This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with the permission of Syncrude Canada Ltd.

ENVIRONMENTAL RESEARCH MONOGRAPH 1978-6 A Public Service of **Syncrude** Canada Ltd.

A STUDY OF BIOLOGICAL COLONIZATION OF THE WEST INTERCEPTOR DITCH AND LOWER BEAVER CREEK

P. Tsui, Ph.D., D. Tripp, W. Grant Aquatic Environments Limited

FOREWORD

Syncrude Canada Ltd. is producing synthetic crude oil from a surface mine on the eastern portion of Crown Lease 17, Alberta. Aquatic Environments Limited was commissioned to study the natural recolonization of a water diversion system necessary for the operation of the mine.

Syncrude's Environmental Research Monographs are published verbatim from the final reports of professional environmental consultants. Only proprietary technical or budget-related information is withheld. Because we do not necessarily base our decisions on just one consultant's opinion, recommendations found in the text should not be construed as commitments to action by Syncrude.

Syncrude Canada Ltd. welcomes public and scientific interest in its environmental activities. Please address any questions or comments to Syncrude Environmental Affairs, 10030 - 107 Street, Edmonton, Alberta, T5J 3E5.

A REPORT TO

SYNCRUDE CANADA LTD.

A STUDY OF BIOLOGICAL COLONIZATION OF THE WEST INTERCEPTOR DITCH AND LOWER BEAVER CREEK

By

Philip T.P. Tsui, Ph.D.

Derek Tripp

and

William Grant

AQUATIC ENVIRONMENTS LIMITED

Calgary, Alberta

December, 1977

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
DESCRIPTION OF STUDY AREA	- 2
MATERIALS AND METHODS	12
Sample Collection and Analysis	12
Physical and Chemical Parameters	12
Bacteria (Coliform Analysis)	15
Phytoplankton	19
Zooplankton	20
Benthic Macroinvertebrates	21
Benthic Macroinvertebrate Drift	25
Aquatic Macrophytes	25
Fish	26
Waterfowl and Shorebirds	27
Amphibians	27
RESULTS AND DISCUSSION	28
Water Quality	28
Bacteria	32
Zooplankton	33
Copepoda	36
Cladocera	41
Rotifera	41
Others	41
Phytoplankton	44
Benthic Macroinvertebrates	65

	PAGE
Lower Beaver Creek	65
Species Composition	65
Species Diversity	82
Standing Crop	82
Biological Colonization	82
West Interceptor Ditch	83
Species Composition	83
Species Diversity	91
Standing Crop	96
Biological Colonization	96
Feeder Creeks	102
Species Composition	102
Species Diversity	102
Standing Crop	103
Potential Colonizers	103
Invertebrate Drift	104
Drift Composition	104
Drift Rate and Density	108
Drift Patterns of Certain Taxa	108
Aquatic Macrophytes	116
Species Composition	116
Coverage	116
Fish	127
Waterfowl and Shorebirds	133
Amphibians	135

	PAGE
SUMMARY	 136
LITERATURE CITED	 140

LIST OF TABLES

TABLE		PAGE ·
1.	Physical characteristics of sampling stations on lower Beaver Creek and the West Interceptor Ditch	- 3
2.	Summary of monthly sampling effort at Stations 1-7	- 13
3.	Preservation of water samples	- 16
4.	Methods of chemical analysis	- 17
5.	Water quality data of the lower Beaver Creek and the West Interceptor Ditch	- 29
6.	A comparison of the mean values and ranges of several chemical parameters for water samples from lower Beaver Creek and the West Interceptor Ditch	- 31
7.	Zooplankton collected from the West Interceptor Ditch	- 37
8.	Phytoplankton of the West Interceptor Ditch	- 45
9.	Benthic macroinvertebrates collected from lower Beaver Creek	- 70
10.	Benthic macroinvertebrates collected from Station 2 of the West Interceptor Ditch	- 71
11.	Benthic macroinvertebrates collected from Station 3 of the West Interceptor Ditch	- 74
12.	Benthic macroinvertebrates collected from Station 4 of the West Interceptor Ditch	- 76
13.	Benthic macroinvertebrates collected from Station 5 of the West Interceptor Ditch	- 78
14.	Benthic macroinvertebrates collected from Station 6 of Feeder Creek #2	- 80

TABLE		PAGE
15.	Benthic macroinvertebrates collected from Station 7 of Feeder Creek #3	81
16.	Total number of benthic macroinvertebrate species collected, number of new species, number of recurring species, and number of species eliminated on each sampling day at lower Beaver Creek	84
17.	Grouping of the benthic macroinvertebrate taxa from Station 2 of the West Interceptor Ditch in dominance classes based on their dominance index values	87
18.	Grouping of the benthic macroinvertebrate taxa from Station 3 of the West Interceptor Ditch in dominance classes based on their dominance index values	88
19.	Grouping of the benthic macroinvertebrate taxa from Station 4 of the West Interceptor Ditch in dominance classes based on their dominance index values	89
20.	Grouping of the benthic macroinvertebrate taxa from Station 5 of the West Interceptor Ditch in dominance classes based on their dominance index values	90
21.	Mean densities and mean volumes of benthic macroinvertebrates collected from Stations 2-5 of the West Interceptor Ditch	97
22.	Total number of benthic macroinvertebrate species collected, number of new species, number of recurring species, and number of species eliminated on each sampling day at the West Interceptor Ditch	99
23.	Total number of invertebrates collected from Station 7 and their percentage contributions to the drift composition	105
24.	Total drift rates and drift densities for the drifting invertebrates at Feeder Creek #3	106

vi

25.	Species composition, distribution, and per cent cover of aquatic macrophytes at sampling points along the West Interceptor Ditch	117
26.	Average per cent coverage by species of aquatic macrophytes in the entire West Interceptor Ditch, the Ditch excluding those macrophytes at the mouths of the streams and gullies, and at the mouths of streams only	126
27.	Distribution and relative abundance of fish sampled in the West Interceptor Ditch and Beaver Creek	128
28.	Observed age-length relationships and maturity for fathead minnows in the West Interceptor Ditch	132
29.	Waterfowl and shorebird sightings along the West Interceptor Ditch	134

PAGE

LIST OF PLATES

LATE		PAGE
1.	Feeder Creek (Station 7) on the West Interceptor Ditch	6
2.	Artificial riffle on the lower West Interceptor Ditch (Station 2)	6
3.	The West Interceptor Ditch (Station 5) before hydroseeding and fertilization	10
4.	The West Interceptor Ditch (Station 5) completely revegetated	10
5.	Heavy silting at a gulley formed by erosion along the West Interceptor Ditch	11
6.	Lower Beaver Creek downstream of the North Starter Dyke in the background	11

PLATE

viii

LIST OF FIGURES

. . . .

FIGURE		PAGE
1.	Sampling stations on the West Interceptor Ditch and lower Beaver Creek	4
2.	Seasonal discharge at Stations 2, 3, 4, and 5 on the West Interceptor Ditch	8
3.	Seasonal variations in the percentage composition of zooplankters in the West Interceptor Ditch	34
4.	Seasonal variations in zooplankton diversity and density, West Interceptor Ditch	42
5.	Seasonal variations in phytoplankton diversity and density at the West Interceptor Ditch	66
6.	Seasonal variation in the percentage composition of the major phytoplankton taxa at the West Interceptor Ditch	68
7.	Comparison of the total number of taxa collected, mean Shannon-Weaver Species Diversity Index, and mean Equitability for Stations 2-5 at the West Interceptor Ditch	92
8.	Seasonal variations in the number of benthic macroinvertebrate taxa and the Shannon-Weaver Species Diversity Index at Stations 2-5 of the West Interceptor Ditch	94
9.	Colonization and extinction rates of the benthic macroinvertebrates at the West Interceptor Ditch	100
10.	Fluctuations in drift rates of Copepoda and Ostracoda during a 24 hour period at Station 7, Feeder Creek #3	110
11.	Fluctuations in drift rate of <i>Baetis</i> sp. during a 24 hour period at Station 7, Feeder Creek #3	112
12.	Fluctuations in drift rates of Chironomidae and Simuliidae during a	

FIGURE

	24 hour period at Station 7, Feeder Creek #3	114
13.	Sampling areas for the aquatic macrophyte survey	122
14.	Per cent substrate coverage and dominant macrophytes on the West Interceptor Ditch	124
15.	Length-frequency of sticklebacks and fathead minnows from the West Interceptor Ditch	130

х

PAGE

ACKNOWLEDGEMENTS

The authors would like to acknowledge the following persons who were involved in laboratory work: Dr. Dwight Mudry, Mr. Roderick Green, Mr. R. Saunders, and Mrs. Rita Ford. We would also like to thank Dr. Peter McCart for editorial assistance, and Ms. Cecilia Gossen and Ms. Joyce Harris for manuscript preparation.

INTRODUCTION

Development of Syncrude's Lease 17 required the construction of sizeable man-made channels and the alteration of natural streams for the purpose of diverting water away from the mine sites. In essence, new stream habitats are created. The present study is concerned with the development of two of these new waterbodies, the West Interceptor Ditch and a portion of lower Beaver Creek.

The West Interceptor Ditch was constructed to divert water from several small creeks into Bridge Creek, a tributary of Beaver Creek, which eventually flows into the Athabasca River. During the diversion process, a portion of lower Beaver Creek was restructured to accommodate discharge from the North Starter Dyke. The present study, initiated in May, 1977, and completed in September, 1977, is mainly concerned with this restructured section.

Specifically, the objectives of the study were to:

 describe existing environmental conditions in, and to document natural biological colonization of, the West Interceptor Ditch, and

2) determine the degree of biological colonization of the recently altered section in lower Beaver Creek.

DESCRIPTION OF THE STUDY AREA

Construction of the West Interceptor Ditch was completed in May, 1976, as part of Syncrude Canada Ltd.'s plan to divert stream flow and surface runoff from the mine site. It is located 2.5 km west of the plant site (Figure 1) and flows northward for 13 km before entering Bridge Creek, a tributary of Beaver Creek. Flow originates from three small feeder creeks and from surface runoff. A dam near the south end of the ditch diverts flow from a fourth feeder creek to the Beaver Creek Reservoir.

Physical characteristics of the seven stations selected for investigation (Figure 1) are presented in Table 1. Feeder creeks (Stations 6 and 7) were small, slow moving brown water streams with organic substrates (Plate 1). Their banks were low, stable, and heavily vegetated. By August, aquatic macrophyte growth was also extensive. In June, discharge estimates for Stations 6 and 7 were 0.07 and 0.02 m^{3}/sec , respectively.

A shallow, slow moving stream varying in width from 4 m upstream (Stations 4 and 5) to 12 m downstream (Station 2) flowed through the West Interceptor Ditch. Ponding was frequent, especially where culverts partially obstructed stream flow. The substrate was mud along most of the ditch, except where cobbles had been placed to form riffled areas

	Lower Beaver Cree	<u>ek</u> <u>Wes</u>	t Interce	ptor Ditc	:h	Feeder (Creeks
Station:	1	2	3	4	5	6	7
Substrate	80% gravel, 20% rubble, silted pools. Shifting sand at high water.	5% mud, 95% rubble.	90% mud 10% gravel.	80% mud 20% gravel.	95% mud 5% gravel.	100% organic.	100% organic.
Average Width (m)	8	12	12	4	3.5	2	1.5
Average Depth (cm)	18	2 5	16	12	12	30	25
Banks	Low and stable with overhanging brush. Slumping where clearcut.	Sloping stable. 50% rubble, 50% mud.	Sloping and eroded. Bare until revege- tated.	Sloping and eroded. Bare until revege- tated.	Sloping and eroded. Bare until revege- tated.	Low and stable. Dense vege- tation.	Low and stable. Dense vege- tation.

TABLE 1. Physical characteristics of sampling stations on lower Beaver Creek and the West Interceptor Ditch, 1977.

FIGURE 1. Sampling stations on the West Interceptor Ditch and lower Beaver Creek, 1977.

PLATE 1. Feeder Creek (Station 7) on the West Interceptor Ditch, August, 1977.

PLATE 2. Artificial riffle on the lower West Interceptor Ditch (Station 2) with extensive periphyton growth. August, 1977.

(Station 2, Plate 2). Although there was no indication of extensive periphyton growth elsewhere, dense mats of filamentous algae did form in the riffled areas during August and September. Maximum discharge (Figure 2) was recorded at Station 2 in June and decreased upstream. By August, there was little flow at any station.

Banks consisted of exposed soil until after they were seeded in June (Plate 3) and gullies formed by erosion along the ditch were common (Plate 4). By August, the banks were completely revegetated and apparently stabilized (Plate 5).

Station 1 on Lower Beaver Creek (Figure 1) was located 25 m downstream of a newly created riffle that extended from the top of the North Starter Dyke to the original streambed. The substrate consisted of gravelled riffles and silted pools during low water levels but was covered entirely with shifting sand at high water levels. Water flow varied from 0.01 m³/sec in May, June, and August to 0.90 m³/sec in July and 0.45 m³/sec in September. Banks were low and stable with overhanging brush.

FIGURE 2. Seasonal discharge (m³/sec) at Stations 2, 3, 4, and 5 on the West Interceptor Ditch, 1977. Locations of Stations are indicated in Figure 1.

PLATE 3. The West Interceptor Ditch (Station 5) before hydroseeding and fertilization. May, 1977.

PLATE 4. The West Interceptor Ditch (Station 5) completely revegetated. August, 1977. Note Typha latifolia in the ditch.

PLATE 5. Heavy silting at a gulley formed by erosion along the West Interceptor Ditch.

PLATE 6. Lower Beaver Creek downstream of the North Starter Dyke in the background.

MATERIALS AND METHODS

Aquatic Environments Limited performed monthly sampling (May-September, 1977) of major biological components within the new habitats. These include the phytoplankton, zooplankton, and benthic macroinvertebrates. Periodically, water chemistry, bacteria, aquatic macrophytes, and fish samples were taken. Observations of waterfowl, shorebirds, and amphibians were also recorded. Table 2 is a summary of the sampling effort at the study sites.

.

Sample Collection and Analysis

Physical and Chemical Parameters

Physical data gathered at each site included the following:

depth width current temperature nature of substrate nature of bank

Width and depth of the sampling site was measured with a standard metre stick, staff gauges were placed to facilitate depth measurements. In many places the water was too shallow for the use of current meters and current was therefore estimated by determining the time it took for a stick to float a measured distance, an average of 10 m. Temperature

STATION	MAY	JUNE	JULY
1 Lower Beaver Creek	 Physical and chemical Bacteria (coliform analysis) Benthic macro-invertebrates 	 Physical Benthic macro- invertebrates Fish 	 Physical and chemical Benthic macro- invertebrates
2-5 West Inter- ceptor Ditch	 Physical and chemical Phytoplankton Zooplankton Benthic macro- invertebrates Amphibians, reptiles, birds 	 Physical Phytoplankton Zooplankton Benthic macro- invertebrates Fish Amphibians, reptiles, birds 	 Physical and chemical Phytoplankton Zooplankton Benthic macro- invertebrates Amphibians, reptiles, birds
6-7 Feeder Creeks #2 and #3	· •	 Physical Zooplankton Benthic macro- invertebrates Fish 	

(Continued)

TABLE 2. Continued.

STATION	AUGUST	SEPTEMBER
1 Lower Beaver Creek	 Physical Benthic macro- invertebrates 	. Physical and chemical . Benthic macro- invertebrates . Fish
2-5 West Inter- ceptor Ditch	 Physical Phytoplankton Aquatic macrophytes Phytoplankton Zooplankton Benthic macro- invertebrates Amphibians, reptiles, birds 	 Physical and chemical Phytoplankton Zooplankton Benthic macroinvertebrates Fish Amphibians, reptiles, birds
6-7 Feeder Creeks #2 and #3	. Benthic macro- invertebrate drift (Station 6)	

was determined using a mercury pocket thermometer. Stream substrates were visually categorized according to substrate types as outlined by Lagler (1956) as a modification of Roloef (1944). Particle sizes were defined as follows:

mud/sand (<0.004 - 2.5 mm)
fine gravel (2.5 - 25.0 mm)
coarse gravel (25.0 - 75.0 mm)
fine rubble (75.0 - 150 mm)
coarse rubble (150.0 - 300.0 mm)
boulder (> 300 mm)

The bank condition was described in terms of its stability (i.e., slumping) and extent of vegetation growth.

At each station, four composite water samples of 500 ml each were collected in plastic bottles from mid-stream for the analysis of total nitrogen, total phosphates, suspended solids, volatile solids, total dissolved solids, pH, alkalinity, hardness, conductivity, and dissolved oxygen. Methods of sample preservation and analysis are summarized in Tables 3 and 4.

Bacteria (Coliform Analysis)

In May 1977, a sterilized 250 ml glass bottle was used to sample bacteria from lower Beaver Creek. Samples were

TABLE 3. Preservation of water samples.

Parameter	Preservative	Filtered or Unfiltered
Total Nitrogen	5 ml 4N HCl	Unfiltered
Total Phosphates	5 ml 4N HC1, sample chilled (2 C)	Unfiltered
Suspended Solids	1 ml CuSO ₄ solution	Unfiltered
Total Solids	None	Unfiltered
Total Dissolved Solids	None	Unfiltered
Volatile Solids	None	Unfiltered
рН	1 ml CuSO ₄ solution	Filtered or Unfiltered
Alkalinity System (HCO $_3$ and CO $_3$)	CHCl ₃ (sufficient to leave a small, undissolved bead after shaking)	Filtered (Whatman GF/C filter disc)
Hardness	5 ml 4N HC1	Filtered

Parameter	Method	Source of Method	Modification
Total Nitrogen	Ultraviolet photo- chemical oxidation followed by Amalgamated Cadmium Column	Strickland and Parsons (1968)	Overnight (15 hrs) irradiation period using a 500 Watt lamp
Total Phosphates	Persulfate digestion followed by Ascorbic Acid PO4 method	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	None
Suspended Sediments	Filtration and drying	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	Dried at 180 C
Total Solids	Evaporation and drying	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	None
Total Dissolved Solids	Filtration, evaporation, and drying	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	None
Volatile Solids	Ignition of filtered sample	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	None
рН	Combined electrode, type Radiometer GK 2311C	Radiometer pH meter Type 296	None

TABLE 4. Methods of chemical analysis.

(Continued)

TABLE 4. Continued.

Parameter	Methods	Source of Method	Modification
Alkalinity System (HCO $_3$ and CO $_3$)	Acid titration	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	None
Hardness	EDTA titration	Standard Methods for the Examination of Water and Wastewater. 13th Ed. (1971)	None
Dissolved Oxygen	D.O. Meter		

taken in accordance with methods prescribed in Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1971). The bottle was kept chilled (2 C) and returned to the Calgary laboratory within 24 hours for analysis. In the laboratory, the sample was analysed for total coliform counts/100 ml and faecal coliform counts/100 ml according to procedures outlined in Standard Methods (APHA, 1971).

Phytoplankton

Information was gathered on monthly changes in the species composition and relative abundance of phytoplankters at the West Interceptor Ditch. A one to two litre unconcentrated water sample was taken at each site and preserved with Lugol's solution. The sample was counted in the laboratory using the method of Utermöhl (1958), and Zoto *et al.* (1973).

The samples for identification were thoroughly agitated and subsamples were pipetted to settling chambers. The volume of the subsamples depended upon the density of the original sample (i.e., amount of silt, detritus, etc.). Settling time was based upon a standard rate of three hours per centimetre of chamber height.

For organisms other than diatoms, a settling chamber was set up and the subsample was allowed to settle out and

examined whole, using a Wild M40 Inverted Microscope.

For the identification and enumeration of diatoms, the upper portion of the subsample was removed after settling, leaving a film of liquid and the settled organisms. The remaining 2 ml were then evaporated at a temperature below 38 C. The coverslips with the organisms were then ashed in a muffle furnace ($560 \text{ C} \pm 10 \text{ C}$ for 15 min) to remove all debris and extraneous organic matter. The cleared diatoms were then mounted in Piccolyte and examined under a Wild M40 Inverted Microscope. Enumeration of the species present was at 750x, with the samples quantified as cells/cm². The algae were identified to the species level where possible, with identifications carried out at up to 1750x.

Taxonomic literature used for the identification of algae include: Bourrelly (1968), Cleve-Euler (1951-1955), Desikachary (1959), Hillard (1966, 1967), Patrick and Reimer (1966), Prescott (1962), Skuja (1948, 1964), Smith (1950), Sreenivasa and Duthie (1973), Tiffany and Britton (1951), and Tilden (1910).

Zooplankton

Samples were taken to determine monthly changes in the species composition and relative abundance of zooplankton in the West Interceptor Ditch. On one occasion, June 14,

similar samples were taken from two tributary streams (Stations 6 and 7). Zooplankton was sampled by towing a No. 20 Wisconsin-type plankton net for a total distance of 15 m at each sampling site. The samples were preserved in 5% formalin solution neutralized with sodium tetraborate. Zooplankton was counted in a counting chamber using a Wild M5 binocular microscope at either 25 or 50x magnification.

Identifications were made by preparing temporary mounts of whole or dissected specimens for examination using a Wild M12 compound microscope at magnifications of 100, 400, or 1000x. Identifications were based on one or more of the following: Edmondson (1959), Brooks (1957), Deevey and Deevey (1971), Brandlova *et al.* (1972), Chenoglath and Mulamoottil (1974, 1975), and Ruttner (1974).

Benthic Macroinvertebrates

On each monthly sampling trip, triplicate benthic samples were taken at each station with an Ekman grab sampler, except for Stations 1 and 2 where a Surber sampler was used. A systematic sampling or transect method was used since it was more likely to cut across the range of habitats present in the study area.

In the laboratory, samples were washed in a sieve $(600\mu$ mesh size) and spread in a Petri dish. Organisms were

removed and examined with the aid of a stereoscopic dissecting microscope. Organisms were counted, identified, and further preserved in 75% isopropol alcohol.

The major taxonomic references used include Allen and Edmunds (1961a, 1961b, 1965), Edmondson (1959), Jensen (1966), Needham *et al.* (1935), Pennak (1953), and Usinger (1963). The Chironomidae were identified according to the provisional key by Hamilton and Saether¹, and Saether (1969, 1975, 1976, 1977).

The benthic samples were analysed for species composition, densities, and biomass (total volume). Shannon-Weaver species diversity indices (Shannon and Weaver, 1949) and equitabilities (Lloyd and Ghelardi, 1964) were calculated.

Shannon-Weaver species diversity indices (Shannon and Weaver, 1949) were computed for all benthic samples by the machine formula of Lloyd *et al.* (1968). This formula is:

 $\overline{d} = \frac{C}{N}$ (N Log₁₀ N - Σn_i Log₁₀ n_i)

where: C = 3.32193

N = total number of individuals

 $n_i = total number in the ith species (form)$

¹Unpublished key, Environment Canada, Freshwater Institute, Winnipeg

Species diversity is dependent on the number of species (richness) and the distribution of individuals among the species (evenness). Shannon and Weaver's information theoretical measure of mean species diversity per individual (\bar{d}) is sensitive to, and increases with, both species richness and evenness. The value of \overline{d} is proportional to the uncertainty of identification of an individual selected at random from a multi-species population. In general, d values range from zero to any positive number, but are seldom greater The d value is at a minimum when all individuals than ten. belong to the same species, whereas \overline{d} is at a maximum value when each species contains the same number of individuals. In this study, each obtained d value was compared with a hypothetical maximum based on MacArthur's broken stick model (MacArthur, 1957) of natural populations (population with a few relatively abundant species and increasing numbers of species with only a few individuals). Such a comparison results in an index termed "equitability" or "e" by Lloyd and Ghelardi (1964). Equitability values were computed by using Table 6 in Weber (1971) in conjunction with the following formula:

$$\bar{d} = \frac{S'}{S}$$

where: S = number of species (forms) in the sample S'= the tabulated number of species for MacArthur's
model of equal diversity.

Values of "e" range from 0 to 1. Environmental Protection Agency biologists in the U.S. have found the equitability index to be very sensitive to even slight levels of environmental degradation.

In order to determine the extent of natural biological colonization at Lower Beaver Creek and the West Interceptor Ditch, benthic data were treated in a manner similar to that of Dickson and Cairns (1972) and grouped as follows:

a) Total number of species found at each sampling date.

b) The number of new species found at each sampling date--those species that have not been recorded before.

c) Recurring species found at each sampling date-species that are eliminated and subsequently become reestablished.

d) Species eliminated--found by adding the number of new species and recurring species to the total number present at the preceding sampling date and then subtracting the current total number from this figure.

Colonization rates (in species/day) can then be determined

by adding the number of new species to the number of recurring species divided by the time in days between sampling periods. Extinction rates (in species/day) can be determined by dividing the number of species eliminated by the days between sampling periods.

Benthic Macroinvertebrate Drift

A benthic drift study was conducted at Station 7 during August 21-22, 1977. A total of six one-hour drift samples was collected during a 24 hour period. The net was placed in the stream for one hour, emptied, and then taken out for three hours before being used again for another hour. The drift net used had an opening of 30 cm x 45 cm and the nylon net was 90 cm long with a mesh size of 250 μ . Both current and water depth at the opening of the drift net were recorded.

Aquatic Macrophytes

The emergent, floating, and submergent aquatic macrophytes of the West Interceptor Ditch were surveyed August 21, 1977. Species composition as well as the per cent substrate covered by each species were estimated at numbered points along the ditch. Some points corresponded to the mouths of streams or gullies where there were often distinct assemblages of plants. Other points were within longer, relatively homogeneous segments of the stream. In such segments, the composition of the macrophyte community was determined by averaging data for

two points within the segment.

When necessary, plants were preserved in 5% formalin for later identification in the laboratory. References used for identification were Correll and Correll (1972), and Moss (1959).

Fish

Fisheries surveys were conducted May 11, 1977 at Beaver Creek (Station 1). All stations (1 to 7) were surveyed June 14 and September 27, 1977. Both backpack electrofishing units and minnow seines were used, depending on the nature of the substrate. At each station, records were kept of fishing effort (length of stream sampled) and catch by species in order to compare the relative abundance of fish on a catch per unit effort basis. The lengths of stream sampled varied from 20 m in feeder creeks with relatively high fish densities to 75 m at stations with low densities. All fish were measured to the nearest millimetre (fork length) and subsamples taken to assess maturity and breeding condition, i.e., ripe, green, or spawned out. Scales were collected from fathead minnows and examined at 100 x under a compound microscope (sticklebacks were not aged). Criteria for the identification of scale annuli were those of Lagler (1956).

Waterfow1 and Shorebirds

During the course of the study, all waterfowl and shorebirds seen along the West Interceptor Ditch right of way were recorded. Whenever possible, sex, age, and breeding status were also noted. Identifications were made in the field following Kortright (1942) and Salt and Salt (1976).

Amphibians

Amphibians and their tadpole stages were collected from the ditch and feeder creeks, preserved in 5% formalin, and identified later following the descriptions and keys by Stebbins (1966).

RESULTS AND DISCUSSION

Water Quality

Water quality data for lower Beaver Creek (Station 1) and the West Interceptor Ditch (Stations 2-5) are summarized in Tables 5 and 6.

Lower Beaver Creek receives water primarily from the North Starter Dyke impoundment (Figure 1). The water was slightly basic with a mean pH value of 7.4, and was relatively high in alkalinity, conductivity, and hardness (Tables 5 and 6) suggesting that the water from the impoundment is rich in calcium, sodium, and magnesium salts. The macronutrient content of the water, as measured by total nitrogen (TN) and total phosphates (TP), ranged from 600-890 μ g N/1 to 135-205 μ g P/1, respectively.

The West Interceptor Ditch receives water from several small streams which drain an extensive muskeg terrain that is rich in *Sphagnum* growth. Hence the ditch water was slightly basic with a pH range of 7.1-8.1. The ditch water was relatively high in alkalinity and hardness with mean values of 161.3 mg CaCO₃/1 and 172 mg CaCO₃/1, respectively. The mean total nitrogen (TN) value was 820.4 μ g/1 and mean total phosphate (TP) was 107.9 μ g/1 (Table 6).

	St	tation	1	St	ation	2	St	tation 3	3	
	May	Ju1y	Sept	May	July	Sept	May	Ju1y	Sept	
рН	7.6	7.5	7.2	7.7	8.1	7.5	7.8	7.5	7.2	
Alkalinity (mg CaCO ₃ /1)	230	185	166	106	123	150	100	115	147	
Hardness (mg CaCO ₃ /1)	288	220	200	124	116	136	100	112	124	
Total Nitrogen (µg N/1)	640	600	890	910	675	800	925	840	860	
Total Phosphate (µg P/1)	135	170	205	90	85	50	102	123	70	
Suspended Solids (mg/1)	95	2.5	5.1	74	3.3	2.6	32.7	5.5	5.1	
Volatile Suspended Solids (mg/l)	220	125	120	80	140	148	130	135	160	
Total Dissolved Solids (mg/1)	570	350	328	370	265	240	370	230	220	
Conductivity (µmho/cm @ 25 C)	608	546	577	319	294	391	278	247	346	
Dissolved Oxygen (mg/1)	7.8	8.4	12.0	10.0	9.8	10.6	8.4	8.8	10.0	
Temperature (C)	15.5	16	13	16	17	13	14	17	14.5	
	(Cont	inued)								

TABLE 5. Water quality data of the lower Beaver Creek (Station 1), and the West Interceptor Ditch (Stations 2-5). May-September, 1977.

•	St	tation 4	1	Station 5			
	May	July	Sept	May	Ju1y	Sept	
рН	7.7	7.1	7.0	7.8	7.6	7.4	
Alkalinity (mg CaCO ₃ /1)	102	100	145	396	178	274	
Hardness (mg CaCO ₃ /1)	88	104	144	536	184	296	
Total Nitrogen (µg N/1)	1065	845	855	640	775	655	
Total Phosphate (µg P/1)	124	140	94	68	265	84	
Suspended Solids (mg/1)	12.0	4.5	11.4	15.2	6.8	11.7	
Volatile Suspended Solids (mg/1)	70	135	128	510	175	152	
Total Dissolved Solids (mg/1)	330	240	280	1320	400	672	
Conductivity (µmho/cm @ 25 C)	237	227	414	1617	536	937	
Dissolved Oxygen (mg/1)	8.5	7.8	9.3	8.0	10.2	8.3	
Temperature (C)	14	16	12	23	15	19	

TABLE 6. A comparison of the mean values and ranges of several chemical parameters for water samples from lower Beaver Creek and the West Interceptor Ditch, May-September, 1977.

	L	ower	West				
Chemical Parameter	Bea	ver Creek	Interce	eptor Ditch			
рН	7.4	(7.2-7.6)	7.5	(7.1-8.1)			
Alkalinity (mg CaCO ₃ /1)	193.7	(166-230)	161.3	(100-396)			
Hardness (mg CaCO ₃ /1)	236	(200-288)	172	(88-536)			
Total Nitrogen (µg N/1)	710	(600-890)	820.4	(640-1065)			
Total Phosphate (µg P/1)	170	(135-205)	107.9	(50-265)			
Suspended Solids (mg/1)	34.2	(2.5-95)	15.4	(2.6-74)			
Volatile Suspended Solids (mg/l)	155	(120-220)	163.6	(70-510)			
Total Dissolved Solids (mg/1)	416	(328-570)	411.4	(220-1320)			
Conductivity (µmho/cm @ 25 C)	577	(546-608)	486.9	(227-1617)			
Dissolved Oxygen (mg/1)	9.4	(7.8-12.0)	9.1	(7.8-10.6)			

In May and June, 1977, areas along the ditch were fertilized with ammonium nitrate and ammonium phosphate. However, this treatment does not seem to have increased the macronutrient content of the water (Table 5). TN and TP values generally declined from May to September, at the same time that there was a general increase in phytoplankton standing crop and aquatic macrophyte development. This suggests that a large proportion of the nutrients reaching the ditch were being used by the primary producers for their growth.

Bacteria

Total coliform bacteria count is generally used as an index of the efficiency of sewage treatment facilities. However, the presence of coliform bacteria can indicate pathogens and numerous other organisms not commonly related to human sanitary facilities (Elrod, 1942). Geldreich *et al.* (1962, 1968) indicated that bacteria in the faeces of nonhuman warm-blooded animals are at least 93% faecal coliform compared with 96% in human faeces.

Standards for total coliform and faecal coliform organisms in drinking water have been established by the Department of Health and Welfare, Canada (1968). These standards are as follows:

"Acceptable Limit: none of the samples 'positive' for total coliform organisms should have an MPN index greater than 4 per 100 ml;

"Maximum Permissible Limit: none of the samples 'positive' for total coliform organisms should have an MPN index greater than 10 per 100 ml. The presence of faecal coliform or *Streptococci* is considered unacceptable."

The concentrations, as MPN (most probable number), of total coliform and faecal coliform bacteria were determined for lower Beaver Creek (Station 1) during the month of May, 1977. The MPN index was 10 per 100 ml for total coliform organisms and zero for faecal coliforms. The single sample therefore indicated that the bacterial content of lower Beaver Creek water exceeded the acceptable limit for human consumption, but still fell within the maximum permissible limit.

Zooplankton

During the sampling period, changes in per cent composition of major groups were generally similar at all four sampling stations (Figure 3). Generally the zooplankton was dominated by copepods (70-100%) during the early spring but this group experienced a gradual decline throughout the summer. Rotifers were a minor component of the zooplankton community in samples taken during the spring but generally replaced the copepods and became the numerically dominant group. Cladocera formed only a small part of the zooplankton

FIGURE 3. Seasonal variations in the percentage composition of zooplankters in the West Interceptor Ditch, May-September, 1977.

numbers during all sampling periods. Exceptions were samples taken at Station 3 in July in which approximately equal numbers of Cladocera and Copepoda were present.

Of the four sites sampled intensively, Stations 2, 3, and 4 had the greatest number of zooplankton species (18-21) while Station 5 had considerably fewer (10) (Table 7).

Seasonal variations in the taxonomic diversity and mean density of zooplankton in the ditch are shown in Figure 4. Taxonomic diversity and standing crop were highest in September, mainly due to the increased number of taxa and individuals found among the rotifers.

Copepoda

Cyclopoids dominated the copepod fauna and no calanoids and only small numbers of harpacticoids were collected (Table 7). May samples were dominated by nauplii and immature cyclopoids. The numbers of nauplii decreased during the sampling period and they were nearly absent from September samples.

A total of five copepod species was identified from the study area. The most common was *Eucyclops agilis* which was collected in low numbers at all sites. The harpacticoid *Canthocamptus* sp. was found at all four main sampling sites but was absent from Stations 6 and 7 when they were sampled

		Statio	n 2				
	М	${ m J}$	J	· A	S		
Copepoda (Total)	112.8	29.3	12.3	6.4	5.9		
Macrocyclops albidus	2.3	8.8					
Eucyclops agilis	2.3				5.3		
Eucyclops speratus		9.4					
Cyclops vernalis							
Immature cyclopoids	35.5		3.5	1.7			
Nauplii	69.2	8.8	8.8	4.7	0		
Canthocamptus sp.	5.5	2.5			0.6	•	
Unidentified copepods							
Cladocera (Total)		0.6	2.3	3.5	21.1		
Chydorus sphaericus		2 1	~ -				
Pleuroxus denticulatus		0.6	2.3		4.7		
Pleuroxus procurvus		4. 		3.5			
Simnocephalus vetulus					1.7		
Macrothrix laticornis					14./		
Potifora (Total)	27 1	22 0	1/1 1	277	100 2		
Vongtolla cochlagnic	47 • 1	22.3	T.d. • T	21.1	100.2		
Konatolla avadrata	13.6	4.7			· f • 1		
Konatolla connulata	2010	/					
Fuchlanis SD.							
Mutiling Sp.							
Trichotria sp.	4.7		4.7		8.8		
Monostula sp.		4.7	4.7	4.7	46.0		
Lecane sp.		·		23.0			
Brachionus sp.		4.7	4.7		124.0		
Ploesoma sp.							· · ·
Trichocerca sp.	8.8		•		4.7		
Species A		8.8					
		0	7 *	-	10		
Total No. of Taxa	1700	- y	20 7	77 6			
Total No. Individuals/100 ml	T2A'A	54.0	40.1	3/.0	215.2		
	(Co	ntinued)				

TABLE 7. Zooplankton collected from the West Interceptor Ditch, May-September, 1977.

		Statio	n 3				
	М	J	Ĵ	. · A	S		
Copepoda (Total)	169.8	203.7	4.7	86.1	50.2	 	
Macrocyclops albidus		18.9					
Eucyclops agilis				3.5	27.2		
Eucyclops speratus				1.1			
Cyclops vernalis					· ·		
Immature cyclopoids	56.6	28.4		8.2	18.3		
Nauplii	113.2	147.0	A 17	73.3	4 7		
Canthocamptus.sp.		0 4	4./		4./		
Unidentified copepods		9.4					
Cladocera (Total)		9.4	4.7		331.1		
Chydorus sphaericus		9.4			55.0		
Pleuroxus denticulatus					64.4		
Pleuroxus procurvus							
Simnocephalus vetulus			4.7		36.6		
Macrothrix laticornis					175.1		
Rotifera (Total)		147.2		36.2	1409.6		
Keratella cochlearis					18.3		
Keratella quadrata		110.6					
Keratella serrulata					8.8		
Euchlanis sp.					8.8		
Mytilina sp.							
Trichotria sp.		36.6					
Monostyla sp.				8.8	534.9		
Lecane sp.				4.7			
Brachionus Sp.				4.7	830.0		
Ploesoma sp.				13.6			
Trichocerca sp.				4.7	8.8		
Species A							
Total No. of Taxa	2	7	2	9	13		
Total No. Individuals/100 ml	169.8	360.3	9.4	122.6	1790.9		
	(Co	ntinued).					

	Station 4								
	М	J	J	·A	S				
Copepoda (Total)	142.3	152.4	8.9		11.7	1999 A. MALLANCE CO. 1999 A. 19			
Macrocyclops albidus									
Eucyclops agilis					2.3				
Eucyclops speratus		7.1	0.6						
Cyclops vernalis	8.8	2.3							
Immature cyclopoids	33.6	33.1	1.2	*	9.4				
Nauplii	89.3	107.6	7.1	*					
Canthocamptus sp.	10.6	2.3				. •			
Unidentified copepods				•					
Cladocera (Total)	7.0	2.3	2.3		4.6				
Chudorus sphaericus		2.3	2.3	*	2.3				
Pleuroxus denticulatus	7.0				2.3				
Pleuroxus procurvus				*					
Simnocephalus vetulus									
Macrothrix laticornis									
Potifera (Total)	116 7	256 5	55 /		11 7				
Vanatalla cochleanis	T TO. /	230.5	55.4		44./				
Keratella cuadrata		41.4							
Kerucecco quadraca Konctolla connulata				*					
Fuchianie SD			41 A	*					
Mutiling sp			71.7		18 3				
Trichotria sp	54 8	165 6	23	*	8 8				
Monostula sp.	54.0	18 3	2.5		8 8				
Togano sp		10.5	7 1		0.0				
Brachdorug Sp			/ • I						
\mathbb{P}^{1}									
Floesoma sp.		Q Q	23						
Spacies A	61 0	36 6	$2 \cdot 3$	*	88				
Oberies V	01.9	50.0	4.0		0.0				
Total No. of Taxa	7	11	9	8	8 [.]				
Total No. Individuals/100 ml	266.0	411.2	66.6	*	61.0				
*The algae were too dense to al	low an a	ccurate	zoopla	nkton c	ount.		•		

39

(Continued)

		S	Station	5		6	7	
N 1	M	J	J	A	S	J	J	
Copepoda (Total) Macrocyclops albidus	114.2	776.3	22.9	11.1	40.1 9.4	250.5	$62.5 \\ 14.1$	
Eucyclops agilis Eucyclops speratus			3.5					
Cyclops vernalis Immature cyclopoids	114.2	776.3	9.4	2.3	28.4	$\begin{array}{c}10.1\\2.5\end{array}$	7.0 7.0	
Nauplii Canthocamptus sp.			8.8	8.8	2.3	236.7	27.4	
Unidentified copepods		,		•			7.0	
Cladocera (Total) Chydorus sphaericus Pleurorus denticulatus			$13.0 \\ 13.0$	1.2 1.2				
Pleuroxus procurvus Simnocephalus vetulus Macrothrix laticornis								
Rotifera (Total) Keratella cochlearis Keratella quadrata Keratella serrulata		183.2	165.6	54.9	4.6	$705.1 \\ 18.9 \\ 493.0$	137.0	
Euchlanis sp. Mutilina sp.		36.6		18.3		$18.9 \\ 18.9$	27.4	
Trichotria sp. Monostula sp.		73.3		18.3	2.3	78.4 39.2	27.4 27.4	
Lecane sp. Brachionus sp. Ploesoma sp.		73.3	165.6	18.3	2.3	18.9		
<i>Trichocerca</i> sp. Species A						18.9	54.8	
Total No. of Taxa Total No. Individuals/100 ml	1 114.2	4 959.5	6 201.5	6 67.2	5 44.7	12 955.6	9 199,5	

during June.

There appears to be little difference in the copepod populations at the four main sampling sites.

Cladocera

Five species of Cladocera were collected from the study sites. Cladocera were generally least abundant during the early sampling period and became more numerous in later samples.

The most common cladocerans were *Chydorus sphaericus* and *Pleuroxus denticulatus* both of which were found at three sites. Of the four main sampling sites, Station 5 had the fewest cladoceran species, only 1.

Rotifera

Twelve species of rotifers were identified from the study area. The most common were *Trichotria* sp. and *Monostyla* sp. Stations 2, 3, and 4 had 8-10 species while Station 5 had only 4 species.

Others

Because of the shallow nature of the study sites, a number of benthic organisms were collected along with the zooplankton. Ostracods and chironomids were the most common of these.

1 K 1 1

Phytoplankton

Table 8 summarizes phytoplankton data obtained during the study. A total of 120 species of algae was recorded from the West Interceptor Ditch. The Bacillariophyceae (diatoms) were the most common with 56 species represented. The other algal groups encountered were the Chlorophyta (green algae) with 27 species, the Chrysophyceae (golden-brown algae) with 17 species, Cyanophyta (blue-green algae) with 9 species, Euglenophyta with 6 species, Cryptophyta with 3 species, the Pyrrophyta (dinoflagellates), and the Xanthophyceae with one species each.

Taxonomic diversity was highest during the month of August, when a total of 55 algal species was recorded, and lowest for the month of June, when only 37 species were recorded (Figure 5). The most common algal taxa observed belonged to two major groups, the diatoms and the green algae. The common diatom genera were *Navicula*, *Nitzschia*, and *Achnanthes*; the common green algal genera were *Ankistrodesmus*, *Scenedesmus*, and *Tetraedron*.

Standing crop was highest for the month of August with a mean density of 1,832 cells/ml, and lowest during May with a mean density of 618 cells/ml (Figure 5). Seasonal variation in the relative abundance of the major algal taxa is shown in Figure 6. The diatoms were numerically the most

TABLE 8 . Phytoplankton of the West Interceptor Ditch, May-September, 1977. All entries as cells/ml.

Chlorophyta Actinastrum hantzschia144047Aktistrodesmus convolutus144047Ankistrodesmus falcatus714211Ankistrodesmus falcatus var. acicularis714211Chlanydomonas spp.464Chlorella sp.856Cosmarium negnellii var. minor574Cosmarium cerosum77Cosmarium acutum7Cosmarium spp.170Dictyosphaerium pulchellum72Franceia droescheri Lagerheimia wratislavensis170Oocystis parva1704Pediastrum tetras Scenedesmus bijuga28Scenedesmus bijuga11429Scenedesmus obliquus11429Scenedesmus serratus4347	Snecies	Station 2 Month:	M	.т		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	А	S	
Antorophyta Actinastrum hantsschia Ankistrodesmus convolutus Ankistrodesmus falcatus Ankistrodesmus falcatus Ankistrodesmus falcatus Ankistrodesmus falcatus Ankistrodesmus falcatus Chlorella Sp. Chlorella Sp. Coloastrum microporum Cosmarium numile Cosmarium mumile Cosmarium acerosum Cosmarium acerosum Cosmarium acerosum Cosmarium spp. Dictyosphaerium pulchellum Franceia droescheri Lagerheimia wratislavensis Oocystis parva Oocystis parva Pandorina morum Pediastrum tetras Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus serratus Management Adt 40 47 114 40 47 47 47 47 47 47 47 47 47 47	Chlenenhute								
Ankistrodesmus convolutus144047Ankistrodesmus falcatus714211Ankistrodesmus falcatus Var. acicularis714211Ankistrodesmus falcatus Var. acicularis714211Ankistrodesmus falcatus Var. acicularis44Chlorella Sp.854Cosmarium microporum574Cosmarium regnellii var. minor74Cosmarium acerosum77Cosmarium acetum77Dictyosphaerium pulchellum72Franceia droescheri Lagerheimia wratislavensis4Oocystis parva1704Pandorina morum2843Scenedesmus bijuga28Scenedesmus obliquus11429Scenedesmus obliquus4347	Latingstrum hantsachi	<i>a</i>							
Ankistrodesmus falcatus714211Ankistrodesmus falcatus var. acicularis714211Ankistrodesmus falcatus var. acicularis714211Ankistrodesmus falcatus var. acicularis854Chlorella Sp.854Cosmarium numile74Cosmarium acerosum77Cosmarium acerosum77Cosmarium acetosum77Cosmarium acetosum772Franceia droescheri Lagerheimia wratislavensis1704Ocystis parva1704Pediatrum tetras2843Scenedesmus bijuga2828Scenedesmus boliquus11429Scenedesmus serratus4347	Actinustium nuntzsent	u utua		***	-	1 /	. 4.0	17	
Ankistrodesmus falcatusVar.14211acicularisChlamydomonas spp.4Chlorella sp.85Coeloastrum microporum57Cosmarium numile4Cosmarium regnellii var.7minor7Cosmarium acerosum7Cosmarium spp.170Dictyosphaerium pulchellum72Franceia droescheri4Lagerheimia wratislavensis4Oocystis bargei4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus denticulatus28Scenedesmus serratus114293Scenedesmus serratus43	Ankistrodesmus convol	10	7	140		14	40	47	
Antestrouesmus jubbutus val.acicularis4Chlamydomonas Spp.85Coeloastrum microporum57Cosmarium negnellii var.4minor7Cosmarium acerosum7Cosmarium acerosum7Cosmarium spp.170Dictyosphaerium pulchellum72Franceia droescheri4Lagerheimia wratislavensis4Oocystis crassa4Oocystis crassa4Oocystis parva170Pediastrum tetras28Scenedesmus denticulatus28Scenedesmus denticulatus28Scenedesmus serratus1142932Scenedesmus serratus43	Ankistrodesmus faleat		. /	142			11		
Chlamydomonas spp.4Chlorella sp.85Coeloastrum microporum57Cosmarium numile4Cosmarium regnellii var.4minor7Cosmarium acerosum7Cosmarium acerosum7Cosmarium spp.170Dictyosphaerium ehrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri4Lagerheimia wratislavensis4Oocystis borgei4Oocystis parva170Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus114Scenedesmus obliquus114Scenedesmus serratus43	acicularis	us var.							
Chlorella sp.85Coeloastrum microporum57Cosmarium humile57Cosmarium regnellii var.4minor7Cosmarium acerosum7Cosmarium acetus7Cosmarium acetus7Cosmarium spp.170Dictyosphaerium ehrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri4Lagerheimia wratislavensis4Oocystis borgei4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga114Scenedesmus obliquus114Scenedesmus serratus43	Chlamydomonas spp.						4		
Coeloastrum microporum57Cosmarium humile4Cosmarium regnellii var. minor7Cosmarium acerosum7Cosmarium acutum7Cosmarium spp.170Dictyosphaerium ehrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri4Lagerheimia wratislavensis4Oocystis borgei4Oocystis parva170Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus1142943Scenedesmus serratus43	Chlorella sp.			85					
Cosmarium humile4Cosmarium regnellii Var. minor7Cosmarium acerosum7Cosmarium acutum7Cosmarium spp.7Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis parva170Pandorina morum170Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus1142943Scenedesmus serratus43	Coeloastrum micropori	im				57			
Cosmarium regnellii var. minor7Cosmarium acerosum7Cosmarium acutum7Cosmarium spp.7Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus114293cenedesmus serratus4347	Cosmarium humile						4		
minor7Cosmarium acutum7Cosmarium spp.7Dictyosphaerium ehrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bljuga28Scenedesmus obliquus1142943Scenedesmus serratus43	Cosmarium regnellii V	var.	· ·						
Cosmarium acutum7Cosmarium acutum7Cosmarium spp.170Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus114Scenedesmus serratus43	Comming company					7			
Cosmarium deutum170Dictyosphaerium ehrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis crassa4Oocystis parva170Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus1142943Scenedesmus serratus43	Cosmanium acerusum		. 7			/			
Cosmartum spp.Dictyosphaerium ehrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus denticulatus114Scenedesmus obliquus114Scenedesmus serratus43	Cosmarium Copp								
Dictyosphaerium enrenbergianum170Dictyosphaerium pulchellum72Franceia droescheri72Lagerheimia wratislavensis4Oocystis borgei4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus obliquus114Scenedesmus serratus43	Dietuenhamium ehnen	honge annum		170			1997 - 19		
Dictydsphaerium putchettum12Franceia droescheriLagerheimia wratislavensisLagerheimia wratislavensis4Oocystis borgei4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus denticulatus28Scenedesmus obliquus114Scenedesmus serratus43	Dictyosphaerium enter	iDergranum		170			72		
Franceta arceschertLagerheimia wratislavensisOocystis borgeiOocystis crassaOocystis crassaOocystis parvaPandorina morumPediastrum tetrasScenedesmus bijugaScenedesmus denticulatusScenedesmus obliquusScenedesmus serratus114294347	Engracia ducachani	lellum					12		
Lagerheimia wratistavensisOocystis borgei4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus denticulatus28Scenedesmus obliquus114Scenedesmus serratus43	Franceia aroescheri								
Docystis borget4Oocystis crassa4Oocystis parva170Pandorina morum28Pediastrum tetras28Scenedesmus bijuga28Scenedesmus denticulatus28Scenedesmus obliquus114Scenedesmus serratus43	Lagernermia wraitstai	Densis					·· /		
Obcystis crassa1704Oocystis parva1704Pandorina morum2843Pediastrum tetras2828Scenedesmus bijuga28Scenedesmus obliquus11429Scenedesmus serratus4347	Cocysiis borger	а.					1		
Docystis paroa1704Pandorina morumPediastrum tetras28Pediastrum tetras2828Scenedesmus bijuga28Scenedesmus obliquus11429Scenedesmus serratus4347	Occystis crassa			170			4		
Panaorina morumPediastrum tetras28Scenedesmus bijuga28Scenedesmus denticulatus29Scenedesmus serratus43	Dougstis parva			170			4		
Featastrum tetras28Scenedesmus bijuga28Scenedesmus denticulatus29Scenedesmus obliquus114Scenedesmus serratus43	Panaorina morum					20	17	,	
Scenedesmus pijuga Scenedesmus denticulatus Scenedesmus obliquus 114 29 Scenedesmus serratus 43 47	Pearastrum tetras					20	43		
Scenedesmus denticulatus Scenedesmus obliquus 114 29 Scenedesmus serratus 43 47	Sceneaesmus pijuga					20			
Scenedesmus opliquus 114 25 Scenedesmus serratus 43 47	Scenedesmus dentrouto	llus		111			20		
Sceneaesmus serratus 45 47	Sceneaesmus obliquus			114			29 17	A 7	
π -	Sceneaesmus serratus					·. 7	43	47	
Tetraearon minimum / 4 12	Tetraearon minimum						4	. 12	
retraearon muticum	Tetraearon muticum						· · · · ·	м 1	
(Continued)		(Continu	ued)						

TABLE 8. Continued.

1

Species	Station 2 Month:	М	J	J	A	S	
Cyanophyta Anabaena spp. Chroococcus dispersus Coelosphaerium kuetzing Lyngbya epiphytica	ianum	156					
Merismopedia glauca Oscillatoria agardhii Oscillatoria minnesoten Oscillatoria spp. Phormidium spp.	:5 <i>0</i>	213			7 284	236	
Chrysophyta Class Chrysophyceae Bicoeca spp. Chromulina spp. Chrysochromulina parva Chrysococcus rufescens Dinobryon divergens Dinobryon sertularia Dinobryon sociale Epipyxis utriculus Kephyrion littorale Mallomonas akrokomonas Mallomonas sp. Ochromonas sp. Pseudokephyrion pseudos Pseudokephyrion undulat Pseudokephyrion striatu Pseudopedinella erkensi Synura petersenii Class Xanthophyceae Tribonema spp.	pirale issimum m s	21 7			47		

(Continued)

Species	Station 2 Month:	М	J	J	A	S	
Class Bacillariophyceae							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Amphipleura pellucida							
Achnanthes lanceolata		_					
Achnanthes linearis var. curta		7			29		
Achnanthes spp.				14		130	
Caloneis ventricosa		_					
Caloneis ventricosa var. alpina		7					
Caloneis ventricosa var. subundulata							
Caloneis ventricosa var. truncatula							
Caloneis lewisii					4		
Cocconeis placentula van lineata						12	
Cocconeis spp.				14			
Cyclotella comta							
Cyclotella meneghiniana			57			12	
Cyclotella spp.		43		28			
Cymbella minuta					4	12	
Cymbella minuta var.							
silesiaca						7	
Cymbella sinuata							
Cymbella spp.		14	28	7			
Fragilaria spp.							
Gomphonema acuminatum			14				
Gomphonema brebissonii							
Gomphonema parvulum		14	14		18	12	
Gomphonema subtile var. sagitta							
Gomphonema spp.		14	14				
Gyrosigma acuminatum							

(Continued)

Species	Station 2 Month:	М	J	J	A	S	
Meridion circulare		7					
Navicula angusta			14			24	
Navicula arvensis				7			
Navicula capitata							
Navicula cryptocephala		43		28		12	
Navicula menisculus var upsaliensis		43	128				
Navicula minima							
Navicula pupula var. rectangularis							
Navicula radiosa							
Navicula rhynchocephala		7.4	170	7			
Navicula spp.		14	170	/			
Neidium affine var. longiceps							
Nitzschia acicularis		64					
Nitzschia amphibia var.							
Nitzschia palea		7					
Nitzschia siamoidea							
Nitzschia siama		14					
Nitzschia vernicularis							
Nitzschia spp.		78	156	135	86	106	
Pinnularia spp.							
Rhoicosphenia [°] curvata						12	
Rhopalodia gibba							
Rhopalodia gibba var. ventricosa			14				
Stauroneis anceps							
Surirella angusta							
Surirella spp.							
Synedra delicatissima					4		
Synedra ulna						12	
Synedra spp.		21				35	
	(Continue	d)					

Species	Station 2 Month:	М	J	J	А	S	
Tabellaria flocculosa							
Cryptophyta Cryptomonas marssonii Cryptomonas spp. Rhodomonas minuta		14 7		7	4 11		
Pyrrophyta Peridinium inconspicuum							
Euglenophyta Euglena proxima Euglena spp. Lepocinclis acuta Trachelomonas dybowskii Trachelomonas intermedi Trachelomonas volvocina	a						
No. of Species		24	15	15	23	15	
Total cells/ml		822	1290	388	760	721	

(Continued)

	Station 3			_		-	
Species	Month:	<u>M</u>	J	J	A	S	· · ·
Chlorophyta Actinastrum hantzsch	ia			28	. 18	18	
Ankistrodesmus convo Ankistrodesmus falca Ankistrodesmus falca	tutus tus tus var.		71	71	35	24 71	
Chlamydomonas spp. Chlorella sp.			22				
Coeloastrum micropor Cosmarium humile Cosmarium regnellii minor Cosmarium acerosum Cosmarium acutum	um var.			7	53 18		
Cosmarium spp. Dictyosphaerium ehre Dictyosphaerium pulc	nbergianum hellum					59	
Franceia droescheri Lagerheimia wratisla Oocystis borgei Oocystis crassa Oocystis parva Pandoning monum	vensis					47	
Pediastrum tetras Pediastrum tetras Scenedesmus bijuga Scenedesmus denticul Scenedesmus obliquus Scenedesmus serratus Tetraedron minimum Tetraedron muticum	atus		7 28 28	28 7	142 35	47	

(Continued)

Species	Station 3 Month:	М	J	J	А	S	
Cyanophyta		<u></u>					
Anabaena spp.				291			
Chroococcus dispersu	lS			28			
Coelosphaerium kueta	singianum			568			
Lyngbya epiphytica	0						
Merismopedia glauca			57				
Oscillatoria agardhi	ii						
Oscillatoria minnesc	otense						
Oscillatoria spp.							
Phormidium spp.							
Chrysophyta							
Class Chrysophyceae							
Bicoeca spp.						12	
Chromulina spp.				50			
Chrysochromulina par	vva			7			
Chrysococcus rufesce	ens	50		14	18	47	
Dinobryon divergens				14			
Dinobryon sertularia	z	14	. 7				
Dinobryon sociale							
Epipyxis utriculus							
Kephyrion littorale		7					
Mallomonas akrokomon	as	7					
Mallomonas sp.					18		
Ochromonas sp.				36			
Pseudokephyrion pseu	idospirale			21		12	
Pseudokephyrion undu	ılatissimum	7					
Pseudokephyrion stri	Latum			7			
Pseudopedinella erke	ensis						
Synura petersenii			7				
Class Xanthophyceae							
Tribonema spp.							

51

(Continued)

Species	Station 3 Month:	М	J	J	А	S	
Class Bacillariophyceae							
Amphipleura pellucida			7				
Achnanthes lanceolata							
Achnanthes linearis Va curta	r.				89		
Achnanthes Spp.			7	28	89		•
Caloneis ventricosa			Ē	. –			
Caloneis ventricosa va alpina	r.	7					
Caloneis ventricosa va subundulata	r.						
Caloneis ventricosa va truncatula	r.						
Caloneis lewisii							
Cocconeis placentula V	ar.				35		
lineata				•			
Cocconeis spp.		· · ·					
Cyclotella comta				28			
Cyclotella meneghinian	a				35		
Cyclotella spp.			22			83	
Cymbella minuta							
Cymbella minuta var. silesiaca							
Cymbella sinuata					18		
Cymbella spp.				7			
Fragilaria spp.						47	
Gomphonema acuminatum							
Gomphonema brebissonii							
Gomphonema parvulum							
Gomphonema subtile var sagitta	•						
Gomphonema spp.			14				
Gyrosigma acuminatum			7				
	(Continue	d)					

Species	Station 3 Month:	М	J	. J	A	S		
Meridion circulare					104	77 5		
Navicula angusta		50	28		124	35		
Navicula arvensis			_		53	415		
Navicula capitata			_ 7			<u> </u>		
Navicula cryptocephala		21	57	92	283	236		
Navicula menisculus var.								
upsaliensis								
Navicula minima								
Navicula pupula var.								
rectangularis			-7					
Navicula radiosa			/					
Navicula rhynchocephala		0.2	A 77 [°]	241	F 7	10		
Navicula spp.		92	4.5	241	53	12		
Neidium affine var.								
longiceps		170		20	1 0	75		
Nitzschia acicularis		1/0		20	10	12		
Nitzschia amphibia var.						12		
genuina					18	24		
Nitzschia palea					10	2 T		
NITZSCHIA SIGMOLABU			7	7	35			
Nitzschia sigma			/	/	55			
Nitzschia vernicularis		221	267	170	106	07		
Nitzschia spp.			205	1/0	100	0.5		
Pinnularia spp.		/						
Rhoicosphenia curvata								
Rhopalodia gibba								
Rhopalodia gibba var. ventricosa								
Stauroneis anceps								
Surirella angusta		7						
Surirella spp.								
Synedra delicatissima							•	
Synedra ulna		14		7				
Synedra spp.		14						
	(Continue	ed)						

Species	Station 3 Month:	М	J	J	A	S	
Tabellaria flocculosa							
Cryptophyta Cryptomonas marssonii Cryptomonas spp. Rhodomonas minuta		28	50	57	89 18		
Pyrrophyta Peridinium inconspicuum	1	14		7		83	
Euglenophyta Euglena proxima Euglena spp. Lepocinclis acuta Trachelomonas dybowskii Trachelomonas intermedi Trachelomonas volvocinc	a x	7	7 7	14		12	
No. of Species		18	23	27	23	21	
Total cells/ml		751	760	1871	1400	1512	

(Continued)

: M	J	J	А	S	
an a she a sa s		a da ang da ang ang ang ang ang ang ang ang ang an			Pilet-starting
		57		71	
11	7		24	12	
		57		35	
17		21	83		
			•		
n		128		142	
				12	
6		21		. 12	
	n 4 <u>M</u> 11 17 n	<u>M</u> J <u>11</u> 7 <i>n</i> <i>n</i>	<u>M J J</u> <u>11</u> 7 <u>57</u> <u>17</u> 21 <i>n</i> 128 <u>6</u> 21	<u>M J J A</u> <u>11 7 57 24</u> <u>57 17 21 83</u> <i>n</i> 128 <u>6 21</u>	<u>м J J A S</u> <u>11</u> 7 57 71 <u>11</u> 7 57 24 <u>12</u> <u>35</u> <u>17</u> 21 83 <u>17</u> 128 142 <u>12</u> <u>6</u> 21 12

(Continued)

л Л

Species	Station 4 Month:	М	.T	.J	А	S	
<u>Gyeeres</u>		· · ·				<u>_</u>	
Anghaena Spp							
Chroceccus di	snensus					+ 4 1	
Coelosphaerium	kuetzingianum						
Lyngbya epiphy	tica						
Merismopedia g	lauca						
Oscillatoria a	gardhii						
Oscillatoria m	innesotense					· ·	
Discillatoria s	pp.						
rnormaaam spp	•						
Chrysophyta							
Class Chrysophy	ceae						
Bicoeca spp.				64		12	
Chromulina spp	•			· ·			
Chrysochromuli	na parva	76					
Direbrycoccus ri	ujescens	50					
Dinobryon actes	rgens ulania	8					
Dinobryon socie	ale	0					
Epipyxis utrice	ulus			7		· -	
Kephyrion litte	orale						
Mallomonas akro	okomonas						
Mallomonas sp.				0.1	1.0		
Ochromonas sp.	7 • 7			21	12	10	
Pseudokephyrio	n pseudospirale				1.0	12	
Peeudokephyrio	n unaulalissimum				12		
Pseudopedinella	a erkensis				35		
Synura peterser	nii	11	•		20		
Class Xanthophy	ceae						
Tribonema spp.		11					

(Continued)

Species	Station 4 Month:	М	J	J	А	S	
Class Bacillariophyceae							
Amphipleura pellucida							
Achnanthes lanceolata					12		
Achnanthes linearis Var curta	•						
Achnanthes spp.					106		
Caloneis ventricosa		3		36			
Caloneis ventricosa var alpina	٠						
Caloneis ventricosa var subundulata	8			7			
Caloneis ventricosa var truncatula							
Caloneis Lewisii							
Cocconeis placentula va lineata	r.						
Cocconeis spp.							
Cuclotella comta							
Cuclotella meneahiniana			14		12		
Cuclotella Spp.			17	107	14		
Cumbella minuta				107			
Cymbella minuta var. silesiaca					12		
Cymbella sinuata							
Cymbella spp.				7			
Fragilaria spp.						12	
Gomphonema acuminatum		3				1.4	
Gomphonema brebissonii		3					
Gomphonema parvulum	· ·				12	*	
Gomphonema subtile var. sagitta					12	12	
Gomphonema spp.			7				
Gyrosigma acuminatum							

(Continued)

Species	Station 4 Month:	М	J	J	А	S	
Meridion circulare							
Navicula angusta		20			35	35	
Navicula arvensis				`	47		
Navicula capitata							
Navicula cryptocephala					35	59	
Navicula menisculus var	•						
upsaliensis						. .	
Navicula minima						94	
Navicula pupula var.					12		
rectangularis							
Navicula radiosa							
Navicula rhynchocephala					12		
Navicula spp.		11	71	85	12		
Neidium affine var.						12	
longiceps						170	
Nitzschia acicularis		53			342	130	
Nitzschia amphibia var.							
genuina					0.7	1 0	
Nitzschia palea					83	12	
Nitzschia sigmoidea							
Nitzschia sigma					35	12	
Nitzschia vernicularis			. –		12		
Nitzschia spp.		81	57	114	330	106	
Pinnularia spp.							
Rhoicosphenia curvata							
Rhopalodia gibba							
Rhopalodia gibba var.							
ventricosa					1.0		
Stauroneis anceps					12		
Surirella angusta							
Surirella spp.							
Synedra delicatissima							
Synedra ulna				_		12	
Synedra spp.				7			
	(Continue	d)					

Species	Station 4 Month:	Μ	J	J	А	S	
Tabellaria flocculosa		**********		7	an a		· · · · · · · · · · · · · · · · · · ·
Cryptophyta Cryptomonas marssonii Cryptomonas spp. Rhodomonas minuta		34		28 71	2 4 3 5		
Pyrrophyta Peridinium inconspicuum	1						• •
Euglenophyta Euglena proxima Euglena spp. Lepocinclis acuta		6	·			12	
Trachelomonas aypowskii Trachelomonas intermedi Trachelomonas volvocina	a	3	7				
				. *			
No. of Species	-	17	6	18	24	21	
Total cells/m1		317	163	845	1346	828	

(Continued)
Species Station 5 Month:	М	J	J	А	S	
Chlorophyta						
Actinastrum hantzschia						
Ankistrodesmus convolutus			128	53		
Ankistrodesmus falcatus		71		496	94	
Ankistrodesmus falcatus var.			36		47	
Chlamudomonas spp.				159		
Chlonella sp.						
Coelogstrum microporum	•				94	
Cosmarium humile						
Cosmarium regnellii var. minor						
Cosmarium acerosum						
Cosmarium acutum						
Cosmarium SDD.		71				
Dictyosphaerium ehrenbergianum			43	212		
Dictyosphaerium pulchellum						
Franceia droescheri						
Lagerheimia wratislavensis						
Oocustis borgei	•					
Oocustis crassa						
Oocystis parva						
Pandorina morum				212		
Pediastrum tetras						
Scenedesmus bijuga						
Scenedesmus denticulatus				71		•
Scenedesmus obliguus	/		7		24	
Scenedesmus serratus				212	94	•
Tetraedron minimum			121	35	24	
Tetraedron muticum						

(Continued)

Species	Station 5 Month:	М	J	J	А	S	
Cychonbyta							
Anghaona Spp			391	170			
Chrocecaul dienereus			001	1,0			
Cooloophaenium kuotainai	······································						
Lurahua epinhutiaa	x rux m					95	
Maniemon <i>edia</i> alayoa				57			
Decillatoria acandhii							
Oscillatonia minnesotens	0						
Oscillatoria spn	~						
Phormidium spp.							
Thormould opp.							
Chrysophyta							
Class Chrysophyceae							
Bicoeca spp.							
Chromulina spp.							
Chrysochromulina parva					1982		
Chrysococcus rufescens							
Dinobryon divergens							· .
Dinobryon sertularia						12	
Dinobryon sociale			•		177		
Epipyxis utriculus							
Kephyrion littorale							
Mallomonas akrokomonas							
Mallomonas sp.							
Ochromonas sp.							
Pseudokephyrion pseudosp	irale	99		7			
Pseudokephyrion undulati	ssimum						
Pseudokephyrion striatum							
Pseudopedinella erkensis							
Synura petersenii							
Class Xanthophyceae							
rribonema spp.							
	(Continu	ed)					

Species	Station 5 Month:	М	J	J	А	S	
Class Bacillariophyceae							
Amphipleura pellucida							
Achnanthes lanceolata						•	
curta	•						
Achnanthes spp.		43	36	21	18	12	
Caloneis ventricosa							
Caloneis ventricosa var alpina	•						
Caloneis ventricosa var	s						
subundulata							
Caloneis ventricosa var truncatula	•					12	
Caloneis lewisii							
Cocconeis placentula va lineata	r.						
Cocconeis spp.		1					
Cyclotella comta							
Cyclotella meneghiniana						47	
Cyclotella spp.				149	18		
Cymbella minuta							
Cymbella minuta var. silesiaca							
Cymbella sinuata							
Cymbella spp.			1			12	
Fragilaria spp.							
Gomphonema acuminatum							
Gomphonema brebissonii							
Gomphonema parvulum				21			
Gomphonema subtile var. sagitta							
Gompĥonema spp.			71				
Gyrosigma acuminatum			· 22				
	(Continue	ed)					

Species	Station 5 Month:	M	J	J	А	S	
Meridion circulare Navicula angusta			178	28	35	24	
Navicula arvensis				92		83	
Navicula capitata							
Navicula cryptocephala			107	142		201	
Navicula menisculus var upsaliensis							
Navicula minima							
Navicula pupula var.							
rectangularis							
Navicula radiosa			•				
Navicula rnynchocephala		2/11	71		18		
Navicula Spp.		2 4 1	/ 1		10		
Tongicene							
Nitzschia acicularis	· .				53	12	
Nitzschia amphibia var.							
qenuina							
Nitzschia palea						12	
Nitzschia sigmoidea					18		
Nitzschia sigma							
Nitzschia vernicularis							
Nitzschia spp.		185	391	99	53	35	
Pinnularia spp.							
Rhoicosphenia curvata							
Rhopalodia gibba		14					
Rhopalodia gibba var. ventricosa							
Stauroneis anceps							
Surirella angusta							
Surirella spp.			36				
Synedra delicatissima							
Synedra ulna							
Synedra spp.							

(Continued)

Species	Station 5 Month:	М	J	J	A	S	
Tabellaria flocculosa					,		
Cryptophyta Cryptomonas marssonii Cryptomonas spp. Rhodomonas minuta				28 156	18 407	- - -	
Pyrrophyta Peridinium inconspicuum				7		83	
Euglenophyta Euglena proxima Euglena spp. Lepocinclis acuta Trachelomonas dybowskii Trachelomonas intermedi Trachelomonas volvocina	a		284	7	•	24	
No. of Species		5	11	19	19	20	
Total cells/ml		582	1707	1319	4247	1041	

abundant group throughout the study period. The green algae increased in relative abundance from spring through summer and were most abundant in August. The blue-green and the golden-brown algae also increased seasonally and reached peak densities in July and August, respectively. Lesser groups such as the Euglenophyta and Cryptophyta reached their highest densities in the summer. They were most common at Stations 4 and 5.

Benthic Macroinvertebrates

Benthic macroinvertebrate data for lower Beaver Creek, the West Interceptor Ditch, and two feeder streams are summarized in Tables 9 to 15.

Lower Beaver Creek

Benthic macroinvertebrates in the restructured section of lower Beaver Creek (Figure 1), downstream from the North Starter Dyke, were sampled monthly from May to September in order to determine the extent of biological colonization in this new habitat.

Species Composition

The results (Table 9) indicate that this section was primarily colonized by oligochaetes (sludge worms) and chironomids (midges). In spring, only sludge worms were

May-Septem	May May	June	Jul	ly	Augu	st	September	
Taxa	No./m ² %	No./m²	% No./n	n ² %	No./m	1 ² 0	No./m	2 0
Oligochaeta	433 <u>100.00</u>	50 <u>3</u>	.03 450	96.43	550	80.48	650	<u>99.00</u>
Diptera Chironomidae		96	.97	3.57		19.52		1.00
Chironomidae pupae		17 1	.01					
Cladotanytarsus sp.		67 4. 000 F4	.04		۳ 0	7 7 7		
Orthocladijnae		900 54			50 17	7.32		
Orthocladius sp. A					50	7.32		
Orthocladius sp. B		550 33	. 33					
Procladius sp.		33 2	. 02		ľ7	2.44		
Tanytarsus sp.			17	3.57				
Ceratopogonidae		17 1	01				17	1 00
Empididae Sp.		17 1 17 1	.01				1/	1.00
Smpraraaco -r.		1 / 1	• • • *					
Total No. of Taxa	1	8	2		5		2	
Total No. of								
Organisms/m²	433	1651	467		684		1667	
Shannon-Weaver Specie	S							
Diversity Index d		1.66			1.	07		
Equitability e		0.67			0.	60		
Biomass cc/m ²	not measurable	not measurable	1.	67	1.	67	6.	67

TABLE 9. Benthic macroinvertebrates collected from lower Beaver Creek (Station 1), May-September, 1977.

May No./m	2 %	Jun No./m	1e 1 ² %	Jul No./m	у 2 <u>о</u>	Augu No./m	st 2 %	Septe No./m	mber
18	12.67	54	3.38	4	0.37	11	0.38		
4	2.82								
						4	0.14		
				18	$\frac{1.66}{1.66}$	4	$\frac{0.14}{0.14}$		
				4	$\frac{0.37}{0.37}$	29	$\frac{1.01}{1.01}$	400	$\frac{17.34}{17.34}$
	2.82	129	$\frac{11.01}{8.07}$	158	$\frac{17.62}{14.58}$	470 4101 488 4	$ \begin{array}{r} 41.74 \\ 16.39 \\ 0.14 \\ 3.52 \\ 17.01 \\ 0.14 \\ 0.14 $	50 136 17 50	$ \begin{array}{r} 10.98 \\ \hline 2.17 \\ 5.90 \\ 0.74 \\ 2.17 \\ \end{array} $
4	2.82	22 25	$1.38 \\ 1.56$	22 11	2.03 1.01	4 122 4	$0.14 \\ 4.26 \\ 0.14$		
" sp.		* a		4 4 4 14	$ \begin{array}{r} 2.40 \\ \overline{).37} \\ 0.37 \\ 0.37 \\ 1.29 \end{array} $	22	$\frac{1.64}{0.77}$		
	May No./m 18 4 4	May No./m ² % 18 <u>12.67</u> 4 <u>2.82</u> 2.82 4 2.82	May Jun No./m ² % No./m 18 <u>12.67</u> 54 4 <u>2.82</u> 129 4 2.82 22 4 2.82 25	May June No./m ² % No./m ² % 18 <u>12.67</u> 54 <u>3.38</u> 4 <u>2.82</u> <u>11.01</u> 129 8.07 4 2.82 <u>22</u> 1.38 4 2.82 <u>25</u> 1.56	May No./m² June No./m² Jul No./m 18 12.67 54 3.38 4 4 2.82 11.01 18 2.82 11.01 158 129 8.07 158 4 2.82 22 1.38 22 4 2.82 25 1.56 11 * 9.8.07 158 14 * 2.82 1.38 22 4 2.82 25 1.56 11	May No./m ² June No./m ² July No./m ² 18 12.67 54 3.38 4 0.37 4 2.82 1 1 1 66 18 1.66 18 1.66 4 2.82 11.01 1 1 2.82 11.01 158 17.62 129 8.07 158 17.62 4 2.82 25 1.56 11 1.01 4 2.82 25 1.56 11 1.01 4 2.82 25 1.56 11 1.01 4 0.37 4 0.37 4 0.37 4 0.37 1.29 1.29 1.29 1.29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 10. Benthic macroinvertebrates collected from Station 2 of the West Interceptor Ditch, May-September, 1977.

(Continued)

TABLE	10.	Continued.

Taxa	May No./m² %	June No./m² %	July No./m² %	August No./m² %	September No./m² %
Hemiptera Corixidae sp.		$4 \frac{0.25}{0.25}$	4 $\frac{0.37}{0.37}$	$72 \frac{2.51}{2.51}$	$17 \frac{0.74}{0.74}$
Coleoptera Dytiscidae sp. Elmidae sp.		$7 \qquad \frac{0.44}{0.44}$	$7 \frac{0.65}{0.65}$	$\begin{array}{cccc} & 1.01 \\ & 0.87 \\ & 0.14 \end{array}$	
Diptera	45.78	56.66	74.16	49.93	70.94
Chironomidae Chironomidae pupae Ablabesmyia sp. Chironomus sp.	22 15.49	79 4.94	$\begin{array}{cccc} 118 & 10.89 \\ 11 & 1.01 \end{array}$	43 1.50 147 5.12	
Cladotanytarsus sp. Corynoneura sp. Cricotopus sp. Glyptotendipes sp.	14 9.86	36 2.25 86 5.38	7 0.65	$\begin{array}{ccc} 36 & 1.25 \\ 14 & 0.49 \end{array}$	
Hydrobaenus sp. Micropsectra sp. Orthocladiinae sp.		7 0.44	$\begin{array}{ccc} 11 & 1.01 \\ 7 & 0.65 \end{array}$	4 0.14	167 7.24
Orthocladius sp. A Orthocladius sp. B Polypedilum sp.	11 7.75	7 0.44	11 1.01	$\begin{array}{cccc} 75 & 2.61 \\ 183 & 6.38 \\ 83 & 2.89 \end{array}$	$\begin{array}{cccc} 117 & 5.08 \\ 67 & 2.91 \\ 67 & 2.01 \end{array}$
Procladius Sp. Psectrocladius Sp. Rheotanytarsus Sp. Spaniotoma Sp.	7 4.93	4 0.25	7 0.65 29 2.67	$\begin{array}{cccc} 36 & 1.25 \\ 7 & 0.24 \\ 43 & 1.50 \end{array}$	584 25.33
Tanytarsus sp. Thienemanniella sp. Thienemannemyia sp.		32 2.00	115 10.61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 4.34 67 2.91
Ceratopogonidae Bezzia group Culicinae		4 0.25		115 4.01	433 18.79
Dollchopodidae		4 0.25		11 0.38	

(Continued)

TABLE 10. Continued.

Taxa	May No./m ² %		Jun No./m	June No./m² %		July No./m² %		August No./m² %		September No./m ² %	
Ephydridae Ephydra sp. Anthomyiidae Limnophora sp. Psychodidae sp. Simuliidae	4	2.82	7 4	0.44							
<i>Simulium</i> sp. Tipulidae	7	4.93	632 4	39.52 0.25	488	45.01	22	0.77	33	1.43	
Mollusca <i>Gyraulus</i> sp. <i>Lymnaea</i> sp. <i>Physa</i> sp.	4 4 7	$\frac{35.91}{2.82}$ 33.09	366 29 57	$ \begin{array}{r} 28.26 \\ 22.89 \\ 1.81 \\ 3.56 \end{array} $	18 4 4	$\frac{2.40}{1.66}$ 0.37 0.37	32 7 4	$\frac{1.50}{1.12}$ 0.24 0.14			
Total No. of Taxa	11		22		25		38		15		
Total No. Organisms/m ²	142		1599		1084		2869		2305		
Shannon-Weaver Species Diversity Index d	2.9	3	2.	86	2.	82	3.9	0	3.2	0	
Equitability e	1.0	0	0.	4 5	0.	40	0.5	8	0.8	7	
Biomass cc/m ²	6.1	0	15.	43	6.	82	17.2	22	21.6	7	

Taxa	May No./m² %	Jun No./m	e 2 %	Jul No./m	У 2 о _д	Augu No./m	ist 1 ² %	Septe No./m	mber %
Oligochaeta								50	1.14
Nematoda				17	2.17				
Hirudinea <i>Helobdella</i> sp.						17	$\frac{0.22}{0.22}$		
Amphipoda Hyalella azteca						400	$\frac{5.14}{5.14}$	283	$\frac{6.43}{6.43}$
Ephemeroptera Bactis Sp. B			0.15			17	$\frac{28.05}{0.22}$		18.57
Caenis sp. Centroptilum		17	0.15	·		2100 67	26.97 0.86	800 17	$\begin{array}{c} 18.18\\0.39\end{array}$
Odonata Coenagrionidae sp.						17	$\frac{0.22}{0.22}$		
Hemiptera Corixidae sp.						33	$\frac{0.42}{0.42}$	33	$\frac{0.75}{0.75}$
Megaloptera <i>Sialis</i> sp.						17	$\frac{0.22}{0.22}$		
Diptera Chironomidae	100.00	<u>)</u>	99.85		97.83		59.94		68.56
Brillia sp. Chironomus sp. Cladotanutarsus sp.	50 59 52	4034	35.33			250	3.21	233 17	5.28 0.39
Cryptochironomus sp. Glyptotendipes sp.			20.00	83	10.59	533 67	6.85 0.86	50	1.14

TABLE 11.	Benthic macroinvertebrates collected from Station 3 of the West Interceptor
	Ditch, May-September, 1977.

and the second secon

(Continued)

•

Taxa	May No./m²	2 0	June No./m ²	2 %	July No./m	У 2. о _с	Augu No./m	st 2 %	Septe No./m	mber
Harnischia sp. Monodiamesa sp.			183	1.60			150	$1.93 \\ 1.07$		
Orthocladius sp. A	17	20.24	183	1.60					<i></i>	1 50
Procladius sp. B			2350	20 58			1184	15 21	57	1.52 7.57
Psectrocladius sp.			183	1.60	250	31.89	1104	10.01	1467	33.33
Rheotanytarsus sp.					167	21.30	683	8.76		
Stictochironomus sp.	1 7	20 24	2067	10 11	1 1 17	14 02	83	1.07	67	1.52
Tanytarsus Sp. Thienemannemuia Sp	1 /	20.24	2007	18.11	11/	14.92	450	5.78 1.07	1 /	0.39
Ceratopogonidae							0.5	1.07		
Bezzia sp.					17	2.17	1100	14.13	767	17.42
Dolichopodidae			17	0.15	83	10.59				
Simulium sp.			17	0.15	50	6.37				
Tipulidae			17	0.15	50	0.07				
Mollusca							217	$\frac{5.79}{2.70}$	117	$\frac{4.55}{2.66}$
Lumnaea Sp.							217 150	2.79	117	1 89
Physa sp.							83	1.07	0.5	1.05
	7				0				1.4	
lotal No. of laxa	5		11		8		ΖΖ		16	
Total No. Organisms/m ²	84		11418		784		7784		4401	
Shannon-Weaver Species				,						
Diversity Index d	1.3	37	2.1	26	2.	59	3.	38	2.	90
Equitability e	0.6	50	0.	5 5	1.	00	0.	68	0.	69
Biomass cc/m²	not measur	: rable	26.0	57	1.	67	40.	00	21.	67

Taxa	1 t	May No./m ²	2 0	Jun No./m	e 2 %	Jul No./m	y 2 %	Augu No./m	st ²%	Septe No./m	ember 1 ² %
Oligochaeta		417	6.12	133	2.34	17	0.71	240	10.73	267	19.76
Nematoda		17	0.25	33	0.58	33	1.38			17	1.26
Hirudinea Helobdella sp. Placobdella sp.		50 50	$\frac{1.48}{0.74}$	17	$\frac{0.30}{0.30}$			18	$\frac{0.81}{0.81}$		
Amphipoda Hyalella azteca								4	$\frac{0.18}{0.18}$		
Ephemeroptera Baetis sp. A Caenis sp. Centroptilum sp.				33	$\frac{0.58}{0.58}$			316 4 183	$ \begin{array}{r} 22.49 \\ 14.13 \\ 0.18 \\ 8.18 \end{array} $	100	<u>7.40</u> 7.40
Trichoptera Cheumatopsyche sp Hydropsyche sloss	p. sonae	3						7 4	$ \begin{array}{r} 0.49 \\ \overline{0.31} \\ 0.18 \end{array} $		
Coleoptera Halipus sp.			•••* • • •							17	$\frac{1.26}{1.26}$
Diptera			91.41		96.20		97.91		65.30		67.88
Ablabesmyia sp. Brillia sp. Chironomus sp.	n	1517	22 31	67 233	1.18	33 67 183	1.38 2.79 7.62	32	1.43	17	1.26
Cricotopus sp. Cricotopus trifa Cryptochironomus	sciat	tus	22.31	300 100	5.28 1.76	167	6.96	492 32 18	$21.99 \\ 1.43 \\ 0.81$		

TABLE 12. Benthic macroinvertebrates collected from Station 4 of the West Interceptor Ditch, May-September, 1977.

(Continued)

	May	•	Jun	e	Jul	y	Augu	st	Septer	nber
Taxa	No./m	2 0	No./m		<u>No./m</u>	2 0	No./m	2 0	<u>No./m</u>	2 0 0
Endochironomus sp. Harnischia Sp.	83	1.22			17 467	$0.71 \\ 19.44$				
Micropsectra sp.	850	12.50	67	1.18			18	0.81		
Orthocladius sp. A	200	2.94	367	6.46						
Orthocladius sp. B	1400	20.59	533	9.38	50	2.08	18	0.81		
Polypedilum sp.			300	5.28	250	10.41	0.7			70 05
Psectrocladius sp.	283	4.16			5.0	2 0 0	93	4.16	417	30.87
Rheotanytarsus sp.					50	2.08	165	7.38		
Stictochironomus sp.	1 (5 0	24.26	7 7	0 70	100	4.1/	107	0 01	77	2 1 1
Tanytarsus sp.	1650	24.20	1/	0.30	55	1.38	197	8.81	33	2.44
	77	0 40			ΓO	2 00	7 5 0	16 06	450	7771
Bezzia group Dolichopodidao	33	0.49	17	0 30	50	2.00	228	10.00	450	22.21
Simuliidae			1/	0.50						
Simulium sn	200	2 94	3467	60 98	884	36 81	32	1 4 3		
Tabanidae	200	4.54	5407	00.50	004	50.01	54	1.70		
Tabanus sp.		0					4	0.18		
							•	0,170		
Mollusca		0.74								2.44
<i>Gyraulus</i> sp.	17	0.25								
Lymnaea sp.	33	0.49							33	2.44
							• •		•	
Total No. of Taxa	15		15		15		20		9	
Total No. Organisms/m ²	6800		5684		2401		2236		1351	
Shannon-Weaver Species										
Diversity Index d	2.	86	2.	19	2.	92	3.	30	2.	29
Fauitability o	0	67	0	4.0	0	77	0	70	0	79
Equitability e	0.	07	0.	40	0.	15	υ.	70	0.	70
Biomass cc/m ²	11.	67	21.	67	8.	34	4.	31	5.	00

Taxa	May No./m	2 0	Jun No./m	.e 1 ² %	Jul No./m	y 1 ² %	Augu No./m	st 2 %	Septe No./m	mber
Oligochaeta	167	3.26	83	1.04			50	3.61	50	2.44
Nematoda	1050	20.52	100	1.25	33	0.42			33	1.61
Ephemeroptera <i>Caenis</i> sp.	·				17	$\frac{0.21}{0.21}$	367	$\frac{26.52}{26.52}$	1117	$\frac{54.48}{54.48}$
Hemiptera Corixidae sp.			:	•	33	$\frac{0.42}{0.42}$	17	$\frac{1.23}{1.23}$		
Coleoptera Dytiscidae sp.			33	$\frac{0.41}{0.41}$						
Diptera Chironomidae		76.22		97.30		90.84		18.05		32.54
Ablabesmyia sp. Chironomus sp. Cladotanytarsus sp. Cricotopus sp.	767	14.99	$5201\\383\\17$	$65.16 \\ 4.80 \\ 0.21$	167 867	$\begin{array}{c} 2.14\\ 11.12 \end{array}$			33	1.61
Cryptochironomus sp. Micropsectra sp. Orthocladius sp. A Orthocladius sp. B	$133 \\ 250 \\ 667 \\ 1267$	2.60 4.88 13.03 24.76	$\begin{array}{c} 100\\ 17\end{array}$	1.25 0.21	$333 \\ 167 \\ 117$	4.27 2.14 1.50				
Procladius sp. Psectrocladius sp. Rheotanytarsus sp.	67	1.31	633 450	7.93 5.64	583 483 617	$7.47 \\ 6.19 \\ 7.91 $	50 33	3.61 2.38	$\begin{array}{c}100\\200\end{array}$	4.88 9.75
<i>Tanypus</i> sp. <i>Tanytarsus</i> sp. Ceratopogonidae	117	2.29	900	11.28	$\begin{array}{r} 350\\ 3301 \end{array}$	4.49 42.33	50	3.61	150	7.32
Bezzia group Dolichopodidae	433	8.46			67	0.86	67	4.84	67 17	3.27 0.83

TABLE 13. Benthic macroinvertebrates collected from Station 5 of the West Interceptor Ditch, May-September, 1977.

(Continued)

Taxa	May No./m²	0	June No./m²	0	July No./m²	<u>%</u>	Augus No./m²	st %	Septem No./m²	ber %
Psychodidae Simuliidae	167	7 26	7 7	0.41	<u></u>				17 17	0.83
Stratiomyidae Tabanidae	107	5.20	33	0.41					33	1.61
Tabanus sp. Tipulidae	33	0.64	33	0.41	33	0.42	50	3.61	33	1.61
Mollusca <i>Lymnaea</i> sp.					633	$\frac{8.11}{8.11}$	700	$\frac{50.59}{50.59}$	183	$\frac{8.93}{8.93}$
Total No. of Taxa	12		13		16		9		14	
Total No./m²	5118		7983		7801		1384		2050	
Shannon-Weaver Species Diversity Index d	2.9	7	1.8	6	2.8	9	2.1	L1	2.4	5
Equitability e	0.9	2	0.3	8	0.6	3	0.0	57	0.5	0
Biomass cc/m ²	13.3	4	38.3	4	25.0	0	11.0	57	18.3	4

	June				
Taxa	No./m ²	\$ 6			
Oligochaeta	111	28.45			
Amphipoda Hyalella azteca	14	$\frac{3.67}{3.67}$			
Odonata Somatochlora sp.	4	$\frac{0.92}{0.92}$			
Diptera Chironomidae Cricotopus sp. Micropsectra sp. Orthocladius sp. A Orthocladius sp. B Psectrocladius sp. Rheotanytarsus sp. Tanytarsus sp. Simuliidae Simulium sp.	43 11 47 11 11 65 18 57	$ \begin{array}{r} 66.96 \\ 11.01 \\ 2.75 \\ 11.92 \\ 2.75 \\ 2.75 \\ 16.51 \\ 4.59 \\ 14.68 \\ \end{array} $			
Total No. of Taxa	11				
Total No. of Organisms/m ²	392				
Shannon-Weaver Species Diversity Index d	2.94				
Equitability e	1.00				
Biomass cc/m ²	1.44				

TABLE	14.	Benthic macroinvertebrates collected from Station 6	
		of Feeder Creek #2, June, 1977.	

Таха	June No./m²	8
Oligochaeta	140	11.75
Hirudinea <i>Helobdella</i> sp.	4	$\frac{0.30}{0.30}$
Ephemeroptera Baetis sp. A Paraleptophlebia sp.	2 2 4	$\frac{2.11}{1.81}$ 0.30
Odonata Lestes sp. Somatochlora sp.	4 11	$ \frac{1.20}{0.30} \\ 0.90 $
Trichoptera Limnephilus sp.	4 7	$\frac{3.61}{3.61}$
Diptera		78.62
Cricotopus sp. Orthocladius sp. B Polypedilum sp. Rheotanytarsus sp. Tanytarsus sp.	47 4 7 18 7	3.610.300.601.510.60
Bezzia group Simuliidae	7	0.60
Mollusca	830	2.41
Gyraulus sp. Physa sp. Sphaerium sp.	2 2 4 4	$ \frac{1.81}{1.81} \\ 0.30 \\ 0.30 $
Total No. of Taxa	17	
Total No. of Organisms/m ²	1192	
Shannon-Weaver Species Diversity Index d	1.70	
Equitability e	0.23	
Biomass cc/m ²	8.61	

TABLE	15.	Benthic macroinvertebrates collected from Station 7
		of Feeder Creek #3, June, 1977.

found, followed by a rapid development of midge populations in June. The dominant midge genera were *Cricotopus* and *Orthocladius*, which together constituted about 85% of the benthic community in June. The chironomid populations declined rapidly thereafter and the summer (July-August) and fall (September) faunas were again dominated by sludge worms.

Species Diversity

Only 10 benthic macroinvertebrate taxa were found, and species diversity (\bar{d}) and equitability (e) were low throughout the study period.

The Shannon-Weaver species diversity indices (d) ranged from zero in May to 1.66 in June. The low and fluctuating d values probably indicate an unstable benthic community at the lower Beaver Creek study site (Station 1).

Standing Crop

Total density of the benthos was lowest in May $(433/m^2)$ and highest in June $(1651/m^2)$, and volume of biomass ranged from small, unmeasurable amounts in May and June to 6.67 cc/m^2 in September.

Biological Colonization

The rate of benthos colonization of this section of

lower Beaver Creek was determined using a method similar to that of Dickson and Cairns (1972). The results are summarized in Table 16.

Initially, in spring and early summer, the colonization rate was high and the extinction rate was low. From midsummer to fall, however, the colonization and extinction rates fluctuated greatly. This instability was partly caused by the emergence of chironomids with relatively short larval life spans. Also, the relatively homogeneous mud substrate at Station 1 did not offer the habitat diversity necessary to maintain a complex benthic community.

West Interceptor Ditch

Species Composition

A total of 68 benthic macroinvertebrate taxa was found in the West Interceptor Ditch (Tables 10-13). Of these, over 50% were dipterans, about 13% were mayflies (Ephemeroptera), and about 10% were caddisflies (Trichoptera). Considerable differences in species composition and dominance existed between the four sampling stations (Stations 2, 3, 4, and 5) since these stations were initially selected because they represented distinctly different substrate types within the West Interceptor Ditch (Table 1). Station 2 had an artificial stony substrate, whereas Stations 3, 4, and 5 had mud substrates.

Days	Total Number of Species	New Species	Recurring Species	Species Eliminated	Colonization Rate (species/day)	Extinction Rate (species/day)
l (May)	1	1	0	0	1.0	0
35 (June)	7	6	0	0	0.17	0
64 (July)	2	1	0	6	0.03	0.20
103 (August)	5	2	2	1	0.10	0.02
140 (September)	2	0	1	4	0.02	0.10
						· · ·

TABLE 16. Total number of benthic macroinvertebrate species collected, number of new species, number of recurring species, and number of species eliminated on each sampling day at lower Beaver Creek, May-September, 1977.

Station 4 differed from Station 3 in having a higher percentage composition of gravels. Station 5 can almost be considered as a temporary pool, since most of the time it was shallow, lentic, and barely connected with the rest of the ditch. To compare the difference in species dominance at the four stations, Ulfstrand's method of dominance analysis was used (Ulfstrand, 1968). Based on percentage composition, species (or taxa) were classified with respect to their dominance in the community. Such an analysis is useful in gaining an overall impression of the benthic community composition at a particular station. Five categories of abundance were designated on the basis of percentage compositions:

- 1) Dominant Taxon (D)--at least 25%;
- Sub-dominant Taxon (S)--at least 10%, but less than 25%;
- 3) Common Taxon (C)--at least 1%, but less than 10%;
- 4) Rare Taxon (R)--at least 0.1%, but less than 1%;
- 5) Incidental Taxon (I)--less than 0.1%.

To obtain a general impression of the relative dominance of the species collected, dominance indices were calculated by assigning arbitrary numerical values to each of the five categories:

D = 16 S = 8 C = 4 R = 2I = 1

By adding up the values for each taxon at a particular station for the entire study period, an overall indication of the relative dominance of the taxon could be determined. Based on these values, the benthos at Stations 2-5 were grouped into dominance classes (Tables 17 to 20).

The results indicated that at Station 2 (Table 17) the dominant benthos were the blackflies Simulium, the mayfly Baetis sp. A, the midges Psectrocladius and Tanytarsus, and the snails Gyraulus and Lymnaea. There were more gravel and current associated taxa found at Station 2 (i.e., most of the mayflies and caddisflies). At Station 3 (Table 18) the dominants were mostly substraterelated organisms such as the pond mayfly Caenis, the midges Chironomus, Psectrocladius, and Tanytarsus. The carnivorous midge Procladius was common in the summer and the biting midge Bezzia was more abundant in late summer and fall. The silt and gravel substrate at Station 4 produced an association of dominants very similar to that at Station 3 (Table 19) with the exception that Simulium

TABLE 17. Grouping of the benthic macroinvertebrate taxa from Station 2 of the West Interceptor Ditch in dominance classes based on their dominance index values.

$\frac{1 \operatorname{ndex}}{42}$	24-20	16-10	8 - 2		
Diptera Simulium	Ephemeroptera Baetis sp. A Diptera Psectrocladius Tanytarsus Mollusca Gyraulus Lymnaea	Oligochaeta Amphipoda Hyalella azteca Ephemeroptera Centroptilum Paraleptophlebia Diptera Ablabesmyia Chironomus Cladotanytarsus Orthocladius A Polypedilum Rheotanytarsus Bezzia	Nematoda Turbellaria Hirudinea Helobdella Placobdella Ephemeroptera Baetis sp. B Caenis Callibaetis Ephemera Heptagenia Paramaletus Stenonema Trichoptera Arctopsyche Cheumatopsyche Glossosomatidae Hydropsyche bifida Hydropsyche "Genus A" sp. Hydroptila Hemiptera Corixidae	Coleoptera Dytiscidae Elmidae Diptera Corynoneura Cricotopus Glyptotendipes Hydrobaenus Micropsectra Orthocladius sp. Procladius Spaniotoma Thienemanniella Thienemannemyia Culicinae Dolichopodidae Ephydra Limnophora Psychodidae Tipulidae Mollusca Physa	В

TABLE 18. Grouping of the benthic macroinvertebrate taxa from Station 3 of the West Interceptor Ditch in dominance classes based on their dominance index values.

<u>Index</u> :				
36-30	26-20	16-10	8 - 2	
Diptera Psectrocladius Tanytarsus	Ephemeroptera Caenis Diptera Chironomus Cladotanytarsus Procladius Bezzia	Diptera Cryptochironomus Orthocladius sp.A Rheotanytarsus Dolichopodidae	Oligochaeta Nematoda Hirudinea Helobdella Amphipoda Hyalella azteca Ephemeroptera Baetis sp. B Centroptilum Odonata Coenagrionidae Hemiptera Corixidae	Mollusca Gyraulus Lymnaea Physa
	• • • •		Sialis Diptera Brillia Glyptotendipes Harnischia Monodiamesa Orthocladius Sp. Sfictochironomus Thiennemannemyia Simulium Tipulidae	В

.

TABLE 19. Grouping of the benthic macroinvertebrate taxa from Station 4 of the West Interceptor Ditch in dominance classes based on their dominance index values.

Index:

Diptera Oligochaeta Tanytarsus Diptera Diptera Psectrocladius Simulium Psectrocladius Psectrocladius Psectrocladius Simulium Psectrocladius Psectrocladius Placobdella Diptera Baetis sp. A Diptera Cladotanytarsus Cricotopus Cryptochironomus Harnischia Micropsectra Orthocladius sp. B Polypedilum Picture Coleoptera Hirudinea Hirudinea Hirudinea Placobdella Museropsectra Cheumatopsyche Hydropsyche slossonae Coleoptera Hirudinea Placobdella Metala asteca Centroptilum Trichoptera Cheumatopsyche Hydropsyche slossonae Coleoptera Halipus Diptera Ablabesmyia	40-30	26-24	18-10	8 - 2
Brillia Chironomus Cricotopus trifasciatus Endochironomus Orthocladius sp. A Rheotanytarsus Stictochironomus Dolichopodidae Tabanus Mollusca Gyraulus Lymnaea	Diptera Tanytarsus Bezzia Simulium	Oligochaeta Diptera Psectrocladius	Nematoda Ephemeroptera Baetis sp. A Diptera Cladotanytarsus Cricotopus Cryptochironomus Harnischia Micropsectra Orthocladius sp. B Polypedilum	Hirudinea Helobdella Placobdella Amphipoda Hyalella asteca Ephemeroptera Caenis Centroptilum Trichoptera Cheumatopsyche Hydropsyche slossonae Coleoptera Halipus Diptera Ablabesmyia Brillia Chironomus Cricotopus trifasciatus Endochironomus Orthocladius sp. A Rheotanytarsus Stictochironomus Dolichopodidae Tabanus Mollusca Gyraulus Lymnaea

TABLE 20. Grouping of the benthic macroinvertebrate taxa from Station 5 of the West Interceptor Ditch in dominance classes based on their dominance index value.

Index:

36-34	28-24	18-12	8-2
Ephemeroptera <i>Caenis</i> Diptera <i>Tanytarsus</i>	Diptera Chironomus Orthocladius sp. B Psectrocladius Mollusca Limnaea	Oligochaeta Nematoda Diptera Cladotanytarsus Orthocladius sp. A Procladius Bezzia Tabanus	Hemiptera Corixidae Coleoptera Dytiscidae Diptera Ablabesmyia Cricotopus Cryptochironomus Micropsectra Rheotanytarsus Tanypus Dolichopodidae Simulium Stratiomyidae Tipulidae

was more abundant at Station 4. The spring-summer faunas at Station 5 were mainly dominated by midges such as *Chironomus*, *Tanytarsus*, and *Orthocladius*. In late summer to fall, the benthic fauna was dominated by the mayfly *Caenis* and, to a lesser extent, by the midges *Psectrocladius* and *Procladius* (Table 20).

Species Diversity

A total of 55 benthic macroinvertebrate taxa was collected at Station 2, 32 at Station 3, 34 at Station 4, and 26 at Station 5 (Figure 7). Community diversity and evenness (d and e) followed a similar trend with Station 2 having the most, and Station 5 the least diversified community (Figure 7). Community diversities at these stations are clearly related to the nature of the substrate. The stability and sheltered crevices offered by the stony substratum at Station 2 were probably the main factors that led to the greater complexity and diversity of the benthic community (Hynes, 1970).

Seasonal variations in taxa and community diversities (Figure 8) indicate that, except for Station 5, August was the month of greatest diversity at all stations, preceded and followed by periods of low diversities in spring and fall.

FIGURE 7.

Comparison of the total number of taxa collected (t), mean Shannon-Weaver Species Diversity Index (d), and mean Equitability (e) for Stations 2-5 at the West Interceptor Ditch.

FIGURE 8. Seasonal variations in the number of benthic macroinvertebrate taxa (t) and the Shannon-Weaver Species Diversity Index (d) at Stations 2-5 of the West Interceptor Ditch, May-September, 1977.

Standing Crop

Benthos standing crop production at the ditch was measured in terms of both density (number per m²) and total volume (cc). Table 21 compares benthos standing crop data for the West Interceptor Ditch.

The data indicate that mean density was highest at Station 3 and lowest at Station 2, whereas mean volume was highest at Station 5 and lowest at Station 4. On the whole, production seemed to be higher at the stations with mud and silt substrates (Stations 3, 4, 5) and lower at the station with stony substrate (Station 2). The higher densities and volumes at Stations 3 and 5 were mainly due to the large number of *Chironomus* larvae present in the early summer. It therefore appeared that muddy substrata may be low in taxonomic diversity although not in biomass.

Biological Colonization

One of the objectives of this study was to determine the extent of biological colonization of the West Interceptor Ditch since its completion about one year ago (May, 1976). Most studies of biological colonization indicate that, initially, new habitats are rapidly colonized by new species. At the same time, those species which become established have a low extinction rate (Paterson and Fernando, 1969; Williams and Hynes, 1976). As the new habitat matures, the

Station		Mean Density (No./m ²)	Mean Volume (cc)
2		1599.0 (10.62%)	13.44 (21.34%)
3		4894.2 (32.50%)	18.00 (28.58%)
4	- 	3694.4 (24.53%)	10.19 (16.18%)
5		4867.2 (32.33%)	21.33 (33.87%)

TABLE	21.	Mean densities and mean volumes of benthic
		macroinvertebrates collected from Stations 2-5
	•	of the West Interceptor Ditch, May-September, 1977.

colonization rate decreases and extinction rate increases until an equilibrium is reached (MacArthur and Wilson, 1963). The present study was conducted at least one year after the ditch was constructed, however, and we are therefore not examining the biological colonization of a new and barren habitat. Instead, the results of this study depict the seasonal colonization and succession of benthic invertebrates in a small artificial waterbody. We have, in fact, observed the end result of various selection pressures exerted by the environments of a one-year old channel on its invertebrate inhabitants and colonizers.

.

Despite the fact that the West Interceptor Ditch is not a new, barren habitat, we have nonetheless determined colonization and extinction rates for benthic macroinvertebrates in a manner similar to that of Dickson and Cairns (1972). The results are summarized in Table 22 and Figure 9. The results indicate that the rate of colonization increased from spring to summer and decreased rapidly at the onset of Conversely, extinction rate was low initially and fa11. increased rapidly in the fall. Most of the benthos in the ditch are univoltine and have a fast life cycle (Hynes, 1970) and this probably accounted for the observed pattern of colonization and extinction. Theoretically, the benthic community at the West Interceptor Ditch reached a dynamic equilibrium in late summer or early fall when its rates of

TABLE 22.	Total number of benthic macroinvertebrate species collected, number of new	
	species, number of recurring species, and number of species eliminated on	
	each sampling day at the West Interceptor Ditch, May-September, 1977.	

동신 이상 방법이 같다. 이 명령이 이상 방법이 있는 것 같은 것은 방법이 없는 것이 것 못한 것을 했다.

Days	Total Number of Species	New Species	Recurring Species	Species Eliminated	Colonization Rate (species/day)	Extinction Rate (species/day)
l (May)	20	-	-	-	-	_ *
35 (June)	31	16	0	5	0.46	0.14
64 (July)	39	13	4	9	0.59	0.31
103 (August)	50	17	4	10	0.54	0.26
140 (September)	25	3	2	30	0.14	0.81

FIGURE 9. Colonization and extinction rates (taxa/day) of the benthic macroinvertebrates at the West Interceptor Ditch (Stations 2-5), May-September, 1977.

colonization and extinction were equal.

Feeder Creeks

Benthic data for the two feeder creeks are summarized in Tables 14 and 15.

Species Composition

Twenty-one benthic macroinvertebrate taxa were collected in June. Both streams were dominated by dipterans, oligochaetes, and several other benthic taxa that are characteristic of slow brownwater streams, e.g., *Paraleptophlebia*, *Lestes*, and *Limnephilus*. Feeder Creek #2 had a higher percentage composition of oligochaetes than Feeder Creek #3, and the dominant dipteran species were *Rheotanytarsus* and *Simulium*. The benthic community at Feeder Creek #3 was dominated by *Simulium* (71%) and oligochaetes (11%).

Species Diversity

The mean species diversity index (\bar{d}) and equitability (e) at the feeder creeks were 2.32 (1.70-2.94) and 0.61 (0.23-1.00), respectively. In comparison, for the same period (June), mean species diversity index (\bar{d}) and equitability (e) at the West Interceptor Ditch were 2.29 (1.86-2.86), and 0.44 (0.38-0.55), respectively. This suggests that, for the month of June, the feeder creeks and

the ditch were highly comparable in terms of their benthic community diversities and stabilities.

Standing Crop

The data suggest that, for the month of June, benthos production in the feeder creeks was lower than that of the West Interceptor Ditch. Mean density and mean volume of the benthos in the feeder creeks were $792/m^2$ (392-1192) and 5.02 cc/m² (1.44-8.61), respectively. In comparison, mean density of the benthos in the ditch was $6671/m^2$ (1599-11418) and mean volume was 25.52 cc/m² (15.43-38.43).

Potential Colonizers

Invertebrates from the feeder creeks are potential colonizers of the ditch. Except for two benthic taxa *(Somatochlora* and *Limnephilus)*, all benthos found in the feeder creeks were also collected from the ditch. It can be anticipated that, as the habitats of the ditch mature, the benthic communities of the feeder creeks and the ditch will become more alike (Williams and Hynes, 1976).

Invertebrate Drift

An invertebrate drift study was performed on August 21-22, 1977, at Station 7 in order to determine the significance of the feeder creeks as suppliers of invertebrate colonizers to the West Interceptor Ditch. Results of the study are summarized in Tables 23 and 24.

.

During the drift study, the temperature of water at a nearby area (Station 4) was 14 C and oxygen concentration was about 10.4 mg/1. The channel at Station 7 was so narrow that the entire flow of the stream filtered through the drift net. Discharge was 0.004 m^3 /sec.

Drift Composition

A total of 3201 invertebrates was collected in six one-hour drift samples over a period of 23.5 hours. Table 23 describes the total number of organisms collected and their percentage contribution to the drift fauna.

The results indicate that the drift fauna was mainly composed of planktonic copepods (43%) and ostracods (44%). The only benthic invertebrate taxa that occurred in any significant amounts were chironomids (6%), simulids (3%), and baetid mayfly nymphs (1%). In his study of the invertebrate drift from an intermittent muskeg stream,

Taxa	No. Collected	Per Cent
Oligochaeta	1	0.03
Nematoda	1	0.03
Hirudinea	1	0.03
Crustacea Copepoda Ostracoda Cladocera Amphipoda	$ \begin{array}{r} 1401 \\ 1415 \\ 13 \\ 8 \end{array} $	$\begin{array}{r} 43.76 \\ 44.20 \\ 0.40 \\ 0.24 \end{array}$
Ephemeroptera	29	0.90
Trichoptera	2	0.06
Hemiptera	12	0.37
Coleoptera	4	0.12
Diptera Chironomidae Simuliidae	199 110	6.21 3.43
Hydracarina	4	0.12
Mollusca	1	0.03
TOTAL	3201	

TABLE 23. Total number of invertebrates collected from Station 7 and their percentage contributions to the drift composition, August 21-22, 1977.

TABLE 24. Total drift rates (numbers per hour) and drift densities (number per cubic metre) for the drifting invertebrates at Feeder Creek #3 (Station 7), August 21-22, 1977.

Time (MDT):	Samp1 Augu 1130	e No. 1 1st 21 1-1230	Samp1 Augu 1600	le No. 2 1st 21)-1700	Sample No. 3 August 21 2100-2200 (dusk)		
Taxa	Rate	Density	Rate	Density	Rate	Density	
Oligochaeta	-	_	_	-	1	0.06	
Nematoda	-	-	-	•	-	-	
Hirudinea	-		~	-	-	-	
Crustacea							
Copepoda	3	0.2	1	0.06	169	11.73	
Ostracoda	2	0.13	-	-	251	17.43	
Cladocera	-	-	-	-	· 🛶	-	
Amphipoda	P M	₩	-	*	2	0.13	
Ephemeroptera	15	1.04	1	0.06	3	0.2	
Trichoptera	-		- /		_	-	
Hemiptera	-	-	2	0.13	4	0.27	
Coleoptera	_	-	1	0.06	1	0.06	
Diptera							
Chironomidae	76	5.27	12	0.83	31	2.15	
Simuliidae	95	6.59	6	0.41	4	0.27	
Hydracarina	1	0.06	1	0.06	2	0.13	
Mollusca	-	-	-	-	-	-	
TOTALS	192	13.33	24	1.66	468	32.5	

(Continued)

TABLE 24. Continued.	
----------------------	--

Time (MDT):	Samp1 Augu 0100	e No. 4 st 22 -0200	Samp1 Augu 0500	e No. 5 st 22 -0600 (dawn)	Sample No. 6 August 22 0900-1000		
Таха	Rate	Density	Rate	Density	Rate	Density	
Oligochaeta	-		-		**		
Nematoda	_	_		-	1	0.06	
Hirudinea	1	0.06	-	-	-	-	
Crustacea							
Copepoda	1213	84.23	13	0.90	2	0.13	
Ostracoda	1152	80.0	10	0.69	~	-	
Cladocera	13	0.9	_	-		.	
Amphipoda	5	0.34	1	0.06		_	
Ephemeroptera	9	0.62	1	0.06	-	-	
Trichoptera	1	0.06	1	0.06	-	-	
Hemiptera	5	0.34	1	0.06		-	
Coleoptera	2	0.13	· _	_	~~	-	
Diptera							
Chironomidae	61	4.23	13	0.90	6	0.41	
Simuliidae	2	0.13	1	0.06	2	0.13	
Hydracarina	-	-	-	-	-	-	
Mollusca	-	-	1	0.06	-	-	
TOTALS	2464	171.11	42	2.91	11	0.76	

1. "我们还是我们就是你的,你们还是你的你,你们还是你的你,你们还不是你的你,你们还是你们的你?""你们你不是你们不是你的?""你们不是你的你?""你不是你不能

이 제품의 이 방법에서 한 것 같아. 이 방법에서 한 것 같아요. 이 방법에 가장하는 것은 것은 것은 것은 것은 것은 것이 가 없이 다. 한 방법에 있는 것이 가 없는 것 같아.

Clifford (1972) also found that the drifting animals were a mixture of benthic and planktonic species, with the latter predominating (about 80%).

Drift Rate and Density

The mean drift rate (number of organisms/hour) during a single diel period (August 21-22) was 533.5 organisms/hour ranging from 11 organisms/hour to 2464 organisms/hour. Mean drift rate for night time (991.33 organisms/hour) was considerably higher than that for daytime sample periods (75.66 organisms/hour). In contrast, Clifford (1972) found that, for August, the daytime drift rate (162 organisms/20 min) was higher than nighttime (66 organisms/20 min).

At Station 7, the diel changes in drift densities (number of organisms/m³) have a pattern similar to that of drift rates. Mean drift density during a diel period was 37.04 organisms/m³, with a mean nighttime density of 68.84 organisms/m³ and a mean daytime density of 5.02 organisms/m³.

Drift Patterns of Certain Taxa

In general, the numerically dominant crustaceans such as the copepods and ostracods have higher drift rates at night than during the day (Figure 10). The diurnal drift pattern for the *Baetis* mayfly nymphs consisted of one peak during the day and a lesser one at night (Figure 11). Most studies, however, indicate that *Baetis* are night-active (Tanaka, 1960; Waters, 1962; Müller, 1963; Pearson and Franklin, 1968).

The chironomid larvae also appeared to have two peaks in their diurnal drift rates (Figure 12). A qualitative analysis of the drift samples indicated that Orthoeladius spp. and Thienemanniella sp. were the dominant forms in both peaks. A study by Pearson and Franklin (1968) found that the numbers of drifting simulid larvae increased dramatically after sunset and that illumination accounted for a significant amount of variability in drift rates of simulid larvae. In this study, we found that the drift rates of simulid larvae were highest in the daytime and in fact decreased at night (Figure 12). These results concur with those of Clifford (1972).

It is evident from this study that the feeder creeks contribute a significant amount of potential colonizers to the ditch. The successful establishment of such colonizers will, however, be dependent on a) environmental conditions in the ditch, e.g., food, substrate (Fernando, 1958, 1959, 1963); and b) on their somatic plasticities and interspecific competitive abilities (Lewontin, 1964).

FIGURE 10. Fluctuations in drift rates of Copepoda and Ostracoda during a 24 hour period at Station 7, Feeder Creek #3.

FIGURE 11. Fluctuations in drift rate of *Baetis* sp. during a 24 hour period at Station 7, Feeder Creek #3.

TIME (MDT)

FIGURE 12. Fluctuations in drift rates of Chironomidae and Simuliidae during a 24 hour period at Station 7, Feeder Creek #3. •

 $V_{\mathcal{K}}$

Aquatic Macrophytes

Species Composition

Data describing the identity and distribution of aquatic macrophytes in the West Interceptor Ditch, August 21, 1977, are summarized in Table 25. The sampling points or sections referred to in Table 25 are shown in Figure 13. In total, 19 species were identified of which 7 were either dominant within extensive stream segments or were locally dominant at the mouths of feeder creeks or erosion gullies. These included Bidens cernua, Callitriche palustris, Caltha natans, Myriophyllum exalbescens, Potamogeton gramineus, Sparganium angustifolium, and Typha latifolia. Three species (B. cernua, Sium sauve, Sparganium sp.) were a common feature of the bottom cover, occurring at almost every station, but were rarely dominant. Together with Typha latifolia as the dominant species, they were the principal components of the West Interceptor Ditch plant community. The remaining 10 species (Caltha palustris, Carex sp., Impatiens capensis, Lemna minor, Polygonum coccineum, Potamogeton pectinatus, P. pusillus, Ranunculus circinatus var. subrigidus, R. gmelinii var. hookeri, Scirpus sp.) were rare and restricted to isolated localities along the ditch.

Coverage

The average per cent coverage of macrophytes at various localities along the West Interceptor Ditch is illustrated

TABLE 25. Species composition, distribution, and per cent cover of aquatic macrophytes at sampling points along the West Interceptor Ditch, August 21, 1977. Sampling points along the ditch are as indicated in Figure 1.

Species	Sampling Points Distance (km)	1 - 2 0.5	2-3 0.4	3-4 0.4	4 - 5 0.1	5-6 0.4	6-7 0.3	7* 0.01
Bidens cernua L. Callitriche palustris Caltha natans Pall. C. palustris L. Carer sp	L.	Т	5 2 5	· .			T**	T 3 10
Impatiens capensis Me Lemna minor L. Myriophyllum exalbesc Polygonum coccineum M Potamogeton gramineus P. pectinatus L.	erb. <i>ens</i> Fern. uhl. L.							Т
P. pusillus L. Ranunculus circinatus var. subrigidus (W. R. gmelinii D.C. var. hookeri (D. D Scirpus Sp. Sium sauve Walt	Sibth. Drew) L. Benson on) L. Benson							2
Sparganium angustifol	<i>ium</i> Michx.							
Sparganium sp. Typha latifolia L.		$\begin{array}{c} T\\ 10\end{array}$	3	T 80	23	90	Т З	Т
No. Species		3	4	2	2	1	3	5
% Coverage		10	15	80	5	90	5	20

(Continued)

TABLE 25. Continued.

Species	Sampling Distance	Points (km)	7-8 0.2	8* 0.01	8-9 0.2	9* 0.01	9-10 0.4	10* 0.01	10 - 11 2.0
Bidens cernua L. Callitriche palustris Caltha natans Pall. C. palustris L. Carex sp. Impatiens capensis Me	L.		T T	2 20 5	T T	T 15 2	T T	T 25 5 T 5	T T T
Lemna minor L. Myriophyllum exalbesc Polygonum coccineum M Potamogeton gramineus P. pectinatus L.	ens Fern. uhl. L.					Т		Т	
Ranunculus circinatus var. subrigidus (W.	Sibth. Drew) L.	Benson				·		Т	Т
R. gmelinii D.C. var. hookeri (D. D. Scirpus Sp.	on) L. Ber	ison		5		Т т		5	Т
Sium sauve Walt. Sparganium angustifol	<i>ium</i> Michx.		Т		T	T	Т	Т 5	T ·
Sparganium sp. Typha latifolia L.			Т 5	3	Т 3	3	Т 3	2 5	2 3
No. Species	·		5	5	5	8	5	12	8
% Coverage			5	35	3	20	3	52	5

* perennial stream or erosion gulley **T=trace coverage

¢†

(Continued)

TABLE 25. Continued.

Species	Sampling Points Distance (km)	$11 - 12 \\ 0.4$	12* 0.01	$12 - 13 \\ 1.3$	13* 0.01	13-14 0.8	14* 0.01	14 - 15 0.5
Bidens cernua L. Callitriche palustris Caltha natans Pall. C. palustris L. Carex sp.	L.	T T T	T 3 5 T	T 5 T		T 5 T	2 3 3	Т
Impatiens capensis Me Lemna minor L. Myriophyllum exalbesc Polygonum coccineum M	erb. <i>ens</i> Fern. uhl.		T T	3		3	T 10	15
Potamogeton gramineus P. pectinatus L. P. pusillus L. Ranunculus circinatus var. subrigidus (W. R. gmelinii D.C.	L. Sibth. Drew) L. Benson	Т			Τ	2	5 T 2 T	2 3
var. hookeri (D. D Scirpus sp. Sium sauve Walt. Sparganium angustifol Sparganium sp. Typha latifolia L.	on) L. Benson ium Michx.	T T	T 10 2 5	T 2	20	T 2	T T 10 5 20	Т
No. Species		6	10	6	2	7	14	.5
% Coverage		<1	25	10	20	12	60	20
* perennial stream or **T=trace coverage	erosion gulley							

(Continued)

119

.

TABLE 25. Continued.

Species	Sampling Distance	Points (km)	$15 - 16 \\ 0.5$	$16* \\ 0.01$	16-17 1.8	17* 0.01	17-18 1.1	18-19 0.2	19-20 1.1
Bidens cernua L. Callitriche palustris Caltha natans Pall. C. palustris L.	L.		Т			T T		5	Τ.
Carex sp. Impatiens capensis Me	erb.							Т	Т
Lemna minor L. Myriophyllum exalbesc Polygonum coccineum Mu	<i>ens</i> Fern. uhl.		T						
Potamogeton gramineus P. pectinatus L. P. pusillus L.	L.		Т	8 2	Т	2.	Т	N	Т
Ranunculus circinatus var. subrigidus (W. R. amelinii D.C.	Sibth. Drew) L.	Benson							
var. hookeri (D. De Scirpus sp.	on) L. Ber	ison							
Sium sauve Walt. Sparganium angustifol:	<i>ium</i> Michx.	,		T	T		m	T ·	Т
Sparganium sp. Typha latifolia L.			Т	T T	T T	5	T T	15	2
No. Species			4	4	3	4	3	4	5
% Coverage			<1	10	<1	.7	<1	20	2

* perennial stream or erosion gulley **T=trace coverage

in Figure 14. Also indicated are the dominant species in the main part of the ditch as well as at the mouths of feeder creeks. Coverage varied from zero to 90% at various sampling sites. Average per cent cover for the ditch was 10.6%. Areas of greatest coverage were within two kilometres of the origin (south end) of the ditch and within the influence of tributary streams. The reasons for this distribution are not clear but colonization from feeder creeks where populations of aquatic macrophytes are already established may be important. A comparison of taxonomic diversity (Table 26) indicates that while 18 species occurred at sampling sites near the mouths of streams, only 9 were identified in areas removed from the streams.

Differences in age of various localities of the ditch may also be significant. Since the ditch was constructed over a year period (May 1975 to May 1976), macrophyte communities in some areas of the ditch such as the south end may be a year older than the others.

While it is apparent that natural colonization has occurred in favourable areas, nearly 90% of the ditch remains uncovered. Colonization will undoubtedly continue but it is difficult to predict what the eventual state of colonization will be. Examination at yearly intervals is recommended in order to assess whether any improvements

FIGURE 13.

Sampling areas for the aquatic macrophyte survey, August 21, 1977. Species identification and estimation of coverage were determined between numbered points except where these points corresponded to the mouths of streams or gullies formed by erosion.

人名英格兰人姓氏克克特 人名英格兰人姓氏克克特 人名英格兰人姓氏格特特的变体 化合物 医结核性 医结核性 医结核性 医结核 网络美国大学家 医子宫 网络小学家 网络小学家 网络小学家

FIGURE 14. Per cent substrate coverage and distribution of dominant macrophytes on the West Interceptor Ditch, August, 1977. Dominant species are as follows: 1: Typha latifolia; 2: Bidens cernua; 3: Caltha natans; 4: Callitriche palustris; 5: Sparganium angustifolium; 6: Myriophyllum exalbescens; 7: Potamogeton gramineus.

TABLE 26. Average per cent coverage by species of aquatic macrophytes in the entire West Interceptor Ditch, the Ditch excluding those macrophytes at the mouths of the streams and gullies, and at the mouths of streams only. T=trace coverage.

Species	Ditch Including Stream Mouths	Ditch Excluding Stream Mouths	Stream Mouths
	otreum moutins		
Bidens cernua L.	0.2	0.2	0.4
Callitriche palustris L.	0.9		7.7
Caltha natans Pall.	0.1		3.3
C. palustris L.	0.2		Т
Carex sp.	Т		0.5
Impatiens capensis Meerb.	Т	Т	
Lemna minor L.	Т		Т
Myriophyllum exalbescens Fern.	1.1	1.0	1.1
Polygonum coccineum Muhl.	Т		Т
Potamogeton gramineus L.	Т		1.4
P. pectinatus L.	0.1	0.1	0.4
P. pusillus L.	0.1	0.1	0.2
Ranunculus circinatus Sibth.	0.1	0.1	Т
var. <i>subrigidus</i> (W. Drew) L. Benson			
R. gmelinii D.C.	0.1		1.3
var. hookeri (D. Don) L. Benson			
Scirpus sp.	T		Т
Sium sauve Walt.	Т	Т	Т
Sparganium angustifolium Michx.	T .		2.8
Sparganium sp.	0.3	0.3	1.0
Typha latifolia L.	7.5	7.3	6.2
Total	10.6	9.1	26.3

such as bank stabilization resulting from artificial revegetation have had any beneficial effects.

Fish

Data describing the distribution and relative abundance of fish species captured in both Beaver Creek (Station 1) and at various locations in the West Interceptor Ditch (Stations 2-5) and its tributaries (Stations 6 and 7) are presented in Table 27. No fish were captured during the June sampling on Beaver Creek. However, longnose suckers had been observed spawning in May in the vicinity of the sampling station. Fry of this species had certainly emerged by the June sampling date. A possible explanation for their absence is the rapid downstream movement of recently emerged fry which is characteristic of this species (Geen et al., 1966). The large catches in September (550/100 m) are probably the result of a reinvasion of the sampling area by young-of-the-year longnose suckers accompanied by white sucker fry, lake chub, and brook stickleback, a total of four species.

Only two species were taken in the West Interceptor Ditch and its tributaries, the brook stickleback and the fathead minnow. As in Beaver Creek, there was a seasonal disparity in catches. Only 5.0 fish/100 m were captured,

TABLE 27.	Distribution and relative abundance of fish sampled in the West Interceptor
	Ditch and Beaver Creek, 1977. Catch per unit effort is catch per metre of
	stream x 100. Locations of sample sites are indicated in Figure 1 .

Station	Date	Method	Effort (m)	Lake Chub	Fathead Minnows	Longnose Sucker Fry	White Sucker Fry	Brook Stickleback	Total
1	June Sept	S ES	20 20	250		550	350	50	$0 \\ 1200$
2	June Sept	ES ES	40 35		66			26	0 92
3	June Sept	S ES	50 75		3			2 5	0 28
4	June Sept	S ES	50 60					8	0
5	June Sept	S ES	50 50		74			б	0 80
6	June Sept	ES ES	30 20		17			$\begin{array}{c}10\\135\end{array}$	$\begin{array}{r} 27\\135\end{array}$
7	June Sept	ES ES	2 0 2 0		5 95			15 125	20 220

S=minnow seines; ES=electroshocker.

all of them at tributary Stations 6 and 7, in June, but 60.4/100 m were captured in September. The latter included fish taken at both stations on feeder creeks (6 and 7) and at each of the four stations on the ditch itself (2-5). The fish taken in the Ditch in September may have moved either upstream from Bridge Creek or downstream from various tributaries to the Ditch. The latter seems the most likely possibility as the two species are common cohabitants of small drainages in the area.

Length frequencies for fathead minnows and brook sticklebacks from the West Interceptor Ditch are presented in Figure 15. The length range of the sample of fathead minnows (20 to 79 mm fork length) exceeds that of the brook stickleback (26 to 63 mm); however, the mean length of the latter (46.8, N=72) exceeds that of the former (38.3, N=87).

Growth data for the fathead minnow, based on scale readings, are presented in Table 28. These data are preliminary only, as it appeared that the majority of individuals did not form scales above their lateral line during their first year. A definitive description of growth must await larger samples. A few fathead minnows matured as early as their second summer (at age 1). The five age 3 fish were all males in distinctive breeding colouration. This, combined with the presence of young-of-the-year fathead minnows at Station 2, suggests that

FIGURE 15. Length-frequency of sticklebacks (Culaea inconstans) and fathead minnows (Pimephales promelas) from the West Interceptor Ditch, 1977.

Age	N	Sampling Date		For x	k Length S.D.	n (mm) Range	Per cent Mature
0 (scales absent)	18	Sept 27	•	23.9	2.2	20-27	0
1 (scales present)	10	Sept 27		38.8	5.4	35-53	30
2	1	June 14		4 4 [.]	-	-	-
3	. 5	June 14		73.4	4.4	67-79	100

TABLE 28.Observed age-length relationships and maturity for fathead minnows
(Pimephales promelas) in the West Interceptor Ditch, 1977.

some spawning occurred in the West Interceptor Ditch.

All the brook stickleback examined in detail (N=30, fork length range 26-63 mm) were mature.

Waterfowl and Shorebirds

The numbers of waterfowl and shorebird species encountered along the West Interceptor Ditch were recorded during each field trip. The results are summarized in Table 29.

A total of seven species of ducks was observed on or in the vicinity of the Ditch. Counts include some waterfowl flushed from the shallow ponds east of Station 4 and from the pond on Feeder Creek #2. The majority of ducks observed during these trips were males.

On June 14 a female mallard with 11 ducklings was seen near Station 6 retreating up Feeder Creek #2. On the same date a female green-winged teal with a brood of 8 was observed feeding near Station 3. These two sightings were the only evidence of the utilization of the ditch for rearing purposes.

Four species of shorebirds were observed in the vicinity of the ditch. No young were sighted. No explanation can

ptember	August	Ju1y	June	May	Scientific Name	Common Name
-	16	-	8	4	Anas platyrhynchos	Mallard
-	8		1	2	Anas acuta	Pintail
-	-	-	1	~	Mareca americana	Widgeon (Baldpate)
	-	-	5	3	Spatula clypeata	Shoveller
-	1	-	4	-	Anas carolinensis	Green-winged teal
-	11	-	7	8	Anas discors	Blue-winged teal
4	4	-	6	· _	Bucephala albeola	Bufflehead
-	-	- -	1	-	Actitis macularia	Spotted sandpiper
-	-	-	3	-	Tringa solitaria	Solitary sandpiper
-	13	-	3	2	Totanus flavipes	Lesser yellowlegs
-	6	-	-	6	Charadrius vociferus	Killdeer
- - 4 - -	- - 1 11 4 - - 13 6		1 5 4 (8) 7 6 1 3 3 -	- 3 - 8 - - 2 6	Mareca americana Spatula clypeata Anas carolinensis Anas discors Bucephala albeola Actitis macularia Tringa solitaria Totanus flavipes Charadrius vociferus	Widgeon (Baldpate) Shoveller Green-winged teal Blue-winged teal Bufflehead Spotted sandpiper Solitary sandpiper Lesser yellowlegs Killdeer

TABLE 29. Waterfowl and shorebird sightings along the West Interceptor Ditch from May to September, 1977. Numbers in brackets are ducklings. be offered for the absence of both waterfowl and shorebirds on July 13.

Amphibians

Use of the West Interceptor Ditch by amphibians was restricted to breeding and the rearing of tadpoles. Tadpoles of the Dakota toad (Bufo hemiophrys) were abundant in June at Stations 4 and 5 as well as at the mouths of intervening tributary streams. Only two adult amphibians, a Dakota toad (B. hemiophrys) and a wood frog (Rana sylvatica) were collected during the course of the summer. Chorus frogs (Pseudacris triseriata) were present in adjacent ponds and marshy areas but were never observed in the ditch.

SUMMARY

1. Construction of the West Interceptor Ditch and lower Beaver Creek was completed in May, 1976, as part of Syncrude's plan to divert stream flow and surface runoff from their mine site. The present study was initiated in May, 1977, and completed in September, 1977. The objectives were to determine the environmental conditions and extent of biological colonization at the West Interceptor Ditch and a section of lower Beaver Creek.

2. The West Interceptor Ditch is a shallow, mudbottomed channel with little flow in the summer. Peak discharge was recorded in June at Station 2, decreasing upstream. Revegetation of the banks was complete by August, 1977.

3. The West Interceptor Ditch water was slightly alkaline (\bar{x} pH=7.5), with a mean alkalinity of 161.3 mg CaCO₃/1, a mean hardness of 172 mg CaCO₃/1, and a mean conductivity of 486.9 µmho/cm at 25 C.

4. Areas along the West Interceptor Ditch were fertilized with ammonium nitrate and phosphate. However, this treatment does not seem to have increased the macronutrient content of the water.

136

5. Lower Beaver Creek water was slightly basic with a mean pH value of 7.4, and relatively high in alkalinity $(\bar{x}=193.7 \text{ mg CaCO}_3/1)$, conductivity $(\bar{x}=577 \text{ µmhos/cm at } 25 \text{ C})$, and hardness $(\bar{x}=236 \text{ mg CaCO}_3/1)$.

6. Lower Beaver Creek had a MPN index of 10 per 100 ml for total coliform organisms and zero for faecal coliforms in May, 1977.

7. The zooplankton community of the ditch was dominated by copepods (>70%) during early spring followed by a general decline throughout the summer. Rotifers made up a minor part of the zooplankter community in spring but gradually replaced the copepods and became the numerically dominant group. Cladocera formed only a small portion of the zooplankton throughout the study period.

8. A total of 120 algal species was found in the Ditch, with diatoms being the most common with 56 species.

9. Sludge worms (Oligochaeta) and midges (Chironomidae) were the dominant benthos found at Lower Beaver Creek (Station 1). The relatively homogeneous mud substrate did not offer the habitat diversity necessary to maintain a complex and stable benthic community.

137

10. A total of 68 benthic macroinvertebrate taxa was found in the West Interceptor Ditch. Of these, over 50% were dipterans, about 13% were mayflies (Ephemeroptera), and about 10% were caddisflies (Trichoptera). Station 2, with the stony substrate, had the highest taxonomic diversity for benthos. However, the mud substrates at other stations, e.g., Stations 3 and 5, supported a higher standing crop of benthos.

11. The mean benthos colonization rate at the West Interceptor Ditch was 0.43 species/day and the mean extinction rate was 0.38 species/day. Colonization rates increased from spring to summer and decreased rapidly in fall. Conversely, extinction rate was slow initially but increased rapidly in fall.

12. A total of 21 benthic macroinvertebrate taxa was found in Feeder Creeks #2 and #3. Both streams were dominated by dipterans and oligochaetes.

13. Feeder Creek #3 had a mean benthic drift rate of 533.5 organisms/hour and a mean drift density of 37.04 organisms/m³. The drift fauna was mainly composed of planktonic copepods (43%) and ostracods (44%).

14. A total of 19 species of aquatic macrophytes

was identified from the West Interceptor Ditch, August, 1977. Of these, *Typha latifolia* was the dominant species and, with *Bidens cernua*, *Sium sauve*, and *Sparganium* sp. formed the most common plant association. Total average per cent coverage was 10.6%, ranging from zero to 90%.

15. Both fathead minnows and brook sticklebacks inhabited the West Interceptor Ditch during the summer with some evidence of spawning by fathead minnows.

16. Use of the West Interceptor Ditch by amphibians and waterfowl was limited.

17. In lower Beaver Creek, peak flows were recorded in July and September but were negligible at other times. Sand shifting over the substrate at peak flows probably had a detrimental effect on the benthic fauna.

18. In addition to spawning by longnose suckers, lower Beaver Creek was used as a rearing and summer feeding ground by longnose sucker fry, white sucker fry, lake chub, and brook stickleback.

LITERATURE CITED

- Allen, R.K., and G.F. Edmunds, Jr. 1961a. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). II.3. The subgenus Caudatella. Ann. Entomol. Soc. Amer. 54:603-612.
- Allen, R.K., and G.F. Edmunds, Jr. 1961b. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). III. The subgenus Attenuatella. J. Kansas Entomol. Soc. 34:161-173.
- Allen, R.K., and G.F. Edmunds, Jr. 1965. A revision of the genus Ephemerella (Ephemeroptera: Ephemerellidae). VIII. The subgenus Ephemerella in North America. Misc. Publ. Entomol. Soc. Amer. 4:244-282.
- Bourrelly, P. 1968. Les Algues d'Eau douce. II. Les Algues jaunes et brunes. Editions N. Boubée and Cie. Paris. 438 pp.
- Brandlova, J., Z. Brandl, and C.H. Fernando. 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zool. 50:1373-1403.
- Brooks, J.L. 1957. The systematics of North American Daphnia. Mem. Conn. Acad. Arts and Sci. 8:1-80.
- Chenoglath, R., and G. Mulamootil. 1974. Littoral Rotifera of Ontario, genus *Lecane*, with descriptions of two new species. Can. J. Zool. 52:947-957.
- Cleve-Euler, A. 1951-1955. Die Diatomeen von Schweden und Finnland. Kgl, Sveska Vetenskapsakad. Handl. NS,2-5.
- Clifford, H.F. 1972. Drift of invertebrates in an intermittent stream draining marshy terrain of west-central Alberta. Can. J. Zool. 50:985-991.
- Correll, D.S., and H.B. Correll. 1972. Aquatic and wetland plants of southwestern United States. Environmental Protection Agency, Water Pollution Control Research Series 16030DNL 01/72. 1777 pp.
- Deevey, E.S., and G.B. Deevey. 1971. The American species of *Eubosmia seligo* (Crustacea: Cladocera). Limnol. and Oceanog. 16:201-218.
- Department of National Health and Welfare. 1968. Canadian drinking water standards and objectives, 1968. Government of Canada. 39 pp.

Desikachary, T.V. 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi. 686 pp.

- Dickson, K.L., and J. Cairns, Jr. 1972. The relationship of freshwater macroinvertebrate communities collected by floating artificial substrates to the MacArthur-Wilson Equilibrium Model. Amer. Midl. Nat. 88:68-75.
- Edmondson, W.T. 1959. Freshwater biology. Second Ed. John Wiley & Sons, New York and London. 1248 pp.
- Elrod, R.P. 1942. The Erwinia-coliform relationship. J. Bacteriol. 44:433-440.
- Fernando, G.H. 1958. The colonization of small freshwater habitats by aquatic insects. I. General discussion, methods, and colonization in the aquatic Coleoptera. Ceylon J. Sci. Biol. Sci. 1:117-154.
- Fernando, C.H. 1959. The colonization of small freshwater habitats by aquatic insects. II. Hemiptera (the water bugs). Ceylon J. Sci. Biol. Sci. 2:5-32.
- Fernando, C.H. 1963. Notes on aquatic insects colonizing an isolated pond in Mawai, Johore. Bull. Natl. Mus. Singapore 37:80-89.
- Geen, G.H., T.G. Northcote, G.F. Hartman, and C.C. Lindsey. 1966. Life histories of two species of catostomid fishes in Sixteen Mile Lake, British Columbia, with particular reference to inlet stream spawning. J. Fish. Res. Board Can. 23(11):1761-1788.
- Geldreich, E.E., R.H. Bordner, C.B. Huff, H.F. Clark, and P.W. Kabler. 1962. Type distribution of coliform bacteria in the feces of warm-blooded animals. J. Wat. Poll. Contr. Fed. 34:295-301.
- Geldreich, E.E., L.C. Best, B.A. Kenner, D.J. Van Donsel. 1968. The bacteriological aspects of stormwater pollution. J. Wat. Poll. Contr. Fed. 40(11):1861-1872.
- Hilliard, D.K. 1966. Studies on Chrysophyceae from some ponds and lakes in Alaska. V. Hydrobiologia 28(3-4):553-576.
- Hilliard, D.K. 1967. Studies on Chrysophyceae from some ponds and lakes in Alaska. VII. Nova Hedwigia XIV 1:39-60.
- Hynes, H.B.N. 1970. The ecology of running waters. University of Toronto Press. 555 pp.

- Jensen, S.L. 1966. The mayflies of Idaho. M.S. Thesis, University of Utah, Salt Lake City.
- Kortnight, F.H. 1942. The ducks, geese, and swans of North America. Stackpole Pub., Harrisburg, Penn. 476 pp.

.

.

.

- Lagler, K.F. 1956. Freshwater fishery biology. Second Ed. W.C. Brown Co., Dubuque, Ia. 421 pp.
- Lewontin, R.C. 1964. Selection for colonizing ability. IN: H.G. Baker (ed.), The genetics of colonizing species. Academic Press, New York. p. 588.
- Lloyd, M., and R.J. Ghelardi. 1964. A table for calculating "equitability" component of species diversity. J. Anim. Ecol. 33:217-225.
- Lloyd, M., J.H. Zar, and J.R. Karr. 1968. On the calculation of information--theoretical measures of diversity. Amer. Midl. Nat. 79:257-272.
- MacArthur, R.H. 1957. On the relative abundance of bird species. Proc. Nat. Acad. Sci., Washington 43:293-295.
- MacArthur, R., and E.O. Wilson. 1963. An equilibrium theory of insular zoogeography. Evolution 17:373-387.
- Moss, E.H. 1959. Flora of Alberta. Univ. of Toronto Press. 546 pp.
- Müller, K. 1963. Diurnal rhythm in "organic drift" of Gammarus pulex. Nature 198:806-807.
- Needham, J.G., J.R. Traver, and Y. Hsu. 1935. The biology of mayflies. Comstock Publishing Co., Ithaca. 759 pp.
- Paterson, C.G., and C.H. Fernando. 1969. Macroinvertebrate colonization of the marginal zone of a small impoundment in eastern Canada. Can. J. Zool. 47:1229-1238.
- Patrick, R., and C.W. Reimer. 1966. The diatoms of the United States. Monograph 13. Acad. Nat. Sci., Philadelphia. 688 pp.
- Pearson, W.D., and D.R. Franklin. 1968. Some factors affecting drift rates of *Baetis* and Simuliidae in a large river. Ecology 49:75-81.
- Pennak, R.W. 1953. Freshwater invertebrates of the United States. Ronald Press Co., N.Y. 769 pp.

142

Prescott, G.W. 1962. Algae of the western Great Lakes Area. Revised Edition. W.C. Brown Co., Publishers. 977 pp.

Renewable Resources Consulting Services Ltd. 1976. Aquatic studies of upper Beaver Creek, Ruth Lake, and Poplar Creek, 1975. A report to Syncrude Canada Ltd. 203 pp.

Roloef, E.W. 1944. Water soils in relation to lake productivity. Tech. Bull. 190, Agr. Exp. Sta., State College, Lansing, Mich.

- Ruttner, A. 1974. Plankton rotifers biology and taxonomy. Engl. Trans. by G. Kolisko. Die Binnergewasser 26:1-146.
- Saether, O.A. 1969. Some nearctic Podonominae, Diamesinae, and Orthocladiinae (Diptera: Chironomidae). Fish. Res. Board Can. Bull. 170. 154 pp.
- Saether, O.A. 1975. Nearctic and Palearctic Heterotrissocladius (Diptera: Chironomidae). Bull. Fish. Res. Board Can. 193. 67 pp.
- Saether, O.A. 1976. Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera (Diptera: Chironomidae). Bull. Fish. Res. Board Can. 195. 287 pp.
- Saether, O.A. 1977. Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus, and the Harnischia complex. Bull. Fish. Res. Board Can. 196. 143 pp.
- Salt, W.R., and J.R. Salt. 1976. The birds of Alberta. Hurtig Pub., Edmonton, Alberta. 498 pp.
- Shannon, C.E., and W. Weaver. 1949. The mathematical theory of communication. Univ. of Illinois Press, Urbana. 117 pp.
- Skuja, H.L. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden, Symb. Bot. Upsal. 9. 399 pp.
- Skuja, H.L. 1964. Grundzuge der Algenflora und Algen Vegetation des Fjeldgegenden un Abisko 1. Nova Acta Regiae Soc. Sci. Upsal. Ser. IV. 18. 465 pp.
- Smith, G.M. 1950. The fresh-water algae of the United States. McGraw-Hill Book Co., Inc. New York. 719 pp.
- Sreenivasa, M.R., and H.C. Duthie. 1973. Diatom flora of the Grand River, Ontario, Canada. Hydrobiol. 42:161-224.

Standard Methods for the Examination of Water and Wastewater. 13th Edition. 1971. American Public Health Association. Stebbins, R.C. 1966. A field guide to western reptiles and amphibians. Houghton Mifflin Co., Boston. 279 pp.

- Strickland, J.D.H., and T.R. Parsons. 1968. A practical handbook of seawater analysis. Fish. Res. Board Can. Bull. 167. 311 pp.
- Tanaka, H. 1960. On the daily change of the drifting of benthic animals in a stream, especially on the types of daily change observed in taxonomic groups of insects. Bull. Fresh. Fish. Res. Lab., Fish. Agency, Tokyo 9:13-24.
- Tiffany, L.H., and M.E. Britton. 1952. The algae of Illinois. The University of Chicago Press, Chicago. 407 pp.
- Tilden, J. 1910. The Myxophyceae of North America. Minnesota Algae. Vol. I. Minneapolis. 328 pp.
- Ulfstrand, S. 1968. Benthic animal communities in Lapland streams. Oikos supplementum 10. 120 pp.
- Usinger, R.L. 1963. Aquatic insects of California. Univ. of California Press. Berkeley and Los Angeles. 507 pp.
- Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9:1-38.
- Waters, T.F. 1962. Diurnal periodicity in the drift of stream invertebrates. Ecology 43:316-320.
- Weber, C.I. 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. Analytical Quality Control Laboratory, National Environmental Research Centre, Cincinnati. EPA-670/4-73-001.
- Williams, D.D., and H.B.N. Hynes. 1976. Stream habitat selection by aerially colonizing invertebrates. Can. J. Zool. 54:685-693.
- Zoto, G., D.O. Dillon, and E.H. Schlichting. 1973. A rapid method for clearing diatoms for taxonomic and ecological studies. Phycologia 12(1/2):69-70.

Conditions of Use

Tsui, P., D. Tripp and W. Grant, 1978. A study of biological colonization of the West Interceptor Ditch and lower Beaver Creek. Syncrude Canada Ltd., Edmonton, Alberta. Environmental Research Monograph 1978-6. 144 pp.

Permission for non-commercial use, publication or presentation of excerpts or figures is granted, provided appropriate attribution (as above) is cited. Commercial reproduction, in whole or in part, is not permitted without prior written consent.

The use of these materials by the end user is done without any affiliation with or endorsement by Syncrude Canada Ltd. Reliance upon the end user's use of these materials is at the sole risk of the end user.