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Abstract

This thesis is concerned with the development of optical and optoclectronic
components which facilitate hybrid and mogolithic device integration. The work
described addresses two principal issues: compastness. and multi-functionality.

Compactness is a  critical requirement  for integratcd  photonic  or
optoelectronic circuits since many such circui's are implemented in expensive multi-
layer semiconductor heterostructures. Oric factor inhiviting compact photonic circuit
realization is the requirement to use large radius waveguide bends to avoid power
losses due to radiation. Deeply etched rib waveguides can be sharply bent without
suffering such losses; in the first part of this work, the implementation of muiti-mode
couplers in such waveguides is studied. Couplers are designed for use in a Mach-
Zehnder switch, fabricated in an indium phosphide multi-quantum well semiconductor
structure. High device performance is achieved using multi-mode couplers which are
among the smallest ever reported. A novel mechanism for optimizing multi-mode
couplers configured as optical (de)multiplexers, using circular waveguide bends, is
also discussed. Devices based on this principle are designed and implemented in a
silicon oxynitride glass waveguide system which is compatible with rarc-carth doped
materials for optical amplifier or laser implementation. (De)rultiplexing performance
superior to that achieved by other methods is demonstrated with a very compact
device.

The second major concern addressed in this work is multi-functionality of
optoelectronic components in integrated circuits. ~Normally, a semiconductor
structure cannot operatc as both a light source and a modulator at one wavelength.
In this work, a multi-quantum well heterostructure ("LAMDA" - for

LAser/Modulator/Detector/Amplifier) which overcomes this problem is designed and



fabricated. Two quantum well stacks, with different weli widths, are vsed to create
active regions with different characteristic energies.  Since guided optical ficlds
overlap witn both active regions, which can be separately biased, light gencration and
absorption can be simultancously achieved at one wavelength. Computer models
which were used to predict the optical and electrical characteristics of the device arc
described, and experimental results demonstrating operation of the device as a single
cavity laser / electroabsorption modulator are presented.

Finally, a theoretical consideration of spontaneous emission in the vicinity of a
planar diclectric waveguide is discussed. This work is an extension of some of the
quantum mechanical theory used in the design of LAMDA, and is used to examine the
spontancous cmission characteristics of optically pumped rare-carth doped planar

waveguide amplifiers.
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Total rates of spontancous emission for n;=1.50 and a¢=2 pm: n>=1.47
(solid line, one TE and TM mode); n>=1.40 (dashed line, two nodes);

n,=1.30 (dotted line, two modes).

Rates of spontaneous emission into bound modes for 1;=1.50 and «=2
um; n,=1.47 (solid line, one TE and TM mode); np=1.40 (dashed line,

two modes); n,=1.30 (dotted linc, two modes). .

Spontaneous emission factors for TE and TM fundamental 1.55 pm
modes of an erbium-doped planar amplifiecr pumped with .98
guided light, as a function of guide index. The guide is 3 pm wide and

the cladding index ny=1.40. The core layer is erbium-doped.

Spontaneous emission factors versus guide index for all guided TE and
TM modes; the guide is 3 pm wide and the cladding index n,=1.40.

The core is erbium-doped.

Spontaneous emission factors of fundamental modes versus guide
index when the cladding is erbium-doped; the guide is 3 um wide and

the cladding index n,=1.40.

Spontaneous emission factors of all guided modes versus guide index
when the cladding is erbium-doped; the guide is 3 um wide and the
cladding index n,=1.40.
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List of Symbols, Nomernclature and Abbreviations

a mode amplitude coefficient (complex)
a',a creation, annihilation coefficients
A phase constant (in certain instances); amplitude coefficient

(in certain instances)
A B C recombination rate coefficients (in certain instances)
a, b,c, F, G, K arbitrary or dummy variables or coefficients

(in certain instances)

(Al [B] matrices, defined in text

b, B time-dependent, time-independent magnetic field
(complex)

¢ speed of light

(C] connectivity matrix

d,D time-dependent, time-independent electric displacement
(complex)

D optical mode density

e, ELE time-dependent, time-independent electric

field (complex), time-independent electric

field (real)

¢ electronic charge

E energy

Er. Ep, conduction band, valence band quasi-Fermi levels

Seor fe conduction band Fermi-Dirac function (with respect to
photon, electron energies respectively)

oo valence band Fermi-Dirac function

F field variable

g bulk gain

Em mode gain

G steady-state carrier recombination rate

hHX time-dependent, time-independent magnetic

intensity (complex), time-independent electric
field (real)
h discretization interval (in some instances);



total lateral displacement of waveguide s-bends

H unitary Heaviside function

[ current

J unit imaginary number (i.c. NANRY
time-dependent current density (vector)

h Planck's constant

k wave number; Boltzmann's constant

K transverse propagation constant

) length

L length

L, bei. length

L beat length, defined between fundamental and second-order
modes

m mass

M,N integers with significance with respect to resonant

self-imaging in multi-mode waveguides

M momentum mairix
n index of refraction; electron density
N mode normalization factor; transformed refractive index

profile of a bent waveguide

Dy Q. r Sturm-Liouville equation variables

p photon number operator

P power; number of photons; mode type index

q quantity determined by slab waveguide parameters, eqn.
6.33

Q transverse propagation constant

r radius; position operator

ro dipole magnitude

R radial variable; reflectivity

rP, Ry, spontaneous emission rate

Ry Rydberg constant

s, S time-dependent, time-independent Poynting vector
(complex); sum parameter in certain instances

sep separation between coupler access waveguides

t time
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cav
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C
disjoint
P
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g

h

i

if

in

{

temperature
a ficld function
group velocity of mode K

volume; potential
gaussian field diameter
multi-mode waveguide width; emission rate

Carltesian spatial coordinates

Subscripts

denotes absorption layer

denotes area

denotes average

denotes a heterostructure barrier

denotes barrier, ¢.g. electron density in barriers
denotes barrier potential

denotes bound modes

denotes conduction band; continuum edge
denotes optical cavity

denotes conduction band

denotes a cross-coupler

denotes cladding

denotes valence band

denotes a contour

denotes finite element method quantities before reduction
denotes effective index; electron

denotes electrons in barsiers

denotes exciton spectral resonance
denotes band gap energy; gain layer
denotes heavy hole; valence band

denotes a discrete counting index

denotes input field

denotes incident field

denotes an optical mode; light hole
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k,m,n,p
min
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m, p
N

0
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oW

rad
red

cb

cy

denotes finite element method quantities after reduction
denotes exciton binding cnergy

denotes mode number, discrete variable

denotes minimum

denotes maximum

denotes mode number, continuous variable

denotes sub-band quantum number

denotes value in free space or in incident field;
denotes electron rest mass

denotes output field

denotes the imaginary component of a complex variable
denotes quantum well

denotes residual

denotes radiation modes

denotes reduced function, c.g. density of states
denotes the real component of a complex variable
denotes contour component

denotes spontaneous emission

denotes transverse component

denote stoichiometric composition in InGaAsP
denotes unconfined electrons

denotes a heterostructure well

denotes quantum well-confined electrons

denote Cartesian spatial components

Superscripts

denotes a vector quantity

denotes a vector of unit magnitude

denotes a normalized quantity

denotes evaluation at a specific point; derivative
denotes corduction band

denotes valence band

denotes effective index

denotes hole type
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DFB

denotes sub-band quantum number
Greek Letters

shape function; absorption coefficient;

spontaneous emission factor

propagation constant

doping distribution function;

parameters in model for refractive index of InGaAsP
phase constant (in certain instances)

parameter in model for refractive index of InGaAsP
electric permittivity; energy (in some instances)
angular variable; field envelope function

angular variable

line width; optical intensity confinement factor
wavelength; Sturm-Liouville equation parameter
magnetic permeability

angular variable

charge density; radius of curvature; dcnsity of states
(subscript) mode number, discrete variable

lifetime

angular frequency

functional variable

matrix component, defined in text; dipole distribution
function

radial variable

scalar field or wave function (complex)

Abbreviations

Amplified Spontaneous Emission
Asynchronous Transfer Mode
Continuous Wave

Distributed Feedback



DH
HWHM
LAMDA
MBE
MOCVD
MQW
PECVD
PIC
QW

RC

RF
SONET
S-R-H
TDM
TE
TEM
™
WDM

Double Heterostructure

Half-Width at Half-Maximum
LAser/Modulator/Detector/Amplifier Structure
Molecular Beam Epitaxy

Metal-Organic Chemical Vapour Deposition
Multiple Quantum Well

Plasma Enhanced Chemical Vapour Deposition
Photonic Integrated Circuit

Quantum Well

Resistance times Capacitance

Radioc Frequency

Synchronous Optical Network
Shockley-Read-Hall

Time Division Multiplexing

Transverse Electric

Transverse Electric and Magnetic

Transverse Magnetic

Wavelength Division Multiplexing



Chapter 1

Introduction

Over the last twenty-five years, the application of photonics has revolutionized
telecommunications. The development of semiconductor lasers and photodetectors,
capable of high-speed operation, followed by the invention of low-attenuation glass
fiber, made long-distance transmission using an optical frequency carrier possible for
the first time. In the 1980's, long-haul fiber links became a ubiquitous feature of
netwerks in and between developed countries, raising the possibility of all-optical
nctworks in the future, including "fiber-to-the-home.” It is envisaged that such
networks, exploiting the enormous bandwidth potential of optical carriers, will enable
the deployment of a wide variety of high bit-rate services, including video and high-
rate data distribution.

The successful implementation of such services must await the surmounting of
a number of obstacles. The current network is not "optically transparent;" that is, an
optically borne data stream is converted to electronic form, and re-converted back
into optical form, a number of times between the path end-points. These electronic
"bottlenecks,” which limit the system bit-rate to the speed of the electronics in the
link, are required for two reasons. First, repeaters must periodically correct for
attenuation and dispersion of the fiber-borne optical signal; second, network functions
such as framing, multiplexing and switching require digital logic elements that are
currently available only in electronic form. Dramatic increases in the capacity of
fiber-based networks will require that some, or all, of the functions listed above be
accomplished in the optical domain.

Some progress to this end has been achieved in recent years. For example, the
new rare-earth doped fiber amplifiers, which boost an optical signal stream directly,
climinate the need for electronic signal amplification. The impact of chromatic
dispersion can be minimized by using narrow linewidth distributed feedback lasers,
dispersion-shifted fiber and multi-level coding schemes with reduced spectral content.
These measures have greatly increased the distance-bit rate product which can be
achieved without electronic repeaters. Dispersion, normally a limiting factor, can
actually be turned to advantage if sufficient optical power is available. Stable (non-
spreading) propagating waves called solitons can be generated by balancing the
chromatic group veiocity dispersion of a bit pulse against the phase shift induced by
the intensity-dependent part of the index of refraction, apparent in silica fibers at



powers on the order of milliwatts. Single-channel, repeaterless soliton transmission at
10 Gbit/s over more than 20000 km has been demonstrated using erbium-doped fiber
amplifiers and sliding frequency optical bandpass filters to restrict  amplificd
spontaneous emission noise accumulation |1], while 20 Gbit/s over 125000 km has
been achieved using active timing jitter suppression [2]. Future main trunks, i.c.
trans-oceanic and trans-continental links, are likely to employ soliton transmission.
However, the great sensitivities of soliton stability to the characteristics of the source
laser are likely to prevent the deployment of soliton links at other network levels for a
considerable time.

A number of the impediments which limit current networks have thus been
satisfactorily addressed. However, complex processing operations such framing and
switching are likely to remain in the electronic domain for the foresecable future, since
practical optical logic circuits are a long way from development. The immediate
route to increased network optical transparency (and increased overall data capacity)
lies with restricting these electronic operations to the lower levels (i.c. lower data rate
portions) of the network. The practicality of such a migration of processing
requirements to lower network levels is enhanced by new network protocols, such as
the Synchronous Optical Network (SONET), which supports Asynchronous Transfer
Mode (ATM) data transport, coupled with improved network synchronization
technology. However, the use of optical or optoelectronic multiplexing and
demultiplexing techniques is required to support this transition. If optical carriers
modulated at rates compatible with electronics can be optically multiplexed, cither in
the wavelength or the time domain, then the electronic bandwidth bottlenecks can be
moved from the main fiber trunks down to the subscriber level. It is for this rcason
that optical multiplexing techniques are widely seen as the most important focus of
contemporary photonics research.

Wavelength and time division optical multiplexing (WDM and TDM,
respectively) require a range of passive and active guided wave components. Lasers,
modulators, polarization splitters/converters, waveguides, diffractive elements, optical
amplifiers, optical switches and photodetectors may all be needed to realize a WDM
or TDM transmitter or receiver system. While these components are all commercially
available, practical and reproducible system fabrication and packaging requires the
realization of such systems in integrated form. The development of photonic
integrated circuits (PIC's) is, in many respects, the "second generation" of optical
telecommunications technology evolution.



Two approaches to PIC fabrication are possible. The first is the hybrid
approach, whercin discrete optoelectronic devices, such as lasers and photodetectors,
are mounted on a planar substrate and connected by optical waveguides. With this
approach, the individual devices can be of different serniconductor construction.
Hybrid integration is currently seen as the most promising means of realizing PIC's in
the immediate future. Its inherent advantage is that individual optoelectronic devices,
already fabricated and separately optimized for their respective functions, are
employed. Glass or polymer waveguides then provide a convenient means of
providing optical connections.

Hybrid PIC's have a number of drawbacks, however. One is size: the discrete
devices must be totally self-contained, including packaging and biasing terminals, and
some space must be left between the devices on the substrate to allow sufficien! room
to place and bond the devices. Furthermore, it is difficult to make low-loss
component-to-waveguide connections. Monolithic integration, wherein all
components and optical waveguide interconnections are fabricated by simultaneous
processing of a semiconductor substrate, alleviates all of these problems. High
component densities and low-loss interconnections are possible.  However,
monolithic PIC's require that optoelectronic components with different functions be
fabricated in the same semiconductor structure. This is problematic, since different
functions require different local semiconductor energy characteristics. For example, a
laser must emit light at a certain wavelength, while a waveguide must be transparent
to light at that same wavelength. Monolithic photonic circuit integration therefore
requires some mechanism for spatially selective band-gap energy tailoring, such as
patterncd epitaxy and selective regrowth processes, which lead to slow, expensive,
and low-yield fabrication. For these reasons, monolithic integration is generally seen
as being farther from practical applicability than hybrid integration, although some

considerable successes have been reported [3]-[5].

In this work, two issues related to hybrid and monolithic photonic integration
are considered. One is multi-functional optoelectronic integration, as discussed
above; the other is the promotion of compactness by using deeply etched rib
waveguides. Photonic circuit compactness is important in both hybrid and monolithic
PIC realization. In hybrid PIC's, the complexity of integrable circuit functions is
limited by the density of components that can be mounted on a single substrate.
Monolithic PIC's are implemented on expensive semiconductor substrates and

therefore the size of an integrated photonic circuit has an important effect on cost. A



principal impediment to compact PIC implementation is the requirement to use large
radius bends in waveguide interconnections, typically millimeters or centimeters, to
avoid power Josses due to radiation. Much smaller radius bends can be employed if
the guided optical fields are presented with large lateral refractive index differences
which serve to strongly confine the fields; deeply etched air-clad rib waveguides meet
this condition. Considerable attention has been focused on such waveguides in recent
years, and low-loss bends as small as 30 pm radius have been reported {6]. Such
dimensions facilitate an integrated component density several orders of magnitudc
better than is typically available. However, the implementation of guided wave
components in such waveguides is difficult, since the propagation characteristics of
the optical fields are highly sensitive to the physical parameters, e.g. width and depth,
of the waveguides.

In Chapter 2, we review the aspects of waveguide theory which are applied in
this work. In particular, methods of analyzing the optical fields in deeply etched
waveguides are justified and developed. In Chapter 3, we apply this theory to a study
of multi-mode waveguide couplers. Such couplers, which are important components
of many passive and active guided wave devices, are examined in the domain of
strong guiding using a modal analysis. In particular, the effects of using angled
waveguide inputs and outputs of multi-mode couplers are studied. Angled access
waveguides facilitate the repeatable fabrication of compact multi-mode devices, but
their use is expected to degrade, or at least modify, coupler performance, and their
impact has not been previously studied in quantitative terms. A 3-dB coupler for use
in a Mach-Zehnder switch, implemented in InP for operation at 1550 nm wavelength,
is designed. The fabricated device exhibits almost 20 dB of contrast between outputs,
using a 3 dB coupler that is among the smallest ever reported (65 pm).

In Chapter 4, a novel techiique for implementing waveiength (de)multiplexers
in deeply etched waveguides is presented. This technique uses waveguide bends to
optimize the performance of multi-mode waveguide couplers, configured as
(de)multiplexers, for arbitrary pairs of wavelengths. Such devices are required, for
example, to combine and separate pump and signal light in integrated rare-carth
doped amplifiers and ring resonator lasers. Analysis techniques for bent waveguides
are developed, and a device is designed for implementation in silicon oxynitride glass,
which is compatible with erbium-doped glass systems. Modeled and experimental
results are compared. Almost 20 dB and 14 dB contrast between output waveguides
are obtained in the demultiplexer configuration at 1550 nm and 850 nm, respectively,



with a coupler only 145 pum long. This performance compares favorably to that of
other integrated (de)multiplexer devices, which are often physically much larger.

In Chapter 5, the issue of multi-functionality in monolithic semiconductor
PIC's is addressed. We demonstrate that selective-area epitaxy and regrowth can be
avoided by including two active layers, with different energy properties, in the vertical
semiconductor structure profile. This is accomplished by using GaAs/AlGaAs
quantum wells, with different well widths to offset the excitonic resonance energies.
Therefore, the absorption spectrum of one set of quantum wells is normally
transparent at the photon emission wavelength of the other. Both quantum well
stacks overlap with the guided optical fields, and can be separately biased, hence
independently controlled light generation and absorption, via the Quantum Confined
Stark Effect, can be simultaneously achieved. This structure is called LAMDA (for
LAser/Modulator/Detector/Amplifer) and is unique in that local functionality is
determined exclusively by electrical biasing. Models used to predict the electrical and
optical characteristics of the structure are presented, along with experimental results
that demonstrate the performance of a singlecavity laser/electroabsorption
modulator.

The theoretical models used in the design of LAMDA led to an interest in the
influence of waveguide structures on spontaneous emission, and the capture of
spontaneously emitted radiation by bound waveguide modes. These phenomena in
fact have an important influence on the performance of optical amplifiers and lasers.
In Chapter 6, a theoretical consideration of spontaneous emission in the vicinity of
planar dielectric waveguides is presented. Exact analytical expressions for the
complete set of bound and radiating waveguide modes are used in quantum
mechanical expressions to directly yield the rates of spontaneous emission into any
individual mode, or group of modes. This work is applied to an analysis of
spontaneous emission capture in planar rare-earth doped waveguide amplifiers, a

subject of considerable current interest.

The LAMDA device was conceived by Dr. B. P. Keyworth, and fabricated at
the Institute for Microstructural Sciences, National Research Council of Canada,
Ottawa. The Mach-Zehnder switch work was directed by the author, with useful
input from Dr. Keyworth, Dr. R. I. MacDonald and Dr. Claude Rolland. Fabrication
of the Mach-Zehnder devices took place at Bell-Northern Research Limited, Ottawa,
and at the Institute for Microstructural Sciences. The bent multi-mode waveguide
(de)multiplexer was conceived by the author and fabricated at the Alberta
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Microelectronic Centre, Edmonton. The work on spontancous emission was a joint
effort by the author and Dr. J. N. McMullin.



Chapter 2

Theoretical Aspects of Optical Waveguides

As is the case for all classical electromagnetic phenomena, optical field
propagation in waveguides is completely described by the Maxwell equation..
However, deriving a clear conceptual picture and useful quantitative estimations from
those equations is by no means straightforward. Indeed, approximate and numerical
methods of modeling waveguide behaviour are the subject of considerable current
research. In this chapter, the theoretical aspects of optical waveguides of iniportance
in the following work are presented. In addition, the implementation of some

numerical models which were used in the work is described.

In general, waveguides are structures that are able to confine propagating
light, thereby conducting it from one point to another. Their basic principle of
operation is total internal reflection, whereby light in one medium is totally reflected
at an interface with a medium of lower refractive index. If a high index medium is
surrounded on all sides by a lower index medium, then the high index medium is
capable of guiding light, since light coupled into it, within a certain off-axis angle, will
be totally internally reflected as it propagates. All of the devices considered in this
work use waveguides with dimensions on the order of wavelengths to make use of
field quantization effects; therefore, an electromagnetic wave analysis is required.
The starting point for such an analysis is the Maxwell equations.

The theory presented in sections 2.1-2.7 is well-established; [7]-[10] are good

general references for this material.

2.1 Derivation of the Vector Helmholtz Equations In point form, Maxwell's
equations are:

Vxé=—-— (2.1.a)

Vxh=—+] (2.1.b)

Ved-=p (2.1.c)



Vebh=0 2.1.d)

where & is electric field, b is magnetic field, i is magnetic intensity, d is electric
displacement, j is current density, and p is charge density. The lower case symbols
denote time-dependent quantities. We eliminate the time dependence in (2.1) by

assuming the time dependence to be completely described by:
g(x,y,2,1) = E(x,y,20e™™ (2.2)

etc. Upper case symbols are used to denote time-independent quantitics. The
characterization given in (2.2) describes the field disturbances which give rise to
meiochromatic radiation of radial frequency ®; any time variation can be represented
by a spectrum of similar functions by means of a Fourier series or integral. In any
case, (22) is a good approximation for optical frequency waves modulated at
information frequencies of up to hundreds of GHz. We next assume that the materials
of interest are free of current and unbound charge:

Jj=p=0 (2.3)
and that they are non-magnetic and have a linear and isotropic electric susceptibility:

B=p,H (2.4.2)
D=¢E (2.4.h)

where |, is the magnetic permeability of free space and € is the (scalar) clectric

permittivity. Using (2.2)-(2.4), we can rewrite the Maxwell equations as follows:

VxE = jop,H (2.5.a)
VxH=-joek (2.5.b)
Ve(eE)=0 (2.5.c)
VeH =0 (2.5.d)

We are now in a position to develop Helmholtz equations (wave equations
with the time dependence removed). We take the curl of (2.5.a) and substitute
(2.5.b):



VxVxFE=—jop VxH=ozek (2.6)

Now, €=n’,, where n is the refractive index and €, is the permittivity of

frec space. Hence:
o' e=n’k’ 2.7

where the wave number k =2m/A ; A, is the free space wavelength. We can

eliminate VxV x E in (2.6) using the vector identities:

VxVxE=V(VeE)-VE (2.8.2)

Ve(n’E)=EeVn*+n’VeE=0 (2.8.b)
where (2.8.b) uses (2.5.c). Therefore, equation (2.6) becomes:

Vn?

nZ

VZI?-i-V[E o )-{-nzka: =0 (2.9.a)

A similar function of the magnetic intensity A may be obtained:

Vn?

n2

V2H+n2k31‘1+( xVxﬁ)=O (2.9.b)

Equations (2.9.a) and (2.9.b) are known as the vector Helmholtz equations.
We shall discuss the methods of solution of these equations for various waveguide
types later; first, we examine some general properties of those solutions. Such an
examination leads directly to some important results which are used throughout this

work.

Consider a lengitudinally invariant structure such that:

n=n(x,y) 2.10)
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This longitudinal invariance suggests the existerre of spatially harmonic solutions of
(2.9.a&b):

t

<m('x’y’z) = Em(x’y)ej[}m: (2-1l-€l)
A,(x,y,2) = H,(x,y)e’’n (2.11.b)

where B, is a longitudinal propagation constant which describes the fast phase
evolution of the fields; the subscripts m indicate that multiple solutions of the form of
(2.11.a&b) may exist. Field solutions of this form are called modes. We postulate for
the moment that mode solutions exist for arbitrary (longitudinally invariant)
structures. It is useful to decompose the mode field vectors into transverse and
longitudinal components:

E,=(E,.E,.0), A,=(H,H,0) (2.12.2)
E, =(0,0,E,), H,=(00.H,,) (2.12.b)
E =E, +E,. A =H,+A, 2.12.0)

Using (2.12.a-c) we can rewrite the Maxwell equations (2.5.a&b) as follows:

V,xE, = jou A, (2.13.2)
V,xH, =-jon’e,E, (2.13.b)
V,xE, +jB,ixE, = jop,H, (2.13.¢)
V,xH, +jB,ixH,=-jon’e,E, (2.13.d)

where V, denotes a transverse gradient operator:
=(9 )
v, -(Ax, Ay’ 0) (2.14)

2.2 Phase Relationships Among Mode Field Components  The presence of jin
equations (2.13.a-d) suggests some phase differences among the various mode field



components; let us first examine this. We begin by defining a time-dependent mode

using cquations (2.2) and (2.11):

& (x,v.z.t) = By (x, 9,207 = E, (x, y)e/ P (2.15.2)

L—](xv
(x5 yozot) = By (x, y,2)e7™ = H(x,y)e! ) (2.15.b)
If we now reverse the time-axis in (2.15), i.e. take t — —t, and set:

g(x,y,z,t)=¢(x,y,2,-1) (2.16.a)
then we must have:
h(x,y,2,0) ==h(x,y,2,~1) (2.16.b)

to satisfy the Maxwell equations (2.1.a&b). If we consider equations (2.15) to
describe a forward-traveling wave, then the time-reversed function may be considered
to describe an identical but backward-traveling wave. However, we can also

construct a backward-traveling wave by reversing zin (2.15). If we set:

é,(x,y,2,1) =&,(x,y,~2,t) (2.17.a)
then we require:

&,(x,y,2,1)=~&,(x,y,~2,t) (2.17.b)

fy (%, 9,2,1) = =Ry (X, y,-2,1) 2.17.c)

By (x,y,2,8) = hy (%, y,-2,1) (2.17.d)

to satisfy the Maxwell equations (2.1.a&b). From (2.16) and (2.17) we have:

e, (x,y,2,—t)=2,(x,y,-2,1) (2.18.2)
€, (x,y,2,~1) ==&, (x,y,~2,1) (2.18.b)
(X, y.2,—1) = hy(x,y,=2,1) (2.18.c)
By (x,y,2,—1) = =y (x,y,-2,1) (2.18.d)

We can rewrite (2.18.a) as follows:

{80 e )+ o (e} = LB (30 + B (x, ) e B (2.19)



where the script letiers indicate real quantities, and the subscripts R and 7 denote real
and imaginary components, respectively, of the corresponding complex variables.
From (2.19):

{E,,R(.\', v+ Jj&,, (x, )‘)}{COS(BlZ, +wr)+ jsin(B,z+ u)t)}

={E (X, y)+ &, (x, .\')}{cos(B,:+mt) — jsin(Pyz+or)} (2.20)

{E,IR(x,y)cos(B,z+mt)—E‘,,,(.r._v)sin(B,:,+(m)}+ A8 e ovrcos(Byz+ ) + 8 (x, vy sin(Bz 4 o) )}
={f,m(x.y)cos(ﬁ,z+mr)+€’”,(x,_v)sin(B,:Hnt)}+j{E,,,(x.,\‘)cos([),:ﬂm) ae(nsin(Pz +mr)}

(2.21)

Only the real parts of (2.21) have physical significance; therefore (2.21) can be
reduced to:

£ e(x,y)ycos(Bz+ar)-E,, (x,y)sin(pB,z +axr)

=C,r(x, y)cos(B,z+ ) +E,, (x, y)sin(B,z +or) (2.22)
Hence:
£y (x,0)=0 (2.23)
and:
E, (x,y)=E;(x,y) (2.24.a)

In a similar fashion we obtain from (2.18.b-d):

E, (x,y)=-E,(x,y) (2.24.b)
rox,y)=H(x,y) (2.24.¢)
Hzl(x'y) = '“ﬁz‘l(x,)’) (2.24.4)

Therefore, the transverse and longitudinal components of the electric field are
out of phase by a quarter-wave; the same is true for the magnetic fields. In other
words:



E (x,y)=%8,,0x,y) X jE, (x,y) (2.25.a)
H (x,y)y=%F, (e, y)x jH_, (x,y) (2.25.h)
Note that (2.25) ensures (i odes can transport pov/er only along the axis

of propagation. The direct: »n of pov.. ‘ransport of mode m is that of the Poynting
veetor:

sl" = el” x 11’"

= (emyhmz - em_v hmz )’{ + (emz hmr = Chx hm:. )y + (em): hmy - emy h/n.t )2 (2'26)

The x- and y-components of the Poynting vector contain only products of
transverse and longitudinal field terms, and these components are always orthogonal

in time, e.g.:

Em(x’ y’z’t) = Em(x’ y)ej(pmz"m’) = (i-glm(‘x’ y) i jgzjn (xa y))ej(B,nZ—W)

= {:tt_',,,,(x‘ y)cos(B,,z—or)FE,,, (x, y)sin(B,z— mt)} + j{igm (x,y)cos(B,z— ) £E,. (x,y) sin(B,z— ox)}
(2.27)

The time-averaged x- and y-compon:nts of the Poynting vector are therefore
zero, and it is casy to show that the time-averaged mode Poynting vector is

cffectively:

L g .
5§ (x,y) =5Re{E,m(x,y)xH,m(x, »} (2.28.a)

m

l = — . - -
- Z{E,m(x,y) < (x,y)+ B (e y) X, (1, 9)] (2.28.b)

We shall now proceed to show that the modes of a waveguide comprise an
orthogonal set which can be used as a basis for representing arbitrary fields. This
analysis begins with the reciprocity theorem.
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2.3 The Lorentz Reciprocity Theorem  We define two modes, identified by the
subscripts | and 2. From (2.13a&b) we obtain:

VXE, = jou,H, (2.29.a)
Vx H, = jon'e E; (2.29.b)

Taking the scalar product of (2.29.a) and H,, and that of (2.29.b) and E,, we

have:

i, *(VxE,)= jou A, A, (2.30.a)

1) = jon’e E o E; (2.30.b)

A ef; —ne E, o E;) (2.31)

)=be(Vxa)-ae(Vxh) (2.32)
we can obtain from (2.31):
Ve(E, x i) = jolp A, 8, -n’,E, o E;) (2.33.2)
Similarly, we can derive:
Ve(E; x A,)= jo(n’,E, ¢ E; —p, A ¢ ;) (2.33.b)
Adding (2.33.a) and (2.33.b), we obtain:

'xH,)=0 (2.34)



This is one version of the Lorentz reciprocity theorem.

2.4 Orthogonality of Modes If we now consider two modes, identified by

subscripts m and p:

E (x,y,2)= E, (x,y)e/m (2.35.a)
E,(x,y,2)= E,(x,y)e"" (2.35.b)

and substitute these into (2.34), we obtain:

V,o(B" <A, +E,xH)- (B, ~BNE, x H,,+E,,x H,)e2=0  (2.36)
If we integrate (2.36) over all space in the x-y plane, we get:
[ [(E,xA;,+E,xA, Mixdy =0 if B, #B, (2.37)

y==—oa y=~oco

since the integral of the first term in (2.36) vanishes, a result guaranteed by Green's

theorem (Gauss' theorem in the plane):

[[(v, e F)da=§(F o5)ds (2.38)

[

where C is the curve bounding the area A. We anticipate that modes may be of either
limited or unlimited transverse extent. For modes of finite transverse extent, which
we will later call bound mndes, the zero value of the contour integral is assured by
choosing a contour beyond the region where the modes have non-zero magnitudes.
For modes which extend throughout all space, which we call radiation modes, the
zero value of the contour integral can be obtained by choosing C such that the mode
field magnitudes are appropriately periodic on the contour.

Since the integrand of (2.37) has the form of a Poynting vector as in equation
(2.28.b). the implication of (2.37) is that the total power transported by a group of
modes is the sum of the powers carried by each mode. In other words, there is no
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"cross-mode" power. Equation (2.37) thus demonstrates the power orthogonality of
waveguide modes.

2.5 Mode Normalization The orthogonality of the set of waveguide modes
suggests their utility as a basis for describing arbitrary fields; to this end, we seck to
obtain an orthonormal set of functions by appropriately normalizing the mode fields.
We therefore define normalized fields as follows:

7 -—Elm 7 —ﬁlm
E, = //N— A = A—J— (2.39.2,b)

where Ny, is a normalization factor. The orthogonality relation (2.37) suggests a
normalization with respect to power. Modes of finite transverse extent, which we
called bound modes, are power-integrable and therefore we use (2.28.b) to definc Ny,
for these modes as:

N = I ](E“,m xH: +E. xH, )dxdy (bound modes) (2.40)
y=—o0 x=-c0

-

For modes which extend through all space, the so-called radiation modes, we
cannot use (2.40) since then the normalized fields would be identically zero. The
standard way to overcome this problem is to normalize the radiation modes with

respect to (transverse) power density rather than total power, i.e. to write:

P pion mode m =—41I } ]:(E'/' XH +E, % ﬁ,l,)dxdy =N_8(m-p) (2.41.a)

y=—e0 x=—co

where 8 is the Dirac delta; for finite Ny, the radiation mode power is therefore infinite.
From (2.41.a) we see that if N,, has units of areal power density, then from the
property d(at—at’) =3(t—t")/a, m must have dimensions of length-2. We shall see
later that in fact m is the product of the x- and y-propagation constants, which define
the transverse character of the mode. We can therefore explicitly write Ny, for
radiation modes as:
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N = JI J J(E‘m xH +E, X A, )5(x—x")8(y~y')dxdy (radiation modes)(2.41.b)

(2.41.¢)

where & are again Dirac delta functions and x' and y' are chosen as follows. Any
waveguide consists essentially of a certain transverse area over which the local index
varies, surrounded by an essentiaily semi-infinite region or regions of homogeneous
index. Since the average power density of a radiation mode is determined only by the
fields in these regions and is not affected by the field amplitude variations in the
relatively small vicinity of the waveguide itself, it is appropriate to choose x' and y’
deep in homogeneous transverse space (i.e. far away from the waveguide) where the
fields are constant-valued.

The fact that bound modes are power-integrable, whereas radiation modes are
not, suggests something about the collective natures of these types of modes. Since a
given bound mode may transport a finite power, only a finite number of these modes
can physically exist, i.e. the set of bound medes must be finite and countable - a
discrete set. By contrast, our definitions above provide for infinite power transport
by individual radiation modes; therefore, a single radiation mode cannot be physically
excited. However, a superposition of such modes can collectively transport a finite
power if they comprise an uncountable - i.e. continuous - set. The situation is
analogous to the Fourier transform of a finite signal; such a signal can be represented

by an integral superposition of infinite sinusoidal functions.

2.6 Field Expansion Using Mode Functions We have demonstrated that
solutions of the vector Helmholtz equations (2.9.a&b) of the form (2.11.a&b)
constitute an orthogonal, normalizable set. If we postulate that they are also a

complete set (this is difficult to prove a priori in the general case), then the set of
mode functions (2.11) may be used as a basis for representing arbitrary fields.
Neglecting for the moment the inferred continuous character of the radiation modes,

we anticipate constructions of the form:

E(x,9) = apFom(x,y) (2.42.2)

m
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H(x,y)= Zam lel,”(.\'. V) (2.42.h)

where the coefficients a,, are complex mode amplitudes. The valuc of the coeflicients
a,, is obtained by first taking the vector products of (2.42.a&b) and mode ficlds n:

El X Hl:l = Z(I,HE"" X H;x (2.43.1])
A, % E,y =30, ¥ E, (2.43.b)

Adding (2.43.a) and (2.43.b), we get:

E xH. +E, %, =2{am(§m, xH. +E. xH )} (2.44)

m

Integrating over all space, and making use of (2.37), (2.39) and (2.40), we
obtain, swapping n — m:

T T (E, X Ifil:n + é"fm xH, )dxdy (2.45)

by assuming that 8, #8,.

Two comments are called for regarding (2.42)-(2.45). First, only forward-
propagating waves have been assumed; if the field contains backward-propagating
components we must replace the coefficients in (2.42.a) by:

a,+a (2.46.a)
and those in (2.42.b) by:

a,—a_, (2.46.b)
where the subscripts -m indicate the backward-propagating modes; (2.45) must also

be appropriately modified. Note that the z-inversion properties of (2.17.a-d) have
been included in (2.46).
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Second, we have anticipated that, unlike bound modes, radiation modes form
a continuous set. Therefore, an integral term must be added to equations (2.42.a&b)

to account for the continuous nature of the set of radiation modes, ¢.g.:

E‘,(x,y)=ZamEf,m(x,y)+J.a(m)ém(x,y)dm, 2.47)

where the sum includes the bound modes and the integral is over the set of radiation
modes; the script m denotes a continuous variable. Equation (2.42.b) is similarly
modified. The normalized fields in the sum are constructed using (2.40), whereas
those in the integral use (2.41). Since we have used the same expansion coefficients
for the electric and magnetic fields, from (2.37) it is clear that a,, has dimensions of
square root power, and comparing (2.40) and (2.41) we see that a(m) must have
dimensions of square root power times length. As already mentioned the parameter m
(or script m) is in fact the product of two parameters, the lateral propagation

constants 3, and B, where:

B2 +pI+p*=n’k,, (2.48)
and nk,=the local phase velocity, so that in fact:
dm =dp,dB, (2.49.a)

Both 3, and By may be required to fully specify the transverse form of a mode
and thus provide a unique mode identifier or index. This is true also for the bound

modes and hence the sum index in (2.47) is:
m=p_pB, (2.49.b)
We can find approximate values of a(m) by discretizing the integral in (2.47):

;[a(m,)li"lm (x,y)dm = ;a(mb )i:h (x,y)Am (2.50)

. [
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We can therefore obtain approximations to a(m) for the radiation modes by
replacing:

Elm(x,y) — Etm(,\‘,y)Am, HIM(,\‘..\') - Htm(.\'.‘v)Am

2.5
in equation (2.45).

Using equation (2.28.b), the power transported by the total ficld is:

P =.‘II I T{E' x H' +E x H }dxdy

y=—o00 g=—on

(2.52.a)

- R 3
Za;’ﬁ';’("")')+J‘l‘(P)H(;,(X'-")‘I/"J
r P

+[§la;,l%,;,(x. y)+ ja' (P)él;’ (x, y)dP]xLZamf:l,m (x,y)+ Ja('m,)l‘:ib"b {(x, y)dm]}d.w/y (2.52.b)
P m m

-5 Saalt

m p

+“.a(m,)a'()o){
~p

1 T T = Z, 2 ~
1 '_J‘ _J: {E{m(x,)')xHéo(x,)')-FEéo(x,y)xHlm(x.y)}dxdy

T ]o {E:‘"" X ﬁl‘n * Et‘,;’ X ‘fllm }dx‘l)’]

}(I/ulm, (2.52.¢)
=S la, I+ [ [a(ma’ (p)o{m~ p )dpeim. (2.52.d)
m m P
=Y la| +]lac m)| dm (2.52.¢)

where we have used (2.37), (2.39)-(2.41) and (2.47).

The amplitude coefficients a thus contain all information about the power
content of the modes. If the total power is normalized to one, i.e. if we set:
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P x H + E; x H, }dxdy =1 (2.53)

~

1]
B —
;A'*—ii
—
§ A

o]

then the coefficients ¢ become dimensionless, and we have:

=Y Ja, [ + [latm)| dm =1 (2.54)

This is a particularly useful formalism since now the mode amplitude
coefficients squared tell us simply the fraction of the total power transported by each

mode.

2.7 Waveguide Transitions The technique just discussed of field expansion using

mode functions can be used to describe field effects at waveguide transitions along
the axis of propagation. Let us assume that a waveguide's transverse structure
changes suddenly at z=0. The fields at z=0" must equal those at z=0%. Therefore, if
the pre- and post-transition waveguides are sufficiently similar that power reflected at
the transition can be neglected, then the amplitude coefficients of the post-transition
waveguide modes are simply given by (2.45) where the total fields are taken as those
at z=0", i.e. in the pre-transition waveguide. For bound modes, using (2.39), (2.40),
(2.45) and normalizing the pre-transition field using (2.53), we have:

a = ymaee (2.55)

m \ﬁ T(Eaxﬁ:%;xﬁa)mdyJ] (B, % B, + By, x A, sy

y=—co0 x=—co

y=—o00 g=-o0

where:

(2o

, H (2.56)



are the fields at z=0". A corresponding result can be obtained for the radiation modes:;
though (2.55) can be approximately applied to these modes by appropriately
discretizing the radiation mode continuum, using (2.50) and (2.51), and replacing the
second integral in the denominator with (2.41.c).

Equation (2.55) is a highly important result which is applicd many times in this
work. Since the pre-transition field is normalized, the coefficients a,, describe the

fraction of the incident power which is coupled into mode m, i.c.:

P

modem  __

P _| m

incident

I (2.57)

2.8 Modes of Planar Waveguides =~ We have seen that modal decomposition of
propagating fields is a useful method of analyzing waveguide behaviour. We now
take a closer look at modes, examining their form and properties in various types of
waveguides, and how they may be calculated. As a first step, we examine planar
waveguides, which not only illustrate the general characteristics of waveguide modes,
but which, as we shall see, can also serve as a useful approximate model for many
three-dimensional structures.

Planar, or slab, waveguides are structures that arc two-dimensional, in the

sense that the refractive index distribution is invariant along one axis:
n=n(x,z) (2.58)

For such structures, one complete set of solutions of the vector Helmholtz.
equations (2.9.a&b) has the property that the fields are invariant with respect to y,
Le.

oF =0 (2.59)
dy

for any field F. We restrict the following discussion to the case of such solutions. It
is simple to show that under these conditions, (2.9.a&b) become partially uncoupled
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[11] and hence two independent (i.e. orthogonal in the sense of (2.37)) sets of

solutions exist: transverse electric (TE), and transverse magnetic (TM):

E(x,2)=\0,E,,0 .
TE Solutions _ (x.2) ( Y ) (2.60.a)
A(x,2)=(H ,0,H,)
TM Soluti E(r.2)=(E.0.E) 2.60.b
tions _ .OU.
olutions H(x,z)=(O,Hy,0) ( )
If we assume a longitudinally invariant structure so that:
n=n(x) 2.61)

and we substitute solutions of the form of (2.11.a&b) into (2.9.a&b), then, given
(2.58)-(2.60), we have:

d’E, (x)

= +(k2n?(x)-PBL)E,(x)=0 (2.62)

for TE modes, and:

d( 1 dH,(x)
dx

2(x)— +{k2n*(x)=B2)H . (x)=0 2.63
n*(x) T de ) (k2n?(x)~B2)H,,(x) (2.63)
for TM modes. The remaining field components are obtained directly from the

Maxwell equations (2.5.a-d) as:

- —j 0E,
H. (x)=bn E,.(x), H,,,,(x)=—f——”"—(x—) (2.64.a,b)
o, ©p, Oox
for TE modes, and:
i oH
E.m(x)=L’:—H,,,,(x), E,(x)= ’2 m (%) (2.65.a,b)

WE,N"(x) we n“(x) Oox



for TM modes. Note that the phase relationships predicted in (2.25) are in fact
obtained. The properties of the solutions of (2.62) and (2.63) may be drawn directly
from the well-known Sturm-Liouville theory, discussed in detail in this context in
[12], which deals with differential equations of the form.

= { (x )d‘*’(")}+{q<x)+xr(x)}wx>=o (2.66)

From (2.62) we see that the respective functions in (2.66) are, for TE modes:

p(x)=r(x)=1, q(x)=kn’(x) (2.67)

while for TM modes, we have, from (2.63):

p(x)=r(x)= l/nz(x), g(x) =k’ (2.68)

and:

3= B2 (2.69)

for both TE and TM modes. If ihe refractive index distribution n(x) is real, bounded
and piecewise-continuous over an x-interval (a,b), then the conditions of the Sturm-
Liouville theory are satisfied and we can therefore immediately draw the following
conclusions from the theory:

1) The non-trivial solutions of (2.62) and (2.63) are eigenpairs, i.c. a sct of
eigenfunctions Eym(x) for TE modes and Hym(x) for TM modes, with corresponding
eigenvalues A, (different for TE and TM) as in equation (2.69). If the interval (a,b)
is the infinite x-interval, then this set of eigenvalues consists of a continuum which can
extend to +o0, and may be followed by a set of discrete eigenvalues bounded by some
negative number. Given (2.69) this translates o a disctete set of real {3, followed by
a continuum of lower (absolute) values of real B, followed again by a continuum of
imaginary B,,. We shall see that the discrete B, solutions correspond to bound
modzes, as we have already inferred, while the continuous set of real B, corresponds

to radiation modes. The continuum of imaginary B, solutions are called evanescent
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modes: these are similar to radiation modes in transverse character but from (2.11)
arc exponential rather than periodic under propagation. For reasons that will be

explained, these modes have been neglected in our analysis.

i) The sets of eigenfunctions Eym(x), Hym(x) are orthonormal in the sense of the
scalar product:
b

[{ern, e 0,0 oax=3,, (2.70)

a

where E/H in (2.70) means E or H, while 8 is the Dirac delta for continuum modes
and the Kronecker delta for discrete modes. This confirms our previous general
conclusion that waveguide modes are an orthogonal, normalizable set where the

normalization requires the Dirac delta for radiation modes.

iii) The sets of cigenfunctions Ey,,(x), Hyp,(x) are complete in the sense that any
ficld function which decays sufficiently rapidly near the x-interval endpoints can be

represented, to an arbitrary precision, by an expansion of the form of (2.42).

The results (i)-(iii) above stem directly from the mathematical properties of
Sturm-Liouville equations, without any resort to purely physical arguments. Results
(ii) and (iii) confirm our earlier general inferences, while (i) confirms the existence of

discrete and continuous eigensolutions of the Helmholtz equations.

An important class of slab waveguides is structures composed of layers of
uniform refractive index separated by sharp boundaries. In such cases, in order to
avoid singular derivative evaluations at the layer interfaces, equations (2.62) and

(2.63) require continuity of:

dE .,
E —d;'— for TE modes; and (2.71.2)

ym?

1 dH,,
H,, ———————  forTMmodes. (2.71.b)
: n“(x) dx

In fact, from (2.64) and (2.65) we can recognize (2.71.a&b) as the well-
known requirement that the tangential components of E and H be continuous across



a dielectric boundary [13]. Therefore, the modes of uniform-layered slab structures

may be found by writing solutions of:

I"E(X) N ,
‘———"",——+(k‘jn‘ (x)- [5;”)1:'”"(.\') =0 (2.72)
dx-
for TE modes, and:
dH, (x) , , , )
—d'—,——+(k‘jn'(x)—B,’")H\m(.\‘)=0 (2.73)
x*

for TM modes, in cach layer of uniform refractive index, and then using the
appropriate continuity relations (2.71.a or b) to join the solutions in cach layer. 1t is
apparent from (2.72) and (2.73) that if, in a given layer:

n,, = % <n(x) (2.74)

1

then Eyypn(x) or Hyyp(x) is oscillatory in that layer; otherwise, £y, (x) or Hy,,(x) is
exponential. The new parameter n,, is called the effective index of the mode. Based
on this, we can examine qualitatively the characteristics of the modc solutions as a
function of effective index. See Figure 2.1; here, we show the various types of TE
modes for a symmetric three-layer slab waveguide. The index of the center ("core” or
"guide") layer is n,, while that of the semi-infinite surrounding ("cladding") layers is
ny; ny>n ;. For n,,>ny, (or rather,

n,,|>n, to take account of backward-propagating

modes) the fields Ey,, are exponential in all three layers, and the continuity relations
(2.71.a) therefore require that the fields are exponentially increasing in the claddings.
Such fields are not power-normalizable, either individually or upon superposition, and
are therefore disallowed by physical arguments. Furthermore, Sturm-Liouville theory
dictates that all solutions of (2.66) must be bounded over the whole solution interval;
hence such solutions are also prohibited by purely mathematical arguments. For
solutions such that ny>n,,,>n,, the fields Ey,, are exponential in the claddings and
sinusoidal in the core; the continuity relations therefore require solutions of the form
shown. These energy of these modes is confined to a specific transverse area in the

vicinity of the core and they therefore correspond to the bound modes referred to



27

previously.  These bound modes form a discrete set in the interval ny>ng,>n;,

according to both our carlier physical arguments and Sturm-Liouville theory.

T » t——p T
0 / n i
' ] / 2 l
/ / |
// / ‘
y / |
/
/ / |
/ / |
x / X X
A / A/ A l|

C-\Ey(x) " @y( x) l/'

_) \ . E y( x)
CD )22 // _‘>

v N

Figure 2.1 Parametric characterization of three-layer, symmetric

planar waveguide TE modes with respect 10 mode effective index n,.
Solutions for n,>n; are exponential everyvhere and are disallowed. A
discrete set of bound modes may exist in the interval ny>n,>n;, while
a continuous set of radiation modes of infinite transverse extent exists
in the interval n;>n,>0. Evanescent modes with imaginary n, may
also exist; these have transverse field characteristics similar to the

radiation modes.

For solutions in the range n;>n,, >0, the solutions are sinusoidal in all layers.
These are the radiation modes, which extend over all transverse space. From the
comments (i) above, these modes form a centinuuia. Evanescent modes such that
n,,=%jn, wheren is real, are in general ailowed by Sturm-Liouville theory, as



discussed above. Such modes are also transversally sinusoidal in all layers, but by
(2.11) they are exponential rather than periodic with respect to propagation and
therefore they may be disallowed by longitudinal boundary conditions. For example,
if the waveguide is of infinite length, i.e. if it extends over ~eo < <oo, then no
evanescent modes can exist as they would blow up exponentially at large *z. This
argument is used to exclude evanescent modes from the consideration of spontancous
emission in Chapter 6. Throughout this work, we also exclude evanescent modes
from our consideration of waveguide transitions (section 2.7). This is justified if the
post-transition waveguide is always long, prohibiting significant excitation of modes
such that n,,=+jn, while modes such that n,,=-jn will decay to necgligible

amplitudes at large z and therefore are of little practical importance.

The parametric behaviour of TM modes is similar, but the solutions satisfy the
interface conditions (2.71.b). For simple planar waveguides, the solutions of (2.71)-
(2.73) may be given explicitly; this is done in Chapter 6 for the case of a symmetric
three-layer structure. For more complicated structures. a numerical approach is
better-suited. In general, the continuity conditions (2.71.a) render TE ficlds more
amenable to numerical solution than TM fields. Any of the standard numerical
methods for fixed-boundary-value solutions of ordinary differential equations may be
used to solve (2.72) with (2.71.a). In particular, the finite difference methods are
relatively simple to implement and have good stability characteristics [14]. Consider
the following centered-differences approximation to the second derivative of Ey,:

d’E,(x) 1
—m = ;z_[Eym(xm )=2E,, (x)+E, (x_)]+0(n?) (2.75)

where h is a discretization interval and x, =ih; O( ) means "to the order of" and
provides an error upper-bound. The approximation (2.75) is derived using Taylor's
expansion theorem which requires the continuity of the expanded variable and its
derivatives, up to third order in this case. Therefore, a similar approximation cannot
be obtained for TM fields; we shall return to this i -t shortly. Applying (2.75) to
(2.72) we have:

wr, +{n2k2h? —2hyr + g, = BRRPy) (2.76)
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where we have set y" = £ (x,) and 1, = n(x,). If we divide (2.76) through by k h’

ym

then we obtain:

] m 2 m ] m 4 m
_}’:1:5-“!1—1 +{”12 —-I;_Z-}WI +E'_2\Vi+l = an\‘l’i (2'77)

where i =k . Equation (2.77) is suitably scaled for computation. If we assume
that the "window" of computation x_, — x,_.,, is sufficiently large to properly
contain all of the bound mode fields, then we can take x, = x,,, =0 and apply (2.77)

at every node i (i=1, ..., n) to obtain the matrix eigenequation:
[l }=nZ{y"} 2.78)

where {\u’"} is the vector consisting of the values of Y = E (x;), and the matrix

[A] is given by:

_ | _
g, 777 0 0
1 ¢ 1 0 0
[Al=|"? > &? (2.79.a)
1
0 0 =
X h? C,,_
where :
C = n? —i (2.79.b)
i /_2—2 ol Je

The symmetric positive definite matrix [A] has n eigensolutions with real
eigenvalues n’ . Those with effective index eigenvalues ngp>ny,in, wWhere iy is
the larger of the indices of the upper and lower cladding layers, are approximations to
the bound mode fields, as per our commeats on page 26. The remainder may be
considered a sampling of the set of radiation modes. The numerical solution of the
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matrix eigenequation (2.78) is the most difficult aspect of this formulation. Iterative
procedures such as the power method are simple to implement but are not well suited
to finding more than one eigensolution. In this work we have used the package LANZ
[15], which employs the Lanczos algorithm with appropriate spectral transformations
[16]. LANZ is able to quickly find a large number of matrix cigenpairs and

furthermore is able to find solutions to more general eigenequations of the form:

[al{w"}=A[B)v"} (2.80)

where the matrix [B] may be positive semi-definite. This capability is required for the
finite element solution of non-planar waveguide modes described in section 2.11, and
for the work of Chapter 4, where curved waveguides are analyzed.

The method described above is rot suited to TM fields due to the interface
conditions (2.71.b); iterative methods based on transfer matrices are therefore usually
used to find TM modes. However, we note here that if;

1 dn’(x)dH,(x) — d’H,(x)
n*(x) dx dx dx?

(2.81)

everywhere, i.e. if the changes in refractive index are small, then (2.63) reduces
approximately to an equation of the same form as (2.62) for the TE fields [17], and
hence for both TE and TM fields we can solve a scalar Helmholtz equation of the
form:

+(k2n? =By =0 (2.82)

where W is a field function representing E,, for TE fields and H, for TM fields; the

mode index subscripts m have been dropped for simplicity, as have the explicit x-
dependences of  and the refractive index n. The solutions of (2.82) are exactly

correct for TE fields but only approximately correct for TM fields. We can obtain an
indication of the error yielded by (2.82) in the propagation constants §§ for TM

modes, by first writing (2.82) in variational form. Multiplying by y" and integrating

over all x-space, we have for bound modes:
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J:{kz 2|y’ 4‘"2}

Intly| - G

proiml (2.83)
[lvf ax

where we have used integration by parts. It can be shown [18] that (2.83) is a true
variational expression in that the exact solutions to (2.82) yield stationary maxima of
(2.83), i.c. a reasonable approximation to a field solution y of (2.82) introduces only

a second order error in B when applied in (2.83), and this incorrect [ is less than the

exact value. If we apply a similar process to equation (2.63) we can derive:

2

r dH 1 dn®* dH, .
2 ,L{k:nlefr‘ = _F% dx H’}dx
™= ]:|Hy|2dx (2.84)

where we have used the subscript TM to indicate that (2.84) yields the correct
propagation constants for the TM modes. Replacing Hy in (2.84) with the scalar
solutions y of (2.82) as a first order approximation, and subtracting (2.84) from
(2.83), we obtain:

T 1dn’dy .
e
B* = Blay <= (2.85)

]:lezdx

X=—00

Noting that for solutions of (2.82) the product:

dn* d .
i’y

Ir dx (2.86)



is always positive, we can derive, in the limit of a piecewisc-uniform refractive index
distribution n(x):

A dy l

s o2 Z n, dx v

B _Bm = [ (2.87)
Jlwf dx

X=-—on

where the summation is over the layer interfaces, at which the quantitics in the
numerator are evaluated. The parameters n,, and n, are the high and low refractive
indices, respectively, on either side of each interface. Since (2.87) uses the scalar
fields as approximations to the true TM ficlds H,, we can expect (2.87) to yield
accurate estimates of B, only as long as the index variations arc small. We can
refine (2.87) by attempting to account for the correct derivative continuity condition
on Hy. From (2.71.b), we relate the derivatives of Hy at either side of an index
interface:

_1_dH)_ _1_dHy

ni dx len;I e Iu (2.88)

We now define an "average" value of the derivative across the interface as:

dH 1{dH dH 1 nt YdH
¥ == — | 44— =] ]+ L - (2.89
dx avge 2( dx |II dx |L) 2( nfl) d.x III )
. dy dH . . dH
Replacing — = —2|,, in (2.87) with —= we get:
p g dx dx |H ( ) dx avge g
z(nu _nL)(nlzl +”i) gi_\;_l .
2 2 nizlnL dx v
B*—PBry = (2.90)

lelzdx

X=~o0
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where (2.90) is no longer strictly variational.

In Figure 2.2 are shown calculated values of the fundamental mode effective
indices of a symmetric three-layer planar waveguide with core index 1.50 and
thickness 2.5 um, for a wavelength of 1.55 pm, as a function of the refractive index of
the semi-infinite cladding layers. The exact TE (scalar) and TM effective indices are
compared with those obtained from the scalar solutions using (2.87) and (2.90),
indicated by "M1" and "M2" respectively. Equation (2.90) is scen to yield much
better estimates of n’ =f,,, / k, than (2.87) when the core/cladding index difference

is large.

Equations (2.87) and (2.90) provide convenient estimations of the
propagation constants of bound TM-polarized planar waveguide modes, obtained
from the solutions of the scalar formulation (2.82), where the scalar fields and their
derivatives are taken as continuous with respect to x. The important point here is that
for planar waveguides, the scalar Helmholtz equation (2.82), which is well-suited to
numerical solution when field and field derivative continuity properties are associated,
in fact directly yiclds the TE mode solutions, and also provides a good starting point
for examinii;g the TM modes. This, to a large extent, justifies an exclusively scalar
analysis of planar waveguide modes. We shall see that similar arguments pertain to
non-planar waveguides in the limit of strong field confinement in a transverse region
of uniform vertica! index distribution ("strong guiding"), so that a scalar treatment is
justified in that case also. The work of Chapters 3 and 4 deals with precisely this kind

of waveguide.
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Figure 2.2  Comparison of the fundamental mode effective indices,
"ne"”, of a planar waveguide with index distribution n2/1.50/n2 and
core thickness 2.5 ym, for a wavelength of 1.55 pm. Curves "TE" and
"TM" show the exact values for the TE (scalar) and TM modes
respectively, while "M1" and "M2" arc calculated from the scalar

solutions using (2.87) and (2.90) respectively.

2.9 Modes of Non-Planar Waveguides = We have seen that the scalar Helmholtz

equation, characterized by a single field component and associated with field and ficld
derivative continuity properties, is particularly easily adapted to numerical solution.
In planar waveguides, the convenient separability of fields into orthogonal TE and
TM polarizations facilitates the application of a scalar treatment. However, for non-
planar waveguides, i.e. those for which the refractive index distribution varies along
both transverse axes (see Figure 2.3), the situation is much less clear. In this case
orthogonal polarization states do not exist, so that the modes of non-planar
waveguides are always hybrid, meaning that all three components of both the electric
and magnetic field vectors are non-zero. Six scalar field components arc thus
required to fully describe a non-planar waveguide mode, versus three for planar
waveguides. We saw that for a pianar waveguide mode, we need only calculate onc
field component, since the remaining two components are functions of the first (sce
(2.60), (2.64) and (2.65)). The hybrid polarization (lack of orthogonal polarization
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states) of non-planar waveguide modes requires us to find two transverse field
components: it is necessary to simultancously calculate both of either, for example,
Jo. wod £y, or Hy and Hy,. The remaining four field components are then accessible
using the Maxwell equations [19]. This situation considerably complicates the task of
numerical mode solution, since no single field component can be selected for
computation as in the planar case, and hence a scalar treatment is, in general,

inherently unsuitable.

(a) (b)

() (d)

Figure 2.3  Some standard non-planar waveguide configurations for
integrated optics; shading differences indicate material (refractive
index) differences: (a) channel waveguide; (b) ridge waveguide; (c)
rib waveguide (a limiting case of the ridge configuration); (d) strip-

loaded waveguide.
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Historically, the first numerical treatments of non-planar diclectric waveguides
were fully vectorial, in the sense that they solved equations for the transverse
components of E or H, obtained by substituting (2.11.a) or (2.11.b) into one of the
vector Helmholtz equations (2.9.a) or (2.9.b). The usual choice is (2.9.b) for the
magnetic intensity, since for non-magnetic materials all components of H are
continuous across arbitrarily oriented dielectric interfaces or gradients. Howcver, the
field component derivatives are not necessarily continuous and hence a two-
dimensional version of the centered-differences scheme outlined previously is
unsuitable. The complicated form of (2.9.b) requires a powerful numerical method
for solution; finite element methods based on variational formulations of (2.9.b) and
not restricted by derivative continuity conditions have been widely used [20],[21].
However, such formulations are highly complex and furthermore often lead to
spurious, non-physical solutions which are not easily differentiated from the true
modes.

A considerable simplification of the problem is obtained by assuming the non-
planar waveguide modes to be "quasi-polarized”. This means that while a mode is, in
fact, hybrid and therefore consisis of six non-zero field components, the six
components are often not equally significant, so that for practical problems we may be
able to neglect one of the two transverse field components. This reasoning leads to
the class of so-called "semi-vectorial" methods [22],[23]. Consider a general
electromagnetic wave in a homogeneous medium. It is simple to show that such a
wave is always TEM (transverse electric and magnetic, i.e. E,=H,=0) and thus
consists of only four non-zero field components [13]. For conceptual purposes, a
TEM wave may be considered the sum of a "quasi-TE" wave and a "quasi-TM" wave,
each with two non-zero field components. Real waveguides are generally near-
homogeneous in the sense that refractive index variations are relatively small except at
air interfaces, where the strong index difference prohibits significant field penetration.
Therefore, for most non-planar waveguide structures, a field description in terms of
quasi-polarized modes (where the quasi-polarizations are, generally, not degenerate as
in homogeneous space) is expected to be quite accurate. These modes are defined as
follows:

E(x,y.z)=(E,,0,E,)

uasi - TE Solutions _
Q A(x,y.0)=(H,.H,,H,)

(2.91.a)
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Etvvo)=(E E, E.)

B} (2.91.b)
H(x,y,z)=(H,,0,H)

Quasi - TM Solutions {

For quasi-TE modes, we expect that Ex>>E, and I1,>>H;>>H,, while for
quasi-TM modes we anticipate that Hy>>H, and E,>>E;>>E,. Each quasi-
polarized mode has only one independent field component, Ey (or Hy) in the quasi-
TE case and H, (or Ey) in the quasi-TM case, which are used as the bases for
computation in the semi-vectorial methods. These methods thus exploit the fact that
cither Ex>>Ey and Hy>>Hy, or Ey>>Ey and Hy>>H,, for the hybrid modes of real
non-planar dielectric waveguide structures to achieve a considerabie simplification of
the mathematical formalism. For example, in [23] the vector Helmholtz equation
(2.9.a) is reduced to the following form:

( 0 1aon* 9 o

- L kWP E =0 2.92.a
dxn® ox ady* 97’ ”n) * ( )

for quasi-TE modes, and:

2 2 2

for quasi-TM modes, where (2.92.b) uses Ex=0. Note that the arguments justifying
the semi-vectorial methods are neither general nor rigorous; they have gained
acceptance only by demonstrating results close to those of fully vectorial treatments

for a range of standard optical waveguide configurations.

If, for a given waveguide, the transverse index variations are small, then the
semi-vectorial equations (2.92) reduce approximately to a single scalar equation,
where by scalar we again mean that the equation contains only a single field
component variable, and that both the field and its derivative are continuous across all
transverse index boundaries or gradients. Such a formulation is obviously a large
approximation in the general case, but may be a very good one, at least for one quasi-
polarization, in certain instances. For example, consider the ridge waveguide of
Figure 2.3(b). For quasi-TE modes, where we assume EyzO, the only index
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interfaces for which V E is not continuous are the vertical sidewalls of the ridge.
However, if the ridge is air-clad, the large index discontinuity will prevent significant
lateral fieid penetration out of the ridge, so that the cffect of the ridge sidewalls may
be insignificant. This argument is examined in [24] using a variational analysis similar
to equations (2.83)-(2.90). From equation (2.92.2) above and the two-dimensional
scalar modal Helmholtz equation:

(—az—)x;z—+ aa>:z +k2n? —Bz)w =0, 2.93)

we can derive the following expression using a procedure similar to that described
earlier (equations (2.83)-(2.90)):

dy .
Y |dy
BZ _ §E ~ — sid:s'ull dx (2.94)
J vl

y=-—co x=0

where n, is the index in the ridge and the lateral center of the ridge is at x=0. Air-
cladding and lateral symmetry of the ridge have been assumed and the integral is
along the vertical ridge sidewall. Equation (2.94) provides an estimate of the
propagation constants of the quasi-TE modes using the solutions of the scalar
equation (2.93). A similar formulation may be obtained for the quasi-TM modes; the

correction in this case involves integration of:

d *
"qi‘l/

2.95
&0 (2.95)

over all the horizontal layer interfaces.

Equation (2.94) implies that if the integrand in the numerator is insignificant,
i.e. if the scalar field and/or its derivative are virtually zero along the ridge sidewall,
then the scalar Helmholtz equation (2.93) directly yields the quasi-TE field solutions.
This condition is produced as the ridge depth becomes large (i.e. tending towards the
rib configuration of Figure 2.3(c)), since the mode fields tend to be constrained within
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the raised ridge itself, and to lie less under the ridge where they can spread laterally.
It is this lateral field spread thai leads to non-zero field magnitudes and derivatives
toward the bottom of the ridge sidewall as is easy to understand. If E, immediately
under the ridge spreads laterally beyond the x-position of the sidewall, then it has
(generally) a non-zero value at that position. But since E must be continuous across
horizontal layer interfaces, it must also have a non-zero value in the air immediately
above the ridge bottom and just outside the ridge wall. It was shown in [24] that in
the limit of large ridge depth the correction term in (2.94) does indeed approach zero,
and the scalar equation (2.93) produces the same mode fields and propagation
constants as the quasi-TE solutions of both semi- and fully vectorial methods, for a
typical refractive index distribution. We refer to waveguides for which this condition
holds as "strongly guiding"” or "strongly confining”, since a large ridge depth tends to
strongly confine the mode fields laterally, within the bounds of the ridge.

Note that the condition of strong mode confinement implies a separability of

the mode fields with respect to the transverse axes:
E (x,y)=y(x,y) = F(x)G(y) (2.96)

since effectively the fields are confined to a region of uniform vertical refractive index
profile, i.e. under the ridge. Equation (2.96) implies that a separation of (2.93) itself
may be possible. This reasoning leads us to an examination of the application of the

well-known "effective index method" to strongly confining waveguides.

2.10 Application of the Effective Index Method to Strongly Confining
Waveguides Let us assume that the solutions to the two-dimensional scalar

Helmholtz equaticn (2.93) can be written in the following form:
y(x,y)=F(x)G(x,y) (2.97)

where G(x,y) is a piecewise-uniform function of x. For a ridge/rib waveguide that is
laterally symmetric about x=0, and where the ridge/rib width is a, we thus have:
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] {G,(,\-) | <ar2
G(x,v) =14 . (2.98)
G,(v) |d>al2

Using (2.97) the scalar Helmholtz eguation (2.93) becomes:

G

d*F _9dG dF 9'G 9°G .
> — +(k
dx ox dx

+2——+F{=—=+ 2’ -BP)FG=0 2.99
ax; ayz ',Il B ) ( )
Equation (2.99) is "piecewise-separable” according to (2.98) so that:

1 d*G

%dxz -p* Z_E—_dyzl ~k2n*(x,y)=-K, |x<a/2 (2.100.a)
1
1 d*’F , 1 d°G, ,, ,
T B = ke (x,y)=-K, |{>al2  (2.100.b)
2

where K, and K, are constants. From (2.100) we therefore have the following:

d(;y(z;' ’f{k.fnz(IJCISa/Z,y)—K,}Gl =0 (2.101.a)
2
"dy? +{e2n(x>ar2,y)-K,}G, =0 (2.101.b)
2
‘fo+{K(x)—BZ}F=0 (2.101.¢)
where:
Kixy=15 x| ar2 (2.101.d)
K, |x|>a/2

Equations (2.101.a-c) have the same form as the scalar planar Helmholtz
equation (2.82) and therefore discrete and continuum solutions are expected. If the
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real staucture in fact supports a bound mode then (2.101.a) always has at least onc
discrete solution: the number of such solutions indicates the number of vertical orders
of modes which exist for the two-dimensional structure. In any case, the bound
solution(s) of (2.101.a) should be chosen for application in (2.101.c). Ii discrete
solutions of (2.101.b) also exist, then these correspond to vertically bound fields
outside the rib and likewise should be selected for application in (2.101.c). Applied
this way, the method described by cquations (2.101.a-d) is well-known as the so-
called effective index method [25].

However, (2.101.b) may have only continuum solutions, even for waveguides
which do in fact support bound n:odes, and the best way to proceed in such cases has

heen the subject of some contention. We note that if we choose:
K, =k’ (2.102)

then :
G,(yy=0, fory along sidewall (2.103)

is a valid non-trivial solution of (2.101.b). From (2.94) this corresponds to the
condition under which a scalar analysis yields the correct solutions for quasi-TE
meres  Applying (2.102) in (2.101) we therefore ariive at the following formulation:

2
dd FZ—' +lkzn(d<ar2,y)- k)G, =0 (2.104.2)
)’
2
where:
K(n) =45 [x<ar2 (2.104.¢)
x= k? |x|>a/2 e

From the preceeding arguments we expect equations (2.104.a-c) to produce
the correct solutions for bound quasi-TE fields as long as the condition (2.103) is
satisfied for the true mode fields. Note that (2.103) in fact means that, within the
ridge, the mode fields are strictly separable according to (2.96). We can thus check



the applicability of (2.104) by verifying the validity of (2.96), for (x,y} within the
ridge, using the calculated two-dimensional scalar ficlds. As an even stronger
condition we can check that (2.96) applies everywhere. As a general rule, (2.96) is
satisfied for true rib waveguides that are air-clad. This is convincingly demonstrated
in [26].

We have therefore come to the quite remarkable conclusion that for strongly
confining rib waveguides, the effectively one-dimensional, scalar treatment described
above yields the correct quasi-TE bound mode solutions. This is of considerable
value since the simple finite differences method described earlier (equations (2.75)-
(2.79)) is then sufficient to examine such structures. It is necessary, though, to
restrict the set of solutions of (2.104.b) to those with effective indices greater than tiic
substrate index, since, by our earlier parametric arguments, cther discrete solutions
cannot correspond to bound modes of the two-dir  1sion  strucwre and may be
considered spurious.

Note that the above arguments also imply that a considerable simplification of
equation (2.55), which gives the amplitudes of the waveguide modes following an
abrupt longitudinal transition, is possible for strongly confining structures. Wherc the
description of the propagating fields as quasi-polarized and the separation (2.96) arc
valic. for both the pre- and post-transition fields, (2.55) reduces to:

TE,(x>F;(x>dx
a, =—== — (2.105)
\/_[ |F, () dx | [|F, (o] dx

since the electric fields and magnetic intensities are related by an approximatcly
uniform impedance which is the same for the pre- and post-transition ficlds.

2.11 _ Finite Element_ Solution of the Twg-Dimensional Scalar Helmholtz
Equation Though we have demonstrated that the semi-one-dimensional scalar
analysis of equations (2.104.a-c) provides un accurate analysis of the quasi-TE bound
mode fields of non-planar waveguides in the limit of strong guiding, a method of
solving the two-dimensional scalar ‘ielniholtz equation (2.93) is nevertheless required
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for the work of Chapter 5, where the strong guiding condition is not satisfied. In
addition, it is desirable to be able to solve (2.93) directly to verify that the separability
condition (2.96) is sutisfied in cases where the strong guiding condition is expected.
The formulation (2.104.a-c) can subseguently be uzed to obtain accurate solutions for
high-order modes and to quickly cxamine the effects of design variations.

A two-dimensional version of the centered-differences scheme applied earlier
is applicable to (2.93). However, in its basic form, such a scheme requires a
structured (uniform) grid which, for accepiable precision of the computed solutions,
generally leads to unacceptably large matrices in eigenequations of the form of (2.78).
Although finite difference schemes based on non-uniform grids can be derived [27],
the class of variational schemes using finite elements generally offers the possibility of
higher solution precision using relatively small-dimension matrices {211,[28],{29].
The trade-off is that the finite element methods themselves are innerently more

complex than the finite difference schemes.
To develop an applicable finite element method, we take \ as real in (2.93),

multiply (2.93) by ¥ and use integration by parts to obtain, for bound modes:

j j{ka,,zwz _py? (%‘l’) (i‘)") }dxdy 0 (2.106)

y=—o0 Y:—00

As we saw earlier, (2.106) is a variational expression in that actual solutions
v of (2.93) render stationary a functional of the form:

f f {'» nhy? =gy (%‘i’) (aa‘;’) }dxdy (2.107)

y=-—oo X=—o0

i.e. 3Q(y)/dy =0 if W is not a solution of (2.93). We divide the solution interval

into triangles and define the field function within each triangle, or element, as:

3
WX, y) = W (x, y) (2.108)

i=]
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where ., are the field values at the clement nodes and o (x.v) are lincar shape
functions which interpolate the field value over the whole clement and are given by,

for example:

I
a](xv y) = _2_/{{("62.))] —x3y2)+(.y2 - .V})X +(xj - "})y} (2.109)

where A is the element area, x,,y, are the element nodes and the other o are
obtained by cyclic interchanges of the subscripts. Higher-order interpolations may be
used; we shall comment on this later. The shape functions are defined to have unity
value at the nodes, t.e.:

0 i#j
ai(x,-,)yj)z{l i (2.110)

We now write the terms of Q in each element using (2.108). For example:

Y & 0oy, Y, Y3 =Y MW= Y,
.—.._—_' . ! = = \U + =~ +——
ox Z‘w ox 24 ' 2A AR

v, (2.111)

and:

o 2 33 ! oo,
if (a—i’) M'V:Zz“";ﬁ %—a‘—’jdxdy\u,

clement

gy ff Al ) @112

element

where {} denotes a three-vector and the superscript 7 denotes a transpose operation.
Similar expressions are obtained for the other terms in (2.107). We assemblec the

resulting functionals on each element to obtain:
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] A e e o

clementy clement

= (W)jhsmim ([ A]dlsjuint - BZ [lg]dnjoml )( W)dl.\jl)lnl (2.1 13)

where () is a global vector comprised of the field values at all the nodes, and:

Alpn = 2 ] [Kin*{ed {o}- a{a} a{a} a{a} a{a})dzd (2.114)

clements element

Blym = 2 [ {0} {o)axdy (2.115)

clements clement

The subscript "disjoint" indicates that the elements are not yet connected in any way.
Therefore (Y)disjoint has 3N components, where N is the number of elements, while
[Aldisjoint and [Bldisjoint are square matrices of order 3N. The redundancy of the
shared nodes on adjacent elements is eliminated by the use of a connectivity matrix
[Clie.:

(W)disjoim = [C](W)joinl (2'] 16)

where [C] forces the identity of field values of the disjoint vector which correspond to
the same node, and also enforces a homogeneous Dirichlet boundary condition on the
edges of the computational window. The use of the reduced dimension conjoint
vector thus ensures both field continuity throughout the solution domain, and the
appropriate boundary condition for guided modes. Note that (2.116) implies that we
use [C] to obtain the disjoint vector from ihe joint vector; in fact, the connectivity
matrix is used to modify the disjoint matrices [A] and [B], to obt. . an eigenvalue

equation which is solved directly for (w)joml . From (2.113) and (2.116), we have:

QjOi"‘ = (W);im ([ A]joinl - Bz [ B] joint )( W)joim 2.117)
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where:

(4] =[] [A], L€ (2.118)

[B]joim =[C]T[B]disjnim[c] (2.119)

Enforcing stationarity of Qjging, i-€. setting:

anoinl _ 0 (2 120)
a(\y)joinl .
we obtain the matrix eigenequation:
[A]joinl (W)joim - BZ[B]joim (W)joim =0 (2'121)

In this work, a pre-existing FORTRAN code [30], which implements an
algorithm similar to that just described, was modified te produce thie cuirect matrices
[AJjoint and [Bljoint, after scaling (2.93) to new coordinates:

x—>xk,, y— yk, (2.122)

which are better suited for computation. Th's “-ansformation changes tiic eigenvalue
equation (2.121) to:

[A]jnim (W)joinl —nf[B]joim (“l”)joim =0 (2'123)

with (2.114) and (2.115) appropriately modified. The pach age LANZ, which is used
to solve (2.78) for planar waveguides, is also used to solve (2.123). The matrices {1}
and [B] are not as sparse as in the planar waveguide case, and the eigenvalues fcund
by LANZ seem 0 be generally less accurate, or at least quite sensitive to the
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distribution of the clements throughout the problem region, especially for high-order
modes (non-maximum cigenvalues). Since LANZ seems to be more robust in the face
of mnereased matrix size than reduced sparseness, the linear shape function described
above, in conjunction with a large number of small elements, is probably better-suited
than a higher-order interpolation scheme used with a smaller number of elements.

Similar conclusions have been mentioned by other authors [20].

2.12 Modal Analysis versus Beam Propagationn Methods  The work of Chapter

5 deals with longitudinally invariant structures, and hence the determination of bound
modes using finite elements is sufficient to characterize the stable propagating fields.
In Chapters 3 and 4, however, we examine structures which are longitudinally varying
and hence no one set of bound modes provides a sufficient characterization.

The waveguide transition relations (2.55) and (2.105) hint at one way of
cxamining longitudinally varying waveguides. If the structure is "piecewise-invariant”
then it may be convenient to represent the propagating field throughout the structure
in terms of local modes, having complex amplitudes determined by the transition
relations at each junction between invariant sections. Such an examination is referred
to as a "modal” analysis. For a modal analysis to be applicable two conditions must
be fulfilled. First, the structure must be adequately representable by a few
longitudinally invariant sections, each supporting a relatively small number of bound
modes, to kcep the required calculations to a practical number. Note that
longitudinal-invariance may be defined with respect to a local coordinate system
which may differ between sections. Second, the propagating fields of interest must be
adequately represented by bound modes only, since the transition calculadons (2.55)
or (2.105) are convenient only for the bound modes. Furthermore, the numerical
methods we have introduced cannot properly calculate radiation modes. Including
only the bound waveguide modes means that any power carried by or coupled into
radiation modes is neglected, or at least assumed absent at subsequent transitions.
This is normally acceptable since it is usually the power retained in bound modes at
the end of a waveguide suruciure that is of interest. However, a modal analysis is not
~vitable for application: where the distrii*ution of power radiated from a structure is
important.

A second way to analyze longitudinally varying structures involves solving a
Helmholtz equation where strictly harmonic z-dependence of the fields is not
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assumed. Let us presume that a scalar treatment is valid and assume a field of the

form:

Y(x,y,2) = 0(x,y,2)e™ (2.124)

where Wy on the right-hand side of (2.124) is made a weak function of z which may be
considered a field "envelope". This envelope has a fast phase variation with respect
to z given by the exponential, with a uniform phase constant B for the whole ficld.

Using (2.124) in a scalar approximation to (2.9.a) or (2.9.b) we obtain:

aZ aZ az ~2 . -)
(¥+'a’y—2+§z7+kgllz—ﬁz)¢=—2jﬁ£a‘% (2.125)

A simplified "slowly varying envelope” approximation to (2.125), often used
in practice, is obtained by setting the second derivative with respect to z to zero.
Methods which solve equations of the form of (2.125) as an initial value problem are
widely used and are known as "beam propagation methods” (BPM) [31]-[35]. These
methods approximate the behaviour of near-axial radiating fields quitz well and
furthermore can be applied to continuously varying waveguide structures.

However, solving (2.125) in three dimensions is a formidable numerical task,
and the validity of methods which purport to effectively reduce non-planar structures
to two dimensions for propagation analysis is unclear. Where discretc solutions to the
vertical slab Helmholtz equations exist everywhere, the effective index method leads
to a good representation of bound mode fields, but the relationship of the continuum
modes of the resulting lateral structure to the true radiation modes of the
corresponding non-planar structure is uncertain, particularly where strong lateral
effective index differences exist. Furthermore, as we have already mentioned, in
strong guiding situations the effective index method described by (2.104.a-c) leads to
spurious bound mode solutions, which are easily identified by physical arguments, but
which cannot be excluded in solving 1 geueral propagation equation. A technique has
been proposed to overcome this limitation [36], but it relies on a somewhat subjective
fitting procedure which is difficult to apply to waveguides which support more than
one bound mode. Furthermore there is no reason to believe that the technique
provides an accurate representation of radiation modes. Indeed, a comparison of the
technique applied to u two-dimensional BPM treatment of a bent waveguide,
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compared to both a fully three-dimensional analysis and experiment [37], suggests
that it does not. We thercfore must conclude that, at least for strongly guiding
structures, a reliable BPM analysis requires a three-dimensional formulation. Since
the work of Chapters 3 and 4 deals with such structures, and the conditions of
applicability of a modal analysis arc met, a modal analysis is used rather than a more

complicated BPM.
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Chapter 3

nalvsis and Design of Multi-Mode Couplers in Deeply Ktched Waveguides and

Implementation in an InP-Based Mach-Zehnder Switch

Directional couplers are an important component in integrated optics. In
general, these devices rely on the beating of multiple excited modes to shift the
transverse intensity distribution under propagation. By choosing the propagation
length carefully, a desired spatial transfer of the guided optical energy can be
achieved. Furthermore, phase modulation can be used to change the phase
relationships of the various guided field components, so that active devices using
directional couplers can achieve controlled spatial optical routing. The conventional
or "synchronous" directional coupler implementation places two single-mode
waveguides in sufficient proximity that their evanescent fields overlap, creating a
coupled waveguide system; see Figure 3.1. This lifts the degencracy of the modes of
the individual waveguides and creates symmetric and anii-symmetric "supermor’es” of
the coupled system, with separated propagation constants. An input to one of the
guides excites both supermodes, which pass in and out of phase as they propagatc;
the lateral distribution of the total guided field therefore changes as a function of
propagation distance. By properly choosing the total device length, a bar, cross, or 3-
dB coupler state can be selected.

Synchronous couplers can achieve excellent performance. The close match
between the modes of the individual waveguides and the lobes of the supermodes
leads to low excess loss, and high power transfer efficiency can be achicved.
However, since the interaction of the coupled waveguides is weak and hence the
difference in propagation constants of the supermodes is small, these device-
generally must be very large, typically on the order of miilimeters or centimeters.
Furthermore, synchronous couplers cannot be implemented with deeply etched rib
waveguides, since lateral evanescent fields effectively do not exist. Both of thesc
limitations can be overcome using "zero-gap" or multi-mode waveguide couplers.
These devices replace coupled single-mode waveguides with a single multi-mode
waveguide, which, ' ' ttz ceapled guides, offers the possibility of exciting symmetric
and anti-symmetric incdes. Multi-mode couplers offer the prospect of high-

performance and compact size and have generated considerable interest in recent
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years. We now describe the general theory that governs the operation of these multi-

mode resonance couplers.

3 y
a __4'} - // \¥_
X
ANA 4«
b e’ \ A \\
c // \Ng

AB z =0 AB z =2 AB z =n

Figure 3.1 Conventional directional coupler. Two waveguides with
identical propagation constants, § (a.), are brought close together so

that their evanescent mode fields overlap. This lifts the eigenstate

degeneracy and creates symmetric (b.) and anti-symmetric (c.)
supermodes, with different propagation constants, B _—p, =AB>0.

An input at one guide excites both supermodes (d.), which then
interfere as they propagate. The resultant intensity is therefore

transferred between the two guides.



3.1 Theory of Resonant Self-Imaging in Multi-Mode Waveguides  Multi-mode

waveguide couplers operate using a resonant sel-imaging process which occurs in
homogeneous waveguides [38],[39]. (Homogeneous in this sense refers to a
structure wherein a single effective index is sufficient to characterize the "core” region
of the waveguide.) These devices can be configured as cross-, bar- and 3-dB
couplers, as well as power splitters and combiners, and generally arc very compact
and have large optical bandwidths and low polarization sensitivitics. For thesc
reasons, multi-mode devices are being increasingly applied in integrated photonic
devices.

Several theoretical analyses of multi-mode resonance effects have appeared in
the literature; the following discussion uses elements of both the general treatment of
Bachmann et al. [40] and the consideration presented by Soldano et al. [41]. 1t is
interesting to note that this theory is rigorously correct only in the limit of strong
guiding, whereas most practical implementations have used weakly confining
waveguide structures.

In a strongly confining structure, the lateral guided mode profiles are well-
described by sine functions of the form:

v, (x) = sin[n(i+ 1)%:‘ (3.1

where i is the mode order and W is the width of the waveguide; the waveguide core
extends from x=0 to x=W. The validity of (3.1) is apparent from (2.104.b) and thc
separation relation (2.96), with the "hard boundary" condition (2.103). For strongly
confining rib waveguides, W in (3.1) is the true rib width; for more weakly guid-
structures, an "effective” width larger than the true lateral core size can often be
defined for application in the following derivations. Following the diszussion of
strongly confiring waveguides in Chapter 2, the functions (3.1) may be directly taken
as the electric field x-components of the quasi-TE modes; extension to TM fields will
be considered later.

An integral number of half-periods are contained within the waveguide, and

the transverse mode propagation constants are therefore:

k,=(i+)m/w (3.2)
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The longitudinal propagation constants are then given by:
B, =n'k] -k} (3.3)

where n in (3.3) is taken as the effecrive index of the waveguide core. For strongly

guiding rib structures, this is given by:

n=

—‘/]:5_'— (3.4)

4

where K, is given by equation (2.104.a). Using the paraxial approximation
k,<<P, Vi, weobtainfrom (3.3):

B, =nk,—k’ /2nk, (3.5)

and therefore, using (3.2), we have:

3n? 3T
AB=B,.-B = = £ 3.6.
B=B,-P, 2k WP dnW? (3.6.2)
B, =nk,- %B (3.6.b)
B.‘ = Bo i ""2)-A3E ':3.6.(!)

From (3.6.c) we see that the mode propagation constants are a quadratic
function of the mode order; this dependence establishes a definite phase relationship
ameng all the modes of a homogeneous waveguide and is the basis of resonant self-
imaging. Let us now assume that the waveguide modes are excited by some input
field y, at z=0. If this field is intensity-normalized, then the excitation coefficients of

the guided modes are, from equations (2.105) and (3.1):

a, =

w
[w. 0w (0dx @3.7)
x=0

|



KB}

From (2.11) and (2.47) the guided field distribution in the coupler at a

propagation distance z is then:

1 NI

WY(x,z)= ZaiWi(x)exp(jBiZ) (3.8)

1=0

where imax+l1 is the number of guided modes. Let us consider rmulti-mode

waveguides of a fixed length defined by:

M
Ly —2—73L (3.9)

n

where L, is a characteristic beat length defined by:

s

L =" |

: : 3.10
TOAB B, — i ( )

and, to permit the representation of arbitrary device lengths, M and N arc any positive
integers without a common divisor. These numbers have a physical signiticance
which will become clear later. We can now use (3.6.¢) and (3.8)-(3.1C) to write the
guided optical field at the coupler output:

£ max

W(x, L) =Y a, Ay, (x) (3.11)
i=0
where A, describes the phase of the modes and is given by:
P L
A =exp| jB,Ly —ﬂt—N—z(z+2) (3.12)

Using (3.12) and (3.6.a-c), equation (3.11) bzcomes:
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'; l 1 M
P x, I"’)~pr(/n—ﬂi{—;’?——l})z LX‘("’K‘—I\[+2})\V (x) (3.13)
If we now replace W, (x) with (3.1) and usc

sin x = (exp} jmx] ~expl - jmx]) /2 j, equation (3.13) becomes:

Ink 1 '& M
Wi M) = ex ( rt——{——— } a {cx (ﬂt(:-‘ l)—-—jn—l(H 2))—~cxp _/7'(1+l)—-—_11t—1(:+7)
(i3] =expl j AB 57 }; P - )f

N 3

(i+)x+ LN/I-i('i +2)W

( oMo
ol in M f’%nA l} 'iua . 'n(/ L i)x N i+ 2OV ol
— M 3nk, )1 ) B
p‘J 1 TR p| Jj o ; 8
4 J

(3.14)

We iirst examine the case where M=N=1; the coupler length is therefore 3L

In this case (3. 14) beconies:

L ‘L‘J—l Z{p( j,tff_mzv_x))exp( — i +3i+1])

w(x, L) cxp[jnj X ]J 7j 7
—exp( (I—Hl‘%—‘f—{) p( /‘t[z -rl—l])} (3.15)

=cxp(j7t{3nk“ —-1})7;—1;‘% exp( _]TE[I(Z+1)]/ [exp( (l+1);/w x)) xp(—jn[2i+]])

8
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( W-
_Lyr)(_j _'_j_l)_:v_}))gxp(ﬂt)} (3.16)

w

/ . 1 ax
_ expLﬁt{ 3nl, ]}\_1} Y, {exp( _(1_+1LW_£)—\ ( LUt r)::/V ))}(3 17)
L ) <d

_ exp(jn{ 3nk, 1})2“1‘ sin {,t&'_ill%";‘_)} (3.18)

—exp( {3"1( —l})iﬁai\u[(W—x) (3.19)

AB i=0

Therefore, neglecting the phase pre-factor, we see that at this coupler length
an image of the input field, laterally mirrored about the waveguide center, is
produced. This effectively cc responds to a cross-coupling resonantc. Note that this
effect does not depend on the values of the mode excitation cocfficients a; and
therefore occurs irrespective of the form of the input field. For this rcason, the
phenonenon described by the above equations is called a general sclf-imaging
resonance. General resonances occur at length multiples of 3L, as described by
equation (3.9). We shall sce later that there are also restricted resonances which

occur at me'tiples of L, if a, =0 for certain i.

We rnow examine the case where M=1 and N=2; i.e. the coupler length is

2L /2. From (3.14), the gnided optica! field at the coupler output is:

fmax

¥(x, L) = exp(,n—fAﬁ .})-2—_2@. exp

i=0

. y,_.%,'(mz)w (i+1)x *~Li(i+2)W

J T e 1;/

v

(3.20)



57

X ] — 2 W . . 1 . . 2 W
LIJ ‘};a CXPL]-“I(!+2):HCXp( (i+1Dx uz/(z+ ) ) exp(_m(w )A+uz/(z+ ) )}

+2_lj‘ga exp{ gzu + 2)]{exp( ) v‘/})_’\_/"-cxp(—jn (i-i‘-/Vl)x)}:l (3.21)

Using (3.15)-(3.19), v.¢ can rewrite (3.21) as follows:

4 . (x (W - j (x> =~ jawy . (W- |
W(x 1) = cxp( il {m ]} Y WY, WD) o jay, (5 jay, 0V - f
AB ieven 2 iodd 2

(3.22)

[ ] f3nk I}J{Zaiwi(x)+c;w..<vv—x>+zjaiwi(x>—./fziwi(W—x>

i

2 2

iodd ieven

_yavrayWon 5 ja.-wx)—ja.-w.-(vv—x)} 3.23)

The last two terms of {3.23) are = ... because of the symmeiry properties of
we mode fields. Therefore, we have:

. 3 k lnkl)(
‘F(x,Lé):exp( { ZB })i Za \y‘\x)+ zaw (W— x)1(3 24)

At this coupler length we thus have a superposition of two images: the input
field and its laieral mirror about the wavegu.de center, each with a magnitude of
1/4/2 thai of the input ficld, and separated in phase by n/2. This is effectiv.ly a 3-
dB coupler state.
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Finally, we examine the case M=2, N=1. From equation (3.14) the field at the

coupler output is:

114 W

. rmar _’) 7 J . YT " ’
‘l’(x,lj)=exp(j2n{3"k" f] Z“ JCXP( (14 Dx -2 +2)W ] cxp(-jn“+ Da+2i(+ )W

AB

_exp[ﬂn{:zg }) 211 Za exp| ﬂc2z(1+2)]{exp( u :Vl)x) cxp(—jn(iﬂ)x

i=0

_exp(ﬂn{———— - })’ixa Y, (x) (3.27)

Therefore, the input field is reproduced at the output: a bar-state resonance.
The physical significance of the numbers M and N can now be guessed. In general, a
multi-mode waveguide of length L} given by (3.9) will contain, at th.. output planc,
N images of the input field. The locations of these images are partly ' . mined by
M; different configurations exist for values of M such that the ratio M/N cannot be
reduced. The locations and phases of the N images are derived, for the general case,
in [40]. While the pre~ ‘atation given here describes the operation of 2X2 couplers
(where bar, cross and 3-dB states ui : possible), multi-mode waveguides can in fact be
used to implemen: general NXN devices. This possibility has startling ramifications;
for example, NXN Mach-Zehnder switches have aiready been proposed and analyzed
[42]. In wddition, it has been shown that 124V imaging is produced by a centered,
symmetric cxcitation such that no odd modes of the coupler are excited [43].

We mentioned earlier the existence of a restricted self-imaging resonance
phenomenon; let us now cxamine this. We postulate that the exciting field at the
coupler input is stch that:

a,=0 for mod,[i]=2 {3.28)

)
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In other words, modes 2, 5, 8, 1 1, etc. of the coupler ar= not excited. In the
limit of strong guiding, this condition is in fact casily produced. From (3.1) and (3.7)
we find that (3.28) is satisfied by a symmetric field distribution y,(x) centered at
x=WI3 or x=2W/3, since all the "forbidden" mode fields are anti-symmetric about

these positions. We now consider a coupler length defined by:

M
LY = + L (3.29)

Theref - from (3.8) the guided field profile ai the coupler output is:

(i 4 2)W) (i )

. R fmax (l+])X—M Iffjﬂ_z,}_,t (i+ "\ ] M :_(,‘;f .Z_Zw

‘l’(x.l,fv’)=cxp jnﬂ LA iZ’a, exp jn‘L»-i——--,—e\’p —jr— 3
N {AB 3])2;%< W ) ( w J

(3.?"? »

We now decompose the summand of (3.30) into two parts using a new sum

index:
4 Go+Dx-Y papeyw Gp+x+ M sapenw
Wx, 1) M nk, 1)1 Ceptl)x YRS O )«HW/J( pP+2)
Plx, Ly J=cxp jnw A—B—; 2—JZ ay,{exp| jn W —exXpj —jm W
E ;0

(3/7+2)x——4/1 Gp+(p+ W (3p+2)x+y—(3p FU{+ )W
IV _exp —j7t N

m W (3.31)

+a, jexp; jn

where:

I max

S= mt(hg’—) (3.32)
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The summations over 3p and 3p+1 in (3.31) include all the guided modes of
the coupler, except the forbidden modes defined by equation (3.28). Lt us now

consider the case where M=N=1, Equation (3.31: hecomes:

) $ _ 4 N ,
W(x,i)= CXP[M{ p Z{”w{tw( Op+Dx=pGp+2 )WJ pr[ 430 204 pi3p s 2y ]1

J p=0 W W f

- et
+aw{exp(jn(3p+2)x (3p_+1)(l’+l)W)_cxp(_jn(3p+._),\+(3,n+l)(p+l)H{)}:’

w W
3.33)

-1¢ 3 (W~ ) 3 - i
_LXP(jn{%_%}JTj%["*r{"""(' ( p+l‘)v r))up( 30 +5pe])- pr( ( p+|‘)‘m ‘))‘xp(“/ﬂ!-‘/"‘/" 'D}

+“3/+|{5th m#u)exp(—fﬂ[%z +5p+ 1])“CXP(“jR(3it%chp(—jn[3p’ +p- l])”

(3.34)

—cxp[m{%-g}]—lzcxp[ n(3p? +5p+1)][mp{cxp( W’“&fw X)] cxn(—jnm»'”'lv)v(w—"))cxp(ﬂn[llnl])}

vyl exp( x3/L2v)‘fM) exp( i (3P+2v)1fw‘x))cxp( j2[2p+ 1])”(3.35)
L

ph__ 11y . (317+1)(W—X)) ( (3p+1)(W=x)
_exp(ﬂt{ AB 3}}212[a3,,{eAp(jn ” exp ?)

p=0

+a3p“{exp( (3p+2v)V(w x)) exp(_}.ﬂ(Bm-Z;;W—x))H (3.36)
/

nk, 1)<
= exp(’ln{~ - —}JZ[a3llw3p (W - x)+a3p+l y Ipel (W - X)] (3'-37)
AR 3§ )%
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Neglecting the phase pre-factor, equation (3.37) is simpty a superposition of
all of the excited modes of the coupler, laterally mirrored about the waveguide center.
Therefore, as in the general resonance case for M=N=1, a cross-coupled state is
achieved, only now the required device length is reduced by a factor of three. Similar
derivations can be followed for M=1, N=2 and M=2, N=I; in these cases, 3-dB and
bar-coupler states, respectively, are obtained.

The varicus cases of resonant self-imaging in multi-mode waveguides, such

that M, N <2 (i.c. describing a 2X2 coupler) are sammarized in Table 3.1.

3.2 Polarization Dependence of Resonant Self-Imaging The analysis of

rescnant sclf-imaging in homogenecous multi-mcde waveguides presented above is

valid for quasi-TE fields in strongly confining waveguides. We discuss here the
applicability of the preceding derivations to quasi-TM tields.

In general, the propagation constants of TM modes are not the same as those
of TE modes. However, resonant self-imaging is not a function of the absolute values
of the mode propagation constants, but rather depends only on their relative values.
Therefore, presuming that (3.1) is a reasonable description of the lateral TM guided

mode fields, if:
BZ"" - ’T_"{ = [3‘” -B,’_I; Vi, i>0 (3.38)

then the resonant self-imaging described in the preceding section will be polarization-
independent. The condition (3.38) is in fact obtained in the limit of strong guiding;
this can be appreciated by considering the discussion of section 2.9. In the limit of
strong guiding, the quasi-TE modes are directly given by a scalar analysis, according
to equation (2.94). The quasi-TM mode propagation constants can be obtained, from
the scalar values, by a similar equation involving the integration of (2.95) ovei all
horizontal layer interfaces. In the limit of strong guiding, where the separation (2.96)
is valid, the vertical field profile is the same for all lateral mode orders and hence the
resulting correction to the propagation constarts is the same for all guided modes.
Equation (3.38) is the.cfore satisfied in this case. The polarization-independence of
resonant :lf-imaging in the limit of strong guiding has been mention=d by other

authors [44] without intuitive justification.
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In practice, polarization-independent operation 18 more nearly obtained as the
number of coupler modes increases: this 1s casy to understand from the preceding
arguments. The highest order modes of & waveguide are the least laterally confined
and the separation (2.96) may be less valid than for the better-confined low order
modes. The scalar-to-TM corrections to the high-order mode propagation constants
therefore may not be uniform. If a coupler sustains only two modes, then the
propagation constant correction is apt io be different for the fundamental and first-
order modes, making the beat length defined by (3.10) polarization-sensitive. I many
modes are sustained, then the scalar-to-TM corrections to the propagation constants
of the two lowest-order modes will be closer i value, leading to a smaller difference
in beat lengths.

Resonance Type | Coupler Length, | Coupler State Required Input
g=0,1,2,... Condition
General Qp(3L,) Bar None
General 2q+1(3L,) Cross None
General 3-dB None
(a+ 15)(3L,)
Restricted (29)L, Bar a;, =0, mod,|i]=2
Restricted (2g+1)L, Cross a, =0, mod,fi|=2
Restricted 3-dB @, =0, mod,|i]=2
(({ + %) L, !
Table 3.7 :'elf i =g resonance types, and ¢ rresponding device
lengths. i icsscizionr of 2702 couplers.

3.3  Coupler Implenentision Using Resonant Self-Imaging:  Qperational

Considerations The ¢ rfformance parameters of a 2X2 coupler arc con. ast

(imbalance) and insertion ‘oss, usually stated in decibels, and defined as follows:

ki
P

2

Contrast (Imbalance) =10log,, (dB) (3.39.a)



63

l)
Inscrtion Loss = —10]09,,,,—1)L (dB) (3.39.b)

mn

where P, and P, arc the guided optical powers in the two output waveguides, and F,
is the power in the input waveguide, as shown in Figure 2.2. In th> bar or cross
states, a high value of (3.39.a) is desired, and the parameter is referred to as contrast.
In the 3-dB state, a zero value of (3.39.a) is sought, so in this case the parameter is

called imbalance.

P;. Cross-Coupler
P2, Bar-Coupler

Output Waveguides

P.. Par-Coupler
P2, Cross-Coupler

Figure 3.2 Schematic of a 2X2 multi-mode coupler.

For a 3-dB coupler, either output may he designated as 1 or 2 for the
purposes of calculating imbalance, while P, in (3.39.b) should be replaced with
P+ P,

Achieving high contrast (low imbalance) and low insertion loss are important
considerations in the realization of multi-mode couplers. In addition, we identify two
other concerns: device compactness, and fabrication feasibility/reproducibility. We
therefore consider a total of four operational factors which, to some extent, are not

simultaneously optimizable. For example, from (3.6.a) and (3.10) we note that:
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3.40)

The beat length is proportional to the square of the coupler widih.
Compactness is therefore promoted by making W small, but using a narrow coupler
has a negative impact on both insertiun loss and reproducibility. A narrow coupler
supports relatively few guided modes, and therefore few terms arc available for the
series expansion of the input field. This potentially leads to large insertion losses.
Furthermore, for a narrow coupler, the access waveguides at the input and output
may have to be offset, at an angle to the coupler propagation axis, to promotc
repeatable fabrication. This is because a separation of parallel waveguides of less than
~1 pm carnot be reliably defined by conventional photolithographic pattern transfer,
leading to some "filling in" of the space between the waveguides. Making the access
waveguides diverge at an angle reduces this filling in, or at least restricts it to some
relatively repeatable length; see Figure 3.3. However, setting the access * '+ zuides
at an angle reduces the efficiency of power transfer to the guided medes of the
¢hupler, for reasons that will be made clear shortly. Again, this leads to an insertion
loss penalty.

Early multi-mode couplers employed narrow waveguides sustaining only two
modes, and suffered from the fabrication difficulties and insertion loss penaltics
expected from the arguments above [45],(46]. In recent years, as the principles of
resonant self-imaging in multi-mode waveguides have become better understood, the
tendency has been to use wider couplers which sustain a large number of modes. This
allows the access waveguides to be widely separated and therefore eliminates the need
for an angular offsct of these waveguides. With nc¢ junction angle and many coupler
modes, much reduced insertion losses can be obtained; values on the order of 0.5 dB
are now typical for well-designed devices [41],[47].

However, as mentioned earlier, the required length of a coupler ir-r:aser

rapidly as it is made wider. Thereiore, if corw.oincie is a concern, some
optimization of performance versus coupler width. 5..» "« sought. In this regard we
make two observations. First, the insertion loss -/ = «cupler is not strictly a simple

function of the number of guided modes sustained by the coupler; the width and
location of the ...:* = . ., | output waveguides has some effect. For example, a coupler

with convergen! ~.. waveguides and sustaining two modes may achieve more
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efficient coupling, and lower losses, than a wider coupler, sustaining three modes, but
with access waveguides located at 1/3 and 2/3 of the coupler width so that the
second-ord:r mode is not excited. Furthermore, although a lar:zer number of modes
feads generally 1o more efficient coupling, beyond a certain point, adding further
modes wiil not have a significant impact. If a coupler sustains three guided modes,
and these are able to capture 96% of the optical power from an input waveguide, then
making the coupler infinitely wide to capture the remaining 4% reduces the total

inscrtion loss of the device by only 0.35 dB

\—/

Figure 3.3  Typical narrow multi-mode coupler configuration. The
shaded regions indicate irreproducible “fill-in" due to finite
photolithographic resolution. This fill-in can reduced by using large
junction angles, at the expense of increased co 'pling loss at the access

waveguide-coupler junctions.

Second, the imp. .. .. using angled access waveguidcs in conjurction with
multi-mode, as opposed to two-mode, couplers has not yet been quantitatively
evaluated, even thorgh the inseition loss penalty with increased junction angle ialls
rapidly as more coupler modes arc sustaincd. Therefore. usin:e larg: junction angles,
in conjunction with a relatively narrow counici “wsisirize rovve than two modes, and
operating on the general resonance where the distriii-a of power among the
waveguide modes is irrelevant, may allow the fabrication of relatively compact
couplers. This is the aim of tht work presented in this chapter: a theoretical and

experimental evaluation of multi-zrode couplers with such a configuration.
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3.4 Numerical Modeling of Multi-Mode Couplers  Following the discussion of

Section 2.12, we use @ modal analysis to model the performance of multi-mode

coupler devices. The coupler geometry illustrated in Figure 3.4 is assumed. The field

Input Junction Plane Output Junction Planc

j separation. S
i
d L

Figure 3.4  Assumed coupler geometry for computer model. The

separation and full angle hetween the access waveguides are separately
defined for the input and output.

at the input junction plane is constructed using the mode field(s, of the input
waveguides, with specified relative amplitudcs and phases. Since strong guiding is
assumed, the possibility of field coupling between the access waveguides can be
ignored. A specified separation of the access waveguides is used in the consuuctios
of the input field, and some branching angle of the access waveguides is taken into
account as follows. As was pointed out in section 2.12, in a modal analysis the modes
in each section of waveguide can be defined with respect to a local coordinate system.
Here, we calculate the guided modes of the straight access waveguides and use a
coordinate rotation transformation to bring the mode fields of the access waveguides
and :hie coupler into a uniform system of coordinates for calculating the amplitudes of
the coupler modes. Assume that the (lateral) mode ficlds of one of the access
waveguides are defined with respect to coordinates (X,Z). At the coupler
input/output, the equivalent fields expressed in the normal coordinates (x,z) of the

coupler are obtained by rotating by ¢ =(+)8/2, such that the off-axis displacement
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of the waveguide is assumed to be hali’ of the total branching angle 6. Sec Figure 3.5

helow.

Figure 3.5 Coordinate rotation transformation for calculation of

mode ficlds of access wav~guides at coupler junction planes.

The coordinate transfc: mation is given by:

/%= xcos@—zsin@
7 =zcos@+xsin @

The mode fields of the access waveguide are defined by:

and therefore they become:

V. (xcos@ —zsin (p)efﬁ,'(zcoswxsimp)

(3.41)

(3.42)

(3.43)

Setting z=0 at the junction plane, the transformed mode fields are, finally:

W, (xcos@)e’Pi¥SNe

(3.44)
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From (3.44) we can understund why increasing ¢ leads to increased coupling
to high-order cougler modes. We rewrite (3.44) as follows:
\yi(xcos(p)ejb‘ = w,(.rcosw)cos{ﬁ,.\'sin (p]+ v, (.\'co.s‘(p)sin[b,.\'sin (p](3.45)
The transformed field thercfore has both symmetrie and anti-symmetric
components which are used in the calculation of the coupler mode amplitudes.
Furthermore, these components have an enhanced periodicity (increased spitial
frequency) determined by the product B, sin@. The overlap with low-order modes,

which have low-order periodicity, is thus reduced.

The modes of the coupler and access waveguides are determined by the
effective index method described in section 2.10. Equation (2.105) is used to
determine the ampiitudes of the coupler modes, where the input modes are
transformed using (3.44). The guided optical ficld at the coupler output is
constructed using:

Yix, )= Za‘.\p, (x)cjﬁiL (3.46)

The amplitudes of the modes of the output waveguides are determined using
(3.46) and (2.105), where the output waveguide modes arc also appropriately
transformed using (3.44). If the input waveguide fields arc normalized, then the
amplitude <oefficients of the coupler modes and the output waveguide modes are
sufficient to calculate the performance parameters of the device. Figure 3.6 shows &

flow-chart of the computer model, which was implemented in Muathematicu.



Caleulation of coupler and input
wavegnide mode fields.

v

New calculation?

END

Input junction configuration (gpuide
separation and branching angle)

specified.

Transformation of input guide ficlds
using (3.44); input mode amplitudes
and phases specified.

v

Construction of input plane ficld
and calculation of coupler mode
amplitude coefficients.

v

Coupler length 1. specified; output
plane ficld calculated using (3.46).

v

Qutput junction configuration (guide

separation and angle) specified.

v

Calculation of coupling coefficients of
output plane field to transformed
modes of output waveguides.

y

Calculation of coupler performance
parameters.

Figure 3.6 Algorithm flow chart for computer model.

oV
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3.5 Application: Mach-Zehnder Switch Implementation An important

application of waveguide couplers is in electro-optic switches.  All clectro-optic
switches are essentially cross-couplers, either multi-mode or coupled waveguides,
with provision for phase modulation to modify the guided mode profiles or the phase
situation in the coupler, thereby achieving switching to the bar state. Conventional
dircctional coupler ("COBRA") switches use coupled waveguides to achieve cross-
coupling in the passive state, and induce an index change in one guide to destroy the
symmetry of the supermodes and reduce or eliminate the cross-coupled intensity [48].
A more cfficient device, from an index moduiation efficiency standpoint, is the Mach-
Zchnder switch [49]. This device is essentially a cross-coupler that is split into two
sections, between which is inserted a Mach-Zehnder modulator; see Figure 3.7. At
one-half the cross-coupling length, the couplers at the input and output operate in the
3-dB configuration. Light from a single input is therefore evenly divided between the
two arms of the Mach-Zehnder, and sep.rated in phase by a afer-wave. If no
phase modulation occurs, then the second 3-dB coupler oper ciprocally and
directs the full intensity to the cross-port. Looked at alternativcly, with no phase
modulation, the device is simply a cross-coupler. However, when a 7 phase delay is
induced in one arm of the modulator, the phase situation at the input of the second
coupler is reversed, and the device switches to the bar statc. The required phase
modulation is less than the /37 required for the COBRA switch.

The Mach-Zehnder switch is one device where all of the advantages of
strongly guiding waveguides can work to advantage. The possibility of high field
confinement in the active region of the guide offers the prospect of smail modulation
voltages and short electrodes, which not only reduce the overall length of the switch
but obviate the need for traveling-wave electrodes and high-voltage RF drivers.
Compactness is also enhanced by the feasibility of small bend radii in the various
access guides. Further size optimization may then be achieved by reduction of the
coupler length.

In the present work, coupler design was considered for use in a Mach-
Zehnder switch, implemented in an InP/InGaAsP structure [50], shown in Figure 3.8.
Multiple quantum wells are used to achieve efficient phase modulation; the physics of
this mechanism is considered in Chapter 5. The lower InGaAs layer is included to
absorb stray light and hence attenuate any vertically leaky modes [51]. All
waveguides are formed by reactive ion etching using CH4-Hj to a depth of 3 pm and
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thercfore are strongly guiding, allowing tight waveguide bends. With single-maode
waveguides 2 pm wide and TE-polarized light, the voltage-tength product for T phase
modulation is 2.7 V-mm, while that for /2 modulation is 1.8 V-mm. Modulation of
TM light requires much higher voltages and is not considered.  Small signal
modulation 3-dB clectrical bandwidths of up to 15.5 GHz have been achieved in this
structure without traveling-wave clectrodes. Two types of switch configurations are
implemented: the convenuonal, four-port Mach-Zehnder arrangement described
above, and a three-port device using a 1X2 multi-mode coupler at the input; sec
Figure 3.9. The latter arrangement can be made more compact as the required input
coupler length is 3MLy/8, as given in [43] and [52]. rather than 3MLy/2. In this case,
the propagating modes in the modulator arms ave in phase, and hence /7 phase

moduiatioi is required to achieve cutput selection.

7

77N\

A~ <

L./2 L./ 2 /
\\ /L'—7/ . Electrode /L——/

Figure 3.7 Mach-Zehnder electro-optic switch. A cross-coupler is
modified to include a Mach-Zehnder modulator, which achieves
switching to the bar state by reversing the phase situation at the input
to thc output 3-dB coupler.
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Figure 3.8  Wafer structure for Mach-Zehnder switch device. Layer

thicknesses are not drawn to scale.

Electrode
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A

1 X 2 Coupler

3-dB Coupler

Figure 3.9 Schematic of three-port Mach-Zehnder switch

configuration.



The calculaticn of mode profiles requires a knowledge ot the refvactive indes

distribution in the structure.  Refractive index is a function of material composition

and wavelength; the appropriate expressions for the lattice-matched material system

In, Gaj_,As|.,P, arc available in the literature [53]-[55]. Latiice matching requiies

that ©=0.53+0.47v. For photon cnergies below the material band edge, the refractive

index is given by:

| v, ‘
n(A,)= \ﬁq(v){f(x)+5[1£” /(E, +A“)] ’ /(Xm)}-k 3(v)

where:
S =x"2=0+0" =1-0"),
e,
X A-“(IE“’
_ he,
Ko Mg(E +A)
E, =1.35-0.72(1-v)+0.12(1=v)*, (cV)
E +A,=1.038+0.299(1-v)+0.129(1-v)*, (cV)
A(v)=8.40-3.40v,
and:

B(v)=6.60+3.40v;

(3.46.2)

(3.46.h)

(3.46.¢)

(3.46.d)

(3.46.¢)

(3.46.1)

(3.46.¢)

(3.46.h)

where h is Planck's constant. The quantum well stack may be considereu a single

layer for purposes of refractive index specification, with an index approximated by:



74

not +nt
o= et D0 (3.47)
.+,

for TE ficlds. where n,, ny, f,, and £, arc the refractive indices and thicknesses of the
wells and barriers, respectivelv [56]. The quantum well composition s
Ing 93 Gag gyAsq.19Py g for a photoluminescence peak at 1.45 pm to provide strong
electrorefraction ai 1.55 pym. The refractive indices for the InP layers and the
quantum well stack are calculated as 3.166 and 3.369, respectively, at 1.55 ym.

As a preliminary step, we check the validity of the separation relation (2.96).
Two-dimensional mode profiles are calculated using the scalar finite elemeni
formulation described in section 2.11.  As the index of retraction of InGaAs is
complex at 1.55 pm, these layers arc taken as IrP for calculation purposes; an
acceptable approximation since these layers are thin. The vertical field profiles at
various lateral points, for various rib widihs, are factored from the two-dimensional
mode fields. In Figure 3.10, the vertical mode profiles G(y), normalized to unit peak
neagnitude, are shown for nine different cases: at 10%, 50% and 90% of the rib width
for the fundamental and firs:-order modes of a 4 um-wide rib, and the second-order
mode of a 6 pm-wide rib. The y-distance in Figure 3.10 runs from the bottom of the
structure up, and the InP thickness beneath the quantum wells has been taken as 2.3
pum. The center of the MQW stack is therefore at ~2.5 pm, and the air boundary at
the top of the rib is at ~4.9 pm.

The nine curves in Figure 3.10 are almost exactly superimposed, indicating
that the separation relation (2.96) is valid, to a good approximation, in this case.
From the two-dimensionai mcde fields, the lateral field dependence can be obtained

by taking the square root of the verticnlly integrated mode intensity, as follows:

(3.48)

\[ Jly el dy =|Fy (o)

The lateral field F(x) for a 2 um-wid= rib (centered at x=2 |imn), obtained from
the two-dimensional mode using (3.48), and normalized to unit peak magnitude, is
shown in Figure 3.11. The mode profile calculated using equations (2.104.a-c) in
section 2.10 is not shown but is virtually indistinguishable from the curve in Figure
3.11, indicating the validity of the (modified) effective index method.
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Figure 3.10  Normalized fields G(y) taken at 10%, 50% and 0% of
rib width for fundamental and first-order modes of 4 um-wide rib, and

second-order mode of 6 pm-wide rib.

Note further the very limited evanescent fields outside the rib boundaries; two
of these guides can be brought very close together without significant field coupling.
This is confirmed by solving for the modes of a system of two 2 pm-wide waveguides
wherein the ribs are separated by progressively smaller distances. The mode
degeneracy is not lifted until the separation is ~0.€ f1m; since the limit of conventional
photolithographic resolution is on the order of 0.5 pm, we can effectively design

without concern for inter-guide field coupling.

3.6 Modeled Results and Coupler Design We now present modeled results for
3-dB  couplers implemented as components of the Mach-Zehnder switch
configurations described earlier. We first consider the three-port device of Figure
3.9. In this case, we model a 2X2 coupler, for implementation at the output of the

device. We assume that equal optical intensities are incident in each input waveguide,
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Figure 3.11 Compressed (x-dependent) mode field for a 2 um rib.

and that these input fields are separated in phase by a quarter-wave. This
arrangement is expected to produce maximum contrast when the output coupler is in

a true 3-dB state. Using (2.57) and the ..finitions (3.39.a&b), the performance

parameters of the coupler are given by:

4 *‘Iz (dB), (3.49.a)

Contrast = lOlog,o{—IIj—'} = IOIOgm{

2

Ianf—)z

AN

a3 a,.,ﬁ,.|2} (dB)(3.49.b)

i, coupler

Insertion Loss = ~1010g,0{—;i} = —1010g,0{

in

where the subscript of — 1,2 denotes the amplitudes of the offset and angled modes
of outputs 1,2 excited by the field at the coupler output, and if — i indicates the
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amplitude of coupler mode i excited by the input plane field, constructed from the
offset, angled and phase-shifted modes of the input waveguides.

Our goal is to design the most compact coupler consistent with acceptable
performance parameters and realizable fabrication.  To reduce potential inscrtion
losses 1o an acceptable level, the coupler must sustain at least three modes, while
compactness dictates using a small width. A 4 pm-wide waveguide supports three
modes, and is only twice the width of the single-mode access waveguides, a practical
minimum. For these reasons we take 4 um as our nominal ceupler width. We first
examine the artificial casc of zero separation and zero angle between the access
waveguides, at both the input and output junctions. Figure 3.12 shows the modeled

performance parameters as a function of the coupler lengih.

Zero Separation, Zero Angle

3B r 4 4.5
%0 C a
Contrast . a5
----- Insertion Loss N '\ )
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3
g
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0 1 L 1 1 1 4 L 1 |8 0

15 20 25 30 35 40 45 50 55 60 65 70 75 80

Coupler Length, microns

Figure 3.12  Performance of ideal 4 pm-wide coupler as a function
of coupler length.
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The "selected” output was always taken as the output with the greatest
coupled power;  the discontinuity about L=50 pm therefore represents a change of
selected outputs. The beat length L, =48 pum for the 4 um-wide coupler. The
contrast peak at 24 pm thus corresponds to the restricted resonance, while that at 72
pm corresponds to the general resonance. The restricted resonance is degraded by
the coupling into the ("forbidden") second-order mode, which impairs the achicvable
contrast_ and insertion loss, and scparates the coupler lengths for which cach is
optintized. The general resonance, on the other hand, offers near-ideal performance.
The placing of the access waveguides leads to a high overlap between the input
modes and the coupler modes and permits an optimum coupler insertion loss of <0.05
dB.

We next examine the more realistic case of 0.5 pum separation and 10 degree
branching angle between the input and output waveguides; this configuration is
consistent with realizable fabrication. The calculated performance parameters for this
design are shown in Figure 3.13. The optimum performance is somewhat degraded.
A minimum insertion loss of 1.5 dB is obtained at a coupler ler gth of 65 pm, with a
contrast of 21.4 dB. Insertion losses of less than 1.7 dB and contrasts in excess of 20
dB are obtained over a coupler length range of 62 pim to 67 um.

The specific effect of the branching angle can be scen in Figure 3.14. Here,
we have used a 0.5 pum access guide separation at the input and output, and calculated
the optimum inscrtion loss and corresponding contrast as a function of the branching
angle. The same branching angle was used at both the input and output junctions in
cach case.

Neglecting a few numerical anomalies, we see that contrast decreases, roughly
lincarly, with increasing branching angle, while insertion loss increases, approximately
quadratically. The maximum tolerable junction angle, for a given contrast and/or
insertion loss specification, can be ascertained from these curves. For an insertion
loss of less than 0.5 dB and/or a contrast in excess of 25 dB, the junction angles must
be kept below five degrees.

The other coupler configuration that we consider seeks to employ the
restricted resonance. For proper restricted resonance operation, we must ensure that
the modes defined by (3.28) are not excited. As discussed previously, this can be
accomplished by centering the access waveguides at 1/3 and 2/3 of the coupler width.
Again assuming an access guide separation of 0.5 um, and given that the access
waveguides are 2 tm wide, this dictates a coupler guide width of 7.5 um. At this
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coupler width six guided modes are sustamed.  In accordance with (3401 the beat

length is increased, to ~162 pm: the restricted 3-dB resonance is therefore expected

at a coupler length of 81 pm.

function of access guide branching angle is shown in Figure 3.15.

Contrast, dB

0.5 micron Separation, 10 Degree Angie

25 r Contrast P

Insertion Loss ¢

20 - ‘\ " “_

15
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0 i 1 '] 1 1 1 L I 1 1 1 ]

15 20 25 30 35 40 45 50 55 60

Coupler Length, microns

65 70 75

Figure 3.13  Performance parameters as a function of coupler length
for 4 pm-wide coupler with 0.5 pm, 10 degrec access guide
separation.
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The optimum performance ol this structure as a
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In this case, the degradation of both contrast and insertion loss with

increasing branching angle is worse than in the previous, general resonance case. T his
is due to a rapid increase in coupling into the forbidden modes, from a normalized
power (fraction of the total incident power) of -24 dB at O degrees to -10 dB at 20
degrees branching angle. Furthermore, we note that the coupler length, although we
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are employing the restricted rather than the general resonance, is greater than that for

the 4 um coupler, due to the cffect of (3.40).

We therefore conclude that the

narrower device based on the general resonance principal offers the best length-

cconomized coupler design for our purposes. With this coupler design, from Figure

3.14, we predict that we can achieve 0.5 dB insertion loss, with a device length of

~65 um, if the junction angles arc restricted to 5 degrees.

compares favourably with previous multi-mode coupler implementations.

This performance
For

cxample, in [47], a four-mode deeply ctched waveguide 3-dB coupler was reported

which achieved (1.5 dB insertion loss. This device was 250 pm long. Another
General Resonance, 4 micron-Wide Coupler
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Figure 3.14

Performance as a function of access guide branching

angle for 4 um-wide coupler, general resonance (Optimum coupler

lengths, ~70 pm, for minimized insertion losses).



recently reported 3-dB coupler, also using deeply ctehed ribs, achieved 0.7 dB
insertion loss with a 111 pm-long device [0}, These deviees incurred @ length penadty
by using zero branching angles at the junction, with access guide separations ol -2
um. We have shown that the length of a coupler can be reduced, without significint

performance penalty, by introducing a small angle at the imput and output junctions.

Restricted Resonance, 7.5 micron-Wide Coupler
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Figure 3.15 Performance as a function of access guide branching
angle, 7.5 pm-wide coupler, restricted resonance (Optimum coupler
lengths, ~80 pum, for minimized insertion losses).

The smallest junction angle which can be used in practice is determined by the
repeatability of the junction fabrication. An uncertainty 8 S in the realized access
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waveguide separation at a junction (refer to Figure 3.4) introduces an uncertainty in

the length of the coupler, given by:

dL= L (3.50)

where, again, 0 is the full junction angle. In practice, 6 S is likely to be 0.1-0.3 pm.
In Table 3.2 below, we show the 1otal coupler length uncertainties introduced for
various junction angles (assumed the same at the coupler input and output), at

different values of 8 S.

Junction Angle, 6S5=0.1 um 65=0.2 um 65=0.3 um
Degrees
1 11.46 pm 22.92 pm 34.38 um
2 5.73 um 11.46 um 17.19 pm
5 2.29 pm 4.58 pm 6.87 um
10 1.14 pm 2.29 um 3.43 pm
Table 3.2  Maximum length variation of a 2X2 waveguide coupler,

for various uncertainties in the blunted junction tip width (8 S), as a

function of the full junction angle at the input and output.

The minimum usable junction angle is therefore dictated by the tolerable
uncertainty in the coupler length. If 8 S can be restricted to 0.2 pm in the pattern
transfer process, then, from Figure 3.12 and Table 3.2, a contrast of 20 dB can be
repeatably achieved if the junction angle is 10 degrees. However, an insertion loss
penalty of up to 1.2 dB is incurred compared with the longer devices of [6] and [47].
As smaller junction angles are used, better performance can be obtained, but either
the fabrication yield will drop, or better control of the pattern transfer prucess is

required.



A width tolerance analysis for the nominally 4 pm-wide coupler is depicted in
Figure 3.16. Here, access guide separations of 0.5 pm and branching angles of 0 and
10 degrecs arc assumed; the modeled insertion losses for coupler lengths of 71 pm
and 65 pum respectively are calculated as a function of the coupler width. For the 10
degree case, control of the coupler width to within siightly better than 0.2 pm is
required to keep the total insertion loss below 2 dB. In practice, width definition on
the order of +0.1 um accuracy can usually be achicved.

Insertion Loss, 0.5 micron Separation
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Figure 3.16 Modeled insertion loss as a function of coupler width,
for 0 and 10 degree branching angles of access waveguides. The
access guides are separated by 0.5 pum in all instances and the coupler
lengths are 71 um and 65 pm respectively for the 0 and 10 degree

cases.

We now examine the performance of four-port Mach-Zehnder switches, as
shown in Figure 3.7, as a function of the length of the 3-dB couplers at the input and
output. We again assume 4 pm-wide couplers, and further assume that identical
coupler lengths and junction geometries are used at the input and the output. The
first coupler is assumed excited by a guided mode in one input, and the amplitudes
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and relative phases of the output waveguide modes of the first coupler are calculaied
using the procedure described in section 3.4. The phase separation between the

output waveguide modes is casily determined from their complex amplitudes:

Ap=(0,-0,)= arclan[ a,m ) - arctan( (12” ) (3.51)

a, a,

where the superscripts re and im denotes real and imaginary parts, respectively.
Mode fields with the calculated amplitudes and phase separation (3.51) are then used
as the inputs to the second, output coupler. This corresponds to the unbiased state of
the switch, while m-phase modulation converts Ad — AdET, which is simply
A — ~A¢ if the couplers are in true 3-dB states so that Ap =+m/2. The contrast of
the device is determined from the amplitudes of the output waveguide modes of the
sccond coupler. The insertion loss of the whole Mach-Zehnder switch, assuming that
the constituent waveguides are lossless, is determined using the mode amplitudes
thrcughout the structure, in an extension of (3.49.b).

In Figure 3.17 we show the modeled performance of the four-port Mach-
Zehnder switch, where access waveguide separations and branching angles of 0.5 um
and 10 degrees, respectively, are assumed at all junctions. Again, the couplers are 4
pum wide and an identical coupler length is used at the input and the output of the
Mach-Zehnder switch.

Contrast peaks corresponding to the restricted and general 3-dB resonances of
the couplers are again observed. However, the restricted resonance contrast is now
greatly suppressed. This is because a true resonance is not achieved, due to the
excitation of the second-order mode of the coupler, and when a second, identical
coupler is cascaded, the accumulation of amplitude and phase deviations from the true
3-dB condition severely impairs the iotal performance. An even smaller contrast peak
is observed at ~47 pum coupler length. This is due to restricted resonance cross-
coupler operation of both couplers. Again, however, since the correct input condition
for restricted resonance operation is not satisfied, the achieved contrast of the total
device is very poor. Only the general 3-dB resonance at ~ 65 um coupler length
yields acceptable performance. About 21.5 dB contrast and 2.5 dB insertion loss is
expected at this point. Note that in the four-port device, both the restricted and
general 3-dB resonances lead to a cross-state of the full Mach-Zehnder switch. In the



three-port device, opposite output waveguides were favored depending on which 3-

dB resonance was operative.

Modeled Performance of Four-Port Mach-Zehnder Switch
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Figure 3.17 Modeled performance of four-port Mach-Zehnder
switch in the unbiased state as a function of multi-mode coupler
length. Identical input and output couplers are assumed. All junctions
are characterized by a 0.5 um separation and 10 degree branching

angle of the access waveguides.

3.7 _Mach-Zehnder Switch Design and Fabrication Chrome-on-quartz,
photomasks were produced by e-beam writing for fabrication of the Mach-Zehnder
devices. Since some sidewall slope (~5 degrees from vertical) is produced by reactive
ion etching, the bottoms of the deeply etched ribs are wider than the tops. This was
taken into account by making the photomask traces defining the waveguides narrower
than the desired rib widths, so as to attain the design width at the vertical center of
the quantum well stack.
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Fach individual switch uses 600 um-long electrodes in the modulator section,
leading 1o expected modulation voltages of 4.5 V (phasc=nt) and 3 V (phase=7/2).

Curved access waveguides are defined according to the following formula:

+x(z) = K+f'5——”;sin(——) (3.52)

where x is the lateral displacement of the center of a single-mode waveguide of
(design, not mask trace) width w (2 um), and h is the final lateral displacement at the
total bend length . This bend geometry reduces mode-mismatch losses at straight-to-
bend transitions. In our designs, values of A=10 pm and /=100 wm are used in (3.52)
to define the access waveguides of the multi-mode couplers, which are nominally 4
um wide in all cases, such that the access waveguides converge (£x(0)=w/2) at the
coupler input/output junctions. In fact, the finite resolution of the pattern transfer
process leads to blunting of the junction tips, as expected. The realized junction tips
were fairly consistently about 0.65 pm wide at the full etch depth. This had the effect
of pushing the actual junction location out to z such that +x(z)=w/2+sep/2, where sep
is the total realized separation of the access waveguides. The junction blunting
introduces a separation angle of the access waveguides, given effectively by twice the
arc tangent of the derivative of (3.52). For sep=0.65 (tm, the full junction angle (after
accounting for the sidewall slope of the ribs) is calculated to be about 8 degrees.
Therefore, the realized junction parameters (0.65 pm separation, 8 degrees branching
angle) were very close to the modeled case (0.5 pm separation, 10 degrees branching
angle). The actual length extensions of the couplers due to the junction tip blunting is
taken into account in the presentation of the experimental results. The unplanned
length extension was much less pronounced in the devices processed using the second
photomask, where an explicit blunted tip width of 0.6 um was defined at ail the
junctions.

A variety of coupler lengths were included in the devices on the masks. For
the three-port devices, the input 1X2 coupler targeted the optimized length reported
in [52], although this length was not realized in the processing using the first
photomask, as a result of the coupler extension due to the junction tip blunting. The
four-port devices used equal coupler lengths at the input and output of the Mach
Zehnder modulator.



Following photoresist patterning and reactive ion ctching to define the
waveguide ribs, the wafer was coated with oxide and planarized using polyimide. The
oxide was etched to create 1.5 um-wide openings over the modulator arms for
electrical contact. After patterning for metal lift-oft, Ti/P/Au was cvaporated onto
the top surface and lifted off to create clectrodes and contact pads. The wafer was
next reactive ion etched to a depth of 0.3 pm, over patterned regions 10 yum long at
the ends of each electrode. This removed the upper p+ layer in these regions and
served to enhance the e'ectrical isolation between the arms of the modulators.
Finally, the wafer was thinned and back-metalized by Ni/Ge/Au evaporation. The
devices were cleaved to a length of 1.5 mm, providing for straight input and output
waveguides about 300 um long. This is believed to bc the smallest total size yet
reported for an electro-optic Mach-Zehnder switch.

In Figure 3.18, we show an optical photograph of parts of three Mach-
Zehnder switches fabricated using the second photomask. Each rib waveguide lies in
the centre of a 20 um-wide eiched trench. Straight single-mode waveguides are
included adjacent to each switch. The output couplers, contact pads and parts of the
modulator arms, as well as some of the alignment marks, are visible. The isolation
trench etched through the top p+-layer is visible.

Figure 3.18 Optical photograph of the output portions of three
Mach-Zehnder switches, fabricated using the second photomask.
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3.8 Lxperimental Results The fabricated Mach-Zchnder devices were tested

using the experimental arrangement shown in Figure 3.19. TE-polarized 1.55 pm
light from a DFB laser was collimated by a 10X objective lens, and focused into the
devices using a 20X objective. The output light v:as imaged by a 60X objective into a
pair of lenses which expanded the image by four times. A variable beam splitter then
directed part of the light into an IR vidicon camera, and the remainder toward a
pinholed Ge photodiode which was mounted on a motorized x-y positioning stage.
This stage was computer-controlled so that two-dimensional truc-intensity scans of
the near-field output of the device could be obtained. Mechanical probes were used
to achiceve electrical contact to the contact pads of the devices, applying a reverse bias
to one modulator arm, and grounding the other. The metalized bottom contacts were
also grounded. In some instances, the devices were mounted on copper holders using
conductive epoxy to enhance the mechanical stability of the set-up.

Unfortunately, the fabrication yield was severely limited by certain difficulties.
In many cases, the lift-off process removed the metal from the modulator arms of the
devices, leaving no way to apply a bias. An attempt was made to repeat the
metalization procedure with one batch of devices; however, the correction was only
partially successful. An even more serious problem was that the achieved electrical
isolation between the modulator arms of individual devices was, in general, poor. For
most devices, the measured resistance between the modulator arms was on the order
of 2-4 kQ; for these devices, independent modulatior of the two sides, and hence
optical switching, could not be achieved. For those few devices where effectively
independent modulation of the two sides of the interferometer could be obtained, the
measured resistance between opposing contacts was on the order of 80-100 M.
Other authors have reported resistances in excess of 900 M for successful operation
of integrated Mach-Zehnder interferometers, but such high values are typically
achieved cither by high-energy (>100 keV) implantation of ions such as hydrogen,
helium and fluorine [57], or by etching fully through the upper doped layers, markedly
increasing the optical losses of the device [58]. Our approach of etching through only
the highly doped layers is technologically simple and leads to only relatively small
optical losses, but failed to repeatably produce good electrical isolation between the
two sides of the modulators. Finally, the quality of the etched ribs was somewhat
disappointing. ~ Width variations and defects were evident that impaired the
performance of the devices. Given these difficulties, only limited experimental results

were achieved.
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Figure 3.19  Schematic of the experimental arrangement for testing
of the Mach-Zehnder switches. Collimated laser light is focused into
the devices, and the expanded near-ficld image is split betwecen an IR
camera and a Ge photodiode on a computer-controlled, motorized x-y
mount. Two mechanical probes (only one shown) were used to

reverse bias/ground the opposing electrodes of the devices.

The three-port Mach-Zehnder switches were tested first. In the unbiased
state, these devices should direct equal intensities to the two output waveguides.
Therefore, individual switches which were more than I dB out of balance at zero bias

were considered defective and were not tested further. Of the remaining devices, only
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one (realized) coupler length, 42 pm, was represented in multiple devices with good
clectrical characteristics. Contrast was determincd by comparing the peak powers in
the output waveguide mode images, measured using the photodiode, and averaging
the measured contrasts of the working devices. The total (on-chip) excess loss of
cach Mach-Zehnder switch was determined by comparison to a straight single-mode
waveguide of equal length. The loss due to the output coupler, for comparison to the
model, was determined by comparison to single-output Mach-Zehnder intensity
modulators, which employed the 1X2 coupler at both the input and the output and

which were included on the first mask.
An average measured contrast of 9.2 dB was measured for the 42 pm coupler

devices. The peak contrasts were obtained at a bias voltage of 3 V applied to one
clectrode - the expected 1/2 modulation voltage. The average total on-chip insertion
loss was 9.5 dB. The average total insertion loss of the single-output Mach-Zehnder
modulators was 10.3 dB. If only the multi-mode couplers are assumed to contribute
to the loss, the insertion loss at each 1X2 coupler is therefore 5.15 dB. Subtracting
this from 9.5 dB, we deduce the insertion loss of the 42 pm 2X2 coupler to be about
4.3 dB. These performance figures, 9.2 dB contrast and 4.3 dB coupler loss, are in
close agreement with the predicted values from Figure 3.13. Furthermore, at 1.5 mm
total length, this is the smallest integrated Mach-Zehnder switch yet reported which
achieves close to 10 dB contrast [59],[60]. Note that the insertion loss of the 1X2
input coupler was high since the realized junction tip width, ~0.65 pm, was not
explicitly defined on the first mask, and hence the length of the 1X2 couplers was
extended to a non-optimum value.

In Figure 3.20, we show lateral line scans of the output of one of the devices,
taken from a digitized IR-camera image. The dashed lines show the output at 0 V
bias, while for the solid line, 3 V reverse bias has been applied to one electrode,
illustrating the switching effect. In Figure 3.21, we compare modeled versus
experimental characteristics for the optical power in each waveguide, as a function of
the reverse bias voltage applied to one electrode. The phase shift induced in one
modulator waveguide, as a function of bias voltage, was deduced from Figure 2 in
[50], which shows the experimental intensity versus bias voltage characteristic for a
single-output Ma:h-Zehnder intensity modulator. This phase shift was applied to one
of the input mode fields in the computer model. The calculated contrast and insertion
loss were used to deduce the power in each waveguide, normalized to match the
power (in arbitrary units) in the "selected" waveguide for the modeled and
experimental curves, at 3 V bias. In Figure 3.21, the modeled curves are shown as
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dashed lines, while the experimental values are shown as points joined by sohid (cubic
splinc) curves. The variance in the experimental values, determined by measurements
on all the working devices, is shown as error bars. The average variance among the

bias voltages is used.

Intensity (arb.units)

Distance (arb.units)

Figure 3.20 Lateral line scans of the output field (from digitized IR-
camera image) of a 3-port Mach-Zehnder switch with a 42 um-long
output coupler. The dashed lines show the output at zero bias; for the

solid line, 3 V reverse bias has been applied to one electrode.

Of the fabricated four-port devices, none were found with sufficient clectrical
isolation between opposing electrodes to achieve switching. However, since the
performance of the full four-port Mach-Zehnder switch, not just the output coupler,
was modeled in Figure 3.17, we can measure the contrast and insertion loss at zero
bias for direct comparison to theory. Only devices which showed balanced contrast
to within ~1 dB as the input coupling was switched from one input waveguide to the
other were considered "defect-free" and construed as valid measurements. The

insertion loss is measured relative to adjacent single-mode waveguides. In Figure
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3,22 (w)&(b) we show cxample two-dimensional intensity scans of the near-field
image from the output of a four-port Mach-Zehnder switch, in this case with 43 pm-

long input and output coupiers. The input light is coupled to opposite input ports in

-
o

0]

Output 1

(o))

Output 2 /

N/

B
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Detected Power (arbitrary units)

Electrode Bias (-V)

Figure 3.21 Modeled (dashed lines) versus measured (solid lines
with experimental points) power from the outputs of a 3-port Mach-
Zehnder switch, with a 42 um-long output coupler, as a function of
the reverse bias applied to one electrode. The variance in the
experimental values, determined by measurements on several devices,

is indicated by error bars.

(a)&(b) respectively. In Figure 3.23 we show the measured contrasts and inscrtion
losses of the fabricated four-port Mach-Zehnder switches, as a function of coupler
length (input and output). The experimental values are shown as triangles (contrast)



and crosses (insertion loss), and the modeled curves of Figure 3.17 are included tor
comparison.  Some of the experimental points represent averages among several

"defect-free” devices.

Power {o.u.)

y axis (a.u.)

x axis (a.u.)

Figure 3.22.(a) Two-dimensional intensity scan of the near-field
image at the output of a four-port Mach-Zehnder switch with 43 pm-

long input and output couplers.

General agreement between theory and experiment is revealed in Figure 3.23,
with the exception that significantly better than predicted performance is obscrved
around the restricted 3-dB coupler resonance. The high contrast observed at 65 pm
coupler length, 19.4 dB, confirms the superior performance of the couplers when they
are operated on the general 3-dB resonance. Though the total observed on-chip
excess loss at this coupler length, 5.6 dB, is higher than the predicted minimum of 2.5
dB, the performarice of the Mach-Zehnder switch with 65 um couplers is nevertheless
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much better than similar devices reported in the literature [S7]. In Figure 3.24, we
show line scans of the output intensitics, taken from the two-dimensional true

intensity scans at the vertical center of the waveguide modes, of one of the four-port

switches with 65 pm couplers. The solid and dashed lines arc obtained by input

coupling to opposite ports.
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“\\‘
AN 3
PR
POANSSES !
SR enpe~— 1
"‘“":“ \SOS
Ry b
RS
S e%
TS

i

y axis (a.u.)

X axis (a.u.)

figure 3.22.(b)  Intensity scan of the near-field image at the output

of the same four-port Mach-Zehnder switch, but with coupling to the

opposite input waveguide.
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Modeled and Experimental Perfornunce of Four-Port Mach-Zehndey
Switches, Zero Bias

30_
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Figure 3.23 Modeled and experimental performance of four-port
Mach-Zehnder switches at zero bias. Solid line shows modeled
contrast, dashed line shows modeled insertion loss, triangles indicate

experimental contrast, crosses indicate experimental insertion loss.

3.9 Conclusions In this chapter, we have discussed the principle of resonant sclf-

imaging in homogeneous multi-mode waveguides, and described a computer model
for analyzing waveguide couplers based on this principle. The model, which is well-
suited for analyzing couplers implemented using deeply etched rib waveguides, is able
to simulate the effect of setting the coupler access (input and output) waveguides at
an angle relative to the propagation axis of the coupler. Using this model, we have
shown that very compact (<100 um) 3-dB couplers can be constructed by finding an
optimum combination of access waveguide junction angle and coupler width. The
calculated performance of such optimized couplers is comparable to that of longer
devices reported in the literature. The model was used to design couplers for use in
InP-based Mach-Zehnder switches. Three-port switches with couplers operating on

the restricted resonance, and four-port switches with couplers operating on both the
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restricted and general resonances, were experimentally evaluated. We demonstrated

that almost 20 dB contrast and less than 6 dB total on-chip insertion loss could be

achieved with a Mach-Zehnder switch only 1.5 mm long.

Iintensity (a. u.)

Lateral Distance (a. u.)

yigure 3.24  Intensity line scans of the imaged output from a four-
port Mach-Zehnder switch with 65 pm couplers. The solid and dashed

lines are obtained by coupling to opposite input ports.
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Chapter 4

Bent Multi-Mode Waveguide Couplers for (De)Multiple
Separated Optical Wavelengths

xing of Broadly

Integrated devices which achieve two-wavzlength optical (de)multiplexing
are required for many applications. For example, integrated rarc-carth doped
waveguide amplifiers and lasers require the combination and separation of signal and
pump light. Also, bandwidth augmentation in bidirectional or local network fiber
systems could be achieved in the short term by using two channels, or two sets of
channels, at widely separated fiber attentuation minima. Such an approach offers a
doubling of usable bandwidth using only simple and inexpensive components, with
very little inter-channel interference. A number of integrated devices have been
demonstrated which achieve this multiplexing function, including conventional
directional couplers [61], asymmetric Mach-Zehnder interferometers [62], and y-
junction devices employing asymmetry in the refraciive index profile of the access
waveguides [63]. These approaches are generally characterized by very large device
sizes, [61] & [62], or difficult fabrication [63].

Multi-mode waveguide couplers, described in the previous chapter, can also
be used for (de)multiplexing. The beat length which determines the state of coupler
operation, given by equation (3.10), is wavelength-sensitive. Therefore, a 2X2
coupler can potentially operate in the cross-state at one wavelength, and in the bar-
state at the other. It can then be used to combine and/or separate light at those two
wavelengths. As we saw in Chapter 3, high contrast (>20 dB) and low insertion loss
(<0.5 dB) can be achieved using multi-mode couplers. Furthermore, multi-mode
couplers are well-suited for implementation in deeply etched rib waveguide structures,
which can be sharply bent without suffering radiation losses are therefore are ideal for
ring resonsator realization. We found earlier that in the limit of strong lateral guiding,
aporoached with deeply etched rib waveguides, the beat length L, is given by

equation (3.40), repeated here:

L= anw*
3\

[/

(4.1)
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where n’ is the effective index of the region under the rib at wavelength A, and W is
the rib width. From (4.1), we see that the ratio of the beat lengths at two different

wavclengths is simply:

=== 4.2)

Therefore, in the strong guiding regime, the ratio of coupling lengths at two
different wavelengths is essentially fixed at approximately the ratio of the wavelengths
themselves. For arbitrary pairs of wavelengths, the relative interaction lengths thus
may not be optimized for (de)multiplexer implementation.  For example, for
wavelengths of 850 rm and 1550 nm, the ratio given by (4.2) is 1.82, whereas a ratio
of 1.5 provides for bar-coupling at 850 nm and cross-coupling at 1550 nm when the

coupler length is:

(4.3)

35 =21%° (restricted resonance)
counlet 1950 =6°  (general resonance)

Good (de)multiplexer performance is therefore often only achievable by
resorting to very long devices, i.e. some integer multiple of the beat lengths for which
a desired ratio is obtained. Such long devices are undesirable from an integration
perspective. In weakly guiding waveguide configurations, adjusting the coupler width
can usually modify the ratio of beat lengths at two wavelengths to some degree.
However, for strongly guiding structures, a new degree of freedom is needed. Other
authors have already demonstrated that the radius of a waveguide bend can
sometimes be used as a design parameter [64]. In this chapter, we examine a way to
optimize multi-mode waveguide couplers for operation as (de)multiplexers by
introducing a circular bend to suitably tailor the properties of the guided mode fields.
We begin by developing a method for calculating the modes of circularly bent

waveguides.

4.1 Analysis of Bent Waveguides A variety of techniques have been developed

for the numerical analysis of curved waveguides. The methods based on conformal
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transformations [65]-[67] are particularly uscful for two reasons. First, they provide
a convenient conceptual picture of the physical effects of the bend: second, they yield
equations which are well-suited to numerical solution by the same methods applicable
to straight waveguides. In this work, we usc the mathematical formalism presented in
[66].

Consider a rib waveguide as shown in Figure 4.1. The rib has a width of 2a,
and follows a circular path of radius p at the center of the rib. Cylindrical coordinates

r, ¢ and y are defined. We also define a second radial coordinate:

E=r-p (4.4)

so that & =0 at the rib center.

2a [4—

o— )r

Figure 4.1 Coordinate definitions for analysis of circularly bent
optical waveguides The rib width is 2a, the bend radius (at the center
of the rib) is p, and the cylindrical coordinates are r, ¢ and y. A
second radial coordinate & is also defined.

In the curved geometry of Figure 4.1, the waveguide cross-section is invariant
with respect to the angular coordinate ¢, so the mode fields of the bent waveguide are
defined with respect to an angular phase constant rather than a Cartesian onc as in
(2.11):
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w(r.y,@) = w(r, y)e/? (4.5)

where [ is a circumferential propagation constant, equal to the angular phase constant
divided by p. We assume that, according to the arguments of section 2.9, a scalar
treatment will provide a satisfactory analysis. Transforming a scalar version of the

Helmbholtz equations (2.9.a&b) into our new coordinates, we have:

149 aw 82 1 8
- kin*(r.y, =0 .6

where y = y(r,y,®). Applying the mode field definition (4.5) in (4.6), we obtain the

following Helmholtz (eigen)equation for mode fields:

10( dy), d'y 2,2 2(9)2
B y= 7
rar(ar)82kWBrWO @7

where now y=wy(r,y) and n=n(r,y). Let us now define a new variable, u,

according to the following transformation:
u(r,y)= \/_r—\p(r, y) (4.8)

Applying (4.4) and (4.8) in (4.7) we obtain, after some manipulation:

*u  u (l 5 2) u 1 odu ,, .,
LN X k2n’u=0 4.9)
e 9y \4 Be (E+p)’ (E+p) ot e

Next, we make some approximations. We assume that p >>a and therefore

p>> & in the region where the bound mode fields are non-negligible. In this case:

11 1(, 2
= z _2( __5) (4.10)
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and:

I ou 19du O'u Ou

(p+E) 08 paE & oy .10

Applying (4.10) and (4.11) in (4.9) gives us:

d’u du 2&‘,) 11 ( 2&,)
NI B T z—n? |-— |+~ |- =0 4.12
% 9y’ "{n ( o) 4k )\ e )] .

where n_ is, again, the effective index, given by B/k,. Defining a new variable:
R=pk, (4.13)

we can write:

n*—n? l—g +l——l—2 1—2-é =nz+——l—2-+%[nf———l—2]§—nf (4.14)
p) 4(pk,) p 4R* p 4R

and therefore (4.12) may be rewritten as:

u du
-6574'3))‘2“*'1‘3{1\/2(&:)“"3}“ =0 (4.15)
where:
I 2 |
N E)=n®+ +—|: i :| 4.16
(g) n 4R2 p nf 4R2 é ( )

Again assuming that p >>a, it is easy to show that in the region of interest,

(4.15) is well-approximated by:
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2 2
Y L OV L N2 (E) - by =0 @.17)

Note that equation (4.17) has the same form as the standard scalar modal
Helmholtz cquation for straight waveguides (2.93), except that we now have a
modified index of refraction given by (4.16). Effectively, bending the waveguide is
cquivalent to transforming its refractive index profile as shown in Figure 4.2. The
transformation becomes more pronounced as p is reduced.

Figure 4.2  Transformation of the lateral (effective) index profile of
a rib waveguide by a circular bend. The squared effective index profile
of the straight guide is shown by the dashed line; n; is the rib effective
index, n, is the lateral cladding effective index. The solid line shows

the effectively modified index profile induced by the bend.

The basic effects of the bend on the guided mode fields are easily understood
from Figure 4.2. In general, the mode fields are made asymmetric, narrowed and
shifted toward the new high-index region at the outside of the bend, with a
corresponding increase in their propagation constants. For these reasons, lateral
offsets and width changes are often used to minimize transition losses at junctions
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between waveguides of different curvatures [68].  Note, further, that it the bend
radius is sufficiently small and the slope of the transformed ficld profile sutficiently
large, the inner rib wall may not play any part in guiding the optical ficlds. Maodes
guided only by the outer rib wall arc called "Whispering Gallery” modes and were first
described by Lord Rayleigh in relation to acoustic propagation in a curved gallery
[69].

The mechanism by which bent waveguides can radiate light is also apparent
from Figure 4.2. For small bend radii, the slope of the transformed index profile may
be such that the exponential tails of the mode fields penctratc into the region of
increasing index outside the rib. In this case, from the arguments of section 2.8, a
slowly decaying sinusoidal transverse field characteristic is associated with the mode
in this region. Such a field can transport power away from the rib and therefore lcads
to radiation losses. Rib waveguides which are deeply etched have very limited
exponential tails, and therefore very small bend radii are required to induce radiation
losses. This fact has been mentioned previously to justify the use of such waveguides
to promote compactness of integrated structures. Radiation loss in waveguide bends
has been studied extensively in the literature, and therefore is not specifically
examined in this work.

Given the form of equation (4.17) and the arguments of sections 2.9 and 2.10,
in strong guiding situations, the effective index treatment described in section (2.10)
provides a valid analysis of the bent waveguide modes. We therefore seek to find
solutions of a reduced-dimension form of (4.17):

2
%+kf{N2(§)—nf}w=0 (4.18)

where a separation of the form of (2.96) has been assumed. Equation (4.18) can be
solved using a modification of the finite differences scheme described in section 2.8.
We again use the following centered-differences approximation to the second
derivative of the field:

dy(E) 1 .
—%&“)E?[W(va)"ZW(g.')*'W(é,_I)] (4.19)
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where I is a discretization interval and & =ih. Applying (4.19) to (4.18) we have,
using (4.16):

v, +{k2h2A = 2hy, v, = (k2B )y, (4.20)

where we have set y, = y(&,), and:

A=nl+ 12+——E"'—2, B,Eg;l—l (4.21)
4R° 2pR p

where n = n(€,). Dividing through by h? = k>h?, we obtain:

1 , 1
I—l-_z‘l!i—l +A'Y, +-}T§_W1’+] = "Bi"ezwi (4.22)
where:
2
MEA—F (4.23)

Equatior (4.22) is suitably scaled for computation. We assume that the

"window" of computation x,_, — x,_,,, is sufficiently large to properly contain all of

i=n+l

the bound mode fields, and, taking x, = x,,, =0, we apply (4.22) at every node i

(i=1, ..., n) to obtain the matrix eigenequation:

[Al{w}=-nZ[Bl{w} (4.24)

where {\y} is the vector consisting of the values of y,. The matrix [A] is given by:
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A _', 0 0
h-
LY Lo 0
[Al=|72 7 3 (4.25.2)
0 0 l A’
L n:oo
and :
B 0 O 0
0 B, 0 0 .. 0
[B]= (4.25.b)
0 0 0 B

The eigensolutions of (4.24) are found using LANZ. The selection of the
bound modes from among the various solutions of (4.24) is more complicated than in
the case of straight waveguides. Clearly, those solutions with effective index
eigenvalues less than the (true) refractive index of the cladding on the outside of the
bend ("n,;") cannot represent bound modes and may be rejected. Furthermore, from

equation (4.16) we see that:

Nz(g=a)>n3,(1+3‘i) (4.26)
p

since n, > n,, for a bound mode. Therefore, bound mode solutions of (4.24) can only

lie in the range of eigenvalues such that:

1+=2 (4.27)
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This criterion is usually sufficient to eliminate the solutions of (4.24) which do
not correspond to bound modes.  An inspection of the field solutions themselves can
always serve as a check, since, as mentioned earlier, leaky mode solutions of (4.24)
have sinusoidal tails in the outer cladding. The outer cladding thickness must be
made fairly large, for computational purposes, for this effect to be clear.

Note that a simplification of equation (4.18) is possible which results in an

cigenequation of the form:

[Aw}=-n2{y} (4.28)

If p>>a, and if we use n, =n, then (4.16) may be approximately simplified

to:

NY(E) = nz(l +3p§-) (4.29)

This form of the transformed index profile may be advantageous, since the
solution of (4.28) is numerically simpler than the solution of (4.24). We have found
that both approaches, i.e. equations (4.16) & (4.24) and equations (4.28) & (4.29),

yicld almost identical results in most cases.

4.2 Modal Characteristics of Bent Multi-Mode Waveguides It is well-known
that bending a single-mode waveguide causes the propagation constant/effective

index of the mode to increase. This is because the guided intensity is shifted toward
the outside of the bend, where the transformed effective refractive index of the guide
is higher than the true index of the corresponding straight waveguide. However, the
impact of a bend on the higher-order modes of a multi-mode waveguide has only
recently begun to be investigated. A recent study by Kumar et al. [70] revealed the
surprising fact that, in some circumstances, the propagation constant of the first-order
mode of a two-mode waveguide may actually be reduced by introducing a circular
bend. They explained this phenomenon as follows. The circular bend actually has
two effects on the guided mode fields: they are shifted toward the outside of the bend,
and they are deformed (made asymmetric). These two factors have opposite effects
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on the distribution of the mode power. The shift tends to move the power toward the
outside of the bend, while the deformation tends to pull the intensity toward the inside
of the bend. The net result of these competing effects depends strongly on the maode
profile of the corresponding straight waveguide. In Figure 4.3, we show the ficld
profiles of the fundamental and first-order modes at 630 nm wavelength, calculated
using (4.16) and (4.18)-(4.27), of a 7 um-wide planar waveguide of index 1.4623 and
(symmetric) cladding index 1.457, bent to a radius of 7 mm. This is very close to the
example studied by Kumar et al. The cladding thickness used in the calculations was
5 um; therefore the waveguide center is at 8.5 um. The shifting and asymmetry of
both mode profiles is clearly seen. For the fundamental mode, the shift to the outside
of the bend is the dominant effect, and hence the greater part of the mode intensity is
located toward the outside of the bend; see Figure 4.4, which shows the intensity
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Figure 4.3 Mode field profiles of a planar waveguide, bent to a
radius of 7 mm. The core is 7 um wide and has index 1.4623, while
both claddings have index 1.457. The core center is located at 8.5 pm.
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profiles of the modes. Since most of the mode intensity is located in a region of
increased (transformed) refractive index, the propagation constant of the fundamental
made is higher than in the straight waveguide. However, in the case of the first-order
mode, the deformation of the field profile dominates, and the greater part of the mode
intensity is located toward the inside of the bend, in a region of reduced effective

refractive index. Therefore, the propagation constant of the first-order mode is

reduced.
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Figure 4.4 Intensity profiles of the mode fields shown in Figure 4.3.

Kumar et al. found that this effect, i.e. opposing changes in the propagation
constants of fundamental and first-order modes with the introduction of a bend, is
restricted to waveguides wherein the guided mode intensity in the claddings is small.
Where significant evanescent field penetration into the outer cladding exists, the
intensity ir this region of high transformed index may have a dominant effect on the
change in the propagation constant of the guided mode. Since high-order modes have
more proniounced evanescent fields than low-order modes, the propagation constant
of the first-order mode of such a waveguide may increase, rather than decrease, with
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bending. Therefore, the phenomenon of opposing bend-induced changes i the
propagation constants of fundamental and first-order modes is restricted to
waveguides operating in the strong-guiding regime.

Kumar et al. examined only two-mode waveguides. Our investigations show
that, for strongly guiding structures, the propagation constants of sccond- and higher-
order modes also tend to be reduced with bending, but to a smaller degree with
increasing mode order. In general, high-order modes are less perturbed by a bend
than are modes of low order.

Note that if the propagation constant of the fundamental mode of a waveguide
is increased by a bend, while that of the first-order mode is reduced, then the beat
length defined by equation (3.10) is reduced. Given this fact, it is tempting to
consider the possibility that bending a multi-mode waveguide can reduce the device
lengths required to achieve the self-imaging resonance effects described in Chapter 3.
However, two factors prevent the general application of this concept.  The
introduction of a bend removes the quadratic dependence of the mode propagation
constants on the lateral mode order. Since this dependence is the basis of resonant
self-imaging, bending a multi-mode waveguide destroys the self-imaging cffect, and
hence only a two-mode device could operate effectively as a coupler. Second, a bend
renders the mode ficlds of a waveguide asymmetric. While, by itself, this has no
effect on bar-state resonances, it means that true cross-coupler states could not be
achieved even if the quadratic phase relationships of the mode propagation constants
were preserved. This can be seen be referring to equation (3.13). At the cross-
coupling resona:.ce lengths, the even modes are out of phase with the odd modes.
Where the mode fields are symmetric as in equation {3.1), this situation effectively
produces a superposition of lateral mirror images of the modes, as shown by
equations (3.14)-(3.19). If the mode profiles are asymmetric, this is not the case and
an efficient transfer of power, from one side of the multi-mode waveguide to the
other, is precluded. Given these arguments, in general only a two-mode bent
waveguide could be used r self-imaging, and it could only be effectively operated in
the bar-state.

We have noted that the high-order modes of a waveguide are less perturbed
by the introduction of a circular bend than are the low-order modes. Th. high-order
modes tend to be of broader lateral extent, and more effectively "fill" the waveguide,
than the modes of low order. The competing bend-induced changes to the modes,
shift and deformity, are mose balanced and the net alterations of the mode fields, and
their propagation constants, are reduced. A similar effect is expected with respect to
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wavelength. The mode fields at long wavelengths are broader than those at shorter
wavelengths. Therefore, we anticipate greater shifts in the propagation constants, and
greater bend-induced asymmetry in the lateral mode profiles, at short wavelengths
thar. at longer waveleugth. .. at ¢ fixed bend radius. Accordingly, while bending a
strongly guiding wa guide reduces the beat length defined by equation (3.10), we
expect this reduction (o I+ more pronounced at a short wavelength than at a longer
one. The ratio of the beat lengths at two wavelengths can therefore be altered by
introducing a bend, and adjusted to a desired value, e.g. 1.5. The strongly affected
short wavelength can be operated in the bar state, in accordance with the limitations
described earlier, while the longer wavelength may be sufficiently unaffected by the
bend to be operated in the cross state. Therefore, compact couplers effectively based
on two-mode interference might be optimized for operation as two-wavelength
(de)multiplexers by bending them to an appropraite radius. It is this concept that we

examine in this chapter.

4.3 Material Parameters and Waveguide Design = The modeled results presented
in the next section, which validate the concept described above and lead to a specific

design, were obtained for a particular waveguide configuration and material system,
SiO7/SiON glass, which was subsequently used to fabricate devices. Therefore, we
first bricfly describe these materials 1nd how they were fabricated, characterized and
processed.

Silica-based glass films were produced by Plasma Enhanced Chemical Vapour
Deposition (PECVD). In this process, vapour-phase reactants are delivered to the
surface of a substrate wafer, and react chemically to produce solid films of a desired
composition. An RF glow discharge plasma provides energy to activate the reaction.
The chamber temperature and pressure, RF power, and gas flow rates can all affect
the reaction and the physical and chemical characteristics cf the resulting film. Our
process used 29 W of RF power, and a chamber temperature and pressure of 349
degrees Celsius and 1000 mtorr, respectively. The following vapour constituents
were used: silane (7.5 sccm), helium (700 sccm), nitrogen (100 sccm), nitrous oxide
(100 sccm) and ammonia (variable). The flow rate parameter sccm refers to cubic
centimeters per minute, at standard temperature and pressure. The ammonia flow
rate determines the fractional incorporation of nitrogen in the films; higher nitregen
levels werc found to increase the refractive index. We used ammonia flow rates
varying from 15-30 sccm. The optical characteristics of the resulting films were
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determined by broadband (200-1700 nm) ellipsomeiry, and modcled using a six-term

Cauchy relation for the refractive index:

n(A)= A+ —+ =+ +——+< (4.30)

The terms for the Cauchy formula (4.30), obtained at different ammonia flow
rates, are shown in Table 4.1. In some cases, the coefficients are averages of the
fitted values of different film samples. The dispersion curves given by (4.30) using
these values are shown in Figure 4.5. In all cases, the curves are relatively flat beyond
~850 nm: the refractive index dispersion is less than -0.007 from 850 nm to 1550 nm.
In addition, none of the films showed any measurable absorption over the entire
measured spectral range. These films are therefore ideal for implementing

waveguides for operation at all of the standard fiber optic wavelength bands.

NH3 Cauchy | Cauchy | Cauchy | Cauchy | Cauchy | Cauchy
Flow, A B C D F G
scem

15 1.551 8.156E-3 | 1.64E-3 0 1.31E-4 0
20 1.564 1.055E-3 | -4.70E-4 | 1.13E-3 | 8.00E-6 0

25 1.581 0 5.11E-3 0 8.70E-5 0

30 1.576 8.85E-2 | -1.20E-3 0 0 -4.60E-5

Table 4.1 Coefficients for Cauchy refractive index formula,

equation (4.30), of SiON films with various NH3 flow rates. The
coefficients are fitted from ellipsometric measurements.

The refractive index at all wavelengths increases as the ammonia flow rate is
raised from 15 to 25 sccm; beyond this point, no further increase is evident. Higher
flow rates of the other nitrogen-bearing gases may achieve further increases in the
refractive index. At four wavelengths (630 nm, 850 nm, 980 nm & 1550 nm), the
refractive indices were fitted to a quadratic function of the ammonia flow rate (x)-
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n"(x)=a+bx+cx’ 4.31)

using Newton's method (for nonlinear systems) to match n(x) to the values from
cquation (4.30) at x=15, 20 & 25 sccm. The fitted coefficients a, b, and ¢ at the four
wavelengths above are listed in Table 4.2. The resulting functions (4.31) at cach
wavelength are plotted in Figure 4.6. The function (4.31), with the coefficients of
Table 4.2, should be taken as a reasonably accurate model only in the range of
ammonia flow rates 15-25 sccm. The index values at 30 sccm have been excluded
from the fit, as a quadratic function would be inadequate to model the index over the

whole measured range of flow rates.
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Figure 4.5 Dispersion curves of SiON films grown using NH3 flow
rates of 15, 20, 25 and 30 sccm, plotted using equation (4.30) with the
coefficient values listed in Tabie 4.1.
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Wavelength, nm a b c
630 1.514 4.6E-3 -5.6E-5
850 1.510 4.3E-3 -4.7E-5
980 1.510 4.1E-3 -4.2E-5
1550 1.507 3.9E-3 -3.4E-5
Table 4.2  Coefficients of equation (4.31), determining the index of
refraction as a function of NH3 flow rate in sccm, at four different
wavelengths.
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Figure 4.6  Approximate values of refractive index versus ammonia

flow in sccm, at four different wavelengths. The curves are generated

using equation (4.31) and the fitted coefficients of Table 4.2.

From equation (4.31) and Table 4.2, we can select an ammonia flow rate to
yield a chosen index of refraction, at a particular wavelength. We choose a nominal
index of refraction of 1.565, and seek the flow rate which most closely produces this
index at both 850 nm and 1550 nm wavelength; these are the operating wavelengths
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of the devices considered in this chapter. An ammonia flow rate of 16.5 sccm is
sclected to yicld a predicted film index of 1.568 at 850 nm, and 1.562 at 1550 nm, a
good compromise. The index repeatability of the PECVD process, from run to run, is
observed to be about +0.005; therefore, at both wavelengths, the film index should be
repeatably 1.565+0.01.

The following waveguide configuration is used for device design and
implementation. The SiON film described above, with nominal refractive index 1.565,
is grown (o a thickness of 1.0 um, above a 5.0 um-thick layer of SiOy, produced by a
PECVD process with the following parameters: 5.5 sccm silane, 600 sccm helium,
500 sccm nitrous oxide and 100 sccm nitrogen, at 29 W RF power and 1000 mtorr
pressure. The index of this film, which serves as a cladding, is about 1.465 at 850 nm,
and 1.459 at 1550 nm. Again, a repeatability of about +0.005 is assumed. Strongly
guiding rib waveguides are then defined by reactive ion etching to a depth of 1.0 um,
i.c. fully through the high-index SiON layer. See Figure 4.7. The reactive ion etching
process used 80% CHF3 and 20% CF4, at a total pressure of 40 mtorr with 100 W of
RF power. The etch rate was ~1 pum/27 minutes. Good control of the
photolithographic process was achieved using positive photoresist (#504), spun-on at
500 rpm for 10 s followed by 6000 rpm for 30 s, to achieve a thickness of about 1.1
pm, then exposed for 1.6 s and developed for 20 s. An accuracy in the dimensions of
photoresist-patterned features of +0.1 pm, with respect to the photomask feature

dimensions, was repeatably achieved.

4.4 _ Concept Validation and Device Design ~ We first verified the validity of the
separation relation (2.96) for the (straight) rib waveguide above, at both 850 nm and
1556 nm, and for various rib widths, using equation (3.48). The (quasi-TE) modes of
the bent waveguides were then calculated using (4.16) and (4.18)-(4.27), in
cenjunction with the effective index method of section 2.10, for applicaiion in a
modal analysis similar to that described in Chapter 3. The ratio of beat lengths at the
two wavelengths 850 nm and 1550 nm is, according to equation (4.2), naturally far
from the optimum value of 1.5, and thus this choice of wavelengths provides a vivid
demonstration of our concept.

Access waveguides 3 pm wide were used in all cases; this width supports
three modes at 850 nm and a single mode at 1550 nm. A coupler width of 6 um,
supporting six modes at 850 nm and two modes at 1550 nm, was also chosen. The
ratio of beat lengths at the two wavelengths in a 6 pm-wide straight waveguide is
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1.76, close to the prediction of equation (4.2). In Figurc 4.8, we show the caleulated
beat lengths defined by equation (3.10), at cach wavelength, and their ratio, as a
function of radius of curvature. The desired synchronization, i.c. a ratio of 1.5, is
predicted at a radius of 0.925 mm. This radius is assumed, for both the coupler and

the access waveguides, in the following results.

n=1.568/1.562

? Si0,

n=1.465/1.459

5.0 um W’_\/f\/\/\\/\

10 umI SiON

v

Figure 4.7 Silica-based glass waveguide system for design and
implementation of bent multi-mode (de)multiplexing coupler devices.
The two films are grown on Si wafers by PECVD. The shown values
of refractive index are for 850 nm and 1550 nm wavelength,

respectively.

The performance of the coupler was simulated in the demultiplexer
configuration. A single input waveguide, bent at a radius of 0.925 mm, was assumed
centered on the outside half of the coupler, i.e. the input waveguide and the coupler
form a continuous sidewall on the outside of the bend. See Figure 4.9, which shows a
scanning electron micrograph of a fabricated device. Two output waveguides arc
located at the end of the coupler, each bent at 0.925 mm radius. A blunted junction
tip of width 0.7 um is assumed to separate the output waveguides at the coupler
output junction. The following parameters were varied in the simulations: the
(circumferential) length of the coupler, and the junction angle of each of the two
output waveguides with respect to the local propagation axis of the coupler at the
output junction plane. Unlike the coupler model in Chapter 3, the total junction angle
is not necessarily assumed equally divided between the two output waveguides.
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A computer model, based on the modal analysis method and similar to that
described in section 3.4, was used to calculdte the performance of the device in the
demultiplexer configuration. As only two moOdes are sustained in the coupler at 1550
nm, only restricted resonance phenomena n¢®d to be considered at this wavelength.
Furthermore, the mode field profiles at this wavelength are not significantly perturbed
by the 0.925 mm radius bend. Therefore, Cross-state operation can be effectively
achieved at 1550 nm. At 850 nm, six couplef modes are sustained, and the low-order

100 ——— 1.8
95
—1.75
90 -
. sy
E 85- 178
= 80 ~3
"é, -1.65 5
g " &
ot 70— ‘16 -5
o J D
m 65- ! —1.55 =
! o
60-{
} 1550 nm —1.5
50 |||ll| T IIIIIHIA(‘*!—’F‘I-T‘"HT'“—1.45
1 10 100

Radius of Curvature, mm

Figure 4.8 Calculated beat lengths Ly of the 6 pm-wide coupler, at
850 nm and 1550 nm, and their ratio, as a function of radius of
curvature. A ratio of 1.5 is predicted at a radius of 0.925 mm.
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modes are quite asymmetric at the design radius. Therefore, given our previous
arguments, the device must operate in the bar-state at 850 nm, and if the excitation of
the second- and higher-order modes is small s¢ that only the fundamental and first-
order modes are significantly excited, a restricted resonance situation effectively exists
at 850 nm as well. The (minimum) optimum circumferential length of the bent

coupler is then:

L

coupler = 3L =2L"  (restricted resonance) (4.32)
or, from the calculations of Figure 4.8, ~157 um. The performance parameters at
each wavelength are contrast and insertion loss. Refer to Figure 3.2; P; and P; arc
taken such that the device is in the bar-state at 850 nm, and in the cross-state at 1550

nm.

Figure 4.9  Scanning electron micrograph of a fabricated bent multi-
mode waveguide (de)multiplexing coupler. All waveguides arc bent at
a radius of 0.925 mm. There is no junction angle between the 3 um-
wide input waveguide and the 6 um-wide coupler. The 3 pm-wide
output waveguides are separated by a 0.7 um-wide blunted junction
tip. Various angular offsets of the two output waveguides, relative to
the local propagation axis of the coupler at the output junction, are
examined in the model; here, offsets of 7 degrees (bar-state output)
and zero (cross-state output) are used.
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We first consider the operation of the device at 850 nm. In this case, the input
waveguide is multi-moded, and the distribution of power among these modes is
expected 10 have an impact on the performance of the coupler. We consider this by
assuming that the bent input waveguide is excited by a (planar) free-space gaussian

beam with a field profile defined by:
¥ (x) = exp|~4x"/w’] (4.33)

where w is the 1/e diameter of the field, and the beam center is at x=0. In Figure 4.10,
we show the calculated values of the amplitude coefficients of the three modes of the
bent input waveguide at 850 nm, as a function of w. The bcam and rib centers are
assumed coincident.

In all cases the power coupled into the first-order mode is negligible. The
amplitudes of the fundamental and second-order modes vary considerably as the input
beam diameter changes. At a beam field diameter of ~3 pm, the excited intensities of
the fundamental and second-order modes reach a maximum and minimum,
respectively. At 10 pm field diameter, the fundamental mode amplitude is
considerably reduced, while that in the second-order mode is increased. Both of these
cases are considered in the simulations to follow. The input field to the coupler in
every case is constructed using the fundamental and second-order modes only, and
they are taken as both in phase and out of phase (0 and 7). It is reasonable to neglect
the first-order mode, even when w=3 pum since the intensity in the second-order mode
in this case is more than four times that in the first-order mode. The phase difference
between the fundamental and second-order modes is determined by a beat length
given by equation (3.10) with f; replaced by B,, and which is ~10 um here. The
relative phase of the input waveguide modes at the coupler input is therefore a highly
sensitive function of the length of the input waveguide. In fact, this relative phase can
be adjusted by a small wavelength tuning if the input waveguide is long; this is
examined in more detail later.

The amplitude coefficients of the six coupler modes at 850 nm are shown in
Table 4.3 for the four different input conditions discussed above: a 3 um and a 10 pm
diameter gaussian field excitation of the input waveguide, with the fundamental and
second-order input guide modes both in phase and out of phase for each case. The
fraction of the power in the input waveguide which is coupled into the fundamental
and first-order modes, and all other modes, is shown in Table 4.4.
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Mode Amplitudes of Input Waveguide, 850 nn
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Figure 4.10 Calculated amplitude coefficients, a;, of the 850 nm
modes of the 3 um input waveguide, bent at 0.925 mm radius, excited
by a gaussian beam of 1/e field diameter w (x-axis). The beam and the
waveguide rib centers are assumed coincident. Solid line with squares
- fundamental mode; dotted line with crosses - first-order mode;

dashed line with diamonds - second-order mode.

Due to the 0.925 mm radius bend, modes 2-5 at 850 nm are not phase
resonant with the fundamental and first-order modes, so ideally we want no power
coupled into these high-order modes. The performance of the coupler at 850 nm is
expected to suffer as the amplitudes of modes 2-5 increases. From Table 4.4, the best
performance is expected when the gaussian input has a 1/e diameter of 3 pm, and
modes O and 2 of the input waveguide are out of phase. In fact, for both beam
diameters, the best performance is anticipated when these modes are out of phase and
the resultant field distribution at the coupler input is narrow.
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Mode Order | 3 um, O phase | 3 um, T phase 10 um, 0 I0um, =

phase phase

() 0.836 0.863 0.765 0.854

1 0.501 0.476 0.509 0.428

2 0.156 0.121 0.194 0.081

3 0.106 0.072 0.135 0.024

4 0.128 0.007 0.260 0.135

5 0.037 0.086 0.179 0.224

Table 4.3  Amplitude cocfficients of the six coupler modes, where

the input waveguide is excited by a gaussian beam of the given l/e

diameter. The phase difference between the fundamental and second-

order modes of the input waveguide at the coupler input junction is 0

or 7 as indicated.

Group of |3 um, 0 phase | 3 um, 7t phase | 10 um, O phase | 10 pm, 7t phase
Modes
0, 1 0.948 0.971 0.844 0.912
2-5 0.052 0.027 0.156 0.075
Table 4.4 Intcnsities in the coupler modes 0 and 1, and 2-5, as a

fraction of the total power in the input waveguide, for the four cases

of the field diameter of the gaussian beam exciting the input
waveguide, and the relative phase of the fundamental and second-

order modes of the input waveguide at the coupler input.

Since there is only one access waveguide at the coupler input there is no need
to introduce a junction angle. At the output, where we have two access waveguides,
repeatable fabrication dictates that we introduce some angular separation of these
guides, as discussed in Chapter 3. We choose a total angle, between the two output
waveguides, of 7 degrees, in conjunction with a lateral separation of 0.7 um at the
junction tip. We next examine how this total angle should be divided between the
bar- and cross-outputs. In Table 4.5, we show the calculated performance parameters



of the coupler, contrast and insertion loss, at 850 nm, as a function of the angular
offset of each output waveguide (8: bar-output, 85 cross-output) in degrees, where
a gaussian input bcam of 3 um diameter has been assumed, and modes 0 and 2 of the
input waveguide are out of phase. The coupler length is the predicted opimum of
157 um. Because the output waveguides sustain three modes at 850 nm, the
performance at this wavelength is quite insensitive to the angular offsets between
these guides. However, at 1550 nm, the access waveguides are mono-mode, and
hence greater dependence with respect to angle is observed. Sec Table 4.6, which
shows the cross-state contrast and insertion loss of the 157 pm-long bent coupler,
excited by the single guided mode in the input waveguide, for the same three
distributions of the total junction angle. The insertion loss increases markedly as the
cross-output angular offset rises. Therefore, for all the following simulations and for
the implemented devices, we choose angular offsets of 7 degrees for the bar-output
and 0 degrees for the cross-output, as shown in Figure 4.9. This has the added cffect
of increasing the contrast at 1550 nm, since the coupling to the angled, mono-mode
bar-output is degraded.

The modeled performance of the coupler at 1550 nm, as a function of
circumferential coupler length, is shown in Figure 4.11. Since the coupler only
sustains two modes at this wavelength, the performance parameters arc roughly
symmetric about the optimum length. A peak contrast in excess of 30 dB and a
minimum insertion loss of 2.2 dB are predicted. In Figures 4.12 and 4.13, we show
the calculated performance of the device at 850 nm. The input gaussian bcam

0, (degrees) 0, (degrees) Contrast, dB Insertion Loss,
dB
0 7 25.06 0.63
3.5 3.5 24.31 0.63
7 0 24.15 0.63

Table 4.5  Calculated performance of 157 um-long coupler at 850
nm, as a function of the angular offsets of the bar-output (6;) and the
cross-output (85). The input waveguide is assumed excited by a 3
pum-diameter gaussian beam, and the fundamental and sccond-order
modes of the input waveguide are assumed to be out of phase at the
coupler input.



0, (degrees) 0, (degrees) Contrast, dB Insertion Loss, dB
0 7 29.66 4.36
3.5 3.5 31.28 2.73
7 0 31.80 2.20

Table 4.6 Calculated performance of 157 pm-long coupler at 1550
nm, as a function of the angular offsets of the bar-output (0;) and the

cross-output (6,).

Modeled Coupler Performance, 1550 nm
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Figure 4.11 Modeled contrast (solid line, squares) and insertion
loss (dashed line, diamonds) versus coupler length at 1550 nm.

diameter is 3 pm in Figure 4.12 and 10 um in Figure 4.13; in both figures, the solid
lines show the calculated characteristics when the fundamental and second-order
modes of the input waveguide are in phase, while for the dashed lines they are taken
out of phase. The optimum performance occurs at 155 um coupler length. In



general, the 850 nm characteristics are flatter than those at 1550 nm, since the beat
length is larger at 850 nm, and the curves are no longer symmetric. The performance
variations with respect to length arc more pronounced in Figure 4.13 than in Figure
4.12. This may be attributed to the greater power resident in the non-resonant
second- and higher-order modes. Finally, the performance variations with respect to
the relative phases of the input waveguide modes are less pronounced in Figure 4.12.
This is easily understood from Figure 4.10: when the gaussian beam radius is 3 pm,

almost all the incident power is coupled into the fundamental mode of the input
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Figure 4.12 Modeled contrast (solid line, triangles - input modes in
phase, dashed line, cresses - input modes out of phase) and insertion
loss (soiid line, diamonds - input modes in phase, dashed line, squares -
input modes out of phase) versus coupler length at 850 nm. The input

waveguide is assumed excited by a gaussian beam with a 1/e ficld
diameter of 3 um.
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Figure 4.13 Modeled contrast (solid line, triangles - input modes in
phase, dashed line, crosses - input modes out of phase) and insertion
loss (solid line, diamonds - input mories in phase, dashed line, squares -
input modes out of phase) versus coupler length at 850 nm. The input
waveguide 1s assumed excited by a gaussian beam with a l/e field
diameter of 10 um.

waveguide. Therefore, the phases of the input guide modes have little impact on the
intensity distribution at the coupler input plane. Excellent peak performance is
predicted at 850 nm: for both input beam diameters, a peak contrast in excess of 25
dB and a minimum insertion loss of less than (.7 dB are expected.

The performance advantage and size reduction achieved by bending the
coupler can be appreciated by examining the performance of a coupler with the same
configuration as described above (i.e. same waveguide widths and junctions
geometries), but composed of straight wavegnides. Simulations show that a straight
6 um-wide coupler cannot achieve greater than 20 dB (calculated) contrast, at both
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wavelengths, at a coupler length less than ~1.1 mm. In this particular case, therefore,
bending the coupler to an optimum radius achieves an effective length reduction of
more than seven times. The length reduction achieved with other pairs of
wavelengths and using other waveguides will vary, depending on the exact ratio of
the beat lengths, at the chosen wavelengths, for a straight coupler. However,
optimizing the ratio of beat lengths by bending a multi-mode coupler can always yield
high performance (de)multiplexing operation using a compact device (<~200 um), if
the operating wavelengths A and A are such that Ap/A{>1.5.

4.5 Experimental Results  Devices were fabricated on silicon substrates, by the

processes described in section 4.3, using an e-beam-written chrome-on-quartz
photomask. The couplers, including input and output waveguides, were cleaved to
lengths of ~5 mm, and tested, in the demultiplexer configuration, using the
experimental arrangement shown in Figure 4.14. A Ti:Sapphire laser, pumped by an
argon laser, and wavelength-tuned by computer control, provided light around 850
nm wavelength. A polarizing beam-splitter followed by a half-wave plate produced a
normally TE-polarized beam from the Ti:Sapphire laser, while rotating the half-wave
plate by 45 degrees could produce TM light. A fiber collected the light reflected from
the beam-splitter for direction to a wavemeier, which measured the wavelength of the
Ti:Sapphire output. The main beam was focused into a single-mode fiber using a 10X
objective lens, and combined with TE-polarized 1550 nm light from a DFB laser using
a fiber multiplexer. The combined beam was collimated in free space using a 10X
objective and focused into the samples using a 20X objective. The samples were
mounted on a three-axis micropositioning stage. A butt-coupled multi-mode fiber
collected the output light from the samples, for measurement using optical power
meters. A He-Ne laser beam coupled into the 1550 nm port of the fiber multiplexer
was used for the initial alignment of each sample.

Contrast was determined by measuring the output optical powers from the
output waveguides of each sample, with one of the two laser sources illuminating the
sample. Insertion loss was measured by c¢¢ - wrison with 3 um-wide waveguides
which followed the same curved path, over wic same length, as the input and output
waveguides of the couplers. A number of samples at each coupler length were tested,
and the average values are presented in what follows. In Figure 4.15, we show the
measured values of contra:t and insertion loss at 1550 nm, and the best values for
contrast at ~850 nm. In accordance with the previous arguments, the best contrast at
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850 nm is obtained when the fundamental and second-order modes of the coupler are
out of phase. This condition was obtained, in all cases, by a slight wavelength tuning
(~5 nm) around 850 nm. We shall comment further on this later. The 1550 nm
characieristics are obtained by a least-squares quadratic fit to the experimental points,
while the 850 nm contrast values are joined by a cubic splines fit. The optimum
contrast at 850 nm is observed at a coupler length of 145 pm, while that at 1550 nm
occurs at about 150 um. This slight detuning indicates that a beat length ratio of
~1.47 was achieved. The peak contrasts are reduced from the predicted values by
about 10 dB in both cases; this is typical for couplers implemented in deeply etched
ribs. Though the input beams are focused to an estimated diameter of ~3 um, the 850
nm contrast characteristic is more sharply peaked than the predicted curve in Figure
4.12, bearing a greater resemblance to the predicted peak contrast characteristic for a
10 um diameter input beam (Figurc 4.13). This indicates that the power in the non-
resonant second- and higher-order coupler modes, at the coupler output, was higher
than expected. This could be explained by inter-mode power scattering caused by

Fiber

Multiplexer Samples

3

N

—— N

10X LOX=2O0 PN Pick-Up
Fiber
1550 nm
M2 Laser
Optical
Pol. |y Wave Power
Beam Meter [ Meters
Splitter
Ti:Sapphire Laser [d— Argon Laser

Figure 4.14 Schematic of the experimental arrarigement used for
testing the bent multi-mode coupler (de)multiplexer devices.

sidewall roughness. Fatrication methods which reduce sidewall roughness, e.g. in
[6]). could therefore be expected to push the device performance closer to the
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calculated values. At 145 pm coupler length, almost 20 dB and 14 dB contrast are

observed at 1550 nm and 850 nm, respectively. The measured insertion losses at

1550 nm were somewhat lower than predicted: 1.4 dB at 145 pm coupler length.

dB

20

Contrast, 1550 nm

Contrast, 850 nm

Insertion Loss, 1550 nm O

00O

™
0
~—

151

(@)]
3
Coupler Length, um

Figure 4.15 Measured performance of the fabricated devices, in the
demultiplexer configuration, as a function of coupler length. Contrast
and insertion loss are shown (filled and open circles, respectively -
experimental values, bold and dashed lines - quadratic curve fits.)
Optimum contrast at ~850 nm (open squares - measured values, tin
line - cubic splines fit) is also shown.
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Device Performance, ~850 nm
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—«&— Cont., Max.
M Cont., Min.
A Ins. Loss, Min.
X Ins. Loss, Max.

0 ] 1 1 1 1 1 1 1 J

141 143 145 147 149 151 153 155 157 159

Coupler Length, microns

Figure 4.16  (Average) measured performance parameters at ~850
nm wavelength, as a function of coupler length in microns. The
maxirmum contrast (diamonds, solid line) and minimum insertion loss
(triangles) were obtained together. The minimum contrast (squares)
and maximum insertion loss (crosses) were also measured together.
The two sets of measurements were obtained at slightly different

wavelengths (~5 nm separation.)

All the measured parameters at ~850 nm wavelength are shown in Figure
4.16; i.e. maximum and minimum contrast and insertion loss, each obtained by a small
wavelength tuning around 850 nm. Some data points are omitted as the measured
values, among different samples, varied considerably, making their "average" value
suspect. At the peak contrast, the spread between maximum and minimum values is
about 3 dB, slightly less than predicted in Figure 4.12. The insertion losses are higher
than predicted, reaching a minimum of just over 3 dB.
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In Figure 4.17, we show the contrast observed with a 145 pm-long coupler as
the wavelength is tuned from 840 nm to 854 nm. The wavelength tuning and data
collection was computer-controlled, and the optical power from cach of the two
outputs of the coupler was measured on successive scans. The contrast appears
roughly periodic with respect to wavelength, reaching a peak value at about 846 nm,
and a minimum at about 851 nm. This behaviour can be explained as due to the
change of the phase separation between the fundamental and second-order modes of
the input waveguide, at the coupler input, from 7 to zero. Let us define a beat length

between these two modes as follows:

2=—2"

! Bo”‘Bz

(4.34)

This parameter is calculated to have values of 9.24 pm and 9.29 pm at 851 nm
and 846 nm, respectively. Defining the input waveguide length as L, at the coupler
input, we must have:

L L
T
851 nm T

=1 (4.35)

2
4

846 nm

if modes 0 and 2 of the input waveguide are in phase at 851 nm and out of phase at
846 nm, at the coupler input junction. Rewriting (4.35), we have:

L2

_ 72
.S

L, 1
( 846 nm BSIom_ _ (4.36)

L2 2 L

Tl846 nm n

851 nm

From (4.36) and the calculated values of the beat lengths (4.34), L has a
calculated value of 1.72 mm. The actual length of the input waveguide of the
measured device is ~2 mm: a reasonable agreement.
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Figure 4.17  Measured contrast of a 145 um-long coupler, in the

demultipicxer configuration, as a function of the input wavelength.

The polarization dependence of the device was not specifically modeled;
however, ini accordance with the discussion of section 3.2, only a small difference in
performance, with respect to polarization, is expected. Contrast and insertion loss
measurements at ~850 nm were conducted using TM-polarized light, obtained by
rotating the half-wave plate by 45 degrees. In general, the observed difference in
contrast between TE- and TM-polarizations was less than 1 dB. The measured
polarization dependence of the insertion loss was generally less than 0.5 dB. Also,
although the devices were not modeled or tested in the multiplexing configuration,
reciprocal operation is expected and insertion losses comparable to those obtained in

demultiplexing operation are anticipated.

4.6 Coanclusions In this chapter, we have described a novel method of realizing

compact multi-mode waveguide couplers to serve as two-wavelength
(de)multiplexers. The ratio of beat lengths at two semi-arbitrary wavelengths can be
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reduced to an optimum value of 1.5 by bending the coupler to an appropriate radius.
High contrasts and low insertion losses can be achieved at both wavelengths using
this approach. We have designed, fabricated and experimentally tested devices based
on this concept using deeply etched silicon oxynitride rib waveguides. The observed
performance of the devices was in reasonable agrcement with the theoretical
predictions. Contrasts of almost 20 dB and 14 dB werc obtained at 1550 nm and 850
nm, respectively, with a bent coupler only 145 pum long. This is the smallest device
yet reported which can achieve such high performance. The design concept is
applicable to many combinations of wavelengths and is ideally suited for
implementation in deeply etched rib waveguides.
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Chapter 5

Integration of Laser and Electroabsorption Functions on One Semiconductor
Substrate: LAMDA

Truly monolithic integration of photonic integrated circuits requires the
implementation of optoelectronic devices with various functions on a single substrate.
For example, lasers and optical amplifiers, transparent waveguides, detectors and
clectroabsorption/electrorefraction modulators, and possibly electronic componenis
such as field effect transistors, may all be required to implement a complex photonic
cizcuit. Implementing these various devices on a single semiconductor substrate is
difficult, since each optoelectronic component type requires a different characteristic
band-gap energy for operation at a given wavelength. The work described in this
chapter addresses one way of overcoming this problem. An AlGaAs device is
designed, fabricated and tested to demonstrate monolithic integration of laser and
electroabsorption modulation functions.  This device is called LAMDA, for
LAser/Modulator/Detector/Amplifier, since all of these functions can potentially be
realized.

Achieving monolithic integration of optoelectronic devices of different
functions is an important goal, and considerable research continues to be devoted to
it. Some impressive results have been reported in the literature to date. In [71] a
monolithically integrated cascaded DFB laser and electroabsorption modulator in
InGaAsP was reported which used quantum wells as the active regions of both
sections, by growing the materials over patterned substrates. The effective band-gap
energy in the modulator section was enhanced by growing the quantum wells over a
patterned region of large width; the resulting large growth area seems to reduce the
rate of semiconductor growth, leading to thinner well layers and states of increased
quantized energy. A similar structure was reported in [72]. In [3] and [73],
integration was achieved by including two sets of quantum wells in a single vertical
structure. These quantum wells had different widths, to offset their characteristic
energies. In both cases, the thicker quantum wells were etched away and new
semiconductor material regrown to fabricate modulator sections. In [3] an integrated
amplifier/Mach-Zehnder modulator was demonstrated, while [73] described an
integrated DFB laser/electroabsorption modulator. In [74] it was shown that an
integrated DFB laser and electroabsorption modulator could be fabricated using a
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single quantum well stack by choosing the period of the distributed feedbuck grating
to offset the resonant lasing wavelength from the effective band-gap of the quantum
wells. Still another method, based on disordering of the quantum wells, 1s reported in
[75]. In general, patterned epitaxy and selective-area regrowth arc the most widely
applied approaches for multi-functional integration, and indeed have been applied in
the fabrication of highly complex photonic integrated circuits {4], [5].

Semiconductor quantum wells, which are periodic heterostructures consisting
of very thin layers (~10 nm) of alternating band-gap composition, offer the possibility
of using quantum size effects to tailor the energy properties of the combined layer
stack. This phenomenon has seen useful application in lasers, modulators and
detectors. Quantum well devices are particularly suited to monolithic multi-functional
integration since not only the material parameters, but also certain physical
dimensions, i.e. the well widths, can be used to influence the energy properties - there
is an extra degree of freedom. The examples listed above use this property to
advantage, and for the same reason, we also make use of quantum wells in LAMDA.
Quantum well fabrication requires the use of advanced epitaxial growth processcs,
such as Molecular Beem Epitaxy (MBE). MBE is essentially an evaporation
technique, where an ultra-high vacuum (<109 torr) chamber and precision sourcc
control, coupled with sophisticated in-situ monitoring techniques, are used to achieve
high-quality crystal growth with extremely precise control of layer compositions and
thicknesses. Heterostructures with layer thicknesses down to a single atom can be
fabricated using MBE. Similar control can be achieved using Metal-Organic
Chemical Vapour Deposition (MOCVD) processes.

Our goal is to demonstrate that multi-functional integration can be achieved
without either patterned epitaxy or selective-area regrowth, since both processes lead
to expensive, low-yield fabrication. To achieve this, we include two sets of quantum
wells in a single vertical layer growth. The well widths in each stack are made
different to achieve an effective band-gap separation. Unlike [3] and [73], the
LAMDA structure is configured as a p-i-n-i-p-doped three-terminal device with
electrical connections to the upper cladding layer, the guiding layer, and the substrate;
see Figure 5.1. This feature eliminates the need for etching and regrowth and allows
us to "stack" the laser and modulator sections vertically rather than cascade them.
Intensity modulation can therefore be achieved through variable intracavity absorption
in a single laser cavity. In cases where separate modulator or detector sections are
required, the gain layer need not be removed since the three-contact arrangement
allows it to be biased to transparency. The guided mode interacts with both active
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layers in all sections and hence local function is determined exclusively by biasing.
This greatly simplifies the device prucessing and results in optimum optical coupling

between scgments since the layer structure is identical throughout.

top contact
(laser input)

middle contact

(mod. input) . gain
o QW layer absorption
f - QW layer
L N
n____ |\ guide,
P

x bottom contact

(ground)

Figure 5.1 Schematic of LAMDA structure, processed for ridge
waveguide configuration. Note the p-n-p doping profile; the quantum
well stacks are intrinsic. The guided optical field overlaps with both

active regions, which can be separately biased.

5.1 Optical Gain in Semiconductor Quantum Wells  To design the LAMDA

structure, it was necessary to develop models for optical gain and absorption

processes in quantum well semiconductor structures. In this section, we consider the
physics of optical gain in quantum wells.

Quantum well (QW) lasers offer several advantages over conventional, double
heterostructure (DH) lasers [76]. Lasing wavelengths can be controlled by the energy
level quantization in the wells, which is a function of well width and depth. The high
current confinement offered by the thin active region leads to a substantial reduction
of the threshold current, and a high differential gain (change of gain with respect to
injected carrier density), resulting from the quasi-two dimensional character of the
well, leads to an increased relaxation oscillation frequency. Moreover, a large



difference in gain between the TE and TM modes in QW structures results in
enhanced polarization stability.

As with any laser diode, gain is obtaincd in QW structures by current injection
under forward bias. Conduction band electrons, injected from the n-material,
combine with valence band holes, injected from the p-material, and since the resulting
bound electron is less energetic than the free electron-hole pair, energy is released,
sometimes as a photon. This photon release can occur as spentancous emission, with
a certain probability per unit time, or as stimulated emission, with a probability
proportional to the population of photons in a particular optical mode. The reverse
process can also occur: a photon may be absorbed by a bound electron, creating a free
electron-hole pair. Stimulated emission and absorption, for a given optical mode,
have equal inherent probabilities of occurrence. Therefore, if the population of free
carriers exceeds the remaining number of conduction states available at a particular
energy, i.e. if a population inversion is achieved, stimulated cmission exceeds
absorption and optical gain results.

In forward bias, quantum size effects arc manifested in two important
respects. The first is the partial quantization of energy states. The encrgy of a

particle confined in a quantum well is given by, for small transverse rnomenta:

2
E(N,kx,ky)=EN+§h——(kf+kf) (5.1)

L]
m

where # is Planck's constant divided by 2x, m’ is the effective mass of the particle, k,
and k, are the particle wave numbers along the unconfined axes, and Fpy arc the
quantized energy states resulting from the small well thickness, obtained as solutions
of the time-independent Schrodinger equation for a finite potential well. Therefore, in
contrast to conventional structures where the values of Ey form a continuum, the
minimum particle energies in the active region are displaced from the band cdges by
E,. Hence, the minimum energy of emitted photons is augmented by Eg’ + E;’, the
fundamental energy eigenvalues in the conduction and ~alence bands, respectively.
According to the Schrodinger equation, the sub-band eneigies Ey are determined by
the well's physical thickness and energy depth. These parameters can be controlled
during epitaxial growth, and hence the peak photon emission energies are easily

tailored, since radiative transitions decrease at energies exceeding the quantized sub-



136

band transition energies duc to fast intraband relaxations along the unconfined axes.
The well depth is a function of the relative stoichiometric composition of the well and
barricr layers. A GaAs/AlGaAs uantur well has an energy depth determined by the
concentration of Al in the barrier layers. Approximately 57% of the band-gap
difference between the well and barriers contributes to the conduction band well, and

43% compriscs the valence band well. See Figure 5.2.

AlGaAs Barrier E
Y Y r__ c
E .,
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_1___ vl L E
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Figure 5.2  Energy schematic of an AlGaAs multiple quantum well
system. GaAs has a smaller band-gap energy E, than AlGaAs,
establishing potential "wells" where the total band-gap difference is
divided between the conduction and valence bands. If the well layers
are sufficiently thin, quantized carrier states are created with respect to

the axis of epitaxial growth.

The second important quantum size effect in forward bias is the alteration of
the density of states functions, which arc important in calculating optical gain. If we
label the axis of epitaxial growth z then the carriers in the wells are unconfined along

the x and y axes. The carrier wave numbers along these axes are then:

k=0T g M (5.2)
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where m and n are integers, and Ly and L, are the transverse dimensions of the well,

The arca per eigenstate, in wave numbcer space, is therefore:

A= (5.3

The number of eigenstates that have transverse momenta less than hik, where:

k= K+ i (5.4)

is therefore given by:

mk® 2 KL,
N(k)= —= : (5.5)
4 A 21
since the momentum value ik defines an area of mk’/4 in k-spacc, and two spin
orientations of each carrier are possible. The number of states per unit arca with

energies between E and E+dE is then:

_l_ill_\l_(.E)_fI_[‘ldgz!iﬁ'f_dk (5.6)
LXL), dk dE T dE

The carrier energy and wave number, along the unconfined axes, are related

2 »
k=] i”z’ (E-E_)" (5.7)

where E;, is the smallest allowed energy. In quantum wells, from cquation (5.1), «

by the well-known equation:

function of the form of (5.7) is repeated for every quantized energy level resulting
from the vertical confinement. Therefore, the density of states function 1s:

p(E)z—Ll—ff’i=Z " _H(E-E, -E,) (5.8)
TC
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where (x) is the unitary Heaviside function (i.e. H(x)=1, x>0, H(x)=0, x<0) and g=c
for clectrons in the concuction band, and g=v for heles in the valence band. £ is the
band-gap encrgy, and tic quantity L, is the thickness of the quantm well and has
been included in (5.8) to define p(£) per unit volume, rather than area. The sum
index limit "max" corresponds to the highest-order quantized field along the growth
axis. The density of states functions are thus step-like in QW structures rather than
parabolic as in bulk semico. ductors; see Figure 5.3. This has 2 number of important
effects.  First, it dictates that the wavelength of peak gain will shift discretely with
increased injcction, rather than continuously as in unconfined structures. Second, it
aliows all injected carriers to contribute to the gain at its wavelength peak, resuiting ir
a very large value of differential gain, dg/dn, where 7 is the gain coefficient and n is
the injected carrier density. This both reduces the threshold current and increases the
frequency of relaxation oscillations. Finally, the altered character of the density of
states functions Icads to a saturation of the gain achievable via any given sub-band
transition, a phenomcnon which does not occur in unconfined structures. These

phenomena are iflustrated in Figure 5.4.
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Figure 5.3  Density of states function in a quantum well, compared

with that in a bulk semiconducto: 1ayer.

QW lasers exhibit enhanced polarization stability due to a large difference in
gain between TE and TM modes; this is another result of the quasi-two-
dimensionality of the active region. Since the (quasi-)TE modes have their principal
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electric field component in the plane of the layers, greater coupling exists between the
radiation electric ficld and the carrier dipole moments than for the TM modes,
becausc the (electron-heavy hole) dipoles tend to lie irore in the plane of the layers
due to the vertical quantum confinement. The result 1s an enianced probability of
stimulated emission, which in turn is directly manifested as a greater gain for the TE

modes.
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Figure 5.4 Comparison of the gain characteristics of DH and QW
laser structures. The spectral characteristic (gain g vs. photon energy
E) of the QW laser is step-like, providing excellent control of the
lasing wavelength. The peak gain (gmax) vs. injecied carrier density
(n, n2>nl) of the QW exhibits an initially higher slope (larger
differential gain), and sarurates at high injection levels. Higher sub-
band transitions, which appear at large n for QW lasers, arc not

shown. E, is the bind-gap energy.
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5.2 Calculation of Gain in Quantum Wells The expressions which determine the

rates of optical absorption, and spontaneous and stimulated emission are derived from

Fermi's Golden Rule:

W, =%|{1, P+ 1|2 p )| 8(E, - E, - ho,) 5.9

taken in the limit of harmonic emission (& is the Dirac delta). In (5.9), W, is the
(probability) rate of emission into the /th optical mode, p; is the number of photons in
that mode, @ is its angular frequency, E; and E; are the final and initial energies of
the emitter, and H; is the perturbation Hamiltonian causing the transition. In
semiconductors, the considered transition is the collapse of a free electron-hole pair.

The Hamiltonian is normally considered in the dipole approximation:

H, =—cE, oF (5.10)

where E, is the time-independent electric field of the /th optical mode, and 7 is the
position operator. By writing expressions for the quantized optical fields, it can be
shown (see Chapter 6) that (5.9) reduces to:

~ 2’ _
() g Yoo oo v

- cav- o

Tliezfl 2
=[;2—E—Vm—,,)|M| (p,+1)d(E,—E,-E) (5.11.b)

CV O

where | M|" is called the momentum matrix element and is given by:

M = mioo?{(11E, (7)o A2)| (5.12)
where m,, is the electronic rest mass and:

KIIE,(?)0F|2>|2 (5.13)
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is the field-dipole matrix element, with dimensions of length?. The derivation of
equation (5.11) assumes that the optical mode / is one of a complete sct of plane
waves of a cavity of uniform refractive index n.,, and volume V, and the mode ficld
has been energy-normalized on this basis. The field-dipole matrix element (5.13)
therefore does not depend on the field magnitude since this is the same everywhere
fn all modes. The momentum matrix element determines the strength of the
transition for a given magnitude and orientation of the dipole and polarization (i.c.
orientation of the electric field vector) of the optical mode. The determination of this
parameter for quantum wells has lead to some confusion in the literature. An
excellent discussion is presented in [77] which gives, for Ak =0 inter-band (i.c.
conduction band-valence band) transitions in C 1As, and TE modes:

M, =%|Muv,, (5.14.2)
|M,|" = %le.g ’ (5.14.b)

where:
|M,,,[ =3.38m,E, (5.15.0)

where E, is the band-gap energy of GaAs. The subscripts ! and A refer to light and
heavy holes, respectively, and denote the effective hole masses in the two direct-gap
valence bands of GaAs. The momentum matrix element value for TM modes and
heavy holes is zero and hence TM modes are not considered further. In fact, (5.14) is
strictly valid only for transitions between the quantized sub-band cnergy levels but is a
reasonable approximation for small k,, k. Equations (5.14) and (5.15) account for
spin degeneracy and spin conservation in inter-band transitions.

The gain in a single optical mode can be determined from equation (5.1 1.b) by
considering only the term proportional to p; which corresponds to stimulated emission
or absorption. Again assuming momentum-conserving inter-band transitions, the rate
of photon absorption is:

Wi (EWF N (EY1- 1 (E)) (5.16)
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where W, now refers only to the term of (5.11.b) which is proportional to p;, and we

have used 4 reduced density of states func Hn given by:

oty =| e N L V(g B, -, ~E,) (5.17)
8 m, +m, 'L, f g

since Ak =0 and the electron and hole densities of states are considered together. In
(5.17), the subscript e denotes electrons, j=/,h denotes light and heavy holes, and N
denotes sub-band energy quantum numbers. Note that we assume the same value of
N for electrons and holes; this is because the electron and hole wavefunctions (#long
the vertical axis) are approximately orthogonal in deep potential wells, leading to a
negligible field-dipole matrix elcment value for most transitions where AN #0. The
functions f,. and f, are Fermi-Dirac distribution functions which give the probability of
electron occupancy of an energy state in the conduction and valence bands,

respectively. These functions are given by:

1

[ (E) = :
n,
E, +[m, s J(E—Eg -E,-Ey)-E,
1+exp A
kT
(5.18.a,b)
1M (E)= —
m, ,
-E, +Lm,+m.. )(E—EE—EC,V ~E,)+E,
1+expl < 7 -

kT
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where k is Boltzmann's constant, T is the temperature, and Eg. and [Ej are the
conduction and valence band quasi-Fermi levels, respectively. These are measured
from the respective well bottoms, with increasing magnitudes at higher levels in the
wells; the sub-band levels E_y and E;y are measured the same way.

The number of stimulated emission transitions per unit time is:

oIV (EWFIN(EY1= IV (E)) (5.19)

The gain coefficient is obtained by subtracting (5.16) from (5.19), integrating
with respect to energy to eliminate the Dirac delta functions. and multiplying by
neqa/Co Where c, is the speed of light in free space, to convert the emission rate per
unit time into a rate per unit length. This yields:

8(“—22( re’h )|M|p,,d(E)[fc{,”(1:) ~fIME)] (520

En cm

o cav o 0

if gain-broadening mechanisms are not considered [78],[79]. Since the number of
quantized levels in the conduction and valence bands are not generally equal, the
summation limit of N is the smaller of the two for each j. Equation (5.20) inciades a
sum over all the inter-band transitions, since more than one transition may produce a
photon of energy E. Since the optical mode [ in (5.16) and (5.19) is a plane wave
extending over all space, (5.20) must be taken as a bulk gain expression. In practical
cases, an approximate modal gain coefficient can be obtainod by muliiplying (5.20) by
the opticzl power confinement factor of the mode being consides~d. Equation (5.20)
assumes infinite lifetimes for the carrior= in vhe well eigenstates  Of course, intraband
relaxation does occur and hence some energy broadening is expected. Usually, this is
treated by a convolution of (5.20) with a Lorentzian function, with an cnergy-
dependent lifetime on the order of 107 s. We ignore gain broadening in our
treatment, since we seek only the peak gain value and wavelength, which determines
the threshold of a laser.

The rate of spontaneous emission, into a specific optical mode /, is given by
integrating (5.19) with respect to energy where now W, is taken as *he term of
(5.11.b) wich is not proportional to p;. This yields:
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r,*"(is):(%lﬁ)(2 ";’":w JlM‘p,ﬂ,(L)f/”(L( IN(E))  (5.21)

The total raic of spontancous emission, into all optical modes, may be
obtained by integrating (5.21) over all energies, taking account of the mode density

with respect to energy:

21 e*hw N
= il P i 5.2
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where:

n® E?
D(E) ——“z‘i;l—ac—; (5.23)

is the optical mode density, per unit volume per unit energy, in a large cavity of
uniform refractive index n,,,. The total spontaneous emission rate (5.22) has units of
(volumextime)-!. In situations where the complete set of optical modes is not simply
a set of uniform plane waves, e.g. in the vicinity of an optical wavcguide, the
prescntation given in this section is, to some, degree, incorrect. This issue is
examined in some detail in Chapter 6 with respect to spontaneous emission. The
evaluatic» of (5.22) is important in determining the threshold current of a laser, since
spontancous emission is the dominant radiative recombination mechanism below
threshoid.

5.3 Determination of Quasi-Fermi Levels  The quasi-Fermi levels, required for
the evaluation of (5.20) and (5.22), are determined by the densities of free carriers

resulting from current injection. The c: iers occupy energy states according to the
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Fermi-Dirac distribution function. In general, carrier density is calculated by
integrating the product of the density of states and the Fermi function, over all
energies. Analytical expressions can be obtained for the densities of carriers which
occupy the quantum well energy states given by equation (5.1). For the conduction
band, we have:

n=Y [p.(E)f.(E)YE (5.24.2)
N Ey
. 1
= e E 5.24.1
2:* B E-E, (5:24.b)
Ev “| 1+exp| —-—-"
kT
m‘ E](* - E(‘N
=—=—) In| l+exp| ———— 5.24.c
L, EN: [ XP( kT H (5.2d.c)

where n is the volume electron density. Similarly, for the valence band we obtain:

zzm ln|:l+exp( T ~ L H (5.25)

nh

where p is the total hole density. Since the quantum wells are undoped, we make the
standard assumption of space charge neutrality and hence require that p=n. If all of
the carriers were confined to the well energy states of equation (5.1), we could
calculate the quasi-Fermi levels directly by numerical inversions of (5.24) and (5.25).
It has been indicated by some authors [80] that, under certain circumstances,
e.g. with narrow quantum v ells, small potential barriers and/or at high injection
current levels, various carrier overflow mechanisms can influence the quasi-Fermi
fevels. Some fraction of the carriers may spill into the continuum of energy states
above the barrier potential, either physically in the well layers or in the surrounding

barriers or other semiconductor layers. Also, some electrons may occupy states in the
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I. conduction band. Neglecting these mechanisms can lead to overly optimistic
estimates of laser threshold currents and therefore we include them here.

We refer to the electrons with energies exceeding the conduction band barrier
potertial, but which nevertheless are physically located in the well layers, as
unconfined electrons, with volume density n,,. These carriers are governed by a
standard parabolic density of states function, and hence they influence the quasi-Fermi

level according to:

3
‘N2 = 1
", =4n(2m‘)2 [(E-E,.) 1 E (5.26)

. E-F
Epar l+exp(——#)

where Ep,, is the barrier potential (i.c. the bottom of the I'-valley in the barrier
layers.) The density of electrons which penetrate into the barrier layers is similarly

given by:

* - 1
n,, =4n(%«-) i (E-E,,) e (5.27)
Epur 1 +exp( T d J

where np, is the density of electrons in the barriers, and m,,, is the effective mass of

electrons in the barrier layer I'-valley. We assume that each quantum well is
surrounded by a barrier laycr and tirercfore exclude the possibility of carrier overflow
into other semiconductor layers. Furthermore, we neglect L-valley population in both
the wells and the barriers. This is justified as long as the barrier aluminum
composition is less than about 37%, since the L-valley minimum in both the wells and
the barriers then lies above the (T"-valley) barrier potential. The total electron
concentration is thus taken as:

n=n,,+n,+n,, (5.28)

well
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where n,,,.;; is the density of confined electrons in the quantum wells, given by (5.24).
Given a value for the total electron concentration, the conduction band guasi-Fermi
level can then be found by self-consistent solution of equations (5.24) and (5.20)-
(5.28).

Similar overflow mechanisms are not significant for the valence band, since
the heavy hole effective mass is much greater than the electron I'-valley effective
mass, resulting in quantized sub-band levels lying much lower in the wells. Therefore,
we assume the valence band quasi-Fermi level to be strictly related to the total hole
population according to (5.25).

5.4 Calculation of Carrier Concentrations In bulk GaAs lasers biased below

threshold, the steady-state rate of carrier recombination, G, is well-described by [81]:
G = An + Bn* +Cn’ (5.29)

where A results from recombination at Shockley-Read-Hall traps, 3 determines
spontaneous (radiative) recombination, and C is the Auger (multi-body)
recombination coefficient. While different Auger processes are possible,
corresponding to different carrier interactions, in most cases they can be adequately
characterized collectively.

The description of spontaneous emission recombination using the bimolecular
coefficient B is valid only where the radiative transitions are not k-selective, i.e. where
Ak #0 generally. It is therefore not an accurate description of radiative
recombination in quantum wells, where k-selection rules are operative and the
electron and hole populations cannot be considered independently. The term BnZ in
(5.29) must therefore be replaced by the quantum mechanical expression (5.27;. This
considerably complicates the evaluation of the gain coefficient, since (5.22) makes the
carrier concentration a function of the quasi-Fermi levels, and the system of equations
(5.22), (5.24) and (5.26)-(5.23) must be evaluated self-consistently. Therefore, in this
work, we retain the bimolecular expression for the spontaneous recombination rate,
but seek a value of B which brings the values of Bn? close to the calculated values of
(5.22) for t.:: ... atum well system, and over the current density range, of interest.
Some validation of this method is provided by Figure 7 in [82], where the radiative
recombination rate for GaAs quantum wells of various widths, calculated using a
version of (5.22), is compared with that in bulk GaAs, as a function of temperature.
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This figure shows that decrcasing the well width may be effectively considered by
increasing B. For 10 nm GaAs wells, the spontaneous emis:. . rate increases by
about a factor of three, versus bulk GaAs, at room temperature, corresponding to a
value of B~1.2 X 10-15 m3s-!. Anticipating that we will be modeling 10 nm GaAs
wells with 32% Al barriers, we can check the accuracy of this value when applied in
(5.29). At various current densities, we obtain n using (5.29), and then apply it iu
(5.24) and (5.25) to estimate the quasi-Feimi levels. We next apply these quasi-Fermi
levels in (5.22), using an appropriate value of n.,,, to calculate the electron
concentration using the correct quantum mechianical method. The values of n
calculated by (5.22) and (5.29) are found to agree to within ~10% over a wide range
of injection current densities when a temperature of 300 K is assumed.

The contribution of S-R-H trap recombination is widely neglected in QW laser
modeling, although in fact trap recombination may be somewhat enhanced in QW
structures, versus bulk GaAs, due to the large hetero-interface area inherent in a QW
stack. The evidence suggests that these interfaces are densely populated with S-R-H
traps. Studies of carrier lifetimes in MBE-grown GaAs quantum wells are available
[83],[84] which give numerical values for the parameter A; in our model we scale this
parameter by assuming that the trap recombination rate is a linear function cf th
hetero-interface surface area in the QW stack. Values for the Auger recombinaticn
coefficient, C, for GaAs QW structures are fairly well agreed upon in the literature;
we take the value 4.2x10™ m™s-1. We find, in agreement with other studies, that

the non-radiative contributions to recombination are almost negligible, so that in fact:
G=R = Bn’ (5.30)

5p

where B is aporonriately scaled as discussed above.

5.5 Modeling of Electroabsorption in Quantum Wells We next examine the

physics governing the operation of semiconductor quantum wells as modulators. In
recent years, the development of QW electroabsorption modulators has reached a
relatively mature state. QW devices are particularly useful as modulators due to the
existence of strong excitonic features in the absorption spectra [85]. Excitons are
hydrogenic electron-hole entities not seen in bulk semiconductors except at very low
temperatures, due to their low binding energy and ease of ionization. In quantum
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wells, however, the confining effect of the narrow potential wells increases the
exciton binding energy by reducing the effective Bohr radius of the exciton.  This
enables the excitons to survive long enough, even at room temperature, to give rise 1o
sharp absorption resonances at the exciton characteristic energies. These large
magnitude resonances produce an extraordinarily sharp spectral transition from a low
absorption to a high absorption state. Furthermore, when an electric ficld is applicd
perpendicular to the layers, the excitons survive, due again to the confining action of
the potential barriers, while the characteristic energies are red-shifted according to the
well-known Stark Effect. This Quantum Confined Stark Effect (QCSE) is a
particularly powerful electroabsorption phenomenon and is the basis of operation for
QW modulators.  Since the QCSE does not involve particle injection or
recombination, large modulation bandwidth is possible, limited essentially only by the
RC-constant of the capacitance of the QW modulator in serics with a drive
impedance.

The energy states of electrons and holes in quantum wells are given by
equation (5.1), where Ey ar the discrete states resulting from confinement along the
axis of layer growth (the z-axis.) Absorption of a photon creates an electron-hole
pair, and the absorbed photon energy, E, is therefore determined from (5.1), and is
given by, in the general case: '

R (2,2 (2, 2
E=E +E,+E, +?{m: (2 +k2) —'—?;;:(kx +k2), (5.31)

Where the generated carriers have similar transverse momente . &
selection), Coulomb forces pull newly created electron-hole pairs into bound states:
excitons. These excitons are generaily in a (compressed) 1S orbital state with some
characteristic binding energy, Ej; higher energy orbitals are not significantly
populated. With the selection rule Ak =0 the photon energies giving rise to exciionic
absorption resonances are therefore, approximately:

E!=E,+E,+Ey-E, (5.32)

where the superscript on the photon energy denotes the hole type involved. Note
that, as for the forward bias case, a AN =0 selection rule is implicit in (5.31) and
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(5.32); this will be justified (and qualified) shortly. Equation (5.32) determines the
exciton resonance energies even when an electric field is applied along the z-axis, and
F,.n and [y are reduced by the Stark Effect. The exciton binding energies are not
significantly perturbed by an applied field.  Although the QCSE is directly an
absorption spectrum modulation effect, i can also bec used to achieve
electrorefraction, such as in the Mach-Zehnder switch of Chapter 3, since the
absorption and refractive index spectra of a material are intimately related via the
wcll-known Kramers-Kronig relations.

We note here that excitons play no part in optical gain processes, at least in
HI-V semiconductors, since the large population of free carriers in quantum wells
under forward bias screens the Coulombic interaction that binds excitons, greatly
shortening their lifetimes.

The magnitudes of the excitonic resonances can be determined from first
principles (Fermi's Golden Rule); however, this is a detailed quantum mechanical
calculation. A semi-empirical approach, widely used in the literature, models the
resonance strength with an applied electric field using experimentally determined
values at zero field. The decay in resonance strer “ths with an electric field is well-
approxime.icd using the square of the overlap integral of electron and hole wave
functions. This method is casily justified by luoking at the Golden Rule [86]. The
field-dipole matrix element (5.13) which determines the strength of absorption

transitions is, for inter-band absorption transitions:

2

E,(P)[ ¥y ()2, (F)V (5.33)

2

[¥ (PE(P)L,, PV
d

where ¥ are the particle wave functions of the holes and electrons. The optical mode
electric field is removed from the integral since it is approximately constant over the
dimensions of the quantum well. Physically, (5.33) means that the transition
probability depends on the extent to which the electron and hole are created in the
same location. As an electric field is applied to a quantum well, the wave functions of
the discrete particle states are pulled in opposite directions along the z-axis.
Therefore, if we assume that the wave functions are separable into real functions of z
and the transverse coordinates x and y, and that there is no change in the particle
wave functions in the plane of the layers when a field is applied, we can write:
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5

o, =0 (5.39)

JW s @w, ()

provided that the wave functions are normalized; o, is the ..agmtude of the exciton
absorption resonance, and 0.’ is its magnitude at zero field. Note that the sclection
rule AN =0 is explained by this relation; under zero field, the electron wave functions
are approximately orthogonal to the hole wave functions of different quantum
number. This orthogonality is progressively destroyed as a field is applied and the
wave functions become skewed in opposite directions; the selection rule is therefore
relaxed with the application of a field. Resonances corresponding to AN # 0 start to
be observed; in fact, it can be shown that the collective strength of these new peaks
exactly compensates for the decay in the strength of the pcaks allowed at zero ficld
[87].

The shape and width of the exciton resonances are determined primarily by the
lifetime-limiting processes of the excitorz  The three most significant homogencous
processes are phonon interactior:, anncl:ng through the barriers, and electron-hole
recombination. It has been shown e¢xperimentally [88] that phonon ionization at room
temperature dominates over recombination, and for normal barrier thicknesscs and
potentials, tunneling is not significant, even at high fields. We therefore cxpect
Lorentzian lineshapes for the exciton peaks, with a width determined by the phonon
ionization lifetime. This width is approximately field-independent, since phonon
energies at room temperature are much larger than the exciton binding energy, cven at
zero field, and any collision with a phonon will likely ionize the exciton. In ary - asc,
the binding energy is approximately independent of field. The phonon linewidth is
rroporti~nal to the density of phonons, wuich is governed by Bose-Einstein statistics.

"Two inhomogeneous processes also broaden the exciton peaks: variations in
wcll width, and field variations from well to well due to residual doping in the QW
stack. The latter is quite generally encouvntered, since, to effectively apply an electric -
field, the QW stack is usually made the intrinsic part of a p-i-n diode, and therefore
residual doping gases in the growth chamber and/or diffusion lead to some dopant
contamination of the wells. These mechanisms, which are field dependent, yield
Gaussian lineshapes which properly must be convolved with the dominant Lorentzian
function. A simpler approach is that taken by Lengyel et al. [89], where a single
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Lorentzian iinc function is retained, bu* with a linewidth augmented by the
inhomoger.cous mechanisms. Lengyel fitted a well width and field dependent function

to experimental data to obtain a linewidth function for GaAs-AlGaAs QW's:
I'(L,,e)=7.374-0.511L, +0.0182 L7 -0.054e+0.0161€’ (5.35)

where I is the HWEM linewidth in meV, the well width is in nm, and ¢ is the field in
mV/nm. This width, while fitted for the M =1 electron to heavy hole resonance peak,
is also a good approximation for the oilier exciton absorption resonances.

The full absorption -pecirm <cn be obtained by convolving the exciton
lineshapes with each other aud wiu. a functica representing the continuum of
transitions generating free electrot-hole pairs. The latter can be modeled by a
broadened Sommerfeld factor, which accounts foi transitions between generated
particle pairs of varying in-plane :nomert»  A: an approximate alternative to
convolution, the various absorption contributions can simply be summed. We
therefcre obtain, incorporating only the first two excitonic resonances, the following

ex;ression for the absorption coefficient of the QW:

" o 20
W)= - — 2 S c
R[] 0 Y ESL B
— e ex it+eXx .
l r ] p T )J[ p [E_EC)/ ]nz
(5.36)

where Ef and E! are given by (5.37 - with N=1, 0y, and oy, by (5.34), and T by
(5.35). EC€ is tk= energy of the continuum edge and is taken as equal to E! at zero
field, o, and I'. are the magaitude and edge width, respectively, of the continuum,
and are taken from experimental data, and R, is the Rydberg constant of the material.
Equation (5.36) has been demonstrated 0 yield accurate approximations to the
absorpticn spectra of GaAs-AlGaAs (s near the absorption edge [88].
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5.6 _Determination of the Carrier Wavefunctions  The modeling of both optic:i
gain and the QCSE in quantum wells requires a knowledge of the quantized sub-band
energy levels, E.y and Ejy. These are obtained by solving the titnc-independent

Schrodinger equation:

:h_z 0 Wy (2)
2m 97’

i

+V (@ (D)= Eypy(2) (5.37)

where i=c, j (j=1,h) denotes electrons or light or heavy holes, and V is the potential
energy function. In our case, V is a finite potential well, rectangular in "¢ case of
zero applied electric field, but with sloping potential otherwise. In the literawre,
(5.37) has been solved using variational methods [90], Airy functions [91]. and finite
element methods [92]. Note that (5.37) has the same form as equation (4.18); we
could therefore apply the numerical method described in section 4.1 for the analysis of
circularly-bent planar waveguidss. Here, however, we have applied another method
which avoids the requirement to solve a matrix eigenequation of the form of (4.24).
This is the so-called re onant tunneling echnique [93]. To derive tiis method, we
begin by writing the general solution for (5.37) in a region of constant potential:

W, (2) = Aexp(jkz)+ Bexp(—jkz) (5.38)

where A aiJ B arc constants, and:

o zm; (E,y —V(2))

A P (5.32)
An equivalent solution w’ ich avoids complex exponentials is given by:
A 2
Y (2) =Ism(kz)+Bcos(kz) k=20 (5.40.a)
A . i 2 . 3
Y, (2) = .—smh(‘k|z) +. sqk!z) k< (5.40.b

1K
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If k% is uniform over an interval z, <z <z, 48z, and if z, =0, then (5.40) is

the solution of (5.37) in the iniervat if:

A= 3‘4’;~(Zo =O)

; B=y,(z,=0) (5.41)
0z

We can therefore write:

Wy (20 +32) 5 1. Vi (20)
Dy i, +80) |=| COSKED  sintkOD) Y 2y |: k220 (5.42.)
2z ) \—ksin(kdz) cos(kdz) 5z

Yo (2 +82) 1 Y (z)
aw,,vv,v (_::0.‘+8z)J= coshi(i[5z) IkISIHh(IkléSZ)](?WU,-VN(zO) ; k? <0(5.42.b)

oz F|sioh(k|5z2)  cosh(k|sz) N\ oz

which is true for general z, as long as k2 is utiform in the interval. Equations
(5.42.a&Db) therefore give us a transfer matrix formalism, by which we can relate the
wave function and its derivative at the left side of an interval (¢ that at the right side.
The extension of this formalism to numerical computaticn of the energy eigenvalues
and wave functions is straightforward. The problem region (barrier-well-barrier) is
broken up into sections; in each section, the local potential is taken as fixed, thus
pro /iding a chain of intervals of ue " .a k2. The sloped poteniial characteristic of a
QW in an electric fie'd, thereforc is approximated as a staircase; see Figure 5.5.
Initial values of the wavefunction and its derivative (the wave function value can be
arbitrzry hut the derivative value must be zero) are then set at the left side of the first
interval, and, guessing a value of E;y, the trial wave finction i. propagated from left
to right through the problem region. For incorrect guesses of th~ energy eigenvalues,
t"e trial wave function will grow exponentially in the far barrier, whereas eigenvalues
will generate wave functions which decay exponentially in both barrirs. Therefore,
the eigenvalues E;y and the corresponding wave functions are found simuitaneously

ty brackeung and refinement.
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Figure 5.5 Resonant tunneling model approximation to the
potential energy characteristic of a barrier-well-barrier system i1n an
electric field.

5.7 LAMDA Model Algorithm and Simulation Results  The theory described in

the preceding sections was used as the basis of a computer program to model the
behaviour of the LAMDA structure. The program assumes a single-cavity ridge
waveguide structure wherein the upper (gain) QW stack is corr 'y etched through
(Figure 5.1). Therefore, a current passing from the top contact to the middle contact,
without any shunt reductions, is taken as the injection current for the gain
salculations. T ¢ total current is assumed evenly divided among the quantum wells in
the upper stack for calculauon of the resulting carrier concentrations using equation
(5.29). The conduction band quasi-Fermi level is then calculated by solving equations
(5.24) and (5.26)-(5.28) self-consistently using a bisection-type algorithm, where
(5.26) and (5.27) are evaluatz< using S:mpson's Rule. The valence band quasi-Fermi
ievel is obtained from (5.25) using bisection, and the bulk gain coefficient can then be
calculated using (5.20). The peak (net) mode gain is taken as:

1
gm=rgg_raaa_(l—rg_ru)ar—”l;ln({} (5'43)
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where g is the bulk gain coefficient from equation (3.20} wnd I', and ', are the mode
intensity confinement factors in the gain and absorption quantum wells, respectively.
These are calc:lated using the finite element method discussed in section 2.11,
considering only the fundamental (TE) transverse mode if more than one mode exists.
Since it uses only real refractive indices, the method of section 2.11 cannot account
for gain-guiding effects; however, these are not expected to be very important near
the lasing thresheid. The absorption coefiicients 0., and o, denote the absorptions
assumed in the bottom quantum wells, and in ali other luyers of the stiucture,
respectively. The value of o, is determined from equation (5.36) ard depends on the
config. tion of the bottom QW stack and the assumed applied bias. The
wavelength at which o, is chosen is dewzmincd by the expected peak gain
wavelength from (5.20). Equation (5.43) is evaluated over « verge of injection
current values to determine the laser threshold, taker as the current where the peak
net mode gain g,=0. The various parameters .t 50 far tisted explicitly, 2.5, effective
masses, band-gap energies and exciton binding energies, are widely available in th:
literature and therefore are not given here.

This procedure should provide a good estimate of the threshold current. A
single < 2vity laser/modulator can be modeled by varying the assumed electric field in
the evaluation of (5.36). In practice, this is achieved by varying a reverse voltage bias
applied across the middle and bettom contact terminals. The indicated lasing
wavelength from (5.20) must be considered approximate, since we have neglected the
wavelength shifting effects of line broadening. However, this effect is countered by a
reduction of the band-gap energy which occurs under current injection. Note that the
model determines o, from equation (5.36) but supplies only a single value to the gain
model. Therefore, we cannot account for wavelength chirp which may occur if the
bottom quantum wells are biased such that the heavy hole exciton resonance is red-
shifted past the lasing wavelength. This is of no consequeaze as, at that point, we
have already reached the point of maximum intensity modulation, while below that
point, n~ chirp is expected since no shift of the lasing wavelength can increase the
mode gain.

The fisst step in the design of LAMDA was to develop a heterostructure
profile which would produce a single-mode waveguide when etched to the bottom of
the upper quantum wells, for a reasonable ridge width, while giving a high intensity
confinement {>10%) in the top (gain) quantum wells and a iow confinement (<2%) in
th~ bottom quantum wells. The peak gain is expected at the N=1 electron to heavy
hole transition; the calculated wavelength for this transition is 847.5 am for 10 nm
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quantum wells. The material refractive index as a function of aluminum conicat at
this wavelength was calculated using the model of Adachi [94] for application in the
finite element algorithm of section 2.11. On this basis we arrived at the structure
shown in Figure 5.6. A 0.2 um-thick, n-doped Al j3Ga g,As waveguide 1s clad from
above by an intrinsic GaAs/Al 5,Ga ggAs MQW active layer with six 10 nm wzlls and
seven 10 nm barriers. A 2 pum-thick, p-doped Al 5,Ga 49As laver constitutes the
remainder of the upper cladding, and a thin, heavily-doped GaAs cap forms an ohmic
contact with the top bias terminal. A 3 pm-wide ridge etched to the top of the
waveguide layer supports a single TE mode, with an intensity confinement factor in
the top QW layer of approximately 10.5% (i.e. I';=5.25%). A 10 nm AlAs laycr
between the waveguide layer and the top quantum well stack was included as an ctch-
stop layer.

A lower cladding is formed by two layers of Al 53Ga 45As separated by a
single GaAs quantum well. The upper AlGaAs layer is n-doped and €.2 yim thick, the
lower is p-doped and 3 pua thick. The SQW layer is operated under reverse bias and
used for intensity modulation. A well width of 8 nm was chosen to offset the
ah-orption peak from the lasing wavelength of the upper active layer and reduce
residual, zero-bias losses. Splitting the lower cladding vertically serves a dual
purpose. By varying the position of the lower quantum well we have tailored our
design to have an acceptable confinement factor in that layer: the calculated value is
approximately (I';=) 0.5%. Ir: addition, the split c*adding results in a thicker n-doped,
middle contact layer than would be available if the SQW were adjacent to the core.
This is advantageous since the middle contact of the device must support the lasing
current. Peak doping levels were 5X1017 c1n-3 (n) and 5X10!8 cm™3 (p). Cleaved,
uncoated facets were assumed and hence R was taken as 0.3 in equation (5.43).

In Figure 5.7, we show the spectral absorption coefficient of the lower, 8 nm
quanttrlm well, modeled using (5.32)-(5.42). The electric field is calculated from the
reverse bias voltage assuming a 0.1 pm-thick intrinsic region around the quantum
well. At zero bias, the heavy hole absorption peak is at about 843 nm wavelength.
At the predicted operating wavelength of 847.5 nm, the absorption coefficient is
about 7000 cm’!, corresponding to a modal absorption of T',0t,=35 cm!. At a
reverse bias of 2 V, the absorption peak is already 7ed-shifted past the operating
wavelength. A maximum increase in [,0, of about 55 cm' is predicted at
approximately -1 V bias. In practice, the magnitude of the spectral shift ¢f the
exciton resonances with reverse bias will dep-nd strongly on the true thickness oi ihe
intrinsic region around the quantum well.
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Figure 5.6 Schematic of the LAMDA structure design; layer
compositions and doping profile. Layer thicknesses are not to scale.
A thin GaAs cap at the top of the structure is not shown.

In Figure 5.8, we show the calculated values of the peak net mode gain, given
by cquation (5.43), for three cleaved cavity lengths: 250 um, 300 pm and 500 pum.
We have taken the residual absorption coefficient value 0,=20 cm-l, and the
modulator quantum well is assumed unbiased. The predicted threshold currents are
given by the points where the gain curves intersect the g,,=0 line; for all three cavity
lengths, the lasing wavelength is predicted to be 847.5 nm, i.e. the peak gain is
attained on the N=1 electron to heavy hole transition. Anticipating the experimental
results discussed in the next section, the actual measured thresholds for the three
cavity lengths are indicated by asterisks. Agreement between theory and experiment
is excellent. The lowest threshold current, for a 250 um cavity, is 57 mA. Note that
for all three cavity lengths, at the maximum predicted absorption coefficient of the
lower quantum well, threshold currents in excess of 100 mA are predicted.
Therefore, wit. a steady-state current applied to the upper quantum wells, we predict
th .. very dramatic intensity modulation can be obtained in 1 single cavity by

modulating the bias applied to the bot*om quantum well, from 0V to -1 V.
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Figure 5.7 Modeled absorption spectra of the 8 nm modulator
quantum wel! of the LAMDA structure, under O V and -2 V bias.

For any given value of the total modal absorption loss in the cavity there is a
specific number of (gain) quantum wells which provides the optimum mode gain and
the !cwest threshold curreni. This optimum number of wells results from the
competiti W 6f two vifects. Increasing the number of wells reduces the recombination
current ir = - we hereby reducing the carrier concentrations, the quasi-Fermi
levels apd o il ~ar well. However, the modal gain is the product of the bulk
gain and the © ! w0 coatinement s the wells, and thercfore increases with the
number of quaniam »<fis. A good discussion ol thi: problem is given in [95]. n our
case, with the proiizied values of T'yot, and (1-T'p-T'p)or,, the calculated optimum
number of gain q' an. ..it wells is six.

t is interesting to consider the effects of the camier overflow mecha.isms,
discussed in section 5 %, on the perfoimance of the device. In Figures 5.9-5.11, we
consider the LAMDA structure as designed, but with only a single quantum well
providing gain. Figure 5.9 shows the unconfined electron concentration in the
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quantum well, n,,,,, as a fraction of the total electron concentration n, for two cuses: a
7 nm quantum well, and a 10 nm guz~tum well, as a function of the total injected
current. This parameter increases, roughly linearly, with current for both quantum
well widths. However, the fraction of unconfined electrons is much higher in the 7
nm quantum well-filling of the confined encrgy states occurs faster in the narrower

quantum well.

LAMDA Ridge Lasers, Modeled Gain Curves

100

* Experimential Thresholds

Peak Net Mode Gain (cm-1)
(incliding facet losses)

Legend

250 um cavity
..... 300 um cavity
.......... 500 um cavity

-150

0 20 40 60 80 100
Injected Current (mA)

Figure 5.8  Calculated peak net mode gain curves of the LAMDA
structure for three different cavity lengths. The predicted threshold
currents are given by the intersections of the curves with the mode
gain = O line; the experimentally measured threshold currents are
shown for comparison. Setting the residual absorption coefficient to
the standard value ,=20 cm’ leads to an excellent match between

theory and experiment.

The total calculated overflow current, into unconfined well states and into the
barriers, is shown as a fraction of the injected current, for the same two cases, in
Figure 5.10. At 100 mA current, the overflow current in the 7 nm well reaches more
than 15% of the total, while that in the 10 nm well reaches about 3%. When six 10
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Figure 5.9  Unconfined electron concentration in the quar.um well,
n,n as a fraction of the total electron concentration n, as a function of
the total injected current, for two cases: a 7 nm quantum well (solid
line), and a 10 nm quantum well (dashed line).

nm quantum wells are considered (not shown), the calculated overflow curient drops
to less than 0.05% at 100 mA total current. Clearly, the width of the quantum wells,
and their number, have a dramatic influence on the impact of the current overflow
mechanisms. This is confirmed by considering the calculated conduction band quasi-
Fermi levels as a function of the injection current. In Figure 5.11, this is shown for
both a single 7 nm well and a single 10 nm well, with (solid lines) and without (dashed
lines) considering the carrier overflow mechanisms in the calculations. In both cases,
band-filling effects are evident only at high injection current levels, and t . i
markedly less important for the wider quantur: = .i. Again, when sz susatum wells
are used in the calculations, the carrier overfi-: mecnanisms are even less ins :ortant;
in this case, the resuvlting quasi-Fermi lev:? -+ :tions are negligible. This is a new
finding since the wmpact of carrier overflow cn quantum well gain has orly been

assessed ir ' :terature for the case of narrow, single quantum wells.
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Figure 5.10  Total calculated electron overflow as a fraction of the
total injected current for a 7 nm quantum well (solid line), and a 10 nm

quantum well (dashed line).

5.8 LAMDA ‘.::ric e Fabrication and Experimental Results The MBE-
grown LAMDA - e described above was photoresisi-patteined with 3 um lines

to define the waveguide ridges. Fol'owing reactive ion etching to a depth of 1.8 um,
wet etching using 95:5 H,0,:NH4OH completed the ridge definition by etching to the
etch-stop Jepth. In later samples, a second reactive ion etch v.as donc over a larger
area surcounding the rib, to a depth of = teast ¢ ;.ip to isolate the bottom quantum
well b:tween adjacent devices and hence ... vipniiance. Oxide and polyimide wers
deposited to planarize the etched wafer. Areas fo: the middle (n) and top (p) contacts
were patterned for removzi of the polyimice using reactive ion etching, and removal
of the oxide using wet e¢ichiag. Patterning, evaporation and lift-off of Ni/Ge/Au on
the n-level, and Ti/Pt/Au on the p-level, followed. Finally, the wafer was lapped to a
thickness of 100 um and Ti/Pi'Au evaporate:i onto the back (p) surface. The metal
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surfaces were rapidly thermally anncaled for 15 s in flowing Ho/N> at 415 C prior to
cleaving of the samipies at lengths of 250 um, 300 pm and 500 pm.

0.25 ‘
7 nm well §
3 |
2 0.20 ?
2 10 nm well ‘;
5 e |
—C_' i ) .- - ]
5 - 1
tw , i
3 .7 e i
7 Pt |
3 0.15 // T \
// /’/ i
/ |
/ |
/ |
/o i
010+ !~ . . ) ; !

0 20 40 60 80 100

injected Current (mA)

Figure S.11 Calculated conduction band quasi-Fermi levels, as a
function of the injection current for a single 7 nm well and a single 10
nm well, with (solid lincs) and without (dashed lines) considering the

carrier overflow meclianisms in the calculations.

The devices were tested as single-cavity laser/modulators, as modeled, using a
custom-designed pulsed-current driver for the laser. The devices were mounted on a
floating potential copper block. The middle (n) contacts of the devices were
grounded using a probe. A forward bias was supplied to the top contact from the
current-controlied driver, also using a probe, while a negative poter!ial was applied to
the copper block to reverse bias the lower, modulator diode. Unfortunately, the
devices were only operable in a very low duty cycle (<2.5%) pulsed mode, since
larger duty cycles lead to electrical destruction of the devices, even when the devices
were mounted on an actively-cooled heat sink. The reasons for this are unknown,
although we suspect that a large contact resistance existed at the middle (n) level
which may have Jead tce high and concentrated resistive heating at that location. This



suspicion is supported by the unusually high observed forward bias resistance of the
upper (gain) diode: ~80 € in most cases, and also by the very low device yield
(fraction of total devices which were operable) and poor appearance of the n-contacts
under scanning clectron microscope examination. With such a low duty cycle and
correspondingly low average optical power output from the device, the emission
wavelength could unfortunately not be measured. Furthermore, the modulation
bandwidth, with the laser emitting CW and the modulater quantum well driven under
reverse bias, also could not be evaluated.

Pcak optical power versus bias current characteristics were measured for all
cavity lengths. Threshold currents of 57, 60 and 81 mA were observed for cavity

lengthe "M, 300 and 500 um, respectively, in excellent agreement with the
theo- tions shown in Figure 5.8. Threshold modulation by applying a
reve " ¢ bottom quantum well was also demonstrated. In Figure 5.12, we
show .. or versus current characteristic of a 300 um-long device, with 0 V

(solid line) and -4 V (dashed line) applied to the modulator. A threshold current
increasc of about S mA, and a maximum optical power modulation of 6 dB, is
obtained. No farther threshicld increase is observed beyond -4 V bias. According io
the model, the observed medutlation corresponds to an absorption coefficient increase,
in the lowes guantum well, of only about 2400 cm-l. This is well below the expected
vajue of about 11000 cm™! at -1 V bias, indicating that gain-guiding effects may be
significant above threshold. The observed modulation of the threshold current with
reverse bias was independent of the laser duty cycle, which was varied between
0.025% and 2%. Also, the "leakage" current from the bottom (modulator) diode
unider -4 V bias was less than 10 A, through a 1 k€ resistor.

An attempt was made to measure the absorption spectra of the upper and
lower quanium wells in the devices, and thereby dJetermine their vuality and
characteristics by coinparing the observed exciton resonances with the theoretical
predictions. This was accomplished by focusing light from a tunable Ti:Sapphire laser
(see Figure 4.14) into the devices with the aid of an IR vidicon camera, and micasuring
the collected phetscuiient, a direct indication of the absorption magnitude. To
measure the absorption spectrum of the top quantum well stack, the light was focused
into the waveguide ridges and the current collected between the top and rniddle
contacts. For the bottora quantum well spectrum, the light was focused into the slat:
waveguide layer between broadiy-separated ridges, and
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Figure 5.12  Experimental power versus current curves for 300 pm
cavity LAMDA ridge laser with 0 V (solid line) and -4 V (dashed linc)
applied to the modulator. The threshcld cuirent is increased by about
5 mA with the applicat‘on of the bias, and about 6 dB of optical power

modulation is achic ..

the resulting photocurrent was collected between the middle and bottom contact
terminals. No bias was applied t. the bottom quantum well for these measurements.
The incident beam was chopped a :d the photocurrent measurements were made using
a lock-in amplifier. The polarization of the light could be controiled by rotating the
half-wan 3 plate. *Typical results of the measurements are shown in Figure 5.13; the
measured photocurrent for each curve is normalized to unit peak magnitude. The
solid curve shows the measured absorption characteristic for the top guanium well
stack. This curve is consistent with theory, which predicts, for 10 nm wells. exciton
absorption peaks at 851.2 nm (N=1 electron-heavy hole) and 8463 nm (N=1|
electron-lighi hole). The measured characteristics for the bottom, 8 nm quantum well
are poor anc¢ show high absorption at long wavelengths (>860 nm). The reason for
this is unclear. The TE-slarized scan shows evidence of an absorption peak at 843
nuy, in agreement the ;- ticted position of the N=1 electron-heavy hole cxciton
transition. This ‘eaturr disappears when the incident light is TM-polarized, also

consistent with theory. However, the general mismatch of the form of the observed
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absorption spectra for the 8 nm quantum well with the predicted spectra (see Figure

5.7) indicates that this quantum well may be of poor quality.

Legend
10 Top MQW, TE
R . Botlom QW, TE .
| Bottom QW, TM |
= |
3 0.8 i
& i \
€ ‘, )
g : !
5 05 ! :
(8] | v
L i \
o ; :
& !
0.4 i
| \
|
02 | ‘
i , i
0 . : : |
830 840 850 860 870

Wavelength (nm)

Figure 5.13  Measured absorption (photocurrent) spectra of the top
(solid line) quantum wells and bottom quantum well (dashed linc) and
TE-polarized light, and the bottom quantum well with TM-polarized
light (dotted line).

5.9 Modulation Bandwidth of Single-Cavity LLAMDA Laser/Modulator
Although CW operation of the fabricated LAMDA lasers could not be achicved, and
hence a bandwidth evaluation of the modulated lasers could not be carried out, we

can nevertheless examine the theoretical bandwidth limit of the single-cavity LAMDA
laser/medulator device. The frequency limitations of the singie-cavity configuration
are not immediate clear, since, while the electroabsorption mechanism itself is RC-
limited, this mechanism interacts with a large population of resonating photons of

finite mean lifetime. To gain some insight into the frequency response of the device,
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we therefore conduct a small signal analysis using the appropriate rate equations for

the carrier and photon populations {8]:

dn { n ¢ P
“n_ r =
dt  eVy 7 n Vow

sp cay

(5.44.a)

dP ) 1 ] c
—=4rg-Ta, —{I-T -I Joo. —=In|—|pr——P 5.44.
(11 { K;ﬁ ua ( £ u) ' / (R)}n ( ))

cav
where P is the number of photons in the lasing mode, i is the injected current
assuming overflow mechanisms are negligible, Vgy is the volume of the gain quantum
well(s), and 7y, is an effective spontancous emission-limited carrier lifetime. Other
paramelers are as previously defined. Note that no spontaneous emission rate term is
included in (5.44.b), since we assume that the spontaneous emission coupling to the
lasing mode is negligibly small. Let us now assume that all moc quantities vary
only slightly around equilibrium (static) values. If we denote thesc ..atic values by the

subscript o then we can write:

P=P +AP (5.45.a)
n=n,+An (5.45.b)
o, =o,,+Aa, (5.45.¢)
g=g,+ghn (5.45.d)
where:
0
= 5.46
8 on ( )

The parameter g’ is referred to as the differential gain. Substituting (5.45)
into (5.44), we obtain:

d(An ]
o) i n, M p G B p b, AP b G g te (547.0)
dt eVQW T.rp Trp ncav VQW ncav VQW ncav VQW
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d(AP)
di

R (] :
= {rwq“ +T ¢'Mn-T0,, —-T A0, —(|~ -1, ), 5 IHL }l o P

(1)) e
+{T g, ~T0 —(1—rg—lj,)a,—7m = f——"—AI’ (5.47.b)

4 d.0 '
’c’(l\'

where all products of differentials (A termg) have been neglected as a first-order
approximation. Equations (5.47.a&b) can be simplificd by first writing their steady-
state solutions, i.e. their solutions when the time derivatives and the A terims are equal

to zero. In this way we obtain the following:

n,=t,{—-T, g, F, (5.48.a)
eVQW M ng
. 1. (1
r,g, -1,0,, —(l—ﬂ. —F,,)oc, —7ln = =0 (5.48.h)

Substitution of (5.48) into (5.47) yields:

d A . )
( n)z—.é.,l-—rg < g, AP ~-T, Co g’An E, (5.49.a°
dt T, My ow Reav ow
d(AP :
Ld P)_ {r gan-Ta0,} % b (5.49.h)
1 n

Let us now assume harmonic solutions of equations (5.49), i.c. :
Ao, =0, (5.50.a)

AP = — Pe’™ (5.50.b)
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An = n,c"”’ (5.50.¢)

where we have assumed that the modulation of P is out of phase with the modulation
of o, The varisbles with subscripts / denote the magnitudes of the harmonic

functions. Using (5.50) we can rewrite (5.49) as follows:

., P : P
jon, = LI r Lo g, — T, “o g'n —* (5.51.a)
T.‘p n‘('m' ow nm\' oW
. [ , C,
—joB, =T, g'n, ~T,0, |~ P, (5.51.b)
n

cav

We want to examine the frequency dependence of the photon population

modulation, i.c.:

A]i_ = _13_ (5.52)
Ao, o

We do this by solving (5.51.a) for n; and substituting into (5.51.b). The result

I“a (;" R){jm + _1_ + I"g _Cg_ g' __BL}

) n n. V
L T (5.53)
(X'l 2 C , P . 1 C ’ P
-+ F 0 g g o Y4 ]0) — 4+ I“ 0 g o
8 0 8
cuy VQW Txp ncuv VQW j

This expression is quite similar to that obtained for a directly current-
modulated quantum weli laser with a fixed intra-cavity absorption, except that a term
to the first order in ® exists in the numerator. We can define a resonance or

relaxation oscillation frequency:
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which defines the approximate bandwidth of the device, sice the frequency response
rolls off at a rate of about -40 dB/decade above this frequency. Note that a Lirge
bandwidth requires a large intra-cavity absorption in the static state (i.c. reverse bias
on the modulator), since this leads to large values of g, and » . Furthermore,
bandwidth is enhanced by a large value of T, and g”, both of whict are promoted by

using a large number of gain quantum wells.

5.10 _Conclusions We have conceived, fabricated and test:d a monolithic

semiconductor structurc which can achieve laser and eleciroabsorption modulation
functions simultaneously at the same wavelength. This device was fabricated using a
single, uniform epitaxial growth and relatively simple post-growth processing. The
device is unique in that three contact terminals are provided, allowing for independent
biasing of the gain and modulation active regions of the p-i-n-i-p-doped device.
Computer models were developed and used to design the AlGaAs structure; we have
presented modeled results which are in good agreement with the experimental
cbservations of the laser threshold currents in cleaved devices of varying lengths.
Threshold modulation by varying the reverse bias applied to the bottom quantum well
stack was demonstrated; about 6 dB of intensity modulation, at -4 V bias, was
achieved. A discussion of the frequency characteristics of the single-cavity
laser/modulator device was also presented. The work of this chapter demonstrates
that multi-functional monolithic integration of optoelectronic circuits can be achicved
without resorting to extraordinary fabrication methods, such as patterned cpitaxy and
regrowth.

A number of improvements to the design of the structure are possiblc. The
laser threshold currents could be reduced by redesigning the heterostructure profile to
achieve a higher mode confinement in the 10 nm quantum wells, and by making the
lower quantum well narrower (e.g. 7 nm) to reduce residual intra-cavity losses at zero
bias. The latter measure might permit the incorporation of more than one quantum
well in the modulator, which should improve the quality of the wells due to the
smoothing effect of growing thin heterostructure layers. We might also improve the
quality of the middle contact electrode by ramping the doping to a high value just
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heijore the AlAs etch siop layer, a=d by using the lowest possible Al content in the
wavegurde layer. Thes : imcasures might lead to Jower resistive heating at the contact
and make CW laser operation possible. If such operation could be achieved, high-
frequency modulation of sirgle-cavity devices, and segmented multi-functional

integrated photonic circuits, might be demonstrated.



Chapter 6

Spontanevus Emission Coupling to Radiation and Guided Modes of Planar

Waveguide Structures

The calculation of spontancous emission rates is important for many purposes.
For example, the principlc of waveguide capture of spontancous emission is important
for certain sensor applications [96]-[101]. Noise in erbium-doped fiber amplifiers is
generated by captured spontaneous emission which is subscquently amyplified {102,
Further, the dynamic behaviour and the spectral characteristics of semiconductor
lasers depend on the total rate of spontaneous emission, and more particutarly on the
fraction of spontanecusly emitted photons which arc coupled into the lasing mode
(the so-called spontaneous emission factor) [1031,{104].

The rate of spontaneous emission from an atomic dipole in & homogencous
dielectric medium is well known [8]. Since the rate is proportional to n'/e =n/e,
inhomogeneities in refractive index, n, affect the spontaneous emission rite locally. In
particular, the existence of guided modes complicates the calculation of spontancous
emission rates, since they must be treated in a mathematically different fashion than
radiation modes, which extend throughout space. This issuc was encountered in
Chapter 5 when we derived expressions for optical gain and the spontancous emission
rate in quantum well lasers. In that case, we simplified the theoretical treatment by
calculating these parameters in a uniform dielectric cavity. In practice, the rates of
absorption, and spontaneous and stimulated emission, are affected by the presence of
a waveguide, particularly with respect to guided modes which arc profoundly
different in form than radiation modes, as discussed in Chapter 2.

There have been theoretical treatments of such problems using approximate
quantum mechanical [105],{106] or semi-classica! approaches [107],[108] which
may, in fact, be adequate for :nany applications. However, many of these models
seem:  pedagogically unsatisfying since they do not clearly differentiatc the
contributions of the bound and radiating mode fields to spontanecous emission. Other
studies tend to focus on Fabry-Perot structures with high reflectivity mirrors, where
the primary focus is on the pattern of radiated power, while the consideration of
guided modes, if they exist, is secondary [109]-[112]. A recent paper [113]
demonstrated that the spontancous emission characteristics of compound planar
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structures with guided modes may be treated by adding a high index substrate to the
structure, converling bound modes into leaky modes which may then be handled
uniformly with the true radiation modes of the structure  In [113], the radiated power
was again the primary concern, but the effects of the guided mode fields were
conveniently and accurately included.  However, applications wherein the guided
modes themselves are of primary concern may be better served by a differcnt
approach.

In this chapter, we present a theoretical consideration of spontaneous emission
in the vicinity of a symmetric slab waveguide. Quantum mechanical expressions for
the spontancous emission rate are derived and solved by direct substitution of explicit
functions for the complete set of bound and radiating modes. In this way, the
contributions of the guided and radiating field components to spontaneous emission
are clearly differentiated and separately accessible, in a more direct way, albeit for a
simpler case, than the method presented in [113]. Extension of the treatmert to more
complicated structures is discussed in the chapter conclusions. We apply the present
results to an analysis of spontaneous emission coupling to the guided modes of a
planar erbium-doped amplifier, a subject of considerable current interest [114].
Spontancous emission factors (the fraction of the total emission coupled to specific
guided modes) are calculated for the cases of erbium-doping of the guide and of the
cladding. Tt is shown that when guided mode optical pumping of the erbium is used,
high spontaneous emission coupling to the guided signal modes is obtained when the
guide layer is doped, and that the coupling 1o TM modes is greater than that to TE
modes when the atomic dipcles are assumed randomly oriented. Negligible
spontancous emission factors are obtained when the cladding layers are erbium-
doped.

The work of this chapter is presented in [115].

6.1 Theoretical Formulation = We begin by finding the correct expression for the

quantized electric field in a cubic dielectric box of side L and index ny (Figure 6.1)
which has a slab of thickness a and refractive index n, placed in the center

perpendicular to £. We shall eventually take the limit L - c. Following Yariv [8],
the orthogonal function expansion of the field has the form:
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where £, (x)explT j(Bly+Pio)l is ore of a complete set of modes of the slab
waveguide structurc found by solving Maxwell's equations with the appropriate
boundary conditiors. Evanescent modes are excluded by the arguments of section
2.8. The exponential functions reflect the fact thiat mode ficlds con propagate in
arbitrary directions in the v-z plane, and the 1/L factors normalize these functions,

Periodic boundary ccnditions are assumed te apply:

,  21n . 2mm
= I R (6.2)
L I

where n and m are integers. In the limit of large L, B}, and B, become continuous.
The factors a;, and a,,, are interpreted as creation and annihilation operators, the
phase factor —j follows from a phaseless mode vector potential, and the cocfficients
N, are obtained by correct normalization of the mode encrgy as follows.

The energy of mrde nmk is given classically by:

2 — 2
+y|d,, dv (6.3)

Enmk

Enmk

G v =L

where we nave used:

R e || M (64

which is generally true for harmonic solutions of Maxwell's equations. In our case, it
can be shown that due to the periodicity conditions (6.2) and the commutation
relation:

[ak,a,:'] =aaf —aja, =1, (6.5)
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where p,,. is the photon number operator. Now, (6.6) must equal the quantized
energy of the mode, ho,,, (1/2+ p,,.). where ho,,, /2 is the zero-point encrgy and

o, is the radial frequency of the mode.

knm

>

<>

Figure 6.1  The symmetric slab dielectric waveguide. A guide layer
of refractive index n; and thickness a is clad by material of index nj;

x =0 at the centre of the guide layer. Spontaneous emission rates are

examined in the limit as L — oo.

Therefore, the normalization constants are given by:

) ho,,.

Ni= O

2 Ljne(x)lﬁk ) dx 2, Lfnz(x)|F‘k (0)| dx

-L2 =L/

(6.7)
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In the Appendix we have listed the appropriate functions /. derived for
guided and radiating TE and TM  modes, together with  their appropriate
normalization expressions obtained by evaluating (60.7) in the limitas Lo - oo,

The rate of transition of a system from state

2.p,> to state |Lp, + l>, where

2.1 denote the initial and final states of an emitting atom, and p, denotes the number

of photons, p, in the /th optical n.ode, is given by the Golden Rule:

W, = 2%‘(1 p,+1|H]2, p,>rf>(132 - E, - hw,) (6.8)
1

taken in the limit of purely harmonic emission (8 is the Dirac delta), an acceptible
approximation for narrow-linewidth atomic emitters. F; and [ are the final and
initial atomic eigenenergies, and H/ is the perturbation Hamiltonian causing tie

transition. In the dipole approximation:
H{=—ekE,oF (6.9)

where E, is the time-independent electric field of the Ith optical mode, and 7 is the

position operator. Using (6.1), the transition ratc (6.8) becomes in our casc:

2TC€ZN? + P — 2 N s
vv[ - vvknm = _rllj-u_k— <l’pknm + l‘aknm Pk (X) .r\z’ pAnm> 8(112 - [il _h(l)knm)
21’ NZ /| & _ia\P S - E
=T (1%, (x)or|2>‘ (P +DO(E, — E, - hw,,,,) (6.10)
where we have used:
<pknm+1a:nmipknm>= \)pknm+] (6'11)

From (6.10) we obtain the spontaneous emission rate:
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}

= Zt(’"";”"'|<]'l" (.\')o,.‘2>’ ol - L, —hw, ) (6.12)
hi ‘
by dropping the term proportional to py,,, which describes stimulated emission.
From now on, we use Wy, equal to (6.12) and understand that 1t refers to
spontancous emission only.
Equations (6.7) and (8) define the ratc of spontancous emission into the knmth
optical mode; the total rate is obtained by summing over all possible modes. The total

rate of spontanco s emission into radiation modes is given by:

rad —

W= SW,.; (6.13)

knm,,,

and the {otal emission rate into bound modes is:

M/buuml = Z‘lvlmm (6'14)

knsyuna
The total rate of spontaneous emission is then:

W= ‘/Vrud + ‘lVbOlUI(] (615)

We first derive W,

ra

4- Using (6.12), (A.3) and:

I
O(E, —E,—hwkm)=?8(m”—mkm) (6.16)
1
where:
E, —
W, = —2—r—§’— (6.17)
1

(6.13) becomes:
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where P=TE (even), TE (odd), TM (even) and TM (odd), and we have simply
rewritten ©,,, — ®. The » and m components of the sum are replaced by 3 and ¢

(Figure 2.a), while the k component is replaced by @, defined as:

Q' =2—-p° (6.19)

In accordance with our new sum parameters we  have  rewrilten
F (x) = F;(0,0,8,x). Now, considering 0<@<2m and 20, we obtain by the

standard limiting procedure for large L:

O 2
Iyyy j [ Bupdea (6.20)
L Qu ¢ B T 0=09-0§=0
where:
Omax =m0/ ¢, 16.21)

is the limiting value of Q for radiating modes. Performing a coordinate
transformation using (6.19), and neglecting material dispersion, we can rewrite (6.20)
as:

QOma 21

ZI;ZZ j [  adodedo (6.22)

Qrs @ Co Q=0 ¢=0w= Q( /ny
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Therefore, (6.18) becomes:

_ e"'wf'_Z(T TKIIF,. (0,.0.5)0#2)| dod0 (6-23)

rad 2., 2
an’e e, T g ano

where now Q.. =n,w, / ¢,, and we have taken Fo(0,0,8,x)— F,(®,,0Q,x) since

fixing w = o, mzkes B a function of Q only.

~<>

Figure 6.2.a Coordinate representation of general mode wave
vector k. .b  Coordinate representation of atomic dipole moment

r.

The field-dipole matrix element:

(175 (0,000 72) (6:24)
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depends on the mode polarization (hence the subseript Py and on the atomic dipole
magnitude and orientation. The atomic dipole may have any oricntation; sce Figure
6.2.b. We write:

Fo(,.0.x,) % (6.25)

(17, (@,.0.x) A2y =n
where:
. EK‘IFP)IZ (6.26)

and x, is the atomic position: the field magnitude is aprroximately constant over the

dimensions of an atom. We may then rewrite (6.23) as:

Omu 21
rlz

47‘: 8 hCz 2 J. J.l ((Dn’Qv'xu).;:rd(de (().ZL/)

o P (=0¢=0

rud

The integral over Q must be computed numerically, whereas that over ¢ can
be analytically evaluated for a given P and 7. For example, for TE modes where 7
is arbitrarily oriented (say 7 = y) in the y —Z plane:

cos” odo = F; ((D,.»Q»*}.)n

p TE ((D(,aQ x ).r d(‘p 0

I’TI'

¢=0

(6.28)

Horizontal (§—Z plane) dipoles can couple to both TE and TM modes, as
both have electric field components in the plane, whereas vertical dipoles (parallel to
%) can couple only to TM modes. Both components of F must be considered in
evaluating (6.27) for the cases P=TM (even) and TM (odd). For example, for TM
modes and vertical dipoles, (6.27) becomes:
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rud

_‘_‘lﬁi_ P (0,,Q,x,) %) dpdQ
an’e e’ ™., qu.pj‘l ’ )1

O 21

elo’r 2
=t S [ [FN,.0.5,M0dQ
4n’e hel P=TM,, 0-0¢=0

2,.2.2

_Lon y j (F2(0,,0,%, 40 (6:29)

21, et 5 “,m 00

where F, is the X -component of F 7M., m (A.l.c,d).
We evaluate the emission rate for bound modes using equations (6.12) and

(6.14):

(1%, (x)-r|2>| E,-E,-ho,,) (6.30)

2
vvhmmrl fl Lz z N

knmy,,,ng

Using (6.16) and (6.17), we can rewrite (6.30) as:

2 5 555 (o, KB)(IF (@, k.. 72)f 30, ~0)63D)

bound = 2
he 5
P K ¢ B

where again we have rewritten ®,, —®. The new lateral propagation constant

parameter, K, is given by:

k=10 _p? (6.32)

Round modes exist for certain discrete values of K in the range 0< K <gq,

where:
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g =K -0Q'= (n,2 —113:)(1)"/(': (6.33)

The allowed values of K are the solutions of equations (A.5), and the
normalization constants of the bound modes, N;’,((o,K B). are given by cquations

(A.6). Taking the limit of large L, we can write:
2n oo 21 o
1 1 I
=33 o | [Bdpdo=— | | [%}w@ (6.34)
¢ B = '

where vf is the group velocity of mode X. Therefore, from (6.31) and using our

previous arguments regarding the field-dipole matrix element, we finally obtain:

2.2 2n )
=ty ZN;(m,,,K)[%} “F,;((D,,,K,xu)or:rd(p (6.35)
K 1%

bound ™ 21th2 1,]__,.4 Ml
where we have taken N2(0,K,B)— N(w,,K) and F,(w,K,B.x) = F,(0,,K,x).

It can be shown that, in the absence of material dispersion, the factor B/ vf is given

by:

B

0
UK =—7”"{rkn12 +(1"FK)"§} (6.36)
8

(¢}

where T’ is the mode power cominement in the core layer, given by (A.7) in the

Appendix. Note that:
B/vi =nio,/c; (6.37)

is a good approximation except for modes close to cut-off. The integration over ¢

may again be performed analytically for each P and 7.
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Equations (6.15), (6.27) and (6.35) together vyield the total rate of
spontancous emission from a dipole emitter located at an aibitrary position relative to
the waveguide. Furthermore, the emission rates into radiating and guided modes are
given scparately by (6.27) and (6.35). The rate of emission into any particular guided

mode is directly calculable using (6.35) for a single choice of P and K.

6.2 Example Calculations In Figures 6.3-6.8 we show calculated spontaneous

cmission rates for various slab waveguides as a function of the X-position of the
emitting atom. In all cases, the guide refractive index n;=1.50, and the transition
wavelength A,=2mc,/0,=1.55 pm. The spontaneous emission rates are normalized
with respect to the total rate expected in a homogeneous medium of refractive index
n,, given by equation (8.3-9) in [8].

In Figure 6.3, we show the total spontaneous emission rate, obtained by
numerical solution of equations (6.15), (6.27), (6.35) and (6.36), using (A.1)-(A.7),
for ny)=1.47 and a =2 pm. This waveguide supports one bound TE mode and one
beund TM mode. The x-axis in the plot is the position of the radiating atom in
multiples of a, so that the guide/cladding bcundary is located at 0.5. The solid line
shows the emission rate for horizontal atomic dipoles, the dashed line shows that for
vertical dipoles, while the dotted line depicts the rate for randomly-oriented dipoles.
For atoms located far into the cladding, the normalized emission rates approach one,
as expected since these atoms are essentially unaffected by the distant index variation.
The rates in the guide are higher than those in the cladding by roughly a factor of
n/ny; this is also expected since the emission rate in a homogeneous medium is linear
with respect to index of refraction. Note, however, the marked difference in the
emission rate characteristics for horizontal and vertical dipoles in the region of the
guide/cladding interface. For horizontal dipoles, the emission rate is a continuous
function of position, while that for vertical dipoles is discontinuous at the index
interface. This, of course, is due to the fact that the horizontal dipoles couple to
mode electric fields which lie in the waveguide plane and which are therefore
continuous with respect to x, while the vertical dipoles couple to the x-components
of the TM mode electric fields, which are discontinuous at the index step. The
discontinuity in the emission rate of vertical dipoles dominates the characteristic for
randomly-oriented dipoles, leading to the result that the rate of spontaneous emission
is highest for atoms located immediately outside the waveguide core, and lowest for
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atoms itnmediately inside the guide/cladding boundary. In fact, the rate of cmission

there is actually lower than that deep in the cladding.

1.06
! - Horizontal Dipoles ' |
Vooiemeee Vertical Dipoles |
1.04 Voo Random Dipoles '

1.02

1.00

0.98

Total Spontaneous Emission Rate

0.96 i ' ' '

Figure 6.3 Total spontaneous emission rates as a function of -
position of emitting atom (/a) for a symmetric slab waveguide with
n,=1.50, n,=1.47, a=2 pm, normalized with respect to the rate of
emission in a homogeneous medium of index n,. The wavcguide
centre is at x=0; therefore the guide/cladding interface is located at
0.5. The emission wavelength is 1.55 um, and the structure is
monomode. Solid line: emission rate from horizontal dipoles; dashed
line: emission rate from vertical dipoles; dotted line: emission rate from

randomly-oriented dipoles.

This behaviour persists as we increase the width of the guide layer; see Figure
6.4. Here, we show the total spontaneous emission rate from randomly-oriented
dipoles for guide widths of a=2 pm (one TE, TM mode), 6 pm (three TE, T™™
modes) and 24 um (ten TE, TM modes); again, n,=1.47. As the waveguide becomes
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wider, the total emission rate at the center of the guide more closcly approaches that

expected for a homogencous region of index ny, and the range of emission rate

oscillations decreases.
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Figure 6.4 Total emission rates from randomly-oriented dipoles for
n,=1.50 and n,=1.47; a=2 pum (solid line, one TE and TM mode); a=6

um (dashed line, three modes); a=24 pm (dotted line, ten modes).

In Figures 6.5 and 6.6, we show the rates of emissicn into the bound and
radiating modes, respectively, of a 2 pm-wide guide where npy=1.47. The
discontinuity in the E, field of the TM mode is apparent in the rate curve for vertical
dipoles. Note that the rate of emission into bound modes for vertical dipoles is higher
than that for horizontal dipoles, as expected from classical theory.

In Figure 6.7 we show the total spontaneous emission rate from randomly-
oriented dipoles for a guide width of 2 pm, where the cladding index is set to
n,=1.47 (solid line, one TE and TE mode), n,=1.40 (dashed line, two TE and TM
modes) and n,=1.30 (dotted line, two TE and TM modes). As the cladding index is

reduced, the normalized emission rate in the guide increases (since the rate in the
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Figure 6.5 Rates of spontaneous emission into bound modes for
n,=1.50 and n,=1.47; a=2 wm; horizontal dipoles (solid line); vertical

dipoles (dashed line); randomly-oriented dipoles (dotted line).

cladding is reduced), and the magnitude of the swing in emission rate about the index
interface increases. The rate of emission into bound modes from randomly-oriented
dipoles for the same cases is shown in Figure 6.8. As the cladding index is reduced,
and the numerical aperture of the waveguide is increased, a greater proportion of the
emitted photons are coupled into the bound modes, as we would expect. Note,
however, that as the guide/cladding index difference rises, the probability of bound
mode emission capture from atoms immediately outside the waveguide increases with

respect to that from atoms just inside the interface.

6.3 _Calculation of Spontaneous Emission Capture by Guided Modes in Planar
Rare Earth-Doped Waveguides Integrated waveguides doped with rare carths,
especially erbium, are of great current interest for application as optical amplifiers and
lasers. These devices use the guided modes at a pump wavelength to excite imbedded
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Rates of spontaneous emission into radiating modes for

n,=1.50 and n,=1.47; a=2 pum; horizontal dipoles (solid line); vertical

dipoles (dashed line); randomly-oriented dipoles (dotted line).

rare carth ions, which then contribute, via stimulated emission, to enhancement of
the guided mode at a longer, signal wavelength. The spontaneous emission factor -

defined as the spontaneously-emitied power coupled into guided modes, or a

particular guided mode, as a fraction of the total spontaneous emission power - is an

important performance parameter of such devices, since amplifier linear gain (i.e. in

the low input signal power regime) is reduced with increasing spontaneous emission
factor, due to the effect of amplified spontaneous emission (ASE) [116]. The
spontaneous emission factor, which we label @, is given by:

jV/MOI(x)C(x)dx
(6.38)

o=-"2
J{mad(x) + Wbound(x)}‘:(x)dx
0
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Figure 6.7  Total rates of spontaneous emission for n,=1.50 and
a=2 um; n,=1.47 (solid line, one TE and TM mode); n,=1.40 (dashed
line, two modes); n,=1.30 (dotted line, two modes).

where W,z and Wy,,,q4 are given by equations (6.27) and (6.35), respectively,
averaged over the orthogonal dipole orientations. The subscript MO in the
numerator stands for mode(s) of interest, and W) is given by evaluation of (6.35)
for a specific bound mode or modes, again averaged with respect to dipole
orientation. The function {(x) is a distribution function for dipole emitters. In
semiconductor lasers and amplifiers, a function equivalent to {{x) is derived from
the distribution of injected carriers; here, the rare-earth doping profile and the guided
modes at the pump wavelength together determine {(x). In what follows, we
consider the common case of Er3*, pumped at 980 nm wavelength, for emission at
(approximately) 1550 nm. Two different doping situations are examined: uniform
doping of the guide (core), and uniform doping of the cladding. The distribution

function §(x) is taken as:
1
(=2 2|, (0f (6.39)

even
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where the sumrnation is over the even modes (TE and TM) of the pump light: N,
is the number of such modes, W (x) are the intensity-normalized purnp mode profiles,

and (x) is a function representing the erbium doping profile, ¢.g.:

x(x)=1 |x|Sa/2, 0 |x|>a/2 (6.40)

for the case of doping in the core.

Spontaneous Emission Rate, Bound Modes

Figure 6.8 Rates of spontaneous emission into bound modes for
n,=1.50 and a=2 um; n,=1.47 (solid line, one TE and TM mode);
n,=1.40 (dashed line, two modes); n,=1.30 (dotted line, two modes).

Uniform weighting of the even pump modes approximates the situation of a
narrow pump source centered on the guide. Note that if both the guide and the

cladding were doped, i.e.:

x(x)=1, 0<|q<oo (6.41)
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we would then have:

fedr=1 (6.42)

In Figures 6.9-6.12, we consider a case where the cladding index ny=1.40 and
the guide width @ =3 pm; the guide index n; is varied from 1.42 to 1.52. To reduce
the number of features in the plots and make the effects of the appearance of new
modes, at both 0.98 um and 1.55 pm, with increasing n; more clear, we average the
cut-off point of TE and TM modes so that they appear simultaneously. We first
consider the conventionai case where the core layer is erbium-doped. In Figure 6.9,
we calculate the spontaneous emission factor where the modes of interest for the two
cases shown are, respectively, the TE and TM fundamental modes at 1.55 pm
wavelength. The spontaneous emission factor is higher for the TM mode than for the
TE mode, by a factor of almost exactly two in all cases. This is an artifact of
choosing randomly-oriented atomic dipoles, since vertical dipoles, which couple only
to TM fields, emit radiation which is more efficiently captured by the bound modes.
A similar effect on stimulated emission and gain is indicated according to cquation
(6.10). In planar amplifier geometries, such polarization-dependent gain has been
seen experimentally [117]; the magnitude of the observed gain dependence (up to 0.8
dB) is more than can be readily explained by the difference in confinement factors
between TE and TM modes. This polarization effect is not observed in fibers as both
quasi-polarizations have two electric field components. We note that o is roughly
constant with respect to guide index; more precisely, o for the fundamental mode
increases with guide index, but decreases suddenly at certain points as the number of
bound modes increases. The large drop at n;=1.438 corresponds to the appearance
of a second even mode at 980 nm. Since two pump modes are now available, the
erbium in the guide is more uniformly excited, and since two 1.55 pm modes are
already sustained at this point, spontaneous emission coupling to the first order mode
increases at the expense of coupling to the fundamental mode. Ths is confirmed in
Figure 6.10, where now the "modes of interest” defining the spontaneous emission
factor include all of the guided modes. A much smaller drop is observed here,
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Figure 6.9 Spontancous cmission factors for TE and TM
fundamental 1.55 um modes of an erbium-doped planar amplifier
pumped with 0.98 pm guided light, as a function of guide index. The
guide is 3 um wide and the cladding index 5,=1.40. The core layer is

erbium-doped.

indicating that coupling to the first order mode at 1.55 um has, in fact, increased.
Going back to Figure 6.9, the smaller drop at n;=1.493 corresponds to the onset of a
second order mode at 1.55 um. This is seen in Figure 6.10 as a large increase in O,
when all the guided modes are considered. In general, total captured spontaneous
crnission increases whenever new guided modes appear at 1.55 um; the slight
increases in the characteristics in Figure 6.10 at n;=1.424 correspond to the
appearance of the first order mode at 1.55 pm.

When the erbium is in the cladding rather than the core, the situation changes
dramatically. In Figures 6.11 and 6.12 we show the TE and TM spontaneous
emission factors, defined for the fundamental modes in Figure 6.11, and for all of the
guided modes in Figure 6.12. The values of o are now greatly reduced; this is
attributable to the reduced magnitude of the guided modes in the cladding, and the
increased coupling to radiation modes. In Figure 6.11 we see that a for the



192

0.35

©
8 —TE
o 030 77 ™
Q .
2 -
2 .
© 025
g ’
0 .
-D .
@] .
s 020 ;
T ieeaameaena-
e L ameme=="T
o et
3 015 7
£ -
w010
0.05 - | |
.42 1.44 1.46 1.48 1.50 1,52

Guide Refractive Index

Figure 6.10  Spontancous emission factors versus guide index for all
guided TE and TM modes; the guide is 3 pm wide and the cladding
index n,=1.40. The core is erbiumn-doped.

fundamental modes are monotonically decreasing with increasing guide index, and are
less than 0.1% in all cases. In Figure 6.12, we note that a similar characteristic is
obtained with the appearance of every new modc at 1.55 pum, and that the resulting
pcak in o increases in magnitude with every new mode. This is attributable to the
greater penetration into the cladding of the higher order modes. Thus, when the
cladding is doped, significant spontaneous emission coupling to the guided modes
occurs only near the cut-off of a high-order mode, while no significant coupling to the
fundamental modes occurs at all. It is interesting that the ratio of o for TM modes
versus that for TE is now greater than two, due to the discontinuous increase in the
TM fields at the guide-cladding interface. It is also interesting that no effects due to
the onset of new 980 nm modes are apparent in Figures 6.11 and 6.12; this implics
that when these modes appear they contribute equal relative increases in spontancous

emission into the bounid modes and into the radiation modes, since:
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[, 080 dx>> [ W (1)G (01l (6.43)
{] 1]

when the cladding is doped. Note that while the spontancous emission coupling to
hound modes is greatly reduced when the cladding is doped, rather than the core, the
gain in the fundamental modes is concomitantly degraded due to the reduced overlap
of the signal and pump modes with the doped region. Therefore, the reduced gain

versus pump power efficiency effectively prohibits this configuration for effective

amplifier operation.
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Figure 6.11 Spontaneous emission factors of fundamental modes
versus gu‘de index when the cladding is erbium-doped; the guide is 3
pm wide and the cladding index n,=1.40.
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Figure 6.12 Spontaneous emission factors of all guided modes
versus guide index when the cladding is erbium-doped; the guide is 3
um wide and the cladding index n,=1.40.

6.4 Conclusions In this chapter, we have presented an analysis of spontancous
emission in the vicinity of a symmetric slab waveguide. The analysis uses explicit
functions for the complete set of bound and radiating TE and TM modes, and hence
the rate of emission into specific modes from an arbitrarily-located emitter is casily
found. We have used the model to calculate spontaneous emission factors in an
optical-guided-wave-pumped planar erbium-doped waveguide; the planar gecometry is
sufficient to approximate the behaviour of at least weakly-guiding three-dimensional
structurcs. We found that when the guide layer is uniformly doped, significant
coupling !+ the bound modes exists, and the spontancous emission factor for the
fundamental modes is relatively constant as a function of nj/n;, although the
spontaneous emission factor is higher for TM modes than for TE when randomly-
oriented atomic dipoles are assumed. When the cladding layers arc doped, significant

coupling to bound modes exists only for values of n;/n; near the cut-off condition of
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high-order modes, and no significant coupling to the fundamental modes can be
obtained.

Our model may be extended to more complicated, multi-layer planar devices
by using a numerical method to find the guided and radiating modes; a transfer matrix
approach is suitable [118]. Equation (6.27) for the radiation modes remains valid
since these modes are always identically normalized, though n, in (6.19) and (A.3)
must be replaced with the index of the semi-infinite cap and substrate layers (if these
differ, then (6.27) must of course be decomposed to deal separately with the substrate
modes and the true radiation modes.) Likewise, equation (6.35) for the bound modes
remains valid if (6.36) is properly modified. The normalization of the bound modes
would have to be done numerically, but this would not present a probiem since these
modes are of finite spatial extent. Such a model would be similar in many ways to
that presented in [113], except that the rate of emission into guided modes would be
more readily calculable. This could be of some use in examining novel devices such

as reported in [119].
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Chapter 7

The work of this thesis has been concerned with two aspects of photonic
integrated circuits: compactness, and multi-functionality. Compactness will be an
important concern in the future as increasingly complex circuit implementation is
attempted and higher device densities are required. Deeply-ctched rib waveguides
will probably be required to realize such complex circuits, since they can be sharply
bent without suffering radiation losses and hence are uniquely suited to space-efficient
optical distribution. We have considered the implementation of multi-mode couplers
in such waveguides. Multi-mode couplers are an important component of many
integrated guided-wave devices, such as the Mach-Zehnder switch designed and
fabricated in this work. We showed that extremely compact (<100 pm) high-
performance couplers can be realized by a proper optimization of the access
waveguide geometry and the coupler width. A Mach-Zehnder switch in InP which
used such small multi-mode couplers demonstrated high contrast and low on-chip
insertion loss, and was of a record small size. We also showed that bending a multi-
mode waveguide can influence the guided mode propagation characteristics in a
useful way, and that the radius of a circular bend can therefore be used as a new
design parameter for some structures. We used this concept to design and fabiicate a
multi-mode coupler for (de)multiplexing 850 nm and 1550 nm light. Impressive
performance was achieved using a very small device (<150 pum). This is the first
device yet reported which uses a circularly bent multi-mode waveguide to uscful
advantage.

Multi-functionality is another important aspect of futurc monolithically
integrated photonic circuits. We have designed the first semiconductor structure
which is capable of laser/modulator/detector/amplifier functions, such that the local
functionality is flexible and determined only by electrical biasing, and which does not
require semiconductor regrowth or patterned epitaxy. Though other authors have
reported integrated devices with superior performance, we have nevertheless
demonstrated that only a minimum of extraordinary fabrication measures need be
employed to realize monolithic optoelectronic multi-functicnality.

Finally, we have performed a theoretical evaluation of spontancous cmission
processes in the vicinity of a symmetric slab waveguide. This work demonstrates the
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inherent polarization-sensitivity of emission processes in non-uniform diclectric spaces
lacking radial symmetry, and provides a starting point for rigorous investigations of
gain and spontaneous emission in intcgrated, semi-planar rare-earth doped waveguide
geomeltrics.

Optoelectronic integrated circuits are only now reaching the stage of viable
commercial implementation, and so far have been largely restricted to optical
transmitter and receiver modules. As telecommunications networks migrate toward
the SONET standard, and as optical fiber links continue to proliferate down to lower
levels of the networks, new integrated optoelectronic circuit components will begin to
be deployed. The most important such class of circuits in the forseeable future will be
optical time division and wavelength division multiplexing componeats, which will
require the hybrid and/or monolithic integration of a wide variety of active and
passive devices. Semiconductor lasers, of which quantum well lasers are now the
most important class, have reached a relatively mature state, as have modulators and
detectors, although methods of integrating these two classes of devices on one
semiconductor substrate are being actively investigated. One particularly important
research effort in the field of active devices is the search for polarization-insensitive
operation. Strained quantum wells have emerged as the leading candidate for high-
performance polarization insensitive modulators and detectors [120], although other
interesting means of fabricating polarization-insensitive quantum wells have been
suggested [121].

Ironically, passive optical components, the backbone of all integrated photonic
systems, have recently been the center of renewed focus. Multi-mode waveguide
couplers have been truly understood only in the last few years, and this understanding
has lrad not only to record small size and high-performance components, but also to
new device concepts, such as single-stage NXN Mach-Zehnder switches. Integrated
components for both coarse and fine wavelength division multiplexing components
are of increasing interest, and research to this end has examined a wide variety of
device types, including multi-mode and diffractive elements [122]. Material systems
for useful passive component fabrication, and cost-effective means of waveguide
circuit fabrication, are also the subjects of considerable research. Organic and
polymer materials for direct waveguide writing are being explored in many
laboratories [123]. Some such materials also hold the promise of thermal or electro-
optic modulation capabilities. These efforts are sure to receive increased attention as
the demand for integrated photonic components in telecommunications networks

rises.
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Appendix

Here we state the cexpressions for the mode fields of the symmetric slab
waveguide, and the correspending normalization constants.  We must consider TE
and TM bound and radiating modes. The parameter g is given by (6.33).

The radiation modes are described by:

2 2 <
F;((x)—)ﬁ((x),Q,x)z{ Acos[‘\/q—'*'Q_x] - O0<x<al?2

y (A.1.a)
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for even TM modes, and:
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for odd TM modes. In (A.}), a is the full width of the guide (1) layer; definitions arc
given only for x 20 since the slab waveguide is symmetric. The paramcters A and &

are obtained by satisfying the continuity conditions at the index interfaces:
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(A.2.0)

(A.2.d)

(A.2.e)

in (A.2.c) and (A.2.d). The normalization constant for radiating modes is obtained as:

ho

N2 5 N ()= A3
: (®) 2)1%80L (a.3)
The bound mode functions are given by:
£ Fo.K.x) = cos Kx R 0<x<al2
e FOKD =3 (Ka12)expl-g — K (x-alD] x>al?2
(A.4.a2)
for even TE modes;
7 (x) = F(o.K.x) sin Kx . 0<x<al2
= rw,R,x)=4 .
P (x x sin(Ka /2)exp[—+/q* —K*(x—a/2)] Y x2al?2

(A4.b)



for odd TE modes;

F, (x) = F(®,K,x)

n’w?
_la?__KZ X
11,2 cos(Kx)x+ j;;z—Sln(K.l‘): 0<v<al?
= (A.d.0)
cos(Ka/2)| [n’w? .. ol K x2al?2
. { 162 "K2X+j,([2—KZZ("/’A( I
for even TM modes, and:
F, (x) > F(0,K,x)
ﬂz,mi_KZ
G . . K .
".2 sm(Kx)x—jEcos(Kx)z 0<x<al?
= (A4.d)

i / ’ 20? —. | ikt >al?
bln(Kza 2){ nl(;) —K2£+j\/—q_2 _KZZ}e Jq ~K*(x~al2) Xz2d
flz c,

for odd TM modes. In (A.4); K must satisfy the equations:

+ tan
K t(1<a 12) =+lq* - K* (A.5.a)
- CO

for TE modes, and:

+ tan
K_ (Kal2) =(n, /n,)*\Jq* - K (A.5.b)
- C
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for TM modes, where +tan is used for even modes, and —cot is used for odd modes.

For the bound modes, normalization yields:

ho/e,
”;2{ sin Ka}_{__?ﬁfg)s_z(lfa/b_

a+ -7 o FEven

N} - N*(0,K) = (A.6.a)
ho/e,

2! sin Ka} 2n’sin’(Ka/2) 0Odd
a-— +
qu _ K2

for TE modes, and:

Nl = N*(0,K)

ho/e,
2,.2
2| 22 _2k? |cos*(Ka /2)
0)2{ sin Ka} KZ{ sin Ka} c,
2 T (T ryaT 2 [2_ g2
(’u nl anq _K
=9
hw/e,
2,.2
o 2| 22 _2K? |sin*(Ka /2)
o’ sinKa| K sin Ka c’
Sila-m—s b e da+ +
c, K n, K n’ qu ~K?
Even
(A.6.b)
0dd

for TM modes.
The mode power confinement factors used in (6.37) are given by:



Ty = : T oo
an" -K- o
2
for even TE modes;
2 L2
rK = 2 2
g’ -k
2
for odd TE modes;
m jaVg' -K* nm sz(’@)
n? 2 ni

for odd TM modes.
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(A.7.2)

(A.7.b)

(A.7.¢)

(A.7.d)



