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ABSTRACT

In a lecture at Humboldt University in 1959, M. Katetov
suggested the desirability of studying mappings of proximity spaces.
Quotients and other maps of proximity spaces have since been investi-
gated by Katetov, Poljakov, Isbell, Dowker, Stone, and Nachman. This

thesis continues the study begun by these authors.

Chapter I contains a history of the literature of proximity

Spaces and a brief introduction to the subject.

Chapter II is concerned with pProximity quotients. A new expli-
cit characterization of the quotient proximity is given. This character-
ization is used to find necessary and sufficient conditions on a proximity
space for every proximity quotient map on this space to be a topological
quotient map. It is shown that a separated proximity space X is compact
iff every p-map on X with separated range is a proximity quotient map.

Other mapping characterizations are obtained.

Much current research in general topology has been directed
towards finding conditions under which the product of topological quotient
maps is a quotient map. The main result of Chapter III is that the finite
product of proximity quotient maps, each of which has a separated domain
and range, is a proximity quotient map. This theorem is used to prove
that if £ : Xl > Yl and g : X2 +>Y2 are topological quotient maps

between Té% spaces, then if Xl X X2 is pseudocompact, fXg is a quo-

tient map. Examples are given. It is also shown that the regular p-map



{ii)

image of a semi-metrizable proximity space is semi-metrizable.

A metrization theorem for proximity spaces analogous to a topo-
logical metrization theorem of Morita is proved in Chapter IV. One
consequence of this result is that if Y has the elementary proximity and
is the image of a metrizable proximity space under a closed p-map, then Y

is metrizable.

Products of proximity spaces are considered in Chapter V. A
product of proximity spaces is defined which gives the elementary proximity

on the product.
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CHAPTER I

INTRODUCTION TO PROXIMITY SPACES

1. History and Introduction.

A topology on a set X can be determined completely by a
closure operator on the set P(X) of all subsets of X . In this sense,
topology is an axiomatization of a point being "near" a set; that is, being
in the closure of a set. It seems natural to axiomatize the concept of two

sets being near. A proximity on a2 set is such an axiomatization.

The historical motivation for the introduction of proximity
spaces has been somewhat different. There are at least two recurring notions
of nearness in topology. The first, topological separation, was axiomatized
in 1941 by A.D. Wallace [47]. Ten years later, E. Efremovich [9] considered
two subsets of a metric space to be near whenever the distance between them

was zero. It was this second concept of nearness that Efremovich axiomatized.

and called proximity.

Much of the early work in proximity spaces was done by Y. Smirnowv
[43] and [44]. It was his theorem on the one-to-one correspondence between
the compactifications of a completely regular space X and the compatible
proximities on X which gave impetus to the study of these structures.
Smirnov was also the first to explore the relationship between proximities
and uniformities. Gal [14] and Alfsen and Fenstad [2] continued Smirnov's
investigation and independently showed that there is a one-to-one correspon-~-

dence between proximities and totally bounded uniformities.



Some of the recent areas of development in proximity spaces have
been the generalizations due to Leader [22], Lodato [25], Pervin [36], and
Harris [18]; the use of proximities to solve topological questions by Gagrat
and Naimpally [11], [12], and [13]; lattices of proximities as studied by
Dooher and Thron [7]; and mappings of proximity spaces, which will be our

main concern here.

The study of mappings of proximity spaces was initiated by Kate-
tov [20] in 1959. Although there has been some investigation of mappings
by various authors, few of the characterization problems of current interest

in general topology have been studied for proximity spaces.

In his survey paper "Mappings and Spaces" [3], A.V. Archangel'-
skii in 1965 presented a uniform approach to problems of the mutual classi-
fication of mappings and spaces. Let F and G be classes of maps and A
and B classes of spaces. Archargel'skii isolated the following three

problems:

(1) When is a space from class B an F - image of a space

from class A .
(2) Characterize AF : the class of spaces which are F - images
of spaces of class A .

(3) Characterize F(A,B) n G : the intersection of G with the

class of all maps with domain in class A and range in class B .

There are other gemeral problems in mappings and spaces which have
since been singled out for attention. MacDonald and Willard in [27] were

interested in the following problem:



(4) Characterize the class of all spaces whose every F - image

lies in B .
Other similar problems are:

(5) Characterize the class of spaces X such that every map in
F with domain X is in G .

(6) Characterize the class of spaces Y such that every map in

F with range Y is in G .

These last two have not been isolated as such, but problems of
type (5) have been considered by Dickman and Zane [6] and Willard [48], while
Siwiec [42] and Lee [24] have solved problem (6) for various classes of maps

and spaces.

Our interest in this thesis has been to answer some of these
general classification problems for specific classes of maps on proximity

spaces.

2. Basic Definitionms.

A brief introduction to proximity spaces will be given in this
section. For a more detailed discussion, the reader is referred to the text

General Topology by S. Willard [49] and the monograph Proximity Spaces by

S.A. Naimpally and B.D. Warrack [34]. Our development in this section will

somewhat follow these two sources. All unproved propositions appear there.

2.1 Definition. A proximity space is a pair (X,8) , where X is a set

and 6 is a binary relation on the collection P(X) of all subsets of X



such that

(P1) if ASB, then A# ¢ and B # ¢,

(P2) ASB iff B6A N

(P3) if AnB # ¢ , then ASB ,

(P4) AS(BuC) iff ASB or ASC ,

(?5) if A¢B » then there exist disjoint sets C and D such

that A¢(X—C) and B$(X;D) s

where A$B means it is not true that ASB . The proximity space (X,6)

is called separated if it also satisfies
(P6) adb iff a=b .-

When no confusion can result, we shall speak of the proximity

space X . The phrase ASB is read "A is near B".

2.2 Examples. (@) 1In a metric space, define ASB iff d(A,B) =0 . A

proximity which is given by a metric is called metrizable.

(b) In a normal topological space, define AS8B iff

AnB # ¢ . This proximity is called the elementary proximity.

(c¢) If (X,p) is a covering uniformity, let ASB iff
St(A,U)nB # ¢ for all U ¢ H . A proximity obtainable in this way is called

uniformizable. It is known that every proximity is uniformizable; in fact,

obtainable from a unique totally bounded uniformity.

(d) In a completely regular space X , define A$OB iff

there is a continuous function £ mapping X to the unit interval I such



that £f(A) =0 and f(B) =1 . This proximity is called the fine prox-
imity on X . It is equivalent to the elementary proximity when X is

normal.

(e) In a set X, define ASB iff A #¢ and B # ¢ .

This is the trivial proximity.

2.3 Proposition. If (X,6) is a proximity space, then § induces a

completely regular topology on X such that A = {x | x8A} . Conversely,
if X 1is any completely regular space, the fine Proximity on X induces

the original topology.

2.4 Remarks. Z(8) will denote the topology induced by 8 . If (X,0)
is a topological space, a proximity & on X will be called compatible
iff z(8) =z . Motivated by the fact that a set U is a neighborhood of
a point x € X in g(8) iff x$(X-U) , we shall write AccB to mean
A$(X-B) and read "B is a S-neighborhood (or p-neighborhood) of A". Then

axiom (P5) in definition 2.1 can be rewritten as
(P5') 4if AccB , there is some set E such that AccEccB .

A continuous function is one which satisfies f(Z) E_ETXT for
any A ¢ P(X) . Another way of expressing this is to say that f is
continuous whenever x near A implies f£(x) near f£f(A) . Proximity maps
on proximity spaces arise naturally as functions which take near sets to

near sets. Formally, we have the following:

.



2.5 Definition. If f is a function between the proximity spaces (X,8)

and (Y,8') , f is a p-map iff f(A)S' £(B) whenever ASB .

Clearly, every p-map is continuous in the induced topologies on

X and Y. If § is the fine proximity the converse is also true.

2.6 Definition. A one-to-one, onto map f such that both f and f-l

are p-maps is a p-isomorphism.

We turn now to the construction of the Smirnov Compactification of
a proximity space. In a completely regular space X , the Stone-Cech Compac-
tification of X is just the set of all ultrafilters on X (with a suitable
topology). It is well-known that an ultrafilter F can be characterized as
a subset of P(X) such that

(a) if A,Be F, then AnB # ¢ ,

(b) if AuB e F, then Ac¢ F or B ¢ F, and

(¢) if AnB # ¢ for all B¢ F, then A e F.

Analogously, S. Leader [21] in 1959 defined a cluster as follows:

2.7 Definition. A cluster T on a proximity space (X,8) is a subset of

P(X) such that

(a) if A,B € m, them ASB ,
(b) if AUB e W, then Ae T or Be T,

(c) if ASB for all Be T, then A e T .



Leader used clusters to construct the compactification due to

Smirnov. Before Stating the theorem, we shall need some definitions.

2.8 Definition. If & and &' are two proximities on a set X , § is

said to be finer than &' iff ASB implies AS'B . This is written

§' <6 . If 8'<68 and & < &' > 8§ and &' are called equivalent.

Given a completely regular space X > the fine proximity is the

finest proximity compatible with X .

2.9 Definition. If Kl and KZ are compactifications of X we write

Kl < K2 iff there exists a continuous F : K2 > K1 such that F°h2 = hl ,

where hl and h2 are embeddings of X into K1 and K2 respectively.

As is well-known, the Stone-Cech Compactification is the largest
compactification under the ordering of definition 2.9. One consequence of
part (e) of the next theorem, then, is that the Stone-Cech Compactification

is the Smirnov Compactification of the fine proximity.

2.10 Theorem. (Smirnov-Leader). Let (X,8) be a separated proximity space.

Then:
(a) X 1is compact iff every cluster on X contains a point.

(b) The space x* of all clusters on X (with a suitable

topology) is a Hausdorff compactification of X .

(c) X* is the unique compactification of X such that any p-map
from X into a separated proximity space Y has a unique continuous exten-

sion f£* : x* > Y* .



(d) AfB iff C1 LA Cl B=¢ iff there is ap-map [ : X > I
X X

such that f(A) =0 and f(B) =1 .

(e) There is a one-to-one order preserving correspondence between

the Hausdorff compactifications of X and the compatible proximities on X .

L



CHAPTER II

QUOTIENTS OF PROXIMITY SPACES

3. Introduction.

In 1959 Katetov [20] introduced proximity quotient maps and
suggested that mappings of proximity spaces be investigated. Quotients
have since been studied by Isbell [19], Nachman [32] and Stone [46],
while proximity open maps were defined and examined by Poljakov in [37]
and [38]. Although there are characterizations of proximity quotient maps
in the literature [32], the only explicit formulation of the quotient
Proximity the author knows of is due to A.H. Stone, whose work appears in
the general topology text by Willard [49]. Our purpose in the present
chapter is to provide another approach to proximity quotient maps; we will
then use our new characterization to study mapping properties of proximity

spaces.

In this chapter (X,8) will always denote a (not necessarily
separated) proximity space and 60 will represent the fine proximity (2.2d)

on X .

4. Characterization.

4.1 Definition. Let f be a function from a proximity space (X,8) onto

a set Y . The quotient proximity is the finest proximity on Y such that

f is a p-map. When Y has the quotient proximity, f will be called a

P—quotient map.

L.
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4.2 Theorem. (Stone [46]). The quotient proximity is given by: C cc D
iff for each binary rational s ¢ [0,1] , there is some CS_S Y such that
1

Co=C€5C =D and s <t implies f'l(cs) cc f

0 (Ct) -

The above characterization, although explicit, is difficult to
work with for obvious reasons. In 4.3-4.5 we introduce a simpler approach

and prove it works.

4.3 Definition. Let £ be a function from a proximity space (X,6)

onto a set Y . Define A¢'B in Y iff there is a function g : Y -+ I such

that g(A) =0, g(B) =1 and geof is a p-map.

4.4 Lemma. 8" 1is a proximity.

Proof. Clearly, the axioms (P1)-(P3) of definition 2.1 hold, and AS'B

or AG'C easily implies AS"(BuC) . Let A¢'B and A$'C . We must show
A$'(BUC) - Let g and h map Y to I such that g(A) =0, g8 =1,
h(A) =0, h(C) =1 and gef and hof are p-maps. Then (g*h)(4) =0,
(g*h)(BUC) = 1 , and since the product of bounded real-valued p-maps is a
p-map [20, Proposition 2.2], (g*h)of = (gof)+(hof) is thus a p-map. There-

fore, A$'(BUC) > and axiom (P4) is satisfied.

To prove (P5) , let A¢'B . Then by definition, there is a

function g : Y > I such that g(A) =0 , g(B) =1 and gof is a p-map.

Let C = g—l [O,%) and D = g_l (%31] . Then CnD = ¢ and it is easy to

show that A¢'(X-C) and B§'(X-D) .
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4.5 Theorem. O' is the quotient proximity.

Proof. First, f : (X,8) > (Y¥,8') is a p-map. For if A$'B , there is
some h : Y >1I such that h(A) =0, h(B) =1 and hof is a p-map. It

follows that £ Th 1(0) § £ 7h 1(1) and therefore £ 1(a) § £1(B) .

Now, if 6* is another proximity on Y such that
£ (X,8) > (¥,8%) is a p-map, then A¢*B implies there is a p-map
h : (¥,6%) > I such that h(A) =0 and h(B) = 1 . But then, A$'B and

hence &' is the finest proximity on Y for which f is a p-map.

4.6 Corollary. A function g satisfying definition 4.3 is continuous

relative to the quotient topology on Y .

-1 -1
Proof. et U beopenin I . Then V = f 1g “(U) is open in X since

every p-map is continuous. Since V f-lf(V) > it follows that £(V) = g_l(U)

is open in the quotient topology on Y .

Notation. In the sequel &/f will denote the quotient proximity on Y
induced by f and (X,56) . When no confusion can result, this will be

abbreviated &' .

The next theorem is proved quite easily from theorem 4.5. The
result has also been established by Nachman [32], who used the techniques of
uniform spaces. We shall need to make use of it in chapter III, and so state

it here without proof.
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4.7 Theorem. If (X,8) and (Y,8') are proximity spaces and f : X - ¥

is onto, then f is a P-quotient map iff
(1) £ is a p-map and

(2) gof is a p-map whenever g : Y »> (Z,y) iff g 1is a p-map.

4.8 Corollary. If Y has the quotient proximity induced by f : (X,8) - Y s

then Y is p-isomorphic to the natural decomposition space X' (that is, the
space whose "points" are the sets f-l(y) for every y € Y and whose proximity
is the quotient proximity induced by the function ¢ : X »+ X' which takes

x € X to the set in which it is contained).

4.9 Theorem. Let f be a function mapping the set X onto the set Y

and let 8 and Yy be two proximities on X with Y<&8 . Then vY/f < §/f .

Proof. We note that f : X,8) > (¥,8/f) and £ : &,Y) > (Y,Y/£f) are p-
maps and we claim £ : (X,8) + (Y,y/f) is a p-map. To prove this, let AGSB
and assume f(A) and £f(B) are v/f - separated. Then there is some

& : Y>I such that g(£f(4)) =0 > 8(£(B)) =1 and gof is a p-map relative
to Y . Since Yy <8, gof must also be a p-map relative to &§ . But then,
by definition of the quotient proximity O/f , £(A) and £(B) are 6/f -
separated, which cannot happen since ASB and f : X,8) » (¥,Y/£f) is a p-
map. Thus, f : (X,8) > (Y,y/f) is a Pp-map and so by the definition of

S§/f , Y/f < §/f .

Although the quotient Proximity is usually given neither by Ad'B

iff f-l(A) 8 f_l(B) nor by the elementary proximity, there is at least one
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case in which it is given by a "nice" combination of the two.

4.10 Theorem. Let X° be a closed subset of a proximity space (X,§)

and identify X° to a point Yo, - Then AS'B iff either
-1 -1 .

v, € Cl;(a,)A n Cl;(é')B or £ 7(A) § £ ~(B) > Wwhere f is the natural
map. )
Proof. Clearly, AS'B whenever either property holds. Now assume both
-1 -1

f (8 § £(B) and v, ¢ 01;(6,)A nCl, s1yB 5 say v, ¢ Cl,(s1yA - Then
f-l(A) ¢ Xo - Let g :X>1I be a P-map such that g(f—l(A)) =0 and
g(£ 1) u X)=1. Define h:Y>I as follows:

sty x#y,

h(x) =

Then h(4) =0 and B(B) = 1, for x ! X, (o) (x) = g(£ Le(x)) =
g(x) , and for x ¢ Xo > (hef)(x) = h(yo) =1=g(x) . So hof = & 1is a p-map.

Thus, by the definition of the quotient proximity, A$'B - The result follows.

4.11 Corollary. if Xl,'",Xn are pairwise separated subsets of X , and

Y 1is formed by identifying each Xi to a point y; > then AS'B iff either
_l -1
i = es e F
y; € CI;(G')A n CIC(S')B for some ¥y o 1=1, s or f T(A) § £ “(B) ,

where f is the natural map.

4.12 Example. A proximity space with a countable, locally finite collection

of closed subsets, and a quotient space formed by identifying each member of

[
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this collection to a point, with the quotient proximity not given as a
"aice" combination of the elementary proximity and AS8'B iff

£lwy s £ i) .

Let X = RXR  with the metric proximity, A = Rx{1} , and
B = Rx{0} . For each integer n > 3, let F = {n}x[% , 1 - %] . Now,
identify each Fi to a point yi and let Y be the resulting space and
f the natural map. We claim that f(A)G' £f(B) . If not, there is some U
such that f(B) << U and U ¢' £(A) . If U contains infinitely many ;S »
then £ 1(U) contains infinitely many F; , and so is near A . It follows
that U ' £(A) - a contradiction. On the other hand, if U contains only
finitely many ¥; » We may assume it contains no y; » SO f—l(U) intersects
no Fi and hence (X - f—l(U)) § B . But then it follows that

1

- . -1,.. . o . .
(X - £ 7(U)) § £(B) and simce f{X - f (U)) =Y - U, we again have a

= \<4

contradiction.

5. Proximity Quotients vs. Topological Quotients.

In this section we consider the question of when a proximity

quotient map on a proximity space is a topological quotient map.

5.1 Example. A p-quotient map f on the real line with f_l(y) finite

for all y in the quotient, but f not a topological quotient map.

Let X be the non-negative real line with the usual proximity,
identify n and %- for each positive integer n , and let Y be the result-

ing set. Comnsider U = [O,%J u v {( - %-, n + %J} . Since U = f-lf(U) s
n>2

b
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~where f is the natural map, £(U) is open in the quotient topology on

Y . However, if £(0) << £(U) , there must be some V such that

£(0) ¢c V cc £(U) . Now, <f(n)> converges to £(0) , so there is some

N > 2 with f(n) € V for all n >N . Thus, {f(n)}n>N $'y - £(U) . But
clearly, {n}n>N §(X-U) , so that {f(n)}n>N §'Y - £(U) . Therefore, £(U)
is not a Z(8') - neighborhood of £(0) and z(8') is not the quotient

topology even though f—l(y) is finite for all y € Y .

It is well known that a one—to-one topological quotient map is a
homeomorphism. The next theorem demonstrates that the analogue for proximity
spaces is also true. Note that part (1) exhibits one-to-one p-quotients in
a form one might expect all p-quotients to take. That this would not be a
viable approach to p-quotients in general was observed in 4.10-4.12. Also,
part (3) provides us with a first approximation to the main question of this

section.

5.2 Theorem. Let f : (X,8) » (¥,8') be a one-to-omne p-quotient map.
Then:
] . -1 -1
(1) AS'B iff f (A) 8 £ "(B) ,
(2) f is a p-isomorphism, and

(3) the topology induced by §' is the quotient topology.

Proof. (1) Since £ is a p-map, £1a) 6 £1(8) implies AS'B . So,
let f_l(A) $ f-l(B) and let g : X > I be a p-map such that g(f—l(A)) =0
and g(f"l(s)) =1 . If h:Y~=1I is defined by h(y) = g(f’l(y)) , then

hof = g is a p-map. Hence, A}'B . (2) and (3) follow easily from .
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If we restrict the proximity on X , we obtain the next partial

solution to the problem.

5.3 Theorem. if 60 is the fine proximity on X and £ : (X,So) + (Y,8")
is a p-quotient map, then Z(8') is the quotient topology iff the quotient

topology is completely regular.

Proof. Let the quotient topology, « , be completely regular and let 6*
be any proximity compatible with & . Since 60 is the fine proximity on
X, f: (X,éo) > (Y,G*) is a p-map by the remark following definition 2.5.
The quotient proximity is the finest proximity on Y for which £ is a p-
map, so §* < & , and hence a = c(é*)'g z(8') . Now, since every p-map is
continuous and the quotient topology is the finest topology on Y for which
f is continuous, it must also be true that t(8') < o . Therefore,

(') = a .

Necessity is obviocus.

While it is not true that if z(S8') is the quotient topology then

§ is the fine proximity on X , the following holds:

5.4 Theorem. Let (X,8) be a proximity space. Then every proximity

quotient of X generates the quotient topology iff
(1) S8 is the fine proximity and

(2) every (topological) quotient is completely regular.

Proof. Sufficiency follows from theorem 5.3. For the necessity, assume

every proximity quotient generates the quotient topology. If & is not the
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fine proximity 60 » there are two sets A and B such that ASB but
A$°B . That is, A and B are functionally separated. It follows that
there is an open set U such that K:S U and UnB=¢ . Let Y be

the set formed by identifying A toa point, and give Y the quotient
proximity. Then, if f is the natural map, f£f(U) is an open neighborhood
of £(A) in the quotient topology. But ASB implies f(A)8'£(B) , so

£(a) € c1 £(B) . Clearly, £(U) cannot be a Z(8') - neighborhood of

z(s"

£(A) , a contradiction. Condition (2) above easily holds.

Remarks. Exactly the same proof will show that every separated quotient
generates the quotient topology iff (1') § is the fine proximity and (2')
every T2 quotient is completely regular. The problem of characterizing
the topological spaces X whose every quotient is completely regular seems
to be difficult; for related work, see MacDonald and Willard [27]. Note
that theorem 5.4 is a solution to the general problem (5) of section 1 for
the class F of p-quotient maps with separated range and the class G of

topological quotient maps.

6. Mapping Properties.

Our purpose here is to give solutions to problems (5) and (6) of

section 1 for various maps on proximity spaces.

6.1 Theorem. Let (X,8) be a separated proximity space. Then every p-map

on X with sepdrated range is a p-quotient map iff (X,8) is compact.



- 18 -

Proof. Assume (X,8) is not compact. Then by theorem 2.10(a) there is
a cluster 7 without a point. Let p be any point in X and define
m™ =Tu ﬂb , wWhere ﬂp is the cluster of all A such that ASp . Finally,

define

AS'B iff either ASB or both A and Berm' .

We claim that &' is a proximity on X . Axioms (P1)-(P3) of
definition 2.1 are easily verified. To prove (P4) , observe that 7' , as

the union of two clusters, inherits the following property of clusters:
(i) BuCem iff B e 7' or Cemw .

Now, let AS8'(BuC) . If AS(BuC) , we are done, so assume A$§(BuC) . Then
we must have A e 7' and (BuC) ¢ 7' . It follows from (i) that AS'B or

A8'C . The reverse implication in (P4) also follows from (i) .

To prove (P5) , let A¢'B . Then either A £ 7' or B ¢ 7' .
By symmetry we need only consider the case where A £ 7' . Then, A¢B R A$p s
and since A ¢ T, A@P for some P ¢ m . Thus, there exist disjoiat sets
U and V such that A§(X-U) and (BwPulp})$(X-V) . But (X-V) £ m since
(X—V)¢P and P e m, and (X-V) ¢ np since (X—V)¢p , so (X-V) ¢ 7' .
Since A and (X-V) are not in 7' , A§'(X-U) and (BuPulphH§'(X-V) , and

(P5) is satisfied.

Note that &' is easily separated and &§' < § . It follows from
our assumption that 1 : (X,8) + (X,8') is a one-to-one p-quotient map, and

so by theorem 5.2, & = &8' . This contradicts the definition of &' . There-
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fore (X,8) 1is compact.

Conversely, assume (X,8) is compact and let f be a p-map
from X onto a separated proximity space (Y,G*) . Then the quotient
topology is T3 5 and ¢ is the fine proximity on X . It follows from
theorem 5.3 that Z(8') is the quotient topology o . Since f : (X,Z(S))
+ (Y,2(8%) is a continuous function on a compact set, it must also be
true that ;(6*) = & . But since (Y,®) is compact and Hausdorff, it has

a unique compatible proximity (theorem 2.10); hence &% is the quotient

proximity and so f is p-quotient.

Remarks. If it is not required that the range be separated in theorem 6.1,
then 6 must be trivial. That is, if every p-map on (X,8) is a P-quotient
map, then the identity i : (X,8) - (X,G*) , where §* is the trivial
proximity of example 2.2(e), must be a one-to-one p-quotient map. Hence, ¢

would be equivalent to &% .

It is well known that a T 313 Space X 1is locally compact iff
2
it has a minimal compatible proximity. If we consider a separated proximity

*
§ on aset X to be minimal separated whenever &% < § and § separated

imply & = §* » then we have the following.

6.2 Corollary. Let (X,8) be a separated proximity space. Then (X,38)

is compact iff & is minimal separated.

Our next result is a solution to problem (6) of section 1 for the

classes F of all p-maps that are quotient maps, and G of all p-quotient

maps.
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6.3 Theorem. Let Y be any completely regular topological space and
s* any compatible proximity. Then &% is the fine proximity on Y iff
for all proximity spaces (X,8) and all p-maps f : (X,8) » (Y,6™ onto

Y which are topological quotient maps, f 1is a p-quotient map.

Proof. Let &8°= 60 » the fine proximity on Y , and let f : X,6) » (Y,Go)
be a p-map onto Y such that C(Go) is the quotient topology « . Then by
definition of the quotient proximity, 60 <&8' . If A§'B, there is some

8 : Y >TI such that g(a) =0 , g(B) = 1, gof is a p-map and g is contin-
uous relative to o . But then A$OB s SO 60 =38'" and f is a P-quotient

map.

For the converse, consider i : (Y,So) > (Y¥,6% . This is a one-
to-one p-map and a topological quotient map, and so by our assumption a p-

quotient map. It follows from theorem 5.2 that 50 =5 .

6.4 Corollary. Let (X,8) be a proximity space and (Y,8/f) a p-quotient

of X such that the quotient topology is completely regular. Then §/f is
the fine proximity on the quotient topology iff §/f = Q/f » Wwhere 60 is the

fine proximity on X .

Proof. If §/f = 60/f and the quotient topology is completely regular,
then by theorem 5.3, ;(Go/f) is the quotient topology. But if &% > So/f
and C(S*) = ;(6°/f) 5 thenm £ : (X,Go) -> (Y,S*) is continuous and, since
50 is the fine proximity, a p-map. So by definition we have & < Go/f .
It is then clear that &% = So/f s> SO that 6o/f is the finest proximity on

the topological quotient.
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Conversely, if &/f is the fine proximity on the topological
quotient, consider foi : (X,Go) + (X,8) » (Y,8/f) . Clearly fei = f is
a2 p-map, and since Z(8/f) 1is the quotient topology, it is also a (topolog-
ical) quotient map. Then by theorem 6.3, fei is a p-quotient map; that

is, §/f = GO/fOi = Go/f .

Remark. Note that &/f = Go/f does not necessarily imply that & is the

fine proximity on X . For if X is the real line with the metric proximity

and

s x<0
f(x) = x s 0<x<1
1 1<x

then the quotient space I has the fine proximity although X does not.

We turn now to characterizations of p-open maps.

6.5 Definition. (Poljakov [37] and [38]). A p-map f : (X,8) - (Y¥,8%)

is p-open iff A cc B implies f(A) cc £(B) .

It is not hard to see that p-open onto maps are both p-quotient

and open. The proof »f the next theorem is routine and thus omitted.

6.6 Theorem. A p-map £(X,8) + (Y,6%) onto Y is p-open iff A § £ 1(B)
whenever f(A) I
6.7 Theorem. Let (X,8) be a proximity space such that every p—quotient

map on X 1is p-open. Then every p-quotient of X generates the quotient
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topology. Consequently, & is the fine proximity on X .

Proof. If X has a p-quotient (Y,8/f) which does not generate the
quotient topology, f cannot be open, hence not p-open, a contradiction.

The "consequence" follows from theorem 5.4.

Remark. There do not seem to be reasonable sufficient conditions on a

proximity space X such that every P-quotient map on X is p-open. For

example, if X = [0,2] and %3%1 is identified to a point, then X is

a compact metric space but the natural map f is a P—quotient map which is
13 . . 13

not oven, and so not p-open. (The set 65339 is open in X , but f(§359

is a point, and so not open in the quotient.) A related topological question

is to characterize the topological spaces X such that every quotient map on

X 1is open. Again, the problem seems difficult. See McDonald and Willard

[27] for similar problems.
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CHAPTER III

REGULAR MAPS AND PRODUCTS OF P-QUOTIENT MAPS

7. Introduction.

Much current research in general topology has been concerned
with generalizations of topological quotient maps. Two of these generali-
zations are hereditarily quotient maps, which Lave been considered by
Archangel'skii [4] and Michael [28], and the bi-quotient maps of Michael
[28] and Hajek [17]. These two mappings have analogues in proximity spaces
which, in general, preserve more structure than their topological counter-

parts.

8. Regular Maps.

Poljakov ir [38] introduced regular maps and asked if the regular
image of a metrizable proximity space is metrizable. In [39]7 he showed that
a proximity space can be 'determined by sequences" iff it is the regular
image of the disjoint union of metrizable proximity spaces. However, since
the disjoint union of metrizable proximity spaces might not be a metrizable
proximity space (although the induced topology is, of course, metrizable),
this did not answer the original question. The purpose of this section is
to give a partial solution to the problem. We begin with the definitions

and a characterization due to Poljakov.

Ve
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8.1 Definition. A p-map f : (X,8) = (Y¥,8') is regular iff AS8'B

implies £71(a) & £ 1(p) .

8.2 Theorem. Let f : (X,8) - (Y¥,8') be a p-map. Then the following
are equivalent:

(1) £ is regular

(2 £l < v => A e £(v)

-1
(3) £ -1 : £ 7(8) »S is p-quotient for all S cY.
£ 7(8)

8.3 Remarks. (a) The equivalence of (2) and (3) above is similar to
Archangel'skii’s result in [4] which states that a map is hereditarily
quotient iff whenever U 1is a neighborhood of f—l(x) » £(U) 1is a neigh-
borhood of x .

(b) Theorem 6.6 iﬁplies that every p-open map is regular
and (3) above shows that regular maps are P—quotient. Poljakov [38] gives

examples to show that the reverse implications are not true in general.

Our intention is to show that the regular image of a2 semi-metri-

zable proximity space is semi-metrizable. First, some more definitioms.

8.4 Definition. A semi-metric on a set X is a real-valued function d

on XXX such that for all x and y in X ,

(a) d(x,y)

() dx,»

d(y,x) > 0 , and

0 iff x=y .

8.5 Definition. A proximity space (X,8) is semi-metrizable iff there is

a semi-metric d on X such that ASB iff d(A,B) =0 .

We shall need a lemma which may be of some interest in itself.
It is a proximity analogue of a topological semi-metrization theorem due

independently to C.M. Pareek [35] and C.C. Alexander [1]. Gagrat and
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Naimpally [13] have also recently considered the semi-metrization of
proximity spaces. The emphasis of their research however, was to use

proximities to obtain topological results.

8.6 Lemma. A separated proximity space (X,8) is semi-metrizable iff

there is a countable family {Vi}:=l of symmetric subsets of XxX satisfying:

o
(a) n Vi = A (the diagonal), and
i=1

(b) for each closed subset A of X, {Vi[A]}:;l forms a &-

neighborhood base for A (A cc Vi[A] for all i and if A c< B , then
A cc VN[A] c B for some N ).

Proof. <= Assume V. c V. and let
— i+l i

d(x,y) = 0 iff (x,y) € Vi for a1l 1
dx,y) =1 1iff (x,y) £ v, for any i
d(x,y) = —;—-iff (x,y) eV, -V

’ i+l ’ i~ TiHl .

- Then d is a semi-metric. Now, let A¢B , i.e. A ccX-B . By
our assumption, A <c VN[A] c X-B for some N . For each pair (a,b) € AXB
it must be true that d(a,b) 2{% , since if d(ao,bo) <-§ for some
(ao,bo) € AXB , then b0 € VN[A] - a contradiction. Therefore,

1
> =
d{A,B) N >0 .

Conversely, if d(A,B) = ¢ >0 , pick a positive integer N such

that %-< € . Then VN[A] nB=¢ , so that A cc VN[A] c X-B , and A$B .



- 26 -

=> Let (X,§) be semi-metrizable with semi-metric d . Let
v, = {(x,y) € xxx | d(x,y) < %} . Clearly, -{vi}:=l has the required

properties.

8.7 Cordllary. A separated proximity space (X,8) is semi-metrizable

- N (-]
iff there is a countable family -{Ui}i___l of covers of X such that

(a) Ui < LA and

(b) For each closed subset A of X , {St(a, Ui)}:;l forms a

S-neighborhood base for A .

Proof. If (X,8) is semi-metrizzble, let {Vi}:=l be the sequence that
exists by the lemma. If U, = U Vi[x] . {Ui} has the required proper-
xeX
ties.
Conversely, starting with a sequence {Ui} of covers with the

properties (a) and (b), let V, = u{uxu | U € Ui} . Then the conditions

of 8.6 are satisfied, so (X,8) is semi-metrizable.

8.8 Theorem. Let f be a regular map from a semi-metrizable proximity
space (X,8) onto the separated proximity space (Y,8') . Then (Y,8") is

semi-metrizable.

Proof. Since (X,8) is semi-metrizable, there is a sequence {Vi}:;l of
covers of X such that the star at any closed subset of X forms a § -

neighborhood base. Let A be a closed subset of Y . Clearly, f_l(A) is
a closed subset of X and f—l(A) cc St(f-l(A),Vi) for all i . Since f£

is regular, it follows from theorem 8.2 that
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A cc f(Sc(f‘l(A),vi)) = St(A,£(V,))) for all i . Also, if A cc B then
£1a) cc £71(8) , and thus £ 1(A) c= SE(£T1(A),¥) < £ 1(B) for some

N . It follows as before that A cc St(A,f(Vﬁ)) < B . Now, if

Ui = f(Vi) , the conditions of corollary 8.7 are satisfied, so (Y,8') is

semi-metrizable.

Remarks. It might seem that the techniques Michael develops in [28] would
be useful in showing that every semi-metrizable proximity space is the
regular image of a metrizable proximity space, thus giving a negative answer
to Poljakov's problem. However, if the map Michael constructs were a p-map,
it is not hard to show that it would also be p-open, and the p-open image

of a metrizable proximity space is metrizable [38].

-
8.9 Proposition. Let f : (X,8) > (¥,8'") be regular and let f “(y) be

compact for all y e Y. Then f is a (topological) gquotient map.

Proof. Since f is continuous, Z(8') c a , where & is the quotient
topology on Y . Now, let U be a - open; that is, let f—l(U) be open.
If yeU, then y cc U 1iff f_l(y) cc f-l(U) , since £ is regular.

But f—l(y) is compact and is contained in the open set f-l(U) , so for
each x € f—l(y) , X has an open neighborhood Ux such that

x €€ U < f-l(U) . Cover f—l(y) with a finite number of such open sets

U ,**°,U and let W= u U_ . Then £ i(y) S Wee £1(U) , so that
] Xn i=1 i

vy € £(W) cc U . The result follows.

Remark. Poljakov [38] gives an example of a regular map which is not a

quotient map, so the condition "f_l(y) compact”" cannot be eliminated, in
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8.9. He also states that a regular, perfect (= closed with compact point-
inverses)map is hereditarily quotient. If the domain has the elementary

proximity or is metrizable, a slightly stronger result is true.

8.10 Proposition. Let f : (X,8) - (Y¥,8') be a regular map onto a

separated proximity space. If either
-1
(@) £ 7(y) 4is compact for all y ¢ Y and (X,6) 1is metrizable,

(b) & is the elementary proximity and the quotient topology is
completely regular,

THEN f is hereditarily quotient.

Proof. Assume (a) holds. Then by. proposition 8.6, f is a quotient map.
By a result of Archangel'skii [4, Theorem 1], Y is Fréchet iff f is

hereditarily quotient. Clearly, a metrizable space is Frechet. (A space X
is Fréchetiff for any E< X , x ¢ E 4iff there is a sequence {x_} c E

such that X, X .)

If (b) holds and f_l(x) cc U , where U is open, then f_l(x)CCU .
Since f is regular, x cc f(U) . It follows from remark 8.3(a) that £ is

hereditarily quotient.

Question. Under the conditions of 8.10(a) it is easy to show that (Y,z(8'))

is metrizable. Is (Y,8') metrizable?
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9. Products of p-quotient Maps.

9.1 Introduction. Michael [28], Hajek [17], Siwiec {42] and others

have recently considered products of quotient maps on topological spaces.
It is well-known that the product of quotient maps is not, in general, a
quotient map. In fact, if f is a quotient map and iz is the identity
on a paracompact Hausdorff space Z , it may not be true that f Xiz is a
quotient map. Michael [26] has called quotient maps £ such that f xiz
is a quotient map for any space Z , bi-quotient maps. In this sectiomn it
will be shown that products of p-quotient maps behave better than products
of (topological) quotient maps and we will use our result on proximities

to obtain a theorem about topological quotients.

*
Throughout, X will denote the Smirnov Compactification of a
*
proximity space (X,8) and ¥ x>y the unique extension of a p-map
h which maps X to Y . (This extension exists by theorem 2.10). For

any space Z , iz will denote the identity map on 2Z .

9.2 Defimition. A map (p-map) f of X onto Y is bi-quotient (p-bi-

quotient) iff for every topological space (separated proximity space) Z ,

£ xiz : XXZ - YxZ 1is a quotient (p—quotient) map.

Before proving the main result of this section, we shall need two

lemmas.

9.3 Lemma. Let {fa} be a collection of p-maps such that fa : Xa > Ya

for all o . Then f : HX@ -+ HYa defined by [f(x)]y = fn(xy) is a p-map.
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Proof. It is sufficient to show ﬂa°f is a p~-map for all o . But

(ﬂaOf)(x) = fa(xa) = °‘n’a(x) , and the result follows.

£

9.4 Lemma. Let fl : Xl d Yl and f2 : X2 > Y2 be a p-quotient maps

and let leY2 have the quotient proximity induced by F = flez . Then
i . : X > Y _x{f d
if x; € X; and x, €X, , F Xlx{xz} > {xz} 1 { 2(xz)} an

. x _ .
F {xl}XXZ : {xl}xxz -> {fl(xl)} Y2 are p-quotient maps.

Proof. 1Let &' be the quotient proximity on YlXY2 . 68 the restriction
v = = ' ] 2 e ot
of 8" to S sz{fz(xz)} sz{yz}, and Gs the quotient proximity on

S dinduced by F . Then since the restriction of a p-map is a p-map,
X, x {xz}

55 < 6; . To show Gé < 55 , let AééB » where A,B ¢ S . We must prove

that A¢SB . By the definition of the quotient proximity 6; on S , there

is some g_ : S+ I such that gS(A) =0, gs(B) =1 and

G, = gso(F'XlX{xz}) is a p-map.

Extend Gs to XlXX2 as follows: G(x,y) = Gs(x,xz) . Further, let

g : Yl><Y2 > I be defined by g(u,z) = gs(u,yz) . Now (goF)(x,y) = G(x,y)

since (geoF)(x,y)

1}

g(F(x,5)) = g(£(x),£,(y) = g (£(x),y,) = g, (F Xlx{xz})

(x,x,) = Gs(x,xz) G(x,y) . Since X, is p-isomorphic to Xlx{xz}, say

by Y(x) = (x,xz) » G 1is equal to GS°¢0ﬂX » and thus is a p-map. There-~
1

fore, g(A) =0, g(B) =1 and goF = G is a p-map, so by the definition
of the quotient proximity on leY2 R A$'B . But since 68 is the restric-

tion of &' to S, A§SB . Hence, 65 = 5; .

The corresponding result with x, € Xl follows similarly.
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Note that this result implies that YIX{yZ} as a subspace of

(Yl 2,6') is p-isomorphic to Yl .
9.5 Theoremn. Let f1 : Xl > Yl and f2 : X2 - Y2 be p—quotient maps

between separated proximity spaces. Then flez : Xlx.x2 *'leYz is a p-

quotient map.

Proof. Let ¢ and P be the product proximities on XXX, and YlXY2
respectively and let §' be the quotient proximity on ¥,XY, induced by
= flez - By lemma 9.3 and the.definition of the quotient proximity, P<8' .

If P#8", Y,xY, contains two subsets A and B such that APB but A$'B .

172
Since APB , there is a point in Cl(Y XYZ)*A n Cl(Y 2)
where (Y 2) is the Smirnov Compactification of (Y xY ,P) . By a
% _ % * * *
result of Leader [22], (Xlxxz) = Xl X X2 and (Y 2) l x Y2 , SO
*
say (y ,z*) is the point in the intersection of Cl(Y )* A and
. ) . *
Cl(leYz) If fi , 1 =1,2 1is the extension of fi to Xi , then
* *
F* = f1 x f2 must be the unique extension of F : (Xl 2,6) -> (Y xY ,P)
to X; x X; .
% %— %o ;
Consider W =TF L(y%,z%) = £ Lo x £, L2*y .
-1
i i h Cl = .
(1) We claim that (Xlxxz)*F A nw=9¢

Assume not. Then there is an open set U containing W such
that U n F-l(A) = ¢ . But since l (y*) and f (z ) are compact, open

. * K3 * .
sets Ul in Xl and U2 in X2 exist such that W‘E.leUz.E U . Now,
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*

f; and f2 are closed maps, hence easily hereditarily quotient. It
* *

follows from remark 8.3 (a) that fl(Ul) is a neighborhood of y and

f;(UZ) is a neighborhood of z* 3 hence,

* * *
F (U, = £,(UIxE,(U,) is a neighborhood of (y*,z") . But UV, < U

*
and F (U) n A= ¢ - which contradicts the fact that

* *
(y ,z) € C1 This establishes the claim. Similarly,

* A,
(leYz)
-1
cl *F "(B) nW#¢.
(xlxxz)
Let (a,b) be a point in Cl «FLa) n W and let (c,d)
(X;*%,)

| . . -1
be a point in Cl(XlxXZ)* F B nw.

Since A§'B , there is a function g :Y~>1I such that g(a) =0 ,
g(B) =1 and goF is a p-map. Our objective is to show that the extension,

(gOF)* » of goF to (xlxxz)* takes (a,b) and (c,d) to the same point

in I . But first, let x, € X2 .

(ii) We claim that (gaF)*(a,xz) = (gOF)*(c,xz) .

If we consider F as a map onto (leYZ,S') » then by lemma 9.4,
sz{yz} = sz{fz(xz)} has the quotient proximity induced by F Xlx{xz} .
Then, since (g°F)’xlx{x2} = (g le{yz}) o (F Xlx{xz}) s> it follows from

theorem 4.7 that g]Y x{y.} is a p-map. But the extension of a p-map to
1 2

the Smirnov Compacification is unique, hence
({i1)  ((goF) ) = (gom* ( )y o (x )"
111 go - = go * = g °

|z, %, xixix,} = |y xiy,} |2, xtx,)

*
where ((gOF),XlX{Xz}) is the extension of (gOF)leX{xz} to

-
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* ' *
Xlx{XZ} and (g le{yz}) is the extension of the p-map g } to

¥, x{y,
* *
(le{yz}) (which is le{yz} by the remark following lemma 9.4). Now,

*

f;(a) = f;_(c) =y , so (F,Xlx{xz})*(a,xz) = (F’Xlx{xz})* (c,xz) and

* * _ * *
hence (g le{yz}) ° (lelx{xz}) (a,x,) = (g'YlX{yz}) o (F Xlx{xz}) (e x,) .

* *
It follows from equation (iii) above that (goF) (a,xz) = (goF) (c,xz) R

establishing claim (ii). If we repeat the above argument with the roles

of Xl and X2 interchanged, then it follows similarly that
* *
(g°F) (x;,b) = (g°F) (x,,d) for anmy x € X .
(iv) We now use a limiting process to show _LgOF)*(a,b) = (goF)*(c,d) .

Pick a met <(ay,by)> in F-l(A) converging to (a,b) . Then <ba}f_X2
converges to b , so <(a,ba)> + (a,b) and <(c,ba)> + (c,b) . But for
each o , it follows from (ii) that (gOF)*(a,ba) = (gOF)*(c,ba) , hence in

% -
the limit, (goF) (a,b) = (gOF)*(c,d) . If we pick a net in F l(B) conver-

* *
ging to (c,d) , a similar argument will show (goF) (a,d) = (goF) (c,d) .

Again, we can easily interchange the roles of X1 and X2 to show that

(8°F)*(2,d) = (goF)*(a,b) and (goF)*(c,d) = (goF)¥(c,b) . Putting these

together we easily verify (iv).

However, since g(4) =0 , (g°F)(F_l(A)) = 0 , so that

(goF) *(c1 « FLA) = 0. similarly (goF)*(cl £ FL(B)) = 1.
X Xy) & Xy)

*
In particular, (ch)*(a,b) =0 and (goF) (c,d) =1 - which contradicts
(iv).

It follows that &' = P and fle is a p-quotient map. This

2

completes the proof.

{y-
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9.5 Corollary. If fi : Xi *-Yi > 1=1,***,n are p-quotient maps

n n
between separated proximity spaces, them F : I Xi > I Yi defined by
i=1 i=1

F(xl,-'-,xn) = (fl(x) s *% fn(xn)) is a p-quotient map.

9.6 Corollary. A p-quotient map between separated proximity spaces is

p-bi-quotient.

Before proceeding to an application of theorem 9.4, we need a
lemma which is of some independent interest. Hager in [16] has announced a

similar result for uniform spaces.

9.7 Definition. A topological space X 1is pseudocompact iff every real-

valued continuous function on X is bounded.

9.8 Lemma. Let X and Y be infinite separated proximity spaces each
with the fine proximity. Then the product proximity is the fine proximity

on XxY iff XxY is pseudocompact.

Proof. Since- there is a one-to-one order preserving correspondence between
proximities and compactifications, (XXY , product proximity)* < (XxXY , fine
proximity)* . By Leader's result [22, theorem 10] (XxY)* = x*xy™ and
since the Smirnov Compactification of a space with the fine proximity is

just the Stone-Cech Compactification, we have
* % * . *
BXXBY = X XY = (XXY , product) < (XXY , fine) = B(XxXY) .

Now, Glicksberg [15] has shown BXXBY = B(XXY) iff XXY¥ is pseudocompact. The

result follows.
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9.9 Theorem. Let fl : Xl > Y1 and f2 : X2 *-Yz be (topological)

quotient maps between T 3y  Spaces. Then if X1><X2 is pseudocompact,

flez is a quotient map.

Proof. Let X, ,X,,Y and Y, each have the fine proximity. Then by

1°72°71 2

lemma 9.8, the product proximity on xlxxz is the fine proximity and since

YlXY2 is T , it follows from theorem 5.3 that the quotient topology

3%

is equal to Z(S8') . Now, by theorem 9.4, &' is the product proximity P

on leY2 so T(P) = (8') is equal to the quotient topology and hence,

fXg 1is a quotient map.

10. Examples and Relationships.

In this section we explore the relationships between the maps

introduced in sections 8 and 9 and their topological equivalents.

10.1 Example. A bi-quotient, p-quotient map which is not regular.

Let X = [0,2] and identify [%3%& to a point. Then the natural
map is easily bi-quotient and p-quotient. But f[O,%JG'f(%,Z] , although

1 3
[Oai') ¢ (5:2] .

Example 10.1 contrast. with topological quotient maps since bi-

quotient maps are hereditarily quotient.

10.2 Example. A regular map which is not quotient.

Let X = [0,1] x {0,1} and let Y be formed by identifying

(x,0) and (x,1) for all x > 0 . Then the quotient topology is not
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completely regular, so by theorem 5.3, Z(8') is not the quotient topology.

But it is not hard to show that A§'B <=> f—l(A)Sf_l(B) .

10.3 Example. A hereditarily quotient, p-quotient map which is not bi-

quotient.

Let X be the disjoint union of countably many copies of [0,1]
and let X have the elementary proximity. Identify all Os to a common
point. Then & with the quotient topology is completely regular, so the
natural map f is quotient and p-quotient. £ 1is also easily hereditarily

quotient. But Michael has shown [28, example 8.1] that f is not bi-quotient.

10.4 Remark. Michael [28] has shown that if Y is T2 and f :xX->vY,

the following are equivalent:
(a) £ 1is bi-quotient.

(b) For yeY , if U is any open cover of X , then finitely

many £(U) , U e U , cover some neighborhood of y .

(¢) For yeY , if U is any open cover of f_l(y) , then

finitely many £(U) , U € U , cover some neighborhood of y .

(@ f£ X:% is p-quotient map for every paracompact space 2 .

The following analogue holds for proximity spaces. The proof is

similar to Michael's.

10.5 Proposition. If Y 1is a separated proximity space and f : X >Y is

a p-map, then the following are equivalent:
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(a) For A, a closed subset of Y , U a p-cover of f-l(A) s
then finitely many f£(U) , U ¢ U cover some p-neighbor-

hood of A .

(b) For A, a closed subset of Y , U a p-cover of X , then
finitely many f(U) , U € U , cover some p-neighborhood of

A .

(A cover U = {Ua}aeA is a p-cover of X iff there is a cover V = {Va}aeA

such that for all « Va ccUa )

Proof. a =>b is clear. To show b =>a , let A be a closed subset of
Y and U a p-cover of f—l(A) . Since Y is T2 » for each x ¢ A pick
W and V_ such that W ccV_ and V_ § A . Let V ={v} and

x x x x x X xéA
W = qu_l(U) . Then W is a p-cover of X , so there is a set XN = CuD
such that AccN , where C is the union of finitely many f(U) , U € U and

D 1is the umnion of finitely many Vé . But then A§D implies AccC .

10.6 Remark. Remark 10.4 might lead us to expect that 10.5(a) is equivalent
to f being p-bi-quotient and hence that 10.5(a) holds for every p-quotient
map. However, since 10.5(2) easily implies that f is regular, example 10.1

shows that this is not the case.
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CHAPTER IV

PROXIMITY ANALOGUES OF TWO METRIZATION AND MAPPING THEOREMS

11. The Two Theorems.

In this chapter we consider proximity analogues of a metriza-
tion theorem of Morita and the Morita-Hanai-Stone Theorem on the closed
continuous image of a metric space. Some of our results on proximity
spaces will be stated for the wider class of generalized proximity spaces

introduced by Lodato in [25] and [26]. We reproduce his definition here.

11.1 Definition. A Lodato proximity (or LO-proximity) space is a pair

(X,8) where X 1is a set and § a binary relation on P(X) which satisfies:

Pl) if ASB , then A# ¢ and B # ¢ ,
P2) ASB iff BSA ,

P3) if AnB # ¢ , then ASB ,

P4) AS(BUC) iff ASB or ASC ,

L) ASB and bS8C for all b ¢ B, imply ASC .

As with proximity spaces, a LO-proximity is separated if it also

satisfies:

P6) a=b iff abb .

A1l LO-proximities and proximities in the chapter will be assumed

separated. Perhaps it should be pointed out that lemma 8.6 of the last chapter
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could have been stated for LO-proximities.

In [30], Morita proved that a Tl - space X is metrizable iff
there is a sequence {Fi}:;l of locally finite closed covers of X such
that whenever U is an open neighborhood of x € X » there is some FN with
St(x,F.) £ U . This result has an analogue for proximity spaces (or I10-
proximity spaces) with the elementary pProximity, as theorem 11.3 demonstrates.

We will need to make use of the following theorem of Smirnov [43, Theorem

16'].

11.2 Theorem. A LO-proximity space (X,8) is metrizable iff there is a

(o]
sequence {Ui}i=l of covers of X such that Ui+l star-refines Ui s

A cc St(A,Ui) for all i , and whenever A cc B , there is some UN which

satisfies A cc St(AwUN) cB.

11.3 Theoren. Let (X,0) be a LO-proximity space with ASB iff

o

AnB # ¢ . Then (X,8) is metrizable iff there is a sequence {Fi}i=l

of locally finite closed covers of X such that whenever A is closed and

A cc B , there is some FN which satisfies A c St(A,FN) < B.

Proof. Let (X,8) be metrizable. Then by the metrization theorem of

(o]
Smirnov there is a sequence {Ui}i—l of open covers of X such that

Ui+1 star refines Ui s A cc St(A,Ui) for all i , and whenever AccB ,
there is some UN

spaces are paracompact, each Ui has a locally finite closed refinement Fi.

which satisfies A cc St(A,UN) < B . Since metrizable

Clearly, {Fi}z;l has the required properties.
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Conversely, given such a collection {Fi};;l let
Hi = {M(a,i) la € Qi} be a "grating" for Fi for each i . That is,
Hi < Fi > M(¢,i) is open, Hi is a locally finite closed cover, and

M(a,i) n M(B,i) = ¢ if a # B . This grating exists by Lemma 3 of Morita's

1
paper [30]. For a given i , define W(al-"ozi) = n

M(c.,j) where
j=1 3

M(ay,3) eﬁj and let W, ={W(01"'O.i) [ % €@ 5 3 =1,2,-++,i}. Then

by lemma 4 of [30], wi is also grating. Clearly, wi < Hi < Fi and

Wy <Wiy -

Now, for a closed subset A of X , let Vn(A) = int{St(A,wn)} .
Note that A cV (4) since AcC= {X - U{W(al-"an) | An Wloy eeva ) = ¢}
< St(A,Un) and C 1is open because wn is locally finite. Since
A cc Vn(A) > for each n there is 2 m = m(A,n) >n such that

Acstal) = v (a) .

Let A be a closed subset of X and y € X . We claim that

if V(3 n Va8 # ¢, then V() < v () .

(i) y € St(A,wm) . If not, then whenever A n W(al°-°am) F ¢
and y e W(Bl---sm) , we have W(al---am) n W(Bl---Bm) = ¢ , since wm is
a grating. But then W(al-"am) n W(Bl-'-Bm) = ¢ and Vm(A) n Vm(y) = ¢

- a contradiction.

(ii) Let vy ¢ W(Bl°°°8m) . Then we claim A n W(Sl“'Bn) 0 .

"t

For if A n W(Bl---Bn) = ¢, W(OLl'"Otn) n W(Bl'"Bn) = ¢ for any W(oz_l-"an)
such that A n W(al"°an) # ¢ . Hence, as before Vn(A) n W(Bl'"Bn) = ¢ .

But y € St(A,wm) n W(Bl“'Bm) < Vn(A) n W(Bl---Bn) - a contradiction.
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(iii) St(y,ﬁm) < St(A,W) follows from (i) and (ii). Thus

we have Vm(y).s Vn(A) , establishing the claim.

For each closed subset A of X , let nl(A) =1,

n_(8) = m(A,n__,(4)) and let U (A) = Vnr(A) . Comsider U_ = {U_(x)[xeX} .

If U () nU(8) 79, Vnr(y) n Vnr(A) F¢ so U()cU @) .

It follows that St(Ur(A),Ur) E-Ur-l(A) , and therefore

%
St(Ur(x),Ur) <y (x) and Ur < Ur_ Now let A cc U . Then there is

r-1 1°

an r such that A.S.St(AsUr+l).S Ur(A) c Vnr(A) E.Vr(A).S U .

Thus, by Smirnov's Theorem, (X,8) is metrizable. This completes

the proof.

Remark. The hypothesis that the LO-proximity be "elementary" in the above
theorem is certainly not needed in the proof of necessity. I do not know

whether it can be eliminated in proving sufficiency.

Our next result will be a proximity analogue of the theorem of
Morita and Hanai [31] and Stone [45] on closed mappings of metric spaces.
The proof of the followiag lemma is contained in the proof of theorem 1 of

[31].

11.4 Lemma. Let X and Y be metrizable topological spaces and £ a
closed continuous map of X onto Y . Then there is a closed subset Xo of

X such that f -1 (y) 1is compact for every y € Y . Further, if {F.}fl
Xo i“i=1

is a sequence of locally finite closed covers of X , then {f(Fi)}:;l is

a sequence of locally finite closed covers of Y .
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11.5 Lemma. Let (X,8) be a proximity space whose induced topology is
normal and (¥,8') a LO-proximity space with AS'B iff AnB # ¢ . Let

every closed subset of Y have a countable neighborhood base. Then if f
is a closed p-map of X onto Y , the boundary, Bf_l(A) , of f-l(A) is

countably compact for every closed subset A of Y .

Proof. Suppose 3f-l(A) is not countably compact for some closed subset
A of Y . Then there exists a sequence {xi} < Bf_l(A) without a cluster

point in Bf_l(A) and hence without a cluster point in X .

We claim there is a locally finite collection {Ui}ci:l of disjoint
open sets in X with x; € Ui for all i . To see this, first use normal—\

©

ity to find a collection {W!}

. of disjoint open sets with x. ¢ W! for
i"i=1 i i

211 i . Now, for each i pick an open set W. such that x, € W, c W, € W .
1 1 i~ 11— 11

Consider 2Z = Gﬁi —Uﬁi . If Zz=¢ , let Ui = Wi . If not, for each

x € Z there is a neighborhood U(x) such that U(x) n {xi} = ¢ , since x

is not a limit point of {xi} . Let U= v U(x) . Now, Z<cU and X
xeZ

is normal so there is an open set V such that ZcVcVcU. Let
— [s-]
= - - .F -
W=ZX=-V and let Ui Wn Vi . Clearly, x; € Ui for each 1 . {Ui}._l

is the desired collection; for if x € X then:

Case 1: 1If xemi-uﬁ

i,er. But VnUUi=d>,so V 1is a neigh-

borhood of x intersecting no Ui .
Case 2: If x ¢ U—ﬁi , X has a neighborhood intersecting no Ui .

Case 3: If x ¢ Uﬁi ,say xe W, , then x ¢ Wl'( , which is a neighborhood

of X intersecting Uk and no other Ui .
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This completes the claim.

Let {Vi}:=1 be an open neighborhood base for the set A . Now

x; € 3f-1(A) and Ui n f_l(Vi) is a neighborhood of X; 5 SO for each i
there is some xi € (Ui n f-l(vi)) - f-l(A) . Since C = {xi} is locally

finite, it is closed, hence £(C) is closed. If H =Y - £(C) , then

Acc H since A and f(C) are disjoint closed sets. It follows that

there is some V. with Acc V. c H. But X} € f-l(V.) , s0 f(x!)eV, c
i i i i i i-—

Y - f(C) - a contradiction.

11.5 Corollary. et X b2 a normsl Tl space such that every closed

set has a countable neighborhood base. Then 3dA ‘is countably compact for

every closed subset A of X .

Willard [50] has called a metrizable space whose set of accumula-
tion points is compact, an A-space. These spaces have also been studied by

Rainwater [41] and MacDonald and Willard [27].
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11.6 Theorem. Let (X,8) be a metrizable proximity space, (Y,8') a

LO-proximity space where AS'B iff AnB# ¢ and f : X> Y a closed

p-map onto Y . Then

(a) (¥,8') is metrizable,
(b) Sf—l(A) is compact for every closed subset A of Y ,

(c) every closed subset A of Y has a countable neighborhood

base,
(d) Y is an A - space,

(e) X has a closed subspace 2Z which is an A-space and which

maps onto Y ,

(£) Y is complete.

Proof. First, we show Y is metrizable. Let y €Y. Since (X,8) is
metrizable, the metrization theorem of Smirnov implies there is a collection
{Ui}:;l of open sets in X such that f_l(y) << U; for all i and when-
ever f-l(y) cc U, there is some Uﬁ which satisfies f-l(y) cc UN cU.
if Vi =Y - f(X—Ui) s, it is routine to show {vi}:=l is a neigborhood base

for y . It follows from the theorem of Hanai and Morita [31] and Stone [45]

that Y is metrizable (as a topological space).

By the remark following Theorem 11.3, there is a sequence {Fi}:;l
of locally finite closed covers of X such that whenever A is a closed
subset of X with A cc B, there is some FN which satisfies

Ac St(A,Fﬁ) S B . To prove that (¥,8') is metrizable, it is sufficient



- 44 -

by theorem 11.3 and lemma 11.4 to demonstrate that {f(Fi)}:;l has the
required properties. So let A be a closed subset of Y with A c< B .
Then f—l(A) is closed and f_l(A) cc f—l(B) since f 1is a p-map; hence,
there is some Fﬁ which satisfies f_l(A) E_St(f-l(AQ,FN) E_f-l(B) . But

then (easily) A ¢ St(A,£(Fp)) B .

Rainwater [41] has shown (a), (c) and (d) are equivalent; so
(c) and (d) hold. (b) follows from (c) by lemma 11.5. It remains to show (e)
and (f). Since Yis an A-space, let Y = Yo u D , where Yo is the (compact)
sgt of accumulation points. By lemma 11.4 there is a closed subset Xo of

X such that f(Xo) =Y, f]x is a closed p-map and f[;l(y) is compact
o o

for all y e Y . Let Xl = f-l(Yo) n X0 and for each y € D, pick some
X € f-l(y) n Xo , and let X2 be the set of all x so chosen. Then Xl
is compact since fIX is perfect. Let 2 = X1 u X2 . If x € Z and

o}

X +~x° € XO , then f(xn) > f(xo) so f(xo) € Yo . But then

x € f—l(Yo) n X0 = Xl < Z . Therefore Z is closed in Xo , and hence in
X . That the set of accumulation points of Z is contained in Xl , and

hence compact, follows similarly.

Since every A-space is complete [s0], (£f) holds.
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CHAPTER V

PRODUCTS OF PROXIMITY SPACES

12. Elementary Products.

12.1 Introduction. Although the usual product proximity generates the

product topology and is the correct categorical product, it is in many

ways inadequate. As is well-known, the product proximity on R2 is not

the usual metric proximity. In fact, the lines y =x and y = x+5 are
"near" in the product proximity. Poljakov [40] has defined another product
which does have the property that the product of metrizable proximity spaces
is metrizable. The purpose of the product presented here is to give the

elementary proximity on the product in terms of factors.

12.2 Definition. Let {(Xa’da)} be a collection of sets and binary

relations each satisfying (P1)-(P4) of definition 2.1 and define ASB in

X IX iff there is an x € X such that whenever A = Alu'"UA.n and

B

B ueeeuB_, then for some A, and Bj s ﬂa(x)ﬁaﬁa(Bj) and

ﬂa(Ai)Gaﬂa(x) for all o .

12.3 Lemma. (X,8) satisfies (P1)-(P4) of definition 2.1 and each

projection na : X >X is a p-map.

Proof. (P1)-(P3) are easy. Let A$B and A$C . We shall show A$(BuC)
Assume AS(BuC) . Then there is some X € HXa such that whenever

A= A ue-vA and (BUC)A= D.ueeuD, , then for some A. and D.
1 m 1 i 3



- 46 -

ﬂa(x)éana(Ai) and ﬁa(x)ﬁaﬂa(Dj) for all o . But since A¢B and A$C .
there are decompositions of B and C , say B = Blu"'uBN and
Cc= Clu"-ucM such that for all B, , i = 1,***,N there exists an Q,

i i

such that na.(Bi)¢ai“ai(x) and for all Ci , 1i=1,°¢,M there exists an
oy such that ﬁai(ci)$ainai(x) . But them BuC = (Blu°°'UBN) U (Clu--°uCM)

and for all i = 1,***,N , N1 , -+ , N+M there exits an oy such that
wai(Di)$aiﬂci(x) , where Di = Bi s, 1 =1,°°,N . Di = DN+j = Bj s

j =1,°**,M - a contradiction. The other implication of (P4) is easy.

Since AGB implies that whenever A = AlU‘°°UAn and
B = Blu"'uBn then for some A, , Bj wa(Ai)Sﬂa(Bj) for all o , thus each

T is a p-map.
o P P

The proof of the following lemma is easy but tedious and thus

omitted.

12.4 Lemma. Let {(X,,8)} be as in 12.2 and let kA= {x|x 8§ A} . 1If
each (Xa,écg also satisfies: xﬁaA iff xédgA where A ¢ Xa , and U is
a basic open set in the product topology, then U is open in the topology
generated by any generalized proximity on X for which the projections are

p-maps.

12.5 Remark. x8A iff whenever A = Alu"-uA.n , then there is some Ai

such that ﬂa(x)éawa(Ai) for all o .
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12.6 Theorem. If {(Xa,Sa)} is a collection of LO-proximities then &

generates the product topology.

Proof. It follows from the definition of & and the remark above that
x 8 A iff x0kA , where kA is as in lemma 12.4. It remains to show that
if U is open in the induced topology, then U is open in the product

topology.

et peU. So p$(X—U) . It follows that there is a decomposi-

tion of X-U , say X-U = Ulu"°UUn such that for each UK there is some

o, with naK(p)$a T (U,)) . For K=1,2,eee.n  let W =

=X -m (U)
K a" K GK aK K

Since 7 (p)da w T) , m (p)$_ 7 (U,) and hence 7_ (p) ¢ W. . We
% K % % % % K % K
n n
claim pe n 7 L(W) cU= u (X-U,)). But 7 (x) ¢ . =X - T Wy

K=1°‘KK— K=1 K % Koo ok

and thus, T  (x) é T ( . The result follows.

% %

12.7 Corollary. If {(Xa,éa)} is a collection of LO-proximities then

(X,8) as defined in 12.2 is a LO-proximity and ASB iff AnB # ¢ , where

closure is in the product topology.

Proof. Easily ASB if AnB # $ . Also, given (X,8) satisfying (P1)-(P4)
of 2.1, (X,8) is a LO-proximity exactly when ASB iff kASkB , where k

is the operator defined in 12.4. But this clearly holds.

12.8 Corollary. If {(Xa,ﬁa)} is a collection of proximity spaces and

the product topology is normal, then the product defined in 12.2 is a proxim-

ity, generates the product topology, and ASB iff AnB # ¢ .



- 48 -

Note that.if X and Y are two infinite normal proximity spaces
with the elementary proximity and if XXY is normal, then by lemma 9.8, the

product proximity on XXY is given by 12.2 iff XXY is pseudocompact.

Dr. S. Leader has pointed out that the product proximity of this
section may also be considered as a space with a pseudoclosure operator:
(i) ¢=¢, (i1) Ac A, (iii) AUB = AUB . Each § satisfying (P1)-(P4)
induces a pseudoclosure, namely A = {x l x6A} . Definition 12.2 depends only
on the pseudoclosures induced by the Ga's. The product then comes from the

product pseudoclosure: ASB iff AnB # ¢ .

13. Products of Separation Spaces.

We now consider products of another type of proximity space. Wallace

[47] defined a strong separation space to be a pair (X,§) where X "is a set

and 6 is a binary relation on P(X) satisfying (P1)-(P4) and (P6) of
definition 2.1 and in addition

(S1) =x8A iff =x6kA where kA = {x|xSA} ,

(82) if ASB then either there is an a € A such that ad8B or

there is a beB such that bSA .

Wallace showed that for Tl spaces, this is exactly topological
separation. These are the fine S—proximity spaces that Gagrat and Naimpally
have recently considered ([11] and [12]). Our original motivation for this
problem was to find an axiomatization for topological separation on a product

of topological spaces to facilitate the study of functions with connected graphs.

13.1 Definition. Let {(Xa,6a)} be a collection of pairs each satisfying

(P1)-(P4) of definition 2.1 and define ASB in X = IIX , iff either there is
an a € A such that whenever B = Blu'"UBn then for some Bj s

ﬂa(a)éawa(Bj) for all o , or there is a b ¢ B such that whenever



- 49 -

A= Al eee A.m then for some Ai . wa(Ai)Sana(b) for all o .

The proof of the following theorem follows the general outline

of section 12.

13.2 Theorenm. If {(Xa,éa)} are strong separation spaces them & as

defined in 13.1 is a strong separation on X =IIX& and generates the product
topology. ASB iff AnB # ¢ or AnB # ¢ and if £ : (2,8%) ~ @8 ,
where (Z,Gl) is a strong separation space, then f is a p-map iff waof

is a p-map for all « .

Thus, definition 13.1 gives us anaxiomatization of topological

separation on any product of T1 spaces.
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