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Abstract

Monte Carlo methods are a simple, effective, and widely deployed way of approximating

integrals that prove too challenging for deterministic approaches. This thesis presents a

number of contributions to the field of adaptive Monte Carlo methods. That is, approaches

that automatically adjust the behaviour of the sampling algorithm to better suit the targeted

integrand. The first of such contributions is the introduction of a new method, antithetic

Markov chain sampling, which improves sampling efficiency through the use of simulated

Markov chains. These chains effectively guide the sampling toward more influential regions

of the integrand (modes). We demonstrate that this approach leads to unbiased estimators

and offers significant improvements over standard approaches on challenging multi-modal

integrands.

We next consider the complementary task of efficiently allocating computation between

a set of unbiased samplers through observations of their past performance. Here, we show

that this problem is equivalent to the well known stochastic multi-armed bandit problem

and, as a result, existing algorithms and theoretical guarantees transfer immediately which

gives rise to new results for the adaptive Monte Carlo setting. We then extend this frame-

work to cover an important practical condition, where each individual sampler (bandit arm)

may take a random amount of computation time to produce a sample. Here, we again show

that existing bandit algorithms can be applied through the use of a simple sampling trick,

and prove new results which bounding the regret for any such algorithm from above.

Lastly, we consider the task of combining a set of unbiased Monte Carlo estimators,

with unique variances and samples sizes, into a single estimator. We show that upper-

confidence approaches similar to those used in the multi-armed bandit literature lead to es-

timators that improve on existing solutions both theoretically and in practice. Interestingly,

each of these contributions may be applied in parallel and in complement to one another

to produce any number of highly adaptable, robust, and practical Monte Carlo integration

algorithms.
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Chapter 1

Introduction

“Anyone who considers arithmetical methods of producing random digits is, of

course, in a state of sin”

– John von Neumann

In this thesis we explore the computation of expected values, in particular through the

use of Monte Carlo methods. Specifically, given a random variable X ∈ X , distributed

according to a probability measure admitting the density function π, our interest surrounds

expectations expressed as:

Eπ [h(X)] :=

∫
h(x)π(x)dx, (1.1)

where h : X → R is a bounded measurable function assumed only to be evaluable at any

point in the domain. Although this formulation is mathematically concise and widespread

in its application, efficient computation of the solution remains a notoriously challenging

task.

Indeed, the above expectation appears in a number unique and interesting settings across

many disciplines in science and engineering. For instance, h might represent the price of

a financial option and π our uncertainty about the underlying asset. Or h might define the

payoff function for a high-stakes game of chance while π describes the likelihood of indi-

vidual games states. Alternatively, h may represent the local concentration of a particular

dissolved compound while π reflects the fluid dynamics for the entire solution. For any of

these settings efficient computation of the integral in Eq. (1.1) is likely a necessary step in

making consequential, and possibly time sensitive, decisions.

What typically makes the task of solving this integral so challenging is the fact that

the exact analytical forms of h and π are not often available. As a result, the symbolic

integration approaches from one’s calculus textbook cannot be applied. Ultimately, for most
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practical scenarios, approximating the solution numerically is the only viable approach.

Numerical integration techniques generally fall into one of two categories, which we will

refer to as quadrature methods and Monte Carlo methods. Importantly, we find the critical

distinction between these classes is not the use of randomization, but whether some form of

interpolation is attempted between evaluated points on the integrand.

The use of interpolation is a double-edged sword as it can offer enormous advantages for

problems with smoothly varying h and π in lower dimensions, but is challenging to apply to

non-smooth or higher dimensional integrands. At the very least, an interpolation approach

must evaluate the integrand at a minimum of 2d locations, where d is the dimensionality

of X . This exponential sample complexity limits the applicability of this approach when it

comes to larger and more impactful problems.

Monte Carlo integration approaches, on the other hand, approximate integrals by query-

ing the integrand at random, or quasi-random, locations and return a weighted empirical

sum (average) of these points. For instance, if we are able to efficiently collect n samples,

X1, ..., Xn, distributed according to π, the integral in Eq. (1.1) may then be approximated

the estimator

µ̂MC
n :=

1

n

n∑
i=1

h(Xi).

Letting µ := E[h(X)] we observe that the above estimator is unbiased: E
[
µ̂MC
n

]
= µ and

has a mean squared error (MSE) given by E
[(
µ̂MC
n − µ

)2]
= 1

nV(h(X)).

This straightforward analysis establishes a convergence rate of O(n−1) which, criti-

cally, is independent of the dimensionality of the integral. In this way, the Monte Carlo

integration method can be seen to break the infamous curse of dimensionality that plagues

quadrature methods; at least in theory. Despite this powerful theoretical result, naive Monte

Carlo implementations remain highly inefficient for moderately complex problems. Fur-

ther, there is no single Monte Carlo approach that can be applied effectively across dis-

ciplines and problems. For this reason, a large variety of unique approaches have been

introduced in the literature each exploiting specific characteristics of the problem at hand.

In this thesis we explore Monte Carlo methods that, in some form or another, alter their

sampling behaviour automatically depending on the properties of the supplied integral with

the intention of improving the accuracy of the final estimate. In this way, we lessen the

requirement that practitioners understand, implement, and experiment with a large number

of specialized techniques for any new problem.
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1.1 Contributions

This thesis includes a number of interrelated and novel contributions to the field of adaptive

Monte Carlo methods organized into four main chapters summarized below.

Formulation of the Antithetic Markov Chain Method

In Chapter 3 we present an extended treatment of the antithetic Markov chain sampling

(AMCS) method originally presented in Neufeld et al. (2015). This approach is a combi-

nation of sequential Monte Carlo sampling methods and the method of antithetic variates.

More simply, AMCS reduces approximation error by effectively searching out regions of

the integrand that exhibit large changes in magnitude (peaks) through the use of simulated

Markov chains. By averaging within these regions, much of the variability of the inte-

grand can be removed, resulting in a reduced approximation error of the final estimate. The

AMCS estimator is shown to be unbiased (Theorem 3.1) and expressions for the variance

and sample error, considering the computational footprint, are derived. Finally, we provide

explicit parameterizations for AMCS (Markov kernels and stopping rules) and empirically

demonstrate their utility on non-trivial machine learning tasks that challenge existing meth-

ods.

Formulation of the Learning to Select Monte Carlo Samplers Framework

Chapter 4 introduces a new adaptive Monte Carlo framework in which a decision making

agent is presented with a set of K unbiased Monte Carlo samplers for the same statistic

(µ) and tasked with choosing which samplers to draw samples from in order to compute µ

most efficiently; this work was originally published in Neufeld et al. (2014). We formulate

an expression for the MSE of any given allocation policy for this sequential allocation task

and define a regret formula expressing this error in relation to the optimal policy. Under this

notion of regret, we prove this problem is equivalent to the classic stochastic multi-armed

bandit problem (Theorem 4.1 and Theorem 4.2). As a direct result of this reduction, we

are able to show that the regret upper bounds for many of the standard bandit approaches

apply immediately to this setting (Corollary 4.1), in addition to the classic Lai-Robbins

lower bound (Theorem 4.3). Lastly, we demonstrate that the existing bandit algorithms

can significantly outperform existing population-based adaptive Monte Carlo methods in

standard adaptive importance sampling tasks.
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Extensions to Monte Carlo Samplers With Non-Uniform Costs

In the adaptive Monte Carlo framework detailed in Chapter 4 it is assumed that each of the

underlying samplers require the same amount of computation to produce a single sample.

However, for many of the more sophisticated Monte Carlo techniques (such as AMCS) the

per-sample computational cost can be unknown, stochastic, or vary with the parameteriza-

tion of the method. In order to apply the bandit-based adaptive sampling routines to these

more sophisticated samplers we extend the previous formulation to account for non-uniform

(stochastic) costs in Chapter 5. Ultimately, under mild technical assumptions, we show that

through a straightforward sampling trick an Õ(
√
t) regret is achievable by standard bandit

approaches in this setting (Theorem 5.1). We go on to show that these techniques can be

used to develop an adaptive-AMCS variant that can outperform any fixed AMCS variant on

the same suite of problems used in Chapter 3. We do, however, uncover a interesting nega-

tive result (linear regret) which can occur when there is more than one optimal sampler; we

show that this problem will regularly surface when selecting between standard sequential

Monte Carlo sampling algorithms. We go on to show that this poor performance stems from

the simplifying decision to use the empirical (unweighted) average of the sampled values

as the final estimate.

An Upper-Confidence Approach to the Weighted Estimation of a Common Mean

In Chapter 6 we consider the general task of constructing a weighting for a convex com-

bination of unbiased estimators in order to produce a single estimate that minimizes the

MSE. This formulation is applicable to a number of practical settings but is uniquely useful

in addressing the issues uncovered in the non-uniform cost setting mentioned above. We

first demonstrate that by weighting each estimator inversely proportional to its variance, one

recovers the unique minimum variance unbiased estimator as well as a minimax estimator

(Theorem 6.1). Using this approach as an optimal comparison we construct a regret for-

mulation for this task and introduce the UCB-W estimator which uses an upper-confidence

estimate of the sample variance to construct a weighting. We go on to show that this es-

timator achieves a Õ(
√
t) regret in the case where samples are selected deterministically

(Theorem 6.2) or according to a random stopping rule (Theorem 6.3); thus generalizing the

regret bounds proved in Chapter 5 to cover the edge-cases that resulted in linear regret. We

evaluate the proposed UCB-W estimator and show that it offers, frankly, massive savings

in both the uniform cost and non-uniform cost bandit settings and by far out-performs the

existing Graybill-Deal estimator which weights each estimator using its sample variance.
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Chapter 2

Background

“Monte Carlo is an extremely bad method; it should be used only when all alter-

native methods are worse”

– Alan D. Sokal

Monte Carlo integration approches represent a uniquely powerful class of algorithm yet,

at the same time, the algorithms are typically straightforward to understand, implement, and

extend. Indeed, the ease at which problem-specific extensions are constructed has resulted

in a number of unique Monte Carlo algorithms represented in the literature. In this chapter,

we provide a high level overview of the more popular approaches from which many of the

more sophisticated methods are based.

An important precursor to understanding the tradeoffs between different Monte Carlo

integration approaches is to identify a means by which to assess the quality of a given

estimator. For any distribution Π ∈ P belonging to the probability triple (X ,P,B), pa-

rameter space Θ, and a parameter of interest µ : P → Θ, we define an estimator as a

mapping µ̂ : X n → Θ. Note that for the purposes of this thesis we will consider the

sample space to be X = Rd, B to be the Borel σ-algebra, and P to be the Lebesgue

measure unless otherwise specified. Additionally, in the sequel we make use of the short-

hand µ̂n := µ̂n(X1, ..., Xn), with (X1, ..., Xn) ∼ Π, and µ := µ(Π) when the argu-

ments are clear from the available context. In this notation, we can evaluate the qual-

ity of an estimator using a loss function L(µ̂n, µ) and define the risk of the estimator as

the expected loss: R(µ̂n, µ) := E[L(µ̂n, µ)]. While there are a variety of different loss

functions and parameter spaces considered in the literature, in this thesis we focus on the

most common setting where Θ = R and L is the L2 loss function: L(x, y) = (x − y)2.

Here, the risk reduces to the well known mean squared error (MSE) measure, denoted as

MSE(µ̂n, µ) := E
[
(µ̂n − µ)2

]
.
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An important property of the MSE is the bias-variance decomposition MSE(µ̂n) =

E[µ̂n − µ]2+E
[
(µ̂n − E[µ̂n])2

]
=: bias(µ̂n, µ)2+V(µ̂n), which gives rise to the common

convergence measures used in the evaluation of any Monte Carlo method, unbiasedness,

when E[µn] = µ, and consistency, when limn→∞ P(|µn − µ| ≥ ε) = 0. In the context

of Monte Carlo samplers, unbiasedness is generally considered the “stronger” of the two

conditions as it often implies the latter. For instance, in the usual setting, where (X1, ..., Xn)

are i.i.d. distributed, the basic MC estimator µMC
n is unbiased and has MSE given by

1
nV(X) = O(n−1), which can be used (together with Chebyshev’s inequality) to establish

consistency.

2.1 Variance Reduction

Many of the more popular Monte Carlo procedures use a sequence of i.i.d. samples and

lead to unbiased estimators. Therefore, techniques for reducing the approximation error

typically involve reducing the variance of individual samples and, as a result, many of the

classic computation-saving Monte Carlo techniques are referred to as variance reduction

methods. In this section we review some of these techniques as they are the foundation for

many of the more powerful approaches we will later consider.

2.1.1 Importance Sampling

In many cases approximation of the integral in Eq. (1.1) by directly sampling from the tar-

get distribution (π) is computationally infeasible. This occurs either due to the fact that

generating samples is too expensive or because π is poorly matched to h and individual

samples are highly variable. The latter case typically results when π assigns low probabil-

ity to regions where the target function h has large magnitude. Importance sampling is one

of the standard ways of addressing these issues. The approach is straightforward; one gen-

erates samples from a proposal distribution π0 that is inexpensive to simulate and, ideally,

assigns high likelihood to the high magnitude or important regions of h. The sampling bias

introduced by this change of measure is removed through the application of an importance

weight. Specifically, given a sequence of n i.i.d. random variables (X1, ..., Xn) distributed

according to π0, the importance sampling estimator is given by

µ̂ISn :=
1

n

n∑
i=1

w(Xi)h(Xi), (2.1)

where w(x) = π(x)
π0(x) defines the importance weighting function.
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The above estimator is unbiased and consistent provided that supp(π) ⊆ supp(π0)

and Vπ0 (w(X)) < ∞. Additionally, the method will result in a lower MSE whenever

Vπ0 (w(X)h(X)) < Vπ (h(X)), indeed for non-negative h when the proposal density is

proportional to the integrand, π0 = π∗ := hπ/
∫
h(x)π(x)dx, we have Vπ0 (w(X)h(X)) =

0. Unfortunately, using this proposal is not possible in practice since the necessary normal-

izing constant for π∗ is equal to the original unknown (µ). Though, this identity does give

the practitioner an indication as to how to select an effective proposal.

In some cases, the target distribution π can be evaluated only up to an unknown nor-

malizing constant ζ, which often must be approximated in order to get an accurate estimate

of µ. Also, in some settings the ζ quantity is of independent interest, for example the clas-

sic task of Bayesian model comparison (see Robert (2010)). An interesting advantage of

importance sampling is that it can be used to approximate both µ and ζ from the same set

of samples. Specifically, if we denote the un-normalized density as π̂ := π
ζ we can use the

unbiased estimator

ζ̂ISn :=
1

n

n∑
i=1

w(Xi), (2.2)

with w(x) = π̂(x)
π0(x) . Using this estimate we can then approximate µ with the weighted

importance sampling estimator

µ̂WIS
n :=

1
n

∑n
i=1w(Xi)h(Xi)

ζ̂ISn
. (2.3)

As a result of the division by the random quantity ζ̂, this estimator cannot be said to be

unbiased. However, the bias can be shown to decrease at a rate of O(n−1) (Powell and

Swann, 1966). Also, even in cases where the normalizing constant is known, the weighted

importance sampling estimator will often outperform the unbiased version.

A primary challenge with deploying importance sampling is constructing proposals that

assign sufficient density to the tail regions of π. If, for example, the tails of the proposal

converge to zero faster than the target distribution, then the importance weights will diverge

and V(w(X)) will not be finite. Moreover, because these problematic regions are never

sampled in practice, it is effectively impossible to diagnose the problem numerically; the

unsuspecting practitioner will observe consistent, steady, convergence to the same incorrect

estimate even between multiple runs. To address this difficulty, it is common to employ

a so-called defensive sampling strategy where a heavy-tailed distribution, such as a mul-

tivariate Student density, is added to π0 with a small mixing coefficient (see Robert and

Casella (2005)). However, while this approach generally ensures the variance will be finite,
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in practice it often does little to ensure the variance will not be prohibitively high. Conse-

quently, engineering proposal densities and numerically diagnosing the convergence of an

IS estimate, especially in high dimensions, remains a serious practical concern. It is worth

noting also that this problem is often exacerbated by attempts to adapt the proposal to the

integrand using previously sampled points, as we explain in Section 2.2.

2.1.2 Antithetic Variates

One of the most straightforward variance reduction techniques is the method of antithetic

variates. The approach works in the following way: suppose we have two sets of correlated

random variables, (X1, ..., Xn) and (Y1, ..., Ym), such that E[X] = E[Y ] = µ, Xi ⊥⊥ Xj ,

Yi ⊥⊥ Yj , and Xi��⊥⊥ Yi then the estimator

µ̂AVn :=
1

n

n∑
i=1

Xi + Yi
2

is unbiased and has variance given by V
(
µ̂AVn

)
= 1

4nV(X + Y ) = 1
4n(V(X) + V(Y ) +

Cov(X,Y )), where it is understood that X ≡ Xi and Y ≡ Yi for any i. This implies that

the estimator µ̂AVn will offer a reduction over the vanilla Monte Carlo estimator (using 2n

samples) whenever X and Y are negatively correlated.

For example, suppose thatX ∼ Uniform(a, b) and that h is a monotonically increasing

or decreasing function. If we define the antithetic variate as Y = b + a − X it is clear

that E[h(Y )] = E[h(X)] = µ and since h a monotonic function, it is straightforward to

establish Cov(h(X), h(Y )) < 0. However, as with importance sampling, practical sce-

narios where the practitioner has enough a priori knowledge to design variance-reducing

antithetic transforms are not as common as one might like.

2.1.3 Stratified Sampling

Stratified sampling is a variance reduction technique that is used frequently in classic statis-

tics settings such as opinion polling or population estimation. In such cases, the sample

population is often endowed with a natural partition based on characteristics such age, sex,

ethnicity, etc. The general idea of this approach is to approximate an average for each of the

subsets separately, paying more attention to the difficult ones, and combine these estimates

in proportion to their respective sizes.

Suppose our sample space X decomposes into a partition (X1, ...,Xk) that permits sep-
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arate Monte Carlo approximations of the integral on each domain; that is,∫
X
h(x)π(x)dx =

k∑
i=1

λi

∫
Xi
h(x)πi(x) =

k∑
i=1

λiµi,

where λi gives the probability of each region (strata) under π and πi denotes the density

proportional to π within this region. As with π, it is required that each πi permit efficient

point-wise evaluation. If we let µ̂i,n denote an unbiased Monte Carlo estimator for strata µi

at time1 n then the stratified sampling estimator is given by

µ̂SSn =
k∑
i=1

λiµ̂i,n.

This estimator is unbiased and, assuming each estimator uses ni independent samples

(chosen deterministically with n =
∑k

i=1 ni) with variance σ2
i , has a variance given by

V
(
µ̂SSn

)
=
∑k

i=1
λ2i σ

2
i

ni
. Assuming the variances are known a priori we can minimize the

error by selecting the sample sizes for each strata so that they are each approximated uni-

formly well. In particular, variance is minimized with the parameterization n∗i ∝ λiσi

which gives

V
(
µ̂SS

∗
n

)
:=

(∑k
i=1 λiσi

)2

n
.

If all the variances are equal the above estimator has the same variance as the vanilla Monte

Carlo estimate however if the variances across the strata are unequal the estimator can con-

siderably more efficient. One practical challenge, however, is that an obvious partitioning

(stratification) of the sample space is not always apparent, or the practitioner may not have

a good understanding of the variability within each strata, which would permit effective

sample allocations. Though, in some cases it may be worthwhile to tune these paramaters

automatically while sampling; in Section 2.5 we review adaptive stratified sampling ap-

proaches which do just that.

2.2 Adaptive Importance Sampling

In this section we review ways in which an importance sampling proposal can be configured

automatically from sampled data, as opposed to being fixed by the practitioner ahead of

time.

In settings where the target distribution is unimodal and twice differentiable, a straight-

forward approach is to fit the proposal density using moment matching around the global
1Here “time” refers to the cumulative number of samples drawn for all strata.
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maximum of the target density: x∗ := arg maxx log(π(x)). Specifically, by defining the

proposal density as a convenient parametric form, such as a multivariate normal or Stu-

dent density, it can be fit to a single point by setting the mean equal to x∗ and covariance

equal to the inverse of the Hessian matrix of log(π(x)) at x∗ (alternatively known as the ob-

served Fisher information matrix I). In the case where π is well represented by the chosen

parametric form this method produces, very quickly, a near optimal importance sampling

distribution. Though this approach is obviously applicable to restricted class of integration

problems, for some “big data” Bayesian inference tasks, this approach can be motivated by

the Bayesian central limit theorem. This theorem essentially states that the posterior distri-

bution converges to N (x∗, I) as the number of observations increases (see Sec. 4, Ghosh

et al. (2006)). Coupled with data efficient optimization routines, such as stochastic gradient

descent, this approach may come in useful in a number of contexts.

For more complex distributions, particularly those with multiple local modes, extending

this approach raises the question of how much computational effort should be spent search-

ing out various modes versus actual sampling. A common way to address this tradeoff is

to continually re-optimize the proposal density after drawing a new sample, as is done in

the parametric adaptive importance sampling (PAIS) scheme of Oh and Berger (1993). In

particular, this PAIS approach uses a mixture of k multivariate Student densities with fixed

degree of freedom ν and parameters λ = {(ci, µi,Σi)}ki=1 for a proposal density, that is,

πλ(x) :=

k∑
i=1

citν(x;µi,Σi),

where ci ≥ 0 and
∑

i ci = 1. The objective is to determine the parameterization (λ) that

minimizes the variance of the importance weights Vπλ (w(X)), or equivalently Eπλ
[
w(X)2

]
,

on past data. This is done in incremental fashion where at each time-step t the algorithm

draws a new sample, Xt ∼ πλt , then solves the optimization

λt+1 = arg min
λ

t∑
j=0

(
π(Xj)

πλ(Xj)

)2 πλ(Xj)

πλj (Xj)
. (2.4)

The final approximation, then, is given by (2.1) or (2.2) withw(x) = π(x)/πλt(x). This ob-

jective function, however, can make it difficult to formulate efficient optimization routines

(even in the case k = 1). The efficient importance sampling (EIS) approach of Richard and

Zhang (2007) addresses this concern through the use of an alternative heuristic, specifically,

the pseudo-divergence

d(π, πλ;α, λ) :=

∫
(log(π(x))− α− log(πλ(x)))2π(x)dx.
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As with the previous approach, d can be approximated with an IS estimate using previous

samples. This results in the optimization

λt+1 = arg min
λ

min
α

t∑
j=0

(log(π(Xj))− α− log(πλ(Xj)))
2 π(Xj)

πλj (Xj)
.

This objective can be significantly easier to work with for some parameterizations of πλ.

In particular, if πλ is a k = 1 mixture of exponential family distributions, the optimization

reduces to a least squares problem. In this way, the EIS approach is similar to the method of

variational Bayes: a deterministic approximation approach where one attempts to minimize

the Kullback-Leibler divergence between the target and a parametric density (see Bishop

et al. (2006)).

An important limitation inherent to PAIS approaches is that the target density is rarely

well approximated by a single exponential family distribution. As a result, the use a mixture

distribution (setting k > 1) is common. However, in this setting fitting the proposal is

similar to solving the (NP-hard) k-means clustering problem at each time-step. Even if this

optimization could be solved efficiently, it is not always obvious a priori what setting of k,

or what underlying parametric distributions, might lead to a suitable approximation of the

integrand.

2.2.1 Population Monte Carlo

The population Monte Carlo (PMC) algorithm (Cappe et al., 2004) is a clever PAIS variant

that partially addresses both the issues of solving a non-convex optimization and specifying

the number of modes (k) manually. These problems are side-stepped through the use of

kernel density estimation on the target distribution, as opposed to a directly optimizing a

parametric form. Specifically, a fixed Markov transition kernel kδ(x, x′) (defined below)

parameterized by a bandwidth parameter δ is defined.

Definition 2.1 (Markov kernel). A Markov kernel k on the probability triple (X ,P,B) is a

function K : X × B → R having the following properties.

i. for each fixed A ∈ B the function x 7→ k(x,A) is Borel measurable.

ii. for each fixed x ∈ X the function A 7→ k(x,A) is a probability measure.

Additionally as is common in the Monte Carlo literature, for any x, x′ ∈ X we let

k(x, x′) denotes the conditional density of the transition from x to x′; that is, for anyA ∈ B

and we have P(X ∈ A|x) =
∫
A k(x, x′)dx′.
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The PMC approach proceeds as follows: given an initial population of samples (X
(0)
1 , ...

, X
(0)
n )

iid∼ π0(·), the PMC proposal density at time-step t+ 1 is parameterized as a mixture

density:

πt+1(x) :=
1

Z

(
β

n∑
i=1

wt(X
(t)
i )kδ(x,X

(t)
i ) + (1− β)tν(x;λ,Σ)

)
. (2.5)

Where,wt(x) = π(x)
πt(x) , tν is a defensive sampling Student distribution with fixed parameters

(ν, λ,Σ) and mixing coefficient β ∈ [0, 1], and Z is a known normalizing constant. After

executing the PMC procedure is outlined in Algorithm 1 and collecting the set of samples

{X(0:m−1)
1:n }, one may use the PMC estimator given by

µ̂n,mPMC :=
1

nm

m−1∑
t=0

n∑
i=1

wt(X
(t)
i )h(X

(t)
i ).

Algorithm 1 Population Monte Carlo (PMC)
1: for t ∈ {0, ...,m− 1}
2: for i ∈ {1, ..., n}
3: Sample X(t)

i ∼ πt(·);

4: Compute wt(X
(t)
i ) =

π(X
(t)
i )

πt(X
(t)
i )

;

5: end for
6: end for

Despite the fact that the samples drawn at each successive iteration are correlated, the

PMC estimator can be shown to be unbiased through repeated applications of the tower rule.

Critically, however, this statistical dependence prevents one from achieving consistency as

m → ∞. Instead in order to provide any theoretical guarantees one must rely on the

fact that this estimate converges at a O(n−1) rate. That is, the size of the population –

which must be held in memory – must tend toward infinity to achieve convergence, which

obviously presents practical challenges.

The PMC algorithm may also employ a resampling procedure where at each time-step

t the population, (X
(t)
0 , ..., X

(t)
n ), is resampled in proportion to the weights, (wt(X

(t)
0 ), ...,

wt(X
(t)
n )). Specifically, given a set of resampled points, denoted as (X̄

(t)
0 , ..., X̄

(t)
n ), the

proposal is defined as

πt+1(x) :=
1

Z

(
β

N∑
i=1

kδ(x, X̄
(t)
i ) + (1− β)tν(x;λ,Σ)

)
. (2.6)

In this light, the PMC algorithm is very similar to sequential Monte Carlo (SMC) ap-

proaches (see Doucet et al. (2001)), which often benefit tremendously from resampling.
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However similar, these methods differ in one critical aspect: the importance weight in

a SMC implementation at time t is given as a product of previous importance weights,

wt(X
(t)
i ) =

∏t
k=0

π(X
(k)
i )

πk(X
(k)
i )

);2 while the weights in the PMC sampler do not involve prod-

ucts. Consequently, the resampling procedure offers far less practical advantage in the PMC

setting than the SMC setting. In fact, one can observe that the sampling from the proposal

(2.5) is procedurally identical to sampling from (2.6), that is to say, the resampling step is

already implicit.

The sequential nature of the PMC algorithm permits an additional form of adaptation

where the kernel bandwidth δ can be tuned alongside the proposal. This is the approach

taken by the d-kernel population Monte Carlo algorithm (Douc et al., 2007a). This adapta-

tion is achieved by favouring the kernels, out of a discrete set, which have historically lead

to higher importance weights. Given a set of kernels, (k1, ..., kl), (having different band-

width parameters, for example), we redefine the kernel density function used in (2.5) as a

mixture of densities

k(t)(x, x′) :=
l∑

j=1

α
(t)
j∑
i α

(t)
i

kj(x, x
′).

Where the mixture coefficients (α
(t)
1 , ..., α

(t)
l ) are initialized uniformly and subsequently

set proportional to the sum of all past sampling weights, that is:

α
(t+1)
j := α

(t)
j +

n∑
i=1

wt(X
(t)
i )I{k(t)

i = kj}.

Where the indicator I{k(t)
i = kj} evaluates to 1 if density kj is used to generate sample

X
(t)
i . While the d-kernel PMC method considers only a discrete set of kernels, these ideas

can be combined with the optimization routines used in PAIS. This is done in order to adapt

both the mixture coefficients as well as the parameters for each kernel (bandwidth), as is

done in the PMC-E algoritm of Cappé et al. (2008). Both these adaptive approaches can be

shown to asymptotically converge to a proposal density (as n →∞) within the parametric

class that minimizes the KL-divergence with the target distribution.

It is important to note that when choosing the value for m the practitioner must be cau-

tious of the fact that the accuracy of the kernel density estimate will begin to diminish as

the number of time steps increases, regardless of whether resampling is used. This degrada-

tion is different, but not entirely unlike, the particle degeneracy problem often observed in

sequential Monte Carlo (SMC) settings. Consequently, the authors recommend setting this
2We review the SMC framework in Section 2.4
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parameter to a rather small value, somewhere between 5-10, although this does somewhat

limit the adaptability of the algorithm.

In either form, the PMC algorithm is an effective and elegant way of fitting the proposal

density without requiring a non-convex optimization. That said, in practice, PMC improves

on standard PAIS only to the extent that kernel density estimation is easier than the k-

means clustering. There are certainly domains where this is the case, but in general both of

these tasks are computationally intractable and, consequently, both methods suffer from the

various effects of local minima.

2.2.2 Discussion

An interesting aspect of the adaptive importance sampling setting is the fact that jointly opti-

mizing the proposal, and integrating the function, immediately gives rise to an exploration-

exploitation tradeoff. In particular, if a given algorithm converges too quickly on any mode

of π, it will no longer sample other parts of the domain. It will therefore not be able to

correct for the improper fit. This, coupled with the fact that very-high variance IS sam-

plers are difficult to detect numerically, can result in highly unstable behaviour. The stan-

dard approach to address this is to mix the proposal with a defensive sampling distribution,

though this heavy-handed approach ultimately results in unnecessary exploration and pre-

vents asymptotic convergence to the optimal proposal. Developing methods for addressing

this tradeoff remains an active area of research and the methods presented in Chapter 4 can

be seen, in part, as early steps in this area.

Perhaps a more fundamental observation to be made here is that adaptive importance

sampling strategies can be highly advantageous for simple integration tasks (i.e. small num-

ber of modes/dimensions) but often fail dramatically when presented with more complex

problems. The unfortunate reality is that the core ideas of such global fitting approaches are

somewhat at odds with the initial motivations for Monte Carlo integration. That is, Monte

Carlo methods are often deployed as a last resort in complex domains where alternative

approaches do not perform well. It is no coincidence that these problems are, overwhelm-

ingly, those where the intergrand is not easily approximated with convenient parametric, or

semi-parametric, forms.

The main alternative to these global fitting approaches are what we refer to as local move

methods which exploit local structure through the use of simulated Markov chains. At a high

level this strategy forms a basis for both the popular Markov chain Monte Carlo approach

and the sequential Monte Carlo approach, which we review in the following sections.
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2.3 Markov Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) approach is possibly the most recognized and

widely used Monte Carlo approach. As a result of its fundamentally different sampling me-

chanics, the method has its own rich body of literature which includes a number of unique

strategies having a wide variety of applications. Most of this work falls outside our scope

and in this section we will only touch on some key aspects of MCMC as they relate to

the methods we examine in this thesis. For a broader survey on the MCMC approach we

refer to the seminal review given by Neal (1993) as well as the textbook treatments of Liu

(2001) and Robert and Casella (2005). Additionally, we note that some of the more cutting

edge developments in MCMC include methods for exploiting gradient information on the

target density, such as Langevin-adjusted and Hamiltonian MCMC as summarized by Neal

(2011). Additionally, notable extensions to this work include methods for exploiting Rie-

mann geometry (Girolami and Calderhead, 2011) and mini-batch methods for “big data”

applications (Ahn et al., 2012; Bardenet et al., 2014). Additionally, adaptive MCMC meth-

ods, where the parameters of the simulation are tuned as a function of past samples, are

now fairly well understood and have lead to a number of practical advancements (Andrieu

et al., 2006; Roberts and Rosenthal, 2009).

In general, MCMC methods can be used to generate samples from any distribution,

even if known only up to a normalizing constant, through the simulation of a Markov chain

having a stationary distribution equal to this target. Much of the popularity of this approach

can be attributed to the ease at which such a Markov chain may be constructed. In particular,

one must ensure that the chain satisfies condition of detailed balance:

T (x, x′)π(x) = T (x′, x)π(x′),

were T is a Markov kernel that defines the simulated chain. Additionally, it must be ensured

that the chain is ergodic, which implies that the chain will always result in the same sta-

tionary distribution regardless of starting point; in a way, this condition is analogous to the

support conditions in importance sampling. If these two conditions are met, then samples

generated from this simulation are guaranteed to be distributed (asymptotically) according

to π.

The most basic MCMC construction is the Metropolis-Hastings (MH) sampler which

uses the transition kernel T (x, x′) = k(x, x′)α(x, x′) where k(x, x′) is a fixed Markov

kernel (the proposal) and α(x, x′) is an acceptance function which gives the probability of
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accepting or rejecting a given move so as to satisfy detailed balance, that is

α(x, x′) := min

(
1,
π(x′)k(x′, x)

π(x)k(x, x′)

)
.

The algorithm proceeds as follows, given the current point Xt, we propose point X ′t ∼

k(Xt, ·), and sample Yt ∼ Uniform(0, 1) we then let

Xt+1 = I{Yt < α(Xt, X
′
t)}X ′t + I{Yt ≥ α(Xt, X

′
t)}Xt .

Note that the proposal k is unlike an importance sampling proposal in that it does not have

full support over π and instead, as with PMC, has a common starting point that is a Gaussian

kernel of specified width. Approximations of (1.1) may then be computed by simulating the

above Markov chain, starting from an arbitrary start point X0, for some specified number

of time-steps, n, and evaluating the empirical sum

µ̂nMCMC :=
1

n− nB

n∑
i=nB

h(Xi). (2.7)

Here nB is the number of samples required to surpass the burn-in period and should be

large enough to ensure the XnB is independent of X0. As one can imagine, in settings

where the target density is concentrated in a small region of the sample space, or along

a lower-dimensional manifold, the MH algorithm will conduct a random walk over the

relevant areas while largely ignoring the irrelevant parts. In high dimensional problems,

this integrand structure is common and, as a result, the performance of MCMC is simply

unrivalled for such tasks.

It is possible to derive convergence guarantees for MCMC approaches generally through

conditions on the mixing rate of the Markov chain. That is, the rate at which the dependency

between samples Xi and Xi+d drops off as d increases. For instance, if two samples were

guaranteed to be independent after some finite number of steps (d) it is clear that the MSE of

(2.7) decreases at a rate of O(d/n). In practice, however, it can be challenging to engineer

rapidly mixing Markov chains. Particularly in cases where the target density is comprised of

multiple modes separated by regions of low probability. Also, poor mixing is often difficult

to diagnose numerically as there is no good way of knowing whether all of the modes have

been visited, and in the correct proportions.

Poor mixing rates may be one reason to favour an importance sampling approach over

MCMC. Additionally, importance sampling approaches are often favoured for approximat-

ing the normalization constant for π̂, as this task can be quite challenging with MCMC ap-

proaches. For instance, the most straightforward strategy, which is likely the first thing any
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unsuspecting practitioner might try, is the so-called harmonic mean (HM) method (Newton

and Raftery, 1994). Here, one first collects samples Xi ∼ π using any MCMC approach,

then uses these samples in conjunction with the weighted importance sampling estimator to

approximate the normalizing constant. Specifically, one deploys the estimator:

ζ̂nHM :=

 1

n− nB

n∑
i=nB

1

π̂(Xi)

−1

.

Although intuitive and mathematically elegant, in practice this estimate is rarely useful as it

will typically exhibit extremely high or infinite variance. There are numerous other ways of

computing normalizing constants with MCMC (see Neal (2005)) though none can be said

to be as straightforward or generally applicable as their counterparts for approximating µ.

2.4 Sequential Monte Carlo

Another sophisticated and widely applicable class of Monte Carlo algorithms are sequential

Monte Carlo (SMC) methods. In the SMC setting the distribution of interest, π, is assumed

to be decomposable into a sequence of known conditional densities, that is

π(x(0:m)) = π0(x(0))π1(x(1)|x(0)) . . . πn(x(m)|x(m−1)).

The integral in (1.1) can then be written as

µ =

∫
h(x(0:m))π((0:m))dx(0:m) =

∫
h(x(0:m))π0(x(0))

m∏
i=1

πi(x
(i)|x(i−1))dx(0:m).

Additionally, it is often the case that h may factored similarly to the above equation or

is independent of most variables. For instance, it is common that h(x(0:m)) = h(x(m)).

The SMC formulation arises naturally in numerous practical settings from protein forma-

tion, robot dynamics, to financial option pricing (see Doucet et al. (2001)). Similar to the

general integration problem, it is often the case that direct simulation from πi does not

result in efficient estimators. In such cases the sequential importance sampling (SIS) ap-

proach may be used where one uses a similarly factored proposal density: g(x(0:m)) :=

g0(x(0))g1(x(1)|x(0)) . . . gn(x(m)|x(m−1)). Given samples (X
(1:m)
1 , ..., X

(1:m)
n )

iid∼ g(·) we

arrive at the following estimator

µ̂SISn :=
1

n

n∑
i=1

w(X
(0:m)
i )h(X

(0:m)
i ),

where,

w(x(0:m)) =

(
π0(x(0))

g0(x(0))

)(
π1(x(1)|x(0))

g1(x(1)|x(0))

)
. . .

(
πm(x(m)|x(m−1))

gm(x(m)|x(m−1))

)
.
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This approach is often desirable either because conditional proposal densities are easier

to engineer or because population-based resampling approaches can be used, as is done

by the sequential importance resampling (SIR) algorithm of Gordon et al. (1993). The

insight into these populations-based techniques is as can be explained as follows. Suppose

we have samples (X
(j−1)
1 , ..., X

(j−1)
n )

iid∼ πj−1(·|X0:j−2) as well as samples {X(j)
i ∼

gj(·|X(j−1)
i )}ni=1. Given this, one can approximate the distribution πj with the empirical

distribution

πj(x|x(0:j−1)) ≈
n∑
i=1

w̄j(X
(j)
i )δ

X
(j)
i

(x),

where w̄j(X
(j−1)
i ) :=

wj(X
(j−1)
i )∑n

k=1 wj(X
(j−1)
k )

with wj(X
(j−1)
i ) =

πj(X
(j)
i |X

(j−1)
i )

gj(X
(j)
i |X

(j−1)
i )

and δx denotes

the Dirac δ-function centered at x. This empirical distribution may used as-is to simulate

the next step of the recursion. However, over time, the variance of the importance weights

will tend to increase which results in a poor approximation. This problem is referred to as

particle degeneracy and is routinely measured by the effective sample size (ESS) (Liu and

Chen, 1998) given by

ESS(X1:n) :=
(
∑n

i=1w(Xi))
2∑n

i=1w(Xi)2
. (2.8)

The ESS takes on values in [1, n] and can be used to monitor the health of the population.

If the value drops below some fixed threshold, ε ∈ (0, n), one may attempt improve the ap-

proximation by resampling a new set of particles from the empirical distribution. The most

straightforward resampling approach is to draw particles with replacement from a multi-

nomial distribution, though there are a number of more efficient resampling procedures

such as residual (Liu and Chen, 1998), systematic (Carpenter et al., 1999), and stratified

resampling (Kitagawa, 1996). A basic SIR implementation, which uses simple multinomial

resampling at every step, is given in Algorithm 2.

Following normal execution of Algorithm 2 the SIR estimator for µ is given as

µ̂SIRn :=
1

n

n∑
i=1

h(X
(m)
i )wm(X

(m)
i ),

as well as the normalizing constant (see Del Moral and Doucet (2002)),

ζ̂SIRn :=

m∑
j=0

log

(
n∑
i=1

wj(X
(j)
i )

)
−m log n.

Equivalent estimators for the case where resampling stages are executed depending on the

effective sample size are given in Del Moral et al. (2006).
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Algorithm 2 Sequential Importance Resampling (SIR)
1: for i ∈ {1, ..., n}
2: Sample X(0)

i ∼ g0(·);

3: Compute w(0)
i =

π0(X
(0)
i )

g0(X
(0)
i )

;

4: end for
5: for j ∈ {1, ...,m}
6: Resample X̄(j−1)

1:n ∼ Multinomial(X
(j−1)
1:n , w̄(X

(j−1)
1:n ), n);

7: for i ∈ {1, ..., n}
8: Sample X(j)

i ∼ gj(·|X̄
(j−1)
i );

9: Compute wj(X
(j)
i ) =

πj(X
(j)
i |X̄

(j−1)
i )

gj(X
(j)
i |X̄

(j−1)
i )

;

10: end for
11: end for

In general, the use of resampling in SMC methods can lead to considerably improved

estimates for some problem domains. In particular, sequential state tracking tasks. How-

ever, the approach is not guaranteed to offer a reduction in variance and may actually intro-

duce additionally approximation errors due to resampling variance and particle degeneracy.

Additionally, as with the population Monte Carlo approach theoretical convergence results,

typically in the form of a central limit theorem, require that the population size grow indef-

initely.

2.4.1 Sequential Monte Carlo Samplers

Sequential Monte Carlo samplers (SMCS) (Del Moral et al., 2006) are a class of importance

sampling algorithms that define their proposal distributions as a sequence of local Markov

transitions. As a result of this construction, SMCS methods are able to combine many of

the advantages of MCMC methods with those of SMC methods. SMCS algorithms operate

under the same assumptions as regular importance sampling in that they do not require that

the target distribution factors into a product of conditionals. Instead, the algorithm exploits

the fact that a sequence of Markov transitions may be factored in much the same way.

Specifically, the SMCS proposal density is defined using an initial proposal, π0, as well

as a sequence of forward Markov kernels, f1:m, which are assumed to be evaluable point-

wise and simulable. In particular, we define the proposal density as

g(x(0:m)) := π0(x(0))

m∏
j=1

fj(x
(j−1), x(j)). (2.9)

In order to permit convenient cancellations in later steps, the target distribution, π, is also

augmented with a sequence of backward Markov transition kernels, b1:m, which are re-
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quired only to be efficiently evaluable point-wise, that is, we define

π̃(x(0:m)) := π(x(m))

m∏
j=1

bj(x
(j), x(j−1)). (2.10)

Since each bj(x, ·) is a probability distribution we have
∫
bj(x, x

′)dx′ = 1 it then follows

that
∫
π̃(x(0:m))dx(0:m−1) = π(x(m)), which implies that

∫
h(x(m))π̃(x(0:m))dx(0:m) =

µ. From here, we can approximate this expanded integral through importance sampling

methods, which can be verified by observing∫
h(x(m))π̃(x(0:m))

g(x(0:m))
g(x(0:m))dx(0:m) =

∫
h(x(m))π̃(x(0:m))dx(0:m)

=

∫
h(x(m))π(x(m))dx(m).

A critical detail is that π̃ and g are easily factored, which will later permit the application

of SMC methods (i.e. resampling).

In order to build in additional flexibility, the formulation allows for the use of lo-

cal moves in conjunction with annealing distributions. Specifically, a sequence of un-

normalized auxiliary distributions, π0:m, which are generally expected to blend smoothly

between a the initial proposal distribution (π0) and the target distribution (πm := π) are

used. A common choice is the tempered version πj = π(1−βj)π
βj
0 for some fixed annealing

schedule 1 = β0 > β1 > ... > βm = 0 (Neal, 2001; Gelman and Meng, 1997). Addition-

ally, in Bayesian settings the sequence of posterior distributions each with incrementally

more data may be useful, that is, πi(x) = π(x|z1, ..., z(1−βi)l)π0(x) where (z1, ...zl) de-

notes the set of observed data (Chopin, 2002). Of course, the use of annealed distributions

is not strictly required and one may elect to use the homogenous parameterization, where

π1 = ... = πn = π. Using these auxiliary distributions the target distribution is then

re-written as

π̂(x(0:m)) :=
m∏
j=1

πj(x
(j))bj(x

(j), x(j−1))

πj−1(x(j−1))
,

where one can observe that these auxiliary distributions telescope to give π̂(x(0:m)) =

π̃(x(0:m))

π0(x(0))
. Temporarily ignoring these potential cancellations, the stepwise importance weight-

ing function can be defined as

rj(x
(j−1), x(j)) :=

πj(x
(j))bj(x

(j), x(j−1))

πj−1(x(j−1))fj(x(j−1), x(j))
. (2.11)

Using these formula the basic SMC procedure for simulating from g and recursively com-

puting the appropriate weighting is given in Algorithm 3. As with standard SMC, it is

straightforward to add in a resampling step to this procedure.
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Algorithm 3 Sequential Monte Carlo Sampling (SMCS)
1: for i ∈ {1, ..., n}
2: Sample X(0)

i ∼ π0(·);

3: Compute W (0)
i =

π1(X
(0)
i )

π0(X
(0)
i )

;

4: end for
5: for j ∈ {1, ...,m}
6: for i ∈ {1, ..., n}
7: Sample X(j)

i ∼ fj(X
(j−1)
i , ·);

8: Compute W (j)
i = W

(j−1)
i rj(X

(j−1)
i , X

(j)
i )

9: end for
10: end for

After generating samples {X(0:m)
1:n } and corresponding weights {W (0:m)

1:n }with this pro-

cedure the (unbiased) SMCS estimator is given by

µ̂SMCS
n :=

1

n

n∑
i=1

W
(m)
i h(X

(m)
i ),

additionally, as with standard importance sampling, the normalization constant for π may

be estimated as

ζSMCS
n :=

1

n

n∑
i=1

W
(m)
i .

In the case where homogenous auxiliary distributions are used the samples at each time-step

may be used (Del Moral and Doucet, 2002), resulting the following (unbiased) estimator

µ̂SMCS′
n :=

1

n(m+ 1)

n∑
i=1

m∑
j=0

W
(j)
i h(X

(j)
i ),

with ζSMCS′
n defined similarly.

The most widely deployed instantiation of SMCS is the pre-dated method of annealed

importance sampling (Neal, 2001), which can recovered by parameterizing the backward

kernel as

bj(x, x
′) =

πj(x
′)

πj(x)
fj(x

′, x),

where fj is any valid MCMC transition for πj ; that is, fj(x, x′)πj(x) = fj(x
′, x)πj(x

′).

This choice leads to cancellations in the importance weighting function, yielding the sim-

pler weighting function rj(x, x′) = rj(x) =
πj(x)
πj−1(x) .3

This particular parameterization is powerful because it opens the door for the applica-

tion of vast number of existing MCMC strategies. Moreover, AIS is able to sidestep the
3Multiple MCMC transitions are typically executed on the same annealing “step”, as the composition still

satisfies detailed balance.
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drawbacks of MCMC associated with mixing, since we have not required that the Markov

chain simulate for some burn in period or approach stationarity to ensure unbiasedness.

Unfortunately however, the MCMC chain must still produce samples roughly distributed

according to the stationary distribution in order for the approach to offer a meaningful vari-

ance reduction (see Neal (2001)). It is worth noting that in cases where π does not permit

efficient mixing AIS may be advantageous since the annealed distributions πi may be sig-

nificantly easier to simulate with MCMC. In fact, this annealing is the key intuition behind

the widely deployed MCMC method of parallel tempering (Neal, 1996; Earl and Deem,

2005).

2.4.2 Adaptive SMCS

SMCS algorithms can be considerably more effective than simple importance sampling

methods since the proposal is altered automatically by the observed values of the integrand.

Despite this dependence, SMCS methods are generally not considered adaptive methods

since the parameters of the algorithm – i.e. the MCMC moves, annealing rate, initial pro-

posal – remain fixed. However, as with previous approaches there have been a handful

of adaptive SMCS extensions proposed in the literature. That is, procedures for automat-

ically tuning the parameters of a SMCS algorithm using data obtained in past simulations

(Chopin, 2002; Schäfer and Chopin, 2013; Jasra et al., 2011).

As it currently stands, there is no general approach for incorporating such adaptive

behaviour into SMCS; the few existing methods have little in common and each rely on

specific properties of the underlying SMCS method. That said, provided that the adaptation

occurs under mild technical conditions it is at least straightforward to obtain asymptotic

convergence results, in the form of consistency proofs for the resulting estimators, for any

adaptive SMCS approach (Beskos et al., 2013). We note also that though all of the exist-

ing approaches make use of particle representations and resampling as the primary engine

driving this adaptation, this is not strictly necessary.

One popular adaptive SMCS approach is given by Schäfer and Chopin (2013) who

proposed a method for sequentially tuning the proposal for a Metropolis-Hastings MCMC

sampler used by SMCS. In particular, it was observed that the ideal MH proposal at time t

is given by the distribution πt. Unfortunately, this distribution cannot be sampled from ef-

ficiently, otherwise we would not be using MCMC in the first place. In order to bypass this

difficulty, the proposed approach fits a parametric distribution to the current particle repre-

sentation of πt through straightforward optimization routines. This fit proposal is then used
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in the MCMC transitions for the next update to the particle representation, and the process

is repeated. Fitting a parametric density to a set of particles is a non-convex optimization in

general, so some form of kernel density estimation may be advantageous.

Perhaps the most effective, and widely applicable, adaptive SMCS strategy is to tune

the set of auxiliary distributions using the particle representation. The rate at which these

distributions converge to the target density has a significant effect on the performance of the

SMC sampler. If the distributions converge too slowly the sampler will achieve less variance

reduction per unit of computation. On the other hand, if the distributions converge too

quickly, poor MCMC mixing or high variance importance weights (which leads to particle

degeneracy) often result. With these considerations in mind, one approach, given by Schäfer

and Chopin (2013), is to tune the annealing parameters at each step so that a fixed effective

sample size (Eq. (2.8)) is maintained, for example ESS∗ = 0.8n.

In particular, supposing that tempered distributions are used with βj defined as βj+1 =

βj +α for some fixed α ∈ (0, 1), we have that wj(x, x′) = rj(x) =
πj(x)
πj−1(x) = π(x)α

π0(x)α . The

ESS then can be expressed as a function of α and the population X(j)
1:n and we can solve

for α∗ s.t. ESS(α∗, X
(j)
1:n) = ESS∗. As with the adaptive approach above, this procedure

can be shown to offer improved empirical performance over fixed schedules while still

providing asymptoticly consistent estimators (Beskos et al., 2013).

2.5 Adaptive Stratified Sampling

As mentioned previously, the method of stratified sampling can yield substantial reductions

in variance if the stratification and sample allocations are well tuned. However, in order for

the allocation of samples to be efficient the standard deviation (σi) of individual samples

within a given strata must be known beforehand, which is rarely the case. A natural strategy

then, is to approximate these standard deviations from previous samples and adjust future

allocations accordingly.

One such adaptive stratified sampling strategy is proposed by Etoré and Jourdain (2010)

and operates similar to the sequential optimization procedures for adaptive importance sam-

pling detailed previously. In particular, this approach proceeds in a series of stages where

the number of samples drawn in each stage (l) is specified beforehand. The first step in

each stage is to approximate the sample standard deviations for each strata as (reusing the
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notation from Section 2.1.3):

σ̂i,n :=

√√√√ 1

ni

ni∑
j=1

X2
i,j − µ̂2

i,n ,

where i ∈ {1, ..., k} denotes the strata index, ni the number of samples allocated to strata

i thus far, n =
∑

i ni, Xi,j ∼ πi(·), and µ̂j,n := 1
ni

∑ni
j=1Xi,j . The next step is the explo-

ration phase where a single draw is allocated to each strata, which ensures the asymptotic

convergence of σ̂i,n to σi. The remaining l − k samples are then allocated in an exploitive

manner. That is, in proportion to the optimal value assuming the σ̂i,n approximations are

accurate (ni ∝ λiσ̂i,n). Etoré and Jourdain provide asymptotic analysis for this sampling

scheme and show that each strata is sampled in the optimal proportion so long as the ex-

ploration phase ensures each stata is sampled infinitely often and yet takes up a negligible

percentage of the samples in relation to the exploitation phase.

More recently, there have been a number of developments in adaptive stratified sam-

pling in the field of machine learning which have borrowed techniques for balancing ex-

ploration and exploitation from the multi-armed bandit literature (Grover, 2009; Carpentier

and Munos, 2011; Carpentier, 2012). Algorithmically, these approaches are not entirely

unlike the approach of Etoré and Jourdain, though they balance this tradeoff more carefully.

As a result, these approaches can be shown to achieve improved empirical performance as

well as permit more robust finite-time guarantees.

The problem is formalized as follows: consider a sequential allocation algorithm A

to be a procedure for selecting, at each time-step t, which strata should receive the next

sample. Denote this choice as It ∈ {1, ..., k}. One can write the loss (MSE) of the stratified

sampling estimator for A as:

L̄n(A) := E
[
(µ̂n − µ)2

]
= E

( k∑
i=1

λi(µ̂i,n − µ)

)2
 .

Letting the random variable Ti,n :=
∑n

t=1 I{It = i} denote the number of samples for

strata i up to time n one observes that the estimate µ̂i,n := 1
Ti,n

∑Ti,n
t=1 Xi,t is not necessarily

unbiased since Ti,n is allowed to depend on X1:n−1. This dependence is the key frustration

in analyzing these algorithms – indeed most bandit algorithms – and motivates the use of

the simplified weighted MSE loss Ln(A) defined as the first term in the expanded loss:

L̄n(A) = E

[
k∑
i=1

λ2
i (µ̂i,n − µ)2

]
︸ ︷︷ ︸

Ln(A)

+E

2

k∑
i6=j

λiλj(µ̂i,n − µ)(µ̂j,n − µ)

 .
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Additionally, since we are often interested in the performance of our allocation algorithm

with respect to loss under the optimal allocation Ln(A∗) =
(
∑k
i=1 λiσi)

2

n (Section 2.1.3), we

define the regret for algorithm A as

Rn(A) = Ln(A)− Ln(A∗) also R̄n(A) = L̄n(A)− Ln(A∗).

The first algorithm in this space was the GAFS-WL algorithm proposed by Grover

(2009), which allocated samples in the optimal proportion λiσ̂i while managing explo-

ration by ensuring each strata sampled at least
√
t times. This simple algorithm was shown

to have regret bounded as Rn(A) = Õ(n−3/2) for any n, where the notation Õ hides loga-

rithmic factors. An alternative approach to managing exploration and exploitation in bandit

problems is to construct confidence bounds around the approximation σ̂i and allocate sam-

ples according the worst-case (highest variance) value. Using this strategy one arrives at

the MC-UCB algorithm of Carpentier and Munos (2011), which can also be shown have a

regret bounded as Rn(A) = Õ(n−3/2) though with slightly different constant factors than

GAFS-WL. This result was later improved upon and it can be shown that the “true” regret

is bounded as R̄n(A) = poly(β−1
min)Õ(n−3/2), where β−1

min is a problem-dependent con-

stant. Additionally, for the problem-independent case (minimax) the regret can be bounded

as R̄n(A) = Õ(n−4/3) which has a matching lower bound (up to log factors), that is,

R̄n(A) = Ω(n−4/3) for any algorithm (Carpentier et al., 2014).

The strong finite-time theoretical guarantees paired with these algorithms is in many

ways the main contribution of this work since this form of analysis is rarely seen in the area

of adaptive Monte Carlo.

2.6 Summary

In this chapter we have reviewed a number of the more powerful Monte Carlo approaches

and variance reduction techniques as well as adaptive extensions to many of these ap-

proaches. In the following chapters we present novel approaches extending many of the

methods presented here.
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Chapter 3

Variance Reduction via Antithetic
Markov Chains

“There are no routine statistical questions, only questionable statistical routines.”

– D.R. Cox

In this chapter we introduce a novel approach, dubbed antithetic Markov chain sam-

pling (AMCS) (Neufeld et al., 2015), which improves on a fixed proposal density through

the addition of local Markov chain simulations. In this respect, the approach is similar to the

sequential Monte Carlo sampling approach of Del Moral et al. (2006) and, at a high level,

both approaches are essentially exploiting the same observation: integrands are often rela-

tively smooth and have the majority of their mass concentrated into local regions or modes.

The approaches differ primarily in how they parameterize the Markov chains which, as we

will see, ultimately affects the types of integrands for which either method is most suitable.

Specifically, from each sampled point the AMCS sampler simulates two separate, short-

lived, Markov chains that are designed to head in opposite directions. The objective of

these chains is to quickly acquire a set of points for which the value of the integrand takes

on a large range of values. Ultimately, by averaging over these points much of the local

variability in the integrand can be removed, lowering the variance of the final estimate. This

technique allows for substantial savings over comparable Monte Carlo methods on highly

peaked and multimodal integrands. An example of such an integrand – the log likelihood

function for a Bayesian robot localization task which we consider in Section 3.5 – in shown

in Fig. 3.1. This likelihood function has thousands of local modes separated by regions of

low probability which makes it challenging to engineer efficient proposal densities as well

as MCMC chains that can explore this space efficiently. However, there is still a great deal

of local structure, in the form of local modes, which can be exploited by an AMCS sampler.
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Figure 3.1: Log-likelihood function of position given sensor readings in a Bayesian robot
localization problem, 2 of 3 dimensions shown.

In the remainder of the chapter we outline the mechanics of the AMCS approach and

provide some specific parameterizations and motivations for the Markov chains used by

the method. Additionally, we establish the unbiasedness of this approach and analyze the

potential for variance reduction. Lastly, the effectiveness of the approach, in contrast to

similar algorithms, is evaluated empirically on non-trivial machine learning tasks.

3.1 Approach

In an nutshell, a single iteration of the AMCS algorithm proceeds as follows: the algorithm

draws a single sample from the proposal π0, simulates two independent Markov chains to

produce a set of points, evaluates the target function on each, then returns the resulting

average. After executing n (independent) runs of this procedure the empirical average of

all these returns is then used as the final estimate.

In what follows we refer to the two Markov chains as the positive and negative chain and

denote the Markov transition kernels (Definition 2.1) used by each as k+ and k− respec-

tively. Additionally, these chains terminate according to corresponding probabilistic stop-

ping rules referred to as (positive and negative) acceptance functions, α+ and α−, which

specify the probability of accepting a move in the respective directions. The kernels must

be efficiently evaluable, simulable, and must also satisfy a joint symmetry property together

with the acceptance functions as described in Definition 3.1. Additionally, for simplicity

throughout this chapter we assume that all functions (α+/−, h) and densities are measurable

as needed.

Definition 3.1. The Markov kernels and acceptance functions specified by (k+, α+) and
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(k−, α−) are said to be jointly symmetric iff for any x, x′ ∈ Rd the following holds

k+(x, x′)α+(x, x′) = k−(x′, x)α−(x′, x).

Using these components the AMCS procedure can be described as follows. For each

of the n independent runs of this algorithm, a starting point X(0) ∼ π0(·) is first sam-

pled from the given proposal density. Outward from this starting point both a positive

and negative Markov chain are then simulated. For the positive chain, points are gen-

erated as X(j) ∼ k+(X(j−1), ·) where j ≥ 1, and this chain is terminated at step j

with probability α+(X(j−1), X(j)). The stopping time for this chain can be written us-

ing the acceptance variable A(j) ∈ {0, 1} where A(j) ∼ α+(X(j−1), X(j))1 which gives

M := 1 +
∑

j≥1

∏j
l=1A

(l). The negative chain is denoted using indicies j ≤ −1, where

similarly define X(j) ∼ k−(X(j+1), ·), A(j) ∼ α−(X(j+1), X(j)), and stopping time

N := 1 +
∑

j≤−1

∏j
l=−1A

(l). The full algorithm is outlined in Algorithm 4 and the

graphical model representing the dependencies between these variables is shown in Fig. 3.2

below.

Figure 3.2: Graphical model outlining the dependencies between the sampled variables,
here the positive chain (X(1), ..., X(M)) is shown on the right of X(0) while the negative
chain (X(−1), ..., X(−N)) is shown on the left. Any variables corresponding to indices
greater than M or less than −N are not sampled by the algorithm.

After n independent trajectories have been collected,
{(
X

(−Ni)
i , ..., X

(Mi)
i

)}
1≤i≤n µ

and ζ may be approximated with the estimators

µ̂nAMCS :=
1

n

n∑
i=1

∑Mi−1
j=1−Ni h(X

(j)
i )π(X

(j)
i )

(Mi +Ni − 1)π0(X
(0)
i )

, (3.1)

ζ̂nAMCS :=
1

n

n∑
i=1

∑Mi−1
j=1−Ni π̂(X

(j)
i )

(Mi +Ni − 1)π0(X
(0)
i )

. (3.2)

Note that the two endpoints X(M) and X(−N) are not used in these estimators, we refer

to all the other points in a trajectory (X(1−N), ..., X(M−1)) as the accepted points. For

1Here A(j) ∼ α+(X(j−1), X(j)) implies P
(
A(j) = 1

)
= α+(X(j−1), X(j)).
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Algorithm 4 AMCS Procedure
1: for i ∈ {1, ..., n}
2: Sample X(0)

i ∼ π0(·);
3: for j = 1, 2, ...

4: Sample X(j)
i ∼ k+(X

(j−1)
i , ·);

5: Sample A(j)
i ∼ α+(X

(j−1)
i , X

(j)
i )

6: If (A
(j)
i = 0) break loop and set Mi = j;

7: end for
8: for j = −1,−2, ...

9: Sample X(j)
i ∼ k−(X

(j+1)
i , ·);

10: Sample A(j)
i ∼ α−(X

(j+1)
i , X

(j)
i )

11: If (A
(j)
i = 0) break loop and set Ni = −j;

12: end for
13: end for
14: return estimate from Eq. (3.1) or Eq. (3.2).

instance, in the case that the first move in both directions is rejected there is only one

accepted point: X(0).

This generic formulation is not particularly useful without some clues how to choose

k+/− and α+/−. Before providing explicit parameterization we first establish the unbi-

asedness of these estimators and analyze what influence k+/− and α+/− may have on the

variance of the AMCS estimators.

3.2 Unbiasedness

In order to analyze the AMCS estimators given by Eq. (3.1) and Eq. (3.2) we will introduce

an additional random index J ∼ Uniform({1−N, ...,M−1}) which will be used to select

a single point out of the sampled trajectory uniformly at random. Specifically, we define

X(J) :=
∑M−1

j=1−N I{J = j}X(j). This random index is useful in establishing the unbi-

asedness of the AMCS estimator, in particular we will show that E
[
h(X(J))π(X(J))

]
=

E[µ̂AMCS ] and that E
[
h(X(J))π(X(J))

]
= µ. We begin by introducing some lemmas

which will aid in proving the latter expression, it what follows we will make use of an

Assumption 3.1 below. In practice this assumption can be achieved in a number ways, for

example by forcing α+/− to terminate the chain on any step with a fixed probability.

Assumption 3.1. The Markov chains generated by k+/− and α+/− are assumed to termi-

nate eventually; i.e. M <∞ and N <∞ almost surely.

In order to prove that E
[
h(X(J))π(X(J))

]
= µ we will show that the procedure for

sampling X(J) is identical to sampling from a symmetric Markov kernel k, that is a kernel

29



where k(x, x′) = k(x′, x), and that any such procedure results in a unbiased estimator, as

described in the following lemma.

Lemma 3.1. Suppose Y ∼ π(·), X ∼ π0(·) and X ′ ∼ k(X, ·) for symmetric Markov

kernel k, that is k(x, x′) = k(x′, x). Provided that supp(π) ⊆ supp(k ◦ π0) it follows that

E
[
h(X ′)π(X ′)

π0(X)

]
= E[h(Y )] = µ.

(The statement follows from Fubini’s theorem; full proof is given in Appendix A.1.)

In order to show that X(J) is indeed sampled according to a symmetric Markov kernel

we express the conditional density of (X(−N), ..., X(M)) given X(0) in terms of k+/− and

α+/−, that is

γ(x(−n), ..., x(m), n,m|x(0)) := (1− α+(x(m−1), x(m)))k+(x(m−1), x(m))

×
m−1∏
j=1

α+(x(j−1), x(j))k+(x(j−1), x(j))

× (1− α−(x(1−n), x(−n)))k−(x(1−n), x(n))

×
1−n∏
j=−1

α−(x(j+1), x(j))k−(x(j+1), x(j)). (3.3)

Here we are able to integrate out the acceptance variables a(j) since the conditional density

is zero whenever we have invalid configurations, i.e. a(−n) 6= 0, a(m) 6= 0, or a(i) 6= 1 (for

1−n ≤ i ≤ m−1). We now observe that this is a valid conditional density and the density

for a given set of points evaluates to the same value regardless of which of these points in

chosen as the starting point x(0), as formalized in the following lemma.

Lemma 3.2. Given jointly symmetric (k+, α+) and (k−, α−), and sequences (x(−n), ..., x(m))

and (x′(−n
′), ..., x′(m

′)), the density γ defined in Eq. (3.3) satisfies the following.

i.
∫ ∑

n,m≥1

γ(x(−n), ..., x(m), n,m|x(0))dx
(−n:m)
−0 = 1

ii. γ(x(−n), ..., x(m), n,m|x(0)) = γ(x′(−n
′), ..., x′(m

′), n′,m′|x′(0))

whenever x(−n) = x′(−n
′), x(1−n) = x′(1−n

′), ..., x(m) = x′(m
′), and m + n = m′ + n′

where m,n,m′, n′ ≥ 1, and where x(−n:m)
−0 denotes all variables x(−n:m) but x(0).

(Here (i) follows from Assumption 3.1 and (ii) from the definition of joint symmetry; the full

proof is given in Appendix A.2.)
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One remaining detail is to express the conditional density for only a single point (X(J))

given X(0). For this we will make use of the following lemma:

Lemma 3.3. Given random variables (X0, ..., XL, L), whereXi ∈ Rd, L ∈ N, and L ≥ 2,

distributed according to some joint density γ and a random variable J ∼ Uniform({1, ..., L−

1}), the variable XJ =
∑l

j=0 I{J = j}Xj has p.d.f. p(x) =
∑

l≥2
1
l−1

∑l−1
j=1 γj(x, l).

Where γj is the jth marginal density of γ, given by γj(xj , l) :=
∫
γ(x1, ..., xl, l)dx

−j
1:l .

(proof given in Appendix A.3.)

With these components we are now able to state the first main result for this section

which establishes the symmetry of the conditional density for X(J)|X(0). However, before

doing so we require some additional notation. Specifically by x(n,m, x, j), for n,m ≥ 1,

−n ≤ j ≤ m, we denote the trajectory (x(−n), ..., x(−1), x(1), x(m)) where x(j) = x. Using

Lemma 3.3, the conditional density γ(x|x′) may be written as

γ(x|x′) =
∑
l≥2

1

l − 1

l−1∑
m=1

m−1∑
j=m−l+1

∫
γ(x(l −m,m, x, j), l −m,m|x(0) = x′)dx

(m−l:m)
−{j,0} ,

(3.4)

where γ(x(l − m,m, x, 0), l − m,m|x(0) = x′) is defined as zero whenever x 6= x′.

Thanks ultimately to the symmetric properties of γ(x(l−m,m, x, j), l−m,m|x(0) = x′)

this conditional density also meets a critical symmetry property formalized in the following

lemma.

Lemma 3.4. Provided the density function γ defined in Eq. (3.3) satisfies the conditions in

Lemma 3.2 the conditional density γ(x′|x) defined in Eq. (3.4) satisfies

γ(x′|x) = γ(x|x′).

(The lemma follows from reordering sums in γ and deploying Lemma 3.2; full proof is

given in Appendix A.4.)

Using these three lemmas we now formally establish the unbiasedness of AMCS in the

following theorem.

Theorem 3.1. Provided the transition kernels and acceptance functions satisfy the condi-

tions of Lemma 3.2 and Lemma 3.4 for any n > 0 the AMCS procedure achieves

E[µ̂nAMCS ] = µ

E
[
ζ̂nAMCS

]
= ζ

31



Proof. Because µ̂nAMCS is an empirical average of independent samples we need only show

that each individual sample has the desired expectation. Recalling thatX(J) is a single point

sampled uniformly at random from a given trajectory (X(−N), ..., X(M)) we first observe

that

E

[
h(X(J))π(X(J))

π0(X(0))

]
= E

[
E

[
h(X(J))π(X(J))

π0(X(0))
|(X(−N), ..., X(M))

]]

= E

[∑M−1
j=1−N h(X(j))π(X(j))

(M +N − 1)π0(X(0))

]
= E[µ̂AMCS ] .

It remains then only to show that E
[
h(X(J))π(X(J))

π0(X(0))

]
= µ. By defining our Markov kernel

k(x, x′) = γ(x′|x) from Eq. (3.4), where X(J) ∼ k(X(0), ·), it follows from Lemma 3.4

that k(x, x′) = k(x′, x). As a result of this symmetry we may invoke Lemma 3.1 which

gives the desired result. Noting that the identical steps hold for the estimator ζ̂nAMCS as

well, concludes the proof.

3.3 Variance Analysis

Since the AMCS estimator is unbiased for any choice of jointly symmetric k+/− and α+/−

we now consider how these choices affect the MSE of the estimator. In the following

developments we make use of the uniformly distributed index J as defined in the previous

section. In particular we observe

vAMCS := V

(∑M−1
j=1−N h(X(j))π(X(j))

(M +N − 1)π0(X(0))

)

= V

(
E

[
h(X(J))π(X(J))

π0(X(0))

∣∣∣∣∣X(−N), ..., X(M)

])
,

where the inner expectation is taken w.r.t. J . We are interested in the discrepancy between

the above variance expression and that of vanilla importance sampling given by vIS :=

V
(
h(X)π(X)
π0(X)

)
for X ∼ π0(·). To relate these quantities we will first make the simplifying

assumption that π0 is uniform, so that the effects of the supplied proposal are negligible.2

2In practice π0 need not be uniform, only that the density does not change significantly across any given
trajectories.
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Using this assumption and letting k(x, x′) = γ(x′|x) we observe

V

(
h(X(J))π(X(J))

π0(X(0))

)
=

∫ ∫ (
h(x′)π(x′)

π0(x)

)2

k(x, x′)π0(x)dx′dx− µ2

=

∫ (
h(x′)π(x′)

π0(x′)

)2

π0(x′)dx′
∫
k(x′, x)dx− µ2

= V
(
h(X)π(X)

π0(X)

)
= vIS ,

where we have used the symmetry properties of k (Lemma 3.4). This expression is essen-

tially stating that if one were to actually use a uniformly drawn sample from each trajectory

to estimate µ (as opposed to the average over all the points in a trajectory) the variance of

the resulting estimator would be equal to vIS . Next, using the law of total variance we see

that

vIS = V

(
h(X(J))π(X(J))

π0(X(0))

)

= E

[
V

(
h(X(J))π(X(J))

π0(X(0))

∣∣∣∣∣(X(−N), ..., X(M))

)]

+ V

(
E

[
h(X(J))π(X(J))

π0(X(0))

∣∣∣∣∣(X(−N), ..., X(M))

])

= E

[
V

(
h(X(J))π(X(J))

π0(X(0))

∣∣∣∣∣(X(−N), ..., X(M))

)]
+ vAMCS .

From this expression we derive the key result of this section, which we refer to as the

variance capture identity:

vAMCS = vIS − E

[
V

(
h(X(J))π(X(J))

π0(X(0))

∣∣∣∣∣X(−N), ..., X(M)

)]
. (3.5)

This identify shows that the variance of the AMCS estimator cannot be higher than the

vanilla importance sampling estimator given the same number of samples (n) (i.e. ignoring

the additional computational costs of AMCS). Additionally, the reduction in variance is

determined entirely by the expected variance of the points inside a given trajectory under

the uniform distribution. This observation motivates the use of antithetic Markov chains, in

which the transition kernels k+/− are configured to head in opposite directions in the hopes

of capturing more variability.

However, in order to get a fair understanding of the tradeoffs between AMCS and other

approaches, it is important to consider the increased computational costs incurred by sim-

ulating the Markov chains. If we consider any Monte Carlo estimator which takes the
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empirical average of an arbitrary sequence of i.i.d. random variables, say X1, ..., Xn, then

we know variance is given by V(X)
n . If we also assume that this sampling procedure has a

stochastic cost associated with each sample, denoted by the random variables D1, ..., Dn

where δ := E[D] also whereDi ⊥⊥ Xi, by fixing a computational budget C >> δ, standard

arguments for renewal reward processies indicate it will have a variance of approximately
V(X)
C/δ = δV(X)

C . Said simply, if technique A requires, on average, a factor of δ more com-

putation per sample than technique B, then it must have a reduced variance by a factor of

at least 1/δ to be competitive. Plugging this forumla into the identity in Eq. (3.5) we can

approximate that AMCS will offer a variance reduction whenever

E

[
V

(
h(X(J))π(X(J))

π0(X(0))

∣∣∣∣∣(X(−N), ..., X(M))

)]
>
δ − 1

δ
vIS ,

where δ = E[M +N + 1] gives the expected computational costs measured in terms of

evaluations of the functions π and h. We say this value is approximate since the M and

M are not technically independent of (X(−N), ..., X(M)), but for large sample size the

effects dependence will be negligible. That is, if the AMCS sampler requires 10 function

evaluations each sample it will need to “capture” 90% of the variance of vIS inside each

trajectory, on average. It is clear then from this expression that the potential for savings

drops of quickly as the per-sample computational costs increase. Interestingly, the above

steps can be used to analyze a Monte Carlo estimator using antithetic variates as well, i.e.

when δ = 2, and also extends to the multiple variable setting. Also, an alternative analysis

(for deterministic N ,M ) shows that the method would offer a variance reduction whenever∑
i6=j Cov

(
Z(i), Z(j)

)
< 0.

In the next section we explore explicit parameterizations for the Markov transitions and

stopping rules that can be defined to capture variability while simultaneously keeping these

costs in check.

3.4 Parameterization

In order to formulate concrete parameterizations for AMCS, it is first necessary to set out

what properties of integrand we are hoping to exploit. In this section, keeping with the

original motivations for AMCS, we consider parameterizations that are targeted toward

multi-modal and peaked integrands. In these settings perhaps the most useful observation

that can be made is that if the integrand is very near zero at a given point it is not likely

to have large integrand values in its immediate vicinity. As a result, simulating Markov
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chains in these areas is not likely to be worthwhile in terms of overall variance reduction.

Conversely, if the integrand has some magnitude it has a much higher chance of being near

a local mode. This observation motivates the threshold acceptance function

α+/−(x, x′) =

{
1, if |f(x)| > ε and |f(x′)| > ε

0, otherwise,
(3.6)

where ε > 0 and f(x) is some function of interest, likely the integrand (h(x)π(x)). An im-

portant aspect of this acceptance function is that if the first point sampled from π0 is below

threshold, the AMCS procedure can return immediately without evaluating the integrand at

any neighboring points, therefore incurring no additional computational costs. That is to

say, the sampler will perform exactly as well as a vanilla importance sampler in these re-

gions and any variance reductions will therefore depend entirely on its behaviour in regions

where the integrand is above this threshold.

In regards to transition kernels, a natural first choice is the linear Markov kernel densi-

ties

k+(x, ·) = N (x+ v, σ2I),

k−(x, ·) = N (x− v, σ2I),

where N (µ,Σ) denotes a multivariate normal distribution with mean µ and covariance Σ,

v ∈ Rd is some fixed vector, and σ2 a fixed variance parameter. In general these transitions

should be parameterized so that σ2 << ||v||2 so that the resulting Markov chain will make

consistent progress in one direction and typically experience more variability than, say, a

normal random walk given the same number of steps.

For continuously differentiable integrands we can use the gradient to set the direction

vector automatically giving rise to the Langevin Markov kernels

k+(x, ·) = N (x+ ε∇f(x), σ2I),

k−(x, ·) = N (x− ε∇f(x), σ2I), (3.7)

where ε > 0 is a fixed step size parameter. Since the gradient points in the direction of

steepest ascent this choice seems ideal for capturing variability within a trajectory. Inter-

estingly, this Markov kernel has been used extensively in the MCMC literature and, in fact,

can be shown to produce Markov chain with stationary distribution f when σ2 = 2ε and

ε → 0 (Neal, 2011). However, when used in AMCS these moves can (and should) be pa-

rameterized so that ε >> σ2, as a result the Markov chains look more like those generated

from a steepest descent optimization algorithm than a MCMC diffusion.
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One important concern with the Langevin kernel is that for nonlinear functions the tran-

sitions are not exactly symmetric. While this issue can be partially addressed by ensuring

the gradient vector is normalized to length 1, exact joint symmetry (Definition 3.1) is best

attained through the use of the symmetrizing acceptance functions

α+(x, x′) = min

(
k−(x, x′)

k+(x, x′)
, 1

)
,

α−(x′, x) = min

(
k+(x′, x)

k−(x′, x)
, 1

)
.

Note that multiple acceptance functions can be combined into a single function by taking

the product.

Lastly, when taking gradient steps in either direction one can expect to eventually settle

into a local mode or plateau. In these regions it continuing the chain will not capture any

additional variation, and it is therefore beneficial to terminate it. This can be accomplished

through the use of the monotonic acceptance functions

α+(x, x′) =

{
1, if f(x) + ε < f(x′)

0, otherwise,

α−(x, x′) =

{
1, if f(x)− ε > f(x′)

0, otherwise,

where ε ≥ 0 is some fixed threshold. This acceptance function ensures that the chains make

monotonic progress in either direction.

3.5 Experimental Evaluation

We now consider a number of empirical tests designed to evaluate our previous claims that

the AMCS approach can reduce the statistical error of a vanilla importance sampling ap-

proach. Additionally, we aim to uncover whether these reductions are comparable to those

offered by alternative state of the art Monte Carlo approaches. Specifically, we contrast the

behaviour of an AMCS sampler with that of vanilla importance sampling (IS), annealed

importance sampling (AIS), and greedy importance sampling (GIS) Southey et al. (2002).

The previously unmentioned GIS approach is somewhat similar to the AMCS approach

in terms of underlying mechanics since it uses a sequence of deterministic, axis-aligned,

steepest ascent moves to augment a fixed proposal. In fact, the AMCS approach ultimately

spawned from earlier attempts to extend the GIS approach to exploit continuous gradient

information, as opposed to the expensive finite difference approximations. Interestingly, in

the course of this work we observed that the AMCS acceptance functions could also be used
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with the GIS approach with minimal effort. Indeed, the threshold acceptance function re-

sulted in considerable improvements in a early testing. As a result, we added this improved

GIS approach, dubbed GIS-A, to our suite of comparison approaches.

In contrasting these different approaches, careful consideration of the additional com-

putational effort per sample is necessary. To account for these additional costs we measured

the expected number of integrand evaluations per sample (denoted δM for method M ) and

compared methods using the cost-adjusted variance defined as v̄M := δMnV(µ̂nM ). Addi-

tionally, to ensure a meaningful comparison across experiments, we normalized this value

by taking its ratio between the variance of the vanilla importance sampling approach to

give the relative cost-adjusted variance given by v̄M/v̄IS . Here, a value of 0.5 indicates a

2x reduction in the number of integrand evaluations needed to attain the same error as an

importance sampling estimator.3

For our comparisons we considered three different problem scenarios, first a synthetic

problem with having numerous modes and taking on negative values, second a Bayesian

k-means posterior, and finally a Bayesian posterior for a robot localization task.

3.5.1 Sin Function

We first consider a synthetic integration problem defined using a d-dimensional function

h(x) =
∏d
i=1 sin(xi)

999 and density π(x) = U(x; 0, 3π), where U(x; a, b) denotes the

multivariate uniform density on the interval (a, b)d. At first glance it may seem that the

exponent in h is a rather extreme choice, however, to give some perspective we note that a

mode for this function is roughly the same size and shape as a normal density with σ = 0.05.

Unsurprisingly, this integral poses challenges for numerical integration methods due to both

its peaked landscape and large number (3d) of separated modes. However, as it turns out, the

most challenging aspect of this problem is the fact that the integrand takes on both positive

and negative values. As a direct consequence the most effective SMCS approaches, where

one targets a sampler toward the un-normalized distribution hπ, cannot be deployed, and

since π is a simple uniform distribution it is obviously not necessary, or worthwhile, to

target a complex sampler toward this distribution.

One alternative approach for such problems is the so-called harmonic mean (HM)

method which involves first simulating a sequence of points X(1), ..., X(n) from |h|π, us-

ing a MCMC approach, then approximating I using the weighted importance sampling
3Note that in our analysis we do not apply additional costs for gradient evaluations since, in most settings,

computations of h(x) and∇h(x) typically share the same sub-computations which can be cached and reused.
Gradients with respect to mini-batches may also be used.
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Figure 3.3: Cost-adjusted variance (log-scale) for the various methods on the sin(x)999

function. GIS referes to the original greedy importance sampling approach and GIS-A the
extended version using the threshold acceptance function.

estimator (2.3) (see Newton and Raftery (1994)). The resulting estimator is consistent but

often has extremely high (or infinite) variance even when the MCMC chain is able to mix

efficiently. Despite extensive experimentation we were not able to find a parameter setting

for which the HM estimator was not able to produce even remotely accurate estimates for

d > 2. Ultimately, there are very few Monte Carlo approaches that can offer a fair com-

parison on integrands having both positive and negative values and, as a result, we consider

ACMS alongside the GIS and IS approaches only.

For these comparisons the AMCS approach was parameterized with a proposal density

π0 = π, Langevin Markov kernels with f = h, step-size ε = 0.03, and σ2 = 3E−5, and

symmetrizing and monotonic acceptance functions (with threshold ε = 0). Additionally, we

used the threshold acceptance functions using the squared 2-norm of the gradient vector,

that is f = ||∇h||2, and a threshold value of ε = 1E−15. For the GIS approach we used the

same step-size (ε = 0.03) and, for the GIS-A variant, the same acceptance function.

The relative performance of each of these methods, as the dimensionality of the problem

is increased, is plotted in Fig. 3.3. Again, we consider the cost-adjusted variance relative

to the vanilla importance sampling approach variance which uses direct Monte-Carlo sam-

pling from π (calculated analytically). The points plotted under the ’IS’ heading are those

computed through simulation and confirm the accuracy of the calculation and give some in-

dication of the statistical error for this simulation. As mentioned previously, the simulations

for the harmonic mean method were not informative as they were either off the chart where

too noisy to permit empirical evaluation. As for the GIS method, the results clearly indi-

cate that incorporating the threshold acceptance function (GIS-A) can lead to a significant

increase in performance and, in this example, yields up to a 150-fold improvement over

the original method. This is a welcome improvement since the original method performed
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much worse than even simple importance sampling especially as the dimensionality of the

integrand was increased. Ultimately, however, the AMCS approach is clearly the most ef-

fective approach for this task as it consistently outperformed all other approaches offering

up to an 8x improvement over direct sampling. Moreover, the relative performance of the

AMCS approach seemed to improve as the dimensionality of the intergrand was increased.

3.5.2 Bayesian k-mixture Model

In our next experiment we consider the task of approximating the normalization constant

(ζ), or model evidence, for a Bayesian k-mixture model. Specifically, we define a gener-

ative model with k uniformly weighted multivariate normal distributions in Rd with fixed

diagonal covariance matrices Σi = i
20I for i = {1, ..., k}. The unobserved latent variables

for this model are the means for each component µi ∈ Rd which are assumed to be drawn

from a multivariate normal prior with mean zero and identity covariance. Given n samples,

y1, ..., yn, from the true underlying model, the model evidence is defined as the integration

of the un-normalized posterior

ζ =

∫ n∏
i=1

L(µ1, ..., µk|yi)p(µ1, ..., µk)dµ1...dµk,

where the likelihood function is given by L(µ1, ..., µk|yi) =
∑k

j=1
1
kN (yi;µj ,Σj) and the

prior density the standard normal p(µ1, ..., µk) = N ([µ1, ..., µk]; 0, I), where [µ1, ..., µk]

denotes a dk-dimensional vector of “stacked” µi vectors. To use the same notation as

previous sections we may write π̂(x) =
∏n
i=1 L(x|yi)p(x), where x = [µ1, ..., µk].

For this task standard SMCS approaches can be applied in a straightforward man-

ner though they do require some preliminary parameter tuning. After some experimen-

tation we found that the AIS approach performed well with 150 annealing distributions

set using the “power of 4” heuristic suggested by Kuss and Rasmussen (2005), i.e. βi =

((150 − i)/150)4. Each annealing stage used 3 MCMC transitions, here we evaluate both

slice sampling Neal (2003) and Hamiltonian transitions Neal (2011). The Hamiltonian

moves were tuned to achieve a accept/reject rate of about 80% which resulted in a step-size

parameter of 0.003 and 5 leapfrog steps. Additionally, for AIS and the remaining methods

we use the prior as the proposal density, π0 = p, and the posterior as the target.

For AMCS we used Langevin local moves with monotonic, symmetrizing, and thresh-

old acceptance functions. For the Langevin moves we used a step-size parameter ε = 0.015

and σ2 = 3E−5 which, again, was set though some manual tuning. The threshold accep-

tance functions were configured using a preliminary sampling approach. In particular, let-
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ting f = π̂ we set the threshold parameter to a value that accepted roughly 1.5% of the data

points on a small sub-sample (2000 points). These points were not used in the final estimate

but in practice they can be incorporated without adverse effects. For the GIS approach we

used step-size parameter ε = 0.015, also, we experimented the modified version (GIS-A)

which used the same threshold acceptance function as the AMCS approach.

The results for this problem are shown in Fig. 3.4 as the number of “training” points (n),

the dimensionality of these points (d), and number of mixture components (k) are altered.

For each of these different settings the parameters for the sampling approaches remain fixed.

Simulations were run for a period of 8 hours for each method and each setting of d, n, and k

giving a total running time of 106 CPU days running on a cluster with 2.66GHz processors.

However, even in this time many of the methods were not able to return a meaningful

estimate after execution, these results are therefore omitted from the figure.

Looking at the relative variances plotted in Fig. 3.4 it is immediately clear from these

simulations that GIS (both variants) and AIS with Hamiltonian moves (AIS-HAM) are sim-

ply not effective for this task as they perform several orders of magnitude worse than even

vanilla IS. The AIS approach with slice sampling moves (AIS-SS) and the AMCS approach,

however, exhibit much more interesting behaviour. In particular, the experiments indicate

that AIS-SS can offer tremendous savings over vanilla IS (and sometimes AMCS) for higher

dimensional problems and problems with more training samples. However, this advantage

seems to comes at a price, as the method performed up to 10-20x worse than vanilla IS

in other cases, essentially where the posterior distribution was not so challenging for IS.

AMCS, on the other hand, was considerably more robust to changes in the target, since for

each setting it performed at least as well as vanilla importance sampling. Additionally, in

the more challenging settings it offered a considerable advantage over IS.

In summary, depending on the problem at hand, and the practitioner’s appetite for risk,

the most appropriate approach for this particular problem is either AMCS or AIS-SS. In

many cases however, the practitioner may be interested in a large set of potential problem

settings where it is not possible to determine which method, and parameter settings, are

most appropriate for each case. In such scenarios it may be worthwhile to consider an

adaptive algorithm to select from a set of fixed approaches automatically. In the remaining

chapters of this thesis we consider adaptive strategies precisely of this form.
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Figure 3.4: Cost-adjusted variance (log scale) for the different approaches on the Bayesian
k-means task. Missing data points are due to the fact that trials where the final estimate
(empirical mean) is incorrect by a factor of 2 or greater are automatically removed. From
left to right the three plots indicate performance on the same problem but with an increasing
number of observed training samples 15, 35, and 70 respectively.
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3.5.3 Problem 3: Robot Localization

Our final simulations are centered around the approximation of the normalization constant

for a Bayesian posterior for the (simulated) kidnapped robot problem (Thrun et al., 2005).

In this setting an autonomous robot is placed at an unknown location and must recover its

position using relative sensors, such as a laser range finder, and a known map. This poste-

rior distribution is notoriously difficult to work with when the sensors are highly accurate

since this produces a highly peaked distribution; a phenomenon referred to as the curse of

accurate sensors. Here, we assume the prior distribution over the robot’s (x,y) position and

orientation, denoted x ∈ R3, is a uniform distribution.

In our simulations the robot’s observations are akin to those produced by a laser range

finder returning distance measurements at n positions spaced evenly in a 360◦ field of view

(see Fig. 3.5). The sensor model for each individual sensor, that is, the likelihood of ob-

serving a measurement y given the true ray-traced distance from position x: d(x), is given

by the mixture L(y|d(x)) = 0.95N (y; d(x), σ2) + 0.05U(y; 0,M), where σ2 = 4cm and

the maximum ray length M = 25m.4 This sensor model is used commonly in the literature

(see Thrun et al. (2005)) and is meant to capture the noise inherent in laser measurements

(normal distribution) as well as moving obstacles or failed measurements (uniform distri-

bution). Given a set of observed measurements y1, ..., yn then, we have the un-normalized

posterior distribution π̂(x) =
∏n
i=1 L(yi|di(x))p(x), where p denotes the density of the

uniform prior.

The posterior distribution for a fixed observation and orientation are illustrated in Fig. 3.5,

the true robot position and laser measurements on the left and the log-likelihood on the right,

additionally a similar 3d plot was shown earlier in Fig. 3.1. These plots help to illustrate

the highly multimodal and peaked lanscape which poses challenges for standard integration

approaches. Additionally, the fact that integrand values require an expensive ray-tracing

procedure to compute underscores the importance of efficient sampling routines. Also, due

to the sharp map edges and properties of the observation model, the posterior distribution

is highly non-continuous and non-differentiable. This prevents the use of gradient-based

Markov transition (for AMCS and AIS) and severely limits the effectiveness of annealing

the target density.

Again, through some manual tuning we found that a suitable parameterization for AIS

was to use 100 annealing distributions each featuring 3 Metropolis-Hastings MCMC steps
4Measurements assume that the map (Fig. 3.5) is 10x10 meters.
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A

Figure 3.5: Left, the map used for the robot simulator with 6 different robot poses and
corresponding laser measurements (for n = 12). Right, a 2d image where %blue is pro-
portional to the log-likelihood function using the observations shown at position ’A’, here
pixel locations correspond to robot (x, y) position while the orientation remains fixed.

with proposal q(x, x′) = N (x′;x, σ2I) with σ2 = 4cm. For AMCS, we used the prior as

a proposal density, linear Markov kernels with v = [2cm, 2cm, 0.2cm] and σ2 = 2E−3cm

and threshold acceptance function with threshold set to be larger than 4% of points on a

2000 point sub-sample. For GIS, we used the same proposal, step-sizes, and (for GIS-A)

the same threshold acceptance function as AMCS.

The relative error rates for the different sampling approaches for 6 different positions

(see Fig. 3.5) and 3 different laser configurations, n = 12, 18, 24, are shown in Fig. 3.6.

Unlike the previous task, the results here are very straightforward and indicate that AMCS

consistently offers a 8-10x improvement over vanilla importance sampling. Again, the the

GIS approach can be significantly improved through the addition of threshold acceptance

functions but even so, it is only marginally better than vanilla IS. Lastly, it is clear from

these results that AIS is simply not an effective approach for this task as it is roughly 10x

less efficient than simple IS and 100x less efficient than AMCS. This is primarily due to the

fact that the unmodified proposal density has some reasonable chance of landing in or near

an integrand peak. Consequently, taking a large number of MCMC transitions is simply not

a cost-effective means to improving the proposal, this detail exacerbated by landscape of

the posterior distribution which inhibits efficient MCMC mixing.

3.5.4 Discussion

In this chapter we detailed the antithetic Markov chain sampling approach can be seen as

a unique way to extend the importance sampling (or antithetic variates) approach through
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Figure 3.6: Relative cost-adjusted variance for the different approaches on the robot lo-
calization task for 6 different positions (p) and 3 different laser configurations (n = #laser
readings).

the use of local Markov chains. The approach can be parameterized in a unique number of

ways to allow the sampler to exploit specific aspects of the target integrand such as differ-

entiability and the existence of local modes. The experimental comparisons in Section 3.5

demonstrate that the approach, when appropriately configured, can result in computational

savings that exceed the state of the art on non-trivial problems. Additionally, we previously

alluded to a handful of interesting limitations and potential extensions to this approach for

which we now elaborate.

One interesting shortcoming of the AMCS approach is the fact that when using Langevin

kernels the acceptance rates begin to drop off as the Markov chain approaches an optimum.

This effect is magnified as the dimensionality or curvature of the integrand is increased.

Upon closer examination we find that this effect results from a combination of two fac-

tors. First, low acceptance rates are an unavoidable consequence of the way gradient-based

moves concentrate around an optimum, said simply, the acceptance rate is essentially avoid-

ing “over counting” the integrand values within a given region. The second contributing

factor is related to the use of a fixed step size and variance in the Langevin moves. For ex-

ample, if we first consider a single transition toward an optimum, k+(x, x′), then consider

a transition in the other direction, k−(x′, x), we often find that the gradient is pointing in

a very different direction; which leads to a low acceptance rate. With this effect in mind,

one natural avenue for improvement is to adjust the step-size and variance of the Langevin

moves depending on the second derivative information of the target function. That is, if the
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gradient is changing very quickly the amount of noise and the step sizes should be adjusted

depending on the direction of change.

Perhaps the most critical limitation of the AMCS is the number of free parameters that

must be set by the practitioner before any sampling occurs. In the empirical evaluations of

this approach the parameters were tuned manually through the use of preliminary experi-

ments. Of course, in many settings it is either cost-prohibitive, or not possible, to have a

human in the loop when once the sampler is deployed. A more robust approach to parameter

tuning would be to adapt the parameters in an online fashion according to past simulations,

as is done in many of the adaptive approaches reviewed in Chapter 2. However, unlike

SMCS the AMCS does not utilize a population of samples at run time. While this is gen-

erally seen as a beneficial aspect it does preclude the ability to alter the parameters of the

algorithm using populations, as is done in both the population Monte Carlo and adaptive

SMCS approaches. However, the strategy taken by the online learning-based strategies used

in the adaptive stratified sampling approach of Carpentier and Munos (2011) hints at a more

suitable way of conducting adaptation in this space. Indeed, through the subsequent chap-

ters we explore ways in which multi-armed bandit methods can be used to adapt AMCS

and many other Monte Carlo integration methods.
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Chapter 4

Adaptive Monte Carlo via Bandit
Allocation

“My last piece of advice to the degenerate slot player who thinks he can beat the

one-armed bandit consists of four little words: ’It can’t be done.’ ”

– John Scarne

In the previous chapter we remarked that having some way of automatically tuning pa-

rameters would greatly improve the practical significance of the antithetic Markov chain

sampling approach. However, AMCS differs from many of the existing Monte Carlo ap-

proaches that enjoy adaptive counterparts, therefore formulating an adaptive scheme is more

involved. In particular, the AMCS formulation does not permit a straightforward expres-

sion for the variance of the estimator as does, for example, parametric importance sampling

(Eq. (2.4)). Additionally, the approach does not employ resampling strategies which pre-

vents one from adopting the techniques used in the sequential Monte Carlo literature. In

considering alternative approaches we observe that there are actually a number of existing

Monte Carlo approaches that are equally challenging to parameterize. As a result, in this

chapter, we explore a general strategy that can be used to construct adaptive variants for

many of these Monte Carlo methods.

Specifically, we consider an adaptive Monte Carlo framework, learning to select Monte

Carlo samplers, in which computation (samples) is allocated sequentially between a set of

unbiased Monte Carlo estimators with the goal of minimizing the expected squared error

(MSE) of a final combined estimate (Neufeld et al., 2014). Unlike many of the existing

adaptive Monte Carlo methods this method is not tied to any specific sampling approach

and can therefore be used to find not only the best parameter setting but the best underlying

Monte Carlo approach as well. In order effectively manage this sequential allocation we
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make use of techniques developed in the online learning literature, specifically stochastic

multi-armed bandit methods (Bubeck and Cesa-Bianchi, 2012; Cesa-Bianchi and Lugosi,

2006; Auer et al., 2002a). Indeed, the primary contribution of this chapter is a reduction of

this adaptive Monte Carlo formulation to the stochastic bandit setting. As a consequence,

existing bandit algorithms can be immediately applied to achieve new results for adap-

tive Monte Carlo estimation. In addition to providing a nontrivial practical advantage, these

strategies permit a broader theoretical analysis than traditional adaptive Monte Carlo strate-

gies which ultimately leads to strong finite-time performance guarantees.

This work is closely related, and complementary, to the work on adaptive stratified

sampling reviewed in Section 2.5, in which samples were allocated between fixed strata

to achieve MSE-regret bounds relative to the best allocation in hindsight. The method

proposed in this chapter, however, can be applied more broadly to any set of base estimation

strategies and potentially even in combination with these approaches. Before formalizing

the adaptive Monte Carlo problem setting we provide some background on the stochastic

multi-armed bandit setting which will set the stage for the subsequent developments.

4.1 Background on Bandit Problems

The multi-armed bandit (MAB) problem is a sequential allocation task where an agent must

choose an action1 at each step to maximize its long term payoff, when only the payoff of

the selected action can be observed (Cesa-Bianchi and Lugosi, 2006; Bubeck and Cesa-

Bianchi, 2012). In the stochastic MAB problem (Robbins, 1952) the payoff for each action

k ∈ {1, . . . ,K}2 is assumed to be generated independently and identically (i.i.d.) from a

fixed but unknown distribution νk. The performance of an allocation policy can then by

analyzed by defining the cumulative regret for any sequence of n actions, given by

Rn := max
1≤k≤K

E
[ n∑
t=1

Xk,t −
n∑
t=1

XIt,TIt (t)

]
, (4.1)

where Xk,t ∈ R is the random variable giving the t-th payoff of action k, It ∈ {1, . . . ,K}

denotes the action taken by the policy at time-step t, and Tk(t) :=
∑t

s=1 I{Is = k} denotes

the number of times action k is chosen by the policy up to time t. The objective of the agent

is to maximize the total payoff, or equivalently to minimize the cumulative regret. By
1Alternatively we may refer to the different actions as “arms”.
2To remain consistent with existing literature we deviate from our regular notation and denote the fixed

(non-random) number of arms with the uppercase K.
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rearranging (4.1) and conditioning, the regret can be rewritten

Rn =

K∑
k=1

E[Tk(n)](µ∗ − µk), (4.2)

where µk := E[Xk,t] and µ∗ := maxj=1,...,K µj .

The analysis of the stochastic MAB problem was pioneered by Lai and Robbins (1985)

who showed that, when the payoff distributions are defined by a single parameter, the

asymptotic regret of any sub-polynomially consistent policy (i.e., a policy that selects non-

optimal actions only sub-polynomially many times in the time horizon) is lower bounded

as Ω(log n). In particular, for Bernoulli payoffs we have

lim inf
n→∞

Rn
log n

≥
∑

k:∆k>0

∆k

KL(µk, µ∗)
, (4.3)

where ∆k := µ∗ − µk and KL (p, q) := p log(p/q) + (1 − p) log(1−p
1−q ) for p, q ∈ [0, 1].

In the same work Lai and Robbins also presented an algorithm based on upper confidence

bounds (UCB), which achieves a regret asymptotically matching the lower bound (for cer-

tain parametric distributions).

Later, Auer et al. (2002a) proposed UCB1 (Algorithm 5), which broadens the practical

application of UCB by dropping the requirement that payoff distributions fit a particular

parametric form. Instead, we need only make a weaker assumption that the rewards are

bounded; in particular, we let Xk,t ∈ [0, 1]. Auer et al. proved that, for any finite number

of actions n, UCB1’s regret is bounded by

Rn ≤
∑

k:∆k>0

8 log n

∆k
+
(

1 +
π2

3

)
∆k. (4.4)

Algorithm 5 UCB1 (Auer et al., 2002a)
1: for k ∈ {1, . . . ,K}
2: Play k, observe Xk,1, set µ̂k,1 := Xk,1; Tk(1) := 1.
3: end for
4: for t ∈ {K + 1,K + 2, . . .}
5: Play action k that maximizes µ̂j,t−1 +

√
2 log t
Tj(t−1) ; set Tk(t) = Tk(t − 1) + 1 and

Tj(t) = Tj(t − 1) for j 6= k, observe payoff Xk,Tk(t), and compute µ̂k,t = (1 −
1/Tk(t))µ̂k,t−1 +Xk,Tk(t)/Tk(t).

6: end for

Various improvements of the UCB1 algorithm have since been proposed. One approach

of particular interest is the UCB-V algorithm (Audibert et al., 2009), which takes the empir-

ical variances into account when constructing confidence bounds. Specifically, the UCB-V
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bound is given by

µ̂k,t +

√
2σ̂2

k,Tk(t−1)ETk(t−1),t

Tk(t− 1)
+ c

3ETk(t−1),t

Tk(t− 1)
, (4.5)

where σ̂2
k,s denote the sample variance of arm k after s samples, c > 0, and Es,t is an

exploration function required to be a non-decreasing function of s or t (typically Es,t =

γ log(t) for a fixed constant γ > 0). The UCB-V procedure can then be constructed by

substituting the above confidence bound into Algorithm 5, which yields a regret bound that

scales with the true variance of each arm

Rn ≤ cγ
∑

k:∆k>0

( σ2
k

∆k
+ 2
)

log n. (4.6)

Here cγ is a constant relating to γ and c and σ2
k = V(Xk,t). In the worst case, when

σ2
k = 1/4 and ∆k = 1/2, this bound is slightly worse than UCB1’s bound; however, it is

usually better in practice, particularly if some k has small ∆k and σ2
k.

A more recent algorithm is KL-UCB (Cappé et al., 2013), where the confidence bound

for arm k is based on solving

sup
{
µ : KL (µ̂k,t, µ) ≤ f(t)

Tk(t)

}
, (4.7)

for a chosen increasing function f(·), which can be solved efficiently since KL (p, ·) is

smooth and increasing on [p, 1]. By choosing f(t) = log(t) + 3 log log(t) for t ≥ 3 (and

f(1)=f(2)=f(3)), KL-UCB achieves a regret bound

Rn ≤
∑

k:∆k>0

( ∆k

KL (µk, µ∗)

)
log n+O(

√
log(n)), (4.8)

for n ≥ 3, with explicit constants for the “higher order” terms (Cappé et al., 2013, Corollary

1). Apart from the higher order terms, this bound matches the lower bound (4.3). In general,

KL-UCB is expected to be better than UCB-V except for large sample sizes and small

variances. Note that, given any set of UCB algorithms, one can apply the tightest upper

confidence from the set, via the union bound, at the price of a small additional constant in

the regret.

Another approach that has received significant recent interest is Thompson sampling (TS)

(Thompson, 1933): a Bayesian method where actions are chosen randomly in proportion

to the posterior probability that their mean payoff is optimal. TS is known to outperform

UCB-variants when payoffs are Bernoulli distributed (Chapelle and Li, 2011; May and
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Leslie, 2011). Indeed, the finite time regret of TS under Bernoulli payoff distributions

closely matches the lower bound (4.3) (Kaufmann et al., 2012):

Rn ≤ (1 + ε)
∑

k:∆k>0

∆k(log(n) + log log(n))

KL (µk, µ∗)
+ C(ε, µ1:K),

for every ε > 0, where C is a problem-dependant constant. However, in light of the non-

parametric characteristics of the previous bandit approaches the assumption on Bernoulli

distributed rewards seems quite strong; indeed not possible to have Bernoulli distributed

payoffs with the same mean and different variances. Fortunately, a more general version

of Thompson sampling can be formulated through a simple resampling step (Agrawal and

Goyal, 2012), this non-parametric Thompson sampling variant is given in Algorithm 6 and

has been shown to obtain

Rn ≤
( ∑
k:∆k>0

1

∆2
k

)2
log(n). (4.9)

Algorithm 6 Thompson Sampling (Agrawal and Goyal, 2012)
Require: Prior parameters α and β
Initialize: S1:K(0) := 0, F1:K(0) := 0
for t ∈ {1, 2, . . .}

Sample θt,k∼B(Sk(t−1)+α, Fk(t−1)+β), k = 1...K
Play k = arg maxj=1,...,K θt,j ; observe Xt ∈ [0, 1]

Sample X̂t ∼ Bernoulli(Xt)
if X̂t = 1 then set Sk(t) = Sk(t− 1) + 1 else set Fk(t) = Fk(t) + 1

end for

There are of course a large number of alternative bandit methods that we do not consider

in detail, each having unique advantages and limitations. More notable variants include the

UCB-tuned algorithm of Auer et al. (2002a) which can exploit knowledge of the variance in

a similar fashion to UCB-V, though this work did not include theoretical bounds it has been

shown to sometimes outperform UCB-V (Cappé et al., 2013). Another high-profile upper

confidence bound algorithm is the MOSS approach of Audibert and Bubeck (2010), which

exploits knowledge of the time horizon to tweak the standard UCB bound. This approach

is known to work well in practice and has much stronger theoretical guarantees.

4.2 Adaptive Monte Carlo Setup

We now formalize the general adaptive Monte Carlo setting. In particular, we assume

we are given a finite number of Monte Carlo samplers (arms) where each base sampler

k ∈ {1, ..,K} produces an i.i.d. sequence of real-valued random variables {Xk,t}(t=1,2,...)
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having the same unknown mean, that is, E[Xk] = µ. In practice, such samplers could

include any unbiased method and/or variance reduction technique, such as unique instanti-

ations of importance sampling, sequential Monte Carlo, antithetic variates, or control vari-

ates (Robert and Casella, 2005). Critically, we do not assume to have any prior knowl-

edge regarding the variance of each respective sampler. We assume also that drawing a

sample from each sampler takes constant time, hence the samplers differ only in terms of

how fast their respective sample means µ̂k,n = 1
n

∑n
t=1Xk,t converge to µ. The goal is

to design a sequential estimation procedure that works in discrete time steps: For each

round t = 1, 2, . . ., based on the previous observations, the procedure selects one sampler

It ∈ {1, . . . ,K}, whose observation is used by an outer procedure to update the estimate

µ̂t ∈ R based on the values observed so far.

As in the previous chapters, we will evaluate the accuracy of our final estimate using

the mean-squared error (MSE). That is, we define the loss of the sequential method A at

the end of round n by Ln(A) = E
[
(µ̂n − µ)2

]
. A reasonable goal is to then compare the

loss, Lk,n = E
[
(µ̂k,n − µ)2

]
, of each base sampler to the loss of A. In particular, we will

evaluate the performance of A by the (normalized) regret

Rn(A) = n2
(
Ln(A)− min

1≤k≤K
Lk,n

)
, (4.10)

which measures the loss of A with respect to the best possible estimator. Implicit in this

definition is the assumption that A’s time to select the next sampler is negligible compared

to the time to draw an observation. Note also that the excess loss is multiplied by n2, which

ensures that, in standard settings, when Lk,n ∝ 1/n, a sublinear regret (i.e., |Rn(A)|/n→

0 as n → ∞) implies that the loss of A asymptotically matches that of the best estimator.

Therefore, this normalization is meant to align the regret definition with regret notions

in other online problems (like bandits), where a sublinear regret means “learning”. Also

note that a sublinear bound on the regret then captures how fast Ln(A) −min1≤k≤K Lk,n

converges to zero.

In what follows we will adopt a simple strategy for combining the values returned from

the base samplers, specifically, that A returns the (unweighted) average of all samples as

the estimate µ̂n. A more sophisticated approach might be to weight each of these samples

inversely proportional to their respective (sample) variances. However, this approach is

prone to overweighting some estimators due to statistical errors in the sample variances.

Additionally, if the adaptive procedure can quickly identify and ignore highly suboptimal

arms the savings from the weighted estimator will diminish over time. Nonetheless, this
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weighting question come back into the fold when we consider extensions to this framework

as well as empirical studies; so much in fact, that we devote Chapter 6 entirely to better

understanding this issue.

4.3 Reduction to Stochastic Bandits

We now proceed with the technical analysis that will establish the equivalence between the

stochastic multi-armed bandit setting and the adaptive Monte Carlo setting described above.

Our main assumption in this section will be the following:

Assumption 4.1. Each sampler produces a sequence of i.i.d. random observations with

common mean µ and finite variance; values from different samplers are independent.

Let ψk denote the distribution of samples from sampler k. Note that Ψ = (ψk)1≤k≤K

completely determines the sequential estimation problem. Recalling that σ2
k = V(Xk) we

define σ2
k∗ := min1≤k≤K σ

2
k. Furthermore, since the sampled values are i.i.d. we observe

Lk,t = σ2
k/t, hence min1≤k≤K Lk,t = σ2

k∗/t. We may then state the first main result of this

chapter.

Theorem 4.1 (Regret Identity). Consider K samplers for which Assumption 4.1 holds,

and let A be an arbitrary allocation procedure. Then, for any n ≥ 1, the MSE-regret of

the estimation procedure Aavg, estimating µ using the sample-mean of the observations

obtained by A, satisfies

Rn(Aavg) =
K∑
k=1

E[Tk(n)] (σ2
k − σ2

k∗) . (4.11)

The proof is relatively straightforward and follows from a two key lemmas, which we

detail below. Recalling that It ∈ {1, . . . ,K} denotes the choice that A made at the be-

ginning of round t and that Tk(t) =
∑t

s=1 I{Is = k}. The observation at the end of

round t is Yt = XIt,TIt (t)
and the cumulative sum of returns after n rounds for arm k is

Sk,n =
∑Tk(n)

t=1 Xk,t. Likewise, Sn =
∑n

t=1 Yt =
∑K

k=1 Sk,n. By definition, the estimate

after n rounds is

µ̂n =
Sn
n

=
1

n

K∑
k=1

Sk,n .

Using these definitions we may now define Wald’s second identity, a key lemma that we

will use throughout the sequel.
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Lemma 4.1 (Wald’s Second Identity). Let (Xt)t∈N be a sequence of (Ft; t ≥ 1)-adapted

random variables such that E[Xt|Ft−1] = µ and E
[
(Xt − µ)2|Ft−1

]
= σ2 for any t ≥ 1.

Let Sn =
∑n

t=1Xt be the partial sum of the first n random variables (n ≥ 1) and τ > 0

be some stopping time w.r.t. (Ft; t ≥ 1).3 Then,

E
[
(Sτ − µτ)2

]
= σ2E[τ ] .

Proof. See Theorem 14.3 of (Gut, 2005).

The majority of the proof for Theorem 4.1, then, is covered by the following lemma.

Lemma 4.2. Given two separate sequences of random variables {Xi,1, ..., Xi,Ti(n)} and

{Xj,1, ..., Xj,Tj(n)} and stopping time Ti(n) and Tj(n) satisfying Lemma 4.1, provided

that E[X] = E[Y ] = µ it follows that:

E[(Sk,n − Tk(n)µ)(Sj,n − Tj(n)µ)] = 0

(the lemma ultimately follows from the conditional independence of the next observation

and the past decisions; the full proof is given in Appendix B.1)

We may now proof the theorem.

proof of Theorem 4.1. Using Lemma 4.2 and the fact that n =
∑K

k=1 Tk(n) we may then

write the loss for algorithm A as

Ln(A) =
1

n2
E

( K∑
k=1

Sk,n − nµ

)2


=
1

n2
E

 K∑
k=1

(Sk,n − Tk(n)µ)2 + 2
∑
k 6=j

(Sk,n − Tk(n)µ)(Sj,n − Tj(n)µ)


=

1

n2

K∑
k=1

E
[
(Sk,n − Tk(n)µ)2

]
.

From Lemma 4.1 we conclude E
[
(Sk,n − Tk(n)µ)2

]
= σ2

kE[Tk(n)] and thus get

Ln(A) =
1

n2

K∑
k=1

σ2
kE[Tk(n)] . (4.12)

Using the definition of the normalized MSE-regret and that min1≤k≤K Lk,n = σ2
k∗/n,

Rn(A) = n2

(
Ln(A)−

σ2
k∗

n

)
=

K∑
k=1

E[Tk(n)](σ2
k − σ2

k∗),

which concludes the proof.
3τ is called a stopping time w.r.t. (Ft; t ≥ 1) if {τ ≤ t} ∈ Ft for all t ≥ 1.
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The tight connection between sequential estimation and bandit problems revealed by (4.11)

allows one to reduce sequential estimation to the design of bandit strategies and vice versa.

Moreover, upper bounds on the regret for any bandit strategy transfer immediately (and vice

versa) as formalized by the following theorem.

Theorem 4.2 (Reduction). Let Assumption 4.1 hold for Ψ. Define a corresponding bandit

problem (νk) by assigning νk as the distribution of −X2
k,1. Given an arbitrary allocation

strategyA, let Bandit(A) be the bandit strategy that consultsA to select the next arm after

obtaining reward Yt (assumed nonpositive), based on feeding observations (−Yt)1/2 to A

and copying A’s choices. Then, the bandit-regret of Bandit(A) in bandit problem (νk) is

the same as the MSE-regret of A in estimation problem Ψ. Conversely, given an arbitrary

bandit strategy B, let MC(B) be the allocation strategy that consults B to select the next

sampler after observing −Y 2
t , based on feeding rewards Yt to B and copying B’s choices.

Then the MSE-regret of MC(B) in estimation problem Ψ is the same as the bandit-regret of

B in bandit problem (νk) (where MC(B) uses the average of observations as its estimate).

Proof. The result follows from Theorem 4.1 since σ2
k = E[X2

k,1]−µ2 and σ2
k∗ = E[X2

k∗,1]−

µ2 where k∗ is the lowest variance sampler, hence σ2
k−σ2

k∗ = E[X2
k,1]−min1≤k′≤K E[X2

k′,1].

Furthermore, the bandit problem (νk) ensures the regret of a procedure that chooses arm

k Tk(n) times is
∑K

k=1 E[Tk(n)]∆k, where ∆k = max1≤k′≤K E[−X2
k′,1] − E[−X2

k,1] =

σ2
k − σ2

k∗ .

More specifically, using Theorem 4.2 we can establish bounds on the MSE-regret for

the algorithms mentioned in Section 4.1.

Corollary 4.1 (MSE-Regret Upper Bounds). As a corollary to Theorem 4.2, if we let As-

sumption 4.1 hold for Ψ=(ψk) where (for simplicity) and assume each ψk is supported on

[0, 1]. Then, after n rounds, MC(B) achieves the MSE-Regret bound of: (4.4) when using

B = UCB1; (4.6) when using B = UCB-V with cζ = 10; (4.8) when using B = UCB-KL;

and (4.9) when using B=TS.4

Additionally, due to Theorem 4.2, one can also obtain bounds on the minimax MSE-

regret by exploiting the lower bound for bandits in (Auer et al., 2002b). In particular, the

UCB-based bandit algorithms above can all be shown to achieve the minimax rateO(
√
mn)

4 Note that to apply the regret bounds from Section 4.1, one has to feed the bandit algorithms with 1− Y 2
t

instead of −Y 2
t in Theorem 2. This modification has no effect on the regret.
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up to logarithmic factors, immediately implying that the minimax MSE-regret of MC(B)

for B ∈ {UCB1,UCB-V,KL-UCB} is of order Ln(MC(B))− L∗n = Õ(K1/2n−(1+ 1
2

)).5

Additionally, this theorem allows us to derive lower bounds for the Monte Carlo setting.

First, let V(ψ) denote the variance of X ∼ ψ and let V∗(Ψ) = min1≤k≤K V(ψk). For a

family F of distributions over the reals, let Dinf(ψ, v,F) = infψ′∈F :V(ψ′)<vD(ψ,ψ′),

where D(ψ, φ) =
∫

log dψ
dφ (x) dψ(x), if the Radon-Nikodym derivative dψ/dφ exists, and

∞ otherwise. Note thatDinf(ψ, v,F) measures how distinguishable ψ is from distributions

in F having smaller variance than v. Further, we let Rn(A,Ψ) denote the regret of A on

the estimation problem specified using the distributions Ψ.

Theorem 4.3 (MSE-Regret Lower Bound). Let F be the set of distributions supported on

[0, 1] and assume thatA allocates a subpolynomial fraction to suboptimal samplers for any

Ψ ∈ FK: i.e., EΨ[Tk(n)] =O(na) for all a > 0 and k such that V(ψk)>V∗(Ψ). Then,

for any Ψ∈F where not all variances are equal and 0<Dinf(ψk,V∗(Ψ),F)<∞ holds

whenever V(ψk)>V∗(Ψ), we have

lim inf
n→∞

Rn(A,Ψ)

log n
≥

∑
k:V(ψk)>V∗(Ψ)

V(ψk)− V∗(Ψ)

Dinf(ψk,V∗(Ψ),F)
.

Proof. The result follows from Theorem 4.2 and (Burnetas and Katehakis, 1996, Proposi-

tion 1).

In summary, these results establish the first finite-time upper bounds for general adap-

tive Monte Carlo algorithm which are a welcome improvement to the traditional asymptotic

analysis in this space. Additionally, the established matching (asymptotic) lower bounds,

which concretely establish the optimality of the given allocation algorithms, are a new addi-

tion to this space and are clearly much sharper than traditional lower bound results such as

Cramer-Rao. There is, however, one important caveat to these lower bounds which should

be made clear. Specifically, the general setup implicitly enforces the fact that we are not

able to “look inside” the sampler or the target integrand to gain any more insight into the

problem, this prevents techniques like adaptive importance sampling given in Section 2.2

from being considered. Additionally, the setup enforces a particular form of estimator,

namely the unweighted empirical average of all the samples. This constraint prevents many

other forms of estimation such as the class of linear unbiased estimators (weighted means)

or even so-called super-efficient estimators which are known to exist for these problems

(Lehmann and Casella, 1998).
5 Õ denotes the order up to logarithmic factors. To remove such factors one can exploit MOSS (Audibert

and Bubeck, 2010).
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4.4 Implementational Considerations

As mentioned, implicit in our regret definition is the assumption that the sequential alloca-

tion algorithm takes negligible time relative to a base sampler call. While this assumption

is likely to hold for the simpler UCB1 and UCB-V algorithms the KL-UCB and Thomp-

son sampling implementations both require non-trivial computation to make a decision.

Specifically, the KL-UCB algorithm requires K binary search operations to solve the op-

timization given in Eq. (4.7) and the Thompson sampling algorithm must draw a sample

from K unique beta distributions per step.

In light of these concerns one possible optimization is to modify the bandit algorithms

so that they only consider switching from the arm chosen the last time if the number of

samples from the chosen arm increased (1 + c)-fold, where c > 0 is a tuning parameter

(Abbasi-Yadkori et al., 2011). This has the effect that the bandit arm selection is called

only O(log(n)) times for n rounds, making the cost of the selection indeed negligible to

the cost of sampling as n gets large. The effect of using a larger value of c is to decrease

the overhead of the sequential procedure (a benefit), while the regret increases by a factor

of (1 + c). In practice, a popular choice is c ∈ (0.1, 0.2).

Also, the algorithms and bounds in Section 4.1 all assume the base samplers produce

samples in the range [0, 1] which may not be the case for arbitrary Monte Carlo samplers.

Naturally, these approaches may be applied by simply rescaling the sampled values, that is

supposing Xk,t ∈ [ak, bk] where ak < bk are a priori known, we define the rescaled values

X̃k,t = (Xk,t −mink ak)/(maxk bk −mink ak). We may then feed 1− X̃2
k,t to the bandit

algorithms which will not alter the regret beyond constant factors.

However, as these algorithms are designed to prepare for the “worst-case” they are

sensitive to the overestimation of the range, this mapping would therefore lead to an unnec-

essary deterioration of the performance. A better option is to scale each variable separately.

In this case the upper-confidence bound based algorithms must be modified by scaling each

of the rewards with respect to its own range and then the bounds needs to be scaled back to

the original range. Thus, the method that computes the reward upper bounds must be fed

with (bk−amin)2−(Xk,l−amin)2

(bk−amin)2
∈ [0, 1], where amin = min1≤k≤K ak. Then, if the method

returns an upper bound Bk,l, the bound to be used for selecting the best arm (which should

be an upper bound for −E
[
(Xk,t − amin)2

]
) should be B′k,t = (bk − amin)2(Bk,t − 1).

Here we exploit the property −E
[
(Xk,t − amin)2

]
= −E

[
X2
k,t

]
+ c where the constant

c = 2µamin − a2
min (which is neither known, nor needs to be known or estimated) is
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common to all the samplers, hence finding the arm that maximizes −E
[
(Xk,t − amin)2

]
is

equivalent to finding the arm that maximizes −E
[
X2
k,t

]
.

Since the confidence bounds will be looser if the range is larger, we thus see that the

algorithm may be sensitive to the ranges rk = bk − amin. In particular, the 1/n-term in

the bound used by UCB-V (Eq. (4.5)) will scale with r2
k and may dominate the bound for

smaller values of n. In fact, UCB-V needs n ≈ r2
k samples before this term becomes

negligible, which means that for such samplers, the upper confidence bound of UCB-V will

be above 1 for r2
k steps. Even if we crop the upper confidence bounds at 1, UCB-V will

keep using these arms with a large range rk defending against the possibility that the sample

variance crudely underestimates the true variance. Since the bound of KL-UCB is in the

range [0, 1], KL-UCB is less exposed to this problem.

Alternatively, we note that the assumption that the samples belong to a known bounded

interval is not strictly necessary (it was not used in the reduction results). In fact, the upper-

confidence based bandit algorithms mentioned can also be applied when the payoffs are

subgaussian with a known subgaussian coefficient or even if the tail is heavier (Bubeck

et al., 2011, 2013).6 In fact, the weaker assumptions under which the multi-armed bandit

problem with finitely many arms has been analyzed assumes only that the 1 + ε moment of

the payoff is finite for some known ε with a known moment bound (Bubeck et al., 2013).

These strategies must replace the sample means with more robust estimators and also mod-

ify the way the upper confidence bounds are calculated. In our setting, the condition on the

moment transfers to the assumption that the 2 + ε moment E
[
|Xk,t|2+ε

]
must be finite with

a known upper bound for some ε.

4.5 Experimental Evaluation

The reduction given in this chapter raises a number of questions that are best answered

through empirical study. Foremost is the question of which bandit methods are most effec-

tive for the adaptive Monte Carlo settings. While there are already a handful of empirical

studies present in the literature, a large majority of these have focused on the so-called

Bernoulli bandit setting; where the payoffs are assumed to be Bernoulli distributed. Inter-

estingly, such single-parameter distributions are not relevant to the adaptive Monte Carlo

context as the different arms cannot have identical means yet unique variances. This is an

important detail since stochastic bandit algorithms such as KL-UCB and TS are known to
6A centered random variable X is subgaussian if P(|X| ≥ t) ≤ c exp(−t2/(2σ2)) for all real t with some

c, σ > 0.
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perform considerably better than competing methods on these single-parameter distribu-

tions. We would like to examine whether this performance advantage translates to adaptive

Monte Carlo estimation or not.

A second question is how stochastic bandit methods compare to existing adaptive Monte

Carlo methods in practical settings. To provide some insight into this question, we consider

a popular financial option pricing task where one is provided with set of viable sampling dis-

tributions (proposals) and tasked with approximating an expectation as efficiently as possi-

ble. The performance of various bandit methods in choosing the best proposal is contrasted

with that of the d-kernel population Monte Carlo approach described in Section 2.2.1. Re-

call that this approach uses the cumulative importance weights for each sampling distribu-

tion as a heuristic for choosing the next sample. This approach makes for a straightforward

comparison since the computational cost of producing a single sample remains fixed for

all parameter settings. The same cannot be said for more sophisticated techniques such

as AMCS and SMCS where individual samples may have different (parameter-dependent)

computational costs.

4.5.1 2-Arm Synthetic Experiments

We first consider the performance of allocation strategies on a simple 2-arm problem.

Again, since single-parameter distributions cannot be used, our main interest is in how

the various bandit techniques compare across the possible payoff distributions. In particu-

lar, we consider a preliminary experimental analysis using three straightforward parametric

forms: uniform, truncated normal, and what we will call a scaled Bernoulli distributions.

The scaled Bernoulli distribution is parameterized by a mean µ and variance σ2 and de-

fined by the random variable X = µ + σZ, where Z is a Rademacher random variable.

Note that for σ2 = 1/4 this distribution recovers a p = 1/2 Bernoulli distribution. Also,

all distributions where parameterized so that they are defined over the same compact set:

(0, 1).

We evaluated the four bandit strategies detailed in Section 4.1: UCB1, UCB-V, KL-

UCB, and TS, where each algorithm was fed the rewards prescribed by Theorem 4.2, i.e.

−X2. For UCB-V we used the same settings as (Audibert et al., 2009), and for TS we used

the uniform Beta prior, i.e., α0 = 1 and β0 = 1. The regret curves with 99% empirical

percentiles are plotted in Fig. 4.1 for the setting where each distribution was set to the same

mean (µ = 0.5) and unique variances (σ2
1 = 0.02, σ2

2 = 0.06). As an answer to our primary

question we observe that, while there are subtle differences in these regret curves, for the
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Figure 4.1: The average regret for the different bandit approaches are shown (averaged
over 2000 runs) for uniform, truncated normal, and scaled Bernoulli “payout” distributions.
Error bars give the 99% empirical percentiles.

most part the shape of the distribution does not have a meaningful effect on the relative

performance of these four bandit algorithms. We note also that additional experiments (not

shown) using different variance parameterizations yielded similar results.

Considering the fact that the shape of the distribution does not have a strong influence

on relative performances we continue with our synthetic evaluations using only the scaled

Bernoulli distribution as this distribution permits the maximum range for variance around

a mean within a bounded interval. We now turn our attention to understanding how the

different approaches perform for different combinations of variances.

Specifically, we consider problem instances where the variance of the first distribution,

σ2
1 , is set to values in the range 2−i for i = 2 : 9 and the variance of the second arm

is set to σ2
2 = σ2

1 + ∆ for ∆ = 2−j and j = 2 : 9. Note that in order to ensure the

distributions produce samples in the bounded range (0, 1) the variance cannot exceed 1/4,

as a result there are some combinations of i and j that must be omitted, leaving 51 valid

combinations. The relative performance of the algorithms are illustrated in Fig. 4.2 for two

different time horizons, n = 5000 and n = 106.

From these simulations it is clear that the KL-UCB algorithm is particularly well suited

for short time horizons and more so when the variance of the optimal arm is small. However,

this advantage diminishes as more samples are accumulated and KL-UCB is eclipsed by ei-

ther Thompson sampling or UCB-V. The performance with respect to UCB-V is somewhat

surprising given both the strong asymptotic guarantees for KL-UCB as well as the simula-

tions results of Cappé et al. (2013) which indicated KL-UCB was far superior. However, the

empirical evaluations in this work considered only Bernoulli distributions with a couple dif-

ferent parameterizations and a time horizon of 104; evidently this does not tell the full story.

A second rather unexpected observation is that the UCB-V algorithm appears to be doing

well for rather high variance values on short time horizons, that is, the rightmost area in
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Figure 4.2: Top left:Tile plot indicating which approach achieved lowest regret (aver-
aged over 2000 runs) at time step 5000 in the 2-arm scaled Bernoulli setting. X-axis is
the variance of the first distribution, and Y-axis is the additional variance of the second
distribution. Top right: Plot illustrating the expected number of suboptimal selections for
the highlighted case (dashed red circle in top left plot). Error bars indicate 99% empirical
percentiles, Y-axis is log scale. Bottom left: Corresponding tile plot taken at time step 106.
Bottom right: Corresponding plot to for time horizon of 106, and for a different parameter
setting (dashed red circle in bottom left plot). Note that the X and Y axes are log scale.

top-left grid. However, on closer inspection it is revealed that these algorithms (even UCB)

had almost exactly the same regret curves for these settings and UCB-V just happened to

win by a trivial margin.

As a more general conclusion our results indicate that the Thompson sampling approach

is best suited when either distribution has high variance for both short and long time hori-

zons. Or, whenever there is a large difference between the arms. On the other hand, for

relatively low variance settings, and medium to long time horizons, it is clear that UCB-V

is the best choice of algorithm. In regards to the implications for Monte Carlo integration

we expect that in most cases Thompson sampling would be the most appropriate choice

since there if often a parameter choice that will lead to very high variance samples. In

such cases the UCB-V and KL-UCB algorithms do tend to take more time to dismiss these
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suboptimal arms.

4.5.2 Option Pricing

We next consider a more practical application of adaptive Monte Carlo estimation to the

problem of pricing financial instruments. In particular, following Douc et al. (2007b);

Arouna (2004), we consider the problem of pricing European call options for an asset

that appreciates according to a variable interest rate. Here we assume that the interest

rate evolves according to the Cox-Ingersoll-Ross (CIR) model Cox et al. (1985), a popular

model in mathematical finance.

In particular, in the CIR model the interest rate at time t, denoted r(t), follows a square-

root diffusion given by the stochastic differential equation

dr(t) = (η − κr(t))dt+ σ
√
r(t)dW (t),

where η, κ and σ are fixed, problem-specific, constants andW is a standard one-dimensional

Brownian motion. The payoff of an option for this rate at time t∗ (maturity) is given as

amax(r(t∗)− s, 0),

where the strike price s and nominee amount a are parameters of the option. The actual

quantify of interest, the price of an option at time 0, is given as

µ := E

[
exp(−

∫ t∗

0
r(t)dt)amax(r(t∗)− s, 0)

]
.

The above integrals may approximated with the Monte Carlo method by first discretizing

the interest rate trajectory, r(t), into m points R(1:m) by simulating

R(t) = R(t−1) + (η − κR(t−1))
t∗

m
+ σ

√
R(t−1)

t∗

m
εt,

where εt ∼ N (0, 1), and R(0) is given. Given a set of n sampled trajectories, R(1:m)
1:n , we

let

Xi := exp

(
− t
∗

m

(
R

(1)
i +R

(m)
i

2
+

m∑
t=1

R
(t)
i

))
amax(r

(m)
i − s, 0),

and approximate using µ̂ ≈ 1
n

∑n
i=1Xi.

An important detail is that the value of the option is exactly zero when the interest rate is

below the strike price at maturity. Consequently, when it comes to Monte Carlo simulation,

we are less interested in simulating trajectories with lower interest rates. A standard way

of exploiting this intuition is an importance sampling variant known as exponential twisting
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Figure 4.3: Top: Regret curves for the different adaptive strategies when estimating the
price of a European caplet option at different strike prices (s). Error bars are 99% empir-
ical percentiles. The dashed line is an exception and gives the MSE-Regret of the Rao-
Blackwellized PMC estimator with error bars delineating 2-standard error. Bottom: Bar
graphs showing the variance of each sampler (each θi-value) normalized by the variance
best sampler in the set: yi = V(µ̂θi) /minj V

(
µ̂θj
)
.

(see Glasserman (2003)). In this approach, rather than sampling the noise εt directly from

the target density, N (0, 1), we use a skewed proposal density, N (θ, 1), defined by a single

drift parameter, θ ∈ R. Deriving the importance weights, wi := exp
{
mθ2

2 − θ
∑m

t=1 ε
(t)
i

}
,

then, we arrive at the unbiased approximation µ̂θ := 1
n

∑n
i=1wiXi.

Of course, the next question for any practitioner is how to choose the drift parameter

θ. In order to automate this choice we consider strategies which select the proposal using

a discretized set of parameters, specifically θj = j/10 for j = 1 : 15. In addition to

evaluating the multi-armed bandit strategies detailed in this chapter we also consider the

simple population Monte Carlo (PMC) approach suggested by Douc et al. (2007b). Recall,

as detailed in Section 2.2.1, the PMC approach selects proposal densities according to the

cumulative importance weights for each proposal. We experimented with option prices

under the same parameter settings as (Douc et al., 2007b), namely, ν = 0.016, κ = 0.2,

R0 = 0.08, t∗ = 1, a = 1000, σ = 0.02, and n = 100, for different strike prices s =

{0.07, 0.08, 0.09}. However, we consider a wider set of proposals given by θk = k/10

for k∈{0, 1, ..., 15}. For the bandit methods we used the same configuration as we did in

Section 4.5.1 and for PMC we used a population size of n = 25000 and m = 10 sampling

stages. The results, averaged over 10000 simulations, are given in Figure 4.3.

These results indicate Thompson sampling approach is significantly more effective than
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the other bandit approaches for this task. Indeed it was the only method that was able to

consistently outperform the PMC approach. The performance of the PMC approach is

summarized by two curves on each plot; the solid line showing the regret (Eq. (4.10)) of the

PMC estimator if it were to be used as a bandit approach, where arms are selected using the

resampling heuristic. Alternatively, the dashed line shows the regret of what the authors call

the “Rao-Blackwellized” estimator which calculates the importance weights using mixture

density over all θ (see Eq. (2.5)). Note that this latter estimator is exploiting domain-specific

knowledge that the bandit approaches do not, which essentially allows it to choose actions

from a much larger (continuous) space. Again, it is interesting that the allocations produced

by Thompson sampling where superior to the extent that they were able to overcome the

advantages of PMC.

Despite this strong showing for the bandit methods, PMC remains surprisingly com-

petitive at this task, doing uniformly better than UCB, and taking a close second for the

s = 0.09 case. From the variance spectrum shown in the bottom bar graphs it seems

that the effectiveness of the PMC approach can be at least partly attributed to its ability to

quickly dismiss the highly sub-optimal samplers. This being said, one should be cautious

of empirical findings of this sort – especially in the absence of theoretical results – since

they can indicate the algorithm is over-exploitive, that is, prone to (unluckily) dismissing

the optimal sampler too soon. Since this situation results in large regret but occurs very

rarely it can be difficult to demonstrate empirically.

4.6 Discussion

In this chapter we have described a general formulation for adaptive Monte Carlo algo-

rithms and subsequently demonstrated that this formulation reduces to the classic stochastic

multi-armed bandit formulation. As direct result of this reduction, we immediately have at

our disposal a myriad of adaptive approaches many of which enjoy strong finite-time per-

formance guarantees. Further, this reduction permits the application of existing hardness

results in the form of asymptotic lower bounds which establishes the optimality of these

approaches. From empirical study of the various bandit approaches we have uncovered

evidence that each of the tested bandit methods (with the exception of UCB) has its own

merits. In particular, KL-UCB is most suitable for short time horizons, UCB-V for low

variance settings, and Thompson sampling for high variance setting or setting with highly

suboptimal arms. Lastly, our empirical evaluations on the financial pricing example demon-
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strates that the bandit approaches, Thompson sampling in particular, are competitive with

state of the art adaptive Monte Carlo approaches (PMC) despite the fact that they require

far less a priori domain knowledge.

Going forward, perhaps the most critical limitation of this bandit formulation is that

it does not support adaptation between more sophisticated Monte Carlo methods such as

sequential Monte Carlo sampling and antithetic Markov chain sampling. This is due to

the assumption that the computational cost of drawing samples from each base sampler

(parameterization) is both deterministic and constant amongst all samplers. In the next

chapter we address this limitation directly and extend this framework to the stochastic non-

uniform cost setting.

Another interesting avenue for future research, which we unfortunately do not explore

in more detail in this thesis, surrounds settings where the agent may take actions on a

continuous range. This general stochastic optimization setting houses a number of power-

ful approaches with some bearing a close resemblance to the methods we considered thus

far such as Bayesian optimization routines (Lizzote, 2008) or confidence bound based ap-

proaches (Bubeck et al., 2011). In particular, in the adaptive importance sampling example

we considered in Section 4.5.2 one may consider actions defined on the 16-dimensional

simplex defining mixture distributions (like PMC does) as opposed to only the corners. In

fact, in this example the objective function is even continuously differentiable and convex

and, as a result, standard local stochastic optimization approaches might perform quite well.

Additionally, in both the discrete and continuous action settings there exists the long-

standing challenging ensuring all possible actions correspond to unbiased samplers; Or,

said differently, that all proposal densities have a support that overlaps that of the target

density. As mentioned in Section 2.2, the standard approach to ensuring full support is de-

fensive sampling, where one enforces sampling from a heavy tailed distribution with fixed

probability. In many ways this approach is akin the ε-greedy bandit approach and shares

many of the main challenges. In particular, this approach will result in slow initial explo-

ration of the integrand as well as unnecessary exploration in later stages unless the rate of

defensive sampling is carefully managed. One potentially robust approach to managing this

exploration might be borrowed from the work on partial monitoring; a multi-armed bandit

variation where the rewards (variances) for selected actions are not necessarily observed

when taking that action. As a result, in this setting, it is often necessary to execute a second

(exploratory) action in order to gather the information necessary to evaluate the first. In

a way this is analogous to sampling from a heavy tailed distribution as these samples can
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actually be used to construct an unbiased estimate for the variance any proposal density.
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Chapter 5

Adaptive Monte Carlo with
Non-Uniform Costs

“Don’t think – use the computer.”

– George Dyke

In this chapter we extend the learning to combine Monte Carlo estimators framework

introduced in Chapter 4 to the setting when the base samplers can take different (possible

stochastic) amounts of time to generate observations. Our main aim in formulating such an

extension is to provide support for more sophisticated Monte Carlo sampling approaches,

such as AMCS or SMCS. However, as an added bonus, we note that this general framework

is also applicable to numerous other sampling applications. For instance, tuning a rejection

sampler is mainly a question of finding parameters that minimize the computational costs,

i.e. rejection rate, as opposed to minimizing variance. Additionally, efficient distributed

computation over multiple machines in a cluster or data center has become an increas-

ingly important aspect of modern Monte Carlo implementations. Interestingly, hardware

differences or uneven resource competition amongst instances may cause Monte Carlo im-

plementations to perform differently across the system. The adaptive framework presented

in this chapter is capable of observing these subtle differences and tuning the sampling

approaches accordingly, therefore improving the performance and robustness of the entire

system.

Naturally, the introduction of unique and randomized sampler computation times, which

we refer to as non-uniform costs, requires a different regret formulation than the one used

in Chapter 4. The framework that we present here follows the basic intuition that, if an

sampler takes more time to produce an observation, it is less useful than another sampler

that produces observations with, say, identical variance but in less time. Critically, as with
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the variances, we do not assume to know the costs associated with each sampler beforehand

and they must therefore be approximated online. In particular, any multi-armed bandit

strategies one might hope to deploy in this setting must take into account the uncertainty

of the variance estimate of each sampler as well as the estimate of the computational costs.

Fortunately, as with the previous chapter, we show how a straightforward transformation of

the payoffs (costs and samples) permits the direct application of existing stochastic bandit

algorithms to this task. We note that some of the work presented in this chapter can be

found in the original paper of Neufeld et al. (2014).

5.1 Non-Uniform Cost Formulation

To develop an appropriate notion of regret for this new setting we first introduce some ad-

ditional notation. In particular, let Dk,m ∈ R+ denote the time needed by sampler k to pro-

duce itsm-th sample, Xk,m. As before, we let Im∈{1, . . . , k} denote the index of the sam-

pler that our allocation algorithmA chooses in roundm, and let Tk(m) =
∑m

s=1 I{Is = k}

denote the number of samples drawn from k at round m. Let Jm denote the time after A

observes the m-th sample, Ym =XIm,TIm (m), and cost, Dm =DIm,TIm (m); that is, J0 = 0,

Jm =
∑m

s=1DIs,TIs (s). We let N(t) =
∑∞

s=0 I{Js ≤ t} denote the round number at time

t ∈ R+ and note that N(t) > 0 for all t ≥ 0.

We assume that A “receives” the m-th sample immediately at the start of round m and

instantaneously updates it estimate. That is, we let µ̂(t) =
∑N(t)

i=1 Yi denote the estimate

available at time t. Thus round m starts at time Jm−1, with A choosing an sampler and

receiving an observation, and finishes at time Jm. The fact that the algorithm instanta-

neously observes a new sample after selecting a sampler is a small stretch since, in practice,

a Monte Carlo sampler will not actually return a result until it has finished execution. How-

ever, this assumption greatly simplifies the following analysis and since the effects of this

discrepancy are negligible at any sensible time horizon (where Dk << t). The MSE of the

estimator used by A at time t ≥ 0 is

L(A, t) = E
[
(µ̂(t)− µ)2

]
.

By comparison, the estimate given by a single sampler k at time t is µ̂k(t) =
∑Nk(t)
m=1 Xk,m
Nk(t) ,

where Nk(t) = 1 on [0, Dk), Nk(t) = 2 on [Dk, Dk + Dk,2), etc. Thus, at time t ≥ 0 the

MSE of the estimator for sampler k is

Lk(t) = E
[
(µ̂k(t)− µ)2

]
.
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Given these definitions, it is natural to define the regret as

R(A, t) = t2
(
L(A, t)− min

1≤k≤K
Lk(t)

)
. (5.1)

As before, the t2 scaling is chosen so that, under the condition that Lk(t) ∝ 1/t, a sublinear

regret implies that A is “learning”. Note that this definition generalizes the definition in

Chapter 4, that is, if Dk,m = 1∀k, m, then Rn(A) = R(A, n). In what follows we will

make use of the following assumption.

Assumption 5.1. For each k, (Xk,m, Dk,m)(m=1,2,...) is an i.i.d. sequence such that E[Xk]=

µ, σ2
k :=V(Xk)<∞, Dk> 0 and δk :=E[Dk]<∞. Furthermore, we assume that the se-

quences for different k are independent of each other.

Note that Assumption 5.1 allows for the case where (Xk,m, Dk,m) are dependent in

which case µ̂k(t) may be a biased estimate of µ. However, if (Xk,m)m and (Dk,m)m are in-

dependent and P(Nk(t)>1)=1 then µ̂k(t) is unbiased. Indeed, in such a case, (Nk(t))t is

independent of the partial sums {
∑n

s=1Xk,s}1≤k≤m), hence E[µ̂k(t)] = E
[∑Nk(t)

s=1 Xk,s
Nk(t)

]
=∑∞

n=1 P(Nk(t)=n)E
[∑n

s=1Xk,s
n

∣∣∣Nk(t)=n
]

= µ. Unfortunately, the same cannot be said

of the estimator µ̂(t) which can be shown to be biased through a simple counter example. In

particular, if we consider the 2-arm setting with deterministic costs D1 = 1 and D2 = t+ 1

we can see that arm 2 can be chosen at any time to effectively stop the sampling at will.

In this case the problem reduces to the classic Chow-Robbins game (Chow and Robbins,

1963), a setting for which bias-maximizing polices are known to exist.

One complication with the regret formulation in Eq. (5.1) is that it is not immediately

obvious how to solve for k∗ := arg min1≤k≤K Lk(t); indeed k∗ may be different for each

setting of t. In order to introduce some consistency we consider this optimization in the

case where t is sufficiently large. In particular, it follows from the elementary renewal

theorem for renewal reward processes (Cox et al., 1962) that Lk(t) ∼
σ2
k/δk

t(1/δk)2
=

σ2
kδk
t ,

where f(t)∼g(t) means limt→∞ f(t)/g(t) = 1. Intuitively, sampler k will produce ap-

proximately t/δk independent observations during [0, t), hence the variance of µ̂k(t) is

approximately σ2
k/(t/δk). As a result, we conclude that for large enough t any allocation

strategy A should draw most of its observations from k satisfying δkσ2
k = δk∗σ

2
k∗ , where

k∗ :=arg min1≤k≤Kδkσ
2
k.

As before, we would like a straightforward way to transform the samples and costs

so as to facilitate the application of existing sequential allocation algorithms. First, we

observe that it is no longer sufficient to use the negative second moment −X2
k in place of
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variance since our objective δkσ2
k = δk(E

[
X2
k

]
− µ2) involves the unknown expectation µ.

Fortunately, this complication can be bypassed by through the observation that

E
[

1

2
(Xk,m −Xk,m+1)2

]
= σ2

k,

which follows from the independence beween samples (Assumption 5.1). As a result, at

any round m we can define the bandit payoff for sampler k using two independent draws:

Yk,m=−1
4(Dk,2m+Dk,2m+1)(Xk,2m−Xk,2m+1)2, (5.2)

where it follows that E[Yk,m] = −δkσ2
k provided Dk,m and Xk,m are independent. In the

event that this independence does not hold we can instead use a third sample to estimate the

costs:

Yk,m=−1
2Dk,3m(Xk,3m+1−Xk,3m+2)2, (5.3)

which achieves the desired expectation. Our strategy then, is to feed a stochastic bandit

algorithm with the sequence of rewards (Y1, Y2, ...), until the computation budget has been

exhausted; recall we do not assume to know this budget beforehand. In this setup we

can conclude from the theoretical properties of these allocation algorithms that we will

draw samples from the best sampler exponentially more often than any suboptimal sampler

(on expectation). We draw more precise conclusions about the finite time regret of such

strategies in the next section.

5.2 Bounding the MSE-Regret

Given that the number of suboptimal action made by any particular stochastic bandit algo-

rithms can often be bounded from above (in expectation or with high probability), our aim

here will be to upper bound regret of any allocation strategy as a function of the number of

suboptimal actions. The main theorem describing this bound is given below.

Theorem 5.1. Let Assumption 5.1 hold and assume that Xk are bounded and k∗ is unique.

Let the estimate of A at time t be defined by the sample mean µ̂(t). Additionally, assume

that for any k 6= k∗, E[Tk(N(t))]≤ f(t) for some f : (0,∞)→ [1,∞) where f(t) ≤ Cf t

for some Cf > 0. Assume further that P(Dk>s) ≤ CDs−2 for all s > 0. Then, for any

c<
√
t/(4δmax) where δmax =maxk δk, the regret of A at time t is bounded by

R(A, t) ≤
(

3δk∗c
√
δmax + δk∗ + CD

)
σ2
k∗
√
t+ C ′f(t)

+ C ′′′t2P
(
Nk∗(t) > E[Nk∗(t)] + c

√
E[Nk∗(t)]

)
+ C ′′′′t2P

(
N(t) < E[N(t)]− c

√
E[N(t)]

)
, (5.4)
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for some appropriate constants C ′, C ′′′, C ′′′′ > 0 that depend on the problem parameters

δk, σ
2
k, the upper bound on |Xk,m|, and the constants Cf and CD.

We delay the discussion this bound until after we finish the proof, which follows from

a series of three lemmas. However, going forward the reader should be aware of one signif-

icant aspect of this bound, in particular, the appearance of a O(
√
t) term that is irrespective

of the number of suboptimal pulls. This, as we will see, is a rather unfortunate consequence

of stochastic costs and can ultimately be traced back to the first key lemma which we state

below. Additionally, the condition that the number of samples Nk(t) concentrates about its

mean is not easily enforced for many stochastic allocation algorithms, such as Thompson

sampling, and requires carefully tuning exploration rates for standard approaches, such as

UCB and UCB-V.

Lemma 5.1. Let S,N be random variables, where N > 0 and let µ ∈ R. Let D =(
S
N − µ

)
, and E

[
N4
]
< ∞. Let d ∈ R be an almost sure upper bound on |D|, then, for

any c ≥ 0,

E
[
D2
]
≤

E
[
(S −Nµ)2

]
E[N ]2

(
1 +

2c√
E[N ]

)2

+ d2
[
P
(
N < E[N ]− c

√
E[N ]

)
+ I{E[N ] < 4c2}

]
. (5.5)

Additionally, we have the lower bound

E
[
D2
]
≥

E
[
(S −Nµ)2

]
E[N ]2

(
1− 2c√

E[N ]

)

− d2

√
E[N4]

E[N ]2
P
(
N > E[N ] + c

√
E[N ]

)
. (5.6)

(The proof exploits properties relating to N concentrating about its mean; full proof given

in Appendix C.1)

This lemma is will be used in bounding the losses L(A, t) and Lk(t) since either can

written as expression with the same form as D. This result is useful when N concentrates

about its mean at roughly aO(
√
t) rate, which we generally expect for the sum of a i.i.d. se-

quence. That is, we expect P
(
N < E[N ]− C

√
E[N ] log(1/δ)

)
≤ δ with some numerical

constant C. Thus, setting c = C
√

log(1/δ) results in

d2
[
P
(
N < E[N ]− c

√
E[N ]

)
+ I{E[N ] < 4c2}

]
≤ d2δ + d2I{E[N ] < 4C2 log(1/δ)}.

Suppose that E[N ] = rt and choose δ = t−q with q > 0, which ensures that the entire

expression Eq. (5.4) is O(
√

(t)). Then, as soon as rt > 4C2
√
q log(t), the last indicator
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of (5.5) becomes zero. Further, since 2c√
E[N ]

=

√
2q log(t)

rt converges to zero at a 1/
√
t rate

one would therefore choose q ≥ 3/2 to ensure the d2 terms converge at the same rate as the

leading term.

We now turn our attention toward bounding the main term E
[
(S −Nµ)2

]
/E[N ]2. In

order to upper bound the regret given Eq. (5.1), we will require an upper bound on L(A, t)

and a lower bound onLk∗(t), we proceed first with this lower bound for which the following

lemma will be used.

Lemma 5.2. Let Assumption 5.1 hold and assume that the random variables |Xk,m−µ|k,m
are a.s. bounded by some constant B > 0. We consider the case where an individual

sampler k ∈ {1, . . . ,K} is used up to time t: lettingNk(t) be the smallest integer such that∑Nk(t)
m=1 Dk,m ≥ t and Sk(t) =

∑Nk(t)
m=1 Xk,m. Then, for any t ≥ 0 we have Nk > 0, also

we define constant β > 0 such that P(Dk ≤ β) > 0,

E
[
(Sk(t)−Nk(t))µ)2

]
E[Nk(t)]

2 ≥
σ2
kδk

t+ β
−
σ2
kE[DkI{Dk > β}]

t+ β
(5.7)

and

t

δk
≤ E[Nk(t)] ≤

t+ β

δk − E[DkI{Dk > β}]
, (5.8)

(proof makes use of Wald’s second identity (Lemma 4.1); full proof is given in Appendix C.2)

The lemma makes use of a high probability upper bound (β) on the costs which may

need to be chosen with some care. If the random variables (Dk,m) are a.s. bounded by

a constant, we can simply choose β to be their common upper bound to cancel the third

term of (5.7). Otherwise, we can make use of the assumptions in Theorem 5.1, namely

P(Dk > s) ≤ CDs−2. Specifically, we observe

E[DkI{Dk > β}] =

∫ ∞
0

P(DkI{Dk > β} > y) dy

=

∫ β

0
P(DkI{Dk > β} > y) dy +

∫ ∞
β

P(DkI{Dk > β} > y) dy

≤
∫ ∞
β

CDy
−2dy =

CD
β
. (5.9)

We may then choose β =
√
t which ensures the overal contribution of the third term in

Eq. (5.7) will be negligible and that the r.h.s of this expression is Ω(t−1). We now present

a similar lemma which we will be used to bound L(A, t) from above assuming we have an

upper bound on the expected number of suboptimal actions.
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Lemma 5.3. Let Assumption 5.1 hold and assume that the random variables |Xk,m −

µ|k,m are a.s. bounded by some constant B > 0. We consider the case where A se-

quentially chooses samplers up to time t: letting N(t) be the smallest integer such that∑N(t)
m=1DIm,TIm (m) ≥ t and S(t) =

∑N(t)
m=1 Ym. Additionally, assume that t is large enough

to ensure k∗ = arg min1≤k≤KLk(t) = arg min1≤k≤Kδkσ
2
k, and that k∗ is unique. Let

f(s) ≥ E[Tk(N(s))] for s ≥ 0 and 1 ≤ k ≤ K, Then,

E
[
(S(t)−N(t)µ)2

]
E[N(t)]2

≤
δk∗σ

2
k∗

t
+
C ′f(t)

t2
+
C ′′f(t)2

t3
(5.10)

for some constants C ′, C ′′ > 0 that depend only on the problem parameters δk, σ2
k, Fur-

thermore,

E[N(t)] ≥ t

δmax
. (5.11)

(The proof for Eq. (5.10) is similar to the proof of Theorem 4.1 and Eq. (5.11) follows in

much the same way as Eq. (5.7); the full proof is given in Appendix C.3)

We may now prove the main theorem.

Proof of Theorem 5.1. We can use Eq. (5.6) in conjunction with Lemma 5.2 and Lemma 5.3

to bound the difference between the loss of A and that of the best arm. Defining λ∗(β) :=

E[Dk∗I{Dk∗ > β}] we observe

L(A, t)− Lk∗(t) ≤
E
[
(S(t)−N(t)µ)2

]
E[N(t)]2

(
1 +

2c√
E[N(t)]

)2

−
E
[
(Sk∗(t)−Nk∗(t)µ)2

]
E[Nk∗(t)]

2

(
1− 2c√

E[Nk∗(t)]

)

≤
(
δk∗σ

2
k∗

t
+
C ′f(t)

t2
+
C ′′f(t)2

t3

)(
1 +

2c
√
δmax√
t

)2

−
(
δk∗σ

2
k∗

t+ β
−
σ2
k∗λ
∗(β)

t

) (
1− c

√
δk∗√
t

)
=

(
δk∗σ

2
k∗

t
+
C ′f(t)

t2
+
C ′′f(t)2

t3

)(
1 +

2c
√
δmax√
t

+
4c2δmax

t

)
−
(
δk∗σ

2
k∗

t+ β
−
σ2
k∗λ
∗(β)

t

) (
1− c

√
δk∗√
t

)
≤
β δk∗σ

2
k∗

t(t+ β)
+

3δk∗σ
2
k∗c
√
δmax

t3/2
+
C ′f(t)

t2
+
C ′′f(t)2

t3
+
σ2
k∗λ
∗(β)

t

≤
β δk∗σ

2
k∗

t(t+ β)
+

3δk∗σ
2
k∗c
√
δmax

t3/2
+

(C ′ + C ′′Cf )f(t)

t2
+
σ2
k∗λ
∗(β)

t
,

where we absorbed some lower order terms, O( f(t)

t5/2
) and O(f(t)2

t7/2
), into the constants C ′

and C ′′. Recall also that either λ∗(β) = 0 and β = B (if Dk∗ < B a.s.) or λ∗(β) ≤ CD
β
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and β =
√
t. Assuming only latter condition we then have

L(A, t)− Lk∗(t) ≤
C

t3/2
+
C ′f(t)

t2
(5.12)

for C = 3δk∗σ
2
k∗(c
√
δmax + 1/3) + σ2

k∗CD and C ′ redefined to absorb C ′′Cf .

It remains only to modify the trailing terms given in Lemma 5.1, first we see that the

terms in Eq. (5.6) become C ′′′t−2
√
E[Nk∗(t)4]P

(
Nk∗(t) > E[Nk∗(t)] + c

√
E[Nk∗(t)]

)
.

Since E[N(t)] ≥ t/δmax, the indicator Eq. (5.5) is bounded as I{E[N(t)] < 4c2} ≤

I{t < 4δmaxc
2} which is zero since by assumption c <

√
t/(4δmax). Adding these terms

into Eq. (5.12) and multiplying by t2 as per the regret definition Eq. (5.1) concludes the

proof.

5.2.1 Discussion

In general the results of Theorem 5.1 are promising and allow us to conclude that our reduc-

tion from the non-uniform cost setting to the stochastic bandit setting will result in a O(
√
t)

regret up to logarithmic factors (see below). To obtain such a rate, one need only achieve

f(t) = O(
√
t), which can be attained by stochastic or even adversarial bandit algorithms

(Auer et al., 2002b) receiving rewards with expectation −δkσ2
k and a well-concentrated

number of samples. The tail assumptions on the cost distribution (P(Dk > s) ≤ s−2) is

also not restrictive; for example, if the estimators are rejection samplers, their sampling

times will have a geometric distribution that easily satisfies the polynomial tail condition.

Lastly, this result is consistent with the known O(
√
t) regret bound for the related bandits

with knapsacks domain which has a similar (more general) construction (see Badanidiyuru

et al. (2013)).

Note, however, that ensuring E[Tk(N(t))]≤f(t) can be nontrivial. Typical guarantees

for UCB-type algorithms ensure that the expected number of pulls to a suboptimal arm k in

n rounds is bounded by a function gk(n). However, due to their dependence, E[Tk(N(t))]

cannot generally be bounded by gk(E[N(t)]). Nevertheless, if we have that Dk,m ≥ δ−

for some δ− > 0, then N(t) ≤ t/δ−, hence fk(t) = gk(t/δ
−) can be used. This condition

will be satisfied in practice since there will always be some constant overhead to executing

a Monte Carlo sampler.

Finally, as mentioned perviously we need to ensure that the trailing terms (5.4) re-

main small, which follows if N(t) and Nk∗(t) concentrate around their means. In general,

P
(
N<E[N ]−C

√
E[N ] log(1/δ)

)
≤ δ for some constant C, therefore c=C

√
log(1/δ)

can be chosen to achieve t2P
(
N<E[N ]−c

√
E[N ]

)
≤ t2δ, hence by chosing δ to be
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O(t−3/2) we achieve Õ(
√
t) regret, where Õ hides the new logarithmic factors introduced

by c. Additionally, in order to ensure concentration the allocation strategy must also se-

lect the optimal estimator most of the time. For example, Audibert et al. (2009) show that

with default parameters, UCB1 and UCB-V will select suboptimal arms with probability

Ω(1/n), making t2P
(
N < E[N ]− c

√
E[N ]

)
= Ω(t). However, by increasing the con-

stant 2 in UCB1 and the parameter ζ in UCB-V, it follows from (Audibert et al., 2009) that

the chance of using any suboptimal arm more than c log(t)
√
t times can be made smaller

than c/t (where c is some problem-dependent constant). Outside of this small probability

event, the optimal arm is used t−cK log(t)
√
t times, which is sufficient to show concentra-

tion of N(t). In summary, we conclude that Õ(
√
t) regret can be achieved in Theorem 5.1

with many allocation algorithms under reasonable assumptions.

5.3 Experimental Evaluation

The theoretical results presented above indicate that extending this bandit-allocation frame-

work to the non-uniform cost setting comes without considerable drawbacks. The practical

implications of this are exciting as we now understand how to apply standard algorithms

for more complex adaptive Monte Carlo algorithms, such as the SMCS and AMCS meth-

ods. There are some questions that remain, in particular, which standard bandit approaches

tend to perform the best in practice and, of these approaches, is there any indication that

the concentration of the number of arm pulls is important in practice. This latter ques-

tion is particularly interesting since the Thompson sampling approach, which significantly

outperformed the other approaches in the previous chapter, almost certainly violates this

condition. In this section we consider adaptive variants of the AMCS method presented in

Chapter 3, as well as the SMCS and AIS methods.

For these experiments we use the same bandit methods as Chapter 4: UCB, UCV-

V, KL-UCB, and TS. The former two methods use an adjusted constant multiplier on the

confidence intervals (as suggested by Audibert et al. (2009)) which ensure that the Nk(t)

values concentrate about their means with high probability. The KL-UCB algorithm uses

the KL-confidence bound for the variance parameter derived in Appendix C.4. Both the KL-

UCB and the TS implementations do not come with explicit guarantees that the number of

arm pulls concentrates with high probability.
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5.3.1 Adaptive Antithetic Markov Chain Sampling

With the addition of the non-uniform cost accounting we are finally able to construct the

algorithm envisioned in the first chapter, an adaptive variant of the antithetic Markov chain

(AMCS) method. Specifically, we define each of theK samplers as instantiations of AMCS

having different parameter settings and let the bandit allocation approaches adapt as needed.

In the following empirical analysis we return to the kidnapped robot task considered in

Section 3.5.3 and explore how the various bandit approaches perform when tuning the step-

size parameters as well as the acceptance threshold parameters. As in this previous section,

the threshold parameter is set by first collecting a small preliminary sample and choosing a

fixed threshold that “accepts” a fixed percentage of points. Here the sampler are configured

to use a threshold parameter that accepted roughly 0.5%, 1.0%, 2.0%, or 3.0% of the points

and a step-size parameter of 0.5cm, 1.0cm, or 1.5cm.1 The cost for these samplers is defined

as the number of function evaluations used to compute a particular sample, this is the same

cost used in the evaluations in Section 3.5.3. Critically, because the AMCS approach is

designed to focus the computational effort in areas of the function with large variance,

these costs are quite strongly correlated with the integrand values for the same sample. As

a result, it is important that we use the dependent-cost formulation for bandit rewards, as

given in Eq. (5.3).

Recall that in the previous experiments a number of different configurations were used

where the position of the robot and the number of laser sensor readings was altered. The

relative cost-adjusted variance (RCAV) for each of the different parameterizations of the

AMCS approach, and for each problem configuration, are shown in Fig. 5.1. These values

are relative to the best performing sampler for that setting, for example, for the scenario

with 24 laser sensor readings and robot position #6 (bottom left), a step-size of 0.5 and a

acceptance rate of 1.0% performed the best (had the lowest σ2
kδk) and therefore has RCAV

of 1.0. The sampler with step-size 1.5 and acceptance rate of 3.0%, however, had a cost-

adjusted variance that was 2.2x as high; this implies that it this sampler would require 2.2x

the computational effort to achieve the same accuracy.

The results illustrated in Fig. 5.1 indicate that there exists no fixed parameter setting

that is optimal for all problem scenarios. In fact, there is no fixed setting that retains its

optimality as the robot is moved to different positions. This observation underscores the

importance of an adaptive approach since even in the event that the practitioner is able to
1Step-sizes were 1/10 as large for the 3d dimension (rotation) i.e. 1.0cm corresponds to

[1.0cm,1.0cm,0.1cm].
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Figure 5.1: Tile plots showing the relative cost-adjusted variance (RCAV), σ2δ, for different
parameterizations of AMCS on the various kidnapped robot scenarios used in Section 3.5.3.
The measures are relative to the best performing parameterization on that problem which
is indicated by the small black circle (here, RCAV = 1.0). The red triangle indicates the
constant arm used in the bandit experiments in Fig. 5.2.

painstakingly determine the best parameter setting on average it may still perform worse

than an adaptive approach. Additionally, we can see that the performance of the algorithm

is quite sensitive to these rather small changes in parameters, since a very small step-size

change of 0.5 can easily end up increasing the computational cost by 50%.

The regret curves of the various bandit approaches for this setting, specifically for po-

sition #6, are given in Fig. 5.2, these results were gathered over 100 runs. To provide a

base comparison the regret of a constant arm – step-size=1.0 and threshold=2.0 – is plotted

alongside the adaptive approaches. Note, this arm represents a reasonable choice by any

practitioner as performed well across all of the scenarios in Fig. 5.1. The x-axis in these

plots is given in terms of the number of samples drawn by the different approaches, to main-

tain consistency with the experiments in Chapter 3, and a value of 6e + 10 corresponds to

roughly 15hrs of sampling.

As with the previous bandit experiments, it appears that the Thompson sampling ap-

proach is best suited for this task as it achieved the best regret in all three settings by a

significant margin. Although the approach much more variable performance than the KL-

UCB and UCB-V approaches this variance does not appear to be as significant as earlier

examples. Interestingly, these simulations do not provide any evidence that high-probability

guarantees on |Nk(t)−E[Nk(t)] | are important for this task, as both TS and KL-UCB per-

formed well. However, any effects resulting from heavy-tailed Nk(t) distributions may not

be easily observed from only 100 simulations.
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Figure 5.2: Regret curves for the different stochastic MAB algorithms for adaptive-AMCS
on the kidnapped robot task. These curves show the performance for a fixed position (#6)
as the number of laser sensors are varied (12, 18, 24). For reference we plot the that would
be achieved for a fixed parameter choice (marked by the red triangles in Fig. 5.1) which is
labelled as Arm #8. Error bars represent 99% empirical density regions.

Ultimately, we can conclude from these experiments that this form of adaptation works

quite well for adaptively tuning the parameters for AMCS and can achieve error rates that

are unattainable by fixed parameter choices (at least for TS). However, the problem remains

difficult for bandit approaches and it is not likely that these approaches would be able to

efficiently optimize over extremely large parameter spaces. As a result, a practitioner is

likely to extract the most value from this approach by first engaging in some broad prior

parameter tuning and leaving the fine-tuning to bandit adaptation.

5.3.2 Tuning Adaptive SMCS

In our review of the adaptive SMCS methods in Section 2.4.2 we describe how the pop-

ulation of samples can also be used to adapt the parameters of the algorithm in an online

fashion. Naturally, this approach has unique advantages over the sequential bandit alloca-

tion approach proposed in this chapter, and therefore makes for a interesting comparison.

However, in this section, rather than compare these approaches directly we evaluate the

effectiveness of a far more practical idea, which is to combine these approaches. Specifi-

cally, we consider the adaptive approach of Schäfer and Chopin (2013) where the annealing

schedule is set automatically by enforcing a minimum effective sample size (ESS) of the

particle distribution. While this adaptation is exceedingly good at selecting annealing rates

there are a number of parameters for the SMCS approach that are not so easily tuned, such

as the number of MCMC transitions in each stage and the population size. Here, we con-

sider using stochastic bandit algorithms for tuning these parameters using independent runs
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for these approaches.

Specifically, each arm in the bandit allocation task is defined as a fixed parameter setting

for the number of MCMC transitions as well as the number of particles. A single action

executes a full simulation of the SMCS approach: using all particles and executing all an-

nealing steps. The weighted value of the final population is then an unbiased sample of the

desired quantity and is used as the returned value. The cost for a particular action is deter-

mined by CPU time elapsed as reported by the Java VM. This choice for costs is ideal since

it is very easily implemented and directly represents likely the costs that the practitioner is

interested in. Further, this cost is able to capture almost all aspects affecting the computa-

tional performance of the approach such as disk/cache usage to CPU clock speed and even

permits effective adaptation across different machines in the same computing cluster.
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Figure 5.3: Tile plots illustrating the cost-adjusted variance for each parameterization of
the adaptive SMCS approach. Values are relative to the best performing parameterization
on that problem which is indicated by the small black circle (here, RCAV = 1.0). The red
triangle indicates the constant arm used in the bandit experiments in Fig. 5.4.

The integration problem used in these experiments is defined by a simple mixture of 2

un-normalized d-dimensional normal distributions with means µ1 := [1, 1, ..., 1] and µ2 :=

[−1,−1, ...,−1] and covariances 0.01I; that is, π̂(x) ∝ N (x;µ1, 0.01I)+N (x;µ2, 0.01I).

The adaptive SMCS approaches use l slice sampling moves (along a single dimension cho-

sen uniformly at random) and an annealing rate determined by fixing the ESS at a value

of 0.8n, where n is the fixed number of particles. The cross product of the parameters

l ∈ {1, 2, 4, 8, 16} and n ∈ {100, 500, 1000, 2500, 5000} defines the settings for each of

the 25 bandit arms. The cost-adjusted variance for each of these arms, relative to the best

performing arm, are shown in the tile plots in Fig. 5.3. Possibly the most surprising aspect

of these plots is that using larger sample sizes is not always better in terms of the tradeoff

between CPU usage and variance reduction. This is quite possibly related to the additional

computational costs associated with resampling as well as poorer cache performance result-
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ing from a larger memory footprint. However, as the dimensionality of the target integrand

is increased (becomes more peaked) a larger particle representation becomes more worth-

while and as does using a larger number of MCMC transitions. Additionally, for the bandit

experiments, initial experimentation indicated that the costs and sample returns exhibited

no measurable correlation, so the more efficient payoff function from Eq. (5.2) was used.
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Figure 5.4: Regret curves for the various bandit methods for the adaptive SMCS setting.
The regret obtained by pulling only a single arm, with population size 500 and 16 MCMC
steps, is labeled Arm #10. X-axis is measured in CPU time as reported by the Java VM and
error bars give 99% empirical density regions.
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Figure 5.5: Average number of suboptimal arm pulls curves for the various bandit methods
for the adaptive SMCS setting. X-axis is measured in CPU time as reported by the Java
VM and error bars give 99% empirical density regions. Results are collected over 100
independent simulations.

The regret curves for the various bandit algorithms on this allocation task are shown

in Fig. 5.4. These results are highly surprising and entirely unlike the previous bandit

experiments. For the easier integration task the bandit methods performed poorly in the

first 2-3 hours of sampling before recovering the much more familiar log-shaped regret

curve. However, for the higher-dimensional cases, more sampling is required to distinguish

79



between the arms and as a result, the performance of the bandit approaches was much worse.

In fact, the regret curves for KL-UCB and UCB-V appear to be increasing superlinearly,

which is somehow a worse rate than simply pulling any single arm. More puzzling still,

when we look at the number of suboptimal arm pulls for each approach, shown in Fig. 5.5,

we see that most of the bandit methods are actually doing a pretty good job of identifying

the optimal arm but this does not translate into a lower regret. Indeed, for the d=4 setting

we can see that the Thompson sampling approach made far fewer suboptimal arm pulls than

UCB but yet almost exactly the same regret curve.

The explanation for this rather counterintuitive effect ultimately comes down to how

the samples for each arm are combined into a final estimate. As we mentioned previously,

the final estimator takes a simple average of all the collected samples and does not weight

them, for example, according to their inverse variances. Said simply, once we have intro-

duced cost into this framework it becomes possible for cheap high-variance samples to ef-

fectively “drown out” the expensive low-variance samples. We leave the explanation of this

phenomenon until Section 5.3.4 and consider another, more practical, setting in an attempt

to ascertain whether this effect is more wide-spread or simply an unfortunate edge-case

related to the adaptive SMCS approach.

5.3.3 Adaptively Tuning Annealed Importance Sampling

We next evaluate the effectiveness of the various bandit approaches for adaptively tuning the

parameters of an annealed importance sampling (AIS) approach; that is, a SMCS approach

with fixed annealing schedule and no resampling. Specifically, the bandit approaches are

tasked with allocating computation between 25 unique parameterizations of AIS. Each of

these parameterizations is defined by a fixed number of slice sampling MCMC transitions

(along a single dimension selected uniformly at random), l ∈ {1, 2, 4, 8, 16}, as well as

a fixed number of annealing steps, m ∈ {100, 500, 1000, 2500, 5000}. In each case, the

annealing schedule is defined using the power of 4 heuristic suggested by (Kuss and Ras-

mussen, 2005) where the exponent of the is given as βi = 1 − (i/m)4 (see Section 2.4).

As with the previous experiment the costs associated with each parameterization are deter-

mined by the elapsed CPU time as returned by the Java VM and these costs are assumed to

be independent of the sampled returns.

The integration problem used for this evaluation is approximating the normalization

constant for a Bayesian logistic regression model having a multivariate Gaussian prior.

Specifically, for binary labels y ∈ {0, 1}, observations x ∈ Rd, and latent variables
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θ ∈ Rd, we let p(y|x, θ) = σ(θ>x)y(1 − σ(θ>x))1−y, where σ denotes the logit func-

tion and let p(θ) = N (θ; 0, 0.05I). The labeled training examples (x1, y1), . . . , (xT , yT )

are assumed to be generated as follows: first, θ∗ ∼ p(·) is sampled, then the sequence

(x1, y1), . . . , (xT , yT ) generated i.i.d. given θ∗ and the labels are assumed to satisfy

P(yt = 1|xt, θ∗) = p(yt|xt, θ∗) ,

i.e., yt ∼ Ber(σ(θ>∗ xt)). The normalizing constant for the posterior distribution (of which

we are ultimately interested in) of θ∗ given x1:T and y1:T is given by the integral

ζT :=

∫
p0(θ)

T∏
t=1

p(yt|xt, θ)dθ.

The relative performance for the different parameterizations for approximating the normal-

izing constant for different sized subsets, T = (5, 10, 25) of the 8-dimensional Pima Indian

diabetes UCI data set (Bache and Lichman, 2013) are shown in Fig. 5.6.
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Figure 5.6: Tile plots illustrating the cost-adjusted variance for each parameterization of the
AIS approach. Values are relative to the best performing parameterization on that problem
which is indicated by the small black circle (here, RCAV = 1.0). The red triangle indicates
the constant arm used in the bandit experiments in Fig. 5.7.

The regret curves for the different bandit allocation approaches, on each of the different

datasets, are given in Fig. 5.7. Again, we compare the regret for each approach to that of

a single arm which performed reasonably well on all datasets. Clearly the problems we

observed in the previous SMCS experiments are reflected here as well; in fact these issues

are even more pronounced. Specifically, the bandit methods are not able to perform as

was as a single fixed arm on any of the three scenarios, even after 24 hours of sampling.

Additionally, we see many the regret for the better bandit methods (not UCB) for T = 10

and T = 25 looks to be increasing at a superlinear rate. This is in despite of the fact that

these approaches take considerably fewer suboptimal actions than UCB. Again, this poor
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Figure 5.7: Regret curves for the various bandit methods for the AIS setting. The regret ob-
tained by pulling only a single arm, with 100 annealing steps and 2 MCMC steps, is labeled
Arm #12. X-axis is measured in CPU time as reported by the Java VM and error bars give
99% empirical density regions. Results are collected over 100 independent simulations.

performance results not from how the computation is allocated but how the samples are

combined into a final estimate, as detailed in the next section.

5.3.4 Discussion of Empirical Findings

In order to simplify the regret formulations and subsequent theoretical developments in

both of the last two chapters we have assumed that the final estimate is given as a simple

arithmetic average of the sampled points irrespective of the distribution for which they were

drawn. Specifically, given N1:K(t) samples for each arm and empirical means µ̂1:K(t) we

write the final estimate as:

µ̂(t) =

K∑
k=1

λkµ̂k(t),

where λk = Nk(t)
N(t) , for N(t) =

∑K
k=1Nk(t). It straightforward to show that the variance of

combined estimate can be reduced further with different λ-weights. In particular, for set-

tings where the samples are drawn deterministically the variance is minimized by weighting

the sample means by a value proportional to the inverse their variance (see Theorem 6.1).

The use of uniform weighting can be partially defended by observing that, so long as

the bandit allocation draws samples from the optimal arm exponentially more often, the

weighting will converge to the optimal weighting asymptotically. However, since in the

nonuniform cost setting the best arm is not necessarily the one with the lowest variance, it

can take a great deal of time for the uniform weighting to converge to optimal arm, also a

bandit approach will not converge to the optimal weighting at all if the optimal arm is not

unique.

To demonstrate how the uniform weighting can perform poorly we consider a simple

two arm scenario with deterministically chosen sample sizes and constant costs. Specifi-
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cally, we define the variance for the arms as σ2
1 = 1.0 and σ2

2 = D and the costs as δ1 = 1

and δ2 = 1/D, for some positive constant D. Here, it is clear that the two arms are equal in

terms of cost-adjusted variance and one might therefore expect the regret for any allocation

strategy to be zero. However, consider a deterministic strategy which allocates a fixed pro-

portion of its computational budget (t) to each arm. That is, for some γ ∈ (0, 1) we have

N1(t) = (1 − γ)t and N2(t) = γtD (ignoring rounding effects). For this setting we can

compute the regret exactly:

Rt = t2

V

 1

N1(t) +N2(t)

N1(t)∑
i=1

X1,i +

N2(t)∑
i=1

X2,i

− 1

t


= t2

(
1

(N1(t) +N2(t))2
(N1(t) +N2(t)D)− 1

t

)
= t

(
(1− γ) + γD2

((1− γ) + γD)2
− 1

)
.

The critical observation here is that for any strategy that does not allocate all computation

to a single arm, that is for any 0 < γ < 1, this regret is linear in t. Further, as illustrated in

Fig. 5.8, as the strategy begins to allocate an increasing amount of computation toward any

one sampler the constant multiplier on this linear term may increases rapidly before sharply

dropping to zero. This effect explains why the regret in the bandit settings above appears

to be growing at a superlinear rate. Additionally, this explains why a suboptimal allocation

policy, UCB for instance, which allocates roughly according to γ = 0.5 may outperform a

superior policy which allocates according to, say, γ = 0.98. Lastly, we can see that as the

costs and variances of the arms become more skewed (as D moves away from 1) this effect

will become even stronger.
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Figure 5.8: Normalized variance (log scale) of the deterministic allocation scheme for dif-
ferent allocation parameter γ and arm 2 variance/cost parameter D.

To answer the question of why the performance for the bandit approaches was consid-
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erably better for the AMCS setting than for the SMCS settings, we can look at the costs and

variances of the different samplers. Said simply, the SMCS variants all exhibit a similar

cost/variance tradeoff, where doubling the amount of computational costs would translate

roughly to halving the variance of the sampler plus a small delta. That is to say, the arms

were all close in terms of RCAV (δkσ2
k) but had vastly different costs and variances, similar

to the illustrative example above.

5.4 Discussion

In this chapter we present an extension to the bandit-based adaptive Monte Carlo framework

presented in Chapter 4 in which the (potentially stochastic) computational costs associated

with each sampler can be accounted for. We formulate a straightforward definition of regret

in this scenario and prove a Õ(
√
t) upper bound on this regret is attainable with existing

sequential allocation approaches. Interestingly, this upper bound does not match the optimal

rate for simpler setting (fixed costs) which is known to be Ω(log(t)). This leaves open

the question of whether a tighter upper bound may exist or whether the stochastic cost

setting is indeed inherently more difficult than the uniform-cost setting. While we have no

specific theoretical arguments, despite considerable effort, we feel that it is most likely that

this result is unimprovable. However, the condition that the number of pulls for each arm

concentrate around their expectation with high-probability is potentially an artifact of the

proof technique, and therefore is an interesting avenue for future research.

In addition to the theoretical findings in this chapter we provide a straightforward way

in which the existing stochastic multi-armed bandit approaches can be applied to the non-

uniform cost settings. We then evaluate the performance of these approaches by effectively

defining an adaptive variant of the antithetic Markov chain sampling approach presented

in Chapter 3. Using the same challenging kidnapped robot test setting we show that this

bandit-based adaptive algorithm is likely to outperform any fixed parameterization of this

method in addition to minimizing the manual tuning work required of the practitioner.

Despite the positive results for adaptive AMCS we find that the adaptive allocation

approach may perform poorly in some settings. In particular, we show that the bandit

allocation approach is not always able to effectively tune adaptive SMCS or AIS methods in

challenging scenarios. This poor performance is determined to not the result of inefficient

allocation behaviour but rather a result of procedure for combining these samples into a

final estimate. In the next chapter we consider more sophisticated ways to combine a set of
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unbiased estimators which is directly applicable to these scenarios and many other practical

settings.

85



Chapter 6

Weighted Estimation of a Common
Mean

“An approximate answer to the right problem is worth a good deal more than an

exact answer to an approximate problem.”

– John Tukey

In this chapter we consider the task of combining a set of unbiased Monte Carlo esti-

mators for common mean with the goal of minimizing the squared error (MSE) of a final

estimate. In contrast to the previous two chapters where we allocated computation to differ-

ent samplers, in this chapter we assume that all of the samples have already been allocated.

The focus therefore remains only on the construction of a final estimate, which we define

as a weighted sum of these estimators.

While the construction of a final estimate is a natural extension to sequential allocation

tasks, it also arises in classic statistical estimation problems. For example, when aggregat-

ing opinion polls that approximate a given statistic, such as the outcome of a presidential

election. Typically these polls are conducted by a variety of parties and exhibit a varying

degree of accuracy, due to variations in sample size, data collection strategies, or the statis-

tical model used. If we assume that each of the surveys has negligible bias, then the quality

of the approximation is a function of the variance of each estimator. For that reason, if

estimators with higher variance are given less weight when constructing an estimate, the

accuracy of the combined estimate is improved.

In what follows, we show that in cases where the variance of each estimator is known,

weighting each individual estimator inversely proportional to its variance recovers both a

minimax estimator as well as a minimum variance unbiased estimator. However, as before,

we do not assume to know the variances of each estimator beforehand, instead we require
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only that they are defined as an empirical average of i.i.d. samples. In considering prac-

tically applicable approaches for the unknown variance setting we observe that the simple

strategy of weighting the estimators inversely proportional to their sample variances, also

known as the Graybill-Deal estimator, risks overweighing due to statistical error in sam-

ple variance estimates. In order to mitigate these risks, we propose a strategy similar to

that used as the multi-armed bandit setting. Specifically, we present an estimator (UCB-W)

which uses the upper confidence bound on the sample variance in the weighting formula.

We show that this estimator offers significant empirical advantages and permits the con-

struction of straightforward finite-time performance guarantees.

We also show that the proposed UCB-W estimator is even more effective when paired

with the adaptive Monte Carlo allocation strategies discussed in the previous chapters. We

demonstrate empirically that these techniques offer a far greater reduction in error than

the choice of underlying allocation approach (i.e. amongst UCB, TS, etc.). We also show

analytically that this estimator can prevent the poor results discussed in Section 5.3.4 where,

in the non-uniform cost setting, bandit allocation methods can suffer linear regret. That is,

by using the UCB-W estimator one can to retain the original Õ(
√
t) bound on regret.

6.1 Weighted Estimator Formulation

Much like the formulation in Chapter 4 we assume that we are presented with a finite set

of K unbiased Monte Carlo samplers where each base sampler k ∈ {1, ...,K} produces

an i.i.d. sequence of real-valued random variables {Xk,t}t=1,2,... having the same unknown

mean E[Xk,t] = µ but unique variances V(Xk,t) = σ2
k < ∞. Additionally, in order to

facilitate straightforward analysis we will first consider the deterministic allocation setting

where the number of samples for each estimator are allocated deterministically ahead of

time.

More generally, we refer to a K-tuple of distributions (ν1, . . . , νK) over the reals with

a common mean µ as an environment. The set of all such K-tuples is denoted by E(µ).

Given the sample sizes n := (n1, . . . , nK) ∈ NK , where nk > 0 and n :=
∑K

k=1 nk, an

estimator is a function that maps Rn1 × · · · × RnK to the reals.1 The set of estimators is

denoted by An. An environment ν := (ν1, . . . , νK) together with the sample sizes gives

rise to the data Xn := ((Xk,1, . . . , Xk,nk))1≤k≤K , where for k 6= j, (Xk,1, . . . , Xk,nk) and

(Xj,1, . . . , Xj,nj ) are independent of each other and for 1 ≤ k ≤ K, (Xk,1, . . . , Xk,nk) is

1For simplicity, we do not consider randomizer estimators here.
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i.i.d. with common distribution νk. In short, we will denote that Xn is generated from ν

with sample sizes n = (n1, . . . , nK) using Xn ∼ νn. We modify the notation for the loss

to indicate its dependence on ν: The loss of estimator µ̂ ∈ An on environment ν ∈ E(µ)

and sample sizes n is Ln(µ̂; ν) = E
[
(µ̂(Xn)− µ)2

]
where Xn ∼ νn.

As with the bandit setting, we consider the loss of an estimator with respect to the “best

possible” estimator. In particular, we will consider the following normalized regret µ̂∗, or

excess risk, formulation

Rn(µ̂; ν) := n2 (Ln(µ̂; ν)− Ln(µ̂∗; ν)) , (6.1)

where µ̂∗ is analogous to the notion of the idealized best arm in hindsight metric used in the

stochastic bandit setting. Here, however there are a number of metrics that might be used

to determine the optimality of µ̂∗ fortunately the two most natural notions of optimality:

the minimum variance unbiased estimation and minimax estimation, lead to the same esti-

mator (detailed below). We begin by introducing the definitions of minimax and uniform

minimum variance unbiased (UMVU) estimators.

Definition 6.1 (Minimax Estimator). Given a set of environments E ⊂ ∪µ∈RE(µ) and a

tuple of sample sizes n = (n1, . . . , nK), an estimator µ̂ ∈ An is called minimax w.r.t. E

(or, in short, minimax), if supν∈E Ln(µ̂; ν) = infa∈An supν∈E Ln(a; ν).

As follows from the definition, a minimax estimator is robust in the sense that its worst-

case loss is the best possible.

Next, we consider uniform minimum variance unbiased estimators. First, we say that an

estimator a ∈ An is unbiased w.r.t. a set E of environments if for any µ ∈ R, ν ∈ E ∩E(µ),

E[a(Xn)] = µ holds where Xn ∼ νn.

Definition 6.2 (Uniform Minimum Variance Unbiased (UMVU) Estimator). Given a set of

environments E ⊂ ∪µ∈RE(µ) and a tuple of sample sizes n = (n1, . . . , nK), we say that

the estimator µ̂ ∈ An is a uniform minimum variance unbiased (UMVU) estimator if it is

unbiased and for any other unbiased estimator a ∈ An and for any environment ν ∈ E ,

V[µ̂(Xn)] ≤ V[a(Xn)] where Xn ∼ νn.

Note that since the variance of an unbiased estimator is the same as its loss (as we

consider quadratic losses), the UMVU estimator achieves the smallest possible expected

loss over E amongst all unbiased estimators.

Let σ2 = (σ1, . . . , σK) ∈ [0,∞)K . Denote by ENormal
σ2 the set of environments ν =

(ν1, . . . , νK) where each νi is normal with variance σ2
i . Further, denote by Eσ2 the set of
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environments ν = (ν1, . . . , νK) where each νi has variance σ2
i . Fix n = (n1, . . . , nK) and

define the estimator µ̂∗ as follows: For xn ∈ Rn1 × . . .RnK ,

µ̂∗(xn) :=

K∑
k=1

λ∗kµ̂
∗
k(xn), (6.2)

where λ∗k :=
nk/σ

2
k∑K

j=1 nj/σ
2
j

and µ̂∗k(xn) := 1
nk

∑nk
t=1 xk,t.

Theorem 6.1. The estimator µ̂∗ defined in Eq. (6.2) is (a) an UMVU estimator w.r.t.

ENormal
σ2 and (b) a minimax estimator w.r.t. any E such that ENormal

σ2 ⊂ E ⊂ Eσ2 .

(The proof follows from standard results given by Lehmann and Casella (1998); full proof

is given in Appendix D.1.)

Based on this theorem, we choose the estimator µ̂∗ in the regret definition (6.1) to be

the weighted estimator (6.2), giving rise to the explicit regret formulation

Rn(µ̂) := n2

Ln(µ̂)−

(
K∑
k=1

nk
σ2
k

)−1
 , (6.3)

where, for brevity, we leave out the notation for the environment ν.

With the understanding that the best estimator weights each sampler inversely propor-

tional to its true variance a natural approach when these variances are unknown is to use

the sample variances instead. This choice leads to the classic Graybill-Deal (GD) estimator

(Graybill and Deal, 1959) which can be expressed as a convex combination of the individual

sample means (as with Eq. (6.2)) as:

µ̂GD :=

K∑
k=1

λkµ̂k with λk =
nk/σ̂

2
k∑K

j=1 nj/σ̂
2
j

, (6.4)

where σ̂2
k := 1

nk−1

∑nk
t=1X

2
k,t − µ̂2

k. Here, and in what follows, we will use the shorthand

µ̂k ≡ µ̂k(Xn) and σ̂2
k ≡ σ̂2

k(Xn). This estimator was originally suggested for use in the

setting where the individual distributions for each arm are normal. The estimator is partic-

ularly well suited for this setting since, thanks to Cochran’s theorem, we know the sample

variances are independent of the sample means and as a result the estimator is unbiased.

Additionally, this independence somewhat simplifies the analysis and it can be shown that,

for K = 2, the estimator is uniformly better than either individual estimator, µ̂1 or µ̂2, for

any finite n1, n2 ≥ 10 (Graybill and Deal, 1959) (see also Ma et al. 2011 for similar results

for K > 2). In the statistics literature there are a number of works uncovering various other
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properties of the Graybill-Deal estimator (see Mitra and Sinha (2007) for review). How-

ever, these analyses do not extend to the non-parametric setting, nor do they give a bound

on the regret.

Perhaps this is not surprising, since the estimator can be seen to perform almost arbi-

trarily poorly in simple examples. For instance, consider the scenario where the Xk are

distributed according to a scaled Bernoulli distribution (Section 4.5.1). Here, the probabil-

ity that the sample variance is exactly zero for any arm k is 2−nk+1. If we avoid division by

zero by defining the estimator to give all weight to µ̂k when σ̂2
k = 0, then we can see that for

any finite nk estimator has nonzero probability of assigning all weight to µ̂k. As a result, we

can see that unless all nk → ∞ as n → ∞ the estimator will suffer quadratic regret. The

natural solution to this is to add a small positive constant to the sample variance that decays

as nk grows. We employ this strategy here. In particular we define the upper-confidence

bound weighted (UCB-W) estimator:

µ̂UCB-W :=
K∑
k=1

λkµ̂k with λk =
nk/(σ̂

2
k + ∆k)∑K

j=1 nj/(σ̂
2
j + ∆k)

, (6.5)

where ∆k is a confidence bound; we make precise the requirements on ∆k in the next

section. Unlike the Graybill-Deal estimator it is easy to see that this estimator is consistent

and asymptotically optimal (µ̂UCB-W → µ̂∗) as n→∞ regardless of whether any nk remain

finite. In addition to these asymptotic properties we show in the next section that it is

possible to construct finite-time upper bounds on the regret of this estimator.

6.2 Bounding MSE-Regret

In this section we provide upper bounds on the regret (Eq. (6.1)) of the UCB-W estimator

given in Eq. (6.5). In what follows we assume that the samples Xk,t are bounded a.s.

so that we may define straightforward confidence intervals. Again, it is possible to relax

these assumptions to include sub-Gaussian random variables. In particular, we let b̄k =

ess sup |Xk|, it follows from the Hoeffding-Azuma inequality Lemma D.1 and the union

bound that, if ∆k(δ, nk) = 5b̄2k

√
log(δ/(4K))

2nk
0 < δ < 1, then P(ξ) ≥ 1− δ where

ξ :=
K⋂
k=1

ξk

ξk :=
{
|σ̂2
k − σ2

k| ≤ ∆(δ, nk)
}

(see Lemma 2 Antos et al. (2010)). Using this definition we can bound the regret for the

UCB-W, as formalized in the following theorem.
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Theorem 6.2. Given K sequences of i.i.d. samples (Xk,1, ..., Xk,nk), k ∈ {1, . . . ,K}, for

deterministically chosen nk ≥ 2 where ess sup |Xk| = b̄k < ∞, µ = E[Xk], and σ2
k < ∞

the UCB-W estimator given in Eq. (6.5) with ∆k := ∆k(δ, nk) has regret bounded as

Rn(µ̂UCB-W) ≤ C
√
n
∑
i

b̄i

√
ρi log

(
4K
δ

)
σ4
i

(
1 +

∑
i

λ∗i
∆i

σ2
i

)
+ 4b2δn2 + C ′ ,

where b = maxk b̄k, ρk := nk
n and C,C ′ > 0 are constants that depend only on (σk)k,

(b̄k)k, (ρk)k, and K. In particular, one may choose C = 10
√

2(
∑

k
ρk
σ2
k
)−2.

(Proof is given in Appendix D.2)

This result shows that the regret will grow at a rate of Õ(
√
n), which is in line with our

expectations since the sample variances are converging at a rate of Õ(n−1/2). In general

this is a strong result and the rate is considerably better than that achieved by the uniformly

weighted estimator, where λk = nk
n , used in Chapter 4 and Chapter 5. Recall that this

estimator will suffer a liner regret in cases where at least two distributions (having different

variances) are sampled as a linear function of n.

6.3 Non-Deterministic (Bandit) Formulation

In order to apply the upper confidence weighted estimator to multi-armed bandit settings

presented in previous chapters we consider the case where the number of samples for each

sampler is stochastic. In particular, we assume that we are provided with K sequences of

i.i.d. samples {Xk,1, ..., Xk,Nk}1≤k≤K where the random variables Nk(t) ≥ 2 denote the

number of samples drawn from sampler k at time t > 0 in the non-uniform cost setting or

Tk(t) in the uniform cost setting (where t = n). However, in this setting the actual costs of

collecting the individual samples do not enter into the regret, since the samples have already

been allocated. As a result, the analysis does not depend on the distribution of costs other

than the requirement that E[Nk(t)] ≤ Cf t for some constant Cf , which will be used to

bound the regret as a function of t. Additionally, since we will always index by the same

value of t we simply drop the explicit indexing notation for N that is, we let Nk ≡ Nk(t).

One challenge in this setting is defining a estimator representing the “best estimator in

hindsight” that may be used to formulate a regret equation. Note that here Theorem 6.1

no longer applies and is not easily extended, in no small part due to the fact that µ̂∗ is

not even unbiased since the individual estimates as a result of the division by Nk in each

individual estimate: µ̂k = 1
Nk

∑Nk
t=1Xk,t. Interestingly, in the uniform-cost setting the
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simple uniformly weighted estimator

µ̂t =
K∑
k=1

λkµ̂k where λk =
Nk∑K
j=1Nj

, (6.6)

retains its unbiasedness, as the Nk values in the denominator are cancelled. However,

this estimator is not particularly efficient or generally applicable (when we cannot assume∑K
k=1Nk = n for deterministic n).

Ultimately, in the regret formulation for this section we will continue to use the esti-

mator µ̂∗ from the previous section despite the fact that we are not able to show that it is

best possible estimator in a formal sense. This choice is motivated by the fact that for large

sample sizes the bias introduced by the division of theNk values will be greatly diminished;

Indeed, we later make this detail explicit by assuming the distribution eachNk concentrates

about its mean. Under this assumption it the performance of this weighted estimator will

be similar to that obtained in the deterministic setting. In particular we define

µ̂∗ =

K∑
k=1

λ∗kµ̂k where λ∗k :=
Nk/σ

2
k∑K

j=1Nj/σ2
j

,

which leads to the familiar regret formulation

R(µ̂, t) = t2(L(µ̂)− L(µ̂∗)), (6.7)

where L(µ̂) = E
[
(µ̂− µ)2

]
. This formulation is the same as the regret in Eq. (6.3) with

the exception that Nk are stopping times.

The proof technique in this section is generally the same as in Section 6.2 though we

make use of the same assumptions, and lemmas, used in Chapter 5. Most critically we will

we will assume that the random quantities of interest, σ̂2
k and Nk, will concentrate around

their means with high probability. In particular, we define the events

ξk :=
{
|σ̂2
k − σ2

k| ≤ ∆σ2
k
(Nk)

}
,

Nk := {|E[Nk]−Nk| ≤ ∆Nk} ,

with ξ :=
⋂K
k=1 ξk and N :=

⋂K
k=1Nk. Here ξ is unchanged from the previous section

aside from changing the notation ∆k to ∆σ2
k
; note also that ∆k(n) is a monotonically

decreasing function of n. Again, as we did in Chapter 5, we will require that ∆Nk =

c
√
E[Nk] for some constant c > 0. In this context we define the upper confidence weighted

estimator µ̂UCB-W in the same way as before (Eq. (6.5)) where σ2
k is replaced by σ̂2

k+∆k(Nk).
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Theorem 6.3. For K sequences of i.i.d. random variables X = {Xk,1, ..., Xk,Nk}1≤k≤K
satisfying the same conditions expressed in Theorem 6.2 and where the number of sam-

ples, {Nk}1≤k≤K ≥ 2, are chosen sequentially such that Nk is a stopping time w.r.t. X

(satisfying the conditions of Lemma 4.2). Additionally, assuming that P
(
NC

)
= η and

P
(
ξC
)

= δ are bounded as O(t−3/2), also that E[Nk] ≤ Cf t for a fixed constant Cf , the

UCB-W estimator satisfies

R(µ̂UCB-W, t) = Õ(t1/2) .

(The proof is similar to the deterministic case but requires bound for |Nk − E[Nk] |; full

proof is given in Appendix D.3.)

In summary, the additional complexities introduced by non-deterministic sample sizes

are not enough to affect the regret bounds by more than constant factors. The most signif-

icant implication of this theory is the requirement that the number of samples allocated to

each arm must be reasonably well concentrated around their means. Again, as we detailed

in the previous chapter, this property can be achieved through careful parameterization of

various bandit approaches but in general is nontrivial. That said, the empirical results de-

tailed in the next section do suggest that this may be an artifact of the proof technique,

especially for settings with large sample sizes.

6.4 Experimental Evaluation

We now explore the practical significance of the UCB-W estimator through empirical study.

In particular, we are interested in examining the behaviour of this estimator in contrast to

the simpler, and widely used, Graybill-Deal estimator. Additionally, we wish to examine

any advantages that this estimator might confer on the bandit-based allocation procedures

detailed in the previous chapters. Fortunately, for this latter question the empirical evalua-

tion is straightforward: we need only recompute the final estimates for the various bandit

algorithms on the same problems (using the same allocations). We may then compare and

contrast the various effects of using weighted estimators in this context.

6.4.1 2-Arm Fixed Allocation Problem

We first consider the performance of the different weighted estimators on a synthetic ex-

periment where samples are drawn from two scaled Bernoulli (SB) distributions according

to a fixed allocation distribution. Specifically, for each k ∈ {1, 2} we let Xk ∼ SB(µ, σ2
k)

where µ = 0.5 and the number of samples is given by N1 ∼ 2 + Binomial(n− 4, γ) (n− 4
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trials and fixed parameter γ), and N2 = 2 + n − N1 for n = 1000. Additionally, we fix

the variances parameters σ2
1 = 0.25 (Standard p = 0.5 Bernoulli) and σ2

2 = 0.025 and

consider different settings of γ ∈ {0.99, 0.9, 0.5, 0.1, 0.01}. Using these parameters we

generate random variables Nk and {Xk,1:Nk}k∈{1,2} 25000 times and each time record the

performance of the different weighted estimators as a function of n.
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Figure 6.1: Average regret (y-axis, log-scale), and 99% empirical density regions, are
plotted for each weighted estimator. Values are computed over 25000 simulations.

Figure 6.1 gives the regret for the the uniformly weighted estimator, Eq. (6.6), the

Graybill-Deal (GD) estimator, Eq. (6.4), and the proposed upper-confidence weighted es-

timator (UCB-W), Eq. (6.5) for each setting of γ. Our first observation is that the UCB-

W estimator consistently outperforms the uniformly weighted estimator by a considerable

margin. Also, though it’s not shown here, this margin grows rapidly as the difference in

variances between the two distributions is increased.

In regards to the differences between the GD estimator and the UCB-W estimator, it

is apparent that the GD estimator can significantly outperform the UCB-W estimator when

each distribution is sampled sufficiently often. However, as suspected, this advantage comes

at the cost of potentially disastrous performance when there are too few samples for either

distribution. In particular, it appears that for the GD estimator the distribution for the regret

values is bimodal: there is a relatively high probability the estimator will give low error and

a low probability that the error is extremely high. In some cases the high errors incurred
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in rare cases are enough to overshadow the lower errors in the more common cases on

average. This is illustrated, in part, by the relationship between the 99% empirical density

intervals and the averages in Fig. 6.1; specifically that at one point the average lies outside

the 99% interval in the plot for γ = 0.1. The UCB-W estimator, on the other hand, gives up

some performance benefits in the average case in order to prevent poor performance in the

worst case, as intentioned. That said, in anecdotal comparisons we found that the UCB-W

confidence bound suggested by the theory is quite conservative and much better empirical

results may be obtained by scaling down these bounds. Of course the risks associated with

scaling the confidence bounds can be hard to demonstrate empirically.

6.4.2 Bandit Experiments

The most promising aspect of the weighted estimators presented in this chapter is the posi-

tive implications for the Monte Carlo bandit approaches detailed in the preceding chapters;

particularly for the non-uniform cost settings. Fortunately, it is straightforward to analyze

the combined performance of the bandit approaches and a weighted estimator, like UCB-W,

since the regret definition need not change significantly. In the earlier formulations the best

arm in hindsight notion ensures that a single arm choice is used as a comparison while in

this chapter we used the optimal weighted estimator. However, in the case where only one

arm is chosen the optimally weighed estimator is identical to uniformly weighted estima-

tor. As a result, we can simply substitute the MSE of the weighted estimator applied to the

allocations taken by the bandit method A to arrive at the regret, or normalized excess risk,

given by

R(A, t) = t2E
[
µ̂({X1:Nk(t)}1≤k≤K)−

δk∗σ
2
k∗

t

]
,

where µ̂ is the weighted estimator of interest. Again, the regret for the uniform-cost setting

can be expressed by letting δk = 1 and t = n.

Uniform Cost Setting: Option Pricing

We begin by revisiting the option pricing experimental setup described in Section 4.5.2. Re-

call that in this experiment the bandit approaches were tasked with finding the best impor-

tance sampling proposal for approximating the expected value of a European caplet option.

Additionally, this setup permitted the direct comparison with the popular population Monte

Carlo (PMC) approach which selected proposal density through a resampling heuristic.

The experiment was conducted for one of the three parameterizations (strike price

s = 0.09) and the resulting regret curves are given in Fig. 6.2. Recall, in Section 4.5.2
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Figure 6.2: Results for the Cox-Ingersoll-Ross model problem setting with a strike price
(s) of 0.09. The leftmost plot gives the regret for the uniformly weighted estimator and
is identical to the rightmost plot in Fig. 4.3 with the exception of the log-scale. The re-
gret for the optimal inverse-variance weighted estimator is next, followed by the UCB-W
estimator and the Graybill-Deal (GD) estimator. Results are averaged over 10000 simula-
tions and error bars delineate the are 99% empirical percentiles. The 2 curves for the PMC
method give the performance for the “Rao-Blackwellized” (dashed) estimator as well as
the weighted estimator in question (solid), that is using PMC only to allocate samples as a
bandit method.

we observed that only the Thompson sampling approach was able to consistently outper-

form the PMC method; this is evident in the leftmost plot in the above figure. However,

looking at the performance of the same bandit allocations using the optimal estimator (sec-

ond plot) we see that regret reduces dramatically. In particular, the Thompson sampling

approach goes from a 50% improvement over PMC to almost 1000%, the KL-UCB ap-

proach now significantly outperforms PMC, and the “Rao-Blackwellized” PMC estimator

performs worse than the PMC sample allocations combined with the optimal weighted es-

timator.

The next question of whether these advantages are retained by the more practical UCB-

W estimator is answered by the third plot. Here, it is clear that after a relatively short

amount of sampling the performance of the UCB-W estimator closely matches that of the

optimal estimator, with the exception of the UCB allocations. The poor performance on the

UCB allocations is due to the fact that the samples are allocated almost uniformly across the

arms which gives less time for the confidence regions in the UCB-W estimator to shrink.

The regret for the Graybill-Deal estimator, shown in the rightmost plot, is perhaps the

most surprising. As we observed in the previous experiment, the GD estimator appears to

do poorly when the arm-selection probabilities are imbalanced. Interestingly, the Thomp-

son sampling approach has a tendency to eliminate arms after a small number of samples,
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while this often leads to a better regret, this property can lead to highly suboptimal per-

formance when combined with the GD estimator. Compared to UCB-W the GD estimator

does exhibit improved performance for the KL-UCB and UCB-V allocations. However,

improvements here are not likely enough to justify the risks associated with this estimator.

Non-Uniform Cost Setting: Adaptive AMCS

We now consider the performance of the weighted estimators for the non-uniform costs

bandit setting starting with the adaptive AMCS experiments described in Section 5.3.1.

Recall that for this particular experiment the bandit methods performed reasonably well

and did not exhibit the drawbacks related to having multiple near-optimal arms.
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Figure 6.3: Regret curves for the weighted estimators for the adaptive AMCS setting
detailed in Section 5.3.1, specifically the 24 laser, position #6, setting. The leftmost plot
above shows the regret for the original (uniform) estimator and corresponds exactly to the
rightmost plot in Fig. 5.2. From left to right the regret for the optimally weighted estimator
and the UCB-W estimator are next followed finally by the Graybill-Deal estimator. This
rightmost plot is in log-scale.

Nonetheless, the regret curve for the optimally weighted estimator shown in Fig. 6.3 in-

dicate that the proper weighting results in a dramatic improvement over the uniform weight-

ing. Using the regret for the single-arm approach (Arm #8) as a reference point, we can see

that using the weighted estimators is as important, if not more important, than selecting the

appropriate bandit approach for the task. Additionally, for this experiment we can see that

the added confidence bound used in the UCB-W estimator does not introduce a noticeable

amount of error since the regret is almost identical to the optimally weighted estimator. The

Graybill-Deal estimator, however, appears to be prone to extremely poor performance for

small time horizons. Specifically, in the rightmost plot, we observe that the regret is 5 orders

of magnitude higher for Thompson sampling than the other methods early on. Although,
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the regret does eventually recover to a value slightly lower than that of UCB-W for longer

horizons.

Non-Uniform Cost Setting: Tuning Adaptive SMCS

We now consider the more exciting non-uniform bandit experiments featuring the SMCS

algorithm. Recall that these experiments highlighted the potential for very poor perfor-

mance when deploying bandit approaches in cases where the bandit arms are all close in

terms of cost-adjusted-variance but very different in terms of variances (see Section 5.3.4).

Specifically, we had observed that for a number of settings the performance of the bandit

algorithms was actually worse than pulling only the highest variance arm. In the subse-

quent discussion the blame for this poor performance was placed on the inefficiencies of

uniformly weighting the samples for each arm; we now test this hypothesis experimentally.

The regret curves in Fig. 6.4 show the performance of the different bandit approaches

using the each of the weighted estimators for adaptive SMCS setting on the 4 dimensions

mixture distribution described in Section 5.3.2. The leftmost plot in this figure shows the

regret when using the uniformly weighted estimator, where none of the bandit methods

were able to perform anywhere near as well as sampling from a single suboptimal arm

(Arm #10).

The adjacent plot tells a much different story, here we can see that by optimally weight-

ing the samples the same allocations have a regret that is two orders of magnitude lower

than their previous values (except UCB) and considerably better than the constant arm. In

the next plot we can see that these gains transfer almost exactly as well when using the

UCB-W estimator. There is a small difference in the first few hours of sampling for some

of the approaches, but this difference disappears relatively quickly.

Additionally, looking at the regret for the Graybill-Deal (GD) estimator in the final plot

we can see, again, that the estimator does not combine well with the TS algorithm. This is

another testament to the risk associated with weighting samplers from the sample variance

computed from only a handful of samples.

In addition to the adaptive SMCS setting similar disappointing performance was ob-

served when tuning the annealed importance sampling (AIS) method in Section 5.3.3. Re-

call that the setup in for these simulations was the same as above with the exception that the

bandit approaches are attempting to find the optimal annealing schedule as opposed to pop-

ulation size. The results for the weighted estimator simulations are summarized in Fig. 6.5.

These results once again demonstrate the considerable advantages of using weighted es-
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Figure 6.4: Regret curves for the bandit approaches using the different weighted estima-
tors for the adaptive SMCS setting for the 4-dimensional Gaussian mixture as described in
Section 5.3.2. The leftmost plot gives the regret for the uniform estimator and corresponds
to the middle plot in Fig. 5.4, in log scale. The regret when using the optimally weighted
estimator, the UCB-W estimator, and the Graybill-Deal estimator are also shown.

timators in this setting. Here, by applying the optimally weighted estimator the bandit

approaches go from being up to two orders of magnitude worse than the constant arm to

consistently outperforming it by a factor of 2x. Of course, UCB is again the one exception,

which is due to the fact that it is not aggressively selecting the optimal arms.

Again the performance of the UCB-W estimator is closely matched to the that of op-

timal estimator though some amount of regret is incurred by the conservative estimates

on sample variances. As with previous examples the rightmost plot for the GD estimator

makes it clear that the risks associated with this estimator makes is essentially untenable in

practice.

6.5 Discussion

In this chapter we considered the problem of combining multiple unbiased estimators into a

common estimate. We have shown that taking the convex combination of these estimators

weighted inversely proportional to their respective variances results in both the minimum

variance unbiased estimator as well as a minimax estimator. Since this estimator is not

applicable in practice we formulated an alternative approach, UCB-W, which uses an upper-

confidence bound on the sample variance. We prove that this approach has a regret, in

respect to the optimal weighting, of Õ(
√
n) when the samples are chosen deterministically

and go on to show a similar result in the case where the samples are stochastic. This latter

result can then be applied to the non-uniform cost bandit setting discuseed in the preceding
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Figure 6.5: Regret curves for the bandit approaches using the different weighted estimators
for tuning AIS for a logistic regression model with T=10 training examples, as described in
Section 5.3.3. The leftmost plot gives the regret for the uniform estimator and corresponds
to the middle plot in Fig. 5.7, in log scale. The regret when using the optimally weighted
estimator, the UCB-W estimator, and the Graybill-Deal estimator are also shown.

chapter to recover the Õ(
√
t) rate when the optimal arm cannot be assumed to be unique.

Additionally, the empirical results for the UCB-W estimator provide compelling evidence

for the use of this technique in both the uniform and non-uniform cost bandit settings. In

particular, the results indicate the use of this estimator is possibly even more critical than

selecting the ideal underlying bandit approach.

With respect the future development of the methods presented in this chapter we feel

that the most straightforward next steps would be to expand the theory to encompass the

more powerful confidence bound formulations, such as the empirical Bernstein bound used

in UCB-V (see Appendix D.4.2) as well as the KL bound of KL-UCB. Unfortunately, the

proof techniques used in this chapter make extensive use of the fact that the UCB-style

bound is a deterministic function of the number of samples Nk and, therefore, may be

difficult to adapt to these bounds. However, given the observed gap in the performance

between the UCB-W estimator and the optimally weighted estimator, as well as the gap in

performance between UCB and UCB-V, we feel there is a lot to be gained through research

in this direction.
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Chapter 7

Concluding Remarks

In this thesis we have introduced a number of novel ways in which Monte Carlo integration

approaches can adapt their behaviour automatically to target integrand. Our first approach,

antithetic Markov chain sampling, achieves this adaptation though the use of predefined

Markov chains that terminate according to given stopping rules. Ultimately, this formu-

lation allows one to exploit detailed aspects the integrand. For example, minimizing the

computation spent evaluating the integrand in insignificant regions (values below thresh-

old), and by averaging-out high frequency peaks, we find that the approximation error can

be greatly reduced. Additionally, because this approach does not introduce correlations

between sequential samples it is straightforward to apply to more complex scenarios, for

instance sampling within parallel architectures. The utility of this approach was demon-

strated on complex machine learning tasks that challenge existing methods.

The bandit-based Monte Carlo sampling approaches presented in the subsequent chap-

ters take a different, but complimentary, approach to adaptation. By formulating the adap-

tive Monte Carlo problem as a sequential allocation task we were able to prove a reduction

to the classic stochastic bandit problem. As a result, we are able to immediately take ad-

vantage of the rich body of literature and practical algorithms developed for this setting.

The resulting bandit-based adaptive Monte Carlo methods are not only practically signifi-

cant but bring with them strong finite-time performance guarantees, a rarity in the adaptive

Monte Carlo literature.

The non-uniform costs extension presented in the following chapter was natural next

step for this bandit setup as it permitted the construction of more sophisticated adaptive

algorithms. In particular, allocation algorithms that can tune the parameters for AMCS or

SMCS approaches. It was shown that it is straightforward to apply existing bandit methods

to this extended formulation through a simple double-sampling trick. An upper bound
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on the regret of these bandit approaches, with a rate of Õ(
√
t), was proven under mild

technical conditions. Empirical results uncovered generally positive results for tuning an

AMCS sampler but somewhat negative results for tuning SMCS approaches. These negative

results stemmed from rather unique aspects of SMCS which uncovered limitations in how

the sampled values were combined into a final estimate.

This somewhat unfortunate result motivated the efforts in the subsequent chapter sur-

rounding the general problem of combining unbiased estimators into a single estimate.

Here, it was shown that upper-confidence bound techniques, similar to those used in the

multi-armed bandit literature, can be used to construct practical and theoretically sound es-

timators. The resulting UCB-W estimator was shown to have a regret of Õ(
√
t) in settings

where the samples were allocated stochastically or deterministically. This result covered

an important edge-case in the non-uniform cost version of the bandit-based adaptive Monte

Carlo framework uncovered previously. In addition to the theoretical improvements this

estimator was shown to offer significant empirical improvements in both the uniform and

non-uniform cost settings.

In summary, this thesis has presented a number of unique ways to automatically adapt

Monte Carlo integration approaches to the targeted integrand. We feel that these approaches

are both practically useful and representative of an interesting area for future research.
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Appendix A

AMCS

A.1 Proof of Lemma 3.1

The proof works backwards from µ, uses the symmetric properties of k to swap arguments,

then swaps the order of integration, in particular we have

µ =

∫
h(x′)π(x′)dx′

=

∫
h(x′)π(x′)

∫
k(x′, x)dxdx′

=

∫
h(x′)π(x′)

∫
k(x, x′)dxdx′ (symmetry of k)

=

∫ ∫
h(x′)π(x′)k(x, x′)dx′dx (Fubini’s theorem)

=

∫ ∫
h(x′)π(x′)

π0(x)
k(x, x′)π0(x)dx′dx

= E
[
h(X ′)π(X ′)

π0(X)

]
.

Above we observe that π and k are valid densities (Definition 2.1) which ensures that,

by Fubini’s theorem, the iterated integrals equal the joint integral and the order may be

swapped.

A.2 Proof of Lemma 3.2

To prove (i) we show that the integral reduces to a infinite telescoping sum and make use of

Assumption 3.1 to cancel the final term. In particular, we let

Z :=

∫ ∑
n,m≥1

γ(x(−n), ..., x(m), n,m|x(0))dx
(−n:m)
−0 ,
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then, considering only the positive chain, for any fixed m ≥ 1 we have∫
(1− α+(x(m−1), x(m)))k+(x(m−1), x(m))

×
m−1∏
j=1

α+(x(j−1), x(j))k+(x(j−1), x(j))dx(1:m)

=

∫ m−1∏
j=1

α+(x(j−1), x(j))k+(x(j−1), x(j))dx(1:m−1)

−
∫ m∏

j=1

α+(x(j−1), x(j))k+(x(j−1), x(j))dx(1:m)

=: sm−1 − sm,

where s0 :=
∫
k+(x(0), x(1))dx(1). Taking the infinite sum then recovers

lim
m′→∞

m′∑
m=1

sm−1 − sm = s0,

since, by Assumption 3.1, limm′→∞ sm′ = 0. We may then observe that s0 = 1 since k

is a valid conditional density. Replicating the same steps for the negative chain, using the

notation s′n, we have

Z = (
∑
n≥1

s′n−1 − s′n)(
∑
m≥1

sm−1 − sm) = 1

as desired.

To prove (ii) we first observe that since x(−n) = x′(−n
′), x(1−n) = x′(1−n

′), ..., x(m) =

x′(m
′), andm+n = m′+n′ wherem,n,m′, n′ ≥ 1, then x′(0) = x(k) for some n < k < m.

The proof is therefore a matter of shifting |k| terms from one product to the other in the

definition of γ in Eq. (3.3). In particular we have
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γ(x(−n), ..., x(m), n,m|x(0)) = (1− α+(x(m−1), x(m)))k+(x(m−1), x(m))

×
m−1∏
j=1

α+(x(j−1), x(j))k+(x(j−1), x(j))

× (1− α−(x(1−n), x(−n)))k−(x(1−n), x(n))

×
1−n∏
j=−1

α−(x(j+1), x(j))k−(x(j+1), x(j))

= (1− α+(x(m−1), x(m)))k+(x(m−1), x(m))

×
m−1∏
j=1−k

α+(x(j−1), x(j))k+(x(j−1), x(j))

× (1− α−(x(1−n), x(−n)))k−(x(1−n), x(n))

×
1−n∏

j=−1−k
α−(x(j+1), x(j))k−(x(j+1), x(j))

= γ(x′(−n
′), ..., x′(m

′), n′,m′|x′(0)),

where the second equality follows from the fact that (k+, α+) and (k−, α−) are jointly

symmetric (Definition 3.1), and the last equality from renaming variables according to:

x(−n) = x′(−n
′), x(1−n) = x′(1−n

′), ..., x(m) = x′(m
′).

A.3 Proof of Lemma 3.3

Recall that we have variables (X0, ..., XL, L), where Xi ∈ Rd, L ∈ N, and L ≥ 2, dis-

tributed according to some joint density γ and a random variable J ∼ Uniform({1, ..., L−

1}) the variable XJ =
∑l

j=0 I{J = j}Xj . We then have

P(XJ ∈ A) =
∑
l≥2

P(XJ ∈ A,L = l)

=
∑
l≥2

l−1∑
j=1

P(Xj ∈ A, J = j|L = l)P(L = l)

=
∑
l≥2

l−1∑
j=1

P(Xj ∈ A|L = l)P(J = j|L = l)P(L = l) ,

113



where we have used the fact that Xj and J are independent given L. This equation then

becomes

P(XJ ∈ A) =
∑
l≥2

1

l − 1

l−1∑
j=1

P(Xj ∈ A,L = l)

=
∑
l≥2

1

l − 1

l−1∑
j=1

∫
A

∫
γ(x1, ..., xl, l)dx

−j
1:l dxj

=
∑
l≥2

1

l − 1

l−1∑
j=1

∫
A
γj(x, l)dx

=

∫
A

∑
l≥2

1

l − 1

l−1∑
j=1

γj(x, l)

 dx,

which gives the desired p.d.f.

A.4 Proof of Lemma 3.4

The key observation used to prove Lemma 3.4 is that for any trajectory x̄ := (x(−n), ..., x(m))

with x(0) = y and x(j) = y′, for any−n ≤ j ≤ m, j 6= 0, there exists exactly one “shifted”

trajectory x̄′ := (x′(−n
′), ..., x′(m

′)) where x(−n) = x′(−n
′), x(1−n) = x′(1−n

′), ..., x(−m) =

x′(−m
′) as well as n′ = n + j, m′ = m − j, x′(0) = y′, and x′(j) = y. Further, thanks

to Lemma 3.2 we know that γ(x̄ \ x(0), n,m|x(0) = y) = γ(x̄′ \ x′(0), n′,m′|x′(0) = y′).

The proof therefore amounts to taking the conditional density in Eq. (3.4), remapping the

indicies, and swapping out each trajectory with its “shifted” version. In particular, recalling

the notation x(n,m, x, j) = (x(−n), ..., x(m)), for n,m ≥ 1, −n ≤ j ≤ m, and x(j) = x,

we have that

γ(x|x′) =
∑
l≥2

1

l − 1

l−1∑
m=1

m−1∑
j=m−l+1

∫
γ(x(l −m,m, x, j), l −m,m|x(0) = x′)dx

(m−l:m)
−{j,0}

=
∑
l≥2

1

l − 1

l−1∑
m=1

m−1∑
j=m−l+1

∫
... (A.1)

γ(x(l −m+ j,m− j, x′,−j), l −m+ j,m− j|x(0) = x)dx
(m−l:m)
−{j,0} .

(A.2)

At this point we need only rearrange the inner two summations. To do so, we let s(m, j) :=∫
γ(x(l − m + j,m − j, x′,−j), l − m + j,m − j|x(0) = x)dx

(m−l:m)
−{j,0} . We may now

114



rearrange the summations as follows

l−1∑
m=1

m−1∑
j=m−l+1

s(m, j) =

l−1∑
m=1

−1∑
j=l+1

s(m, j +m)

=

1−l∑
j′=−1

1∑
m′=1−l

s(−j′,−m′ − j′) (using: j = −m′,m = −j′)

=
1∑

m′=1−l

1−l∑
j′=−1

s(−j′,−m′ − j′)

=
1−l∑
m′=1

−1∑
j′=1−l

s(−j′,−m′ − j′)

=
1−l∑
m′=1

m′−1∑
j′=m′−l+1

s(m′ − j′,−j′)

=

1−l∑
m′=1

m′−1∑
j′=m′−l+1

∫
γ(x(l −m′,m′, x′, j′), l −m′,m′|x(0) = x)dx

(m−l:m)
−{j,0} .

Substituting this expression into Eq. (A.2) concludes the proof.
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Appendix B

Monte Carlo Bandits

B.1 Proof of Lemma 4.2

Lemma B.1 (Optional Sampling). Let (Xt)t∈N be a sequence of i.i.d. random variables,

and (X ′t)t∈N be its subsequence such that the decision whether to include Xt in the subse-

quence is independent of future values in the sequence, i.e.,Xs for s ≥ t. Then the sequence

(X ′t)t∈N is an i.i.d. sequence with the same distribution as (Xt)t∈N.

Proof. See Theorem 5.2 in Chapter III on page 145 of (Doob, 1953).

proof of Lemma 4.2. Since we can always employ the substitution X ′ = X − µ we may,

without loss of generality, consider the case when µ = 0, we then observe that

E[Sk,nSj,n] = E[(I{In = k}Yn + Sk,n−1)(I{In = j}Yn + Sj,n−1)]

= E
[
(((

((((
((((I{In = k}I{In = j}Y 2

n

]
+ E[I{In = k}YnSj,n−1]

+ E[I{In = j}YnSk,n−1 + Sk,n−1Sj,n−1] .

By considering the conditional expectation w.r.t. the history up to Yn (including In), i.e.,

w.r.t. Fn−1 = σ(Y1, . . . , Yn−1, I1, . . . , In), we have

E[Sk,nSj,n] = E[E[Sk,nSj,n|Fn−1]]

= E[(I{In = k}Sj,n−1 + I{In = j}Sk,n−1)E[Yn|Fn−1]] + E[Sk,n−1Sj,n−1] .

Now, since In ∈ {1, . . . ,K} and In is Fn−1-measurable,

E[Yn|Fn−1] =

K∑
k=1

I{In = k}E
[
Xk,Tk(n)|Fn−1, In = k

]
.

Further, by Lemma B.1, (Xk,Tk(n))n is an i.i.d. sequence, sharing the same distribution as

(Xk,t)t. Since σ(Xk,Tk(n)) is independent of σ(Y1, . . . , Yn−1, I1, . . . , In−1, In, In = k),
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E
[
Xk,Tk(n)|Fn−1, In = k

]
= E

[
Xk,Tk(n)

]
= µ = 0. Therefore,

E[Sk,nSj,n] = E[Sk,n−1Sj,n−1] = . . . = E[Sk,0Sj,0] = 0.

Which concludes the proof.
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Appendix C

Monte Carlo Bandits With Costs

C.1 Proof for Lemma 5.1

Proof. Let b = c
√

E[N ]. First we prove the upper bound. We have

E
[
D2
]
≤ E

[
D2I{N ≥ E[N ]− b, b ≤ 1

2E[N ]}
]

+ E
[
D2I{N < E[N ]− b}

]
+ E

[
D2I{b > 1

2E[N ]}
]

≤ E
[

(S −Nµ)2

(E[N ]− b)2
I{b ≤ 1

2E[N ]}
]

+ d2P(N < E[N ]− b) + d2I{b > 1
2E[N ]}

≤
E
[
(S −Nµ)2

]
(E[N ]− b)2

I{b ≤ 1
2E[N ]}+ d2P(N < E[N ]− b) + d2I{b > 1

2E[N ]} .

Noting that 1/(1− x) ≤ 1 + 2x when 0 ≤ x ≤ 1/2, we get that

1

E[N ]− b
I{b ≤ 1

2E[N ]} =
1

E[N ]

1

1− b
E[N ]

I{b ≤ 1
2E[N ]} ≤ 1

E[N ]

(
1 + 2

b

E[N ]

)
=

1

E[N ]

(
1 + 2

c√
E[N ]

)
.

Putting things together, we get the desired upper bound.

The lower bound is proved in a similar fashion. To simplify notation, let N denote the

event {N ≤ E[N ] + b}. Then,

E
[
D2
]
≥ E

[(
(S −Nµ)

N

)2

I{N}

]

≥ E
[

(S −Nµ)2

(E[N ] + b)2
I{N}

]
= E

[
(S −Nµ)2

(E[N ] + b)2

]
− E

[
(S −Nµ)2

(E[N ] + b)2
I{NC}

]
≥ E[N ]2

(E[N ] + b)2

E
[
(S −Nµ)2

]
E[N ]2

− E
[

(S −Nµ)2

(E[N ] + b)2
I{NC}

]
≥ E[N ]2

(E[N ] + b)2

E
[
(S −Nµ)2

]
E[N ]2

−
√

E[N4]d2P
(
NC

)
(E[N ] + b)2

≥
(

1− 2b

E[N ]

) E
[
(S −Nµ)2

]
E[N2]

−
√
E[N4]d2P

(
NC

)
E[N ]2

,
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where the second last inequality follows from Cauchy-Schwarz and in the last inequality

we used
E[N ]2

(E[N ] + b)2
=

(
1− b

E[N ] + b

)2

≥ 1− 2b

E[N ] + b

and 1/(E[N ] + b) ≤ 1/E[N ].

C.2 Proof for Lemma 5.2

Proof. We start with the proving the upper bound on E[Nk(t)] in (5.8). Define D̂k,m =

min{Dk,m, β} and let N̂k(t) be the smallest integer such that
∑N̂k(t)

m=1 D̂k,m ≥ t. Then,

clearly N̂k(t) ≥ Nk(t), and by Wald’s identity,

t > E

N̂k(t)−1∑
m=1

D̂k,m

 ≥ E

N̂k(t)∑
m=1

D̂k,m

− β
= E

[
N̂k(t)

]
E
[
D̂k

]
− β

≥ E[Nk(t)] (δk − E[DkI{Dk > β}])− β.

Therefore,

E[Nk(t)] ≤
t+ β

δk − E[DkI{Dk > β}]
,

where we used that δk − E[DkI{Dk > β}] > 0, which follows from our assumption

P(Dk ≤ β) > 0, finishing the proof of the upper bound. As for the lower bound, by the

definition of Nk(t) and Wald’s identity we have E[Nk(t)] δk ≥ t, thus finishing the proof

of (5.8). We now prove (5.7), which follows from (5.8) and Wald’s second identity given in

Lemma 4.1, that is

E
[
(Sk(t)−Nk(t)µ)2

]
E[Nk(t)]

2 =
σ2
k

E[Nk(t)]
≥
σ2
kδk

t+ β
−
σ2
kE[DkI{Dk > β}]

t+ β
.

C.3 Proof of Lemma 5.3

Before proceeding with the proof recall the definitions of (Im)m≥1, (Tk(m))m≥1,k≤K ,

(Ym)m≥1, (Jm)m≥1 and (N(t))t≥0: Im ∈ {1, . . . ,K} is the index of the sampler cho-

sen by A for round m; Tk(m) =
∑m

s=1 I{Is = k} is the number of samples obtained from

sampler k by the end of round m; Ym = XIm,TIm (m) is the mth sample observed by A;

J0 = 0 and Jm =
∑m

s=1DIs,TIs (s) is the time after A observes the mth sample, and so

the mth round lasts over the time period [Jm−1, Jm); and N(t) =
∑∞

m=1 I{Jm < t} is the

119



index of the round at time t (note that N(t) > 0 since t ≥ 0). Thus, N(t) is the number of

samples observed after exhausting the time budget t. Note that
∑K

k=1 Tk(m) = m for any

m ≥ 0 and thus, in particular,
∑K

k=1 Tk(N(t)) = N(t). Further, let Sm =
∑m

s=1 Ym and

S(t) = SN(t).

Proof. We proceed similarly to the proof of Lemma 5.2.We first prove (5.11). By the defi-

nition of N(t) and since Dk,m is nonnegative for all k and m,

t ≤ JN(t) ≤
N(t)∑
s=1

DIs,TIs (s) =

K∑
k=1

Tk(N(t))∑
m=1

Dk,m .

Notice that (N(t))t≥0, (Tk(n))n=0,1,... are stopping times w.r.t. the filtration (Fm;m ≥ 1),

where Fm = σ(I1, J1, . . . , Im, Ym). Therefore, Tk(N(t)) is also a stopping time w.r.t.

(Fm). Defining T k(t) = E[Tk(N(t))], Wald’s identity yields

t ≤
K∑
k=1

E[Tk(N(t))] δk =
K∑
k=1

T k(t)δk . (C.1)

Then,

E[N(t)] =
K∑
k=1

T k(t) ≥
1

δmax

K∑
k=1

T k(t)δk ≥
t

δmax
,

finishing the proof of (5.11).

Now, let us turn to showing that (5.10) holds. We first observe

E

( K∑
k=1

Sk,Tk(N(t)) − Tk(N(t))µ

)2
 =

K∑
k=1

E
[(
Sk,Tk(N(t)) − Tk(N(t))µ

)2]
+2
∑
k 6=j

E
[(
Sk,Tk(N(t)) − Tk(N(t))µ

)(
Sj,Tj(N(t)) − Tj(N(t))µ

)]

=
K∑
k=1

T k(t)σ
2
k,

where we have used Lemma 4.2 and Wald’s second identity (Lemma 4.1). Recall that,

by assumption, T k(t) ≤ f(t) for all k 6= k∗. On the other hand, T k∗(t) ≤ E[N(t)]

holds trivially. Therefore, using (C.1) and (5.11), and defining ∆δk := (δk − δk∗)+ and

∆σ2
k

:= (σ2
k − σ2

k∗)
+ as well as ∆σ :=

∑
k ∆σ2

k
and ∆δ :=

∑
k ∆δk , we obtain

120



E
[
(S(t)−N(t)µ)2

]
E[N(t)]2

≤
∑K

k=1 T k(t)σ
2
k

E[N(t)]2

≤
(
∑K

k=1 T k(t)δk)(
∑K

k=1 T k(t)σ
2
k)

tE[N(t)]2

=
((T k∗(t)δk∗ +

∑
k 6=k∗ T k(t)δk)(T k∗(t)σ

2
k∗ +

∑
k 6=k∗ T k(t)σ

2
k)

tE[N(t)]2

≤
(E[N(t)] δk∗ +

∑
k 6=k∗ T k(t)∆δk)(E[N(t)]σ2

k∗ +
∑

k 6=k∗ T k(t)∆σ2
k
)

tE[N(t)]2

≤
(E[N(t)] δk∗ + f(t)∆δ)(E[N(t)]σ2

k∗ + f(t)∆σ)

tE[N(t)]2

=
δk∗σ

2
k∗

t
+
f(t)(σ2

k∗∆δ + δk∗∆σ)

tE[N(t)]
+
f(t)2∆δ∆σ

tE[N(t)]2

≤
δk∗σ

2
k∗

t
+
f(t)δmax(σ2

k∗∆δ + δk∗∆σ)

t2
+
f(t)2∆δ∆σδ

2
max

t3

=
δk∗σ

2
k∗

t
+
C ′f(t)

t2
+
C ′′f(t)2

t3
,

where C ′ = δmax(σ2
k∗∆δ + δk∗∆σ) and C ′′ = ∆δ∆σδ

2
max. This finishes the proof of the

second part of the lemma.

C.4 KL-Based Confidence Bound on Variance

The following lemma gives a variance estimate based on Kullback-Leibler divergence.

Lemma C.1. Let Y1, . . . , Y2n and Q1, . . . , Qn be two independent sequences of indepen-

dent and identically distributed random variables taking values in [0, 1]. Furthermore, for

any t = 1, . . . , n, let

V̄2t =
1

2t

t∑
s=1

Qt(Y2s − Y2s−1)2. (C.2)

Then, for any δ > 0,

P
(
∪nt=1

{
KL
(
2V̄2t, 2E[Q1]V[Y1]

)
≥ δ

t

})
≤ 2edδ log nee−δ .

Proof. Equation (5) of Garivier (2013) states that if Z1, . . . , Zn are independent, identically

distributed random variables taking values in [0, 1] and Z̄t = 1
t

∑t
s=1 Zs for t = 1, . . . , n,

then for any δ > 0,

P
(
∪nt=1

{
KL
(
Z̄t,E[Z1]

)
≥ δ

t

})
≤ 2edδ log nee−δ .

Defining Zt = Qt(Y2t − Y2t−1)2, we see that the above conditions on Zt are satisfied since

they are clearly independent and identically distributed for t = 1, . . . , n, and Zt ∈ [0, 1]
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since 0 ≤ Qt, Y2t−1, Y2t ≤ 1. Now the statement of the lemma follows since E[Zt] =

E
[
Qt(Y2t − Y2t−1)2

]
= E[Qt]E

[
((Y2t − E[Y2t])− (Y2t−1 − EY2t−1))2

]
= 2E[Q1]V[Y1].

Corollary C.1. Let Y1, . . . , Y2n and Q1, . . . , Qn be two independent sequences of in-

dependent and identically distributed random variables taking values in [0, 1]. For any

t = 2, . . . , n, let V̄t be defined by (C.2) if t is even, and let V̄t = V̄t−1 if t is odd. Further-

more, let

V̄t,min = inf{µ : KL
(
2V̄t, 2µ

)
≤ δ/bt/2c}

and

V̄t,max = sup{µ : KL
(
2V̄t, 2µ

)
≤ δ/bt/2c}.

Then for any δ > 0, with probability at least 1− 2edδ logbn/2cee−δ,

max
2≤t≤n

V̄t,min ≤ E[Q]V[Y ] ≤ min
2≤t≤n

V̄t,max .
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Appendix D

Weighted Estimation of a Common
Mean

D.1 Proof of Theorem 6.1

Proof. We first establish the mean and variance of µ∗. In particular, for the mean of µ∗ we

have

E[µ∗(Xn)] = E

[
K∑
k=1

λ∗kµ̂
∗
k(Xn)

]
=

K∑
k=1

λ∗kµ = µ ,

where we have used
∑K

k=1 λ
∗
k = 1. For the variance, we have

V(µ̂∗(Xn)) =
K∑
k=1

(
nk/σ

2
k∑K

j=1 nj/σ
2
j

)2
σ2
k

nk
=

 K∑
j=1

nj
σ2
j

−2
K∑
k=1

nk
σ2
k

=

(
K∑
k=1

nk
σ2
k

)−1

.

(D.1)

To prove that µ̂∗ is UMVU w.r.t. ENormal
σ2 we will use the Cramer-Rao lower bound, which

in our setting implies that for any unbiased estimator µ̂′ and any environment ν ∈ ENormal
σ2 ∩

E(µ), when Xn ∼ νn,

V
(
µ̂′(Xn)

)
≥ 1

I(µ)
,

where I(µ) is the Fisher information defined by

I(µ) = −E
[
∂2

∂µ2
log(L(µ|Xn))

]
= E

[
K∑
k=1

nk∑
t=1

∂2

∂µ2

(Xk,t − µ)2

2σ2
k

]
=

K∑
k=1

nk
σ2
k

.

This lower bound is constant for all µ and equal to the variance of µ̂∗ implying that µ̂∗ is a

UMVU estimator.

To show that µ̂∗ is a minimax estimator for any E s.t. ENormal
σ2 ⊂ E ⊂ Eσ2 , we will first

derive the Bayes estimator µ̂π0 for the same normally distributed setting above and for some

prior π0(µ) we then construct a sequence of least favourable priors π0, π1, ... and show that
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µ̂π0 converges to µ̂∗ which allows us to conclude that it is minimax w.r.t. ENormal
σ2 . We then

extend this result to cover the non-parametric setting.

Specifically, assuming Xk ∼ N (µ, σk) and π0(µ) = N (µ;µ0, b
2) we can write the

(Bayesian) posterior density for µ given the prior π0 and xn ∈ Rn1 × · · · × RnK as

p(µ|xn) ∝ π0(µ)
K∏
k=1

nk∏
i=1

L(xk,i|µ)

∝ exp

{
−(µ0 − µ)2

2b2

} K∏
k=1

exp

{
−nk(x̄k − µ)2

2σ2
k

}

= exp

{
−µ2

2

(
1

b2
+

K∑
k=1

nk
σ2
k

)
+ µ

(
µ0

b2
+

K∑
k=1

nkx̄k
σ2
k

)
−

(
µ2

0

2b2
+

K∑
k=1

nkx̄
2
k

2σ2
k

)}
∝ N (µ;µπ0(xn), σ2

π0(xn)),

where x̄k := 1
nk

∑nk
i=1 xk,i and

µπ0(xn) := σ2
n

(
µ0

b2
+

K∑
k=1

nkx̄k
σ2
k

)
, (D.2)

σ2
π0(xn) :=

1
1
b2

+
∑K

k=1
nk
σ2
k

. (D.3)

Recall that an estimator µ̂ is said to be Bayes with respect to the squared loss, a prior π0

over the means µ ∈ R and for ENormal
σ2 if it minimizes the average loss

∫
Ln(µ̂; νNormal

µ )π0(µ)dµ,

where νNormal
µ = (N(µ, σ2

1), . . . , N(µ, σ2
K)). It follows from a straightforward application

of Fubini’s theorem that under the squared loss the model averaged parameter µ̂π0(Xn) =

E[µ|Xn] (given by Eq. (D.2)) is a Bayes estimator for π0 (see Corollary 1.2 Ch. 5 Lehmann

and Casella (1998)). Also, the loss of the µ̂π0 estimator is given by

Ln(µ̂π0 ; νNormal
µ ) = V(µ̂π0(Xn)) + bias(µ̂π0(Xn))2

=
1

1
b2

+
∑K

k=1
nk
σ2
k

+

 1

1 + b2
∑K

k=1
nk
σ2
k

(µ0 − µ)

2

.

Now, by considering a sequence of increasingly less informative priors π1, π2, ... defined

with fixed µ0 and increasing b21 < b22 < ... we can see that as b2n → ∞ we have µ̂πn → µ̂∗

and thatLn(µ̂πn ; νNormal
µ ) ↑ (

∑K
k=1 nk/σ

2
k)
−1. SinceLn(µ̂∗; νNormal

µ ) is the limit of Bayes

risks and is constant with respect to µ, clearly Ln(µ̂∗; νNormal
µ ) = supµ Ln(µ̂∗; νNormal

µ )

and we therefore can conclude that it is minimax for ENormal
σ2 (see Theorem 1.12 Ch. 5 of

Lehmann and Casella (1998)).
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Now take any E such that ENormal
σ2 ⊂ E ⊂ Eσ2 . Since supν∈ENormal

σ2
Ln(µ̂∗; ν) =

supν∈E Ln(µ̂∗; ν), by Lemma 1.15 Ch. 5 of Lehmann and Casella (1998), µ̂∗ is also mini-

max optimal for E , concluding the proof.

D.2 Proof of Theorem 6.2

Proof. We begin by first decomposing the random loss

L̂n :=
( K∑
k=1

λk (µ̂k − µ)︸ ︷︷ ︸
Zk

)2
,

depending on whether ξ holds: L̂n = L̂nI{ξ}+ L̂nI{ξC}. Thanks to (µ̂k−µ)2 ≤ b̄2k ≤ b2,

L̂n ≤ b and hence

E
[
L̂n

]
≤ E

[
L̂nI{ξ}

]
+ b2 P

(
ξC
)
.

Thus, it remains to bound the first term in the last expression. By assumption, λ∗k =
nk/σ

2
k∑

j nj/σ
2
j
> 0 for all 1 ≤ k ≤ K. By expanding the defining expression of L̂n we see that

L̂n =
∑
k,j

λ∗kλ
∗
jZkZj

λk λj
λ∗k λ

∗
j

=
(∑

k

λ∗kZk

)2
+
∑
k,j

λ∗kλ
∗
jZkZj

(
λk λj
λ∗k λ

∗
j

− 1

)
. (D.4)

Let εk =
σ̂2
k+∆k

σ2
k

. By algebra, followed by applying Jensen’s inequality,

λk
λ∗k

=
1

εk

(∑
i

ni
σ̂i2+∆i∑
i
ni
σ2
i

)−1

=
1

εk

(∑
i

λ∗i
1

εi

)−1

≤ 1

εk

(∑
i

λ∗i εi

)
.

Note that on ξk = {|σ̂2
k − σ2

k| ≤ ∆k} (hence also on ξ), 1 ≤ εk ≤ 1 + 2∆k

σ2
k

and by simple

algebra also 1/εk ≥ 1− 2∆k

σ2
k

. Thus, on ξ,

1− 2∆k

σ2
k

≤ λk
λ∗k
≤ 1 + 2

∑
i

λ∗i
∆i

σ2
i

=: 1 + 2ζ . (D.5)

Depending on whether k = j we use different techniques to bound the terms appearing in

the second sum of the last expression of (D.4). In particular, when k = j,

E
[
Z2
k

((
λk
λ∗k

)2
− 1

)
I{ξ}

]
≤ 4ζ(1 + ζ)E

[
Z2
k

]
= 4ζ(1 + ζ)

σ2
k

nk

and

E

[
I{ξ}

∑
k

(λ∗k)
2Z2

k

((
λk
λ∗k

)2
− 1

)]
≤ 4ζ(1 + ζ)∑

k
nk
σ2
k

.
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When k 6= j, we first write E
[
ZkZj

(
λk λj
λ∗k λ

∗
j
− 1
)
I{ξ}

]
= E

[
ZkZj

λk λj
λ∗k λ

∗
j
I{ξ}

]
−E[ZkZjI{ξ}].

Now, by independence,

E

[
ZkZj

λk λj
λ∗k λ

∗
j

I{ξ}

]
= E

 ∏
i6=k,j

I{ξi}

E
[
Zk
λk
λ∗k

I{ξk}
]
E

[
Zj
λj
λ∗j

I{ξj}

]
.

Further, −E[ZkZjI{ξ}] = −E
[
ZkZj(1− I{ξC})

]
= E

[
ZkZjI{ξC}

]
≤ b̄k b̄jP

(
ξC
)
.

Hence, to bound the cross term it remains to bound |E
[
Zk

λk
λ∗k
I{ξk}

]
|. For this, we have

|E
[
Zk

λk
λ∗k

I{ξk}
]
| =
∣∣∣E[Zk (λkλ∗k − mk +Mk

2

)
I{ξk}

]
+

mk +Mk

2
E
[
Zk(1− I{ξCk })

]∣∣∣
≤ Mk −mk

2
E[|Zk|] +

mk +Mk

2
b̄k P

(
ξCk
)
,

where mk (and Mk) are deterministic constants that almost surely lower (respectively, up-

per) bound λk
λ∗k

over ξk. Thus, for the cross-term, via an application of Cauchy-Schwartz to

upper bound E[|Zk|] by
√

E[|Zk|2] = σk√
nk

, we have

E
[
ZkZj

(
λk λj
λ∗k λ

∗
j

− 1

)
I{ξ}

]
≤ b̄k b̄jP

(
ξC
)

+{
Mk −mk

2

σk√
nk

+
Mk +mk

2
b̄k P

(
ξCk
)} {Mj −mj

2

σj√
nj

+
Mj +mj

2
b̄j P

(
ξCj
)}

.

and so ∑
k 6=j

λ∗kλ
∗
jE
[
ZkZj

(
λk λj
λ∗k λ

∗
j

− 1

)
I{ξ}

]
≤
(∑

k

λ∗k b̄k

)2
P
(
ξC
)

+
(∑

k

λ∗k

{
Mk −mk

2

σk√
nk

+
Mk +mk

2
b̄k P

(
ξCk
)})2

.

By (D.5), we can choose mk = 1 − 2∆k

σ2
k

and Mk = 1 + 2ζ. Hence, Mk−mk
2 = ζ + ∆k

σ2
k

=

O(n−1/2) and mk+Mk
2 = 1 + ζ − ∆k

σ2
k

= 1 +O(n−1/2). Putting together everything we get

Rn(µ̂UCB-W) = n2
{
E
[
L̂n

]
− L∗n

}
≤ n2

{
2b2 P

(
ξC
)

+
4ζ(1 + ζ)∑

k
nk
σ2
k

+
(∑

k

λ∗k
(Mk −mk)σk

2
√
nk

+
mk +MK

2
b̄k P

(
ξCk
) )2}

,

where we used that E
[
(
∑

k λ
∗
kZk)

2
]

= L∗n. We see that here the leading term in the inside

bracket is

4
ζ

n
∑

k
ρk
σ2
k

= 10
√

2n−
3/2

∑
i λ
∗
i
b̄i
√

log(4K/δ)

σ2
i

√
ρi∑

k
ρk
σ2
k

= 10
√

2n−
3/2

∑
i
b̄i
√
ρi log(4K/δ)

σ4
i(∑

k
ρk
σ2
k

)2 ,

thus, letting C = 10
√

2
(∑

k
ρk
σ2
k

)−2
and using (a+ b)2 ≤ 2(a2 + b2), algebra recovers the

main result.
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Remark D.1. An alternative argument uses Hölder’s inequality and avoids the bound-

edness condition as follows: For any ε > 0, E
[
L̂nI{ξC}

]
≤ E

[
L̂1+ε
n

] 1
1+ε E

[
I{ξC}

] ε
1+ε .

Now, by Jensen’s inequality, L̂pn ≤
∑K

k=1 λk|Zk|2(1+ε) ≤ maxk |Zk|2(1+ε). Hence, E
[
L̂nI{ξC}

]
≤

E
[
maxk |Zk|2(1+ε)

] 1
1+ε P

(
ξC
) ε

1+ε . Since we expect Zk ∼ N(0, σ2
k/nk) (asymptotically)

and they are independent, we expect E
[
maxk |Zk|2(1+ε)

]
to be well-controlled and in par-

ticular scale with log(K).

D.3 Proof of Theorem 6.3

Proof. For convenience we denote Πk := ξk ∩ Nk and Π :=
⋂K
k=1 Πk and we decompose

the random loss as

L̂n :=
( K∑
k=1

λk (µ̂k − µ)︸ ︷︷ ︸
Zk

)2
,

depending on whether Π holds: L̂n = L̂nI{Π}+ L̂nI{ΠC}. As above, this gives

E
[
L̂n

]
≤ E

[
L̂nI{Π}

]
+ b2 P

(
ΠC
)
.

We will address the latter term through assumptions on ξ andN and focus on bounding the

first term. Specifically we have that

L̂n =
∑
k,j

λ∗kλ
∗
jZkZj

λk λj
λ∗k λ

∗
j

=
(∑

k

λ∗kZk

)2
+
∑
k,j

λ∗kλ
∗
jZkZj

(
λk λj
λ∗k λ

∗
j

− 1

)
. (D.6)

In what follows we will often need to bound quantities depending on the number of pulls

(on Π) so for convenience we define N̄k := E[Nk] + ∆Nk ,
¯
Nk := E[Nk] − ∆Nk , and

λ∗j ≤ λ̄∗j :=
N̄j
σ2
j

/
∑

k ¯
Nk
σ2
k

. Defining εk =
σ̂2
k+∆

σ2
k

(Nk)

σ2
k

as well, we then have

λk
λ∗k

=
1

εk


∑

i
Ni

σ̂i2+∆
σ2
i

(Nk)∑
i
Ni
σ2
i


−1

=
1

εk

(∑
i

λ∗i
1

εi

)−1

≤ 1

εk

(∑
i

λ∗i εi

)
.

On Πk we have that {|σ̂2
k − σ2

k| ≤ ∆σ2
k
(Nk) ≤ ∆σ2

k
(
¯
Nk)} (hence also on Π), 1 ≤ εk ≤

1 +
2∆

σ2
k

(
¯
Nk)

σ2
k

and 1/εk ≥ 1−
2∆

σ2
k

(
¯
Nk)

σ2
k

. Thus, on Π,

1−
2∆σ2

k
(
¯
Nk)

σ2
k

≤ λk
λ∗k
≤ 1 + 2

∑
i

λ̄∗i
∆σ2

i
(
¯
Nk)

σ2
i

=: 1 + 2ζ . (D.7)

Depending on whether k = j we use different techniques to bound the expectation of the

terms appearing in the second sum of the last expression of Eq. (D.6). In particular, when
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k = j,

E
[
Z2
k

((
λk
λ∗k

)2
− 1

)
I{Π}

]
≤ 4ζ(1 + ζ)E

[
Z2
k

]
.

As before, for the cases where j 6= k we first observe E
[
ZkZj

(
λk λj
λ∗k λ

∗
j
− 1
)
I{Π}

]
=

E
[
ZkZj

λk λj
λ∗k λ

∗
j
I{Π}

]
− E[ZkZjI{Π}] ≤ E

[
ZkZj

λk λj
λ∗k λ

∗
j
I{Π}

]
+ b̄k b̄jP

(
ΠC
)
. We can up-

per bound the first term here as before

E

[
ZkZj

λk λj
λ∗k λ

∗
j

I{Π}

]
≤ |E

[
Zk

λkλj
λ∗kλ

∗
j

I{Π}
]
|

≤
∣∣∣∣E[Zk (λkλjλ∗kλ

∗
j

− mk,j +Mk,j

2

)
I{Π}

]
+
mk,j +Mk,j

2
E
[
ZkZj(1− I{ΠC})

]∣∣∣
≤ Mk,j −mk,j

2
E[|ZkZj |] +

mk,j +Mk,j

2
b̄k b̄j P

(
ΠC
)

≤ Mk,j −mk,j

2

√
E
[
Z2
k

]
E
[
Z2
j

]
+

mk,j +Mk,j

2
b̄k b̄j P

(
ΠC
)
,

where mk,j (and Mk,j) are deterministic constants that almost surely lower (respectively,

upper) bound λkλj
λ∗kλ

∗
j

over Π and the final inequality follows from Cauchy-Schwartz. Here

we can choose mk,j = (1 − 2∆k(
¯
Nk)

σ2
k

)(1 − 2∆j(
¯
Nj)

σ2
j

) and Mk,j = (1 + 2ζ)2. Hence,

by assumption we have that
∑

k E[Nk] ≤ Cf t, which implies that Mk,j−mk,j
2 ≤ 2ζ +

2ζ2 +
∆k(

¯
Nk)

σ2
k

+
∆j(

¯
Nj)

σ2
j

= O(t−1/2) and mk+Mk
2 = 1 + 2ζ + 2ζ2 + 2

∆k(
¯
Nk)∆j(

¯
Nj)

σ2
kσ

2
j

=

1 +O(t−1/2). Putting this all together we arrive at

E[L(µ̂)− L(µ̂∗)] ≤ E

∑
k,j

λ∗kλ
∗
jZkZj

(
λkλj
λ∗kλ

∗
j

− 1

)
≤
∑
k,j

λ̄∗kλ̄
∗
jE

[
ZkZj

(
λkλj
λ∗kλ

∗
j

− 1

)]
≤
∑
k

(λ̄∗k)
24ζ(1 + ζ)E

[
Z2
k

]
+
∑
k 6=j

λ̄kλ̄j

(
C′√
t

√
E
[
Z2
k

]
E
[
Z2
j

]
+ (1 +

C′′√
t
)b̄k b̄j P

(
ΠC
))

,

where we observe that E
[
Z2
k

]
≤ σ2

k
E[Nk]

(
1 + 2c√

E[Nk]

)2

+f(b, δ) by Lemma 5.1 with f(b, δ)

capturing the higher-order terms.

D.4 Concentration Inequalities

In this section we give some concentration inequalities that we need in the text.
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D.4.1 The Hoeffding-Azuma Inequality

Lemma D.1 (Hoeffding-Azuma Inequality). Let (Xt)1≤t≤n be a martingale difference pro-

cess such that |Xt| ≤ rt a.s. with some (rt)1≤t≤n deterministic constants. Then, for any

c ≥ 0,

P

(
n∑
t=1

Xt ≥ c

)
≤ exp

(
− c2

2
∑n

t=1 r
2
t

)
,

P

(
n∑
t=1

Xt ≤ −c

)
≤ exp

(
− c2

2
∑n

t=1 r
2
t

)
.

Inverting this inequality gives the following:

Corollary D.1. Under the same conditions as in Lemma D.1 on (Xt), for any 0 ≤ δ ≤ 1,

P

(
n∑
t=1

Xt ≤
√

2
(∑n

t=1 r
2
t

)
log
(

1

δ

))
> 1− δ ,

P

(
n∑
t=1

Xt ≥ −
√

2
(∑n

t=1 r
2
t

)
log
(

1

δ

))
> 1− δ .

D.4.2 Concentration of the Sample Variance

The following inequality can be extracted from the proof of Theorem 10 of Maurer and

Pontil (2009):

Lemma D.2. Let n ≥ 2, (Xt)1≤t≤n be independent, [0, 1]-valued random variables and

define

Vn =
1

n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2

to be the sample variance of (Xt)t, and let σ2
n = E[Vn] be the expected sample variance.

Then, for any 0 ≤ δ ≤ 1,

P

(
σ2
n ≤ Vn + σn

√
2 log(1/δ)

n− 1

)
> 1− δ ,

P

(
σ2
n ≥ Vn − σn

√
2 log(1/δ)

n− 1
− log(1/δ)

n− 1

)
> 1− δ .

Note that the sample variance as defined here is the same as the value 1
n−1

∑n
t=1(Xt −

1
n

∑n
s=1Xs)

2, a form that is perhaps more commonly used to define the sample variance.

Note that if (Xt)t are identically distributed then σ2
n = σ2 := V(Xt), the common variance

of the random variables (Xt)t. o While the above result gives 1 − δ confidence upper
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and lower bounds on σ2
n, these depend on σ2

n, hence cannot be used directly in the lack of

knowledge of σ2
n. A simple way to get fully empirical confidence bounds is to upper bound

σn. For example, when (Xt)t is i.i.d., E[Vn] = V(Xt) ≤ 1/4 where the upper bound is

Popoviciu’s inequality for the variances. (More generally, if (Xt)t is i.i.d., but they belong

to [a, a+ r], then E[Vn] ≤ r2/4). This leads to the following result:

Corollary D.2. Let n ≥ 2, (Xt)1≤t≤n be i.i.d., [0, 1]-valued random variables with com-

mon variance σ2. Then, for any 0 ≤ δ ≤ 1,

P

(
σ2 ≤ Vn +

√
log(1/δ)

2(n− 1)

)
> 1− δ ,

P

(
σ2 ≥ Vn −

√
log(1/δ)

2(n− 1)
− log(1/δ)

n− 1

)
> 1− δ .

An alternative way to estimate the common variance of a sequence of i.i.d. random

variables is to use V ′n = 1
n

∑bn/2c
t=1 (X2t−1−X2t)

2. It is not hard to see that indeed E[V ′n] =

σ2. The advantage of using V ′n is that it is quite simple to derive confidence bounds for σ2

based on V ′n. For example, Hoeffding’s inequality can be used directly to obtain lower and

upper confidence bounds for σ2: For any 0 ≤ δ ≤ 1, for n even,

P

(
σ2 ≤ V ′n +

√
log(1/δ)

n

)
> 1− δ and P

(
σ2 ≥ V ′n −

√
log(1/δ)

n

)
> 1− δ .

Comparing with Corollary D.2, we see that this approach loses a factor of
√

2 in the length

of the confidence interval. By considering normally distributed random variables, it is not

hard to see that this is indeed the price that one pays for the simpler analysis.

One can use Lemma D.2 to get tighter fully empirical confidence bounds for σ2
n. In

this approach, to derive (say) an upper bound on σ2
n, one finds the maximum value of σ2

such that σ2 ≤ Vn + σ
√

2 log(1/δ)
n−1 holds. Similarly, for a lower bound on σ2

n, one finds the

smallest nonnegative value of σ2 such that σ2 ≥ Vn − σ
√

2 log(1/δ)
n−1 − log(1/δ)

n−1 holds (the

lower bound is zero when Vn ≤ log(1/δ)
n−1 ). Solving these inequalities gives the following

result:

Corollary D.3. Under the conditions of Lemma D.2, for any 0 ≤ δ ≤ 1, with probability

at least 1− δ,

σ2
n ≤ Vn +

√
2 log(1/δ)

n− 1

(
Vn +

log(1/δ)

2(n− 1)

)
+

log(1/δ)

n− 1

≤ Vn +

√
Vn

2 log(1/δ)

n− 1
+ 2

log(1/δ)

n− 1
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holds. Similarly, for any 0 ≤ δ ≤ 1, with probability at least 1− δ,

σ2
n ≥

(
Vn −

√
2 log(1/δ)

n− 1

(
Vn −

log(1/δ)

2(n− 1)

))
+

≥

(
Vn −

√
Vn

2 log(1/δ)

n− 1
− log(1/δ)

n− 1

)
+

.

Interestingly, the obtained bounds on σ2
n take the same exact form as Lemma D.2 except

that σ2
n is replaced by Vn, in the upper bound an additional O(1/n) term appears, while and

the coefficients of the O(1/n) terms are slightly increased.
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