy ϕ̂
−
y,t

]︂
=
[︂
Ht +

∂NNy

∂x x̂−
t

∂NNy

∂ϕx ϕ̂
−
x,t

∂NNy

∂ϕy ϕ̂
−
y,t

]︂
=
[︂
Ht +

∂NNy

∂x x̂−
t

0 ∂NNy

∂ϕy ϕ̂
−
y,t

]︂
m×(ϕx+ϕy+1)

(2.25)

In equation (2.25), the derivative of NNy with respect to the weights and biases of

SNN can be computed as:

∂NNy

∂ϕx

=
∂NNy

∂x̂−
t

∂x̂−
t

∂ϕx

=
∂NNy

∂x̂−
t

∂(f(x̂t−1) +NNx)

∂ϕx

=
∂NNy

∂x̂−
t

∂NNx

∂ϕx
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In correction step, state estimation and estimation error covariance are updated using

following equations:

x̂̄t = x̂̄−
t +Kt(yt − ŷt) (2.26)

Pt = (I −KtH̄ t)P
−
t (2.27)

where measurement residual, yt − ŷt, is

yt − ŷt =

⎡⎢⎢⎢⎢⎢⎢⎣
y1,t − ŷ1,t

y2,t − ŷ2,t
...

ym,t − ŷm,t

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
y1,t −

(︂
h1(x̂

−
t ) +NNy,1(x̂

−
t , ϕ̂

−
y,t)
)︂

y2,t −
(︂
h2(x̂

−
t ) +NNy,2(x̂

−
t , ϕ̂

−
y,t)
)︂

...

ym,t −
(︂
hm(x̂

−
t ) +NNy,m(x̂

−
t , ϕ̂

−
y,t)
)︂

⎤⎥⎥⎥⎥⎥⎥⎦ (2.28)

At major instants, infrequent but accurate measurements are available, and the

DNEKF steps are the same as those at minor instants. However, dimensions and

elements for some matrices are different. The state prediction equation is the same

as equation (2.20). While with availability of infrequent measurements, the output

predictions are further augmented as:

ŷ1,t = h1(x̂
−
t ) +NNy,1(x̂

−
t , ϕ̂

−
y,t)

ŷ2,t = h2(x̂
−
t ) +NNy,2(x̂

−
t , ϕ̂

−
y,t)

...

ŷm,t = hm(x̂
−
t ) +NNy,m(x̂

−
t , ϕ̂

−
y,t)

ŷi,s = hi(x̂
−
s )

(2.29)

where ŷi is infrequent measurement, and since it is considered as accurate measure-

ment, hi(x̂
−
s ) = x̂−

s . The Jacobian matrix, F̄ t−1, in equation (2.22) becomes

F̄ t−1 =

⎡⎢⎢⎢⎣
Ft−1 +

∂NNx

∂x x̂t−1

∂NNx

∂ϕx ϕ̂x,t−1
0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
(ϕx+ϕy+1)×(ϕx+ϕy+1)

(2.30)
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Furthermore, the Jacobian matrix, H̄ t, in equation (2.24) is

H̄ t =

⎡⎣∂(h+NNy)

∂x x̂−
t

∂(h+NNy)

∂ϕx ϕ̂
−
x,t

∂(h+NNy)

∂ϕy ϕ̂
−
y,t

1 0 0

⎤⎦
=

⎡⎣Ht +
∂NNy

∂x x̂−
t

∂NNy

∂ϕx ϕ̂
−
x,t

∂NNy

∂ϕy ϕ̂
−
y,t

1 0 0

⎤⎦
(m+1)×(ϕx+ϕy+1)

(2.31)

The last row of H̄ t in equation (2.31) corresponds to infrequent but accurate mea-

surements. In correction step, the measurement residual is augmented into:

yt − ŷt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,t − ŷ1,t

y2,t − ŷ2,t
...

ym,t − ŷm,t

yi,s − x̂−
s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.32)

where x̂−
s = f(x̂s−1)+NNx(x̂s−1, ϕ̂x,s−1) at major instants. The differences between

the accurate measurements, yi,s, and the model predicted states, f(x̂s−1), provide the

more accurate references for NNx, and hence SNN can be trained effectively using

infrequent measurements in the DNEKF procedure.

2.4.2 Model Compensation Neural Network Structure and
Output Computation

Compensation neural networks can be selected as single-hidden-layer, feed-forward

neural networks. Sample neural network structures for SNN and MNN are illustrated

in Figure 2.3 for a single quality variable with m sensors. Assign nx and ny hidden

nodes in the hidden layers of SNN and MNN, respectively. The input to SNN is the

posterior state estimation from the last step, and input to MNN is the modified prior

state estimation at current step. Choosing tanh as the activation function of each

node, then SNN output value, NNx, can be calculated as [27]:

NNx = tanh
(︁
w(3)

x
T · tanh

(︁
w(2)

x · x̂t + b(2)x

)︁
+ b(3)x

)︁
(2.33)
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Figure 2.3: Sample model compensation neural network structures.

where

w(2)
x =

⎡⎢⎢⎢⎢⎢⎢⎣
w

(2)
1,1

w
(2)
2,1

...

w
(2)
nx,1

⎤⎥⎥⎥⎥⎥⎥⎦ b(2)x =

⎡⎢⎢⎢⎢⎢⎢⎣
b
(2)
1

b
(2)
2

...

b
(2)
nx

⎤⎥⎥⎥⎥⎥⎥⎦w(3)
x =

⎡⎢⎢⎢⎢⎢⎢⎣
w

(3)
1,1

w
(3)
1,2

...

w
(3)
1,nx

⎤⎥⎥⎥⎥⎥⎥⎦ , b(3)x =
[︂
b
(3)
1

]︂

The superscript of weights, w, represents the destination layer number. The first num-

ber of subscript represents the destination neuron number, while the second number

of subscript indicates the departure neural number [28]. As an example, w
(3)
1,2 means

this weight is from the second neuron of the second layer towards the first neuron

of the third layer. The superscript of biases, b, represents its location layer, and the

subscript indicates the number of neuron where this bias locates. For example, b
(2)
n is

the bias of the nth neuron in the second layer. Similarly, NNy can be written as:

NNy = tanh

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
w

(3)
1,1 · · · w

(3)
1,ny

w
(3)
2,1 · · · w

(3)
2,ny

...
. . .

...

w
(3)
m,1 · · · w

(3)
m,ny

⎤⎥⎥⎥⎥⎥⎥⎦ · tanh
(︁
w(2)

y · x̂−
t + b(2)y

)︁
+ b(3)y

⎞⎟⎟⎟⎟⎟⎟⎠ (2.34)
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Under the same conventional notation, w
(2)
y , b

(2)
y , w

(3)
y , and b

(3)
y in equation (2.34) are

w(2)
y =

⎡⎢⎢⎢⎢⎢⎢⎣
w

(2)
1,1

w
(2)
2,1

...

w
(2)
ny ,1

⎤⎥⎥⎥⎥⎥⎥⎦ b(2)y =

⎡⎢⎢⎢⎢⎢⎢⎣
b
(2)
1

b
(2)
2

...

b
(2)
ny

⎤⎥⎥⎥⎥⎥⎥⎦w(3)
y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(3)
1,1

...

w
(3)
1,ny

...

w
(3)
m,1

...

w
(3)
m,ny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b(3)y =

⎡⎢⎢⎢⎢⎢⎢⎣
b
(3)
1

b
(3)
2

...

b
(3)
m

⎤⎥⎥⎥⎥⎥⎥⎦

During the DNEKF fusion process, the state prediction is first improved by NNx,

and the modified state estimation is input to the output model as well as the MNN.

Then NNy compensates for frequent output measurement predictions. The weights

and biases of neural networks are updated through a multirate strategy in correction

steps of the DNEKF.

2.5 Case Studies

In this section, the proposed DNEKF approach is evaluated through two numerical

examples and one industrial case study. In the first numerical example, both state and

output models are inaccurate and are compensated using the DNEKF approach. In

the second numerical example, colored process and measurements noises are adopted

to check compensation capacity of the proposed method. In the industrial case study,

linear time-invariant models are utilized, and the DNEKF approach is applied for

online model inaccuracy compensation.

2.5.1 Numerical Examples

2.5.1.1 Model Inaccuracies Compensation

The key objective of the DNEKF approach is to compensate for model inaccuracies.

In this example, accurate models are unknown, and defective models are utilized for

predictions to test model inaccuracy compensation ability of the DNEKF. The true
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state and output models are given as follows:

xt = ftrue(xt−1) + wt−1

= 3sin2(xt−1)− 5cos(xt−1) + wt−1

(2.35)

and

yt = htrue(xt) + vt

=

⎡⎣ x2
t + v1,t

3cos(xt) + v2,t

⎤⎦ (2.36)

where w ∼ N (0, 1× 10−4), and v ∼ N (0, R) with R = diag
{︂
4× 10−4, 4× 10−4

}︂
.

The inaccurate state and output models are

x̂−
t = f(x̂t−1)

= 2sin2(x̂t−1)− 3cos(x̂t−1)
(2.37)

and

ŷt = h(x̂−
t )

=

⎡⎣ 2x̂−
t

5cos(x̂−
t )

⎤⎦ (2.38)

Applying DNEKF algorithm, the state predictions are

x̂̄−
t =

⎡⎢⎢⎢⎣
2sin2(x̂t−1)− 3cos(x̂t−1) +NNx(x̂t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (2.39)

The output predictions are

ŷt =

⎡⎣ 2x̂−
t +NNy,1(x̂

−
t , ϕ̂

−
y,t)

5cos(x̂−
t ) +NNy,2(x̂

−
t , ϕ̂

−
y,t)

⎤⎦ (2.40)

In this case study, tanh is used as activation function. Since single-hidden-layer neural

network is utilized for both SNN and MNN, 1-3-1 and 1-3-2 are selected as neural

network structures. The number of elements of ϕx and ϕy are 10 and 14, respectively.

Then total number of elements of augmented state vector, x̄, is 25. During fusion

process, NNx and NNy can be evaluated as:

NNx = tanh
(︁
w(3)

x
T · tanh

(︁
w(2)

x · x̂t + b(2)x

)︁
+ b(3)x

)︁
(2.41)
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NNy = tanh

⎛⎝⎡⎣w(3)
1,1 w

(3)
1,2 w

(3)
1,3

w
(3)
2,1 w

(3)
2,2 w

(3)
2,3

⎤⎦ · tanh
(︁
w(2)

y · x̂−
t + b(2)y

)︁
+ b(3)y

⎞⎠ (2.42)

At major instants, the Jacobian matrices, F̄ t−1 and H̄ t, are

F̄ t−1 =

⎡⎢⎢⎢⎣
4sin(x̂t−1)cos(x̂t−1) + 3sin(x̂t−1) +

∂NNx

∂x x̂t−1

∂NNx

∂ϕx ϕ̂x,t−1
0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
25×25

(2.43)

and

H̄ t =

⎡⎢⎢⎢⎣
2 + ∂NNy,1

∂x x̂−
t

∂NNy,1

∂ϕx ϕ̂
−
x,t

∂NNy,1

∂ϕy ϕ̂
−
y,t

−5sin(x̂−
t ) +

∂NNy,2

∂x x̂−
t

∂NNy,2

∂ϕx ϕ̂
−
x,t

∂NNy,2

∂ϕy ϕ̂
−
y,t

1 0 0

⎤⎥⎥⎥⎦
3×25

(2.44)

The measurement noise covariance matrix, R = diag
{︂
4× 10−4, 4× 10−4, 1× 10−4

}︂
.

At minor instants, only frequent measurements are available, and the corresponding

Jacobian matrices are

F̄ t−1 =

⎡⎢⎢⎢⎣
4sin(x̂t−1)cos(x̂t−1) + 3sin(x̂t−1) +

∂NNx

∂x x̂t−1 0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
25×25

(2.45)

and

H̄ t =

⎡⎣ 2 + ∂NNy,1

∂x x̂−
t

0 ∂NNy,1

∂ϕy ϕ̂
−
y,t

−5sin(x̂−
t ) +

∂NNy,2

∂x x̂−
t

0 ∂NNy,2

∂ϕy ϕ̂
−
y,t

⎤⎦
2×25

(2.46)

Assuming infrequent accurate measurements are available for every 20 frequent sam-

pling intervals, the simulation results are shown in Figure 2.4. For comparison, mean

squared error (MSE) is used, which is defined as:

MSE =
1

n

n∑︂
t=1

(xt − x̂t)
2

(2.47)

where n is number of frequent samples. With compensation of both state and output

models, the MSE is calculated as 4.8580 from DNEKF, which is smaller than 12.0226

from standard EKF fusion, hence fusion accuracy is improved.
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Figure 2.4: Model inaccuracies compensation simulation result with infrequent measure-
ments available for every 20 frequent sampling intervals.

2.5.1.2 Colored Noises Compensation

In this example, the actual models are available and colored noise are applied to both

process state and measurements, but white noises are assumed in the nominal models.

Red noise, which has zero mean, constant variance, and is correlated along time is

generated for simulation using the following equations [29]:

p1 = w1

pt = rpt−1 + (1− r2)1/2wt

(2.48)

23



where wt is Gaussian white noise, and r is the correlation between red noise, pt+1 and

pt, and r = 0.6 in this simulation. The state and output predictions are

x̂̄−
t =

⎡⎢⎢⎢⎣
3sin2(x̂t−1)− 5cos(x̂t−1) +NNx(x̂t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (2.49)

and

ŷt =

⎡⎣ x̂2
t
− +NNy,1(x̂

−
t , ϕ̂

−
y,t)

3cos(x̂−
t ) +NNy,2(x̂

−
t , ϕ̂

−
y,t)

⎤⎦ (2.50)

In this example, infrequent accurate measurements are available for every 50 frequent

sampling intervals. The simulation results are shown in Figure 2.5. The MSE from

the DNEKF is calculated as 2.5768 comparing with 30.6740 from the standard EKF

fusion, indicating that even if accurate models are available, violations of noise as-

sumption will also decrease the EKF fusion performance. The DNEKF approach is

able to compensate for violations of noise assumption and provide more accurate state

estimation than the tradition EKF fusion.

2.5.2 PSC Interface Level Estimation

Primary Separation Cell (PSC) is used to separate bitumen from oil sands slurry

through a water-based gravity separation process [30]. The typical cross-section view

of PSC is shown in Figure 2.6. The oil sands slurry in PSC is divided into three lay-

ers: the froth layer, middlings layer, and tailings layer. The exact location of froth-

middlings interface is critical to bitumen recovery rate control [31]. The common

measurement instruments of interface level are nuclear density profiler, differential

pressure (DP) cell, and an integrated sensor with same sampling rate as others. A

less common applied technique is the image processing based computer vision sys-

tem, which relies on a camera mounted on the PSC sight glasses to provide vision

frames to estimate the interface level [32], [33]. Owing to its increasing accuracy and

decreasing cost, computer vision that utilizes image processing technique is becoming
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Figure 2.5: Colored noise simulation result with infrequent measurements available for
every 50 frequent sampling intervals.

more popular. In this case study, all the industrial data has been normalized for

proprietary reason. The DP cell, integrated sensor, and profiler measurements are

considered as frequent but less accurate measurements, and computer vision results

are treated as infrequent accurate measurements since in reality, image processing cal-

culation may not be able to perform normally for various reasons [33]. The DNEKF

multirate sensor data fusion approach is applied to the PSC system to provide a more

precise estimation of the froth-middlings interface level. The estimation performance

is compared with the EKF, the SNEKF, and the MNEKF fusion results to show the

improvements. In this case study, 1-3-1 and 1-4-3 structures are utilized for SNN and

MNN, respectively.

Linear time-invariant state and output models are used to describe the process.
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Figure 2.6: Sample cross-sectional view of PSC.

Then state and output predictions are written as:

x̂̄−
t =

⎡⎢⎢⎢⎣
F · x̂t−1 +NNx(x̂t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (2.51)

and

ŷt = H · x̂−
t +NNy(x̂

−
t , ϕ̂

−
y,t) (2.52)

where x(%) is the froth-middlings interface level. The number of elements of ϕx is

10 and that of ϕy is 23. After adding one state, total elements of x̄ is 34. The initial

values of ϕx and ϕy are random numbers that are close to zero. The output model is

H =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[︂
HDPcell Hintegrated sensor Hprofiler Hcamera

]︂T
, major instants

[︂
HDPcell Hintegrated sensor Hprofiler

]︂T
, minor instants

where Hcamera = 1. The corresponding measurement noise covariance matrix is

R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag

{︂
RDPcell, Rintegrated sensor, Rprofiler, Rcamera

}︂
, major instants

diag
{︂
RDPcell, Rintegrated sensor, Rprofiler

}︂
, minor instants
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At major instants, the Jacobian matrices, F̄ t−1 and H̄ t, are

F̄ t−1 =

⎡⎢⎢⎢⎣
F + ∂NNx

∂x x̂t−1

∂NNx

∂ϕx ϕ̂x,t−1
0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
34×34

(2.53)

and

H̄ t =

⎡⎣H + ∂(NNy)

∂x x̂−
t

∂(NNy)

∂ϕx ϕ̂
−
x,t

∂(NNy)

∂ϕy ϕ̂
−
y,t

1 0 0

⎤⎦
4×34

(2.54)

At minor instants, the Jacobian matrices become

F̄ t−1 =

⎡⎢⎢⎢⎣
F + ∂NNx

∂x x̂t−1 0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
34×34

(2.55)

and

H̄ t =
[︂
H + ∂(NNy)

∂x x̂−
t

0 ∂(NNy)

∂ϕy ϕ̂
−
y,t

]︂
3×34

(2.56)

Figure 2.7 shows fusion performance of the standard EKF, the SNEKF, and the

MNEKF algorithms in terms of MSE. For the SNEKF, as aforementioned, without a

reliable reference, SNN training is not reliable, hence NNx of the SNEKF is not able

to improve the fusion performance. The MSE for the SNEKF fusion is higher than

that of the EKF fusion. For the MNEKF, as training process is more reliable, fusion

accuracy is improved from the EKF method.

Figure 2.8 shows fusion performance for the DNEKF algorithm with different in-

frequent measurement sampling rates. From top to bottom, infrequent sampling

intervals are 250, 125, and 50 frequent sampling intervals. With increased availabil-

ity of infrequent reference measurements, the DNKEF fusion performance becomes

better. The MSE values for different methods are presented in Table 2.1.

Figure 2.9 shows results for the DNKEF fusion with infrequent measurements

available for every 20 frequent sampling intervals as well as the weights and biases
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Figure 2.7: Fusion performance from the EKF fusion, the SNEKF fusion, and the MNEKF
fusion.

Table 2.1: Performance comparison for different fusion methods with respect to MSE
values.

Fusion methods Infrequent sampling
intervals

MSE

EKF N/A 0.48129

SNEKF N/A 0.51000

MNEKF N/A 0.46327

DNEKF

250 0.42302

125 0.37454

50 0.34494
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Figure 2.8: The DNEKF fusion with infrequent measurements available for every 250, 125,
and 50 frequent sampling intervals.

for SNN and MNN. As can be seen from the middle subplot, the weights and biases

for SNN change every 20 frequent sampling intervals with accurate computer vision

results availability. As shown in the bottom subplot, the weights and biases for MNN

change at frequent sampling rate.

2.6 Conclusions

In this chapter, the DNEKF approach for multirate sensor data fusion is proposed.

The DNEKF estimates process states and neural network parameters simultane-

ously through state vector augmentation. While compensating for inadequate process

knowledge, the DNEKF takes advantage of both frequent and infrequent measure-
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Figure 2.9: The DNEKF fusion with infrequent measurements available for every 20 fre-
quent sampling intervals, and the weights and biases for SNN and MNN.

ments to update the weights and biases for MNN and SNN through a multirate

strategy to improve the fusion robustness and accuracy. The effectiveness of the pro-

posed approach is demonstrated through two numerical examples and one industrial

application example. The simulation and industrial application results demonstrate

that the DNEKF is robust to model inaccuracies and violations of noise assumption,

and its performance can also be further improved by increasing the availability of

infrequent accurate measurements.
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Chapter 3

Multirate Sensor Data Fusion in
Presence of Delayed Irregular
Measurements using Synchronized
Neural Extended Kalman Filters

3.1 Introduction

In Chapter 2, infrequent measurements are assumed to be available at a regular

sampling rate without time delays. However, in reality, infrequent measurements

usually have irregular sampling rate and time-varying time delays. As an example,

lab technician usually collects samples irregularly and lab sample analysis requires

time-consuming operations [34]. In this case, there are variable time delays between

recorded sampling time and the time lab results become available, and such delays

are usually unknown ahead of time. Therefore, the idea of the extended Kalman filter

(EKF) based parallel fusion utilized in the dual neural EKF (DNEKF) is no longer

applicable in this situation, when infrequent measurements have time-varying time

delays [35].

To address the irregularity of infrequent measurements, track to track fusion (TTF),

which fuses the Kalman filtering track estimation and covariances from different sen-

sors, have been applied [36–38]. In [39], modified TTF (MTTF) was proposed to

provide more advanced fusion techniques, which uses the fused results as common
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predictions. The track fusion prediction (TFP) was also discussed in the same pa-

per. In TFP algorithm, individual predictions from both Kalman filters are fused

before correction steps, and then the two corrected estimates are fused to provide

fusion results. Information matrix fusion (IMF) based TTF [40] was proposed as a

high-level sensor data fusion architecture to guarantee a globally maintained track

over time and demonstrated its improved fusion performance comparing with the

cascaded Kalman filter based TTF. A modified adaptive TTF [41] was proposed to

adopt cross-correlation between sensor-level track and global track to improve flexi-

bility to react to the changes of sensor system. However, the above mentioned TTF

based methods are limited to delay-free measurements. To address the measurement

delays, back calculation fused Kalman filter (BFKF) method [42] was proposed, in

which frequent Kalman filter calculations are repeated over the time delay period to

incorporate the delayed infrequent measurements. This approach is applicable when

only a few measurements are fused over the delay period or if the computational

requirement of the filtering is not of problem. State augmentation based EKF [24]

relies on augmenting current state with appropriate past information to fuse delayed

measurements. However, it also suffers from the excessive computation problem. In

[43], a Sigma-Point Kalman filter (SPKF) based time delayed sensor fusion approach

was proposed, in which state vector is only augmented with state at the time instants

when infrequent measurements are received. This approach assumes arrival time of

infrequent measurements to be known in advance, which is usually not practical. To

deal with multirate sensor fusion with irregular sampling rate and time-varying time

delays, the modified delayed TTF (MDTTF) [44] and the exclusive information fusion

Kalman filter (EIFKF) [25] were proposed. Both methods do not require to know

availability time of the irregular infrequent measurements in advance. During fusion

process, the MDTTF considers cross-covariances of frequent and infrequent measure-

ments, while the EIFKF only fuses exclusive information of infrequent estimation

with frequent estimation. The performance of the two methods was compared in [44].
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Even though the EIFKF only fuses exclusive infrequent information with frequent

estimation, it has comparable fusion performance as the MDTTF but with lower

computational burden and hence has shorter average computational time (ACT).

As mentioned in Chapter 2, the state and output models may not be able to ac-

curately describe the process dynamics. Model inaccuracies and violations of noise

assumption have not been well investigated for multirate fusion in presence of delayed,

irregular and infrequent measurements. In this Chapter, a DNEKF and state model

compensation neural EKF (SNEKF) synchronization approach is proposed to address

measurement irregularity and time-varying time delays while preserving estimation

accuracy. In this proposed method, the DNEKF is applied to frequent estimation

to compensate for both state and output model deficiencies. The irregular and in-

frequent measurements are considered to be accurate measurements, and as a result,

infrequent model coefficient is considered as one. Therefore, the SNEKF is applied

to infrequent estimation. The weights and biases of state model compensation neural

network (SNN) are updated with infrequent measurements, and are shared between

the DNEKF and the SNEKF procedures. Since the DNEKF approach increases com-

putational cost comparing with the standard EKF, the fusion method proposed in the

EIFKF is employed to reduce computational burden and improve fusion accuracy.

The remainder of this chapter is organized as follows. Section 3.2 explains the

problems of irregular sampling rate and time-varying time delays in multirate sensor

fusion process with inadequate process knowledge. Section 3.3 introduces the DNEKF

and SNEKF synchronization approach to handle irregular infrequent measurements

with time-varying time delays while compensating for model inaccuracy and violations

of noise assumption. Then, two numerical examples and one industrial case study are

provided in section 3.4 to demonstrate the advantages of the proposed approach. At

last, section 3.5 concludes this chapter.
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3.2 Problem Statement

In process industry, it is common to employ the lab analysis results to improve the

quality variable estimation accuracy. However, such measurements are usually sam-

pled at an infrequent and irregular rate and are obtained only after time-varying time

delays. Therefore, regular and frequent online measurements, which have lower accu-

racy and do not have time delays, are commonly adopted as process measurements.

To take advantage of all these sources, fusion of the two types of measurements is

desired in order to provide frequent, high-performance quality variable estimation.

As illustrated in Figure 3.1, black ticks are frequent sampling instants denoted

by t, and star represents infrequent sampling instants denoted by s. The infrequent

measurement that corresponds to time s, yi,s, is available at time ds, which is denoted

by square. At time ds, the frequent measurement, yf,ds, is available without time

delay, and fusion is performed at this time instant. The intervals between time s and

ds are time delays, d. In this study, both s and d are assumed to be multiple of t.

The intervals between two sequential infrequent measurements are variable, and time

delays, d, are also time-varying.

Figure 3.1: Process sampling strategy for regular frequent measurements and irregular
infrequent measurements with time-varying time delays.

Considering the following nonlinear process with frequent and infrequent measure-
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ments:

xt = ftrue(xt−1) + wt−1

yf,t = hf,true(xt) + vf,t

yi,ds = hi,true(xs) + vi,s

(3.1)

where ftrue(·), hf,true(·), and hi,true(·) represent the true state model, frequent and

infrequent output models. These models can be either linear or nonlinear. In this

study, since infrequent measurements are considered to be accurate measurements,

hi,true(xs) = xs. The state, x, has wt as its noise, and frequent and infrequent mea-

surements are yf and yi, with vf,t and vi,s as their noises, respectively. The process

noise and measurement noises, wt ∼ N (0, Q), vf,t ∼ N (0, Rf ), and vi,s ∼ N (0, Ri),

are zero-mean, uncorrelated, Gaussian white noises. The multirate sensor data fusion

accuracy heavily depends on accuracy of state and output models. Limited process

knowledge and process condition changes can both lead to model-plant mismatches,

and the assumption of white process noises can also be violated. When fusing regu-

lar frequent measurements with irregular infrequent measurements subject to time-

varying time delays, model inaccuracies and violations of noise assumption should be

considered. As shown in Figure 3.2, at time instant ds, frequent measurements, yf,ds,

arrive, then posterior frequent state estimate, x̂f,ds, is obtained. However, infrequent

measurements arriving at time ds correspond to the sample that is taken at time

s. Consequently, at time ds, posterior infrequent state estimate for time s, x̂i,s, is

obtained, instead of at time ds. The time delay, d, is assumed to be unknown until

at time ds. Therefore, to fuse frequent and infrequent estimates at time ds, predic-

tions over the time delay period from time s to ds need to be made for infrequent

estimation. Then at time ds, prior infrequent state estimate, x̂−
i,ds, and posterior fre-

quent state estimate, x̂f,ds, are fused in the fusion center to obtain, x̂ds. The fusion

results can be used as common initial estimates for predictions at the following time

instants. In this scenario, model inaccuracies and violations of noise assumption will

not only degrade the performance of frequent estimation but also affect predictions
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over time delay period from time s to ds, where no corrections are available. When the

state model has deficiency, errors will accumulate through these d-step predictions.

The objective, therefore, is to compensate for model inaccuracies and violations of

noise assumption while fusing regular frequent measurements and irregular infrequent

measurements with time-varying time delays to improve the process state estimation

accuracy.

Figure 3.2: Frequent and infrequent estimations in presence of irregular and infrequent
sampling rate and time-varying time delays.

3.3 DNEKF and SNEKF Synchronization Approach

3.3.1 DNEKF and SNEKF Estimations

While fusing multirate estimates in presence of irregular sampling rate and time-

varying time delays, model inaccuracies and violations of noise assumption should be

compensated. Due to the measurement time delays, the DNEKF approach, which

is based on parallel fusion in Chapter 2, is no longer applicable. Two separate es-

timations can be employed synchronously to handle irregularity and time-varying

time delays in infrequent measurements while improving the online quality variable

estimation performance. In this section, the DNEKF and SNEKF synchronization
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approach is proposed. As shown in Figure 3.3, the DNEKF is applied to frequent

estimation and uses NNx and NNy values to compensate for model inaccuracies and

violations of noise assumption. The SNEKF is applied to infrequent estimation to

first improve state estimation at infrequent sampling instant, s, and then improve

the predictions over time delay period from time s to ds. The SNN parameters are

updated according to infrequent accurate measurements at time ds, and the weights

and biases of SNN are shared between the DNEKF and the SNEKF estimations. Fre-

quent and infrequent state estimations are fused in the fusion center to provide fused

estimate, x̂ds, which is used as common initialization for predictions at the following

time instants.

Figure 3.3: Multirate sensor data fusion based on the DNEKF and SNEKF synchronization
approach.

The frequent DNEKF procedure is the same as that in Chapter 2 for minor

instants, so frequent state and output predictions are

x̂̄−
f,t =

⎡⎢⎢⎢⎣
f(x̂f,t−1) +NNx(x̂f,t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (3.2)

ŷf,t = hf (x̂
−
f,t) +NNy(x̂

−
f,t, ϕ̂

−
y,t) (3.3)

where f(·) and hf (·) represent defective state and output models, which deviate from
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ftrue(·) and hf,true(·) by model inaccuracies. The augmented frequent state vector is

x̄f =
[︂
xf ϕx ϕy

]︂T
, x̂f,t−1 is corrected state estimate and ŷf,t is output prediction.

The output from SNN is NNx, with x̂f,t−1 as its input and ϕ̂x as the weights and

biases. The MNN output is denoted asNNy with x̂−
f,t as its input and ϕ̂y as the weights

and biases. In the prediction step, state estimation error covariance is calculated as:

P−
f,t = F̄ f,t−1Pf,t−1F̄

T
f,t−1 +Q (3.4)

where Pf,t−1 is corrected frequent state estimation error covariance, and Q repre-

sents process noise covariance matrix. The frequent Jacobian matrix, F̄ f,t−1 in equa-

tion (3.4), is

F̄ f,t−1 =

⎡⎢⎢⎢⎣
∂(f+NNx)

∂x x̂f,t−1

∂(f+NNx)
∂ϕx ϕ̂x,t−1

∂(f+NNx)
∂ϕy ϕ̂y,t−1

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
Ff,t−1 +

∂NNx

∂x x̂t−1 0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
(ϕx+ϕy+1)×(ϕx+ϕy+1)

(3.5)

The Kalman gain matrix for frequent estimation is obtained as:

Kf,t = P−
f,tH̄

T
f,t(H̄f,tP

−
f,tH̄

T
f,t +Rf )

−1 (3.6)

where Rf is frequent measurement noise covariance matrix, and the Jacobian matrix,

H̄f,t, is calculated as:

H̄f,t =
[︂
∂(h+NNy)

∂x x̂−
f,t

∂(h+NNy)

∂ϕx ϕ̂
−
x,t

∂(h+NNy)

∂ϕy ϕ̂
−
y,t

]︂
=
[︂
Hf,t +

∂NNy

∂x x̂−
f,t

0 ∂NNy

∂ϕy ϕ̂
−
y,t

]︂ (3.7)

In the correction step, both augmented state vector and state estimation error co-

variance are updated using frequent measurements, and the correction equations are

x̂̄f,t = x̂̄−
f,t +Kf,t(yf,t − ŷf,t) (3.8)
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Pf,t = (I −Kf,tH̄f,t)P
−
f,t (3.9)

During the DNEKF procedure, ϕy is updated with frequent measurements, while ϕx

remains unchanged.

Since delayed irregular and infrequent measurements are considered as accurate

measurements, measurement model compensation neural network (MNN) does not

need to be applied to the infrequent output prediction. Therefore, the SNEKF pro-

cedure is employed. The state and output predictions for the SNEKF procedure

are

x̂̄−
i,s =

⎡⎣f(x̂i,s−1) +NNx(x̂i,s−1, ϕ̂x,s−1)

ϕ̂x,s−1

⎤⎦ (3.10)

ŷi,s = hi(x̂
−
i,s) (3.11)

where x̄i =
[︂
xi ϕx

]︂T
is augmented infrequent state vector, and hi(x̂

−
i,s) = x̂−

i,s, and

x̂̄i,s−1 is the corrected infrequent state estimation. Then estimation error covariance

matrix is

P−
i,s = F̄ i,s−1Pi,s−1F̄

T
i,s−1 +Q (3.12)

where Pi,s−1 is the corrected infrequent state estimation error covariance, and Q is

process noise covariance matrix. The Jacobian matrix, F̄ i,s−1, for infrequent estima-

tion is calculated as:

F̄ i,s−1 =

⎡⎣∂(f+NNx)
∂x x̂i,s−1

∂(f+NNx)
∂ϕx ϕ̂x,s−1

0 Iϕx

⎤⎦
=

⎡⎣Fi,s−1 +
∂NNx

∂x x̂i,s−1

∂NNx

∂ϕx ϕ̂x,s−1

0 Iϕx

⎤⎦
(ϕx+1)×(ϕx+1)

(3.13)

The Kalman gain matrix is

Ki,s = P−
i,sH̄

T
i,s(H̄ i,sP

−
i,sH̄

T
i,s +Ri)

−1 (3.14)
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where Ri is infrequent measurement noises covariance matrix, and the Jacobian ma-

trix, H̄ i,s, is

H̄ i,s =
[︂
∂h
∂x x̂−

i,s
0
]︂

=
[︂
Hi,s 0

]︂ (3.15)

Finally, infrequent augmented state vector and state estimation error covariance are

corrected as:

x̂̄i,s = x̂̄−
i,s +Ki,s(yi,s − ŷi,s) (3.16)

Pi,s = (I −Ki,sH̄ i,s)P
−
i,s (3.17)

The irregular and infrequent measurements sampled at time instant s, become avail-

able at time ds, with relationship: ds = s + d. To fuse frequent and infrequent

estimates in the fusion center, predictions over time delay period from time s to ds

are made. Therefore, the infrequent estimation procedure includes additional predic-

tion steps, which are specific to process state, x. The state prediction over the time

delay period at frequent sampling rate is

x̂−
i,s+1 = f(x̂i,s) +NNx,s

x̂−
i,s+2 = f(x̂−

i,s+1) +NNx,s+1

...

x̂−
i,ds = f(x̂−

i,ds−1) +NNx,ds−1

(3.18)

where x̂i,s represents posterior infrequent state estimate at time s, which is obtained

using irregular infrequent measurement received at time ds. The SNN output, NNx,

is applied to adjust predictions over the time delay period. During this procedure,

corrections are not available, and the input to SNN changes from x̂i,s to x̂−
i,ds−1,

while ϕx remains unchanged. The predictions of estimation error covariance is also

performed over the time delay period at frequent sampling rate, and can be calculated

as:

P̂
−
i,ds =

d−1∏︂
j=1

(︃
∂(f +NNx)

∂x x̂−
i,s+j

)︃(︃
∂(f +NNx)

∂x
x̂i,s

)︃
P̂ i,s

(︃
∂(f +NNx)

∂x
x̂i,s

)︃T
(︄

d−1∏︂
j=1

(︃
∂(f +NNx)

∂x x̂−
i,s+j

)︃)︄T

+Qds,s

(3.19)
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where P̂ i is estimation error covariance matrix corresponding to process state, and

Qds,s represents cumulative process state noise covariance from time s to ds, which

can be computed as:

Qds,s =
d−1∑︂
j=1

d−j∏︂
l=1

(︃
∂(f +NNx)

∂x x̂−
i,s+l

)︃
Q̂

(︄
d−j∏︂
l=1

(︃
∂(f +NNx)

∂x x̂−
i,s+l

)︃)︄T

+

(︃
∂(f +NNx)

∂x
x̂i,s

)︃
Q̂

(︃
∂(f +NNx)

∂x
x̂i,s

)︃T

(3.20)

where Q̂ is process noise covariance corresponding to process state. The parameters of

SNN are updated in the SNEKF procedure, and are shared with the DNEKF at time

ds. The graphical illustration of the DNEKF and SNEKF synchronization approach

is shown in Figure 3.4.

Figure 3.4: Graphical illustration of the DNKEF and SNEKF synchronization approach.

3.3.2 Fusion Procedure

After both frequent and infrequent estimates are obtained at time ds, fusion can

be performed in the fusion center. Recall that through state augmentation, x̄f =
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[︂
xf ϕx ϕy

]︂T
and x̄i =

[︂
xi ϕx

]︂T
. Then ϕy is independent of x̄i, and ϕx is shared

between the two estimations. Consequently, the fusion process focuses on process

state, x, and its corresponding estimation error covariance, P̂ . A fusion method

that fuses exclusive information of infrequent estimation with frequent estimation is

proposed in the EIFKF approach [25], which is based on following Lemma:

Lemma 1. Assume x̂a and x̂b are two unbiased, independent estimates of x, following

Gaussian distributions, with Pa and Pb as their covariances, respectively. Then the

optimal, unbiased fusion estimation x̂c and its covariance matrix Pc in the sense of

minimum mean-squared error can be calculated as :

Pc =
(︁
P−1
a + P−1

b

)︁−1
(3.21)

x̂c = Pc

(︁
P−1
a x̂a + P−1

b x̂b

)︁
(3.22)

The proof of this Lemma can be found in [45] and [46]. Lemma 1 is only applicable

when two estimates are independent of each other. To apply this fusion technique,

two unbiased independent estimates of x̂−
i,ds are calculated through state predictions

over time delay period from time s to ds. One of the estimates uses exclusive measure-

ment information with frequent estimates and the other uses mutual measurement

information. We name the two estimates as exclusive infrequent estimate, ẑ−ds, and

mutual infrequent estimate, x̂−
ds, with R̂

−
z,ds and P̂

−
ds as their respective covariances.

Then estimation error covariance of infrequent estimate at time ds can be written as:

P̂
−
i,ds =

(︃(︂
P̂

−
ds

)︂−1

+
(︂
R̂

−
z,ds

)︂−1
)︃−1

(3.23)

Rearrange equation (3.23), and R̂
−
z,ds can be obtained as:

R̂
−
z,ds =

(︃(︂
P̂

−
i,ds

)︂−1

−
(︂
P̂

−
ds

)︂−1
)︃−1

(3.24)

Following Lemma 1, infrequent state estimation are computed as:

x̂−
i,ds = P̂

−
i,ds

(︃(︂
P̂

−
ds

)︂−1

x̂−
ds +

(︂
R̂

−
z,ds

)︂−1

ẑ−ds

)︃
(3.25)
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Then exclusive infrequent state estimation is

ẑ−ds = R̂
−
z,ds

(︃(︂
P̂

−
i,ds

)︂−1

x̂−
i,ds −

(︂
P̂

−
ds

)︂−1

x̂−
ds

)︃
(3.26)

The state propagation procedure and fusion procedure of the proposed DNEKF and

SNEKF synchronization approach are shown in Figure 3.5. In this illustration, aug-

mented state vectors x̂̄f and x̂̄i are propagated through time. However, only process

state, x, participates in predictions over time delay period from time s to ds. In the

fusion center, frequent state estimate, x̂f,ds, and exclusive infrequent state estimate,

ẑ−ds, are fused to provide the fusion results, x̂ds.

Figure 3.5: State propagation procedure and fusion process for the DNEKF and SNEKF
synchronization approach to multirate sensor fusion in presence of delayed infrequent mea-
surements.

In terms of the mutual information, at time s, the delayed infrequent measure-

ments, yi,s, are not available. Therefore, the common measurement information avail-

able at time s is used to provide mutual infrequent estimate from time s to ds, which
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is calculated as:

x̂−
s+1 = f(x̂−

i,s) +NNx,s

x̂−
s+2 = f(x̂−

s+1) +NNx,s+1

...

x̂−
ds = f(x̂−

ds−1) +NNx,ds−1

(3.27)

where x̂−
s+1 to x̂−

ds represent state estimation using mutual measurement information

over time delay period. Since the estimation is initialized with mutual information,

x̂−
i,s instead of x̂i,s, is used as the initial estimate, and the corresponding mutual

infrequent state estimation error covariance is calculated as:

P̂
−
ds =

d−1∏︂
j=1

(︃
∂(f +NNx)

∂x x̂−
s+j

)︃(︃
∂(f +NNx)

∂x x̂−
i,s

)︃
P̂

−
i,s

(︃
∂(f +NNx)

∂x x̂−
i,s

)︃T
(︄

d−1∏︂
j=1

(︃
∂(f +NNx)

∂x x̂−
s+j

)︃)︄T

+Q−
ds,s

(3.28)

where the estimation is initialized with P̂
−
i,s instead of P̂ i,s since only mutual mea-

surement information is utilized. The corresponding mutual process noise covariance

matrix, Q−
ds,s, of the cumulative process state noise from s to ds is obtained as:

Q−
ds,s =

d−1∑︂
j=1

d−j∏︂
l=1

(︃
∂(f +NNx)

∂x x̂−
s+l

)︃
Q̂

(︄
d−j∏︂
l=1

(︃
∂(f +NNx)

∂x x̂−
s+l

)︃)︄T

+

(︃
∂(f +NNx)

∂x x̂−
i,s

)︃
Q̂

(︃
∂(f +NNx)

∂x x̂−
i,s

)︃T

(3.29)

After computing the mutual state estimate and its estimation error covariance, the

exclusive infrequent state estimate and corresponding estimation error covariance at

time ds, are calculated through equation (3.26) and equation (3.24). In the fusion

center, only the exclusive infrequent information is fused with frequent estimation,

and fusion can be performed based on Lemma 1 as follows:

P̂ ds =

(︃
P̂

−1

f,ds +
(︂
R̂

−
z,ds

)︂−1
)︃−1

(3.30)

x̂ds = P̂ ds

(︃
P̂

−1

f,dsx̂f,ds +
(︂
R̂

−
z,ds

)︂−1

ẑ−ds

)︃
(3.31)

The overall process of the DNEKF and SNEKF synchronization approach for mul-

tirate sensor fusion in presence of irregular and infrequent sampling rate and time-
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varying time delays is illustrated in Figure 3.6. The exclusive infrequent state esti-

mate and the corresponding estimation error covariance are fused with the frequent

ones in the fusion center at time ds to provide more accurate fusion results, x̂ds and

P̂ ds. These fused results can be used as initial values for frequent and infrequent

estimations in the following sampling instants.

Figure 3.6: Flow chart of the DNEKF and SNEKF synchronization approach for multirate
sensor fusion in presence of irregular and infrequent sampling rate and time-varying time
delays.

3.4 Case Studies

In this section, two numerical examples as well as one industrial solvent recovery unit

(SRU) product stream concentration estimation are provided to show advantages of

the proposed approach. In the first numerical example, the state and frequent output
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models deviate from the true ones. Next, colored state and measurement noises are

applied to the process. Last, in the industrial case study, random walk models are

applied, and the DNEKF and SNEKF synchronization approach is applied to improve

accuracy of the SRU product stream concentration estimation.

3.4.1 Numerical Examples

3.4.1.1 Model Inaccuracies Compensation

In this numerical example, both state model and frequent output model are inaccu-

rate. The infrequent accurate measurements are available at an irregular sampling

rate with time-varying time delays over the 400 simulated frequent sampling instants.

Infrequent sampling interval randomly varies between 35 and 45 times of frequent rate

sampling intervals. The time delay, d, varies from 15 to 25 times of frequent sampling

intervals following a uniform distribution. In this simulation, true state and frequent

output models are

xt = ftrue(xt−1) + wt−1

=
√
xt−1 + sin(xt−1) + wt−1

(3.32)

and

yf,t = htrue(xf,t) + vf,t

= 0.8x2
f,t + vf,t

(3.33)

where wt ∼ N(0, 0.1) and vf,t ∼ N(0, 1). The irregular infrequent measurements are

considered as accurate output measurements. Therefore, infrequent output model is

given below:

yi,s = xi,s + vi,s (3.34)

where vi,s ∼ N(0, 0.1). In this simulation, assume neither the true state model nor

the true frequent output model is known. The following defective models are applied

for estimation:

x̂−
t = f(x̂t−1)

= 0.9x̂t−1 + sin(x̂t−1)
(3.35)
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and

ŷf,t = h(x̂−
f,t)

= x̂2
f,t

−
(3.36)

Applying the DNEKF procedure to frequent estimation process and choosing 1-2-1 as

neural network structure for both SNN and MNN, then state and output predictions

are

x̂̄−
f,t =

⎡⎢⎢⎢⎣
0.9x̂f,t−1 + sin(x̂f,t−1) +NNx(x̂f,t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (3.37)

and

ŷf,t = x̂2
f,t

− +NNy(x̂
−
f,t, ϕ̂

−
y,t) (3.38)

With above structure, both neural networks have 7 parameters. For a single quality

variable problem, the augmented state vector contains 15 elements. The frequent

Jacobian matrices, F̄ f,t−1 and H̄f,t, are computed as:

F̄ f,t−1 =

⎡⎢⎢⎢⎣
0.9 + cos(x̂−

f,t−1) +
∂NNx

∂x x̂f,t−1
0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
15×15

(3.39)

and

H̄f,t =
[︂
2x̂−

f,t +
∂NNy

∂x x̂−
f,t

0 ∂NNy

∂ϕy ϕ̂
−
y,t

]︂
(3.40)

The SNEKF algorithm is applied to infrequent estimation process. Infrequent state

and output predictions are

x̂̄−
i,s =

⎡⎣0.9x̂i,s−1 + sin(x̂i,s−1) +NNx(x̂i,s−1, ϕ̂x,s−1)

ϕ̂x,s−1

⎤⎦ (3.41)

ŷi,s = x̂−
i,s (3.42)
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The infrequent Jacobian matrices, F̄ i,s−1 and H̄ i,s, are computed as:

F̄ i,s−1 =

⎡⎣0.9 + cos(x̂i,s−1) +
∂NNx

∂x x̂i,s−1

∂NNx

∂ϕx ϕ̂x,s−1

0 Iϕx

⎤⎦
8×8

(3.43)

and

H̄ i,s =
[︂
1 0

]︂
(3.44)

State predictions over time delay period from time s to ds are needed for fusion

activity. Following the fusion algorithm introduced in section 3.3.2, in order to extract

exclusive infrequent state estimate, mutual infrequent state estimates from time s to

ds are computed as:

x̂−
s+1 = 0.9x̂−

i,s + sin(x̂−
i,s) +NNx,s

x̂−
s+2 = 0.9x̂−

s+1 + sin(x̂−
s+1) +NNx,s+1

...

x̂−
ds = 0.9x̂−

ds−1 + sin(x̂−
ds−1) +NNx,ds−1

(3.45)

where x̂−
i,s is prior infrequent state estimate at time s. The estimation error covariance

of mutual infrequent state estimate is calculated as:

P̂
−
ds =

d−1∏︂
j=1

(︃
0.9 + cos(x̂−

s+j) +
∂NNx

∂x x̂−
s+j

)︃(︃
0.9 + cos(x̂−

i,s) +
∂NNx

∂x x̂−
i,s

)︃
P̂

−
i,s

·
(︃
0.9 + cos(x̂−

i,s) +
∂NNx

∂x x̂−
i,s

)︃T
(︄

d−1∏︂
j=1

(︃
0.9 + cos(x̂−

s+j) +
∂NNx

∂x x̂−
s+j

)︃)︄T

+Q−
ds,s

(3.46)

where P̂
−
i,s is prior state estimation error covariance at time s, and Q−

ds,s can be

computed as:

Q−
ds,s =

d−1∑︂
j=1

d−j∏︂
l=1

(︃
0.9 + cos(x̂−

s+l) +
∂NNx

∂x x̂−
s+l

)︃
Q̂

(︄
d−j∏︂
l=1

(︃
0.9 + cos(x̂−

s+l) +
∂NNx

∂x x̂−
s+l

)︃)︄T

+

(︃
0.9 + cos(x̂−

i,s) +
∂NNx

∂x x̂−
i,s

)︃
Q̂

(︃
0.9 + cos(x̂−

i,s) +
∂NNx

∂x x̂−
i,s

)︃T

(3.47)
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The infrequent state estimate, x̂−
i,ds, from time s to ds is calculated as following:

x̂−
i,s+1 = 0.9x̂i,s + sin(x̂i,s) +NNx,s

x̂−
i,s+2 = 0.9x̂−

i,s+1 + sin(x̂−
i,s+1) +NNx,s+1

...

x̂−
i,ds = 0.9x̂−

i,ds−1 + sin(x̂−
i,ds−1) +NNx,ds−1

(3.48)

where x̂i,s is posterior infrequent state estimate for time s. Its corresponding estima-

tion error covariance, P̂
−
i,ds, is

P̂
−
i,ds =

d−1∏︂
j=1

(︃
0.9 + cos(x̂−

i,s+j) +
∂NNx

∂x x̂−
i,s+j

)︃(︃
0.9 + cos(x̂i,s) +

∂NNx

∂x
x̂i,s

)︃
P̂ i,s

·
(︃
0.9 + cos(x̂i,s) +

∂NNx

∂x
x̂i,s

)︃T
(︄

d−1∏︂
j=1

(︃
0.9 + cos(x̂−

i,s+j) +
∂NNx

∂x x̂−
i,s+j

)︃)︄T

+Qds,s

(3.49)

where P̂ i,s is corrected state estimation error covariance, and Qds,s can be obtained

as:

Qds,s =
d−1∑︂
j=1

d−j∏︂
l=1

(︃
0.9 + cos(x̂−

i,s+l) +
∂NNx

∂x x̂−
i,s+l

)︃
Q̂

(︄
d−j∏︂
l=1

(︃
0.9 + cos(x̂−

i,s+l) +
∂NNx

∂x x̂−
i,s+l

)︃)︄T

+

(︃
0.9 + cos(x̂i,s) +

∂NNx

∂x
x̂i,s

)︃
Q̂

(︃
0.9 + cos(x̂i,s) +

∂NNx

∂x
x̂i,s

)︃T

(3.50)

After obtaining x̂−
ds, P̂

−
ds, x̂−

i,ds, and P̂ i,ds through equation (3.45), (3.46), (3.48)

and (3.49), exclusive infrequent state estimate at time ds, ẑ−ds, and its corresponding

estimation error covariance, R̂
−
z,ds, are obtained through equation (3.26) and equa-

tion (3.24). Then the fused state estimate and corresponding estimation error covari-

ance are obtained from equation (3.31) and equation (3.30). Figure 3.5 illustrates the

standard EKF estimation results and fusion results from the proposed DNEKF and

SNEKF synchronization approach. As shown in this figure, inaccurate models lead

to biases between the EKF estimates and actual process states. With compensation

of model inaccuracies, the MSE of the proposed approach is calculated as 0.10945,

which is smaller than 0.86271 from the EKF estimates, indicating that the proposed

method has improved the estimation performance.
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Figure 3.7: The EKF estimation results vs. the DNEKF and SNEKF synchronization
fusion results for numerical example with model inaccuracies.

3.4.1.2 Colored Noises Compensation

In this example, accurate models in equation (3.32) and (3.33) are available. However,

colored noises instead of white noises are considered. Red noises with correlation along

time as 0.5 are generated through equation (2.48) and applied to the process state

and output measurements. The frequent Jacobian matrices, F̄ f,t−1 and H̄f,t, in the

DNEKF process, are

F̄ f,t−1 =

⎡⎢⎢⎢⎢⎣
1

2
√︂

x̂−
f,t−1

+ cos(x̂−
f,t−1) +

∂NNx

∂x x̂f,t−1
0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎥⎦
15×15

(3.51)

and

H̄f,t =
[︂
1.6x̂−

f,t +
∂NNy

∂x x̂−
f,t

0 ∂NNy

∂ϕy ϕ̂
−
y,t

]︂
(3.52)
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In terms of infrequent SNEKF process, the infrequent Jacobian matrices, F̄ i,s−1 and

H̄ i,s, are

F̄ i,s−1 =

⎡⎢⎣ 1

2
√︂

x̂−
i,s−1

+ cos(x̂i,s−1) +
∂NNx

∂x x̂i,s−1

∂NNx

∂ϕx ϕ̂x,s−1

0 Iϕx

⎤⎥⎦
8×8

(3.53)

and

H̄ i,s =
[︂
1 0

]︂
(3.54)

As shown in Figure 3.8 and 3.9, violations of noise assumption degrade the EKF esti-

mation results, and even lead to EKF estimation divergence. Through compensation

of violations of noise assumption, the DNEKF and SNEKF synchronization method

can prevent the estimation from divergence and improve the estimation accuracy in

terms of MSE.

3.4.2 SRU Product Stream Concentration Estimation

Bitumen produced from oil sands mainly consists of long-chain hydrocarbon molecules

and it is extra heavy and highly viscous. The sticky, viscous bitumen is almost in

solid state at room temperatures, which makes it difficult to transport [47]. To solve

this problem, diluent is added to make it possible to ship bitumen through pipelines.

After transportation, the diluent is recovered in SRU through heating and stripping

processes. After diluent recovery, SRU product stream concentration is estimated at

a frequent sampling rate through a soft sensor. The product stream samples are also

analyzed in the lab to provide accurate concentration measurements at an irregular

and infrequent rate [48]. In this case study, all the industrial data has been normalized

for proprietary reason. The soft sensor estimation results are available in every 10

minutes without time delay. Meanwhile, the lab measurements are available two or

three times per day to provide references for product stream concentrations. Usually,

the delay is 18 to 30 frequent sampling intervals, following a uniform distribution.

51



Figure 3.8: The EKF estimation results vs. the DNEKF and SNEKF synchronization
fusion results for numerical example with colored noise.

Industrial data from two separate time periods with a gap of three months is analyzed

in this case study.

The DNEKF approach is applied to frequent estimation process using soft sensor

measurements with random walk models, and state and output predictions are

x̂̄−
f,t =

⎡⎢⎢⎢⎣
x̂f,t−1 +NNx(x̂f,t−1, ϕ̂x,t−1)

ϕ̂x,t−1

ϕ̂y,t−1

⎤⎥⎥⎥⎦ (3.55)

ŷf,t = x̂−
f,t +NNy(x̂

−
f,t, ϕ̂

−
y,t) (3.56)

Structures of SNN and MNN are both 1-2-1, then the Jacobian matrices for the
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Figure 3.9: The EKF estimation results vs. the DNEKF and SNEKF synchronization
fusion results for numerical example with colored noise.

frequent estimation are

F̄ f,t−1 =

⎡⎢⎢⎢⎣
1 + ∂NNx

∂x x̂t−1 0 0

0 Iϕx 0

0 0 Iϕy

⎤⎥⎥⎥⎦
15×15

(3.57)

and

H̄f,t =
[︂
1 + ∂NNy

∂x x̂−
f,t

0 ∂NNy

∂ϕy ϕ̂
−
y,t

]︂
(3.58)

The SNEKF approach is applied to infrequent estimation, and state and output

predictions are

x̂̄−
i,s =

⎡⎣x̂i,s−1 +NNx(x̂i,s−1, ϕ̂x,s−1)

ϕ̂x,s−1

⎤⎦ (3.59)
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ŷi,s = x̂−
i,s (3.60)

The infrequent Jacobian matrices are

F̄ i,s−1 =

⎡⎣1 + ∂NNx

∂x x̂i,s−1

∂NNx

∂ϕx ϕ̂x,s−1

0 Iϕx

⎤⎦
8×8

(3.61)

and

H̄ i,s =
[︂
1 0

]︂
(3.62)

After extracting exclusive infrequent state estimate and corresponding covariance, fu-

sion is performed when lab measurements become available. Figures 3.10 and Figure

3.11 show frequent soft sensor measurements and the proposed DNEKF and SNEKF

synchronization fusion results using lab measurements as references for two time peri-

ods. The comparison of estimation accuracies for soft sensor predictions, the EIFKF

estimation, and the proposed method fusion results in terms of MSE is presented

in Table 3.1, with lab measurements as references. From the MSE comparison, the

proposed synchronization method improves estimation accuracy from frequent soft

sensor measurements as well as from the EIFKF estimation by compensating the

model deficiencies.

Table 3.1: MSE from different methods for the SRU product stream concentration
estimation case study.

Methods MSE

Period 1

Soft sensor measurement 0.1295

EIFKF 0.1057

DNEKF + SNEKF fusion result 0.0934

Period 2

Soft sensor measurement 0.5298

EIFKF 0.4948

DNEKF + SNEKF fusion result 0.3741
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Figure 3.10: Frequent soft sensor measurements vs. the DNEKF and SNEKF synchroniza-
tion fusion results for SRU product stream concentration estimation during period 1.

3.5 Conclusions

In this chapter, the DNEKF and SNEKF synchronization approach is proposed for

multirate sensor fusion in presence of irregular and infrequent measurements with

time-varying time delays. With the objective of compensating model inaccuracies

and violations of noise assumption, the proposed method uses the DNEKF and the

SNEKF to improve frequent and infrequent estimations, respectively, while sharing

the parameters of SNN between them. The regular frequent state estimate and ir-

regular infrequent state estimate as well as their corresponding covariances are fused

in the fusion center when infrequent accurate measurements arrive, and exact delay

is unknown in advance. Through two numerical examples and one industrial case

study, the proposed approach is shown to have advantages of compensating for model

inaccuracies and violations of noise assumption while handling the measurement ir-
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Figure 3.11: Frequent soft sensor measurement vs. the DNEKF and SNEKF synchroniza-
tion fusion results for SRU product stream concentration estimation during period 2.

regularity and time-varying time delays.
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Chapter 4

Sensor Fusion and Computer
Vision Integrated System for
Primary Separation Cell Interface
Level Estimation

4.1 Introduction

Primary Separation Cell (PSC) is used to separate bitumen from oil sands slurry

through a water-based gravity separation process. General structure of PSC is a

large open separation vessel, and a typical cross-sectional view of PSC is shown in

Figure 2.6. It is the key step of bitumen extraction, where up to 90% of the bitu-

men is recovered [49]. Oil sands slurry is pumped to the PSC for extraction through

inlet pipeline. Then the slurry is divided into three layers due to gravity: the froth

layer, middlings layer, and tailings layer, from top to bottom. The froth layer has

the lowest density and contains majority of bitumen. Inside the PSC, bitumen froth

floats towards the top and is recovered in the overflow launder. The middlings zone

sits underneath the froth layer and mainly consists of clay particles that are difficult

to separate. The tailings layer sits at the bottom of the PSC. It is mostly comprised

of coarse tails and is withdrawn from the bottom of cone via underflow pumps. The

exact location of the froth-middlings interface is a critical control parameter. If the

interface is too high, middlings will get pulled into the overflow launder and thus
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reduce bitumen recover quality. If the interface is too low, bitumen will get pulled

into the middlings zone, which can reduce bitumen recovery. In oil sands industry,

the froth-middlings interface level is measured using various sensors: nuclear density

profiler, differential pressure (DP) cell, integrated sensor, and image processing based

computer vision system. The profiler measures the interface level based on point

density measurements. DP cells estimate the interface level through pressure mea-

surements. The integrated sensor combines density and pressure transmitters to give

interface level estimation. The computer vision system uses a camera that is installed

on the sight glasses to capture sight glass visions and then transmits video frames

to the application computer, which then converts the image frames to interface level

estimation. In recent years, cost of camera installation has dropped, and accuracy

of digital imaging software has improved significantly, making image processing tech-

nique increasingly popular in the oil sands industry. However, this approach highly

relies on sight glass vision qualities. When camera is not able to capture a clear

movement of the interface level, the computer vision will freeze itself by holding on

to the last reading of interface level until the visions become reliable again. The

objective of this chapter is to design a sensor fusion strategy which can be integrated

with the image processing based computer vision system to improve online interface

level estimation accuracy and robustness for PSCs.

The remainder of this chapter is organized as follows. Section 4.2 introduces the

image processing based computer vision system and discusses about the problems

that exist. Section 4.3 explains the sensor fusion approach, which recursively updates

fusion parameters to continuously providing reliable interface level estimation when

computer vision results are unreliable. The integration strategy of sensor fusion with

computer vision system is also introduced in this section. Real industrial environment

simulations are conducted at the computer process control (CPC) industrial research

chair (IRC) lab at the University of Alberta to show effectiveness of the proposed

approach. Finally, section 4.4 concludes this chapter.
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4.2 Image Processing based Computer Vision Sys-

tem and Problem Statement

The image processing based computer vision system for froth-middlings interface

level detection in PSC [33] was developed to increase the interface level estimation

accuracy. This approach combines static and dynamic image processing techniques,

and provides indications when the results are not reliable. The image processing

procedure relies on visions of the PSC sight glasses. Figure 4.1 illustrates a sample

sight glass vision captured by the installed camera. Typically, three sight glasses are

installed on the PSC, named as upper, middle, and lower sight glass, respectively.

The red line is the computer vision estimation result for froth-middlings interface

level, and the yellow ellipses indicate transition regions among the three sight glasses.

Figure 4.1: Sample sight glass visions of PSC.

The vision qualities are affected by several abnormalities. Sticky oil and sticky

sands will lower the visibility of the interface level [50]. Besides, when the interface
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level crosses sight glass transition regions, dynamic movement of the interface level is

difficult to be captured by camera. In this case, dynamic image processing is not able

to provide accurate estimates [51]. The above two scenarios are defined as low-quality

conditions in the computer vision system. Additionally, operators occasionally need

to do maintenance on the PSC and will block the camera visions. Then the sight

glass regions are not visible and calculation of interface level is not reliable [52]. This

situation is called low-reliability condition in the computer vision system. Figure

4.2a and 4.2b show the stains on the sight glass and operator blocking the sight

glass visions, respectively. During normal conditions, the computer vision results

are considered to be the most accurate among various sensor estimations. Figure 4.3

(a) (b)

Figure 4.2: Illustration of sight glass stains and operator blocking condition.

shows sample graphical user interface (GUI) for the image processing based computer

vision system [33]. The red ellipse marks the quality and reliability status. Both

indication indices range from 0 to 1, and larger value means higher reliability. If

either indication index value is lower than its threshold, the computer vision results

will remain unchanged until the condition becomes normal again, and the threshold

values are adjusted according to the operational environments. Figure 4.4 shows

one-month computer vision interface level estimation results with sampling interval

of 10s. All data in this chapter has been normalized for proprietary reason. The

red dashed lines mark the computer vision results corresponding to the two sight
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glass transition regions. During transition regions, the camera is not able to capture

clear movement of the interface level, and the quality index falls below its threshold.

Then the computer vision freezes interface estimation until the quality index higher

than the threshold. The objective of this work is to provide reliable dynamic interface

level estimation during low-quality and low-reliability scenarios of the computer vision

system.

Figure 4.3: GUI for image processing based computer vision system for interface level
estimation.

4.3 Sensor Fusion Approach

4.3.1 Fusion Application with Quality and Reliability Status

In the PSC interface level estimation case study of Chapter 2, the computer vision

results are considered as equivalence to accurate measurements. However, if the com-

puter vision results are in a low-quality or low-reliability condition, these readings

should not be used as accurate measurements to be fused with other measurements.

The sensor fusion using measurements from other sensors is more reliable under ab-

normal scenarios. In this chapter, a simplified version of sensor fusion approaches

for the computer vision system is proposed for industrial application, where the ex-
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Figure 4.4: Sample one-month computer vision results.

isting distributed control system (DCS) limits how complex the algorithm can be.

Under normal conditions, reliable computer vision results are used as references to

adaptively calibrate the fusion parameters of other sensors using the recursive least

square (RLS) algorithm. Once the quality index or reliability index falls below their

thresholds, the latest trained fusion model parameters and bias remain unchanged

to continuously providing interface level estimation. The linear fusion model can be

written as:

yt = αtx1,t + βtx2,t + γtx3,t + biast (4.1)

where yt is the interface level measurement from computer vision system under reliable

conditions, x1,t, x2,t, and x3,t represent the measurements from DP cell, profiler, and

integrated sensor, respectively. The fusion parameters, αt, βt, γt, and the bias term,

biast, are updated whenever computer vision result is available and reliable. Similar
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to the Kalman filter algorithm, in the RLS algorithm, the estimated fusion parameters

are calibrated using the measurement residuals as [53, 54]:

θ̂t = θ̂t−1 +Kt(yt −XT
t θ̂t−1) (4.2)

where X =
[︂
x1 x2 x3 1

]︂T
, and θ =

[︂
α β γ bias

]︂T
. The Kalman gain matrix

Kt is calculated as:

Kt =
λ−1Pt−1Xt

1 + λ−1XT
t Pt−1Xt

(4.3)

where λ is forgetting factor with value between 0 and 1. Smaller forgetting factor will

make the model more sensitive to recent samples [55]. The estimation error covariance

is denoted as Pt, and it is updated as [56]:

Pt = λ−1Pt−1 − λ−1KtX
T
t Pt−1 (4.4)

In this study, update of fusion parameters is according to the computer vision qual-

ity and reliability status. Only when both reliability and quality indices are higher

than their respective threshold, the fusion parameters and biases are updated. The

updating rule is defined as:

θ̂t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ̂t−1, if quality index or reliability index < threshold

θ̂t−1 +Kt(yt −XT
t θ̂t−1), if quality index and reliability index ⩾ threshold

(4.5)

To test the reliability of the sensor fusion results, 10-hour predictions are made

using one-month industrial data. The correlations between results directly from com-

puter vision system under reliable conditions and estimations from sensor fusion and

individual sensors are presented in Table 4.1. The sensor fusion interface level esti-

mation has higher consistency with the computer vision results than each individual

sensor in terms of correlation. Figure 4.5 and 4.6 demonstrate sample 10-hour sensor

fusion results. The computer vision results, which use a camera to capture the sight
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glass visions, are plot as references, but they are not utilized to update fusion pa-

rameters during the 10-hour sensor fusion period. Red dashed ellipses mark the sight

glass transition regions, where the computer vision results remain unchanged. As

shown in Figure 4.5 and 4.6, the sensor fusion results do not suffer from this problem.

Therefore, the sensor fusion can address the low-quality and low-reliability problems

form computer vision system and preserve estimation accuracy. Usually, abnormal

conditions will not last for more than several hours, so the 10-hour estimation tests

prove the effectiveness of using sensor fusion in presence of abnormalities.

Table 4.1: Correlations between the computer vision results and estimations from
sensor fusion and individual sensors.

Sensors Correlation

DP cell 0.7445

Profiler 0.3428

Integrated sensor 0.4772

Sensor fusion 0.7977

4.3.2 Sensor Fusion Integration with Computer Vision Sys-
tem

In section 4.3.1, the sensor fusion results are proved to be robust and reliable to pro-

vide alternative estimates under abnormal scenarios. Then sensor fusion is integrated

with the computer vision interface level estimation system, which was developed pre-

viously, and the integrated system has been implemented in the industry. Previously,

the computer vision system uses quality and reliability indices to determine when

to freeze the interface level estimation. To handle the abnormalities and continu-

ously providing estimation values, a simplified version of sensor fusion approaches is

utilized, which uses the quality and reliability indices to determine when to update

fusion parameters, and thus provide dynamic interface level estimation when com-

puter vision results are unreliable. An improved GUI for industry is shown in Figure
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Figure 4.5: Sample 10-hour sensor fusion interface level estimation with corresponding
computer vision and DP cell results.

4.7. In this GUI, two boxes showing interface level readings are provided, and the

exact values are hided for proprietary reason. The background color of the computer

vision box changes from green to yellow under the low-quality conditions and changes

from green to red under low-reliability conditions. The red line is the computer vision

result, and the blue line indicates the sensor fusion result. The updated software has

been implemented in the industry for field tests, where both sensor fusion and com-

puter vision results are indicated on the GUI. In the computer vision system [33], a

camera is used to capture and transmit visions of the sight glasses to the application

computer, meanwhile a video processing application runs in the background to infer

the level from video frames. On the basis of the previous computer vision system im-

plementation architecture, measurements from DP cell, profiler, and integrated sensor

are inputs to the fusion algorithm through open protocol communication (OPC). The
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Figure 4.6: Sample 10-hour sensor fusion interface level estimation with corresponding
computer vision and DP cell results.

Figure 4.7: Sample sensor fusion and computer vision integrated system GUI.

integrated algorithm computes both the sensor fusion and computer vision results at

the application computer. Then two types of estimations are communicated through
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OPC to the DCS in industry. The video stream with two level indicators (red line

and blue line) is transmitted to a web server that can be visualized from the control

room. In the initial stage of implementation, only DP cell measurements are imported

through OPC. Thus, in this section, sensor fusion simulations using only industrial

DP cell measurements and computer vision results are reported, and the updated

implementation architecture of sensor fusion and computer vision integrated system

is shown in Figure 4.8. The computer vision results when they are reliable are used

to recursively calibrate the DP cell parameters. The following equation is applied to

provide interface level estimates:

yt = αtx1,t + biast (4.6)

The factory acceptance test (FAT) was performed in the CPC IRC lab at the Uni-

Figure 4.8: The updated implementation architecture of sensor fusion and computer vision
integrated system.

versity of Alberta using industrial data. The lab experimental set up is illustrated in
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Figure 4.9. The monitor is used to display real industrial sight glass vision videos.

The camera is utilized to capture video frames, which are sent to the application com-

puter, where the updated software calculates both original computer vision results

and sensor fusion estimation reults of the interface level.

Figure 4.9: Industrial environment simulation setup in the CPC IRC lab at the University
of Alberta.

Figure 4.10 shows a two-hour simulation with industrial data. The first subplot

shows the original computer vision results, DP cell measurements, and the sensor

fusion results. The second and third subplots indicate the corresponding quality and

reliability indices of computer vision estimation. The red dashed ellipses indicate the

low-quality condition, which is mainly due to interface crossing sight glasses. Over

this period, the quality index falls below the threshold for around half an hour, and

the computer vision freezes itself by holding on the last reading of the interface. In-

stead of holding the last reading as computer vision does, the sensor fusion approach

uses the latest calibrated fusion parameters as well as DP cell measurements to con-

tinuously providing interface level estimation. The corresponding video images are
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illustrated in Figure 4.11. From Figure 4.11a to 4.11c, the computer vision results

Figure 4.10: Simulation example with sight glass blocking and transition region problems.

keep as a constant, and background color of estimation value becomes yellow, in-

dicating low-quality condition. During this period, the sensor fusion takes over to

provide dynamic interface level estimation. In Figure 4.11d, the background color

of the computer vision results change back to green, indicating high quality index,

and the computer vision estimation becomes reliable again. Then the fusion param-

eters will start updating according to the reliable computer vision results. In Figure

4.10, the blue dashed ellipse indicates the low-reliability condition, which is caused

by maintenance activities. The corresponding scenarios are shown in Figure 4.12.

From Figure 4.12a to 4.12d, the operator was doing check and maintenance on the
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(a) (b)

(c) (d)

Figure 4.11: Sensor fusion and computer vision integrated system GUI displays under
the low-quality (transition region) condition.

PSC, and the sight glass visions are completely or partially blocked. In this case, the

camera fails to capture informative images and computer vision system is not able

to perform calculations normally. The background color of computer vision results

becomes red indicating low-reliability condition and the estimated interface level re-

mains unchanged. Over this period, the sensor fusion continuously providing reliable

estimation of interface level.

Another two-hour industrial environment simulation, which corresponds to the

sight glass stains, is performed. The result is shown in Figure 4.13, in which the red

dashed ellipse marks the low-quality period due to stains on the upper sight glass. The

corresponding video images are shown in Figure 4.14. From Figure 4.14a to 4.14d,
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(a) (b)

(c) (d)

Figure 4.12: Sensor fusion and computer vision integrated system GUI displays under
the low-reliability (operator maintenance) condition.

the interface level increases from the middle sight glass to the upper sight glass,

where the vision is partially blocked by stains. In this condition, the camera cannot

capture clear movement of the interface, and hence gives low-quality indication and

result in constant estimation value. However, the sensor fusion results move smoothly

across the two sight glasses without being affected by the stains and provide reliable

estimation of the interface level.

4.4 Conclusion

A sensor fusion strategy is proposed and integrated with the image processing based

computer vision system for froth-middlings interface level estimation. Under normal

71



Figure 4.13: Simulation example with sight glass stains.

conditions, the reliable computer vision results are used as references to recursively

calibrate the fusion parameters of other sensors. Under abnormal scenarios, instead

of freezing interface level estimation, the latest calibrated fusion parameters are used

to provide reliable interface level estimation results. Through a number of prediction

tests, the sensor fusion results are demonstrated to be reliable alternative estimates in

abnormal conditions of computer vision system. The FAT concludes that the sensor

fusion and computer vision integrated system is able to provide more robust and

reliable interface level estimation.
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(a) (b)

(c) (d)

Figure 4.14: Sensor fusion and computer vision integrated system GUI displays under
the low-quality (stains) condition.
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Chapter 5

Conclusions

5.1 Summary of Thesis

In this thesis, multirate sensor data fusion problem in presence of model inaccuracies

and violations of noise assumption is considered. The DNEKF approach is proposed,

which utilizes two neural networks to compensate for inadequate process knowledge

through simultaneous state and parameter estimations. In the DNEKF, the neural

network outputs are used to improve state estimation and output predictions, while

the neural network parameters are trained through state vector augmentation. By

fusing frequent but less accurate measurements and infrequent but accurate measure-

ments, the DNEKF provides a multirate neural network parameter update strategy

to achieve more accurate sensor fusion results. Numerical examples and an industrial

case study prove that the DNEKF method is able to compensate for model deficien-

cies and deviations from noise assumption effectively and provide more reliable fusion

results.

Additionally, infrequent measurements are usually sampled irregularly and are

available after time-varying time delays. The EKF based parallel fusion that is utilized

in the DNEKF is no longer applicable due to measurement time delays. To address

irregularity and time-varying time delays while preserving fusion performance, the

DNEKF and SNEKF synchronization fusion approach is proposed. In this proposed

approach, the DNEKF algorithm is applied to regular frequent estimation to improve
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state and output predictions, and the SNEKF is applied to irregular infrequent estima-

tion. The two estimates are then fused in the fusion center when irregular infrequent

measurements become available. It is worth noticing that the proposed method does

not require to know the delay time in advance. Numerical examples and an industrial

case study demonstrate that the proposed synchronization fusion approach provides

more reliable state estimation at a frequent sampling rate in presence of model errors,

violations of noise assumption, and delayed infrequent measurements.

The froth-middlings interface level of PSC is a critical quality variable to oil sands

extraction operation and can be measured in several ways. Among them, the com-

puter vision system, which uses a camera to track interface level through sight glass

visions, is considered the most accurate. However, abnormalities such as sight glass

vision blocking and sight glass transition regions will prevent the camera from cap-

turing the clear interface level. Under such conditions, the computer vision system

will hold the last estimate until clear interface level is tracked again. To solve this

problem, a simplified version of sensor fusion approaches, which recursively updates

fusion parameters using reliable computer vision results, is proposed for implemen-

tation. Industrial environment simulations demonstrate the advantages of the sensor

fusion and computer vision integrated system, and the implementation strategy is

proved to be effective through FAT.

5.2 Recommendations for Future Work

In this section, a few recommendations about directions that are worthy of future

investigation based on current results are listed.

• In Chapter 2, combination of the simple feed-forward neural network and the

EKF are made to improve multirate sensor fusion performance. In the future,

combinations of the recurrent neural network (RNN) and the convolutional

neural network (CNN) with other nonlinear filters such as the unscented Kalman
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filter (UKF) and the particle filter (PF) can also be used to further improve

fusion accuracy and robustness.

• In chapter 3, random time delays following uniform distributions are considered.

Delay with other distributions such as the Poisson distribution and the Dirichlet

distribution can be considered for general applications. In addition, the weights

and biases of employed neural networks for the DNEKF and the SNEKF are

estimated through state vector augmentations. Other parameter estimation

methods such as gradient decent can be applied to estimate the neural network

parameters as well.

• In chapter 4, the initial industrial implementation test is performed. In the

future, profiler and integrated sensor readings can also be imported to the in-

dustrial system through OPC to perform a more comprehensive sensor fusion.

Finally, after tests, the sensor fusion and computer vision results can be inte-

grated into one single estimate to give a more robust and accurate interface

level estimation.

76



Bibliography

[1] J. J. Wang, J. Wang, D. Sinclair, and L. Watts, “A neural network and kalman
filter hybrid approach for gps / ins integration,” 2006.

[2] S. C. Stubberud, R. N. Lobbia, and M. Owen, “An adaptive extended kalman
filter using artificial neural networks,” in Proceedings of 1995 34th IEEE Con-
ference on Decision and Control, vol. 2, 1995, 1852–1856 vol.2.

[3] S.-L. Sun and Z.-L. Deng, “Multi-sensor optimal information fusion kalman
filter,” Automatica, vol. 40, no. 6, pp. 1017–1023, 2004.

[4] C. B. Chang and K. P. Dunn, “Kalman filter compensation for a special class of
systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-
13, no. 6, pp. 700–706, 1977.

[5] J. Z. Sasiadek and P. Hartana, “Sensor data fusion using kalman filter,” in
Proceedings of the Third International Conference on Information Fusion, vol. 2,
2000, WED5/19–WED5/25 vol.2.

[6] M. Mombeini and H. Khaloozadeh, “State and parameter estimation of the
lorenz system in existence of colored noise,” arXiv preprint arXiv:1211.4228,
2012.

[7] M. A. Akram, P. Liu, M. O. Tahir, W. Ali, and Y. Wang, “A state optimization
model based on kalman filtering and robust estimation theory for fusion of multi-
source information in highly non-linear systems,” Sensors (Basel, Switzerland),
vol. 19, 2019.

[8] Shuli Sun, “Multi-sensor optimal information fusion kalman filter for discrete
multichannel arma signals,” in Proceedings of the 2003 IEEE International Sym-
posium on Intelligent Control, 2003, pp. 377–382.

[9] T. H. Xu, Y. P. Chen, and Q. X. Wang, “Kalman filter-based orbit determi-
nation with dynamic model compensation for a maneuvered geo satellite,” in
Advanced Materials Research, Trans Tech Publ, vol. 383, 2012, pp. 5626–5631.

[10] J. Sasiadek and P. Hartana, “Sensor data fusion using kalman filter,” vol. 2,
Aug. 2000, WED5/19 –WED5/25 vol.2, isbn: 2-7257-0000-0. doi: 10 .1109/
IFIC.2000.859866.

[11] K. Lee and E. N. Johnson, “State estimation using gaussian process regression
for colored noise systems,” in 2017 IEEE Aerospace Conference, IEEE, 2017,
pp. 1–8.

77

https://doi.org/10.1109/IFIC.2000.859866
https://doi.org/10.1109/IFIC.2000.859866


[12] Y. Hao, A. Xu, X. Sui, and Y. Wang, “A modified extended kalman filter for
a two-antenna gps/ins vehicular navigation system,” Sensors, vol. 18, p. 3809,
Nov. 2018. doi: 10.3390/s18113809.

[13] M. Choi, R. Sakthivel, and W. K. Chung, “Neural network-aided extended
kalman filter for slam problem,” in Proceedings 2007 IEEE International Con-
ference on Robotics and Automation, 2007, pp. 1686–1690.

[14] M. W. Owen and A. R. Stubberud, “A neural extended kalman filter multi-
ple model tracker,” in Oceans 2003. Celebrating the Past Teaming Toward the
Future (IEEE Cat. No.03CH37492), vol. 4, 2003, 2111–2119 Vol.4.

[15] S. C. Stubberud and K. A. Kramer, “A 2-d intercept problem using the neural
extended kalman filter for tracking and linear predictions,” in Proceedings of the
Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST ’05.,
2005, pp. 367–372.

[16] K. A. Kramer, S. C. Stubberud, and J. A. Geremia, “Sensor calibration using
the neural extended kalman filter in a control loop,” pp. 19–24, 2007.

[17] S. C. Stubberud, K. A. Kramer, and J. A. Geremia, “Online sensor model-
ing using a neural kalman filter,” IEEE Transactions on Instrumentation and
Measurement, vol. 56, no. 4, pp. 1451–1458, 2007.

[18] Dong-Jun Lee and M. Tomizuka, “Multirate optimal state estimation with sen-
sor fusion,” in Proceedings of the 2003 American Control Conference, 2003.,
vol. 4, 2003, 2887–2892 vol.4.

[19] S. Safari, F. Shabani, and D. Simon, “Multirate multisensor data fusion for
linear systems using kalman filters and a neural network,” Aerospace Science
and Technology, vol. 39, pp. 465–471, 2014.

[20] M. K. Kalandros, L. Trailovic, L. Y. Pao, and Y. Bar-Shalom, “Tutorial on mul-
tisensor management and fusion algorithms for target tracking,” in Proceedings
of the 2004 American Control Conference, vol. 5, 2004, 4734–4748 vol.5.

[21] S. Canan, R. Akkaya, and S. Ergintav, “Extended kalman filter sensor fusion and
application to mobile robot,” in Proceedings of the IEEE 12th Signal Processing
and Communications Applications Conference, 2004., 2004, pp. 771–774.

[22] D. Simon, Optimal state estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. John Wiley & Sons, 2006.

[23] N. Shivashankarappa, S. Adiga, R. A. Avinash, and H. R. Janardhan, “Kalman
filter based multiple sensor data fusion in systems with time delayed state,”
in 2016 3rd International Conference on Signal Processing and Integrated Net-
works (SPIN), 2016, pp. 375–382.

[24] A. Gopalakrishnan, N. Kaisare, and S. Narasimhan, “Incorporating delayed
and infrequent measurements in extended kalman filter based nonlinear state
estimation,” Journal of Process Control, vol. 21, pp. 119–129, Jan. 2011. doi:
10.1016/j.jprocont.2010.10.013.

78

https://doi.org/10.3390/s18113809
https://doi.org/10.1016/j.jprocont.2010.10.013


[25] Y. Guo, Y. Zhao, and B. Huang, “Development of soft sensor by incorporating
the delayed infrequent and irregular measurements,” Journal of Process Control,
vol. 24, no. 11, pp. 1733–1739, 2014.

[26] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Computing
gradient vector and jacobian matrix in arbitrarily connected neural networks,”
IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3784–3790,
2008.

[27] I. Aizenberg and C. Moraga, “Multi-layered neural network based on multi-
valued neurons (mlmvn) and a backpropagation learning algorithm,” Jul. 2004.
doi: 10.17877/DE290R-8012.

[28] M. Nielsen, Neural networks and deep learning, 2019. [Online]. Available: http:
//neuralnetworksanddeeplearning.com/.

[29] D. L. Hartmann, Atm s 552 notes, 2014. [Online]. Available: https://atmos.
washington.edu/∼dennis/552 Notes ftp.html.

[30] Y Tu, J. O’Carroll, L. Kotlyar, B. Sparks, S Ng, K. Chung, and G Cuddy,
“Recovery of bitumen from oilsands: Gelation of ultra-fine clay in the primary
separation vessel,” Fuel, vol. 84, no. 6, pp. 653–660, 2005.

[31] B. Li, F. Xu, Z. Ren, and A. Espejo, “Extended abstract: Primary separation
vessel interface control,” in 2011 International Symposium on Advanced Control
of Industrial Processes (ADCONIP), 2011, pp. 262–264.

[32] P. Jampana, S. L. Shah, and R. Kadali, “Computer vision based interface level
control in separation cells,” Control Engineering Practice, vol. 18, no. 4, pp. 349–
357, 2010.

[33] A. Vicente, R. Raveendran, B. Huang, S. Sedghi, A. Narang, H. Jiang, and W.
Mitchell, “Computer vision system for froth-middlings interface level detection
in the primary separation vessels,” Computers Chemical Engineering, vol. 123,
Apr. 2019. doi: 10.1016/j.compchemeng.2019.01.017.

[34] J. Sansana, R. Rendall, Z. Wang, L. Chiang, and M. Reis, “Sensor fusion with
irregular sampling and varying measurement delays,” Industrial Engineering
Chemistry Research, Jan. 2020. doi: 10.1021/acs.iecr.9b05105.

[35] T. Shimada, K. Toda, and K. Nishida, “Real-time parallel architecture for sensor
fusion,” Journal of Parallel and Distributed Computing, vol. 15, no. 2, pp. 143–
152, 1992.

[36] Huimin Chen, T. Kirubarajan, and Y. Bar-Shalom, “Performance limits of
track-to-track fusion versus centralized estimation: Theory and application [sen-
sor fusion],” IEEE Transactions on Aerospace and Electronic Systems, vol. 39,
no. 2, pp. 386–400, 2003.

[37] K. H. Kim, “Development of track to track fusion algorithms,” in Proceedings
of 1994 American Control Conference - ACC ’94, vol. 1, 1994, 1037–1041 vol.1.

[38] X. Tian and Y. Bar-Shalom, “Track-to-track fusion architectures - a review,”
2012.

79

https://doi.org/10.17877/DE290R-8012
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://atmos.washington.edu/~dennis/552_Notes_ftp.html
https://atmos.washington.edu/~dennis/552_Notes_ftp.html
https://doi.org/10.1016/j.compchemeng.2019.01.017
https://doi.org/10.1021/acs.iecr.9b05105


[39] C. Harris and J. Gao, “Some remarks on kalman filters for the multisensor
fusion,” 191–201, Aug. 2001.

[40] M. Aeberhard, S. Schlichtharle, N. Kaempchen, and T. Bertram, “Track-to-
track fusion with asynchronous sensors using information matrix fusion for
surround environment perception,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 13, no. 4, pp. 1717–1726, 2012.

[41] Q. Xiangdong and W. Baoshu, “A modified adaptive track fusion approach,”
in Proceedings of the Fifth International Conference on Information Fusion.
FUSION 2002. (IEEE Cat.No.02EX5997), vol. 2, 2002, 1535–1541 vol.2.

[42] T. D. Larsen, N. A. Andersen, O. Ravn, and N. K. Poulsen, “Incorporation
of time delayed measurements in a discrete-time kalman filter,” in Proceedings
of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171),
vol. 4, 1998, 3972–3977 vol.4.

[43] R. Merwe and E. Wan, “Sigma-point kalman filters for probabilistic inference in
dynamic state-space models (ph.d. thesis),”OGI School of Science Engineering,
Oregon Health Science University, USA, pp. 192–206, Jun. 2003.

[44] A. Fatehi and B. Huang, “Kalman filtering approach to multi-rate information
fusion in the presence of irregular sampling rate and variable measurement
delay,” Journal of Process Control, vol. 53, pp. 15–25, 2017.

[45] Y. Zhu, J. Zhou, X. Shen, E. Song, and Y. Luo, Networked multisensor decision
and estimation fusion: based on advanced mathematical methods. CRC Press,
2012, pp. 191–209.

[46] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized structures for par-
allel kalman filtering,” IEEE Transactions on Automatic Control, vol. 33, no. 1,
pp. 88–94, 1988.

[47] Oil sands magazine, 2019. [Online]. Available: https://www.oilsandsmagazine.
com/news/2019/3/5/cenovus- bets - on- partial - upgrading- fractal - systems-
pipeline-constraints?rq=dilbit.

[48] J. Chea, A. Lehr, J. Stengel, M. Savelski, C. S. Slater, and K. Yenkie, “Evalua-
tion of solvent recovery options for economic feasibility through a superstructure-
based optimization framework,” Industrial Engineering Chemistry Research,
Mar. 2020. doi: 10.1021/acs.iecr.9b06725.

[49] Oil sands magazine, 2018. [Online]. Available: https://www.oilsandsmagazine.
com/technical/mining/extraction/psc-primary-separation-cell.

[50] R. T. Behrens and L. L. Scharf, “Signal processing applications of oblique
projection operators,” IEEE Transactions on Signal Processing, vol. 42, no. 6,
pp. 1413–1424, 1994.

[51] R. Szeliski, Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

80

https://www.oilsandsmagazine.com/news/2019/3/5/cenovus-bets-on-partial-upgrading-fractal-systems-pipeline-constraints?rq=dilbit
https://www.oilsandsmagazine.com/news/2019/3/5/cenovus-bets-on-partial-upgrading-fractal-systems-pipeline-constraints?rq=dilbit
https://www.oilsandsmagazine.com/news/2019/3/5/cenovus-bets-on-partial-upgrading-fractal-systems-pipeline-constraints?rq=dilbit
https://doi.org/10.1021/acs.iecr.9b06725
https://www.oilsandsmagazine.com/technical/mining/extraction/psc-primary-separation-cell
https://www.oilsandsmagazine.com/technical/mining/extraction/psc-primary-separation-cell


[52] K. J. Pithadiya, C. K. Modi, and J. D. Chauhan, “Comparison of optimal
edge detection algorithms for liquid level inspection in bottles,” in 2009 Second
International Conference on Emerging Trends in Engineering & Technology,
IEEE, 2009, pp. 447–452.

[53] T. F. Edgar, Recursive least squares parameter estimation for linear steady state
and dynamic models, 2010.

[54] J. Fox, Applied regression analysis and generalized linear models. Sage Publica-
tions, 2015.

[55] C. Paleologu, J. Benesty, and S. Ciochina, “A robust variable forgetting fac-
tor recursive least-squares algorithm for system identification,” IEEE Signal
Processing Letters, vol. 15, pp. 597–600, 2008.

[56] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control. Courier
Corporation, 2014.

81


	Introduction
	Motivation
	Thesis Outline and Contributions

	Multirate Sensor Data Fusion based on Dual Neural Extended Kalman Filter
	Introduction
	EKF based Parallel Sensor Fusion
	Problem Statement
	DNEKF Approach for Multirate Sensor Data Fusion
	DNEKF Procedure
	Model Compensation Neural Network Structure and Output Computation

	Case Studies
	Numerical Examples
	PSC Interface Level Estimation

	Conclusions

	Multirate Sensor Data Fusion in Presence of Delayed Irregular Measurements using Synchronized Neural Extended Kalman Filters
	Introduction
	Problem Statement
	DNEKF and SNEKF Synchronization Approach
	DNEKF and SNEKF Estimations 
	Fusion Procedure

	Case Studies
	Numerical Examples
	SRU Product Stream Concentration Estimation

	Conclusions

	Sensor Fusion and Computer Vision Integrated System for Primary Separation Cell Interface Level Estimation
	Introduction
	Image Processing based Computer Vision System and Problem Statement
	Sensor Fusion Approach
	Fusion Application with Quality and Reliability Status
	Sensor Fusion Integration with Computer Vision System

	Conclusion

	Conclusions
	Summary of Thesis
	Recommendations for Future Work

	Bibliography

