
Design Changes to a Laser-Plasma Simulation Code to Permit Twisted
Light Studies

by

Blaine Armstrong

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Photonics and Plasmas

Department of Electrical and Computer Engineering
University of Alberta

© Blaine Armstrong, 2022

Abstract

Schemes to implement laser bandwidth wide enough to mitigate laser-plasma instabil-

ities will be both intrusive and expensive. As an alternate approach, work is presented

that investigates the mitigating effects of spatial, rather than temporal, laser beam

conditioning on cross-beam energy transfer (CBET) [I.V. Igumenshchev et al., Phys.

Plasmas 19, 056314 (2012)]. Such conditioning might be generated by phase plates

alone and could therefore be implemented more easily. We have quantified the en-

ergy exchange occurring between crossing laser beams that possess orbital angular

momentum (OAM) as the amount of OAM exchange between the beams is varied [cf.

e.g., M. Padgett et al., Physics Today 57, 35 (2004)]. This work enables studies to

be performed in 3-D using the non-paraxial wave-based LPSE simulation code [J.F.

Myatt et al., J. Comp. Phys 399, 108916 (2019)]. It required significant modifi-

cations to the code to allow for the beams with OAM. The modifications required

changes to the boundary conditions and the total field scattered field (TF-SF) to be

implemented successfully.

ii

Preface

This thesis is an original work by Blaine Armstrong. Figures 1.1 and 1.2 are re-

produced from “Inertial Confinement Fusion: An Introduction The ENERGY of the

STARS” from The University of Rochester’s Laboratory for Laser Energetics. Copy-

right permissions were obtained for the following figures: 1.3, 3.1, 3.10, and 3.11. Fig.

3.2 was reproduced with Creative Commons License from https://commons.wikimedia-

.org/wiki/File:GaussianBeamWaist.svg

iii

“The only true wisdom is in knowing you know nothing.”

-Socrates

iv

Acknowledgements

I acknowledges the support of the Natural Sciences and Engineering Research Council

of Canada (NSERC), [funding reference numbers RGPIN-2018-05787,RGPAS-2018-

522497]. Cette recherche a été financée par le Conseil de recherches en sciences

naturelles et en génie du Canada (CRSNG), [numéros de référence RGPIN-2018-

05787, RGPAS-2018-522497].

I also acknowledge the Laboratory for Laser Energeticss for the LPSE code made

available by special agreement.

First of all, I would like to thank my supervisor, Dr. Jason Myatt, for taking me

on as a student and guiding me through the process of my Masters. I would also like

to thank my colleague Andrew Longman for his insightful discussions and guidance.

I would like to thank my parents for their love and support, as well as, allowing me

to do my Masters. Finally, I would like to thank my friends Nicolas Faria and Mark

Robinson for their talks and support throughout the entire process.

v

Table of Contents

1 Introduction 1

1.1 Inertial Confinement Fusion using lasers 3

1.2 Motivation . 7

1.3 Thesis Objectives . 11

1.4 Thesis Outline . 12

References . 13

2 The LPSE laser-plasma simulation code 15

2.1 Introduction . 15

2.2 Equations solved in the LPSE CBET model 16

2.3 Outline of the operation of the LPSE code 21

2.3.1 The lpse.initialize method 22

2.3.2 The lpse.simulate method 29

2.3.3 The lpse.finalize method 31

References . 33

3 Implementation of orbital angular momentum boundary conditions

in LPSE 34

3.1 Introduction . 34

3.2 Gaussian beam solutions . 35

3.3 Methods and Procedure . 42

3.4 LPSE Code Modifications for LG/HG Boundary Conditions 45

vi

References . 54

4 Simulation of OAM beams and the implementation of angular mo-

mentum diagnostics. 55

4.1 Introduction . 55

4.2 Computation of the Poynting flux from the time-enveloped Maxwell

equations . 56

4.3 Results in two dimensions. 57

4.4 3-D simulation results of crossing LG beams 62

5 Conclusions & Future Work 65

5.1 Conclusions . 65

5.2 Future Work . 67

Bibliography 68

vii

List of Tables

2.1 Some important classes used in the LPSE code 22

viii

List of Figures

1.1 Inertial Confinement Fusion uses lasers to compress and implode the

target. The imploded target undergoes the nuclear fusion process and

burns the fuel. Reproduced from “Inertial Confinement Fusion: An

Introduction The ENERGY of the STARS” from The University of

Rochester’s Laboratory for Laser Energetics. 4

1.2 A laser-fusion target is compressed from the ablation of the flowing

plasma. Reproduced from “Inertial Confinement Fusion: An Introduc-

tion The ENERGY of the STARS” from The University of Rochester’s

Laboratory for Laser Energetics . 5

1.3 (a) and (b): A 2-D LPSE simulation of a small-scale preformed plasma

profile, illustrating the geometry for cross-beam energy transfer. Snap-

shots of the electric field intensity are shown, normalized to its max-

imum value, for two overlapping laser beams (0 and 1). Snapshot

(a) corresponds to a time 1 ps after injection of the beams from the

boundary, while (b) is taken at 10 ps when CBET has fully developed.

Snapshot (a) show the whole simulated region, while (b) is an enlarge-

ment of the region indicated by the white box in (a). The red circle

gives the location of the critical density. The blue and white lines are

ray trajectories for beams 0 and 1, respectively. The black arrow in

(a) indicates the direction of energy transfer near the point r0, giving

rise to a downstream shadow. 8

ix

1.4 A off axis spiral phase plate with a incident light reflecting off the plate

showing how the beam obtains a helical phase front [10]. 11

2.1 lpse.initialize code flowchart for the LightSolver physics module. 24

2.2 The lpse.simulate code flowchart for LightSolver physics module 30

3.1 Results of a 2-D LPSE simulation that shows: (a) the intensity of

two speckled laser beams entering from the left and upper boundaries.

The speckles refract and are absorbed in a plasma density profile (not

shown) that decreases radially from the center of the red circle (in-

dicating the overdense region). Sub figures (b) and (c) are magnified

regions, indicated by white boxes, of the original (80µm×80µm) com-

putational domain. 35

3.2 Illustration of the Gaussian beam parameters of waist w0, width w(z),

and Rayleigh length zR; the radius of curvature is not shown. 37

3.3 Lineouts of the first five Hermite-Gauss functions n = 0 − 4 (see text

for details) . 38

3.4 A matrix of plots showing the normalized electric field amplitude [the

formula given in Eq. (3.10)] in the x− y plane. The (zero based) row

number sets n, while the column determines the value of m. 39

3.5 A matrix of plots showing the absolute value of the electric field ampli-

tude [the modulus of the formula given in Eq. (3.10)] in the x−y plane.

The (zero based) row number sets n, while the column determines the

value of m. 40

3.6 Normalized electric field intensity in the x−y plane for p = 1 and (left

to right) l = −1, 0, and +1. 41

3.7 Absolute value of the function given in Eq. (3.14) for p = 2 and (left

to right) l = −2, -1, 0, 1, and 2. 42

x

3.8 The real part of Eq. (3.14) for the value p = 2 and l = −2, −1, 0, 1,

and 2. 42

3.9 Simple lineouts showing the effect of increasing orbital angular mo-

mentum l for a given radial mode number p. 43

3.10 The linear 1-D scattering problem of a plane EM wave, incident from

the left (indicated by the blue arrow), on a plasma slab whose density

n0(x) increases linearly from vacuum (at x = xl) to include the wave

turning point (solid green line labeled ne = nc). The problem is solved

on Ωc = {(x, t) ∈ [xL, xR]×R+}, where xL, xR = ±5 µm, respectively.

The vertical dashed lines indicate the TF-SF boundaries and the blue-

green shaded regions on the far left and far right indicate the regions

where the PML is applied. 44

3.11 A schematic diagram showing the interior computational domain Ωc,

having the exterior boundary ∂Ωc, where the numerical problem is

to be solved. The domain Ωc is the union of a scattered-field re-

gion ΩSF and a total-field region ΩTF, which share the common total-

field/scattered-field boundary ∂ΩTF-SF. 45

4.1 In the case shown, a Gaussian laser beam is seen to cross a Hermite-

Gauss (HG) beam (order 4). The colour bar indicates laser intensity

in arbitrary units. 58

4.2 The direction (arrows) and magnitude (colour bar) of the Poynting flux,

in W/cm2, gives a physical picture of the transfer of linear momentum

density. 59

4.3 The momentum of light is proportional to the Poynting flux (shown on

the right) . 60

4.4 The angular momentum density in the z direction ρJz at time t = 10

ps (in arbitrary units). 61

xi

4.5 The total angular momentum (in the z direction) as a function of time,

for the simulation, as computed by Eq. (4.4) in arbitrary units. . . . 61

4.6 Two crossing beams spiral as they propagate due to their orbital an-

gular momentum. The real amplitude of the Ez electric field is shown.

[both beams are plane polarized in the z direction (no SAM)]. 63

4.7 A transfer of energy is observed between the crossing beams shown in

Fig. 4.6. Energy is exchanged from the more intense beam LG0,1 to

the weaker beam LG0,−1. 64

4.8 Iso-surface of the electric field intensity for crossing beams. Before (a)

and after (b) cross-beam energy transfer has occured. 64

xii

Chapter 1

Introduction

As the human race advances in technology and knowledge, the requirement of energy

increases to feed the advancement. With this increase of energy consumption comes

the consequence of an evolving society. This is the carbon dioxide emissions for

the most prominent energy production methods. The main production of energy is

burning hydrocarbons to make steam to power turbines. The process of burning the

hydrocarbons make carbon dioxide. The increase of carbon dioxide in the atmosphere

is the main contributor to the climate change of Earth casing extreme weather events

and is the most prominent threat to current human civilization. Thus the pursuit to

solve this dilemma without stopping the advancements of society is the main problem

at hand for this and coming generations of future people of science.

There are already multiple avenues being worked on to solve this crisis, such as

solar energy, wind energy, hydroelectric energy, and nuclear fission energy. These are

the top alternatives but not all the possible alternatives. Each one of these energy

sources has its benefits and drawbacks as well. Each of these are being researched

and advancements are being made in efficiency, capability, and availability.

The benefit of solar energy is the abundance of it available from the sun. Solar

energy requires light from the sun, which is then turned into usable electrical energy

from solar panels made of crystalline silicon. The problems associated with solar

panels though is the lifetime of the crystalline silicon is about 25 years, along with

1

energy efficiency rate of 25 percent and is easily damaged by weather such as hail and

heavy snow. Also, solar panels are not very efficient in regions with lower levels of

direct sunlight and winters with snow which cover the panels stopping the light being

converted in electrical energy.

Wind energy is another alternative energy source which uses wind to rotate large

scale turbines to change the energy from the wind into mechanical energy then into

electrical energy. The upside to wind energy is there is no direct waste product from

the production of the energy. The downside is wind is not constant and it is hard to

store electrical energy on the scale of city power generation.

Hydroelectric energy is the use of large bodies of water to rotate turbines to gener-

ate electrical energy. This is done using a dam to block a river to fuel the hydroelectric

dam. Dams are an alternative energy source with its own short comings. First, land

must be flooded by the dam to power it causing damage to ecosystems and the dis-

placement of people living around it. Also, if the dam fails and breaks there is the

potential for a huge catastrophe causing large scale damage.

Then there is nuclear energy. There are two different forms of nuclear energy:

fission and fusion. Fission is when a heavy element with a large nuclei, such as

uranium, splits into two or more smaller nuclei along with other particles accompanied

by the release of a large amount of energy. Nuclear fusion occurs when two or more

light nuclei overcome the Coulomb force of the particles and the nuclear force takes

over and fuses the two nuclei into a heavier one. This has a change in mass which

results in an output of energy. Below in equation 1.1 is the fusion reaction with the

largest cross section, where deuterium and tritium fuse together making helium and

a free neutron.

D + T → He4(3.5MeV) + n(14.1MeV) (1.1)

Nuclear fission in the reaction used in current nuclear power plants. Nuclear power

plants work by having a nuclear reactor with a sub-critical mass of fissile material

2

is assembled and the reaction is controlled by varying the neutron flux using control

rods. There is a possibility of criticality and a runaway chain reaction. The heat from

the reaction is used to make steam that rotates a turbine that powers a generator

making electrical energy. Nuclear power plants are very large scale facilities with

lots of regulations due to the possibility of the reactor going critical and exploding.

The damage to the plant and the surrounding environment can be serious and long

lasting. Nuclear power planets also produce nuclear waste that needs to be handled

appropriately due to its radioactive nature.

In the nuclear fusion category there is two major subcategories being researched:

magnetic confinement fusion and inertial confinement fusion (ICF). Magnetic con-

finement fusion uses strong magnetic fields to confine the fuel used for fusion, that

is in the plasma state, to very high pressure for the fusion reaction to occur. The

most researched approach to ICF uses lasers to confine and compress the fuel to get

to conditions required for the nuclear fusion reaction to overcome the Coulomb force

causing the fuel to ignite and burn.

1.1 Inertial Confinement Fusion using lasers

The ICF approach, as seen in Fig. 1.1 uses a laser or particle beam to compress, as

well as heat, a small capsule of fuel. This fuel is a deuterium and tritium mixture in a

shell to keep it contained. When the energy of these beams is applied to the outside

of the fuel capsule it ablates. The ablation pressure causes the capsule to expand

inward, while the ablated plasma expands outward. The converging target causes the

fuel inside to be compressed and be heated to the point where it can undergo fusion

reactions and release energy.

In ICF there are two basic schools of thought used to accomplish fusion with

laser drivers; indirect-drive method and the direct-drive method. In the direct-drive

method laser beams directly irradiate the spherical capsule to accomplish the process

mentioned in Fig. 1.1. The target for this method is a thin plastic shell containing

3

Figure 1.1: Inertial Confinement Fusion uses lasers to compress and implode the
target. The imploded target undergoes the nuclear fusion process and burns the fuel.
Reproduced from “Inertial Confinement Fusion: An Introduction The ENERGY of
the STARS” from The University of Rochester’s Laboratory for Laser Energetics.

deuterium and tritium that has been solidified into a solid layer inside the shell. The

target is about 1 millimeter in diameter and suspended from a support. The surface

of the capsule absorbs the laser light turning the surface into a very high temperature

ionized gas known as a plasma which then expands to form a plasma corona around

the target (Fig. 1.2). Figure 1.2 shows the incident laser light on the capsule causing

it to ablated and the plasma to form on the exterior of the shell.

In the indirect-drive method, the target is suspended inside a cylindrical enclosure

called a hohlraum, which is usually made from gold or some other heavy elements.

Laser beams irradiate the interior of the hohlraum instead of the fuel capsule directly.

The hohlraum walls emits x-ray radiation as they are heated by absorption of the

laser light. The process is then the same in Fig. 1.1 where instead of laser light

4

Figure 1.2: A laser-fusion target is compressed from the ablation of the flowing
plasma. Reproduced from “Inertial Confinement Fusion: An Introduction The EN-
ERGY of the STARS” from The University of Rochester’s Laboratory for Laser En-
ergetics

driving the process the x-rays cause the target to be compressed and heated from

ablation forming a plasma corona. The advantage of indirect-drive is it leads to a

more uniform irradiation of the fuel capsule because the cylindrical enclosure makes

the x-rays more isotropic. In direct-drive it requires a special effort to make the

incident light as uniform as possible. There is a disadvantage to indirect-drive in that

there is an efficiency loss for the conversion of laser light to x-rays. As a result, only

a fraction of the total energy reaches the fuel capsule.

In both direct-drive and indirect-drive methods a plasma is formed on the exterior

of the fuel capsules. The plasma can also cause the laser energy to be poorly absorbed

by the fuel capsule in both methods due to instabilities of the plasma that occur due

to high intensity of the laser light. There are two main instabilities of concern:

Stimulated Raman Scattering (SRS) and Stimulated Brillouin Scattering (SBS).

Stimulated Raman scattering is a type of instability that involves the coupling of a

large amplitude light wave to a scattered light wave and a electron plasma wave. An

5

electron plasma wave is a electrostatic longitudinal wave that oscillates in a plasma.

The process of how stimulated Raman scattering works is an incident light wave

propagating through a plasma where the density is rippled with amplitude δn. Due

to the oscillation of the electrons in the electric field light wave with velocity vosc, an

electrical current is generated δy = −eδnvosc. The transverse current will generate a

scattered light wave which will interfere with the incident light to create a variation

in the intensity of the electric field. Intensity variations act like a varying pressure

that pushes on the plasma generating a density fluctuation if the wave numbers and

frequencies of the perturbation are properly matched. They are properly matched

if they meet the frequency and wave number criteria of resonant decay described by

ωo = ωs + ω and ko = ks + k where ωo and ko are the incident light wave frequency

and wave number, ωs and ks are the scattered wave frequency and wave number, and

ω and k are the ion acoustic wave frequency and wave number. The small fluctuation

in density is enhanced leading to an enhanced transverse current that increases the

strength of the scattered light, and so on. This is a feedback loop which causes

instability.

Stimulated Brillouin scattering is similar to stimulated Raman scattering in that it

involves the coupling of a large amplitude light wave to a scattered light wave and a

density perturbation. In stimulated Brillouin scattering, the density perturbation is

associated with an ion acoustic wave instead of electron plasma wave. An ion acoustic

wave is an electrostatic longitudinal ion wave that oscillates at a low frequency. The

frequency of ion acoustic waves is connected to the wave number by ω = kcs(1+M),

where M is the mach number of plasma flow.

Both of these instabilities are problematic for the fusion process because energy can

be lost from the incident laser (a coupling loss) and is scattered (a symmetry problem).

Therefore there has been research into reducing the affects of these instabilities on

approach to mitigate.

6

1.2 Motivation

Cross-beam energy transfer (CBET) is a special case of SBS [1] that occurs when

multiple EM waves (e.g. laser beam) of overlap in a plasma. The CBET mecha-

nism, as it applies to direct-drive ICF, is illustrated in Figs. 1.3(a) and 1.3(b) figures

reproduced from [2]. These show simulations using the “laser plasma simulation en-

vironment” (LPSE) code that solves wave equations describing CBET as described

later in Secs. 2. Two crossing EM beams labeled (“0” and “1”) propagate through a

radially symmetric (about the origin x = y = 0) plasma with a density profile that is

fixed in time and decreases exponentially with radius and a plasma flow velocity, also

fixed, directed radially outward and increasing linearly with radius (not shown). Fig-

ure 1.3(a) shows the entire simulated region, which is reduced in scale (80 × 80 µm2)

compared with OMEGA coronal plasmas, but still thousands of laser wavelengths

across in each direction. The laser light has a wavelength of λo = 0.351µm in vac-

uum. Figure 1.3(b) is a blowup of the white rectangular region shown in Fig. 1.3(a),

but it is shown at an earlier time when CBET has not developed.

Contours of electric field intensity are shown. Beam “0” is incident from the left

simulation boundary, while beam “1” is incident from the upper left. Both beams are

polarized in the same direction (out of the plane shown), and the red circle indicates

the location of the critical density nc =
meωo

4πe2
, where ωo is the frequency of the incident

light and me and e are the electron mass and charge respectively. As can be seen, EM

waves cannot propagate at electron plasma densities greater than the critical density.

Ray trajectories are shown for each beam (blue and white lines, respectively). These

have been computed by ray tracing chosen in a way to match the boundary conditions

used in the LPSE full-wave solver. The ray trajectories define the local wave vectors

k0 and k1 of both beams, such that the electric field looks like plane waves locally

[e.g., at the point r0 where Eo ∼ exp(ikox − iω0t)]. Where rays from both beams

overlap, the electric field is the coherent sum (i.e., E = Eo + E1) of the contribution

7

Figure 1.3: (a) and (b): A 2-D LPSE simulation of a small-scale preformed plasma
profile, illustrating the geometry for cross-beam energy transfer. Snapshots of the
electric field intensity are shown, normalized to its maximum value, for two overlap-
ping laser beams (0 and 1). Snapshot (a) corresponds to a time 1 ps after injection
of the beams from the boundary, while (b) is taken at 10 ps when CBET has fully
developed. Snapshot (a) show the whole simulated region, while (b) is an enlargement
of the region indicated by the white box in (a). The red circle gives the location of
the critical density. The blue and white lines are ray trajectories for beams 0 and 1,
respectively. The black arrow in (a) indicates the direction of energy transfer near
the point r0, giving rise to a downstream shadow.

8

from each beam.

The wave vector k2 = k0 − k1 of the interference pattern in |E2| between beams

0 and 1 where they overlap at the position r0 is shown in Fig. 1.3(b). In general,

the interference pattern will oscillate in time with frequency ω2 = ω0 − ω1, but in

Figs. 1.3(a) and 1.3(b) the pattern is static (ω2 = 0) as both beams have the same

frequency. A perturbation (grating) is generated in the plasma density with the same

wave number k2 as the interference pattern by the ponderomotive force of the laser

light Fp ∝ ∇|E2| [1].

The frequencies (ω0 and ω1) of the overlapping EM beams and the plasma flow

velocity U0 control the proximity of the plasma response at the frequency ω2, to a

harmonic ponderomotive force with wave number k2, to a plasma resonance at the ion-

acoustic-wave (IAW) frequency ωIAW (k2). The ion acoustic wave dispersion relation is

given by ωIAW = kcs(1+ k̂uo

cs
), where cs is the ion sound speed and k̂ = k

|k| . If ω2 is far

from ωIAW (k2), the pondermotive force will only produce a weak density perturbation.

The IAW frequency is very small in comparison with the laser frequency; as a result,

Doppler shifts caused by U, play an important role in determining resonance. At (or

near) IAW resonance, the density grating becomes enhanced so the coupled EM waves

[(k0, ω0), and (k1, ω1)] and the IAW wave (k2, ω2) become parametrically unstable

in the same manner as its been described for SRS. This instability usually manifests

itself as spatial amplification of the EM wave (k1, ω1) and plasma density perturbation

(k2, ω2) at the expense of the EM pump (k0, ω0). Substantial power can be transferred

from the higher-frequency (pump) EM wave to the lower-frequency EM wave (where

“higher” and “lower” refer to frequencies determined in the local reference frame

where the plasma flow velocity U0 vanishes) [3].

Figure 1.3(a) shows the electric field intensities at times that are sufficiently late to

cause CBET to develop and reach steady state (t ≳ 10 ps). CBET has caused laser

energy to be exchanged from light directed along the highlighted blue ray to light

following the highlighted white ray near the point r0. As a result, a “shadow” (dark

9

blue region) can be seen along the blue ray downstream of point r0 because of the

redirection of the light. The redirection occurs preferentially in the neighborhood of

point r0 because the local Doppler shift is such to bring the grating between beams

(k0, ω0) and (k1, ω1) into IAW resonance at this position. Just as in the LPSE sim-

ulation shown in Fig. 1.3(a), CBET is believed to preferentially transfer energy from

the central portion of each laser beam to the outer portions (or “wings”) in spher-

ically symmetric direct-drive experiments, where there are many more overlapping

beams.[4, 5] CBET is believed to significantly reduce absorption and drive, thereby

influencing direct-drive target designs [6].

The reduction in absorption is sufficiently large such that mitigation schemes must

be developed and implemented to either reduce, or eliminate, its effects. To date,

most of the schemes that have been proposed either propose modifying the frequency

of neighbouring beams, or increasing the temporal bandwidth of every beam. The

temporal bandwidth is both challenging to achieve and expensive to implement. As a

result, its proposed to modify the spatial, rather than temporal, structure of the laser

beam. For example, the spatial phase can be modified in such a way as to introduce

(orbital) angular momentum to the laser beam.

Orbital Angular Momentum (OAM) is a phenomena where the component of an-

gular moment of a light beam is dependent on the light beams field spatial structure

distribution instead of the polarization. These beams can be produced using a off axis

spiral phase plate seen in Fig. 1.4 where the phase plate has a helical stepping giving

a helical wave front and pattern to the incident laser light [7]. OAM has been used

in applications such as rotation of particle in optical tweezers [8], as well as, being

used in terabit optical communication using OAM in free space and fiber [9]. We are

led to ask the question, what will OAM do in the application OAM light beams in

ICF? It is speculated that it will be more difficult for beams to exchange energy if

they carry angular momentum. To quantify this effect it first must be simulated. To

describe the parametric instabilities resonance that causes CBET a simulation code

10

using a wave solver type system is required and LPSE is such a code. However, it

must first be modified to allow for angular momentum carrying beams to be injected

into the simulation.

Figure 1.4: A off axis spiral phase plate with a incident light reflecting off the plate
showing how the beam obtains a helical phase front [10].

1.3 Thesis Objectives

The objective of the thesis is to showcase the changes to the LPSE code to allow

for higher order laser modes with orbital angular momentum (OAM) to propagate

in the simulation and highlight the affects of higher order laser modes with OAM on

the laser plasma instabilities that occur in the laser direct-drive fusion method. To

complete the first objective, a discussion of the LPSE code, how it solves the Maxwell

equations, and what physics are included in the simulation. The next objective

is modifications to the code for the Higher order OAM modes to be injected and

propagated as boundary conditions, as well as, the physics of how OAM and higher

order laser modes are derived from fundamental equations. Then, how the code

handles boundary conditions using Perfectly matched layers to attenuate the scattered

lights on the boundaries and how the total field scattered field work is discussed and

showing the results of implementing the boundary conditions in the code. The next

objective is showing the crossing of two LG modes and the transfer of OAM. Lastly,

11

the conclusion of the entire thing and future considerations on how these OAM beams

can mitigate CBET SBS and other instabilities.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 1 describes the need for a green energy

source that is more sustainable to the current green sources that have very apparent

flaws. Then it goes into the fusion energy route of green energy and how it works

and the benefits compare to current fission energy and green energy sources. The

discussion of the current challenges of fusion energy are talked about and the motiva-

tion behind the research. Chapter 2 goes into detail on the LPSE code used for the

simulations done in this research and the equations this code solves. Chapter 3 talks

about the boundary conditions on the code and how and why they were modified for

this research. Chapter 4 shows the simulation results from the code modifications

and the results from adding the higher order laser modes. Chapter 5 concludes the

thesis and all the main points from it.

12

References

[1] W. L. Kruer, “The Physics of Laser Plasma Interactions,” in, ser. Frontiers in
Physics, D. Pines (Ed.) Vol. 73, Redwood City, CA: Addison-Wesley, 1988.

[2] J. Myatt, J. Shaw, R. Follett, D. Edgell, D. Froula, J. Palastro, and V. Gon-
charov, “Lpse: A 3-d wave-based model of cross-beam energy transfer in laser-
irradiated plasmas,” Journal of Computational Physics, vol. 399, p. 108 916,
Sep. 2019. doi: 10.1016/j.jcp.2019.108916.

[3] W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer
between crossing laser beams,” Phys. Plasmas, vol. 3, pp. 382–385, 1996. doi:
10.1063/1.871863.

[4] D. H. Edgell, W. Seka, J. A. Delettrez, R. S. Craxton, V. N. Goncharov, I. V.
Igumenshchev, J. F. Myatt, A. V. Maximov, R. W. Short, T. C. Sangster,
and R. E. Bahr, “Cross-beam energy transport in direct-drive implosion exper-
iments,” Bull. Am. Phys. Soc., vol. 54, p. 145, 2009.

[5] I. V. Igumenshchev, D. H. Edgell, V. N. Goncharov, J. A. Delttrez, A. V.
Maximov, J. F. Myatt, W. Seka, and A. Shvydky, “Modeling crossed-beam
energy transfer in implosion experiments on OMEGA,” Bull. Am. Phys. Soc.,
vol. 54, p. 145, 2009.

[6] V. N. Goncharov, T. C. Sangster, R. Betti, T. R. Boehly, M. J. Bonino, T. J. B.
Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, R. Epstein, R. K. Follett,
C. J. Forrest, D. H. Froula, V. Yu. Glebov, D. R. Harding, R. J. Henchen, S. X.
Hu, I. V. Igumenshchev, R. Janezic, J. H. Kelly, T. J. Kessler, T. Z. Kosc,
S. J. Loucks, J. A. Marozas, F. J. Marshall, A. V. Maximov, R. L. McCrory,
P. W. McKenty, D. D. Meyerhofer, D. T. Michel, J. F. Myatt, R. Nora, P. B.
Radha, S. P. Regan, W. Seka, W. T. Shmayda, R. W. Short, A. Shvydky,
S. Skupsky, C. Stoeckl, B. Yaakobi, J. A. Frenje, M. Gatu-Johnson, R. D.
Petrasso, and D. T. Casey, “Improving the hot-spot pressure and demonstrating
ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions
on omega,” Physics of Plasmas, vol. 21, no. 5, p. 056 315, 2014. doi: 10.1063/
1.4876618. eprint: https ://doi .org/10.1063/1.4876618. [Online]. Available:
https://doi.org/10.1063/1.4876618.

[7] A. Longman and R. Fedosejevs, “Mode conversion efficiency to laguerre-gaussian
oam modes using spiral phase optics,” Opt. Express, vol. 25, no. 15, pp. 17 382–
17 392, Jul. 2017. doi: 10.1364/OE.25.017382. [Online]. Available: http://www.
opticsexpress.org/abstract.cfm?URI=oe-25-15-17382.

[8] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct
observation of transfer of angular momentum to absorptive particles from a
laser beam with a phase singularity,” Phys. Rev. Lett., vol. 75, pp. 826–829,
5 Jul. 1995. doi: 10 . 1103/PhysRevLett . 75 . 826. [Online]. Available: https :
//link.aps.org/doi/10.1103/PhysRevLett.75.826.

13

https://doi.org/10.1016/j.jcp.2019.108916
https://doi.org/10.1063/1.871863
https://doi.org/10.1063/1.4876618
https://doi.org/10.1063/1.4876618
https://doi.org/10.1063/1.4876618
https://doi.org/10.1063/1.4876618
https://doi.org/10.1364/OE.25.017382
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-15-17382
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-15-17382
https://doi.org/10.1103/PhysRevLett.75.826
https://link.aps.org/doi/10.1103/PhysRevLett.75.826
https://link.aps.org/doi/10.1103/PhysRevLett.75.826

[9] J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. HUANG, Y. Ren, Y.
Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission
employing orbital angular momentum multiplexing,” Nature Photonics, vol. 6,
pp. 488–496, Jul. 2012. doi: 10.1038/nphoton.2012.138.

[10] A. Longman, “Under-dense laser-plasma interactions in relativistic optical vor-
tices,” pp. 171–175, 2020.

14

https://doi.org/10.1038/nphoton.2012.138

Chapter 2

The LPSE laser-plasma simulation
code

2.1 Introduction

The LPSE code system [2] is particularly suitable for the investigation of the non-

linear behaviour of OAM beams in plasma. There are several reasons for this suit-

ability: The first is that investigations of OAM interactions require the simulation

volume to be three dimensional. While three dimensional particle-in-cell simulations

are possible, they are very expensive computationally. As a result, most practical PIC

simulations are performed in 1 or 2 spatial dimensions. The LPSE code adopts a “re-

duced” description of the plasma which is less computationally intensive than solving

the Vlasov-Maxwell or Fokker-Planck-Maxwell system of equations. It does have the

disadvantage that the plasma nonlinearities are approximated and most kinetic ef-

fects are absent. A further advantage of LPSE is that the boundary conditions have

been designed to be flexible such that arbitrary incident light beams can be injected

from any boundary. Often, plasma simulation codes adopt very simplified boundary

conditions (e.g., plane waves, or Gaussian beams), or make assumptions regarding

the direction of light propagation (e.g., pF3D) [11].

As a consequence of the reduced plasma description, the LPSE adopts the use a

various modules that can be enabled so as to describe different physical process. For

example, there is a model for stimulated Raman scattering [12], a module for the

15

two-plasmon decay instability [13] and another for stimulated Brillouin scattering.

[2] Below, we describe the equations that are solved in the SBS module, as these

are sufficient to describe cross-beam energy transfer. We also give an outline of the

operation of the code that solves these equations in sufficient detail that it will aid

future developers.

2.2 Equations solved in the LPSE CBET model

The LPSE model of SBS couples the time-enveloped Maxwell’s equations with a

fluid-moment model of the low-frequency plasma response. Recall that in free space

the Maxwell equations are (in cgs units):

∇ · E = 4πρ (2.1)

∇ ·B = 0 (2.2)

∇× E = −1

c

∂B

∂t
(2.3)

∇×B =
4π

c
J+

1

c

∂E

∂t
(2.4)

where E is the electric field, B is the magnetic field, ρ, J, and c are the charge density

and current density, and the speed of light in vacuum, respectfully.

The Vlasov-Maxwell system of equations combines the above Maxwell equations

and a Vlasov equation for each plasma species:.

∂fs(x,v, t)

∂t
+ v · ∇xfs +

qs
ms

(E+
v

c
×B) · ∇vfs = 0, (2.5)

where fs is the probability distribution function of particles in a plasma, the sub

script s denotes the particle species (e - i), x and v subscripts denotes dependence on

either position or velocity, qs is the charge and ms is the mass. The Vlasov equation

and Maxwell equations form a closed self-consistent system as the charge and current

density can be written in terms of the particle distribution functions:

16

ρ =
∑︂
s

qs

∫︂
dvfs, J =

∑︂
s

qs

∫︂
dvvfs (2.6)

Reduced models are obtained by taking velocity moments of the Vlasov equation.

The first three are:

∂ns

∂t
+

∂

∂x
· (nsus) = 0 (2.7)

ns
∂us

∂t
+ nsus ·

∂us

∂x
=

nsqs
ms

(︃
E+

u×B

c

)︃
− 1

ms

∂ps
∂x

(2.8)

∂ps
∂t

+ us
∂ps
∂x

+ 3ps
∂us

∂x
+ 2

∂Qs

∂x
= 0, (2.9)

where ns is the density of the species, us is the mean velocity of the species, qs

is the charge, ps is the is the pressure, and Q = m
2

∫︁
(v − u)3f dv is the heat flux.

These equations are used to model a plasma as a fluid when the system is closed

by writing either Qs or Ps in terms of density on assumption of an iso-thermal or

adiabatic equation of state.

In LPSE, the Maxwell’s equations are solved for the real-valued electric field Ẽ in

the plasma that is obtained by eliminating the magnetic field by first taking the curl

of Faraday’s equation:

∇× (∇× E) = ∇×
(︃
−1

c

∂B

∂t

)︃
(2.10)

The vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A is applied and, noting that the

time and space derivatives commute; it obtains:

∇(∇ · E)−∇2E = −1

c

∂

∂t
(∇×B). (2.11)

Next, Ampere’s Law is substituted into the equation.

17

∇(∇ · E)−∇2E = −1

c

∂

∂t

(︃
4π

c
J+

1

c

∂E

∂t

)︃
(2.12)

The equation is rearranged and Eq.(2.13) is obtained.

∇2Ẽ−∇(∇ · Ẽ)− 1

c2
∂2Ẽ

∂t2
=

4π

c2
∂J̃

∂t
. (2.13)

Equation (2.13) is exactly equivalent to the usual first-order formulation of Maxwell’s

equations (given in terms of the divergence equations plus the Ampere-Maxwell and

Faraday’s laws) provided that the divergence equations are satisfied at the initial

time. If the magnetic field B is required, it can be recovered from E once its solution

is known.

The major approximation that is applied to simplify the plasma equations is time-

enveloping. Physically, this approximation takes advantage of the fact that the ion-

acoustic waves in the plasma have frequencies that are very much smaller that that

of the laser light. As a result, the SBS scattered light is only shifted very slightly

in frequency from that of the incident light ∆ω/ω0 ≪ 1. This is also true in the

presence of applied temporal bandwidth schemes [14], and those proposed for the

future [15]. The Maxwell’s equations have to be solved, not in complete generality,

but for only a very narrow range of frequencies that are close to those of the laser

light ωo. In this way, one can write Ẽ = 1/2[E(x, t) exp(−iω0t) + c.c.] (and similarly

for the plasma current J̃), with the assumption that the complex-valued envelope

function [e.g., E(x, t)] is a very slowly varying function of time in comparison with

the fast phase factor. Assuming a linear relationship between the plasma current and

the laser electric field envelopes, we have:

J(ω0;x, t) = σ(ω0;x, t) · E(x, t), (2.14)

where (for unmagnetized plasma) the electrical conductivity tensor σ [16] at the

frequency ω0 is given by

18

σ = σI, where σ =
iω2

pe(x, t)

4π(ω0 + iνei)
. (2.15)

The scalar conductivity σ is given in terms of the electron plasma frequency ω2
pe =

4πnee
2/me, where e is the elementary charge, and me is the electron mass. The

quantity νei = 4
√
2πniZ

2
i e

4Λ/(3m
1/2
e T

3/2
e) is the electron–ion collision frequency, ni is

the ion number density, Zi is the ion charge state, Λ is the Coulomb logarithm, and

Te is the electron temperature.

Inserting the Ohms’s law [Eqs. (2.14) and (2.15)] into Eq. (2.13) and applying the

envelope approximation | ∂tE |≪| ω0E |, Eq. (2.13) becomes

2iω0

c2
∂

∂t
E+∇2E−∇(∇ · E) + ω2

0

c2
ϵ(ω0;x, t)E = 0, (2.16)

where the plasma dielectric function ϵ = 1 + i 4πσ/ω0 has been introduced:

ϵ(ω0;x, t) = 1−
ω2
pe(x, t)

ω0(ω0 + iνei)
. (2.17)

The plasma dielectric function is related to the index of refraction for EM waves in

the plasma n (≡ ck/ω0) by n(x, t) =
√︁

ϵ(ω0;x, t) [16], where c is the speed of light in

vacuum and k is its wave number.

Closure of the system of Maxwell and plasma equations take advantage of the fact

that the electron plasma number density ne is slowly varying and can be assumed

to be quasineutral (ne ≃ ni/Zi).The LPSE SBS model assumes that the total (low

frequency) density is a combination of the inhomogeneous plasma plume, or corona,

and the variations associated with small amplitude ion acoustic waves that are asso-

ciated with the SBS process. As such, we define a “static,” spatially inhomogeneous

part n0(x) and a small (δn/n0 ≪ 1) time-dependent perturbation δn that is respon-

sible for SBS (and hence CBET): ne(x, t) = n0(x, τ) + δn(x, t), respectively. The

static part n0 (and the associated flow velocity U0) should satisfy the steady-state

plasma hydrodynamic equations. These profiles could be imported from a radiation-

19

hydrodynamics code for example. This separation of the plasma density, as the sum

of two pieces, implies that the plasma dielectric function is also similarly decomposed:

ϵ = ϵ(0)+ δχe, where the piece δχe is responsible for the SBS . The dielectric function

Eq. (2.17) becomes:

ϵ(ω0;x, τ, t) = ϵ(0)(ω0;x, τ) + δχe(ω0;x, τ, t) (2.18)

≃
[︃
1− n0(x, τ)

nc

+ i
νei
ω0

n0(x, τ)

nc

]︃
− δn(x, t)

nc

, (2.19)

where nc [= meω
2
0/(4πe

2)] is the critical density, and the fact that both the EM

wave damping rate νei/ω0 ≪ 1 and density perturbation are small (δn/n0 ≪ 1)

has been used. The plasma hydrodynamic flow velocity U(x, τ, t) = U0(x, τ) +

δU(x, t) is decomposed in the same way. Again, n0 and U0 are assumed to be steady

state solutions (or solutions varying on a sufficiently slow time scale that their time

dependence can be ignored).

Completion of the SBS model requires equations describing the plasma response to

the laser electric field that provide the density perturbation δn(x, t). These equations

are further simplified by noticing the separation of spatial scale between the large

scale plasma flow and the short wavelength ion acoustic waves. The spatial gradients

of the zero-order quantities are considered negligible with respect to derivatives of

the perturbations (characteristic hydrodynamic length scales Ln = |∇ log(n0)|−1 and

LU = |∇ log(U)|−1 ≳ 100 µm, while the wavelengths associated with SBS IAW are

submicron LIAW ∼ λ0 ≲ 1 µm).

Under these assumptions, the mass and momentum conservation equations (see

Nicholson for example [17]) become:

[︃
∂

∂t
+U0(x, τ) · ∇

]︃(︃
δn

n0

)︃
= −W , (2.20)[︃

∂

∂t
+U0(x, τ) · ∇+ 2ν̂ ia

]︃
W = −∇2

[︃
c2s

(︃
δn

n0

)︃
+ ϕp

]︃
, (2.21)

20

where W ≡ ∇ · δU, ϕp = Zie
2|E|2/(4memiω

2
0) is the ponderomotive potential [1],

cs = (ZiTe/mi)
1/2(1+ZiTe/Ti)

1/2 is the ion-acoustic sound speed, withmi and Ti being

the ion mass and temperature, respectively. The slow time scale τ , to be regarded as

a parameter, has been included. A phenomenological term 2ν̂ ia (a nonlocal operator

in real space) has been added to the right-hand side (r.h.s) of Eq. (2.21) to reproduce

Landau damping of IAW’s.

The model equations solved by the LPSE SBS module are therefore: Equation (2.16)

for the light wave, together with the expression for the plasma dielectric function in

terms of the two components of plasma density [Eq. (2.18) and Eq. (2.19)], and the

low frequency plasma equations [Eqs. (2.20) and (2.21)]. These equations are solved

as an initial boundary value problem in time.

We do not give the numerical algorithm here (see [2]). We do however give an

outline of the operation of the LPSE SBS module where we highlight the parts of the

code that have been modified during this work.

2.3 Outline of the operation of the LPSE code

This section explains the general operation of the LPSE code in detail that is sufficient

only to describe the areas of the code where modifications were required to permit

the injection OAM beams into a LPSE simulation. The LPSE code contains modules

and algorithm options that are not described here because they are not required for

simulations of CBET. The actual changes made are given in Section 3.4 where the

explicit form of the boundary conditions is described. While LPSE is documented to

some degree, it is a research code developed by the Laboratory for Laser Energetics at

the University of Rochester, and not a commercial code. As such, a significant amount

of time examining and testing the source code was required to fully understand its

operation and to isolate the parts that needed modification. Table 2.1 indicates which

C++ [18] classes required modification (right column).

An instance of the Lpse() class called lpse is created by the main program

21

Table 2.1: Some important classes used in the LPSE code

Class Major
purpose

Instance name Modified in
this work?

Lpse Manages
simulation

lpse no

ParameterManager parses input
deck

pm no

ZakharovSolver split step
evolution of
equations

zs no

LightSolver light manager laser yes

SchrodingerSolver3 FD solver for
EM wave
equations

ws yes

[main()]. It is responsible for performing a simulation. This object performs three

major tasks, using three methods which are called by main() in sequence:

• lpse.initialize

• lpse.simulate

• lpse.finalize

We examine each of these methods in the three subsections that follow:

2.3.1 The lpse.initialize method

The lpse.initialize method is responsible for setting up the simulation at some

initial time (that may not necessarily be t = 0 if it is a continuation from a previous

run) so that the initial value problem posed by Eqs. (2.16)-(2.21) can be advanced

by stepping discretely in time (using the lpse.simulate method described in Sub-

section 2.3.2). As the initialization procedure is quite complicated, a flow chart is

presented in Fig. 2.1 that should be referenced with Table 2.1. This table lists the

22

main classes that are instantiated, the name of the instance, and the tasks that it

performs.

The initialization part comprises a sequence function (method) calls:

• lpse.resetSimulation()

• cpuTimer.start()

• pm.readParameters()

• lpse.installSignalHandler

• lpse.setupUtilityClasses

• lpse.setStartTime

• cpuTimer.stop()

First the simulation is reset via the resetSimulation function. This reset all saved

variables and arrays generated by the code so no errors arise from stopping the code

mid-simulation then restarting the simulation from the beginning. The next func-

tion cpu.Timer starts a timer that times how long the setting up process takes for

the LPSE code for diagnostic purposes. The pm.readParameters method is used

to parse an ASCII text file that the user must provide (a <runName>.parms file).

This file describes exactly how the simulation is to be performed. While this is an

extremely important file for running the code and setting up a LPSE simulation, we

do not describe it here as no changes were required to this (ParameterManager) class.

Likewise, we do not describe the installSignalHandler function (it handles signals

that are used to stop, pause, continue and abort a simulation).

The setupUtilityClasses method is important and it does require some expla-

nation: Its role is to call the setup methods for the ZakharovSolver instance zs,

the “laser manager” class LightSolver instance (laser), and for several others that

23

Figure 2.1: lpse.initialize code flowchart for the LightSolver physics module.

we do not describe (e.g., for other physics modules, synthetic diagnostics and instru-

mentation). Unfortunately, the zs object’s class name is not particularly descriptive.

The role of this class is to organize and coordinate the split-step time evolution of

Eqs. (2.20)-(2.21) by calling solvers for the light wave equations [Eq. (2.20)] and

the IAW equations [Eqs. (2.20) and (2.21)] in sequence. Our modifications require

changes to be made to the solver for the EM waves only [Eq. (2.16)]. As shown in

Fig. 2.1, the LightSolver() class requires modification to its setup method.

With reference to Fig. 2.1, the laser.setup method calls laser.readParameters

and then laser.initialize. The laser initialize method calls the wave solver

class’ methods ws.createPlanewaveSource and ws.setPlanewaveParameters. Changes

must be made to all of these.

The laser.readParameters method uses the parameter manager instance (pm)

to parse the ASCII input file (<runName>.parms) in order to determine the type

of laser light that is incident on the simulation boundaries. Before modification,

24

this consists of any number of plane EM waves that are described by their inten-

sity, direction, and polarization among other things (such as an optional Gaussian

envelope shape function and temporal bandwidth). Once the information has been

read in, ws.createPlanewaveSources allocates a one dimensional array of structures

(structs) of type Planewave t called pw (see Listing 2.1). Each element of this array

represents one plane wave. The fields of each element of the array are filled in by

ws.setPlanewaveParameters. This is done by using an intermediate “beams” array

(array of Beams t) that was generated by laser.readParameters that stores the

parameters of each incident light sources characteristics as a element of the array.

Listing 2.1: planewave sources as defined in SchrodingerSolver3.h
struct Planewave t {

GridSide s i d e ; //!< grid -side (0-5)

XcFloat3 Kdir ; //!< direction of wavevector (with amplitude Ko)

XcFloat3 Koff ; //!< offset of wavevector (with amplitude Ko)

XcFloat3 ampl ; //!< plane wave amplitude

float omega ; //!< 2*PI/frequency

. . . snipped code

} ; // end Planewave_t

Once the array pw has been created, light.setup calls the SchrodingerSolver3

methods ws.computeLightSources. So far as we are concerned, this is the most

important step. It includes creating another one dimensional array (called wi). Each

element of this array represents a “wave injector”. It is struct of type WaveInjector t.

The definition of this WaveInjector type is shown schematically in Listing 2.2 below:

Listing 2.2: The type associated with wave injectors as defined in Schrodinger-
Solver3.h
protec ted : // wave injection functions

struct WaveInjector t {
int i , j , k ; //!< local grid coordinates for this injector

unsigned index ; //!< local grid index for this injector ,

//!< mapped from (i,j,k)

//

// suppressed fields

//

XcComplex3 ∗ s r c ; //!< total source term at some time for this grid point

} ;

One injector (element of the array) is allocated by computeLightSources for every

grid cell (indexed by the integers i, j, and k) that requires correction due to the

25

presence of a light source that is incident on the simulation domain.

Listing 2.3: computeLightSources function in SchrodingerSolver3.cpp
void Schrod inge rSo lve r3 : : computeLightSources (const float microTimeStep)
{

// ... Snip!

// Allocate memory for the waveInjector [] array

//

c reateWaveIn jec tor s (n I n j e c t o r s) ; // could be 0 injectors for this MPI process!

memoryUsage += waveInjectorMemory ;

if (n I n j e c t o r s > 0) {

// Fill in the waveInjector [] array.

int wiid= 0 ; // wave -injector id (incremented when assigned)

for (int i=idxLower ; i<=idxUpper ; i++) {
for (int j =0; j<Ny; j++) {

for (int k=0; k<Nz ; k++) {

bool found=f a l s e ;
XcComplex3 s r c ; // initialzied to zero

if (hasPlanewaveSources) {
s r c += addPlanewaveSource (startTime , i , j , k , found , . . .) ;

}

if (found) {

// ... snip

//

// Initialize the injector and allocate memory

//

i n i tWave In j ec to r (wiid , i , j , k , . . .) ;

WaveInjector t &wi= waveIn jec tor [wi id] ;
wi . s r c [0]= s r c ; // at the start time!

wiid++;

} // endif(found)

} // endfor k

} // endfor j

} // endfor i

} // endif (nInjectors >0)

} // end computeLightSources ()

The wave injectors are used to correct the finite-difference time step for the electric

field on the TF-SF boundary as described later (in Sec. 3.3). The information required

to make this correction is stored in the src field of each struct. It is computed by

the method addPlanewaveSource.

The array of plane wave structs are used by addPlanewaveSource in the above

computeLightSources method:

26

Listing 2.4: addPlanewaveSource function in SchrodingerSolver3.cpp
XcComplex3 Schrod inge rSo lve r3 : : addPlanewaveSource (const float time , int i , int j , int k ,

bool &found)
{

XcComplex3 b ; // The source starts at zero

. . . sn ip . . .

for (int s i d =0; s id<numPlanewaves ; s i d++) {
const Planewave t &pw= planewave [s i d] ; // a reference for speed

if (is1D) { // or 2D or 3D

if (i n j e c t I n s i d eY && in j e c t I n s i d eZ) {
if (pw . s i d e == SIDE X MIN) {

//

if (i == i n j e c t m i n i) { // JFM i.e., we are on the TF side

XcFloat3 Koff= pw. Koff ; Koff . x= float (i n j e c t m i n i)/ float (Nx1) ;
XcFloat3 Kdir= pw. Kdir ;

const float x= (is1D) ? (float (i)/ float (Nx1) − Koff . x)∗ g r i dS i z e . x : 0 . 0 f ;
const float y= (is2D) ? (float (j)/ float (Ny1) − Koff . y)∗ g r i dS i z e . y : 0 . 0 f ;
const float z= (is3D) ? (float (k)/ float (Nz1) − Koff . z)∗ g r i dS i z e . z : 0 . 0 f ;

const XcFloat3 eu= UNIT3D(pw. ampl) ; // unit polarization vector

const XcFloat3 gu= CROSS3D(Kdir , eu) ; // orth -norm basis for perp plane

const XcFloat3 Rvec= XcFloat3 (0 , y , z) ;
const XcFloat3 Rperp= DOT3D(eu , Rvec)∗ eu + DOT3D(gu , Rvec)∗ gu ;

const float weight= superGauss ian (Rperp ,pw)/ EoScale (i , j , k) ;
const float Ko i jk= Ko(i , j , k) ;

const XcFloat3 Rm1((x − h xyz) , y , z) ;
const float KdotRm1= DOT3D(Ko i jk ∗Kdir ,Rm1) ;
const XcComplex3 wPwsM1= weight ∗planewaveSource (KdotRm1 , time ,pw) ;

const XcFloat3 R0((x) , y , z) ;
const float KdotR0= DOT3D(Ko i jk ∗Kdir ,R0) ;
const XcComplex3 wPwsR0= weight ∗planewaveSource (KdotR0 , time ,pw) ;

const XcFloat3 Rp1 ((x + h xyz) , y , z) ;
const float KdotRp1= DOT3D(Ko i jk ∗Kdir , Rp1) ;
const XcComplex3 wPwsP1= weight ∗planewaveSource (KdotRp1 , time ,pw) ;

const XcComplex I (0 . 0 f , 1 . 0 f) ;
XcComplex3 s ;

s . x= (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . y)∗wPwsP1 . y
+ (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . z)∗wPwsP1 . z
− sqr (h xyz∗Ko i jk ∗Kdir . x)∗wPwsR0 . x ;

s . y= wPwsM1. y + (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . y)∗wPwsP1 . x
− sqr (h xyz∗Ko i jk ∗Kdir . y)∗wPwsR0 . y
− (sqr (h xyz∗Ko i jk)∗Kdir . y∗Kdir . z)∗wPwsR0 . z ;

s . z= wPwsM1. z + (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . z)∗wPwsP1 . x
− sqr (h xyz∗Ko i jk ∗Kdir . z)∗wPwsR0 . z
− (sqr (h xyz∗Ko i jk)∗Kdir . z∗Kdir . y)∗wPwsR0 . y ;

b += s ; // accumulate the contribution of this pw

found= true ;
} // endif inject_min_i

if (i == in j e c t m i n i −1) { // JFM i.e., we are on the SF side

// corrections are two grid points deep on each boundary

. . . sn ip

27

found= true ;
} // endif inject_min_i -1

//

} // endif(planewave :: SIDE_X_MIN)

} // endif

} // endif(is1D)

// similar things for all the other boundaries

. . . sn ip . . .

} // endfor(sid)

return c l i p I n j e c t i o n S ou r c e s (b/ sqr (h xyz)) ;
//

} // end addPlanewaveSource ()

As shown in the Listing for computeLightSources, a loop is performed over every

grid cell (belonging to the MPI process!) and if it is determined that an injector is

required at that grid point (i, j, k) the addPlanewaveSource function is called to

compute the required correction (note that addPlanewaveSource is also used to test

for the presence of an injector). This correction is stored in the src field for that

particular injector. As each injector is initialized, the index of the injector array wiid

is incremented.

The addPlanewaveSource function (see Listing) uses the previously defined pw

array to compute this local correction (at grid index i, j, k). This function is called

for every grid cell in the simulation. It sets the bool variable found to false if no

injector is required because of the location of the grid point. It loops over every

element (plane wave) in the pw array. If it finds at least one plane wave on a given

boundary, then the src is computed by accumulating the contribution of each plane

wave incident on that side. Each contribution requires the computation of the electric

field vector of the plane wave evaluated over a finite difference stencil. This requires

knowledge of its wave vector and other properties that are fields of each Planewave -

t struct (see Listing for addPlanewaveSource). This completes the LightSolver

initialization.

Finally, cpu.Stop is called and the run time for the initialization is recorded and

displayed in the terminal.

28

2.3.2 The lpse.simulate method

While no changes are required in this method, we describe it here in order to show how

the previously initialized wave injectors are used to inject light into the simulation as

time evolves. The lpse.simulate method performs the following steps in sequence

(roughly):

starts the cpu timer

sets the end time

computes the number of time steps

carries out a while loop that evolves the equations

stops the timer

The simulation part of LPSE the starts the timer again with cpu.start to time the

duration of the simulation phase of the code. Next the simulation stop time is set.

Then the optimum time set is calculated and set. Then the while loop for the main

simulation begins. In pseudo-code, the while loop looks like:

while (need another step) {

zs.evolve(...)

save data

save checkpoint

write feedback to std out

}

First zs.evolve is called which is the main function in the simulation loop which

will be described in more detail. It coordinates the split-step time evolution of the

system of equations to be solved. As this is quite complicated, it might prove useful

to reference Fig. 2.2 that illustrates the control flow.

The ZakharovSolver instance zs’s method zs.evolve() calls the following:

zs.advanceLight

zs.advanceLW_fd

zs.advanceLW_fft

zs.advanceNelfAndDivV_fd

zs.advanceNelfAndDivV_fft

We see that zs.evolve function is split into five main functions (listed above): The

second and third are not required in the current context (CBET calculations). The

29

Figure 2.2: The lpse.simulate code flowchart for LightSolver physics module

EM equations are advanced in time by advanceLight, while the last two methods

evolve the IAW equations. We only need to describe the advanceLight function.

With reference to Fig. 2.2, observe that advanceLight calls the function computeFields

which gives the ability to solve Eq. (2.13) using different numerical algorithms. The

desired function here is computeDynamicE0. The computeDynamicE0 method solves

the EM wave equations using a finite-difference method that is described in Myatt

et al. [19]. As shown in Fig. 2.2, computeDynamicEO calls the ws.evolve method.

The ws.evolve function the calls step all (which is a wrapper for step 3d). This

advances the finite-difference equation for Eq. (2.13) over one time step, absent any

incident light sources. A subsequent call to the addInjectorSources method (see

Listing) adds the correction required to inject the plane waves described by the pw

array. It accomplishes this using the previously computed wave injectors. They con-

tain the required corrections together with the grid indices (i, j, and k) where the

correction needs to be applied (see Listing 2.5).

Listing 2.5: A skeleton describing the content of addInjectorSources.cpp
void Schrod inge rSo lve r3 : : add In j e c to rSource s (const float time , const float dt ,

const bool updateImaginaryPart)
{

if (nWaveInjectors == 0) return ;

const float Cdt= dt/Cgroup ;

// This function is called twice per step_*d() loop. The first time ,

// updateImaginaryPart is true , the second its false.

//

30

XcComplex3 ∗Eo= Eo f i e l d () ;

for (int wiid=0; wiid<nWaveInjectors ; wi id++) {

WaveInjector t &wi= waveIn jec tor [wi id] ;
XcComplex3 s r c ; // zero

switch (in ject ionMethod) {
case NoBandwidth :
{

s r c= wi . s r c [0] ; // 1 sample exists

} break ;
// other cases suppressed

// ...

} // end switch

const unsigned i j k= wi . index ; // injector knows its grid index

XcComplex3 dEo= Cdt∗ s r c ; // modification to E-field due to

// sources

if (updateImaginaryPart) {
Eo [i j k]= XcComplex3 (Eo [i j k] . r e a l () , Eo [i j k] . imag () + dEo . r e a l ()) ;

} else {
Eo [i j k]= XcComplex3 (Eo [i j k] . r e a l () − dEo . imag () , Eo [i j k] . imag ()) ;

}

} // endfor (wiid)

//

} // end addInjectorSources ()

Finally, the time step is incremented and checks to see if a exit signal is flagged to

exit the loop. If not, then the data is saved and there is then feedback in the terminal

and loops back. Once the simulation is over cpu.stop is called and the simulation

time is calculated and output to the terminal.

2.3.3 The lpse.finalize method

The lpse.finalize part of the LPSE code saves the data and cleans up the simula-

tion. First the code saves the last frame which can be used to restart the simulation

if an error happened or a later continuation of the run is required. This is also done

by saving the last checkpoint. After saving these parameters the job metrics are

printed out, which would be the simulation start up, time the simulation run time,

data saved, and more. Then all the files that were opened in the initialization part

of the code are then closed and the heap is cleaned up.

The method lpse.finalize does (roughly)

31

save last frame

save checkpoint

print job metrics

close files and clean up the heap

32

References

[1] W. L. Kruer, “The Physics of Laser Plasma Interactions,” in, ser. Frontiers in
Physics, D. Pines (Ed.) Vol. 73, Redwood City, CA: Addison-Wesley, 1988.

[2] J. Myatt, J. Shaw, R. Follett, D. Edgell, D. Froula, J. Palastro, and V. Gon-
charov, “Lpse: A 3-d wave-based model of cross-beam energy transfer in laser-
irradiated plasmas,” Journal of Computational Physics, vol. 399, p. 108 916,
Sep. 2019. doi: 10.1016/j.jcp.2019.108916.

[11] R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On the dominant
and subdominant behavior of stimulated Raman and Brillouin scattering driven
by nonuniform laser beams,” Phys. Plasmas, vol. 5, pp. 4337–4356, 1998. doi:
10.1063/1.873171.

[12] R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro,
“Thresholds of absolute two-plasmon-decay and stimulated raman scattering
instabilities driven by multiple broadband lasers,” Physics of Plasmas, vol. 28,
no. 3, p. 032 103, 2021. doi: 10.1063/5.0037869. eprint: https://doi.org/10.
1063/5.0037869. [Online]. Available: https://doi.org/10.1063/5.0037869.

[13] J. F. Myatt, H. X. Vu, D. F. DuBois, D. A. Russell, J. Zhang, R. W. Short, and
A. V. Maximov, “Mitigation of two-plasmon decay in direct-drive inertial con-
finement fusion through the manipulation of ion-acoustic and Langmuir wave
damping,” Phys. Plasmas, vol. 20, p. 052 705, 2013. doi: 10.1063/1.4807036.

[14] S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression
laser-fusion experiments,” Phys. Plasmas, vol. 6, no. 5, pp. 2157–2163, 1999.
doi: 10.1063/1.873501.

[15] J. W. Bates, J. F. Myatt, J. G. Shaw, R. K. Follett, J. L. Weaver, R. H. Lehm-
berg, and S. P. Obenschain, “Mitigation of cross-beam energy transfer in inertial-
confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E,
vol. 97, 061202(R), 2018. doi: 10.1103/PhysRevE.97.061202.

[16] T. H. Stix, Waves in Plasmas, 2nd. New York: Springer-Verlag New York, Inc.,
1992.

[17] D. R. Nicholson, “Chapter 7: Fluid equations,” in Introduction to plasma theory.
Krieger Pub. Co., 1992, pp. 129–132.

[18] B. Stroustrup, “A history of c++: 1979–1991,” in History of Programming
Languages—II. New York, NY, USA: Association for Computing Machinery,
1996, pp. 699–769, isbn: 0201895021. [Online]. Available: https://doi.org/10.
1145/234286.1057836.

[19] J. F. Myatt, R. K. Follett, J. G. Shaw, D. H. Edgell, D. H. Froula, I. V. Igu-
menschev, and V. N. Goncharov, “A wave-based model of cross-beam energy
transfer in direct-drive inertial confinement fusion,” Phys. Plasmas, vol. 24,
p. 056 308, 2017. doi: 10.1063/1.4982959.

33

https://doi.org/10.1016/j.jcp.2019.108916
https://doi.org/10.1063/1.873171
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/1.4807036
https://doi.org/10.1063/1.873501
https://doi.org/10.1103/PhysRevE.97.061202
https://doi.org/10.1145/234286.1057836
https://doi.org/10.1145/234286.1057836
https://doi.org/10.1063/1.4982959

Chapter 3

Implementation of orbital angular
momentum boundary conditions in
LPSE

3.1 Introduction

In general we envisage a wide variety of potential boundary schemes. One considera-

tion, that we ignore for now, is that beam spots are matched to the target size, which

is of the order of ∼ 1mm. To improve the uniformity of irradiation of the target, laser

beams first pass through an optical element that introduces randomized phase shifts

on the beam wavefront. This gives rise to a speckled beam that is that is uniform

when averaged over the short scale associated with the speckles. Fig. 3.2 shows an

LPSE simulation of two such beams incident on an inhomogeneous plasma similar to

that shown in Fig. 3.1.

The speckles are associated with intensities that are several times that of the

average. Much can be learned about CBET and the effect of OAM on CBET by

considering CBET between these speckles. This has two benefits: first, simulations

can be performed in smaller plasma volumes, and secondly we can take advantage of

known analytic formulas that approximately describes such speckles. The ability to

use smaller simulations is important, as OAM studies must be performed in 3D. The

analytical formulas are those corresponding to the Gaussian beam solutions to the

34

Figure 3.1: Results of a 2-D LPSE simulation that shows: (a) the intensity of two
speckled laser beams entering from the left and upper boundaries. The speckles refract
and are absorbed in a plasma density profile (not shown) that decreases radially from
the center of the red circle (indicating the overdense region). Sub figures (b) and
(c) are magnified regions, indicated by white boxes, of the original (80µm × 80µm)
computational domain.

paraxial EM wave equation, In the next section we describe these solutions, giving

the analytic formulas in Sec 3.3 we describe how the knowledge of these formulas can

be used to inject these beams from any simulation boundary in LPSE. Section 3.4

details the implementation details.

3.2 Gaussian beam solutions

The paraxial wave equation is an approximation equation. obtained from Eq. (2.13)

for solutions that are beam-like. This permits the envelope approximation to be

made in space. In other words, the temporal envelope E defined in sec. 2.2 is further

decomposed as E ′(x, t) = E(x, t)eikox where ko

|ko| is the direction of propagation of

the beam. As with temporal enveloping, the spatial dependence of the envelope is

35

considered weak in comparison with the phase factor.

Applying the envelope approximation and expanding the operators in equation

(2.16) results in :

(︃
∂2E

∂x2
+

∂2E

∂y2
+

∂2E

∂z2
+ 2ik0

∂E

∂z
− k2

0E

)︃
+

ω2
0

c2
ϵ(ω0)E = 0, (3.1)

Since ∂2E
∂z2

≪ ∂2E
∂x2 ,

∂2E
∂y2

this becomes:

(︃
∂2E

∂x2
+

∂2E

∂y2
+ 2ik0

∂E

∂z
− k2

0E

)︃
+

ω2
0

c2
ϵ(ω0)E = 0, (3.2)

For a plasma of constant (uniform) density and no collisional absorption (νei = 0),

Eq. (3.2) becomes:

2ik0
∂

∂z
E+∇2

⊥E+
ω2
0

c2
[ϵ(ω0)− 1]E = 0, (3.3)

Where we have defined ∂2E
∂x2 + ∂2E

∂y2
≡ ∇2

⊥E.

The fundamental Gaussian solution is obtained for Eq. (3.3) using standard meth-

ods and with the assumption of cylindrical symmetry around the z-axis defining the

direction of propagation. The solution for plane polarization in the x direction, is:

E(r, z) = x̂E0
w0

w(z)
exp

[︃
−i

(︃
kz − tan−1

(︃
z

zo

)︃)︃]︃
× (3.4)

exp

[︃
−i

k

2R(z)
r2
]︃
exp

[︃
− r2

w(z)2

]︃
, (3.5)

where we have r2 = x2 + y2, and the following definitions have been made:

w(z) = w0

√︄
1 +

(︃
z

z0

)︃2

, (3.6)

R(z) = z

[︃
1 +

(︂z0
z

)︂2]︃
. (3.7)

The quantity z0 = w2
0π/λ is the Rayleigh length (shown as zR in Fig. 3.2), and wo is

the beam waist parameter.

36

Figure 3.2: Illustration of the Gaussian beam parameters of waist w0, width w(z),
and Rayleigh length zR; the radius of curvature is not shown.

We can use Cartesian coordinates and apply the method of separation of variables

to find further solutions that are not cylindrically symmetric. It is straightforward,

but tedious so we do not reproduce it here. This results in the Hermite-Gauss (HG)

modes:

Em,n(x, y, z) = E0
w0

w(z)
Hm

(︄√
2x

w(z)

)︄
Hn

(︄√
2y

w(z)

)︄

× exp{−i[kz − (1 +m+ n)ϕ]} exp
[︃
−i

k(x2 + y2)

2R(z)

]︃
exp

[︃
−(x2 + y2)

w2(z)

]︃
x̂ (3.8)

where the Hm(x) are the Hermite Polynomials [20], and ϕ = tan−1(z
zR
). The Hermite

polynomials can be computed using the Rodrigues formula [20]:

Hm(x) = (−1)m exp(x2)
dm

dxm
exp (−x2). (3.9)

The first few are: H0 = 1, H1 = 2x, and H2 = 2(2x2 − 1). In the above solution

for E [Eq. (3.8)], notice that the polynomials, in each direction, are multiplied by a

Gaussian factor [e.g, Hm(x) exp(−x2) in the x direction]. Fig. 3.3 illustrates the first

five of these Hermite-Gauss factors (m = 1, 2, .., 5). Notice also that the polarization

of the HG beam solution given in Eq. (3.8) is arbitrarily given in the x direction

(x̂). Solutions can be plane polarized or elliptically polarized in the transverse plane.

Unlike the case of non-paraxial beam solutions the polarization and spatial beam

37

Figure 3.3: Lineouts of the first five Hermite-Gauss functions n = 0− 4 (see text for
details)

profile are independent (separable). The transverse to z electric field distribution can

be investigated by plotting the function

Hn(
√
2x)Hm(

√
2y) exp−(x2 + y2) (3.10)

as the distribution is invariant in z (i.e., under propagation) except for a scaling. –

In the above, the coordinates x and y have been normalized to the beam waist w.

Eq. (3.10) is plotted for various values of m and n in Fig. 3.4. The absolute value of

the distribution [Eq. (3.10)] is shown in Fig. 3.5. Notice that the number of nodes in

each coordinate direction is given by the mode number (m and n).

If we had used polar coordinates (r, θ) for the transverse plane instead of Cartesian,

we would have found solutions to Eq. (3.3) of the following Laguerre-Gauss (LG) form:

E⃗p,l(r, θ, z) = E0
w0

w(z)

(︄√
2r

w(z)

)︄|l|

L|l|
p

(︃
2r2

w2(z)

)︃
× exp{−i[±lθ − (1 + 2p+ |l|)ϕ]} exp

[︃
−i

kr2

2q(z)

]︃
exp

[︃
− r2

w2(z)

]︃
x̂

(3.11)

Here, Ll
p are the associated (generalized) Laguerre polynomials [20], which can be

38

Figure 3.4: A matrix of plots showing the normalized electric field amplitude [the
formula given in Eq. (3.10)] in the x− y plane. The (zero based) row number sets n,
while the column determines the value of m.

39

Figure 3.5: A matrix of plots showing the absolute value of the electric field amplitude
[the modulus of the formula given in Eq. (3.10)] in the x− y plane. The (zero based)
row number sets n, while the column determines the value of m.

40

Figure 3.6: Normalized electric field intensity in the x − y plane for p = 1 and (left
to right) l = −1, 0, and +1.

computed by

Ll
p(x) =

dl

dxl
[Lp+l(x)](−1)l, where Lp =

(−1)n

n!
ex

dp

dxp
(exxp) (3.12)

are the Laguerre polynomials [20]. The number of circular zeros is given by the integer

p, while the number of azimuthal zeros (nodal lines) by the integer l. Some examples

of the associated Laguerre polynomials of low order are:

Ll
0(x) = 1, Ll

1 = l + 1− x, and Ll
2 =

1

2
(l + 1)(l + 2)− (l + 2)x+

1

2
x2. (3.13)

Again, as with the HG solutions, the transverse profile is invariant under propaga-

tion except for a scaling. It can therefore be investigated by examining the function

r|l|L|l|
p (r

2) exp (−i[±lθ]) exp (−r2). (3.14)

Figure 3.6 shows the absolute value this function for p = 1 and l = −1, 0, and 1,

while Fig. 3.7 shows the absolute value for p = 2 and various values of l.

The effect of the azimuthal phase factor, that depends on l, can investigate this by

plotting the real part of Eq. (3.14). This is shown in Fig. 3.8 for p = 2 and l = −2,

−1, 0, 1, and 2. Notice the angular nodal lines.

The following section describes how Eqs. (3.8) and (3.11) can be used to inject

HG and LG beams into an LPSE simulation from any boundary.

41

Figure 3.7: Absolute value of the function given in Eq. (3.14) for p = 2 and (left to
right) l = −2, -1, 0, 1, and 2.

Figure 3.8: The real part of Eq. (3.14) for the value p = 2 and l = −2, −1, 0, 1, and
2.

3.3 Methods and Procedure

Figure 3.10 illustrates the treatment of the boundaries by way of a simple 1-D case.

For illustration, this is a linear EM scattering problem only (i.e., there are no plasma

perturbations δN = δW = 0), (νei = 0; ϵ
(0)
I = 0). A plane EM wave of the form

Ein = êzE0 exp(ik0x), of wavelength λ0 = 0.351µm, is incident from the left and

propagates through a plasma profile n0(x) that is non-zero at x = xl (= −3µm) and

increases linearly [n0(x) = max{0, nc(x − xl)/Ln}, with scale length Ln = 5.25µm].

The scattering source (the EM wave cutoff at ne = nc) is contained within the total

field (TF) region ΩTF = {x | x ∈ [xl, xr]}.The total field region is, in general, chosen

to be large enough to contain all interactions. Both linear and nonlinear, that can

generate scattered waves. In contrast, the scattered field regions. Ωsf , exterior to ΩTF ,

must be regions where the EM wave propagation is linear, such that the superposition

principle is valid. In the scattered field region, the electric field that is computed is

that of outgoing waves only. The difference between the total electric field and the

scattered electric field being just what is incident. For example, the incident wave is

42

(a)

(b) (c)

Figure 3.9: Simple lineouts showing the effect of increasing orbital angular momentum
l for a given radial mode number p.

not seen in the left SF region x ∈ [xL, xl] because here the algorithm solves for the

scattered field only. This is accomplished simply by substituting E → ESF in the

discretized wave equation (in the TF region E → ETF is substituted instead). When

the finite-difference stencil (either for ETF or ESF) straddles the TF–SF boundary

at x = xl, the known form for Ein (above) is used to write the difference equations

entirely in terms of ETF or ESF as appropriate. Therefore a beam can be injected from

a given boundary, using this formula, if its electric field is known in the neighbourhood

of the TF-SF boundary. For example Eqs. (3.8) and (3.11) can be used to inject HG

and LG beams respectively (after a suitable coordinate transform). In Fig. 3.11

The magnitude of the field in the TF region oscillates because of the interference

between the incident wave and the wave reflected from the cutoff. The reflected wave

43

ESF ∼ êzE0 exp(−ik0x) is seen exiting the left SF region. No sources are present from

the right, so all that is seen in the right SF region is an evanescent EM field.

Dirichlet conditions are imposed at the true computational boundary ∂Ωc [=

{xL, xR}], which, by themselves, would result in artificial reflections of the outgoing

waves at ∂Ωc. To prevent these reflections, a perfectly matched layer (PML) absorb-

ing layer is introduced that extends from the boundary ∂Ωc into ΩSF several grid cells

(schematically shown as the green-shaded region labeled “PML” in Fig. (3.10) [21].

We do not describe the implementation of the PML here.

Figure 3.10: The linear 1-D scattering problem of a plane EM wave, incident from
the left (indicated by the blue arrow), on a plasma slab whose density n0(x) increases
linearly from vacuum (at x = xl) to include the wave turning point (solid green line
labeled ne = nc). The problem is solved on Ωc = {(x, t) ∈ [xL, xR]× R+}, where xL,
xR = ±5 µm, respectively. The vertical dashed lines indicate the TF-SF boundaries
and the blue-green shaded regions on the far left and far right indicate the regions
where the PML is applied.

As illustrated in Fig. (3.10) the situation is the same in three dimensions. The

only complication being that in 3D Cartesian grid used by LPSE, six boundaries must

44

be considered.

Figure 3.11: A schematic diagram showing the interior computational domain Ωc,
having the exterior boundary ∂Ωc, where the numerical problem is to be solved. The
domain Ωc is the union of a scattered-field region ΩSF and a total-field region ΩTF,
which share the common total-field/scattered-field boundary ∂ΩTF-SF.

3.4 LPSE Code Modifications for LG/HG Bound-

ary Conditions

This Section describes of the modifications made to the LPSE code to inject LG/HG

laser modes from the boundary using wave injectors. The modifications replicate the

planewave method described earlier. It is implemented for the LG/HG laser modes

by adding a new structure that, depending on the beam type, will have different

parameters, these are set in the framework built for the existing planewave boundary

injection. This required modifications to the lpse.initialize method, described

above in Ch. 3.

In the lpse.initialize method there are a sequence of functions called to. The

main function requiring modification from this sequence is lpse.setupUtilityClasses

45

(seen in the listing of main functions in Ch. 3): The setupUtilityClasses method

calls the setup methods for the ZakharovSolver instance zs, the “laser manager”

class LightSolver instance (laser), and for several others such as physics modules,

synthetic diagnostics and instrumentation. The modifications require changes to be

made to the solver for the EM waves only [Eq. (2.16)]. As shown in Fig. 2.1, the

LightSolver() class requires modification to its setup method.

With reference to Fig. 2.1, the laser.setup method calls laser.readParameters

where the first changes are. The first modification adds the ability to select the

incident light type using an enumerated type ”PlaneWave”, ”LaguerreGauss”, or

“HermiteGauss”. A parameter named the basis which is a string that defines the

matching incident light type. Then the intensity, direction, and polarization among

other things (such as and optional Gaussian envelope shape function and temporal

bandwidth) are defined for each mode type. Additional parameters are needed for

the new modes defined by Eq.(3.11) for the LG mode and Eq. (3.8) for the HG mode.

For the LG mode, the parameters l and p are added and the parameters m and n

for the HG mode. These are the mode orders described above in this chapter. The

modified laser.readParameters method uses the parameter manager instance (pm)

to parse the ASCII input file (<runName>.parms) in order to determine the type of

laser light that is incident on the simulation boundaries.

Listing 3.1: readparameters changes in LightSolver.cpp
void LightSo lve r : : readParameter (const int id , const bool hasMult ip le IDs)
{

. . .
Suppressed code

. . .

// required

beam [id] . i n t e n s i t y= 0 .0 f ;
beam [id] . b a s i s S t r= LightSo lve r : : De f au l tBas i sS t r i ng ; // (JFM 14/ NOV /2018)

beam [id] . b a s i s= PLANEWAVE; // (JFM 31/OCT /2018)

// optional

beam [id] . phase= 0 .0 f ;
beam [id] . p o l a r i z a t i o n= 0 .0 f ;
. . .

Suppressed code
. . .

// for evolution only

beam [id] . o f f s e t= Zero3D ; // microns

beam [id] . beamWidth= 0 .0 f ; // microns

46

beam [id] . r i seTime= 30 .0 f ; // fs

beam [id] . sgOrder= 2 ;
beam [id] . sourceTag= −1; // derived

// 16/NOV /2018 JFM: for LgBeam and HgBeams only ...

beam [id] . f o c a lD i s t an c e= 0 .0 f ; // microns

beam [id] . l= 0 ; // LG OAM

beam [id] . p= 0 ; // LG

beam [id] .m= 0 ; // HG

beam [id] . n= 0 ; // HG

. . .
Suppressed code

. . .
} // end readParameter ()

After laser.readParameters has completed parsing the parameters from the in-

put deck, the laser.initialize method is called. The laser initialize method

calls the wave solver class’ methods ws.createPlanewaveSource and ws.setPlanewave-

Parameters. The changes made here extended the wave solver class’ methods by

adding ws.createLaguerreGaussSources, ws.createHermiteGaussSources, ws.set-

LaguerreGaussSources, and ws.setHermiteGaussSources. These changes allocate

a one dimensional array of structures (structs) of type Planewave t, LaguerreGauss -

t, or HermiteGauss t called pw, lg, or hg respectively. Each element of the different

arrays now represents one beam that can be of three types: plane wave, Laguerre-

Gauss, or Hermite-Gauss. The fields of each element of the arrays are filled in by

ws.setPlanewaveParameters, and the new methods ws.setLaguerreGaussSources,

or ws.setHermiteGaussSources. [This is done by using an intermediate “beams”

array (array of Beams t, LaguerreGauss t, or HermiteGauss t) that was generated

by laser.readParameters and not described here).

Listing 3.2: initialize changes in LightSolver.cpp
void LightSo lve r : : i n i t i a l i z e (void)
{

. . .
Suppressed code

. . .

ws . createPlanewaveSources (nPwBeams , nBeamsToList) ;
ws . createLaguerreGaussSources (nLgBeams , nBeamsToList) ;
ws . createHermiteGaussSources (nHgBeams , nBeamsToList) ;

. . .
Suppressed code

. . .

for (int bn=0; bn<nBeams ; bn++) {

47

const Bas i s ba s i s= beam [bn] . b a s i s ;
const float beamAmp= s q r t f (beam [bn] . i n t e n s i t y / Io) ; // 435

const float beamPhase= beam [bn] . phase ∗ degreesToRadians ; // radians

const float po l a r i z a t i o n= beam [bn] . p o l a r i z a t i o n ; // degrees

. . .
Suppressed code

. . .
const float f o c a lD i s t an c e= beam [bn] . f o c a lD i s t an c e ;
const int lGl= beam [bn] . l ;
const int lGp= beam [bn] . p ;
const int hGm= beam [bn] .m;
const int hGn= beam [bn] . n ;

. . .
Suppressed code

. . .

Schrod inge rSo lve r3 : : GridSide s i d e= Schrod inge rSo lve r3 : : GridSide (sourceTag − 1) ;

switch (b a s i s) // JFM (27/ NOV /2018)

{
case 0 : // PLANE_WAVE

ws . setPlanewaveParameters (s ide , beamDir , beamOff , amplitude ,
beamOmega , beamColor , beamGroup , beamPhase ,
beamWidth , beamRise , sgOrder) ;

if (lpse−>pr in tLeve l 2) { // debugging changes

p r i n t f (" intitialize is calling setPlaneWaveParameters () \n") ;
p r i n t f (" numPlanewaves= %d \n" ,ws . numPlanewaves) ;

}
break ;

case 1 : // LAGUERRE_GAUSS

ws . setLaguerreGaussParameters (s ide , beamDir , beamOff , amplitude ,
beamOmega , beamColor , beamGroup , beamPhase ,
beamWidth , beamRise , f o ca lD i s tance , lGl , lGp) ;

if (lpse−>pr in tLeve l 2) { // debugging changes

p r i n t f (" initialize is calling setLaguerreGaussParameters \n") ;
p r i n t f (" numLaguerreGaussBeams= %d \n" ,ws . numLaguerreGaussBeams) ;

}
break ;

case 2 : // HERMITE_GAUSS

ws . setHermiteGaussParameters (s ide , beamDir , beamOff , amplitude ,
beamOmega , beamColor , beamGroup , beamPhase ,
beamWidth , beamRise , f o ca lD i s tance ,hGm,hGn) ;

if (lpse−>pr in tLeve l 2) { // debugging changes

p r i n t f (" initialize is calling setHermiteGaussParameters \n") ;
p r i n t f (" numHermiteGaussBeams= %d \n" ,ws . numHermiteGaussBeams) ;

}
break ;

} // end switch

} // endif

. . .
Suppressed code

. . .
} // end initialize ()

Once the three arrays have been created, light.setup calls the SchrodingerSolver3

methods ws.computeLightSources which also has modifications for the new beam

types. This step includes creating another one dimensional array (called wi). Each el-

ement of this array represents a “wave injector”. It is struct of type WaveInjector t.

One injector (element of the array) is allocated by computeLightSources for every

48

grid cell (indexed by the integers i, j, and k) that requires correction due to the pres-

ence of a light source incident on the simulation domain. The information required to

correct the finite-difference time step for the electric field on the TF-SF boundary is

stored in the src field. It is computed by addPlanewaveSource, and the new methods

addLaguerreGaussSource, and addHermiteGaussSource. The pseudo code is given

in the code listing below.

Listing 3.3: computeLightSources changes in SchrodingerSolver3.cpp
void Schrod inge rSo lve r3 : : computeLightSources (const float microTimeStep)
{

. . .
Suppressed code

. . .

for (int i=idxLower ; i<=idxUpper ; i++) {
for (int j =0; j<Ny; j++) {

for (int k=0; k<Nz ; k++) {

bool f ound loc= f a l s e ; float minOmega loc= BIG FLOAT, maxOmega loc= 0 .0 f ;

if (hasPlanewaveSources) addPlanewaveSource
(startTime , i , j , k , found loc , minOmega loc , maxOmega loc) ;

if (hasLaguerreGaussSources) addLaguerreGaussSource
(startTime , i , j , k , found loc , minOmega loc , maxOmega loc) ;

if (hasHermiteGaussSources) addHermiteGaussSource
(startTime , i , j , k , found loc , minOmega loc , maxOmega loc) ;

if (ha sSphe r i ca lSource s) addSpher i ca lSource
(startTime , i , j , k , found loc , minOmega loc , maxOmega loc) ;

if (f ound loc) {
#pragma omp critical (updateOmegaAndInjectors_crit)

{
minOmega= min (minOmega , minOmega loc) ;
maxOmega= max(maxOmega , maxOmega loc) ;
n I n j e c t o r s++;

} // critical (updateOmegaAndInjectors_crit)

} // endif

} // endfor k

} // endfor j

} // endfor i

. . .
Suppressed code

. . .
XcString errMsg= NULL; // OK

if (n I n j e c t o r s > 0) {

. . .
Suppressed code

. . .

for (int i=idxLower ; i<=idxUpper ; i++) {
for (int j =0; j<Ny; j++) {

for (int k=0; k<Nz ; k++) {

bool found=f a l s e ; float minOmega= BIG FLOAT, maxOmega= 0 .0 f ;

XcComplex3 s r c ; // zero

if (hasPlanewaveSources) s r c += addPlanewaveSource . . .

49

. . . (startTime , i , j , k , found ,minOmega ,maxOmega) ;
if (hasLaguerreGaussSources) s r c += addLaguerreGaussSource . . .

. . . (startTime , i , j , k , found ,minOmega ,maxOmega) ;
if (hasHermiteGaussSources) s r c += addHermiteGaussSource . . .

. . . (startTime , i , j , k , found ,minOmega ,maxOmega) ;
if (ha sSphe r i ca lSource s) s r c += addSpher ica lSource . . .

. . . (startTime , i , j , k , found ,minOmega ,maxOmega) ;

. . .
Suppressed code

. . .

wi id++;
} // end critical (foundInjectorNode_crit)

} // endif(found)

} // endfor k

} // endfor j

} // endfor i

} // endif (nInjectors >0)

. . .
Suppressed code

. . .
} // end computeLightSources ()

As shown in the Listing for computeLightSources, a loop is performed over every

grid cell and if an injector is required at grid point (i, j, k) the addPlanewaveSource,

addLaguerreGaussSource, or addHermiteGaussSource functions are now is called to

compute the required correction (note that addPlanewaveSource, addLaguerreGaussSource,

or addHermiteGaussSource is also used to test for the presence of the respective in-

jector). This correction is stored in the src field for that particular injector. As each

injector is initialized, the index of the injector array wiid is incremented.

Listing 3.4: Laguerre-Gauss changes in SchrodingerSolver3.cpp
XcComplex3 Schrod inge rSo lve r3 : : addLaguerreGaussSource . . .

. . . (const float time , int i , int j , int k , . . .
. . . bool &found , float &minOmega , float &maxOmega)

{
. . .

Uneditted code
. . .

for (int s i d =0; s id<numLaguerreGaussBeams ; s i d++) {
const LaguerreGauss t &l g= lague r r egau s s [s i d] ; // a reference for speed

// NOTE: is3D implies is2D implies is1D

//

// inject from X min or max

if (is1D) { // or 2D or 3D

if (i n j e c t I n s i d eY && in j e c t I n s i d eZ) {

if (l g . s i d e == SIDE X MIN) {
//

if (i == i n j e c t m i n i) {
// need to see what Koff represents here -->

50

XcFloat3 Koff= l g . Koff ; Koff . x= float (i n j e c t m i n i)/ float (Nx1) ;
XcFloat3 Kdir= lg . Kdir ;

// NOTE: is3D implies is2D implies is1D

const float x= (is1D) ? (float (i)/ float (Nx1) − Koff . x)∗ g r i dS i z e . x : 0 . 0 f ;
const float y= (is2D) ? (float (j)/ float (Ny1) − Koff . y)∗ g r i dS i z e . y : 0 . 0 f ;
const float z= (is3D) ? (float (k)/ float (Nz1) − Koff . z)∗ g r i dS i z e . z : 0 . 0 f ;

const XcFloat3 eu= UNIT3D(l g . ampl) ;
const XcFloat3 gu= CROSS3D(Kdir , eu) ;
const XcFloat3 Rvec= XcFloat3 (0 , y , z) ;

const XcFloat3 Rperp= DOT3D(eu , Rvec)∗ eu + DOT3D(gu , Rvec)∗ gu ;

const XcFloat3 Rm1((x − h xyz) , y , z) ;
const XcFloat3 R0((x) , y , z) ;
const XcFloat3 Rp1 ((x + h xyz) , y , z) ;

const float Ko i jk= Ko(i , j , k) ;

const float KdotRm1= DOT3D(Ko i jk ∗Kdir ,Rm1) ;
const float KdotR0= DOT3D(Ko i jk ∗Kdir ,R0) ;
const float KdotRp1= DOT3D(Ko i jk ∗Kdir , Rp1) ;

const float weight= superGauss ian (Rperp , l g)/ EoScale (i , j , k) ;

//

const float beamWidth = lg . sd2 ;
const float zr = M PI∗beamWidth /0 . 3 51 ; // rayleigh range

const float beamWidth2 = lg . sd2 ;
const float RperpW = ((2 . 0 f ∗DOT3D(Rperp , Rperp)) / (beamWidth2)) ;
const XcComplex I (0 . 0 f , 1 . 0 f) ; // complex for the phase term

const float weightH = weight ∗ laguerreMode . . .
. . . (RperpW, l g . l , l g . p)∗ powf (s q r t f (RperpW) , f a b s f (l g . l)) ;
// readjusted weighting for the LG modes

// The weighted waves phase terms adjusted

const XcComplex3 wPwsM1= weightH∗planewaveSource . . .
. . . (KdotRm1 , time , l g)∗ exp (I ∗(−1.0 f ∗float (l g . l)∗ atan2f (Rperp . z , Rperp . y))) ;

const XcComplex3 wPwsR0= weightH∗planewaveSource . . .
. . . (KdotR0 , time , l g)∗ exp (I ∗(−1.0 f ∗float (l g . l)∗ atan2f (Rperp . z , Rperp . y))) ;

const XcComplex3 wPwsP1= weightH∗planewaveSource . . .
. . . (KdotRp1 , time , l g)∗ exp (I ∗(−1.0 f ∗float (l g . l)∗ atan2f (Rperp . z , Rperp . y))) ;

XcComplex3 s ;

s . x= (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . y)∗wPwsP1 . y
+ (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . z)∗wPwsP1 . z
− sqr (h xyz∗Ko i jk ∗Kdir . x)∗wPwsR0 . x ;

// JFM (20/ NOV /2018) dominant terms are at i minus 1 and are added. i.e.,

// add the incident wave on the SF side to get TF update at i,j,k (since i,j,k

// is on the TF side).

s . y= wPwsM1. y + (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . y)∗wPwsP1 . x
− sqr (h xyz∗Ko i jk ∗Kdir . y)∗wPwsR0 . y
− (sqr (h xyz∗Ko i jk)∗Kdir . y∗Kdir . z)∗wPwsR0 . z ;

s . z= wPwsM1. z + (0 . 5 f ∗ I ∗h xyz∗Ko i jk ∗Kdir . z)∗wPwsP1 . x
− sqr (h xyz∗Ko i jk ∗Kdir . z)∗wPwsR0 . z
− (sqr (h xyz∗Ko i jk)∗Kdir . z∗Kdir . y)∗wPwsR0 . y ;

b += s ;
found= true ;

} // endif inject_min_i

if (i == in j e c t m i n i −1) { // JFM i.e., we are on the SF side

51

. . .
Suppressed code

. . .
} // end addLaguerreGaussSource ()

The addLaguerreGaussSource function (see Listing) uses the previously defined

lg array to compute the local correction (at grid index i, j, k). This function is called

for every grid cell in the simulation. It sets the bool variable found to false if

no injector is required because of the location of the grid point. It loops over every

element in the lg array. If it finds at least one LG mode on a given boundary, then the

src is computed by evaluating the factors that appear in Eq. (3.11). Evaluation of

each factor requires knowledge of the wave vector and other properties that are fields

of each LaguerreGauss t struct (see Listing for addLaguerreGaussSource). This

evaluation reuses the existing planewave function (planewaveSource) to compute

exp(ik ·x), but a new function has been written to evaluate the generalized Laguerre

polynomials (LaguerreMode; see listing). This procedure repeats for the minimum

and maximum coordinates boundaries for all dimensions x, y,and z depending.

Listing 3.5: Laguerre-Gauss changes in SchrodingerSolver3.cpp
i n l i n e float Schrod ingerSo lve r3 : : laguerreMode (float rho , const int l , const int p)
{

float rho2 = sqr (rho) ;
float rho3 = rho2∗ rho ;
float tmp= 0 . 0 ;
int l ab s = f a b s f (l) ;
float l f = float (l ab s) ;

switch (p) { // First 4 polynomials are hard coded (BA 5/JUNE /2019)

case 0 :
tmp= 1 .0 f ; // L_0

break ;

case 1 :
tmp= 1 .0 f+l f −rho ; // L_1

break ;

case 2 :
tmp= 0 .5 f ∗ ((1 . 0 f+l f)∗ (2 . 0 f+l f)−2.0 f ∗ (2 . 0 f+l f)∗ rho+rho2) ; // L_2

break ;

case 3 :
tmp= (1 . 0 f /6 .0 f)∗ ((l f +3.0 f)∗ (l f +2.0 f)∗ (l f +1.0 f)−3.0 f ∗ . . .

. . . (l f +3.0 f)∗ (l f +2.0 f)∗ rho+3.0 f ∗(l f +3.0 f)∗ rho2−rho3) ; // L_3

break ;
} // end switch

return tmp ;
} // end laguerreGaussMode ()

52

The same has been done for the HG modes where addHermiteGaussSource is now

the function name. The incident light is computed by accumulating the contribution

of each plane wave with the modifications to the plane wave with the terms needed for

the HGmode (i.e., the Hermite polynomials are evaluated by ‘hermiteMode’). Various

“housekeeping” functions were added that manage the memory that is required by the

new additions but we do not describe them here. This completes the LightSolver

initialization and the modifications for the lpse.initialize method of lpse. As

the existing infrastructure is reused, no changes are required beyond the initialization

stage.

53

References

[20] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. New York: Dover Publications,
1961.

[21] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic
waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, 1994,
issn: 0021-9991. doi: https://doi.org/10.1006/jcph.1994.1159. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0021999184711594.

54

https://doi.org/https://doi.org/10.1006/jcph.1994.1159
https://www.sciencedirect.com/science/article/pii/S0021999184711594

Chapter 4

Simulation of OAM beams and the
implementation of angular
momentum diagnostics.

4.1 Introduction

The operation of the new code is illustrated by several different cases, chosen in

both two and three spatial dimensions. For the 2-D case we compute the angular

momentum density and the total angular momentum of the electromagnetic field.

The density of angular momentum ρJ (i.e., the angular momentum per unit volume)

of an EM field is given by

ρJ(x) = x̂×
(︃
E×B

4π

)︃
. (4.1)

Hence, the total angular momentum J is then given by integration:

J =

∫︂
dx x̂×

(︃
E×B

4π

)︃
. (4.2)

To investigate the value of these quantities in the simulations, several MATLAB

scripts have been written. Note that we may identify the quantity S = (E ×B)/4π

as the Poynting flux. As such, it is convenient to first compute S(x, t) from the

simulation data; then ρJ and J (or any component thereof) can be computed for any

choice of coordinate origin (Sec. 4.2).

55

There are two types of orbital momentum associated with light waves: spin angular

momentum (SAM) and orbital angular momentum (OAM). In Eqs. (4.1) and (4.2),

these two components are combined. However, spin angular momentum is related to

the optical polarization of light, e.g. circular polarization corresponds to ±ℏ angular

momentum per photon. Circular polarization is when the magnitude of the light

wave is constant as its electric field vector rotates around the lights propagation axis

transversely. Orbital angular momentum is the component of angular momentum of

light that depends of the field spatial structure distribution instead of the polarization.

Beams with a phase factor eilθ have a well-defined orbital angular momentum, [e.g.

our LG beams defined by Eq.(3.11)]. For such beams, the ratio of angular momentum

flux to energy flux is l/ω. Since the energy of a photon is ℏω, each photon carries ℏl

angular momentum.

An additional complication, that arises when investigating light beams carrying

OAM is that the OAM may be either “internal” or “external”. The distinction is

merely due to a choice of origin, for example, a beam having no internal OAM would

still have angular momentum if the coordinate origin [used to compute ρJ or J using

Eqs. (4.1) and (4.2), respectively] were not chosen to fall on the beam axis. Above

considerations should be kept in mind as we analyze the simulation data shown in

Sec. 4.2 and Sec. 4.3 below.

4.2 Computation of the Poynting flux from the

time-enveloped Maxwell equations

If the dielectric function in Eq. (2.17), describing the propagation of EM waves, is real

(i.e., no dissipation), a conservation law can be obtained from the time enveloped wave

equation [Eq.(2.16)]. This is achieved by taking the dot product of Eq. (2.16) with

E∗ and taking the difference with the equation obtained by taking the dot product

of the conjugate of Eq. (2.16) with E. This results in the conservation law for the

energy density WE ≡ |E|2/(8π):

56

∂

∂t
WE +∇ · S = 0, (4.3)

where, in index notation, the Poynting vector S is given by

Sj ≡ −i
c2

16πω0

(︃
E∗

i

∂Ei

∂xj

− Ei
∂E∗

i

∂xj

− E∗
j

∂Ei

∂xi

+ Ej
∂E∗

i

∂xi

)︃
, (4.4)

=
1

8π

c2

ω0

ℑm
{︃
E∗

i

∂Ei

∂xj

+ Ej
∂E∗

i

∂xi

}︃
. (4.5)

The expression for S can be used to evaluate the power flowing though the simulation

boundaries. In addition to the angular momentum J and angular momentum density

ρJ , as described above (Sec. 4.1).

4.3 Results in two dimensions.

As the Hermite-Gauss beams are defined in a coordinate system, they can be simu-

lated in a two-dimensional LPSE simulation. Figure 4.1 shows a plot of the electric

field intensity from such a simulation, at a time t = 2 ps after the beams, injected

from the boundaries, have been turned on. A fundamental Gaussian beam propa-

gates from the left boundary to the right and a Hermite Gaussian mode beam of

order 4 propagates from the bottom to the top, having being injected from the lower

boundary. Initially, the fundamental Gaussian beam has its centroid at the location

x = 4 µm and it propagates in the y-direction. The beam is seen to curve in the

downward direction as it propagates. This is because of refraction: the plasma den-

sity n0 has a linear variation in the x (but no variation in y). Its gradient is in the

positive x direction. The HG beam has its centroid at y = 0. The four nodes are

evident and can be compared with Fig. 3.4. Both the fundamental Gaussian and

the HG beam are polarized in a direction that points out the simulation plane. As

a result, the beams interfere. This interference is evident in the figure below. It can

57

also be seen that the intensity of the fundamental Gaussian beam is higher as it exits

the right boundary (x = 0) compared with the injected intensity (left boundary).

This is because energy has been exchanged from the HG beam due to the CBET

mechanism. As the motivation for the code development described in this thesis was

primarily to investigate the impact of OAM on such energy exchanges, we apply the

diagnostics described in Sec. 4.1 and 4.2 to these results.

Figure 4.1: In the case shown, a Gaussian laser beam is seen to cross a Hermite-Gauss
(HG) beam (order 4). The colour bar indicates laser intensity in arbitrary units.

Figure 4.2 shows the plot from Fig. 4.1 (on the left) together with a zoom of the

58

crossing region (white box) on the left. The color bars on the zoomed plot indicate

the magnitude of the Poynting flux that has been computed using Eq. (4.5). The

direction of the Poynting flux is indicated by the small black arrows.

Figure 4.2: The direction (arrows) and magnitude (colour bar) of the Poynting flux,
in W/cm2, gives a physical picture of the transfer of linear momentum density.

Figure 4.3 shows a zoom of a different spatial region of the simulation (white box)

where the laser intensity is lower and the contribution from the fundamental Gaussian

beam is negligible at the lower region x ≲ 3 µm. The contribution from the HG beam

starts to be felt for x ≳ 4 µm and the direction of the Poynting flux can be seen to

rotate from the vertical direction to the right.

Knowledge of the Poynting flux (linear momentum density) now permits the an-

gular momentum density ρJ to be computed. The Poynting flux, shown in Fig. 4.2

and 4.3 has been processed using Eq. (4.2), where the origin is as simulated.

Figure 4.4 shows ρJz (the angular momentum density) in the z-direction at time

t = 10 ps. The figure can be understood by first considering the beam at the left

(y = −20 µm) boundary: The yellow colour indicates a positive value because the

Poynting flux is in the y-direction, and the x-coordinate values are positive. The

59

Figure 4.3: The momentum of light is proportional to the Poynting flux (shown on
the right)

sense of rotation, imparted about the origin, is therefore in the clockwise (positive)

direction. The opposite is true for the parts of the beam having a negative x value.

As the fundamental Gaussian beam was injected with its centroid located at positive

x (x = 4 µm), the beam will contain extrinsic OAM, while the HG beam will not.

This can be seen more clearly when examining the total angular momentum in the z

direction (Jz).

Figure 4.5 shows the increasing orbital angular momentum Jz that has been com-

puted as a function of time from the angular momentum density ρJz . A snapshot of

ρJz is shown for time t = 10 ps in Fig. 4.4. Notice that the angular momentum is

initially positive due to the extrinsic angular momentum of the Gaussian beam. It

increases in time and then saturates at a higher positive value. The increase is due

to a combination of refraction in the linear density profile and angular momentum

exchange from the HG beam. This is a good illustration of the type of effects that

can now be studied as a result of the code development work described in this thesis.

60

Figure 4.4: The angular momentum density in the z direction ρJz at time t = 10 ps
(in arbitrary units).

Figure 4.5: The total angular momentum (in the z direction) as a function of time,
for the simulation, as computed by Eq. (4.4) in arbitrary units.

61

4.4 3-D simulation results of crossing LG beams

Testing the implementations of LG beams requires that simulations be performed in

three dimensions. A number of such simulations were performed and some examples

of which are shown here.

Figure 4.6 shows five snapshots (taken at the same fixed time) of a simulation

in which two LG beams cross. One LG beam (of order p = 0, l = −1) enters the

simulation boundary from the minimum y boundary, propagating in the y-direction.

Such a beam carries −ℏ orbital angular momentum per photon in its direction of

propagation. A second LG beam (p = 0, l = +1) enters from the minimum x bound-

ary. Both beams are linearly polarized in the z-direction and contain no spin angular

momentum.

The individual sub-figures in Fig. 4.6 shows slices of the real electric field am-

plitudes on three planes: one plane taken at constant x, one at constant y, and the

other at constant z. In moving sequentially from Fig. 4.6a to Fig. 4.6e the planes

at constant x and y advance in their respective (positive) coordinate directions. In

doing so, it is evident from the figures that the two lobes of each beam (cf. e.g., Fig.

3.8) rotate about their respective axis’ on propagation.

Figure 4.7 shows the same simulation, but the electric field intensity is plotted

instead of the real amplitude (cf. e.g, Fig. 3.7). Notice the donut-like structure of

the intensity pattern as is consistent with the radial mode number p = 0. In this

simulation, energy is exchanged from the LG0,1 beam to the LG0,−1 beam via the

CBET mechanism. Note that the intensity of the LG0,−1 beam is initially one half

that of the LG0,1 beam. This is most easily seen in Fig. 4.8 which shows iso-surface

contours of the electric field intensity before and after CBET has occured (Fig. 4.8a

and Fig. 4.8b, respectively). The helical structure of the OAM carrying beams are

very evident in the figure.

The results presented here highlight some of the rich physical processes that can

62

(a) (b)

(c) (d)

(e)

Figure 4.6: Two crossing beams spiral as they propagate due to their orbital angular
momentum. The real amplitude of the Ez electric field is shown. [both beams are
plane polarized in the z direction (no SAM)].

now be studied, and evaluated, as a result of the work described in this thesis.

63

(a)

(b)
(c)

Figure 4.7: A transfer of energy is observed between the crossing beams shown in
Fig. 4.6. Energy is exchanged from the more intense beam LG0,1 to the weaker beam
LG0,−1.

(a)
(b)

Figure 4.8: Iso-surface of the electric field intensity for crossing beams. Before (a)
and after (b) cross-beam energy transfer has occured.

64

Chapter 5

Conclusions & Future Work

5.1 Conclusions

As the human race advances in technology and knowledge, the requirement of energy

increases to feed the advancement. With this increase of energy consumption comes

the consequence of an evolving society. Thus the pursuit to solve this dilemma without

stopping the advancements of society is the main problem at hand for this and coming

generations. There are already multiple avenues being worked on, however nuclear

energy seems to be most promising.

In the nuclear fusion category there is two major subcategories being researched:

fission and fusion. Fission has its drawbacks like nuclear power plants reactor going

critical and exploding, damage to the plant and the surrounding environment can

be serious and long lasting, and produce nuclear waste that needs to be handled

appropriately due to its radioactive nature. Thus leaving us with fusion energy.

In the nuclear fusion category there is two major subcategories being researched:

magnetic confinement fusion and inertial confinement fusion (ICF). In ICF, The most

researched approach uses lasers to confine and compress the fuel to get to conditions

required for the nuclear fusion reaction to overcome the Coulomb force causing the

fuel to ignite and burn. The plasma can also cause the laser energy to be poorly

absorbed by the fuel capsule in both methods due to instabilities of the plasma that

occur due to high intensity of the laser light. There are two main instabilities of

65

concern: Stimulated Raman Scattering (SRS) and Stimulated Brillouin Scattering

(SBS). Cross-beam energy transfer (CBET) is a special case of SBS that occurs when

multiple EM waves (e.g. laser beam) of overlap in a plasma. As a result, its proposed

to modify the spatial, rather than temporal, structure of the laser beam.

Schemes to implement laser temporal structure wide enough to mitigate laser-

plasma instabilities will be both intrusive and expensive. As an alternate approach,

work is presented that investigates the mitigating effects of spatial, rather than tem-

poral, laser beam conditioning on cross-beam energy transfer (CBET). Such condi-

tioning might be generated by phase plates alone and could therefore be implemented

more easily. We have quantified the energy exchange occurring between crossing laser

beams that possess orbital angular momentum (OAM) as the amount of OAM ex-

change between the beams is varied. This work enables studies to be performed in

3-D using the non-paraxial wave-based LPSE simulation code. It required significant

modifications to the code to allow for the beams with OAM. The modifications re-

quired changes to the boundary conditions and the total field scattered field to be

implemented successfully.

The modifications that were made to the LPSE code was to inject OAM laser

modes from the boundary using wave injectors. The modifications replicated the

planewave method described earlier. It is implemented for the LG/HG laser modes,

which can carry OAM, by adding a new structure that, depending on the beam type,

will have different parameters. These are set in the framework built for the existing

planewave boundary injection.

The results show that the modifications made to the code gave the expected spatial

structures when comparing with already known solutions for the LG/HG laser modes.

Also seen was the helical structure of the OAM carrying beams in the iso-surface figure

(Fig. 4.8). The results presented here highlight some of the rich physical processes

that can be studied, and evaluated, as a result of the work described in this thesis.

66

5.2 Future Work

Future work for work done in this thesis would be using the newly implemented

boundary wave injectors and diagnostics to investigate the potential for mitigation

using OAM for cross beam energy transfer (CBET), stimulated Brillouin scattering

(SBS), two-plasmon decay (TPD), stimulated Raman scattering (SRS), and any other

nonlinear plasma effects that affect ICF and can be simulated in the LPSE code.

67

Bibliography

[1] W. L. Kruer, “The Physics of Laser Plasma Interactions,” in, ser. Frontiers in
Physics, D. Pines (Ed.) Vol. 73, Redwood City, CA: Addison-Wesley, 1988.

[2] J. Myatt, J. Shaw, R. Follett, D. Edgell, D. Froula, J. Palastro, and V. Gon-
charov, “Lpse: A 3-d wave-based model of cross-beam energy transfer in laser-
irradiated plasmas,” Journal of Computational Physics, vol. 399, p. 108 916,
Sep. 2019. doi: 10.1016/j.jcp.2019.108916.

[3] W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, “Energy transfer
between crossing laser beams,” Phys. Plasmas, vol. 3, pp. 382–385, 1996. doi:
10.1063/1.871863.

[4] D. H. Edgell, W. Seka, J. A. Delettrez, R. S. Craxton, V. N. Goncharov, I. V.
Igumenshchev, J. F. Myatt, A. V. Maximov, R. W. Short, T. C. Sangster,
and R. E. Bahr, “Cross-beam energy transport in direct-drive implosion exper-
iments,” Bull. Am. Phys. Soc., vol. 54, p. 145, 2009.

[5] I. V. Igumenshchev, D. H. Edgell, V. N. Goncharov, J. A. Delttrez, A. V.
Maximov, J. F. Myatt, W. Seka, and A. Shvydky, “Modeling crossed-beam
energy transfer in implosion experiments on OMEGA,” Bull. Am. Phys. Soc.,
vol. 54, p. 145, 2009.

[6] V. N. Goncharov, T. C. Sangster, R. Betti, T. R. Boehly, M. J. Bonino, T. J. B.
Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, R. Epstein, R. K. Follett,
C. J. Forrest, D. H. Froula, V. Yu. Glebov, D. R. Harding, R. J. Henchen, S. X.
Hu, I. V. Igumenshchev, R. Janezic, J. H. Kelly, T. J. Kessler, T. Z. Kosc,
S. J. Loucks, J. A. Marozas, F. J. Marshall, A. V. Maximov, R. L. McCrory,
P. W. McKenty, D. D. Meyerhofer, D. T. Michel, J. F. Myatt, R. Nora, P. B.
Radha, S. P. Regan, W. Seka, W. T. Shmayda, R. W. Short, A. Shvydky,
S. Skupsky, C. Stoeckl, B. Yaakobi, J. A. Frenje, M. Gatu-Johnson, R. D.
Petrasso, and D. T. Casey, “Improving the hot-spot pressure and demonstrating
ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions
on omega,” Physics of Plasmas, vol. 21, no. 5, p. 056 315, 2014. doi: 10.1063/
1.4876618. eprint: https ://doi .org/10.1063/1.4876618. [Online]. Available:
https://doi.org/10.1063/1.4876618.

[7] A. Longman and R. Fedosejevs, “Mode conversion efficiency to laguerre-gaussian
oam modes using spiral phase optics,” Opt. Express, vol. 25, no. 15, pp. 17 382–
17 392, Jul. 2017. doi: 10.1364/OE.25.017382. [Online]. Available: http://www.
opticsexpress.org/abstract.cfm?URI=oe-25-15-17382.

68

https://doi.org/10.1016/j.jcp.2019.108916
https://doi.org/10.1063/1.871863
https://doi.org/10.1063/1.4876618
https://doi.org/10.1063/1.4876618
https://doi.org/10.1063/1.4876618
https://doi.org/10.1063/1.4876618
https://doi.org/10.1364/OE.25.017382
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-15-17382
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-15-17382

[8] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct
observation of transfer of angular momentum to absorptive particles from a
laser beam with a phase singularity,” Phys. Rev. Lett., vol. 75, pp. 826–829,
5 Jul. 1995. doi: 10 . 1103/PhysRevLett . 75 . 826. [Online]. Available: https :
//link.aps.org/doi/10.1103/PhysRevLett.75.826.

[9] J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. HUANG, Y. Ren, Y.
Yue, S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission
employing orbital angular momentum multiplexing,” Nature Photonics, vol. 6,
pp. 488–496, Jul. 2012. doi: 10.1038/nphoton.2012.138.

[10] A. Longman, “Under-dense laser-plasma interactions in relativistic optical vor-
tices,” pp. 171–175, 2020.

[11] R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On the dominant
and subdominant behavior of stimulated Raman and Brillouin scattering driven
by nonuniform laser beams,” Phys. Plasmas, vol. 5, pp. 4337–4356, 1998. doi:
10.1063/1.873171.

[12] R. K. Follett, J. G. Shaw, J. F. Myatt, H. Wen, D. H. Froula, and J. P. Palastro,
“Thresholds of absolute two-plasmon-decay and stimulated raman scattering
instabilities driven by multiple broadband lasers,” Physics of Plasmas, vol. 28,
no. 3, p. 032 103, 2021. doi: 10.1063/5.0037869. eprint: https://doi.org/10.
1063/5.0037869. [Online]. Available: https://doi.org/10.1063/5.0037869.

[13] J. F. Myatt, H. X. Vu, D. F. DuBois, D. A. Russell, J. Zhang, R. W. Short, and
A. V. Maximov, “Mitigation of two-plasmon decay in direct-drive inertial con-
finement fusion through the manipulation of ion-acoustic and Langmuir wave
damping,” Phys. Plasmas, vol. 20, p. 052 705, 2013. doi: 10.1063/1.4807036.

[14] S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression
laser-fusion experiments,” Phys. Plasmas, vol. 6, no. 5, pp. 2157–2163, 1999.
doi: 10.1063/1.873501.

[15] J. W. Bates, J. F. Myatt, J. G. Shaw, R. K. Follett, J. L. Weaver, R. H. Lehm-
berg, and S. P. Obenschain, “Mitigation of cross-beam energy transfer in inertial-
confinement-fusion plasmas with enhanced laser bandwidth,” Phys. Rev. E,
vol. 97, 061202(R), 2018. doi: 10.1103/PhysRevE.97.061202.

[16] T. H. Stix, Waves in Plasmas, 2nd. New York: Springer-Verlag New York, Inc.,
1992.

[17] D. R. Nicholson, “Chapter 7: Fluid equations,” in Introduction to plasma theory.
Krieger Pub. Co., 1992, pp. 129–132.

[18] B. Stroustrup, “A history of c++: 1979–1991,” in History of Programming
Languages—II. New York, NY, USA: Association for Computing Machinery,
1996, pp. 699–769, isbn: 0201895021. [Online]. Available: https://doi.org/10.
1145/234286.1057836.

69

https://doi.org/10.1103/PhysRevLett.75.826
https://link.aps.org/doi/10.1103/PhysRevLett.75.826
https://link.aps.org/doi/10.1103/PhysRevLett.75.826
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1063/1.873171
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/5.0037869
https://doi.org/10.1063/1.4807036
https://doi.org/10.1063/1.873501
https://doi.org/10.1103/PhysRevE.97.061202
https://doi.org/10.1145/234286.1057836
https://doi.org/10.1145/234286.1057836

[19] J. F. Myatt, R. K. Follett, J. G. Shaw, D. H. Edgell, D. H. Froula, I. V. Igu-
menschev, and V. N. Goncharov, “A wave-based model of cross-beam energy
transfer in direct-drive inertial confinement fusion,” Phys. Plasmas, vol. 24,
p. 056 308, 2017. doi: 10.1063/1.4982959.

[20] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. New York: Dover Publications,
1961.

[21] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic
waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, 1994,
issn: 0021-9991. doi: https://doi.org/10.1006/jcph.1994.1159. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0021999184711594.

70

https://doi.org/10.1063/1.4982959
https://doi.org/https://doi.org/10.1006/jcph.1994.1159
https://www.sciencedirect.com/science/article/pii/S0021999184711594

	Introduction
	Inertial Confinement Fusion using lasers
	Motivation
	Thesis Objectives
	Thesis Outline
	References

	The LPSE laser-plasma simulation code
	Introduction
	Equations solved in the LPSE CBET model
	Outline of the operation of the LPSE code
	The lpse.initialize method
	The lpse.simulate method
	The lpse.finalize method

	References

	Implementation of orbital angular momentum boundary conditions in LPSE
	Introduction
	Gaussian beam solutions
	Methods and Procedure
	LPSE Code Modifications for LG/HG Boundary Conditions
	References

	Simulation of OAM beams and the implementation of angular momentum diagnostics.
	Introduction
	Computation of the Poynting flux from the time-enveloped Maxwell equations
	Results in two dimensions.
	3-D simulation results of crossing LG beams

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

