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Abstract

With the fast growth of mobile data traffic, spectrum scarcity has become a serious problem

to the development of wireless networks. Due to the limited available spectrum resources,

it is critical to improve the spectrum efficiency. Cognitive radio, opportunistic scheduling,

and non-orthogonal multiple access (NOMA) are promising techniques which can largely

improve the spectrum efficiency in wireless communication networks. However, some chal-

lenges exist in deploying them in practical wireless networks. In this thesis, we aim at

quality-of-service provisioning of networks by solving these challenges, with four research

components.

The first research component focuses on the optimal slot length configuration in cognitive

radio networks. A slot length configuration scheme with imperfect spectrum sensing is

proposed in this research. In the proposed scheme, the spectrum sensing result is considered

when configuring the slot length. Then, an optimization problem to find out the optimal

slot length configuration is formulated and analyzed. And an algorithm is proposed to solve

the problem.

Then, the opportunistic scheduling in wireless networks is considered in the next two

research components. First, considering the limitations of existing centralized opportunistic

scheduling schemes, the opportunistic scheduling problem is modeled as a semi-Markov de-

cision process (SMDP) which reduces the implementation complexity. Then, a model-based

scheduling method and a model-free scheduling method are proposed to derive the optimal

scheduling policy for fully explored networks and partially explored networks, respective-

ly. Second, the problem of distributed opportunistic channel access with energy-harvesting

relays is investigated. A distributed opportunistic scheduling (DOS) scheme is proposed.

To maximize the average throughput of the network, an optimal stopping strategy with

threshold-based structure is derived in this scheme. To obtain the threshold, a low com-

plexity algorithm is proposed to derive the stationary probability distribution of the energy

level of each relay, and then, the threshold can be calculated off-line by a proposed iterative

algorithm.
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Last but not least, NOMA power allocation is investigated for an Internet of Things

(IoT) device to offload its computation tasks to a fog computing system. An optimization

problem to maximize the long-term average system utility is formulated by optimizing the

IoT device’s power allocation and task allocation. An algorithm with polynomial time

complexity is proposed to solve the problem.
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Chapter 1

Introduction

1.1 Spectrum Efficiency

With the rapid development of wireless communication technology in the past decades,

the wireless data traffic has experienced a dramatic growth. As shown in Fig. 1.1,

it is predicted that the mobile traffic data volume in 2021 would be 49 exabytes

per month [1]. This growth is major driven by increasing mobile devices (e.g., s-

mart phones, tablets, laptops, and so on). The dramatic increasing of data traffic

has largely promoted to establish the smart city [3], but also resulted in shortage of

communication resources (e.g., spectrum resources). Accordingly, the available radio

spectrum is becoming scarce. Spectrum scarcity is now a serious problem to the de-

velopment of future wireless networks [4]. To meet the quality of service (QoS) for the

ever-increasing mobile data traffic, one possible solution is to explore new spectrum.

However, almost all appropriate spectrum (i.e., the spectrum under 6 GHz) has been

allocated to various wireless services1. Accordingly, to alleviate the spectrum scarcity

problem, improving the spectrum efficiency2 is a key and promising solution [5]. It

has attracted a lot of research effort, e.g., more than 100 projects on increasing spec-

trum efficiency are funded by the Enhancing Access to the Radio Spectrum (EARS)

program [6]. In wireless communication systems, there are two main challenges that

affect spectrum efficiency.

Firstly, since most of the appropriate radio spectrum has been allocated to var-

1Although millimeter wave (mmWave) frequencies (30-300GHz) are still available, their coverage may
be limited, because 1) the propagation loss in mmWave is high, 2) a mmWave link is highly sensitive to
blockage, and 3) mmWave does not work well in a mobile environment.

2In a communication system, spectrum efficiency is used to describe the data transmission rate over a
given bandwidth channel.
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Figure 1.1: Global mobile data traffic from 2016 to 2021 [1].

ious wireless services, only licensed users have the permission to access the specific

spectrum bands (also called channels). It has been shown that the licensed channels

experience low utilization, e.g., a large portion of allocated spectrum is actually not

utilized by the licensed users at any particular time [7]. Therefore, the licensed spec-

trum under-utilization is one of the significant factors which leads to the low spectrum

efficiency problem.

Secondly, a wireless communication system usually needs to support a number of

users. If multiple users in a small area start their transmissions simultaneously over

the same available channel, large interference between them may be caused. In this

case, the performance of each user is largely degraded. Hence, orthogonal multiple

access (OMA) technologies over wireless channels, such as frequency-division multiple

access (FDMA), time-division multiple access (TDMA) [8], and orthogonal frequency-

division multiple access (OFDMA) [9], have been proposed. In OMA technologies,

each wireless resource block (i.e., a frequency band in FDMA, a time slot in TDMA,

or some subcarriers in OFDMA) is assigned to only one user. A main issue with

OMA techniques is that the spectrum efficiency may be low due to the fluctuation in

channel conditions for different users, i.e., some resource blocks are allocated to users

2



with poor channel conditions.

To improve the spectrum efficiency, some techniques have been proposed (e.g.,

cognitive radio [10], opportunistic scheduling [11], non-orthogonal multiple access

(NOMA) [12], Massive MIMO [13], ultra wideband techniques [14], millimeter wave

[15], etc.). In this thesis, we focus on the techniques, including cognitive radio,

opportunistic scheduling, and NOMA. Cognitive radio has been introduced to solve

the first challenge, while opportunistic scheduling and NOMA are two promising

solutions to the second challenge.

1.2 Cognitive Radio

To address the licensed spectrum under-utilization problem, cognitive radio is intro-

duced to wireless networks (referred to as cognitive radio networks) [16]. In cognitive

radio networks, the licensed users of a licensed channel are called primary users, while

the users that do not have the license to access the channel are called secondary users.

Since the licensed channels experience low utilization, spectrum holes (the durations

within which the licensed channel is not utilized by primary users) occur frequently,

which is described in Fig. 1.2. Accordingly, spectrum efficiency is largely enhanced

by letting secondary users access the spectrum holes. Note that the primary users

have priority to access the licensed channel in cognitive radio networks. It means that

secondary users are required not to affect the transmission of primary users. Accord-

ingly, two methods are proposed for secondary users to share the licensed channels,

namely underlay method and overlay method [10].

In the underlay method, secondary users can access the licensed channel at any

time (even if the primary users are active). To meet the QoS requirement of primary

users, the interference to the primary receiver should be below a tolerable threshold.

Accordingly, the transmission power of secondary users should be limited during the

transmission. On the contrary, in the overlay method, a secondary user can access

a licensed channel only when primary users of the channel are not transmitting [17].

In the overlay method, the QoS requirement of primary users can be fully satisfied.

Further, the above transmission power constraint, which is necessary for the underlay

method, is not needed in the overlay method. Hence, the overlay method has attracted

3



Figure 1.2: Spectrum holes in licensed channels.

a lot of research attention and it is adopted in our works. In order to detect the

spectrum holes, the secondary users are required to monitor primary users’ activities

in the overlay method. It is performed by spectrum sensing, which is designed to

detect whether primary signals exist or not.

1.2.1 Spectrum Sensing

Spectrum sensing is important to protect the QoS of primary transmissions3 and de-

tect as many spectrum holes as possible. Thus, the detection accuracy of spectrum

sensing is crucial to the performance of cognitive radio networks. Two metrics, prob-

ability of false alarm (denoted as Pf) and probability of detection (denoted as Pd), are

introduced to measure the detection performance [18]. Let busy denote the state that

the licensed channel is occupied by primary users, while idle is denoted as the state

that no primary signal exists in the licensed channel. Accordingly, the probability of

false alarm Pf denotes the probability that the sensing result is busy given that no

primary signal actually exists in the channel. Similarly, the probability of detection

Pd denotes the probability that the sensing result is busy given that primary user

are indeed transmitting over the channel. In cognitive radio networks, to protect

the primary transmissions and improve the spectrum utilization, spectrum sensing is

3A primary transmission means a data transmission which is performed by a primary user. Similarly, a
secondary transmission means a data transmission which is performed by a secondary user.
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usually designed to minimize the probability of false alarm under a constraint on the

probability of detection.

There are several spectrum sensing techniques, e.g., matched filter detection, cy-

clostationary feature detection, energy detection, and so on [19].

• Matched filter detection: Matched filter is a kind of coherent pilot sensor, which

can be used to detect a known signal by maximizing the signal-to-noise ratio

(SNR). Accordingly, if a prior knowledge about the primary user signal (e.g., a

pilot sequence) is known by secondary users, the presence of the primary user

signal in the received signal can be detected [20]. However, in most of cognitive

radio networks, the information of primary user signal is generally hard to obtain

for secondary users [21].

• Cyclostationary feature detection: Cyclostationary feature detection deals with

cyclostationary features that might exist in primary user signals. Note that these

features have a periodic statistics and spectral correlation that do not exist in

interference signal or noises [22]. Accordingly, the primary user signal can be

detected by exploiting the received signal periodicity. Under low SNR regions,

the cyclostationary feature detection method can still obtain a good detection

performance. However, this method has a large computation complexity. In

addition, compared to other methods, significantly longer sensing time is needed

for the cyclostationary feature detection method [23].

• Energy detection: In energy detection, the primary user signal is detected by a

comparison of an energy detector’s output (i.e., the energy level of the received

signal) with a threshold ε [24]. If the output is larger than the threshold, the

state of the licensed channel is estimated as busy. Otherwise, the state of the

licensed channel is estimated as busy. In this method, little information of

primary user signal is required. Moreover, it is easy to implement in reality.

Due to its low complexity, energy detection attracts the most attention, and thus,

it is adopted in our work if spectrum sensing is needed.
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1.2.2 Energy Detection

With energy detection, the received samples of a secondary user follow a binary

hypothesis:

H0 : y(i) = u(i), i = 1, 2, · · · , fsTs (1.1)

H1 : y(i) = s(i) + u(i), i = 1, 2, · · · , fsTs (1.2)

where H0 and H1 mean that the channel state is idle and busy respectively, Ts denotes

the sensing time, fs is the sampling rate of the received signal, y(·) represents the

signal that is received by the secondary user, s(·) is the primary user signal in the

channel which is received by the secondary user, and u(·) is the background noise of

the channel. Thus, the test statistic of the secondary user is given as

Y =
1

fsTs

∑fsTs

i=1
|y (i)|2. (1.3)

Then, given the threshold ε, the probability of detection and the probability of

false alarm can be derived by [18]

Pd = Pr (Y ≥ ε |H1 ) (1.4)

Pf = Pr (Y ≥ ε |H0 ) (1.5)

where Pr(·) means probability.

1.3 Opportunistic Scheduling

In current wireless communication systems, an available channel usually needs to

support a number of users. To reduce the interference and guarantee the QoS of each

transmission, the available channel is assigned to only one user for a transmission

at each time duration (i.e., OMA). However, when the user is with poor channel

condition, it can only achieve a low information rate by utilizing this channel. To

solve this problem, opportunistic scheduling, which could enhance the throughput of

the network by allocating the channel access opportunities to the users with good

channel condition, is introduced [25]. Thus, a user needs to give up its channel access
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opportunity when its channel condition is poor. On the other hand, it will get chan-

nel access opportunities and achieve a large throughput when its channel condition is

better than those of other users. By opportunistic scheduling, in a long term, all users

in the network can benefit, and the overall spectrum efficiency is largely improved.

Opportunistic scheduling has been widely adopted in existing wireless networks. For

example, in the standard IEEE 802.11k, the access point determines the allocations

of network resources [26]. There are two kinds of opportunistic scheduling in wireless

networks, centralized opportunistic scheduling and distributed opportunistic schedul-

ing (DOS).

1.3.1 Centralized Opportunistic Scheduling

A classic opportunistic scheduling scheme is given in Fig. 1.3. In this kind of scheme,

a central entity (e.g., base station (BS)) is needed. At each slot, the information (e.g.,

channel state information (CSI), energy information, etc.) of each user can be collect-

ed by the central entity. Then, it makes a scheduling decision which means selecting

a user to utilize the available channel. In general, the user with the best channel

condition is selected by the central entity, and thus, the channel access opportunity

is allocated to this user. In this case, centralized opportunistic scheduling has been

well studied. For example, in [27], an adaptive centralized opportunistic scheduling

scheme is proposed to maximize the profits of the network under the constraint of

each user’s QoS requirement. The centralized opportunistic scheduling with imperfect

CSI is investigated in [28].

However, the communication overhead to obtain the CSI of all users may be

intolerable in some scenarios [29]. In addition, in distributed wireless networks (e.g.,

ad hoc networks), there is no central entity, and thus, it is hard for a user to make an

appropriate decision whether to give up the channel access opportunity. To address

these problems, DOS is introduced in wireless networks.

1.3.2 Distributed Opportunistic Scheduling

A classic DOS scheme is given in Fig. 1.4. In a DOS scheme, users contend for the

channel access opportunity, and a user with a successful contention decides whether

to transmit data or give up the transmission opportunity according to its information
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Figure 1.3: A classic centralized opportunistic scheduling scheme.

[30]. To enhance the throughput of the network, the user with a successful contention

should utilize the channel for a transmission if its channel condition is good enough

(i.e., larger than a pre-defined threshold). Otherwise, the user should give up the

channel access opportunity. If the threshold takes a large value, a lot of time would be

wasted on exploring a suitable channel, and thus, lots of channel access opportunities

are given up. On the other hand, if the threshold takes a small value, a channel access

opportunity may be assigned to a user with poor channel conditions. Accordingly,

how to select the threshold is a challenging and meaningful problem in DOS.

Since cooperative communications have emerged as a promising technique to en-

hance communication efficiency, DOS in cooperative networks has received much

attention [31]- [32]. In cooperative communication, one or more relay nodes help the

source to forward data to the destination, and thus, the negative effect of channel

fading can be greatly reduced [33]. There are two major realization schemes in coop-

erative communication, amplify and forward (AF) and decode and forward (DF). In

the AF relay scheme, the relay node amplifies its received signal, and then forward-

s the amplified signal to the destination without decoding the received signal [34].

In the DF relay scheme, the relay node first decodes its received signal, and then

forwards to the destination a re-encoded version of the signal4 [35]. Compared to

the DF scheme, the AF scheme is simpler to implement, but suffers from the noise

4It may use the same code-book with the source or an independent code-book.
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Figure 1.4: A classic distributed opportunistic scheduling scheme.

amplification problem. On the other hand, the DF scheme may suffer from the error

propagation problem if the relay node incorrectly decodes the received signal [36].

In a cooperative transmission, there are generally two links, source-to-relay link

and relay-to-destination link. Accordingly, to enhance the throughput of the cooper-

ative network by using DOS, the user with a successful contention needs to takes both

of the two links into consideration for deciding whether to give up the transmission

opportunity.

1.4 Non-Orthogonal Multiple Access

For the conventional OMA techniques, only one user can be served by one resource

block. The spectrum efficiency is low when the resource blocks are allocated to users

with poor channel conditions. Similar to opportunistic scheduling, NOMA is another

technique which can largely improve the spectrum efficiency in wireless networks [12].

It is another promising multiple access different from OMA. In NOMA, a single

resource block can simultaneously serve multiple users, which is given in Fig. 1.5.

NOMA has been proposed in 3GPP LTE Release 13 [37], and also included in various

White Papers on 5G, such as the White Paper from ZTE Corporation, SK Telecom,

an so on [38]. There are different NOMA solutions, code-domain NOMA and power-
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domain NOMA. In code-domain NOMA, multiple users can transmit simultaneously

over the same frequency band by using different sequences that are sparse or with

low cross-correlation [39]. However, in power-domain NOMA, different transmissions

can share a wireless resource block, but adopt different power levels. Then, the

receiver can distinguish the signal form different transmissions according to successive

interference cancellation (SIC) [40]. Due to its low implementation complexity, power-

domain NOMA attracts much more attention, and we also focus on power-domain

NOMA in this thesis. Accordingly, in the sequel, “NOMA” means “power-domain

NOMA”.

Figure 1.5: OMA vs NOMA [2].

1.4.1 Successive Interference Cancellation

By SIC, the signals of different users are decoded sequentially [41]. The decoding

order (i.e., which signal is decoded first and which signal is next?) is usually decided

by the signal strength, which decodes the strong signal first and then to decode

the weak signal. To decode a user’s signal, other users’ signals, which are not yet

decoded, are treated as interference. Then, when the user’s signal is successfully

decoded, the signal can be cancelled out from the received mixture of multiple users’

signals, which benefits subsequent decoding of other users’ signals. In the following,

we give an example to demonstrate the principle of SIC.

Considering a downlink transmission with one transmitter (denoted A) and two

receivers (denoted B1 and B2), the channel gains from A to B1 and B2 are denoted
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Figure 1.6: An example of downlink NOMA scheme.

as h1 and h2, respectively. It is given in Fig. 1.6. The channel condition from A to

B1 is assumed better than the channel condition from A to B2, and thus, we have

|h1| > |h2|. In power-domain NOMA, different power levels are allocated to different

transmissions, i.e., P1 < P2, where P1 and P2 are the transmit power to B1’s signal

and B2’s signal, respectively. Therefore, for B1, the signal of B2 is a stronger signal

compared to its own signal, and thus, the detailed coding scheme is given as follows.

• The transmit signal is superposition coded signal of B1 and B2.

• For B1, the signal of B2 can be decoded first and subtracted from the received

signal by SIC, and then B1’s signal can be detected.

• For B2, it treats B1’s signal as interference and decodes itself data directly from

the received signal.

1.5 Thesis Motivations and Contributions

Cognitive radio, opportunistic scheduling, and NOMA are promising techniques which

can largely improve the spectrum efficiency in wireless networks. However, some

challenges exist in deploying them in practical wireless networks. In this thesis, we

aim to QoS provisioning of networks by solving these challenges.
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1.5.1 Optimal Slot Length Configuration in Cognitive Radio Networks

In cognitive radio networks, a slotted time structure is popularly used. Time is par-

titioned into fixed-length slots. Spectrum sensing is used to detect possible primary

signal at the beginning of each slot. If no primary signal is detected by spectrum

sensing, secondary users can transmit over the channel during the remaining time of

the slot. On the other hand, if primary signals are detected, secondary users should

keep silent at this slot. In most of existing works, it is assumed that the channel state

(idle or busy) does not change within a slot of secondary users. This assumption is

actually not reasonable in practice. Primary transmission is a stochastic event, and

thus, it may start at any moment within a slot of secondary users. However, the

spectrum sensing operation is only taken at the beginning of a slot. Therefore, a col-

lision between the primary transmission and secondary user may occur. Taking this

into account, a continuous Markov model is proposed in [42], in which the state of a

licensed channel alternates between “idle” and “busy” based on a continuous Markov

model. Considering this model, the slot length of secondary users is a factor that

largely affects the performance of cognitive radio networks. A smaller slot length can

lead to shorter collision time5, and thus, a higher QoS level for primary transmissions

is provided. However, a higher frequency to perform the spectrum sensing is also

required. This means that secondary users need to cost more time and energy for

spectrum sensing, and thus, less time is left for secondary transmissions. According-

ly, there is a tradeoff between the QoS of primary users and the reward of secondary

users by setting the slot length.

In this research, a slot length configuration scheme with imperfect spectrum sens-

ing is proposed in Chapter 3. In the proposed scheme, the spectrum sensing result is

jointly considered when configuring the slot length. Then, an optimization problem

to find out the optimal slot length configuration is formulated and analyzed. And an

algorithm is proposed to solve the problem.

1.5.2 Optimal Opportunistic Scheduling in Wireless Networks

• Event-Driven Centralized Opportunistic Scheduling in Wireless Networks

5Collision time means the duration that a primary transmission is interfered with by secondary trans-
missions.
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In traditional centralized opportunistic scheduling schemes, the CSI of different

links is needed. However, the communication overhead to get the CSI may be

intolerable. In addition, it is not feasible to obtain the CSI in some scenar-

ios. The implementation complexity is another challenge to take the traditional

opportunistic scheduling schemes. In these schemes, time is divided to equal

length slots6, and then, the scheduling action has to be taken at each time slot.

In this case, the implementation complexity is pretty large in practice.

Considering the limitations of existing centralized scheduling schemes, a new

kind of opportunistic scheduling scheme is proposed in Chapter 4. We formu-

late the opportunistic scheduling problem as a semi-Markov decision process

(SMDP), where the scheduling action is driven by events (i.e., task arrival even-

t and task transmission completion event). Then, we propose a model-based

scheduling method and a model-free scheduling method for fully explored net-

works and partially explored networks, respectively.

• DOS in Cooperative Networks with Energy Harvesting

Since cooperative communications have emerged as a promising technique to en-

hance spectrum efficiency, DOS in cooperative networks receives more and more

attention. In reality, relay nodes are usually battery limited [43], and thus,

periodic replacement or recharging for the battery of relay nodes is needed.

However, it may not be feasible in lots of scenarios [44]. As a promising solu-

tion to encourage the energy-constrained relays to provide cooperative services,

energy harvesting technique has attracted much attention [45]. By collecting

energy from ambient sources (e.g., solar, wind, and radio-frequency (RF) sig-

nal), relay nodes can forward the received data to destinations without external

energy [46]. Compared to other sources, RF signal is a kind of predictable and

controllable source. Thus, energy harvesting from RF signals is widely used in

wireless networks, especially in cooperative networks [47]. Although wireless

cooperative networks with energy harvesting attract more and more attention,

there are still no efforts on designing optimal DOS schemes in wireless cooper-

ative networks with RF energy harvesting.

6The length of a time slot is generally needed to smaller than the channel coherence time.
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In this research, the problem of distributed opportunistic channel access in

energy-limited wireless cooperative networks is investigated in Chapter 5. To

cope with the energy limitation problem, RF energy harvesting relays are con-

sidered, and thus, no external energy is needed for relay nodes. Then, a DOS

scheme is proposed. To maximize the average throughput of the network, an

optimal threshold-based strategy of the proposed scheme is derived by optimal

stopping theory. To obtain the threshold, a low complexity algorithm is pro-

posed to derive the stationary probability distribution of the energy level of each

relay, and then, the threshold can be calculated off-line by a proposed iterative

algorithm.

1.5.3 Optimal Power Allocation in Fog Computing System with NOMA

Since multiple users in NOMA are distinguished by power levels, one of the most im-

portant methods to achieve the benefits of NOMA should be power allocation. The

optimal power allocation in cellular networks with NOMA has been widely investi-

gated. As a promising wireless technique to improve the spectrum efficiency, NOMA

has also been shown important to the evolution of many types of applications or net-

works, e.g., vehicular ad hoc networks, digital TV broadcasting, terrestrial-satellite

networks, fog computing, etc. [48]. Different from traditional cellular networks, other

networks with NOMA have some specific properties. Thus, NOMA power allocation

schemes in traditional cellular networks cannot be directly adopted in other networks.

For example, in fog computing, the computing capacity of fog nodes and the com-

puting latency of tasks need to be jointly considered when configuring NOMA power

allocation.

Fog computing, which provides computing capabilities at the network edge, is a

promising solution to satisfy the rapid growth of computation demands by mobile

devices. By offloading computation tasks of the Internet of things (IoT) devices to

fog nodes, better computation experience (for example, lower execution latency) can

be achieved.

In this research, an optimal offloading scheme with NOMA is proposed in Chap-

ter 6. To improve the offloading efficiency, downlink non-orthogonal multiple access

(NOMA) is applied in fog computing systems such that the IoT device can perform
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simultaneous offloading to multiple fog nodes. However, due to the limited compu-

tation resources of fog nodes and limited wireless resources, designing an efficient

offloading scheme, which allocates the amount of data to each fog node by task al-

location and power allocation, is important for fog computing systems. Thus, to

maximize the long-term average system utility, a task and power allocation problem

for computation offloading is formulated, subject to task delay and energy costing

constraints. By Lyapunov optimization method, the original problem is transformed

to an online optimization problem in each time slot, which is non-convex. Accord-

ingly, we propose an algorithm to solve the non-convex online optimization problem

with polynomial complexity.

1.6 Thesis Outline

The thesis is organized as follows. In Chapter 2, the background information is in-

troduced. In cognitive radio networks, optimal slot length configuration is considered

in Chapter 3. In Chapter 4, a centralized opportunistic scheduling scheme, which

is named as SDMP-based event-driven opportunistic scheduling scheme, is proposed.

In Chapter 5, the distributed opportunistic scheduling is discussed in energy-limited

cooperative networks. Chapter 6 presents the research results on power allocation in

fog computing with NOMA. Chapter 7 concludes the thesis and gives future research

directions. The structure of this thesis is given in Fig. 1.7.
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Figure 1.7: The structure of the thesis.
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Chapter 2

Background

2.1 Stopping Rule Problems

The definition of a stopping rule problem1 can be described as follows. A random

process is sequentially observed. At each observation (indexed by n = 1, 2, · · · ),

a random variable Xn can be observed. The probability distribution of Xn = xn is

usually known to the user2. Thus, after observation Xn = xn, the user needs to decide

whether to stop the observation and receive the known reward Yn = yn(x1, x2, · · · , xn)

(i.e., the reward when stopping at moment n with observation x1, x2, ..., xn) or to

continue and observe Xn+1. The problem is to find the optimal stopping rule, i.e., at

which moment the user should stop so that maximal expected reward can be achieved.

For example, we consider a house-selling problem [49]. Let Xn denote the amount of

the received offer on day n. There is a cost, denoted c > 0, for observing each offer

(e.g., cost of living or maintenance). Then, after receiving an offer Xn = xn, you

decide whether to accept the offer or to wait for the next offer. It is assumed that

the past offer cannot be recalled and accepted. When an offer Xn = xn is received,

the reward function, denoted Yn = yn(x1, x2, · · · , xn), should be

yn =

 0, n = 0
−∞, n =∞

xn − nc, 0 < n <∞
. (2.1)

For a stopping rule problem, an optimal stopping rule may not exist. Thus, to

solve a stopping rule problem, we need to verify whether an optimal stopping rule

exists or not. The existence of an optimal stopping rule can be guaranteed when the

1More detailed information about stopping rule problems can be found in [49].
2Here we use capital letter X to denote a random variable, and lower-case letter x to denote a realization

of the random variable.
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following two conditions are satisfied.

C1. E

[
sup
n
Yn

]
<∞ (2.2)

C2. lim sup
n→∞

Yn ≤ Y∞ a.s. (2.3)

where E[·] means expectation, Y∞ is the reward if the user never stops, and a.s.

denotes “almost surely”.

In general, for a stopping rule problem, it is hard to derive the optimal stopping

rule with a closed-form. However, the optimal stopping rule of a finite horizon stop-

ping rule problem can be obtained by the following method. A stopping rule problem

is defined as a finite horizon stopping rule problem if the user must stop the observa-

tion after observing XT . In this case, the problem has horizon T . For example, for

the house-selling problem, if the house is required to sell within T days, the problem

is a finite horizon stopping rule problem. A finite horizon stopping rule problem can

be dealt with by using a backward induction method. Let V T
n (x1, · · · , xn) denote the

maximum reward the user can achieve at stage n ∈ {0, 1, 2, · · · , T} after observing

{x1, · · · , xn}. Then, we have

V T
n (x1, · · · , xn) = max

{
Yn, E

[
V T
n+1(x1, · · · , xn, Xn+1) |X1 = x1, · · · , Xn = xn

]}
.

(2.4)

And the optimal stopping rule, denoted N∗, should be

N∗ = min
{
n ≥ 0 : Yn ≥ E

[
V T
n+1(x1, · · · , xn, Xn+1) |X1 = x1, · · · , Xn = xn

]}
. (2.5)

Due to V T
T (x1, · · · , xT ) = YT (i.e., the user must stop the observation after observ-

ing XT ), the optimal action (i.e., stop or continue) at stage (T − 1) can be derived

by (2.4) and (2.5). Then, the optimal action at stage (T − 2) can be found and so

on back to stage 0. Therefore, the optimal stopping rule can be derived. However,

the large time and space complexity is the major challenge of the backward induction

method.

In reality, lots of stopping rule problems are generally not finite horizon problem-

s. For an infinite horizon stopping rule problem, if it repeats in time, the optimal

stopping rule N∗ is to maximize the reward ratio (i.e., the average received reward
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per time unit), denoted E[YN ]/E[TN ] where TN is the duration until a stop. For

example, for the house-selling problem, the selling process would repeat in time if

we have lots of houses to sell and need to sell them one by one. In this case, for an

optimal stopping rule, the maximal average received reward per time unit should be

achieved, e.g., selling 1 house per week with a reward $1000 per sale is better than

selling 1 house in a month with a reward $2000. For this kind of problem, we have

the following theorem [49].

Theorem 1. For any λ, we have N(λ) = arg sup
N
E [YN − λTN ]. If sup

N
E [YN − λTN ] =

0 is obtained at λ∗, then sup
N
E [YN ]/E [TN ] = λ∗ is satisfied and N(λ∗) is the optimal

stopping rule for the problem.

However, it still has some challenging issues to solve this kind of problem. Firstly,

we need to prove the conditions which guarantee the existence of an optimal stopping

rule. Secondly, the stopping rule N(λ) needs to be derived for any λ. Thirdly, we

need to derive the value of λ∗.

In summary, to solve a stopping rule problem, we need to prove the existence of

the optimal stopping rule and derive the optimal stopping rule.

2.2 Markov Decision Process

Markov decision processes (MDPs) are particularly useful for dealing with decision

making problems. In a decision making problem, the time point with making a

decision (i.e., taking an action) is referred to as decision epoch. There are two kinds

of MDP, discrete time MDP (DTMDP) and continuous time MDP (CTMDP). In

a DTMDP, the decision maker takes an action at each predetermined discrete time

point. On the other hand, in a CTMDP, the time point to take an action is random

[50].

2.2.1 Discrete Time Markov Decision Process

For a DTMDP, it can be represented by a tuple {S,A, p(s′|s, a), r(s, a)}, where each

element is analyzed as follows.

• S: It denotes the state space, which is the set of all possible states in the MDP.

At each decision epoch, a state, denoted s ∈ S, can be observed.
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• A: It denotes the action space, which is the set of all possible actions in the

MDP. When a state is observed at each decision epoch, an action, denoted

a ∈ A, is chosen to be taken.

• p(s′|s, a): It denotes the transition probability, which means the probability that

taking action a in state s leads to state s′.

• r(s, a): It denotes the reward when an action a is taken in state s.

For an MDP, the core problem is to find a policy for the decision maker. A policy,

denoted π, is defined as a mapping from the state space S to the action space A.

Accordingly, given a policy, the action is decided at any state. To evaluate a policy,

there are generally two kinds of criteria, the discounted expected total reward criterion

and the average reward criterion. Since the discounted expected total reward criteria

is widely adopted in MDPs, we only discuss it here. For the average reward criterion,

pleas refer to [51] for details.

For a discounted DTMDP (i.e., a DTMDP with the discounted expected total

reward criterion), we try to find the optimal policy, denoted π∗, which maximizes the

discounted expected total reward. Accordingly, the policy π∗ is defined as

π∗ = argmax
π

N∑
n=0

αnr(sn, an) (2.6)

where n is the index of the decision epoch, N > 0 is the range of the MDP,3 sn is the

state of the nth decision epoch, an = π(sn) is the action which is taken in state sn

by following policy π. Accordingly, the objective of solving an MDP is to derive the

optimal policy π∗. The Bellman equation of the discounted DTMDP is given as [52]

V π(s) = r(s, a) + α
∑
s′∈S

p(s′|s, a)V π(s′) (2.7)

where V π(s) is the state value function of state s given a policy π (i.e., the discounted

expected total reward given a policy π) and a = π(s). Then, the optimal policy π∗

should satisfy the Bellman optimality equation, which is given as

V ∗(s) = max
a∈A
{r(s, a) + α

∑
s′∈S

p(s′|s, a)V ∗(s′)} (2.8)

3The MDP is an infinite horizon MDP if N = ∞. Otherwise, the MDP is a finite horizon MDP.
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where V ∗(s) is the optimal state value of state s. Then, we have

π∗(s) = argmax
a∈A

{r(s, a) + α
∑
s′∈S

p(s′|s, a)V ∗(s′)}. (2.9)

For a discounted DTMDP, it is said to be fully explored when the transition prob-

ability p(s′|s, a) can be obtained. Then, a typical method, namely value iteration

method [53], is introduced to derive the optimal policy π∗. In value iteration method,

the optimal state value of any state s can be derived by the following iterative equa-

tion.

V n+1(s) = max
a∈A
{r(s, a) + α

∑
s′∈S

p(s′|s, a)V n(s′)}. (2.10)

Then, the optimal policy can be obtained by (2.9).

If the detailed information of the DTMDP is hard to be explored (e.g., the transi-

tion probability cannot be obtained), it is regarded as partial explored, and thus, the

value iteration method is not working. To address this challenge, reinforcement learn-

ing algorithms are introduced [54]. In a reinforcement learning algorithm, it solves the

Bellman optimality equation to obtained the optimal policy by asynchronous itera-

tion. For example, in Q-learning which is a typical reinforcement learning method [55],

a Q-value, denoted Qπ(s, a), is introduced to express the expected long-term discount-

ed reward of state-action pair (s, a) and a = π(s). Then, after a long learning period,

the optimal Q-value, denoted Q∗(s, a), of state-action pair (s, a) can be obtained by

the following iterative equation.

Qn+1(s, a) = Qn(s, a) + κ(r(s, a) + αmax
a′∈A

Qn(s′, a′)−Qn(s, a)) (2.11)

where κ ∈ (0, 1] is the learning rate and a′ denotes the applied action of state s′.

Then, the optimal policy can be obtained by

π∗(s) = argmax
a∈A

Q∗(s, a). (2.12)

However, in lots of scenarios (e.g., queueing control systems), an action may need

to be taken at any random time point instead of a set of predetermined discrete time

points. Accordingly, a CTMDP should be modeled in these scenarios. The most

general CTMDP model is semi-Markov decision process (SMDP) [50].
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2.2.2 Semi-Markov Decision Process

For an SMDP, it can be represented by a tuple {S,A, p(s′|s, a), τ(s, a, s′), r(s, a, s′)},

where S, A, and p(s′|s, a) have the similar definition with those in a DTMDP, and

τ(s, a, s′) and r(s, a, s′) are analyzed as follows.

• τ(s, a, s′): It denotes the duration time from state s to the next state s′ after

taking action a in state s. Note that τ(s, a, s′) is a random variable. An example

of the time line for a DTMDP and an SMDP is given in Fig. 2.1, where ti is

the ith decision epoch.

Figure 2.1: An example of time line for discrete time MDP and SMDP.

• r(s, a, s′): It denotes the reward function. In generally, it contains two parts,

an instantaneous reward/cost w(s, a) and a continuous reward/cost c(s, a, s′)

during the period τ(s, a, s′).

Similarly, deriving the optimal policy π∗, which maximizes the discounted expected

total reward, is the major objective of solving an SMDP. Thus, the policy π∗ satisfies

π∗ = argmax
π

∞∑
n=0

e−αtnr(sn, an, sn+1)

= argmax
π

∞∑
n=0

e−αtn [w(s, a) +
∫ tn+1

tn
e−α(t−tn)uc(s, a, s′)dt]

(2.13)

where tn denotes the nth decision epoch, α is the discount factor, and u denotes a

weight. Note that tn ∈ (0,∞) is a random variable, and thus, an SMDP is generally

an infinite horizon MDP.

Different from the DTMDP, the value iteration method is not straightforward for

a fully explored SMDP (i.e., the transition probability and the reward function can

be obtained). The iterative equation (2.10) cannot obtain the optimal state value of

a state in SMDP since it does not consider the non-identical transition time (i.e., the
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duration between two decision epochs). Thus, to address this challenge, we need to

convert the SMDP into a DTMDP. Then, the value iteration method can be applied

to derive the optimal policy. Accordingly, the core problem is how to convert an

SMDP to an identical DTMDP. If the detailed information of the SMDP is hard to

explore, a reinforcement learning algorithm is needed. However, due to the random

decision epochs, the traditional Q-learning algorithm cannot derive the optimal policy

of an SMDP. Thus, how to improve the traditional reinforcement learning methods

to solve an SMDP problem is pretty meaningful.

2.3 Lyapunov Optimization

Lyapunov optimization is a powerful technique for optimally controlling a dynamical

system [56]. It is widely adopted to the optimization problems, which are to stabilize

the dynamic system (e.g., queues in the system) while optimizing a performance

objective. For example, in a dynamic control system, a control action is assumed to

be taken at each time slot (indexed by t ∈ {0, 1, 2, · · · }). There are K queues and

the backlog of jth (j ∈ {1, 2, · · · , K}) queue at tth time slot is denoted as Qj(t).

The action which is taken at each time slot affects the backlog of each queue (i.e.,

the action might affect the arrival rate or departure rate), and also incurs a penalty

y(t). The goal of this system is to select a reasonable action at each time slot (i.e., a

policy ψ∗) which stabilizes all queues while minimizing the time average of penalty.

Accordingly, the problem is formulated as follows.

ψ∗ = argmin
ψ

lim
τ→∞

1

τ

τ−1∑
t=0

E[y(t)] (2.14)

s.t. lim
t→∞

E[|Qj(t)|]
t

= 0 (2.15)

where condition (2.15) guarantees that each queue can keep stable (i.e. mean rate

stable).

To measure the size of all queues, a Lyapunov function [57], denoted Γ(t), is

defined as the sum of squares of backlog in all queues. Thus, we have

Γ(t) , 1

2

K∑
j=1

wjQj(t)
2 (2.16)
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where wj denotes a weight for each queue. Intuitively, Γ(t) takes a small value only

when the backlogs of all queues are small. Then, a function, named conditional

Lyapunov drift function, is defined as the difference of the Lyapunov function from

one time slot to the next time slot. Thus, we have

∆(t) , E[Γ(t+ 1)− Γ(t)|Θ(t)] (2.17)

where Θ(t) , {Q1(t), Q2(t), · · · , QK(t)}. To evaluate both the system penalty and

the queue stability, the drift-plus-penalty expression is defined as,

∆(t) + V E[y(t)|Θ(t)] (2.18)

where V ≥ 0 is a control parameter which is used to tradeoff the average penalty and

queue stability. Then, the Lyapunov optimization theorem [58] is given as follows.

Theorem 2. Suppose there are constants β > 0 and B ≥ 0 such that the following

expression holds for ∀t ∈ {0, 1, 2, · · · }.

∆(t) + V E[y(t)|Θ(t)] ≤ B + V y∗ − β
K∑
j=1

Qj(t) (2.19)

where y∗ is a target value for the time average of y(t) (i.e., y∗ = min lim
τ→∞

1
τ

τ−1∑
t=0

E[y(t)]).

Then, if E[y(t)] ≥ ymin is given, the following two expressions about the time average

penalty and backlog of queues are satisfied.

lim
τ→∞

1

τ

τ−1∑
t=0

E[y(t)] ≤ y∗ +
B

V
(2.20)

lim
τ→∞

1

τ

τ−1∑
t=0

K∑
j=1

E[|Qj(t)|] ≤
B + V (y∗ − ymin)

β
. (2.21)

According to Theorem 2, there is an alternative method to solve the problem

in (2.14)-(2.15). Instead of solving problem (2.14)-(2.15) directly, we can try to

derive a policy, denoted ψ′, to minimize the upper bound of the drift-plus-penalty

expression. Then, no knowledge of the probability distributions of the random events

(e.g., the arrival rate of each queue) is required, and thus, it can largely decrease

the implementation complexity. In addition, the policy ψ′ can still reach a good

performance, i.e., the time average penalty can reach at most O(1/V ) above y∗ and
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each queue can keep stable, in which O(·) means big O notation. Note that y∗ is the

minimum time average penalty which is obtained by policy ψ∗. Therefore, the core

problem of Lyapunov optimization is how to derive a policy to minimize the upper

bound of the drift-plus-penalty expression efficiently.

2.4 A Typical NOMA Scheme

In this section, a typical NOMA scheme is discussed. A typical NOMA scenario

includes one transmitter A and N receivers Bi, i ∈ {1, 2, · · · , N}. In the scenario,

A transmits data to all receivers simultaneously with a constraint of total power P .

Each link from A to Bi experiences independent and identically distributed (i.i.d.)

Rayleigh block fading, and the channel gain is denoted as hi. All links are sorted as

|h1| > |h2| > · · · > |hN |. The transmit power to the signal of receiver Bi is set as a

fraction, denoted βi, of the total power. Then, A transmits the superposition coded

signal of all receivers. According to the analysis of SIC, for Bi, it can decode and

subtract the signal of Bj, j ∈ {i + 1, i + 2, · · · , N}, and then, decodes itself signal

with treating the signal of Bk, k ∈ {1, 2, · · · , i− 1} as interference. Accordingly, the

achievable data rate, denoted as Ri, of Bi is given as

Ri =W log2

1 +
βiP |hi|2

i−1∑
j=1

βjP |hi|2 + σ2

 (2.22)

where W is the channel bandwidth and σ2 is the variance of the additive white

Gaussian noise (AWGN).

To evaluate the performance of the NOMA scheme, we consider the scenario with

two receivers (i.e., Fig. 1.6). Then, the achievable data rate of B1 and B2 is given as

R1 =W log2

(
1 +

β1P |h1|2

σ2

)
(2.23)

R2 = W log2

(
1 +

(1− β1)P |h2|2

β1P |h2|2 + σ2

)
. (2.24)

With OMA, it is assumed that a fraction, denoted α, of the wireless resource block

is allocated to the link from A to B1, and thus, the rest of the wireless resource block

25



is allocated to the link from A to B2. Then, the achievable data rate of B1 and B2 is

given as

R1 = αW log2

(
1 +

P |h1|2

σ2

)
(2.25)

R2 = (1− α)W log2

(
1 +

P |h2|2

σ2

)
. (2.26)

It can be shown that the overall achievable data rate (i.e., R1 + R2) of NOMA is

much higher than that of OMA. And a numerical performance comparison between

NOMA and OMA is given in Fig. 2.2.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
NOMA
OMA

Figure 2.2: Data rate of NOMA and OMA.

Figure 2.3: An example of uplink NOMA scheme.
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Similarly, NOMA can be applied in uplink transmissions. For example, an exam-

ple of uplink NOMA scheme is given in Fig. 2.3. Note that A would decode and

subtract the signal from strong transmission, and then decode the signal from weak

transmission. The details about uplink NOMA scheme can be found in [59] and [60].

In summary, with NOMA, not only the spectrum efficiency (i.e., the maximum

capacity/throughput) can be largely improved, but also the number of supportable

transmissions under the limited wireless resource blocks can be largely increased. In

addition, under a reasonable power allocation for different users, the fairness of the

users can be guaranteed [61].
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Chapter 3

Optimal Slot Length Configuration
in Cognitive Radio Networks

In this chapter, a slot length configuration scheme with imperfect spectrum sensing

is proposed. In the proposed scheme, the spectrum sensing result is considered when

configuring the slot length. Then, an optimization problem to find out the optimal

slot length configuration is formulated and analyzed. And an algorithm is proposed

to solve the problem.

3.1 Introduction

To cope with the problems of spectrum shortage [1,4] and spectrum under-utilization

[62], cognitive radio is one possible solution, which largely improves the spectrum

efficiency by allowing secondary users to access spectrum holes.

In cognitive radio networks, a slotted time structure is widely used [63]. Time is

divided to fixed-duration slots. Spectrum sensing is performed at the beginning of

each slot. If no primary signal is detected by spectrum sensing, secondary users can

transmit over the channel during the remaining time of the slot. On the other hand,

if primary signals are detected, secondary users should keep silent at this slot.

There are several spectrum sensing techniques, including energy detection, matched

filter detection, cyclostationary feature detection, and so on [64]. Due to its low com-

plexity, energy detection attracts the most attention, and thus, it is also adopted in

this work. In energy detection, the detection accuracy of spectrum sensing is largely

affected by the length of spectrum sensing within a slot. There are many existing

works that consider configuration of the length of spectrum sensing. In [18], the
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optimal sensing duration in a cognitive radio network is derived to maximize the de-

tection accuracy of spectrum sensing. In addition, the case with cooperative spectrum

sensing is also considered. In [65], a problem to maximize the average throughput

of secondary transmissions with energy harvesting is formulated. To guarantee the

quality of service (QoS) of primary users and the energy efficiency, there are a colli-

sion constraint and an energy consumption constraint in the optimization problem.

Accordingly, the optimal sensing duration is derived by solving the formulated opti-

mization problem. In [66], a sensing scheduling optimization problem is considered

in cognitive radio networks with cooperative spectrum sensing. Considering different

scenarios, three different sensing strategies are proposed. In [67], the power control

and spectrum sensing length are jointly investigated. Since the formulated problem

is a non-convex optimization problem, an iterative algorithm is proposed to solve it.

Then, the optimal length of spectrum sensing duration and the optimal power control

strategy are derived.

On the other hand, the slot length configuration, which is another factor that can

largely affect the performance of cognitive radio networks, does not receive enough

attention in the literature. In most of existing works [65]- [67], it is assumed that the

channel state (idle or busy) does not change within a slot of secondary users. Here

an idle channel state denotes that no primary signal exists in the licensed channel,

while a busy channel state denotes that primary users are transmitting in the licensed

channel. This assumption is actually not reasonable in practice. Primary transmission

is a stochastic event, and thus, it may start at any moment within a slot of secondary

users. However, the spectrum sensing operation is only taken at the beginning of

a slot. Consider the case that a secondary user senses a channel to be idle at the

beginning of a time slot, and thus, transmits in the time slot. If primary users

become active in the middle of the time slot, there is a collision between the primary

transmission and the secondary transmission. Taking this into account, a continuous

Markov model is proposed in [42], in which the state of a licensed channel alternates

between “idle” and “busy” based on a continuous Markov model. The duration of

each idle/busy state is an independent and identically distributed (i.i.d.) random

variable. Considering this model, the slot length of secondary users is a factor that

largely affects the performance of cognitive radio networks. A smaller slot length can
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lead to shorter collision time1, and thus, a higher QoS level for primary transmissions

is provided. However, a higher frequency to perform the spectrum sensing is also

needed. This means that secondary users have to cost more time and energy for

spectrum sensing, and thus, less time is left for secondary transmissions. Accordingly,

there is a tradeoff between the QoS of primary users and the reward of secondary users

by setting the slot length. In [42], the optimal slot length is derived to maximize

the spectrum sensing efficiency. In [68], the slot length configuration problem with

cooperative spectrum sensing is considered. In [69], an optimization problem which

jointly considers the channel selection and slot length configuration is formulated.

In the formulated problem, the reward, which equals the amount of data that a

secondary user can transmit minus the penalty of collision time, is maximized. Then,

an adaptive method is derived by solving the formulated problem.

We have the following observations for the above existing works [42,68,69] on slot

length configuration.

• In these works [42,68,69], the length of a slot is set as a fixed value regardless of

the spectrum sensing result. However, for a licensed channel, the sojourn time

of idle state and busy state are usually different. Accordingly, we argue that the

spectrum sensing result should be considered when configuring the slot length.

• In these works [42, 68, 69], it is assumed that the spectrum sensing is perfect

which may not be practical. In the literature for cognitive radio with imperfect

sensing, to protect primary users, the missed-detection probability of spectrum

sensing is usually required to be less than a threshold (say α). Indeed, this

setting can guarantee that the collision ratio of primary activities (i.e., the per-

centage of time in which the primary activities are interfered with) is below

α if the primary user state (busy or idle) does not change within a time slot

of secondary users. However, with a practical setting that primary user state

may change within a time slot of secondary users, the collision ratio of primary

activities may be more than α. Accordingly, we argue that we should have a

constraint on the collision ratio of primary activities when configuring the slot

1Collision time means the duration that a primary transmission is interfered with by secondary trans-
missions.
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length. To the best of our knowledge, the collision ratio of primary activities is

overlooked in existing literature when designing cognitive radio systems.

Taking into account the two observations, an optimal slot length configuration

scheme is proposed in this work. The major contributions of this work are summarized

as follows.

1. A slot length configuration scheme with imperfect spectrum sensing is proposed.

In the proposed scheme, the spectrum sensing result is considered when config-

uring the slot length. Therefore, slots with different sensing results may have

different slot length.

2. In the proposed scheme, an optimization problem is formulated to derive the

optimal slot length configuration. In the formulated problem, the throughput of

secondary transmissions is maximized under a constraint on the collision ratio

of primary activities and a constraint on sensing frequency. Then, we give a

detailed analysis for the formulated problem.

3. An algorithm is proposed to solve the formulated problem, and thus, the optimal

slot length configuration can be derived. In addition, if the spectrum sensing

is perfect, an algorithm with much less complexity is proposed to derive the

optimal slot length configuration.

4. The proposed slot length configuration scheme is evaluated by simulation. It

shows that, by having different slot length with different sensing results, largely

improved performance can be achieved.

The rest of the chapter is organized as follows. The system model and the slot

length configuration scheme are proposed in Section 3.2. The optimization problem is

formulated in Section 3.3, and analyzed and solved in Section 3.4. Section 3.5 shows

simulation results. Finally, Section 3.6 concludes this chapter.
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3.2 System Model and Proposed Scheme

3.2.1 System Model

Consider that a secondary user wishes to access a licensed channel. Over the licensed

channel, primary users have the priority for channel access. The secondary user can

utilize the channel only when the channel is sensed as idle by spectrum sensing. As

shown in Fig. 3.1, the channel is modeled as an idle/busy process. Here an idle state

means there are no primary activities over the channel, while a busy state means that

primary users are transmitting over the channel. Over time, the sojourn durations

of idle and busy states are i.i.d. random variables with probability density function

(PDF) fi(x) and fb(x), respectively [69].

Figure 3.1: The idle/busy channel model.

To protect primary transmissions, spectrum sensing by using energy detection is

performed by the secondary user at the beginning of each time slot. If the output

of the energy detector (i.e., the energy level of the detected signal) is more than a

predetermined threshold denoted ε, the channel is estimated to be busy; otherwise,

the channel is estimated to be idle.

In general, two metrics, probability of detection (denoted as Pd) and probability

of false alarm (denoted as Pf), are used to measure the detection performance of spec-

trum sensing. The probability of detection Pd denotes the probability that the sensing

result is busy given that primary users are indeed transmitting over the channel. The

probability of false alarm Pf denotes the probability that the sensing result is busy

given that no primary signal actually exists in the channel. The detailed definitions

of Pd and Pf are given in Section 1.2.2. The expressions of Pd and Pf are given as [18]

Pd = Q

(
(
ε

σ2
− γp − 1)

√
Tsfs
γp + 1

)
, (3.1)

Pf = Q
(
(
ε

σ2
− 1)

√
Tsfs

)
, (3.2)
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where Ts is the spectrum sensing time, fs is the sampling frequency, Tsfs is the total

number of samples, σ2 is the variance of additive white Gaussian noise (AWGN), γp

means the signal-to-noise ratio (SNR) of primary signal received by the secondary

user, and Q(·) is the complementary distribution function of the standard Gaussian.

According to (3.1) and (3.2), the sensing time Ts can be derived if a pair of target

probabilities (Pd, Pf) is given.

3.2.2 Proposed Slot Length Configuration Scheme

In existing works, the slot length is usually set as a fixed value without considering

the state of the licensed channel. However, the sojourn time of the licensed channel’s

idle state and busy state are usually different. To better protect primary users and

improve performance of the secondary user, the sensing result should be considered for

configuring the slot length. Therefore, the proposed slot length configuration scheme

is stated as follows. For a slot, spectrum sensing with duration Ts is carried out at

the beginning of the slot. If the sensing result is idle, the slot length is set as Ti, and

thus, the secondary user transmits within the subsequent time duration (Ti − Ts) of

the slot. Otherwise, the slot length is set as Tb, and thus, the secondary user keeps

silent within the subsequent time duration (Tb − Ts) of the slot. An example of the

slot structure is shown in Fig. 3.2, which has four scenarios.

• If no primary signal exists in the channel and the sensing result is busy (i.e., a

false alarm happens), the slot length is Tb;

• If no primary signal exists in the channel and the sensing result is idle (i.e.,

accurate sensing happens), the slot length is Ti;

• If the channel is occupied by primary users and the sensing result is idle (i.e.,

missed detection happens), the slot length is Ti;

• If the channel is occupied by primary users and the sensing result is busy (i.e.,

accurate sensing happens), the slot length is Tb.

As the sensing duration Ts is usually much smaller than the average sojourn time

of the channel idle or busy state, we assume that the channel state does not switch

within a sensing period. However, the channel state may switch within a slot. Fig. 3.3

33



Figure 3.2: Example of the slot structure.

shows examples of one-time switching (i.e., the channel state switches once within a

slot) and multi-times switching (i.e., the channel state switches two or more times

within a slot). Switching within a time slot may lead to collision of primary and

secondary transmissions. It may also lead to waste of transmission opportunity. We

use the examples in Fig. 3.3 to demonstrate.

• For the one-time switching in Fig. 3.3, at the sensing period of the time slot,

the channel is idle. If sensing is accurate, the secondary user transmits in the

slot. When the switching happens (i.e., primary users become busy), we have a

collision.

• for the multi-times switching in Fig. 3.3, at the sensing period of the time slot,

the channel is busy. If sensing is accurate, the secondary user keeps silent

within the slot. When the two switchings happen, we see that within the time

slot there is a duration in which primary users are idle, i.e., in this duration

there is a transmission opportunity. This transmission opportunity is wasted.

Figure 3.3: Examples of switching in a time slot.

In the proposed scheme, it is critical to determine the value of Ti and Tb. There-

fore, to find optimal values of Ti and Tb, a problem, which maximizes the average

throughput of secondary transmissions under a primary transmission QoS constrain
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and a sensing frequency constraint, is formulated, analyzed, and solved in the subse-

quent two sections.

3.3 The Formulated Problem

To protect primary transmissions, we introduce a collision ratio ηc, which is defined

as

ηc =
Tc−in−slot

Tb−in−slot

(3.3)

where Tc−in−slot is the expected duration of collision (between primary and secondary

transmissions) in any slot, and Tb−in−slot is the expected channel busy duration in

any slot. Note that Tc−in−slot and Tb−in−slot can be obtained by (3.39) and (3.38),

respectively. Thus, a smaller value of ηc means a higher level of protection to primary

transmissions. Accordingly, to protect primary transmissions in our scheme, the

collision ratio ηc is required to be not more than a predefined threshold, denoted εc.

To explore as many transmission opportunities as possible, the secondary user

should take another spectrum sensing as soon as possible if the current sensing result

is busy. However, by doing this, energy consumption will be high. And the energy of a

secondary user is generally limited [71]. Therefore, to guarantee the energy efficiency,

we introduce a sensing ratio ηs, which is defined as

ηs =
Ts
Tslot

, (3.4)

where Tslot is the expected time duration of a slot. A smaller value of ηs means a lower

frequency of the spectrum sensing. Accordingly, to guarantee the energy efficiency

in our scheme, the sensing ratio ηs is required to be not more than a predefined

threshold, denoted εs.

To find out the optimal value of Ti and Tb, we formulate an optimization problem,

named Problem P1, to maximize the average throughput of secondary transmissions.
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P1 : max
Ti,Tb

E[Rslot] (3.5a)

s.t. ηc ≤ εc (3.5b)

ηs ≤ εs (3.5c)

Ti ≥ Ts (3.5d)

Tb ≥ Ts (3.5e)

where Rslot denotes the throughput of secondary transmissions and E[·] means expec-

tation operation. In constraints (3.5d) and (3.5e), intuitively, we set Ti and Tb to be

more than the spectrum sensing duration Tb.

3.4 Problem Analysis and Optimal Solution

3.4.1 Analysis of collision and wasting in a slot

For a slot, the secondary user would utilize the licensed channel to the end of the

slot if the spectrum sensing result is idle. Otherwise, the secondary user keeps silent

until the end of the slot. Due to the imperfect spectrum sensing (i.e., false alarm and

missed detection as shown in Fig. 3.2) and the possible channel state switching within

a slot (i.e., one-time switching and multi-times switching as shown in Fig. 3.3), there

might be collision or wasting of transmission opportunity. Some examples of collision

and wasting are given in Fig. 3.4.

Recall that the expected collision duration in a slot is denoted as Tc−in−slot. We

denote the expected wasting duration in a slot as Tw−in−slot.

In our system, each slot belongs to one of the following two types.

• i-slot : The actual channel state at the beginning of the slot is idle.

• b-slot : The actual channel state at the beginning of the slot is busy.

Let Ci(t) and Cb(t) denote the expected collision duration within a period (ts, ts + t)

if the channel state at moment ts is idle and busy, respectively. Let C̃i(t) and C̃b(t)

denote the expected channel busy duration within a period (ts, ts + t) if the channel

state switches from busy to idle and from idle to busy, respectively, at moment ts.

According to Fig. 3.4, an illustration about Ci(t), Cb(t), C̃i(t), and C̃b(t) is given in
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Figure 3.4: Examples of collision and wasting.

Fig. 3.5, where x is the remaining time duration to the next channel switching. If

the channel state is idle at moment ts, variable x denotes the sojourn time within

which the channel state keeps idle starting from moment ts, and thus, the channel

state switches from idle to busy at moment (ts+x). In this case, the PDF of variable

x is expressed as [42]

gi(x) =
F̃i(x)

τi
(3.6)

where τi is the expected sojourn time of a channel idle state, F̃i(x) = 1− Fi(x), and

Fi(x) denotes the cumulative distribution function (CDF) of the sojourn time of an

idle state. Similarly, if the channel state is busy at moment ts, variable x denotes

the sojourn time within which the channel state keeps busy starting from moment ts.

Then, the PDF of variable x is expressed as

gb(x) =
F̃b(x)

τb
(3.7)

where τb is the expected sojourn time of a channel busy state, F̃b(x) = 1 − Fb(x),

and Fb(x) denotes the CDF of the sojourn time of a busy state.

If the channel state switches from busy to idle at moment ts, x is sojourn time of
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Figure 3.5: Illustration about Ci(t), Cb(t), C̃i(t), and C̃b(t).

the idle state, and thus, the PDF of variable x is fi(x). Similarly, if the channel state

switches from idle to busy at moment ts, x is the sojourn time of the busy state, and

thus, the PDF of variable x is fb(x).

Then, we have the following equations for Ci(t), Cb(t), C̃i(t), and C̃b(t) based on

Fig. 3.5.

Ci(t) = (1− Pf)

∫ t

0

C̃b (t− x)
F̃i(x)

τi
dx, (3.8)

Cb (t) = (1− Pd)
∫∞
t
(t− Ts) F̃b(x)

τb
dx+ (1− Pd)

∫ t
0
F̃b(x)
τb

(x− Ts + C̃i (t− x))dx
= (1− Pd) (t

∫∞
t

F̃b(x)
τb

dx+
∫ t
0
F̃b(x)
τb

(x+ C̃i (t− x))dx− Ts),
(3.9)

C̃i (t) =

∫ t

0

fi (x) C̃b (t− x)dx, (3.10)

C̃b (t) = t

∫ ∞

t

fb (x)dx+

∫ t

0

fb (x) (x+ C̃i (t− x))dx. (3.11)
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Then, we perform the Laplace transform [72] on (3.8)-(3.11), and we have

C∗
i (s) = (1− Pf)

F̃ ∗
i (s)C̃

∗
b(s)

τi
, (3.12)

C∗
b(s) = (1− Pd)[

F̃ ∗
b (0)− F̃ ∗

b (s)

τbs2
+
F̃ ∗
b (s)C̃

∗
i (s)

τb
− Ts

s
], (3.13)

C̃∗
i (s) = f ∗

i (s)C̃
∗
b(s), (3.14)

C̃∗
b(s) =

f ∗
b(0)− f ∗

b(s)

s2
+ f ∗

b(s)C̃
∗
i (s), (3.15)

where X∗(s) is the Laplace transform of X(t), X ∈ {Ci, Cb, C̃i, C̃b, F̃i, F̃b, fi, fb}.

According to (3.14) and (3.15), C̃∗
i (s) and C̃

∗
b(s) can be expressed as

C̃∗
i (s) =

f ∗
i (s)[f

∗
b(0)− f ∗

b(s)]

s2[1− f ∗
b(s)f

∗
i (s)]

, (3.16)

C̃∗
b(s) =

f ∗
b(0)− f ∗

b(s)

s2[1− f ∗
b(s)f

∗
i (s)]

. (3.17)

Accordingly, C∗
i (s) and C

∗
b(s) are given as

C∗
i (s) = (1− Pf)

F̃ ∗
i (s)

τi

f ∗
b (0)− f ∗

b (s)

1− f ∗
i (s) f

∗
b (s)

1

s2
, (3.18)

C∗
b (s) = (1− Pd)

(
1

τbs2

[
F̃ ∗
b (0)− F̃ ∗

b (s)
1− f ∗

i (s) f
∗
b (0)

1− f ∗
b (s) f

∗
i (s)

]
− Ts

s

)
. (3.19)

Similarly, let Wi(t) and Wb(t) denote the expected wasting duration within a

period (ts, ts + t) if the channel state at moment ts is idle and busy, respectively. We

also introduce W̃i(t) and W̃b(t) to denote the expected channel idle duration within a

period (ts, ts + t) if the channel state switches from busy to idle and from idle to busy,

respectively, at moment ts. According to Fig. 3.4, an illustration about Wi(t), Wb(t),

W̃i(t), and W̃b(t) is given in Fig. 3.6. Note that a secondary transmission cannot

start at the spectrum sensing period. Accordingly, the spectrum sensing period is

also viewed as a kind of wasting if the actual channel state is idle. Then, we have the

following equations for Wi(t), Wb(t), W̃i(t), and W̃b(t).

Wi (t) = Pf

(
t

∫ ∞

t

F̃i (x)

τi
dx+

∫ t

0

F̃i (x)

τi

(
x+ W̃b (t− x)

)
dx

)
+ (1− Pf)Ts, (3.20)
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Wb (t) = Pd

∫ t

0

W̃i (t− x)
F̃b (x)

τb
dx, (3.21)

W̃i (t) = t

∫ ∞

t

fi (x)dx+

∫ t

0

fi (x)
(
x+ W̃b (t− x)

)
dx, (3.22)

W̃b (t) =

∫ t

0

fb (x) W̃i (t− x)dx. (3.23)

Figure 3.6: Illustration about Wi(t), Wb(t), W̃i(t), and W̃b(t).

Similar to the procedure of deriving C∗
i (s) and C∗

b(s), W
∗
i (s) and W ∗

b (s), which

are Laplace transform of Wi (t) and Wb (t), respectively, can be expressed as

W ∗
i (s) = Pf

1

τis2

[
F̃ ∗
i (0)− F̃ ∗

i (s)
1− f ∗

b (s) f
∗
i (0)

1− f ∗
i (s) f

∗
b (s)

]
+

(1− Pf)Ts
s

, (3.24)

W ∗
b (s) = Pd

F̃ ∗
b (s)

τb

f ∗
i (0)− f ∗

i (s)

1− f ∗
b (s) f

∗
i (s)

1

s2
. (3.25)

Then, given the expression of fi (x) and fb (x), the exact expression of Ci(t),

Cb(t), Wi(t) and Wb(t) can be obtained by performing the inverse Laplace transform

on (3.18), (3.19), (3.24), and (3.25).
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3.4.2 Analysis of E[Rslot]

If the sensing result is idle in a time slot, a secondary transmission is started by

the secondary user. Due to possible missed detection event or possible channel state

switching, a primary transmission may exist within the time slot although the sensing

result is idle. For a secondary transmission, if the actual channel state is idle, the

achievable data rate of the secondary transmission is

rate1 = E [log2 (1 + γs)] , (3.26)

where γs is the SNR of the secondary signal received by the secondary receiver [73].

However, if the actual channel state is busy, the achievable data rate of the secondary

transmission is

rate2 = E

[
log2

(
1 +

γs
γp + 1

)]
. (3.27)

Within a slot, let Trate1 and Trate2 denote the expected time duration with transmis-

sion rate rate1 and rate2, respectively. To derive the average throughput of secondary

transmission, we need to derive Trate1 and Trate2. Let Ti−slot and Tb−slot denote the ex-

pected length of an i-slot and a b-slot, respectively. Due to possible missed detection

event and false alarm event, we have

Ti−slot = PfTb + (1− Pf)Ti, (3.28)

Tb−slot = PdTb + (1− Pd)Ti. (3.29)

Denote pi−slot and pb−slot as the probability that a slot belongs to i-slot and b-slot,

respectively. Then, we have

pi−slot =
τi

Ti−slot

/(
τi

Ti−slot

+
τb

Tb−slot

)
, (3.30)

pb−slot =
τb

Tb−slot

/(
τi

Ti−slot

+
τb

Tb−slot

)
. (3.31)

Therefore, the expected time duration of a slot, denoted Tslot, should be

Tslot = pi−slotTi−slot + pb−slotTb−slot. (3.32)
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For an i-slot, the expected channel busy duration is given as

Ci(Ti) +
PfCi(Tb)

1− Pf

, (3.33)

and the expected channel idle duration is given as

Wi(Tb) +
(1− Pf)Wi(Ti)

Pf

− (1− Pf)Ts
Pf

. (3.34)

For a b-slot, the expected channel busy duration is given as

Cb(Ti) +
PdCb(Tb)

(1− Pd)
+ Ts (3.35)

and the expected channel idle duration is given as

Wb(Tb) +
(1− Pd)Wb(Ti)

Pd

. (3.36)

Therefore, according to (3.34) and (3.36), the expected channel idle duration in a

slot, denoted Ti−in−slot, is given as

Ti−in−slot = pi−slot

{
Wi(Tb) +

(1−Pf)Wi(Ti)
Pf

− (1−Pf)Ts
Pf

}
+pb−slot

{
Wb(Tb) +

(1−Pd)Wb(Ti)
Pd

}
.

(3.37)

According to (3.33) and (3.35), the expected channel busy duration in a slot, denoted

Tb−in−slot, is given as

Tb−in−slot = pi−slot

{
Ci(Ti) +

PfCi(Tb)
1−Pf

}
+pb−slot

{
Cb(Ti) +

PdCb(Tb)
(1−Pd)

+ Ts

}
.

(3.38)

Let Tc−in−slot and Tw−in−slot denote the expected collision duration and wasting

duration, respectively, in a slot. We have

Tc−in−slot = pi−slotCi(Ti) + pb−slotCb(Ti), (3.39)

Tw−in−slot = pi−slotWi(Tb) + pb−slotWb(Tb). (3.40)

Accordingly, we can get the expression of Trate1 and Trate2 as follows.

Trate1 = Ti−in−slot − Tw−in−slot, (3.41)

Trate2 = Tc−in−slot. (3.42)
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Therefore, the expected throughput of secondary transmissions should be

E[Rslot] =
rate1× Trate1 + rate2× Trate2

Tslot
(3.43)

where rate1, rate2, Trate1, Trate2, and Tslot are given in (3.26), (3.27), (3.41), (3.42),

and (3.32), respectively.

3.4.3 Analysis of ηc and ηs

According to the definition of ηc in (3.3), the constraint (3.5b) should be

Tc−in−slot

Tb−in−slot

≤ εc (3.44)

where Tc−in−slot and Tb−in−slot are given in (3.39) and (3.38), respectively.

According to the definition of ηs in (3.4), the constraint (3.5c) should be

Ts
Tslot

≤ εs (3.45)

where Tslot is given in (3.32).

3.4.4 Optimal Configuration of Ti and Tb

According to some practical measurements [68]- [75], we assume that the sojourn time

of channel idle and busy state follow exponential distribution with parameter λi and

λb, respectively. Thus, we have τi = 1/λi and τb = 1/λb, and fi(x) and fb(x) are

given as

fi(x) = λie
−λix, x > 0, (3.46)

fb(x) = λbe
−λbx, x > 0. (3.47)

By performing the inverse Laplace transform on (3.18), (3.19), (3.24), and (3.25),

we have

Ci(t) =
λi(1− Pf)

(λi + λb)2
[(λi + λb)t+ e−(λi+λb)t − 1], (3.48)

Cb(t) =
λb(1− Pd)

(λi + λb)2
[
λi(λi + λb)t

λb
− e−(λi+λb)t + 1]− (1− Pd)Ts, (3.49)
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Wi(t) =
λiPf

(λi + λb)2
[
λb(λi + λb)t

λi
− e−(λi+λb)t + 1] + (1− Pf)Ts, (3.50)

Wb(t) =
λbPd

(λi + λb)2
[(λi + λb)t+ e−(λi+λb)t − 1]. (3.51)

For the sensing ratio ηs, we introduce the following lemma.

Lemma 1. Given a value of Tb, the sensing ratio ηs is a monotonically decreasing

function of Ti. Given a value of Ti, the sensing ratio ηs is a monotonically decreasing

function of Tb.

Proof. According to (3.32), Tslot is given as

Tslot =
(λi + λb)Ti−slotTb−slot

λiTi−slot + λbTb−slot

.

After taking the first-order derivative of Tslot with respect to Ti, we have

∂Tslot
∂Ti

= (λi+λb)λi(1−Pd)(PfTb+(1−Pf)Ti)
2

[λi(PfTb+(1−Pf)Ti)+λb(PdTb+(1−Pd)Ti)]2

+ (λi+λb)λb(1−Pf)(PdTb+(1−Pd)Ti)
2

[λi(PfTb+(1−Pf)Ti)+λb(PdTb+(1−Pd)Ti)]2
> 0.

Accordingly, Tslot is increasing monotonically with Ti when Tb is given. Due to

ηs =
Ts
Tslot

, ηs is monotonically decreasing with Ti for a given Tb.

Then, we take the first-order derivative of Tslot with respect to Tb, and we have

∂Tslot
∂Tb

= (λi+λb)λiPd(PfTb+(1−Pf)Ti)
2

[λi(PfTb+(1−Pf)Ti)+λb(PdTb+(1−Pd)Ti)]2

+ (λi+λb)λbPf(PdTb+(1−Pd)Ti)
2

[λi(PfTb+(1−Pf)Ti)+λb(PdTb+(1−Pd)Ti)]2
> 0.

Therefore, Tslot is increasing monotonically with Tb for a given Ti. Due to ηs =
Ts
Tslot

,

ηs is monotonically decreasing with Tb for a given Ti. This completes the proof.

Based on Lemma 1, we have the following remark.

Remark 1. To satisfy constraint (3.5c), the value of Ti should satisfy Ti ≥ φ1(Tb) for

a given Tb, where φ1(Tb) is the solution of ηs = εs. We have φ1(Tb) =
−V2+
√

(V2)2−4V1V3

2V1

where V1 =
εs
Ts
(λi+λb)(1−Pd)(1−Pf), V2 =

εs
Ts
(λi+λb)[Pd(1−Pf)+Pf(1−Pd)]Tb−

[λi(1−Pf)+λb(1−Pd)], and V3 =
εs
Ts
(λi+λb)PdPf(Tb)

2−(λiPf+λbPd)Tb. Accordingly,

the feasible set of Ti is given as kTi = [max{Ts, φ1(Tb)}, τi]. In other words, by using

Lemma 1, we can shrink the feasible set of Ti.
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Based on Remark 1, we propose an algorithm, called Algorithm 3.1, to find T ∗
i

and T ∗
b (the optimal Ti and Tb). Intuitively, we also know that Ti and Tb should be

not more than the expected sojourn time of a channel idle state (τi) and the expected

sojourn time of a channel busy state (τb), respectively.

Algorithm 3.1 The proposed algorithm to find T ∗
i and T ∗

b

1: Set initial values T#
i = 0, T#

b = 0, and R# = 0.
2: for Tb ← Ts to τb do
3: Calculate φ1(Tb).
4: Get the feasible set of Ti, denoted kTi = [max{Ts, φ1(Tb)}, τi].
5: Calculate T̂i = argmaxTi∈kTi

{E[Rslot]} and R̂ = maxTi∈kTi
{E[Rslot]}.

6: if R̂ > R# then
7: Update T#

i = T̂i and T
#
b = Tb.

8: Update R# = R̂.
9: end if

10: end for
11: Set T ∗

i = T#
i and T ∗

b = T#
b .

In Algorithm 3.1, T#
i , T#

b and R# represent the current (temporary) optimal value

of Ti, Tb, and E[Rslot], respectively. Steps 3-4 are to find the feasible set of Ti for the

given value of Tb. Step 5 is to find the optimal Ti for the given value of Tb. Steps

6-9 update the value of T#
i , T#

b and R#. The time complexity of Algorithm 3.1 is

O(NkTi
NkTb

), where O means big O notation, NkTi
and NkTb

denote the searched

space2 of kTi
and kTb

, respectively. Since NkTi
in Algorithm 3.1 is much smaller than

the searched space of the initial feasible set of Ti (i.e., N[Ts,τi]). Accordingly, the time

complexity of the proposed algorithm is decreased.

3.4.5 Optimal configuration of Ti and Tb if spectrum sensing is perfect

With the development of spectrum sensing technology, the detection accuracy of

spectrum sensing has been largely improved. If the detection probability Pd and the

false alarm probability Pf approach 1 and 0 respectively, it can be regarded as perfect

spectrum sensing [76]. In this subsection, we will derive the optimal value of Ti and

Tb in the case with perfect spectrum sensing.3

We have the following lemma.

2If the searched step is ς, the searched space of a feasible set [a, b] should be b−a
ς

.
3Perfect spectrum sensing has been assumed in numerous existing research efforts.
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Lemma 2. The average throughput E[Rslot] is independent of Tb. In addition, The

average throughput E[Rslot] is monotonically increasing with Ti when 0 < Ti ≤ φ2 and

monotonically decreasing with Ti when φ2 < Ti < ∞, where φ2 =
−W (

V4
e
)−1

λi+λb
, W (·) is

the Lambert W-Function, e is the exponential constant, and V4 =
rate1×Ts(λi+λb)2
λi(rate1−rate2)

− 1.

Proof. For Trate1, we have

Trate1 = pi−slot
λi

(λi + λb)2
[
λb(λi + λb)Ti

λi
−e−(λi+λb)Ti + 1]−pi−slotTs

where pi−slot =
λbTb

λiTi+λbTb
.

For Trate2, we have

Trate2 = pi−slot
λi

(λi + λb)2
[(λi + λb)Ti + e−(λi+λb)Ti − 1].

For Tslot, we have

Tslot =
(λi + λb)TiTb
λiTi + λbTb

.

According to (3.43), the expression of E[Rslot] is given as

E[Rslot] = λiλb
(λi+λb)3Ti

{rate1× [λb(λi+λb)Ti
λi

− e−(λi+λb)Ti + 1]

+rate2× [(λi + λb)Ti + e−(λi+λb)Ti − 1]}
−rate1× λbTs

(λi+λb)Ti
,

from which it can be seen that E[Rslot] is independent of Tb. Then, we take the

first-order derivative of E[Rslot] with respect to Ti, and we have

dE[Rslot]
dTi

= λiλb(rate1−rate2)
(λi+λb)3(Ti)2

×
[
e−(λi+λb)Ti + (λi + λb)Tie

−(λi+λb)Ti − 1
]

+ rate1×λbTs
(λi+λb)(Ti)2

.

For equation dE[Rslot]
dTi

= 0, the root is given as Ti = φ2 =
−W (

V4
e
)−1

λi+λb
. Accordingly,

we have 
dE[Rslot]

dTi
> 0, 0 < Ti < φ2;

dE[Rslot]
dTi

= 0, Ti = φ2;
dE[Rslot]

dTi
< 0, φ2 < Ti <∞.

This completes the proof.

For the collision ratio ηc, we introduce the following lemma.

Lemma 3. Given a value of Tb, the collision ratio ηc is monotonically increasing

with Ti. Given a value of Ti, the collision ratio ηc is monotonically increasing with

Tb.
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Proof. For Tc−in−slot, we have

Tc−in−slot = pi−slot
λi

(λi + λb)2
[(λi + λb)Ti + e−(λi+λb)Ti − 1].

For Tb−in−slot, we have

Tb−in−slot = pi−slot
λi

(λi+λb)2
[(λi + λb)Ti + e−(λi+λb)Ti − 1]

+pb−slot
λb

(λi+λb)2
[λi(λi+λb)Tb

λb
− e−(λi+λb)Tb + 1]

where pb−slot =
λiTi

λiTi+λbTb
.

According to (3.3), the expression of ηc is given as

ηc =
1

1 + V5

where V5 =
Ti

[
λi(λi+λb)Tb

λb
−e−(λi+λb)Tb+1

]
Tb[(λi+λb)Ti+e−(λi+λb)Ti−1]

.

Then, we take the first-order derivative of V5 with respect to Ti, and we have

∂V5
∂Ti

=

[
λi(λi + λb)Tb

λb
− e−(λi+λb)Tb + 1

]
×
[
e−(λi+λb)Ti + (λi + λb)Tie

−(λi+λb)Ti − 1
]

Tb [(λi + λb)Ti + e−(λi+λb)Ti − 1]
2 .

Thus, we have ∂V5
∂Ti

< 0, due to the facts e−(λi+λb)Tb < 1 and e−(λi+λb)Ti + (λi +

λb)Tie
−(λi+λb)Ti < 1 when Ti > 0. Accordingly, given a value of Tb, ηc is monotonically

increasing with Ti.

Similarly, the first-order derivative of V5 with respect to Tb is given as

∂V5
∂Tb

=
[
(λi + λb)Ti + e−(λi+λb)Ti − 1

]
Ti ×

[
e−(λi+λb)Tb + (λi + λb)Tbe

−(λi+λb)Tb − 1
]

(Tb)2 [(λi + λb)Ti + e−(λi+λb)Ti − 1]
2 .

Thus, we have ∂V5
∂Tb

< 0, due to the facts (λi+λb)Ti+e
−(λi+λb)Ti > 1 and e−(λi+λb)Tb+

(λi + λb)Tie
−(λi+λb)Tb < 1 when Ti > 0. Accordingly, given a value of Ti, ηc is

monotonically increasing with Tb. This completes the proof.

Based on Lemma 1, we have the following remark.

Remark 2. To satisfy constraint (3.5c), the value of Ti should satisfy Ti ≥ φ3(Tb)

for a given Tb, where φ3(Tb) =
λbTbTs

εs(λi+λb)Tb−Tsλi
is the solution of ηs = εs. Similarly,

to satisfy constraint (3.5c), the value of Tb should satisfy Tb ≥ φ4(Ti) for a given Ti,

where φ4(Ti) =
λiTiTs

εs(λi+λb)Ti−Tsλb
is the solution of ηs = εs.

Based on Lemma 3, we have the following remark.
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Remark 3. To satisfy constraint (3.5b), the value of Ti should satisfy Ti ≤ φ5(Tb) for

a given Tb, where φ5(Tb) is the solution of ηc = εc. Thus, the value of φ5(Tb) is derived

as φ5(Tb) =
1

λi+λb
W (λi+λb

V6
e

λi+λb
V6 )− 1

V6
where V6 =

[
λi(λi+λb)Tb

λb
− e−(λi+λb)Tb + 1

]
1
Tb

εc
1−εc−

(λi+λb). To satisfy constraint (3.5b), the value of Tb should satisfy Tb ≤ φ6(Ti) for a

given Ti, where φ6(Ti) is the solution of ηc = εc. Thus, the value of φ6(Ti) is derived as

φ6(Tb) =
1

λi+λb
W (−λi+λb

V7
e
−λi+λb

V7 )+ 1
V7
, where V7 =

[
(λi + λb)Ti + e−(λi+λb)Ti − 1

]
1
Ti

1−εc
εc
−

λi(λi+λb)
λb

.

According to Remark 2, Remark 3, and Lemma 2, we have the following remark

for the optimal value of Ti and Tb.

Remark 4. Considering Ti = φ2, we can obtain the feasible set of Tb, which is given

as kTb = [Ts,min{φ6(Ti), τb}]∩ [φ4(Ti), τb]. Then, the optimal value of Ti and Tb can

be obtained as follows.

• If kTb ̸= ∅ (∅ being an empty set), the optimal value of Ti is T
∗
i = φ2 and the

optimal value of Tb can be any value in the feasible set kTb. In other words,

closed-form expression of the optimal value of Ti and Tb can be obtained. In

other words, the time complexity is O(1).

• If kTb = ∅, the optimal value of Ti and Tb can be derived by Algorithm 3.2.

In Algorithm 3.2, for each specific value of Tb, the optimal value of Ti can be

found directly by step 5. Thus, we only need to search over the values of Tb in

Algorithm 3.2. Accordingly, the time complexity of Algorithm 3.2 is O(N[Ts,τb]).

3.5 Numerical Results

In this section, we will evaluate the performance of our proposed scheme by using

simulation. In the simulation, the adopted parameters (unless otherwise specified)

are given in Table 3.1.

It is desired to compare the performance of our proposed scheme with existing

works. However, to our best knowledge, with a practical setting of imperfect spec-

trum sensing, no existing work considers the collision ratio of primary activities (as

our constraint (3.5b) does). Recall that existing works consider a fixed slot length

(i.e., they have the same slot length when the channel is sensed idle or busy). To
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Algorithm 3.2 The proposed algorithm to obtain T ∗
i and T ∗

b with perfect spectrum sensing

1: Set initial values T#
i = 0, T#

b = 0, and R# = 0.
2: for Tb ← Ts to τb do
3: Calculate φ3(Tb) and φ5(Tb).
4: Get the feasible set of Ti, denoted kTi = [Ts,min{φ5(Tb), τi}]∩ [φ3(Tb), τi]. Suppose

kTi is represented as [Tmin
i , Tmax

i ].
5: If E[Rslot]|Ti=Tmin

i
> E[Rslot]|Ti=Tmax

i
, then T̂i = Tmin

i and R̂ = E[Rslot]|Ti=Tmin
i

;

otherwise, T̂i = Tmax
i and R̂ = E[Rslot]|Ti=Tmax

i
.

6: if R̂ > R# then
7: Update T#

i = T̂i and T
#
b = Tb.

8: Update R# = R̂.
9: end if

10: end for
11: Set T ∗

i = T#
i and T ∗

b = T#
b .

Table 3.1: The parameters in the simulation

Parameters Value

fi(x) exponential distribution with mean 0.8
fb(x) exponential distribution with mean 0.4
Pd 0.9
Pf 0.1
fs 100 KHz
γp 8 dB
γs 10 dB
εs 0.05
εc 0.2

demonstrate the benefit of having different slot lengths for different sensing results,

here we compare with a classic scheme that is the solution of our Problem P1 with

additional constraint Ti = Tb. Fig. 3.7 shows the average throughput of secondary

transmissions (called average secondary throughput) E[Rslot] of our proposed scheme

and the classic scheme. We can see that our proposed scheme largely outperforms

the classic scheme. For both schemes, average secondary throughput decreases with

the increase of γp. The reason is that the achievable rate rate2 decreases with the

growth of γp.

Then, we evaluate the effect of the collision ratio threshold εc on average secondary

throughput. When εc varies from 0.05 to 0.35, Fig. 3.8 shows the average secondary

throughput of our proposed scheme and the classic scheme. Our proposed scheme can

achieve a larger average secondary throughput. When εc increases, average secondary

throughput of our proposed scheme monotonically increases. This is because larger
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Figure 3.7: Average secondary throughput E[Rslot] of our proposed scheme and the classic scheme
versus the SNR of primary signal γp.
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Figure 3.8: Average secondary throughput E[Rslot] of our proposed scheme and the classic scheme
versus the threshold εc.
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Figure 3.9: Average secondary throughput E[Rslot] of our proposed scheme and the classic scheme
versus the threshold εs.
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Figure 3.10: Average secondary throughput E[Rslot] of our proposed scheme and the classic scheme
versus the expected sojourn time τi of an idea state.
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εc means larger feasible set of (Ti, Tb) in our Problem P1. For the classic scheme,

when εc < 0.1, the average secondary throughput is zero. The reason is that with a

stringent requirement on collision ratio (for example εc < 0.1), no appropriate values

of Ti and Tb can simultaneously satisfy constraints (3.5b), (3.5c), and the additional

constraint Ti = Tb. When εc ≥ 0.1, constraints (3.5b), (3.5c), and the additional

constraint Ti = Tb can be satisfied simultaneously, and thus, the average secondary

throughput is more than zero. We also notice that, for the setting with Fig. 3.8, when

εc ≥ 0.1, the average secondary throughput of the classic scheme keeps stable. The

reason is as follows. With Ti = Tb, the root of equation
dE[Rslot]

dTi
= 0 is Ti = φ7, which

is the optimal point of Ti (also Tb) to maximize E[Rslot]. Here φ7 =
−W (

V8
e
)−1

λi+λb
where

V8 is given as

V8 =
[rate1 · (1− Pf) + rate2 · (1− Pd)]Ts(λi + λb)

2

[λi(1− Pf)− λb(1− Pd)](rate1− rate2)
− 1.

In the simulation setting of Fig. 3.8, when εc ≥ 0.1, the value of φ7 is always in the

feasible region of Ti. Thus, when εc increases, although feasible region of Ti is enlarged,

the optimal point is still at Ti = φ7. Thus, the average secondary throughput keeps

stable.

Fig. 3.9 shows the effect of the sensing ratio threshold εs. When εs increases,

the average throughput of both our proposed scheme and the classic scheme increase,

which is intuitive. When εs increases beyond 0.006, the average throughput of both

schemes keep stable. The reason is that with large enough εs, the average secondary

throughput is constrained by the collision ratio threshold εc.

Fig. 3.10 shows the effect of the mean channel idle duration τi. It can be seen

that a larger τi leads to higher average secondary throughput in our proposed scheme

and the classic scheme. Indeed, when the channel idle state tends to last for longer

time, the secondary user has more transmission opportunities, resulting in higher

throughput.

3.6 Conclusion

In this chapter, an optimal slot length configuration scheme, in which the sensing

result is jointly considered to determine the slot length, is proposed. To find the
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optimal slot length configuration, an optimization problem is formulated, analyzed,

and solved by our proposed algorithms.
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Chapter 4

SDMP-based Event-Driven
Centralized Opportunistic
Scheduling in Wireless Networks

To cope with the spectrum scarcity problem, opportunistic scheduling is introduced

to improve the spectrum efficiency. To address the limitations of existing centralized

opportunistic scheduling schemes (e.g., large implementation complexity, CSI require-

ment, lack of QoS consideration), we formulate the opportunistic scheduling problem

as a semi-Markov decision process (SMDP), in which the scheduling action is driven

by events (i.e., task arrival event or task transmission completion event). Then, two

scheduling methods are proposed to derive the optimal scheduling policy under fully

explored networks and partially explored networks, respectively. We first propose a

model-based scheduling method for the scenario with a fully explored network. In

this method, to handle the challenge in deriving the transition probability and reward

function, the formulated SMDP is transformed to a classic continuous time Markov

decision process (CTMDP). Then, the CTMDP is uniformized, and thus, a value iter-

ation algorithm is proposed to derive the optimal scheduling policy. For the scenario

with a partially explored network (i.e., no much prior information is obtained), a

model-free scheduling method is proposed. Considering the limitations of classic re-

inforcement learning algorithms, a revised Q-learning algorithm is proposed to derive

the optimal scheduling policy in this scenario.
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4.1 Introduction

By opportunistic scheduling, the spectrum efficiency can be largely improved by allo-

cating the channel access opportunities to the users with good channel condition [77].

Some opportunistic scheduling schemes have been proposed in existing works. These

schemes can be divided to static schemes and dynamic schemes. In a static scheme, a

structure scheduling policy (e.g., a closed form or a threshold-based form) is generally

derived. On the other hand, a scheduling policy which assigns a scheduling action for

each particular state is generally derived in a dynamic scheme. Compared to static

schemes, less prior information of the network is required in dynamic schemes.

In [78], a pure threshold scheduling policy is derived. In this policy, users contend

for a data transmission opportunity. A user with a successful contention utilizes

the channel for a transmission if the channel quality is above a certain threshold.

Otherwise, the user gives up the transmission access opportunity. Thus, the optimal

stopping theory is adopted to solve the access probability and the threshold. In [31],

an opportunistic scheduling scheme is proposed in cooperative networks. Similar to

[78], a threshold structure policy is derived. A scheduling scheme with partial channel

knowledge in Device-to-Device (D2D) system is proposed in [79]. In this scheme,

the rate adaption and mode selection are jointly considered, and the closed-form

expressions are derived. In [80], to maximize the expected accumulated discounted

reward, the channel scheduling problem is formulated as a restless multi-armed bandit

(RMAB). Since the time complexity to solve the formulated problem is large, a greedy

policy, which focuses on immediate reward maximization, is proposed. Then, the

conditions which guarantee the optimality of the proposed greedy policy are derived.

The above mentioned scheduling schemes are considered as static schemes. However,

there are some limitations in these proposed schemes. For example, the channel

state information (CSI) (e.g., the instantaneous CSI [31] or the statistical CSI [79])

is needed to implement these schemes. However, the communication overhead to

get the CSI may be intolerable. In addition, it is not feasible to obtain the CSI in

some scenarios. The implementation complexity is another challenge to take these

opportunistic scheduling schemes. In these schemes, time is divided to equal length
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slots1 and a scheduling action has to be taken at each time slot. In this case, the

implementation complexity is pretty large in practice.

Another kind of scheduling scheme is summarized as dynamic schemes. In [81],

an opportunistic scheduling scheme for multiuser wireless systems is proposed. In

this scheme, a linear programming-based scheduling algorithm is derived to compute

the scheduling decisions. In addition, the fairness of users is also considered in this

work. A transmission scheduling scheme for the Internet of Things (IoT) is proposed

in [82]. In this scheme, a reinforcement learning method, i.e., Q-learning algorithm, is

introduced to obtain the optimal strategy for transmission scheduling. Then, a deep

learning model is also adopted to accelerate the solution. In [83], a dynamic channel

allocation problem, which focuses on maximization of the service blocking probability,

is investigated in multi-beam satellite systems. To solve the formulated problem, it is

modeled as a Markov decision process (MDP), and thus, a deep reinforcement learning

algorithm is developed to solve the problem. In these dynamic schemes, the CSI may

not be necessary information to make a scheduling decision. However, the scheduling

action still needs to be taken at each time slot, which may not be very realistic.

In addition, there are also some other challenges in existing scheduling schemes. In

most of existing schemes, only the channel condition information is considered. The

quality of service (QoS) of users or the priority of users’ data is seldom considered.

In addition, most of the above mentioned scheduling schemes are model-based (i.e.,

system models and system parameters need to be known for making a decision). In

this case, some strong assumptions need to be made in these schemes (e.g., the input

data rate of a user and the channel state information are assumed to follow a given

distribution).

To cope with the limitations of existing works, we formulate the opportunistic

scheduling problem as an SMDP, and then propose methods to derive the optimal

scheduling policy under different scenarios. The major contributions of this work are

summarized as follows.

1. We formulate the opportunistic scheduling problem in wireless networks as an

SMDP. Different with existing opportunistic scheduling schemes, the scheduling

1The length of a time slot is generally needed to smaller than the channel coherence time.
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action is driven by events (i.e., task arrival event or task transmission comple-

tion event), and thus, the implementation complexity is largely decreased. In

addition, the priority of users (i.e., the importance of users’ data), which is mea-

sured by the reward of a successful task transmission, is jointly considered in

this work.

2. Considering the scenario with a fully explored network, a model-based method is

proposed to derive the scheduling policy. In this method, to handle the challenge

in deriving the transition probability and the reward function, the formulated

SMDP is transformed to a classic continuous time Markov decision process (CT-

MDP). Then, the CTMDP is uniformized, and thus, a value iteration algorithm

is proposed to derive the optimal scheduling policy.

3. Considering the scenario with a partially explored network, a model-free schedul-

ing method is proposed to derive the scheduling policy. Considering the limita-

tions of classic reinforcement learning algorithms, a revised Q-learning algorithm

is proposed to derive the optimal scheduling policy.

4. Performance analysis is conducted for the proposed policies by simulation. It

shows that our proposed opportunistic scheduling policies can obtain much more

reward compared with other benchmark policies.

The rest of this chapter is organized as follows. Section 4.2 gives the system

model and formulates the problem. We propose a model-based scheduling method

in Section 4.3. A model-free scheduling method is proposed in Section 4.4. Section

4.5 shows simulation results and performance analysis. Finally, Section 4.6 concludes

this chapter.

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a wireless network with N users (indexed by 1, 2, · · · , N) and K available

channels (indexed by 1, 2, · · · , K). The N users contend for the K channels for data

transmission. The unit of each user’s data for transmission is denoted as a task.

The size of a task is generally decided by the kind of application, and thus, the
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size of a task may be different for different users. If a user occupies a channel (e.g.

channel i) to transmit a task, channel i will be occupied until the task has been

transmitted to the destination. It means that the data transmission for a task cannot

be interrupted. This model is reasonable for lots of scenarios. For example, in mobile

edge computing systems [84], a user running a computation-intensive application

is assisted by edge nodes. Computation offloading from the user to a edge node is

performed over the wireless channels. The edge nodes can perform the data computing

only after receiving a given amount of data (i.e., a task). Accordingly, the user

should occupy a channel when it is transmitting to an edge node, and release the

channel when the transmission is complete. In addition, compared to the tradition

opportunistic scheduling model, the proposed model, in which the scheduling action

does not need to be taken at each time slot, has a smaller implementation complexity.

Note that the time needed for a task transmission relates to the transmission power,

the instantaneous CSI, the size of the task, and so on. Accordingly, the transmission

time of different task transmissions may be different.

A task buffer, which stores the tasks for transmission, is equipped in each user.

The size of user i’s task buffer is denoted as Di. If a task buffer is full, any newly

generated task has to be rejected, and thus, will be dropped. For any moment, the

number of channels which are occupied by a user may be k ∈ {0, 1, · · · , K}. The

system model of the network is given in Fig. 4.1.

Figure 4.1: The model of the network.

In the network, the priority of different users (e.g., the importance of different

users’ data) may be different. In this work, it is measured by the reward of a successful
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task transmission. For user i, a successful task transmission can achieve a reward bi.

Similarly, a penalty related to bi is caused if a task of user i is rejected and then

dropped. The task with a large value of bi can be regarded as a high priority [85].

Under the formulated model, we consider the opportunistic scheduling problem as

follows.

4.2.2 SMDP Formulation

Once a task transmission is complete, the corresponding occupied channel will be

released. Then, the next user who occupies this free channel for task transmission

needs to be decided. A user i with large value of bi can obtain large reward for a

successful task transmission. On the other hand, if the task transmission of user i

will be completed after a long time period, the obtained reward is reduced due to the

time cost. In addition, if the task buffer of a user is full, the newly generated tasks

of the user have to be dropped, and thus, a penalty is caused. Accordingly, in order

to make an appropriate scheduling decision, the status of the network and the task

transmission reward of different users need to be considered simultaneously.

We model the opportunistic scheduling process as an SMDP [86]. Generally, an

SMDP can be represented by {S,A, t, p, r}, where S is the state space, A is the action

space, t represents a decision epoch, p is the transition probability, and r means the

reward function [87]. Then, the detailed information for each part of the formulated

SMDP is stated in the following.

4.2.2.1 State Space

In our formulated SMDP, a state, denoted s, contains two components. The first

component of a state is the status of each user. It is denoted as s1 , ⟨d,k⟩ where
d , {d1, d2, · · · , dN}, k , {k1, k2, · · · , kN}, di denotes the backlog of user i’s task

buffer, and ki denotes the number of channels occupied by user i. Since the number of

channels occupied by N users cannot be more than the maximum number of channels

and the number of tasks in a task buffer cannot be more than the size of this task

buffer, we have
N∑
i=1

ki ≤ K, (4.1)
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di ≤ Di, ∀i ∈ {1, 2, · · · , N}. (4.2)

The second component of a state s is the event, which is expressed as s2 , {e, l}
where e , {0, 1} and l ∈ {1, 2, · · · , N}. The element e represents the type of the

event, where e = 0 stands for an arrival event of a task and e = 1 stands for a

completion event of a task transmission. If e = 0, the element l denotes the index of

the user with the arrival event. If e = 1, the element l denotes the index of the user

with the completion event.

Thus, a state s is formulated as s = ⟨s1, s2⟩. The state space S is the set of all

possible states, represented as

S , {s|s = ⟨s1, s2⟩}. (4.3)

4.2.2.2 Action Space

When an arrival event occurs (i.e., e = 0), the system needs to take one of the

following actions ar = {0, 1,−1}. If one or more channels are free (which implies

that no user has backlogged tasks), the arrival task will be allocated to a channel

for transmission, and thus, ar = 1. If the corresponding user’s task buffer is full, the

arrival task will be dropped, and thus, ar = −1. Otherwise, the arrival task will be

stored in the corresponding user’s task buffer, and thus, ar = 0. Then, the action ar

for the arrival event is summarized as follows,

ar =


1,

N∑
i=1

ki < K

−1, dl = Dl

0, o.w.

. (4.4)

When a completion event occurs (i.e., e = 1), the corresponding channel will be

released, and thus, the system needs to take one of the following scheduling actions

ac = {0, 1, 2, · · · , N}, where ac = 0 means letting the released channel keep free and

ac = i, i ∈ {1, 2, · · · , N} means that a task from user i’s task buffer will be allocated

to occupy the released channel for data transmission. If ac = i where i ̸= 0, the

constraint di > 0 needs to be satisfied.

Thus, an action for a state s, denoted a, is formulated as

a =

{
ar, e = 0
ac, e = 1

. (4.5)
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The action space A is the set of all available actions.

4.2.2.3 Decision Epoch

A decision is made at which point an arrival event or a completion event occurs.

Thus, the decision epoch means the time point when an event occurs. Let tn, n ∈

{0, 1, 2, · · · } denote nth decision epoch. Then, at the next decision epoch tn+1, we

have an arrival event or a completion event, whichever comes first. Note that t0

means the first decision epoch, which is the start point of the process. The duration

of adjacent decision epochs is decided by the probability distribution of the task

arrival rate and the duration of a task transmission. A time line example of the

formulated SMDP is given in Fig. 4.2.

Figure 4.2: The timeline of the SMDP.

4.2.2.4 Transition Probability

The transition probability, denoted p(s′|s, a), represents the probability that the sys-

tem moves to state s′ , {d′,k′, e′, l′} given that the previous state is s and the action

a is taken at the previous decision epoch. Since the time interval of adjacent states

is a random variable, the probability, that the interval from state s to the next state

s′ given action a is less than or equal t, is denoted as F (t|s, a, s′).2 Accordingly, we

have

p(s′|s, a) =
∫ ∞

t=0

dF (t|s, a, s′). (4.6)

Given a state-action pair (s, a) and s = {d,k, e, l}, the element d′ and k′ of next

state s′ can be derived according to the following principles.

1. If an arrival event occurs (e = 0) and action ar = 1 is taken, we have

d′i = di, ∀i ∈ {1, 2, · · · , N}, (4.7)

2It means the cumulative distribution function.

61



k′i =

{
ki + 1, i = l
ki, o.w.

. (4.8)

2. If an arrival event occurs (e = 0) and action ar = 0 is taken, we have

d′i =

{
di + 1, i = l
di, o.w.

, (4.9)

k′i = ki, ∀i ∈ {1, 2, · · · , N}. (4.10)

3. If an arrival event occurs (e = 0) and action ar = −1 is taken, we have

d′i = di, ∀i ∈ {1, 2, · · · , N}, (4.11)

k′i = ki, ∀i ∈ {1, 2, · · · , N}. (4.12)

4. If a completion event occurs (e = 1) and action ac = j, j ∈ {1, 2, · · · , N} is

taken, we have

d′i =

{
di − 1, i = j
di, o.w.

, (4.13)

If j = l, then, we have

k′i = ki, ∀i ∈ {1, 2, · · · , N}, (4.14)

If j ̸= l, then, we have

k′i =

 ki + 1, i = j
ki − 1, i = l
ki, o.w.

. (4.15)

5. If a completion event occurs (e = 1) and action ac = 0 is taken, we have

d′i = di, ∀i ∈ {1, 2, · · · , N}, (4.16)

k′i =

{
ki − 1, i = l
ki, o.w.

. (4.17)

If the network is fully explored (i.e., the probability distribution of task arrivals

and the duration of a task transmission are known), p(s′|s, a) can be derived.
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4.2.2.5 Reward Function

The reward function, denoted r(s, a), means the achieved reward at state s with

taking action a. It is defined as follows,

r(s, a) , w(s, a)− uc(s, a) (4.18)

where w(s, a) denotes the profits of the task transmissions, c(s, a) denotes the system

cost, and u is a weight to balance the profits and the system cost.

The profits of the task transmissions are defined as,

w(s, a) ,

 bl, e = 1
0, e = 0&ar ̸= −1
−bl, e = 0&ar = −1

(4.19)

where the first case means a task of user l is successfully transmitted, and thus, a

reward bl can be obtained, the second case means a new arrival task is stored to

the corresponding task buffer, the third case means the new arrival task of user l is

discarded, and thus, a penalty bl is caused.

The system cost c(s, a) is defined as,

c(s, a) , o(s, a)τ(s, a) (4.20)

where o(s, a) represents the cost rate between two consecutive decision epochs and

τ(s, a) means the expected time interval to the next state s′. When a discounted

model is considered, the discount factor should be added to τ(s, a) since c(s, a) applies

throughout a period (i.e., from state s to s′). For o(s, a), it is defined as the number

of occupied channels, and thus, we have

o(s, a) ,
N∑
i=1

k′i. (4.21)

4.2.3 Problem Formulation

In this work, we try to find an optimal opportunistic scheduling policy to obtain the

maximum reward over a long-term. Under the formulated SMDP, we formulate the

scheduling problem as an infinite-horizon discounted reward semi-Markov decision

problem. Let π denote the scheduling policy, which is defined as a mapping from the

state space S to the action space A, π : S→ A.
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For a policy π, let vπ(s0) denote the expected infinite-horizon discounted reward

given initial state s0 at the first decision epoch. Then, vπ(s0) is given as [50]

vπ(s0) = Eπ
s0
[
∞∑
n=0

e−αtnr(sn, an|s0)] (4.22)

where t0, t1, · · · denotes the successive decision epochs, α is the discount factor, sn

and an are the state and the corresponding applied action at nth decision epoch tn,

respectively. Then, according to the definition of transition probabilities, (4.22) can

be converted to

vπ(s0) = r(s0, π(s0)) + Eπ
s0
[e−αt1vπ(s1)]

= r(s0, π(s0)) +
∑
s1∈S

∫∞
0
e−αtp(s1|s0, π(s))dF (t|s0, a, s1)vπ(s1). (4.23)

The objective of this work is to find an optimal policy which can obtain the

maximum expected long-term discounted system reward vπ(s0). Let π∗ denote the

optimal policy. Accordingly, we have

π∗ = argmax
π

vπ(s), ∀s ∈ S. (4.24)

In our formulated problem, the action space A is finite for all states s ∈ S,

and thus, there is an optimal stationary deterministic policy π∞ (i.e., π∗) for our

formulated problem [50]. In the following two sections, we will propose two methods,

model-based and model-free, to derive the optimal stationary policy under different

scenarios.

4.3 Model-based Scheduling Method

In reality, some information of the network, such as, the probability distribution of

users’ task arrival rate and the expected duration of a task transmission for each

user, may be known to the network controller (e.g., by training the historic data).

In this scenario, the model of the network is fully explored, and thus, the transition

probabilities and the reward function can be derived. Accordingly, in this section, we

present a model-based scheduling method to solve the opportunistic scheduling prob-

lem under the scenario with a fully explored network. The task arrival event of user i

is assumed to follow Poisson distribution with parameter λi and the task transmission
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time of user i is assumed to follow exponential distribution with parameter µi.
3 These

are reasonable assumptions according to practical measurements [88]. Then, the time

interval between adjacent decision epochs also follows an exponential distribution.

Consequently, to handle the challenge in deriving the transition probability and the

reward function, the formulated SMDP is transformed to a classic continuous-time

Markov decision process (CTMDP).

4.3.1 Model of CTMDP

The state space and the action space of the formulated CTMDP are same as those of

the formulated SMDP in Section 4.2. Thus, to model the CTMDP, we need to derive

the state transition probability and the reward function.

Firstly, the state transition probability is considered. Let s = {d,k, e, l} and

s′ = {d′,k′, e′, l′} denote the current state and the next state, respectively. If an

arrival event or a completion event occurs, an action needs to be taken. To derive the

state transition probability, we introduce the following lemma about the exponential

distribution.

Lemma 4. Let X = {X1, X2, · · · , Xj} denote a group of independent variables. For

any element Xi, i ∈ {1, 2, · · · , j}, it follows exponential distribution with parameter

θi. Then, the minimum of X is also an exponentially distributed random variable with

parameter
j∑
i=1

θi.

It is easily to prove Lemma 4 according to the properties of the exponential dis-

tribution. The similar proof can also be found in [87], and thus, is omitted here.

According to Lemma 4, for a state-action pair (s, a), the time interval to the first

event occurrence (i.e., an arrival event or a completion event) follows an exponential

distribution with a parameter γ(s, a). In addition, γ(s, a) can be derived as follows,

γ(s, a) =
N∑
i=1

λi +
N∑
i=1

k′iµi (4.25)

where k′i is derived by (4.7)-(4.17). Therefore, F (t|s, a, s′) is given as

F (t|s, a, s′) = 1− e−γ(s,a)t, t > 0. (4.26)

3For simplicity, for a user, the task transmission time under different channels is assumed to follow the
same distribution. By adding some elements to a state s, our work can be easily extended to the case with
different distributions.
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Then, we introduce another lemma about the exponential distribution.

Lemma 5. For two independent exponentially distributed variables X1 and X2 with

parameters θ1 and θ2, respectively, the probability of the event X1 < X2 is P (X1 <

X2) =
θ1

θ1+θ2
.

For a given state-action pair (s, a), the next state s′ should be one of the following

states,

s′ =

{
{d′,k′, 0, l′}
{d′,k′, 1, l′} (4.27)

where d′ and k′ can be derived by (4.7)-(4.17). For the first case in (4.27), it means

that the first event occurrence after current decision epoch is an arrival event of user

l′. Let X1 denote the event that the first event occurrence after current decision epoch

is an arrival event of user l′ and let X2 denote the event that the first event occurrence

after current decision epoch is any possible event other than an arrival event of user

l′. Thus, X1 and X2 should follow exponential distribution with parameters λl′ and

γ(s, a)− λl′ , respectively. Then, according to Lemma 5, the transition probability of

the case, which is s′ = {d′,k′, 0, l′}, should be

p(s′|s, a) = λl′

γ(s, a)
. (4.28)

Similarly, for the second case in (4.27), it means that the first event occurrence

after current decision epoch is a completion event of user l′. Let X3 denote the event

that the first event occurrence after current decision epoch is a completion event of

user l′ and letX4 denote the event that the first event occurrence after current decision

epoch is any possible event other than a completion event of user l′. Thus, X3 and

X4 should follow exponential distribution with parameters k′l′µl′ and γ(s, a) − k′l′µl′ ,

respectively. Then, according to Lemma 5, the transition probability of the case,

which is s′ = {d′,k′, 1, l′}, should be

p(s′|s, a) = k′l′µl′

γ(s, a)
. (4.29)

Then, we consider the reward function r(s, a). For a state-action pair (s, a), the

expected time interval to the next state s′ should be τ(s, a) = 1
γ(s,a)

. Since the

discounted reward is considered, the discount factor α for continuous time should be
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added to τ(s, a) to meet the practical condition. Accordingly, the expected discounted

reward function is given as

r(s, a) = w(s, a)− uo(s, a)E[
∫ τ(s,a)
0

e−αtdt]

= w(s, a)− uo(s, a)E[1−e−ατ(s,a)

α
]

= w(s, a)− uo(s,a)
α+γ(s,a)

(4.30)

where w(s, a) and o(s, a) are given in (4.19) and (4.21), respectively.

4.3.2 Proposed Value Iteration Algorithm

In this section, the optimal policy of the formulated CTMDP will be derived. First,

we need to derive the Bellman optimality equation, and thus, a lemma is introduced

as follows.

Lemma 6. The Bellman optimality equation of the formulated CTMDP is given as

follows

v(s) = max
a∈A
{r(s, a) + ς

∑
s′∈S

p(s′|s, a)v(s′)} (4.31)

where ς = γ(s,a)
γ(s,a)+α

.

Proof. According to (4.23) and (4.26), the infinite-horizon discounted reward vπ(s) is

given as

vπ(s)
= r(s, π(s)) +

∑
s′∈S

∫∞
0
e−αtp(s′|s, π(s))dF (t|s, a, s′)vπ(s′)

= r(s, π(s)) +
∑
s′∈S

p(s′|s, π(s))vπ(s′)
∫∞
0
e−αtγ(s, a)e−γ(s,a)tdt

= r(s, π(s)) + γ(s,a)
γ(s,a)+α

∑
s′∈S

p(s′|s, π(s))vπ(s′).

(4.32)

Therefore, the Bellman optimality equation of the formulated CTMDP is given as

(4.31).

Different from DTMDP, there are no standard methods to derive the optimal pol-

icy for a CTMDP. Thus, we try to convent the formulated CTMDP to a discrete-time

Markov chain by uniformization, so that the process can be analyzed and the optimal

policy can be derived. In order to guarantee the effectiveness of the uniformization,

we first introduce a parameter φ ,
N∑
i=1

λi + max
i∈{1,2,··· ,N}

{Kui}, and thus, the following

condition is satisfied [50].

[1− p(s′|s, a)]γ(s, a) ≤ φ,∀s ∈ S&∀a ∈ A. (4.33)
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Then, the steps of uniformization are given as follows. The components of the

formulated CTMDP after uniformization are denoted by ∼.

1. State space and action space: we have S̃ = S and Ã = A.

2. Transition probability: The formulated CTMDP is transformed to a new pro-

cess, which is observed after random time intervals with exponential distribution

with parameter φ. Thus, the uniformized transition probabilities are formulated

as

p̃(s′|s, a) =

{
1− γ(s,a)[1−p(s′|s,a)]

φ
, s′ = s

γ(s,a)p(s′|s,a)
φ

, s′ ̸= s
(4.34)

3. Reward function: The uniformized reward function is formulated as

r̃(s, a) = r(s, a)
γ(s, a) + α

φ+ α
(4.35)

Under the aforementioned uniformization, the Bellman optimality equation (4.31)

is transformed to the following equation.

ṽ(s) = max
a∈A
{r̃(s, a) + ς̃

∑
s′∈S

p̃(s′|s, a)ṽ(s′)} (4.36)

where ς̃ = φ
φ+α

. About the Bellman optimality equality (4.31) and (4.36), we have

the following lemma.

Lemma 7. For the Bellman optimality equality (4.31) and (4.36), we have

vπ
∞
(s) = ṽπ

∞
(s) (4.37)

where π∞ denotes the optimal stationary policy.

Proof. Given a policy π and a state s, the number of transitions from state s to itself

for the uniformized Markov process is denoted as z̃s. Then, the probability of the

event z̃s = j, j ∈ {0, 1, 2, · · · } is

P{z̃s = j} = [p̃(s|s, a)]j[1− p̃(s|s, a)] (4.38)

where a = π(s) is the applied action for state s under the policy π.

Thus, the expected total discounted reward during sojourns in state s is formu-

lated as Eπ
s [

z̃s∑
n=0

e−αt̃n r̃(s, a)], where t̃n is the time interval of adjacent states in the
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uniformized Markov process. Accordingly, t̃n follows exponential distribution with

parameter φ. Then, Eπ
s [

z̃s∑
n=0

e−αt̃n r̃(s, a)] can be calculated by

Eπ
s [

z̃s∑
n=0

e−αt̃n r̃(s, a)] = r̃(s, a)Eπ
s [

z̃s∑
n=0

ς̃n] (4.39)

where ς̃ is defined in (4.36). According to (4.38), we have

Eπ
s [

z̃s∑
n=0

ς̃n] =
∞∑̃
zs=0

[p̃(s|s, a)z̃s [1− p̃(s|s, a)]
z̃s∑
n=0

ς̃n]

= 1
1−ς̃ p̃(s|s,a) .

(4.40)

Therefore, Eπ
s [

z̃s∑
n=0

e−αt̃n r̃(s, a)] is given as

Eπ
s [

z̃s∑
n=0

e−αt̃n r̃(s, a)] =
r̃(s, a)

1− ς̃ p̃(s|s, a)
. (4.41)

Similarly, for the original formulated CTMDP, the expected total discounted re-

ward during sojourns in state s, denoted Eπ
s [

zs∑
n=0

e−αtnr(s, a)], should be

Eπ
s [

zs∑
n=0

e−αtnr(s, a)] =
r(s, a)

1− ςp(s|s, a)
(4.42)

where zs is the number of transitions from state s to itself for the original formulated

CTMDP.

According to (4.34) and (4.35), we have

r̃(s,a)
1−ς̃ p̃(s|s,a) = r(s,a)(γ(s,a)+α)

α+γ(s,a)(1−p(s|s,a))

= r(s,a)

1− γ(s,a)
γ(s,a)+α

p(s|s,a)

= r(s,a)
1−ςp(s|s,a) .

(4.43)

Accordingly, Eπ
s [

z̃s∑
n=0

e−αt̃n r̃(s, a)] = Eπ
s [

zs∑
n=0

e−αtnr(s, a)] is obtained. In addition,

the original formulated CTMDP and the uniformized Markov process have the same

state occupancy distributions [50], and thus, the expected total discounted reward

during sojourns in any state s ∈ S is the same. Therefore, (4.37) is obtained. This

completes the proof.

According to Lemma 7, we can obtain the optimal stationary π∞ by considering

the Bellman optimality equation (4.36). Accordingly, we propose a value iteration

69



algorithm, denoted Algorithm 4.1. If ξ → 0, the policy obtained by Algorithm 4.1

converges to the optimal stationary policy for the formulated opportunistic schedul-

ing problem [54]. For each iteration of Algorithm 4.1, the computation complexity

is O(|A||S|2), where |A| and |S| are the size of the action space and state space, re-

spectively. The number of iterations to reach the convergence relates to the discount

factor α. The space complexity of Algorithm 4.1 is O(|S|). Note that the optimal

policy is obtained offline by Algorithm 4.1.

Algorithm 4.1 Value Iteration Algorithm

1: Set the reward value ṽ0(s) = 0 for all states,
2: Set a small constant ξ > 0 and set j = 0,
3: loop:
4: For each state s ∈ S, calculate ṽj+1(s) according to:

ṽj+1(s) = max
a∈A
{r̃(s, a) + ς̃

∑
s′∈S

p̃(s′|s, a)ṽj(s′)} (4.44)

5: if ||ṽj+1 − ṽj || > ξ where || · || is the norm function, which is defined as ||ṽj+1 − ṽj || =
max
s∈S
|ṽj+1(s)− ṽj+1(s)| then

6: j = j + 1
7: goto loop
8: else
9: The optimal stationary policy for any state s ∈ S is

π∗(s) = argmax
a∈A
{r̃(s, a) + ς̃

∑
s′∈S

p̃(s′|s, a)ṽj(s′)} (4.45)

10: end if

4.4 Model-free Scheduling Method

In the model-based scheduling method, the network model is assumed to be fully

explored so that the transition probability and the reward function can be derived

directly. However, this assumption may not be always valid [89]. In many scenarios,

the prior information of the network, e.g., the probability distribution of users’ task

arrival rate and the expected duration of a task transmission, is hard to obtain, and

thus, the network is partially explored. In these scenarios, the model-based scheduling

policy may not be optimal. To address this challenge, a model-free reinforcement

learning method is proposed to obtain the scheduling policy in partially explored
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networks.

In model-free reinforcement learning, it solves the Bellman optimality equation to

obtain the optimal policy by asynchronous iteration. Q-learning, which is a typical

reinforcement learning method, is introduced. Let Qπ(s, a) (named Q-value [54])

denote the expected long-term discounted reward of state-action pair (s, a), where

a = π(s) is the applied action at state s under the policy π. Therefore, the expected

infinite-horizon discounted reward vπ(s), which is defined in (4.22) can be obtained

by

vπ(s) = max
a∈A

Qπ(s, a). (4.46)

For an optimal policy π∗, its optimal Q-value of the state-action pair (s, a) is

denoted as Q∗(s, a). Thus, if the optimal Q-value of each state-action pair can be

obtained, the optimal scheduling policy π∗ is given as,

π∗(s) = max
a∈A

Q∗(s, a),∀s ∈ S. (4.47)

Accordingly, given a state s, the optimal action a for this state is decided by the

optimal Q-value Q∗(s, a),∀a ∈ A. For a classic discrete MDP problem, Q∗(s, a) can

be obtained by the following iterative equation (i.e., Q-learning method) [54]

Q(s, a) = Q(s, a) + κ(r(s, a) + ρmax
a′∈A

Q(s′, a′)−Q(s, a)) (4.48)

where κ ∈ (0, 1] is the learning rate, ρ ∈ (0, 1) means a constant discount factor, s′

and a′ denotes the next state of state s and the applied action of state s′, respectively.

However, for our formulated SMDP, (4.48) is not valid to calculate the Q-value due

to the random decision epochs. Accordingly, a revised Q-learning method is proposed

to derive the optimal policy.

In this work, we first derive the equation (refer to (4.50)) to derive the optimal

value of Q(s, a) in our formulated SMDP. Then, the revised iterative equation (refer to

(4.51)) for our formulated SMDP is proposed. Note that the revised iterative equation

is different to the equation in classic Q-learning method (i.e., (4.48)). At last, the

proposed Q-learning algorithm is given in Algorithm 4.2. The detailed procedures

are given as follows.

According to (4.46), (4.23) can be rewritten as

Qπ(s, a) = r(s, a) +
∑
s′∈S

∫∞
0
e−αtp(s′|s, a)dF (t|s, a, s′)max

a′∈A
Qπ(s′, a′) (4.49)
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where s′ and a′ are the next state of current state s and the applied action of state

s′, respectively. Therefore, Q∗(s, a) satisfies the equation

Q∗(s, a) = (w(s, a)− uo(s, a)
∑
s′∈S

∫∞
0

∫ t
0
e−αhp(s′|s, a)dhdF (t|s, a, s′))

+
∑
s′∈S

∫∞
0
e−αtp(s′|s, a)dF (t|s, a, s′)max

a′∈A
Q∗(s′, a′).

(4.50)

According to the Q-learning method and (4.50), the following Q-learning rule for

our formulated SMDP is introduced to obtain the optimal Q-value for each state-

action pair.

Qn+1(s, a)

= Qn(s, a) + κn[w(s, a)− 1−e−αtn

α
uo(s, a) + e−αtn max

a′∈A
Qn(s

′, a′)−Qn(s, a)]
(4.51)

where κn is the learning rate of the nth decision epoch, and tn is the actual time

interval between the nth decision epoch and the (n + 1)th decision epoch. If every

state-action pair is iterated infinitely by (4.51), Qn+1(s, a) would converge to the

optimal Q-value Q∗(s, a) [90], and then, the optimal scheduling policy can be obtained

by (4.47). In practice, the Q-value of each state-action pair is considered to converge

to the optimal Q-value if the Q-value of each state-action pair keeps stable.

Algorithm 4.2 Proposed Q-learning algorithm

1: Set the Q-value Q0(s, a) = 0 for all possible state-action pairs,
2: Set the number of state-action visits ψ(s, a) = 0 for all possible state-action pairs,
3: Set the parameters κ0 and α,
4: Set the index of the decision epoch n = 0,
5: loop:
6: Observe current state s,
7: Take a random action â with probability ε(s), Otherwise take the action â =

argmax
a∈A

Qn(s, a),

8: Update κn,
9: Update ψ(s, â) = ψ(s, â) + 1,

10: Update ε(s) according to (4.52),
11: Monitor the first next event occurrence and observe the next state s′,
12: Update Qn+1(s, â) according to (4.51),
13: Set Qn+1(s̄, ā) = Qn(s̄, ā) where (s̄, ā) means the other state-action pairs except (s, â),
14: Set s = s′ and n = n+ 1,
15: goto loop

To obtain the optimal Q-value Q∗(s, a) for every state-action pair (s, a), we need

to run a long-term to update the value of Q(s, a) by (4.51). Accordingly, at nth

decision epoch, an action a for current state s needs to be chosen. To receive a large
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reward, the action â = argmax
a∈A

Qn−1(s, a) may be preferred to be taken. This is

named as the exploration operation. However, to discover the possible more effective

actions, an action other than that suggested by the exploration operation should also

be chosen. This is named as the exploration operation. By the exploration opera-

tion, it can guarantee that all states of the Markov chain are visited and all possible

actions for each state are tried out. Accordingly, the exploration operation and ex-

ploitation operation should be applied simultaneously in the Q-learning algorithm.

In our work, we adopt the ε-greedy exploration-exploitation policy [54], which is the

most common exploration method. In this policy, the system in state s takes the ac-

tion by the exploration operation with probability 1−ε(s) and takes a random action

with probability ε(s). To guarantee the convergence of the Q-learning algorithm, the

exploitation operation should not be stopped, but the probability ε(s) needs to be

reduced over time. Therefore, we introduce an variable, denoted ψ(s, a), to record

the number of visits of state-action pair (s, a). Then, the value of ε(s) is defined as

ε(s) =
1

ln(max
a∈A

ψ(s, a) + 2)
. (4.52)

Then, we propose a Q-learning algorithm, denoted Algorithm 4.2, to derive the

optimal Q-value for all possible state-action pairs.

In Algorithm 4.2, the learning procedure is repeated until the end of the learning

period. Note that, if the learning period reaches to a pre-defined value [87] or the Q-

value of all possible state-action pairs reaches a convergence [54], the learning period

can be regarded as an end. Then, the opportunistic scheduling policy is obtained by

(4.47). The number of iterations to reach the convergence relates to the size of space

state and action state. However, it is still an open question to derive the exact number

of iterations. In our formulated SMDP, the optimal action of a state s is already given

in (4.4) if the element e satisfies the constraint e = 0. Accordingly, the number of

iterations to reach a convergence for Algorithm 4.2 can be largely decreased.

4.5 Numerical Results

In this section, simulation results are provided to evaluate the performance of our

proposed policies. The parameters adopted in the simulation are given in Table 4.1.
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Table 4.1: The parameters in the simulation

Parameters Value

N 5
K 4

Di, i = {1, 2, · · · , N} 5
{b1, b2, b3, b4, b5} 3, 2.5, 2, 1.5, 1

λi, i = {1, 2, · · · , N} 1
{ 1
µ1
, 1
µ2
, 1
µ3
, 1
µ4
, 1
µ5
} 1, 0.5, 0.8, 0.7, 0.9

ξ 10−10

α 0.1
κ0 0.1
u 1.5

Firstly, we compare the proposed model-based scheduling policy and model-free

scheduling policy4, and investigate the convergence of the proposed Q-learning al-

gorithm. For the model-based scheduling policy, the network is assumed to be fully

explored, and thus, the transition probability and reward function can be derived. For

the model-free scheduling policy, the network has no knowledge of these information,

and thus, it costs a long time for the learning process and gets the optimal Q-value

for each state-action pair. The average reward, which is defined as R
T

where R is

the accumulated reward and T is the running time, is obtained by the model-based

scheduling policy and the model-free scheduling policy, given in Fig. 4.3. It can be

seen that the reward obtained by the model-free scheduling policy is almost the same

with that of the model-based scheduling policy.

In order to evaluate the performance of our proposed policy, we compare with the

following benchmark policies.

1. Large backlog go first policy (BF policy): In this policy, if a completion event

occurs (i.e., a channel is free), the user, which has the largest backlog, is assigned

to utilize the free channel for a task transmission. If the backlog of two users’

task buffers are the same, user i with a larger value of bi has a higher priority

to utilize the free channel for task transmission.

2. High priority go first policy (PF policy): In this policy, if a completion event

occurs, user i, which has the highest priority (i.e., the largest value of bi), is

4Model-based scheduling policy means that the policy is obtained by our proposed model-based method,
and model-free scheduling policy means that the the policy is obtained by our proposed model-free method.
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Figure 4.3: The average reward with the model-based policy and model-free policy.

assigned to utilize the free channel for a task transmission. Thus, in our simu-

lation, user 1 has the highest priority to utilize the channel. In contrast, user 5

has the lowest priority to utilize the channel.

3. Greedy policy: In this policy, a parameter for user i, denoted gi = biµi, is

defined as the expected obtained reward per unit of time when a task of user

i is transmitted. Thus, if a completion event occurs, a task of user i with the

largest value of gi is assigned to be transmitted by the free channel. Thus, in our

simulation, user 2 has the highest priority to utilize the channel. In contrast,

user 5 has the lowest priority to utilize the channel.

Then, we compare the performance between the benchmark policies and our pro-

posed policy. Fig. 4.4-Fig. 4.6 show the simulation results under different size of

task buffers. The size of different users’ task buffers are set as the same and vary

from 3 to 10. The simulation time is set as 105 s. The simulation results of the

accumulated reward with different policies are shown in Fig. 4.4. It can be seen that

our proposed policy can receive the largest reward, which means our proposed policy

has a better performance compared to these benchmark policies. In contrast, the PF

policy receives the least reward compared to other policies. The obtained reward by

the PF policy is close to that of the greedy policy. This is because the number of

tasks which is rejected and dropped is almost the same by these two policies, which
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can be validated by Fig. 4.5 and Fig. 4.6. In addition, we observe that the obtained

reward grows with the increase of D. The reason is that the number of rejected tasks

is reduced with the increase of D. The reward keeps stable when the value of D keeps

increasing beyond a large value. The reason is that the number of tasks, which can

be transmitted, is limited due to the limited number of channels in the network.
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Figure 4.4: The reward versus the size (i.e., D) of the task buffer.
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Figure 4.5: The overall rejection probability of task buffers versus the size (i.e., D) of the task buffer.

The simulation results of the overall rejection probability with different policies
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are given in Fig. 4.5. The overall rejection probability, denoted Pr, is defined as

Pr =
numr

numall

(4.53)

where numr is the number of tasks which are rejected and dropped in the network,

and numall means the number of total generated tasks. If a task buffer is full, the

newly generated tasks will be rejected and dropped. In Fig. 4.5, we observe that

the BF policy has the smallest rejection probability compared to other policies. The

reason is that the BF policy make a scheduling decision according to the backlog

of different task buffers. Our proposed policy also has a small rejection probability.

When the value of D takes a large value, the rejection probability of the BF policy

and our proposed policy are very small, and thus, the BF policy and our proposed

policy can obtain a much larger reward compared to the PF policy and the greedy

policy, which can be observed in Fig. 4.4.

Fig. 4.6 gives the rejection probability of different user’s task buffer. The rejection

probability of user i, denoted Pr,i, is defined as

Pr,i =
numr,i

numi

(4.54)

where numr,i is the number of user i’s tasks which are rejected and dropped in the

network, and numi means the number of user i’s total generated tasks. For the PF

policy, the rejection probability of user 1 is the smallest, on the other hand, the

rejection probability of user 5 is the largest. It confirms our intuitive understanding

that user 1 and user 5 have the highest priority and lowest priority, respectively,

to utilize the free channel in the PF policy. Since the user’s order to utilize the

free channel in the greedy policy is {2, 1, 3, 4, 5}, the rejection probability of the

greedy policy should have the following feature Pr,2 > Pr,1 > Pr,3 > Pr,4 > Pr,5,

which is validated by the simulation results of Fig. 4.6. In Fig. 4.6, the rejection

probability of our proposed scheme has the same feature with the greedy policy, which

is Pr,2 > Pr,1 > Pr,3 > Pr,4 > Pr,5. However, our proposed scheme has a much smaller

rejection probability compared to the greedy policy, and thus, our proposed scheme

can receive a larger reward.

At last, we consider the accumulated reward of different policies under the cases

with different number of available channels (K). The simulation results are shown
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Figure 4.6: The rejection probability of different user’s task buffer versus the size (i.e., D) of the
task buffer.
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in Fig. 4.7. It can be seen that our proposed policy can achieve the largest reward

no matter what the number of available channels is. With the growth of the number

of available channels, the obtained reward keeps increasing. It confirms our intuitive

understanding that larger number of channels the network has, less tasks would be

rejected and larger reward can be received. When the number of available channels

grows to a large value (e.g., K = 5), the reward of different policies are similar. The

reason is that the number of free channels can satisfy the input rate of tasks, and thus,

almost all tasks can be transmitted in any opportunistic scheduling scheme. When

the number of available channels takes a small value (e.g., K = 3), the BF policy

receives the smallest reward. The PF policy receives the smallest reward when the

number of available channels takes a large value (e.g., K = 4). The reason is stated

as follows. When the number of available channels takes a small value, the number

of rejected tasks is large for any policy. However, the BF policy drops tasks without

considering the reward of different tasks, and thus, a lot of tasks with large value of

gi are rejected and dropped. Therefore, the BF policy receives the smallest reward.

When the number of available channels takes a large value, the number of rejected

tasks of the BF policy and our proposed policy are much smaller than the PF policy,

and thus, the PF policy receives the smallest reward.

4.6 Conclusion

In this chapter, we propose two methods, named model-based method and model-

free method, to derive the optimal opportunistic scheduling policy under different

scenarios. For the case with a fully explored network, a model-based scheduling

method is proposed. A model-free scheduling method is proposed for the partially

explored network.
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Chapter 5

Distributed Opportunistic
Scheduling in Cooperative
Networks with RF Energy
Harvesting

In this chapter, the problem of distributed opportunistic channel access in wireless

cooperative networks is investigated. To cope with the energy limitation problem

of relay nodes, radio-frequency (RF) energy harvesting is considered, and thus, no

external energy is needed for each relay node. Then, a distributed opportunistic

scheduling scheme is proposed. In the scheme, users contend for the channel access

opportunity by random access, and then, the user with a successful contention makes

a decision whether to give up the opportunity after probing the source-to-relay link

and relay-to-destination link. To maximize the average throughput of the network,

an optimal strategy of the proposed scheme is derived by optimal stopping theory.

The obtained optimal strategy has a threshold-based structure, and thus, it is easy

to implement in practice. To derive the threshold, an algorithm is proposed to derive

the stationary probability distribution of the energy level for each relay, and then,

the threshold can be calculated off-line by a proposed iterative algorithm.

5.1 Introduction

In distributed wireless networks, multiple users generally need to contend for trans-

mission. For example, in cognitive radio networks, multiple secondary users are gen-

erally required to contend for the transmission opportunity when a primary channel
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is sensed as free [91]. Accordingly, the opportunistic scheduling scheme is proposed

to maximize the average throughput of the network by allocating the channel access

opportunities to users with good channel condition [25].

In centralized wireless networks, the channel state information (CSI) of each user

can be collected by the central entity, e.g., the base station. Hence, the user which is

allocated to utilize a free channel is easy to be selected by the central entity. In [28], an

adaptive centralized opportunistic scheduling is proposed to maximize the profits of

the network. In addition, the case with imperfect CSI is also investigated. However,

the communication overhead to obtain the CSI of all users may be intolerable in

some scenarios. Moreover, in distributed wireless networks (e.g., ad hoc networks),

a central entity may not exist. To address these issues, distributed opportunistic

scheduling (DOS) is introduced, and several DOS schemes have been proposed. In

DOS schemes, users contend for the channel access opportunity, and then, a user

with a successful contention decides whether to exploit or give up the channel access

opportunity. In [30], a pure threshold scheduling policy is derived. In this policy,

the user who obtains a channel access opportunity would give up the channel access

opportunity if the transmission rate is lower than a certain threshold λ. The optimal

stopping theory is adopted to derive the value of λ. A DOS scheme which jointly

optimizes the throughput and the fairness of each user is proposed in [78]. Similar

to [30], the access probability and the threshold λ are optimized in this scheme. In [92],

a DOS scheme with quality-of-service (QoS) constraints is proposed. In addition, it

considers hybrid links in wireless networks. In [93], a DOS framework for single-hop

ad hoc networks is introduced. In this framework, the sources are assumed to obtain

energy by a renewable energy source. Then, the scheduling policy is derived by one-

dimension search. A transmission scheduling problem for the Internet of Things (IoT)

is formulated in [82]. To obtain an optimal strategy for transmission scheduling, a

reinforcement learning method, i.e., Q-learning algorithm, is proposed in this work.

Then, a deep learning model is adopted to accelerate the algorithm. In [80], a greedy

scheduling policy, which focuses on immediate reward maximization, is proposed.

Then, the conditions which guarantee the optimality of the proposed greedy policy

are derived.

Since cooperative communications have emerged as a promising technique to en-
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hance communication efficiency, DOS in cooperative networks receives more and more

attention. In [31], a DOS scheme is proposed in distributed networks with decode-

and-forward (DF) relay. The user with a successful contention decides to give up a

transmission opportunity or transmit its data to the relay by probing the channel

condition of the source-to-relay link. If the user transmits its data to the relay, the

relay then keeps probing the relay-to-destination link until the achievable rate is not

less than the rate of the source-to-relay link. Another DOS scheme in cooperative

networks is proposed in [32]. Compared to the scheme in [31], the user who wins

a successful contention has one more option, further probing. Thus, it benefits the

network throughput, at the cost of possible complexity of implementation. The DOS

problem in cooperative networks with amplify-and-forward (AF) relay is investigated

in [95]. In [94], a resource (e.g., link, power, etc.) allocation problem is considered

to maximize the number of successful task transmissions in a cooperative satellite

networks. Then, the problem is formulated to a mixed-integer nonlinear program

(MINLP) optimization problem, and then, an algorithm is proposed to solve the

formulated problem.

Although some DOS schemes have been proposed in cooperative networks, energy

constraint is rarely considered. In reality, relay nodes are usually battery limited [43],

and thus, periodic replacement or recharging for the battery of relay nodes is needed.

However, it may not be feasible in lots of scenarios [44]. As a promising solution to

encourage the relay to provide cooperative services and prolong the lifetime of energy

constrained wireless networks, energy harvesting technique attracts much attention

[45]. By harvesting energy from the outside environments (e.g., solar, wind, and radio-

frequency (RF) signal), relay nodes can forward the received data to destinations

without external energy [46]. Compared to other sources, RF signal is a kind of

predictable and controllable source. Thus, energy harvesting from RF signals is widely

used in wireless networks, especially in cooperative networks [47]. Although wireless

cooperative networks with energy harvesting attract more and more attention, there

are still no efforts on designing optimal DOS schemes in wireless cooperative networks

with RF energy harvesting.

In this work, we investigate the opportunistic scheduling problem in distributed

cooperative networks with RF energy harvesting. The major contributions of this
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work are summarized as follows.

1. A DOS scheme is proposed in a cooperative network with RF energy harvesting

relays. No external energy is needed for the relay nodes. In the scheme, users

contend for the transmission opportunity by random access, and then, the user

with a successful contention makes a decision whether to give up the opportunity

after probing the source-to-relay link and relay-to-destination link.

2. To maximize the average throughput of the network, the optimal strategy for

the winner user is derived. In addition, the obtained optimal strategy has a

threshold-based structure, and thus, it is easy to implement in reality. The

method to calculate the threshold is also proposed as follows. First, a low com-

plexity algorithm is proposed to derive the stationary probability distribution

of the energy level for each relay. Then, the threshold can be calculated off-line

by a proposed iterative algorithm. Accordingly, the user who obtains the chan-

nel access opportunity can make a fast decision by comparing the achievable

transmission rate with the threshold.

3. Performance analysis is conducted for the proposed scheme by simulation. It

shows that our proposed DOS scheme can obtain much more average network

throughput compared with benchmark DOS schemes.

The rest of this chapter is organized as follows. Section 5.2 gives the system model

and proposes the DOS scheme. The optimal strategy of the proposed DOS scheme

is derived in Section 5.3. Section 5.4 shows simulation results. Finally, Section 5.5

concludes this chapter.

5.2 System Model and Proposed Schemes

The system model is given in this section and also with the proposed DOS scheme.

5.2.1 System Model

We consider a distributed cooperative network with DF relaying. In the network,

there are I source-destination pairs and one available channel for transmission. A half-
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duplex relay is assigned for each pair1. To contend for the channel access opportunity,

random access, which is easy to implement in reality, is adopted by each source [70].

For each channel contention, each source transmits a request-to-send (RTS) packet

with a probability pc, and does not transmit anything with probability 1 − pc. A

successful channel contention occurs when only one source transmits RTS. Thus, a

successful channel contention happens with probability Ipc(1−pc)(I−1). In a successful

channel contention, the source who transmits RTS is the winner source, and thus,

gets the channel access opportunity. If a channel contention is unsuccessful (i.e., no

source transmits RTS, or a collision occurs), all the I sources re-contend in subsequent

channel contentions. For each relay, the energy for forwarding the data is harvested

from the RF signal of sources. A rechargeable battery with capacity Bmax is equipped

to each relay. The battery of each relay is quantized to L levels, with the amount,

denoted σ = Bmax

L
, of energy for each level. The harvested energy is stored to the

battery. If source i ∈ {1, 2, · · · , I} is the winner source and decides to transmit its

data, the relays except relay i can harvest energy from the RF signal of source i.

Relay i consumes energy for forwarding the received data to destination i. Note that

the energy consumption of operations other than data transmission is assumed to

be negligible. Thus, the residual energy of each relay would be variant only for a

successful transmission2. The transmission power of a source is set as Ps. Let hij and

gji denote the channel gain from source i to relay j and the channel gain from relay j

to destination i, respectively. For the case i ̸= j, it is assumed that hij and gji follow a

complex Gaussian distribution with zero mean and a variance δ2h and δ2g, respectively.

Similarly, for the case i = j, hij and gji are assumed to follow the same distribution

with the former case, but with a different variance being ν2h and ν2g , respectively. The

background noise is assumed to be Gaussian with zero mean and unit variance. The

coherence time of the channel is denoted as τtx. In other words, the channel gains hij

and gji remain constant during a slot with duration τtx, but vary independently from

a slot to another.
1In the following parts of this chapter, each pair means each source-destination pair.
2A successful transmission means a source wins the channel contention and starts a transmission.
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5.2.2 The Proposed DOS Scheme

Define the tth cycle as the period from the end of the (t−1)th successful transmission

to the end of the tth successful transmission. During the tth cycle, if source i is the

winner source (the Nth winner in the tth cycle3), relay i can receive source i’s RTS,

and can estimate the channel gain of its first-hop (i.e., the link from source i to

relay i). After that, relay i transmits an RTS to destination i, which accordingly

replies with a clear-to-send (CTS) packet. By using the CTS, relay i can estimate the

channel gain of its second-hop (i.e., the link from relay i to destination i). Without

loss of generality, we assume the RTS and CTS packets have the same transmission

duration denoted as τc. Then, relay i selects one of the following two options.

1. Relay i decides to give up the current transmission opportunity, and thus, it

transmits a CTS to all sources to announce the decision. After that, all sources

start the next channel contention immediately.

2. Relay i decides to exploit the current transmission opportunity, and thus, it

transmits a CTS to source i to announce the decision. Subsequently, we have

two transmissions each with duration τtx
2
. The first transmission is from source i

to relay i at a rate Ri,N(t), while the second transmission is from relay i to des-

tination i with a transmission power P r
i,N(t) = min

{
Ps|hii,N (t)|2

|gii,N (t)|2 ,
2li(t)σ
τtx

}
, where

hii,N(t) is the channel gain between source i and relay i, gii,N(t) is the channel

gain between relay i and destination i, and li(t) ∈ {0, 1, 2, · · · , L} denotes the

residual energy level of relay i at the beginning of the tth cycle. Thus, the trans-

mission rate of the tth cycle is derived as Ri,N(t) = log2
(
1 + P r

i,N(t)|gii,N(t)|
2).

At the end of the tth cycle, the residual battery level, denoted li(t+1), of relay i is

li(t+1) = li(t)−
⌈
P r
i,N (t)τtx

2σ

⌉
, where ⌈x⌉means the ceiling function. The relays ex-

cept relay i can harvest energy from the RF signal of source i. For relay j (j ̸= i),

the amount of harvested energy is Bj,N(t) =
βPs|hij,N (t)|2τtx

2
where β denotes the

energy conversion efficiency [96]. Thus, the residual battery level of relay j after

the tth cycle is lj(t+1) = lj(t)+l
h
j,N(t) where l

h
j,N(t) = min

{⌊
Bj,N (t)

σ

⌋
, L− lj(t)

}
and ⌊x⌋ means the floor function.

3It means that the former (N − 1) winner sources give up the transmission opportunity in the tth cycle.
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An example of this scheme is given in Fig. 5.1. In order to estimate the CSI of

the source-to-relay link and the relay-to-destination link, two RTS packets and two

CTS packets need to be sent. Thus, the duration of the two periods, ‘win and give

up’ and ‘win and transmit’, is 4τc.

Figure 5.1: An example of the proposed DOS scheme.

In the proposed DOS scheme, relay i needs to decide whether to stop (i.e., start

a transmission) or continue (i.e., give up the transmission opportunity) according to

the channel condition and its residual energy. If a transmission is started under the

case with poor channel condition and low residual energy, a throughput degradation

is caused due to the low transmission rate. On the other hand, if a transmission is

started only for the case with good channel condition and large residual energy, a

cost in terms of the probing time, which is used to explore the channel, is caused.

Accordingly, there is a tradeoff between the current transmission throughput and the

cost for channel probing. In this work, to maximize the average network throughput,

we try to derive an optimal stopping strategy for the proposed DOS scheme. In

the following section, the optimal stopping strategy of the proposed DOS scheme is

derived.

5.3 Stopping Strategy of The Proposed DOS Scheme

In this section, we target to derive the optimal stopping strategy for the proposed DOS

scheme. According to the channel contention in the proposed DOS scheme, the ex-

pected duration of generating a winner source i ∈ {1, 2, · · · , I} is τ̄0 = 1−Ipc(1−pc)I−1

Ipc(1−pc)I−1 τc+

4τc = ( 1
Ipc(1−pc)I−1 + 3)τc. After a successful contention (denoted the Nth successful

contention), relay i decides to continue (i.e., give up the transmission opportunity
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and starts a new contention) or stop (i.e., start the tth successful transmission). If

relay i selects the stop action, the traffic volume which can be sent in the tth suc-

cessful transmission is Yi,N(t) =
Ri,N (t)τtx

2
. Thus, the average network throughput is

expressed as λ = lim
t′→∞

t′∑
t=1

Yi,N (t)

t′∑
t=1

Ti,N (t)

=
E[Yi,N ]
E[Ti,N ]

, where E [·] means expectation and Ti,N(t)

is the total time from the end of the (t−1)th cycle to the end of the tth cycle. Ti,N(t)

can be calculated by Ti,N (t) =
N∑
n=1

τn0 + τtx where τn0 (with mean τ̄0) is the duration

to generate the nth winner source. For each successful transmission, N is called the

stopping rule. To maximize the average network throughput, the optimal stopping

strategy is to find the optimal stopping rule, denoted N∗. Thus, the optimization

problem is formulated as

P1 : N∗ = arg sup
N∈D

E [Yi,N ]

E [Ti,N ]
(5.1)

where D = {N : N ≥ 1, E [Ti,N ] < ∞} denotes the collection of all stopping rules.

Hence, the maximum average network throughput of the proposed DOS scheme,

denoted λ∗, is

λ∗ = sup
N∈D

E [Yi,N ]

E [Ti,N ]
. (5.2)

Instead of solving Problem P1, the following problem, which is an equivalent

problem to Problem P1 [49], is considered.

P2 : N∗ = arg sup
N∈D

E [Yi,N − λ∗Ti,N ] (5.3)

where λ∗ satisfies V ∗(λ∗) = sup
N∈D

E [Yi,N − λ∗Ti,N ] = 0.

According to the expression of Yi,N(t) and Ti,N(t), we have

V ∗ (λ∗) = sup
N∈D

E

[
Ri,Nτtx

2
− λ∗

(
N∑
n=1

τn0 + τtx

)]
(5.4)

where Ri,N = log2
(
1 + P r

i,N |gii,N |
2) and P r

i,N = min

{
Ps|hii,N |2

|gii,N |2
, 2liσ
τtx

}
.4

Before deriving the optimal stopping rule N∗, two conditions (5.5) and (5.6) [49]

should be satisfied such that an optimal solution of Problem P2 exists for ∀λ > 0.

C1. E[ sup
N∈D

Yi,N − λTi,N ] <∞ (5.5)

4Since the expectation of Yi,N and Ti,N is considered to derive N∗, (t) is taken out in the expression.
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C2. lim sup
N→∞

{Yi,N − λTi,N} ≤ Yi,∞ − λTi,∞ = −∞. (5.6)

Then, we have the following lemma.

Lemma 8. The first condition C1 is satisfied for Problem P2 since the expression

E

[
sup
N∈D

{
Ri,N τtx

2
− λ

(
N∑
n=1

τn0 + τtx

)}]
< ∞ is satisfied. The second condition C2 is

satisfied for Problem P2 since the expression lim sup
N→∞

{
Ri,N τtx

2
− λ

(
N∑
n=1

τn0 + τtx

)}
=

−∞ is satisfied.

The proof is similar to that in [95], and thus, is omitted here.

According to Lemma 8, the optimal stopping rule N∗ exists. To derive the rule

N∗, the following lemma is given.

Lemma 9. The optimal stopping rule N∗ is given by N∗ = min {N ≥ 1 : Ri,N ≥ 2λ∗},

where λ∗ is the maximum average network throughput and is the unique solution of

E

[(
Ri,Nτtx

2
− λτtx

)+
]
= λτ̄0. (5.7)

Lemma 9 is easy to be proven by the principle of optimality in stopping rule

problems [49], and thus, the proof is omitted here.

Although λ∗ is the unique solution of (5.7), it is still difficult to solve this equation

directly. Thus, we introduce the following lemma to calculate λ∗ efficiently.

Lemma 10. For any nonnegative λ0, the fixed-point iteration λz+1 =
E

[
Ri,N∗

λz
τtx

2

]

E

N∗
λz∑

n=1
τn0 +τtx


for z = {0, 1, · · ·} would converge to λ∗, where N∗

λz
= min{N ≥ 1 : Ri,N ≥ 2λz},

E

[
Ri,N∗

λz
τtx

2

]
=

L∑
li=0

pli
τtx
2

2λz exp(−S0(22λz−1))+exp(S0)E1(S022λz)/ln 2

exp(−S0(22λz−1))
, E

[
N∗

λz∑
n=1

τn0 + τtx

]
=

L∑
li=0

pli
τ̄0

exp(−S0(22λz−1))
+ τtx, S0 = 2liσνg+Psνhτtx

2liσνgPsνh
, pli is the stationary probability that

the battery level of relay i is li, and E1(·) is the exponential integral function.

Proof. we define a function ρ(λz) =
E

[
Ri,N∗

λz
τtx

2

]

E

N∗
λz∑

n=1
τn0 +τtx

 . According to Lemma 9, λ∗ is the

unique solution of ρ(λ) = λ. According to (5.2), λ∗ is also the maximum value of
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function ρ(λ). Then, due to ρ(0) > 0, we have ρ(λ) > λ for λ < λ∗ and ρ(λ) < λ for

λ > λ∗. We discuss three cases according to the value of λ0.

If λ0 < λ∗, λz+1 = ρ (λz) ≤ ρ (λ∗) = λ∗ for z = {0, 1, 2, · · · } is obtained. In

addition, we also have λz+1 = ρ (λz) > λz for any z ≥ 0. Thus, {λz} is an increasing

set with an upper bound λ∗. Due to lim
z→∞

(λz+1 − λz) = lim
z→∞

(ρ (λz)− λz) = ρ (λ∞)−

λ∞ = 0, ρ(λ∞) = λ∞ is obtained. Since λ∗ is the unique solution of λ = ρ (λ),

λ∞ = λ∗ is obtained.

If λ0 > λ∗, λ1 = ρ (λ0) < λ∗. Thus, this case is equivalent to the case λ0 < λ∗.

If λ0 = λ∗, λz = λ∗ for any z ≥ 0.

In summary, λz would converge to λ∗ by the iteration λz+1 = ρ(λz). Next, how to

calculate ρ(λz) is analyzed in the following.

For the term E

[
Ri,N∗

λz
τtx

2

]
, we have

E

[
Ri,N∗

λz
τtx

2

]
= τtx

2
E
[
Ri,N∗

λz

]
= τtx

2
E [Ri,N |Ri,N ≥ 2λz ]

=
L∑
li=0

pli
τtx
2

∫∞
2λz

rdFRi,N
(r)

1−FRi,N
(2λz)

where FRi,N
(r) is the cumulative distribution function (CDF) of the achievable rate

Ri,N . The term pli is derived in Lemma 11. For the term FRi,N
(r), we have

FRi,N
(r) = p (Ri,N ≤ r)

= 1− p (Ri,N > r)

= 1− exp
(
−2liσνg+Psνhτtx

2liσνgPsνh
(2r − 1)

)
= 1− exp (−S0 (2

r − 1)) .

Therefore, we have

E

[
Ri,N∗

λz
τtx

2

]
=

L∑
li=0

pli
τtx
2

2λz exp(−S0(22λz−1))+exp(S0)E1(S022λz)/ln 2

exp(−S0(22λz−1))
.

Similarly, for the term E

[
N∗

λz∑
n=1

τn0 + τtx

]
, we have

E

[
N∗

λz∑
n=1

τn0 + τtx

]
= E

[
N∗
λz

]
τ̄0 + τtx

=
L∑
li=0

pli
1

1−FRi,N
(2λz)

τ̄0 + τtx

=
L∑
li=0

pli
τ̄0

exp(−S0(22λz−1))
+ τtx.
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This completes the proof.

According to Lemma 10, the value of pli=d for d ∈ {0, 1, 2, · · · , L} is needed to

derive the threshold λ∗. Accordingly, we will propose an algorithm to calculate the

stationary probability pli=d.

In the proposed DOS scheme, the battery level of each relay would be variant only

for a successful transmission. We model the battery level of each relay as a Markov

chain, denoted M1. For convenience, we omit the index N when deriving the station-

ary probability. For any relay i ∈ {1, 2, · · · , I}, let li(t) = u, u ∈ {0, 1, 2, · · · , L} and

li(t+ 1) = v, v ∈ {0, 1, 2, · · · , L} denote the battery level at the beginning of the tth

cycle and (t+1)th cycle, respectively. Then, the transition probability from li(t) = u

to li(t+ 1) = v, denoted pu→v(t), is derived as follows.

1. v > u and v < L. It means that a pair j(j ̸= i) occupies the channel for the

tth successful transmission. Let Ξj(t) denote the event which the tth successful

transmission is occupied by pair j. In addition, relay i gets the amount, denoted

(v−u)σ, of energy by energy harvesting. Thus, the transition probability is given

as (5.8), where p(Ξj(t)) denotes the probability that event Ξj(t) occurs.

pu→v(t)
=
∑
j ̸=i

p(Ξj(t))p
(
v − u ≤ lhi (t) < v + 1− u

)
= (I − 1)pc(1− pc)I−1p(Rj(t) ≥ 2λ∗)p

(
2σ(v−u)
βPsτtx

≤ |hji(t)|2 < 2σ(v+1−u)
βPsτtx

)
.

(5.8)

2. v > u and v = L. It means that a pair j(j ̸= i) occupies the channel for the tth

successful transmission. Relay i gets at least the amount, denoted (L− u)σ, of

energy by energy harvesting. Thus, the transition probability is given as (5.9).

pu→v(t)
=
∑
j ̸=i

p(Ξj(t))p
(
lhi (t) ≥ (L− u)

)
= (I − 1)pc(1− pc)I−1p(Rj(t) ≥ 2λ∗)p

(
|hji(t)|2 ≥ 2σ(L−u)

βPsτtx

)
.

(5.9)

3. v = u. It means that a pair j(j ̸= i) occupies the channel for the tth successful

transmission. Relay i gets less than the amount, denoted σ, of energy by energy
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harvesting. Thus, the transition probability is given as (5.10).

pu→v(t)
=
∑
j ̸=i

p(Ξj(t))p
(
lhi (t) < 1

)
= (I − 1)pc(1− pc)I−1p(Rj(t) ≥ 2λ∗)p

(
|hji(t)|2 < 2σ

βPsτtx

)
.

(5.10)

4. v < u and v > 0. It means that pair i occupies the channel for the tth successful

transmission. Relay i consumes the amount, denoted (u− v)σ, of energy for the

tth successful transmission. Thus, the transition probability is given as (5.11).

pu→v(t)

= p(Ξi(t))p
(

2σ(u−v−1)|gii(t)|2
τtx

< Ps|hii(t)|2 ≤ 2σ(u−v)|gii(t)|2
τtx

|Ri(t) ≥ 2λ∗
)

= pc(1− pc)I−1p (Ri(t) ≥ 2λ∗) p
(

2σ(u−v−1)
τtxPs

< |hii(t)|2

|gii(t)|2
≤ 2σ(u−v)

τtxPs
|Ri(t) ≥ 2λ∗

)
.

(5.11)

5. v < u and v = 0. It means that pair i occupies the channel for the tth successful

transmission. Relay i consumes the amount, denoted uσ, of energy for the tth

successful transmission. Thus, the transition probability is given as (5.12).

pu→v(t)

= p(Ξi(t))p
(
Ps|hii(t)|2 > 2σ(u−1)|gii(t)|2

τtx
|Ri(t) ≥ 2λ∗

)
= pc(1− pc)I−1p (Ri(t) ≥ 2λ∗) p

(
|hii(t)|2

|gii(t)|2
> 2σ(u−1)

τtxPs
|Ri(t) ≥ 2λ∗

)
.

(5.12)

Let Πi , {pli=0, pli=1, pli=2, · · · , pli=L} denote the stationary distribution of bat-

tery levels for relay i. Then, we consider the following iteration Πi(κ+1) = Πi(κ)Pi(κ),

where κ denotes the index of the iteration, Πi(κ) denotes the probability distribution

of battery levels for relay i at the κth iteration, and Pi(κ) denotes the transition

probability matrix of energy levels for relay i at the κth iteration. Accordingly, we

have Πi(κ) = {pli=0(κ), pli=1(κ), pli=2(κ), · · · , pli=L(κ)} and Pi(κ) = {pu→v(κ),∀u ∈

{0, 1, 2, · · · , L},∀v ∈ {0, 1, 2, · · · , L}}. Then, Pi(κ) can be obtained according to

(5.8)-(5.12). The matrix Pi(κ) is a stochastic matrix with dimension (L+1)×(L+1).

However, Pi(κ) varies with the variation of κ, and thus, there is no standard method

to calculate the stationary distribution Πi. In this work, we propose the following

algorithm, denoted Algorithm 5.1, to derive the stationary distribution Πi, where

∥Πi(κ)− Πi(κ− 1)∥ = max
0≤d≤L

|pli=d(κ)− pli=d(κ− 1)|. Then, Lemma 11 is introduced

to demonstrate that Algorithm 5.1 can obtain the unique stationary distribution Πi.
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Algorithm 5.1 Calculate the stationary distribution of relay i’s battery level

1: Initialize Πi(0), ς0, and κ = 0,
2: loop:
3: Compute Pi(κ) by (5.8)-(5.12),
4: Compute Πi(κ+ 1) = Πi(κ)Pi(κ),
5: Set κ = κ+ 1,
6: if ∥Πi(κ)−Πi(κ− 1)∥ > ς0 then
7: goto loop
8: end if
9: Set Πi = Πi(κ).

Lemma 11. Given an initial value of Πi(0) and ς0 → 0, Πi(κ) in Algorithm 5.1

would converge to the unique stationary state distribution Πi.

Proof. First, we construct a Markov chain (denoted M2) where the state, denoted

C , {l1, l2, · · · , lI}, is the battery level of all relays. In this Markov chain, there

are (L + 1)I possible states. Let Φ denote the set of all possible states. If the

transmission opportunity is occupied by pair i at state C, the possible next state,

denoted C′ = {l′1, l′2, · · · , l′I}, can be derived by

C′ =


l1 + lh1
l2 + lh2
· · ·
li − lri
· · ·
lI + lhI



T

(5.13)

where lri =
⌈
P r
i τtx
2σ

⌉
.

Therefore, the transition probability from state C to state C′ is derived as

pC→C′ = pc(1− pc)I−1p(Ri ≥ 2λ∗)plri

∏
j ̸=i

plhj (5.14)

where plhj and plri are derived as (5.15) and (5.16), respectively.

plhj =


p
(
|hij|2 < 2σ

βPsτtx

)
, lhj = 0

p

(
2lhj σ

βPsτtx
≤ |hij|2 <

2(lhj +1)σ
βPsτtx

)
, 0 < lhj < L− lj

p
(
|hij|2 ≥

2lhj σ

βPsτtx

)
, lhj (t) = L− lj

(5.15)

plri =


p

(
2(lri−1)σ
Psτtx

< |hii|2

|gii|2
≤ 2lri σ

Psτtx
|Ri ≥ 2λ∗

)
, lri < li

p

(
|hii|2

|gii|2
>

2(lri−1)σ
Psτtx

|Ri ≥ 2λ∗
)
, lri = li

(5.16)
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Thus, for any state C ∈ Φ, the transition probability to any possible state C′ ∈ Φ

can be calculated according to (5.13), (5.14), (5.15), and (5.16). Then, the transition

probability matrix of this Markov chain, denotedPC, with dimension (L+1)I×(L+1)I

can be obtained. Note that PC is invariant. It is easy to know that Markov chain M2

is aperiodic and has only one closed communicating class. Thus, a unique stationary

state distribution, denoted ΓC , {pC, ∀C ∈ Φ}, of this Markov chain exists and

the equation ΓC = ΓCPC holds. In addition, given an initial ΓC(0), the iteration

ΓC(κ + 1) = ΓC(κ)PC for κ = {0, 1, · · · } would converge to ΓC, where ΓC(κ) =

{pC(κ),∀C ∈ Φ} denotes the probability distribution of Markov chain M2 at the κth

iteration [97].

Then, we analyze the iteration ΓC(κ+ 1) = ΓC(κ)PC. After an iteration, we can

obtain ΓC(κ+ 1). In addition, we can also obtain the probability pli=v(κ+ 1) where

v ∈ {0, 1, 2, · · · , L} in Markov chain M2. According to the definition of pli=v(κ + 1),

we have
pli=v(κ+ 1)

=
L∑
u=0

p{∀C∈Φli=u→∀C′∈Φli=v}(κ)

=
L∑
u=0

p{∀C∈Φli=u}(κ)p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ)

=
L∑
u=0

{ ∑
C∈Φli=u

pC(κ)

}
p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ).

(5.17)

For the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ), we have the following cases.

1. v > u and v < L. Then, the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ) is
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derived as (5.18).

p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ)

=
p{∀C∈Φli=u→∀C′∈Φli=v}

(κ)

p{∀C∈Φli=u}(κ)

= 1
p{∀C∈Φli=u}(κ)

×
∑
j ̸=i

L∑
d=0

{
p(Ξj(κ)|lj = d)p{∀C∈Φli=u,lj=d}(κ)p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u,Ξj(κ)}(κ)

}
= 1

p{∀C∈Φli=u}(κ)

∑
j ̸=i

L∑
d=0

{p(Ξj(κ)|lj = d)p{∀C∈Φli=u}(κ)p{∀C∈Φlj=d}(κ)

×p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u,Ξj(κ)}(κ)}

= 1
p{∀C∈Φli=u}(κ)

∑
j ̸=i

{
p(Ξj(κ))p{∀C∈Φli=u}(κ)p(v − u ≤ lhi (κ) < v − u+ 1)

}
= (I − 1)pc(1− pc)I−1p(Rj(κ) ≥ 2λ∗)p

(
2σ(v−u)
βPsτtx

≤ |hji(κ)|2 < 2σ(v+1−u)
βPsτtx

)
.

(5.18)

2. v > u and v = L. Then, the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ) is

derived as (5.19).

p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ)

= 1
p{∀C∈Φli=u}(κ)

∑
j ̸=i

{
p(Ξj(κ))p{∀C∈Φli=u}(κ)p(l

h
i (κ) ≥ L− u)

}
= (I − 1)pc(1− pc)I−1p(Rj(κ) ≥ 2λ∗)p

(
|hji(κ)|2 ≥ 2σ(L−u)

βPsτtx

)
.

(5.19)

3. v = u. Then, the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ) is derived as

(5.20).

p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ)

= 1
p{∀C∈Φli=u}(κ)

∑
j ̸=i

{
p(Ξj(κ))p{∀C∈Φli=u}(κ)p(l

h
i (κ) < 1)

}
= (I − 1)pc(1− pc)I−1p(Rj(κ) ≥ 2λ∗)p

(
|hji(κ)|2 < 2σ

βPsτtx

)
.

(5.20)

4. v < u and v > 0. Then, the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ) is

derived as (5.21).

p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ)
= 1

p{∀C∈Φli=u}(κ)
p(Ξi(κ))p{∀C∈Φli=u}(κ)p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u,Ξi(κ)}(κ)

= pc(1− pc)I−1p (Ri(κ) ≥ 2λ∗) p
(

2σ(u−v−1)
τtxPs

< |hii(κ)|2

|gii(κ)|2
≤ 2σ(u−v)

τtxPs
|Ri(κ) ≥ 2λ∗

)
.

(5.21)
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5. v < u and v = 0. Then, the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ) is

derived as (5.22).

p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(κ)
= 1

p{∀C∈Φli=u}(κ)
p(Ξi(κ))p{∀C∈Φli=u}(κ)p{C∈Φli=u→∀C′∈Φli=0|∀C∈Φli=u,Ξi(κ)}(κ)

= pc(1− pc)I−1p (Ri(κ) ≥ 2λ∗) p
(

|hii(κ)|2

|gii(κ)|2
> 2σ(u−1)

τtxPs
|Ri(κ) ≥ 2λ∗

)
.

(5.22)

After that, we analyze the iteration Πi(κ+ 1) = Πi(κ)Pi(κ) in Markov chain M1.

According to the definition of pli=v(κ+ 1), we have

pli=v(κ+ 1) =
L∑
u=0

pli=u(κ)pu→v(κ) (5.23)

where pu→v(κ) can be obtained by (5.8)-(5.12)

Then, for Markov chain M2, the initial state of the iteration ΓC(κ+1) = ΓC(κ)PC

is set as ΓC(0), which satisfies the condition p{∀C∈Φli=d}(0) = p{∀C∈Φlj=d}(0) for

d ∈ {0, 1, 2, · · · , L} and {i, j} ∈ {1, 2, · · · , I}. Accordingly, for any relay i, the

probability pli=d(0) for d ∈ {0, 1, 2, · · · , L} can be derived as

pli=d(0) = p{∀C∈Φli=d}(0)
=

∑
C∈Φli=d

pC(0) (5.24)

where Φli=d = {C ∈ Φ : li = d} and pC(0) is the element of ΓC(0). Then, given the

initial state ΓC(0), the next state, denoted ΓC(1), can be derived by the iteration

ΓC(κ+ 1) = ΓC(κ)PC. In addition, pli=d(1) can also be derived by (5.17).

For Markov chain M1, the initial state Πi(0) is set as

Πi(0) = {pli=0(0), pli=1(0), pli=2(0), · · · , pli=L(0)} (5.25)

where pli=d(0) for d ∈ {0, 1, 2, · · · , L} is obtained by (5.24). Then, given the initial s-

tate Πi(0), pli=d(1) can be derived by (5.23) after the iteration Πi(κ+1) = Πi(κ)Pi(κ).

Since the value of pli=d(0) for i ∈ {1, 2, · · · , I} and d ∈ {0, 1, 2, · · · , L} in Markov

chain M1 and Markov chain M2 is the same, the probability pu→v(0) is equivalen-

t to the probability p{C∈Φli=u→∀C′∈Φli=v|∀C∈Φli=u}(0) for u ∈ {0, 1, 2, · · · , L} and

v ∈ {0, 1, 2, · · · , L} according to (5.8)-(5.12) and (5.18)-(5.22). In addition, the

probability pli=u(0) is equivalent to the probability
∑

C∈Φli=u

pC(0) according to the
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definition of pli=u(0). Accordingly, pli=d(1) for d ∈ {0, 1, 2, · · · , L} which is ob-

tained by (5.17) is same with that obtained by (5.23). In other words, the val-

ue of pli=d(1) in Markov chain M1 and Markov chain M2 is the same. Note that

Πi(1) = {pli=0(1), pli=1(1), pli=2(1), · · · , pli=L(1)}. Thus, the next state of state Πi(0)

in Markov chain M1 by the iteration Πi(κ + 1) = Πi(κ)Pi(κ) can also be derived by

the iteration ΓC(κ+ 1) = ΓC(κ)PC in Markov chain M2.

Similarly, we can then conclude that the value of pli=d(2) in Markov chain M1

and Markov chain M2 is the same. Accordingly, after κ ∈ {0, 1, 2, · · · } iterations,

the value of pli=d(κ) in Markov chain M1 and Markov chain M2 would still keep the

same. Since the iteration ΓC(κ+ 1) = ΓC(κ)PC for κ→∞ converges to the unique

stationary state distribution ΓC, pli=d(κ) which is derived by (5.17) in Markov chain

M2 also converges to the unique stationary probability pli=d when κ→∞. Therefore,

for iteration Πi(κ + 1) = Πi(κ)Pi(κ) in Markov chain M1, pli=d(κ) which is derived

by (5.23) also converges to the unique stationary probability pli=d when κ→∞. Due

to Πi(κ) = {pli=0(κ), pli=1(κ), pli=2(κ), · · · , pli=L(κ)}, Πi(κ) in Algorithm 5.1 would

converge to the unique stationary state distribution Πi.

This completes the proof.

According to Lemma 9, Lemma 10, and Lemma 11, we propose an iterative al-

gorithm, named Algorithm 5.2, to obtain the optimal stopping rule N∗ for Problem

P1.

In summary, the optimal stopping strategy of the proposed DOS scheme is stated

as follows. If source i is the winner source after the channel contention, relay i

calculates the achievable transmission rate Ri according to its residual energy and

the channel condition. If Ri ≥ 2λ∗, source i transmits its data to relay i with rate

Ri, and then, relay i forwards the received data to destination i. Otherwise, source

i gives up the transmission opportunity and then all I sources start a new channel

contention. Note that the maximal average network throughput λ∗ is calculated off-

line by Algorithm 5.2. Therefore, relay i can make a fast decision. In other words,

the proposed scheme is easy to implement.
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Algorithm 5.2 The optimal stopping rule N∗ of Problem P1

1: Initialize λ0, ς1, and z = 0,
2: loop:
3: Compute Πi by Algorithm 1,

4: Compute E

[
Ri,N∗

λz
τtx

2

]
,

5: Compute E

[
N∗

λz∑
n=1

τn0 + τtx

]
,

6: Compute λz+1 =
E

[
Ri,N∗

λz
τtx

2

]

E

N∗
λz∑

n=1
τn0 +τtx

 ,
7: Set z = z + 1,
8: if |λz − λz−1| > ς1 then
9: goto loop

10: end if
11: Set λ∗ = λz,
12: The optimal stopping rule N∗ = min {N ≥ 1 : Ri,N ≥ 2λ∗}.

5.4 Performance Evaluation

In this section, simulation results are provided to evaluate the performance of the

proposed DOS scheme. The source-to-relay link and relay-to-destination link experi-

ence i.i.d. Rayleigh fading. The number of source-destination pairs is set as 5. The

channel coherence duration and the duration of an RTS/CTS packet’s transmission

are τtx = 3ms and τc = 30µs, respectively. The channel contention probability of

a source is set as 0.2. The capacity of a source’s battery and the amount of energy

for each level are Bmax = 103σ and σ = 10−3J , respectively. β is set as 0.7. If a

source i starts a transmission, the average received signal-to-noise ratio (SNR) at

relay j(j ̸= i) is set as 6dB.

Firstly, we validate the optimal throughput λ∗ of the proposed scheme exists. In

addition, we also need to verify that λ∗ of the proposed DOS scheme can be obtained

by Algorithm 5.2. If source i starts a transmission, the average received SNR at relay

i is set as 15dB. We also set ν2h = ν2g . In the simulation, different value of λ are

tested for the proposed scheme, which means N = min {N ≥ 1 : Ri,N ≥ 2λ}. The

simulation results are given in Fig. 5.2. We observe that the average throughput is

increasing, and then decreasing with the growth of λ. The optimal point is achieved
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at the point where the average throughput is approximately equal to the value of λ.

Thus, the optimal value of λ is the maximal average throughput of the network. For

the proposed DOS scheme, λ∗ which is calculated by Algorithm 5.2 is 2.07. According

to Fig. 5.2, the value of λ at the optimal point is almost the same with λ∗ for the

proposed DOS scheme. Thus, it validates that λ∗ can be calculated by Algorithm 5.2.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

optimal point

Figure 5.2: value of λ v.s. the average throughput.

To evaluate our proposed DOS scheme, we perform a comparison with two bench-

mark DOS schemes.

• No wait scheme: In this scheme, the winner source always transmit its data with

the achievable transmission rate, and then, the relay forwards the received data

without waiting.

• Two-level scheme5: In this scheme, let source i denote the winner source. Then,

relay i probes the CSI of the source-to-relay link by the RTS/CTS scheme.

Then, relay i decides to stop (i.e., start a transmission) or continue (i.e., give

up the transmission opportunity). If the stop action is taken, source i starts a

transmission with rate Ri,N(t) = log2 (1 + Ps|hii,N(t)|2) over the next duration

τtx. Once receiving the data, relay i probes the CSI of the relay-to-destination

link by the RTS/CTS scheme. If the achievable transmission rate of this link is

not less than Ri,N(t), relay i forwards its received data to destination i. Other-

5A similar scheme can be found in [31]
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wise, relay i waits a duration τtx and repeats the procedure (i.e., probe the CSI

of the relay-to-destination link). Similar to our scheme, the optimal strategy

of this scheme can be derived as N∗ = min {N ≥ 1 : f(Ri,N , li) ≥ λ∗τtx}, where

f(Ri,N , li) = Ri,Nτtx − λ∗

exp

{
−(2

Ri,N −1)τtx
liσv2g

}(2τc + τtx), λ
∗ is the unique solution of

E [(f(Ri,N , li)− λτtx)+] = λτ1, and τ1 =
(

1
Ipc(1−pc)I−1 + 1

)
τc.

In the simulation, the average SNR of the source-to-relay link varies form 8dB to

30dB. The optimal stopping strategy is adopted for the proposed DOS scheme and

the two-level scheme. The simulation results are given in Fig. 5.3. It can be seen that

our proposed scheme achieve a larger average throughput than the no wait scheme

and the two-level scheme. If the average SNR of the source-to-link takes a small value,

the two-level scheme can also achieve a good performance. The reason is that this

scheme can fully utilize the source-to-relay link with good condition. However, the

two-level scheme has a bad performance when the average SNR of the source-to-relay

link is large. It is because that it wastes lots of time to wait the relay-to-destination

link to be good enough.

10 15 20 25 30
0.5

1

1.5

2

2.5
Proposed DOS scheme
Two-level scheme
No wait scheme

Figure 5.3: The average throughput of different DOS scheme.
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5.5 Conclusion

In this chapter, we propose a DOS scheme in wireless networks with RF energy har-

vesting relay. To achieve the maximal network utility, the optimal stopping strategy

is derived for the DOS scheme.
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Chapter 6

Optimal Offloading in Fog
Computing Systems with
Non-orthogonal Multiple Access

Since the basic idea of non-orthogonal multiple access (NOMA) is to implement mul-

tiple access in the power domain, one of the most important methods to achieve the

benefits of NOMA should be power allocation. The optimal power allocation in cel-

lular networks with NOMA has been widely investigated. As a promising wireless

technique to improve the spectrum efficiency, NOMA has also been shown impor-

tant to the evolution of many types of applications or networks, e.g., vehicular ad

hoc networks, digital TV broadcasting, terrestrial-satellite networks, fog computing,

etc. [48]. Different from traditional cellular networks, the above mentioned networks

with NOMA have some specific properties. Thus, NOMA power allocation schemes

in traditional cellular networks cannot be directly adopted in other networks. For

example, in fog computing, the computing capacity of fog nodes and the computing

latency of tasks need to be considered when configuring NOMA power allocation.

Fog computing has recently become a promising method to meet the increasing

computation demands from mobile applications in the Internet of Things (IoT). In

fog computing, the computation tasks of an IoT device can be offloaded to fog nodes.

Due to the limited computation capacity of a fog node, the IoT device may try to

offload its tasks to multiple fog nodes. In this chapter, to improve the offloading effi-

ciency, downlink non-orthogonal multiple access is applied in fog computing systems

such that the IoT device can perform simultaneous offloading to multiple fog nodes.

Then, to maximize the long-term average system utility, a task and power allocation
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problem for computation offloading is formulated, subject to task delay and energy

cost constraints. By Lyapunov optimization method, the original problem is trans-

formed to an online optimization problem in each time slot, which is non-convex.

Accordingly, we propose an algorithm to solve the non-convex online optimization

problem with polynomial complexity.

6.1 Introduction

In the past decade, the IoT and many new mobile applications have experienced fast

growth. However, the limited capability of mobile devices cannot meet the compu-

tation demands of the applications [98]. Although traditional cloud computing may

provide sufficient computation resources, the servers are normally geographically cen-

tralized. Hence, when dealing with massive computing demands, the network may be

congested and the latency may be high. Users with some IoT applications, especially

latency-sensitive applications, may suffer from poor quality of experience (QoE). A

feasible solution to this problem is fog computing [99]. Serving as an intermediate

layer between IoT devices and cloud servers, fog computing utilizes computing capa-

bilities at the network edge, and thus, offers a new solution to meet the computing

demands of lots of IoT applications [100, 101]. Computing devices of fog comput-

ing, referred to as fog nodes, can be traditional networking components (e.g., routers,

base stations, switches, and so on) that are close to the IoT devices. Accordingly, the

offloading latency can be largely reduced due to the low transmission latency. Fog

computing can enhance cloud computing in many applications, e.g., latency-sensitive

applications [102].

Fog computing has attracted a lot of efforts from both industry and academia.

In [103], a platform that uses fog computing to improve the efficiency in industrial

processes is introduced. In [104], a new type of vehicular networks, named vehicular

fog computing (VFC), is proposed. The architecture and challenges of VFC are

discussed. As another example, the face identification task in many applications

usually needs a large amount of computation and communication capability. A new

fog computing-aided face identification model is proposed in [105]. Fog nodes process

the raw data of facial images, and send their processing results (feature values of the
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original facial images) to the cloud for further processing, thus largely reducing the

traffic load to and the computation load of the cloud. The work in [106] introduces

a four-layer distributed fog computing architecture in smart cities, including the top

layer, the intermediate computing layer, the edge computing layer, as well as the

sensing layer. The work in [107] reviews research efforts on security and resilience of

fog computing.

Different from traditional cloud servers, resources in fog nodes may be very limited.

Hence, allocation of computing data, i.e., computation offloading, needs to balance

the cost of each fog node [108]. In [109], an effective computation offloading strategy is

proposed with one IoT device and one fog node. The proportion of tasks distributed to

the local computing and fog computing is derived. Moreover, the case with an energy-

limited IoT device is also considered. The work in [110] considers a computation

offloading scheme from a single IoT device to multiple fog nodes. The number of tasks

distributed to each fog node is determined to minimize the energy cost. In [111], a

computation offloading scheme is designed for multiple IoT devices and one fog node,

which can achieve fairness among the IoT devices.

In fog computing, each fog node often needs to provide computing services to

multiple IoT devices. Hence, the computation resources allocated for each IoT de-

vice are limited. Similarly, each IoT may have multiple fog nodes in its vicinity. To

accelerate the computation of its tasks, the IoT device may try to offload its tasks

to several fog nodes. For example, the feature extraction task in face identification,

which is moved to fog nodes [105], still needs lots of computation resources. This task

can be divided to several small tasks and executed in parallel. Thus, the IoT device

tries to offload these small tasks to multiple fog nodes to accelerate the execution.

As the computation offloading is usually performed by wireless channels, the orthog-

onal multiple access (OMA) technologies over wireless channels, e.g., time-division

multiple access (TDMA), frequency-division multiple access (FDMA), and orthog-

onal frequency-division multiple access (OFDMA) [112], are commonly adopted to

offload the tasks [109]- [111]. In other words, at a given moment, each fog node is

assigned a unique wireless resource block (e.g., a time slot in TDMA or some sub-

carriers in OFDMA) for computation offloading. However, the spectrum efficiency of

OMA techniques may be low due to the fluctuation in channel conditions for different
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nodes, e.g., some resource blocks may be allocated to nodes with poor channel con-

ditions. Therefore, the computing efficiency may be degraded as the tasks may not

be delivered to fog nodes in a timely manner. In the wireless communication litera-

ture, to improve the spectrum efficiency, non-orthogonal multiple access (NOMA) is

introduced [12]. In NOMA, multiple transmissions can share a single resource block

simultaneously [113], and thus, the spectrum efficiency is largely improved compared

to OMA [114]. NOMA has been considered as a promising radio access technology

for the fifth-generation (5G) wireless communication systems [115]. The integration

of NOMA with fog computing can further enhance the computation offloading per-

formance as follows. By NOMA, an IoT device can use one single wireless resource

block to offload data to multiple fog nodes. Thus, the computation offloading latency

can be largely reduced, and the computing capacity of multiple fog nodes can be well

exploited [116]. This feature can largely benefit latency-sensitive applications.

Although fog computing with NOMA brings profits, some design challenges are

also introduced, e.g., computation offloading schemes with OMA [109]- [111] cannot be

adopted to the NOMA case directly. In [117], uplink NOMA is applied to computation

offloading, in which multiple mobile users offload tasks to a fog node simultaneously

by uplink NOMA. To minimize the energy cost, a convex optimization problem is

formulated and solved. However, this scheme cannot be adopted to the case when an

IoT device offloads its tasks to multiple fog nodes. In addition, there are two issues

for the work in [117]. 1) It is assumed that computation capacity of a fog node is

unlimited, which may not be practical. 2) The proposed scheme in [117] cares only

the profit of executing a single task, i.e., the short-term profit. However, for some

applications, e.g., multi-media streaming, it is more appropriate to consider system

performance over a long term [109].

To address the above issues, we propose a novel computation offloading scheme

with downlink NOMA in this work. The major contributions of this work are sum-

marized as follows.

1. A computation offloading scheme with downlink NOMA is proposed in a fog

computing system with one IoT device1 and several fog nodes. The computation

1Our work can be straightforwardly extended to scenarios with multiple IoT devices.
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capability of each fog node which is allocated to the IoT device is limited.

2. In the proposed scheme, an optimization problem to maximize the long-term

average system utility is formulated, subject to the task delay constraint and

energy cost constraint. The Lyapunov optimization method is adopted to trans-

form the formulated problem to an online optimization problem, which only

involves instantaneous variables in each time slot.

3. The online optimization problem is still a non-convex optimization problem.

Thus, we propose an algorithm with polynomial computation complexity to

solve it.

4. Performance analysis is carried out for the proposed scheme by simulation, which

shows that our proposed scheme obtains much more profits compared with tra-

ditional computation offloading schemes.

The rest of this chapter is organized as follows. Section 6.2 gives the system mod-

el and formulates the optimization problem. Section 6.3 transforms the formulated

problem to an online optimization problem, and proposes a low-complexity algorith-

m to solve the online optimization problem. Section 6.4 shows simulation results.

Finally, Section 6.5 concludes this chapter.

6.2 System Model and Problem Formulation

As shown in Fig. 6.1, we consider a fog computing system, where an IoT device

running a computation-intensive application is assisted by N fog nodes. Computation

offloading from the IoT device to the fog nodes is performed over the wireless channels.

A slotted time structure is implemented in the system. The duration of each time

slot is T .

At time slot t ∈ {0, 1, 2, · · ·}, the IoT device generates an amount, denoted

Dmax (t), of data that need to be computed, and it allocates a portion of the da-

ta, denoted D (t), to be offloaded to fog nodes. The remaining data with amount

(Dmax (t) −D (t)) can be computed at the local CPU of the IoT device or by a tra-

ditional cloud server. Let Ri (t) denote the amount of data that are delivered to fog

node i ∈ {1, 2, · · · , N} at the tth time slot. Then, the transmission rate between the
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Figure 6.1: The fog computing system model.

IoT device and fog node i at the tth time slot is ri (t) =
Ri(t)
T

. The IoT device has a

task buffer to store the data to be offloaded to fog nodes. Let Q (t) denote the total

data amount in the IoT device’s task buffer at the beginning of the tth time slot.

Thus, we have

Q (t+ 1) =

[
Q (t)−

N∑
i=1

Ri (t)

]+
+D (t) (6.1)

where [x]+ means max {x, 0}.

Each fog node has limited computing capacity. At fog node i, it maintains a task

buffer to store the data from the IoT device. Let Ci (t) denote the occupancy of fog

node i’s task buffer at the beginning of the tth time slot. Fog node i provides a service

rate (CPU frequency) denoted as fi (t) to the IoT device at the tth time slot. Thus,

the amount of data from the IoT device that can be computed by fog node i at the

tth time slot is Li (t) =
fi(t)T
φ

, where φ is the number of CPU cycles that are needed

to compute a unit size of the data. Thus, we have

Ci (t+ 1) = [Ci (t)− Li (t)]+ +Ri (t) . (6.2)

In this study, NOMA is adopted to transmit data from the IoT device to fog

nodes. The wireless channels are assumed as independent and identically distributed

(i.i.d.) block Rayleigh fading. In other words, the channel gain between the IoT
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device and fog node i, denoted as gi (t), keeps unchanged within one time slot, but

varies independently from a time slot to the next one. gi (t) can be expressed as

gi (t) = g0
di

α , where g0 follows an exponential distribution with unit mean, di is the

distance between the IoT device and fog node i, and α is the path-loss exponent.

Without loss of generality, for the target slot (the tth time slot), we assume g1 (t) ≥

g2 (t) ≥ · · · ≥ gN (t) [114]. For the IoT device’s NOMA transmissions to the fog

nodes at the tth time slot, let pi (t) denote the power allocated to the data offloading

to fog node i. The transmission power consumption of the IoT device in each time

slot should be no more than a threshold value denoted as pmax. Thus, we have the

constraint
N∑
i=1

pi (t) ≤ pmax. Moreover, the long-term average transmission power

consumption of the IoT device should not be more than a threshold value denoted

as p̄. Thus, we also have the constraint lim
τ→∞

τ−1∑
t=0

E

[
N∑
i=1

pi(t)

]
τ

≤ p̄, where E [·] means

expectation2. Based on the principle of NOMA [114], the transmission rate between

the IoT device and fog node i at the tth time slot is given as

ri (t) = W log2

1 +
pi (t) gi (t)

i−1∑
j=1

pj (t) gi (t) + υ

 , (6.3)

where W is the channel bandwidth and υ is the background noise power.

In fog computing system, the IoT device would try to offload as much data as

possible to fog nodes under power constraints of the IoT device and computation

capacity constraints of the fog nodes. Accordingly, we define the system utility as

the amount of data that are computed by fog nodes. At the tth time slot, the

actual amount of data that are computed by fog node i is min {Li (t) , Ci (t)}. To

guarantee the QoE of the IoT device, the input data to the IoT device’s task buffer

should be executed under finite execution delay, and thus, the amount of computed

data by fog nodes is equivalent to the amount of input data to the IoT device’s

task buffer in a long term. Thus, the long-term system utility can be expressed as

U , log(1+ lim
τ→∞

τ−1∑
t=0

E[D(t)]
τ

).3 In this study, we maximize the long-term system utility

2In our problem formulation, we optimize D(t), p1(t), p2(t), ..., pN (t). The expectation is over other
variables such as Q(t) and C1(t), ..., CN (t).

3In addition to the logarithmic function, the long-term system utility function can be other non-decreasing
functions.
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by optimizing the input data size D(t) to the IoT device’s task buffer and the power

allocation vector for data transmissions p (t) , {p1 (t) , p2 (t) , · · · , pN (t)}. Thus, the

optimization problem (named P1) is stated as follows:

P1 : max
D(t),p(t)

U = log

(
1 + lim

τ→∞

τ−1∑
t=0

E [D (t)]

τ

)
(6.4a)

s.t. pi (t) ≥ 0, ∀i ∈ {1, 2, · · · , N} ,

∀t ∈ {0, 1, 2, · · ·} (6.4b)
N∑
i=1

pi (t) ≤ pmax, ∀t ∈ {0, 1, 2, · · ·} (6.4c)

lim
τ→∞

τ−1∑
t=0

E

[
N∑
i=1

pi (t)

]
τ

≤ p̄ (6.4d)

lim
t→∞

E [Q (t)]

t
= 0 (6.4e)

lim
t→∞

E [Ci (t)]

t
= 0, ∀i ∈ {1, 2, · · · , N} (6.4f)

0 ≤ D (t) ≤ Dmax (t) , ∀t ∈ {0, 1, 2, · · ·} (6.4g)

where (6.4b), (6.4c), and (6.4d) are power allocation constraints, (6.4e) and (6.4f),

which let the task buffers remain mean rate stable [57], are to guarantee that the

data can be computed with finite execution delay, and (6.4g) is the input data size

constraint to the IoT device’s task buffer.

6.3 Problem Transformation and Proposed Algorithm

In this section, we will solve Problem P1.

In Problem P1, constraint (6.4d) is hard to handle, and thus, it is challenging to

solve Problem P1. To address this challenging issue, we use the method of virtual

queue [57] to transform constraint (6.4d) to an equivalent one, as follows.

Lemma 12. Constraint (6.4d) in Problem P1 can be replaced by the following con-

straint

lim
t→∞

E [B (t)]

t
= 0, (6.5)
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where B (t) is a virtual queue [57] defined as

B (t+ 1) ,
[
B (t) +

N∑
i=1

pi (t)− p̄

]+
, (6.6)

with B(0) = 0.

Proof. According to the definition of B(t), we have B(t + 1) = B(t) − b(t) for t ∈

{0, 1, 2, · · · }, where b(t) ∆
= min{p̄−

N∑
i=1

pi(t), B(t)}. Then, we have

B(1)−B(0) = −b(0),
B(2)−B(1) = −b(1),
...
B(τ)−B(τ − 1) = −b(τ − 1).

(6.7)

Then, taking summation of the equations in (6.7), we have B(τ) − B(0) =

−
τ−1∑
t=0

b(t) ≥ −
τ−1∑
t=0

[p̄−
N∑
i=1

pi(t)]. Accordingly, we have
B(τ)
τ
−B(0)

τ
≥ − 1

τ

τ−1∑
t=0

[p̄−
N∑
i=1

pi(t)],

and by taking expectation on both sides of the inequality and taking τ →∞, we have

lim
τ→∞

E[B(τ)]
τ

≥ lim
τ→∞

{
− 1
τ

τ−1∑
t=0

[
p̄− E

[
N∑
i=1

pi(t)

]]}

= −p̄+ lim
τ→∞

τ−1∑
t=0

E

[
N∑
i=1

pi(t)

]
τ

.

(6.8)

Thus, if lim
τ→∞

E[B(τ)]
τ

= 0, we have lim
τ→∞

τ−1∑
t=0

E

[
N∑
i=1

pi(t)

]
τ

≤ p̄. It means that constraint

(6.4d) in Problem P1 can be replaced by constraint (6.5). This completes the proof.

According to Lemma 12, the long-term power consumption of the IoT device can

be estimated by B (t).

As Problem P1 considers the long-term utility, it can be modeled as a Markov

Decision Process (MDP) problem. Then, some general algorithms for MDP problems,

e.g., value iteration algorithm, can be adopted. However, to find the optimal policy,

it needs to simulate for a long time. Moreover, if we model Problem P1 as an MDP

problem, the number of states is huge (for example, the occupancy of the IoT device’s

task buffer is continuous, which may have to be quantized to a large number of stages

in MDP). Thus, we do not model Problem P1 using MDP.
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In order to find a low-complexity algorithm to solve Problem P1, we use Lyapunov

method [57]- [118] to transform Problem P1 to an online optimization problem that

only involves instantaneous variables of each time slot. Firstly, the Lyapunov function

is defined as

Y (t) , 1

2

[
B2 (t) +Q2 (t) +

N∑
i=1

C2
i (t)

]
. (6.9)

Then, the conditional Lyapunov drift is given as

∆ (t) = E [Y (t+ 1)− Y (t) |S (t) ] , (6.10)

where S (t) , {B (t) , Q (t) , C1 (t) , C2(t), · · · , CN (t)}. Thus, the Lyapunov drift-

plus-penalty function is expressed as

∆V (t) = ∆ (t)− V E [log (1 +D (t)) |S (t) ] , (6.11)

where V ≥ 0 is a parameter that can be used to achieve a balance between queue

stability and system utility. An upper bound of ∆V (t) is given by the following

lemma.

Lemma 13. For any D (t) and p (t), ∆V (t) is upper bounded by

∆V (t) ≤M + E

[
B (t)

(
N∑
i=1

pi (t)− p̄
)
S (t)

]
+ E

[
Q (t)

(
D (t)−

N∑
i=1

Ri (t)

)
S (t)

]
+ E

[
N∑
i=1

(
Ci (t) (Ri (t)− Li (t))

)
S (t)

]
− V E

[
log (1 +D (t)) S (t)

]
,

(6.12)

where M is a constant.

Proof. We use the method in [57] to prove this lemma.

For any x ≥ 0, y ≥ 0, and z ≥ 0, we have

([x− y]+ + z)2

= ([x− y]+)2 + z2 + 2[x− y]+z
(i)

≤ (x− y)2 + z2 + 2xz
= x2 + y2 + z2 + 2x(z − y),

where step (i) comes from ([x− y]+)2 ≤ (x− y)2 and [x− y]+ ≤ x. Accordingly, we

have
Q2 (t+ 1)−Q2 (t)

=

([
Q (t)−

N∑
i=1

Ri (t)

]+
+D (t)

)2

−Q2 (t)

≤
(

N∑
i=1

Ri (t)

)2

+D2 (t) + 2Q (t)

(
D (t)−

N∑
i=1

Ri (t)

)
,

(6.13)
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C2
i (t+ 1)− C2

i (t)

=
(
[Ci (t)− Li (t)]+ +Ri (t)

)2 − C2
i (t)

≤ L2
i (t) +R2

i (t) + 2Ci (t) (Ri (t)− Li (t)) .
(6.14)

We also have
B2 (t+ 1)−B2 (t)

=

([
B (t) +

N∑
i=1

pi (t)− p̄
]+)2

−B2 (t)

≤
(
B (t) +

N∑
i=1

pi (t)− p̄
)2

−B2 (t)

=

(
p̄−

N∑
i=1

pi (t)

)2

+ 2B (t)

(
N∑
i=1

pi (t)− p̄
)
.

(6.15)

Based on these, we have

∆V (t)

= 1
2
E

[
B2 (t+ 1) +Q2 (t+ 1) +

N∑
i=1

C2
i (t+ 1)−B2 (t)−Q2 (t)−

N∑
i=1

C2
i (t) S (t)

]
−V E

[
log (1 +D (t)) S (t)

]
≤ 1

2
E

[(
p̄−

N∑
i=1

pi (t)

)2

S (t)

]
+ 1

2
E

[(
N∑
i=1

Ri (t)

)2

+D2 (t) S (t)

]
+1

2
E

[
N∑
i=1

(L2
i (t) +R2

i (t)) S (t)
]
+ E

[
B (t)

(
N∑
i=1

pi (t)− p̄
)
S (t)

]
+E

[
Q (t)

(
D (t)−

N∑
i=1

Ri (t)

)
S (t)

]
+ E

[
N∑
i=1

(
Ci (t) (Ri (t)− Li (t))

)
S (t)

]
−V E

[
log (1 +D (t)) S (t)

]
≤M + E

[
B (t)

(
N∑
i=1

pi (t)− p̄
)
S (t)

]
+ E

[
Q (t)

(
D (t)−

N∑
i=1

Ri (t)

)
S (t)

]
+E

[
N∑
i=1

(
Ci (t) (Ri (t)− Li (t))

)
S (t)

]
− V E

[
log (1 +D (t)) S (t)

]
.

(6.16)

whereM is the maximal possible value of the expression 1
2
E

[(
p̄−

N∑
i=1

pi (t)

)2

S (t)
]
+

1
2
E

[(
N∑
i=1

Ri (t)

)2

+D2 (t) S (t)
]
+ 1

2
E

[
N∑
i=1

(
L2
i (t) +R2

i (t)
)
S (t)

]
. Since

N∑
i=1

pi (t),

N∑
i=1

Ri (t), D (t), and
N∑
i=1

Li (t) have fixed minimum values and fixed maximal values,

M is a constant. This completes the proof.

Then, in order to maintain the amount of data in the task buffers (of the IoT

device and fog nodes) at a low level and maximize the system utility, we use the
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Lyapunov optimization method to transform Problem P1 to Problem P2 given as

(6.17), which minimizes the upper bound of the drift-plus-penalty function.

P2 : min
D(t),p(t)

B (t)

(
N∑
i=1

pi (t)− p̄

)
+Q (t)

(
D (t)−

N∑
i=1

Ri (t)

)

+
N∑
i=1

(
Ci (t) (Ri (t)− Li (t))

)
− V log (1 +D (t)) (6.17a)

s.t. constraints (6.4b), (6.4c), and (6.4g). (6.17b)

For Problem P2, it can be divided to the following two sub-problems, P2.1 and

P2.2, which do not have coupled constraints. Note that the terms B(t)p̄ and Ci(t)Li(t)

are irrelevant to the variables D(t) and p(t) at the tth time slot, and thus, these two

terms are ignored in the sub-problems.

P2.1 : min
D(t)

G (D (t)) , Q (t)D (t)− V log (1 +D (t)) (6.18a)

s.t. 0 ≤ D (t) ≤ Dmax (t) . (6.18b)

P2.2 : min
p(t)

O (p (t)) , B (t)
N∑
i=1

pi (t)−Q (t)
N∑
i=1

Ri (t) +
N∑
i=1

Ci (t)Ri (t) (6.19a)

s.t. pi (t) ≥ 0, ∀i ∈ {1, 2, · · · , N} (6.19b)
N∑
i=1

pi (t) ≤ pmax. (6.19c)

In the following, we focus on solving the two sub-problems.

6.3.1 Optimal Solution of Problem P2.1

For the optimal solution of Problem P2.1, the following lemma is given.

Lemma 14. The optimal solution of Problem P2.1 is given as

D∗ (t) = min

{
max

{
V

Q (t)
− 1, 0

}
, Dmax (t)

}
. (6.20)

Proof. This proof is mainly based on the theory of convex optimization. Taking

the first-order derivative of the objective function of Problem P2.1 with respect to

D (t), we have dG(D(t))
dD(t)

= Q (t) − V
1+D(t)

. Accordingly, we have dG(D(t))
dD(t)

= 0 when
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D(t) = V
Q(t)
− 1. Moreover, the objective function of Problem P2.1 is convex because

d2G(D(t))
dD(t)2

= V
(1+D(t))2

> 0 for D(t) ≥ 0. Thus, the objective function, G (D (t)),

decreases monotonically when 0 ≤ D (t) ≤ V
Q(t)
−1 and increases monotonically when

D (t) > V
Q(t)
− 1. Then, taking constraint (6.18b) into account, the optimal solution

of Problem P2.1 is shown in (6.20). This completes the proof.

6.3.2 Optimal Solution of Problem P2.2

According to Ri(t) = ri(t) · T and (6.3), the objective function of Problem P2.2 can

be expressed as

O (p (t)) = B (t)
N∑
i=1

pi (t)− T
N∑
i=1

W log2

1 + pi(t)gi(t)
i−1∑
j=1

pj(t)gi(t)+υ

 (Q (t)− Ci (t)) .

(6.21)

It is easy to find that Problem P2.2 is a non-convex optimization problem. Thus,

it is hard to solve this problem by some standard methods. Then, we introduce the

following lemma for Problem P2.2.

Lemma 15. If p∗ (t) , {p∗1 (t) , p∗2 (t) , · · · , p∗N (t)} is the optimal solution of Problem

P2.2,
i∑

j=1

p∗j (t) (∀i ∈ {1, 2, · · · , N}) should take one of the following values


0;
(Xi2

(t)gi2 (t)−Xi1
(t)gi1 (t))υ

gi1 (t)gi2 (t)(Xi1
(t)−Xi2

(t))
, 1 ≤ i1 < i2 ≤ N ;

Xi1
(t)

B(t)
− υ

gi1 (t)
, 1 ≤ i1 ≤ N ;

pmax

(6.22)

where Xi (t) =
TW (Q(t)−Ci(t))

log 2
.

Proof. In Problem P2.2, the two constraints are linear constraints, and the con-

straints’ gradients are linearly independent. According to [119, Prop. 3.3.1], the

Karush-Kuhn-Tucker (KKT) condition is a necessary condition for optimal solution

of Problem P2.2. Thus, p∗(t) satisfies the KKT condition.

The Lagrangian of Problem P2.2 is given as L ({pi (t)} , {µi} , λ) = B (t)
N∑
i=1

pi (t)−

T
N∑
i=1

W log2

1 + pi(t)gi(t)
i−1∑
j=1

pj(t)gi(t)+υ

 (Q (t)− Ci (t)) +
N∑
i=1

µipi (t) − λ

(
N∑
i=1

pi (t)− pmax

)
,
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where λ, µ1, µ2, ..., µN are the Lagrange multipliers. Then, the KKT condition can

be listed as follows.

dL ({pi (t)} , {µi} , λ)
dpi (t)

= Zi (t) + µi − λ = 0, ∀i ∈ {1, 2, · · · , N} , (6.23)

µipi (t) = 0,∀i ∈ {1, 2, · · · , N} , (6.24)

λ

(
N∑
i=1

pi (t)− pmax

)
= 0, (6.25)

where
Zi(t) , B (t)−Xi(t)

gi(t)
i∑

j=1
pj(t)gi(t)+υ

+Xi+1(t)

(
gi+1(t)

i∑
j=1

pj(t)gi+1(t)+υ

− gi+1(t)
i+1∑
j=1

pj(t)gi+1(t)+υ

)
+ · · ·

+XN(t)

(
gN (t)

N−1∑
j=1

pj(t)gN (t)+υ

− gN (t)
N∑

j=1
pj(t)gN (t)+υ

)
.

Then, we have the following two cases.

Case 1: All p∗i (t)’s are zeros. Then, we have
i∑

j=1

p∗j (t) = 0.

Case 2: A number, denotedK, of p∗i (t)’s are positive. Denote those positive power

allocations as p∗l1(t), p
∗
l2
(t), ..., p∗lK (t) with l1 < l2 < ... < lK . Denote F (i) =

i∑
j=1

p∗j (t).

Then we only need to prove that F (i) (i = l1, l2, ..., lK) takes one value in (6.22).

From (6.24) we have µl1 = µl2 = ... = µlK = 0, and from (6.23) we have Zl1(t) =

... = ZlK (t) = λ. Thus, for m = 1, 2, ..., K − 1, from Zlm(t) = Zlm+1(t) we have

F (lm) =

(
Xlm+1 (t) glm+1 (t)−Xlm (t) glm (t)

)
υ

glm (t) glm+1 (t)
(
Xlm (t)−Xlm+1 (t)

) ,
which is one value in (6.22).

Next we show F (lK) also takes one value in (6.22). If λ ̸= 0, from (6.25) we

have F (lK) = F (N) = pmax. If λ = 0, from (6.23) we have ZlK (t) = B (t) −

XlK (t)
glK (t)

F (lK)glK (t)+υ
= 0. Accordingly, we have F (lK) =

XlK
(t)

B(t)
− υ

glK (t)
, which is a

value in (6.22).

This completes the proof.
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6.3.2.1 Algorithm 6.1 to solve Problem P2.2

Based on Lemma 15, an algorithm, named Algorithm 6.1, can be developed to solve

Problem P2.2, as follows.

The value of pi (t) for ∀i ∈ {1, 2, · · · , N} has two cases: pi (t) = 0 or pi (t) > 0.

Therefore, there are 2N cases for p (t). For each case, the values of pi (t)’s can be

derived by Lemma 15, as follows.

In the case, assume that the set with pi(t) > 0 is {pl1(t), pl2(t), · · · , plK (t)} with

l1 < l2 < ... < lK . Then from the proof of Lemma 15, we have

pl1(t) =
(Xl2 (t) gl2 (t)−Xl1 (t) gl1 (t)) υ

gl1 (t) gl2 (t) (Xl1 (t)−Xl2 (t))
, (6.26)

and

plk (t) =

(
Xlk+1

(t) glk+1
(t)−Xlk (t) glk (t)

)
υ

glk (t) glk+1
(t)
(
Xlk (t)−Xlk+1

(t)
) − (Xlk (t) glk (t)−Xlk−1

(t) glk−1
(t)
)
υ

glk−1
(t) glk (t)

(
Xlk−1

(t)−Xlk (t)
)

(6.27)

for k = 2, 3, ..., K − 1.

We have two possible values for plK (t):

plK (t) = pmax −
(
XlK (t) glK (t)−XlK−1

(t) glK−1
(t)
)
υ

glK−1
(t) glK (t)

(
XlK−1

(t)−XlK (t)
) (6.28)

and

plK (t) =
XlK (t)

B (t)
− υ

glK (t)
−
(
XlK (t) glK (t)−XlK−1

(t) glK−1
(t)
)
υ

glK−1
(t) glK (t)

(
XlK−1

(t)−XlK (t)
) . (6.29)

Thus, for each case (among the 2N cases) for p (t), we can get two possible ob-

jective function values (6.21) for Problem P2.2. Totally we can have 2× 2N possible

objective function values4. Among the 2× 2N possible objective function values, the

minimal value is the optimal objective function value of Problem P2.2, and the corre-

sponding power allocation values in (6.26)-(6.29) are the optimal solution of Problem

P2.2.

Although Problem P2.2 can be solved by the above Algorithm 6.1, the time and

space complexity of this algorithm is O
(
2N
)
, in which O(·) means big O notation.

Thus, the time and space cost are still unacceptable when N is large. To solve this

challenge, next we develop another algorithm to solve Problem P2.2.

4It is possible that one or more power allocation values in (6.26), (6.27), (6.28), and (6.29) are negative
or more than pmax. If this happens, the corresponding objective function values (6.21) should be set to ∞.
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6.3.2.2 Algorithm 6.2 to solve Problem P2.2

We have the following lemma for Problem P2.2.

Lemma 16. Denote p∗
I (t) , {p∗1 (t) , p∗2 (t) , · · · , p∗I (t)} (1 < I ≤ N) as the optimal

solution of the following problem

min
pI(t)

O (pI (t)) = B (t)
I∑
i=1

pi (t)−Q (t)
I∑
i=1

Ri (t) +
I∑
i=1

Ci (t)Ri (t) (6.30a)

s.t. pi (t) ≥ 0, ∀i ∈ {1, 2, · · · , I} (6.30b)
I∑
i=1

pi (t) ≤ pmax. (6.30c)

Then, p∗
I−1 (t) ,

{
p∗1 (t) , p

∗
2 (t) , · · · , p∗I−1 (t)

}
is the optimal solution for the following

problem:

min
pI−1(t)

O (pI−1 (t)) = B (t)
I−1∑
i=1

pi (t)−Q (t)
I−1∑
i=1

Ri (t) +
I−1∑
i=1

Ci (t)Ri (t) (6.31a)

s.t. pi (t) ≥ 0, ∀i ∈ {1, 2, · · · , I − 1} (6.31b)
I−1∑
i=1

pi (t) =
I−1∑
i=1

p∗i (t). (6.31c)

Proof. We use proof by contradiction.

We define pJ (t) , {p1(t), p2(t), · · · , pJ(t)}, ∀J ∈ {1, 2, ..., N}. For problem (6.31),

assume p∗
I−1(t) is not the optimal solution. Accordingly, we let p†

I−1 (t) which is de-

fined as p†
I−1 (t) ,

{
p†1 (t) , p

†
2 (t) , · · · , p

†
I−1 (t)

}
denote the optimal solution of prob-

lem (6.31), we have O
(
p†
I−1 (t)

)
< O

(
p∗
I−1 (t)

)
.

Denote p†I (t) as the optimal solution for the following problem

min
pI(t)

O (pI (t)) = B (t) pI (t)−RI (t) (Q (t)− CI (t)) (6.32a)

s.t. pI (t) ≥ 0 (6.32b)

pI (t) ≤ pmax −
I−1∑
i=1

p∗
i
(t) . (6.32c)

Then, p†
I (t) = {p

†
1 (t) , p

†
2 (t) , · · · , p

†
I (t)} is a feasible solution for problem (6.30).
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Thus, we have

O
(
p†
I (t)

)
= O

(
p†
I−1 (t)

)
+O

(
p†I (t)

)
< O

(
p∗
I−1 (t)

)
+O

(
p†I (t)

)
≤ O

(
p∗
I−1 (t)

)
+O (p∗I (t))

= O (p∗
I (t)) ,

which contradicts the fact that p∗
I (t) is the optimal solution of problem (6.30). There-

fore, it can be concluded that p∗
I−1 (t) is the optimal solution of problem (6.31). This

completes the proof.

When I = N , problem (6.30) is identical to Problem P2.2. According to Lemma

15, if p∗
I (t) is the optimal solution of problem (6.30), we have

I∑
i=1

p∗i (t) is a value in

χ and χ denotes the set of all values in (6.22). According to Lemma 16, p∗
I−1 (t) is

also the optimal solution of problem (6.31). Therefore,
I−1∑
i=1

p∗i (t) ∈ χ. Based on these

observations, we have the following remark.

Remark 1: Denote all values in (6.22) in ascending order as κ1, κ2, κ3, ..., κ|χ|. Let

p∗,j
I−1 (t) denote the optimal solution of problem (6.31) with constraint (6.31c) replaced

by
I−1∑
i=1

pi (t) = κj. Then, for any given κm ∈ χ, the optimal solution of problem (6.30)

with adding the constraint
I∑
i=1

pi (t) = κm is given as p∗,m
I (t) =

{
p∗,n
I−1 (t) , κm − κn

}
where n = argminj=1,2,··· ,m

{
O
(
p∗,j
I−1 (t)

)
+O (κm − κj)

}
.

According to Remark 1, we propose another algorithm, named Algorithm 6.2, to

obtain the optimal solution of Problem P2.2.

In the algorithm, Steps 1–11 are to find all values in χ. Steps 12–17 are to use a

recursive method (based on Remark 1) to find the optimal solution of problem (6.30)

with adding the constraint
I∑
i=1

pi (t) = κm with I = 2, ..., N and m = 1, 2, ..., |χ|.

Steps 18–20 deal with the case I = N , and search all possible values in χ to find the

optimal solution that minimizes the objective function of Problem P2.2.

According to Lemma 15, the size of χ is O (N2). Thus, the complexity in Step

13, Step 14, and Step 15 in Algorithm 6.2 is O(N), O(N2), and O(N2), respective-

ly. Accordingly, the time and space complexity of Algorithm 1 is O (N5), which is

acceptable.

Note that the solution by Algorithm 6.2 (and Algorithm 6.1) is the optimal solution

of Problem P2.2. Thus, the optimal solution of Problem P2 can be obtained by the
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Algorithm 6.2 The proposed algorithm to obtain the optimal solution of Problem P2.2

1: χ← {0, pmax}
2: for i← 1 to N do
3: if 0 < Xi(t)

B(t) −
υ

gi(t)
< pmax then

4: χ← χ ∪
{
Xi(t)
B(t) −

υ
gi(t)

}
5: end if
6: for j ← i+ 1 to N do

7: if 0 <
(Xj(t)gj(t)−Xi(t)gi(t))υ
gi(t)gj(t)(Xi(t)−Xj(t))

< pmax then

8: χ← χ ∪
{

(Xj(t)gj(t)−Xi(t)gi(t))υ
gi(t)gj(t)(Xi(t)−Xj(t))

}
9: end if

10: end for
11: end for
12: Set p∗,j

1 (t)← κj for any j = 1, 2, · · · , |χ|
13: for I ← 2 to N do
14: for m← 1 to |χ| do
15: p∗,m

I (t) =
{
p∗,n
I−1 (t) , κm − κn

}
where n =

argminj=1,2,··· ,m

{
O
(
p∗,j
I−1 (t)

)
+O (κm − κj)

}
16: end for
17: end for
18: z = argminj=1,2,··· ,|χ|

{
O
(
p∗,j
N (t)

)}
19: p∗

N (t)← p∗,z
N (t)

20: return p∗
N (t)

closed-form optimal solution (6.20) for Problem P2.1 and by using Algorithm 6.2 (or

Algorithm 6.1) to solve Problem P2.2.

6.3.3 Relationship between Problems P1 and Problem P2

Recall that our original optimization problem is Problem P1. Next we will discuss

the relationship between Problem P1 and Problem P2.

Let Ω1 and Ω2 denote the optimal policy for Problems P1 and P2, respectively.

Then, the value of the objective function U in Problem P1 based on Ω1 and Ω2 are

denoted as UΩ1 and UΩ2 , respectively. The gap between UΩ1 and UΩ2 is given in the

following lemma.

Lemma 17. The gap between UΩ1 and UΩ2 is

UΩ1 − UΩ2 ≤
M

V
. (6.33)

Proof. We use the method in [57] to prove this lemma. For any σ > 0, there is a

policy Ω which meets all constraints of Problem P2 (i.e., Ω is a feasible solution of
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Problem P2) and satisfies the following inequalities [57]:

EΩ

[
N∑
i=1

pi (t)− p̄ S(t)

]
≤ σ, (6.34)

EΩ

[
D (t)−

N∑
i=1

Ri (t) S(t)

]
≤ σ, (6.35)

EΩ
[
Ri (t)− Li (t) S(t)

]
≤ σ, (6.36)

−EΩ
[
log (1 +D (t)) S(t)

]
≤ −UΩ1 + σ, (6.37)

where EΩ[·] means expectation when policy Ω is applied.

When policy Ω is applied, from (6.12), we have the following for the Lyapunov

drift-plus-penalty function ∆V (t) under the policy Ω, denoted as ∆Ω
V (t):

∆Ω
V (t) ≤M + EΩ

[
B (t)

(
N∑
i=1

pi (t)− p̄
)
S (t)

]
+ EΩ

[
Q (t)

(
D (t)−

N∑
i=1

Ri (t)

)
S (t)

]
+ EΩ

[
N∑
i=1

(
Ci (t) (Ri (t)− Li (t))

)
S (t)

]
− V EΩ

[
log (1 +D (t)) S (t)

]
≤M − V UΩ1 + σ · A,

(6.38)

in which A is the maximal possible value of B(t) +Q(t) +
N∑
i=1

Ci(t) + V .

Since the policy Ω2 is the optimal solution of Problem P2 (i.e., it minimizes the

upper bound of ∆V (t)), we have

∆Ω2
V (t) ≤ ∆Ω

V (t) , (6.39)

in which ∆Ω2
V (t) is the Lyapunov drift-plus-penalty function ∆V (t) under the policy

Ω2.

Let σ → 0. Then from (6.38) and (6.39) we have

∆Ω2
V (t) ≤M − V UΩ1 . (6.40)

Thus, from (6.10) and (6.11) we have

EΩ2 [Y (t+ 1)− Y (t)]− V EΩ2 [log (1 +D (t))] ≤M − V UΩ1 . (6.41)

120



Then, taking summation of the inequalities in (6.41) for t = 0, 1, · · · , τ − 1, we

get

EΩ2 [Y (τ)]− EΩ2 [Y (0)]− V
τ−1∑
t=0

EΩ2 [log (1 +D (t))] ≤Mτ − V UΩ1τ. (6.42)

All buffers are set as empty at t = 0. Thus, EΩ2 [Y (τ)]−EΩ2 [Y (0)] ≥ 0. Letting

τ →∞, we have the following inequality

lim
τ→∞

τ−1∑
t=0

EΩ2 [log (1 +D (t))]

τ
≥ UΩ1 −

M

V
. (6.43)

Note that based on the Jensen’s inequality, the left-hand side of (6.43) is actu-

ally not more than the objective function of Problem P1 when policy Ω2 is applied.

Accordingly, we have UΩ1 − UΩ2 ≤ M
V
. This completes the proof.

Similarly, we have the following inequality for summation of the average queue

length of the task buffers of the IoT device and fog nodes:

E

[
N∑
i=1

Ci (t) +Q (t)

]
≤ M

H
+O (V ) (6.44)

where H is a constant. The proof is similar to that in [118], and thus, is omitted

here. From (6.33) and (6.44), we have the following observation for the tradeoff

between the system utility and the average length of task buffers. Note that the

average execution delay of the data is determined by the average amount of data

buffered in the fog computing system. If a larger amount of data are buffered in the

fog computing system, the data have to wait more time to be computed, and thus,

a larger execution delay is obtained. Thus, if V takes a large value, it benefits the

system utility, at the cost of possible large average delay. If V takes a small value, it

tends to reduce the average delay, at the cost of possible small system utility.

6.4 Performance Evaluation

In this section, simulation results, which are obtained by using Matlab software, are

provided to evaluate the performance of our proposed scheme. The parameters used

in the simulation are given in Table 6.1. Similar settings have been widely considered

in existing works, such as [110], [111] and [120].
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Table 6.1: The parameters in the simulation

Parameters Value

T 30 ms
N 5
W 15 MHz
fi (t) uniform in [0.4 GHz, 0.5 GHz]
φ 30 cycles/bit
υ −80 dBm

{d1, d2, d3, d4, d5} {50, 70, 90, 110, 130} meters
α 4
p̄ 1.5 Watt

pmax 3 Watt

Firstly, we verify the correctness of Algorithm 6.1 and Algorithm 6.2. Accordingly,

an exhaustive search (ES) scheme is introduced. In ES scheme, to solve Problem P2,

we search all feasible values of D(t) and p(t) to minimize the objective function.

Thus, the ES scheme can obtain the optimal D(t) and p(t) for Problem P2 at each

time slot. Since the amount of data in task buffers and the channel gains vary with

time, the ES scheme needs to be performed at each time slot. Thus, the computation

complexity is O(τΞD(t)

N∏
i=1

Ξpi(t)), where τ is the number of time slots, ΞD(t) is the

number of feasible values for D(t) after quantization, and Ξpi(t) is the number of

feasible values for pi(t) after quantization. The simulation statistics are collected

over 10,000 time slots. The simulation result is given in Fig. 6.2. In our simulation

results, “system utility” means the amount of data which are computed at fog nodes.

It can be seen that Algorithm 6.1 and Algorithm 6.2 achieve the same system utility

as that achieved by the ES scheme, thus verifying that Algorithm 6.1 and Algorithm

6.2 provide optimal solution to Problem P2.2 with much less complexity than that of

the ES scheme.

Then, we investigate how V affects the system utility and the average length of

task buffers (q) in our proposed scheme, where the average length of task buffers

q is defined as q =

τ−1∑
t=0

(
N∑
i=1

Ci(t)+Q(t)

)
τ

with τ being the number of time slots. The

simulation result is given in Fig. 6.3. The system utility of our proposed scheme

grows with the increase of V . Similarly, increasing V raises the average length of task

buffers of our proposed scheme. Fig. 6.3 also shows the average execution delay of

the tasks. It can be seen that the average execution delay has the same trend as the
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Figure 6.2: System utility of proposed algorithms and the ES scheme verse the parameter V .

average length of task buffers. Accordingly, there is a tradeoff between the system

utility and the average execution delay. The system utility tends to keep stable when

V keeps increasing beyond a large value. The reason is that the computing capacity of

fog nodes is limited (in other words, the system utility is bounded by the computation

capacity of the fog nodes).

We also investigate how the computation capacity of the fog nodes affects the

system utility. The computation capacity of each fog node is identical to those of

other fog nodes. The average computation capacity of each fog node, denoted f̄ ,

varies in the simulation. The simulation result is given in Fig. 6.4. The system

utility grows with the increase of f̄ . It confirms our intuitive understanding that,

with higher computation capacity of fog nodes, more data can be computed at fog

nodes, which means that more system utility can be achieved. However, the system

utility keeps stable when f̄ keeps increasing beyond a large value. It is because the

amount of data that can be transmitted to fog nodes is limited due to the constraints

of the transmission power (in other words, the system utility is also bounded by the

transmission power of the IoT device).

In order to evaluate the performance of our proposed scheme, we compare with

the following benchmark schemes.

1. NOMA equal power (NOMA-EP) scheme: In this scheme, the IoT device also
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Figure 6.4: System utility with different computation capacity f .
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Figure 6.5: System utility with different schemes.

uses NOMA for computation offloading. The power that is allocated for the

transmission to each fog node is the same. Thus, pi (t) =
p̄
N
.

2. Adaptive scheme: In this scheme, in current tth time slot, the IoT device only

offloads to one fog node, which is the fog node that has the smallest Ci (t). The

transmission power is set as p̄.

3. OMA scheme [110]: During existing works, only OMA is adopted in the fog

computing system for offloading to multiple fog nodes. In [110], a computation

offload scheme with OMA is proposed to minimize the latency and the energy

consumption, which is used here for comparison.

We fix the value of V as 7 × 1011.5 Fig. 6.5 and Fig. 6.6 show the simulation

results of the system utility and the average length of task buffers, respectively, with

different schemes. The simulation results demonstrate that the performance of our

proposed scheme is better than other schemes. To be specific, our proposed scheme

has the largest system utility and smallest backlog in the task buffers. In adaptive

scheme, it transmits data to the fog node that has the lowest Ci (t). Thus, for the

fog node which has the longest distance to the IoT device, i.e., fog node 5, it has

the worst channel, and thus, the amount of data that can be sent to fog node 5 over

5We just take this value as an example. Similar results can be obtained for different values of V .
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Figure 6.6: Average length of task buffers with different schemes.

wireless channel is small. So fog node 5 has a high chance to have the lowest Ci (t),

and accordingly, has a high chance to be selected by the IoT device in each time slot.

Therefore, the system utility of the adaptive scheme is the worst, as shown in Fig. 6.5.

Fig. 6.7 shows the length of virtual buffer B with different V . It can be seen that

B increases with the growth of V . When V keeps increasing beyond a large value, the

virtual buffer length keeps stable due to constraint (6.4c) and the limited computing

capacity.

Fig. 6.8 shows the average length of each fog node’s task buffer Ci (t) with different

schemes. Thus, the load balance performance across multiple fog nodes can be shown

by the simulation results. It is observed that our proposed scheme well utilizes the

computation capacity of all fog nodes. Thus, our scheme achieves a good load balance

across multiple fog nodes, which can guarantee the fairness of each fog node. The

adaptive scheme and the OMA scheme can also balance the computation tasks of all

fog nodes. However, according to Fig. 6.5 and Fog. 6.6, these two schemes achieve a

smaller system utility and a larger backlog compared with our propose scheme. In

NOMA-EP scheme, the backlog of fog node 1’s task buffer is much larger than backlog

of other fog nodes’ task buffers. The reason is as follows. Fog node 1 has higher

average channel gain than those of other fog nodes. When equal power allocation is

adopted in NOMA-EP, higher transmission rate can be achieved for fog node 1 than
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Figure 6.8: Average length of task buffer Ci (t) with different schemes.

those for any other fog node, and thus, more data are sent to fog node 1 than those

sent to any other fog node.

6.5 Conclusion

In this chapter, we propose an optimal computation offloading scheme with downlink

NOMA for a fog computing system. To achieve the maximal system utility, the input

data size to the IoT device’s task buffer and the transmit power to the fog nodes

are optimized. By Lyapunov method, the problem is transformed to an online opti-
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mization problem that only involves instantaneous variables of the current time slot.

To solve the non-convex online optimization problem, an algorithm with polynomial

computation complexity is proposed.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

This thesis focuses on spectrum efficiency enhancement in wireless communication

networks. Cognitive radio, opportunistic scheduling, and NOMA are promising tech-

niques which can largely improve the spectrum efficiency. However, some challenges

exist in deploying them in practical wireless networks, and thus, we aim at QoS

provisioning of networks by solving these challenges.

In Chapter 3, a slot length configuration scheme is proposed. The scheme tells

how to determine the length of a time slot after obtaining the channel state by

spectrum sensing. By introducing some interesting properties of the research problem,

an algorithm is proposed to find the optimal slot length.

In Chapter 4, the opportunistic scheduling problem is modeled as an SMDP which

reduces the implementation complexity. Then, a model-based scheduling method and

a model-free scheduling method are proposed to derive the optimal scheduling policy

for fully explored networks and partially explored networks, respectively. Further, in

Chapter 5, distributed opportunistic channel access in energy-limited wireless coop-

erative networks is investigated. A DOS scheme is proposed to maximize the average

throughput of the network. Then, an optimal stopping strategy, which has threshold-

based structure, is derived to guide the user to decide whether to utilize the channel

access opportunity.

In Chapter 6, the power allocation problem of NOMA is investigated in com-

putation offloading, which is a major part in fog computing systems. By exploring

the original problem, some properties are derived, and thus, the original problem
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which is a non-convex problem is solved by an algorithm with polynomial complexity.

Accordingly, the IoT device can decide how to offload its tasks to fog nodes.

7.2 Future Research

In Chapter 3, the slot length configuration problem in cognitive radio networks is

investigated. In this work, the spectrum sensing duration is decided by the expected

(Pd, Pf) pair. If no such pair is provided, the following question arises, how to jointly

determine the spectrum sensing length and the slot length. Therefore, how to derive

an efficient method to find the optimal sensing duration and the slot length will be

investigated in the future.

Opportunistic scheduling and NOMA are two important techniques to improve

the spectrum efficiency. Therefore, the combination of them, which is how to realize

opportunistic scheduling in wireless networks with NOMA, is very meaningful. Due

to the effects of NOMA, the traditional opportunistic scheduling strategy may not be

suitable to the networks with NOMA. Accordingly, how to derive an optimal strategy

is a challenging and meaningful problem, and will be investigated in the future.

The computation offloading problem in fog computing system with NOMA is

investigated in Chapter 6. Due to the limited computation capacity, the task which

cannot be computed by the fog nodes will be computed by the IoT device or the cloud

server. Therefore, future works may consider the IoT device’s and cloud server’s

computation capacity, and optimally distribute the IoT device’s tasks to its local

CPU, the cloud server, and the fog nodes
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