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ABSTRACT

Using Van Hove's density correlation-function
technique we have calculated the intensity spectrum
of light scattered by a relaxing liquid. Our treatment
differs from the previous work on the subject, due to
Mountain, in two respects: (a) the liquid is assumed
to have a relaxing instead of a static shear viscosity,
and (b) instead of using the time integral representation
for the relaxing bulk viscosity, we consider it to arise
from the relaxation of an ordering parameter, and apply
the thermodynamic theory of relaxation processes to
calculate the correlation funection. The first modifil-
cation is necessary if the theory i1s to explailn the
occurrence of Brillouin components in highly viscous
liquids 1like glycerine. The second modification gives
an insight into the nature of approximations involved
in using the integral representatlon for the bulk
viscosity.

We first solve the scattering problem for a model
in which the shear and the bulk relaxation processes
are each characteriéed by a single relaxation time. Our
analysis shows that, provided the sound absorption per
cycle is small compared with unity, the spectral intensity
may be approximately written as a sum of flve Lcrenfzians.

Two of these represent the Brillouin components, and the
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other three form the central component. It is also shown
that the time integral representation of the bulk vis-
coslty cannot 1in general describe a temperature induced
relaxation process, but is appropriate for a density

" induced relaxation process.

We next solve the scattering problem for the case
when the relaxing viscosities are each described by a
multiple or a distribution of relaxation times, instead
of a single relaxation time. Both exact and approximate
expressions for the Intensity spectrum are obtained for
“this case.

Further it 1s pointed out that one-should distin-
gulsh between the sound velocity v for a temporally
absorbed hypersonilc-wave and the velocity Vg as determined
from the Doppler-shifted Brillouin peaks. The dispersion
relations for v and Vg for the case of a single relaxation
time are discussed in detail, and the conditions for
negative dispersion (decrease in v or Vg with increasing
wave number) are obtained. The difference between v and
Vg 1s significant whenever the sound absorption per cycle

is not much smaller than unity.
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GENERAL INTRODUCTION

The subject of light scattering is nearly a hundred
years old, dating back to the work of Rayleigh [1] and
Einstein [2]. It has been a useful tool fer the study of
‘a varlety of molecular phenomena. In the last decade,
with the development of laser techniques and high-precision
detection devices, light scattering has opened up new
possibilities for the study of ‘molecular kinetics and for
the investigation of acoustic properties of fluids in the
ultra high frequehcy (hypersonic)'region (frequency
2 100 c/s), which is otherwise difficult to study by
the usual ultrasonic methods.

It 1s well known thgt thescattering of light by
a homogeneous medium"mainly'ariseS‘from the local fluctua-
tions in the density p of the medlium due to thermal
agitations. These density fluctuations give rise to
fluctuations in the dielectric constant e of the medium
and hence to scattering of light. A Fourier analysils of
the density fluctuations over the volume of the scattering
medium results in a very large number of hypersonic waves
each specified by a wave vector,ﬁ. These sound waves
act substantially as diffraction gratings for the scatter-

ing of light. The spectrum then consists of two Doppler

shifted or Brillouin components corresponding to sound

propagation in opposite directions (for a given k). In



addition there is a central or Rayleigh component which
has a peak at the incildent frequency. This component
arises from a nonpropagating (diffusive) mode which decays
as entropy fluctuations.

Both the Brillouin components and the Rayleigh
component-have certain 1ine widths which depend on the
rates at which the propagating (sound) and the diffusive
modes decay. It is only in the last few years, with the
advent of laser techniques and the availabillity of
intense monochromatic light beams, that it is becoming
increasingly possible to measure the widths and 1line
shapes of the Rayleigh and Brillouln components. This
in turn has revived interest in theoretical calculations
of the spectral distribution of the scattered light.

In Chapter 1 of this thesis we briefly review some
of the important early work on the subject. Some aspects
of sound absorption in flulds and of the thermodynamic
theory of relaxation processes are reviewed respectively
in Chapters 2 and 3. Chapter 4 describes the Van Hove's
density-correlation.function technique, as adapted by
Kamarov and Fisher [20] to calculate the spectral distri-
pution of scattered light. These chapters form the

prerequisite to our work which 1s described in subsequent

pages.



In Chapter 5 we derive the spectral distribu-
tion for a fluid in which sound is absorbed owing to
1ts thermal conductivity and to relaxing shear and
bulk viscosities, each having a single-relaxation time.
The relationship of our work to those of previous
authors is described in the Introduction to this
Chapter. Chapter 6 points out the necessity of dis-
tinguishing between the sound velocity as measured by
Brillouin scattering and that by other (ultrasonic)
techniques. Chapter 7 1s devoted to the extension of
the theory of Chapter 5 to the case of a fluid in which
the two viscosities are each characterized by a set
(discrete and continuum) of relaxation times. A summary
and discussion of the main results is given in Chapter 8.
The calculation of the spectral intensities 1nvolves
expressions for the mean square fluctuations in the

various thermodynamic quantities. These are derived

in the Appendix.



Chapter 1

EARLY WORK
§1.1 Rayleigh Scattering

In an experiment carried out by Tyndall in 1869
[j], in which he investigated the scattering of 1light
by fine particles, he observed-a bluish hue in the
scattered spectrum and that the scattered light was
polarized at an angle of 90° to the direction of the
incident light. Theoretlcal investigation of the
problem was later taken by Rayleigh in 1871 [1]. He
applied the elecfromagnetic theory to a system of
optically isotropic particles whose size - is small
compared with the optical wavelength: The incident
field is then assumed to be practically uniform through-
out each of the pafticles and induces oscillatory electric
dipoles in them. These serve as secondary sources of
light and radiate light in the form of scattering. For
observation at a large distance from the scattering
medium, it is enough to consider only dipole scattering.
The total scattered intensity should depend on the super-
position of the individual wavelets with the proper phases
from each of the molecular dipoles. But Rayleigh assumed
that these phases are at random soO that the total inten-

sity 1s the sum of the individual intensities. This 1is



equivalent to assuming that there is no correlation
between the molecules, which is justified for very
dilute systems like an ideal gas. The expression for
the scattered intensity per unit volume per unit
incident intensity 1is

I = léﬂi%ﬁi sin® b, (1)

R\

where o 1s the average polarizability of the particles,
A the wavelength of incident light; n the number density
of the particles, ﬁ is the point of observation assumed
to be far away from the scattering medium, and $ the
angle between R and the direction of the incident electric
vector. |

If the incident light is not polarized, Eq. (1)
must be averaged over all directions of the electric
vector in-a plane perpendicular'to the direction of

propagation of the incident light. One then has

I = §1£ no” (1 + cos?e) (2)
R2 A' > ’

where 6 is the scattering angle.

§1.2 The work of Einstein and Smolukowski

As we stated before, the assumption which one makes
in Rayleigh's theory of light scattering is that the

particles are random scatterers. For dense fluid media,



especially liquids, one should expect’that'the‘molecules
will not move independently of each-other, and therefore
the above assumption will not be justified. Indeed,
experiments show that the scattering formula given by
"Eq. (1) or (2) does not predict correct results for
liquids.

Let us now consider a homogeneous liquid
- as the scattering medium. A simple-application” of Huygen's
princible shows that such a-medium-can-scatter-no light
because of the destructive interference- from neighbouring
small volumes, except, of course, in the- forward direction.
This is contrary to observations. One can therefore.
conclude from this that there must exist in the medium
some inhomogeneities which are responsible for the
observed scattering of light, although the liquid is on
the average homogeneous. This problem was solved by
Einstein and Smolukowski [2,4] who first used the concept
of thermodynamic fluctuations to explain the large
intensity of scattering observed for gases near theilr
eritical temperatures, a phenomenon known as critical
opalescence. According to them, the molecules in a
liquid are not distributed uniformly, but rather their
number fluctuates from their mean value in any small
volume element of the liquid. These fluctuationé arise

from thermal agitations of the molecules and thcy in



turn produce fluctuations in the dielectric constant

e*. Thus the scattering system 1s really not homo-
geneous locally. So unlike the single particle
scattering theory of Rayleigh, the theory of Smolukowskil
and Einstein considers scattering by small volumes in
the fluid, so that though there may be molecular corre-
lations, the small volumes are large enough to be
statistically independent of each other, and scatter
light incoherently.

Let us divide the scattering medium into small
regions or cells whose linear dimensions are small
compared with the optical wavelength A but are large
enough to contain sufficiently many molecules to allow
one to use thermodynamic description. Conslider a par-
ticular cell of volume GVJ. Let the dielectric constant
at some instant of time be eJ = eo+ Sej, where €, is
the mean dielectric constant of the medium and 5€jis
the fluctuation.

The relevant electromagnetic equations (in

Gaussian units) for our system are

T The fluctuations 1in the dielectric constant can

also arise from the fluctuations in the orientation
of the molecules, if they are anisotropic. This effect

will not be considered here.



curl B = % ﬁ s div D = 0
curl E = — % ﬁ s div i=0
B cBe=Babnd , P=E83% (3)

Hence a fluctuation Gej will result in an
->
additional polarization AP, giving rise to the scattered
> > >
fields E', D' and H'. We are only interested in linear

> ->
effects. Assuming that |5€J|<<€o: |E'| <<|E| etc., we

have

curl A = % 3' s div D' = 0

curl E' = - L ﬁ , div B =0

D' = eoﬁ' + Geﬁo = eOE' + LmaP

a3 = §EE (4)

where ﬁo is the incident electric vector. Eliminating B

and E' from (4), one gets

e (13
VoD - —% B = - curl curl (8e,BE_ ) . (5)
c Jo
We now define Ye T = t, so that (5) is transformed

into

2

Q

72D -

%5 D' = - curl curl (éejﬁo) . (6)

@
n

T

The solution of this equation is readily obtained

in terms of retarded potential



D' = curl curl ﬁ
8V & - 7| |, _ B2
c
(6e.E ) 437
1 J o
= I e > (7)
i 8V |R-r| |7 - lﬁgzl

As the volume GVJ has dimensions much smaller than A,

(7) can be written as

(aejﬁo)av

1 J

R-7 , (8)
R, | 77y

Ll

c

~

Here R 1s the polnt of observation and ;J is the position

of the volume GVJ.

We shall be interested only in observations at

large distances from the scattering medium, so that

R-r,| = R.
|7, |
The incident electric vector E  can be written
as
> >
Eo = ﬁl e-i(Ko'rJ_Qot) s (9)

where Qo is the angular frequency of the incident light

and Eo is its wave vector. Since the wave number of the

QTS
scattered wave k' 1is equal to 5 Q , (8) can be written
as
10 _t .
o Betol iR sy o2(FTRG)E,
I = —ThmR 3% o (10)
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Now regarding € as a function of p and T, one has
d€ >
- (—d _J p
Gej (ap )T §p + (BT )p §T . (11)

We assume, as customary, that the second term can be

neglected compared with the first+c Hence,

sey = GE)p 8oy = @L), on, (11")
and (10) becomes

- Elemot e-i'.Z' R e (a £, o, ei(k"-'éo).?j (12)

where GNJ(_GnJGV ) is the number fluctuation in the volume

GVJ. To get E', one must evaluate curl curl . For large
R,
& eiz';ﬁ 2, =
. L ik'.
curl curl R * R curl curl Ele
, Ty P
= % {grad(div EleiK 'ﬁ) - Vz(ﬁleiK °§)}
1 '
= % {-|E1|K'E'cos¢ e R + K'2§ eiK R}“ §« B

(13)

T Tnis neglect implies that ( ) ~6T >, << ( )T 2>,

where <6T > and <6p > gre the mean square fluctuations
of temperature and density respectively. There 1is some
evidence, though not conclusive, that for water this

assumption may not be a very good approximation: See [5].
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where ¢ 1s the angle between ¥' and El' From (13), it

can be verified easily that E'.k' = 0, and that

|E, |
|&| = Rl «'sing - (14)

Now far away from the scattering medium, we have

AP = 0, so that (4) and (14) give

S P 3e, sy oL(E'-K).T
E' = € D' = Hﬂeo G (an)T GNJ € I (15)
Hence
|, | 2
2% = Y 2;2 5 < ¥sin?e G5 6N§ : (16)
7°R¢
0

The intensity per unit incident intensity is then given

by
4
Q 2 2
I, = =2 sine GS)p <8N . (17)
167°R%¢c :

We can now make the assumption that for a 1liquid
not close to itS'critical'point,'fluctuationS'in different
cells are statistically independent;'since'then"molecular
correlatlion extendS‘only‘tO'molecular distances.” There-
fore, the total intensity will be the sum of the contri-
putions from all the cells; i.e.‘I=ZIJ. From the thermo-
dynamic theory of fluctuations [ﬁeeJAppendix j,

kT n°sv

> = __B__g_o_-.—!j— R (18)
T

2
<N
J
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where'no and To are the equilibrium'numbef density and
temperature respectively. Therefore the' total intensity
is

V kT Q U 2

B~ o 0 d € 2

I = —2 (2 [bGo)pl,-, sin%¢ (19)

16n2BoRS © 9p T p=p,
where V is the total scattering volume. The expression
(19) is the well-known result of Einsteln.

For an 1ldeal gas, PV=N'kB To’ so that BT=nokBT.

Further the polarizability a=(e-l)/4nno, so that one may

write
S Qe
@ = Tm_ o Gt (20)

If one substitutes (20) into (19), one sees that (19)

becomes identical with the Rayleigh formula, eq. (1)

above.

Now in order to make (19) useful for practical
purposes, one needs to know how ¢ and p depend on each

other. Einstein used the Clausius-Mossotti or Lorentz-

Lorenz relation

e=1 1 _
2 o = constant (21)
Therefore

3¢ _(eo- l)(so+ 2)

If (22) is substituted into (19), the resulting formula
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is known to hold well for dilute gases (eo ~ 1) but not
as well in dense fluids and rather poorly for polar
molecules. Ramanathan and others [6,7] have ascribed
this to the inadequacy of using the Lorentz local field
approximation. According to these-authors, a more
satisfactory relation to use, for light scattering
problems, 1s+

= ; X = constant (23)

If we substitute (23) into (19), we have

V kT Q2
Bo (—oy4 (¢ - 1)° sin%p . (24)

I= 2 ‘¢ o

2
167 BTR

Expression (24) is known to give better- agreement with

experiments for most liquids than the use of (21) in

(19) [6,7].

§1.3 Fine Structure of the Rayleigh Line

A. Brillouin Mandelstam Doublets

The fine structure of the Rayleigh line was first

predicted by Brillouin in 1922 [8], and later also by

Mandelstam [Q]. In analogy to the Debye waves in solids,

T Mathematical justification for this step is lacking

at the present time.
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Brillouin considered that the description of the thermal
motions of the molecules in a liquid is equivalent to a
superposition of a large number of elastic sound waves
of different wave vectors k. Provided such a Fourier
analysis 1is carried out over a volume of the scattering
medium whose linear dimensions are all large compared
with the wavelength of 1light, each Fourler component
substantially acts as a diffraction grating:. In other
words the wave-vectors Zo and k' of the incident and
scattered light beams respectively are related-to the
wave~-vector i of the sound wave by the well known Bragg
condition E'-Eo = k. One can arrive at this formula
most easily if in (7), one considers the contribution

to it from the whole scattering volume, so that

Bn vV |R-7||T - l_gﬁl
Then (15) becomes
: 2 LR R F g3p (26)

1
E"Fﬁga(aptﬂ{,‘s"e

Fourier analysing &8p, noting that the elastic

sound ‘waves are standing waves, we wrlte

§p = L p(ﬁ) cos K.r

b

> >

> >
z e—ik.r] . (27)
k
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Substituting this into (26), and making use of
> >
the fact that the integral'feiq'r d3; differs from zero
A
for large volumes of V and 1s equal to V only under

the condition q=0, we obtain

AR h_%;zs (g-g-)T 3 V[p(k) + (-] (28)
with the condition

i-lz = -'zl - Eo R (29)

Expression (28) will lead to Einstein's formula

(19) if one makes use of the following results from the

theory of fluctuatlons [see Appendix]

pngTo
< p(k)p(-k)> _7-_8? (30)

<p(k)p(k) >=0 . (31)

If © denotes the angle of scattering, then the

Bragg condition (29) may be written in the more familiar

form as
2QOu
k = sin % © (32)
or
2A sin % 6= A , (33)

where p 1s the refractive index of the medium, A 1s the
wavelength of the sound wave and A 1is the optical wave-

length in the medium.
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Now if the homogeneities were static, the scattered
light would have the same frequency as the incident beam.
Since the sound waves are moving, the time varying inhomo-
geneities will modulate the scattered light. Let the

latter be denoted by

ﬁ;) a et 4(t) , (34) o

where ¢(t) 1s the modulation function. We shall see later
that ¢(t) arises from fluctuations in pressure or density
at constant entropy, which propagate‘throughithe“medium

with the sound velocity v. Hence to a first approximation

¢(t) may be expected to obey the wave equation
5(t) - v3vip = 0 . (35)

Since the standing wave solution of (35) is rele-

vant, we have

¢(t) o cos wt cos k.r , (36) ¢
where w=vk. Therefore, we have

B' o e190§ [éiwt + e-iwt] o¢
_ ei[(szom)t] + ei[(szo-w)t] ‘ (37)

Thus in the scattered light there are two components.
One has angular frequency Qo-w, and 1s called the gtokes

line. The other has angulér frequency Qo+w, and is called
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the anti-Stokes line. From (32), the shift 1in frequency

is given by
a2 = w(k) =2 Tu e sinko . (38)

This result 1s consistent with the fact that two
opposite going sound waves give rise to a Doppler shift
effect of precisely the same  quantlty as (38).

The Brillouin components-obtained from (37) are
infinitely sharp. In practice they have finite 1line
"widths. We shall see later that this 1s because sound

waves are absorbed in the medium.

From (33) it can be seen that for incident 1light
in the visible spectrum, A is of the order of 5 x 1072
cm. Since the velocity of sound is'of the order
104 cm/sec, the frequency of sound wave invo;ved is
of the order of 109 or 10lO cycles per secon&. Sound
waves of such high frequencies are called hypersonic
or ultra high frequency waves.

In liquids since shear waves are-highly damped,
only longitudinal hypersonic waves are propagated.

Therefore only a single pair of Brillouin lines are

observed.

B. The Central or Rayleilgh Component

In the first experimental determination of the

frequency distribution of the light scattered by a liquid,
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Gross [10] observed that 1n addition to the doublet
predicted by Brillouin's theory, a central line was

also present. The explanation of this was given by
Landau and Placzek [11] who considered that the spon-
taneous density fluctuations-in a l1iquid, besldes having
an adiabatic pressure fluctuation part to give rise to

Brillouin's doublets, also has a part due to isobaric

entropy fluctuation. The latter will also scatter light.

Let this be described by another modulation function Y(t).

The contribution to the scattered light will be
B et () . (39)

The heat transport equation is normally given by

[see Sec 2.3 ]

(40)

where x is the thermal conductivity, and all quantities

are referred to unit mass. For isobaric fluctuation,

(40) can be written as
3T _ X g2 ., (41)

If we assume that y(t) satisfies a simllar equa=

tion, then
p(e) = 55 vy . (42)

°op

ol
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Eq. (12) can be solved easily and (39)becomes

' o el e PO ' (43)
This means that the entropy wave 1s nonpropaga-

tive and damped out temporally. This mode therefore

represents an unshifted line, and 1is conventionally

called the Rayleigh component.

C. Temporal Absorption and Linewidths

2
A damping factor such as e"xk t/pocp in (43) is
equivalent to temporal absorption. The spectral dis-
tribution of the intenSity can be obtained by a Fourier

transform of (43). Writing

B(e) = J Bl T (44)
we have+
NCURE FE A eme™t ggr (45)

Putting (43) into (45), and defining the frequency

of the scattered light in terms of the frequency shift,

w!' = " - Q (’46)

We have restricted to positive t. This is equivalent
to assuming ﬁ;(t) = E;(It|). See for example Ref. 29

or (5 - 14).
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we get
Il(u') o L . (47)
2 k
w' + (X—-C——)
Pop

This is a Lorentzian distribution with maximum

at the unshifted frequency i.e. w'=0 and with half width

k2
equal to ) S

PoCp

Now consider the Brillouin components. Temporal
absorption can be formally described by-letting the
angular frequency w in (37) be complex. Denoting the
real part of the angular frequency to be w again, we

can write (37) as

ﬁ;(t) o e Tt [@ei(noﬂ’)t + ei(Qo'w)tJ R (48)

where w=vk, v being the sound velocity, and T is the
temporal absorption and arises from the imaginary part
of the complex frequency. The result of (48) can also
be obtained if one adds to (35) a loss term - PV2¢.

If we now do similar thing as before and evaluate
E;(w') from (48), using (46), one obtains, for small

sound absorption (i.e. I'/vk << 1),

T' ~ const. { 1 + 1 } . (49)
P 124 (o' =vk)° 124 (' +vk)®

Thus we obtain a doublets which are symmetrically

centred at w' = tvk with half width I for each of the two

" components.
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D. Ratio of the Intensities of the Fine Structure

The ratio of the integrated intensity of the
central Rayleigh component, denoted by Ic, to the
intensitles of the displaced Brillouin doublets,
denoted by 2 IB’ was first given by Landau and Placzek
[11]. Their result is

21

cv =Y-1’ (50)

where cp and Cy are the specific heats at constant
pressure and volume respectively, and y is the specific
neats ratio. (50) is then-known as the Landau-Placzek
-ratio. This can be derived as follows:’

The total intensity of the scattered light is
proportional to < 652> , where é¢ 1s the dielectric
fluctuation. If one neglects (%%OD, then one can write

2. . ,9g,2 2
< §e°> = (ap)T <$p°>.

Now sp= (L) 85 + (P P

From thermodynamic calculations [see Chapter 3]s

c —CV

s’p s o TTBp

(51)

From fluctuation theory [see Appendix] ,

2. _ 2. _
< §s™> = chp s < ép > -pokB QJBS

< 8§s 6p> =0 (52)
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Making use of (51) and (52), one obtains

03k, T

2, _ "o B0 _ 1 1
< §p°> = _BT {(1 Y) + Y} . (53)
Hence
e . (1 -2y/2 = 1 (50)
2T -y/y YL

A good account of what we have Just described in

this chapter can be found in "Molecular Scattering of

Light" by Fabelinskii [37].
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Chapter 2

SOUND ABSORPTIONS IN VISCOUS LIQUIDS
§2.1 Preliminary Remarks

We have seen in the last section that the absorp-
tions of sound waves in a l1iquid modulate” the scattered
light. Landau and Placzek 1] first related the width
of the central line of the Rayleigh fire structure to
the heat conductivity and the width of the-doublets to
the absorption of sound in the liquid: Later works [12] have
confirmed this theory. In this section -we shall discuss
some of the major causes of sound-absorption; namely the
shear and bulk viscositieS'and'the"thermal'conductivity
[13]. We have said that a calculation of density fluctua-
tions by thermodynamic theory'alone"cannot'give the line
widths. In the most general case, the kinetic motions of
the molecules in the liquid should be understood from a
formallism based on a microscopic theory. But this 1s
extremely difficult to do. However, for the problem of
light scattering or ultrasonic absorptions in liquids,
since the wavelengths of disturbances are much larger
than the intermolecular distances, one can use macroscopic
treatmeqt of the problem, and the dissipative mechanisms
can be éonveniently discribed by macroscopic equations of

hydrodynamics and thermodynamics of irreversible processes.
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§2.2 Hydrodynamical Equations

In a fluild, conservation of matter-implies that
if p is the denéity of the fluid and ﬁ, the veloclty at

a given point in the flﬁid, we have
f(pt).a% = - 5% £ paV . (1)

This holds for any arbitrary volume . Hence we

have

g—% + div (pu) = 0 , (2)

which 1s the continuity equation. For small disturbances,

(2) can be linearized, which then becomes
3p q =
5t %o divu=0. (3)

For a fofce-free fluid, "the-force fequired to move
an element of fluid is only to overcome  the hydrostatic

pressure, which acts normal to the surface of the element.

Thus
s p%%- 4V = -fpaS = -/vpdv . ()
Hence
o %%-= - Vp (5)

which is the linearized Euler's equation.
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In a real fluid, however, the stress on-a surface
element contains both the normal’ and the tangential com-
ponents, so that one has to describe it by a symmetric
tensor oij of rank 2. Hence the force density ¢quation

of Euler becomes

Q

m

3 u 90
i _ Ji _ 9 Ji
o = = - I § + z s (6)
odt axJ j axJ 1 3 axJ
where

and T (="ji) is called the viscosity stress tensor.
We assume that the rates of strain aui/axJ are small

so that the stress can be taken to depend linearly on
them, and that the fluid is isotropic, so that the

properties along any axis are the same. Therefore,

u
= n' * e |
ﬂii = n' div u + 2n axi
au 3 u
e {1 4 4
“i,j =10 xJ + ax.‘} 'Y i 7-£ j (8)

where n and n' are constants.

Putting (8) into (6), we obtailn

Po %E-= - Vp + b grad (div o)
+ % n grad (div ) + nvgﬁ s (9)
where

(10)
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Stokes assumed the special case b=0, so that (9)
is reduced to the  Navier-Stokes Equation.

n is called the shear viscosity and b the bulk

viscosity.

§2.3 Bulk Viscosity and Sound Absorption

It can be shown that for ideal monatomic gas b=0
[14]. 1In general b#0 [13,15].
For a nonzero b, the sound absorption o (per wave-

length) due to viscosities alone can be calculated as

follows:

We assume that sound waves are of weak intensity
so that linearized hydrodynamical equations may be used.
This is often referred to as thq'acoustic‘approximation.

.

Combining (9) with (3), we obtain for one dimensional

flow,
2 2 2
2 °u _ dp 3 _u 4 (3 9 u
p. —5 T P . =+ (b+ ) 37— - (11)
0ag2 © 80 5x° 37798 5 4@

Eq. (11) can be solved for a solution of

o ei(wt—kx)’ giving
2 _ 2,8py-1 4 1 @py-1,-1
k w (Gp) 1+ iw(b + 3n)°o(3°) } (12)
2 Po 1
= u° 2 , (13)
BS 1 + iw/wV
where
Bg
w, = —~ . (14)
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For k=k,-ik, , u & e~Ko¥ ei(wt-klx)

the sound attenuation per wavelength 1is defined as

21k

a = 2
k, (15)
Substituting (15) into (13), we have
2
mwvop w/w
a4 = Bo ____L—§ (16)
s 1+(w/w,)
V2= 2By 1+ (w/wv)2 (17)
P 2% ’
o 1+{l+(w/wv) }
For the low frequency case,
w << g (18)
Then
Tk ly
= b+._
- ) (19)
v=v, = (BS/QQ);i . (20)

For b=0, Eq. (19) together with the contribution
to sound absorption from thermal conductivity 1s fre-
quently called the classical absorption. It has been
established [13, 16] that the classical absorption 1s
too small to account for the observed absorption 1n many
liquids and that a nonzero b 1s necessary to explain the
additional absorption. Eq. (19) is about the only means

of determining b experimentally.

O
v



29

To understand the meaning of b, let us calculate

the mean pressure from (7), (8) and (3).

= b 9p
p+p08’c . (21)

I
Wil

HEE!
We see that b 1s a measure of the resistance to the
rate of change of density of the fluid, which may be
caused by different mechanisms. In a monatomic fluid
a nonzero b can arise only from the local spatial
rearrangement of the atoms 1.e. structural relaxation
[see Chapter 3], and b=0 for a very dilute system of
such constituents. For more complicated molecules, b
can arise also from other types of relaxation processes.
In some liquids [13, 16], the observed sound
attenuation o shows a maximum, when plotted against
w/wv, at some finite value of w/wv. Moreover the
calculated values of both v and o for w 5 w, are much
larger than the observed values. All these results
contradict the predictions of Egs. (16) and (17) in
which b and n are constants-independent-of frequency.
One is led to conclude that for these liqulds some
relaxation processes must be taking place and that b
and n only describe the low frequency limits of these
processes. We recail that b and n were introduced 1in
(8) undeg/the assumption that only the first space

derivatives of the particle velocity U are kept. For
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higher frequencies, this will be 'a poor approximation
and the hydrodynamical equation (9) will break down.
Hence a proper way of modifying the stress tensor seems
to be needed. Since this 1is not easy as molecular
motions in liquids are in general very complicated, one
finds it more convenient to assume some relaxing forms
of the viscosities in a'modified'hydrodynamical equation,
or in the case of bulk viscosity, one can lntroduce
thermodynamic relaxation theory, as will be  discussed

in Chapter 3. 1In some liquids 1like 082 [17], it is
sufficient to consider b to arise from a single relaxa-
tion time; in others [13, 16] , more than one relaxation

time, or even a distribution of relaxation times, is

needed.

In viscous liquids,’Both'shear'and'bulk'viscosities

are relaxing as the condition w > Wy is easily satisfied.
§2.4 Sound Absorption due to Thermal Conductivity

We assume, for simplicity, that the only loss
mechanism in a fluid is due to thermal conductivity; that

is, there are no viscosities. The heat transfer equation

is
dQ _ mds _ X g2
3t - T I = p V=T , (22)

where x 1is the thermal conductivity and s is the entropy

per unit mass.



31

Using thermodynamic relations (see Chapter 3)

one can write

9s _p 38y 2P 9sy 3p
To 5t = ToGplpat * Toldplp 5t
(] (o]
= Y 9dp _ _"padp (
= 3B - 23)
B T ot pOB 9t
2 2T 2 aT 2
ver = (&= + X
(Bp)p Vp (ap D Vo
1 2 1 2
=—Vp-—.—-—Vp. (2}4)
8Br P8
> >
For 6p, 8p etc. a ei(wt"k‘r), (24) gives
2
Xk~
5p EE (po iwcp) | ‘ (25)
6p ~ Po k2 * i '
(X~ + lwey)
Po

Putting this into (11), and neglecting viscosity,

we proceed as we did to obtailn

2
p.w2 Xk +iwp_cy-
k2 ) o~V ) (26)

By xk2+iwpocp

Again writing k = k1 - ik2, the low frequency limit

2
c_p.V
w <<-J%fL—- (27)

ylelds for o and v the expressions

_ m(y=1)xk
a povocp (28)

ve = vg = B./p, - (29)
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If viscosities are not neglected, it can be shown
easily that provided (27) and (18) hold, the sound absorp-
tions due to heat conductivity and viscositles are

additive. That 1is

o = Tk [b + %n + I;:_L.] . (30)
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Chapter 3

THERMODYNAMIC THEORY OF RELAXATION

We have mentioned in Chapter 2 that in certain
liquids, sound absorptions can be considered to arise
from relaxation processes with either a single relaxa-
tion time or more. It was also pointed out that the
usual hydrodynamic equation with nonrelaxing viscosities
is then not applicable. Since a derivation of relaxing
viscosities from the detailed molecular motlions does
not seem possible, attempts have been made  to-describe
instead the general relaxation features of such processes.
We shall describe in this chapter-a very general formalism
called the thermodynamic theory'of'relaxation, which was
first introduced by Mandelstam-and Leontovich [18], and
then developed by others; in-particular, very extensively
done by Meixner [19]. 1In the following, we shall follow

the description in Ref. 13.

§3.1 Formulation of the Theory

Consider a liquid which contains a single ordering
mechanism. Such a system needs for its specification
three independent thermodynamic variables. Two of these
may be chosen from S, T,p and P, and the third is the

"order" parameter (which we denote here by &) or the
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variable Z conjugate to g*. For thermodynamic reasoning
it is not necessary to specify &. For example, 1t may
refer to the temperature of the internal degrees of
freedom of the molecules - the relaxation-of £ then
gives rise to the so called thermal relaxation process;
for a chemical reaction, g would represent the degree
of reaction.

In all the thermodynamic descriptions throughout
this chapter we shall refer-extensive quantities to unit

mass. The first law of thermodynamics may be written as

su = T8S + % §p + z68E (1)

Po

The Gibb's free energy is

§G = - S8T + -‘1)— §p + Z8E (2)

o

When the system is at equilibrium at constant T and p,

G is a minimum so that we have

7z(T, P, £) = 0 , (3)

which determines the equilibrium value of & as a function
of T and P. For equilibrium at constant T and p, the

Helmholtz free energy is a minimum:

6A=-SGT+£§-6p+ZGE=O, (1)
0
O

T The theory can be easily extended to the case of several

order parameters.
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so that

Z(Typ,€) = 0 . (5)

A thermodynamic quantity measured at-constant
Z(=0) corresponds to the value measured in the-eguili-
brium state, i.e. at zero frequency. On the other hand,
a measurement of quantities at constant value of the
relaxation parameter £ corresponds to the infinite
frequency case, when things happen.at too fast a rate
for £ to attain its equilibrium value E, which is
determined by (3) or (5). Such quantities are sometimes
called 'frozen' quantities and are denoted usually with
a superscript o, A quantity without a superscript will,
for simplicity, correspond to one measured at zero
frequency.

Since when & has its equilibrium value E, one
may to a first approximation assume that for small

deviation 6&E=£-E, the system returns to equilibrium

according to the equation

48 _
-75% = - L&z (6)

3

where 6Z may be regarded as the ordering force, and L

is a constant or a slowly varying function of the thermo-

dynamic variables p, T, etc.

If we write

ST + (%5

37
p)T,E

= 97
82 = (ﬁ’)p,ﬁ Sp + (B—E)T,p g, (7)



and make use of (5), Eq. (6) becomes

dsg _ _ 88-8F

3
dt TTV
where
-1 _ 37
oy 2 b GE),,

For 8§ to relax at constant T and P, we have

ase _ _ sE=ef
t TTP

(o}

where 8 is now to be determined by (3), and

-1 WA
p = L (a_g)T,P

T
Similarly one can define Tay and Tgp

§3.2 Some Useful Formulae

36

(8)

(9)

(10)

(11)

We shall in this section give some thermodynamic

relations which will be useful to us later.

First we

recall some of the general thermodynamic quantities and

relations for the zero frequency limit.

Bg = poGpls,z 3 Bp T eoGglr,z

Y 28
cy = TG,z 3 Cp = ToGmp,z 3
-1 @3p = -p (35 = (@F

B po(aT)P 7= P3P,z 3 BBy~ ),z
= B_S = .c_P B. - B. = TO 82 B2

Y B v S T T bty T 3
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P 1
B = =2 (c - Cy) 5 (12)
T, P v’ By

where BS and BT are the adiabatic and.isothermal bulk
modulus respectively; Cp and cy are the isobaric and
isochoric specific heats respectively; y 1s the specific
heats ratio and B is the coefficient of volume expansion.

For infinite frequency case, we immediately have

° . QP © . @Ry .
Bs = 0o(5p)s,e 5 Bp = e G ¢ 5

® 93 . e® = 95 .
oy = TolzTo,e 3 °p = ToG)p ¢

o _ 1 _ _ A8 o _ 3P _ _238y .

- -} oo
o BS _ cP Boo Bco _ To Boo2Boo2
Y E; c; ’ S PocV T2
2 p
© [e) © © 1
B =m (cp - ¢cy) == (13)
To P v B

From (4), one gets

33, =-1_@2F __ B

Z 2

3p’T,2 o2 3T 0, 2

38, . A&

(az)p,T (aTJp,Z
1_@Py _ _Qf

;2 G20, = ~Golr,z - (14)
o)

Similar relations can be obtained from the other Legendre

transforms of (1). Consider now



3 P 3 P 3 P
= &E T+ &L + =
8P = G, g8 * Godr,g S0 Gdn,, 06
Boo
co_ T 9P
= T+ L sp + 2
B Brp6 5y §p (BE)T,D (13
Therefore,
[+ -]
°r _ L) r + &8 A%
Po op’'T,2 o 0E'T,p93p'T,2Z
or
o _ .l @B QP
Bp = Bp = 0" GGE)p, oG 77, ,
Similarly
- _ -1 @By QP
Bg - Bg = py" s, 0575,

(15) also gives

w_ oo _ 3P _ a_P

Conslider now

. @S 28 28
85 = (GP)p,p 8T + Gy ¢ OF + GP)y,p OF
cp" B 3 S
= T-; 6T - -p: 6P + (B—E)T’P 65

Therefore,

w_ a_§_ ]
B - 8= -p,GF)pp GP)r,z

. -1,08 dp
=0y ¢ (azHLP

o 5€M3P

38
e, o570, 0 -

38

(15)

(16)

(17)

(18)

(19)

(20)
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= 3 5 d &
cp - ¢p = ToGFlp p GHp,z
=T, ( )TP (BZ)TP (21)
Similarly,
o= @5 ¢ >) (22)
°v T %v T “oNE'T,p9 2 'T,p
Also, from (19), we have
AL o T @S AL I
9S‘'P,2 Cp c® 9E'T,P 9S'P,2
c
P P
or
1 1 _ —l
& 5 o Gor, pG®)p, 263 S)P§
¢p
Using
_ AT
(BS)P Z _(BZ)S,P
95 aT 9 T
(zﬁ)T p G5 S)P g -GE g)s P
we have
1 1 -1 37 9T
&= =T G7s,ph £)s,p (23)
P
Similarly
1 1 -1 3 T
1 _1 . ¢ . 24
Cy o o (SZ)S,p(BE)S o} (24)
Vv
It can be easily verified that we also have
1 _ 1 . ,-3 3.
B = = P GElo,p G 7)r,p (25)
T BT
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1 1 -3
B - =t eGP &2 (26)
BS Bs Po S,P ¥Z’S,P

BBy B Bqp -1 P

cv - P>y = TO ( )S,p( )S,p( )S,p . (27)

Sy

Combining (20),(21) and (25), we have
Po (cp = c)(E— - 1) = (g - 8™)° (28)
T P P’'B © *

o} T BT
Combining (16), (22) and (18), we have
0 (o - c®)(BS - By) = (8B, - 87B%)2 (29)
To v \' T T T T *
Also, from (12), (13) and (28), we have

o p c c°° Co (]
288° = £ {—& - —— + 55 - %} . (30)
o By Bp T T

We shall now obtain relatlions between the various

relaxation times.

From (9) and (11), we have

T:‘; Gor.p/ Gor

Now

Ge g)T PGP, 2G5 )T g = L
= -1

(a E)T,p(a p)T z(a 707,k



Therefore

3P
TTv=(agTz )TF,=( )Tz(aP)Tg
T 20 az
™ G G >Tg Go)r ¢
_ aP _ w
or
B
T
Ty = = Top
By
Similarly
“sv“B_eSoTsp
Bg
Also
SE L aLy /4L Gt )Pz(ﬁ)“
T ?,p" SE'S,P T
TP ( )P Z( )PE
= GPp,e/GPr,z = °p/0
or
TSP=igTTP'
Cp

Combining (31), (32) and (33), we have

b1

(31)

(32)

(33)

(34)
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§3.3 Relaxation Processes

A. Adiabatlc Processes

This 1s the case relevant to sound propagation.

Expanding &8P in S, p and £, and putting 65S=0, we have

oo

Bg

_ s 3P
P 5 6p+(g)sp 8¢ (35)
Now
AL <> (”5 =-B—;-(9—P->
SE’S,p S,P%9 p’S,E 5 WE/S,P °
Therefore,
Bg . )
6P=—{<Sp-(a—%)s’P SE} . (36)

We can eliminate 8§ as follows: From (6), we have

GE = _§_$_-_6§- ’ (37)
SP

where 6E is to be determined by

_ (94
or

}_

O

Therefore, from (36), we have

- TspPs .
SP dt

G 5o + 2=CR)g p 8E
o dt SP pE’S,P

8P} . (39)

- (ag)s P(8Z)S P
SPpo



43

Adding (39) to (36) and using (26) and (32), we have

(1 + toe $y6p = o2 (1 4 d_ysp (40)
Sp dt’/°P Bg Tsy at .

lwt

For 8p, 6P a e , we have from (40),

o0
= Bg + (Bilfs)iQTSV ) (41)
(L)TSV

P

(o]

Bs(iw) =

[}
©

Thus we have arrived at a complex frequency-dependent

bulk modulus.

B. Isothermal Processes

If we consider 8T=0 and do similar things as in
A, we would obtain, similar to (40) and (41), the follow-

ing results

(1t1en L )sp = 22(1 + d_ysp (42)
Tpp gg/°%P < By Tpy at

(BT—BT)inTV

Bnh(iw) = B, + .
T T l+iw'rTV

(43)

C. Temperature Induced or Thermal Relaxation Processes

This is a very important kind of relaxation process,
and is one induced by a change of temperature only. Thus
for such a process, isothermal changes of pressure and

volume occur without relaxation effects. The condition

then is given by

d - (9P =
GErp = G0 0 (44)



Ly

3py . _ ‘o @P
In (44), since (ag)T,P = - - (Bg)T,p , one of the
T

two conditions in (44) will suffice. From (25), this

condition is also equivalent to

o0

BT = BT ’ (}45)
or from (43), BT(iw) = By 1s real and indeperdent of w.
Therefore there 1is no relaxation of the isothermal bulk

modulus.

If a process 1s thermally induced, then from (28),
we have g=B°, which together with (45), (12) and (13)
imply that cp ~ Cy = c; - c;. These are the consequences,

not the condition for thermal relaxation.

D. Pressure Induced Relaxation Processes

These are processes which are induced by a change
of pressure only, irrespective of whether the-relaxation
takes place adiabatically or isothermally. Such processes

are designated by

=0 . (46)

5 = . | (47)

If we write

_ 40 9 p 9
Sp = (5—%)P,EGS + (IS_P')S,EGP + (5%)5’P SE
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Then
3p - (e 3
GBr,e = GSp,eGE T, * (ag S,P
or
(a Elp,p = (a £)s,p (48)
From (25), (26) and (33), we can write
2

w 9
Kp=Kmp (a"g)T,P Cp (49)
K —K =2 2 o
s°s  (Fgls,p %p
Now
d 30 2 9T,
Geds,p = GEdr,p * G5p,e'5E s, P

- Qe , pT8” 38
CBrg,p + B2 GPrp (50)
P

Using (20) and (21), we have
co p BT .
_P ) L 0 0 @S5,
S (a g)s p= Gglep T oy GEiw,p - (51)
Hence (U49) becomes

(<) a 2 o)
Kp~Kp _ <5§"T,p Cp (52)

o 3 pBT 3
kg=ks  plGEPlr,p * cp (ag T, Pl

Eq. (52) provides us with a criteria for temperature or

pressure induced relaxation process. Thus if
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|(%%JT,P << OcPo (gg)T,P ? (53)
or

Kp = K; << kg - Kg , (54)
we have thermal relaxation, and

Kp = K; or By = B; . (55)
On the other hand, 1f

| @2y 5] > °°SIT;°- | (56)
we have

Kp = K; ¥ kg - Kg (57)

Thig corresponds Lo pressure induced relaxation.
Tn analogy with the above discussion, we may

define also a density or volume induced relaxation

process vy requiring thab

= {3 R (58)
whicn differs from (46) 1n that the role p and P have
been exchanged. For this case, we have

Cy (59)
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and

g, = (60)

Similar to (53) and (56), we have now the condition

RBLT
P T o
|6D0,0| << |52 GB.0] (61)
or
oo 0
Bp - B,11 << BS - BS (62)
for temperature induced processes, and
BB,T
T“o0 0S5
52 r,o| > 2 BB, (63)
or
By ~ Bp ® Bg - Bg (64)

for volume or density induced processes. We may note
that egs. (62) and (54) are essentially equivalent,
as they should be. However, eqs. (64) and (57) are,

in general, not equivalent.

§3.4 Representation of Bulk and Shear Viscosities

For the case of a fluid system in which the only
cause of sound absorption is a relaxation process with

a single relaxation time, the sound absorption and sound
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velocity can be calculated from Eq. (41) together with
the hydrodynamical equations (2-3) and (2-5). PFor

> >
§P and §p proportional to el(wt=k.T) = (5_3) ana (2-5)

give

g%=-‘li’; : (65)
Eqg. (65) 1s obtained from Euler's equation,
which has been derived for force-free fluid. We wish
to make a remark here: If %% in (65) is real and is
equal to BS/p, then eq. (65) cannot describe sound
absorption. To obtain sound absorption, the Euler's
equation has to be replaced by Navier-Stokes equation
or other modified force density equation.- An alternative
way is what we are doing. 'The Euler's equation is used
but %% in (65) is complex, so that sound absorption is
automatically taken into account in  the thermodynamilcs
in terms of an ordering parameter g, which is what we
have discussed in this chapter. The first way of doing
things requires a hydrodynamic equation involving the
bulk and shear viscosities, which 1s not applicable
at high frequencies. It 1is interesting to see how the
bulk viscosity arises in the thermodynamic theory of

relaxation. Substituting (41) into (65), one gets

2
5 l+iwtSV w BS

R e
stBsiwTgy Vo

(66)
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Now the description of sound absorption in terms

of a bulk viscosity b gives, if one puts n=0 1in (2-13),

2
2 _ w p
k™ = 5+ 1o - (67)

S
Substituting (67) into (66), we have

(BS-BS)TSV . (68)
l+inSV

b =

Actually from the manner b is introduced in (2-10),
it cannot be frequency dependent; which is precisely why
the hydrodynamical‘equation'of'NavieraStokes breaks down
at high frequencies. Hence strictly‘speakihg, one
cannot substitute (67) into (66) to obtain (68). The
proper way should be to compare the low frequency limit
of (67) with that of (66), because it is in this 1limit
that description in terms of the hydrodynamical equation
is meaningful. Doing this, one obtalns b as the low

frequency limit of the relaxation process

However, (68) provides us a way to describe a relaxing,

or frequency-dependent bulk viscosity.

In a similar way, one can describe the shear
viscosity n as the low frequency 1limit of a shear

relaxation process

n = (G"S° - Gg) T, (70)
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where Tn is the shear relaxation time'and'GS, Gg are
the shear modulus at zero and infinite frequencies
=}

respectively. In 1iquids, Gg= O and G4 = Go., Hence
S S T

{(70) becomes

= (3
n 2 Tn (71)
A relaxing snear viscosity then can be written as
(e
G
n(l0) = 15T ¥ (72)

n

Ag 1t ie well Known that'the“frequency'dependence
of a quantiby can be congidered as resulting from the
Fourier transform of a time'dependent‘quantity; one can
assume that there exisis & functior: b'(t) for the bulk

yigoosity of the following form

N o om0 N wt/*w
b'(t} = (By = By @ T rav (73)
Then
R 10 - L

pl(iw) = [ € BY{ntiat’

7 X \

\BS—BS)TSV s

= 1+q as iﬂ \6u; .
.J:)’CSV

Similarly Lhe time dependent function for shear viscosity

w0 =171

i (74)

n'{t) =G @
Thus in describing a thermodynamic relaxation

process, one can elther employ an ordering parameter
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£, which adds a new degree of freedom to the thermo-
dynamics of the system, or one can use (68). If one
prefers the latter way, one has to find a sultable
way to introduce the relaxing bulk viscosity into the
hydrodynamical equation. We recall that for the
unrelaxed case, the term in the hydrodynamical equa-
tion involving b 1s, from (2-9), b grad(div u).
Therefore an integral representation of a“time

dependent function of the following form is suitable

c(t) = f o'(5-t') grad (div a(t')) dt' , (75)

O~ ct

where b'(t) 1s given by (73). For, the frequency

dependence of c¢(t) can be obtained by a Laplace

transform
®  ~iwt 0 e 1wt >
f et eyt = £ oat £ e %Y pr(t-t')grad div u(t')dt’
0 0 0
@ _aen P 1
= [ dt"p!(e"ye Wt ;=W l09 qiv A(E) At . (76)
0

The first factor in (76) gives the correct frequency

dependence as in (68).

We shall in a later chapter discuss the difference
between the two ways of representing the relaxing bulk

viscosity.
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Since the shearing processes do not involve
changes in volume or temperature of the fluid, a
relaxing shear visocity 1s most conveniently described
by an integral representation similar to the one out-

lined above for the bulk viscosity.
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Chapter U

MICROSCOPIC FORMULATION OF THE SCATTERING PROBLEM

The early formulations of the light scattering
problem, described in Chapter 1, do not allow one to
calculate readily the spectral distribution'df the
scattered light. Recently Kamarov and Fisher [20] and
pecora [21] have adapted Van Hove's correlation function
technique (developed in connection with neutron scatter-
ing) to this problem. In this chapter we first briefly
describe Van Hove's theory and then show how it is trans-

lated from the language of neutron scattering to that of

light scattering.

§4.1 Van Hove's Theory of Neutron Scattering [22]

Consider a target system S containing N atoms, the
position of the ith atom being denoted by ;i' Let the
incident neutron of mass m have momentum hﬁl. It is
scattered by S into a state with momentum hﬁz, while S
changes from the initial state |I> with energy EI to the
final state |F> with energy EF' The transition probability

per unit time is

Wik,w) ='%1|<F’k2|ﬁint|1,k.>|2Q@F)6(ﬁw-EF+EI) R (1) P\;}

2,2
h k2

where Hint (F) 1s the interaction potential; eF=EF+ T
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k>
is the energy of the finalzstate;,—gﬁ— = fhw = EF - EI

is the change in energy of the neutron;'s(ﬁw-EF+EI)
expresses conservation of energy and p(eF) is the density
per unit energy range of the final state.
Passing into continuum for the k2 space, we have
mVk

2 aq . (2)

p(€ )= ————
F (2ﬂ)3ﬁ2

The differential scattering cross-section per unit solid

angle per unit energy range is

d o _ Eg (-

dnde K zﬂﬁ2) V2| @k, |Hint (F)] I,k >| 8 (hu-Bg+Ep)

(3)

Now in general there 1s a statistical distribution of
initial target states |I>, each with a probability P(I),

and will end up in a certain |F>. Therefore, we have

a®s 2 K2y m 2 ez Hint (%) | I,k >| 28 )
1 2m8° I,F
(4)
Usually, Hint (v) can be written in the form
-> 21\-‘1‘12 > > '
Hint (2) = 9~ 5 a, §(r-r,) , (5)
m i i i

where a, is an operator depending on the spin of ith

particle. Therefore,

2l 23y 1K -Ky).F

-+ _l 3>
4k2|Hint(r)|kl> =§/ dr i ay §(r-r,)e
2 > >
_2a2m ik.r
= =5 i a; € i . (6)
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We now replace the §-function in (4) by the integral

E_-E

1 -i(w - F I)t
>R [ e 1 dt , and substitute (6) into
(4) to obtailn
2 k
9 = = () at elvt 5 3 P(D)
1 I,F 1,
iH ¢t iH t
% 1k.7, (o) _~ %
x <Fle a; e 1 e | I>

-1k.rJ(o)|F> (7)

3

x < I|aJ e

where we have used the‘equation'Ho|I> = EI|I>’ Ho being
" the unperturbed Hamiltonian, and we have also chosen our
initial time as the origin. We now denote

£ P(I)<I|....]I> by the ensemble average <....>. Since
I

$|F ><&| = 1, (7) can be written as
F

d o 1 (i) X fe-iwt<

e-ik.ri(o)a (t)eik'rj(t)>dt
1 1,d J

s

ay
(8)

where ;j(t) and aJ(t) are now Heisenberg operators, 1l.e.,
1H t 1H t
n ?j(o) e B .

?i(t) = e

with similar expression for aj(t).
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Consider now the expression
> >+,
j‘d3; d3;l eik-(x-x )< 6(52'_;1(0))6(;_;3(t))>

> > > >
=< 1a3%r e HEX 5307 (o)yradk s (R (£))eM %>

< oK P (0) JAR.F (6, (9)

Therefore, (8) becomes

2 k > > >, i
dc _ 1 2 3> .32, ik.(x=x") -1wt
30ac = % (—I)Id x d°x' e fdat e
<<k 2, (0)8(%'=F, (0))a (£)8(X-Fy(£)) > (10)

> >

If we make the transformation'ﬁax'=r, X=r

r', and use the

even property of the é-function, we obtain

2 k > >
ac  _ 1 L2y ..3% .32 1(K.F-ut)
3ade 5T, (kl)fd r d°r' dt e "

x <% a (0)6(?+? (o)-?')a (t)ﬁ(;'-; (t)) >
1,3 1 i 3 J . (11)

Define now the pair correlation function

r(,t) = Nlcg sader ai(o)é(?+?i(o)-?')aj(t)s(F'-FJ(t))>.

i,J
(12)
Therefore (11) becomes
2 k > >
a°c . N Ko, 1(K.P-ut) (2 4y 433
oo = g () e r(r,t) 4°r dt . (13)

1
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One can define another pair correlation function
G(r,t)

G(Z,t) = N lcs fd3;'6(;+?i(o)-?')6(_1:'—_1:3('5))>. (14)
1,J |

In general, r(r,t) can be studled in terms-of the
propertieS'of G(;,t). The latter is more familiarly
known as Van Hove's pair correlation function. In fact

if one makes the approximation ai=aj=a, then

r(&,t) » a’a(F,t)

§4.2 Application to Light Scattering

The following derivation 1s due to Komarov and
Fisher [20].
Consider a plane polarized monochromatic beam

of light with electric vector
> 1(Q_t-k_.r)
Eo(r,t) = El e ‘Yo" ""o° s (15)

which is incident on a fluid. As we are only interested
in dipole scattering, the  interaction of the incldent
light and the fluild molecules will result in the induc-

tion of a dipole moment density given by
B(F,t) = a, E_(F,t) L §(F-r, (t)) , (16)
i

where Qg is the effective polarizability of each molecule,

and ?i(t) is the position vector of the ith molecule at

time t. The Hertz vector is then given by
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2
VR (F,6) - 15 25 (L) = -4nd(F,e) (17)
c ot

-

and the scattered wave has an electric Lector E'(;,t)

given by
B1(%,t) = grad div f - v° {. (18)

In the wave zone (i.e. for large R), (18) becomes

1 a2
E'(R.t) = grad aiv 1 - =5 =5 I . (19)
(6]

ot
Now the solution of (17) is readily obtained in terms

of the retarded potential as

H(&,t) = radtr rae Ei§14§il §(t'-t + lB%:El) . (20)
-C0 rV-—-

Using (16) and the integral representation of the &-

function in (20), we have

a E > >
ﬁ(ﬁ,t) = -2—1e1_fd3;'dt'd’9' __*_0__ ei(Qot'—Ko.I")
BE]
->
101 (t'-t+ lE%ZEl) R
X e z G(r-ri(t)) . (21)
i
For large R,
r'-R
Y E, 19 (¢ - t + L)
(grad div - = 2) = e
c“atc |P'-R|
>
E LR 101 (¢ -t + 2 - ﬁéﬁ') :
. (22)

1 1
s —=— (E, - =—R) e
c2R 1 R2
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Hence (19) gilves

B, R .
E'(ﬁ,t) (E - ﬁ)fd3+'d 'dQ' ei(ﬂ t —KO I‘)
2mce R R
PHCISEES SN
x e ¢ pX G(r'-ri(t)) . (23)

i

The Fourier transform of E'(R,t) 1s defined by

B (R,t) = Toaqr 't Er(R,0) . (24)
Hence
2 N
Q E..R > >,
£ (&,Q) = aez (B, - L 2y sad2rat el (Bt Ko ")
2n¢c R R
. LR _ R.Z Vs
« e-10(t' 45 = TERT) 1 §(Fr-F, () | (25)
i
o Q2 ﬁl.ﬁ i(Q t"+ n)
EXR,0) = (B, - 25 %) sadrrate Ko
2mc R R
ﬁ I'" ‘
1Q(t|!+ _ ) i
x e ¢’ TR g 6(;"+'§J(t")) : (26)

J

Therefore,
a29u
BE(E,2)|%> = —%—,1-— E. sin’ 2pra32a3F atat"
aR
o1k 3R F+(-2,)t]

x N1 < 8(F-r (t+t"»6(r-r'+rj(t"))> R (27)
i,d '

ﬂ._'!}
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where we have written P=p'+7" and t=t'-t", and
2 .2
| &

¢ = cos

1R

The last factof with the double summation-1s-the Van
Hove's two-particle correlation function G(;,t) given

in (14). Hence we have, for the intensity,

Naig“ 2. 043 -1[(k - QEQ r+(9-0 )t]

1(R,Q) = s I, sin¢fd°rfdt e o~ ¢R’" 0
(28)
where we have made use of the relation
I(&,0)=lim < |E(R,) |2 . (29)
T

We now define w=Q-QO
> Qﬁ *> > -»>
k=3 ~-Ko =K =Ko » (30)

where E = %% is the wave vector of the scattered wave.

Therefore, (28) becomes

Na29u -
I(#,0) = I(R,w) = —g>5 I, siné S(k,w) , (31)
2mc R

1]

where

s(k,w) = f a3rrat emi(wt-k.r) g3 ¢y , (32)

\

and where we have written 90 for R because for light

scattering in flulds, w < Qo'
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Now for the light scattering problem, since
w << Qo’ the time constants and lengths characterizing
density fluctuations are much-larger than those
characteristic of molecular scattering processes.
Therefore, only the relatively long-time-and large
r limit of G(;,t) is relevant:  "For this-case G(T,t)

is reduced to the autocorrelated density function
6(2,8) = N1y @321 < n(@'-F,0)n(E",8)> , (33)

where n(;,t) is the number density at ? and t.  Also

from symmetry of 1isotropic fluids,
G(r,t) = G(|T], t) . (34)

We now let

> >
n(¥,t) - n_ =t n(k', t) e~lk'.r
(o] ky
n(k,0) = n(k) , (35)

where n, 1s the mean number density of the molecules.
The'nO part does not contribute-to-scattering. Subs-

tituting (35) and (33) into (32), and making use of

(36)

<+

we have

S(k,w) = V2 N1 g e~ o n(B)n(E,t)>at . (37)

- 00
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From (35), the inverse transform is

n(k,s) = s 3% AR T ) - n, | (38)

If we also define the Fourier transform in time,

n(ﬂ,w) = ? ag' e t0t’ n(i,t') , (39)
-

(37) becomes

S(k,0) = V2 N7t< n(-K)n(k,w)> . | (40)

The integrated intensity from (31), (39) and (40) is

NalolT v2

fI(ﬁ,w)dw = ——EEQEQ—— sin2¢<m(-§)n(§)> . (41)
R™¢

I

In light scattering, typically k - 105 cm'l, so that

k'l >> intermolecular dlstance. For small k and except

near the critical point of a fluid,

n2k T

cn(-k)nk)> = 2B | (42)
v BT

Substituting (42) intc (41), we see that (41) 1s identical

with Einstein's expression (1-19) provided we ldentify
= 9€ = e
magn, [p(a p)’I‘] P=pq l:n(a n)T] n=n_ , (43)

which 1is the same as (1-20).
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Chapter 5

SPECTRAL DISTRIBUTION OF SCATTERED
LIGHT IN RELAXING LIQUIDS

§5.1 Introduction

In this chapter we shall use the formalism
outlined in:Chapter 4 to calculate the  spectral
distribution of light'scattered'by‘a'relaxing“liquid.
Sueh calculations” both for a non=relaxing and-relaxing
liquids have'been'made‘previousiy'by"Mountain'[?3,2%].

In a!non-relaxing“liquid“the"only"mechanisms
for the decéy of“densitj'fluctuations*are*thermal
conductivity and the static shear and bulk-viscositles.

Mountain [23] showed that in the  1imit of low frequen-

2

cies (w(b + %n)/pov << 1), the spectrum consists of

three Lorentzians, one for the Rayleigh line whose
width dependé on the thermal  conductivity, and the
other two for the two Brillouin components: The
intensity ratio satisfies the Landau Placzek formula,
as 1t should. ,

In a relaxing liquid the density fluctuations
can decay in other modes than described above because
of the existence of internal degrees of freedom. For

the relaxing liquid Mountain [24] chose a model, 1n

which therevis essentially a frequency independent
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(static) shear viscosity and‘a“frequency'dependent

or relaxing bulk viscdsity, corresponding to the
existence of a single relakation tiﬁeh; This gives
rise to a fourth component. Mountain's model is
applicable as long as n is such that um/pov2 <«< 1.

If this is not the case, then, as is well known. from
ultrasonic data on liquidé of high viscosity [}3,16],
shear viscosity must also be considered as a frequency
dependent or relaxing quantlty. - Indeed; 1f one

solves Mountain'S'equationS'for"wn/pov2 > 1, one finds
that there are no Brillouin peaks in the-scattered
spectrum, contrary to observation in liqulds like
glycerine [see Refs. 35, 36]-

In the pfesent'work we calculate the spectral
distribution of scattered 1light for the followlng
model of a relaxing liquid. We assume (1) that the
ordinary shear viscosity is the low frequency limit
of a shear relaxatlon proceSS'having a single relaxa-
tion time, and (2) that the same-1ls true for bulkJ
relaxation. For the latter we explicitly 1ntroducé

an ordering parameter and use thermodynamic theory

T Mountain actually considered a non-relaxing bulk
viscosity also; this merely amounts to replacing n

by ﬁ + %b in the relevant equations.
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of relaxation processes t0'calculate'p(ﬁ,t), instead
of using the time integral representation of bulk
viscosity as done by Mountain. We shall see later
that our treatment, though somewhat lengthier, gives
better insight'intO'thé'type'of‘bulk'reiaxation
processes implied in Mountain's work. Anticipating
our analysis we may mention that Mountailn's represen-
tation for the bulk viscosiﬁy'iS'appPOpriate for a
density induced relaxation process, rather than the
thermal relaxation process as stated by Mountaln
r2u]".

In Sec. 5.2 the exact-expression for the
spectral intenéity of'light"scattered'by‘our*model
of the'liquid'iS“derived;"In"Sec; 5.3 , this spectrail
distribution is approximately‘expressed as-a sum of

five Lorentzians plus two other terms which are usually

T In airecent paper, whic¢h' came to~hand after the
work described in this chapter had been submitted for
publication [25,26], Mountain [27] has treated the
relaxing bulk viscosity by introducing a thermodynamic
‘ordering parameter Jjust as we do in the present work.
Our formulation, however, 1is different from his. Our
work differs from Mountain's also in that we consider

a relaxing shear viscosity rather than a static shear

viscoslty.
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small. The expressionS‘for'the"heightS'and widths of
the Lorentzians take particularly simple forms for
certain limiting values of the shear and bulk relaxa-
tion times; these cases are discussed in subsequent

sections of this chapter.

§5.2 Equations for Calculating n(k,t)

or p(k,t) and S(k,uw)

We have seen in Chapter 4 that- the-expression
for the spectral intensity S(k,w) involves the cal-
culation of n(k,t) or p(ﬁ,t): this calculation
proceeds along the same general lines as in the work
of Kadanoff and Martin [28] and Mountain [24]. It
is based on the suggestion; due to-Landau and Placzek
[}1]; that for a non-relaxing liquid the decay of
density fluctuationshis determined by the linearized
hydrodynamic'equations‘and'the‘heat'diffusion equation.
In our work we have to start with a-generalized form
of the former equations to incorporate a relaxing
shear viscosity, and to combine~ it with" the  thermo-
dynamic equations appropriate for a fluid containing
an ordering or relaxing parameter. The procedure 1s
to first calculate p(K,t) in terms of an initial
fluctuation p(ﬁ) and then to take the average over
initial states indicated by <...> in the expression

for S(k,w).
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The relevant equations for the calculétion of

p(ﬁ,t) for our model are

ap Q=
SE+op,divu = 0 (1)
a+ 3 t -+

o OUd = _grad P + = / n'(t-t')grad div u(t')dt’ (2)

' (t) = 6™/ Tn (3)
2SS _ 2

poToé—-—x v- T ()

3& -

le=-L62 , (5)

where the last equation‘iS'from'(3-6). We shall take
p, T and Z to be the independent-variables. This set
has the advantage of simplifying our calculatlons since
the thermodynamic fluctuations in density are indepen-

dent of those in T and 2.

Eq. (5) then can be rewritten as

» 1
3% 2E, 201,88 @Iy -
Gon, o[G0, 2 G G068 = -Ge e cl LY

where

-1 | 3%
Tpy = L(a&)T,p . (7)

We shall now make plentiful use of the thermodynamics
relations which we derlved in Chapter 3. Writing

B

_ o 2P
VP = 5 Vp + BBTVT + (8Z)T,pvz (8)
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and eliminating 3 petween (1) and (2), we have

B

Q—{% = T v2p + BBy V T+(
2t o)

v2 4
7 4+ —— [ n'(t-t'

O ¢t

x v2@L) as' . (9)

The equation of heat flow (4) can be written as

(o]
X g7 - - 2p , Svar 22
5T v'T BBrat * T ot + BZ)T o'5 t) ' (10)

©
O N

The procedure now 1s to obtain the-Fourier (space)
and Laplace (time) tpansforms  of (6), (9) and (10). Then
the resulting equations can be solved for p(ﬁ,S), which
is the FourierQLaplace transform'of'sp(;,t); Thus p(ﬁ,t)
or n(ﬁ,t) can be obtained as the inverse Laplace transform

of p(k,S). Accordingly, we define

g >
o(%,s) = vt favf a3%[p(F,t)-p ]e ,

S
o(F) = v s [p(F,00-p] e a3% (12)
\

and similar formulae for T(k,S), T(k) and 2(k,S), Z(k).
Now we note that in the expression for the
scattered spectrum given by (4-37), n(ﬁ,t) occurs in
+, o> >
< n(-k)n(k,t)>, where the symbol <....> denotes statis-

tical average, which 1s equivalent to time averaging.

Owing to the arbitrariness of the time origin, we have
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6(t) = < n(-K)n(K,t)> =< n(-k,t"In(k,t+t')> . (13)

Since the liquid is, on the a#erage; isotropic, there-
fore < n(-k)n(k,t)> =< n(k)n(-k,t)>. It is clear then

that by a change of time variables in (13), we have

$(8) = 6(=t) . | (14)

The even property of ¢(t) also requires that: %%-= 0
at t = 0. Anticipating that n(k,t) or p(k,t) is to be

used inside < >, one can requilre p(K,t) to satisfy
> > 2 p(k,t)
p(k,6) = o(k,-t),[ 288 =0, (15)

which 1s the usual boundary condition used in such

calculations [29]. Hence one may obtain the following

results
1..3», ik.7-St 3 g >
viradrret ot a’% dt = sSp(k,s) - p(k)
+> > 2
vlra3trelk TS L L gy = 5%p(K,s) - sp ()
R
1 1k.5-St o2 .3 2 >
v-iratrelk TSt g25437 = —k“p(k,S) , (16)
with similar results for T and 2.

> >
We now multiply (6), (9) and (10) by y-lglk.r-St

and integrate. One obtains the following three equa-

tions:
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z 92 9 T 92 3
o(5,9) [s@8B, @0y 4] + T(k,S)[S(a—g)T’p(a—%)p’Z]

v (s + bz, = @By GBy 5 e )

+ @), @, g TR ¢ z (k) (17)
2 o 2
k™SG T Bk
O n o

_ rSgB 2 Sc N N
(8,5 8] - [M + ) 1s) - sGpp 20S)

pO o 0 TOl
BBp: > SV o7y o @S 2
= 5 el - - TE - G, z2(k) . (19)

> -»>
Eliminating T(k,S) and Z(k,S) and making use of thermo-

dynamic relations in Chapter 3, we have
> - =1 P(y) >
p(k,8) = (vok) ey P s (20)

where we have neglected terms containing T(ﬁ) and Z(K)

pecause from fluctuatlon theory, < p(-E)T(§)> =

< p(-K)z(K)> = 0 . Hence

 olB)p(E8)> = <p(-B)p(R)> gy (21)
o

or

<n(-K)n(k,8)> = «a(-K)nk)>o(k,s), (22)
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where
_ -1 F(y)
o(k,8) = (v k) 6?%7 | (23)
_ 3 Cy 2Bs~Brp .
F(y) =y xy%p + ¥ [xp + — %5 + axyXplt y [’E"' X1%2
cV , S
[+ ]
y g~ Cy Bg-Bp
t 3 Eg XX, + — 4 a(xl+x2) t V|5
CV S
4 y
o C oo
+ BS-BT+§G —X-x + o + ax.x (BT+§G —BT)
B o 2 172 B
S cv S
[+ -]
c (B=Bm) ©
s ¥ 1Ly poax. —Z L0 4 28 4y (24)
®© . 1 B 3 2
cV S S
I c ¢ *®
G(y) = y5x1x2 +y [xg¥ —% Xyt 0X X,] y3[g¥ + ZE_ XX,
) c : \' \'
2 V§ Cy (Bs+%Gw)
+ oz(xl+x2)] + y [g—s- S 5 X, ta
cV S
o 4 oo
+ ax.X (BT+ §G : cV B;
172 BS } +y [—; + 5 0Xg
Cy S
4 oo
Bryt=G
T3 ]
+ BS axé} + Y (25)

Here v® 1s the sound velocity at infinite frequency.

o U o
o [Bst3f 1® _ .S
°o : YTV K
Xy = VokTTV s X, = vok'rn

xk/(povocs) (26)

=]
]
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Now from (22),

o(k,S) = <n'(-§)n(K,S)> - F(y)
< n(-K)n(k)> v kG (y)

Therefore

a(k,t) = <n(-k3n(klt)> , (27)
< n(-k)n(k)>

a(k,8) = [J o(k,t) e—Star (28)
0

o(k,w) = a(-K)n(K,w)>

< n(-ﬁ)n(ﬁ)>

r e~ivt S(k,t)at . (29)

Since from (27), we have

O(k,t) = 0(1{, -t) 5 (30)
therefore
o(k,w) = 2 Re o(k, S=1iw)
' +
F(32g)
= 2 Re —-—T ) (31)
kaG(\—I-;-lz)

t  Strictly speasking, one should write (31) as

F(dufs)
o(k,w) = 1im 2 Re 01 > 8>0 (32)
60 v_kG(=2=2) .
o} vok

which satisfies the requirement on S that Re S > 0. (32)
has to be used, for example, in the case of an ldealized
fluid having no sound absorption. (The spectral distribu-
tion for this case consists of Just three §-functions.)
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and
S(k,w) = V2N"L< n(-K)n(®)>a(k,0) , (33)
where
> > nngTo
<n(=k)n(k)> = —V-—B-T—' (34)

from Appendix
We shall for simplicity consider the spectral

distribution to be given by o(k,w) of Eq. (31). The

total integrated intenslty is

fo(k,w)dw = J dt o(k,t) f e1ut 4y
- 2nfo(k,t)8(t)dt = 2mo(k,0) = 27 , | (35)

where we make use of o(k,0) = 1 from (31)

§5.3 Approximate Determination of the
' Spectral Intensity

Eq. ‘(31) is the exact expression for our model.
Since F(y) and G(y) are quite complicated, it is not easy
to visualize from (31) the varlation of o(k,w) with w and
other parameters defined 1n F(y) and G(y). A more con-
venient, though necessarily approximate, form of o(k,w)
can be obtained which separatesfout the various components.
The method 1s as follows: |

The inverse Laplace transform, o(k,t), of o(k,S)

is first obtained by writing o(k,S) as partial fractions.
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Then o(k,w) can be evaluated from o(k,t). We have

fo(k,t")s(t-t') dt’

o(k,t) =
o [¢ <] - '
=L satr Jawelk,t) elu' (B-t")
- 00 -®
© 1y % AmTe! ® 141
=L s awe® T Uolk,tne 108" ge e po(k,t et Ut}
e 0 0
[+ -]
]
=1 7 aw 10"t pe o(k,10') . (36)

In evaluating (36) by contour integration, one needs to
know the poles of o(k,S), hence the roots of G(y)=0 and

this can be done'only:approximately.

We shall assume that a(= ——Xgﬁ;) << 1. This is

PoVoly ‘
true for almost all nonmetallic liquids for the value of
k (~ 105) relevant to the problem of light scattering.
For example, for glycerine a = 5 x 10-9k, and from (1-32),
. - #

k is at most 3 X 1050m 1 for scattering of visible light .

Throughout this paper we consider this case (a < 1)
only. It may be mentioned that if o > 1, then Eq. (19)
no longer adequately represents the energy transport and
one should add on the left-hand side of 1t a term Ef%‘poT%%~
where t 1s a relaxation time characteristic of phonon-phonon
collisions. For solids at low temperatures or for liquid

helium this term may have to be taken into consideration;

see, M. Chester, Phys. Rev. 131, 2013 (1963).
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Let us further assume, for the moment, that
oXq << 1, ax, <« 1. This covers most -of the interesting
relaxation region X5 X5 £ 1.' One then readlly sees
from (25) that there-is one'root'ayo'of G(y) = 0, which
is much smaller than unity.and is approximately given
by

oc

= Xk yo <1 . (37)

Yq = v
o] © p.v C ’
v o o’P

ye

To determine the other roots we try to factorize G(y)

in the form

% - (rroED (e (y4ayrap) (yay9) () (38)
. where v,0, ql and q2‘are as yet unknowns, and where Vv

can be interpreted as the velocity of the two propagating
modes and'voke their absorption per-second:.- 2ﬂ(;9)6 is
the absorption pef cycle. This will be obvious from the
expression for o(k,t) which we shall obtain later.

Now 6 1s usually small compared - with unity as

absorption data from ultrasonic show. Hence in the

following we shall neglect 62 compared to unity.

Expanding (38), we obtain
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2 .
G(y) . 5 4 3,.,2_ 2.V

yo+y (2q1+26+y0)+y (ql q2+:f-§-+lleql+yo(2ql+26))
o

L2 2
2 2 2 v 2 2
+y°[26(q-q5) + 2q;75 + y,(aj-ax* )]
v v
(@] (o]

2 2 2
2 2 2 2 2 2
+y[Kq1-q2)§§ +y,(26(a]-a5)+2q, §§J]+yo(ql-q2)§§ . (39)
o} o o}

On the other hand, from (25) |

2 )
o c
G(y) _ o, .bf1 .1 .] 3[‘1 v 1 v
= y +y + — + oty + +a ( + )
X)X; X3 %o X3%2 vg Xy CyXg
= Bgrk” (32 4a")
- [Eg 1, B3 ey %03 ]
BS x2 BSxd xzxdcV , BS
Bwa B +5Gw acé ac°°
ty [%1x + BTx + TB3 X.] + Vx (40)
a%*2 s*2 s - ©v¥g CyYXa¥g

oy
X, = VvV kTTV=-c;Xl o ()41)

Comparing now terms independent of y and the coefficients
b

of y' in (39) and (40), we have
' 2
2 2 _ -1 Y0
a; - a3 = (X%g) 72 (42)
2 = x-l + x-1 - 2060 + a(l _.EX;)
9 2 d CyY
~ x-1 + x-l - 26 . (43)

X2 d
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Hence
v2
2q, = [(xgl + xd-l - 29)2- H(x?xd)_l —%ﬂ% (44)
= v

Next equating coefficients of y2 in (39) and (40), making
use of (42) and (43), and retaining only the linear terms

in a, we have

I o
(Bo+ 3G )
- 2 .
20 = Eczxd(:';—o)u—l] 1{x2(§-:> [(§—0>2- —I§—S—3—]
+ x (22 E§J ea - O3
d v, v, BS Cy =Y Vs
oo ll =)
(Bot=G")
taXyXg (;%)2 E(X'—O')2 - —'——_TBZG 3. (45)

The only unknown left now is v/voo This we determine
approximately by comparing thelcoefficientS‘of y3 in (39)
and (40). Eliminating q and q, from (42) and (43),
neglecting terms containing o and terms proportional to

62, one obtains for v2 the equation

S 3
B

. oo”oo
v_\8 2, (v 62 .2 o (Bgt3h )
(v;) (X2Xd) + (;;) [}2+xd+x2xd—(x2xd) ———g————

A 4 4 oo oo
- (;,:) (x,+x4) [K,(Bg + 3 G )/Bgt XqBg/Bg]

+ (z—)2 Echd(B"s° + % G"")/BS +1] -1=0. (46)

o

We are interested in that solution of (46) which gives

v2= vg when x2=xd=0° A particularly simple, though
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approximate, expressionifor v2 is obtained if one sets

(%—)2= 1 + A, and assumes that A <<w1¢' Thenuretaining
B,-B

only the linear terms in A and in B S and %— one may
' S S
readily obtain
I} o 2 ® 2
2 : =G X B.-B X
Yox1l+a =1+ 3B 22 + SB S d2 . (47)
Vo S 1+x2 S 1+xd

Eq. (47) gilves correct values for the velocities in the

various limitﬁ namely v > Vg for X5 X3 2 0 and
0

ﬁﬁi:fiﬂ% for x 2

> o3 V > (Sé)% for

s X
2274 o

>0, x4 > = and v -~ (§ Lé:-:'-)’i for x4 = 0, x5 > =
o)

X2
For intermediate values of X5 and'xd, it is only
approximate. If on the other hand-we determine the
velocity without'neglecting'the'terms*proportional to
62, we find, on ignoring‘termS'proportional“to o and

retaining terms only up to quadratic powers in X5 and

xd that
2 B -B BB 6= %
Y—- ~ 1 + S- S (l - 1 __S_-__S—)x2 + _3_-(1 - _].‘. g_)
vg Bg T Bg d ~ Bg 3 Bg
© (B )
2 G S
- § BS BS x2xd + cccooen (48)

Finally, to complete the term by term comparison of
(39) and (40), we note that the coefficients of y 1n

them are equal 1if terms proportional to a are neglected.



Having determined the ‘roots-of G(y)=0 approxi-
mately, we are now in a position to calculate o(k,t).

We first write o(k,S) as -partial fractions

2 o oB+1g5 op-ig
o(k,8) = I 535 * S¥T+ivk & SHT-1vk [(49)
m=0 m
where
xx®
r = vok o , SO = vokyO = 5.cp R
S; = vk (q1+q2), S, = v k (q; - q2) (50)

where o, 0;,0p and g are real constants (independent of

S), which are to be jdetermined. Now using (36) and (49),

we have

o e"smltl + 2e-rltl(oBcosvkt + g sin vk|t]).

o(k,t) = n
(51)

[ ne I V)
o

In the above equation, the interpretations we have given
to v and T become clear.

In the calculation of o(k,t) by contour integration
the singularitieS'which are"connected‘with'the'roots of
G(y)=0 all lie in the upper complex plane. The quantities

Ons 9B and g are given bg
F(V k

o, = 1im (5 + 8, ) ——————1;—— (52)
S+-S v, ( )
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R
op = Re lim (S+T+ivk) T (53)
S+=T=ivk v_kG(———=—)
0 vok
-T'-ivk
| F(————V )
g = Im lim  (S+Tr+ivk) - . (54)
S»-T-1vk v kG(J—%‘ilf-)
o
These expressions then give
o =1-3% g, = f(q,,a,) 0,= f£(q,,-a,)
o y ° 1 127227 2 12 =27 »
- albl+a2b2 _ alb2 2bl :
o = Y 8 = s (55)
B b2 +b2 b2+b2
1 72 1 72
where

£ay,d,) = {1-x,(aa)) 1L - 3 +(3 - gz-)(qlmg)xd]

=]

+(q;+q,) (1-x4(q; +q,) [q1+q2-x2(ql+q2)2- % G—S- x,5]}
: . 2 . v -1
{2q,(a +a,)x g%, [(ag+a,)" = 26(ay*ay) + =511} (56)
VO
-1 1 vl + v )2[fv —vwi*l (iz_ _ E§+l)
M TP TY T2 XoXq' v 72 mRLIES Sy By Y
o O 0o
2 ©
+ (3 3 - 1edbi]eexry [ ) 26(192- 87 1)
Vo S Yo
o 2 2 ©
= 1 _ v l v 4 g
25y Galgg ty TP ety 2 IR
(o] (@]
. 2
1 9v2—v
+ 201 + x,x4(2 + =——)] + 30 (x +x4)} (58)
Y V
O
2

v
b. = —2x.% (%) [K—g)z (=2—) - X5 - uq,6] (59)
1 27a Vg v X5X g Vg 1
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2v q
1y (60)

b, = =2%,Xq (7= ){e[(——) xd . 'I +

V
o

From Eq. (29) and Eq. (51), one then has

o 0_2S8
o(k,w) = I G5+ °B[ 2L+ =5 2]
m=0 w +S (w+vk)“+T (w=vk) 4T
+ 28 [' w + vk 5 - w - gk .| - (61)
(w+vk) +T (w-vk)“+T

§5.4 General Discussion

Eq. (61) 1s an approximate formula for the spectral
distribution o(k,w)° It is correct as long as the sound
absorption 1s small enough so that'e2 << 1 is Justified,
and that X5s Xy are ﬁot too large so that 0X5 50Xy << 1 hold.

The first three terms in (61) each has a peak at
w=0, i.e. atlthe incicient'light“frequency° "Thus the
central or Rayleigh component'for our model consists 1n
general bf the sum of three Lorentzians. The width of
the first of these'is‘determined"by'the"thermal“conduc-
tivity, whereas the widths of the other two depend on the

relaxatlion times 14 and 1 in a way showing that the

n,
shear and bulk relaxation processes are mixed together.
The next two terms in (61) have a peak at w=-vk and w=+vk
respectively and represent Brillouin components. The

width ' of each of them is the sound absorption per second.
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Thus if the last two terms 1in (61) could be ignored,
the spectral distribution“would'consist of a sum of
five Lorentzians, three peaked at the incident

- frequency and the other two at w=tvk respectively.

We observe that the last two terms in (61)
contribute nothing to the integrated intensity. Also,
as may be readily verified, their effect on intensity
distribution may be neglected'SO'long as 0(=T/vk) << 1.
If, however, 6 2 1, they affect markedly the position
and shape of the Brillouin peaks. It may be mentioned
that these'asymmetric“termS'would'occur also in the
corresponding'expressionS‘in“the“works of previous
authors [24, 28], although they did not write them
explicitly*° The origin of these terms can be traced
to the requirement‘that'any'solution'for o(k,t) must

satisfy the boundary conditions similar to (19), viz

o(k,t) = o(k,-t) and 3—"8—(%51:—) =0 . (62)
£=0

The second of these conditions can be satisfied only
if 8 is not approximated to zero in eqns. (49) and (51).

Using (62) into (51) one obtains a consistency relation

for the solution

The existence of these terms has been recently noted

also by Montrose et al. [30].



83

o S_ + 20,T . (63)

2gvk = m Sm B

m

NN

0

The importance of the asymmetric terms in the spectral
distribution is probably best'illustratedlby consider-
ing a model in which the effect of thermal conductivity
can be ignored and the only cause ‘of sound-absorption
is due to non-relaxing viscosities. One can obtain a
simple exact expression for o(k,w) for this case which
we shall discuss at the next section.
For the total integrated intensity, we have

from (35) that S o(,w) dw = 2m. If we perform this

- 00

integration on Eq. (61); we obtain the relation

o, + 0, + 0, + 20B =1, (64)

The intensity ratio is then given by

I o _+0,+t0 ‘
R o 1 ~2 1
R = = = -1 . _ (65)
20B 20B

This quantity is in general very complicated and differs
from the value of y-1 of Landau Placzek.

We shall now sfudy some specilal cases for which
the various complicated'expressionS'simplify somewhat
or very much. Moreover we shall show that for some

{
cases our results can be reduced to those obtained by

previous workers.
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§5.5 Specilal Cases

(a) Unrelaxed viscositles as the only loss mechanisms

This case 1is obtained if we put a=0, Xqs%y > o,

but (B;- BS)xd = vokb, wa2= Vokn are finite. Then for
small dispersion, T 5%; (%n f b)k2, oo=cl=02=0,

og * %, g > %I’/vok° However, one can easily carry out
an exact analysis for this éase. The factorization of

G(y) can be done without approximation. From (23), (24)

and (25), we have

F(y) =y + a

G(y) = y2+ ay + 1
k(b+%n)
a = (66)
povk

Then

_ - dv iv
G(y) = (y + 6 + ;—)(y + 06 - ;—)

o o
with
(b + % n k2
8 = %a, or I =% (67)
Po

From these one determires easily that
0,=01=0,= o, og = %

g =% I'/vk . (68)
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All these are exact results. We see that g is not zero,
so that the Brillouin peaks do not occur at w=tvk.
Their position can be obtained by finding the maxima

of the spectral distribution

o(k,n) = % l:( 2T > + 2T 2:|

w+vk)2+F (w-vk)2+F
+ vk - vk
+?I;ELN i ;2] (69)
wtvk)“+T (w-vk) 4T
From (31), this is also equal to
2a vg k3
o(k,w) = . (70)
22022 (02 v2r?)2
o o
Then §2%§$91 = 0 gives two maxima at
_ _ 2%
w = wg = VK [1 - %] (71)

and a minimum at w=0. So in general, wB#voko We also

see in Eq. (71) that if the viscosities are so large

that a2 > 2 or

(b + %n)k

PoVo

> V2 (72)

then there are no Brillouin peaks.

(b) x, << 1, oxy << 1

This case is relevant to the study of a relaxing

bulk viscositj and we should then be in a position to
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compare our model with that of "Mountain's.

In this case, since a <« 1, we have also aX, << 1.

(50) and (55) then reduce to

2 v2
S :X-k—— S :1—- S o~ o
o] p.C ? 1 T ? 2 2 S
o P n v Td

_ 1 TR
c. =1~ vl o, ~ 0(x2) o ,

o
(Bg‘Bs)k2 v2 A 2 2 1
o, = {———5————-—(-—2--1)[T-§'+Vok (1-7)_-]}
0 v v T
o} d
Vu
X'{V2k2 + 02}—1
vty
205 = 1 - 0, = 0y = 0 . (73)
From (U45), we have
2 B 2 ace 2
. V_ S _ v _vov__1
26 = 2 Xd (B 2) + C (_? Y) ° (74)
Vg S vO v vo

We have neglected any static viscosities in our model.
If one wants to include the static shear viscosity also ,
one can do this by taking x, » 0 while G~ » » and

Gmx2 = %n Vok° Thus (45) becomes+

4 The frequency independent part of the bulk viscosity,

bo’ as considered also by Mountain, can be included easily

by replacing n in (75) by n + % b,
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o o Yy 2
2 B 2 ac 2 FNkv
o = Yoy (S ¥y 4 —Vv__ 1y, 3 (1 + axg). (75)
J2 *a'Bg T 2 vyl Y v3 d
o e P Po’o

> 0, it can be verified
(76)

For the specilal case T

easlily that o, > 0 and 20B =

<~ o

Hence there is just one mode for the centpral component,
and the intensity ratio

Ir

2T, Y 1 (77)

R =

corresponds to the Landaﬁ-Placzek value. The sound

absorption per cycle 1s from (75) given by

2T = [(v'mz.'. vg‘):]k2 Tq * %g—:—i + (y - 1) %1—{-:-— , (78)
o’P

where v'® = (B;/po)% 1s the veloéity of sound waves at

frequencies such that X, << 1l and Xq >> 1.

For the case X4 >> 1, we have

2
~ 1 _ o
02-,Y(1 oo2).’
v! 5
v B
_ = 1_o . T
205 =1 -0, -0, =3 e (79)
1]
v S
Therefore
2
I o)
- __R_ ¥
R-2IB-Y 2-1 (80)
Vo

Eq. (80) was first obtained by Rytov [31]. For a purely

temperature-induced relaxatlon process, By = B; [see
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Sec. 3-3c|, and Eq. (80) may be written 1n the alter-

native form

IR w
R=§TB—='Y -1 (81)

Let us now compare ourvresults with those obtained
by Mountain [24], The expressions (61) with g=0 (which
Mountain assumed) and So’ Sl’ Oy 04 etc. given by (73)
agrees with the expressions (43) in .Mountain's work
provided we identify his 1 with our g 2 Tgye In Sec.3-2,
we have discussed and given the transformations of the
various types of relaxation times: We wish to point out
that it is important to remember which relaxation time
is determined from the light scattering data, if it 1is
to be compared with that obtained from ultrasonic data.

Now Mountain in his work represented the relaxing
bulk viscosity by a time integral. As 'we remarked before,
this representation does not take into-account properly
the interaction between effects of heat flow and relaxa-
tion. In fact, if axd is not small compared wifth unity,
then our expression for o(k,w) would be different from
his. This is best 1llustrated by neglecting in our exact
expressions (24) and (25) for P(y) and G(y) the terms due
to shear procesées (i.e. G =0, x2=0) and comparing the
o(k,S) so obtained with the corresponding expression for

o(k;S) obtained from Mountain's paper [Eqs. (28) and (29)



89

of Ref. 24 with bo= 0]. We find- that the two expressions
differ from each other wherever the préduct 0X 4 occurs.

The two become identical only 1if

cy = Cy s (82)

or equivalently,

- B (83)

BY - By = B T

o o
S S T
that is, for a density induced relaxatlon process.

We shall not give nere- the expression for o(k,w)
valid when X, <«< 1 and X4 > 1, because 1t 1s only in
liquids of high viscosity that the"second‘condition
can usually be satisfiled for values of k relevant to
light scattering, and in these ligquids then oax, > 1
also [13, 16]. For the case G = 0 (i.e. no shear

viscosity) and axy >> 1, one may obtain o(k,w) from the

expressions glven under case (d) below by putting G7=0.

(e) XosXy > 1, 0Xy,0Xy << 1

This represents the high frequency 1imit of the
expression (61) for o(k,w), for it is by assuming the
second condition that (61) was derived.

For this case, Egs. (50), (55)-(60) give

L'°° [
oe. = Bgtz¢ 1 Bg 1
9 © 02 v kTy Z v;krn ’

v
pO
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2

. 2 _ BS/(QOV )7 %
12 g v2k2r T
0 dn
= - .2, 2 -1
o, = f(ay,a;) = [2a,(a +a,y) vk Tt

2
x {[1-v kT, (ag+ay)] [(Bg-Bp)/(eoV )

(B“—BT)
p)

- (qp+ap)VokTy =0
.pov

y _ G
- '3' =4 Voan(q1+Q2) [l - Vode(ql+Q2):|}

PV
= £( ) -1-13 2, = —2
0, = ;s ~49p/>» Oy © -y s Og = T L2 °
oV
o
oo 4} o =)
B.-B =G B 2
2T = 82 S 4 3 s + (y°-1) — 5 XK (84)
v vo T, v PoCP
Po Td Po Tn Po

Of course, Vv in the formula (61) is now v>. The inten-

sity ratio 1is

g _+g.,t0 o

o "1 "2 1 v N2

R = = -1 =vy(=/)""-1 (85)
20B 20B . vO ’

which has the same form as (80), except that
o Y oo
o o B.t+3G 1%
v'! =(B°S°/po);i is replaced by V =[ ﬁ 3 J
o)

The expressicn for 09, O5» Sl’ S2 also take simple
forms if one of the relaxation times 1s much greater than

the other.
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d ! 4 [0
S, = 08 - Bp3t
o2 > 01 ® o o >
pov Tﬂ Bspov
B B>-B
82 = ooS R 0'2 o~ S ws o (86)
BgTa Y Bg

On the other hand, for t_ >> Tq

n
B | 5
s, = us , o, = e
(Bg+36™)T, Y(Bgt3G")
4 o ' oo
i Bg+ 30 ) Bp(Bg - Bg)
S2 - S ’ O, = ol L o (87)
PV T4 v (Bgt3l )

(a) X55%g > 1, aX,,0Xg >> 1

We still assume, however, that o << 1. For this
case the results obtained in (61) etc. no longer hold,
and one has to factorize G(y) again. It can be verified

easily that the'small root ;yé of the equation G(y) = 0

is given by

oo u -] <) u o
y' ~ Ez:zg_ o = BT+§§ Xk (88)
° va°° vaw pOC:;VO

instead of y_  given by (37). Then writing G(y), analo-

gously to (38), in the form
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i](_x; (y+9+ ) (y+6- —)(y+q1+q2)(y+q1 a)) (y+y,) (89)
O

and following the procedure similar to that in obtain-

ing (61), we have

®y-1 [(BT*“%Gw) , _Br ],

vokt1 Vokrn
B
2 © L 0 \— %
a) = [° - —=— (B +36]° , (90)
vkt 1
o) 1™ n
2 28’
o(k,w) = £ o ——5 + OL L R
m=0 w+S! (w+v k) 4T (w-v k)47,

(91)

where 2 2 Tpy o and we have neglected g, which is of

the order aj; T 1s again given by (84), and

' ' ' v I
= - ( = -
SO vokyo s Sl Vok\ql+q2') s 82 Vok(ql Q2)

B (y ®_1)B,Be :
' T T T ' '
20, = o o, = £(q7,q,)
B p VQ‘)Z ? O oo—(B +—G ) 2 1 l’ 2 2
o Ps
1
oé = f(ql, -qé) , with
v kT (B°° )
£(qy,ay) = -(2ayv vok®r T ) X ([1-v kt (q1+q2):l lEGoo T
™ 3
HG Vokr T ' ' y 2)
+ ——H—__ 1l - Vole(q1+q2)J (9
BT+§G

o0
The intensity ratio 1is Y(%—)2 - 1 as in (85). For the
o

e >>
case Ty Ty o
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. B°T° 1 ' BT%G°°
Sl S I -1_-__ > 01 ¥ T, » I o s
BT+§G n BT(BT+§G )
B Br-B
Sé = mT s cé ~ Tw L (93)
BpTy Br
and for Tn >> T3 »
I} o
1 © T ’ 1 oo ’
Bp+30 n Bpt30
B +2G" By (Br=Brm)
R I T U 5 e (1)
2 g% © T ’ 2 - o [ o T
Bpt3C 1 (Bp+30G ) (Bl )

A comparison of (91)-(94) with the expression for
o(k,w) for the case (c) shows that both the intensity
distribution and the integrated'intensity'in'the Brillouiln
components are the same for case (d) as for case (c).
There is, however, a redistribution of intensity amongst
the three Lorentzians which contribute to the central
peak as one goes from the case 0X,,0X4 <« 1 to
aX5s0Xg4 >> 1. However, since the  total integrated
intensity of the Rayleigh component remalns the-same,
it would probably-be hard'experimentaily“tO'distinguish
the two cases. Another remark we wish to make is that
‘the intensity distributions in the Lorentzlans assoclated

wilth the relaxation processes are simply related for the
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two cases (c¢) and (d). For example, Egs. (93) and
(94) may be obtained from the corresponding Egs. (86)
and (87) by replacing in the latter, Bg > Bp, B°S° > B°T°
and Td(=TSV) > T1(=TTV), showing that the relaxation
modes are now decaying lsothermally, in accordance
with the condition 0X5 50Xy >> 1. The Brillouin com-
ponents, on the other hand;-remain unaffected, since

we have still retained the condition o << 1.

§5.6 1Intensity Distribution-calculated from

Thermodynamic Fluctuation Theory

The total integrated intensity for the scattered
light from liquids by density fluctuations-has been shown
in Chapter 1 to be proportional to< 6p2>. From thermo-
dynamic theory of fluctuatilons [see Appendix], we have

3

< §p°> = -—————OOEE% : (95)
This value is independent of the possible kinds of loss
mechanisms which are responsible for sound "absorption
in the liquids. The |latter only have to-do-with the
distribution of intensity amongst the different compo-
nents of the spectrum. For a model of fluid for which
the only source of sound absorption is thermal conduc-

tivity, the distributlon of the integrated intensity

between the different components can be calculated using



95

the theory of thermodynamic fluctuations. This was
done in Chapter 1, Sec. 1-3D.° In this case, the
central nonoscillatory Rayleigh line has a value of
intensity proportional to 1- % and the oscillatory
Brillouin components have together a value propor-
tional to % . |

When there 1s an additional cause of sound
absorption_arising from a relaxing bulk viscosity,
if one represents it by-'a time integral, i1t is not
built into the thermodynamiCS'of"the'system;"hence
one cannot use'the‘thermodynamic‘theory'of'fiuctuations
to investigate the spectral'composition of the scattered
light. In our Aodel we have used the thermodynamic
ordering parameter'instead. We have also developed in
the Append1X‘a‘thermodynamic'fluctuation theory to
include an ordering process. Hence we can use such
a fluctuation theory to calculate the spectral composition.
However, since the shear relaxation process 1is not
described in the thermodynamic theory, our calculation
will correspond to the case G7= X5= 0. We shall now
give such a calculation.

First, taking S, P and 2 and independent variables,

we have
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. <6p2>=(%§0§’z< 68 > + ( )S 7 < 6P > + ( )S p < GZ2>

+ 2( < 8P 62>

)S Z (BZ)S P
=< 6p2>S +<6p2>P +<6p2>Z +‘$p2>PZ . (96)

From Appendix

2. _ 2. _
< 88> = kg cp < 8Z°> = kg (BE)S,p
k. T B
< 6p%> = p kT By , < 8P6Z> = - —539—§(3208 p - (97

0

Therefore using thermodynamic relations derived in 3-2,

it can be verified easily that

2 2. _ 1
<8p >g/ Bp"> =1 - Y (98)
<62> /<6 2>=;.?:S.:. (99)
p">p/ <80 Y Bg
Ba-B
2 2. _17°8"s
< 8p >Z/<6p > = Y Bs (100)
Ba-B
2 2, _ 2 °87"s
<Sp >PZ/<6p > = - y 'BS (101)

The sum of (98) to (101) is unity, in accordance with

Eq. (64).

If we take S, P and & as independent varilables,

we have



97

2. _ (3py2 3 p 2
<gp > = ( ) < 58%> + (aP)S €<6P >+ ( E)S p< 8E°>
+ 2( )S P (BS)P E<5sag>
= Lp >é +<<sz>£'> + <c$p2>.'E + <<Sp2>éE (102)

where we have used < >' to denote average of 6p2 using

a different set of variables i.e. S,P and §. From

Appendix, we have

2, - 3 &
<88 = kg T, G)p p

< 888E> = - kp Cp (a 7)S,P (103)
Hence
(y -1)B
!
< 6p2>s/-6p2> = — TP (104)
BsCp
B
1]
< 6p2>P/ <6p2> = % (105)
Y Bg
[+]
[] B -B (¢
<sp2sl/wpl> = 2SS F (106)
2 Y B oo
S P
' c, B c B B c
<6p2> /<5p2>_2{1.__1_’___8___£___8__1___386+1_ P}
S§ Y o® B°  ayeZ B®  2Y Bg 2 aye
P S Yep Yep
(107)
In the last equation, we have made use of the relations
00_ 0O 1
(%%JP P < - E_E;E_EQ
’ BgCy
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and (g—%)P,Z = (g—%)P,E - <§—§>s,p (g‘%l)s,P :

Again it can be easily verified that the sum of (104)-
(107) is unity.

In Brillouin scattering we are interested in
separating out the various contributions into oscilla-

tory and nonoscillatory modes, that is, we want to

write

2. _ 2 2
<8p> = b0™>ponose.t OP 7ose. (108)

We shall now study Egs. (96) and (102) in the 1light of
such a separation.

For the study of not very high frequency case,
i.e. for axy << 1, Eq. (96) is the more appropriate one
to consider, because the relaxation process is not
coupled to the entrop& mode, so that the contribution
to the total integrated intensity normalized to unity
from the entropy mode 1is given by <6p2>S = - % .
[From now on we shall for convenlence assume that
< 6p2> is normalized, i.e. EQ;?EQ is put equal to unity.]
In the low frequency limit, i1.e. for Vokrd << 1, energy

transfer can easily occur so that the relaxation process

is completely coupled to the oscillatory mode. Therefore

2 - _ 2 2 2 _ 1
< 8p >ose = ng = <p >p + <$p >, + <8p >og = ~ (109)
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These correspond to the Brillouin components and the
results agree with those of Eq. (78). For high
frequency limit (while still retaining ax, << 1), (109)
is no longer true because energy transfer cannot occur
easily, and <6p2>osc has to be evaluated at constant

£ and S. However, because of aX 4 << 1, we still have

< 6p2>S =1 - % as contribution from the entropy mode.
The oscillatory component can be extracted from the

sum <6p2>P +.<592>Z + <$92>PZ as follows:

We write &8Z as

. Q2 22 27
62 (BS)P,EGS + (aP)s g6P + (ag)P,S sg , (110)
and then take §S=8£=0 so that 8% = @Zy.  sp . Hence
5P’S,E
we have
2. _ 2Zy2 2. _ 1 3p,2 2
< §2°> = (3 )S,£<GP > == (GE)S,P< S§P°>
pO
= (3L 2,- _1_32e2 2
<6P8Z> = (BP)S,E<$P > p2 (Bg)S,P<6P >, (111)
(@]

Using (3-26), (97) and (111), we have, in the high

frequency limit,

2 _ 2 2 2
< 8p >osc = E<6p >P + <8p > + <6p >PZ—'IS,£
B B
=L -1 5. . (112)
Boo Y Boo B
S S

To conserve the total intensity, we get an amount of

B

contribution equal to %(l - —%) for the nonoscillatory
B
S



100

mode due to the relaxation process. These results agree
with those of Eq. (79).

For very high frequency (i.e. axy >> 1), the
entropy mode is coupled to the relaxation process, hence
its contribution to the intensity is no longer given by

S
mode 1is still given by (112), as expected. There is,

< 6p2> =1 - % . The contribution from the oscillatory

however, a redistribution of intensity between the

entropy mode and the relaxation mode. In this case, it
is more convenient for us to consider Eg. (102) instead
of Eq. (96). Putting 6S=6£=0 in that equatlon, we have

B
_ 2 _ 2.' _ 1
20g = <bpT> 5. = WP vp = Y

o
0 8hn
.

which is the same as (112).

The contribution from the entropy mode at this
high frequency 1limit can be obtalned easily by taking
t 4 1
§£=0 in the sum <6p2> + <6p2> + <6p2> . From
; S g SE
fluctuation theory [ﬁee Appendik], this 1s equivalent
to replacing the value of <6p2> = kBCP by ch;, Doing

this, it can be obtained from (104) that

(y"-1)B

1

< 6p2>s - ————;——2 . (113)
Bg
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This value is then c('). Again'tO‘conserve'intensity,

the relaxation mode has a contribution to the intensity

B oa_l B B
equal to 1-%——08.-;--(Y m)T=l-%. The results
Bs Bs Bp

agree with those of (92) with ¢” = 0.



102

Chapter 6

VELOCITY DISPERSION FOR A SINGLE RELAXATION

pROCESS T

As we discussed in Chapter 1, the Brillouin
components in the spectrum of light scattered from
liquids can be interpreted-in terms of a Doppler shift
effect, due to the motion of the  two sound waves moving
in opposite directilons. The shift - in the frequency, w,
is then related to the sound velocity v, according to

(1~32) and (1-38), by
v = w/k . (1)

However, this ié only true in the ideal case when there

is no absorption of sound [see (1-49)], in which case

the hypersonic waves are plane waves of undiminished
amplitude. In general loss mechanisms are always present
in liquids and Eq. (1) will have to be modified. It seems
that this has not been generally recognized except until
only very recently [30,26], in the sense'that the positions
of the experimentally determined Brillouin peaks are taken
to give the sound velocity. This has not generally given
rise to difficulties because sound absorption is small

in most cases and the resolving power of detection devices

always gives some uncertainty in the measured values.

¥ This work was published in Bhatia and Tong, Can. J.Phys.
47, No. 3, 361 (1969).
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From the theory and calculations which we
developed in the last chapter, it becomes obvious
that Eq. (1) 1s equivaleny to neglecting the g terms

in o(k,w), which is small only if %E << 1.
In terms of the frequency shift-of the Brillouin

components, which we denote by wg, one can certainly

define a 'sound velocity', Vg by

vg = wB/k . ‘ . (2)

The quantities v and Vg are, therefore, not the same

“thing 1n general.

In a recent paper by Mountain-and Litovitz [32],
negative veloclty dispersion-in-Brillouin scattering
was discussed. "By using a perturbation procedure about
"k ~ 0, they stated the result that the velocity disper-
sion graph (i.e. v versus k) for a single relaxation

process will show a negative slope for
Y- >3 (3)

In this chapter, we wish to discuss the fact with its
consequences that v and Vg satisfy different dlspersion
relations so that when one talks about velocity disper-
sion, one has to mention explicitly which quantity one

is talking about. In fact, from Eq. (5-48), one obtains,
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“for a single relaxatlon process (i.e. putting g” = 0),

the dispersion relation

] x5 (4)

Y— > 5 ’ (5)

and this condition is different- from-that in (3).
There 1s yet another possibility'of defining a
sound velocity. As 1s well-known, the velocity dis-
persion of sound waves in a medium depends on whether
the absorption 1s spatilal or femporal [33,34], corres-
ponding to whether one makes k or w complex. The
definitions of the velocities v and-v' for’ the

temporally and spatially, absorbed waves are thus,

respectively,

v = Re w/k, k real, w complex (6)
and

v' = w[Re k]'l , k complex, w realt . (7)

The difference between v and v' 1s particularly signi-
ficant 1f the absorption 1s due to nonrelaxing viscosities
alone, the dispersion being negative for v and positive

for v', as can be readily verified. The spatial absorption

T Ultrasonic measurements usually refer to v'.
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is relevant to progressive waves whereas the temporal
absorption refers to the decay of standing waves with
time in a medium. The latter is appropriate to
Brillouin scattering of 1light in liquids, and Eq.(6)
defines the same velocity as that in Eq. (4).

We shall now study the different dispersion
relations which arise owing to the different ways of
defining the sound velocity. For simplicity we shall
consider a single relaxation process. In particular,

we shall show that the conditions in (3) and (5) are

exact results.

§6.1 Velocity dispersion for v

The relevant dispersion equation for determining

v is, from (3-41) or (3-66),

iB
kszd + S k2 =0 . (8)

Po

w8

3 2

Tw” - iw -

6o| o

Eq. (8) can also be obtained from (5-25). We recall
that the imaginary part of the complex roots in G(y)=0
gives the velocity of the temporally absorbed hyper-
sonic waves. For a single relaxation process, the
dispersion equation (5-25) reduces to

B

3,1 S, 4l
S LR A (9)
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where x=v_kt4. Putting y = tw , (9) reduces to (8).
o vok

We assume that Bg is a noninfinite'positive number so
that if L B 0, B;td + 0 also. Writing now w=wl+iw2
in (8) and eliminating w,, one obtains for v the

equation

xu(z-zw)(uz—zm)2+ x2[Bz2—6zzm+%(zi+18zm—27)]+z-l =0,

(10)
where we have written
w 2
2 B L
—Y.._ '——S=v'
zZ =5 Zo = F - - (11)
Vo S vO

y=y' - %; to transform (9) to
o (o)
B B

y 34 S - Ly ¢ s - S+ 3 =0 (12)
S 3x 27x 3xBg

and then write y' = yi + iyé, eliminate yi and define
2

15 = yéz = z. One obtains an alternative form of (10) as
V1
1 12 _ 27pr2 2o 142
EZ - Zw + -3_;-2-] DZ . 'Zoo+ g;-?] - —5[27){3 - 3X + X]’
(13)
Hence,
oz A ‘{x2[ﬁz2_3zzm+%(zi+182w—27)]+z—1 1)
0 £~ 1
9 x 3x5 (Uz—zw+—l§)(uz-3zm+ lﬁ)
3x X
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133 = - 2232 4 {2[42 -3z _z+ (z +l8z —27)]
5 %2 X 9 g;E 8
+ %g—ﬁ + 8ng—i— - 32X —}Z[-}/{(LIZ -z +g—)(llz -3z +—)}
<
g—ﬁ- [(4z-3z +—-)(u "’_E - -—-)+(u ‘?—Z - _—)(uz z +—=)]1
_ 3x x 3x
((Uz-z_+-1) (42 - 3z_+ )P . (15)
3x x°

From Eqs. (10), (13), (14) and (15), we can draw the

following conclusions:

(1) For x + 0, (10) gives

v2 1 .2
—S=z=1-FX (z, - L)(z, -5) > 1 (16)
vO
g_'é > %x(z_ - 1)(z_ - 5) > 0 for all z, (17)
1im 3 %2 _ 3 ( 1) ( ) (18)
x>0 o) = TElZ, T Zp = 2)
: 2

Hence 1lim 3 "z < . P

x0,2 5 0 if z 2 5 (19)

(i1) TFor x » =, (9) gives

Z > 2 or Vo V (20)
[+ )

) 2 1
9 X 2.3
22 X

Q

(z, + 3)(z, =-1)~> 0. (21)

©0
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Since from general thermodynamic considerations,

B > BS’ we have

S

z, > 1 . (22)
Hence for large x
g—z >0 . (23)

(11i) The condition for nontrivial stationary points

(1.e.%§- 0) can be obtained by combining (10) and (14)

to give

x4 = z -1 . (24)

(Mz-zb)z(z-zw)

Hence there are no stationary points for z 1f 1 <2z < 2z_.
That 1is, for this range éf values of 2z, %%-is never
negatilve,

Furthermore, from Eq. (10), because the equation
is quadratic in x2, one can see that for every value of
2z there can be at most two values of x, since x > 0.

One may may conclude then that negatlve disper-
sion (decrease of z with increasing x) must start from

the origin, and this occurs when z_, > 5. Figure 1

sketches the variation of z with x for different values
of z .
o0

For X << 1, one has the expansion given by Eq.(16)

which 1s identical with Eq. (4).
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0.1 0.2 X 0.4

Schematic variation of z(=v2/v§) with x on log
log plot for different values of z_. (a): 1< _<$;
(b): 5<_<9; (¢): z_>9. For z,=9, the minimum
=0. As

min~
shown in curve (c¢) for z_>9, there 1s a range

in curve (b) occurs at x=(27)_;2 and z

of values of x for which eq. (10) has no real.
positive roots.
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§6.2 Veloclty dispersion for v'

This velocity is defined by Eq. (7). The
relevant equation to consider is also Eq. (8).
Writing k=k1—ik2, one can elimina’ce'k2 to obtailn
an equation in k1 and w. Th?g equat;oggcan be

rewritten, by defining 2z' = X§— s Zg = B 0 to give
v S
o

z'3x2{(zm-1)2+ Mzixz} + Mzmxzzfz{l + z - zzxz}
+ bz'(1 - 2z£x2) -4=0. (25)

From (25), it can be seen easily'that for x - 0, z' + 1,

or
lig LA . (26)
X
vie. 1.2
For small x, z' = —— = 1 + 7 X (3z+ 1)(z,- 1) . (27)
v
)

]
Since z, > 1, %%— is always nonnegative near the orligin.

vl2 Bg
For x + «, z' -+ —%— = §§ = 2

v S

o
or
vio= Vg . (28)
For large x, 2z' = 2_ - ;;%;5 (2,13) (2 -1) (29)
o«©

!
and %%— is positive for all values of z > l. Again,
2

since (25) 1s quadratic in x~, by similar argument as
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we had for z in (1-(i11)), we conclude that z' is a
monotonically increasing function of x for all x and

for all z_. Figure 2 sketches the variation of z'

with x.

§6.3 Velocity dispersion for vp

To calculate the'velocity Vg defined by (2) we
need the expression for the spectral distribution. This
is obtailned from (5=24), (5-25) and (5-31) by taking the
limits a=0, Gm=x2=0. We get o

B
2 S
1 y x+y+(5§ - 1) x

o(k,w) = 2 Re TR ilil:'ll'l 3 2"B°s°
o) w
y==——r Y X+y“+z=xy t+ 1
vok BS
(z, - 1) x
Vok [% - w2 ]2+ m2x2 . w2.]2
- - B S
o] o) o)
Hence
3o 4b(z, - 1) wx
o 2,2 2,0 o 2,2
vk v.k v_k
o o) o
2 2 2 2 2
- w 2 w 2X7Ww w
e ) 2 - v2k2) 22 %o - 55;5)}'
o] o) 0 o
(31)

The maxima and minima in the ¢ versus w curve are given

by
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Fig. 2. Schematlc variation of z‘(=v'2/v§) with x.

z' is a monotonically increasing function

of x for all x and for all z.
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do(k,w) _
—jy;*-— =0 . (32)

The solutions of (32) are

w = 0

v2k2 P
w2 = (2) [ezx" - 1¢ A%, (33)
+ 3%
2.4 2 2 3 %0
where A = 2z x - Wz _x° + 6x + 1. By evaluating —5 ,
Jw
it can be verified easily that
2 2
3'2¢ _ 16(z,=1)x 5 3X w, 5
o = - — Y 5 - 2z,x" + 1}
dw |wrw, vk - vk
+ o
_16(z-1)x Wiy
= + = A (34)

4 4
vok
The discriminant of A is 12(zm—l)(zw-3). If z <3,
A is always positive. If z > 3, there 1s always a

range of x for which A 1s negative so that w, and w_

are complex. One can also verify that

2
g = -(22%% - 2) . (35)
dw” |w*0

From the above, we can say the following:

(1) At w=0, o(k,w) has a maximum or a minimum according

to whether zwx2—2 > 0 or < 0,

(11) Provided w, 1s real, nonzero and distinct from w_,

+
- )-l

o(k,w) has a maximum at w_. For x2 > (2z, , W

+

satisfies these :conditdons if A > 0. For x° < (2z,)7%,
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the corresponding requirement is that A > (22mx2—1)2,
which 1s equivalent to the lnequality zix2-2 <0, i.e.

a minimum at w=0 according to (35). For z <3, o(k,w)
has a maximum at m+(#0) for all x. For z_ > 3, however,
there is a range of values of x for which w, is complex.
(111) Provided w_ is real, nonzero and distinct from

W, o(k,w) has a minimum at w_. From (33), it can be
seen that these conditions on w_'are'satisfied only 1if

(a) A > 0 and (b) x° is greater than both (2zm)'l and
(2/Zi).

Taking together (1), (i1) and (1ii) imply that
if o(k,w) has a maximum at w+(#0), then it has a minimum

either at w=w_ or at w=0; in the former case 1t has
another maximum at w=0.
(iv) For x =+ 0,

2
w
s > 1 - 55 (2m 1) (2, 3)

vok

+ 1 (36)

For large X,

w? (z,-1) )
2 © 2 o«
v_k Z X
2
3 Wy
and 5o [v2k2] > 0 . (38)



115

Also,
wE 1 ( 2z -3
+ = (z_ +
v.k2 3 zwx2
> %‘Zm‘ . (39)
(v) w, = wy 1f A=0. If z_ <3, this 1s never satisfied.

For z_ > 3, w, and w_ are equal to each other for two
values of x, which are roots of the equation A=0. At

these points it can be easily verified that

Q

8w+ w_
57 Cdx - ¢ ¢ (40)

Q

except for z_ = 3. At x°= 2/zi, w_=0, w,#0 for z, < b
" and w,=0, w_ 1is complex for z_ > 4. If 2z, = 4, then

w,=w_=0 at this point.

+
The foregoing discussions show that we can identify

w, with wg's and enable us to make  schematic plots of
zB:E wg/vgk2 versus X. Such piotS'for‘certain‘values
of z lying in certain ranges are glven in Figure 3. We
see that if z_ <3, 2g shows negative dispersion which
starts at the origin. Also there is a range of values
-of x for which there are no Brillouin peaks.

The difference between v and Vg is particularly

marked 1f z_ 2> 3. Unfortunately no liquid is known at

the present time for which z > 3. However, even for
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(e)

(e)

(b)

Fig. 3.

-
»
N

Schematic variation of zB(=v§/vi) with x for
different values of z_. (a): 1< z_<3;

(b): z_=3; (c):3<2,% 4, For z,_» 4, the branch
showing negative dispersion in (c) meets the
abscissa at xafﬁ/zm; the branch showing positive
dispersion in (¢) remains qualitatively unaltered.
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z, <3, the difference between V and vy ( and v') can
be significant in the region x ~ 1. Table I gives a
comparison of the variation of v, Vg and v' with x

for z_ = 2.24, which is the value appropriate to
glycerol. It 1s only when z_ - 1 << 1 or sound absorp-

tion per cycle is much smaller than unity that v'=v=vB.

Table I. Values of vgs V and v' for several values
of v kTgy» assuming-z_ = 2.24

x (VB/V0)2 (v/vo)2 (v'/vo)2
0 1 1 1

0.2 1.020 1.037 1.096
0.5 1.170 1.327 1.506
1.0 1.743 1.928 1.960
1.5 2.003 2.098 2.105
2.5 2.153 2.188 2.189

© 2.24 2.24 2.24
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Chapter 7

SPECTRAL DISTRIBUTION FOR LIQUIDS
HAVING DISTRIBUTION OF RELAXATION TIMES

In Chapter 5 we calculated the spectral distribu-
tion of light scattered by a relaxing liquid in which
both the bulk and shear relaxation processes were each
characterized by a single'relaxation time. There are
many liquids, however, in which there may be more than
one relaxation time for the bulk relaxation - for
example, for thermal relaxatlon in polyatomic liquids.

A speclally interesting case - is that of liquids of

high viscosity 1n which both-the shear and-bulk relaxa-
tion processes have to be characterlized-by-a-distribution
of relaxation times [}3,16]. In thls chapter we generalize

the treatment of Chapter 5 to cover these cases.
§7.1 Baslc Equations

Following the same procedure as in Chapter 5, the

modified linearized hydrodynamic equations are

38 = —p_ div B (1)
aa - V u t 1 1 > 1 ] 2)
at = -V P+ 3 6 n'(t=-t') grad div u(t') dt' , (

and the energy transport equation 1s
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o T 35 - yylrm (3)

where we assume the following:

(1) There is a distribution of shear relaxation times

gn(r) such that

S g (1) dt =1 (4)
o N

nt(t) = 6% g (1) e~/ ar . (5)
0 n

(11) There are n ordering processes each being charac-
terized by an ordering'parameter'si corresponding to an
ordering force Zi' The relaxation equations are

n

= =X L., 62 ,1=1, ... n. (6)
y=1 i3 773

Q
oy
[

Q
ct

Thus (1), (2), (3) and (6) are to be solved
together to give p(i,t) for the calculation of o(k,w).
For independent variables it is convenlent to choose
S, p and Z, where Z denotes Zl’ Z2 e Zn' This will
be apparent later when we discussed comparison wilith

experimental data.-

Making use of thermodynamic relations derilved

in §3.2, we can write

T BB B n
v°p = o T ¢25 + -5 v%5 + % P} voz, (7)
' Po 1=1 “1
T T BB n
vop = 2 ¢Ps + T g2, 4 ¢ T vz, (8)
s 5 Ty 1
v PoCy i=1 i
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—(aP N T' =(3T

' —) 1
Z4 azi S,p,Zi 5

1
where PZi = 321)S’p’zi 5

!
and Zi denotes Zl, Z2, ""Zi-l’ Zi+1’ cen Zn’

Eq. (7-6) can be written as

3Ey ) 1
x O+ L ] 82 (9)

5t 13 j

It can be shown by thermodynamics that
9&
(=), = =T,
9SS ‘p,Z Zi
(aﬁi _ 1 '

5 0s,z = "2 Fz, . (10)
Po

If we define
-1 aEi -1
then eq. (7-9) can be written as
v 38 , 1 o' 3p -1, 1
P, 22 4+ = P =3 67y (& + —) 82, . (12)
Zi 3 p§ Zi ot j ij Bt Tij J

Eq. (1) and Eq. (2) can be combined to give
3 ° 2 y ¢
_E=vp+__fn(tt')v( 00 ) dat' . (13)
5t° 3f5 0 9t
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§7.2 Calculation of o(k,w)

As before, the Laplace transform o(k,S) has to

be first obtained. This 1s done by multiplying (3),

> >
(12) and (13) by vyl eik.r-5t  h4 integrating, using

(5-15) and (5-16). The results are the following n+2

equations
2 2
R T BBk 0TS Tk
p(k,8) 21—} + 5(K,5) 22 + -2}
pocV X cV
+ T k2T, 7.(%,S) = Po%o s(k) (14)
P B A X
- SP; \ (1457, ,)
p(K,8) " f—th+ S(,8) {8 T,) - 3 —— 2 (k,8)
o2 1§ %1y .
P ‘ Z,(k)
= o(B) o be SRV @) - T <, 1=1,...n (15)
ol 13 %y
N . Bsk2 y . 2 g (1)t dt
p(k,8) {8° + ==+ 3 G k°s f Aoou-—
po po 1+St
2
T 8Bk
+ s(k,8) 2T 3 4 5 kP P, 2,(k,S)
Sy J g
2y y © 2 g (1)t dt :
= p(k) {S+-3—p—Gk f—ﬂ———HST }. (16)

o)

In general, Eqs. (14)=(16) can be solved for
the n + 2 unknowns p(k,S), S(k,S) and Zi(ﬁ,s). For
the 1light scattering problem, we are only interested

in p(ﬁ,s), as only <p(4§)p(§,s)> contributes to the



spectral intensity.
' [Appendix], we have '$(-E)Z1(K)>
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Also from fluctuation theory

0 so that one

can neglect a e Zy k) terms.
lect all the Z,(k) ¢t

Thus we can write our solution as

]

p(k,S) =_| B|| s (17)
where IIA | and ||B|| are 2 determinants of order
n+2. P

Po’o s(k) Polo Tl 2y k2D,

X cV Z1 Zn
-+ : 2 241 241
Cy
1 1 > L
|7 P, p(k)+ S'T (1+St,,)
||A|| pg Zl Zl 11 (l+STln)
- ¢ T e o & ¢ T
1
- (1+St_,) (1+St__)

Lp, o)+ ST, e

‘po n n nl 'nl nn nn

T, S(k)

n
y ka2 gn(T)T drt

where A,, = [S + s S 7757 (18)
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2 2 2" 2 ¢
T BBk p TS Tk KTy aeeen. KTy
2. R 1 §
PoCy X \'
2 2. 1
By T o BBk k Pz, .. k2Pé
CV n
S_p! ST, (1487, - ) (14S7T..)
||B||= 2 72y Zy =\t - T11
0 $11711 ®1171n
s_2_ Pé S Té -(l+STll) -(1+s~cnn)
po n n ¢annl ¢nnTnn
(19)
5 Bsk2 4 ¥k2s . En(T)T dt

+

where B12 = S° + 3 o, J T+57

o

Anticipating that p(k,S) 1s to be considered only

BB
in <p(-k)p(K,S)>, and that < p(-k)S(ik)> = - -éi<p(f€)p(-i£)>
pO
+ BBT -
[see Appendix], we can replace S(k) in (17) by - —— p(k).
pO

We now try to simplify ‘|A|| and B“by applying

some elementary operations on them.
2k2

Po

T

5 p(k)

the 2nd column by k“/S. This will increase the determinant

A by and

We multiply the 1lst column of

by the factor pgku/Sp(E). Then we add to the 1lst column



BBT times the 2nd column.
of the determinant.

the 2nd columns.

determinant.

For the determinant
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This will not change the value

Finally we interchange the 1lst and

This will change the sign of the

2|

3

we shall multiply the

1st column by pgkz/S and the 2nd column by k°/S, and

then interchange them.

The results of such operations yleld

[|2]-
sp (K

__e__%.

o N

4
TOBBTK

ch

2.2
Pk [A12+
2.2, 2
TOB BTk J
2

Spocv

kP

—( 1+STnl)

cbannl

21

LI ] kPZ

—(l+STln)

%1nT1n
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~ m u 2 1 2 |
ﬁ(polos T BBk K TZl ...... kT,
S X Scy n
2
Tk
+ . )
v
Y 22
T, BBpk Pk o kzPé ...... k2Pé
ch S 12 1 n
[[2]]-
2! 2p! ~(1+87,4) ~(1487T,)
52 Zq Zy r— ' Y
- 5T 11711 in'1in
Po k . . E
2 2t
k rl1zn kP ~(1+81,) |, m(1#STy)
¢annl ¢nnTnn
(21)

We recall that ¢1J=¢Ji. Further it 1s reasonable to
assume that LiJ=LJi’ then (20) and (21) are symmetrical,
which simplifies the expressions considerably.

Consider

3§ 9E

3
_ 3%y 1 i
88y =(55)p,z 88 * Gp)s,z O0F JZ(a"z"J')p,s,z‘; 824

i=1 .... n (22)

This can be written as

[6g] = 5SB—§§:]+ apB-%] + lli-%”[az] (23)



126

where [8&], B_%]’ B—%] and [6Z] are column vectors,

68, 28,

1.e. [8¢] =|6E,| etc., and |' 57;;.| is ann x n

aén

symmetric matrix. Hence there exists a non singular

3&
similarity matrix D such that D ||3—71‘ ‘D_l is
J
diagonal. If we now define
1
[sg] = D[sg]
]
[62] = D[6z] (24)
then we have the result that
E [} f E t
Y- 2] ‘
| = —=| 6 (25)
E j BZi 1] .

So, without loss of generality, one can assume
that 651 depends only on p, S and the corresponding GZiT.

Or,

£y

Q

T This kind of relaxation where each parameter can

pe assumed to relax independently of the others is usually

called relaxation in parallels. [13, 16]
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with the understanding that any 1 defined from (26)
is at constant S and p, i.e. Tqy*

We shall now write ¢i = ¢ii’ Ty S Ty40 and

again apply elementary operations on IlAl and ‘IB'I

to evaluate these determinants, remembering that now

(1+St,,)

I‘-————JLL—II is diagonal. Let ¢, and R, denote the
¢1JTiJ i i

ith column and ith row respectively. We now apply the

following:
$5T1 2.
(1) Cot+ & =—5—— kP
2 i l+S1:i Z1

Copqs followed by similar

operations on R2.
%17y 2

(11) ¢y + I 5Tk Té C5,qs followed by similar
1 i i :

operations on Rl‘

The determlinants l'AI' and IlB‘l then become

, (1+St,)
al| = - =4%— o) R(s) (-1)" 1 -
I| ,l pgk T, ° 3 91Ty
[[]] - - = o -0n 1 et
pgk T, 1 %47y
Hence Eq. (17) becomes
& - BS) (%) - %
p(k,S) = m p( ) = 0(k,S)p( ) (27)
o(k,S) = g%%% , (28)
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12
2. Xk2 ¢1TZ1T1
F(S) = 8% {1+ = I }
oo 1 1+S1‘i
2
T' T
2 (1)1 dt 2 _ %5%7 Ty
PR 0. SR B Bp T TT s Xk S
Poly 3p0 . 1+STt poTo i 1+STi
2
6. P.°T
N k2 : i Zi i . Xku 5 ¢i¢JTiTJ
2 3 1+5t, 30 1.d (l+STi)(l+STJ)
p0 pO (o]
4 g (1)1t drt
1 2 12 1 ' 1 [ Xk Ny n
x (T,° P,° = T, Ty Py, Py )} + 25— {36 [ —3337
1 3 1% “1°y pc
o'V
+ L3 Sty (2 - 28B.T! P! + 82B2T!°%)} + c%k%(1 - )
Po 1 1+S'r1 Zi T Zi Zi T Zi o] Y
(29)
2
T'
2 43Ty 2
G(S) = s3'{1 + XkT z 1+s-ci} + s2{);kc + 3ﬁ G°°k2 X
oo 1l i o’V o}
‘ 12 12
g (1)1dT o 93747y 2 $474Fy
FAA 1+ XX 1y 6y — 2
1+STt pOTo n 1+S1:i Po 1 1+S'ri
4 ¢ 6 i T
Xk z 1737173 12512 1 t ot 1
+ XK (T!°pr¢ . 7T, T, P, P, )}
oiTo 1,3 (1+SI1)(1+STJ) Zy zJ Zy zJ Z, zJ
4 g (1)t ar b, T
i 2.2 k' b, n 1 1'1
+ Slegk” + 536" J —357 t -
c o1l i
o'V
~ BacC 2
2 Voo sCv .2 Xk 2.2
(p'2 _- 28B.T! P! + =L T!°)]t+ AE— ck® . (30)
Zi T Zi Zi TO Zy PoCp ©
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We next wrilte down some thermodynamic- relations,
for the case of multiple relaxatilon, which are-generali-

zations of eqns. (17), (24) and (27) of Chapter 3. One

may verify that

o B. = -1 12
Bg - Bg = P, z ¢J Py . (31)
J J
1 1 -1 12
=-==T "¢ 7T , (32)
cy Cy ° g J ZJ
BooBoo BB
Sl I T N (33)
cy \ J 3

If we now go to the continuum 1limit, so that
there are many relaxation times Ty in a small range

between 1, and T4 + dty, we can define three distribu-

tion functions as follows:

¢4 Py ¢1Téi
&4 (Ti)=—_—_7%_ s Sé(Ti) = ")
L¢Py 4T3
J J J J
6. T, P,
and gh(t,) = : Zi Zi
€4\ T4 Z¢3Té By , (34)
J J “J

which are each normalized to unlty, 1.e.

/ gd(Ti) dry =1
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We can then replace in (29) and (30)

i pgl ¢4 Péi £(y) = (B;'BS) I gy(T)f (T)dt

prctoe, 12 r(ry) » (A - 1 s ogl(or(oar
i i Cy v
_ g”B> BB
2Tl ey Ty By £(1y) > (—=F - =) [ gg(n)f(T)aT
i A Cy v ‘

(35)

where f(t) is any function of 1. It may be verified
from (34) that only two of the three distribution

functions are independent, since

g3(1) a /EL(TIBL(T) : (36)

With the substitution of (35) and (36) into (29) and
(30), one sees that the expression for the spectral
distribution will in general contain two distribution
functions for bulk relaxation.

We next observe that if

constant (independent of 1)

[
~
)
BN -
LI}

A, say , (37)
then it follows from (35) that
gd(T) = gé(r) = g;(T) , (38)

so that only one distribution function is sufficient for

the description of bulk relaxation processes. When (37)
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is satisfied we shall say that all the individual bulk
relaxation processes in the fluid are of the same type.
It is interesting to note that condition (37) 1is
satisfied if all the individual relaxation processes

are either (1) density induced or (2) pressure induced
or (3) temperature induced. The definition of these
three types of relaxation processes was given in Chapter

3, and one may verify that for these cases A=0, Topglscgl,

(BBT)-l, respectively.

In principle, there 1is, of course, no reason why
in a given 1liquid all the relaxation processes be of the
same type. However 1t 1s known that in highly assocla-
ted liquids like water and glycerine, the relaxation
processes are predominantly'pressure'induced;'whereas in
other liquids (Kneser type) they are primarily temperature
induced [13, 16]. Since use of (37) simplifies the

analysis considerably, we shall calculate here spectral

distribution for this case only.

§7.3 Approximate Determination of Spectral
Density

In the preceding sectlon we obtained an expression
for o(k,S) = F(S)/G(8) for the case where the relaxing
pbulk viscosity 1is characterized by a discrete set of

relaxation times. Also we gave a prescription for going
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to the 1imit where these relaxation times lie in a
continuous range. When the relaxation  times form a
discrete set, they are usually only few in number.
In Chapter 5 we have already discussed the case of
two relaxation times, and for this reason we shall
-not discuss the discrete case further-here-.

For the continuum case, expressions- (29) and

(30) can be written as, on using eqns. (35) and (38),

g. (1)t dz
F(S) = 8°° {1+.X.—(__1) P M
pO v c 1+ST
A"
k2 L4 G~ g (1)1 dt xk2 Cy
+ s{2E k2 f D1 + (- 1) X%
pOcV 3 Po 1+S [ pocv ey
gd(T)T drt k2 o gd('r)-[ dt
S s * oo (5B S T st
g, (t)r dt ¢ g. (1)t at
_.X_ l + L (B®- o4
Y2 R + = (Bp=Bp) [ —iisz
Py v
F 2 k2 (1 -3
O Y CV
l+=—% ST -
= g2 Xk v 4 G g (1)t drt
T+ 86 d gg(T)dt+ 3 o=/ — 1357
oV 1+ST Po
2 ®
k“(Bs=Bg) g.(t)t dr 4 g (1)t dt
y—23 8 ;4 I
o 1+ST 2c 3 1+31
e ° Potv
\'
;
-+E$ St cV gy(T)T dt 5 1
I 1357 &a(T)aT * (BT'BT) S —yse——Ht ek 2(1 - =

(39)
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2 ¢ g.(t)T dt
a(s) = 8311 + X (L - 1) 5 A
Poly Cy
) g (1)t dt 2 ¢
+ 8% 4 +3ka 1+St 1 Xkc(_gé’l)><
Polv Po Polv cy
2 oo
; gd(r)r drt . k (BS-BS) ; gd(T)T dT}+ S{02k2 X Xku
1+ST Po 1+S* 2,
Po*v
g (1)t dT c g.(t)T dt
x [26° s 0 s (XL o By f e
3 1+ST L T 1+St
c
\'A
Wl 2.2
+ - 5 c_k
PoCp °©
Sy
1+ -c—s St " ®, 2
- a3 2; Xk ' G k
= 5°+ S -/ —— g (T)dT + 37 x
po v 1+St a 3 o
g (1)t dx Bo-B i g.(t)T dt 4
n S S .2 d i 2,2 Xk
1+St + Po k™ S 1+St b+ Slek + 2c
c
vV
[4 - gn(T)T drt l+€$ St cy
« 67 s ppgr— /e 8a(TdT + (BpoBp) —
Cy Vv
1+— ST
gd(r)r 2 o®
xk 2,2 v
S 1+St dib * PoCp on S 1+STt gd(T)dT : (40)

We shall now proceed to factorize G(S) approximately.

It is convenient to define the following dimensionless

quantities:
c
S k \i
o PoVoly Cy
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Hence Eq. (7-27) becomes

_ 1 F(y)
o(k,S) = K Hg,’-y R (42)
where
P . a 1+Ayx u Gw
F(y) = y“+ y {K f.l—_*_'s,—x-— gd(X)dx + 3 -B—é' S l+yx 8 (x)dx
Bo-B
-S 7S X o 4 G X +
* ﬁBS' 4 1+yx gq(x)ax}+ 7 3 §g / I+yx °n 1+yx
Bo.-B
7T X 1
x gd(x)dx + BS a [ Tiy% gd(x)dx + 1 - v (43)
G(y) = 3+ y { a S 1+Ayx g.(x)dx + 4 Q_ = (x)dx
I+yx °d 3 Bg T+yx ©q
Bo-B o
S™*S X a 4 G X
+ TBy J Tayx Ba(0)ax} + vl ap 3 5o Ty g (x)ax
x fliézi g.(x)dx + Pr~Pr @ S 2— g (x)dx + A-1
1+yx d BS 1+yx =d YA
2 (Uy)

X
X fI??I Sd(x)dx} + VA

The low and high frequency limits are then defined
co
by v _k T+ 0 and vok T + o respectively, where 7=/ tg(t)drT
0
1s the mean relaxation time. - This definition of the

limits then agrees with the condition that the frequency

dependent modulus

- o > lwt
M(iw) = MO + (M -~ Mo) é THiaT g(t) dr (45)
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has the value Mo and M~ respectively if one takes the

low and high frequency limits.

We shall in the following analysis assume that

0X 3 and axn <« 1, where X4 = vok Tgs xn = vok Tn

Writing (44) as

G(y) = y3 + c 2 4 +c¢c_ =20 (46)
y) = ¥ 1Y o s

we see that the small root is

-y = - = (47)

o YA °
Therefore, G(y) = (y + yo)[y2+ (cytey)y +cq 61],(48)

where sl and 62 are of order o.

Expanding (48), and comparing coefficients, we

get

& - = - 2
€2 % Vo T T 3K

B.-B co
. _ @ (8 8, X ba o x__
(49)

Define now
28 = Cy + €5
d =cq * e - (50)

Therefore, G(y) = (y + yo)(y2 + 28y + 4),
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Be-B 4 g° X
_ S ~8 X g.(x)dx + = [ g (x)éx
o 1 a(A-1) yx
- o 4 g” 1 X A-1 46”7
d=1+7¢ 3 By (1 - Y) J THyx g _(x)dx + == a 3 By x
X yX A-1l o X
4 l+yx gn(x)dx J 1+yx gd(x)dx + A Y 4 1+yx gd(x)dx
Bo-B Ba-B
T ~T S °S X
+ o[- B - 8, ] s THyx gq(klax . (53)
We now write
F(Y) = 0'O + by+c (5}4)
G(y)  y¥¥,  y2i28y+d
Comparing (54) with (ﬁ3), we get
- 1
o, = (1 - Y)
b =
Y
. 26 A-1 1y , X a ks @” , x
o =55 U+ el -9 g gq(x)ax - 3 3 57 1 Tiyx
a(Bm=Bm)
1+AyX _ T °T X
X gn(x)dx / Tiyx gd(x)dx Bg S T+yx gd(x)dx
+ 2% 25 - %25 (55)
YA A ’

Now consider Eq. (54). The first term corresponds

to a central component arising from thermal conductivity,
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just as in the case of single relaxation times. The
second term contains other central components and the
Brillouin components. In general it is very difficult
to separate out these components. " We shall use an
approximate method, taking as our guideline that the
results should reduce to those that we previously
deduced for the case of single relaxation times. We
first assume that the sound absorption 1s small
(T/vk << 1) so that the Brillouin components-and

central components are well separated. Now from (54),

consider

y2 + 28y + d (56)

where we recall that § and d are functions of-y. Relevant
to our problem, y 1s eventually to be consldered complex
and 1is equal to Vl% . Hence 6 and d are also compleX.

o
For the description of the Brillouin components, we require

a form of

2
(y+6+1‘y—)(y+6-1'l=y2+26y+62+v—, (57)
v v 2
o) o} Vs
which is to be extracted from (7-55).
Writing y = iy', y' = VEE , we can arrange (7-55)
o

to give

y2+ y (2(31 + dé) + 262y + dl’ (58)
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where 28 = 261 + 262
d = dl + d2
_ |
d, = ydy (59)
dl’ d2, 61 being real, and d2, 62 being pure imaginary.

We shall now replace some of the y's in (58)
by %1 , while keeping others of the y's untouched. We
o}
do this in anticipation of reducing (58) to (57).

So we shall identify

|
20 = [261 + d2] y'=V/Vo

n

v _
o

From (52) and (53), we have

o0
Bg-Bg 4y g~ r X

S X
20 = / g.(x)dx + 3 & J ——= g _(x)dx
Bg " 14gx° ¢ 3Bg 7 14px? M
+ & p itAzX g;(x)dx-g-—+a]_'Bg -?E]f X g.(x)dx
A 1+zx2 d YA YABS BS 1+zx2 d
% o
R e L R w Sl e
S i l+2x S 1+2x
A-1 4 a” . x
x g (x)dx [ g (x)dx - =— a 3 57 J g (x)dx
l+zx2 d A 3 Bs 1+zx2
x [ 2x° g.(x)dx (61)
l+zx2 d
Ba-B
. .S "8 X 4 G X
= =g/ 5 Bg(x)dx + 3 5=/ 5 g, (x) dx . (62)
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2
v - _ 2
-3z = [262y + di]y'=v/v - 0
v o
o
Bo-B 2 BY-B
S °S. X 1 °S 7S X 2
= 1 + { [—=—= g,(x)dx - Cs g.(x)dx]“}
Bg 14x° 4" ¥ Bg 1+x° &
T
™ 2 =G
4 g . X 1 3 X 2
+ == U g _(x)dx - r g (x)dx]“}
3 BS 1+x2 n Ll AES 1+x2 n
Be-B ®
1 °sT°s 4 G X X
_ 1 24 X _g (x)dx g . (x)dx. (63)
2 BS 3 BS l+x2 n l+x2 d

The Brillouin components are then given by

optig on—-18
B ¥ —2 (64)
iv iv
y+6+ — yt0- —
Vo Vo

where oy and g are still to be determined. We shall find

them by comparing (64) with the second term of (54).

Writing

b = b, + b,

c = cl + 02

¢y =¥ Cp s (65)

where bl’ Cys cé are real and b2, c, are pure imaginary,

we ldentify
= '

V ~
20B6 + 2g ;; = [bl + b2 y]y.=v/vo . (66)
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Therefore,

Be-B 2 % 2
1- S X 4 G X
20, = = {1 - i) g.(x)dx - z g— J ——= g _(x)dx}
B Y BS 1+zx2 d 3 BS 1+zx2' n
(67)
v Ba-B 2 o 2
: S S X 4 G X
2g = =—= {26+20 s g.(x)dx + = — | —2—
2Yv BS l+zx2 d 3 BS l+zx2
x gn(x)dx]} . (68)
Hence the spectral distribution 1s glven by
20 S
O'(k,w) = 20 o] + O,B [ 2T 5 5 2I‘2 2]
w"+S (w+vk)“+T (w=vk)“+T
+ 2g w+vk2 5 = w-vg =| * central components
(w+vk)“+T (w=vk)“+T
due to relaxation processes. (69)
In the above, we have written
X k° 1
So= VoK ¥, = 5oy 0o =1-3,T= v k 8. (70)

The intensity ratio is, as before, gilven by R= IR/2IB=

1
2—0" - l .

B
The central components arising from the relaxation

processes are in general quite mixed together and the
resultant distribution is in general not Lorentzian.

However, by virtue of conservation of intensity, their
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combined contribution 1s equal to

o' = 1-0, - 20g - (71)

One can obtain a very approximate expression for
such a resultant distribution. Assuming that it 1is
approximately Lorentzian, one can write down 1ts con-

]
tribution to o(k,S) as SiS' .. Neglecting the contribution

to the intensity at w=0 from Brillouin components we have

1
g =1im _by+tec 1
y*0  y2i08y+a Vol
Bo-B w
1-,8 S = 4y ¢ =
= = { T. + = =& T.1}. (72)
Hence o
B.-B 0
3 7S = 4y g =
 — ' - =
S o'y/ FE—= T3t 3B Tn} . (73)
S 2 5s
The contribution to o(k,w) 1s then given by
20'S!
w2+S'2 . (74)

It can be verified easily that in both low and high
frequency limits, (61) and (67) both reduce in the case of
single relaxation times to the expressions for 2T and 20B
given in §5.5. The expression for v2/vg in (5-=47) and

(5-48) can also be obtained as such limits of (63).
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Chapter 8

DISCUSSION AND SUMMARY

In the preceding chapters of this thesis we have
given a formulation of the problem of calculating the
spectral distribution of a liquid which possesses both
a relaxing bulk and a relaxing shear viscosity. The
former is ascribed to the relaxation of ordering para-
meters and the thermodynamic theory of relaxation
processes has been applied to the calculation of the
density correlation function, and hence of the spectral
intensity. It was shown that such a treatment enables
one to determine the extent to which the integral repre-
sentation for the reléxing'bulk viscosity is appropriate.

As for the shear viscosity, it must be taken as
the low frequency 1imit of a shear relaxation process 1if
the occurrence of Brillouln components is to be explained
in liquids of high viscosity. In general, the use of a
relaxing shear viscosity 1s necessary whenever um/BS 2 1.
This condition is easily met in liquids of high viscosity
for the values of w involved in 1light scattering experi-
ments. Parenthetically it may pe mentioned that in
neutron scattering this condition is met in other liquids

also, and 1t 1is well known that the neutron scattering
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data requires that high frequency shear waves propagate
in liquids without much absorption, indicating the
necessity of using a relaxing shear viscosilty.

In Chapter 5 we have calculated the spectral
intensity for the case where both the bulk and shear
relaxations are each characterized by a single relaxa-
tion time for many liqulds (e.g., the so called normal
liquids). However, one usually has x2(=vokrn) << 1,
whereas X4 can have values guch that'xd'Z 1. As already
mentioned in Chapter 5, this speclal case of our results
has been discussed by previous workers-1ln some-detail
[24, 27, 32]. We shall therefore confine our comments
- here mainly to ilquids-of high-viscoslty.-

The viscous liqulds have the property that their
shear and bulk viscosities; and"hence'Th and‘rd, are of
the same order of magnitude at-a given temperature, and
that both increase sharply as the temperature-decreases.
It 1s, therefore, possible by varying the temperature to
obtain the spectral intensity of scattered llght for
different values of X5 and X4 covering the range

X55Xy4
The expected qualitative behaviour of the-spectral dis-
1

<$ 1l to X5sXy4 >> 1, X, ,0X 4 << 1l to 0X 550X 3 >> 1,

tribution as one goes from low frequency (high temperature)

to high frequency (low temperature)limit 1s as follows:
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(1) In the low frequency limit, x, << 1, x5 << 1,
the central components due to the relaxing modes have
very large half-widths but small total intensity, so
that they form a weak backgfound; The central line is
predominantly due to thermal conductivity, and 1is very
sharp. The Brillouiln components are also very sharp
and somewhat talier than the central components.
(i1) As temperature decreaseé'SO‘that XosXy ~ 1,
9(=P/v6k) is not very small compared with  unity. The
Brillouin components then become broader- and shorter.
Further becaﬁse the g terms (see 5-61) have now hecome
significant, the shape of the Brillouin components will
deviate from the‘Lorentzian shape, with the maxima
displaced towards the centre (w=0) of the spectrum.
The central components due to the relaxing modes now
have smaller half widths and greater heights.
(iii) As temperature decreases further'SO‘that’x2,xd >> 1,
the Brillouin components become- very short compared with
the central line which is now predominantly due to con-
tributions from the relaxing modes.

The above behaviour 1is in gualitative agreement
£

with the measurements of Knaap, Gornall and Stoilcheff

[36] and Pinnow, Candau et al. [35] on glycerine.
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For a quantitative comparison one has to take
into account the fact, which is well known from ultra-
sonic work, namely, that both the bulk and shear
relaxations have each to be characterized by a multi-
plicity of closely spaced relaxation times. 1In
ultrasonic work the only relevant quantity for bulk
relaxation is the complex moduluS'BS(iw),'so that it
is sufficient to interpret ultrasonic -data in terms
of one distribution function for bulk relaxation and
one for shear. These are the distribution functlons
gd(r) and'gh(r)'introduced'in'Chapter"7. ~In contrast
to this we saw in Chapter 7 that-the-expression-for
spectral intensity, in general, contains two-distrlbution
functions gd(r) and'gé(r); “only when-all the bulk relaxa-
processes are of the same type does the expression for
the spectral'intensity contain one distribution function
(gq(1)). |

Montrose, Solovyev and Litovitz  [30] have empi-
rically generalized“Mouﬁtain'S"expression'for the case
of single relaxation time to cover viscous liquids.

Their expression+ thus contains one distribution function.

T Like Mountain's expression in [24], it is thus

strictly valid if all bulk relaxation processes in the

liquid are density induced.
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for bulk relaxation and one for shear relaxation.
Pinnow, Candau, La Macchia and Litovitz [35] have
used this expression to interpret their light scatter-
ing data in glycerine. They find-that gd(T) which
fits the light scattering data 1s substantially
different from that required to fit the ultrasonic
data, whereas as for shear relaxation, the two are
practically the same.
Our work suggests two possible explanations
for the discrepancy referred to-above:
(1) all the relaxation processes are of the same
type but they are not denslty induced;
(2) all the processes are not of the same type.
This is supported by the fact that it 1s experimentally
found for glycerine that Bw#B, so that all the bulk
relaxation proéesses, taken as a whole, are not purely
density induced [see, for example, Ref. (13), p. 254].
The above discussion and summary refers to the
work described in Chapters 5 and 7. In Chapter 6, we
drew attention that one should, in general, distinguish
between the velocity v of the temporally absorbed sound
waves and the velocity Vg measured by the relation

Vg = wB/k, where wp is the shift in the frequency of the
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Brillouln components. The difference between Vg and v -
is significant whenever the sound absorption per cycle
is not small compared with unity. A numerical example
shows that the difference could be as much as 10 to 15%

iIn relaxing liquids.



APPENDIX

FLUCTUATIONS OF THERMODYNAMIC QUANTITIES

A.1 Method of Calculation

Let a physical quantity x deviate from its mean
value X by a quantity 6x. If the probability distri-
bution for such a fluctuation is of the form

b(ex)®, (1)
B

w(éx) «exp {-

where b and kB are constants (for later purpose, kB will

be Boltzmann constant), then the distribution is Gaussian,

and the mean square fluctuation is

< §x°> = kg/b (2)

If there are simultaneous deviations of several
physical quantities X715 Xp sovs Xpo and if the probabi-

lity distribution 1s

1
w(le ...Gxn) < exp {=- I z ik6x16x } o, (3)
B 1,k
then it can be shown that [29]
5x,6%, > = k. B (4)
< 8x, 6%, B Bik s
where B™! is the inverse matrix of B = 1By, |-

Let us now consider a volume element VO of fluid

embedded in a large fluld system. We assume that Vo is



large enough to allow thermodynamic description. Although
the fluid in VO is at equilibrium, it will at any instant
of time experience fluctuations of the various thermo-
dynamic quantities. The probability of a fluctuation is
related to the minimum work required to carry out rever-

sibly such a fluctuation by [29]

w « e Fmin/KgTq (5)

3

Rmin = §U - T8S + P&V - Z6¢ , (6)

where GU, 6S and 8¢ are the changes in energy, entropy
and the ordering parameter-of-the fiuid in Vo' Writing

U=U(S,V,&) and assuming that the fluctuations are small,

we have from (6)

2 "2 2 2

U .2 ,9°U .2 ,3°U .2 3 °U
R :;éf_a__.ss + —= V" + —= §E"+ 2= 6S 6V

min -3 g s £2 5V

2 2
- d°U 5 U
+ 2 5§i€'53 SE+ %YWTE 8V 8g]
3 U

363 G(g"[sl)v,g + 8V 5(3_3)3. gt 88 §GE)g vl

% (8S 8T - &P 6V + 8Z 6& ) . (7)

If we substitute (7) into (6), choose three independent
variables and expand the rest in terms of them, the

probability distribution becomes Gaussian and the results
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of (3) and (4) can be used to calculate the mean square

fluctuations of the various quantities.

A.2 Mean Square Fluctuations of the various thermodynamic
Quantities

Eq. (7) can be written as

\

2 R = 63 8T + 5 8P 6p + 82 . (8)

min

Taking p,T and Z as independent variables and making use

of (3-14), we have

c V. B
.~ vV 2 o T §
2 Rmin = T; T + p2 Gp T GZ + 2( )T’OGTGZ .
o

(9)
In (9), 6p is independent of the others. Hence, using

(2), we have

2
Po kT
< 602> = —v—%—g (10)
o T

< §p8T>= 0 (11)
< §p8Z>= 0 . (12)

The other fluctuation quantitles in (9) can be evaluated

by defining

1 s . 105
( Byo= Bpy*® TO(BZ)

)T’p T’p
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Hence
1 ,°v 2 35,2
B = —— — —-— —
o)
_ _1 02§ ol -
= 3 (a‘“z)T,p cy » using (3-22)
o)
therefore
2
k- B ko, T
< 6T2> = B 22 = Bw o] (13)
|B| cy
ko B c
DY B s VIR S O
|B| cV s P
=k, T (QZ) using (3-34) (14)
B o BEg‘S,p
2
ko, B ko, T
<oz om> = - 222 - L B0 @5, . (15)

The mean square fluctuatioq‘df number density can be

obtained from (10) as

2
nS k., T
< 8n®> = _%_g__o . (16)
o T

The mean square fluctuation of the number of particles

is P
n- k, T V
< 6N2> - _0 B "o 0 i (17)
By

If we now take S, P and Z as independent variables,
we have

§2°+ 2(2-%)5,2 §P&Z
(18)
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From (18), we immediately have

2, -
< 85%> = ky cp (19)
The determinant required for the evaluation of the
fluctuation in other variables 1is
1ogo L) @2
T2 BS 92’S,P dP’S,Z
O .
2
. Llgo gy _Yo@ep
T2 BS 9Z2’S,P 2 9Z2’S,P
o) Po
Yo a1 _Yoap e
2 9Z’S,P B 2 9Z’S,P 9&’S,P
T S P
o) o)
A
= =% G2)g p = using (3-26)
T ** B
o] S
Hence
k., T Bo
< §P°> = _E_VQ_Ji (20)
o)
kT B
- _..Bo S QdEF 92
< 8P 62> = v, GPls,z GTs,p
k. T By
= . B o 8 83p (21)
9E‘S,P
o)
< 83 &8P> =0 (22)
<83 62> =0 . (23)

If we now take S, P and & as independent varilables,

we have
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. 0 552 4 ©
2R, = -2 68% + -2 p%+ (ag)s o SE%H 2(ag)s p §SSE.
S (24)

o

The value of the determinant for S and £ is

l .0 82 3T.\2
- {—= =) - () }
2 "o BE’S,P dE’S,P
To CP
1 232
= (%) , using (3-24)
T.cp 9E’S,P
Hence
k T c
%g®> = P © Gs,p
°P
- 5 §)T p » using (3-33) (25)
< §S6E> = = (az)s P (26)
< 6P§E> = 0 . (27)

For p, T and £ to be independent variables, we have

v Co 2V,
Lo g™ o 2, V .2, QZ
2 Rmin = p——2 BT Sp~+ T—O ST+ (3_5 T,0 65 + ————po (ag)T’pspsg
© (28)

The value of the determinant for p and & is

—2-{ B - v G52 L}
SE;To 09 ET,p
pOTO
Bp V,
_ o 37
= —5—5—-(§EQT’D , using (3-16)
pOTO
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Hence
p kB T 3
< 6 6 > = _9__——0 __E_ 2
pSE 5. G7)1,0 (29)
< 8T6E> = 0 . (30)

Finally for p, S and Z as independent variables,

T

« 2
2 Rmin =3 8S

v

0 2 9T
pO

2 2

8p8S + (g—%)s,paz
(31)

S,z

<

Using (3-12) to evaluate the determinant for S, p, we

have
< §p6S> = = 52_(223 /(V Bn/T c p2)
e To 9p’S,Z o T 70" V"o
Now
Ty Yo ary . _lopoy ap
9p’S,2 Po 9 P,2 N 83S’'P,Z ‘9p’S,Z
= - YQ.(@QQ AL R
b, 8T P,Z 95°P,Z2 §p’S,Z
=V BT BT/cV o (32)
Hence
< §p6S> = —p kgT 8 (32)
< 8p8Z> = 0 (33)

If we now write

§P ST = 8T {(g—g-)T,Ec'Sp + (g_g)p,garr + (g—g)T’p SE},

and make use of (11), (13) and (30), we have
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0 cor 2
8 BokpT
<sp &§T> = @By <§ 2> = — L B0 (34)
anag o
[¢]
v
For
6P6p‘6p{() aT+<3P> + Gf)g , 02}
3T p,2 T,Z Z'T,p ?

and make use of (11), (12) and (10 to obtain
k, T
- QP 2, _Po "B o
For

82 6 = 55{(3T)P g ST + (BP)T gSP + (ag)T p SE},

we make use of (25), (27) and (30) to obtain

<82 8> =kg T . (36)

Similarly, we have

- 2, _
< 8§S 8T> () <6T>-kBTO . (37)

It is convenient to summarize the results as in Table 2.

A.3 Fluctuations of Fouriler components of thermodynamic
Quantities

For this purpose we write the minimum work as

Rmin = % é Po (86U - TOSS + POGV - 28%) av , (38)

where the extensive variables in the integrand refer to

values per unit mass and the integrant then represents

R per unit volume. By the same procedure as before,

min
(8) becomes
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Table 2. Mean square fluctuations in various thermodynamic
quantities. (To obtailn, say, < §PSp>, read the
intersection of corresponding row and column.)

Mean
fluctu- éS 8T 8P 8p 82 14
ations
éS chP kBTo 1 0 -pokBTo 0 —chP x
x B o T
(ﬁ)s,P
2. oo 2 2
8T kBTO kBTo» B BTkBTO 0 _kBTo ) 0
[+ o] o
Cy y v
93
GE)r,0
©_o - 2 o ©
SP 0 B BTkBTo kBTOBS pokBTo kBToBSy 0
c; v Vo Po
L)
9&’S,P
2
Sp -PoKgT, 0 PokpTo Po¥pT, 0 |pokpT, x
x B VO , VOBT BT
3 &
(§TZ)T,p
2
82 0 -kBTO § -kBT Bsx 0 kBTO X kB TO
o p
°v © @2y
A3, 22 9E"S,p
3.€°Typ 3E’S,P
s¢  |7¥B% | o o [Po¥BTo kT, |FBTo ¥
&L °1 &)
92’S,P @E) 32°T,P
5Z2'T,d




R, = %o, 6 '(asaT+;% §PSp + 8Z6E) AV . (39)

o} o

If we take p, T and Z as independent variables, (39)

becomes
c B
~ -V 2, _Tg 2 9&
Roqn = % P, 6 [7— 6T+ 360" + G3)p 62°+ 2(3Z)T,p x
(o]
(o] (o]
§T8Z] av . (40)
. We now define
> >
p(k) = =1 8p(¥,0) e~1K.T 43 2 ete. (41)
o V
Therefore
> >
§p = L p(E) eik°r ete. (42)
k
Therefore
> - >, >
1602V = 3 J o(B)p(kr) elkeT JIK'.r 4y
k,k'
=V, Z o(K)p(=k) . (43)
k .
Similarly,
remlav = v, 3 T(R)T(-R) (L)
k
F6T6ZaV = V_ £ T(k)Z(-k) = V_ £ T(-k)z(k) . (45)
° x ° x
Therefore

- B
Bnin = Vo 2o (2~ °OV T(k)r(-%) + X 2 po(-k) +0,G2)p
o

x 72(k)Z(=k) + 2 P, ( r(k)z(-k)} . (46)

BZ)T,p



Now from (42), we have
p¥(k) = p(-k) etc.

Let us define

D(E) = pl(K) + ip2(ﬁ) etc.
Therefore

p(-K) = py(K) = 1p,(k)

> 2, 2
z p(k)p(=k) = Z (p] + p5)
L e(k)e Z (py + 0

From (45), we have

z (lel + T2Z2) + 1z (T2Z1 - le2)

k k
= I (TlZl + T2ZZ) -12 (T22l - le2)
k k
Hence E (T2Z1 - le2) =0
' > >
Therefore £ T(k)Z(=k) = % (lel + T2Z2)
k k

Hence (U46) becomes

PeCy 2 T 2 3E 2

=V % z {(=— T + =pS+p,GZ)p 2

Fmin = Vo 2. (i1 T, f ;g 1P 37, p%1
95 T,.7,}

* 20,70, T12

(47)

(48)

(49)

(50)

(51)

(52)

(53)

From (53), we can conclude that quantities with the

subscripts 1 and 2 are statistically independent.

is

< pypy> = <E1T2> =< le2> = 0 etc.

" That

(54)



Also, since the i=1 case involve the same coefficients

as the i=2, we have

< p§> =< p§> , <TyZ,> =<T,Z,> etc. (55)

Using (55) and (56), we have

2<p§ >

< p(X)p(-k)>

]
o

< p(k)p(k)>

< T(R)Z(-k)> = 2< T,Z,>

<r(k)z(k)> =0 (56)
Making use of (9)-15) and (56), we have
3 2
T > 1l pokBTo pokBTo
< p(k)p(=k)> = { }= (57)
poVo BT VoBT
< T(k)p(-k)> =< 2(K)p(-k)> = 0
2
kT
<T(R)T(-K)> = —22
povocV
KT
< 2(T)z(=k)> = B2 (&%)
PV, 9E°SsP
> > kT s \
< 2(k)T(=k)> = - —— GFlp o (58)
Sy

One can obtain all the other fluctuations quantities from
Table 2 by putting Vo to be pgl there and then divide by

povo' The results are summarized in Table 3.
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Table 3. Mean square fluctuations of the Fourier transforms
of the various thermodynamic quantities. (To read,
see Table 2.)

Fluctu-
ations of
Fourler - > > > > >
Compon s(ty| m® | e | ek 200 [ &k)
nents
S(-k) kpep | kpTg 0 -kgToB [ 0o —kpcp X
p V .V v o T
o0 oo o (BZ)S,P
[P T T | g Bk T2 kT2
T(-k) B o B o "B ol - O "B~ o N 0
PV Vel |lp V co v el
©o0 Po olv po ocV : po ocV
33
GE)r,p
. co_ 00 2 o (<]
P(R) o | 8 BpkgTg| KpToBg|PoksTs MXpToBs| o
o V e v \i 2
o o-V o] o] poVO
]
(ag)s,P
2
o (-K) “kgTof 0 ook Tl Pk | o [*BTo
Vo Vo VoBT BT
3 €&
(BZ)T,p
> . 2 co
Z(-k) 0 -kBTo § —kBTOBSY 0 ‘kBTo kBTo
pOVOc; inO, poVo poVo
92
98 9p 32
>
E(-k) -kgCp 3 0 0 kgT, ) T )
2 V B p p V
pOVO o T o0 oo
3 & 9 £
3T (=) (=)
(aﬂsm 9Z2'T,q 9Z’T,P




When a system is close to the critical point, the
quantities Kip and Cps and hence the fluctuatiqns in p
and S become anomalously large. Therefore the condition
for statistical independence of neighbouring subvolumes
is more difficult to satisfy. For small fluctuations,
the homogeneity of the system is not too much destroyed
so that one can neglect the spatial derivatives of the
inhomogeneity distribution. In the language of Fourier
transform, this is equivalent to saying that the pre-
dominant components [see Eq. (42)] have small k. If
the inhomogeneity becomes pronounced one cannot neglect
the spatial derivatives of the fluctuations, and must
include them as corrections. For an isotroplc medlum,
the first order correction to the calculation of mean
square  fluctuation of p must be of the form (VGp)2
[?9:[° The other possible form of V26p when integrated
represents an irrelevant surface effect, while a form
like GpV26p can be transformed into a term involving
(VGp)2 plus, another irrelevant surface term. Because
of the presence of the terms*(VGp)z, the evaluation of
<6p2> is difficult and depends on the shépé of the region
also. The calculation of the fluctuations of the Fourier
components is easily done and 1s of importance for the

light scattering problem. Since the fluctuations of p and
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those of T and Z are statistically independent, we shall
choose these as independent variables and can in the
following omit the T and Z description, or assume that
they are constant. In this case, we have from (4o),

B

R, =% I 8% + 2 (v6p)°] av , (59)
po po

where b is a positive constant in order that the free

energy F is a minimum at P=P, where AF = Rmin' Using
(42) and the procedures in obtaining (57), we have

2
pok T

<p(k)p(-k)> = =220, (60)
V(BT+bk )
where V is the scattering volume.
In Brillouin scattering, k2 can be obtained from

(1-32).

A-4 Fluctuations of Fourier components for Multiple

Ordering Processes

If there are present in the liquid n ordering
processes described by ordering parameter gl, co oo gn
corresponding to ordering forces Z1 c.,.QZn, then Eq.

(38) is generalized to

zZ

§g,) 4Av . (61)
1

i

WS

= % - - -
Ry =%/ p,(8U = T 65 + P8V \

If we take p, T, Zl e Zn as independent varilables,

(61) becomes
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c B 3E
V 2, °T, 2 1 2
R =% p [[m 6T+ —=6p"+ & (55=)q 02
min o TO pg 1 BZi T,p "1
+ 23 &5 §T6Z,] dv (62)
1 92 Tsp 1 .

If we define p(k), T(k) and zi(K) etc. as in (41),

and follow the same procedure as before, we get
2

v e PokpT
< p(R)p(-K)> = 552
kTP
< T(K)T(——lzb = B Z
poVCV
K

> >

il
o
i)
O
]
[
hS
[

<zi(§)zj(-‘1z>>

]
(@)

<z, (R)p(-K)>

0 etc. (63)

< T(kK)p(-k) >

The other fluctuation gquantities can be obtained easily.
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List of Important Symbols

bulk viscosity

adiabatic bulk modulus

isﬁthermal bulk modulus

velocity of light in vacuum

isobaric specific heat

isochoric specific heat

shear modrlus at infinite frequency

integrated intensity of the Brillouin components
integrated intensity of‘the Rayleigh component
wave number of hypersonic.sound wave

Boltzmann constant

number density of the scattering medium
temperature

velocity of temporally absorbed sound wave
velocity of spatially absorbed sound wave

sound velocity at zero frequency

sound velocity at infinite frequency

sound velocity measured from the Doppler shifted
Brillouin components

v0 k TSV

vo k TTV
vo k Tn

v0 k Tn



vg/vg

Bg/Bg

order force

This symbol has been used to denote different
quantities, namely the polarizability

[Chap. 1], the sound absorption per wave-
length [Chap.2] and a dimensionless quantity
involving the thermal conductivity [Chaps. 5, 7]
average polarizability of the molecules in the
scattering medium

coefficient of volume expansion

sound absorption per second

dielectric constant

shear viscosity

specific heat ratio

wave number of the incident light

wave number of the scattered light

adiabatic compressibility

isothermal compressibility

thermal conductivity
wavelength of the incident light

angular frequency of ttre hypersonic sound waves



angular frequency of the incident light
angular frequency of the scattered light
density of the scattering medium

shear relaxation time

F/vok. It also denotes the scattering

angle.



