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Abstract

The Smart-Condo™ is a comprehensive platform that aims to provide a variety
of services, based on information gleaned from sensors deployed in an apartment,
that can potentially improve healthcare delivery. One of our main objectives has
been to develop an accurate non-invasive occupant-localization method using pas-
sive infrared sensors. In this thesis, we present a simulation framework with which
we investigate tradeoffs between the number of sensors and the localization accu-
racy of our platform. We compare the results of simulations and real-world trials
and conclude that our simulation framework is a reliable estimator of the localiza-
tion accuracy of a particular sensor configuration. We then propose a methodology
for planning new deployments that takes into account geometric properties of the
new space and the context of occupant’s activities. More specifically, we describe
a model with the potential to capture typical indoor mobility patterns and formu-
late a sensor placement optimization problem based on this model. We propose a
placement algorithm with near-optimality guarantee. Through simulation-enabled
evaluation, we demonstrate that this algorithm generates sensor configurations with
localization accuracy superior to that achievable with the same number of sensors

placed manually or randomly in the same environment.
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Chapter 1

Introduction

The term “Smart Home” refers to a home embedded with sensors, with which to
observe the environment and its occupants’ activities, and actuators, with which
to automatically control the home ambience and devices to improve the occupants’
experience [6]. Sensor-based systems are a common means of non-intrusively mon-
itoring a person’s activity and providing this person, and his formal and informal
caregivers, with useful information for making decisions regarding his care [7]. In
our work on the Smart-Condo™ project [28] we have been developing a compre-
hensive platform for addressing this broad research problem.

The evolution of the Smart-Condo™ platform has been driven by two major re-
quirements. Its architecture needs to be extensible in order to support (i) the flexible
integration of a variety of sensing devices and (ii) the straightforward development
of various analysis tools, as required by the specific clinical scenarios motivating
the system deployment. With regard to the first requirement we have been able to
employ (a) motion sensors, (b) reed switches, (c) pressure sensors, (d) electrical-
current sensors, (e) light/temperature/humidity sensors, and are currently working
on integrating (f) RFID readers. The deployed hardware coupled with the appropri-
ate data analysis tools determine the core features of the system, such as location-
and activity-recognition, alert generation, home automation, etc.

To date, the Smart-Condo™ platform has been deployed and evaluated in three
different spaces. The first deployment took place in 2009 and served simply as a fea-
sibility exercise. The second deployment was used to support discharge planning at

the Glenrose Rehabilitation hospital (Edmonton, Alberta, Canada) in the summer of



2011 [34]. A patient, about to be discharged, stays in the Independent Living Suite
(ILS) for several days in order for the discharge team to assess the patient’s abil-
ity to live autonomously. Typically, while patients stay in the ILS, nurses have to
periodically check on them for the sake of their safety and well-being, which contra-
dicts the purpose of the stay. The Glenrose clinicians have considered using video
surveillance, however, some patients are unwilling to accept this technology out of
privacy concerns. We equipped the ILS with non-intrusive and privacy-respecting
sensors and analyzed data recorded during the stay of two patients. At the end of
each trial, we generated extensive reports and visualizations for the discharge team

and thereby enabled the caretakers to make better informed decisions.

Cost of deployment. After the first two deployments we realized that a major
factor hindering the widespread adoption of the smart-home technology is the de-
ployment and operational costs involved. There are at least three factors influencing
the cost of a new deployment: (a) the cost of hiring an expert who can analyze the
requirements and design a sensor placement that satisfies the geometric specifica-
tions of the new space and guarantees a desirable performance level, (b) the cost of
equipment, and (c) the cost of manual labor needed for installing the sensors and
maintaining the complete system (e.g., replacing dead batteries in wireless nodes).
Clearly, one way to reduce costs is to minimize the number of sensors necessary
for generating data of acceptable quality. Our past experience suggests that the
minimization of the number of sensors is challenging since it requires numerous
trial runs on the fully deployed system until an acceptable sensor configuration is
found. Organizing such trials is cumbersome as they require human participants
and, possibly, relocation of already deployed sensors (if the initial configuration
has not been successful). To alleviate this problem, a workflow for simulating and
evaluating a sensor placement under particular deployment conditions in the pre-
deployment phase has been proposed by Ganev et al. [13]. We continue using a

slightly modified version of their approach in this thesis.



EvAAL competition. The validity of the aforementioned simulation-based ap-
proach was demonstrated through our participation in the indoor localization track
of the “Evaluating AAL! Systems through Competitive Benchmarking” competi-
tion (EvAAL, http://evaal.aaloa.org/) in July 2012 [30]. This became the third mile-
stone for the Smart-Condo™ project. Although our system has been conceived as
a multipurpose platform, for the competition we primarily focused on developing
an accurate location-recognition method.

The importance of the occupant’s mobility data cannot be underestimated as,
on a long-term basis, such data can be mined for patterns potentially useful for
prevention and diagnosis of chronic conditions [26]. As a short-term benefit, a
system with an accurate location-recognition method can substantially improve the
occupant’s living experience as it can provide home automation (via actuators) or
guidance/alert services (e.g., for people with vision impairment) based on the oc-
cupant’s location or movement trajectory. Therefore, our competition deployment
comprised of motion sensors only, more specifically, a wireless sensor network
(WSN) of passive infrared (pyroelectric) sensors, and real-time localizing software.
Note that the location- and activity-recognition results from the previous two de-
ployments were qualitative in nature, partially because the experiment design did
not allow knowledge of the ground truth of the occupants activities. Thus, the com-
petition deployment was the first time when we were able to systematically evaluate
the localization performance of our platform in real-world trials.

During preparation for the competition we investigated a tradeoff between the
number of sensors (and an underlying sensor placement strategy) and localization
accuracy, using extensive simulations. We manually designed three sensor con-
figurations, one of which was eventually deployed at the competition. One of the
contributions of this thesis will be to compare the results of the competition de-
ployment to the corresponding simulation results and conclude that our simulation
methodology has the potential to reliably estimate the localization accuracy achiev-

able with a particular sensor placement.

' Ambient Assisted Living



Automated sensor placement. Despite multiple benefits, the simulation-based
testing framework lacks a systematic approach for designing candidate sensor place-
ments, which are assumed to be intuitive or suggested by experts. In this thesis we
advance our pre-deployment testing methodology by introducing a semi-automated
approach for generating sensor placements. Our approach is driven by the fact
that “the relative sensor-target geometry can significantly affect the potential per-
formance of any particular localization algorithm” [4]. Therefore, we hypothesize
that the geometry of sensor placement can be optimized with respect to the mea-
surements being taken, i.e., localization of the occupant of the indoor environment.
We show that it is essential for this approach to incorporate information about both
geometric properties of the physical space and the context of anticipated activities
performed by the occupant of the space.

Such an enhanced methodology may become the first step towards self-config-
uration of our system for deployments in new spaces. The crucial implications of
this work are the following: (i) we eliminate the need in either expert knowledge or
intuitive guesses required for manual sensor placement, and (ii) we may find (in a
systematic fashion) a candidate sensor placement with a reduced number of sensors
that is yet able to achieve a desired performance level. Therefore, our work makes
a promising case for the reduction of the overall cost of a new deployment and,

consequently, towards greater proliferation of the smart-home technology.

1.1 Thesis Contributions

This thesis makes the broad contribution of a deployment planning methodology
for indoor localization tasks in the Smart-Condo™ and other smart-home-like en-

vironments. The specific contributions are as follows.

e We conduct a thorough evaluation of the simulation-based testing framework,
i.e., we compare results achieved in simulations and real-world experiments.
The analysis of these results grounds and gives insight into the development

of a semi-automated sensor placement approach.

e We propose a sequence of primitive image transformations to be performed
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on the floorplan of a new deployment space, and develop customizable pars-
ing software that translates said floorplan into a set of versatile data structures

describing the environment within a uniform grid.

The resulting data structures address a number of issues related to the rep-
resentation of various objects supported by the existing simulation software.
Namely, the new grid representation of the space dispenses with the artifi-
cial notion of room boundaries (used to determine the obstruction effect of
the walls on the coverage models of sensors) and instead allows for arbitrary
walls and other obstacles (e.g., columns). Significantly, one of the generated

data structures represents movable furniture (e.g., chairs).

We propose a framework for modeling anticipated mobility patterns based
on the grid representation of the space. This mobility modeling is used to
generate a heatmap of the space, where the “heat” on a grid cell corresponds
to visitation frequency. We further show how these frequencies translate into
measures of coverage utility, which we use to represent how useful it is to

monitor that location with a sensor.

We define a sensing model of passive infrared sensors based on “quality of
coverage”, and incorporate properties of the sensor-obstacle geometry into
this model (e.g., to address sensors whose coverage extends through the door-

ways).

Using the aforementioned coverage utility values and sensing model, we for-
mulate a sensor placement optimization problem: maximizing coverage util-
ity given a limited budget of sensing devices. We then propose an approxima-
tion algorithm that finds a solution to our problem within a reasonable time

and with strong near-optimality guarantees.

We finally conduct an extensive simulation-based evaluation of our approach
by comparing the optimized placements against placements with the same
number of sensors placed manually (assuming adequate expert knowledge)

or randomly in the same space.



In summary, a major contribution of this thesis is a novel approach to sensor
placement for indoor environments. To the best of our knowledge, the problem of
sensor placement optimization, although well studied in a more general context of

WSNss, has not yet been covered in the context of smart-home related research.

1.2 Thesis Organization

The thesis is organized in two major parts. In the first part we focus on the specifics
of localization with passive infrared sensors and report on empirical studies per-
formed in preparation for and during the indoor localization competition. This part
starts with a review of relevant indoor localization sensor technologies in Chapter 2.
We continue with a description of the Smart-Condo™ architecture and simulation
framework in Chapter 3. Next, we present experimental results obtained in simula-
tions and a competition deployment in Chapter 4.

The second part of the thesis is dedicated to sensor placement optimization. We
review research efforts in the broader field of optimal sensor placement for WSNss,
relate them to our problem formulation, and introduce background concepts and
definitions in Chapter 5. We define an objective function and propose a greedy
placement algorithm in Chapter 6. We report the results of the experimental evalu-
ation of optimized placements in Chapter 7. We discuss limitations of our approach
and avenues for future work in Chapter 8, and conclude with a summary of the

results achieved in this thesis in Chapter 9.



Part I

Localization with Passive Infrared
Sensors: Simulation and Practice



Chapter 2

Review of Indoor Localization
Technologies

In this chapter we focus on approaches and sensor technologies for indoor localiza-
tion in AAL environments. In particular, we present fundamentals of localization
with passive infrared sensors and discuss advantages and limitations of alternative

technologies.

2.1 Basics of Localization with Passive Infrared Sen-
SOr's

The motion sensors used in our platform are commercially available passive in-
frared (pyroelectric) sensors chosen for their miniature size, reliable human pres-
ence detection and low energy consumption [24]. Being passive, they do not emit
infrared light but rather collect incident infrared radiation from within the coverage
area. Thus, when a moving object with temperature higher than that of the back-
ground enters this area, the sensor will detect an increase in the amount of radiation.
The output of sensors is therefore binary: 0 for no motion, and 1 for motion detected
anywhere within the detection area; as a result, given a single sensor, the position of
the moving object cannot be discerned with any higher precision than the “radius”
of the sensor footprint.

The pyroelectric variety is not susceptible to changes in the background temper-
ature since only the transition in amount of radiation is detected. This specificity

introduces a special case that should be considered in the positioning algorithm:
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Figure 2.1: The volumetric coverage model of the “spot” sensor (from [24]).

the sensor will output O even if the person is within the coverage area but is com-
pletely still. One great advantage of these sensors over the majority of alternative
technologies used in indoor localization is that the person being tracked does not
need to carry additional devices and may remain unaware of the surrounding sensor
infrastructure.

The selected sensors come in a variety of volumetric coverage shapes (a cone, a
pyramid with a rectangular base), ranges (5-10m) and detection areas (ranging from
3 to 30m? in orthogonal cross-section at 2m-height). If the localization accuracy is
of crucial importance for the deployment, we opt for the sensors with the smallest
available detection area, i.e., the “spot” type with the rectangular footprint of 2 m x
1.4 m in cross-section at 2m-height. Figure 2.1 reveals that the detection area of a
sensor is formed by a grid of tiny detection zones and non-sensing strips. The spot
type has the most regular and dense pattern of detection zones as well as the most
precise boundaries of the sensing area of all the sensors considered for deployment.
Therefore, its coverage is well approximated by geometric primitives used in our
software. Further on we assume that the sensors are installed on the ceiling and
their main optical axis is orthogonal to the floor plane, i.e., the coverage pyramid
projects into a rectangle.

Besides minimizing the detection area, another way to improve localization
granularity is to have the sensor footprints overlap. In this case, the floor space
is segmented into a number of polygons, each one annotated by a bit vector; a 1/0
in the n*" position of this vector signifies that the n* motion sensor covers/does not

cover the polygon. Hence, the bit vector is a “signature” of the motion-sensor read-
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Figure 2.2: Overlapping sensors and corresponding bit-vectors.

ings that are expected to occur if a person steps in the corresponding polygon. Note
Figure 2.2, in which the region with a bit-vector (0, 1, 1) has the maximum possible
localization error Ro3 < R, (distance from the center of mass to the furthest corner
of the region). A sensor placement that yields no overlap becomes a particular case
of this assignment since each sensor covers a single polygon and thus at any given
time of system operation a signature of readings can contain at most a single 1 and
the rest 0’s unless the sensors are malfunctioning.

Although the strategy of overlapping sensors may significantly improve the lo-
calization accuracy, it also increases the cost and complexity of deployment. To
better understand the implications of this tradeoff, we apply the simulation-based
testing methodology to both overlapping and non-overlapping schemes of sensor

placement in Section 4.1.

2.2 Alternative Indoor Localization Technologies

Two recent surveys cover the topics of indoor positioning techniques and a broader
topic of localization within WSNs respectively [20, 32]. Both surveys assume that
the object of localization is another mobile or stationary node in the network. In
terms of AAL scenarios this means that a person to be tracked has to carry a piece
of equipment compatible with the rest of the network.

This type of localization involves measuring various properties of signals ex-
changed between the wearable unit and the surrounding infrastructure. The sig-

nals used for measurements can be radio frequency (RF), acoustic, ultrasound, etc.
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Within the RF group of signals we will name just a few: ultra-wide-band measure-
ments (UWB), RF identification (RFID), Bluetooth, WLAN (IEEE 802.11), propri-
etary technologies using ultra-high frequencies, cellular-based for larger buildings,
etc. Some of the properties measured — which we will discuss in some detail —
include time of arrival, also called time of flight (TOF), time difference of arrival,
received signal strength (RSS), angle of arrival, phase difference, etc. Depending
on the network topology and measuring principles, various positioning techniques
can be applied, e.g., triangulation, multilateration, RF-scene fingerprinting.

All the aforementioned technologies differ in cost, applicability to AAL envi-
ronments, localization accuracy and by many other parameters. Therefore, we only
review parallel developments in the EVAAL community as we believe they ade-
quately represent the variety of localization techniques and are the most relevant to
our system. Notably, the tendency to avoid optical tracking techniques is evident
throughout recent work on localization, perhaps, due to similar privacy concerns
that motivated our own system development. Thus, two major groups of techniques
are (i) localization with wearable equipment, and (ii) ambient localization (i.e., sim-
ilar to our system). In the case of the EVAAL competition, most of the competing

groups belonged to the first group.

RF fingerprinting. Localization techniques that rely on wearable equipment most
often consist of a network of transceivers (short-range radio signals, ultrasound,
etc.) and a device installed on a moving target. A popular approach in such systems
is RF fingerprinting, which was used by three competitors. Grupo TAIS from the
University of Seville, Spain, develops a fingerprint-based system comprised of Zig-
Bee devices [22]. The major downside of their system is that it reliably localizes
only at the room identification level. Similarly, the LOCOSmotion project from
the University of Duisburg-Essen, Germany [11], relies on fingerprinting collected
from Wi-Fi access points and uses a smartphone as a wearable device. Additional
information is obtained from an accelerometer embedded in the smartphone. Al-
though such systems are usually easy to deploy or can even exploit the existing in-

frastructure (most indoor environments already have multiple Wi-Fi access points),
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the fingerprinting phase can be rather tedious since a database of signal fingerprints
for all possible mobile device locations has to be collected prior to localization tests.
In addition, this approach is sensitive to any changes in the environment, thus, the
created fingerprint database requires continuous maintenance.

To overcome this limitation, the OwIPS system [8] has an auto-calibration mech-
anism, which eliminates manual fingerprint collection phase and continuously up-
dates its fingerprint database during execution. The OwlPS deployment is one of the
quickest that appeared in the EVAAL competition, comprising of only four Wi-Fi
access points. However, with respect to localization quality, all three fingerprint-
based systems presented in the competition achieved the lowest accuracy scores

among all teams.

TOF measurements. The iLocPlus system [17] is an ultrasonic time-of-flight
measurement system that comprises of reference nodes and an electronic badge-
transmitter worn by the person being tracked. Successful localization relies on the
line-of-sight between the receiver nodes and the transmitter, therefore, the body of
the badge wearer may cause deterioration of localization quality in certain positions.
Overall, the accuracy score is better than that of our system, however, installation
i1s more time-consuming due to the large number of reference nodes required to
overcome (1) the obstruction effects of the body and (ii) ultrasound interference

caused by background noise.

Dead-reckoning. The localization system developed by the Centre for Automa-
tion and Robotics (CAR), Spain [15], combines dead-reckoning with absolute-
position estimation obtained from ambient infrastructure. The wearable unit col-
lects inertial data that are translated into position estimates, characterized by a dis-
tinctively smooth trajectory on one hand, and an accumulated drift on the other.
To minimize drift effects, the system is enhanced with RFID infrastructure that
provides absolute position references. A portable RFID reader is installed on the
tracked person, and active RFID tags are deployed in the space. This system re-

quires minimum installation effort and has one of the best accuracy scores. How-
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ever, as in the case with all wearable systems, it is arguable whether such a solution
will become acceptable for everyday use in a typical AAL environment.

Particular to the Smart-Condo™ project is our motivation to keep the system
minimally invasive, and therefore to avoid technologies that involve bulky wearable
devices. For example, we are currently augmenting our system with the RFID
technology; in our setup the readers are embedded in the ambient infrastructure,
and the RFID tags are attached to the moving objects (as opposed to the CAR
deployment with a portable reader). The tags are lightweight and cheap and can be
easily incorporated into a variety of objects, e.g., clothes, a wheelchair, a walker.
The main purpose of integrating the RFID technology is to distinguish between the
patient and all other people located in the condo. In a clinically-motivated scenario,
the patient staying in the condo is visited by a nurse who has his or her own RFID
tag (perhaps sewn into the uniform). Therefore, we are able to distinguish between
the object of localization interest (the patient) and the visitors (such as the nurse)

while the patient remains unaware of the surrounding RFID infrastructure.

Device-free RSS-based measurements. In the EVAAL competition, one com-
petitor was driven by a motivation similar to ours. The RSS-based device-free
localization system from the CPS Group of the University of Utah [16] consists
of static nodes deployed along the inside perimeter of an apartment generating an
interconnected graph of wireless links. When the person crosses the line-of-sight
between any of the links, their baseline RSS values start fluctuating thus indicat-
ing a particular location upon fusion of the data from all the links. This system
overcomes the typical for RSS-based approaches issues with dynamically changing
environments due to continuous online self-recalibration. The localization accuracy
of this system is among the best in the competition. There are a few shortcomings:
a fairly large number of nodes required for high accuracy results (e.g., 33 nodes in
58m?), they are powered from the wall outlets which involves extra cabling, and
they have to be installed along the walls on a fixed height not exceeding the tracked
person height. The latter can be impossible due to existing furniture. On the con-

trary, our motion sensors can be installed on the ceiling, anywhere on the walls or
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Table 2.1: Comparison of indoor localization technologies by evaluation criteria
used in the EVAAL competition.

z s 2 5 2

> = S = = =

& s 5 9 g |2 | =

g g $E 83 £<| 2%
Participant < < L= o< EE | Owm
CAR [15] 7.5663 8.2083 10.0000 6.5625 6.8095 | 7.6953
CPS Group [16] 6.9800 10.0000 3.4367 8.1009 7.7827 | 7.4531
OwlPS [8] 0.7845 10.0000 9.7067 6.3942 6.9167 | 6.2882
Smart-Condo™ 2.8079 9.0617 1.0000 6.8510 6.9048 | 5.4128
LOCOSmotion [11] | 0.6416 9.9593 1.7667 7.2276 6.7351 | 5.2344
iLocPlus [17] 3.6363 9.8377 0.0000 4.9038 5.0417 | 4.8588
Grupo TAIS [22] 0.6718 10.0000 0.0000 5.1122 5.1548 | 4.2192

even underneath a table/desk if we want to detect that specific location. They are
battery powered and communicate wirelessly, thus, require no cabling. If a sen-
sor needs to be relocated, we only need to change the configuration file since our
localization component by default takes into account every possible location and
orientation of a sensor in 3D space.

All of the aforementioned systems were evaluated by a number of criteria on a
scale from 0 to 10 for each individual component (for more detail please refer to
the online documentation of the competition [2]). The final score was obtained as
a weighted sum of individual scores. Table 2.1 presents the results of the compe-
tition. Although our system did not prove to have the best localization accuracy
in the competition (ranking 4th out of 8'), we managed to showcase the flexibil-
ity and interoperability of our architecture. Our system was the only deployment
that was successfully integrated with the sensors pre-installed in the space provided
for the competition (integration was optional for all participants). It is also worth
noting that our system was conceived differently from the competing systems, in
that localization is not its sole purpose but merely one of the features supported by
the platform. As we have mentioned, our work aims to develop a flexible architec-
ture for supporting ambient-assisted living, on one hand, and experimentation with

sensor-network deployment, on the other.

!One team is not presented here as they did not wish to disclose their results.
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Chapter 3

The Smart-Condo ™ Infrastructure

In this chapter we briefly review the crucial elements of the Smart-Condo™ archi-

tecture and its support for simulation-based testing.

3.1 Architecture

The high-level architecture of the Smart-Condo™ platform (Figure 3.1) consists of
three layers. The first layer corresponds to the sensor network (in the case of an
actual deployment) or the sensor-events generator (in the case of simulations for
pre-deployment configuration planning). The sensor-network bridge component
feeds the collected (or simulator-generated) data to the middle data-storage layer,
using the Message Queue Telemetry Transport (MQTT) protocol [1]. The top layer
includes a variety of analysis and visualization tools for the purpose of extracting
and communicating useful information to clinicians. These tools may rely on the
archived data, accessed through a set of REST APIs [12] supported by the data-
storage layer, or on the run-time data accessed through a special-purpose client

listening to the MQTT stream.

Sensor Network. Since this thesis has a specific focus on location recognition,
we confine the description of the sensor network to those devices we use for motion
detection, i.e., passive infrared (pyroelectric) sensors [24]. Each motion sensor is
attached to a wireless node. In general, a single node can be equipped with multiple
sensors measuring different phenomena. For motion sensing it is reasonable to

spatially distribute the sensors with minimal visible cabling, thus, each sensor-node
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Figure 3.1: The Smart-Condo™ architecture.

pair is atomic and unique in our deployment. The following discussion will use the
terms “sensor” and “node” interchangeably. The WSN of motion sensors has a star
topology (single-hop), hence, all the nodes transmit the sensed readings directly to

the sink node, connected to the bridge component.

Bridge Component. The bridge is a hardware/software component (a plug-com-
puter with Internet connectivity) with a variety of adapters, through which data
from different types of sensors and protocols can be collected. It enables us to in-
tegrate a diverse landscape of standard lower-layer protocols, e.g., ZigBee, Blue-
tooth, ANT+, Z-Wave, as well as various proprietary protocols. The currently
implemented WSN for motion sensing is comprised of custom-made and specif-
ically programmed nodes running PicOS [3], for which we have developed our own
PicOS-to-bridge adapter. This adapter parses raw sensor readings, eliminates du-

plicates and expired readings, and finally publishes them to the MQTT broker.
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Messaging Middleware. According to the publish/subscribe paradigm imple-
mented in the MQTT protocol, the broker acts as a message queuing and filter-
ing mechanism for clients that either (a) publish information updates under certain
topics, or (b) subscribe to receive updates on topics of interest. The bridge compo-
nent is an MQTT gateway for all the wireless devices. It publishes sensor readings
under a pre-determined topic, and a number of special data-importing modules,
subscribed to that topic, get notified of the corresponding events and feed the ac-
quired data into the interested clients, those being a localization component and a

Sensor-Events back-end [14].

Localization Component. The localization component receives the raw sensor
readings pertaining to location recognition (e.g., from motion sensors, reed switches,
pressure sensors). If the reading is generated by a pressure sensor/switch, then the
sensor’s location unambiguously indicates the position of the actual motion event.
Processing of motion sensor readings is not trivial, hence, the following localiza-
tion algorithm has been implemented within the localization component. The algo-
rithm’s initial coarse estimate is the center of mass of the polygon corresponding
to the overlap of the most recently triggered motion sensors. The mechanism of
coarse estimates is activated every time when the short history of previous moves
is unknown or considered unreliable. Once a limited-size buffer of previous loca-
tions has been collected, the algorithm starts generating refined estimates along a
physically plausible trajectory until reaching the center of mass of the next adjacent
“triggered” area. For a more detailed description of the localization software used
in our platform please refer to the thesis by Vosoughpour [31]. Figure 3.4c from

Section 3.2 illustrates the input and the output of the localization algorithm.

Sensor-Readings Processor and Storage. The Sensor-Events back-end receives
raw readings from the whole array of sensors (i.e., not only those used for location
recognition as in the case with the localization component). Readings imported
into Sensor-Events are being processed by a set of database triggers and stored

procedures, which are activated whenever a new entry is created in the raw-sensor-
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Figure 3.2: Alternative views in the virtual world (the Glenrose setup).

readings table. These triggers perform two types of operations. The first is data
cleanup, including noise filtering and general sanity checking. This functionality
results in creating a smaller, more coherent set of readings without losing accuracy
with respect to the real-world actions that were sensed. The second functionality of
triggers is the application of activity-recognition logic to the collected data (imple-
mented as stored procedures). Finally, the generated inferences are combined with
the output of the localization component and stored in a separate database table, in
a clear, client-independent format. These parsed readings are currently being used
by a visualization client, implemented in the OpenSim virtual world, but they may

be accessed by any type of client via a call to an intermediary web service.

Virtual World Visualization. The virtual-world animation of the patient’s activ-
ities has been developed as one of the visual-analysis tools of the Smart-Condo™
platform and addresses privacy issues associated with video surveillance. The gen-
erated animations provide sufficient level of detail comparable with video record-
ing, yet have lower fidelity and are intrinsically non-personified. They are viewable
both in real-time, i.e., caregivers may monitor the avatar’s actions and thus implic-
itly monitor the patients actions as they occur, or off-line, i.e., the caregivers can
request a playback of a period in a patient’s day based on the data stored in the
Sensor-Events database. Figure 3.2 shows two alternative views of the 3D model

of the apartment and the avatar (views are fully customizable).
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The animation is implemented as follows. Through an API, the virtual-world
client accesses the parsed sensor readings stored in Sensor-Events, converts them
into specifically formatted commands, and sends them to the corresponding in-
world objects (including the avatar). In a playback mode, the virtual-world con-

troller extracts the readings that fall within a specified time window.

3.2 Simulation Framework

The simulation-enabled debugging process lets us perform experiments that sys-
tematically evaluate the accuracy of our localizing software given a specific sensor
placement, before the actual deployment. Experiments that involve trial runs with
participation of human subjects are cumbersome to organize and difficult to assess.
The simulation-based alternative allows for arbitrary experiments prior to deploy-
ment (to reach a desired level of accuracy) and allows insights into alternative de-

ployment strategies. Our simulation methodology involves the following workflow.

1. We build a 2D model of the deployment space based on floorplan drawings

(e.g., Figure 3.3) and input it into the simulator.

2. We generate a sensor placement and integrate the corresponding 2D sensor-

coverage map into the model of the space.

3. At simulation run time, the avatar is manually-controlled/scripted to walk
through the space. The avatar trace is recorded by the simulator as a sequence

of <timestamp, location> tuples.

4. The sequence of tuples is then evaluated against the sensor-coverage map
thus resulting into a stream of artificial sensor events supplied to the bridge

component in a format identical to that of the real sensor readings.

The result of the first two steps of the workflow is depicted in Figure 3.4a. That
is, every room is represented as a separate polygon, where the impassable obstacles,
adjacent to the boundary of the room, are excluded. The room polygons are used

to determine the obstruction effect of walls on the sensor coverage footprints. A
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Figure 3.3: The Smart-Condo™ floorplan (grey walls, black doors).

sensor is represented with both a dot at the position of the actual sensor and a
polygon depicting a sensor footprint. An example of an artificial trace is shown in
Figure 3.4b; each black dot is a <timestamp, location> tuple. This sequence of
tuples is used as the ground truth at the evaluation stage.

Next, we test location from each tuple against the sensors’ boundaries, thus de-
termining which sensors should be triggered. This way we generate a stream of
artificial sensor events and feed them into the bridge component as if they were
real sensor readings. i.e., the localizing software receives a binary vector of sen-
sor readings (1/0 at the n'* position representing ON/OFF status of the n'" sensor)
for each timestamp. The location estimates generated by the localization compo-
nent are directly compared to the original avatar trace from the ground truth log
file (Figure 3.4c). Based on their differences, we can assess the accuracy of our

monitoring infrastructure.
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(c) Comparison of the ground truth and estimated locations.

Figure 3.4: Simulation workflow.
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Chapter 4

Experiments: Simulation and
Practice

We systematically evaluate the localization accuracy of alternative sensor place-
ments through simulation. For each <timestamp, location> tuple, as logged by
the simulator, the error is defined as the Euclidean distance, in meters, between the
avatar’s position and the position estimate inferred by the localization component
for the given timestamp. To summarize performance, we report the mean of the

localization error, standard deviation, and error distribution.

4.1 Simulation

In preparation for the EVAAL competition, we used the architectural diagram of the
Living Lab located in Madrid, Spain (Figure 4.1). We consider three placements
(a) overlapping with 30 sensors, (b) non-overlapping with 22 sensors, and (c) non-
overlapping with significant gaps in coverage with 13 sensors (Figure 4.2).

In the first two placements we attempt to uniformly cover the space with higher
and lower density respectively. The third placement arises as we consider the case
when the budget of sensors is not sufficient to achieve full coverage. Such a sit-
uation may occur if during the competition some sensors fail to function properly
and there are no backup devices. With all three placements we would like to test
whether there exists a monotonic relation between the localization accuracy and the
density of the deployed sensors.

As our methodology suggests, we generated a number of artificial traces; each
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Figure 4.1: The floorplan of the Living Lab.

Table 4.1: Descriptive statistics for three types of sensor placement tested in prepa-
ration for the EVAAL competition.

Description # of sensors  Average error, m  SD, m
Overlapping, full coverage 30 0.5286 0.3155
Non-overlap., full coverage 22 0.6127 0.3269
Non-overlap., partial coverage 13 1.1619 0.9232

trace has been tested against the three placements under identical conditions; the
results of our simulations are presented in Table 4.1. Figure 4.3 displays the error
distribution for each of the tested placements. Overall we observe that the over-
lapping placement shows better results as expected. However, this improvement,
compared to the second type of placement, is not proportional to the increase in the
number of sensors (13% of performance improvement compared to 36% of increase
in the number of sensors). Similarly, the second type of placement has 69% more
sensors than the third placement but its performance is improved by 47%. This
analysis suggests that the relation between the number (density) of sensors and the
localization accuracy follows the law of diminishing returns.

Close inspection of Figure 4.2 suggests possible improvement both in terms

of sensor placement and tweaking the localization algorithm. Note Figure 4.2a:
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Figure 4.2: Three alternative placements used for simulations.

besides rectangles of various sizes it has a number of polygons with slim protruding
parts (as some at the very bottom of the map). The center of mass of such an oddly
shaped polygon usually lies in its larger section causing erroneous estimates when
the sensor is triggered from the polygon’s “slim” part. On the contrary, Figure 4.2b
shows a generally smoother calculated trajectory (although with a larger average
error) which is, perhaps, due to regularity of the sensor coverage grid. This type
of analysis prompts us to continue experimenting with both strategies of sensor
placement.

Although the third type of placement was anticipated to perform poorly, it can be
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Figure 4.3: Error distribution for three types of placement used in simulations.

seen that the coverage map is not regular, thus suggesting that performance can be
improved even with the given number of sensors. One glaring issue in Figure 4.2¢c
is that the localization algorithm does not take into account the walls and doors
(based on trace transitions from the living room to the porch or the bathroom).

An important factor that influenced our final sensor-strategy decision was the
number of sensors that needed to be transported to the remote location, reinforced
by the limited time allowed for their installation. In addition, the competition
benchmarking tests included trials with two people when only one had to be lo-
calized. Considering that our system does not require any wearable equipment
(RFID readers have been left out during the initial phase of competition planning),
non-overlapping placement becomes the most appealing strategy due to its ability to
unambiguously distinguish between adjacent sensor footprints and to fairly easily
detect anomalies in sensor readings signatures. That is, the placement most closely
meeting our requirements is the second type with 22 sensors. However, the simula-
tion results for the third placement assured us that, even if a fairly large number of

sensors are not working, our system will still be able to generate fairly good results.

4.2 Practical Results

The actual EVAAL competition deployment was identical to the third placement

considered in the previous section. According to the competition protocol, there
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Table 4.2: Descriptive statistics of the EVAAL competition results.

Name of a trial Average error, m Standard deviation, m

pathl1-2 1.0701 0.8726
path1-3 0.9147 0.5932
path2-3 1.2576 1.0323
pathRs-1 1.2079 0.9127
pathRs-2 1.4650 1.1727
overall 1.2704 1.0193
35 . .
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Figure 4.4: Error distribution for identical placements in simulation and competi-
tion.

were 8 tests overall, 4 with one person, 4 with two persons, and 2 more with one
person that assessed the ability of our system to detect the presence of the person in
a number of predefined areas of interest (Aol). In this thesis, we discuss the results
of the tests with one person only, since the other type of tests (with two people) was
our first attempt to perform this sort of task and was neither thoroughly tested in the
simulations nor was it our priority in this competition. Therefore, we considered
5 trials (out of the total of 6 trials for “one person” and “Aol detection” without
one clear outlier, which is deemed to occur during a period of system hardware
malfunction) for which we are reporting the average error and standard deviation in
Table 4.2.

For a total of 1321 location estimates from 5 valid traces, the overall average

error is 1.2704m and standard deviation is 1.0193m. It is worth noting that the aver-
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Figure 4.5: Anomaly in predicting location estimates due to the detached sensor
(image generated by the competition organizers).

age error of the experimental results exceeds the average error of simulations with
identical placement only by 9%. Figure 4.4 compares the error distributions of the
simulation experiment and the competition tests with identical sensor placements.
Note that 92% of all location estimates generated by our system during the com-
petition lie within the 3m-error range. The distributions resemble each other both
quantitatively and qualitatively and, therefore, to a certain extent demonstrate the
value of our methodology.

One factor that could have influenced our competition results unfavorably (i.e.,
9%-difference with the simulation results) is imperfections in sensor installation. In
particular, adhesive materials that we used for attaching sensors to the boxes with
wireless nodes proved unreliable. The devices are assembled independently so that
the sensors or the nodes are easily replaceable. The final custom device consists of
a plastic box enclosing a node, and a sensor sitting outside of the box, attached to
the node with a wire. When the deployment configuration is known, the sensor has
to be firmly attached to the box with adhesive materials. During the competition,
one sensor became unglued from the box and freely hung on the ceiling causing a
lot of misfiring. Figure 4.5 illustrates how in one of the trials this problem caused
confusion of our localization component specifically at this sensor’s location. This

image was generated during trial “path2-3”, and in comparison with images from
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other trials it clearly shows the effect of this mechanical failure on the operation of
the localization component. To support this claim, trial “path2-3” has the largest
average error and standard deviation of the three traces of type “one person” (first
three rows in Table 4.2).

Having learned ample lessons during the EVAAL competition, we see plenty of
opportunity for improvement for the next competition-like deployment. However,
our current results suffice to show that our simulation-based testing methodology
can reliably estimate the localization accuracy achievable with a particular sensor

placement, which was our main motivation for participation in this event.
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Part 11

Sensor Placement Optimization
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Chapter 5

Background and Problem
Formulation

In this chapter, we introduce background concepts and definitions necessary for the
sensor placement problem formulation. We review general approaches for sensor
placement optimization and build upon one of the reviewed studies with a closely
related problem formulation [33]. This study proposes a theoretical framework for
finding placements that optimize information-oriented coverage. We extend this
framework with a domain-specific method for information utility assignment based

on the model of anticipated mobility patterns.

5.1 Approaches for Sensor Placement Optimization

An extensive review of various strategies and techniques for node placement in
WSNs with respect to their application domains and problem formulations has been
conducted by Younis et al. [37]. The authors claim that optimal node placement
has been proved NP-hard for most proposed formulations of the sensor deployment
problem. Most studies, therefore, suggest various heuristics for finding sub-optimal
solutions. Another survey [36] is more narrowly focused on indoor monitoring,
thus, the authors select a single problem formulation, list a number of applicable
optimization criteria, and then review all relevant approaches. Most approaches
are iterative (to name just the most popular ones): sequential approaches greedily
place one node at a time, simulated annealing probabilistically selects a variable for

permutation in each iteration, genetic algorithms generate better fitting populations
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of candidate solutions. For a better grasp of the state-of-the-art in optimal sensor

placement, we refer to the first, broader, survey in the next paragraphs.

Static and dynamic WSNs. Two large groups of techniques can be identified
with respect to their application to (i) static WSNs, and (ii) WSNs whose nodes may
be dynamically relocated during the network operation [37]. The first group implies
that the sensor placement is computed once before the network is deployed and
all the network parameters are assumed static throughout its operation time. The
second group, besides networks with mobile nodes, also includes networks with
generally stationary nodes that may need to relocate if the observed environment
changes or a number of nodes fails. Although we recognize the importance of the
network’s ability to adapt and self-recover, we focus on the static networks as the
most suitable and minimally invasive approach for a typical smart-home scenario.
Within the group of strategies for static deployment, Younis et al. discern three
application-specific classifying criteria: (a) methodology for initial deployment,

(b) optimization objective, and (c) roles of nodes in the network.

Methodology for initial deployment. The initial deployment strategy can be ran-
domized or controlled and depends heavily on the scale of the network and prop-
erties of the observed environment. A random distribution of nodes is applicable
to large-scale networks where careful placement of nodes appears infeasible, e.g.,
forest fire detection. In this case, such parameters of deployment as node density or
redundancy for fault-tolerance can be optimized. An example of a density-oriented
study is presented by Toumpis et al. [29]. The authors assume massively dense
networks and suggest optimizing node density with respect to macroscopic param-
eters such as information density and traffic flow. It is often the case in such studies
that the final optimal set of nodes is a subset of the initial randomized deployment.
Thus, the initially unused nodes may later be used to increase fault-tolerance of the
network.

In the smart-home type of deployment, we can only afford a reasonably small

number of sensors and hence opt for the controlled deployment option and corre-
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sponding techniques. In this thesis, we do not address fault-tolerance achievable at
the expense of node redundancy as we impose a strong constraint on the number of

nodes. However, we would like to investigate this direction in the future.

Optimization objective. The most commonly considered optimization objectives
are network connectivity and/or longevity, area coverage, and data fidelity [37]. The
category of techniques dedicated to network operation requirements (i.e., connectiv-
ity and longevity) is concerned with such problems as communication costs (often
in a form of energy conservation), efficient routing techniques, nodes with vary-
ing communication range, avoiding traffic bottlenecks, etc. Note that the majority
of aforementioned problems apply to multi-hop networks, which intrinsically have
nodes with various roles (e.g., base-stations, relay-nodes), and therefore, we prefer
to merge this category with the last classification criterion, based on the role assign-
ment of the nodes. On its own, the latter group of techniques focuses on clustering
(determining cluster-head nodes) and balancing traffic with respect to node roles
and therefore, in our view, heavily overlaps with the rest of strategies for multi-hop
static networks.

The most typical coverage problem formulation is cost minimization under cov-
erage constraints, where the surveillance region is approximated by a finite set of
grid points [5]. The data fidelity objective can be approached as a data fusion
problem and, hence, implies multiple sensors in the vicinity of the monitored phe-
nomenon so that their placement guarantees the fused data to be of some desired
quality. Such problems often involve probabilistic models of sensing. For example,
for target detection problems, each sensor may be assigned a detection probability,
often a function of distance between the sensor and the target. Under these con-
ditions, Wu et al. [35] formulated a combinatorial optimization problem with the
objective of maximizing the overall detection probability within a given deployment
cost. They showed the problem to be NP-complete and proposed an approximate
solution based on a two-dimensional genetic algorithm.

A study by Krause et al. [18] captures several optimization objectives; they aim

to maximize information while minimizing communication costs. The probabilis-
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tic models are defined for both predictive quality of the placement and the quality
of links between sensors using the data collected during a pilot (non-optimized)
deployment. The proposed iterative algorithm first identifies clusters of nodes and
then greedily finds a sub-optimal (but with proven approximation guarantees) place-
ment within each cluster.

To relate the aforementioned optimization objectives to our own goals, we re-
mind that the WSN used in the current implementation of the Smart-Condo™
project follows a single-hop model. Two arguments justify this model: (i) the
total area of the potential surveillance region is fairly small (in the current setup,
a one bedroom apartment of 10.6 m x 6.3 m) so that all the nodes lie within the
communication range of each other; and (ii) we are interested in real-time updates,
whereas a multi-hop communication model may introduce additional delays due to
processing and retransmissions at the relay-nodes. For these reasons, we confine
our optimization attempts to maximizing data fidelity, i.e., localization accuracy
under a number of nodes constraint, deliberately disregarding communication costs
and other network-operation-related concerns due to the simplistic communication

model used.

Problems with obstacles and preferential coverage. In the narrower indoor sen-
sor placement realm, most interesting to us are placement problems that assume
various obstacles affecting the sensing range of assumed nodes. Dhillon e? al. [10]
suggest to incorporate information about obstacles into sensor probabilistic detec-
tion models. They also integrate a model of preferential coverage for areas of high
importance. Eventually, they apply an iterative greedy algorithm that places one
sensor at a time to the grid point with the lowest confidence level of detection.
David et al. [9] consider a more specific instance of the problem with sensors whose
sensing range is defined by line of sight (e.g., video cameras, pyroelectric infrared
sensors) and, therefore, the actual range is derived from application of the ray-
tracing algorithm to the sensor-obstacle geometry. A number of sensor-placement
candidates is used to train a genetic algorithm, which finds a (sub)optimal candidate

satisfying the coverage constraint.
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Perhaps, most closely related to our formulation of optimization problem is
work by Wang et al. [33]. They propose an algorithm that exploits the fact that in
many applications the importance of sensed information varies across the sensing
field. Thus, they define points of interest (similar to preferential coverage discussed
earlier) which they wish to cover optimally. Such a strategy may not yield full cov-
erage but it does maximize the sensed information utility. Similarly, we would like
to sparsely distribute sensors in the condo but still be able to sense the most valuable
data; in other words, we want to determine prioritized points of interest. We pro-
pose a methodology that identifies areas of high interest (mobility) and inherently
incorporates geometric properties of the space and information about obstacles. We
take into consideration the space floorplan and furniture placement and make real-
istic assumptions about most common paths used by the condo occupant in his/her
daily routine.

Some similarity with our approach can also be seen in the MavHome location-
aware predictive framework [25], which is another example of a smart-home tech-
nology that aims to anticipate the occupant’s desires and provide pro-active resource
management and on-demand operation of actuators. A critical assumption here is
that the occupant travels along most typical path segments between rooms, thus,
mobility data can be learned over time and used to predict the occupant’s location.
In this framework, the sensor placement is assumed from the existing infrastruc-
ture; the authors are not concerned with the cost of deployment. Our own specu-
lation based on analysis of this framework is that after sufficiently long learning it
might not need immediate updates from the whole array of sensors; a small subset
of sensors in most critical zones may be sufficient for a successful prediction. We,
however, do not want to rely on a learning phase of system operation due to the his-
tory of short-term deployments (e.g., trials with patients at the Glenrose lasted two
days). That is, we are strongly motivated to generate high-quality location estimates
at any point in time. To achieve this goal we attempt to model mobility patterns an-
ticipated in the indoor environment prior to the actual data collection and propose
an algorithm that optimizes sensor placement with respect to the inputted mobility

model.
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5.2 Introductory Background

Mobility patterns in an indoor environment can be expected to resemble typical
road traffic with its bottlenecks, conjunctions, more and less travelled segments.
If we have a limited budget of sensing devices and cannot achieve full coverage
of the space, a natural solution is to place sensors in the most travelled locations.
Essentially, we are not interested in greater coverage but more specifically in maxi-
mizing the utility of the sensed information. This objective is similar to a problem
formulation by Wang et al. [33], which we present here and build upon further.

Wang et al. use a probabilistic sensing model of target detection that is ex-
pressed as a function of distance between the sensor and the target. Every point of
interest can be covered by multiple sensors and, therefore, if p,, ,; denotes probabi-
lity of target detection by sensor s; at the i'" point, then the probability of detection
at that point covered by m sensors is calculated as follows:

m

™ =1- H(l — Ps; i) (5.1)

j=1

Having N points of interest each with information utility v; and a budget of
k < N sensors, Wang et al. define the optimal placement for information-oriented
coverage as such that maximizes the following function:

N

F) =" - v) (5.2)

i=1
Our work extends the proposed theoretical framework by introducing a domain-
specific methodology for information utility assignment. In the following sections

we define v; and p; more specifically fitted for indoor localization purposes.

5.3 Mobility Modeling for Utility Assignment

The Smart-Condo™ localization component relies on knowledge of (a) the archi-
tectural drawing of the deployment space, (b) volumetric coverage models of the
motion sensors, and (c) the coordinates and mounting angles of where the motion

sensors have been placed to construct a special-purpose map of sensor-coverage
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regions. In a typical scenario, the first two elements are given to the designer
of a new deployment in a form of a floorplan and sensor datasheets, whereas the
third element is derived as an application of a designer’s practical knowledge to the
sensor-floorplan geometry.

Passive infrared sensors detect motion in the line-of-sight, hence, the shape of
sensor coverage is defined by sensor orientation, obstruction effects of the walls,
and furniture. If sensors are mounted on the ceiling, the impact of furniture is
negligible (as long as it does not reach the ceiling). Essentially, a geometrically ac-
curate 2D representation of sensor coverage can be generated without any notion of
the implied furniture. Such a placement strategy can be seen in the first part of this
thesis as well as in a number of other studies focusing on localization with passive
infrared sensors [19, 21, 27]. Here, we want to take advantage of contextual infor-
mation that can be inferred from positions of furniture and basic amenities depicted
on the floorplan. Next we apply a number of transformations to the floorplan image

that let us retrieve such information.

5.3.1 Floorplan Color-Coding

Consider the floorplan of the Smart-Condo™ (Figure 3.3). We make the follow-
ing assumption about the occupant movement in this space: the occupant’s daily
routine consists of a number of short path segments between arbitrary pairs of ob-
jects depicted in the floorplan (e.g., bed — toilet, stove — dining table, entrance door
— recliner). We first identify all objects of interest (e.g., bed, fridge, stove, sink,
toilet) and convert the floorplan into a color-coded image. This conversion is the
only manual step of the procedure (easily performed using any graphics painting
software). Figure 5.1 shows the result of the conversion and contains five types
of colored-coded objects (1) walls (black), (2) doorways/sliding doors (strips of
yellow), (3) impassable obstacles that have fixed positions, i.e., all large pieces of
furniture (grey), (4) obstacles that change positions frequently, i.e., chairs next to
the dining table (green), and (5) areas of interest associated with every object of
interest (narrow strips of red next to the articles of furniture).

The fourth type of object (henceforth addressed as the movables) has particular
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Figure 5.2: The grid of all positions that can be potentially occupied by the movable

obstacles.

properties. The only reasonable assumption regarding these objects is that they
remain within a certain area of the condo but will occasionally be moved to random
locations. To model this behavior of the movables, we define borders of the area
that confines their displacement, and then identify all possible locations within that

area that satisfy the dimensions of the movables. Figure 5.2 depicts such positions

within the user-defined area.
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(c) Path 2.1: bed — stove. (d) Path 2.2: bed — stove.

Figure 5.3: Effects of randomization on the results of pathfinding (black dots are
excluded grid points).

The last type of object represents areas where the occupant is likely to end up
while trying to approach a piece of furniture or facility. Note, for instance, the
recliners in the living room: they have only one side that can be sat on, therefore
we place the corresponding area of interest next to that side only. It is the case with
the bed that we cannot predict which side is likely to be preferred by the occupant
for getting into the bed, therefore we define its area of interest around the rim of
the bed. Other areas of interest (next to the fridge, stove, etc.) are intentionally
not adjacent to the respective objects since the person typically reaches those at
arm’s length. A crucial distinction between the areas of interest and their respective
objects is that the former are considered walkable and are used for constructing
paths between otherwise impassable objects.

Having defined all the necessary objects, the image serves as input for our cus-
tom floorplan parser. The parser renders the matrix of image pixels into a uniform
grid (with configurable grid step size) and outputs various data structures corre-

sponding to the groups of objects.
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5.3.2 Mobility Modeling

We want to model a variety of realistic paths existing for all pairs of objects of inter-
est. Once the original image is approximated to a square grid, each area of interest
turns into a set of grid points. The procedure of constructing a path between a pair
of objects entails choosing a point from each set of points corresponding to the ob-
jects and inputting two such points as a start and a goal into a pathfinding algorithm
(PFA), i.e., a generic implementation of A*. All the grid points except walls and
impassable obstacles are considered walkable (assuming the doors can always be
opened if needed). Given the PFA’s property to always produce the shortest path,
we may end up with a number of recurring straight-line paths that do not accurately
represent the actual paths a human would choose. To alleviate this undesirable ef-
fect we exclude a number of random walkable points during each execution of the
PFA (empirically chosen as 30% of the walkable grid due to visually satisfactory
variability of generated paths). Figure 5.3 illustrates how different the paths gen-
erated for the same pair of objects can be due to three types of randomized input:
(1) start and goal points representing objects of interest, (2) positions of the mov-
ables, and (3) exclusion of a number of walkable points. This model also takes into
account a body diameter of the walking agent, which helps to smooth out otherwise
sharp turns the PFA tends to make around obstacles.

To obtain a general picture of mobility patterns, we run the PFA over all pair-
wise combinations of objects multiple times. The result of this procedure greatly
depends on the number of times a particular object participates in path construction;
this number has to be indicative of importance of the object in a typical daily rou-
tine of the tracked occupant. For example, we may hypothesize that the occupant
uses the bed twice a day, visits the kitchen three times a day, and uses the washing
machine once a week. Respectively, those objects can be assigned weights at a ra-
tio 14:21:1. Thus, their occurrences during multiple runs of the PFA are controlled
to conform to this ratio. To assign weights we have to make certain assumptions
about the daily routine of the occupant. Perhaps, one way to obtain this informa-
tion is from a survey about typical usage of appliances, filled out by the person to

be tracked. Our mobility modeling module is designed to properly handle weight
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(a) Raw heatmap.
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(b) “Smoothed” heatmap.

Figure 5.4: Heatmaps of anticipated mobility patterns before/after “smoothing”.

assignment, although in this thesis we keep the weights equal for simplicity. We
intend to investigate the impact of different weights (tailored to real patients) on the
placement optimization in the future real-world trials.

The resulting mobility model can be seen as a heatmap of frequencies with
which the walking agent visits respective grid points (Figure 5.4a). The number

of paths generated for this image is the minimal number that guarantees that every
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point from a set representing an object has at least one path to every other object (a
total of 18,060 paths in our case). This heatmap, however, has visible defects: some
grid points become bottlenecks while others never get visited, although located in
“hot” areas, due to imperfections in grid approximation. Such artifacts may have
a negative impact on generation of sensor placements, and we therefore eliminate
them by “smoothing” the heatmap. Figure 5.4b depicts the final heatmap further
used for finding placements optimized for coverage of the “hottest” points. Essen-
tially, the “heat” score of a grid point can be treated as its information utility value
v;, therefore, /V is the number of walkable points, in correspondence with notation

used in the introductory problem formulation in Section 5.2.

5.4 Sensing Model

As mentioned in Section 2.1, our motion sensors come in a variety of 3D coverage
shapes (a cone, a pyramid with a rectangular base), ranges, and detection areas.
To reduce the search space of candidate sensor positions/orientations, we restrict
the possible sensor orientations to orthogonal with respect to the floor plane, e.g.,
a cone projects into a circle, and a pyramid projects into a rectangle. We are less
interested in the circular projections since a great amount of previous research has
been concerned with this particular sensing model [19, 21, 35]. We also lean to-
wards sensors with a smaller coverage area as the deployment space we use for
experiments is 10.6 m x 6.3 m and sensors with larger coverage will not be able to
provide localization accuracy comparable with the scale of the space. Therefore,
we use sensors with the rectangular footprint of 2 m x 1.4 m in cross-section at 2m-
height. Technically, these metrics can be expressed in relative or abstract units for
the sake of easily generalizable results but we prefer to keep the real-world refer-
ence in order to relate our results in this thesis to the previous practical experience.

Although we have limited the possible orientation of sensors in the vertical
plane to a single option, we consider two orientations in the horizontal plane: the
longer side of the projected rectangle can be be either parallel or perpendicular to

the longer side of the floorplan. Thus, nominally we have two types of projections
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of the same sensor type, whereas in fact our framework treats them as two different
sensor types. Therefore, a variety of sensors properly handled by our framework is
not limited to only the two listed types. We may consider various coverage shapes
or a whole variety of (discretized) orientations but do not do so in view of practi-
cal concerns (time complexity, ease of mounting associated with the two selected
orientation types). Moreover, the obstruction effects of the walls and doors greatly
impact sensor projections to the extent that we have to deal with polygons of arbi-
trary shapes and sizes.

To avoid complicated geometric calculations in continuous space we discretize
sensor projections using the grid points defined during the mobility modeling phase.
After this step we can easily determine the approximate 2D coverage shape of a
sensor resulting from obstruction by applying a ray tracing technique to every grid
point within the borders of the default sensor projection. Figure 5.5a visualizes the
ray tracing procedure; Figure 5.5b shows the grid approximation used in further
calculations instead of the actual polygons (Figure 5.5¢c). Essentially, our approach
can be applied to arbitrary sensor projections, e.g., elliptic or, more generally, any
convex/concave shapes whose borders may be defined as a list of connected line
segments and arcs).

Finally, once the shape of sensor projections is determined, we can define a
probabilistic model of target detection for our sensors. In contrast with other studies
that use variations of Gaussian probabilistic detection models [33, 35], we assume
that the probability of detecting a true positive motion event by a passive infrared
sensor is uniform within its footprint and approaches 1 (assuming the sensor is
always on during system runtime, failures of sensors or wireless nodes are not con-
sidered). This assumption is based on the principles of sensor operation [24] and
supported by a great number of empirical studies we have performed. Our frame-
work, however, is not limited to uniform probability distributions; more complex
sensing models can also be applied, e.g., non-uniform models of RFID readers. In
fact, we further extend the proposed simplistic sensing model by incorporating in-
formation about sensor-obstacle geometry into it, in a way similar to that described

by Dhillon et al. [10].
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Figure 5.5: Various sensor coverage representations.

To explain the impact of sensor-obstacle geometry on our probabilistic model
we refer to Figure 5.5: a footprint of one of the sensors reaches beyond the bound-
aries of the room through the doorways. Such a footprint holds true as long as the
doors are open. Effectively, the probability of doors being open over the time of
system operation directly translates into the probability of detection in those “seen-

through-doorway” points over the same period. Therefore, we ultimately define the
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Figure 5.6: Specifics of sensor footprints reaching through doorways.

(a) (b)

probabilistic sensing model of sensor s; as follows:

1 ifieC;\Dy

Ps;—i = § Pod ifs € ]D)j (5.3)
0 else
where ¢ = 1,..., N are indices of points of interest, C; is a set of grid points

covered by the sensor after ray tracing has been applied (e.g., Figure 5.5b), and
D; € C, is a set of points seen by the sensor through a doorway (the crosses in
Figure 5.5b), and pq is the probability that the doors are open. If no statistics about
doors usage are available, we may assume that they are open half of the time, i.e.,
Poa = 0.5.

Let us consider two sensors s; and s, such that the footprint of s; fully belongs
to a single room and s, penetrates into adjacent rooms (Figure 5.6a). Let us also
assume that } 7, v; = > ¢, V), i.e., the total information utility covered by each
sensor is equal. Using (5.1) and (5.2), we can calculate information-utility scores
for each sensor placed independently as vazl (Ps;—i* Vi), assuming no other sensors
have been placed on the grid yet. Plugging probabilities (5.3) for each sensor re-
spectively, sensor sy will receive a remarkably lower score than s; due to p,g < 1. In

other words, by assigning lower probabilities of detection to seen-through-doorway
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areas, we effectively penalize placement candidates that yield unreliable doorway
coverage.

The penalizing side-effect of such a probability assignment can be exploited for
avoiding undesirable artifacts shown in Figure 5.6b. Sensors 3 and 4 belong to the
same room and overlap in two disjoint regions (the darkest shade in the image):
(1) one lies within the same room and (ii) the other is seen through the doorways by
both sensors. If all the doors are open, the sensors will produce identical signals for
motion detected in either of the regions. That is, if the moving target crosses the
second region (black dot in the image), both sensors get triggered, and those signals
may be mistakenly interpreted as if the target is in the first region. This type of error
might not be as detrimental for localization accuracy but greatly impacts the quality
of contextual information. That is, we cannot distinguish between target presence
in the bathroom or bedroom if no other sensory input is available. However, such
information is crucial for clinicians observing a patient about to be discharged. To
avoid placements with regions of ambiguous room designation, p,qg = 0.1 is used
in our experiments as a means of penalizing sensors covering areas beyond the

respective room boundaries.
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Chapter 6

Sensor Placement Algorithm

Let S be a set of sensor candidates {s, } identified by tuples (z;, y;, 0;) where z; and
y; denote a pair of coordinates on the ceiling and o; denotes the horizontal orienta-
tion with respect to the longer side of the floorplan (0° or 90°). In the proceeding
calculations we assume that the ceiling height is fixed (2.5m) and therefore omit
the z-coordinate. However, variable height (e.g., sloped ceiling) can also be han-
dled under the assumption that the sensor main optical axis is still orthogonal to the
floor plane. To reduce the search space of (x,y) pairs, the ceiling coordinate plane
is discretized with the same grid step as the floor plane. Thus, sensor coordinates
are aligned with coordinates of the points of interest. We will further treat a set of
sensor positions as a superset of the set of points of interest since sensors can be

placed above the area occupied by obstacles, which is excluded from the points of

interest as non-walkable. Hence, |S| > 2N where the factor 2 is due to two types of
sensor orientation. In preparation for the next steps of the algorithm we determine
C, and D, forall s; € S.

In the design of our placement algorithm we follow Wang et al. [33] whose
objective function is defined in (5.2). They propose the following greedy algorithm:
at each iteration the algorithm adds a sensor that maximizes information utility gain

with respect to already covered points. The incremental information utility gain of

placing the m" sensor is therefore expressed as:

A(m) = Zvi . (1:[ (1- ps]-—n')) * Dspsi (6.1)

i=1 j=1

where 7 = 1,2,...,m — 1 are indices of sensors placed thus far. According to
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this expression, if a set of points has already been covered with probability of de-
tection 1, then information utility gained by placing another sensor over the same
set of points will be 0. This definition of information utility gain applied to our
sensing model will lead to the majority of points of interest to be covered by non-
overlapping sensors. However, merely detecting a target with a single sensor does
not typically translate into high localization accuracy. In the indoor localization
realm it is often essential for successful localization that the target is sensed by
multiple sensors simultaneously, especially if such popular techniques as triangula-
tion or trilateration are used. Similarly to these techniques, we may achieve better
localization accuracy at the points of high interest if several sensor footprints par-
tially overlap in that particular area. On the other hand, if we simply follow this
intuition, and the range of the heatmap values is large (several orders of magnitude
between the lower and upper values), we will end up overlapping too many sensors
over the high-priority areas while sacrificing coverage in the rest of the space. Such
situations are especially undesirable if the budget of devices is very limited. There-
fore, we need to find a tradeoff between redundant coverage of the most travelled

areas and sufficient coverage of the less travelled areas.

6.1 Sensor Coverage Models

The first step towards solving our problem is to replace probabilistic sensing models

with models of coverage. We introduce a measure of coverage units per grid point,
({s5})

which basically indicates how well a particular point is covered. Let ¢; denote

the amount of coverage units allocated to the arbitrary i’ grid point by sensor 55

and let cl(-{sj D pe equal to p,, ; from (5.3). The equality of coverage units and prob-
abilities in this case is merely quantitative. That is, if a point is covered by multiple
sensors, the total amount of coverage units allocated to that point is calculated as a
sum of coverage units as opposed to multiplying the respective probabilities. There-

fore, a cumulative coverage score of the ith point, covered by sensors s1, . .., Sk, IS
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Figure 6.1: Allocation of coverage units.

defined as follows:

k
CZ('{slvmvsk}) — Z CE{SJ}) (6.2)
7=1

({s;})

In the most trivial case, when m sensors cover the " point with ¢; =1, we

({317-"75771})

obtain c; = m. In other words, the coverage score is indicative of the

number of sensors overlapping at a point. Figure 6.1 illustrates how coverage units

are calculated for sensors s; and s»:
Vi e Dy, B =01

Vi € Cl \Dl, C(-{Sl}) =1.0

2

Vi € (CL\ D) NGy, 2 =20
Since every sensor is associated with a set of values cl(-{sj Y defined for all N
points of interest (recall (5.3)), we will further use N-dimensional vectors s; =
(c(l{sj}), Cees C%S"'})) to denote sensor coverage models, and vectors c{st-5k}) =

(cg{slv"'ask}) 0%817.."8k}))

to denote a cumulative coverage model of the entire

P

space after sensors s1, . .., S have been placed.

6.2 Redefining Utility Through Coverage

The next step involves mapping the whole range of heatmap values into a small
range of coverage utility values. Coverage utility is analogous to information utility

in the sense that it prioritizes points of interest for greedy selection. On the other
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hand, we can view coverage utility values as indicators of preferable coverage score,
i.e., such a cumulative coverage score per grid point that we would like to achieve

by sensor placement. That is, if ¢} is the coverage utility of the i’ point, then by
({s1,050})

placing k sensors we would like to achieve c; — ¢;. In other words, points
of higher importance should be covered by more sensors than less important points.
We further hypothesize that a greater number of sensors overlapping at some point
will translate into lower error rates when localizing a moving object at that particu-
lar point. This hypothesis, however, fails once the overlapping sensors are clustered
too closely together, e.g., if the area of their footprints’ intersection approaches the
area of a single sensor footprint. The proposed here mapping addresses this issue.
There are different ways to define a heatmap-to-coverage mapping, thus, it is yet
another configurable application-specific parameter of our framework. We define it

as follows:

. _ Vi

where cp,x 1s the maximum preferable coverage score per grid point (also config-

urable), and (¢ ) is a threshold value:

maXie{1,..,N} Vi

t(Cmax) = (6.4)

Cmax
Essentially, we put all v; values into ¢, + 1 buckets with labels 0,1, ... chax-
The main purpose of this mapping is to balance the gap between the lowest and
highest values of the heatmap while retaining relative gradation. Thus, the ratio of
c; scores assigned to the hottest and least hot (but non-zero v;) points is guaranteed
to be cmax- This can be interpreted as if the most frequently travelled points are
restricted to be covered by at most c,,x sensors (under the simplifying assumption

that they are covered by sensors with cl(-{sj D= 1), whereas the least frequently
travelled points will still get a chance to be covered by at least one sensor (if they
have been traversed by the PFA at least once, meaning they are not in unreachable
places, e.g., an empty corner behind the fireplace).

The result of this mapping can be seen as an alternative heatmap with fewer

shades of color. Consider Figure 6.2a: the heatmap of coverage utility values is
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colored in 4 different shades of a base color (due to cp,x = 4), to represent cor-
responding values ¢; > 0, and white for all grid cells with ¢; = 0. The value of
cmax 18 chosen as such that allows us to segregate several small groups of high-
priority points, which emphasize the most travelled areas, and one large group
of low-priority points, which simply outlines the borders of the overall walkable
area. When choosing ¢, it is important to obtain a mapping where the clusters of
highest-priority points are represented by relatively small sectors of the map. Essen-
tially, as long as these clusters are significantly smaller than a sensor footprint, our
placement algorithm will avoid placing sensors, overlapping over the high-priority
points, too close to each other. Therefore, the success of the proposed methodology
greatly depends on the selected mapping scheme in general, and on the ¢, value
in our particular case.

Similarly to vector c({s1+-5+}) representing a cumulative coverage model, we de-
fine an N-dimensional vector ¢* = (¢}, ..., ¢} ) to denote a coverage utility model

of the space.

6.3 Objective Function and Placement Algorithm

Our goal is to define an objective function in terms of coverage utility and sensor
coverage models. To do so, we will express the utility score of an individual sensor
as a function over a set of already placed sensors. Let us first consider the case when
no sensors have been placed yet; the utility of sensor s; is defined as a function of
s1 and the empty set:

N

09 =3 () 6.5)

i=1

({s51)

That is, a sensor that most effectively covers (i.e., with higher c; values) points

with higher coverage utility is considered more useful than, for example, a sensor
with the same amount of coverage units but covering points with lower ¢ values.
This expression is equivalent to calculating A(1) from (6.1) if v; and p,,,; are

{s1})

replaced with ¢ and cg respectively. Expression (6.5) can also be rewritten in

*

vector terms defined in Subsections 6.1 and 6.2 as 6;5?) =81 -C".
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(a) Heatmap of coverage utility values, cp,x = 4.
1 i —

-
|

(b) Updated coverage utility values with two sensors placed, cross-
hatched areas indicate negative values.

Figure 6.2: Coverage utility heatmap before and after having placed sensors.

Note that once sensor s; is placed, another sensor placed in the same location
cannot be considered as useful as the already placed one. In other words, if sensor
s9 1s placed after sensor s; and their footprints overlap, then the posterior utility of
sensor s, is lower than its anterior equivalent, i.e., (5§§51}) < (5§2®) given C;NC, # .
Therefore, we express the utility decrease of each newly added sensor in terms of
the mutual overlap with the already placed sensors. One way to quantify the amount
of overlap between sensors s; and s; is a dot product of coverage models of two

sensors sp - S2. The posterior utility score of sensor s,, given that sensor s; has been
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placed on the grid, is defined as follows:

5D — 52) — s, 5

52

=89-C" —8g-8;

=8z (c" —s1) (6.6)

If we continue adding sensors, then the expression for the posterior utility score of

sensor s3 should account for overlap with the two previously placed sensors:

5§§s1,52}) — 6§3®) — S3+S1 — S3 - Sp

=83-C" —8S3-S1 —S3 Sy
*
=s3-(c" —s1 —s2)

=s3-(c"— Z sj) (6.7)

1<j<2

We finally formalize a closed form expression for the utility score of the m" sensor

after m — 1 sensors have been placed:

e <o (- Y s) ©38)

1<j<m—1

Note that the sum of sensor vectors 21 <j<m-15j is another vector whose *" com-
ponent is > i<m—1 cg{sj b, Using (6.2) and replacing scalar values with vector

notation we may rewrite expression (6.8) as:

sUstsma}) — S - (C* _ C({Sl,...,sml})) (6.9)

Sm

where a set of sensors {sy, ..., S, 1} turns into & if m = 1.

We may interpret (6.9) as a reduction in coverage utility values for each sensor
placed after s;. That is, placing a sensor over a cluster of high-priority points can
be seen as reducing the “heat” in that area, which shifts priority to other areas
for the next iteration of the algorithm. This utility update mechanism balances
redundant coverage of high-priority points and satisfactory coverage of the rest of
the space. Figure 6.2b illustrates how once a sensor is placed, the colors of the

heatmap, representing c; values, change accordingly.
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Note the cross-hatched areas: these are the points with zero coverage utility,
¢; = 0. Having placed a sensor over a set of zero-utility points, their utility appears
negative for all the subsequent sensors according to (6.9). Zero-utility points are
typically points which a walking agent was not able to traverse (a) due to a body-
diameter constraint, (b) because they are unreachable, or (c) they lie off the typical
paths (e.g., room corners). Thus, when allocating coverage units to zero-utility
points, we technically waste those units. Negative utility in this case can be seen as
a penalty that lets us avoid further waste of coverage units.

According to (6.9) it is generally possible to obtain a negative utility score for
sensor s,,. However, the notion of negative utility is counterintuitive in a domain
where additional sensors simply provide extra information. Therefore, we apply
positive thresholding to expression (6.9) so that the utility score of any sensor can

never be negative, and redefine the utility score function:

5§:r{:1,...,sm_1}) — max {07 Sm - (C* . C({S1,...,sm—1})> } (610)

Note that if we reach a state where we have placed so many sensors that the to-
({s5})

tal number of allocated coverage units zlj\il D e i<m—1Ci exceeds the total

N ¢ but the budget of sensors has not been exhausted

amount of coverage utility > ©." | ¢

yet, then this indicates that the range of ¢} values is inadequate for the given number
of sensors. Although we resort to positive thresholding in (6.10), it is preferable to
avoid this situation by adjusting the range of ¢, i.e., by increasing ¢y, parameter
(Subsection 6.2).

We finally define an optimal solution to our problem as one that maximizes

the total coverage utility obtained by placing k sensors, i.e., a function of a set

{s1,..., s} expressed as a sum of utility scores of each individual sensor:
k
O({s1,...,56}) = » oL (6.11)
i=1
where IP;_; is @ for i = 1 or a set of sensors {s1,...,8;,_1} for 1 < i < k. This is

a discrete combinatorial optimization problem with £ N-dimensional variables and
a number of possible solutions equal to the number of k-combinations of S (a set

of sensor candidates of cardinality |S| > 2/N). Finding a globally optimal solution
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in such a huge combinatorial space is computationally expensive, therefore, we use
an approximation algorithm that finds a near-optimal solution in a reasonable time.

We propose a greedy algorithm that adds one sensor at a time and maximizes
utility gain at each iteration. The algorithm takes k iterations. At the m!" iteration
(m = 1,..., k) we recalculate utility scores of all sensor candidates from S using
(6.10) and add a sensor with the maximum utility score. If multiple sensor candi-
dates evaluate to the maximum score value, we choose the one whose coverage of
the original heatmap of visitation frequencies (before discretization in Section 6.2)

C{Sj}

is most efficient (i.e., measured as Zfil (vi -G ) for arbitrary sensor s; € S,
precalculated once at the beginning of the procedure and never updated). The tie-
breaking mechanism is not captured in our objective function as it does not affect
its quantitative value. However, this mechanism allows for additional expert knowl-
edge to be encoded into the algorithm. It can be modified depending on the purpose

of the deployment. The algorithm terminates after the k" sensor is placed.

6.4 Near-Optimality Guarantee

Following the theoretical framework for sensor placement optimization by Krause
et al. [18], we show that our greedy algorithm has a strong near-optimality' guar-
antee (proved by Nemhauser ef al. [23]) due to two important properties exhibited
by our objective function: submodularity and monotonicity.

Intuitively, submodularity can be described as a property of diminishing returns:
adding a sensor to a small set of already placed sensors is more beneficial (i.e.,
generates larger utility gain) than adding a sensor to a large set of sensors. This

property is formalized for a set function F' defined on subsets of V as follows:
FAu{s})— F(A)> F(BU{s}) — F(B) (6.12)

forall A C B C Vand s € V\ B. We may rewrite this property for subsets

Near-optimal solution is typically defined as such that lies within a factor of two of the optimal
solution for minimization problems, or such that is > 50% of optimal for maximization problems.
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A={s1,...,8n-1} and B = AU {s,,} and our objective function as follows:

({51, s 8m-1,8}) — P({s1,...,Sm_1})
>O({s1,. -y Sm_1,5m,5}) — P{s1,-- -, Sm_1,5m}) (6.13)
where s1,...,8m-1,5m,5 € Sand s’ & {si,...,s,}. To prove that this property

holds, we apply several transformations. Plugging the initial definition of the ob-

jective function from (6.11) into the left and right sides of (6.13) respectively we

obtain:
D({s1,...,8m-1,8}1) —P({s1,.-,5m_1}) (6.14)
- (nf §Fi=1) o glfer Sml})) - mz_:l oFi-1) (6.15)
- 5;{;}..,57”1}) B (6.16)
({51, 38m, 8’} — D({s1,...,8m}) (6.17)
_ (i(ggi_l) P sm})) _ zm:(;gi_l) 6.18)
i=1 i=1
— Ustsm}) (6.19)

Plugging results (6.16) and (6.19) into inequality (6.13) is equivalent to the follow-

ing:
plfsrsnd) < sstina)) (6.20)

To prove this inequality, we transform the left term using the utility score function

definition (6.10) (omitting positive thresholding for clarity):

S G ) (621)
. (C* S Sj) (6.22)
1<j<m
. <C* N sm> 6.23)
1<j<m—1
— s/ . <C* _ C({Sl ,,,,, Sml})) — S, *Sm (624)
_ 5;{51 ..... sme1}) gl (6.25)
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Hence, inequality (6.20) holds as long as s’ - s,, > 0. Since an arbitrary sensor
({s51)

vector s; 1s specified using c; > 0, a dot product of any two vectors is also
thresholding) and our objective function is submodular for all A C B C S such that
|B \ A| = 1. This argument can be applied to arbitrary A C B inductively and will
hold true if our objective function is monotonic, which we prove next.

A set function F is considered monotonic if F'(A) < F(B) forall ACB C V.
Thus, we want to prove that ®({s1,...,Sm-1}) < ®({s1,...,5m}). We may
rewrite this inequality as ®({s1, ..., Sm}) — P({s1,...,5m-1}) > 0 and use the re-

sult from (6.16) by replacing s’ with s,,, i.e., ®({s1,...,5m})—P{s1,- -, Sm_1}) =
5({51 ,,,,, Sm—1}

Sm.

) > 0. The last inequality is true due to our definition of a utility score
as non-negative in (6.10).

Having proved that our objective function is submodular and monotonic, we
claim that the proposed greedy algorithm is guaranteed to find a near-optimal solu-
tion. In particular, if S,y is a set of & sensors that yield maximum total utility, and S,
is a set of & sensors found by greedy selection, than ®(S,) > (1 —1/e) - (Sqp) =
0.63 - ®(S,p). For more details on the proof of this bound for greedy selection ap-
plied to submodular monotonic functions please refer to the fundamental work by

Nembhauser ef al. [23].

6.5 Illustrative Results

In this section we discuss how the placements generated by our algorithm are af-
fected by the selection of the parameters cp,x (maximum preferable coverage util-
ity) and p,q (probability of doors being open). Figure 6.3 illustrates three place-
ments generated for a budget of 5 sensors and different c,,x and pog values. The
background of each image is colored according to the corresponding cn,x value:
Figure 6.3a and Figure 6.3b have 3 shades of color, and Figure 6.3c has 4.

We tested the effect of the value of p,y on the resulting placement by generat-
ing two placements with p,q = 1 and p,g = 0.1. The difference between the two

placements is apparent: without a strict penalty for crossing the boundaries of the
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(a) Cmax = 3’ Pod = 1.

(®) cmax = 3, poa = 0.1.

v/

(©) Cmax = 4, Poa = 0.1.

Figure 6.3: Examples of placements with different values of c,x and peg.
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rooms, about half of the footprint area of the sensor placed in the bathroom in Fig-
ure 6.3a reaches into the adjacent rooms. Once the penalty is enabled (Figure 6.3b),
the same sensor is “pushed” out of the bathroom into the bedroom. The placement
in Figure 6.3c has been generated with the same p.g as in Figure 6.3b but with
cmax = 4. The difference is also remarkable: the sensors are more tightly placed in
the areas of intensive color shades. Distinctive in this placement is that two sensors
were overlapped very precisely over the area of the highest color intensity, which is
one of the algorithm’s main objectives.

Overall, these examples suggest that the algorithm may work as expected, i.e.,
improve localization accuracy when compared to unoptimized placements with the
same number of sensors, if used with well-chosen parameters. One difficulty we en-
countered is that the selection of cp,x proved non-trivial. Intuitively, there should be
a correlation between this parameter and the number of sensors given for placement.
However, practically we did not observe a reliable pattern and therefore resorted to

choosing this parameter based on the simulation results.
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Chapter 7

Experimental Evaluation

In this chapter we highlight the difference between the simulation framework used
in the first part of the thesis and the simulation framework used for testing optimized
sensor placements. Next, we perform an extensive performance evaluation of the

optimized vs. manual vs. randomized placements.

7.1 Modified Simulation Framework

The simulation is performed similarly to how it has been described in Section 3.2,
however, with one crucial modification. We eliminate a notion of disjoint rooms
represented by polygons as our updated model of the space allows for arbitrary
walls (including inner columns).

We recreate all critical objects from the floorplan and sensor-coverage map in
the 2D continuous geometric space, i.e., objects such as obstacles and sensor foot-
prints are represented as closed chains of vertices forming arbitrary polygons. The
resulting model of the space integrated with the sensor-coverage map is shown in
Figure 7.1a.

We use the simulator software to generate realistic avatar traces representing
the occupant’s daily routine. An example of one such routine is shown in Fig-
ure 7.1b. Importantly, the avatar trace is also defined in the continuous geometric
space. Thus, our placements will be tested on continuous data points as opposed to
discrete points used for mobility modeling.

Figure 7.1c also illustrates location predictions made by the localization algo-

59



4 [T
" (e

= .

(a) Model of the space integrated with sensor-coverage map.
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(b) A fragment of an artificial “daily-routine” trace.
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(c) Comparison of the ground truth and estimated locations.

Figure 7.1: Modified simulation.
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Figure 7.2: Combined footprint of location tuples from10 daily-routine traces.

rithm. At the moment, the algorithm does not exclude the area occupied by obsta-
cles from possible locations of the moving target. However, we are not interested
in changing this behavior as we want to show that the localization accuracy can be
increased by merely optimizing the placement in contrast with attempts to improve

the localization algorithm.

7.2 Experimental Setup

We compare three placement strategies: (a) placements generated by our algorithm,
i.e., optimized, (b) placements crafted manually, and (c) randomized placements.
Each strategy is represented by a number of placements varying in cardinality.
Based on the dimensions of the deployment space and sensor footprints, we fo-
cus on cardinality in a range from 5 to 20 sensors. We have generated 10 artificial
traces of various length representing typical daily routines, as described in Section
7.1 and illustrated in Figure 7.1b. The combined footprint of all 10 traces is shown
in Figure 7.2. For each experiment we report the mean of the localization error,
standard deviation, standard error, and three quartiles of error values. The follow-

ing subsections describe the placement generation in more detail.
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7.2.1 Optimized placements

As mentioned at the end of Chapter 6, the success of optimized placements greatly
depends on the selected ¢« value (maximum preferable coverage utility). Having
performed a number of visual tests on the boundary cases, i.e., placements of 5 and
20 nodes, we narrowed down a possible range of ¢y, values to a set of {3,4,5}.
This choice is based on the following observations: with c.x < 3 the impact of
coverage utility assignment on the results of the placement algorithm is hardly no-
ticeable; with ¢y > 5 we observed oversaturation of sensors in high-priority areas
while some low-priority areas did not get covered at all even with the significant
budget of 20 sensors.

Next, we generate three placements, i.e., with cy.x = 3,4,5, for each & =
5,...,20 and test them against the artificial traces.! Figure 7.3 shows the average
localization error for each placement in relation to the ¢, value. Although in
some cases the data points coincide (e.g., . ¢pax = 3 and ¢y = 4 for 11 and 17-20
sensors), we observe a general trend: lower error rates are achieved with cp,x = 4
for k£ < 11 sensors and with ¢, = 5 for 11 < k& < 20. This trend confirms our
intuition that ¢y, grows with k. It is worth noting that £ = 11 is an important
threshold: this is the largest number of sensors that can cover the majority of the
space (excluding furniture) without overlap, i.e., this number is obtained by dividing
the total walkable area (area of the floorplan without non-walkable obstacles) by the
area of a sensor footprint. Once we have a budget of more than 11 sensors we cannot
avoid overlapping. Hence, it is natural to increase the value of ¢y, for all £ > 11.
In all subsequent experiments we use the optimized placements chosen according
to the observed trend, i.e., those generated with c;,.x = 4 for £ < 11 and ¢y = 5
for 11 < k£ < 20. Examples of optimized placements for £ = 9 and k£ = 20 are

shown in Figure 7.4.

"Note the parameter poq is set to 0.1 for all the conducted experiments.
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Figure 7.3: Localization error with respect to Cpyx.

7.2.2 Manual placements

We assume that the expert designing a placement is inclined to maximize total cov-
erage without specific considerations for the area occupied by furniture. Typically,
we want to distribute sensors uniformly so that the amount of uncertainty about the
occupant’s location is also uniformly distributed across the space, even if the budget
of sensors is not sufficient for full coverage. Given more sensors than necessary for
full coverage, we attempt to design placements with a fairly regular “grid” of over-
lapping regions. Figure 7.5 shows two examples of manually crafted placements: 9
sensors, uniformly covering the space with gaps between sensors, and 20 sensors,
regularly overlapping.

We have manually designed 15 placements for each £ = 5, ..., 20 following
the aforementioned considerations. Our final goal is to compare performance of the
optimized against manual placements on the traces of the typical daily routine. But
first we would like to show that our manual placements are designed without a bias

towards a particular data set. We generate a number of traces that systematically
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(a) 9 sensors, Cmax = 4.

18 5
20 9
8 15
12 P »

(b) 20 sensors, Cpax = D.

Figure 7.4: Examples of optimized placements.

cover the entire space in a zigzag-like fashion (e.g., Figure 7.6a). The assumed
model of the space used for these traces is different from the initial model: it con-
sists of the walls solely (no furniture). Essentially, we attempt to generate traffic
of uniform density across the whole space and show that the optimized placements
have no advantage over the manual placements on the uniformly-distributed mobil-
ity data.

Figure 7.7 compares performance of manual against optimized placements on
“zigzag” traces. We can see that the manual placements outperform the optimized
ones for all £ = 5,...,20. The unpaired t-test shows that the difference between

the two types of placements is statistically significant for all £ except & = 7. This
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Figure 7.5: Examples of manual placements.

(a) Zigzag trace that systematically covers the (b) Combined footprint of uniform density
space and ignores furniture. traces.

Figure 7.6: Uniform density traces.
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Figure 7.7: Localization error of manual vs. optimized placements tested on zigzag
traces.

exercise suggests that the manual placements are well-designed and can be consid-
ered good candidates for a comparison with the optimized placements when tested

on the daily-routine traces.

7.2.3 Randomized placements

We generate 5 randomized placements for each £ = 5, . . ., 20 in the following fash-
ion: we split the spatially ordered set S of sensor candidates into k£ equally-sized
subsets and randomly select one candidate from each subset. This way we avoid
occurrences of all k£ sensors being clustered too close to each other. One example
of a randomized placement generated this way is shown in Figure 7.8. In the sub-
sequent sections we report localization error of the k' randomized placement as
the average of 5 placements generated for every k, each tested on 10 daily-routine

traces.
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Figure 7.8: Randomized placement with 14 sensors.

7.3 Performance Evaluation

Having selected 15 optimized placements, 15 manual placements and averaging
the results of 5 randomized placements for each £k = 5,...,20, we evaluate the
performance of the three placement strategies with respect to each other. Figure 7.9
depicts the average localization error achieved by each placement in simulation
experiments with 10 daily-routine traces (a total of 3943 location tuples). We do
not show error bars since the values of the standard error of the mean are so small
as to be visually indistinguishable. Please refer to Table 7.1 for full descriptive
statistics.

It is clear that both manual and optimized placements significantly outperform
randomized placements. An interesting observation based on the performance of
the randomized placements is that the localization error generally decreases as the
number of sensors increases (although not strictly monotonically) regardless of the
placement strategy. That is, manual and optimized placements simply emphasize
this trend by monotonically improving localization accuracy with each additional
sensor. We also observe that the optimized placements’ performance is either as
good as that of the manual placements or better in the majority of cases. That is,
the unpaired t-test shows that there is no significant difference between the two
placement strategies for k£ € {5,6,8,19}, and that the optimized placements are

statistically better than the manual ones for all other £ except k£ = 20, the only case
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Figure 7.9: Localization error of optimized, manual, and randomized placements
tested on daily-routine traces.
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Figure 7.10: Difference in average localization errors of the optimal and manual
placements.

when the manual placement statistically outperforms the optimized placement. The
difference in average localization error values for all statistically different cases is
shown in Figure 7.10.

Note the drastic change in results of the optimized placements between k =
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SOrS.

8 and £ = 9. One notable detail distinguishing the placement with 9 sensors is
that it is the first placement (in the order of ascending k) that has a sensor in the
washroom (sensor #9 in Figure 7.4a). That is, our algorithm renders sensors placed
in the washroom as fairly low utility gain due to two reasons: (i) the walkable
area inside the washroom is very limited and (ii) any sensor reaching outside of
the washroom is penalized due to p,g = 0.1. Therefore, such sensor candidates
are disfavored by our algorithm until the 9" iteration. However, when manually
designing placements we included at least one washroom sensor in all placements
with £ > 6. Moreover, our daily-routine traces contain a significant amount of
mobility inside the washroom. Our algorithm, however, can address this problem
if we encode expert knowledge about especially important areas into the coverage
utility assignment by artificially inflating the coverage utility values of grid cells in
those areas.

Aside from optimizing localization accuracy under a cardinality constraint, we

are also interested in the reverse problem formulation, i.e., reducing the number
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of sensors while achieving a desired performance level. Assuming that the local-
ization accuracy achieved with the manual placements is acceptable, we compare
the number of sensors required for a certain performance level by both manual and
optimized placements. Figure 7.11 is plotted from the same data as Figure 7.9
but with the axes swapped. Consider data points of the curve representing manual
placements within a span from 10 to 19 sensors. For each manual placement with
k = 10,...,19 we may achieve the same or better level of performance with an
optimized placement with (kK — A) sensors where A is between 1 and 3 sensors
for different k. For example, the localization error of the manual placement with
14 sensors is achievable with the optimized placement comprising only 11 sensors.
Such a reversed interpretation of our results may eventually reduce the cost of a
new deployment. Essentially, we are not as much interested in improving the lo-
calization accuracy with the given number of sensors (considering the fact that the
performance improvement is relatively marginal, ranging between 4 cm and 11 cm
in individual cases) as in exploring the opportunity to reduce the number of sensors
without sacrificing performance.

If the localization data are used by online services (e.g., virtual world visual-
ization), then the percentiles of error distribution become more consistent quality
indicators than the average error. That is, while visualizing the data in real-time
we prefer a placement that generates more accurate predictions for a larger fraction
of system runtime, rather than a placement whose overall average performance is
better. Therefore, we report three quartiles of error values produced by manual and
optimized placements in Figure 7.12. It is clear that all optimized placements with
k < 20 outperform the respective manual placements in the two lower quartiles. In
other words, by using optimized placements instead of manual ones we can produce
more accurate location predictions at least 50% of the system runtime.

These experimental results suggest that the optimized placements have a num-
ber of advantages over the other two approaches. They also confirm that our ob-
jective function reliably estimates the quality of a sensor placement with respect
to eventual localization accuracy. In summary, our placement algorithm has the

potential to replace manual sensor placement, thereby reducing the cost of future
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deployments of the Smart-Condo™ system.
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Table 7.1: Descriptive statistics of experimental results achieved with optimized,
manual, and randomized placements (meters).

k  Type of placement | Mean SD SEM 1%t qrt. 274 qrt. 374 grt.
optimized 1.3306 0.9567 0.0152 0.6039 1.1380 1.8919
5  manual 1.3692 0.8060 0.0128 0.8028 1.1845 1.8739
randomized 2.3772 1.7249 0.0123 0.9974 1.9718 3.3922
optimized 1.1921 0.9380 0.0149 0.4974 0.9769 1.5837
6  manual 1.1736 0.7185 0.0114 0.6375 1.0317 1.5124
randomized 1.8266 1.2996 0.0093 0.8109 1.5181 2.5953
optimized 1.0292 0.7127 0.0113 0.4625 0.8551 1.3629
7  manual 1.0728 0.6591 0.0105 0.6215 0.9552 1.3615
randomized 1.5508 1.2574 0.0090 0.6398 1.1597 2.1408
optimized 0.9050 0.6692 0.0107 0.4212 0.7238 1.1678
8  manual 0.8954 0.5120 0.0082 0.5097 0.8447 1.1880
randomized 1.6549 1.3013 0.0093 0.6812 1.2761 2.2968
optimized 0.7006 0.4789 0.0076 0.3692 0.6132 0.8994
9  manual 0.8058 0.4312 0.0069 0.4798 0.7605 1.1162
randomized 1.4538 1.0738 0.0076 0.6345 1.1435 2.0643
optimized 0.6383 0.3493 0.0056 0.3662 0.5990 0.8472
10 manual 0.7263 0.3697 0.0059 0.4456 0.7002 0.9354
randomized 1.2211 0.9559 0.0068 0.4929 0.9712 1.7082
optimized 0.6085 0.3492 0.0056 0.3397 0.5583 0.8176
11 manual 0.6723 0.3461 0.0055 0.4251 0.6384 0.8700
randomized 1.1554 0.9573 0.0068 0.4813 0.8501 1.5684
optimized 0.5770 0.3353 0.0053 0.3153 0.5302 0.7892
12 manual 0.6418 0.3346 0.0053 0.3939 0.6156 0.8298
randomized 1.2077 1.0034 0.0071 0.4596 0.8687 1.7005
optimized 0.5611 0.3363 0.0054 0.2962 0.5096 0.7713
13 manual 0.6443 0.3426 0.0055 0.3846 0.6049 0.8541
randomized 1.1263 0.9266 0.0066 0.4635 0.8482 1.5035
optimized 0.5089 0.3121 0.0050 0.2647 0.4569 0.7076
14  manual 0.6148 0.3418 0.0054 0.3531 0.5687 0.8403
randomized 0.9523 0.7172 0.0051 0.4217 0.7479 1.3107
optimized 0.5015 0.3133 0.0050 0.2496 0.4569 0.7067
15 manual 0.5565 0.2911 0.0046 0.3227 0.5329 0.7662
randomized 0.8601 0.7091 0.0051 0.3478 0.6514 1.1564
optimized 0.4514 0.2603 0.0041 0.2412 0.4164 0.6419
16  manual 0.5480 0.2779 0.0044 0.3223 0.5319 0.7576
randomized 0.8834 0.6999 0.0050 0.3879 0.6801 1.1841
optimized 0.4430 0.2589 0.0041 0.2335 0.4065 0.6282
17  manual 0.5103 0.2751 0.0044 0.2852 0.4831 0.7123
randomized 0.7711 0.6146 0.0044 0.3312 0.5900 1.0208
optimized 0.4396 0.2606 0.0042 0.2270 0.3977 0.6265
18 manual 0.4870 0.2750 0.0044 0.2660 0.4392 0.6765
randomized 0.6838 0.5646 0.0040 0.3088 0.5302 0.8780
optimized 0.4336 0.2591 0.0041 0.2246 0.3871 0.6139
19 manual 0.4439 0.2634 0.0042 0.2392 0.3878 0.6023
randomized 0.6814 0.5832 0.0042 0.2940 0.5042 0.8832
optimized 0.4262 0.2529 0.0040 0.2206 0.3784 0.6035
20 manual 0.3919 0.2207 0.0035 0.2280 0.3450 0.5186
randomized 0.7238 0.5965 0.0042 0.3160 0.5434 0.9431
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Chapter 8

Discussion and Future Work

This chapter is dedicated to a discussion of known limitations of the proposed de-

ployment planning methodology and directions for future work.

Furniture displacement. One source of criticism applicable to our methodology
is that it heavily relies on knowledge of furniture placement and assumes that most
of the articles of furniture are stationary (except the movables). However, even very
heavy and generally stationary items, such as a bed or recliners, can be eventually
moved if the occupant of the space desires so. On the other hand, new items can
also appear in the space. To address this issue we consider two scenarios.

First, we consider the case when some of the objects that were assumed station-
ary from the floorplan drawing (e.g., recliners, dining table) in fact turn out mobile,
e.g., recliners on a wheeled base. Typically, such details become evident only upon
visiting the physical deployment space. Currently, our framework does not stipulate
that an object of interest (i.e., an object that participates in pathfinding for mobility
modeling) can also be movable. However, inclusion of this type of object can be
easily implemented within the existing framework. That is, we can define a group
of movable objects of interest that combines properties of the two existing groups.
For example, a rectangle representing the dining table would be linked with respec-
tive areas of interest (red strips in Figure 5.1); the boundaries of the table’s possible
displacement could be defined in a similar fashion as they are defined for the mov-
ables (Figure 5.2); for each execution of the PFA, the linked object of the table with

the areas of interest would be placed into random positions within the predefined
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boundaries.

A more complicated scenario emerges when the occupant of the space decides
to remove/add an article of furniture that cannot be considered movable under any
circumstances, e.g., a wardrobe. Removing such an item would reveal a potential
“blind spot” area (uncovered by the existing sensors), and adding one would affect
the existing mobility patterns. Unfortunately, within our framework this scenario is
equivalent to a new deployment planning. On the other hand, such modifications are
unlikely to occur in a controlled (possibly clinical) environment unless all the inter-
ested parties (clinicians, relatives) are properly informed in advance. Therefore, we

assume that the sensor placement can be adjusted by the caregivers accordingly.

Blind spots outside the daily routine. Sensor placements optimized with respect
to the proposed mobility model are susceptible to the following side-effect: they
tend to avoid coverage of presumably “useless” areas (e.g., corners, small patches
of unvisited areas between the walls and some furniture). These areas can be seen as
blind spots, which can eventually be locations of “exceptional events” (e.g., falls).
Our objective function is specifically designed to sacrifice full coverage in favor
of improved localization accuracy. However, if the sensor placement has to address
the issue of blind spots and yet be able to generate high-quality location predictions,
we may just slightly modify the tie-breaking mechanism (explained in the end of
Section 6.3) without changing the objective function. That is, when choosing be-
tween multiple sensor candidates with equal utility scores, we may give preference

to the one whose footprint covers the most uncovered area of the floorplan.

Inaccurate door 2D representation. This limitation is related to a transition of
3D sensor coverage models onto the 2D floorplan. In particular, the doorways are
represented as gaps between the walls and are assumed to have the same height with
the walls. In reality, there is a wall segment between the top of the door frame and
the ceiling, which also causes obstruction for a passive infrared sensor. If the height
of such wall segments is known, we can more accurately determine the shape of

sensor footprints that reach through the doorways. This detail is critical for real-
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world deployments. Another “door” limitation is related to assignment of pog. In
the current implementation this parameter is set globally for all the doors. Ideally,

our framework should be able to handle different values of p.q for different doors.

Future work. We would like to investigate the fault-tolerance of the optimized
placements, i.e., how well they perform under circumstances when one or more
sensors stop functioning. Considering the fact that the most frequently travelled
areas of the deployment space receive redundant coverage (overlapping sensors) in
the optimized placements, we predict that the optimized placements should be more
fault-tolerant than placements with uniformly placed sensors.

Another important future direction in which to expand this work is to test the
proposed placement methodology in the real-world trials. In short-term test trials,
we would like to compare the localization accuracy predicted by our simulation
framework to the accuracy achieved with a physically deployed system. In long-
term trials with real patients, we want to compare mobility patterns modeled within
our framework prior to deployment with the collected mobility data. In particu-
lar, we would like to study robustness of our placements with respect to different
sources of uncertainty in mobility data, e.g., inaccurate mobility model, unpredicted
furniture displacement, localization of more than one person, etc. We also want to
investigate whether long-term learning of mobility patterns can be exploited to ad-
just the placement for better localization performance or to reduce the number of
deployed/maintained sensors. Moreover, the number of motion sensors can be even
further reduced if we include models of pressure sensors, reed switches, and RFID
readers, which we already use in the real-world deployments but have not yet had
their impact on deployment planning investigated.

In addition to more placement-related studies, another avenue for future work
arises as we consider limitations of the localization algorithm. Currently it dis-
regards furniture placement when predicting locations. We may incorporate the
mobility model generated by our framework into the localization algorithm in two
different ways. First, we may replace the center-of-mass calculation based on mere

geometric considerations with the center-of-mass of the “heat” scores of the grid
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cells, thus, implicitly excluding areas occupied by furniture from location predic-
tions as those areas are never visited (“heat” score is 0). Second, we may treat our
mobility model as a probabilistic model of plausible trajectories and as such use it

for calculations of refined location estimates.
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Chapter 9

Conclusion

The Smart-Condo™ project aims to provide supportive services to help people
with chronic conditions to live independently. Our approach emphasizes a privacy-
respecting and non-intrusive monitoring infrastructure comprised of sensors, which
collect an occupant’s activity data, and actuators, which control home ambience
with the goal of improving the occupant’s living quality. One of the most valuable
sources of data for caregivers is the occupant’s mobility profile. Mobility data can
be used for early diagnosis of chronic conditions or simply to better deliver intelli-
gent services spatially distributed in the apartment. Thus, an accurate localization
method is crucial to our project.

Localization accuracy greatly depends on the sensor placement, which is typi-
cally designed manually for each new deployment and whose quality for localiza-
tion purposes is reliant on designer’s expertise. As such, this thesis investigated
the problem of deployment planning, which was approached as two subproblems.
First, we demonstrated the value of our simulation-based testing methodology, i.e.,
that it reliably estimates the localization accuracy achievable with a particular sen-
sor placement. Second, we proposed an automated approach for generating sensor
placements optimized for localization in the ambient assisted living environments.
In particular, we formulated an optimization problem under a cardinality constraint
(i.e., a limited budget of sensors). In doing so, we digressed from a typical sensor
placement objective — to achieve maximum coverage of the sensing field — and pro-
posed to maximize an application-specific utility-score function, defined on a set of

points of interest. We then proposed a methodology for assigning utility scores to

77



the points of interest based on the model of anticipated mobility patterns. That is,
the utility of a point is proportional to the likelihood of the occupant visiting that
particular point as part of his/her daily routine. We then proposed a greedy place-
ment algorithm that generates near-optimal solutions for our optimization problem,
and evaluated the localization performance of the generated placements using the
aforementioned simulation framework.

To give empirical support to our methodology, we compared the optimized
placements against both manually designed and randomized placements. The op-
timized placements significantly outperformed all randomized placements and per-
formed better than manual placements in the majority of cases. Overall, our ex-
perimental results suggest that our mobility modeling methodology and proposed
placement algorithm may eventually eliminate the time-consuming and tedious task
of manually selecting the best placement strategy for indoor localization, as well as

reduce the cost of new deployments.

78



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

MQ Telemetry Transport (MQTT) v3.1 protocol specification. [Online].
Available: http://www.ibm.com/developerworks/webservices/library/ws-
mgqtt/index.html

Technical annex for indoor localization and tracking, EVAAL competition.
[Online]. Available: http://evaal.aaloa.org/current-competition/annex2012-
track-localization

E. Akhmetshina, P. Gburzynski, and F. Vizeacoumar, “PicOS: A tiny operat-
ing system for extremely small embedded platforms,” in Proceedings of ESA,
vol. 3, 2003, pp. 116-122.

A. N. Bishop, B. Fidan, B. D. Anderson, K. Dogancay, and P. N. Pathirana,
“Optimality analysis of sensor-target localization geometries,” Automatica,
vol. 46, no. 3, pp. 479 — 492, 2010.

K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho, “Grid coverage for surveil-
lance and target location in distributed sensor networks,” Computers, IEEE
Transactions on, vol. 51, no. 12, pp. 1448—1453, 2002.

M. Chan, E. Campo, D. Esteve, and J. Fourniols, “Smart homes — current
features and future perspectives,” Maturitas, vol. 64, no. 2, pp. 90-97, 2009.

D. Cook, “Health monitoring and assistance to support aging in place,” Jour-
nal of Universal Computer Science, vol. 12, no. 1, pp. 15-29, 2006.

M. Cypriani, P. Canalda, and F. Spies, “OwlIPS: A self-calibrated fingerprint-
based Wi-Fi positioning system,” in Evaluating AAL Systems Through Com-
petitive Benchmarking. Indoor Localization and Tracking, ser. Communica-
tions in Computer and Information Science, S. Chessa and S. Knauth, Eds.
Springer Berlin Heidelberg, 2012, vol. 309, pp. 36-51.

P. David, V. Idasiak, and F. Kratz, “A sensor placement approach for the mon-
itoring of indoor scenes,” Smart Sensing and Context, pp. 110-125, 2007.

S. Dhillon and K. Chakrabarty, “Sensor placement for effective coverage and
surveillance in distributed sensor networks,” in Wireless Communications and
Networking, vol. 3. IEEE, Mar. 2003, pp. 1609-1614.

N. Fet, M. Handte, S. Wagner, and P. J. Marrén, “LOCOSmotion: An
acceleration-assisted person tracking system based on wireless LAN,” in Eval-
uating AAL Systems Through Competitive Benchmarking, ser. Communica-
tions in Computer and Information Science, S. Chessa and S. Knauth, Eds.
Springer Berlin Heidelberg, 2013, vol. 362, pp. 17-31.

79



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, Univ. of California, Irvine, 2000. [Online].
Available: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

V. Ganeyv, D. Chodos, I. Nikolaidis, and E. Stroulia, “The Smart Condo: inte-
grating sensor networks and virtual worlds,” in Proceedings of the 2nd Work-

shop on Software Engineering for Sensor Network Applications. ACM, 2011,
pp. 49-54.

WebSphere Sensor Events. IBM. [Online]. Available:
http://www.ibm.com/software/integration/sensor-events

A. Jiménez Ruiz, F. Seco Granja, J. Prieto Honorato, and J. Guevara Rosas,
“Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU
and RFID measurements,” Instrumentation and Measurement, IEEE Transac-
tions on, vol. 61, no. 1, pp. 178-189, 2012.

O. Kaltiokallio, M. Bocca, and N. Patwari, “Follow@grandma: long-term
device-free localization for residential monitoring,” in Local Computer Net-
works Workshops (LCN Workshops), 2012 IEEE 37th Conference on. 1EEE,
2012, pp. 991-998.

S. Knauth, L. Kaufmann, C. Jost, R. Kistler, and A. Klapproth, “The iLoc
ultrasound indoor localization system at the EVAAL 2011 competition,” in
Evaluating AAL Systems Through Competitive Benchmarking. Indoor Local-
ization and Tracking, ser. Communications in Computer and Information Sci-
ence, S. Chessa and S. Knauth, Eds.  Springer Berlin Heidelberg, 2012, vol.
309, pp. 52-64.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal sensor
placements: Maximizing information while minimizing communication cost,”
in Proceedings of the 5th international conference on Information processing
in sensor networks. ACM, 2006, pp. 2-10.

S. Lee, K. Ha, and K. Lee, “A pyroelectric infrared sensor-based indoor
location-aware system for the Smart Home,” Consumer Electronics, IEEE
Transactions on, vol. 52, no. 4, pp. 1311-1317, 2006.

H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor posi-
tioning techniques and systems,” Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, IEEE Transactions on, vol. 37, no. 6, pp. 1067-1080,
2007.

X. Luo, B. Shen, X. Guo, G. Luo, and G. Wang, “Human tracking using
ceiling pyroelectric infrared sensors,” in Control and Automation, 2009. ICCA
2009. IEEE International Conference on. 1EEE, 2009, pp. 1716-1721.

A. V. Medina, J. A. Gémez, J. A. Ribeiro, and E. Dorronzoro, “Indoor posi-
tion system based on a Zigbee network,” in Evaluating AAL Systems Through
Competitive Benchmarking, ser. Communications in Computer and Informa-
tion Science, S. Chessa and S. Knauth, Eds.  Springer Berlin Heidelberg,
2013, vol. 362, pp. 6-16.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approxima-

tions for maximizing submodular set functions,” Mathematical Programming,
vol. 14, no. 1, pp. 265-294, 1978.

80



[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

MP motion sensor NaPIOn, datasheet. Panasonic Electric Works. [Online].
Available: http://pewa.panasonic.com/assets/pcsd/catalog/napion-catalog.pdf

A. Roy, S. Das, and K. Basu, “A predictive framework for location-aware re-
source management in smart homes,” Mobile Computing, IEEE Transactions
on, vol. 6, no. 11, pp. 1270-1283, 2007.

C. Scanaill, S. Carew, P. Barralon, N. Noury, D. Lyons, and G. Lyons, “A
review of approaches to mobility telemonitoring of the elderly in their living
environment,” Annals of Biomedical Engineering, vol. 34, no. 4, pp. 547-563,
2006.

B. Song, H. Choi, and H. Lee, “Surveillance tracking system using passive in-
frared motion sensors in wireless sensor network,” in Information Networking,
2008. ICOIN 2008. International Conference on. 1EEE, 2008, pp. 1-5.

E. Stroulia, D. Chodos, N. Boers, J. Huang, P. Gburzynski, and I. Niko-
laidis, “Software engineering for health education and care delivery systems:
The Smart Condo project,” in Software Engineering in Health Care, 2009.
SEHC’09. ICSE Workshop on. 1EEE, 2009, pp. 20-28.

S. Toumpis and G. A. Gupta, “Optimal placement of nodes in large sensor net-
works under a general physical layer model,” in Proc. IEEE Communications
Society Conference on Sensor and Ad Hoc Communications, vol. 4, 2005.

I. Vlasenko, M. Vosoughpour Yazdchi, V. Ganev, 1. Nikolaidis, and E. Strou-
lia, “The Smart-Condo™infrastructure and experience,” in Evaluating AAL
Systems Through Competitive Benchmarking, ser. Communications in Com-

puter and Information Science, S. Chessa and S. Knauth, Eds.  Springer
Berlin Heidelberg, 2013, vol. 362, pp. 63-82.

M. Vosoughpour Yazdchi, “Indoor localization with passive sensors,’
Master’s thesis, University of Alberta, Edmonton, 2013. [Online]. Available:
http://hdl.handle.net/10402/era.30236

J. Wang, R. Ghosh, and S. K. Das, “A survey on sensor localization,” Journal
of Control Theory and Applications, vol. 8, no. 1, pp. 2-11, 2010.

Q. Wang, K. Xu, G. Takahara, and H. Hassanein, “WSNO04-1: Deployment for
information oriented sensing coverage in wireless sensor networks,” in Global
Telecommunications Conference, 2006. IEEE. 1EEE, 2006, pp. 1-5.

K. Woo, V. Ganeyv, E. Stroulia, I. Nikolaidis, L. Liu, and R. Lederer, “Sensors
as an evaluative tool for independent living,” in Advances in Human Aspects
of Healthcare, V. G. Dufty, Ed. CRC Press, 2012, pp. 612-621.

Q. Wu, N. S. Rao, X. Du, S. S. Iyengar, and V. K. Vaishnavi, “On efficient
deployment of sensors on planar grid,” Computer Communications, vol. 30,
no. 14-15, pp. 2721-2734, 2007.

T. Yi and H. Li, “Methodology developments in sensor placement for health
monitoring of civil infrastructures,” International Journal of Distributed Sen-
sor Networks, vol. 2012, 2012.

M. Younis and K. Akkaya, “Strategies and techniques for node placement in
wireless sensor networks: A survey,” Ad Hoc Networks, vol. 6, no. 4, pp.
621-655, 2008.

81



