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Abstract

Background: Pathogenesis-related proteins belonging to group 10 (PR10) are elevated in
response to biotic and abiotic stresses in plants. Previously, we have shown a drastic salinity-
induced increase in the levels of ABR17, a member of the PRI0 family, in pea. Furthermore, we
have also demonstrated that the constitutive expression of pea ABRI 7 cDNA in Arabidopsis thaliana
and Brassica napus enhances their germination and early seedling growth under stress. Although it
has been reported that several members of the PRIO family including ABRI7 possess RNase
activity, the exact mechanism by which the aforementioned characteristics are conferred by ABR17
is unknown at this time. We hypothesized that a study of differences in transcriptome between wild
type (WT) and ABR7 transgenic A. thaliana may shed light on this process.

Results: The molecular changes brought about by the expression of pea ABR/ 7 cDNA in A. thaliana
in the presence or absence of salt stress were investigated using microarrays consisting of 70-mer
oligonucleotide probes representing 23,686 Arabidopsis genes. Statistical analysis identified number
of genes which were over represented among up- or down-regulated transcripts in the transgenic
line. Our results highlight the important roles of many abscisic acid (ABA) and cytokinin (CK)
responsive genes in ABR/ 7 transgenic lines. Although the transcriptional changes followed a general
salt response theme in both WT and transgenic seedlings under salt stress, many genes exhibited
differential expression patterns when the transgenic and WT lines were compared. These genes
include plant defensins, heat shock proteins, other defense related genes, and several
transcriptional factors. Our microarray results for selected genes were validated using quantitative
real-time PCR.

Conclusion: Transcriptional analysis in ABR/7 transgenic Arabidopsis plants, both under normal
and saline conditions, revealed significant changes in abundance of transcripts for many stress
responsive genes, as well as those related to plant growth and development. Our results also
suggest that ABR/7 may mediate stress tolerance through the modulation of many ABA- and CK-
responsive genes and may further our understanding of the role of ABRI7 in mediating plant stress
responses.
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Background

Pathogenesis-related (PR) proteins are part of the plant
defense responses that are induced by pathogens as well as
by abiotic stresses [1,2]. To date, 17 different families of
PR proteins have been identified, based on their specific
structural and functional properties [[3] and references
therein]. Among the PR proteins, the PR10 family is com-
posed of intracellular acidic proteins with molecular
masses ranging from 15-18 kD and are encoded by mul-
tiple genes [1,3]. PR10 genes were first described in Pisum
sativum inoculated with Fusarium solani [4] but have been
subsequently described in many species [reviewed in [3]].
In addition to their inducible expression in response to
stresses, PRI0 genes also exhibit constitutive high
expressed levels in roots, flowers and pollen during nor-
mal growth and development, suggesting additional roles
beyond pathogenesis responses [5].

Based on sequence similarities, PR10 proteins have been
suggested to be ribonucleases (RNases) [6]. Indeed, PR10
proteins from a variety of species including two pea PR10
proteins have been demonstrated to possess RNase activ-
ity [7,8]. Although RNase activities have been detected for
many PR10 proteins, they have also been shown to inter-
act with molecules such as cytokinins (CKs), brassinoster-
oids, fatty acids, and flavonoids [9-11]. These
observations have led to the suggestion that all PR10 pro-
teins may not be RNases and may be involved during nor-
mal plant growth and development as hormone/ligand
carriers [10-12]. This suggestion is further supported by
the fact that CK-specific binding proteins (CSBPs) exhibit
amino acid sequence and predicted secondary-structure
similarities with PR10 proteins and, for this reason, have
been included in the PR10 family [9].

The pea abscisic acid-responsive protein ABR17, induced
by the exogenous application of abscisic acid (ABA) is
classified as a member of the PR10 family in pea [13].
ABR17 is produced late in seed development, and is
homologous to dehydrins and late embryogenesis abun-
dant (LEA)-related proteins [14,15]. ABR17 is also signif-
icantly homologous to intracellular pathogenesis related
(IPR) proteins and major birch pollen allergen Betv1 pro-
teins [16,17]. Our previous research has demonstrated the
expression of ABR17 protein in pea under salt stress [2]
and the RNase activity of two members of pea PR10 pro-
teins (PR10.1 and ABR17) [7,8]. Furthermore, we have
also demonstrated that the constitutive expression of pea
PR10.1 and ABR17 cDNAs enhance germination and early
seedling growth under abiotic stress conditions in B. napus
and A. thaliana, respectively [18,19]. In addition, the
transgenic plants also exhibited phenotypic differences
when compared to their WT counterparts, which included
precocious flowering, a higher number of lateral
branches, and increased numbers of seed pods [8]. Many
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of these characteristics of ABR17-transgenic A. thaliana are
suggestive of a role for CKs in ABR17 action, particularly
increased lateral branching and early flowering [20,21].
Our suggestion was further supported by the elevated con-
centrations of endogenous CKs in PR10.1 transgenic B.
napus as well as ABR17-transgenic A. thaliana [7,8].

These observations led us to hypothesize that PR10 pro-
teins, including ABR17, may mediate the observed pheno-
typic effects through modulation of endogenous CKs.
Additional evidence supporting this hypothesis has been
provided by the demonstration that exogenous applica-
tion of CK enhances germination under abiotic stress con-
ditions [8]. In order to further investigate the ABR17-
mediated changes in A. thaliana we investigated global
changes in gene expression using microarrays. Microarray
analysis was carried out in an ABR17-transgenic line com-
pared to its WT, salt treated ABR17-transgenic line com-
pared to untreated ABR17-transgenic line, and salt treated
WT compared to untreated WT seedlings. Our current
findings reveal that, even in the absence of stress, the
expression of genes involved in plant growth and develop-
ment are significantly (and approximately 2-fold)
increased in the transgenic line. Salt treated ABR17-trans-
genic A. thaliana seedlings showed general salt response
theme comparable to that of the WT counterpart used in
this study. However, both the trend as well as the degree
of changes in gene expression of many defense related
genes including plant defensins and heat shock proteins
was different providing additional insights into the possi-
ble ways in which ABR17 may mediate plant responses to
stress.

Results and discussion

Characterization of ABRI7-transgenic plants/seedlings
The appearance of 2-week-old WT and ABR17- transgenic
A. thaliana seedlings grown in soil as well as on MS
medium (1.5% sucrose, 0.8% agar with pH 5.7) [22]
plates are shown in Figure 1. At all growth stages investi-
gated, the ABR17-transgenic line was considerably more
developmentally advanced compared to its WT counter-
part. For example, in the 5-day-old transgenic seedlings
(Figure 1A) cotyledons were more developed than in their
WT counterparts and at 14-days the transgenic seedlings
possessed more rosette leaves (Figure 1A). Similar devel-
opmental differences were also observed at 21 days where
many transgenic seedlings had started to bolt whereas
very few (if any) WT seedlings had advanced to this devel-
opmental stage (Figure 1B). At 28 days, the transgenic
seedlings also possessed more lateral branches (Figure 1C,
Table 1). The transgenic seedlings also flowered earlier
than WT with an average difference of at least 2.5 days
(Table 1). Seedlings for microarray experiments were
grown on semi-solid MS media in order to maintain ste-
rility and it was evident that under these growth condi-
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5 days 14 days

Figure |

Appearance of WT and ABRI7 transgenic A. thaliana at various growth stages: Seedlings at 5, 14 days (A), 21
days (B), 28 days (C) and MS-grown |4-day-old seedlings (D) are shown.

tions also the transgenic seedlings were more
developmentally advanced (Figure 1D). These results are
consistent with our previous observations of seedlings
from this and other independently derived ABR17-trans-
genic lines grown on semi solid MS media [19]. In addi-
tion, the ABR17-transgenic seedlings grown on MS media
with 100 mM NaCl were greener and their roots appeared
to be longer compared to the WT seedlings grown under
similar conditions (Figure 2A).

Characteristics like root length, fresh weight, chlorophyll
a/b content and carotenoid contents were measured in
salt treated- ABR17 and WT seedlings. Roots of ABR17-
transgenic seedlings were relatively longer in the absence
of salt whereas upon salt treatment, the differences in
lengths were not that obvious (Table 1). The fresh weight
of ABR17-transgenic seedlings was not significantly differ-
ent from its WT counterpart in the absence of stress. How-
ever, in the presence of 100 mM NaCl, the fresh weights
of the transgenic seedlings were significantly (p < 0.05)
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Table I: Morphological and physiological differences between WT and ABRI7-transgenic A. thaliana lines

Morphological and pigment characteristics WT ABRI7 p Value
(Mean * SE) (Mean + SE)

Number of lateral branches (average) 3£03 4.1 £0.2 0.025

Days to flower (average) 24 £ 0.1 21603 0.002

Germination in dark (Percent) 96+3 844 +2 <0.001

Root length (cm)

0 mM NaCl 1.6 £0.1 23102 0.003

75 mM NaCl 0.7 £ 0.01 0.8 + 0.02 0.012

100 mM NaCl 0.5 +£0.03 0.6 + 0.02 NS

Fresh weight (g per 21 seedlings)

0 mM NaCl 0.10 + 0.003 0.11 £ 0.005 NS

100 mM NaCl 0.014 + 0.003 0.020 + 0.0008 0.027

Chlorophyll a/b (ug/g of FW)

0 mM NaCl 323+ 1.26 33 +2.58 NS

100 mM NaCl 8+0.93 13+244 0.045

Carotenoid (ng/g of FW)

0 mM NaCl 2.2 +0.063 231029 NS

100 mM NaCl 1.0 £ 0.207 1.4+0014 NS

NS: Non-significant

higher than their WT counterparts (Table 1). Although the
chlorophyll and carotenoid contents were almost similar
in ABR17 and WT seedlings without any stress, upon NaCl
treatment the transgenic seedlings had significantly (p <
0.05) higher levels of chlorophyll (Table 1). Our results
indicate that the NaCl treatment had less deleterious
effects on the ABR17-transgenic seedlings compared to the
WT.

In order to further characterize the differences between
the WT and ABR17-transgenic lines, the ability of both WT
and ABR17-transgenic seedlings to germinate in the pres-
ence or absence of light at RT was compared. In the dark,
85% of ABR17-transgenic A. thaliana had germinated after
one week, whereas only 10% of the WT seeds had germi-
nated under the same conditions (Table 1, Figure 2B). In
contrast, in the presence of light, 100% of both ABR17-
transgenic and WT seeds had germinated in the same
period (data not shown). Most Arabidopsis ecotypes
require light for germination, which is primarily control-
led by a reversible red light dependent equilibrium of the
photoreceptors [23]. It is also known that exogenous CKs
can substitute for red light and enhance the germination
of certain light-requiring species in the dark [24-27]. Fur-
thermore, A. thaliana detiolated (det) mutants exhibits
many characteristics of seeds germinated in the presence
of light even when germinated in dark [28], a phenotype
that has been attributed to CKs because of the fact that
even WT seedlings exhibit the same phenotype when ger-
minated in the dark following exogenous CK application
[29]. A role for CKs can also be inferred from the observa-
tion that coumarin or far-red light, both of which prevent
the formation of CK-nucleosides from storage forms of

CKs, inhibit germination of lettuce seeds in the dark [30].
Interestingly, ampl A. thaliana mutants, which possess
higher endogenous CKs, also exhibited a photomorpho-
genic response that in part similar to our ABR17-trans-
genic seedlings [31]. Taken together, all these results seem
to suggest that endogenous CKs play an important role in
the germination of light-sensitive seeds and the elevated
endogenous CKs in ABRI7-transgenic seedlings previ-
ously reported [8] may be responsible for the enhanced
germination of this genotype in the dark (Table 1, Figure
2B).

Transcriptional profiling using microarrays

In order to characterize the molecular changes brought
about by the expression of pea ABR17 cDNA in A. thaliana
that resulted in the observed phenotypes, we analyzed
gene expression by profiling the transcripts of ABR17-
transgenic plants in the absence and presence of 100 mM
NacCl. As described earlier, the first set of microarray anal-
ysis was the investigation of the differences in gene expres-
sion between ABR17-transgenic and WT A. thaliana in the
absence of NaCl (ABR17/WT). The second set of microar-
ray analysis was between 100 mM NaCl-treated WT and
untreated WT A. thaliana (100 mM NaCl treated WT/WT).
The third set of microarray analysis was between 100 mM
NaCl treated ABR17-transgenic versus untreated ABR17-
transgenic A. thaliana (100 mM NaCl treated ABR17/
ABR17).

Microarrays (70-mer oligonucleotide microarrays) con-
sisting of probes presenting 23,686 unique genes identi-
fied by Arabidopsis genome initiative (AGI) locus
identifiers were used. We identified transcripts as those
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WT Dark

ABR17 Dark

Figure 2

Appearance of WT and ABRI7 transgenic A. thaliana in response to treatments. (A) Appearance of WT and trans-
genic ABRI7 A. thaliana seedlings grown on MS media with 100 mM NaCl (B) Appearance of 7-day-old WT and ABR/7 trans-

genic A. thaliana seedlings grown under dark.

with mean signal intensities that differed significantly
from 0 at o = 0.05 in a Student's t-test in each set of micro-
arrays. The transcripts were categorized based on shared
structural elements and/or inferred function. We selected
12 genes representing different functional categories,
which according to our microarray analysis showed
enhanced or reduced levels of transcript abundance to val-
idate our microarrays. The results from microarrays and
qRT-PCR analysis are discussed below.

First set of transcriptional profiling: genes responsive to
ABRI17

Of the significantly responsive transcripts due the expres-
sion of pea ABR17 in A. thaliana, 124 were observed to be
modulated in the transgenic line at least 1.5-fold com-
pared to WT with 83 increasing and 41 decreasing in tran-
script abundance (Additional file 1). Many of these genes
had annotations that were associated with either defense
or plant growth and development, or both. A total of 16
genes showed significant differences in transcript abun-
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Table 2: Genes exhibiting nearly 2-fold changes in transcript abundance in ABRI7 transgenic A. thaliana seedlings

AGIe Operon annotation log 2 ratio SEb p Value
At5g20230 ATBCB (Arabidopsis blue-copper-binding protein) 1.55 0.14 1.57E-03
At4g36060 BHLH family protein 1.49 0.19 4.33E-03
At5g44420 PDF1.2 (Plant defensin 1.2) 1.4 0.38 | .48E-02
At5g42040 Putative 26S proteasome non-ATPase regulatory subunit 1.38 041 2.04E-02
At4g22450 Unknown protein 1.37 0.17 3.96E-03
At3g45970 ATEXLALI (A. thaliana expansin like Al) 1.32 0.16 1.08E-03
At5g01920 STNS8 (State transition 8); KINASE 1.24 0.22 4.47E-03
At2g26010 PDFI.3 (Plant defensin 1.3) .17 0.35 1.97E-02
At5g10040 Unknown protein 1.04 0.31 2.79E-02
Atlg75830 PDFI.1 (Plant defensin I.1) 1.04 0.3 1.72E-02
At2g26020 PDFI.2B (Plant defensin 1.2B) 0.96 0.26 1.47E-02
Atlg07135 Glycine rich protein 0.95 0.19 7.89E-03
Atlg01560 Mitogen-activated protein kinase (MPK11), putative 0.94 0.1 1.08E-02
At5g48850 Male sterility MS5 family protein -0.99 0.17 9.96E-03
Atlg56430 Puatative, nicotianamine synthase -1.13 0.08 8.78E-04
At3g56980 ORG3 (OBP3-resposnive gene 3) -1.36 0.13 1.91E-03

All expression ratios are significant (oo = 0.05) and are in a log2 scale where fold change is ABRI 7/WT.

AGI— Arabidopsis Genome Initiative SEP- Standard error

dance about 2-fold, where 13 genes exhibited increased
transcript abundance and 3 genes showed a decrease in
transcript abundance (Table 2).

Among the highly induced transcripts in transgenic seed-
lings that were putatively related to defense responses
(Table 2), we detected 5 members of the plant defensin
(PDF) family which exhibited an increased in abundance
~2-3-fold in the transgenic line. PDFs are small (45-54
amino acids), highly basic cysteine-rich peptides belong-
ing to the large defensin family, and are present through-
out the plant kingdom. These proteins are known for their
involvement in ancestral non-specific innate immune
defense system [32]. In addition to being involved in
mediating plant responses to pathogens, defensins may
also play an important role in plant growth and develop-
ment. For example, the constitutive expression of AtPepl
induced the expression of PDF1.2 which resulted in better
root development in A. thaliana suggesting that plant
defensins may regulate root development [32].

Another interesting transcript that exhibited increased
abundance (2-fold; Table 2) in ABR17-transgenic plants
was a putative mitogen-activated protein kinase (MAPK).
MAPK cascades are known to play crucial roles in physio-
logical processes such as cell growth, cell cycle regulation
and developmental control as well as plant defense sign-
aling [33]. They are also known to activate WRKY type
transcription factors that are involved in transcriptional
activation of disease resistance genes [34]. Indeed, we
have observed a modest, but elevated expression of four
genes belonging to the WRKY family and disease resist-
ance protein (Additional file 1).

We also observed increased transcript abundance for sev-
eral genes involved in plant growth and development
(Table 2). For example, expansins were detected as highly
induced transcripts in ABR17-transgenic A. thaliana (Table
2). Expansins are cell wall proteins that are known to
induce pH-dependent plant cell wall extension and stress
relaxation [35]. The expansins have been related to cell
differentiation in tissues such as xylem, leaf primordia
and root hairs [36-38]. Previous studies on transgenic
plants expressing expansin genes have demonstrated pre-
cocious leaf development, longer petioles and larger leaf
blades [39,40].

Glycine-rich proteins (GRPs) were also detected among
growth related genes that whose transcripts increased in
abundance in ABR17-transgenic plants (Table 2). GRPs
consist of quasi-repetitive glycine-rich domains, most
commonly GGGX, GGXXXGG or GXGX repeats [41].
Some GRPs have been reported as structural components
of the plant cell walls based on their co-localization with
cell wall [42]. GRPs have also been reported to be acti-
vated by osmotic stress [43], cold shock [44] and wound-
ing [45].

The genes that exhibited significant enhanced expression
in ABR17-transgenic plants also included genes for pro-
line-rich protein (PRP) family, xyloglucon endotransglyc-
osylase (XTH), glycosyl hydrolase (GH), phytosulfokine
precursor 2 (PSK2), No Apical Meristem (NAM) protein
family and glutaredoxins (Additional file 1). PRPs repre-
sent a family of structural cell wall proteins that have been
implicated in various plant developmental processes
[46,47]. Similarly, XTH and GH family genes are involved
in structuring xyloglucan cross-links in plant cell wall and
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plant development [[37,48] and [49]]. The PSK2 gene is
also involved in cell growth and differentiation [50-52].
Similarly, the NAM gene product is required for shoot api-
cal meristem (SAM) formation during embryogenesis as
well as for normal flower development [53-55]. Glutare-
doxins have also been demonstrated to be involved in
flower development, probably by mediating post-transla-
tional modifications of target proteins required for nor-
mal petal organ initiation and morphogenesis [56]. Our
current observations that the significantly (albeit modest)
higher expression of the above mentioned genes related to
growth and development including flowering correlates
well with the observed phenotypes which include early
flowering, increased lateral branching and seed pods as
observed in ABR17-transgenic A. thaliana (Figure 1C).

A role for cytokinins in ABRI7-induced changes in gene
expression?

Interestingly, members of most of the gene families
described above (defensin, expansin, MAPK, NAM,
WRKY, GRP, PSK2 and Glutaredoxin) that are involved in
plant defense as well as growth and development, have
been previously reported to be regulated by CKs. For
example, genome-wide expression profiling of immedi-
ate-early and delayed CK- response genes of A. thaliana,
has led to the identification of many genes that are up-
regulated by CKs including members of expansin
(At1g69530), GRPs (At2421060), NAM (At4g27410), F-
box protein (At3¢61060), ERBFs, putative ring zinc finger
protein (At1g76410), a member of the bHLH family
(At2¢18300), blue copper binding protein (At5820230)
and PSK2 [57]. The blue copper binding protein
(At5220230) and putative ring zinc finger protein
(At1g76410) identified by Brenner et al. (2005) [57] as
CK-induced were observed to be up-regulated in our
microarrays analysis. Similarly, gene expression analysis
of transgenic A. thaliana seedlings transformed with bacte-
rial isopentenyl transferase (IPT) [58] gene revealed
increased transcript abundance for many members of
MAPK and WRKY gene families, which included the spe-
cific WRKY gene - At1g80840 that has been detected in
our microarray studies as being induced by ABR17 expres-
sion (Additional file 1). Another investigation into CK
action in Arabidopsis has demonstrated increased expres-
sion of genes for cytochrome P450, PDF, expansin, pata-
tin, WRKY members and putative disease resistance
protein in response to CKs [59]. Therefore, it is apparent
that several genes whose transcript levels were modulated
by ABR17 expression in A. thaliana have been previously
reported in the literature as being CK-responsive, there by
suggesting an important role for CK-mediated gene
expression in ABR17 action in planta.

http://www.biomedcentral.com/1471-2229/8/91

Second set of transcriptional profiling: genes responsive to
salt stress in WT A. thaliana

Microarray- based analyses of the salt responses in Arabi-
dopsis have been published in several reports. However,
most of these studies have investigated responses to very
short-term exposure to salt. In this study, we report the
transcriptional changes in A. thaliana as a result of long-
term, continuous exposure to 100 mM NaCl. Here, we
allowed A. thaliana seeds to germinate and grow on semi-
solid medium in the presence of 100 mM NaCl for 2
weeks, and the RNA extracted from whole seedlings were
used for cDNA synthesis and subsequent microarray anal-
ysis. The results from microarray analysis of salt treated
WT Arabidopsis seedlings (Additional file 2) agreed with
previous studies using similar approaches [60,61]. We
identified 163 genes that showed more than four fold
changes in transcript abundance which have been previ-
ously reported as being responsive to salt. Our results,
therefore, indicate that both short-term "shock" treat-
ments with NaCl as well as long-term treatment used in
this study elicit similar responses in A. thaliana at the tran-
script level (Additional file 2).

Members of protease inhibitor/lipid transfer protein
(LTP) family were seen among highly up regulated and/or
down regulated genes. At least five members showed
increase in transcript abundance and 1 member showed
decrease in transcript abundance of more than 4 fold
(Additional file 2). LTP genes contain ABA-responsive
(ABRE) element (GTACGTGG) and are induced by absci-
sic acid (ABA) [62,63]. It has been reported in the litera-
ture that NaCl, mannitol or ABA treatments induce the
expression of a gene encoding an LTP-like protein in
tomato [62,64]. In addition, the changes in the expression
of LTP genes during salt stress have been previously
reported [60,61]. Although, most of the LTP genes were
up regulated after short term treatment with salt, they
were found to be down regulated after 24 h of salt treat-
ment [60,61]. From our studies, it appears that many of
the LTP genes will get up regulated in response to long
term stress as a result of expected increase in ABA levels.

Other major groups of genes with increase in transcript
abundance following NaCl treatment included two mem-
bers of glycosyltransferases (GTs) and five members of
glycoside hydrolases (GHs). GTs and GHs are major fam-
ilies of carbohydrate-active that play a primary role in
structuring xyloglucan cross-links in plant cell wall
[48,49]. They have been previously reported to be
induced by salinity stress in plants and this has been
implicated in drought and salt tolerance in A. thaliana
[49,60]. Other genes exhibiting increased transcript abun-
dance included ribonuclease RNS1, osmotin-like protein,
hydroxycinnamoyl benzoyltransferase-related, oxidore-
ductase, 20G-Fe(II) oxygenase family, glutathione trans-
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ferase and zinc finger (C3HC4-type RING finger) protein
family (Additional file 2). Similarly, the genes which
showed decrease in transcript abundance more than 4
fold included many photosynthetic genes, plant
defensins, heat shock proteins, auxin-induced proteins,
disease resistance protein, Bet v I allergen family and
bHLH protein. These results are once again consistent
with the previously reported results from microarray-
based investigation into salinity stress responses [60,61].

Third set of transcriptional profiling: genes responsive to
salt stress in presence of ABRI7

The results from microarray analysis of salt treated ABR17
transgenic A. thaliana seedlings are presented in Tables 3
and 4. We identified 129 genes showing either increase or
decrease in transcript abundance more than 4-fold, which
included transcription factors (15), stress responsive
genes (16), carbohydrate and cell wall metabolism (8),
electron transport and oxidoreductases (6), lipid metabo-
lism (3), protein and amino acid metabolism (9), pro-
teins involved in transport across membranes (12) and 60
unknown or unclassified genes.

Transcriptional factors are necessary for the proper tran-
scriptional regulation in response environmental cues
[65] and those exhibiting significant increases in tran-
script abundance included bHLH, 4 members of AP2
related, 2 members of NAM, zinc finger (C3HC4-type
RING finger) protein family, ATMYB74 (MYB domain
protein 74), ATHB-7 (Arabidopsis thaliana HOMEOBOX
7), and WRKY families. bPHLH092 has been indicated
among the highly induced transcripts in response to NaCl
treatment in the previous transcriptomic studies and are
suggested to be important regulators of the NaCl-stress
response in Arabidopsis [60]. The APETALA2 (AP2)
domain defines a large family of transcription factors
which play important roles in plant growth, development
as well as stress tolerance [66-71].

Similarly, as previously stated, NAM genes have been
found to be induced by abiotic stresses implying roles in
stress responses in addition to those in plant growth and
development [72,73]. NAM/NAC proteins belong contain
highly conserved NAC (for NAM, ATAF1, 2, and CUC2)
domains in their N-terminal regions, that specifically
binds target DNA [54]. It has also been demonstrated that
NAC transcription factors are ABA-responsive [74,75] and
are also induced by other plant hormones like NAA and
ethylene [75-78]. Overexpression of NAC genes has been
shown to result in an increase in lateral roots, and toler-
ance to abiotic stresses like drought and salt stress. NAC
genes are believed to exert their stress ameliorating activity
through the regulation of stress-inducible genes [77-79].
Similarly, the WRKY family TF genes and myb family
genes are known to be biotic and/or abiotic stress respon-
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sive [60,80]. Thus, it is possible that the increased toler-
ance of ABRI7-transgenic seedlings to NaCl is the
combined effect of the modulation of the levels of abun-
dance of transcripts for these transcription factors with
demonstrated roles in stress tolerance.

The highest transcript abundance of any gene observed in
salt treated ABR17 plants was XTR-6, which showed 4.7-
fold increase, compared to the untreated ABR17-trans-
genic line. Xyloglucan endo-transglycosylase (XET) has
been suggested to be a key enzyme involved in the modi-
fication of the xyloglucan cross-links that controls the
strength and extensibility of the plant cell wall [81]. Three
members of GH family were also seen among genes which
up regulated more than 4-fold change (Table 3). The
importance of GHs genes in plant stress [49,60] has
already been discussed in the previous section.

Others salt responsive genes in the ABR17-transgenic line
included osmotin, mannitol dehydrogenase, steroid sul-
fotransferases and RD20 (Table 3) which are known to be
regulated by ABA, are expressed in salt-stressed plants and
have been used to engineer salinity tolerance [82-86]. In
addition, we also observed increase in transcript abun-
dance for ribonuclease- RNS1, peroxidases, copper/zinc
superoxidase dismutase (CSD1), cytochrome p450 fam-
ily, MATE efflux protein and protein kinases which have
been previously demonstrated to accumulate in salt
treated tissues by others [60,61]. From our microarray
results, it appears that many genes involved in mediating
responses to salinity stress are increased in transcript
abundance as would be expected.

Comparison of salt responses in WT and ABR17 transgenic
seedlings

Although transcriptional changes were almost similar
both in salt treated- ABR17 and WT seedlings, the tran-
script abundance of some genes exhibited significant dif-
ferences in both the trend as well as the degree of
modulation of transcript abundance (Table 5). For
instance, as mentioned previously, transcript abundance
of xyloglucan endotransglycosylase (XTR-6) (At4425810)
increased 4.7-fold in salt treated ABRI17 seedlings,
whereas it showed only a 2.4-fold increase in salt-treated
WT seedlings (Table 5). Similarly, AP2 domain related
transcription factor RAP2.6 (At1g43160) increased 4.5-
fold in salt treated ABR17 compared to 1.67-fold in
treated WT plants. The expressed proteins- ABA-respon-
sive protein-related (At3g02480) and unknown protein
(At5424640) also showed increase in transcript abun-
dance of at least 4-fold in salt-treated ABR17 transgenic
line compared to the 2-fold increase observed for the WT
in response to salt. Other genes which exhibited increase
in transcript abundance of more than 2 fold in salt-treated
ABR17 transgenic but showed less abundance in treated
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Table 3: Genes exhibiting > 4-fold change in transcript abundance in 100 mM NaCl treated ABR17 transgenic seedlings

AGle Operon annotation Gene mean SEb p Value

Transcription factors

At5g43650 bHLH protein family 4.67 0.51 1.22E-02
Atlg43160 AP2 domain transcription factor RAP2.6 4.52 0.5 1.22E-02
At3g15500 ATNAC3 (Arabidopsis NAC domain containing protein 55) 38 0.28 8.39E-04
Atlgl0585 Transcription factor 3.32 0.2 4.55E-04
At3g43180 zinc finger (C3HC4-type RING finger) protein family 3.06 0.6 7.05E-03
Atlg21910 AP2 domain-containing transcription factor family protein 3.01 0.04 2.66E-07
Atl1g52890 ANACO19 (Arabidopsis NAC domain containing protein 19) 2.96 0.46 7.40E-03
At5gl13330 RAP2.6L (Related to AP2 6L) 2.86 0.11 1.33E-05
At4g05100 ATMYB74 (MYB domain protein 74) 2.53 0.29 3.21E-03
At2g38340 AP2 domain transcription factor, putative (DREB2) 24 0.27 3.08E-03
At2g46680 ATHB-7 (Arabidopsis thaliana HOMEOBOX 7) 2.16 0.02 9.75E-07
At2g38470 WRKY family transcription factor 2.05 0.21 |.75E-04
Atdg|7460 HAT| (HOMEOBOX-leucine zipper protein 1) -2.15 0.26 3.96E-04
At2g33810 SPL3 (SQUAMOSA PROMOTER binding protein-like3) -2.22 0.54 2.55E-02
Atlg62360 STM (shoot meristemless) -2.76 0.35 |.44E-03

Stress response

At2g03760 Steroid sulfotransferase 3.71 0.1 3.35E-06
At5g43570 Serine protease inhibitor family protein 3.57 0.09 2.85E-06
At4g04220 Disease resistance family protein 3.43 0.16 2.40E-04
At4g37990 Mannitol dehydrogenase (ELI3-2), putative 2.85 0.48 1.96E-03
At4gl 1650 Osmotin-like protein (OSM34) 2.36 0.17 3.95E-05
At5g39580 Peroxidase, putative 2.32 0.32 5.27E-03
At2g33380 RD20 (Responsive to dessication 20) 222 0.27 4.30E-04
At5g59820 Zinc finger protein 2.19 0.52 8.55E-03
At2g02990 Ribonuclease, RNS| 2.13 0.1 2.94E-05
At1g08830 Copper/zinc superoxidase dismutase (CSD1) 2.09 0.18 8.11E-05
At5g42180 Peroxidase, putative -2.22 0.54 1.45E-02
At4g18780 CESAS8 (Cellulase synthase 8) -2.34 0.1 |.52E-04
At3g22231 PCCI (Pathogen and circadian controlled 1) -2.5 0.42 1.95E-03
At2gl 1810 MGDG synthase (MGD3), putative -2.66 0.1 1.12E-04
Atlg23130 Bet v | allergen family -3.48 0.16 4.19E-06
At4g14400 ACD6 (Accelerated cell death 6) -4.33 0.97 2.12E-02

Carbohydrate and cell wall metabolism

At4g25810 Xyloglucan endotransglycosylase (XTR-6) 4.68 0.19 1.53E-04
At3g60140 Glycosyl hydrolase family | protein 4.19 0.1 3.46E-05
At2g36780 UDP-glycosyltransferase family 2.87 0.12 1.75E-04
At2g43620 Glycosyl hydrolase family 19 (chitinase) 2.8l 0.4 9.08E-04
Atdgl 6260 Glycosyl hydrolase family 17 2.49 0.11 2.06E-04
At4g26530 Fructose-bisphosphate aldolase, putative -2 0.14 3.06E-05
At4g02290 Glycosyl hydrolase family 9 -2.22 0.25 3.11E-04

Electron transport & Oxidoreductase

At2g37770 Aldo/keto reductase family 3.05 0.11 1.02E-05
Atlg30700 FAD-linked oxidoreductase family 2.58 0.21 I.14E-03
At5g05600 Oxidoreductase, 20G-Fe(ll) oxygenase family 2.42 0.33 5.06E-03
Atlgl7020 SRGI (Senescence-related gene I) 2.26 0.08 1.35E-06
At2g45570 Cytochrome p450 family 2.11 0.34 8.70E-03
At5g20230 Arabidopsis blue-copper-binding protein 2.1 0.11 6.36E-06

Lipid metabolism

At5gl4180 Lipase family protein 2.78 0.45 1.59E-03
Atlg54010 Myrosinase-associated protein, putative 2.24 0.69 4.77E-02
Page 9 of 19

(page number not for citation purposes)



BMC Plant Biology 2008, 8:91

http://www.biomedcentral.com/1471-2229/8/91

Table 3: Genes exhibiting > 4-fold change in transcript abundance in 100 mM NaCl treated ABRI7 transgenic seedlings (Continued)

At3g02040 SRG3 (Senescense related gene 3) -2.66 0.16 1.24E-05
Protein and amino acid metabolism
At3g25250 Protein kinase family 2.54 0.38 6.62E-03
At4g04490 Protein kinase family protein 2.51 0.79 4.96E-02
At4g08870 Arginase — related 2.45 0.1 2.31E-06
Atlg26970 Protein kinase, putative 2.39 0.09 |.50E-06
Atlg76600 Similar to unknown protein (Arabidopsis thaliana) 2 0.58 2.59E-02
Atlg21270 Protein serine/threonine kinase -2.06 0.24 3.37E-04
Atlg65800 ARK2 ((Arabidopsis receptor kinase 2) -2.33 0.17 1.73E-04
At4g10540 Subtilase family protein -2.36 0.07 5.74E-06
At4g21640 Subtilase family protein -2.45 0.34 2.04E-03
At4g21650 Subtilase family protein -2.49 0.65 3.13E-02
Transport
At2g38530 Protease inhibitor/lipid transfer protein (LTP) family 391 0.16 2.35E-06
At4g12500 Protease inhibitor/lipid transfer protein (LTP) family 3.34 0.28 7.67E-05
Atdg12490 Protease inhibitor/lipid transfer protein (LTP) family 3.32 0.29 9.06E-05
At3g50930 AAA-type ATPase family 3 0.19 | .86E-05
At4g12470 Protease inhibitor/lipid transfer protein (LTP) family 28 0.29 | .88E-04
At2g04070 MATE efflux protein family 2.67 0.31 3.24E-03
At5g43610 ATSUCS6 (Sucrose-proton symporter 6) 25 0.33 6.37E-04
At3g51860 Cation exchanger, putative (CAX3) 22 0.24 2.64E-03
At2g04080 MATE efflux protein — related 2.1 0.32 1.17E-03
At4g12480 Protease inhibitor/lipid transfer protein (LTP) family 2.09 0.23 2.45E-04
At4g21680 Peptide transporter — like protein 2.03 0.76 4.41E-02
At5g19530 Spermine synthase (ACLS5) -2.02 0.14 2.72E-05

All expression ratios are significant (. = 0.05) and are in a log2 scale where fold change is salt treated ABRI 7/control ABRI7. AGle— Arabidopsis

Genome Initiative SEb — Standard error

WT included pathogenesis-related protein, (At4¢33720)
and glutamine-dependent  asparagine  synthetase
(At3g47340). On the other hand, the retroelement pol
polyprotein (At2g04460) with unknown function showed
a down regulation of more than 2-fold in salt-treated
transgenic ABR17 line, but was up regulated in salt treated
WT Arabidopsis plants.

Interestingly, many members of heat shock protein (Hsp)
family and PDF family showed the opposite response in
salt-treated ABR17-transgenic seedlings compared to the
salt-treated WT counterparts, with an increase of transcript
abundance in salt-treated ABR17-transgenic (Table 5).
This difference in the direction of the response in gene
expression i.e. induction in the transgenic seedlings versus
the repression in the WT may have important conse-
quences with respect to the ability to tolerate salinity (and
perhaps other) stress. For example, the Hsp family con-
tains chaperones, which have important roles in protein
folding, assembly and in the disposal of unwanted non-
functional proteins. Hsps are usually induced by environ-
mental stress, and the accumulation of Hsps coincides
with enhanced stress tolerance [60,87-91]. In addition,
transgenic Arabidopsis plants overexpressing AtHSP17.7
accumulate high levels of AtHSP17.7 protein and show

enhanced tolerance to drought and salinity [89,90]. The
abundance of Hsps in plants and their functional charac-
teristics suggest that Hsps play an important role in plant
stress tolerance. Thus, the increased abundance of HSP
transcripts in the ABRI17-transgenic seedlings may be
important for the increased tolerance of this line to the
imposed stress.

The up regulation of PDFs in ABR17-transgenic A. thaliana
grown under normal conditions (Table 2) and their
importance in growth and development has already been
discussed earlier. The literature also supports a role for
PDFs in stress tolerance [32,91]. Most of the previously
characterized PDFs exhibit anti-fungal, antibacterial, anti-
insect and protease inhibitor activity [92]. However, the
halophyte salt cress (Thellungiella halophila), a relative of
Arabidopsis over expresses PDFs under normal conditions
and hence defensins are believed to play a role in salt tol-
erance [93]. It is therefore possible that the observed rela-
tively tolerant phenotype of ABR17-transgenic seedlings
could be due, at least in part, to the elevated expression of
XTR6, RAP2.6 transcription factors, unknown proteins
(At3502480, At5824640), Hsp and PDF gene(s). Addi-
tional studies are underway in our laboratory to precisely
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Table 4: Unknown/unclassified genes exhibiting > 4-fold changes in transcript abundance in NaCl-treated ABRI7 transgenic seedlings

AGle Operon annotation Gene mean SEb p value
At3g02480 ABA-responsive protein-related [Arabidopsis thaliana] 4.55 0.5 7.93E-04
At2g34600 Unknown protein 4.25 0.66 2.30E-02
At5g24640 Unknown protein 4.15 0.28 2.41E-05
At5g43580 Serine-type endopeptidase inhibitor put in unknown 3.73 0.64 2.14E-03
At4g13220 Similar to OS12G0276100 37 0.29 2.26E-04
At4g33720 Pathogenesis-related protein, putative 3.54 0.36 1.96E-04
At3g13600 Calmodulin-binding family protein 332 0.69 1.73E-02
At4g39670 Similar to ACDI | (Accelerated cell death |1) 32 0.12 1.02E-05

A023734_01 Putative ubiquitin-conjugating enzyme 2.63 0.52 1.47E-02
At5g38940 Germin-like protein, putative 2.59 0.34 4.76E-03
Atlg66400 Calmodulin-related protein, putative 2.58 0.15 5.88E-05
Atlg73260 Trypsin inhibitor -related 2.57 0.37 2.19E-03
At2g36770 Glycosyltransferase family 2.54 0.17 6.14E-04
At5g01920 STN8 (State transition 8) 2.52 0.07 4.94E-05
At4g01430 Nodulin MtN21 family protein 2.5 0.19 9.70E-04
At3g28210 Zinc finger protein (PMZ) -related 2.42 0.27 8.23E-04
At2g32200 Similar to unknown protein (Arabidopsis thaliana) 2.34 0.12 6.21E-06
Atlg35140 Phosphate-induced (phi-1) protein -related 2.33 0.44 3.32E-03
Atlg23710 Similar to unknown protein (Arabidopsis thaliana) 231 0.15 1.19E-04
At5g42830 Hydroxycinnamoyl benzoyltransferase-related 23 0.12 3.05E-04
Atlg53470 Mechanosensitive ion channel domain-containing protein 2.19 0.15 1.38E-04
At2g36800 Glucosyl transferase -related 2.18 0.16 4.37E-05
At4g24380 Hydrolase, acting on ester bonds 2.16 0.35 1.68E-03
At2g41640 Similar to unknown protein (Arabidopsis thaliana) 2.15 0.15 7.48E-04
At2g30840 2-oxoglutarate-dependent dioxygenase, putative 2.14 0.16 3.57E-05
At5g35510 Unknown protein 2.09 0.16 2.00E-04
Atlgl7380 Similar to unknown protein (Arabidopsis thaliana) 2.06 0.14 2.27E-05
At5g03210 Unknown protein 2.06 0.55 1.37E-02
At2g36790 Glucosyl transferase -related 2.04 0.49 1.44E-02
At3g03820 Auxin-induced protein, putative -2 0.24 1.08E-03
Atlgl2080 Similar to unknown protein (Arabidopsis thaliana) -2.04 0.33 1.60E-03
Atlg78020 Senescence-associated protein -related -2.07 0.11 9.14E-06
At2g32870 MEPRIN and TRAF homology domain-containing protein -2.12 031 2.40E-03
At5g22580 Expressed protein -2.16 0.22 1.74E-04
At5g64770 Similar to 80C09_10 (Brassica rapa) -2.19 0.19 8.40E-05
At2g14560 Similar to unknown protein (Arabidopsis thaliana) -2.22 0.3 6.53E-04
At4g00755 F-box protein family -2.27 0.14 1.40E-05
At3g32130 Similar to unknown protein (Arabidopsis thaliana) -2.3 0.17 1.70E-04
At3g45160 Unknown protein -2.33 0.17 3.44E-05

A003747_01 Histone H2B, putative -2.36 0.18 1.89E-04
At4g39800 Myo-inositol- | -phosphate synthase -2.48 0.12 5.20E-06
At2g41090 Calmodulin-like calcium binding protein (CaBP-22) -2.48 0.14 1.03E-05
At3g04210 Disease resistance protein (TIR-NBS class), putative -2.55 0.09 1.04E-06
At5g18030 Auxin-induced (indole-3-acetic acid induced) protein, putative -2.58 0.24 1.15E-04
At5g42530 Similar to ECSI (Arabidopsis thaliana) -2.59 0.11 2.47E-06
At2g40610 ATEXPAS8 (Arabidopsis thaliana expansin8) -2.61 0.1 1.50E-05
At5g18080 Auxin-induced (indole-3-acetic acid induced) protein, putative -2.61 0.26 1.68E-04
Atlg67870 Glycine-rich protein -2.64 0.1 1.56E-06
Atlg29460 Auxin-induced (indole-3-acetic acid induced) protein, putative -2.73 0.3 2.72E-04
Atlgl4880 Similar to unknown protein (Arabidopsis thaliana) -2.79 0.63 1.14E-02
Atlg29430 Auxin-induced (indole-3-acetic acid induced) protein family -2.8 0.83 4.29E-02
Atlg29510 Auxin-induced (indole-3-acetic acid induced) protein, putative -2.88 0.19 2.18E-05
At2g25510 Unknown protein =291 0.14 2.95E-05
At5g61980 ARF GTPase-activating domain-containing protein -3.03 0.54 5.01E-03
At2g04460 Retroelement pol polyprotein -related -3.15 0.28 1.54E-03
Atlg67860 Similar to unknown protein (Arabidopsis thaliana) -3.16 0.25 5.21E-05
At5gl8010 Auxin-induced (indole-3-acetic acid induced) protein, putative -3.21 0.12 1.39E-06
At5g18020 Auxin-induced (indole-3-acetic acid induced) protein, putative -3.26 0.2 1.46E-05
At5g35480 Unknown protein -3.76 0.37 5.27E-04
At4g14400 ACDS6 (Accelerated cell death 6) -4.32 0.97 2.12E-02

All expression ratios are significant (o. = 0.05) and are in a log2 scale where fold change is salt treated ABR/7/control ABR[7.
AGI?— Arabidopsis Genome Initiative SE? — Standard error
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Table 5: Comparison of changes in gene expression between NaCl-treated WT and ABRI7 transgenic Arabidopsis seedlings.

AGla Operon annotation ABRI7 SEb WT SEP ABRI7-WT p value
log2 ratio log2 ratio
At4g25810  Xyloglucan endotransglycosylase (XTR-6) 4.68 0.39 2.35 1.31 2.33 6.47E-03
At3g02480  ABA-responsive protein-related 4.55 .11 2.4 0.6 2.15 I.16E-02
Atlg43160  AP2 domain transcription factor RAP2.6 4.52 0.87 1.67 0.6 2.85 I.55E-02
At5g24640  Unknown protein 4.15 0.28 2.58 0.36 1.57 7.00E-03
At4g33720  Pathogenesis-related protein, putative 3.54 0.89 1.19 0.77 2.35 8.68E-04
At3g47340  Glutamine-dependent asparagine synthetase 2.04 0.12 -0.02 0.45 2.06 8.68E-04
At2g29500  Small heat shock protein -related 1.69 0.93 -0.21 0.61 1.91 2.98E-03
Atl1g59860  Heat shock protein, putative 1.59 0.8 -1.59 1.03 3.17 2.10E-04
At5g12030 A thaliana mRNA for 17.6kDa HSP protein 1.41 0.39 -0.7 0.81 2.11 1.82E-03
At5g51440  Heat shock protein, putative 1.32 0.6 0.08 0.3 1.24 2.78E-03
At3g09440  Heat shock protein hsc70-3 (hsc70.3) 1.22 0.24 -3.03 0.53 4.25 1.98E-06
At5g56010  Heat shock protein, putative 1.19 0.35 -1.06 0.36 2.26 |.57E-06
At2g26150  Heat shock transcription factor family 1.06 0.59 -0.55 0.69 1.62 1.73E-03
Atlg74310  Heat shock protein 101 (HSP10I) 1.06 0.27 -2.42 0.75 3.48 4.04E-05
At5g48570  Peptidylprolyl isomerase 1.02 0.3 -2.18 0.91 3.9 1.84E-04
At5g44420  Plant defensin protein, putative (PDF1.2a) 0.9 0.23 -2.51 0.51 341 5.74E-06
At5g44430  Plant defensin protein, putative (PDFI.2c) 0.8 0.25 -2.62 0.42 3.42 1.38E-07
At5g56030  Heat shock protein 81-2 (HSP81-2) 0.77 0.17 -1.52 0.34 2.29 |.46E-06
At2g26010  Plant defensin protein, putative (PDFI.3) 0.76 0.2 -2.95 0.38 37 1.38E-07
At3g12580  Heat shock protein hsp70 0.73 0.44 -1.93 I.1 2.66 |.55E-03
At5g56000  Heat shock protein 81.4 (hsp81.4) 0.64 0.2 -1.91 0.57 2.55 5.05E-05
At5g12020  Class Il heat shock protein 0.61 0.29 -0.41 0.49 1.01 2.58E-03
Atlg75830  Plant defensin protein, putative (PDFI.I) 0.58 0.16 -1.72 0.51 23 4.23E-05
At4gl 1660  Heat shock factor protein 7 (HSF7) 0.53 0.35 -0.77 0.75 1.3 6.99E-03
At5g02500  Heat shock protein hsc70-1 (hsp70-1) 0.52 0.16 -0.75 0.24 1.27 4.52E-06
At5g02490  Heat shock protein hsc70-2 (hsc70.2) 0.43 0.13 -1 0.27 1.43 7.67E-06
At2gl19310  Small heat shock protein -related 0.39 0.22 -1.98 0.44 237 8.50E-06
Atlgl6030  Heat shock protein hsp70b 0.34 0.26 -0.77 0.22 .11 |.42E-04
At2g04460  Retroelement pol polyprotein -related -3.15 0.56 1.55 0.63 -4.7 5.32E-06

Footnote: All expression ratios are significant (o = 0.05) and in a log2 scale where fold change is salt treated ABR/7/control ABRI7 and salt treated

WT/control WT.

ABRI[7- WT = Difference in log2 ratio of salt treated ABR/7/control ABRI7 and salt treated WT/control WT.

AGI— Arabidopsis Genome Initiative SE? — Standard error

characterize the role(s) of the above-mentioned genes in
stress tolerance of ABR17- transgenic A. thaliana seedlings.

qRT-PCR validation of microarray observations

In order to confirm the fact that CK-responsive genes were
indeed up-regulated in the ABRI17-transgenic lines, we
performed qRT-PCR experiments with the following
genes: plant defensin protein (PDFI1.2a, At5g44420),
expansin (EXPL1, At3g45970), GRP (At1g07135) and
putative MAPK 11 (Atg01560) using qRT-PCR. Among the
CK- inducible genes identified from our first set of micro-
array experiments we chose the above 4 genes for qRT-
PCR as their transcripts were observed to be at least ~2-
fold (1 in log2 ratio) or higher in the transgenic line com-
pared to WT. Our microarray analysis revealed increase in
transcripts for defensin, expansin, GRP and MAPK in pea
ABR17 seedlings by 2.6, 2.5, 1.9 and 1.9-fold, respectively
(Figure 3). Our qRT-PCR results were consistent with the
microarray data and showed up-regulation of defensin,

expansin, GRP and MAPK by 3.6, 2.5, 2.5 and 2.7-folds,
respectively (Figure 3). From these results it is apparent
that all the four genes that were up-regulated in our micro-
array analysis also demonstrated up- regulation in the
qRT-PCR relative expression experiments (Figure 3).

Because of the fact that the specific members of gene fam-
ilies whose transcripts were detected to be modulated by
ABR17 cDNA expression in A. thaliana were not exactly
identical to those specific members of these families iden-
tified by other studies, we wanted to investigate whether
those specific members detected in our studies were
indeed CK-inducible/repressible. In these experiments,
we used WT A. thaliana tissue germinated and grown for
14-days medium supplemented with 5 pM zeatin for
additional gRT-PCR experiments. This concentration of
zeatin was chosen based on our earlier observations that
it induced the largest phenotypic responses in A. thaliana
when exogenously applied [8]. It must also be noted that
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Pea ABRI7-modulated transcriptional changes of
selected genes. Transcriptional changes of a selected
number of transcripts as identified by microarrays, and their
validation using qRT- PCR and effects of CK on these genes
in WT A. thdliana is given here. The values represented in the
graph are fold changes of transcript abundance between
transgenic ABR/ 7-A. thaliana seedlings versus WT seedlings
grown under normal conditions. Error bars are standard
error of fold changes driven from (n = 3) three biological
replicates. The AGI annotations are as follows: At5g44420-
Plant defensin protein family member PDFI.2, Low-molecu-
lar-weight cysteine-rich (LCR77); At3g45970-ATEXLAI (A.
thaliana expansin-like Al); Atl1g07135-Glycine rich protein;
and Atlg01560-ATMPKI I.

even though 5 uM zeatin was used in our experiments, it
is difficult to estimate how much of this exogenously sup-
plied CK actually gets into the seed in order to exert a
physiological effect. From the results shown in Figure 3, it
is apparent that the expression of EXPL1 (At3g45970),
putative MAPK (Atg01560) and GRP (At1g07135) was up-
regulated in response to exogenous zeatin by 1.6, 3.8, and
2-fold, respectively (Figure 3). In contrast, the expression
of defensin gene was observed to be down-regulated (0.3-
fold) in response to the exogenous application of CK (Fig-
ure 3). The results for expansin, MAPK and GRP are con-
sistent with our microarray and qRT-PCR results with
respect to increased transcript abundance in ABR17-trans-
genic A. thaliana previously shown to possess higher
endogenous CK concentrations [8]. However, in the case
of defensin, even though our microarray and qRT-PCR
experiments revealed that this gene was up-regulated in
the ABR17-transgenic line (Figure 3), its expression was
not induced by exogenous CK (Figure 3). The reason for
this discrepancy is not immediately clear; however, this
may be due to the concentration as well as type of CK used
for our exogenous experiments. Furthermore, as indicated
previously, the amount of the exogenously supplied CK

http://www.biomedcentral.com/1471-2229/8/91

entering the seed to exert physiological affect may also be
different from the concentrations required to elicit induc-
tion of this gene.

In order to confirm results from our second and third set
of microarray analysis, we performed qRT-PCR experi-
ments with the following 12 genes: unknown proteins
(A13302480; At5924640; At1g14880), XTRG (At4g25810),
bHLH (At5243650), AP2 domain transcription factor RAP
2.6 (At1g43160), ATNAC3 (A13g15500), ACDG
(At4g14400), PDF1.2a (At5g44420), EXPL1 (At3845970),
GRP (At1g07135) and MAPK 11 (Atg01560). The
unknown proteins were chosen because expression of two
of them (At3402480 and At5824640) were among highly
induced transcripts in salt treated ABR17-trangenic line
and also showed comparatively less but high level of tran-
script abundance in salt treated WT A. thaliana lines (Table
5, Figure 4). Two of them (At1g14880 and At4g14400)
were among highly down regulated genes in both salt
treated ABR17-transgenic line and WT A. thaliana lines
(Table 3 and 4, Figure 4). Our qRT-PCR data showed sim-
ilar trend as observed by microarrays for all the above-
mentioned genes in both salt-treated ABRI7-transgenic
and salt-treated WT microarrays (Figure 4).

The genes At3g02480, At5924640, At1g14880 and
At4¢14400 showed transcript abundance with fold
changes of 5.26, 5.98, 0.27 and 0.06, respectively in our
microarray analysis of salt treated WT A. thaliana (Figure
4). Our qRT-PCR analysis of salt treated WT A. thaliana
showed transcript abundance of and 18.60, 32.42, 0.03
and 0.06-fold for genes At3802480, At5824640,
At1¢14880 and At4g14400 (Figure 4) compared to qRT-
PCR indicated transcript abundance of 23.36, 17.80, 0.14
and 0.04-fold for genes At3g02480, At5824640,
At1¢14880 and At4g14400, respectively (Figure 4). Our
qRT-PCR analysis of salt treated ABR17 A. thaliana showed
transcript abundance of 272.37, 67.49, 0.03 and 0.02-fold
for genes At3302480, At5824640, At1gi4880 and
At4g14400, respectively (Figure 4). From these results, it is
apparent that all the four genes showed the same trend
both in our microarray analysis and qRT-PCR studies (Fig-
ure 4) although the absolute values were different with
these two experimental methods.

The gene XTR6 (At4g25810) was selected because it was
among one of the most highly induced transcripts of any
gene on our salt treated ABRI7-transgenic A. thalina
microarray (Table 3, Figure 4). The genes bHLH
(At5¢43650), RAP 2.6 (At1g43160) and ATNAC3
(At3g15500) were chosen because their expression was the
highest among any other transcription factors identified
in response to salt in ABR17- transgenic line (Table 3, Fig-
ure 4). The genes At4¢25810, At543650, At1g43160 and
At3¢15500 showed transcript abundance of 5.10, 5.29,
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Figure 4

Transcript abundance of selected genes in salt treated-WT and ABRI7 transgenic A. thaliana seedlings. The val-
ues represented in the graph are fold changes of transcript abundance as identified by microarrays and their validation using
qRT-PCR, between salt treated (100 mM) seedlings versus untreated seedlings either in wild type or in ABRI7 transgenic A.
thaliana. Error bars are standard error of fold changes driven from (n = 3) three biological replicates. The AGI annotations are
as follows:At3g02480-ABA-responsive protein-related; At5g43650-basic helix-loop-helix (bHLH) family protein;
At5824640-unknown protein; At4g25810-XTR6: Xyloglucan endotransglycosylase 6; Atlg43160-ethylene-responsive tran-
scription factor Related to Apetala 2.6 (Protein RAP2.6); At3g15500-ATNAC3 (A. thaliana NAC domain containing protein
55); At4g14400-ACD6 (Accelerated cell death 6); Atlgl4880-PLAC8 domain containing protein; At5g44420-Plant
defensin protein family member PDFI.2; At3g45970- ATEXLAI (A. thaliana expansin-like Al); At1g07135-Glycine rich pro-
tein; and Atlg01560: ATMPKI | (A. thaliana MAP kinase | 1). 1 : the fold change in here is 272.27 + 58.5.

3.19 and 3.88-fold, respectively in microarray analysis of
salt treated WT A. thaliana, while our qRT-PCR analysis of
salt treated WT A. thaliana showed transcript abundance
of32.51,14.17, 6.58 and 10.23- fold (Figure 4). Similarly,
microarray analysis of salt treated ABR17 A. thaliana
showed transcript abundance of 25.62, 24.17, 23.00 and
13.96 (Figure 4) and our gRT-PCR analysis values of
54.40, 124.30, 32.27 and 29.88- fold for genes
At4¢25810, At5g43650, At1g43160 and At3g15500,
respectively (Figure 4). Our microarray analysis and qRT-
PCR results showed the similar trend in both salt treated-
ABR17 and WT samples (Figure 4), The genes PDF1.2a,
EXPL1, GRP, and MAPK 11 were chosen as these were val-
idated in our first set of microarrays (ABR17/WT under
normal conditions). Once again, a similar trend was
observed between microarrays and qRT-PCR analysis thus
validating our microarray results.

Relative expression of CK-biosynthetic genes (IPT and
CKX) in ABRI7-transgenic A. thaliana

As discussed earlier, our observations indicated that many
of the genes identified in the transgenic plants as being
up-regulated are from families that contain CK-responsive
members. We have also previously reported higher endog-
enous concentrations of CK in this line [8], which sug-
gested the possibility that this may be due to either
enhanced de novo CK biosynthesis or decreased degrada-
tion. Specifically, the endogenous concentration of total
CK in the transgenic line used in this study was ~1-3-fold
higher, with the concentration of zeatin (cis and trans
combined) being ~1.4-fold and IP being ~2-fold higher in
these transgenic lines. However, we did not detect any IPT
(involved in CK biosynthesis) or CKX (involved in CK
degradation) genes as being significantly up- or down-reg-
ulated genes in our microarray experiments suggesting
that the elevated endogenous CK concentrations previ-
ously reported may not be the result of increased or
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decreased activities of IPT and CKX genes, respectively. In
order to confirm our microarray results and to lend addi-
tional support to our above- mentioned hypothesis with
respect to the roles (or lack thereof) of IPT and CKX
expression in ABR17-transgenic A. thaliana, we also per-
formed qRT-PCR analysis of the expression of IPT and
CKX genes using qRT-PCR. There are 9 known IPT genes
and 7 known CKX genes but sequence of CKX5 and 7 are
very similar therefore we performed qRT-PCR analysis on
the 9 IPT and 6 CKX genes. The results from these experi-
ments are summarized in Table 6 and it is apparent that
most of the IPT genes exhibit similar expression patterns
in both transgenic and WT seedlings. The only exception
appears to be IPT 8 where only 0.5-fold expression of this
gene was observed in the transgenic line (Table 6). Simi-
larly, CKX expression in the transgenic line was also quite
similar to its expression in the WT (Table 6). Our results
suggest that the differences in endogenous CK concentra-
tions previously observed in the ABR17-transgenic line
may not be the result of increased IPT or decreased CKX
levels. However, frequently, there is no correlation
between transcript abundance and protein levels and
therefore it is possible that IPT and/or CKX protein con-
centrations may have been affected in the transgenic line
resulting in increased endogenous CKs as a result of post-
translational processes. However, our previously reported
proteome studies on this transgenic line did not reveal
any differences between transgenic and WT seedlings with
respect to the levels of these proteins [19].

It is possible that the activity of neither IPT nor CKX is
responsible for the increased endogenous concentrations
of CKs in the ABR17-transgenic lines and the increased
endogenous CKs previously reported in the ABR17-trans-

Table 6: IPT and CKX gene expression in ABRI7-transgenic A.
thaliana

Gene Fold change *
IPTI 1.20 £ 0.28
IPT2 124 +£0.17
IPT3 129 £0.17
IPT4 1.18 £ 0.47
IPT5 1.17 £ 0.26
IPT6 0.99 £ 0.32
IPT7 1.37 £ 0.37
IPT8 0.49 £ 0.09
IPT9 1.10 £ 0.19
CKX1 1.39 £ 0.30
CKX2 1.16 £ 0.31
CKX3 1.50 + 0.44
CKX4 072 £0.18
CKX5 091 £0.22
CKX6 0.79 £ 0.11

*The expression of each gene in WT was normalized to | and fold
change in transgenic line was calculated as described in Methods
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genic lines may be the result of tRNA degradation by the
previously demonstrated RNase activity of pea ABR17
protein [8]. Thus, an increase in free cellular CK would not
necessarily involve enhanced IPT or reduced CKX activity;
rather it may reflect an increased access to existing, yet
tRNA-bound, CK.

Conclusion

We have demonstrated that pea ABR17 cDNA expression
modulates the level of a number of transcripts related to
plant defense, growth and development, which may
explain the observed phenotypic differences between WT
and ABR17-transgenic A. thaliana. The gene expression of
many transcription factors and defense responsive genes
like Hsps and PDFs showed different degree and kind of
response between salt treated-ABR17 transgenic and WT
A. thaliana, which explains the observed enhanced germi-
nation and early seedling vigor in ABR17 transgenic lines,
compared to its WT counterpart. Many of the genes exhib-
iting a 2-fold or higher increase in transcript abundance
are known CK-responsive genes providing additional evi-
dence of a role for CKs in ABR17 function. Furthermore, a
detailed expression analysis of IPTs and CKXs revealed
that the levels of these transcripts were similar in both WT
and transgenic seedlings, suggesting the possibility that
ABR17 modulates endogenous CKs through an, as of yet,
uncharacterized mechanism including the possible degra-
dation of tRNAs which contain CK moieties [94]. These
possibilities are currently being investigated in our labora-

tory.

Methods

Plant material and growth conditions

Transformation of A. thaliana with the pea ABR17 cDNA
and the generation of homozygous ABR17-transgenic A.
thaliana (line 6.9) have been previously described [19].
This line (6.9) was one of the three independently derived
transgenic lines that were characterized in that earlier
study. The WT (ecotype WS) and transgenic A. thaliana
plants were grown in the green house for observations as
previously described [8]. Lateral branches were counted
on plants from three independent biological replicates
with at least 72 plants per replicate. Average number of
days required for the opening of the first flower was also
recorded on plants from three biological replicates with
36 plants in each replicate.

In order to measure root lengths of seedlings seeds of A.
thaliana (line 6.9) and the WT were surface sterilized [8]
and placed on half strength Murashige & Skoog (MS)
medium [22] with or without salt (75 mM NaCl or 100
mM NaCl) in square dishes with grids. These dishes were
placed vertically in a growth chamber (at 21°C and with
light intensity of 250 pmol m2s1) and root lengths were
measured after 10 days. The seeds of ABR17 and WT seeds
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were also grown on half strength MS medium with 0 or
100 mM NaCl to determine their fresh weight and chloro-
phyll and carotenoid contents in order to assess their abil-
ity to grow in the presence of salt. The length of the
primary roots of 10-day-old seedlings from three inde-
pendent biological replicates with at least sixty seedlings
per replicate, were calculated using the Image J software
(Image J, NIH, MD, USA).

Chlorophyll and carotenoids were extracted from the
pooled 2-week-old tissue grown on MS media, using the
procedure as described by Srivastava et al., 2006 [7]. Total
chlorophyll was estimated using a nomogram [95] and
total carotenoid was measured using the formula:

AACAR ;g = AA150+0.114AA;5-0.638AA 5

where A is the absorbance and CAR is the carotenoid con-
tent [96]. The fresh weight, chlorophyll and carotenoid
were calculated using pooled tissue from three independ-
ent biological replicates. Percent germination after one
week for ABR17-transgenic and WT seeds in the dark and
in the presence of light (fluorescent light, 30 pmol m-2s1)
were compared in Petri dishes at RT. This experiment
included three independent biological replicates with at
least 45 seeds per replicate. All statistical analyses were
performed using the Student's t-test procedure in SAS ver-
sion 8e (Statistical Analysis System 1985).

Tissue for microarray analysis was obtained by placing
surface sterilized seeds of A. thaliana (line 6.9) and the WT
on half strength MS medium in Petri dishes with or with-
out 100 mM NaCl at RT (21 + 2°C) under continuous flu-
orescent light 30 pmol m2s! for 14 days. Seedlings (14-
day-old) from three independently grown biological rep-
licates in all three set of experiments (comparison of
ABR17-transgenic with WT without any stress; compari-
son of salt treated WT with untreated WT; comparison of
salt treated ABR17 transgenic with untreated transgenic)
were removed from the MS plates, flash frozen in liquid
nitrogen and stored at -80°C until used for RNA extrac-
tion.

RNA extraction, cDNA synthesis and microarray analysis

In order to investigate the ABR17-induced gene expres-
sion changes under normal and salinity stress conditions,
we conducted microarray analysis in three separate
hybridization experiments. The first set (set I), consisted
of comparison of cDNA samples prepared from ABR17-
transgenic and WT seedlings, which were grown in the
absence of any stress. Set II consisted of cDNA obtained
from salt-treated samples of WT and untreated WT; and
set III, cDNA samples of salt treated ABR17- and untreated
ABR17-transgenic seedlings for hybridization to the oligo-
nucleotide arrays. Each microarray experiment consisted

http://www.biomedcentral.com/1471-2229/8/91

of six hybridizations according to the principles of dye-
swap design [97] on tissues across three biological repli-
cates of the experiments.

RNA was isolated using the QIAGEN RNeasy Plant Mini
Kit (Qiagen Inc., Mississauga, ON, Canada) from 2-week-
old WT and ABR17 seedling tissue from all three set of
experiments and the integrity of all RNA samples assessed
by agarose gel (1.2%) electrophoresis. For microarray
hybridization, 6 pg of total RNA was used to synthesize
c¢DNAs using SuperScript® II RT (Invitrogen Inc., Burling-
ton, ON, Canada) with RT polyA-capture primers in 3D
Array 900TM (Genisphere Inc., Hatfield, PA, USA). In
these microarray experiments, 70-mer oligonucleotide
arrays were used which contained 26,090 probes (Array-
Ready Oligo Set for Arabidopsis genome Version 1.0, Qia-
gen Operon, Alameda, CA, USA), plus additional probes
for quality control. Oligonucleotide arrays were spotted
on superamine aminosilane-coated slides (TeleChem
International Inc., Sunnyvale, CA, USA). Each pair of sam-
ples within each of the three biological replicates was
labeled in a reciprocal dye-swap design, for a total of 18
hybridizations (overnight, at 52°C) in all three sets of
experiments. Slides were scanned using ArrayWoRxe
(Applied Precision, Issaquah, WA, USA) and spot intensi-
ties were measured, quantified, normalized and analyzed
using TM4 [98]. Spots with intensity ratios that differed
significantly from 0 (log2 scale) were identified by Stu-
dent's t-test. This procedure highlights the spots that dem-
onstrated statistically significant differential expression
between the different samples. The raw microarray data of
18 hybridizations as well as the protocols used to produce
the data were deposited in the ArrayExpress database
[ArrayExpress: E-MEXP1024 and E-MEXP1566].

Quantitative real-time PCR (qRT-PCR) validation of
microarray data

Primers for qRT-PCR were designed using the Primer
Express software (Applied Biosystems Inc., Foster City,
CA, USA) to ensure that PCR products of approximately
70-80 bp were generated (Additional file 3). cDNA syn-
thesis and qRT-PCR analysis of gene expression of 19
genes were performed using the Tagman system as
described previously [8] on an ABI Prism 7700 Sequence
detector (Applied Biosystems Inc., Foster City, CA, USA)
and the SNP RT template program or using the SYBR green
system as described by Yang and others [99] was used to
validate the expression of 8 genes. In both cases, the delta-
delta method [100] was used to calculate relative gene
expression using actin as the endogenous control. The rel-
ative transcript abundance in the controls was normalized
to 1 and was used as a basis for comparison to the treat-
ments. Plant tissue from three biological replicates was
used in qRT-PCR experiments and reactions for each bio-
logical replicate were performed in duplicate (n = 6).
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