. “9 l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily d2pendent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction ir full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

" NL-339 (r. 88/04) ¢

AViS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
:put fait pour assurer une qualité supérieure de reproduc-
ien.

S'il_mar]que des Ppages, veuillez communiquer avec
Furiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser 3
désirer, Surfout si les pages originales ont été dactylogra
phiées 4 Faide d'un ruban usé ou si l'université nous afait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme es!
soumise & 1a Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Tol

Canada



THE UNIVERSITY OF ALBERTA

A Constitutive Model for Ice

by
Heng Aik Khoo

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND
RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE.

DEPARTMENT OF CIVIL ENGINEERING

EDMONTON, ALBERTA
Spring, 1990



l*l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
KiA ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

1f pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfiimage. Nous avons
tout fait pour assurer une qualité supérieure de repreduc-
tion.

S'ii.maqtlue des pages, veuillez communiquer avec
funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylogra-
phiées A l'aide d'un ruban usé ou si f'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

ISBN 0-315-60291-0

NL-339 (r. 88/04)

Canada



THE UNIVERSITY OF ALBERTA
RELEASE FORM

NAME OF AUTHOR: Heng Aik Khoo

TITLE OF THESIS: A Constitutive Model for Ice
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED 1990

Permission is hereby granted to THE UNIVERSITY OF ALBERTA
LIBRARY to reproduce single copies of this thesis and to lend or sell such copies
for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the

author's written permission.

bz
"/(Student's Signature)

-

42 , (AVAN SERTESA

LAPR ARNNG  Sunoar PETAN

KEDAH |, mMINLAYS 1A .
(Student's Permanent Address)

Date: Ny ¢, 5]




THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the
Faculty of Graduate Studies and Research for acceptance, a thesis entitled A
Constitutive Model for Ice submitted by Heng Aik Khoo in partial fulfilment of

the requirements for the degree of Master of Science.

Gl

(Stpervisor: Prof. T. M. Hrudey)
i [ oy
' //g e oof
(Prof. D. W. MUW

(Prof. @ G. Faulkner)

Date: Nov'/:,/B‘I




Abstract

A one dimensional model is developed for ice in compression. It consists
of the combination of a Maxwell unit and a Kelvin-Voigt unit. The model
includes the effects of loading rate and material damage. It is able to account for
the residual strength that exists in ice under a constant strain rate compression by
allowing the viscosity of the dashpot in the Maxwell unit to vary. However, the
model is restricted to the lower range of deformation rates. It does not repressent
compressive brittle fracture.

The one dimensional model is generalized to a plane stress situation using
the principles of continuum mechanics and where possible the two dimensional
test data from the literature. In the plane stress model, tensile brittle fracture is
represented by a simple tensile stress cutoff. The process of implementing the
plane stress model into a finite element program is discussed. This includes
various assumptions and mathematical treatments that are made and performed to
ease the numerical computation.

The plane stress model is then used to solve some indentation problems.
Numerical analyses with different indentor shapes are run to predict the peak
force on the indentor and the stress distribution in the ice sheet. Some uniaxial

and plane strain analyses are also performed to compare the numerical solutions

to the actual test results.
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1. Introduction

Snow and ice are an integral part of life in the region around the Arctic
and the Antarctic. The further away the region is from the equator, the greater
the effect of snow and ice is on daily life because the winter is longer. Besides the
many inconveniences that may arise, snow and ice can be a financial burden to the
society. Blowing snow and icy roads are traffic hazard. Floating ice sheets and
ice-bergs constantly threaten the safety of shipping and offshore structures.
Structures have to be designed to carry heavier loads due to snow accumulation.
Bridge piers have to be designed to withstand the collision with ice floes and ice
sheets moving downstream.

Since the oil crisis in the 70's, there has been an increase in the oil
expleration and drilling activity in and around the arctic region. Some of this
activity occurs at sea. Offshore platforms are built to extract crude oil from
beneath the sea floor. Beside the severe weather conditions, the danger created by
floating ice sheets and ice-bergs is a major safety concern for the offshore
structure operators. The impact force of a huge ice-berg is very large.
Fortunately, the collision between a huge ice-bergs and drilling platforms rarely
occurs. Thus, it is uneconomical to design the drilling platform to withstand such
forces. However, the structure in frozen sea will often experience forces due to
ice sheet indentation. This is the force that is exerted by an ice sheet as it advances
slowly against a structure. The associated pressure can be as high as 10-20 MPa.
This type of loading condition occurs in high Arctic regions such as the Beaufort
Sea where offshore platforms are surrounded by ice during the winter months.
The ice sheet, driven by wind and wave action, slowly advances against the
structure. As a result, the structure has to be desigiied to withstand this load

because it occurs frequently. A more accurate prediction of the magnitude and
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the distribution of stress on the indentor will allow the offshore structure to be
designed more safely and economically.

However, it is difficult to predict the ice forces because the behaviour of
ice is very complicated. Ice encountered in nature normally exists close to its
melting temperature. Thus, the strength of ice is sensitive to temperature and
loading rate, and as a result, the force exerted by the ice sheet on a structure is
also sensitive to these two parameters. Some other factors, such as ice crystal
orientation, type of ice etc., also greatly influence the behaviour of ice. There is
the lack of a good constitutive model, even in one dimension, that deals with all
the factors which influence the ice behaviour. Even with a representative
constitutive model, it is difficult to solve a realistic two dimensional and three

dimensional problems because the material is not uniform.

1.1 Objective of the Thesis

The objective of this thesis is to develop a simple plane stress ice model to
repicsent the behaviour of the ice sheet. A one dimension model for ice in
compression is first developed. The model includes the effects of the loading rate
and material damage. It is able to ac:icount for the residual strength that exists in
ice under a constant strain rate in compression. However, the model is restricted
to the lower range of the deformation loading rates where ductile failure in the
ice dominates. It does not represent compressive brittle fracture which is
experienced by ice at high loading rates. Thus, as the loading rate gets higher, the
prediction from the model becomes less reliable. The one dimensional model is
later generalized to a plane stress situation using the principles of continuum
mechanics and, where possible, two dimensional test data from the literature. In
the plane stress model, the tensile brittle fracture is modelled by a simple tensile

stress cutoff. This plane stress model is then used in solving some indentation
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problems. Numerical analyses with different indentor shapes are run to predict
the peak force on the indentor and the stress distribution in the ice sheet. Some
uniaxial and plane strain analyses are also performed to compare the numerical

solutions to the actual test results.

1.2 Organisation of the Thesis

Chapter 2 consists of a literature review on ice. The review includes a
brief discussion of ice mechanics. In addition to ice mechanics, various work
done on prediction of the ice force on different shapes of structure and on
numerical modelling of ice are also discussed.

Chapter 3 discusses the proposed ice model. It is divided into two parts.
The first deals with the proposed model in uniaxial loading. This part lists the
various components in the model and explains their roles. The second part
describes how the one dimensional model is expanded to a plane stress one.

Chaper 4 deals with the process of implementing the plane stress model
into a finite element program. The first section of this chapter explains the
solution scheme that is used to solve a general creep problem. The second section
deals with special considerations associated with the implementation of the
various components of the model, in the finite element program. The
considerations include various assumptions and mathematical treatments that are
made and performed to ease the numerical computation. The third section in this
chapter consists of a flow chart with some explanation to assist in showing the
sequence of the numerical operations in the finite element program for the plane
stress ice model.

Chapter 5 consists of the presentation and the discussion of the analytical
solution. The first part of this chapter gives a brief explanation on how to work

out the values of the parameters used in the numerical analysis. This part is



followed by the presentation and the discussion of the numerical results for
problems of ice in uniaxial compression, plane strain compression, and
indentation. Where possible the numerical predictions are compared with actual
test results.

Chapter 6 consists of a summary and conclusions.



2. Literature Review

Ice is a very complex material. This is due in part, to the fact that in its
natural state it is very close to its melting point. The behaviour of ice depends on
its crystal orientation, the loading rate and many other factors. Much work has
been done to categorize ice based on its crystal orientation, to determine its

response under different load conditions, and to predict the forces that ice may

exert on a structure.

2.1 Ice Mechanics

Ice has a hexagonal crystal structure. Its material properties depend on
many factors. These include the crystal orientation, crystal size, temperature,
and air voids. The behaviour of ice has been investigated considerably under
various factors and different types of loading. The two most common load

conditions used in testing are indentation and uniaxial loading.

2.1.1 Types of Ice

There are two main categories of ice: granular and columnar. These two
groups are differentiated by the ice crystal orientation. The ice crystals in
granular ice are randomly orientated and the material can be considered
isotropic. For columnar ice, the c-axes of the ice crystals are oriented in the plane
perpendicular to the columns (the c-axis of an ice crystal is shown in Figure 2.4).
This is due to the preferential growth of the ice crystals in the direction of the
columns. Since the c-axes of the columnar ice crystals are randomly distributed
within only one plane, the material can be classified as tranverse isotropic. In
certain situations, as in a narrow channel, the ice growth may be influenced by the

current flow. This creates a unique form of columnar ice where the c-axes of the
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ice crystals are aligned in one direction. This type of columnar ice exhibits
orthotropic material properties. The subsequent use of the term ‘columnar ice' in

this thesis refers to the tranverse isotropic type.

2.1.2 Material Properties of Ice

The form of the stress-strain curve that ice exhibits under constant strain
rate deformation depends on the strain rate, temperature, loading direction, type
of ice, grain size and etc. These factors also influence the peak stress and the type
of failure that ice experiences.

Ice encountered in nature normally exists close to its melting
temperature. Thus, the strength of ice is sensitive to temperature and loading
rate. The strength of ice is defined as the maximum stress that ice experiences
under a constant strain rate loading. It can be the peak stress, the asymptotic
stress or the maximum stress depending on the shape of stress-strain curve ice as
shown in Figure 2.1. Most materials, such as steel, exhibit the same effects near
their melting points.

There are two distinct modes of failure for ice: creep mode and brittle
mode. Creep failure is governed by the viscous flow of ice and occurs at a low
strain rate. The relationship between the applied strain rate and the peak stress
for this failure can be represented by power-law creep as illustrated in
Figure 2.2. The brittle failure which occurs at high strain rates is characterized
by a sudden complete material failure. For the creep mode type of failure,
Haynes (1979) has shown that for the same deformation loading rate, the strength
of ice increases as the temperature decreases. As the temperature is reduced, ice
becomes more viscous, consequently a higher stress is required to generate the

same deformation rate at a lower temperature. A similar occurrence is found for



compressive brittle fracture. The compressive brittle fracture strength increases
with the reduction in temperature (Carter,1972).

Under constant strain rate compression, the shape of the stress-strain
curve depends on the strain rate. These stress-strain curves of ice are shown in
Figure 2.1. At a very low strain rate (1x108s1), ice reaches an asymptotic
stress value without peaking. For higher strain rates (1x10-3s°1), the stress
reaches a peak value and then decreases. At an even higher strain rate (1x10''s),
ice fails abruptly once the peak (maximum) stress is achieved. As a result, there is
no descending branch on the stress-strain curve.

The failure mechanism governing ice varies with strain rate. At very
low strain rates, the failure mechanism is governed by the creep process.
Material deterioration does not occur for this mode of failure. In this situation,
the deformation of the ice consists primarily of viscous flow. The viscous
deformation rate is equal to the applied deformation rate. The stress that is
required to produce a viscous deformation rate equal to the imposed deformation
rate is considered as the strength of the ice. For very low strain rates, the stress' in
the ice reaches an asymptotic value and remains at that level unless there is a
change in the loading condition. However, at very high strain rates, the strength
is controlled by brittle fracture. In this case, the failure stress does not change
with strain rate. For intermediate strain rates, the failure mechanism is a
combination of both creep and brittle fracture.

Ice has a quite different response under tensile loading (Figure 2.2). At
low strain rates, the response in tension and compression are similar. At higher
strain rate, ice exhibits a greater capacity to carry the compressive load. As
illustrated in Figure 2.2, the strength for tensile brittle facture is only slightly
lower than the maximum peak tensile stress, but the strength for compressive

brittle fracture is much lower than the maximum peak compressive stress.



Under constant stress loading, the deformation of the ice can be divided
into four main stages: i) instantaneous elastic deformation, ii) primary creep , iii)
secondary creep , iv) tertiary (accelerating) creep and failure. These four stages
are shown on Figure 2.3. At very low stresses (0.1MPa), the deformation does
not pass beyond the secondary creep stage. At higher stresses (2.0MPa), ice
progresses to the tertiary creep stage and eventually fails. At even higher stresses
(4.0MPa), the secondary creep stage is bypassed and the tertiary stage occurs
immediately after the primary stage.

The behaviour of ice under multiaxial loading is naturally more
complicated than under uniaxial loading. Most work done on ice under multiaxial
load has been for compression. Frederking (1977), and Timco and
Frederking (1984 and 1986) have done some plane strain tests on ice. The plane
strain confinement is found not to affect the strength of granular ice very
significantly (Frederking,1977). In the plane strain tests done on columnar ice
with load application in the direction perpendicular to the long direction of the
columnar grains, two different confinements have been used: confinement in the
long direction of the column and confinement in the plane perpendicular to the
long direction. The observed strength for the former case is almost the same as
uniaxial situation. However, the failure strength for the latter plane strain case is
three to four times that of the uniaxial situation. Columnar ice can carry more
load in the direction along the columns than in the plane orthogonal to the
columns (horizontal direction). In triaxial tests, the peak compressive deviatoric
stress of granular ice increases with the confining pressure up a certain point only
(Jones,1982). After that, the peak deviatoric stress decreases. However, the
tensile strength of ice does not increase with increasing confining pressure.

Instead, the tensile strength drops off dramatically (Haynes,1973).



In addition to the temperature and the loading rate, there are other
factors that affect the strength of ice. Air voids and salt inclusions can cause a
significant reduction in strength. In the situation where the brine volume is much
greater than the air void volume, Weeks and Assur (1967) have suggested that
the strength of ice varies according to oz = (1 - cvbk)oo, where o; is the reduced
strength, vy, is the brine volume, G, is the strength with zero air void and brine
volume, and ¢ and k are constants that vary with the shépe of the brine pockets.
One may expect the crystal size to have some effect on the strength since an ice
specimen is usually made up of many individual crystals. However, there is no
consensus as to whether this is true or not. Schulson and Cannon (1984) claim
that the compressive strength of the ice decreases by approximately 1.5 MPa as
the grain size increases from 1 to 8 mm. On the other hand, Jones and
Chew (1983) have found that there is no grain size dependency for the
compressive strength within the size range of 0.6 to 2.0 mm.

Vittoratos and Kry (1979) have found that the strengths of large scale
and small scale ice specimens are the same at small strain rates. The large scale
specimen measures 0.3m wide 0.5 deep and 1.5m long while the small scale
specimen has the corresponding dimension of 0.101m, 0.101m and 0.2m. At high
strain rates, the strength of the small specimens is found to be bigger than that of
the large specimens. This behaviour is attributed to the type of failure mode.
Ductile failure at a low strain rate is found to be size independent, but brittle
fracture ai a high strain rate is found to be size dependent. Sanderson (1986) and
Ashby et al. (1986) suggest that the reason for the reduction in strength, is the
non-simultaneous failure in the ice rather than the increase in the flaw size due to
the size increase of the specimen. Schwarz et al. (1974) suggest that the
compressive strength of ice depends on the ratio of the sample size to the crystal

size rather than on the sample size itself. In the experiment done by



Schwarz et al., with a large ice sample width to crystal size ratio, the uniaxial
compressive strength is relatively constant for all samples ranging from 1 to

100 cm?,

2.1.3 Ice Indentation

The interaction between ice and an indentor is very complicated. All the
factors mentioned in the previous section which govern the strength of ice, have
some influence on the ice indentation force. The indentation velocity, the ice
thickness, and the size and shape of the indentor also influence the load the ice
sheet exerts on the indentor. The effective indentation stress can be two to four
times the uniaxial strength of the ice. There has been much discussion on the
dependency of the indentation force on the ice thickness and the indentor width.
Afanasev et al. (1971) has pointed out that the effective indentation stress is
very much intluenced by ratio of the thickness to the indentor width. The
effective stress increases with increasing value of this ratio. Sodhi and
Morris (1984), Ponter et al. (1983), and Ralston (1978) also consider this
ratio as an important factor in determining the effective indentation stress. They
have stated that as the ratio increases, the loading condition shifts from plane
stress to plane strain. However, Frederking and Gold (1975), Michel and
Toussaint (1977) and Saeki et al. ( 1977) have disputed that claim. Their
findings show that the effective indentation stress is only dependent on the width

of the indentor.

2.2 Ice Force Prediction in Indentation
Indentation problems are closely related to actual field situations. When
a moving ice sheet advances slowly against a structure, only a portion of the ice

sheet is in contact with the structure. This is similar to an indentation test where
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the indentor moves slowly against an ice sheet. An offshore structure in a frozen
sea or a bridge pier in a frozen river experiences the indentation type of loading.
In winter, the offshore structure is surrounded by the ice sheet. Driven by the sea
current as well as the wind, the ice sheet moves slowly against the stucture. The
same situation occurs in a frozen river when the ice sheet advances against the
bridge pier. Consequently, extensive studies made on ice indentation have been
carried out so that the forces exerted on these structures can be better understood.

There are two main approaches to predicting indentation ice forces: 1)
prediction based on empirical equations, or 2) prediction based on the numerical

analysis using an appropriate two or three dimension material model for ice.

22,1 Empirical Equations

The simplest approach to predict the force exerted on a structure by a
floating ice sheet is to use empirical equations based on experimental results. The

general form of the equation of this type is:

F=f| C.,v,&,m,k,b,h,0, or 5,,B, T
&

where  F =the horizontal force exerted by the ice sheet,
C =the indentation coefficient which takes into account the
biaxial stress condition around the structure,
m = a parameter which takes into account the shape of the
structure,
k =the contact coefficient that accounts for incomplete
contact between the structure and the ice,

v = the velocity of the moving ice sheet,

11



b = the width (or other appropriate dimension) of the
indentor,

h =the ice thickness,

B =the width of the ice shect,

¢ = the strain rate,

g, = a reference strain rate,

G, = the uniaxial compressive strength of the ice
corresponding to the reference strain rate,

o. = the uniaxial crushing strength of the ice, and

T = the temperature of the ice.

Various equations of this form have been proposed.

Korzhavin (1962) has proposed an equation of the form:
033
F= thmkoc(%) ,

For B/b > 15, C is suggested to be 2.5. In the equation, the force generated by the
ice is a function of the velocity. However, the effect of either b or h on the
strength of the ice was not included.
Afanasev et al. (1971) has suggested that:
F=bhCmko;
The strength of the ice is affected by the width of the structure and the ice

thickness. The value of C in the equation varies with b/h as follows:

for 1shRS6 C=A/ 5%+1,and
b 1/,ch
< - —_—
for 0.1_h<1 C 6(25b 10),

Thus, for the same contact area, the ice force decreases as b/h increases.
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Schwarz et al. (1974) have proposed the equation:

01

11 h
F = 3.57v/bh o, = 3.57bh0'c—£.
This equation is limited to circular piles and the penetration type of ice-pile
interaction. No velocity is included in his equation because the numerical
constant and the crushing stress used are supposed to produce the upper bound
load.

Saeki et al. (1977) have proposed a function that is quite similar to the

one proposed by Schwarz et al. Their function is:

F= C]hoc’\/— = bhﬁc%,

where C;= a coefficient that varies with the shape of the pile.
The constant 3.57h™'/v'b from Schwarz et al. and C;/v'b from Saeki et al. play
the same role as the product Cm in both the equations of Korzhavin and
Afanasev et al. Both Schwarz et al. and Saeki et al. claim that the failure in
the ice sheet is due to horizontal cracking and the strength of the ice is
proportional to h*'W/b and 1 Wb respectively. In both cases, the influence of the
ice thickness on the strength is very small or none.

Michel and Toussaint (1977) have presented a set of equations for a
whole range of ice deformation rates. Their equations also do not consider the ice
thickness as a factor in the strength., The indentor width b is used to calculate the
effective strain rate € = v/4b which in turn is used to determine the type of
failure and the magnitude of the force. The set of equations proposed are:

i) In the pure ductile zone.

€
&

0.32

F = bhCmko,
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ii) In the transition zone.

£
£

iii) In the brittle zone.

F = thmkcb

-0.126

F = bhCmka,

where oy, = the uniaxial crushing strength of the ice under brittle
condition.

The parameters C and k are different for each zone.

222 Ice Modelling

Another approach in the ice load prediction is through a numerical
analysis using a suitable ice material model. The material model used has to be
two or three dimensional to represent ice indentation. Even though one
dimensional models are not suitable for indentation analyses, they can be a useful
guide for forming two dimensional or three dimensional models. Therefore, a
discussion on one dimension models is included in this section.

Glen (1955) has observed that at low stress, there are transient and
continuous components of creep. At higher stresses, an accelerating stage of
creep occurs. The minimum creep rate is found to be closely represented by €=
Bo"exp(-Q/RT), where T is the temperature in degrees Kelvin, R is the gas
constant, and B, n, and Q are constants with the value of 3.2, 32 kcal/mole and
7x10% (1/(bar".year)) respectively.

Karlsson (1971) has proposed a viscoelastic-plastic model for sea ice.
The pre-yield ice response is modelled by the combination of a Kelvin-Voigt unit
and a Maxwell unit. For plastic deformation, an assumed yield surface is used.

The shape of the yield surface is constant, but its size increases with strain rate.
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The strain rate dependence of the yield surface size only occurs at the pre-yield
stage. Once the ice has yielded, the size of the yield surface stays constant.

Sinha (1978a, 1978b and 1981) has proposed a rheological model for ice
under uniaxial loading based on his experimental results. It is made up of three
components.

1) Elastic strain €, = ¢ / E,.
2) Delayed elasti: strain (recoverable) &4 = (co/Ey)(1-exp(-(a [t)b)).
3) Viscous strain &, = évllci"t
where ¢ = applied stress,
E, = Young's modulus which is almost temperature
independent,
év, = steady state strain rate for one unit stress (temperature
dependent),
n =3
¢ =aconstant that varies with the grain size, and
a, =aconstant that varies with temperature.
The viscous strain proposed by Sinha is very similar to the minimum strain rate
equation proposed by Glen (1955). However, this model is unable to represent
the post peak behaviour of the ice.

Michel (1977) has proposed a two dimensional creep model that takes
into account the elastic and plastic deformation of each ice crystal. The plastic
deformation expression in this model is based on Glen's law and the increase in
number of mobile dislocations. Only the shearing stress acting in the direction of
the basal plane of the ice crystal causes the plastic deformation.

A constitutive relation for the non-elastic deformation of polycrystalline
ice has been proposed by Le Gac and Duval (1979). Their model contains two

forms of hardening (isotropic and directional). Both are affected by two opposite

15



processes of strain hardening and softening. Scalar and tensor state variables that
change with time and deformation are used. The tensor state variable allows the
model to represent creep recovery. This situation occurs when the tensor state
variable is larger than the applied deviatoric stress (as in the case of a load
removal or reduction).

Wang (1982) has proposed a simple one dimensional model to describe

the mechanical behaviour of sea ice. This model has the form:

Sla

2 S\R
£l +l1+A (f'-) £
& g,) Eo
where A =constant,
n =constant,
€ = strain,
€ = strain rate,
g, = reference strain,
éo = reference strain rate,
¢ =stress, and
o, = reference stress.
The parameters A, n, Gy, € and eo are five temperature dependent material
constants of which only four are independent. Under constant strain rate loading,
the stress-strain curve has a peak stress:
Omax = (€/&) G,
The strain at peak stress is given by:
efeo = [A(e/e)"]".
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At very large strain, the model gives an asymptotic stress of
Guymp = (€/€)" [1+ A% (/)™ 1.

Chen et al (1985) have proposed a hypoelastic model for high strain
rates that includes the confining pressure and post peak softening. At small
strains, the model is almost linear elastic; at large strains, it displays a Mohr-
Coulomb type behaviour where the residual strength is dependent on the
confining pressure. However, there are some limitations in the application of this
model. One is its inability to simulate unloading and cyclic loading. Another is
the restriction to only imposed incremental displacement loading. This
restriction is imposed because the stress-strain relationship is not unique, as there
can be two values of strain for one stress.

Szyszkowski and Glockner (1985) use the combination of a modified
Maxwell unit and a modified Kelvin-Voigt unit in series, to describe the uniaxial
stress-strain behaviour of the ice. The spring stiffness in the Kelvin-Voigt unit
varies with the state of stress and strain in the unit. The dashpots in both the
Kelvin-Voigt and Maxwell units have non-linear stress-strain rate relationships.
These takes the form of € o< 6", with each unit having a different n. To account
for the post peak behaviour, the viscosity for the dashpot in the Maxwell unit
decreases with strain after the strain in that unit exceeds a specific value.

Ting and Sunder (1985) have proposed a constitutive model for the sea
ice. It covers both ductile and brittle behaviours of ice from uniaxial to triaxial
state of stress. The model is made up of two parts: one part accounts for the
continuum behaviour and the other, for brittle fracture. The continuum
behaviour is modelled by using the combination of a rate-dependent spring and a
non-linear dashpot in series. A damage parameter, which is a function of the
strain and strain rate, is also included to describe the ice response in the ductile to

brittle transition zone. This parameter reduces the spring stiffness and the
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dashpot viscosity. The yield/fracture behaviour of the ice is governed by a rate
sensitive and isotropic Drucker-Prager failure surface.

Karr (1984,1985a,1985b) has proposed a constitutive equation for ice
under uniaxial compression that is based on the theory of continuum damage
mechanics. The model attempts to represent the changes in the microstructure of
the ice caused by the the internal cracking and the plastic flow. The formation of

the internal cracks in the ice sample is related to its acoustic emission response.

22.3  Other Methods

There are some other lesser known approaches to predicting indentation
ice forces beside the two main one mentioned in the preceeding sections. Some of
these lesser known procedures are dealt with in this section.

Reinicke and Ralston (1977) , and Ralston (1978) calculate the upper
bound and lower bound force on a flat indentor using a plastic limit analysis
approach. A generalized Von Mises yield function is used to take into account the
difference of the ice strength in tension and compression. To find the lower
bound solution, the ice sheet is divided into ten zones of constant stress. For the
upper bound solution, the ice sheet is divided into five distinct rigid bodies. Both
solutions are then solved numerically.

Mellor and Cole (1983) use a different approach from other researchers
to describe the stress-strain-time relationship of ice. Instead of representing the
behaviour of ice mathematically as most other researchers do, they construct the
response of the ice from experimental results from creep tests and constant strain
rate tests. Creep test results are used to construct the stress-strain curve for the
constant strain rate loading and the constant strain rate test results are used to

construct the creep curve for the constant stress loading.
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Ponter et al (1983) use the reference stress method to estimate the ice
sheet indentation force. This procedure utilizes a number of related numerical
and analytical solutions, together with some assumptions, to estimate the

indention force. The two basic assumptions are:

1) PU= GOVOFE“GO)’ and

88
~
o[9

= X where
P,

F:(0s) = strain rate corresponding to the reference stress,

Vo = reference volume,
o = reference stress,
P = the load on the structure,

= the velocity at the point of loading,
P = the plastic collapse load of the structure, and

Y = the yield stress corresponding to P;.
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3 Constitutive Model

The proposed constitutive model for ice is formulated on g3
semi-empirical basis. It is based on the results of ice tests reported in the
literature. The model is first formed for uniaxial loading and expanded to
include the plane stress condition. The model divides the deformation of ice intg
three components: instantaneous elastic, delayed elastic and viscous flow. Thege
components are discussed in the following sections. The instantaneous elastic and
viscous deformations are represented by a Maxwell unit (Figure 3.1), and the
delayed elastic deformation is represented by a Kelvin-Voigt unit (Figure 3.2),
Softening of ice is treated by allowing the viscosity of the Maxwell unit to change,
In the plane stress model, a tensile stress cutoff is used to simulate tensile brittle
fracture. The proposed model can, however, only be used in the range of loading
where the peak stress of ice is governed by power-law creep (viscous flow). The
range varies with temperature, type of loading, type of ice etc. Figure 2.2 gives
an illustrative intrepretation of the loading range governed by power-law creep

for a uniaxial condition.

3.1 One Dimension Model

The proposed one dimensional model for ice in compression consists of
the combination of a Maxwell unit (Figure 3.1) and a Kelvin-Voigt
unit (Figure 3.2) in series. The dashpots in both units are non-linear. In
addition, the dashpot in the Maxwell unit is damage sensitive. Figure 3.3 gives a
graphical representation of the model.

In Figure 3.3, the applied stress is represented by 6. This is the norma]
stress that is experienced by ice. The model can be divided into three elements;

instantaneous elastic, viscous and delayed elastic. The elastic member in the
22



Maxwell unit represents the instantaneous elastic response of ice. It has an elastic
modulus of E, and a corresponding elastic strain €,. The dashpot in the Maxwell
unit represents the non-recoverable viscous deformation. It has the viscosity of
i, or 1/n and a viscous strain of €,. The delayed elastic response of ice is

represented by the Kelvin-Voigt unit. This is the non-instantaneous elastic
deformation which does not manifest itself immediately after loading or
unloading. This unit has an elastic modulus E,, a viscosity L., and a delayed elastic
strain €4. The stress in the elastic member is denoted with ¢' and the remaining

stress that has to be taken up by the dashpot is denoted by ¢". These three

elements are discussed in detail in the following subsections.

3.1.1 Instantaneous Elastic Element

The instantaneous elastic response of ice is represented by an elastic
element with the modulus E,. Creep tests done by Brill and Camp (1961) have
shown that ice experiences instantaneous deformation and recovery upon the
application and removal of the load. The instantaneous deformation is found to
be almost equal to the instantaneous recovery. Sinha (1978b) has observed that at
-40°C and for a compressive stress in the range of 0-2.5MPa, columnar ice has a
linear stress to instantaneous strain relationship. Consequently, the instantaneous
elastic strain is assumed to change linearly with the applied stress in the form of
€. = G /E,. The Young's modulus also remains quite stable over a wide range of
temperature (Sinha,1978a and Mellor,1983). Thus, the modulus E, for the

proposed model is assumed to be loading rate and temperature independent.

3.1.2 Delayed Elastic Element
A Kelvin-Voigt unit is used to represent the delayed elastic deformation.

This unit can accommodate the non-instantaneous elastic response such as the



creep recovery during unloading. The strain rate in the dashpot is assumed to be
proportional to (") where m is a constant. As a result, the delayed elastic

strain rate is:

&= (0" iz -
In reverse, the stress G" can be expressed as:
"= (wea)'".

The relationship between ¢’ and €4 is assumed to be linear. Therefore, the stress
o' can be written as:

o=Eg .
The applied stress which is the sum of ¢' and 6" can be written in terms of delayed
viscous strain and strain rate as follow:

G=0+¢"

= B+ (ga) "

Both the elastic modulus E, and the viscosity p, are independent of time and
deformation. The Kelvin-Voigt model proposed is quite similar to the one
proposed by Szyszkowski and Glockner (1985) except that their model has an

elastic modulus that varies with the deformation.

3.1.3 Viscous Element

The viscous element is a non-linear dashpot based on Glen's power law
(Glen,1955). The viscous strain rate g is given by no" where n is constant. To
accommodate the post peak softening of the ice under uniaxial constant strain rate
loading, the value of 1 is allowed to vary. A higher 1| value allows ice to deform
faster with the same stress or to deform at the same rate with a lower stress. The
changing value of 1 takes into account the structural deterioration in the ice.

However, 1 cannot decrease in value because the damage process is irreversible.



There are five important parameters that influence 1. They are 0;, 1y,
év, €y and g, where 1; is the initial 1, )¢ is the final | under constant strain rate
compression, &, is the viscous strain rate, &, is the viscous strain and €., is the
critical viscous strain. The following subsections explain the role of these five

parameters and how 1 must change to duplicate the experimental results.

3.1.3.1 Initial and Final Value of n

For low strain rate compression, the peak stress of ice is governed by
power-law creep as shown in Figure 2.2. Consequently, the viscous element is
used to control the peak stress. In constant strain rate compression, the peak
stress is influenced by the initial 1 value of m;. The peak stress can be
approximated by:
L

o]

Various experiments (Sinha,1983, Mellor and Cole,1982, Cox et al.,
1984 and 1985) have shown that ice possesses some residual strength when tested
under constaat uniaxial compressive strain rate. This is exemplified in
Figure 3.4. The residual strength seems to depend on the deformation rate. At
the later stage of loading under constant strain rate, almost all the deformation is
due to viscous flow. This suggests that the residual strength is controlled by the
value of . In order to model this characteristic, the final value of 1 has to be a
function of the viscous strain rate (¢ = f[éV]). Therefore, the residual strength

is assumed to be:

1

e |n
cresidual = (F’) .
f
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At strain rates less than 5x107s” in Sinha's (1982) tests and at stresses
less than 0.5MPa in Gold's (1972) tests, ice does not seem to undergo any
structural deterioration with time. For example, curve 1 in Figure 3.4 shows
the stress approaching an asymptotic value without showing a peak value. In this
case, the value of nr cannot be greater than the initial value 1;. Since 1 cannot
decrease, it follows that ¢ must be equal to 1};. For curve 2 and 3, Opeak is greater

than Oresiqual. Therefore, 1¢ for these two cases must be greater than ;.

3.1.3.2 Viscous Strain g, - As a Controlling Parameter

Saeki et al. (1977) and Schwarz et al. (1974) observed that the
failure of ice in their indentation tests occurred with the formation of cleavage
cracks perpendicular to the thickness of the ice sheet. In tests done on columnar
ice, Frederking (1977) noticed that the pattern in which initial cracking occurs is
the same for uniaxial compression and plane strain compression. Figure 3.5
gives the loading direction with respect to the orientation of the ice specimens for
both cases of loading. In the uniaxial test, the loading is in X direction. In the
plane strain test, the free surface is parallel to the X-Y plane. Cracks form in a
plane parallel to the direction of the loading and the long axis of the grains. These
cracks then coalesce to form shear bands. The maximum stress in the uniaxial
compression tests occurs with the appearance of the shear band. For the plane
strain case, the stress continues to increase until extensive cleavage cracks are
formed parallel to the X-Y plane. Sinha (1982 and 1985) and Gold (1972) have
noticed a similar cracking pattern. From the observations made by Saeki et al.,
Schwarz et al., Frederking, Sinha and Gold, the cracking activity seems to be
governed by the tensile strain. For columnar ice loaded uniaxially in the X
direction, the strain rate is much lower along the Z axis than in the other two

directions (Wang,1981). Thus, the tensile strain is bigger in the Y direction than



Z direction. This explains why cracks first form on a plane perpendicular to the
Y direction. In plane strain tests, the tensile deformation is confined to the Z
direction. As a result, the cleavage cracks form in the X-Y plane. However, this
does not explain why the initial crack pattern in the plane strain tests is similar to
that in the uniaxial tests. In the plane strain tests, the initial cracking pattern does
not seem to be influenced by the total strain. For this reason, the total strain
should not be used as a parameter to control 1. The total strain is made up of the
instantaneous elastic strain, the delayed elastic strain and the viscous strain.
Among these three strains, only the viscous strain can increase indefinately while
the other two are limited by the applied stress. Therefore, the viscous strain is a
more suitable parameter to be used to control i} than the instantaneous elastic or
the delayed elastic strain. In plane strain tests, the total strain is zero in the
direction of the confinement (Y direction), but this does not mean that the
viscous strain is also zero. Thus, the initial cracking pattern in the plane strain
tests can possibly be accounted for by using the viscous strain as the controlling
parameter, because it is not zero in the Y direction. As a result, the viscous strain
is used to control 1. In uniaxial compression, the viscous strains in Y and Z
directions are tensile. Since cracks are assumed to be caused by tensile strain,
only these two strains influence the value of . Assuming that there is no volume
change in viscous flow, the sum of normal viscous strains can be written as
€xt+Ey+E,z= 0. This gives €= -€,y-€,7, and so € is a measure of €,y and € ;.

Consequently, the viscous strain in X direction is used to represent the effect of

the tensile viscous strain in Y and Z directions in the one dimension model.

3.1.3.3 Critical Viscous Strain g,

The constant &, is used to control the strain at peak stress. The

parameter €. is the viscous strain at which the value of n starts to increase.
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Mellor and Cole (1982) have found that the peak stress for most of the uniaxial
strain rate tests occurs at almost the same strain. Tests done on fresh water
columnar ice by Sinha (1983) over the strain rate range of 5x107s" to 3x10°s"
have showed that the strain at peak stress increases only slightly with the strain

rate, varying over the range from 4.5x10™ to 11x10™. On this basis, &,c is

assumed to be constant.

3.1.3.4 The Mathematical Expression for Viscous Element

The assumed mathematical expression for the viscous element is listed

below.
The viscous strainrateis & ="o".
For g, < &y, n =n.
For &, > &,
oy
dn _ _ azlevl'evc
ae, =M=, ) (3.1)
and %:0 if a2|8v|—e,,cso or ;-n <0
8\'

where e = Bi(e)™,
0, Eve, B, B2 O, Oz, O and O are constants,
n; is the initial value of 1, and
nN¢ is the final value of M under a constant strain rate
loading.
Equation 3.1 controls how 1 changes with respect to the viscous strain &,.

However, when azlevl —€,c Or N¢-7 is less than zero, dn/de, is set to zero. The

criterion N¢-1 less than zero takes into account the irreversibility of the damage
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process. The other condition, 0|€,| — €yc less than zero is introduced because

equation 3.1 is undefined in this case.

3.2 Plane Stress

The indentation of an ice sheet whose thickness is small relative to the
lateral dimensions can be assumed to be a plane stress condition. This assumption
is valid except when the indentor width to ice thickness ratio is small. Referring
to the coordinate system in Figure 3.6, and assuming columnar ice with the
columns in the X, direction, the ice is taken to be isotropic in the X;, X, plane. In
the following, the one dim. asion model for compression from the previous

section, is generalized to the plane stress situation. Each of the three element is

considered in turn.

32.1 Instantaneous Elastic Element

The stress-strain relationship for a linear elastic material is well-known.

For plane stress loading, it is:

/ Sen 1 1 -V O O'”
€2 )= —E— -0 1 0 O»
\ €12 : 0 0 2(1+v)| \op

or
Ou 1 v 0 [ Eq11
On | = E, 5 L 1 0 )
O (I_D 0 O (1"‘0) /2 eelz

3.2.2 Delayed Elastic Element
The generalization of the delayed elastic term is more complicated. One

of the difficulties encountered is to make the term coordinate invariant in the X,



X, plane because columnar ice is isotropic in that plane. The elastic component is
assumed to have a similar stress-strain relationship of a linear elastic material. It

follows that:

Equ 1 QD 0 o'y
Ep )= R =) 1 0 C'»
Eq2 2 0 0 2(1+v)| \o'y

/ Equ / o'y
or E@ )= —l—-[P] G'» ) Where
EZ '
\ €412 \ G
1 -V 0
Pl=| -v 1 0

0 0 2(1+v)

Consequently, the stress that has to be taken up by the viscous component 6" is:

c'y O C'y
C'2 ) ={0z ) -{ Oy
(o \ Cn / C'p

Similar to the one dimension model, the delayed elastic strain rate is assumed to

depend on only 6". The assumed expression for the delayed elastic strain rates is:

Eqil , ym-1 1 -V 0 / o"y
(o}
c% €2 ) = ————( et -V 1 0 o'
£42 Ho 0 0 2(1+v)| {o",
g4 . ym-1 o'y
dt 19 "
E412 C

" v "2 "2 "2
where o' = Vo",+0",+206",
The parameter G" ¢ takes into account the effect of biaxial stress on the strain

rate. The influence of each component of 6" on the rate is related by the matrix
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[P]. In the elastic part of the delayed elastic element, the delayed elastic strain €, is
also related to each component of ¢' by the matrix [P]. The use of [P] in both

elastic and viscous parts makes the delayed elastic term coordinate invariant.

3.2.3 Viscous Element

The multiaxial viscous strain model is based on the constitutive equations
suggested by Sanderson (1984). This model reduces to the one dimension
viscous strain model in section 3.13 in the undamaged state. The viscous strain
rates for the multiaxial case are determined from a potential function. For an

anisotropic material, the viscous strain rates are given by:

—CL
i = 3o, (3.2)

+1

3 2nbt"

n is a scalar potential function,
n+

where ()

2 2 2 2
27 = a0y, - On) +ayCy - Oy) +2ay(Cy - Oyy)
2 2 2
+6 (2,0, + 3505 + 353 ),
a, to a4 are constants, and M, is similar to 7 in the one dimension model.

Substituting for & in equation 3.2 gives:

- kS
Eij = 2Mp T To.
ij
with

0 1
a_c::u =3 (al(ou - Oyl - ,|0- 0'11); ,
ek 1
5?; = 77 (- 31(0'11 - Gn) + az(O'n' 0'33)) ’
ot _ 1

(- {05 Gz} + as(o'aa - 611» )

Q
Q
8
()
a
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ot _ 1

80'12 - 2 (634612} )

ot _ 1

30, = 35 000 and
ot _ 1

30, = 21(636031)

For a transversely isotropic material in plane stress loading, Hill (1948) shows
that:
q = a,
6a, = 2(2a, +3a,),
C; = Oy = Oy = 0,and
27 = a0y - Op) + 20, +Gp) +2(22, +3,)0,, .
The viscous strain rates are then:

-1

. n
Evll = nb T ((a1 + az) Ony — alcn) .

. n-1
E2=MNyT ((al + az} Oy — alon) s
. n-1
gn=MN,T |(-a(0n+0z),and

. -1
gz=n,7T 2{2a,+a)0,.
Summing g i and évzz gives:
. . -1
gt € =T, T ((al +8,)0,, — 2,0, +(a, +2,) 05 — alcll)
n-1
=M T (az (on '*'Gzz))-

From the assumption that there is no viscous volume change, €,3 can be written

in terms of €,11 and €,2 as:

En=-Eu-E2n.
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As for 1y in the one dimension model, the value of 0, is allowed to change.
This modification is made to Sanderson's constitutive equations in order to model
the post peak behaviour of ice. In the plane stress case, the effective viscous strain
and strain rate are utilised in order to control the change in 1,. The following is
the discussion on how 1, is allowed to change.

The effective viscous strain rate is defined as:

-2 .2 '2 '2
€ = '\/ g+ €zt 0.58v12+ P1Ey:

where p, is a constant.
The effective viscous strain is assurned to be:
& = glo)h(e)

where

p p p
hie,) = &+ €z +pagyn,

2 2 2 2
/j —é—(al(ou-on) +a2(c,1+62)+2{2a1+a2)017)

gl =
A/—;—{ a1+ag)(031+ 5;2+2sz)

T

i //%(a1+az)( cf1+c;+2<5f2)

’

. P . .
p, is a constant and €, (no sum) are the principal viscous

strains.
2

Since columnar ice is transversely isotropic, the effect of €, on €,;, may be

.2 .2
different from the effects of €, or €,2. For this reason, p, is introduced to the

effective strain rate expression. In the function h(g,), p, serves the same purpose
as p, in évb. The effective viscous strain is made up of g(c) and h(g,). In

section 3.1.3.2, cracks are assumed te be influenced by the tensile viscous strain.



Thereforc. - /g,) being a measure of the tensile viscous strain's effect on cracks,
only includes the tensile principal viscous strain in the summation. Consequently,
sSjj (no sum) is considered to be zero if it is compressive. However, even with the
same h(g,), the effect of viscous strain on cracks is not expected to be the same for
uniaxial and biaxial stress conditions. To account for the difference, h(e,) is
modified by g(o) to give the effective viscous strain. The effective viscous strain
is equivalent to the viscous strain used to control 1 in the one dimension model.
In g(o), the uniaxial state of stress is used as the reference state. Therefore, g(c)
is unity for uniaxial loading. For plane strain condition, g(¢) is less than one.
This implies that the effect of h(g,) is less critical in plane strain compression than
uniaxial compression. In tests done by Frederking (1977), the strain at peak
stress is found to be considerably smaller in a uniaxial condition than for plane
strain conditions. On the other hand, the post peak stress reduction in uniaxial
tests is much faster than in plane strain. These two behaviours are indirectly
represented by g(c) which makes the viscous strain less critical in causing ice
deterioration for plane strain than uniaxial compression.

The mathematical expressions for n, are patterned after the corresponding
expressions in the one dimension model. Under constant strain rate loading, the

final value of 1 reaches M.

N
Mbe = B3(£vb)

where B, and 3, are constants.
For &b < &y » Mo = MNy; -
For Evb > cuch »

dn,
d €

Og
OlsEyp - Eyc

o,
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and :n" =0 if O€p-€yepS0 O MNy-Np <0
Evp

The parameters o to 0,3 are constants and €y, is similar to €, in the

one dimension model.
Similar to equation 3.1 in the one dimensional model, equation 3.3 controls how
N, changes with respect to the effective viscous strain €,,. However, when
OlsEyp, = Evep OF Npe-Np 1S less than zero, dnp/deyp 1S set to zero. The criterion
Nbf-Nb less than zero takes into account the irreversibility of the damage process.
The other criterion, 0s€yy, - Eycp less than zero is introduced because equation 3.3
is undefined for this condition.

Most of the constants for the plane stress model can be related to those in

the uniaxial model. Under uniaxial loading, the plane stress model reduces to:

T= 0Oy %(al‘i‘az) .

n-!

g = nb(%1a,+az}) i (a,+3,) o) | (3.4)
n-t

gz = le(%(al'*'aZ)) " laloh, (3.5)
n-t

g = nb(-;-(awaz)) ol (3.6)

Dividing equation 3.5 and 3.6 by equation 3.4, the following equations are

obtained:

2. R 3.7
év” a,+a, @3.7)
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From the uniaxial model,
évn =1 61,11 . 3.9
Comparing equation 3.4 and 3.9, it follows that:
n-1!
1V 2 n+!
nem(3] lasal T =Kn, (3.10)
where
n-1 .
1 2 n+
K= (E) (a1+a2} o
For the uniaxial case:
gloj=1 and h{e,)= En +DyEm
so that using equations 3.7 and 3.8, the effective viscous strain is given by:
E&b=8 (O') h (ev)
=-Len (3.11)
where L= 4t3,p,
a,+a,

The effective viscous strain rate is given by:

. ’\/ 22 .2
Ep = gn+€z2+pPEz .,

Substituting equation 3.7 and 3.8 in the above equation, the effective viscous

strain rate becomes:

2
. . - al
Ep = | Eu| 1+
a,+a,
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2 2 0.5
= évn 1+ —t-lip—le;-
(a,+a)
= Mévn
2+ 2
where M= {1+ ﬁlazi
(a,+a,)

In the uniaxial model, it is assumed that;

0.5

. B2
Mg = Bl( Evit )

(3.12)

(3.13)

For the plane stress model in uniaxial loading, a similar expression, in terms of

the effective viscous strain rate is used.

. \Bs
Noe = B3(8vb) .
Substituting equation 3.12 into 3.14 gives:
Mot = Bs(M & .
From equation 3.10, this relationship is obtained:

_ Mg
lef—K .

Substituting equation 3.16 into 3.15 gives:
. B
Ng = KB3(M €V11)

Comparing equations 3.13 and 3.17, it follows that:

Bz = B4 Bl = KMB‘Bs .

(3.14)

(3.15)

(3.16)

(3.17)
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d
Substituting equations 3.10 and 3.11, L can be expressed as:

d €vp

dle= 1 dn
de,, KLdegu:~

Oy
Substituting equation 3.1 gives: d:v: = _KII_ (ne-1)e o, 8‘,(; 13 -evc)
d e \%e
Substituting equation 3.10 gives: M =1 (nbf'ﬂb)an azlevlll Eve .
devb L a3
€ Euup |
vb vch
o -
d 2
Substituting equation 3.11 gives: d:v: =%~ (nbf-nb)al _—La3 L
1 o,€ e
— 2&vb - Evep
L (nbf‘nb)al ——ﬁ;—c—) . (3.18)

Therefore, by comparing equation 3.18 and 3.3, it follows that

o =0y /L, 06 =0, 0 =Loy, 0g=0, and &cp = &.

3.2.4  Brittle Fracture of Ice

Ice is much weaker in tension than in compression when it is deformed at
a high strain rate. Hawkes and Mellor (1972) have done some uniaxial tensile
and compressive tests on polycrystalline ice at -7°C. In these tests, the highest
tensile stress attained is around 2MPa. The brittle failure strength of the ice in
tension is found to be almost the same as the maximum peak tensile strength. But
in compression, the maximum peak strength is much larger than the compressive
brittle fracture strength (Figure 2.2). The maximum peak strength is defined as

the maximum peak stress that can be attained in ice under uniaxial constant strain
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rate loading as shown in Figure 2.2. The brittle failure strength is the peak stress
or the maximum stress of ice under high constant strain rate loading where the
failure mode is brittle fractute. The brittle facture of ice under biaxial stress
condition is very complicated. Under compression-compression stress
conditions, ice is not expected to fail in a brittle manner in the range of 'strain
rate’ where the peak stress can be approximate by power-law creep. In plane
strain tests done by Frederking (1977), brittle fracture does not occur even at the
loading rate of 1x10™“s". Frederking suggests that the strain rate at which brittle
fracture occurs falls between 1x10™“s™ and 1x10”s™. But in the same range of
strain rate, brittle fracture may occur under compression-tension and
tension-tension stress conditions. As shown in Figure 2.2 for the uniaxial case,
brittle fracture in tension occurs at a lower strain rate than compression. The
tests done by Haynes (1973) have shown that the tensile fracture strength of
polycrystalline ice decreases with increasing confining pressure. However, no
experimental results on the brittle fracture of ice where the principal stress in
more than one direction is tensile can be found. However for brittle materials
such as concrete, the principal stresses that are required to cause failure in a
biaxial stress state are always less than the uniaxial tensile strength. It is assumed
here that ice has this same characteristic. This means that brittle fracture may
occur when at leaSt one of the principal stresses is tensile but its value is less than
the uniaxial tensile brittle fracture strength. Consequently, a tensile stress cutoff
is used to approximate brittle fracture of ice in tension-tension and
tension-compression state of stress. In the proposed model, if the maximum
principal stress in a region reaches the tensile stress cutoff point Gy, the ice at that

particular region is considered to have failed and it is unable to carry any load.
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Figure 3.1 Maxwell unit.

=1

Figure 3.2 Kelvin-Voigt unit.
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Figure 3.3 The proposed constitutive model for ice under uniaxial
compressive loading.
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Figure 3.4 The effect of the final value of 1| on the residual
stress under constant strain rate loading.
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Figure 3.5 The orientation of the ice specimen in Frederking's
tests. (Modified from Frederking, 1977)




Figure 3.6 The orientation of the axes for the plane stress
formulation.



4. Finite Element Formulation

The finite element method is used to model the indentation of an ice
sheet. The procedure is based on the modified Euler's method for creep problem
discussed by Zienkiewicz (1977). The creep strain increment is calculated from

an intermediate value of stress and strain within a time step. Since the stress and

strain at the end of the time - ' the creep strain increment are
inter-dependent, there is no direJt su ving the problem. Ab ierative
solution scheme, as suggested b+ 7. ..., is needed to estimate the stress and

strain at the end of each time step. ‘lius process is incorporated into a finite
element program. The computer program is modified from a finite element
program for a two dimension linear elastic problem, (developed by Murray at
The University of Alberta.) This program uses the isoparametric serendipity
family of elements. The Gaussian elimination method, for symmetric banded

matrices, is used to solve the systermn of equztions at each time step.

4.1 Overall Formulation

The strain response of an ice sheet under load, can be divided into an
instantaneous elastic strain (€.) and a time dependent creep strain (). The total
strain can be written as:

€ =¢E+E .
It is not possible to calculate directly the creep strain increment that occurs in a
time step because it depends on stress, strain, and time. One way of obtaining a
good approximation of the exact creep strain increment is to use a simplified
calculation involving an intermediate stress value. An iterative process is used to

arrive at a solution at the end of the time step, that is within the desired accuracy.
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The Principle of Virtual Work is used to obtain the equilibrium
equations for the finite element model. Assuming no body forces, the virtual

work expression can be written as:
jvdljssljdv = JSTiSUidS. (41)

The virtual strains and the virtual displacements are interpolated from the virtual

nodal displacements, as follows:
(8¢ =[B]{8q}, and (3.2)
(8u} =[N](3q}. (3.3)

Substituting equations 3.2 and 3.3 into 3.1, the virtual work expression becomes:
T T
fv @q[B] {o}dV = fS<5q>[N] (T}dS.
Therefore, under arbitrary <dq>, it follows that:

[ e iolav = [ as,
or fV[B]T{G}dV = (F},

with  {F) = fs INJ'(T}ds,

V = the volume,
S = the surface area,
{T} = the surface traction,
[B] = the strain interpolation function matrix that includes the
differential operators on the displacement,
[N] = the displacement interpolation function matrix,

[F} = the nodal forces.
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For the rest of this section, the discussion is centered on the method of
solving the general form of equations that has been developed. In the following
formulation, the subscript 'I' denotes the time step number and the superscript 'J'
denotes the iteration number in a time step. For the sake of simplicity, the
matrices and vectors are shown without brackets.

The intermediate stress used to calculate the creep strains is given by:

Oro =(1-0)0,+00,,,
where 0 is a constant with a value between O to 1.
The increment of the creep strain is assumed to be a function of the intermediate

stress, the creep strain at the beginning of the time step and the size of the time
step. That is:
A€, = 0 (Gye, €y At).

There are two conditions that have to be satisfied at the end of the time step:

1) 6u..-0; 'DB{QI+1'QI)+D(°1+9= 0 (4.4)
where D is the constitutive matrix for the instantaneous elastic
deformation and the subscript I+ denotes the value calculated from

the intermediate stress O;,q, and
2) fVBTo'M dV'Fl+1 =0 . (4-5)

The first condition is the linear elastic relationship between the stress increment
and the instantaneous elastic strain increment. The second condition represents
the overall system equilibrium. Since the solution scheme starts with guesses for
the stress and strain at the end of the time step, it is unlikely that these two

conditions can be met on the first try. Thus, an iterative process, as suggested by
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Zienkiewicz, is used to arrive at the state of stress and strain that does satisfy these
conditions. The following is a detailed description of the iterative procedure.

Equation 4.4 can be written as:

J J J ]
P11 = O11-O1 ‘DB(QI+1'QI)+DC‘)1+9
where ¢ is the difference between the predicted stress increment and
the stress corresponding to the predicted instantaneous elastic strain
increment.
A first order approximation for the error at the start of the next iteration can be

written in terms of changes in the stress and strain during the current iteration.

That is:
J+1 ] J J J J
011 = Qri1 +ACL, -DBAq,., +DR,e0A0,, (4.6)
J
I 00
where Ruo= —=2 |
a 0‘I-rl
J
AGu1 = the change in stress in the J* iteration, and

J
AQu1 = the change in the nodal displacement in the J* iteration.
In order to minimize the 21,o¢ at the end of the iteration, equation (4.6) is set to

zero, giving:
] J ] J J
Q1.1+ ACy,, -DBAqy.; +DRL¢0AC,, = 0.

After some manipulation, this can be written as:
J J J J
‘(I+DR1+99)A01+1 = DBAq1. - Q11
Multiplying both sides by D™ gives:
-1 J J J 17
(D +R1+99)A0't+1 =BAqun.-D Qu: .

Solving for the stress increment at the iteration J gives:
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i —1 ;1 =1 a
Aclﬂ = D BAqh-l' D D (phl (4'7)

J

— a1yt
where D = (D + R“ee) .
Thus after the (J+1)st iteration, the predicted stresses and displacements at the

time t,, are:

J+1 ] J
Ol =01 +ACL, (4.8)
J+1 ] J
and Qret = Q1 +Aq1:

To solve the creep problem, the iterative scheme is incorporated into the

equilibrium equation. Assuming equilibrium is achieved at iteration J+1,

equation 4.5 can be rewritten as:

B G1qdV-Fp, = 0. (4.9)
\Y
Substituting equations 4.7 and 4.8 into 4.9 gives:
T I —1 j
f B (01+1+D BAqI.,,‘DD (pm)dV = FI#] .
\Y
Rearranging the equation gives:
)l Tt—! ] Tf 1 =1
f B DBAql,ldV = Fl+1-f B (0’1” 'DD (‘pl-ﬂ dV
\% \Y
This cai: be further simplified to:
<y’ I .
[Wx.l]{Aqm} = {fm)

[ 1 =1 a7
where f|.1= Fhl‘f B (Ghl -DD (pl«'-l dv ,
\Y

J T—J
and Wi, = va DBdV.
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The following criterion is used to measure the magnitude of the error

after each iteration, so that a decision can be made as to when to proceed to the

next time step.

: 1o g : -
Maximum l G1.1- G 1.1 S A, where A is the error lirnit.
If this condition is satisfied, the iteration process for the current time step is

stopped. The criterion utilizes th: infinity vector norm of the stre s vector.

12 lmplementing tke Proposed Ice Model into the Computer
Prograni
There are some special considerations that have to be made in order to
apply the algorithm just described to the constitutive model of ice. These

considerations are discussed in the following subsections.

42.1 The Instantaneous Elastic Element
The implementation of the instantaneous elastic element into the finite

element method is straighi forward. That is:

fo‘“ 0 i /8311\
0 gz ;,or 6=Dg,,
\on/ (-] v) 0 v e

1 v 0
where = —— v 1 0
( ) 0 0 (1-v)/2

422 Delayed Elastic Element

From the previous chapter, the delayed elastic strain rate is defined as:
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Eqil \ W m-1 1 -V 0 fc"u
/Edn = ——————(0 Cff) -V 1 O \ 0‘"2

H 0 0 2(1+v)| {o"y

&l

8d12

Therefore the »-rement in the delayed elastic str: n is:

at L oym-1
{Aey) = (i‘f)———-[P] (o")dt
At L oam-1
(—o——"ﬁ)————[P]{{c)-{o'}}dt, (4.10)
1 v 0
where P]=] - 1 0 |, and

0 0 2(1+v)

{Agq} = the delayed elastic strain increment for one time step.
Direct integration of equation 4.10 is not possible because {6}, {0’} and 6" all
vary with time within a time step and are not known explicitly. Two assumptions
are made so that the right hand side of equation 4.10 may be evaluaied.
1) The stress {¢} is assumed to be constant within a time steg.
However, an intermediate value of the stress is used so thai it may

give a better approximation of the exact integration.
{ 0‘1.01} = {0'1} + 61( (0'“1}‘{‘51})
=8,{or.) +(1-6){c)) . (4.11)

2) Similarly, 6" is assumed to remain constant within a time step. It

is as follow:

2 2 2
c Cff[,.ez = 'Jd 11],92+C 22,,92'*’20 12[.,,92 (4.12)



where (0" Loy = {0} + 0 {o1..)-{c)} ) - {0

= 8,{01.) + (1 - 8,){a) - {0")). (4.13)

The values of both 8, and 6, are between O to 1. These values are chosen and stay
fixed for the entire analysis. Following these assumptions, the delayed elastic

strain rate expression can be written as:

-1

(ifﬂﬁ)—- [P] ({10}~ {0'}) (4.14)

(Ed‘ =
\Eqj m

&le

where (o'} = E.[P] {e4). 4.15)

Substituting equation 4.15 into 4.14 gives:

] _E_)_ Fl{{010) - EalF1" )

" -1 " -1
_ (G effheg)m [P]{O‘M,l) ] E, (G effhez)m

K. He

(e (3.16)

Since 6", , 0 and Gy, are assumed not to change within the time step, equation

4.16 takes the form:

9 ey} ={er)-cof &)

dt
" )m -1
where {ei} = (——effiez—-[P] {Ot.e,) » and
H>
-1
Co = Ez(d'em*e" )m are constant
0~ .
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Each component of the delayed elastic strain rate and the delayed elastic strain
increment can be determined as explained in the following. However, to simplify

matters, only a single component is used to illustrate the process.

‘a?d =C1-Co&y
=c0fi-gﬂ. 4.17)
¢ )

Rearranging (4.17) gives:

de

4 =c,dt, (4.18)
Sie
Co d

To calculate the change in the delayed elastic strain during one time step, equation

4.18 is integrated from the beginning to the end of that time step. That is:

edhl
de &
d =J Codt
C] 0
—-&4
Co
8d1
€
CI dh-l At
InSi-, = [eat];
Co edl
C;
PR
1[1 - 'CoAt
(o)
== &

After some maripulation, <his is rearranged to give:

C) - Coby,,, = (c, - coed[) exp|-coAt) . (4.19)



Adding - (cl - Coﬁd,) to both sides of the equation 4.19 gives:
Co (Eq, - €4) = Ci- Coty,- (c‘ . CoEd,) exp|-coAt) ,
or CoAgy = (c, - Cogq,(1- expl-coat)), (4.20)
where the change in delayed elastic strain is Agy = (edm - edl).
Dividing equation 4.20 by ¢ gives:

( 1- exp(-coAt)).

Cy
Aedl = (-C— - edl
0

Therefore, the delayed elatic strain increment over a time step can be written in a

general notatiop as:

[A Ed,}

! (.Cl_ e sd,))(l- expl-cot]]

E_2 Ha

(Lo -] -2 m) |

In addition to the strain increment, the partial derivatives of the elements of
{Agq;}, with respect to the change in the stress at the end of the time step, are

]
needed in the iterative procedure to calculate the term Ry, 4 in equation 4.6. These

derivatives can be written as:

1
aAed“ a((E—2 Prl qu»el ;'der)(l'exp{'CoAt})

00w, 0Oy




P" acuell
= — I - expl- coAt
E, ao'ms( P( 0 ))
dlc,At
(FL P, Olve,,~&q; )exp( CoAt) a( :)1 l (4.21)

To simplify the process of expanding the differentiation, the two terms in
equation 4.21 are dealt with separately.
1) In the first term, use of equation 4.11 gives:

aohalt _ a(elchl l+‘1 - ellol t)
80',.1 s - aGBI s

= ela!s °
Therefore the first term reduces to:

0,P,

£ — (1- exp(- coatt})).

2) In the second term of equation 4.21,

m
Ejf 0",
G 2‘ el ez)
d{coAt) _ K2
acl+l s a ol#l 3

-1

At

_ (m- I)Ez(d'effhez)m ot a( cneffp,ez)
- H2 0 Oy s .

(4.22)

Substituting for O etf,, 0 from equation 4.12 gives:

1
Al "2 "2 E
a( c effhe;) d\c it1,0,7C 2.9, +26 12,0,

0 Ci., s 00y, s




2 2 2
1 a(d .0, T O 21+02+20 ‘21,9-.) .23
= =, 23)
20 Cff[’ez acl#l s

From equation 4.13, it follows that:

d {o'uez} _ a(ez{om} +{1- ez){(’x, - {0"1”
aO‘M aGM
= 0,. 4.24)

Thus setting the free index s in equation 4.23 to correspond to the 11

component, this gives:

2 2 2
a( 0' eff1+92) 1 a(G 11“624-0' 22“_62'*'20 12[+62
a cr"l*l 26"eff[+02 a cll],l
20 llhezac R Y- )

Similarly for the other two components:

a‘ (0] eff“ez) 0, 0"214.92

" ’

d Oz, c effi,q,

8( o"effhez) _ 20,0"

1465

U

a 012[+1 o effl.,ez
Therefore, this gives:

9(C"etrs,)  6,Q,

a 614-1 S d eff“.ez

where Q; are the elements of the vector or
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/ G"ul*ez \
<Q> = 0"221+92 :
\ 20" 12[¢92/
Thus combining these results, the partial derivatives defined in equation 4.21 can

be written as the elements of a matrix as follows:

oAe }
[80‘,1{' = ellilf] (1- expl- coAt))

(m- 1 (0t
Ma

The first term of the equation is a symmetrical matrix, but the second

+ 0,

At ( 1 [P]{c,,el}-{edl})(Q expl- co At).

E,

term is non-symmetrical. This means that, if both terms are used, the matrix
[Wf,,] in section 4.1 becomes asymmetrical. Since the computer program used
can only solve a symmetrical matrix, only the first term of the equation is
included ‘» the computer program. Furthermore the partial derivatives are only
used as part of the iterative scheme, which means that they can be approximated to
any values so long as ultimately, equations 4.4 and 4.5 are satisfied. Thus, the

rate of change of the delayed elastic strain increment is approximated by:

[Emedl] _ 8

11—
S E, (1-exp(- coAt)) .

423 Viscous Element

The viscous strain rate components for transversely isotropic ice, as

derived in chapter 3, are:



évll c“
tm ) =17  [All 65} or {év} =ny 1 [Allo).
évlz \ On
évsa = -évn - évn ,
a, +a, -3, 0
where [A] = -a a,+a, 0 ,
0 0 2(2a, +ay)

20 = a(oy, - 0'2)2 + 32(0'112 + 022)2 +2(2a+a )0'122,
and all other components are zero.
Similar to the treatment of the delayed elastic strain, an intermediate value of

stress is used to calculate the viscous strain rate within the time step. The

intermediate stress is defined as:
{Gnel} = {Gx} + 91( {GI+1}'<GI))

= el{clﬂ} +(1- 91}{0'1} (4.25)

where the parameter 6, has the same value as that used in the

delayed elastic strain formulation.

The new viscous strain rates corresponding to the intermediate stress can be

written as:
: -1
{emel} = My *r:;l,,61 [A] {10,

2 2 2 2 2
where 2 Typo, = al(ouml- O, 91) + az(cnml+ c,zml) +2(2a,+ az)o,zml.

The viscous strain increment over one time step is approximated by the product

of the viscous strain rate and the time step as:

{AEVl} = Ny T?“;., ':;..*';“‘]:{61*91} At.
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4.2.3.1 Rate of Change of the Viscous Strain Increment
Similar to the delayed elastic strain, the partial der-ivative of the elements
of {Ae,;} with respect to the change in the stress at the end of the time step are

. - ’ . .
needed in the iterative procedure to calculate the term Ry, , in equation 4.6. The

partial derivatives are:

/ n-1
aAEVI r a[nb] Tl+81 Ar[ Gh‘el [At)
acl+ls B ach,ls
-1
a(ohel l) a(‘cﬁe, )

n-1
= 'I'i‘bl TI-!-O] A" AtTGIT + nb[ G[+91 tAn At a P
S S

(4.26)

Substituting equation 4.25 gives:

d Gy, - a(excm t (1-8)c; l)
a 0'].,1 s a Gl+1 s

=0,
Therefore, the first term in equation 4.26 becomes:
n-1
nbl Tl+61 AxselAt- (4.27)

From chapter 3,

00 21
aT” 0 0 2(2a, +a,) 0,2/

00,

ot |
aac“ . a, +a, -a, 0 Gy \
\ —t = — —a; a; + as 0 Cx
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Thus, considering the partial derivative in the second term of equation 4.26, it

follows that:

8(1:“[1) -2 a(m )
TOI'[—E]T = (n-1) T:e, aoi:ls

_ n-2 a(Tne ) 8(0'“91 “)
= (n-1) Ty, aC'ne:u 00

n-2 8( T]+el)

1+6
a cl+91 u

= (n'l)T 8usel

' n-3
o2 A e o _ 80D,

1+8 1 AL
acuels 2 v

=(m-1)1

Therefore, equation 4.26 becomes:

-3
dAe, 0,n-1) 1,
Ir _ n-1 1(n-1) T,
Jo.. s = Ny Tiee, A0, At + My, Ol tA“ At 2 svOleo; |
n-3
n-1 (n-1)Tre
= T]blelAt T]+91 AIS + '—'—'—'—I—A 0] tA'SVGl"’el v

2 It 1+6)
or in matrix form

T

n-3

aA£V n- n- 1) Ti+

[ac 1] =Ny By At| T, [A]+(__2‘_°1_[A]{o“el}(cmel)[A]
I+1

4.2.3.2 Change in 1y
The function My and how it is changes are discussed in section 3.1.3. In
the early stage of loading, the value of N, remains constant. However, as the

effective viscous strain increases and eventually exceeds €., the value of M
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starts to increase in order to model the structural deterioration in ice. The rate of

change of n;, with respect to the effective viscous strain, as defined in chapter 3,

is:

Og
dn, ( O6€yp - £vcb)
fend - (v —_— . 4.27
devb (nbf nb) s o ( )

The following discussion deals with how the change in 1, is incorporated into the

finite element program.

During each time step, Ny is assumed to remain constant. Changes to 1
can occur only at the end of the time step. This assumption is mads to simplify the
calculation. Therefore, the value of ny, at the end of time step 'T', denoted by 1y,
affects only the viscous strain rate for the time step 'I +1'. The change in 1, over
one time step can be calculated by integrating the rate of change with respect to

the effecti= viscous strain €,.. Writing equation 4.27 in the differential form

gives:
d £ B
Mb — Ols( UeEyy - vcb) degy
(nbf'ﬂb) Oy
d %
or -__1]L_= -QS(M) devb'
(lef'nb) 7

This is now integrated over one time step, giving:

nbhl EVbIH o
dn €. p-En
- b — - Ot 6Cvb ™~ Svcb devb
(Tbe-Mb) o,
nb‘ 8vb[
8wal
g+ 1
[ln(nbf nb)] nblﬂ O Os a6£’vb'8vcb)
No; Qg0+ 1) o, Evby
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ag+l Qg+ 1
nbf b nbhl = ex (170!.5 a68vb1' evcb) aéevbm - Evcb)
n‘of'nbx aﬁ(a8+1) 0.2 o,
= A, (4.28)
og+1 Qg+ i

oL 0L Ols€yp, - € O4E -£

where A, = exp et b~ =veb _ vbia1~ Eveb '

otg(otg+ 1 o, o

€vbr., = (0w h(e,,,,)  istheeffective viscous strain at the end of
the time step,
€y, = (o) he,,) is the effective viscous strain at the beginning of

the time step, and

. Bs .
MNbe = ﬁa(ﬁvb“el) is the final value of 1y, if €,1;., remains unchanged.

Multiplying both sides of equation 4.28 with Ny¢- Ny, gives:

Nof~ Nbrey = Ae( lef"ﬂb;). (4.29)
Multiplying by -1 and then adding My¢- Ny, to both sides of the equation 4.29

gives:

Morer™ My = Mot~ Ny - Ae(nbf_ ﬂb[).

= (Mog- My ) ( 1-Ae)-
Therefore, the change in 1 is given by:
ANy, = (nbf'nbl) (1 'Ae). (4.30)

There are a few situations that may require some special treatment in dealing with
equation 4.30. In section 3.1.3, np is assumed to be unable to decrease in value

due to the irreversible nature of the damage process. As a result Ang, cannot be
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less than zero. Therefore, Anyy is set to zero for the two following cases in which

the value of Any is negative:

ANp=0 if My <My O Eyp, S Egyy -
When O4E€yp,, - Evcb OT A€y~ Evep 18 lEss than zero, A, is undefined. To
overcome this problem, they are respectively set to zero if their values #re
negative:

Oy, ;- Evep = O if QL€ ;- Eyep S 0, and

a(,e\.w" Eveh = 0if OL6€vb, - Euch <0.

424 Tensile Brittle Fracture

The treatment of tensile brittle fracture is greatly simplified in the
present model in order to make the formulation and calculations easier. When the
principal stress at a Gauss point exceeds the tensile stress cutoff point (Gy), the ice
at that particular region is considered to have failed completely ~d is unable to
carry any load. There is no contribution to the overall stiffness from that Gauss
point. However, ill conditioning in the numerical procedure may arise if zero
stiffness is used for the failed region. To overcome this problem, a small st'ffness
value is used. Thus, the constants E, and E, are reduced by a factor of
approximately 1G* and n, is increased by a factor of approximately 10", This
makes the failed region very soft compared to the surrounding regions of intact
ice. As a result, the effect of the brittle fracture can be represented without
having numerical problems.

The new parameters for the failed region are expressed as follows:

E;

f
E ='_',
G
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gf=Ez
¢,
f r
and Ny = S2Mbyy
with L =10° and . - 10°

These valuzs for {, and {, are - . .en after some trial runs with different values
of {, and {,. From the ~sults of the trial runs, it is found that if they are too big,
the computing time becoun:es longer and ill-conditioning may occur. The bigger
these v..ues are, the more accurately the problem §:as to be solved. The increased
accuracy in the solution is achieved by setting the error limit A i a very small
value. As a result, the coinputing time increases because more icrations are
required to obtain a more accurate solution. There is also 2 limit to the nuimber of
significant figures the computer can handle. If the {, and {; are too big, the
soluiion may require an accuracy that exceeds the capability of the computer.
Consequently, nurmerical ill-conditioning may occur if the capability of the

computer is exceeded.

4.3 Flow Chart for the Finite Element Program

The flow chart of the computer program is shown in Figure 4.1. Ail the
symbols in the flow chart have been defined before except Ay and AL. They are
the two ervor limits used in the program. The first limit, Ay, is not a requirement
in the computer program. It is introduced in order to save the computing time.
However, the second limit, Ay, is essential to the program because it controls the
accuracy of the solution and prevents numerical ill-conditioning.

From the simplification made in section 4.2.4, once the ice at a
particular region has undergone brittle failure, a new set of material properties is

used for that region. The stress at that place is also reduced corresponding to the



new material properties put the strain remains unchange. As a result, the
calculation has to restart from the beginning of the time step if thcre are
additionzi Gauss points that experience brittle fracture. Therefore, some
computing time may be saved by reducing the number of iterations that have to be
performed before the Gauss point is checked for brittle fracture. This is done by
checking the Gauss point for brittle fraciure once the accuracy of the solution
meets the limit Ay, and adopting & value for A, which is !arger than AL. A larger
Ay allows the Gauss point to be checked for brittle fracn.. at an early stage of the
operation before more iterations are perfoimed to ¢:-..ul2t; ;or 4 more refined

stress and strain.
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Figure 4.1 Flow chart for the finite element program of plane stress ice model.



5. Presentation and Discussion of the Analytical Results

Numerical analyses are performed using the proposed model from
Chapter 3 and its finite element implementation described in Chapter 4. Three
types of loading condition are investigated in the analyses: uniaxial, plane strain
and plane stress indentation. The numerical solutions are then compared with the
experimental results frem the literature to check the accurac* of the modelling.
Since the behaviour of ice depends on many factors, most of the parameters have
to be ::iered to match the test results of different researchers. Some of the
parameters can be easily estimated from the test results. The following sections
show the procedure for finding those parameters, the presentation and the

discussio of ¢he analytical results.

5.1 Estimaticr and Calibration of the Parameters Used in the

Model

Most of the parameters used in the numerical calculation can be easily
approximated from the experimental results. Some of them remain unchanged or
vary only a little for different tests. With the exception of p,, p,, 0, and 6,, the
rest of the parameters have to be fine tuned after their crude estimates have beer
obtained. The fine tuning is done by adjusting the parameters to obtain the
analytical stress-strain curve that matches the onc from the test. As mentioned in
Chapter 3, the parameters for the uniaxial model are related to their multiaxial
counterparts. It is easier to determine the parameters for the uniaxial modei than
fur the plane stress nodel. Thus, the following subsections only discuss how the
values for the parameters in the uniaxial model are determined. The values for
the uniaxial model can be easily converted to their equivalent for the plane stress

model in order to be used in the finite element program. The rough Qalues of
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these parameters should be estimated in the sequence in which they are discussed
in section 5.1: E,. v, n;, 0, ,, 3y, By, B2 M2 By m, @y, 00y, O, @, anid €y, In

uniaxial loading, a,, a, and v can take any value because they are only in effect in
multiaxial !oading. They are only found & the plane stress mode! and have no

equivalent counterparts in the uniaxial model.

5.1.1  Parameters That Do Not Change

Parameters, p,, P2, 0, and 9,, remain unchanged for all the analyses. The
values of p, and p, are set to 1, and 6, and 6, are set to 0.8. By choosing 1 for both
p, and p,, it is directly assumed ciiat the contribution of the viscous strain and the
viscous strain rate from all the directions has the same importance. This may be
true for isotropic ice, but not for columnar ice. For simplicity and for the lack of
values for columnar ice, the assumptior: :« ::xtended to columnar ice.

For the solution scheme to be unconditionally sta:!«, €, and 6, have to be
greater than or equal to 0.5 (Zienkiewicz, 1977). A value of 0.8 for 8, and 6, is
found to give a satisfactory performance to the numerical procedure, and <o these

values are adopted for all analyses.

5.1.2 Parameters Approximated from Test Results

The approximate values of some of the parameters can be obtained easily
from experiment results. For example, the value of the elastic modulus E, can be
determined from the initial slope of the stress-strain curve for uniaxial constant
strain rate compression. The values of n and n; can be approximated from the
peak stress and the applied strain rate. The parameters a, and a, can be
approximcted from the ratio of the peak stress for the uniaxial and plane strain
constant strain rate compression tests. The parameters f3, and §, that control 1¢

are estimated from the residual strength of ice at different applied strain rates.
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These estimations are easier to make using the results from the uniaxial rather

than the plane strain tests.

5.1.2.1 Estimation Using Uniaxial Test Results
Among the three sets of parameters, E, is the easiest to determine. It can
be approximated from the intial slope of the stress-strain curve for high strain
rate compression. The initial deformatica of ice is mostly elastic. A higher
applied strain rate reduces the length of tima to reach a specific value of strain.
This means that the fraction of the strain due to the viscous flow is less. Thus, the
initial slone of the stress-strain curve for high strain rate loading is more suitable
forc: thai the slope from low strain rate tests.
- alues of n and n; have significant influence on the sirength of ice
under constant strain raie compression. The peak stress Opeax can be

approxiamated from the loading rate g, nand m; by:

1

é n
-

or 10g(Gpear) = %( logle) - log(n ,)) :

If the log(Opeak) and log(é) data pairs are plotted, the best fit line gives the
approximate values of n and 7); for use in the numerical model.

The values of B; and [3, are calculated from the residual strength of ice
under constant compressive strain rate loading. The deformation of ice
occurring at the later stage of loading is mainly due to the viscous flow. Thus, the
applied strain rate is almost equal to the viscous flow rate. As a result, B, and §,

which control the value of 1, also control the residual strength of ice. As time
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approaches infinity, the relationship be.ween the residual strength Giesigual and the

applied strain rate ¢ is that shown below:

év = 8 = T]t’(cresidual)n .

Rearranging the equation gives:

£
O'residual = (—) .
N¢

The best £it line for log(n,) and log(€) provides a means of determining B, and B,

8| -

using N¢ = Bl(é:‘,)Bz

5.1.2.2 Estimation Using Plane Strain Test Results

In Chapter 4, the parameters 7, i3, zud [, for the uniaxial model, are
shown to be related to their multiaxial ¢ zrparts Ny, B and Bs. Thus it is
possible to estimate the values of n;, B, and B, using the plane strain test results.
The plane strain case under «onsideration is that in which both loading and
confinement occurs in the X;, X, plane,using a coordinate system adopted in
section 3.2. To simplify the calculation, the ice is assumed to be loaded in the X,
and confined in the X, direction. Thus, the normal strain in the X, direction is
zero (€,=0).

To estimate E,, assume that the ice deforms only elastically at the start of

loading. This gives:

een=ELl(on-ucn), (5.1)

and eezz=El—(0'n-ocn)=O. (5.2)
1
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Multiplying equation 5.2 by v and summing with equation 5.1 gives:

2

1
€1 = E—,(c” -V 0'11)

_Ou (.
—El(l U). (5.3)

Rearranging equation 5.3 gives:

E, _oy
(1 ] -02, = g (5.4)

The right side of equation 5.4 is the slope of the stress-strain curve in the loading

direction if the deformation at the beginning of the loading is purely elastic.
Thus, E, can be calculated from the slope of the stress-strain curve using
equation 5.4. A rough estimate of v can also be made using equation 5.4 if the
value of E, is determined from the uniaxial test results.

In the following formulation to estimate n;, n, B, and B,, the defc: mation
is assumed to consist of only viscous flow. In addition to this, the subscript 'uni’
denotes the value from uniaxial compression and the subscript 'pl' denotes the
value from plane strain compression. The procedure for estimating n; and n is
discussed first, then it is followed by the one for B, and ..

For the approximation of 1; and n, the peak stress in plane strain loading
is converted to its uniaxial equivalent, which is the peak stress in uniaxial
compression under the same loading rate. From Chapter 3, the strain rate in
uniaxial compression is given by equaticn 3.4, which is:

n-l1
n+1

. 2 n
€iuni = nb(%) (ax'*'az) 2 Ouni - (5.5)

In plane strain loading, the expressions for the strain rate in X, and X, are as

follow:
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. n-1
=My T ((al +ay) Cupl — al°22pl), and (5.6)

: -1
Eapl = 0 =14 T “al + 8y} Canpl —31011pl). 5.7
Rearranging equation 5.7 gives:

4,
Opl = EI__GUPI . (5.8)

Substituting 2quation 5.8 into 5.6 gives:

2
et = My O + !
mpl = Mp T uplf @y taz —

P P a, +a,

2 2 2
n-1 a1+2a,a2+az-a,
=N T Giipl
a+a,

_ n-1 az(zal"l‘az)
=MNpT Gllpl ’ a, +a, . (59)

For plane stress and plane strain conditions, from :2:oy+er 3, T can be written as:

2 2

1 2 2
T = 5 (al (Gupl" G22pl) + az( G,lpl + Gm]) ) . (5'10)

Substituting equation 5.8, 5.10 can be simplified to:

2
D |
1:=—a0'1-———0‘1+a61+ - ))
5 1| Onp a, + 2, llp) 2| Oup +a2 i
2
= L{ Oupt (a (a, +a,- a)2+a ((a +a) + az))
2 a1+a2 i 1 2 1 2 1 2) 1
2
1{ oum i, .2 2 2 2
== \alaz + & a1+231a2+a2+a|
2\ a, +a,
2
a e} 2 2
= 2| Zuel (2a,+3ala2+a2)
21a +a,
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2

—M) (2a, +a2)‘al +a,)
a +a,

2

2
- azcnpl‘zal +a,)
2(&1 +a2,

Therefore, Vo1 plane stress and plane strain, T is given by:

0.5

Cupl. (5.11)

(a2 (2a, +a,)
2(a, +a,)

Substituting equation 5.11 into 5.9 gives:

n-1
a, (2a,+a,)} * a,(2a, +ay)
2|a, + a,) a, +a,

. n
€11pl = MNpOup

n-l n+l

_ oo [1)T [ (28 +a)) 2
_nbo'“pl(z) ( Py / . (5.12)

If the uniaxial and plane strain compression rates are equal, that is émmi el to
é“pl , then the right hand side of equations 5.5 and 5.12 must be equal. Equating

the right hand sides of thesc two equations gives:

n-t . n-1 n+1
1}° e n (1\7 [a(2a +a.)| 2
“b(i) (a+as] * Ouni = 1sCupil 5 —{ZTA") |
Rearranging this equation gives:
n+1
n n [a,{2a +a,) 2
clluni = ollpl _l(___l_—.z_z_
(a; +ay)
a+1
C1iuni a, (2a, +a, ||
or o _2_(_1__2_2_’ . (5.13)
11pl {a,+az)

After converting the peak ©y,p to its uniaxial equivalent by multiplying o, 1pl by

the right hand side of equation 5.13, the procedure mentioned in section 5.1.2.1



is then used to approximate n; and n. A rough estimate of a, and a, can also be

calculated by using equation 5.13. If 1; and n are estimated from the uniaxial test
results, then a, and a, can be manipulated to give the desired peak stress for plane
strain tests based on the peak stress from the uniaxial compression.

The parameter 1 is a function of viscwus strain rate. Thus, in order to
calculate B, and [B, from the plane strain test results, the effective viscous strain
rate in the plane strain test has to be converted to its uniaxial equivalent, that is the
viscous strain rate which gives an appropriate value for 1. From section 3.2.3,
it is shown that 1 is related to Ny in the plane stress model. The appropriate

value of M is the value that corresponds to Nyr calculated using the equation

Mot = Bs(évb )64 from section 3.2.3. Similar to the process for calculating 1; and
n, the residual strength from the plane strain test has to be expressed in terms of
its uniaxial equivalent using equation 5.13. To calculate the equivalent effective
viscous strain rate for plane strain compression, it is required to know the ratio of
the effective viscous strain rate of uniaxial and plane strain compression under the
same loading rate. The process of calculating this ratio is discussed below.

For plane strain compression, the effective viscous strain rate is given

by:

0.5
2 2

Evbpl = (énpl + pléaspl) . (5.14)
From section 3.2.3, ég-_.p, is shown to be equal to - énpl - ézzpl. Together with the

previous assumptions that €, is zero for plane sirain compression,

equatior 5.14 can be written in terms of énpl as:

0S5 -
Eppl = {1 +pd) Eupl. (5.15)



For uniaxial compression, the effective viscous strain rate is given by

equation 3.12 as follows:
0.5

2 2
a+p, a,

évbuni = 1 + 2
(a,+ay)

05
2
= (2a12+2a2al +(1 +p1}az)

énuni
oy o (516)

1+,

From the assumption made in section 5.1.1, ¢, is taken to be 1. Equation 5.15
and 5.16 can ke siinplified to:

Foopl = 2 Eupl, and (5.17)

0.5

.
— (5.18)

. ( 2 2 2)
Evpuni = | 218, +a,a; + a, ata
1+a;

Dividing each side 1 equation 5.17 by the respective sides of equation 5.18

gives:
évbpl a,+a;
_ = —=. (5.19)
€ypuni 2 2 2
vbun! (a.. +a,a, + az)
yo . .9 gives the ratio of the effective viscous strain rate of uniaxial and

pio.ic Sl compression under the sams loading rate. This means that with the
same strain rate, the equivalent effective viscous strain rate for plane strain, at
steady state, is just the product of the right hand side of equation 5.19 with the
applied loading rate é“pl. To calculate the value of n, the residual strength from
the plane strain test is expressed in terms of its uniaxial equivalent using

equation 5.13. The value of ¢ is given by:

- €pl
n
Oeq

N¢
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where oo is the product of the residual strength of ice for plane strain

eq
compression G?lpl. residual and the right hand side of equation 5.13.
The best fit line for log(ny) versus log(f-:eq) gives a means to approximate [, and J,

where éeq is the product of éupl and the right hand side of equation 5.19.

5.1.3 Estimating the Remaining Pa:ameters

The parameters W,, E,, m, o, o, 03, & and &, are determined by trial
and error. They can be put into *wo groups based on their influence on the
stress-strain curve. The paramete: -, £, and m are placed :n one group, and o,
0L, O, O, and €, in another. To: parameters in the latter group affect only the
stress-strain curve at the later stage of loading when the ice starts to deteriorate.
It is easier to first obtain a crude estimation for ,, E, and m using the ascending
branch of the stress-strain curve from the constant strain rate compression test
before working out the values for o, 0y, O3, 0 and €. The parameters o, O,
O3, Ol and €y dictate the rate at which the stress descends from the peak value.
They also determine the strain at which peak stress occurs. The process for
finding these values involves making some trial analyses using various values of
these parameters to see which one can present the best reproduction of the
experimental stress-strain curve. From various trial runs, the value of 1 for o, is
found to produce a satisfaciory result. The values of o, and €, can be estimated
using the analytical and experimental results. The sum of o, and &, is roughly
equal to the analytical viscous strain value at the time when the total strain is equal
to the strain at peak stress on the experimental stress-strain curve.

Another parameter that has to be mentioned is the tensile stress cutoff
point 6. This parameter is required for indentation or tensile loading where

tensile stresses exist. In the uniaxial tests of isotropic polycrystalline ice at -7°C
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done by Hawkes and Mellor (1972), the tensile fracture strength is found to be
around 2MPa. With confining pressure, the tensile strength is found to drop
dramatically (Haynes,1973). Due to the lack of information on the tensile
strength of ice in multiaxial loading, a value of 1.5MPa is adopted for Gy¢ in the
analyses for ice indentation. This value is chosen on the basis that for indentation,
ice may experience a tension-compression state of stress. The tensile fracture
strength of ice in this situation is less than the uniaxial tensile fracture strength.
Hovever, it is important to remember that the fracture strength of ice is greatly
influenced by the state of stress and temperature. Thus the choice of 6y=1.5MPa
could be questionable, but in the absence of further experimental data, is

unavoidable.

52 Uniaxial and Plane Strain Compression

Several analyses are done for upiaxial and plane strain compression. The
results are compared to some of the test results from Frederking (1977), Sinha
(1982), and Mellor and Cole (1982). Since the ice, temperature and test setup are
different for each of these tests, the parameters used in the various analyses are
also different. The process mentioned in section 5.1 is used to help in finding
suitable values for the parameters. In the following subsections, the comparison
between the analytical results and the results from Frederking, Sinha, and Mellor

and Cole, are made and discussed.

5.2.1 Sinha's Test
Sinha (1982) has performed uniaxial compression tests on columnar ice
at -10’C. Two types of loading conditioned are used: constant strain rate and

constant stress rate. The columnar ice used has an average grain diameter of 4 to
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5mm and is loaded in the direction perpendicular to the long direction of the ice
column.

In constant strain rate compression, the iest is terminated a short while
after reaching the peak stress. Therefore, no information is available on the
residual strength of the ice specimen. As a result, only E;, n; and n can be
approximated from the stress-strain curve of constant strain rate compression.
From the initial slope of the stress-strain curve, E, is calculated to be around
6000MPa. The least square fit line for log(Gpesx) versus log(é), in Figure 5.1,
gives an approxiamte value of n=2.73 and N;= 2.24x10"(MPa)"s". The only way
to work out values for B, and [, is to use the stress-strain curve of constant stress
rate compression and a trial and error procedure. After several trial analyses, the

following parameters were obtained.

E, = 7000MPa E, = 3500MPa

n=27 m=1.2

i = 1.4x10"(MPa)"s" 1, = 1.667x10°(MPa)"s
o, =200 =1

o, = 0.00005 o=1

£4c = 0.00005

Fore, <5.0x10°s’  B,=9.6824x10°MPa)"s" ™ B,=0.23

Fore, >5.0x10°s"  B,=3.7789x10"(MPa)"s' ™ B,=0.6
The analytical results are shown in Figures 5.2 to 5.5. To show the effect of 1);,
the analytical peak stresses with 1); = 1.76x10'7(1lea)'“s'l for constant strain rate
compression are also plotted in Figure 5.2.

In Figure 5.2, it can be seen that the reduction of n; shifts the peak stress

upwards. As mentioned in section 5.12, 1; and n have a significant influence on
the peak stress. Even though it is not shown, lower n is expected to increase the

rate of increment of 10g(Gpeak) versus log(é). Since n; and n are chosen to
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produce the same Gpeax Obtained in the test, it is not surprising that the
Jog(Gpea)-log(€) data in Figure 5.2 for n; = 1.4x10"(MPa)”'s . closely matches
the least square fit line for the test result.

In Figures 5.3 to 5.5, comparisons are made between the stress-strain
curves generated by the numerical model and the experimental curves. In
constant strain rate compression, the model predicts the behaviour of ice fairly
well. It is not possible to compare the descending branch of the stress-strain
curve because the tests were stopped immediately after reaching the peak stress.
The strain at peak stress from the analytical solution is slightly higher than in
Sinha's tests. The difference becomes bigger as the loading rate gets smaller. As
for the peak stress, the difference between the analytical and test results is small
except for € = 1.4x107s".

In constant stress rate compression, the model predicts the
load-deformation behaviour of ice very well at the early stage of the loading as
can be seen in Figure 5.5. At low siress rates, 4x10” and lxlO'sMPas'l, the model
overpredicts the stress in ice. This means that that strain rate predicted by the
model is lower than in real situation. As a result, the experimental curves for
these two loading rates are flatter than the experimental curves. At loading rates
of 8x10°, 2x10” and 8x10°MPas ", the ice specimen fails in a brittle manner at a
strain around 0.002 to 0.003. The numerical model is not able to predict this
failure since compressive brittle fracture is not included in the proposed model.
Thus, even though the stress and strain rate in the ice specimen are large enough
to cause compressive brittle fracture, the analytical stress-strain curves extend

beyond the strain values of 0.002 to 0.003 for the three high stress rate cases.
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522 Mellor and Cole's Test

A series of constant strain rate and constant stress (creep) tests on
fine-grained isotropic ice at -5°C have been performed by Mellor and
Cole (1982). The average grain size of the ice used is 1.2mm. The initial slope
of the stress-strain curve for constant strain rate compression gives an
approximate E; of 7000MPa. In Figure 5.6, it can be seen that the relationship
between log(Cpeax) VErsus log(é) is quite linear at low strain rates. At strain rates
greater than 1.0x10°7s", the log(Opeax) data fall below the initial linear prediction.
The values of n=3 and n;= 2.9x10’7(MPa)'"s'l are approximated from the straight
line drawn through those points at low strain rates. The two lines drawn in
Figure 5.6 are the best fit lines and not the least square fit lines. Figure 5.7
shows the relationship of log(n¢) versus log(é) where N is calculated using the
equation € = nfcfesidua] mentioned in section 5.1.1 and the residual strength
Oresidual is measured from the test results. The values of 1¢ from the test results are
calculated based on n=3. The solid curve in Figure 5.7 represents the values of

N¢ used in the numerical analyses.

The parameters used for the numerical analyses are listed below.

E, = 9500MPa E, = 1267MPa
n=3 m=3

i =3.2x10"(MPa)”s’ I, = 3.333x10°(MPa)"s
o, =6.5 =1

o, =0.007 o=1

&ve = 0.007

Fore, <7.0x10's’  B=2.18x10"(MPa)"s’ @  B,=0.3562
For 7.0x107s" €&, <1.25x10°s' B,= 1.4x10°(MPa)"s" ™
B, = 0.3562
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Fore, 21.25x10%" B=13972x10"(MPa)"s" ™ B,=0.6117

The analytical results are plotted together with the test results in
Figures 5.8 to 5.14. As shown in Figures 5.8, 5.9 and 5.10, the analytical
strain-time curves are very close to the experimental curves for constant stress
loading. There is a general trend observed in these figures. The strain rate
predicted by the analytical solution is generally higher than the experimental rate
at strains in excess of around 0.04. This can be attributed to the values of B, and
B, which control the viscous strain rate (év). At a large strain, the viscous strain
rate is essentially equal to the total strain rate for constant stress loading.

For constant strain rate compression, the model gives a fairly good
prediction of the stress-strain curves at low strain rate (Figures 5.11 and 5.12).
However at high strain rates, the model overestimates the peak stress and the
strain at peak stress, as shown in Figures 5.11 and 5.13. If m; is allowed to
change with €,, the analytical peak stress can be reduced significantly for high
compression strain rate. By using the following values for m;:

ni=3.2x10"(MPa)"s" fore, <7.4x10°s,
and ni= 6.448x10°%," > (MPa)"s ™" fore, >7.4x10°s,
the peak stress for high strain rates has been reduced close to the test result
(Figures 5.11 and 5.14). However, this modification only allews for a better
prediction of the peak stress, the strain at which the peak stress occurs remains
much higher than the test values. Ice behaves in a more brittie manner as the
strain rate increases. It can be seen that for strain rates of 8.32x10”s" and
1.14x107s", the strain at peak stress is significantly lower than the values at low
strain rates. Since the analytical model is formulated following the assumption
that the strain at peak stress does not change or varies very little with respect to
the compression strain rate, the model is unable to simulate the observed

reduction of the strain at peak stress for high loading rates. Although, as
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demonstrated in Figure 5.11, the prediction of peak stress can be made more
accurate by allowing 1; to vary with év, this has not been incorporated in the
model for several reasons. First, it is difficult to implement in the two-dimension
model and finite element program. As well, even with the modification, the
model is still unable to predict the reduction in the strain at which the peak stress

for high strain rate compression occurs.

5.2.3 Frederking's Test

Frederking (1977) has done some tests on columnar ice at -10°C. The
columnar ice used in the test has an average grain size of Smm. Even though the
ice type and the temperature in Frederking's tests are similar to those in the tests
performed by Sinha (1982), their result, however, differ significantly.
Consequently, the parameters used in the model to simulate Sinha's test cannot be
used for Frederking's test. Frederking's test results, for the constant strain rate
compression loaded perpendicular to the long direction of the column, are
compared with the analytical solutions. There are two types of loading condition
that are investigated: uniaxial and plane strain. The direction of confinement in
the plane strain compression test follows the orientation shown in Figure 3.5.
The values of M; and n are approximated from the peak stress in uniaxial
compression. However, E,, B, and B, are approximated from the stress-strain
curves of plane strain compression because only one stress-strain curve for
uniaxial compression is available in Frederking's article. Assuming v=0.3, the
estimate for E, is 3600MPa. From the equation of the least square fit line
calculated by Frederking for log(Gpea) versus log(é), the estimated values of 1;
and n are found to be 2.322x10'7(MPa)'"s'1 and 3.34 respectively. In Frederking's
test, the peak stress in plane strain compression is roughly 2 to 5 times the peak

stress in unjaxial compression under the same loading rate. Taking the average of
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the minimum and the maximum values of the magnification and using n=3, a,/a, is
found to be around 10.3, using equation 5.13. After some fine-tuning, the

following values are found to give a satisfactory representation of Frederking's

tests.
E, = 4500MPa E, = 9000MPa
n=3.1 m=1.0
n; = 2.1x10"(MPa)”s” 1, = 1.25x10°(MPa)"s
o, =150 =1
o, =0.0011 0, =09
€vc = 0.0018 v =035
a,=12 a=1

Fore, <236x10°s' B,=3.52x10°(MPa)"s' ™  PB,=0.6364
Fore, 2236x10°s" B,=9.884x10°(MPa)"s' ™ B,=0.301
Figure 5.15 shows the plot of Mg, calculated from the procedure in section 5.122
using n=3.1 and a,/a,=12, and the actual values of 1¢ used in the numerical
solution which is represented by a solid curve.
Based on the above values, the model gives a fairly accurate prediction of
the peak stress for both uniaxial and plane strain compression. In Figure 5 16,
the analytical peak stress falls very close to the least square fit line for the
experimental data. The analytical stress-strain curve for uniaxial compression at
1.67x10°s" compares well with the experimental curve except for the peak stress.
As shown in Figure 5.17, the curves exhibit a close resemblance in their general
shape and trend except the analytical peak stress is slightly higher. Both curves
peak at almost the same strain (0.002) and their residual strengths are almost
equal.
The analytical and experimental stress-strain curves for plane strain

compression are shown in Figure 5.18. In general, the model is able to give a
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good representation of the behaviour of ice in plane strain compression. The
model captures the overall shape of the stress strain curve except for the curve at
the loading rate of 1.67x10°s". The test result for this loading rate shows a much
higher initial stress reduction rate on the descending branch of the stress-strain
curve than is predicted by the model. By comparing the experimental results with
each other, the curve for loading rate 1.67x10°s" does seem to have a
considerably high initial stress reduction rate immediately after reaching the peak
stress. This suggests the possibility that some irregularities may have occurred in

the test for strain rate of 1.67x10°s".

53 Indentation

When a moving ice sheet interacts with an offshore structure, the stress
distribution in the ice sheet is far more complicated than what occurs in either the
uniaxial or plane strain compression tests. For certain conditions, the interaction
between the ice sheet and the structure can be described as an indentation process.
This may occur, for example, in mid-winter, when the ice slowly advances
against the structure.

Two shapes of indentor are investigated using the proposed plane stress
ice model. These are the rectangular and cylindrical indentors. The indentation
with a rectangular structure is analysed using two different sets of boundary
conditions whereas only one set of boundary conditions is used for a cylindrical
structure. The boundary conditions for the rectangular structure are designed
specifically to match the tests of Michel and Toussaint (1977), and Frederking
and Gold (1975). The geometry of the finite element meshes are also adjusted to
match the size of their ice plates. For the cylindrical structure, the finite element
mesh is designed to approximate an infinite ice sheet. This is done by using a

mesh that is relatively large compared to the size of the indentor. The boundary
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conditions for these three cases are shown respectively in Figures 5.19, 5.20 and
5.21. The numbering system for the finite element meshes are shown in Figures
5.22,5.23 and 5.24. Since the effects of bonding and friction between the ice and
the structure are beyond the scope of this study, normal stress only is assumed
between the ice and the structure. Thus, in the finite element mesh, all the
boundary nodes that are in contact with any external object are assumed to be on
rollers. For the cylindrical indentor, a fictitious outer boundary is assurned in
order to limit the size of the grid. At a further distance from the indentor, the
movement of the ice sheet is virtually unaffected by the indentor. Therefore, the
nodes at the fictitious boundary are considered fixed to the region outside the
mesh so that at this boundary, the ice on both sides of the boundary is in contact
and have the same displacement at all time.

The tests of both Michel and Toussaint, and Frederking and Gold, are
performed using columnar ice at -10°C. Thus, it is logical to use the same
parameters that are used in section 5.3 for Frederking's tests which have also
been performed on columnar ice at -10°C. In addition to these parameters, the
tensile stress cutoff point of 6, =1.5MPa is used. The selection of 6=1.5MPa
has been discussed in section 5.1.3.

In Chapter 2, various empirical equations for predicting the force
exerted on a structure by a floating ice sheet were discussed. For example, there
are the equations which have been proposed by Korzhavin (1962),
Afanasev et al. (1971), Schwarz et al. (1974) and Saekietal. (1977). It
might appear appropriate to compare the predictions of those equations with the
results of the indentation simulations presented in this chapter. However, it must
be pointed out that those empirical results are only valid for high deformation
rates where compressive brittle fracture occurs. The present model is limited to

lower strain rates and for this reason no direct comparison is made.
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5.3.1 Michel and Toussaint's Test

To simulate Michel and Toussaint's test, numerical analyses have been
performed for a rectangular indentor with the boundary condition shown in
Figure 5.19. Three indentor sizes of 50mm, 100mm and 150mm have been used.
Each indentor has been analysed under five displacement rates: 5x10™, 5x10°,
5x10'2, 5x10" and 5 mm/s. The analyses are divided into 100 time steps with an
applied deformation of 0.04mm for each step. This means that the time step sizes
are different for different indentation rates. The analytical peak average stress,
load-deformation curve, and the stress distribution are examined and compared
to the test results. Figures 5.25 to 5.68 show some of the resuits of the analyses.
The analytical peak average stresses and load-deformation curves are obtained
from the solution with 3x3 Gauss point integration, whereas, the stress
distributions are obtained from both 2x2 and 3x3 Gauss point integration. To
facilitate the discussion, three ranges of dimensionless displacement rates (v/b)
are defined where v is the deformation rate of the indentor and b is the width of
the indentor. The low range is defined roughly for v/b of less 1.0x10°'s", the
intermediate range as 1.0x10™s" to 1.0x107s", and the high range as larger than
1.0x107s",

In Figure 5.26, the analytical and experimental peak average stress
(Cavg) are plotted against the dimensionless deformation rate (v/b). The stress
Oavg is the normal force on the indentor divided by the contact area which is the
product of b and h where b is the width of the indentor and h is the thickness of the
ice. For the analytical result, h is taken to be unity. A best fit curve is drawn
through the data points from the analyses. At low to intermediate v/b, the curve
shows a linear relationship between log(peak Gayg) and log(v/b). At v/b greater
than 3.0x107s”, the peak average stress appears to decrease with v/b. This
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behaviour also shows up in Michel and Toussaint's tests where the last
experimental point suggests a drop in G.vg versus v/b. However, it is not possible
to conclude that this trend continues for higher v/b because all three data points
for v/b greater than 3.0x10°s" come from the analyses with the same deformation
rate v but different indentor width. Therefore, to conclude that the experimental
peak average stress is decreasing with v/b in the high v/b range, further analyscs
with different deformation rates are required. But further analyses have not been
performed because the proposed model is unable to predict the behaviour of ice at
high v/b range. This limitation is explained in the following discussions.

The comparison of the analytical and experimental peak G,y shows that
at low v/b, the experimental peak Gy is slightly lower than that predicted by the
numerical model. On the other hand, the analytical log(peak Oyg) increases at a
lower rate with log(v/b). It is possible to adjust the predicted peak Gavg by
changing the values of 1; and n. At low v/b, smaller n makes the best fit curve
steeper and higher 7; shifts the curve downward. Thus with some adjustments to
7N and n, the numerical model should be able to produce a better prediction of the
peak Gay,. At high v/b, the model overestimates the peak G,y by a large margin.
This can be explained by the deficiency inherent in the model in describing the
behaviour of ice at high compression rates. In tension, a tensile cutoff stress is
used for tensile brittle fracture, but there is no similar consideration for
compressive brittle fracture. Thus, at high v/b the ice may in fact experience
compressive brittle fracture whereas the model assumes the ice remains intact.
From Frederking's (1977) plane strain test, the peak stress in the loading
direction is observed to be around 18MPa for the loading rate of 1.67x10°s .
Frederking speculates that the transition from ductile to brittle failure for plane
strain loading to be around 1.0x10” to 1.0x107s ", Assuming that brittle failure

occurs at loading rates of 1.0x107s”, extrapolation from Frederking's results
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gives a peak stress of approximately 26MPa for a strain rate of 1.0x10°s". Thus,
it is safe to assume that, in the indentation tests, by Michel and Toussaint, the
stress in the ice plate cannot exceed 26MPa because compressive brittle failure
would have occurred before this level of stress is achieved. From the stress
distribution predicted by the model for the 5Omm indentor at a deformation rate
of S;mm/s, shown in Figure 5.43, the normal stress in the Y-direction is found,
however, to be much greater than 26MPa. This means that the stress distribution
given by the numerical solution is, in fact, unrealistic and compressive brittle
fracture should have occurred. Since the model does not include compressive
brittle fracture, and it is unable to predict the behaviour of ice for high v/b. It can
be concluded that the peak average stress predicted for this loading range is
probably not reliable. For intermediate v/b, the tensile principal stress, at
locations close to the edge of the indentor is sufficiently large to cause tensile
brittle fracture. This type of failure is represented by using a tensile stress cutoff.
However, the propagation of brittle fracture is unpredictable. Since at this stage,
the failure is not extensive, the model can still give a fairly reasonable estimate of
the peak average stress, but the value is time step, loading rate, and mesh
sensitive. This is due to the fact that even though the size of the time step only
controls the distance the indentor moves per time step, it indirectly controls the
stress increment at every time step. Consequently, the bigger the time step size,
the bigger the stress increment is. Since the proposed model for tensile brittle
fracture is governed by the principal tensile stress, the size of the stress increment
influences the pattern of brittle fracture. For instance, a larger stress increment
causes the stress at more Gauss points to exceed the tensile stress cutoff point o
simultaneously than for a lower stress increment. The influence of the finite
element mesh on the peak average stress is caused by the way the effect of tensile

brittle failure is incorporated into the finite element formulation. In the
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formulation, whenever the tensile principal stress at a Gauss point exceeds oy, the
contribution of that point, to the overall stiffness of the ice is assumed to be zero.
Consequently, the effect of the brittle fracture at a Gauss point in a big element is
greater than for a small element. As the deformation increases beyond the peak
value of Oavg, for intermediate range of v/b, the region of tensile brittle fracture
progresses into the ice plate. At this point, the numerical prediction becomes
unrealiable. The validity of the analytical prediction is reflected by the
smoothness in the average stress versus displacement curves in Figures 5.27 to
5.34. Any jump on the curve implies that brittle fra-ture has occurred, and the
analytical solution becomes less reliable.

In Figure 5.33, an experimental curve for G,z versus indentor
displacement, is plotted together with the analytical curves. The general shape of
the experimental curve can be seen to closely resemble that of the analytical
curves except for the value of the indentor displacement at which the peak value
of G,4vg occurs. From the analytical curves in Figure 5.33, the displacement of
the indentor at peak Gayg is seen to decrease with indentor size. Therefore, it is
expected that the displacement of the indentor at peak G,y,, for an analysis with an
indentor width of 25.4mm, would be less than that with 2 50mm indentor. But the
displacement at which the experimental curve peaks is bigger than that of the
analytical curve with a 50mm indentor. This is probably due to the fact that the
parameters used in the analyses are based on Frederking's (1977) test results, and
that the appropriate parameters required to model the ice used in Michel and
Toussaint's test are different.

The stress distribution across the indentor changes with time. At the
beginning of loading, the largest normal stress in the Y-direction is located close
to the indentor's edge. This can be explained by the fact that there is a difference

in displacement rate for the region under the indentor and outside of the indentor.
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To bridge this difference, the ice in the area around the indentor's edge, as a
result, has a higher strain rate than the other region under the indentor.
Therefore, the stress in the region around the edge of the indentor increases at a
faster rate than at any other locaticn$ along the indentor face. This pattern of
stress distribution occurs for the entire range of deformation rates analysed, as
can be seen in Figures 5.35 to 5.48. The following discussion of the stress
distribution focuses on the analyses at intermediate and low v/b because the results
for high v/b are felt to be unreliable once the deformation gets beyond the initial
stage. At peak Oy, for low v/b, the normal stress Gy is almost uniform right
across the indentor, but the maximum stress no longer occurs close to the edge.
The location of maximum stress has moved inward by about 0.15b towards the
centre of the indentor. By this time, the normal stress G, near the indentor's edge
has already fallen from its peak value. Thus, even though the highest strain rate is
still near the edge of the indentor, the stress is no longer the largest in that region.
For intermediate v/b, the maximum o, has also shifted inside from the edge.
However, the stress around the indentor's edge is much lower than at other
locations along the indentor. This is caused by the loss of confinement around the
edge of the indentor due to brittle failure of ice.

At a steady state (large deformation), for low v/b, oy is almost uniform
across the length of the indentor with the stress at the edge being slightly greater
than elsewhere. The situation is somewhat different for intermediate values of
v/b. There are two types of stress distribution observed for intermediate values
of v/b. At the upper end of the intermediate v/b range, at values greater than
5.0x10°s", the ice under the indentor has almost entirely failed. There is no
common pattern for the distribution of o, except that, in most of the region under
the indentor, Gy is zero. At the lower end of the intermediate v/b range, less than

3. . . . :
5.0x107s ", Oy is close to being uniform across the indentor except at the edge.
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The stress at the edge is governed by the progression of the tensile brittle fracture
which is sensitive to the finite element mesh, the loading rate, and the tiine step.
But the progression of the tensile brittle fracture is not very predictable, as can be
seen in Figures 5.39 and 5.40. The stress distribution shown in Figure 5.39 is
from the analysis with the deformation rate that is ten times higher than that for
Figure 5.40. In Figure 5.40, the Gauss point near the indentor's edge has o,
which is close to zero due to tensile brittle fracture. This situation is also expected
to occur for the higher loading rate, but as shown in Figure 5.39, this does not
occur. This shows that the prediction after the peak G,4 for intermediate v/b is
not very reliable.

There is one odd behaviour that shows up on the analyses with the 3x3
Gauss point integration but not in the 2x2 Gauss point integration. This
behaviour only appears at steady state of loading. The comparisons of the result
from the 2x2 and 3x3 integrations at various stages of loading are shown in
Figures 5.49 to 5.54 for the 150mm indentor at 5.0x10"mm/s. At the early stage
and the peak O, of loading, the stress distribution for the 2x2 and 3x3
integrations are close to each other. Both methods give stress distributions that do
not show any wild fluctuations. At the steady state, the 2x2 integration still gives
a smooth distribution of stress across the indentor but not the 3x3 integration.
For the 3x3 integration, the value of 6y fluctuates wildly from one Gauss point to
the next. At alow v/b, the average value of stress predicted by the 3x3 integration
is very close to the one predicted by the 2x2 integration, as shown in Figures 5.51
to 5.54. Therefore, at steady state, both methods give a similar prediction of the
total force on the indentor at low v/b. But at intermediate v/b, the 3x3 integration
may overpredict the stress at steady state for certain locations. This
overprediction may cause an unnecessary tensile brittle failure in ice. This can be

seen in Figures 5.39 and 5.44 or 5.40 and 5.45. As a result, there is some
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uncertainty with respect to the o,y that is predicted by the 3x3 integration at
steady state. The wild fluctuation in the stress distribution can be explained by the
shift in the dominant mode of deformation from the elastic deformation to the
viscous flow. It is well known that as the Poisson's ratio approaches 0.5, in a
three dimension analysis for problems such as a sphere under an internal pressure
or an elastic foundation under a uniform pressure, the elastic solution with a 3x3
integration gives a stress prediction at the Gauss points that deviates greatly from
the actual value. As the Poisson's ratio approaches 0.5, the matrix that relates the
stresses to the elastic strains, in a general three dimension formulation, becomes
singular. The same thing happens to the matrix [A] in the proposed model as the
ratio a,/a, approaches zero or a,/a, approaches infinity. The matrix [A] is defined
in Chapter 4 as the matrix that relates the stresses to the viscous strain rates.
Therefore, with a,/a,=12 and a 3x3 integration, the predicted stress at the Gauss
points from the analyses, fluctuates from the actual value. Since the matrix [A] is
only involved with the viscous flow, this explains why the deviation only shows
up at the steady state where viscous flow is the dominant mode of deformation
The curves for the normal stress () distribution along the centreline of
the ice plate show a typical reduction of stress as the distance from the indentor
increases. The plots for 6, versus the distance from the indentor along the
centreline are shown in Figures 5.55 to 5.67. Close to the indentor, the slope gets
steeper as the distance from the indentor increases. This only occurs for a short
distance from the indentor. After a certain point, the slope begins to get flatter as
the distance increases. Sometimes, at points close to the indentor, the normal
stress may even increase before its value starts to go down. This occurs at the
initial loading stage in the analyses with the 150mm indentor, which is illustrated
in Figures 5.59 to 5.62. It does not show up on the analyses with S0mm indentor

probably due to the wide spacing of the stress sampling locations relative to the
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indentor width. At peak Gy, the stress does not show an increase at points close
to the indentor. However, it shows up again, at steady state, in the analyses with
150mm indentor at the loading rates of 5.0x10" and 5.0x10 ‘mmy/s (Figures 5.61
and 5.62). At the initial stage of loading, the ice near the indentor's edge has the
highest stress. The stress starts to redistribute as the distance away from the
indentor increases. Thus, the stress at the indentor's edge is redistributed to other
regions, such as the centreline of the ice plate, causing the stress at the centreline
to initially increase. As the distance increases, the width that is effective in
carrying the load also expands. Therefore, the stress oy along the centreline only
increases for a short distance before starting to decline. This is also the same
reason why, at steady state, the stress initially increases in the analyses with
150mm indentor at the loading rates of 5.0x10° and 5.0x10 ' mmys.

A major portion (over 80%) of the stress reduction occurs within a
distance of 3b from the indentor. The reduction rate goes down significantly at
distances greater than 4b for the S0mm indentor and 8b for 50mm indentor. One
of the reasons is because there is a width limit to the ice plate. As the distance
increases, the width that is effective in carrying the load also expands. However,
the finite size of the ice plate limits the maximum effective width that can be
achieved. Beyond a certain distance from the indentor, the reduction of o is
more a result of stress redistribution than the expansion of the effective width.
For loading rate around intermediate v/b and above, the ice plate fractures 1 to 2b
away from the indentor. Plotting the highest tensile principal stress (in the
situation where there is no tensile principal stress, the minimum compressive
principal stress is used) along the centerline, it is observed that the curve peaks at
a distance of 1 to 2b away from the indentor. As the ice plate is indented in the
Y-direction, the material is squeezed out in X-direction. But since the plate is

confined in X-direction, the only place that the ice can move out is through the
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space between the containment and the indentor. Figure 5.19 shows the most
likely direction of ice movement. The motion of the ice directly under the
indentor is restricted by the indentor. Thus, both principal stresses are
compressive. Further away from the indentor, the constriction decreases, and as
a result, a tensile principal stress is created by the outward movement of the ice.
But as the influence of the indentor decreases with greater distance, the influence
of the confinement in the X-direction increases. Therefore, after a certain point,
the tensile principal stress stops increasing and starts to drop. This can be seen in
Figure 5.68. As a result, tensile brittle fracture occurs along the centreline for
loading rate around intermediate v/b and above because the tensile principal stress
generated is larger than the tensile stress cutoff point Gis.

Saeki et al. (1984) have performed some indentation tests on a
rectangular pile. Some of their stress distributions across the indentor, at peak
average stress, are shown in Figures 5.69 to 5.71. The results do not seem to
show any characteristic or common stress distribution pattern. On the whole, the
stress can be considered to be uniform across the indentor. This is quite similar to

the prediction from the numerical analyses for low v/b.

53.2 Frederking and Gold's Test

Six analyses have been performed in order to allow a comparison of the
analytical and experimental peak G,y for Frederking and Gold's (1975)
indentation tests. The loading rates are from 3.75x10” to 7.5x10”°mm/s and the
indentor width is 75mm. Both analytical and experimental results are plotted on
Figure 5.73 for log(peak O,vg) versus log(v/b). A least square fit line is also
drawn through the experimental points. The top two data points from the
numerical analyses are excluded from the comparison because their loading rates

are outside the range of the tests. Leaving these two points out, the analytical



solutions give a fairly good estimate of peak Gqyg. At v/b below 5.0x10°s", the
numerical model gives a slightly higher peak o, prediction, but at v/b above
5.0x10°%", the peak Oavg is slighty underestimated. However, as mentioned

before, both n); and n can be adjusted to give a closer estimate of peak Gyvg.

53.3 Cylinder Indentation

Three indentor of 100, 150 and 200 mm in diameter are used in the
analyses. Similar to the analyses performed for Michel and Toussaint's test, each
indentor size is analysed under five compression rates: 5x10*. 5x10°, 5x10%,
5x10" and 5 mm/s. The analyses are divided into 100 time steps with an applied
deformation of 0.04mm for step. A semi-circular finite element mesh of
1900mm in radius is employed to represent the ice sheet. The analytical results
are shown in Figures 5.76 to 5.100. Since most of the tests done on cylindrical
indentors involve a penetration type of loading, it is difficult to find any reference
on an indentation test with a cylindrical pile. In a penetration test, the advancing
edge of the ice sheet is only in contact with the tip of the cylindrical face in the
beginning of the test (Figure 5.74). But in indentation, the indentor is already in
full contact with the ice sheet at the start (Figure 5.75). Tanaka et al. (1987)
have carried out some indentation tests on sea ice at temperatures ranging from -2
to -5°C. Since the parameters used in the analyses are calibrated with
Frederking's (1977) test results, it is inappropriate to compare the analytical and
Tanaka results. Even though the radial stress distribution around the indentor
have been measured by Tanaka et al., their data show such variation that it is not
possible to establish a consistent pattern for the radial stress distribution. Thus, a
comparison between the analytical and the experimental stress distribution
pattern is of questionable value. For this reason, the remainder of this section is

focused on the discussion of the analytical results. To facilitate the discussion,
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three ranges of the dimensionless defermation rate (v/b) are defined where v is
the deformation rate of the indentor and b is the diameter of the indentor. The
low range is defined roughly as less than 1.0x10"'s", the intermediate range as
between 1.0x10”s" and 1.0x10s", and the high range as larger than 1.0x10°s".
Similar to section 5.3.1, the results for peak Gavg, and Gayg versus deformation
are obtained from the 3x3 integration. For the study of the stress distribution,
both the 2x2 and 3x3 Gaussian integrations are used. The limitations and effects
of the 3x3 integration discussed in section 5.3.1 are applicable here.

The log-log plot of peak Gayg and v/b is shown in Figure 5.76. The
average stress O,y is defined as the force on the indentor in the Y-direction
divided by the product of b and h where b is the diameter of the indentor and h is
the thickness of the ice. Similar to the analytical results for Michel and
Toussaint's test in section 5.3.1, the relationship between log(peak Cavg) and
log(v/b) is linear at low to intermediate v/b. In the case of a cylindrical indentor,
the relationship is linear until v/b=5.0x10"s". Beyond this point, there is no clear
dependency between log(peak G.v,) and log(v/b) except in the situation where the
indentor size is constant. If the indentor size is constant, the value of
log(peak 0,y;) continues to increase with the log(v/b). However, the prediction
of the model in this range is felt to be unreliable and it is not appropriate to
examine the predicted relationship between log(peak O.yg) and log(v/b) for a
constant indentor size. The unreliability at high v/b is reflected by the occurrence
of high stress and extensive brittle failure in the ice, as shown in Figure 5.85.
Similar to the analyses for Michel and Toussaint's test at high v/b, the
compressive stress is bigger than whaz the ice can sustain. The ice plate being
indented in the low range of v/b, such as 5.0x10" and 5.0x10 mm/s for 100mm
indentor, deforms mainly in a ductile manner with very limited brittle fracture.

For intermediate v/b, such as 5.0x10'2mm/s for 100mm indentor, there is no
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extensive brittle fracture up to the point of peak G,v,. Following that, the region
of brittle fracture expands and becomes widespread as illustrated in Figure 5.86.
Since the progression of the brittle fracture is unpredictable, as a result, the
calculated stress distribution after &,y for intermediate v/b is not reliable. As
mentioned in section 5.3.1, the validity of the numerical solution can be gauged
from the smoothness of the average stress versus displacement curves on
Figures 5.77 to 5.84

For low v/b, at initial loading and steady state stages, the radial stress on
the indentor is a maximum at the Y-axis and slowly drops to a minimum value at
the X-axis. At steady state, the ice at element 7 experiences brittle fracture. As a
result, the radial stress on the indentor at that location is close to zero. This may
be due to the way the boundary joint is represented in the finite element program
and is not representative of the actual situation. The roller joint employed in the
finite element program is able to carry both compression and tension loads. The
use of roller joints to represent the boundary between the ice sheet and the
indentor is consistent with the assumption that there is no bonding or friction
between these two objects. However in the real situation, there can be no tensile
normal stress at the contact surface whereas the roller boundary condition does
allow such stresses. As a result, the ice at element 7, which is moving away from
the indentor, is held back by the joint. Consequently, the ice at that region fails in
a brittle manner due to the tensile stress that is created. However, this does not
affect the value of G,y since the actual contribution from this region is zero
anyway. At peak Oy, the radial stress is almost constant or even rises slightly
from Y-axis up to an angle of 45°. After this point, the radial stress drops
dramatically. The radial stress distribution patterns around the indentor at initial
loading stage and at peak Gayg, for intermediate v/b, is similar to that for low v/b.

But at steady state, in the intermediate v/b range, extensive brittle fracture occurs



at the regions near both the X and Y axes. The failure around the X-axis is
probably due to the roller boundary condition. However, the failure around the
Y-axis is a result of the indentor's shape. As the cylindrical indentor moves into
the ice sheet, it acts like a wedge, driving the ice sheet apart. The tensile stress
created in the X direction causes the ice to fail in a brittle manner. At this stage,
the stress and G,y predicted by the model becomes unreliable because the
progression of brittle fracture is unpredictable and is very dependent on the finite
element mesh, the loading rate, and the size of the time step.

Along the Y-axis, the radial stress distribution shows a typical stress
reduction as one moves further away from the indentor. These curves are shown
in Figures 5.93 to 5.100. But unlike the distribution for a rectangular indentor,
as in the case for Michel and Toussaint's test, there is no slight increment of radial
stress near the indentor. The value of the radial stress, from the analyses with a
cylindrical indentor, instead drops off right away. More than 80% of the
reduction of the radial stress occurred within the first 3b from the indentor. For
intermediate v/b, brittle fracture occurs near the indentor at steady state due to

the wedging action of the indentor.
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Figure 5.2 The analytical peak stress versus strain rate with
different 1, and the experimental results for
Sinha's test. (Modified from Sinha, 1982)
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Figure 5.3 The stress-strain curve of constant strain rate compression
for both analytical and Sinha's test result. (Modified from

Sinha, 1982)
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for both analytical and Sinha's test result. (Modified from
Sinha, 1982)
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Figure 5.8 The test and analytical strain-time curves for

Mellor and Cole's constant stress test.
(Modified from Mellor and Cole, 1982)

Analysis

' T ' T Y T T ! '
10000 20000 30000 40000 50000
Time - seconds

Figure 5.9 The test and analytical strain-time curves for
Mellor and Cole's constant stress test.
(Modified from Mellor and Cole, 1982)
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Figure 5.11 The peak stress versus strain rate plot from both
the original and the modified model together
with the best fit curve of the test result for Mellor
and Cole's constant strain rate test. (Modified
from Mellor and Cole, 1982)

-2

102



™ 1.2 5
E ~~~~~~~~~~~
w B Tm——|| T Tcst
w —— .
8084 Analysis
@ X =T 1#10°s”
NNt iesriaannanass ';h\l \\\\\\\\
0.4 1*10°'S
0!0 L) r 1] I L l L B
0.00 0.02 0.04 0.06 0.08
Strain

Figure 5.12The stress-strain curve of constant strain rate compression

for both analytical and Mellor and Cole's test result.

(Modified from Mellor and Cole, 1982)
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Figure 5.13The stress-strain curve of constant strain rate compression

for both analytical and Mellor and Cole's test result.
(Modified from Mellor and Cole, 1982)
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Figure 5.16 The analytical and experimental peak stress
versus strain rate plot for both Frederking's plane
strain and uniaxial tests. (Modified from
Frederking, 1977)
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Figure 5.17 The stress-strain curves of uniaxial constant strain rate
compression for both the analytical and Frederking's
test. (Modified from Frederking, 1977)
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Figure 5.19 Boundary condition for modelling Michel and Toussaint's ice
indentation.
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Figure 5.20 Boundary condition for modelling Frederking and Gold's ice

indentation.
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Figure 5.21 Boundary condition for modelling ice indentation against a
cylindrical indentor.
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Figure 5.22 The numbering system for the finite element mesh in the ice

indentation analysis for a cylindrical indentor.
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Figure 5.25 Analytical peak average stress at different v/b
for Michel and Toussaint's test.
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Figure 5.26 The peak average stress at different v/b from
Michel and Toussaint's test and the best fit
curve of the analytical result.(Modified from
Michel and Toussaint, 1977)
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Figure 5.27 Analytical average stress versus indentor displacement
with S0mm indentor for Michel and Toussaint's test.
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Figure 5.28 Analytical average stress versus indentor displacement
with 100mm indentor for Michel and Toussaint's test.
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Figure 5.29 Analytical average stress versus indentor displacement
with 150mm indentor for Michel and Toussaint's test.
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Figure 5.30 Analytical average stress versus indentor displacement

at Smm/s for Michel and Toussaint's test.
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Figure 5.31 Analytlcal average stress versus indentor displacement
at 5x10 'mmy/s for Michel and Toussaint's test.
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Figure 5.32 Analytlcal average stress versus indentor displacement
at 5x10-2mmy/s for Michel and Toussaint's test.
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Figure 5.33 Analytical average stress versus indentor dis placement
at 5x103mm/s together with an experimental curve for
Michel and Toussaint's test. (Modified from Michel and

Toussaint, 1977)
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Figure 5.34 Analytical average stress versus indentor displacement

at 5x10*mm/s for Michel and Toussaint's test.
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Figure 5.35 Normal stress oy along the 50mm rectangular indentor at
5*10 'mm/s with 2x2 Gaussian integration.
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Figure 5.36 Normzal stress Oy along the 50mm rectangular indentor at
5*10 ‘mmy/s with 2x2 Gaussian integration.
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Figure 5.37 Normzal stress Oy along the SOmm rectangular indentor at
5*10 mm/s with 2x2 Gaussian integration.
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Figure 5.38 Norrrial stress Oy along the 50mm rectangular indentor at
5*10 mm/s with 2x2 Gaussian integration.
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Figure 5.39 Normal stress Oy along the 150mun rectangular indentor at

5%10 'mm/s with 2x2 Gaussian integration.
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Figure 5.40 Normzal stress Oy along the 150mm rectangular indentor at
5*10 ‘mm/s with 2x2 Gaussian integration.

0.5



Compressive normal stress in

Compressive normal stress in

theY-direction oy (MPa)

NSN——

M T v i
0.0 0.1 0.2

L

T Y T ¥ B
0.3 04 0.5
Dimensionless distance from the indentor's edge
(distance from indentor's edge / width of the indentor)

—&— Initial Loading
—o— Peak Gavg
—¢— Steady state

Figure 5.41 Normal stress Oy along the 150mm rectangular indentor at

theY-direction oy (MPa)

5%10°mm/s with 2x2 Gaussian integration.
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Figure 5.43 Normal stress Oy along the 50mm rectangular indentor at
Smm/s with 3x3 Gaussian integration.
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Figure 5.44 Normal stress Oy along the S0mm rectangular indentor at

5%10 'mm/s with 3x3 Gaussian integration.
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Figure 5.45 Normzal stress Oy along the 50mm rectangular indentor at
5*10 “mm/s with 3x3 Gaussian integration.
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Figure 5.46 Non113al stress Oy along the 50mm rectangular indentor at
5%10 mm/s with 3x3 Gaussian integration.
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Figure 5.47 Normal stress Oy along the 50mm rectangular indentor at

5%10"mmys with 3x3 Gaussian integration.
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5%10 ‘mm/s with 3x3 Gaussian integration.
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Gaussian integration at initial loading.

th
1

n
1

Compressive normal stress in
theY-direction oy (MPa)
N w
] 1

—
]

0

0.0

"

T v T T T T v
0.1 0.2 0.3 04 0.5

Dimensionless distance from the indentor's edge
(distance from indentor's edge / width of the indentor)

Figure 5.50 Comparison of the normal stress Gy along the 150mm

. -4 e
rectangular indentor at 5*10 mm/s with different
Gaussian integration at peak Cavg.

—h—2x2
—o0=—3x3

127



~
1

Compressive normal stress in
theY-direction oy (MPa)
(38 w
1 1

1

. — T . T .
0.0 0.1 02 03 04
Dimensionless distance from the indentor's edge

0.5

(distance from indentor's edge / width of the indentor)
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Figure 5.53 Comparison of the normal stress Oy along Y-axis for the
150mm rectangular indentor at 5*10 “mmys with different
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Figure 5.55 Normal stress Oy along Y-axis for the S0mm rectangular
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indentor at 5*10 mm/s with 2x2 Gaussian integration.
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Figure 5.56 Normal stress oy along Y-axis for the 50mm rectangular
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Figure 5.57 Normal stress Oy along Y-axis for the S0mm rectangular
indentor at 5*10 mm/s with 2x2 Gaussian i integration.
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Figure 5.58 Normal stress Oy along Y-axis for the S0mm rectangular
indentor at 5*10 ‘mmy/s with 2x2 Gaussian integration.
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Figure 5.59 Normal stress O’ylalong Y-axis for the 150mm rectangular
indentor at 5*10 mm/s with 2x2 Gaussian integration.
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Figure 5.60 Normal stress Oy along Y-axis for the 150mm rectangular
indentor at 5*10 mmys with 2x2 Gaussian integration.
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Figure 5.61 Normal stress cyaalong Y-axis for the 150mm rectangular
indentor at 5%10 mm/s with 2x2 Gaussian integration.
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Figure 5.62 Normal stress Oy along Y-axis for the 1 50mm rectangular
indentor at 5*10 4mm/s with 2x2 Gaussian integration.
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Figure 5.63 Normal stress Oy along Y-axis for the SOmm rectangular
indentor at 5*%10 lmm/s with 3x3 Gaussian integration.
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Figure 5.64 Normal stress cyzalong Y-axis for the 50mm rectangular
indentor at 5*10 ‘mm/s with 3x3 Gaussian integration.
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Figure 5.65 Normal stress Oy along Y-axis for the S0mm rectangular
indentor at 5*10 3rnm/s with 3x3 Gaussian integration.
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Figure 5.66 Normal stress oydalong Y-axis for the SOmm rectangular
indentor at 5*10 mm/s with 3x3 Gaussian integration.
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Figure 5.69 The distribution of normal stress on the indentor of3 )
Saeki et al.'s test for b/h=4.14 and v/4b=0.610x10"s.
(Modified from Saeki et al., 1984)
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Figure 5.70 The distribution of normal stress on the indentor of
Saeki et al.'s test for b/h=2.76 and v/4b=0.667x10"s:!
(Modified from Saeki et al., 1984)
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Figure 5.73 The analytical peak average stress at different
v/b for Frederking and Gold's test. (Modified
from Frederking and Gold, 1975)
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Loading Direction

Figure 5.75 Position of the ice plate and the indentor at the start of indentation test.
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Figure 5.76 The analytical peak average stress at different
v/b for the cylindrical indentor.
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Figure 5.77 The analytical average stress v *-sus indentor
displacement with 100mm cylindrical indentor.
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Figure 5.78 The analytical average stress versus indentor
displacement with 150mm cylindrical indentor.
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Figure 5.79 The analyticc! average stress versus indentor
displacement with 150mm cylindrical indentor.
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Figure 5.80 The analytical average stress versus indentor
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Figure 5.81 The analytical average stress versus indentor displacement
for cylindrical indentor at 5x10 mm/s.
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Figure 5.83 The analytical average stress versus indentor displacement
for cylindrical indentor at 5x10™ mm/s.
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Figure 5.85 Radial stress or along the 100mm cylindrical indentor at

Compressive radial stress 6r (MPa)

5%10 'mmy/s with 2x2 Gaussian integration.
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Figure 5.86 Radial stress or aiong the 100mm cylindrical indentor at

-2 . o .
5*%10 mm/s with 2x2 Gaussian integration.
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Figure 5.87 Radial stress or along the 100mm cylindrical indentor at

-3 . .. .
5*10 'mm/s with 2x2 Gaussian integration.
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Figure 5.88 Radial stress or along the 100mm cylindrical indentor at

-4 . . .
5*10 mm/s with 7x2 Gaussian integration.
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Figure 5.89 Radial stress or along the 100mm cylindrical indentor at

5%10 'mm/s with 3x3 Gaussian integration.
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Figure 5.90 Radial stress or along the 100mm cylindrical indentor at

5%10’mmy/s with 3x3 Gaussian integration.
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Figure 5.91 Radial stress or along the 100mm cylindrical indentor at

5%10° mmy/s with 3x3 Gaussian integration.
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Figure 5.92 Radial stress or along the 100mm cylindrical indentor at

5%10“mm/s with 3x3 Gaussian integration.
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Figure 5.93 Radial stress or along Y-axis for the 100mm cylindrical
indentor at 5*10 'mm/s with 2x2 Gaussian integration.
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Figure 5.94 Radial stress or azlong Y-axis for the 100mm cylindrical
indentor at 5*10 ‘mm/s with 2x2 Gaussian integration.
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Figure 5.95 Radial stress or a}ong Y-axis for the 100mm cylindrical
indentor at 5*10 mm/s with 2x2 Gaussian integration.
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Figure 5.96 Radial stress or along Y-axis for the 100mm cylindrical
indentor at 5%10 4mm/s with 2x2 Gaussian integration.
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Figure 5.97 Radial stress or along Y-axis for the 100mm cylindrical
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indentor at 5*10 mm/s with 3x3 Gaussian integration.
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Figure 5.98 Radial stress or azlong Y-axis for the 100mm cylindrical
indentor at 5*10 ‘mm/s with 3x3 Gaussian integration.
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Figure 5.99 Radial stress or a:}ong Y-axis for the 100mm cylindrical
indentor at 5*10) mm/s with 3x3 Gaussian integration.
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Figure 5.100 Radial stress or along Y-axis for the 100mm cylindrical
indentor at 5*10 ‘mm/s with 3x3 Gaussian integration.
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6. Summary and Conclusions

A modified combined Kelvin-Voigt and Maxwell unit is used to model
ice behaviour in uniaxial compression. To investigate the behaviour of ice in
biaxial loading, a plane stress formulation is expanded from the simple one
dimensional model. The plane stress model uses a tensile stress cutoff to
represent the tensile brittle fracture. Compressive brittle fracture is not
considered in the model. The residual strength of ice in constant strain rate
compression is modelled by ailowing the viscosity in the Maxwell unit to vary
with the viscous strain rate after the viscous strain exceeds certain value.

Even though the ice behaviour predicted by the model is dependent on
the loading history, the computation involved, requires only the information on
ihe current state of the material. Thus, not much storage memory is required
sice the loading history of the material does not have to be saved. An iterative
scheme is required to obtain the solution for the model. This makes the analysis
using the model very tedious. There are two instances where the computation
efficiency of the model is significantly reduced: when the parameter m is much
bigger than 1, and when tensile brittle fracture occurs. The decline in the
convergence rate of the iterative process due to m is a result of the approximation
made in the expression for the change in the delayed elastic strain increment with
respect to stress. The approximation involves leaving out one of the terms in the
expression so that the matrix [W] in section 4.1 is symmetrical. As m gets larger,
the value of the omitted term gets bigger , and therefore its omission becomes
more significant. The occurrence of tensile brittle fracture forces the calculation
to restart at the beginning of the time step. Thus, more iterations have to be

performed before convergence is achieved.
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The plane strain model is implemented in a finite element program. The
program uses a modified Euler method to calculate the stress and strain of the ice.
Some of the parameters used in the calculation can be estimated from
experimental results reported in the literature; others have to be worked out by
trial and error. A few analyses are run using the finite element program, and
some of the solutions are compared to the test results. There are three types of
loading conditions in the analyses: uniaxial, plane strain and indentation. For
uniaxial compression, a number of constant strain rate, constant stess rate and
constant stress analyses are performed. As for plane strain and indentation, only
constant deformation rate loading is analysed. In both plane strain and
indentation, the columnar ice is stress free on the surface normal to the long
direction of the ice column. Two indentor shapes used in the indentation analyses
are cylindrical and rectangular.

The analytical results from uniaxial compression are ploited against
those from Sinha (1982), Frederking (1977), and Mellor and Cole (1982).
Besides the uniaxial results, tiie plans strain analytical solutions are alse compared
to Frederking's (1977) results. The values of the parameters used in the
calculation are different for all three cases. In constant strain rate compression,
the model is found to gives a good prediction of the peak stress except at a high
loading rase, such as103s! for Mellor and Cole's test. At high loading rate, the
model over estimates the strength of the ice because of its inability to account for
compressive brittle fracture. The model also over estimates the strain at peak
stress at high loading rate due to the same reason. Overall, however, the
analytical solutions show good agreement with the experimental stress-strain
curve for constant strain rate and constant stress rate comprcssion, and the

stress-time curve for constant stress compression.



In the indentation analyses, the value of the parameters are similar to
those used in Frederking's test. The ice indentation analyses with a rectangular
indentor are investigated under two boundary conditions that match the test setups
of Michel and Toussaint (1977), and Frederking and Gold (1974). The peak
average stress predicted by the model for both boundary conditions are close to
the test results except at high deformation rate. For Michel and Toussaint's test,
the model significantly overestimates the peak average stress cn t i indentor at
v/b greater than 102"}, This is a resul: of the model's inability to represent
compressive brittle facture, similar to the situation encountered in uniaxiai
compression. At a slightly lower v/b, the model is able to give a reasonable
prediction of the peak average stress, but it is unable to give a reliable prediction
of the residual strength at steady state. As the average stress approz. hes the peak
value, tensile brittle fracture starts to occur near the edge of the indentor.

‘However, tensile brittle fracture is not extensive at this point After *he peak
average stress, the zone of tensile brittle fracture continues to props.ate and
becomes widespread. Since the propagation of tensile brittie fracture is affected
by the time step size. the loading rate, and the finite element mesh, it is very
difficult to give a consistent and reliable prediction of the residual strength of the
ice. For low v/b, the ice plate undergoes ductile deformation without any brittle
fracture. These characteristics also show up in the indentation analyses with a
cylindrical indentor. The stress distribution from the analyses along the indentor
and the centerline of the ice plate at differen: stage of loading is examined. For
both rectangular and cylindrical indentors, the stress along the centerline of the
ice plate decreases by more than §0% within a distance of 35 from the indentor.
In the analyses, both the 2x2 and 3x3 Gaussian integrations are employed with the

second order isoparametric element. A 2x2 Gaussian integration is found to be
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more suitable for calculating ice indentation than a 3x3 integration because the
stress distribution given by a 3x3 integration fluctuates wildly at steady state.

The proposed model works well for low deformation rate or low stress.
As the loading rate increases, the mode of ice tailure shifts from ductile to brittle.
~.nsequently, ~. . posed model, with its inadequacy in representing
cmpress = bnl. - “lure, becomes less effective with a higher loading rate.
Thus, fusther improvement can be made by using a more elaborate brittle failure
model that i<+ ‘des both tensile and compressive brittle fracture. In addition to
depending on the state of stress, the failure model also has to be strain rate
dependent because the raximum peak stress for ice under constant strain rate
compressicn is higher than its compressive brittle fr:cture strength. For the
stress-strain curve to peak at an appropriate strain in & constant strain rate
loading, especially at high strain rate, some ¢{ tae parameters (o, 0, 03, 0y and
€vc) that control the deterioration of the ice may have to be varied with (he viscous
strain rate. There is also a need to have more biaxial and indentation data. More
information on the ice behaviour at a differest biaxial state of stress and strain
rate allows for a better understanding of the material behaviour, and in the
process, a better model may be developed. Most indentation tests are performed
it the range cf loading rate where ice fail in the brittle mannes. There is not
much information available for indentation in the ductile and the transition from

ductile to brittle ranges.
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