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Abstract 

The electrical conductivity of fluid-saturated porous sediments is influenced by a variety factors 

such as fractures, texture, and clay content whose behavior, in turn, depends on conditions of 

saturation, pressure, and temperature. This work attempts to provide new insights on the effect of 

some of these factors on electrical properties through novel controlled laboratory measurements 

on natural and artificial sediments; specifically examining three related aspects. First, do pressure-

dependent changes in resistivity and velocity correlate with each other and can they be jointly 

modeled?  Second, to what degree does an isolated fracture within an isotropic porous material 

affect the electrical conductivity anisotropy, and subsequently are such fractures likely to be 

detectable by electrical measurements in the field? Finally, what factors control the frequency 

dependent complex conductivity in porous sands containing small amounts of clay?  Unique 

laboratory tests were developed to answer these questions. In the first, the electrical conductivities 

and ultrasonic wave speeds were measured as functions of confining and pore pressure through 

two rock samples of differing compressibilities  Pressure-dependent variations in velocity and 

resistivity correlated well  in the compressible sample suggesting both data can be jointly used to 

make inferences on the nature of the porosity in the material.  In the second experiment, a new 

procedure to construct a porous sample containing a single, small aperture fractures was conceived.  

The electrical anisotropy of these samples was measured revealing that it strongly correlated (r = 

0.94) with the relative fracture porosity. However, the samples were only weakly anisotropic (2% 

to 10%) suggesting that this effect may not readily be detected under actual field conditions. For 

the third experiment, complex resistivities were measured from 0.01 Hz to 100 Hz on porous 

mixtures of natural clays and glass beads.  The characteristic relaxation times derived from the 

observed imaginary component correlated strongly with the diameters of the glass beads and were 
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not related to the physical properties of the different clay materials used.  This, taken together with 

the fact that the clay-free glass bead samples displayed no dispersion provides evidence that 

membrane polarization dominates over Stern-layer polarization.  
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Chapter 1  

Introduction 

1.1) Background 
 

The electrical properties of rocks and soils, particularly those free of electronically conductive 

minerals, are largely controlled by their saturating liquids.  Conversely, this means that fluid 

contents of materials in the earth can be inferred from measurements of their electrical properties.  

This is quite useful in an exploration context where the existence of fluids, be they hydrocarbons, 

fresh or saline waters, or geologically sequestered CO2, are often the target.   The electrical 

resistivity, too, reveals information about porosity and the complexity of pore structures; 

information that can be usefully combined with other geological and geophysical observations and 

which is key to understanding subsurface fluid motions. Specifically, these petrophysical 

properties include pore volume, pore "connectivity", pore shape and pore space anisotropy.  

The work in this thesis takes an experimental laboratory approach to examine some of the pertinent 

issues that relate rock structure to electrical conductivity be it through fracture induced anisotropy, 

correlation of pressure dependence of conductivity and mechanical wave speeds, or the influence 

of clays.   

The relationships between the electrical and the petrophysical properties are almost exclusively 

discussed in the contexts of either Archie's (1942) empirical law or of Differential Effective 

Medium theory (DEM) (Bruggemann 1935; Hanai, 1968; Sen et al, 1981; Bussiann 1983). Both 

approaches have had wide empirical success in describing certain aspects of the electrical 

properties of rocks and soils. For instance, Archie's law successfully describes the apparent power 
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law relationship between porosity and electrical conductivity. Although this relation does not 

strictly hold for every rock (See Liu and Katinadis 2013 for a discussion on how this breaks down 

in anisotropic environments), it is a property that is common enough in sedimentary rocks that, at 

least in an isotropic environment, it is thought that any theoretical models describing electrical 

conductivities of porous mediums should reproduce this behavior. This is achieved by DEM (See 

Chelidze and Gueguen, 1999 for an example of how it is derived). Sen et al., (1981) and Bussian 

(1983) derived expressions that were similar to Archie's law and were identical in the limit of a 

nonconductive matrix which is usually a good assumption in sedimentary rocks assuming that 

there are no conductive minerals. This was further extended by Mendelson and Cohen (1982) for 

the case of a medium with anisotropic conductivity, a complicating characteristic that is scarcely 

covered in detail in the literature. 

It is now known that rocks commonly assumed to be isotropic are in fact anisotropic (North and 

Best, 2014). Yet, little work has been done to isolate the extent to which various mechanisms of 

anisotropy may contribute to it. Fracture induced anisotropy is an important mechanism to consider 

since fractures can control the direction of fluid flow in the subsurface. However, to extract useful 

information from electrical data, one must understand how different anisotropy mechanisms such 

as compaction/grain alinement and fracture induced anisotropy may interact with each other. This 

is difficult to measure since it difficult to isolate the two effects in real rock samples. 

Additionally, there is a pressure dependence in the electrical resistivity that is introduced by cracks 

and fractures. This pressure dependence is also seen in the elastic properties when measured in 

terms of wave velocities. Modeling the effects of micro-cracks and fractures on the elastic stiffness 

tensor is common (e.g. Kachanov, 1992) but the pressure dependence is seldom modeled. Both 

elastic and electric pressure dependences have been modeled using Hertzian contact theory, 
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however, these models have never been tested against each other. Indeed, if the pressure 

dependence stems from the fracture properties then they should be explained by similar models 

for crack compliance. It should be noted that the terms crack and fracture may both be used to 

describe nominally flat defects in general but appropriate distinctions are made on the terminology 

in Chapters two and three.     

All the topics just mentioned deal with how the electric conductivities of the different solid and 

fluid constituents making the porous rock affect its bulk conductivity. In the case of a non-

conductive matrix, this allows an investigator to characterize the rock in terms of the fluid content 

(conductive vs non- conductive fluids) and pore space interconnectedness and volume. The fluid 

phase and the rock phase are therefore binary components of this mixture. However, there are 

regions in the rock where the rock and fluid can be viewed as a mixed phase. These regions are 

the electrical double layers that form at the interface of mineral grains and pore fluid.  

Some mineral grains can be viewed as electrically active in that their surfaces retain charge. This 

is true for silica grains (Leroy et al., 2008) and clay minerals (Brady et. al.,1996) for reasons 

discussed later. The existence of an electrical double layer on charged surfaces immersed in 

electrolytes has long been known about and was previously modeled by the Poisson Boltzmann 

Equation (PBE) (Honig and Nicholls, 1995) which produces a surface potential that is generally 

recognized as the "diffuse layer" or Zeta potential in electrochemistry. Advancements in 

computing have prompted the rise to prominence of molecular dynamics simulation and the use of 

nonequilibrium molecular dynamics (NEMD). A relevant theoretical difference between these two 

methods is that the PBE uses a continuum-based approach whereas NEMD is an atomic based 

approach. The difference in the results of these two approaches is the existence of the Stern Layer 

which is too thin to be detected in the continuum-based approach. 
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For years since the work of Marshall and Madden (1959) the electrical diffuse layer was thought 

to be responsible for the observed weak polarization of sandy/clayey sediment at low frequencies. 

While some of the polarization at low frequencies (100Hz to 100K Hz) has been explained by 

Maxwell-Wagner polarization that may be described by DEM, polarization persisting down to low 

frequencies of 1 mHz is commonly observed and occur at length scales that are longer than those 

used to explain Maxwell-Wagner polarization (Chelidze and Gueguen, 1999). This has typically 

been explained as "membrane polarization"(Marshall and Madden,1959; Waxman and 

Smits,1968; Vinegar and Waxman 1980; Klien and Sill, 1982; Titov et al., 2002). The idea being 

that the diffuse layer acts as a cation selective membrane so that cations, under an applied electric 

field, accumulate at one end of the pore throat resulting in a concentration gradient of cations that 

creates a membrane potential. In recent years since Revil and Glover (1998) discussed the 

relevance of the Stern layer to surface conduction (i.e. the migration of charges adsorbed to grain 

boundaries in the direction of an applied electric field) the idea of Stern layer polarization has 

gained increasing popularity along with similar grain-based models (Schwarz, 1962; de Lima and 

Sharma, 1992; Leroy et al.,2008; Revil, 2012; Jougnout et al., 2010 Revil et al., 2013). In these 

models the grains themselves are polarized as ions migrate along grain boundaries but do not move 

perpendicular to the grain. Under an applied electric field this results in a surplus of cations on one 

side and a deficiency on the other that produces a potential difference between either side of the 

grain. As to which of these is true (assuming one of them is true or both of them are true), it is 

difficult to assess given that these processes are not observed but investigated indirectly. Both have 

been successfully used to describe data but given the similar controls on the models this is not 

surprising. Both are controlled by the parameter of "grain size" (Titov et al., 2002; Revil and 

Florsch ,2010) which is typically thought of as grain diameter. However, this parameter in turn 
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exercises control over the average length of pore throats and so they are indistinguishable from 

each other from an indirect measurement without examining the individual constituents of the 

material.  

Compounding this problem is that the only measurable parameter that can reliably be used to 

predict the frequency at which polarization is maximum (thought to correspond to the dominant 

length scale in the rock) is pore throat diameter which can be measured via mercury injection 

(Scott and Barker 2003; Scott,2006). This parameter will obviously exercise control over both 

grain size and pore throat length but more importantly can be used to predict permeability. This 

has therefore been one of the main drivers for development of induced polarization methods. The 

ability to identify dominant relaxation times would effectively allow for field scale permeability 

tomography for sandy/ clayey aquifers (Vanhalla 1997; Revil, 2012; Revil and Florsch, 2014; 

Revil et al., 2015; Karaoulis et al., 2011).  That said, it is still unclear exactly why the dominant 

relaxation time corresponds so closely to the pore throat diameter although many have speculated 

and used models of the type described above to explain data. 

The work here is motivated by the need for improved rock physics models to aid in processing and 

interpreting geophysical data. Specifically, we seek to quantitatively investigate how crack and 

fractures affect the electrical properties of a rock, and identify the dominant length scale associated 

with induced polarization. 

1.2) Contributions 
 

As noted, the thesis examines through laboratory measurements aspects of electrical conductivity 

anisotropy, pressure dependence, and clays.   This is accomplished in the three following chapters. 
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Because each chapter focusses on its own aspect of electrical conductivity, they are relatively self-

contained with the expectation of future publication.  

In the next Chapter 2, we examine the effect of crack-like porosity on the pressure dependence of 

electrical and elastic properties. We attempt to integrate formulations proposed by different authors 

for pressure dependent electrical conductivity and elastic wave velocity into a unified model. This 

is done assuming an isotropic distribution of crack orientations. Pressure sensitivity of cracks is 

modeled using Hertzian contact theory (Greenwood and Williamson, 1966) and the corresponding 

change to electric properties due to crack deformation under pressure is subsequently predicted. 

This is compared to a new experimental dataset where ultrasonic P and S wave velocities are 

measured almost simultaneously with electrical conductivity under a range of confining and pore 

pressures. P and S waves were recorded when the rock was unsaturated provide five different 

individual datasets to constrain the model parameters. This is important since integrating 

information from multiple datasets is among the best approaches to reducing uncertainty in an 

exploration context. It is therefore important to understand exactly what relates the two properties 

and corresponding changes in either. 

Chapter 3 is a preliminary experimental study of the influence of fractures on electrical anisotropy. 

Here we provide electrical measurements on synthetic porous material specially constructed to 

contain well geometrically defined fractures. The corresponding anisotropy in typical electrical 

rock physics parameters is reported, and how they vary with crack and background porosity. This 

is important for understanding how much fractures are expected to affect the anisotropy in 

electrical conductivity and fluid flow in reservoirs.    

Finally, in Chapter 4 we conduct an experiment using clay and glass beads to shed light on what 

is the dominant mechanism behind the spectral induced polarization (SIP) response in sandy 
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sediments. The experiment is designed in such a way that a relaxation time corresponding to the 

size of the glass beads suggest membrane polarization to be the controlling mechanism and a 

relaxation time corresponding to the clay size (specific surface area) would suggest Stern layer 

polarization. 

The main contributions can be summarized as: 

1) Furthering the understanding of how electrical and elastic properties are related in rocks using 

a novel experimental data set. To this end we use a theoretical description of the effects of cracks 

and fractures on a porous matrix to jointly model the pressure-dependence of both elastic and 

electrical properties.   

2) An experimental investigation of fracture induced electrical anisotropy. We quantitatively 

investigate how ratio of crack porosity to total porosity affects the observed anisotropy in an 

environment with aligned cracks or fractures. 

3) Strong experimental evidence that membrane polarization and not Stern layer polarization is 

responsible for the observed low frequency electrical relaxation time in sandy/clayey sediments. 

1.3) Thesis outline 
 

The thesis is structured so that the first two contributions deal with the effects fractures and cracks 

have on pore space electrical conduction. In Chapter 2 we look at the effect of pressure on electrical 

conductivity and elastic parameters. It includes a description of the experimental method in 

addition to theoretical work. We integrate the model of Stesky (1986) with a description for 

pressure dependent elastic properties of cracks given by Gao and Gibson (2012). The hypothesis 

here is that if the changes in both ultrasonic velocity and conductivity are due to the same thing 
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(opening and closing of cracks), then it should be possible to describe them using a common 

theoretical framework. The benefit of this is that it provides a logically consistent model that can 

be used to model both elastic and electrical properties, specifically their pressure dependence. 

While the model is complicated this represents an attempt to mechanistically link the two 

properties instead of relying on combinations of empirical relations that relate the elastic and 

electrical properties to porosity.  

In Chapter 3, experimental results are presented for electrical conductivity anisotropy in a porous 

material with an oriented fracture. Much of the chapter is dedicated to describing how the samples 

were prepared and how measurements were made in multiple directions for each sample. A 

simplified sample and measurement geometry allow us to treat the problem as if it were a 2D 

conductivity problem. The benefit of using these synthetic samples is that they allow us to remove 

the confounding effect of surface conductivity and to focus solely on the effects of the pore space 

so that we can gain a better understanding of how background porosity interacts with crack 

porosity to control electrical conductivity anisotropy.  

Chapter 4 examines the topic of Spectral Induced Polarization in sandy/ clayey material where we 

attempt to answer the question as to what mechanism is controlling the dominant low frequency 

electrical relaxation time in rocks. This is a topic that has become contentious in recent years with 

many recent works favoring Stern Layer polarization as the mechanism. The beginning of the 

chapter is used to describe the experimental method as well as give a detailed explanation for the 

existing theoretical models. We give experimental evidence that it is, apparently, membrane 

polarization that is dominating the response if not being solely responsible for it. This chapter also 

includes an exercise in using Debye decomposition to fit the entire spectrum and we attempt to 
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identify a best practice for how to use this method to automatically pick relaxation times as 

opposed to picking them “by hand” which is common (Revil et al., 2015).  

In chapter 5 we summarize what we believe to be the main takeaways from this work and outline 

future directions for research. 
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Chapter 2 

Constraint of crack properties in rocks by joint 

inversion of ultrasonic and electrical laboratory 

measurements.  

2.1) Introduction 
 

Nearly a century ago, Adams and Williamson (1923) observed that the linear compressibilities of 

a variety of different rock types depended nonlinearly on confining pressure.  This behaviour was 

later confirmed in ultrasonic wave speeds (e.g., Wyllie et al, 1956), permeability (e.g. Fatt and 

Davis, 1952), and electrical resistivity (e.g. Brace et al, 1965).  The properties vary nonlinearly 

with pressure due to the progressive closure of the compliant, crack-like pore space.  A large 

literature has developed over the last 50 years that examines this problem from experimental, 

theoretical, and numerical modelling perspectives.   

Further, numerous field studies have noted linkages between electrical conductivity and seismic 

wave speed in the deep crust (e.g., Marquis and Hyndman, 1992; Moorkamp et al, 2010), in upper 

crystalline cratonic crust (e.g., Yan et al, 2017), and in sedimentary basins (e.g., Brown et al, 2012). 

The use of time-lapse geophysical surveys in recent decades to remotely monitor subsurface fluid 

motions and pressures (e.g., MacBeth et al, 2006), too, has intensified the need to better understand 

how electrical and seismic properties might be jointly used to provide for more informed 

interpretations.   

Theoretical and empirical models describing rock physical properties usually focus on a single 

characteristic without consideration of changing pressure.   Numerous theoretical models 

attempting to describe elastic (e.g., Cheng and Toksoz, 1979; Kachanov, 1992; Sarger and Shapiro, 
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2002; Hashin, 1988) or the electrical properties of rocks (e.g., Archie, 1942; Sen et. al, 1981; 

Bussian, 1983; Bernabe, 1991; Durr et al., 2002; Han, 2018a) have largely been independently 

developed.  However, electrical and elastic properties are seldom integrated or tested against each 

other.   This is unfortunate because, although the basic physical mechanisms controlling these 

properties may differ, the basis for their pressure dependency relies on the same closing of 

compliant pores and on the fluids they contain.   Consequently, the electrical and elastic properties 

can complement one another in attempts to better understand the in situ physical conditions and 

structure.   

That said, there are a number of notable exceptions where the linkages between the pressure 

dependencies of both properties are examined.  Various authors (e.g., Carcione et al, 2007) have 

employed simple effective medium models to link seismic wave speeds to electrical conductivity 

through porosity and saturation state, although the validity of such approaches has been questioned 

(Han et al, 2016).    Aquino-Lopez et al. (2011) employed an effective medium approximation 

approach that assumed both the pores and grains were triaxial ellipsoids.  Han et al. (2011) 

developed a three-component model by combining a self-consistent approximation with a 

Differential Effective Medium model to predict the electrical and elastic properties of an extensive 

series of laboratory measurements on reservoir sandstones.   Bacharach (2011) similarly used an 

effective medium paradigm to calculate the joint properties of shales.  Kazatchenko et al (2006) 

inverted acoustic and electrical logs in a carbonate aquifer to infer the dual porosity structure.  

Most recently, Han (2018b) successfully modelled weak P-, SH-, and SV-wave and electrical 

anisotropies observed in artificial samples with controlled crack geometries using elastic 

(Chapman, 2003) and dielectric (Asami, 2002) models, with the two properties linked via an angle 

taken with respect to the textural symmetry.   A number of authors, too, have developed empirical 
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cross-relations from laboratory experiments (e.g. Jensen et al, 2013; Gomez et al, 2010; Wang and 

Gelius, 2010).  However, none of this work takes into account the joint changes to resistivity and 

elastic wave velocities induced by varying the effective pressure on the material, nor takes further 

advantage of it with a goal of better understanding the compliant pore structure.   

There have been many studies that have looked at pressure dependent elastic moduli from 

numerous perspectives (see recent review in Schmitt, 2015).   A number of these have inverted 

observed velocities or elastic moduli to obtain information regarding the pore structure, and all of 

these of course depend on the model used to describe the pressure dependence.  A great deal of 

attention has been paid to models in which the compressible pores are simplified to oblate 

spheroids. Cheng and Toksöz (1979) obtained distributions of the frequency of range of pore 

aspect ratios based on an ellipsoidal inclusion model, various inversion schemes have been based 

on their concepts (e.g., Burns et al, 1990; Izutani and Onozuka, 2013; Zhang et al., 2019)).   David 

and Zimmerman (2012) developed a scheme to invert wave speeds for pore structure using a dual 

porosity model of compliant cracks and stiff equant pores. Glubokovskikh et al, (2016) develop 

expressions based on a donut shape consisting of an oblate spheroid with a welded center to 

simulate a single asperity and found this model was able to describe the pressure varying wave 

speeds.  Other workers attempted statistical descriptions that attempted to consider complicated 

and realistic crack geometries; almost all of these account for pressure dependence using Hertzian 

contact theories (Greenwood and Williamson, 1966).  The major difference between these studies 

depends on the manner in which the statistics of the contacting asperities were quantified with 

polynomial (Mavko and Nur, 1978), exponential (Walsh and Grosenbaugh, 1979; Carlson and 

Gangi, 1985),   Gaussian (Brown and Scholz, 1985; Stesky and Hannan, 1989), fractal (Wong et 

al, 1989), and power law (Gao and Gibson, 2012) distributions all having been used.  Zaitsev et al 
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(2017) invert directly for pressure dependent crack stiffnesses avoiding entirely having to assume 

specific crack geometry.   

There are fewer studies that relate to the pressure dependence of electrical conductivity. Brace and 

Orange (1968) looked at the effect of pressure on resistivity for a large number crystalline and 

sedimentary rocks.   Although he did not look at electrical conductivity directly, Gangi (1978) 

developed a bed-of-nails asperity model for the analogous transport property of permeability.  

Stesky (1986) extended similar measurements to crystalline rocks some of which contained more 

macroscopic fractures.  Glover and Vine (1995) carried out difficult high-pressure, high-

temperature measurements on a series of metamorphic rocks obtained from scientific drilling 

programs.   In these studies, the nonlinear pressure dependence of the electrical properties was 

found to be similar to that seen for elastic properties.  Recently, Han (2018a) modelled the pressure 

dependency of electrical conductivity using an effective medium approach that incorporated a dual 

porosity model with stiff and compliant pore; this model was used to provide information about 

the pore structure from laboratory electrical measurements.  

Doyen (1987) is one rare example in which the pore structure was deduced from joint inversion of 

wave speeds, electrical conductivity, and permeability in a granite under the assumption of long 

tube-like pores with elliptical cross-section.   Pride et al, (2017) suggest analytical models that 

describe how wave speeds, electrical conductivity, and permeability vary with pressure with 

particular focus on low porosity crystalline rocks. 

In this work we describe a series of simultaneous ultrasonic velocity and electrical resistivity 

measurements on two samples subject to a range of pore and confining pressures.   The samples 

are selected on the basis of differences in their pore structures with one a clean natural sandstone 

and the other a highly porous sintered alumina. The aim was to see how the wave speeds and 
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electrical conductivity of the two petrophysically distinct samples responded to changes in pore 

and confining pressure. The electrical and elastic wave responses of the sandstone samples are 

then jointly used in an inversion procedure to produce information by combining Gao and Gibson’s 

(2012) elastic and Stesky’s (1986) electrical models of pressure dependency.  

2.2) Background  
 

In porous sediments free of clay and conductive minerals, electrical measurements are primarily 

sensitive to the electrolytic liquid conductivity, the saturation state, the porosity, and the pore space 

topology all of which is reflected in Archie’s (1942) empirical relation.  The bulk elastic moduli 

of these same sediments are also controlled by porosity, saturation state, and pore space topology, 

but fluid and solid moduli and density must be considered if seismic velocities are used as proxy 

measures of the material’s elasticity. Consequently, the electrical and mechanical sediment 

properties complement one another in characterizing a rock.  The successful integration of these 

two measures, however, is limited due to the lack of precisely controlled experiments that seek to 

unwrap individual dependences on mineralogy, pore topology and fluid type. Overcoming this 

requires careful experimental design where most factors can be held constant while a single 

parameter is varied. In the following subsection we describe the concept of effective pressure, the 

dependence of wave velocities and resistivity with pressure and conclude with a brief note on 

Differential Effective Medium theory and why it is not used here. 

2.2.1) Effective pressure 

 

As already noted, many of the physical properties are nonlinearly dependent on the confining 

pressure Pc or stress that the material is subject to.   More properly the influence of the pore fluid 

pressure Pp must also be included as, typically, it acts against Pc through effective pressure rules.     
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Specifically, a rock in the earth is subject to tectonic and overburden stresses, that for the sake of 

simplicity is considered here as a uniform confining pressure Pc.   At the same time and assuming 

that the system is in equilibrium (i.e., drained conditions) the pores of the rock will be filled with 

fluid that has the independent pressure PP.    Generally, a given physical property (e.g., wave speeds, 

electrical conductivity) does not vary if the differential pressure Pd = Pc - 𝑃𝑝 remains the same.  

This means that, to a first approximation, the value of the physical property at any combination of 

Pc and 𝑃𝑝 can be predicted if it has already been measured in the saturated sample over a range of 

Pc while 𝑃𝑝 =0.    The differential pressure is often also called the effective pressure Pe and 

𝑃𝑒 = 𝑃𝑑 = 𝑃𝑐 − 𝑃𝑝                                                                         (2.1) 

The effective pressure is defined such that a given physical property should have the same value, 

at the same effective pressure, for any combination of pore and confining pressure.   While Eqn. 

2.1 generally holds for material failure, seismic wave speeds, permeability, and electrical 

conductivity there are conditions where the 𝑃𝑝 term must be modified.  When pore pressure does 

not exactly cancel out the effects of confining pressure then the effective stress coefficient b is 

introduced so that    

𝑃𝑒 = 𝑃𝑐 − 𝑏𝑃𝑝                                                                            (2.2). 

A value of b ≠ 1 might be required in cases where chemical effects, such as swelling clays, may 

affect the pores space.   In poroelasticity, the effective stress for volumetric strain, too, must include 

a value of 𝑏 that is less than 1 except for highly compressible sediments.  In the analyses below, 

we assume that the simple, or Terzhaghi, effective pressure law of Eqn. 2.1 applies (e.g., Gangi 

and Carlson, 1996).   
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2.2.2) Pressure dependence of wave velocities 

 

Compressional (𝑉𝑝) and Shear (𝑉𝑠) wave velocities for isotropic materials as a function of 

differential pressure are described as 

𝑉𝑝(𝑃𝑑) = √𝐾(𝑃𝑑) +
4
3𝜇(𝑃𝑑)

𝜌𝑏
                                                                  (2.3) 

𝑉𝑠(𝑃𝑑) = √
𝜇(𝑃𝑑)

𝜌𝑏
                                                                                 (2.4) 

where 𝐾(𝑃𝑑) is the pressure dependent bulk modulus, 𝜇(𝑃𝑑) is the pressure dependent shear 

modulus and 𝜌𝑏 is the bulk density which can be assumed to be constant for the pressures 

encountered here. The non-linear pressure dependence of  𝐾(𝑃𝑑)  and 𝜇(𝑃𝑑) are generally 

attributed to crack closure at low differential pressures.  

Effective medium theory has proven to be a useful tool for modeling the effects of fractures on 

elastic wave velocities. Particularly the approximation of small crack density (or approximation of 

non-interacting cracks) has been commonly used to analyse anisotropy introduced by cracks 

(Kachanov, 1992; Sayers and Kachanov, 1995). This theory expresses the elastic compliance 

tensor of the rock as   

𝑄𝑖𝑗𝑘𝑙 = 𝑄𝑖𝑗𝑘𝑙
0 + ∆𝑄𝑖𝑗𝑘𝑙                                                                   (2.5) 

where 𝑄𝑖𝑗𝑘𝑙
0  is the compliance tensor for the rock in the “uncracked” state and ∆𝑄𝑖𝑗𝑘𝑙 represents 

the perturbation in these compliances that is introduced by cracks. This term is generally derived 

by considering the normal BN and tangential BT compliances of a single crack and summing the 

effects of many of these cracks for a given distribution of orientations. BN and BT are typically 
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determined using elliptical integrals (Kachanov,1992), but this does not give any explicit 

dependence on pressure.  

Instead, Gao and Gibson (2012) derived analytic expressions for the crack compliances based on 

Gangi and Carlson’s (1996) “bed of nails” asperity deformation model. They used Hertzian contact 

theory to provide an explicit pressure dependence to their crack compliance. Their model treats 

the cracks as nominally flat defects including asperities modelled as elastic half-spheres following 

the composite topography concepts (Fig. 2.1) developed by Greenwood and Williamson (1966) 

and later applied to rocks by Brown and Scholz (1985).   

 

Figure 2.1. a) Hypothetical crack-like porosity within the rock mass showing two points of contact. 

b) Composite topographic representation of the cracks (after Brown and Scholz, 1985), c) 

Reduction of the composite topography to representative half-spheres.  As the crack closes at 

higher pressure more asperity spheres will be in contact with the overlying elastic half-space. 

Guo and Gibson (2012) consider the statistics of their spherical asperities and derive relationships 

for the drained crack moduli as a function of Pc: 
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and  
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                                                    (2.6𝑏), 

where 𝑃𝑖 is the atmospheric pressure,  𝑀𝑒 is defined as the closure modulus (i.e., the normal 

compliance of the crack that is equal to the stress normal to the crack when it completely closes) 

and 𝑛 is the exponent in a power law describing the statistical distribution of asperity heights on 

the crack surfaces.  Gao and Gibson (2012) introduce 𝐵𝑒 as a shorthand for simplicity, but do not 

give it a name. As can be seen in their Eqn. 46, it is inversely proportional to the shear modulus of 

the material making up the contacting hemispheres (Fig. 2.1) with the remaining terms arising 

from the statistics of the asperity heights and locations.  Once pore fluid is introduced a pore fluid 

pressure Pp   exists and the corresponding compliances (undrained compliances) becomes 

                𝐵𝑁,𝑠𝑎𝑡(𝑃𝑐 , 𝑃𝑝) = [(1 − 𝑃𝑝
𝑑𝐴𝑐

𝑑𝑃
)𝑀𝑛 + (1 − 𝐴𝑐)𝑀𝑓]

−1

                                   (2.7𝑎), 

and 

𝐵𝑇,𝑠𝑎𝑡(𝑃𝑐 , 𝑃𝑓) =
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                                             (2.7𝑏). 

 where 𝑀𝑛 = 𝐵𝑁
−1 and 𝑀𝑓 is the bulk modulus of the fluid. 𝐴𝑐 is the relative contact area of 

asperities between the walls of the cracks and is given as 
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𝐴𝑐 = (
𝑃 + 𝑃𝑖

𝑀𝑒
)
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𝑛+
3
2]                                             (2.8). 

The values used in Eqns. 2.6 to 2.8 are taken to be the average value of these parameters over all 

the cracks or linear defects in the rock.  

The pressure dependent elastic moduli can therefore be expressed as 

𝐾(𝑃𝑑) = (𝑑1 +
1

𝐾0
)

−1

                                                                              (2.9𝑎) 

and  

𝜇(𝑃𝑑) = (𝑑2 +
1

𝜇0
)

−1

                                                                            (2.9𝑏) 

where 

𝑑1 = 𝐵𝑁𝜑𝑐                                                                                       (2.10𝑎) 

and  

𝑑2 =
2

15
(2𝐵𝑁 + 3𝐵𝑇)𝜑𝑐                                                                     (2.10𝑏) 

where 𝜑𝑐 denotes the crack porosity.  Eqns. 2.9a and 2.9b can then be substituted into Eqns. 2.3 

and 2.4 to yield pressure dependent velocities with knowledge of Me, Be, and n.  

2.2.3) Pressure dependent electrical conductivities  

 

Stesky (1986) attempted to use similar ideas to model the pressure dependence of crystalline rocks 

with fractures.   He considered a rock shown in Fig. 2.2 with cross-sectional area A and length L. 
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The rock has a single fracture going through it with aperture a and width w. He considers 

conduction in the direction parallel to the crack. 

 

Figure 2.2. Schematic of fracture geometry to describe conduction through a cross section of 

fractured rock.  (Following Stesky (1986)). A is the cross-sectional area of the cylinder normal to 

its axis. L is the axial length. a and w are the aperture and width of the fracture respectively. J is 

the current density vector.  

Conduction through the rock is modeled as a parallel circuit with conduction through the fracture 

acting in parallel to conduction through the pore space as indicated in Eqn. 2.11 

𝜎𝑇 = 𝜎𝑓𝑟 + 𝜎𝑟                                                                                    (2.11) 

Where 𝜎 denotes conductivity and subscripts T, fr and r indicate conductivities of the whole rock, 

crack or fracture like pores and porous matrix respectively.   
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In the following we only consider 𝜎𝑓𝑟 since the matrix porosity is assumed to essentially be 

pressure independent. This means that all pressure dependence is attributed to fractures which will 

be true for rocks free of clay and conductive minerals. A small note on terminology is probably 

necessary here. Cracks and fractures can both be thought of as nominally flat defects in rocks. 

However, the term crack is generally used when referring to small crack like pores, whereas the 

term fracture generally refers to a larger scale feature. The difference can be understood here in 

terms of the material that makes up the “wall” of the defect. In the case of a fracture there is matrix 

porosity in the wall rock. In the case of a microcrack, the wall rock is the mineral that makes up 

the grain, which can be assumed to have negligible porosity. 𝜎𝑓𝑟 refers to the conductivity 

attributable to pressure dependent porosity, which in the case of the samples examined here are 

micro cracks. The following model was developed for fractured crystalline rocks. The low porosity 

of those rocks (.04% -.4 %) means the fracture walls in those rocks can be treated similarly to the 

mineral surfaces although the scale of the asperities modeled will be different.  

According to Stesky (1986), the electrical conductivity 𝜎𝑓𝑟  through a fracture of aperture a and 

width w (Fig. 2.2) is given by: 

𝜎𝑓𝑟 = 𝜎𝑤

𝑎 𝑤 

𝐴
                                                                               (2.12) 

where 𝜎𝑤 is the conductivity of the saturating electrolyte. The aperture is a function of differential 

pressure (i.e., 𝑎 = 𝑎(𝑃𝑑)) with 𝑎0 taken as the aperture at zero pressure.  Eqn. 2.12 can be 

generalized to the case of multiple fractures by multiplying the number of fractures 𝑛𝑐 by the 

average crack aperture and width averaged using the geometric mean for all fractures involved in 

conduction. This leads to  
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𝜎𝑓𝑟 =
𝜎𝑤𝑛𝑐

𝐴
�̅�(𝑃𝑑) �̅�                                                                  (2.13) 

were bars over a quantity indicate that they are a geometric mean of those quantities.  

In order to model the pressure dependence of the crack aperture, Stesky (1986) uses semi-empirical 

relations (see his Eqns. 2.9 and 2.10).  Here, the pressure dependence is instead incorporated by 

consideration of the normal fracture compliance (Eqn. 2.6a).    

To begin, we define the number of cracks (𝑛𝑐) as 

𝑛𝑐 =
𝜑𝑐𝐴

𝑎0 𝑤
                                                                                  (2.14) 

where 𝑎0 is the crack aperture at the atmospheric pressure. The pressure dependent crack aperture 

is simply expressed as: 

𝑎(𝑃𝑑) = 𝑎0 𝑓(𝑃𝑑)                                                                          (2.15) 

where 0 ≤ 𝑓(𝑃𝑑)  ≤ 1 is a pressure dependent function to be developed. This is accomplished by 

considering the definition for the normal crack compliance: 

1

𝐵𝑛(𝑃𝑑)
= −𝑎 

𝑑𝑃𝑑

𝑑𝑎
                                                                       (2.16) 

Rearranging and integrating gives 

−∫
𝑑𝑎

𝑎

𝑎(𝑃𝑑)

𝑎0

= ∫ 𝐵𝑛(𝑃)
𝑃

𝑃0

𝑑𝑃𝑑                                                           (2.17). 

 then defining the right-hand side as 𝐶𝑝 and integrating gives: 

𝑎(𝑃𝑑) = 𝑎0  
1

𝑒𝐶𝑝
                                                                               (2.18) 
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so that  

𝑓(𝑃𝑑) = 𝑒−𝐶𝑝                                                                                 (2.19) 

Now, using Eqn. 2.6a 𝐶𝑝 can be shown to be 

𝐶𝑝 = 𝑀𝑒
−

1

𝑛+
3
2  (𝑃

1

𝑛+
3
2 − 𝑃0

1

𝑛+
3
2)                                                               (2.20) 

Note that using Eqn. 2.6a instead of Eqn. 2.7a means that the fractures are drained (i.e., any excess 

pore pressure induced by application of the confining stress is allowed to decay by flow out of the 

sample).   This condition is applicable to our experiments below for predicting the change in 

aperture at the different measurement pressures. If instead the pore pressure was held constant and 

the confining pressure was increased, Eqn. 2.17 would have to use Eqn. 2.7a instead of equation 

6a to define the normal crack compliance. Substituting Eqns. 2.14 and 2.19 into Eqns. 2.13 gives 

𝜎𝑓𝑟 = 𝜎𝑤 𝜑𝑐 𝑓(𝑃)                                                                         (2.21). 

Stesky (1986) adds an additional term to account for the increasing tortuosity of the flow channels 

with the changing relative asperity contact area Ac defined in Eqn. 2.6.  Walsh (1981) developed a 

form using analogies between electrical and thermal conductivities. Clennell (1997) commented, 

however, that molecular diffusion (which is analogous to movement of ions under a potential 

gradient) can be retarded by the roughness of the pore wall, and this retardation would be especially 

pronounced in cracks whose two rough opposing faces are almost in contact.  This effect is not 

expected to influence thermal transport and as such Walsh’s (1981) analogy may not be adequate.   

It is difficult to obtain exact expressions that might describe the influence of the crack roughness, 

and instead this effect was included in an ad hoc fashion by incorporating another parameter 
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incorporated as an exponent 0 ≤ p ≤ 1 on the 𝐴𝑐 term.   Including this effect as an exponent 

maintains that, as 𝐴𝑐 tends to zero the entire term, 
1−𝐴𝑐

𝑝

1+𝐴𝑐
𝑝, tends to 1. In a physical sense, the 

exponent causes the electrical conductivity to decrease more rapidly at lower differential pressures. 

This exponent p was determined by including it as an additional parameter to be fit along with.  

Including this term in Eqn. 2.21 gives: 

𝜎𝑓𝑟 = 𝜎𝑤 𝜑𝑐 𝑓(𝑃)
1 − 𝐴𝑐

𝑝

1 + 𝐴𝑐
𝑝                                                                       (2.22). 

Substituting this expression back into Eqn. 2.11 results in 

𝜎𝑇 = 𝜎𝑤 𝜑𝑐 𝑓(𝑃)
1 − 𝐴𝑐

𝑝

1 + 𝐴𝑐
𝑝 + 𝜎𝑟                                                                 (2.23) 

The conductivity of the matrix rock can be modeled using Archie’s (1942) equation 

𝜎𝑟 =
1

𝐹
= 𝜎𝑤𝜑𝑚                                                                                        (2.24) 

where 𝜑 is the connected porosity and F is the formation factor.  However, for heavily cracked 

rocks, Revil and Cathles (1999) explain that the formation factor may simply be equal to the crack 

porosity. As they point out, this is due to the physical meaning of the inverse formation factor. 

Following Avellaneda and Torquato (1991) the formation factor can be expressed as 

1

𝐹
=

1

𝑉𝑜𝑙
∫ |𝑒𝑏|

2

𝑉𝑝

𝑑𝑉𝑝𝑜𝑟𝑒                                                                                 (2.25) 

where Vol is the volume of the rock 𝑉𝑝𝑜𝑟𝑒 is the pore volume and  𝑒𝑏 =
∆𝛾

|𝐸|
 is the normalized 

electrical field inside the interconnected pore space which is equal to the ratio of the local 

electrical potential gradient (∆𝛾) and the electric field magnitude (|𝐸|). As is explained in Revil 
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and Cathles (1999), |𝑒𝑏|
2 acts as a weighting function for the total interconnected porosity 𝜑 =

𝑉𝑝𝑜𝑟𝑒

𝑉𝑜𝑙
. This means that the inverse formation factor is a measure of the porosity that excludes dead 

end pores and pores not involved in transport. They go on to explain that the electrical potential 

gradients are most concentrated in the pore throats. In rocks with many cracks, all of the cracks 

may be thought to be involved in transport. This, coupled with the fact that the inverse formation 

factor (as a measure of the porosity dynamically connected by lines of current flux) weights the 

crack porosity highest for rocks that consist of mostly crack porosity, means that for heavily 

fractured rocks, Eqn. 2.23 can be expressed as   

𝜎𝑇 = 𝜎𝑤 𝜑𝑐 𝑓(𝑃)
1 − 𝐴𝑐

𝑝

1 + 𝐴𝑐
𝑝 ≈ 𝜎𝑤

1

𝐹
𝑓(𝑃)

1 − 𝐴𝑐
𝑝

1 + 𝐴𝑐
𝑝                                                          (2.26). 

We later apply this assumption to our inversions of a heavily microcracked Berea Sandstone and 

a very intact alumina ceramic. Using Eqns. 2.3,2. 4, and one of 2.23 or 2.26, measured wave 

velocities (under dry and saturated conditions) and electrical conductivities are inverted to obtain 

model parameters (defined earlier) 𝑀𝑒, 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 𝜇0,m,  𝑎𝑛𝑑 𝑝 using a genetic algorithm 

described later.    

2.3) Experimental set up 

 Both the ultrasonic and electrical measurement methods are described here with the experimental 

configuration summarized in Fig. 2.3a. A thermocouple housed inside the vessel is connected to a 

digital read out outside the vessel (Fig. 2.3a) allowing the temperature to be monitored to within 

0.1°C.  The confining pressure is regulated by a computer-controlled pump (Quizix Q5000 

metering pump).  The pore pressure is manually controlled by a pressure intensifier outside the 

pressure vessel. The pore pressure was set based on an analog pressure gauge with 1 MPa 

resolution. A temperature of 22°-23°C was maintained for each measurement. 
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Figure 2.3. a) Experimental set up for electrical resistivity and ultrasonic wave velocity 

measurements in a pressure vessel. b) Measurement circuit used for electrical resistivity 

measurement 

2.3.1) Ultrasonic measurements  

 

 Piezoelectric ceramic transducers (AmericanPiezo - APC shear mode piezo plates, 15.0 X 15.0 

mm, 750 kHz - material 850 and APC longitudinal mode 20.00 mm diameter, 1 MHz - material 

840) with resonant frequencies of 1 MHz and 0.75 MHz are used to both send and receive, 

respectively, ultrasonic P- and S- waveforms.  Pulses are launched by stimulating the ceramics 

with a rapid step voltage (~200 V).  The propagated mechanical pulses are then converted into 

voltages by the receiving ceramics and acquired at a 10 ns sampling period for 9999 samples using 

a digital oscilloscope. A minimum of 300 individual pulses were stacked to improve the signal to 

b 

a 
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noise ratio in order to create a final waveform for analysis.  Since the P and S wave transducers 

are stacked on top of each other, they are recorded sequentially. The transducers are mounted onto 

aluminium endcaps. To account for the travel time of pulses through the endcaps, calibration 

measurements are taken for travel times through the endcaps at measurement pressures. These are 

later subtracted from the measurements of travel time through the entire sample.     

An example of the first break picking to determine the transit time is shown in Fig 2.4.  After 

accounting for the delay due to the endcaps, the time-of-flight ∆𝑡 is used with the sample length 

(𝐿) to calculate the wave velocity 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝐿

∆𝑡
                                                              (2.27) 

 

Figure 2.4. Filtered waveform from ultrasonic velocity measurement with an arrow indicating 

arrival time determination.  

2.3.2) Electrical measurements 

 

A simple IV circuit was used for the electrical measurements (Fig. 2.3b).  A volt meter with 

floating leads (HP 34401a) measured voltage differences across both a 350 Ω ± 0.05% precision 
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reference resistor (Vishay Instruments) and the sample.  The voltage V across the precision resistor 

is used to calculate current I using Ohm’s law  

𝑉 = 𝐼𝑅                                                                                    (2.28) 

where 𝑅  is its known resistance.  The sample’s resistance Rs is found from the voltage drop across 

it together with the measured input current, and is then converted to the material’s resistivity ρ 

using the sample geometry 

𝜌 = 𝑅𝑠

𝐴

𝐿
                                                                                 (2.29) 

with the known cross-sectional area A and length L.  A 0.5 V peak-to-peak AC excitation voltage 

was generated by a programmable synthesized function generator (Wavetek™ model 278) and 

tested across 100 Ω and 350 Ω resistors to verify its accuracy.   The measured resistance R did not 

vary noticeably when a range of excitation voltages were applied; and a final value of  0.5 V peak 

to peak was selected to take best advantage of the voltmeter’s sensitivity.   Some authors have 

previously reported non-linear contact impedance effects (e.g., Sumner 1976); these are not 

believed to be important here because the ends of the samples were machined flat to better than 25 

µm (1/1000th inches).  The contacting end-caps were also machined flat ensuring uniform contact 

allowing for uniform current injection through the sample.  

The constraints of the experiment within a pressure vessel necessitated that a 2-electrode 

configuration be employed; and consequently, the endcaps were used both for the electrodes and 

for the ultrasonic buffers.   This is problematic in that electrode polarization must be considered.   

Following procedures described by Wang et al. (2009), the system was tested over a range of 

frequencies from 1 Hz to 1 MHz, and similar to their findings the polarization was not problematic 

at a frequency of 10 kHz.  To further validate use of this frequency, the resistivity was measured 
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at a range of frequencies using a 2-electrode configuration at room conditions on the alumina 

sample saturated with a NaCl electrolyte (2% by weight ~ 3.37 S/m). This was compared to a 

single measurement at 100Hz using a four-electrode method.   The 2-electrode resistivities diverge 

significantly from the 4-electrode resistivity at frequencies below 1 kHz due to electrode 

polarization effects (Fig. 2.5), but the values are the same above this frequency.   The 2-electrode 

resistivities remain slightly higher but according to Chelidze and Gueguen (1999) this small 

variation is probably due to contact impedance effects.  

 In the measurement set-up, one end-cap is electrically attached to the pressure vessel and this 

provides a virtual ground. The other end cap remained unconnected to the pressure vessel ensuring 

that no short circuiting occurred.  The end caps are made of an aluminum alloy, which was a 

concern due to its susceptibility to corrosion.  However, the electrolytes used were relatively dilute 

composed of NaCl dissolved in distilled water; and no obvious corrosion (pitting etc.) was detected 

on the end caps at any point in time during the experiments. Reproducibility of measurements over 

time was also monitored to see if there were changes to measured physical properties that could 

not correspond to changes in the sample.  

It is important to mention how the reported formation factors F = Rw/R were obtained.  Normally, 

for the sake of redundancy this is done by making multiple measurements of R at differing salinities 

Rw.  Here, only one salinity (2% by weight or ~20000 ppm) was used but this is considered 

sufficiently high that it should be near the high salinity asymptote of the formation factor vs. 

electrolyte conductivity graph (Weller et al. ,2013).  Making a single measurement risks 

underestimating F; regardless the values obtained here are similar to those found in other studies 

on Berea sandstone.  
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Figure 2.5. Impedance magnitude as a function of frequency for multiple 2 electrode measurements 

and a single 4 electrode measurement on a ceramic sample. 

2.3.3) Sample Description 

 

Measurements were made on two contrasting samples previously characterized by Yam (2011) 

including a highly-porous sintered alumina (Soil Moisture Equipment Corporation) and a natural 

Berea sandstone.   The synthetic alumina is composed primarily of shards of alumina (Al2O3) with 

a binder material; this makes a porous solid that is almost devoid of crack-like porosity.  The 

natural Berea sandstone sample is composed primarily of quartz grains with some trace amounts 

of clay material that binds the grains together. As described by Prasad and Manghnani (1997), the 

Berea sandstone consists of angular quartz grains with many uncemented and crack-like grain 

boundaries that behave as microcracks. The synthetic alumina sample, however, is dominated by 
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more equant porosity.  Yam (2011) carried out a variety of petrophysical measurements to 

characterize these materials as summarized in Table 2.1.  

  

Figure 2.6. Samples used in the laboratory tests. a) sintered alumina.  b) Berea sandstone.   

Canadian ten cent coin with 18.03 mm diameter for scale.  

Table 2.1. Petrophysical properties of 2 samples used in this study 

Property Alumina rod Berea Sandstone 

Bulk Density (g/cc) 1.55 2.15 

Grain Density (g/cc) 3.70 2.64 

Porosity 0.584 0.186 

Air permeability (mD) 96.94 237.65 

Modal pore size (μm) 2.06 11.33 
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2.4) Experimental procedure 
 

2.4.1) Dry measurements 

 

Ultrasonic pulse transmission measurements were first conducted on the dry samples with the pore 

pressure inlet vented to the atmosphere while the confining pressure was cycled from 1 MPa to 40 

MPa.  

2.4.2) Saturated measurements  

 

A weak NaCl brine (2% NaCl by weight) was prepared.   While the sample remained in the 

pressure vessel, its pore volume was then subject to vacuum through the pore pressure inlet.  The 

sample was then saturated by placing the inlet into the brine and opening it allowing the brine to 

be forced into the pore spaced driving by both the atmospheric pressure and capillary forces.   In 

practice, additional brine was further pushed into the sample before pore pressure could be 

maintained. 

Once the sample was saturated, the confining pressure and pore pressures were first set, 

respectively, to 10MPa and 1 MPa.  Once the pore pressure could be maintained indefinitely the 

confining pressure was set to one of 10, 20 and 30 MPa. At each level of these confining pressures 

the pore pressure was steadily increased to within 1MPa of the confining pressure before cycling 

in reverse back to a minimum of Pp =1 MPa.  At each increment of increasing and decreasing 

pressure, P and S waveforms were recorded from which the transit times and consequent wave 

speeds found.  Additionally, electrical measurements were also sequentially obtained at each 

pressure increment to ensure the samples are under the exact same Pressure –Temperature 

conditions.  
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 When the pressure is increased there is an unavoidable increase in temperature of the system due 

to adiabatic or other (Stesky, 1986) effects.  The system must therefore be allowed some time to 

equilibrate, and in general, to accommodate this a minimum of 10 minutes elapsed between 

measurements.  As an additional check we ensured that the arrival times of ultrasonic pulses were 

not changing and that the temperature was stable when the measurements were recorded.   The 

measurements are time consuming, and each set was carried out over the course of 48 hours.    The 

same end caps were used for both samples.  After each run the end caps were inspected for any 

visible signs of corrosion.  As a further test, the first and last electrical measurements were carried 

out at the same conditions.  All checks suggested that corrosion was not a problem. 

2.5) Results  
 

 The observed P- and S-wave speed pressure dependencies under dry conditions for the two 

samples, tabulated in Appendix I, behave quite differently (Fig. 2.7).   The alumina ceramic sample 

displays only weakly pressure dependent wave speeds below 10 MPa and above this pressure 

remains essentially constant.   The Berea sandstone, in contrast, shows considerable pressure 

dependence with P- and S-wave speeds both increasing by 29%, over the range of applied 

confining pressures. This behaviour is well known in Berea sandstone and is attributed to the 

progressive closure of the micro-crack porosity. Also seen in Fig 2.7 is hysteresis is the velocities 

between loading and unloading cycles. This is sometimes attributed to crack like pores not being 

fully recovered (opened or closed) from the previous cycle but may also be due to some plastic 

deformation that occurs during pressure cycling. 
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Figure 2.7. P and S-wave velocities as a function of confining pressure under dry conditions for a) 

Berea sandstone and b) alumina ceramic. 



35 

The pressure dependent behaviour of the P- (Fig. 2.8a) and S-wave (Fig. 2.8b) speeds under 

saturated conditions, when plotted as a function of Pd, is largely similar to that for the dry 

measurements.   Interestingly, the addition of fluid to the synthetic alumina sample largely 

eliminated pressure dependence.  For the velocity measurements shown in Fig. 2.8 (a and b), for 

the ceramic rod, the difference in velocity between the highest and lowest differential pressures is 

less than 25 m/s for P waves and less than 6m/s for the S waves.  The Berea sample wave speeds, 

in contrast, change considerably with Pd increasing 22% and 17% for the P- and S-waves, 

respectively.  From these measurements it appears that the Terzhaghi effective stress law of Eqn. 

2.1 is valid. This seems to be satisfied as the resistivities and wave speeds measured remain nearly 

constant at the same Pd (Fig. 2.8).  
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Figure 2.8. a) Saturated P- wave velocities, b) saturated S-wave velocities, and c) saturated 

electrical resistivity as a function of differential pressure for all confining pressure runs. Open 

markers indicate that the data is from the sandstone and filled markers are used for the ceramic 

data. 
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The observed resistivities (Fig. 2.8c) indicate different pressure dependencies for both samples. 

The Berea sandstone resistivity increases by ~16% while that for the alumina ceramic changes by 

~8%.   This latter change is somewhat unexpected given the lack of pressure dependence seen in 

the wave speeds for this sample. It should be noted that the changes in resistivities at 20 MPa and 

30 MPa were both ~3%. We believe this discrepancy is due to the data collection process. This is 

because the 10 MPa run was done last for this sample and it is believed to have sustained some 

damage at the edges where the endcaps connect to the sample. This would have slightly increased 

the contact impedance between the electrode and sample. The relief of pressure going from 30 

MPa down to 20 MPa and then 10 MPa also may have caused slightly bigger contact impedance 

at each pressure as it was decreased.   

Nonetheless, the effective pressure dependent behaviours of both resistivity and ultrasonic 

velocities significantly differ between the two samples. This difference can primarily be attributed 

to the compliant nature of the porosity for the Berea sandstone.  

2.5.1) Inversion Implementation 

 

The electrical and wave speed pressure dependencies shown for the Berea sandstone and sintered 

alumina samples were inverted to obtain the model parameters 𝑀𝑒 , 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 𝜇0, 𝑝 and m. 

For the sandstone sample Eqns. 2.3, 2.4 and 2.26 were inverted for wave velocities and electrical 

conductivity while Eqns. 2.3, 2.4 and 2.23 were used for the ceramic. This is due to the different 

characteristics of the samples. The sandstone sample is heavily microcracked with a modest 

porosity. Based on Eqn. 2.25 this means that the inverse formation factor at zero pressure provides 

a rough estimate of the crack porosity. The ceramic on the other hand, has an extremely high 

porosity and stiff, equant wide open pores. The lack of microcracks indicated by the weak pressure 

dependence along with he relatively low resistivity of the sample suggest that conduction through 
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matrix porosity may be important to consider. Three sets of inversions were carried out for the 

sandstone sample and one for the ceramic. Table 2.2 summarizes the inversion showing what data 

was inverted, the parameters inverted for, and the number of inversions. Inversions involving only 

wave speeds or electrical data would not use all of the parameters. The Genetic Algorithm 

(function ‘ga’ in Matlab™) is used to carry out the inversions. This was selected in order to avoid 

the objective function getting trapped in local minima which is an anticipated problem for an 8-

parameter solution space. The Genetic Algorithm works on principals of natural selection. Random 

values are assigned to the parameters of interest subject to user defined constraints. The number 

of realizations of each parameter is denoted by the “population size”. Modeled data is produced 

by the forward model that computes model velocities and resistivities based on the parameters 

(Eqns. 2.3, 2.4 and 2.23 or 2.26).  These model results are compared to the data and the objective 

function supplied to the genetic algorithm is used to decide the best sets of parameters. The best 

parameters are then used to create a new generation of parameters. This is done until no further 

reduction in the objective function is achieved (to within some user defined tolerance). Processes 

such as random mutation can be incorporated to further avoid getting trapped in local minima.  

Large population sizes result in long run times for the algorithm while small population sizes often 

result in poor fits to the data. We found that a population size of 1000 was sufficiently large to 

obtain a good fit to the data but sufficiently small as to avoid exhaustive runtimes. In general, a 

larger population size is desirable, but in order to carry out the hundreds of inversions for the 

sandstone we found that 1000 was optimal. The various inversions are later used to analyse the 

non-uniqueness of each parameter by examining parameter distributions. For the alumina ceramic. 

Only one inversion was carried out with a population size of 10,000.  
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Following Gao and Gibson (2012), Gassmann (1951) fluid substitution was used to provide a value 

for the elastic moduli for the material in the “uncracked” state.   The effect of pressure on the 

velocity of the saturating electrolyte was calculated using Batzle and Wang’s (1992) expressions 

(specifically their Eqn. 29). For inverting the resistivities Eqn. 2.26 is used as the forward model.  

The objective function  

𝑚𝑖𝑠𝑓𝑖𝑡 =
𝐴 + 𝐵 + 𝜆𝐶

3
                                                                          (2.30) 

where 𝜆 is a scaling factor and, 

𝐴 = ‖𝑉𝑝,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑉𝑝,𝑚𝑜𝑑𝑒𝑙𝑒𝑑‖   

𝐵 = ‖𝑉𝑠,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑉𝑠,𝑚𝑜𝑑𝑒𝑙𝑒𝑑‖ 

𝐶 = ‖𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜎𝑚𝑜𝑑𝑒𝑙𝑒𝑑‖, 

minimized the difference between model results and the observed results in a least square sense.  

In order to account for the large magnitude differences between the velocities and conductivities, 

a scaling factor of 𝜆 =70,000 was assigned to the conductivities. This is almost one order of 

magnitude higher than difference between the conductivity and velocity data (conductivity on the 

order of 10-1 and velocities on the order of 104). Other weighting factors were tested, and any 

values within an order of magnitude of this made little difference to the qualitative appearance of 

the fit.  The reason that the weight is higher than the required amount to make up the difference in 

magnitude between the conductivity and velocity data is because the inversion relied on four 

velocity data sets (Dry P wave, Dry S wave, saturated P wave and saturated S wave) but included 

only the single suite of conductivity measurements.   
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In the inversions the both specimens are assumed to be isotropic. This is a common assumption 

for Berea sandstone although it has been shown to be weakly anisotropic (Prasad and Manghnani, 

1997). There is not previous work to suggest weather the sintered alumina is completely isotropic 

in mineral orientation and pore space orientation and so we assume isotropy in the following. It 

should be noted that the use of Gassmann fluid substitution allows the user to investigate the effects 

of different fluids if desired. 

Table 2.2- Summary of inversions carried out on different data 

Sample Data Inverted Number of 

inversions 

Parameters inverted 

for 

Berea Sandstone Velocity 400 𝑀𝑒 , 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 𝜇0 

Berea Sandstone conductivity 400 𝑀𝑒 , 𝑛, 𝜑𝑐, 𝑝 

Berea Sandstone Velocity and 

conductivity 

400 𝑀𝑒 , 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 

𝜇0, 𝑝 

Alumina Ceramic Velocity and 

conductivity 

1 𝑀𝑒 , 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 

𝜇0, 𝑝, 𝑚 

2.5.2) Inversion results 

 

Four hundred inversions for seven parameters (𝑀𝑒 , 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 𝜇0 and 𝑝) were carried out for 

the sandstone sample inverting Eqns. 2.3, 2.4 and 2.26 to obtain modeled ultrasonic wave 

velocities and electrical conductivity. Further, three separate inversions were executed using 

different elements of the datasets as shown in Table 2.2. This was done to assess what effect 

including the different data sets had on the parameter distributions for the sandstone. One inversion 

on the ceramic sample was carried out for eight parameters ( 𝑀𝑒 , 𝑛 , 𝐵𝑒, 𝜑𝑐, 𝐾0, 𝜇0, 𝑝, 𝑚).  The 
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following constraints were applied to the inversion. The K and 𝜇 obtained from the velocities 

measured at the highest confining pressures on the dry samples was used to estimate a lower bound 

to the background Ko and 𝜇0 moduli, while an arbitrarily high value of 70 GPa was taken for the 

upper bound.  𝜑𝑐 was allowed to vary between zero and the total porosity (𝜑𝑇) for each sample 

(Table 2.1).  The parameters 𝑀𝑒 and 𝐵𝑒 were difficult to constrain, and based on the results of Gao 

and Gibson (2012), ranges of 10 GPa ≤ Me ≤ 100 GPa and 0 ≤ Be ≤ 1 GPa-1 were eventually adopted 

for the Berea Sandstone. The same bounds were used or the ceramic sample with the exception of 

the closure modulus which was assigned a range of 1 GPa ≤ Me ≤ 500 GPa since there are no 

analogous samples to compare it to from Gao and Gibson (2012). Parameters 𝑀𝑒 and 𝐵𝑒 are 

therefore the least constrained.  The exponent n was initially set with an upper bound of 100 but 

this was reduced to 10 upon inspection of preliminary results (lower bound set to 0). These 

constraints were not necessary to achieve a good solution but allowed us to use smaller population 

sizes in order to speed up the computation time. The results of the joint inversions are shown with 

the fitted curves in Fig. 2.9 and Fig. 2.10 for the sandstone and ceramic respectively. The 

parameters obtained in Figs. 2.9 and 2.10 are summarized in Table 2.3. Figs. 2.11 and 2.12 show 

inversion results when inverting the velocity and resistivity separately. 

Table 2.3. Summary of parameters obtained for results shown in Figs. 2.9 and 2.12.  

Sample 𝑴𝒆(𝑮𝑷𝒂) 𝒏 𝑩𝒆(𝑮𝑷𝒂)−𝟏 𝝋𝒄 𝑲𝟎(𝑮𝑷𝒂)  𝝁𝟎(𝑮𝑷𝒂) 𝒑 𝒎 

Sandstone 57.2 .525 1.11 x 10-2 0.0649 23.5 19.2 .544 N/A 

Ceramic 1.47 0.111 1.89 x 10-2 0.00642 20.4 9.14 0.470 2.33 
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Sandstone 

(velocities) 

48.3 0.278 1.23 x10-2 0.109 30.3 19.9 N/A N/A 

Sandstone 

(electrical 

conductivity) 

98.3 4.07 N/A 0.0665 N/A N/A 0.994 N/A 

 

For the ceramic sample, it is difficult to get a satisfactory fit to the data and we were unable to do 

so here. Fig. 2.10 shows modeled and measured results with root mean square (rms) error values 

of 39.78 m/s, 3.496 m/s and 0.0075 ohm-m) for the dry velocities, saturated velocities and 

resistivity respectively. The rms error values are all reasonable however the graphs do not 

qualitatively agree and the pressure dependence of the resistivity is underestimated. This could be 

due to the unusual nature of the sample. It is highly porous with no sign of microcracks and 

contains a binding material, which we know little about. The changes in resistivity are also not 

correlated with velocity in this sample since the velocity does not change much for the saturated 

velocities. Uncorrelated changes may suggest the mechanism for change in the properties is 

unrelated and the model is invalid for the sample.  

A good fit is seen for the sandstone data and this could be achieved with using any subset of the 

data set. Fig. 2.9 shows modeled and measured results with rms error values of 59.0 m/s, 20.8 m/s 

and 0.0471 ohm-m for the dry velocities, saturated velocities and resistivity respectively. Fig. 2.11 

shows modeled and measured results for velocities with rms error values of 54.89 m/s and 23.99 

m/s for dry and saturated velocities respectively. Fig. 2.12 shows the modeled and measured results 

for sandstone resistivities with and rms error value of 0.0329 ohm-m.  
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Although good fits can be obtained, it is useful to examine how well determined each of the 

parameters were in the various inversions as non-uniqueness is a common problem in rock physics 

modeling. This is discussed in the next section along with how the result can influence rock physics 

modeling. 

 

Figure 2.9. Berea sandstone comparison of measured results to modeled results for (a) P wave 

velocities under dry and saturated conditions, (b) S wave velocities under dry and saturated 

conditions and (c) electrical resistivity for measurements under saturated conditions.  
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Figure 2.10 Alumina ceramic comparison of measured results to modeled results for (a) P wave 

velocities under dry and saturated conditions, (b) S wave velocities under dry and saturated 

conditions and (c) electrical resistivity for measurements under saturated conditions.  

c 



45 

 

Figure 2.11. Berea sandstone comparison of measured results to modeled results for (a) P wave 

velocities under dry and saturated conditions and (b) S wave velocities under dry and saturated 

conditions.  
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Figure 2.12. Berea sandstone comparison of Modeled to measured P electrical resistivity under 

saturated conditions.  

2.6) Discussion 
 

In this section we discuss the limitations of the proposed model. We focus on the issues of non-

uniqueness and the Poisson’s ratio for the material making up the elastic hemispheres. 

One admitted problem arising from the Gao and Gibson (GG) model of pressure dependent crack 

compliance is the number of parameters required to be fit causing the parameters to be non-unique. 

Gao and Gibson (2012) only inverted ultrasonic velocities, and on the basis of their observations 

suggested that the closure modulus (𝑀𝑒) and the crack porosity were least well constrained.   
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Figure 2.13. 𝑀𝑒 distributions when inverting (a) velocity data, (b) conductivity data and (c) both 

velocity and conductivity data. Histograms were calculated from the 400 inversions done for each 

dataset. 
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Figure 2.14. 𝜑𝑐 distributions when inverting (a) velocity data (b) conductivity data and (c) both 

velocity and conductivity data. Histograms were calculated from the 400 inversions done for each 

dataset. 
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Figure 2.15. n distributions when inverting (a) velocity data, (b) conductivity data and (c) both 

velocity and conductivity data. Histograms were calculated from the 400 inversions done for each 

dataset. 
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Figure 2.16. 𝐵𝑒 distributions when inverting (a) velocity data and (b) velocity and conductivity 

data. Histograms were calculated from the 400 inversions done for each dataset. 
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Figure 2.17. 𝐾0 distributions when inverting (a) velocity data and (b) both velocity and 

conductivity data. Histograms were calculated from the 400 inversions done for each dataset. 
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Figure 2.18. 𝜇0 distributions when inverting (a) velocity data and (b) both velocity and 

conductivity data. Histograms were calculated from the 400 inversions done for each dataset. 
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Figure 2.19. p distributions when inverting (a) conductivity data and b) both velocity and 

conductivity data. Histograms were calculated from the 400 inversions done for each dataset. 

Figs. 2.13 to 2.19 show the distributions for the inverted parameters for each of the 400 inversions 

on Berea sandstone. Fig. 2.13 shows that the distribution of parameter Me is quite similar for both 
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inversions which include velocity data. Although the distribution is broad, the mean of the 

distribution closer to the lower end of the parameters. The distribution obtained with only the 

electrical data is notably different and heavily favours values toward the higher end of the 

parameter distribution. Fig. 2.14 shows that resistivity has the greatest impact on the crack 

porosity. The parameter distributions for the conductivity inversion and joint inversions shown are 

notably different from the parameter distribution for the velocity data. Goa and Gibson’s result 

showed that the crack porosity was poorly constrained when only using velocity data. The 

distribution of parameter n is similar for the inversions involving velocity data and both data sets 

but is different for the electrical data. Parameter Be (Fig. 2.16) only applies to the velocity data and 

so is equally well determined by both data sets. Figs. 2.17 and 2.18 show that the “uncracked” 

moduli remain well determined as seen in Goa and Gibson (2012). Parameter p (Fig. 2.19) only 

fits the electrical data but its distribution changes dramatically when fitting the joint inversion data 

compared to the conductivity data. 

The differences in the distributions obtained from the inversion of different datasets suggests that 

either dataset on its own is will likely give different parameters for the same rock. This non-

uniqueness is a common problem in geophysics and highlights the need for joint inversions like 

the one shown here. The electrical data constrains the crack porosity more than any other 

parameter. This in turn causes other parameters to adopt different values in order to fit the data. 

Assuming the physical description is sufficiently accurate, this would suggest that both data sets 

offer complementary constraints to the inversion. The closure modulus is most well constrained 

by the velocity data while the crack porosity is best constrained by the electrical data. It is also 

apparent that there are parameter trade-offs. A proper sensitivity analysis would be necessary to 

quantify them all but it is clear that for the electrical data, a high value for parameter p favours a 
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higher value for the closure modulus. Investigation of the significance of these trade-offs will be 

left to future work. 

Another relevant point made by Gao and Gibson (2012) was the fact that their background Poisson 

ratios 𝑣0, which are related to the normal to tangential crack compliances as shown in Eqn. 2.31, 

were not always realistic.  

𝐵𝑁

𝐵𝑇
=

1 − 𝑣0

1 −
𝑣0

2

                                                                        (2.31) 

We found that our inversions agreed with his findings that the ratio 
𝐵𝑁

𝐵𝑇
 is less than 1 and decreases 

with differential pressure however it was greater than 1 for a small number of them. Although the 

Poisson ratio values are not always realistic (changing from one inversion to another), the ratios 

agree with Gao and Gibson (2012). However, many inversions give Poisson’s ratios within 

reasonable bounds. This shows that the unrealistic Poisson’s ratio is caused by the non-uniqueness 

of the inversion. This can be included as a constraint for the genetic algorithm but in practice it 

greatly increased computation time. Without this constraint, most inversions result in a Poisson’s 

ratio between 0.4 and 1; it must be noted that unless the material is anisotropic Poisson’s ratio 

cannot exceed 0.5.  This means that most of the results were unrealistic, but the results shown for 

Fig. 2.9 have a Poisson’s ratio of 0.36. The Poisson’s ratio for Figs .2.10, 2.11 and 2.12 are is 0.83, 

0.09 and 2.10 respectively. It is interesting to note that although all the sandstone data could be fit 

with a model with a realistic Poisson’s ratio, none of the inversions using only electrical data 

produced realistic Poisson’s ratios. Workers are therefore advised to use this as a constraint if 

conducting similar inversions using a genetic algorithm. 



56 

2.7) Conclusions 
 

We conducted a series of electrical resistivity and ultrasonic velocity measurements on two very 

different porous samples. The first was natural sandstone with a large amount of compliant 

porosity and the second was a synthetic porous media with very stiff equant porosity. The 

difference in the responses of the two samples in part demonstrates the difference in pressure 

dependent behaviour introduced by crack-like porosity.  Gao and Gibson’s (2012) model for 

pressure dependent crack compliances was integrated with crack geometries suggested by Stesky 

(1986) to account for the similar pressure dependencies of electrical conductivity. This integration 

allows electrical and seismic data sets to be jointly inverted to characterize the cracks in the 

material.  Although this problem remains inherently nonunique, the electrical data added a strong 

constraint on the crack porosity parameter which is the most useful parameter in the model used 

to fit the data.   

The relations shown here require more testing against a variety of data sets. However, they offer 

the potential to reduce ambiguity in data interpretation by describing how two measurable 

properties can be expected to vary together as pressure changes in a reservoir. This may be useful 

when trying to discern the effects of pressure changes in a reservoir from changes due to other 

factors such as chemical reactions, damage or changing fluid properties.  

Future work includes extending the model to the anisotropic conductivity. Kachanov (1992) 

suggested that crack density tensors like that used in Gao and Gibson’s model be incorporated into 

electrical and fluid flow models to model the effect of fractures but the problem has seen little 

development since.     
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2.8) Appendix 
Table 2.A1- Measured velocity and resistivities for saturated samples at various confining pressure 

and pore pressure. Note Cycle indicates whether the Pore pressure was being increased (up) or 

decreased (down) during the run. 

Sample Cycle Confinin

g 

Pressure 

(MPa) 

Pore 

Pressur

e 

(MPa) 

Vp 

(m/s) 
𝛿Vp 

(m/s

) 

Vs 

(m/s) 
𝛿Vs 

(m/s

) 

𝜌 

(Ohm-

m) 

𝛿𝜌(Ohm

-m) 

Berea 

Sandstone 

Up 10 1 3771 16 2252 6 5.01 0.03 

Berea 

Sandstone 

Up 10 2 3744 16 2236 6 4.99 0.03 

Berea 

Sandstone 

Up 10 3 3703 16 2184 6 4.96 0.03 

Berea 

Sandstone 

Up 10 4 3665 16 
 

 4.94 0.03 

Berea 

Sandstone 

Up 10 5 3620 16 
 

 4.91 0.03 

Berea 

Sandstone 

Up 10 6 3535 15 
 

 4.88 0.03 

Berea 

Sandstone 

Up 10 7 3462 15 
 

 4.83 0.03 

Berea 

Sandstone 

Up 10 8 3338 14 
 

 4.78 0.03 

Berea 

Sandstone 

Up 10 9 3223 14 
 

 4.69 0.03 

Berea 

Sandstone 

Dow

n 

10 9 3201 14 
 

 4.70 0.03 

Berea 

Sandstone 

Dow

n 

10 8 3386 15 
 

 4.90 0.03 

Berea 

Sandstone 

Dow

n 

10 7 3500 15 
 

 4.86 0.03 

Berea 

Sandstone 

Dow

n 

10 6 3578 15 
 

 4.90 0.03 

Berea 

Sandstone 

Dow

n 

10 5 3642 16 
 

 4.93 0.03 
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Berea 

Sandstone 

Dow

n 

10 4 3685 16 2174 6 4.96 0.03 

Berea 

Sandstone 

Dow

n 

10 3 3720 17 2215 6 4.98 0.03 

Berea 

Sandstone 

Dow

n 

10 2 3750 17 2247 6 4.99 0.03 

Berea 

Sandstone 

Dow

n 

10 1 3774 17 2258 6 5.01 0.03 

Berea 

Sandstone 

Up 20 1 3930 18 2410 6 5.04 0.03 

Berea 

Sandstone 

Up 20 2 3926 18 2406 6 5.07 0.03 

Berea 

Sandstone 

Up 20 3 3920 18 2396 6 5.08 0.03 

Berea 

Sandstone 

Up 20 4 3913 18 2388 6 5.08 0.03 

Berea 

Sandstone 

Up 20 6 3890 18 2368 6 5.07 0.03 

Berea 

Sandstone 

Up 20 8 3867 17 2346 6 5.05 0.03 

Berea 

Sandstone 

Up 20 10 3829 17 2308 6 5.03 0.03 

Berea 

Sandstone 

Up 20 12 3786 16 2383 6 5.00 0.03 

Berea 

Sandstone 

Up 20 13 3753 16 2247 6 4.98 0.03 

Berea 

Sandstone 

Up 20 14 3714 16 2184 6 4.96 0.03 

Berea 

Sandstone 

Up 20 15 3674 16 2105 6 4.94 0.03 

Berea 

Sandstone 

Up 20 16 3600 15 
 

 4.90 0.03 

Berea 

Sandstone 

Up 20 17 3514 15 
 

 4.85 0.03 

Berea 

Sandstone 

Up 20 18 3386 14 
 

 4.79 0.03 

Berea 

Sandstone 

Up 20 19 3223 14 
 

 4.70 0.03 

Berea 

Sandstone 

Dow

n 

20 19 3223 14 
 

 5.03 0.03 

Berea 

Sandstone 

Dow

n 

20 18 3362 14 
 

 4.77 0.03 

Berea 

Sandstone 

Dow

n 

20 17 3487 15 
 

 4.83 0.03 

Berea 

Sandstone 

Dow

n 

20 16 3556 15 
 

 4.88 0.03 
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Berea 

Sandstone 

Dow

n 

20 15 3628 16 
 

 4.91 0.03 

Berea 

Sandstone 

Dow

n 

20 14 3674 16 2154 6 4.94 0.03 

Berea 

Sandstone 

Dow

n 

20 13 3717 16 2194 6 4.96 0.03 

Berea 

Sandstone 

Dow

n 

20 12 3750 17 2231 6 4.99 0.03 

Berea 

Sandstone 

Dow

n 

20 10 3805 18 2285 6 5.03 0.03 

Berea 

Sandstone 

Dow

n 

20 8 3849 18 2326 6 5.06 0.03 

Berea 

Sandstone 

Dow

n 

20 6 3880 18 2355 6 5.09 0.03 

Berea 

Sandstone 

Dow

n 

20 4 3907 18 2382 6 5.12 0.03 

Berea 

Sandstone 

Dow

n 

20 2 3923 18 2400 6 5.14 0.03 

Berea 

Sandstone 

Up 30 2 3993 18 2468 6 5.12 0.03 

Berea 

Sandstone 

Up 30 4 3990 18 2463 6 5.12 0.03 

Berea 

Sandstone 

Up 30 6 3980 18 2454 6 5.12 0.03 

Berea 

Sandstone 

Up 30 8 3970 18 2444 6 5.11 0.03 

Berea 

Sandstone 

Up 30 10 3959 18 2434 6 5.10 0.03 

Berea 

Sandstone 

Up 30 12 3943 17 2419 6 5.09 0.03 

Berea 

Sandstone 

Up 30 14 3930 17 2399 6 5.07 0.03 

Berea 

Sandstone 

Up 30 16 3903 17 2378 6 5.05 0.03 

Berea 

Sandstone 

Up 30 18 3877 17 2351 6 5.02 0.03 

Berea 

Sandstone 

Up 30 20 3842 17 2313 6 5.00 0.03 

Berea 

Sandstone 

Up 30 21 3820 17 2293 6 4.98 0.03 

Berea 

Sandstone 

Up 30 22 3799 17 2274 6 4.96 0.03 

Berea 

Sandstone 

Up 30 23 3762 16 2247 6 4.94 0.03 

Berea 

Sandstone 

Up 30 24 3726 16 2194 6 4.92 0.03 
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Berea 

Sandstone 

Up 30 25 3671 16 2154 6 4.89 0.03 

Berea 

Sandstone 

Up 30 26 3620 16 
 

 4.85 0.03 

Berea 

Sandstone 

Up 30 27 3532 15 
 

 4.81 0.03 

Berea 

Sandstone 

Up 30 28 3436 15 
 

 4.76 0.03 

Berea 

Sandstone 

Up 30 29 3268 14 
 

 4.52 0.03 

Berea 

Sandstone 

Dow

n 

30 29 3268 14 
 

 4.67 0.03 

Berea 

Sandstone 

Dow

n 

30 28 3399 14 
 

 4.73 0.03 

Berea 

Sandstone 

Dow

n 

30 27 3500 15 
 

 4.78 0.03 

Berea 

Sandstone 

Dow

n 

30 26 3570 15 
 

 4.82 0.03 

Berea 

Sandstone 

Dow

n 

30 25 3631 16 
 

 4.85 0.03 

Berea 

Sandstone 

Dow

n 

30 23 3729 16 2199 6 4.90 0.03 

Berea 

Sandstone 

Dow

n 

30 20 3820 17 2286 6 4.97 0.03 

Berea 

Sandstone 

Dow

n 

30 15 3903 17 2373 6 5.04 0.03 

Berea 

Sandstone 

Dow

n 

30 10 3953 17 2425 6 5.10 0.03 

Berea 

Sandstone 

Dow

n 

30 5 3983 18 2455 6 5.15 0.03 

Berea 

Sandstone 

Dow

n 

30 2 3993 18 2468 6 5.18 0.03 

Alumina 

Ceramic 

Dow

n 

10 9 3972 17 
 

 1.05 .01 

Alumina 

Ceramic 

Dow

n 

10 8 3981 17 
 

 1.07 .01 

Alumina 

Ceramic 

Dow

n 

10 7 3984 17 2058 5 1.11 .01 

Alumina 

Ceramic 

Dow

n 

10 6 3984 17 2058 5 1.13 .01 

Alumina 

Ceramic 

Dow

n 

10 5 3984 17 2058 5 1.14 .01 

Alumina 

Ceramic 

Dow

n 

10 4 3987 17 2059 5 1.14 .01 

Alumina 

Ceramic 

Dow

n 

10 3 
 

 
 

 1.14 .01 
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Alumina 

Ceramic 

Dow

n 

10 2 3987 17 2060 5 1.14 .01 

Alumina 

Ceramic 

Dow

n 

10 1 3987 17 2058 5 1.14 .01 

Alumina 

Ceramic 

Up 10 1 3987 17 2059 5 1.14 .01 

Alumina 

Ceramic 

Up 10 2 3987 17 2060 5 1.14 .01 

Alumina 

Ceramic 

Up 10 3 3987 17 2060 5 1.14 .01 

Alumina 

Ceramic 

Up 10 4 3984 17 2061 5 1.14 .01 

Alumina 

Ceramic 

Up 10 5 3987 17 2060 5 1.13 .01 

Alumina 

Ceramic 

Up 10 6 3984 17 2058 5 1.13 .01 

Alumina 

Ceramic 

Up 10 7 3984 17 2058 5 1.13 .01 

Alumina 

Ceramic 

Up 10 8 3984 17 
 

 1.10 .01 

Alumina 

Ceramic 

Up 10 9 3978 17 
 

 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 19 3978 17 
 

 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 18 3981 17 
 

 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 16 3984 17 
 

 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 14 3987 17 2060 5 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 12 3991 17 2059 5 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 10 3991 17 2058 5 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 8 3991 17 2058 5 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 6 3991 17 2060 5 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 4 3991 17 2059 5 1.10 .01 

Alumina 

Ceramic 

Dow

n 

20 2 3991 17 2061 5 1.10 .01 

Alumina 

Ceramic 

Up 20 2 3991 17 2061 5 1.10 .01 

Alumina 

Ceramic 

Up 20 4 3991 17 2061 5 1.10 .01 
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Alumina 

Ceramic 

Up 20 6 3991 17 2061 5 1.10 .01 

Alumina 

Ceramic 

Up 20 8 3994 17 2061 5 1.09 .01 

Alumina 

Ceramic 

Up 20 10 3991 17 2060 5 1.09 .01 

Alumina 

Ceramic 

Up 20 12 3991 17 2059 5 1.09 .01 

Alumina 

Ceramic 

Up 20 14 3987 17 2062 5 1.09 .01 

Alumina 

Ceramic 

Up 20 16 3987 17 2062 5 1.08 .01 

Alumina 

Ceramic 

Up 20 18 3984 17 
 

 1.07 .01 

Alumina 

Ceramic 

Up 30 2 3994 17 2063 5 1.08 .01 

Alumina 

Ceramic 

Up 30 4 3994 17 2062 5 1.07 .01 

Alumina 

Ceramic 

Up 30 6 3994 17 2063 5 1.07 .01 

Alumina 

Ceramic 

Up 30 8 3994 17 2063 5 1.06 .01 

Alumina 

Ceramic 

Up 30 10 3994 17 2061 5 1.06 .01 

Alumina 

Ceramic 

Up 30 12 3994 17 2061 5 1.06 .01 

Alumina 

Ceramic 

Up 30 14 3994 17 2061 5 1.06 .01 

Alumina 

Ceramic 

Up 30 16 3997 17 2061 5 1.05 .01 

Alumina 

Ceramic 

Up 30 18 3994 17 2059 5 1.05 .01 

Alumina 

Ceramic 

Up 30 20 3994 17 2060 5 1.05 .01 

Alumina 

Ceramic 

Up 30 22 3994 17 2060 5 1.05 .01 

Alumina 

Ceramic 

Up 30 24 3994 17 2062 5 1.05 .01 

Alumina 

Ceramic 

Up 30 26 3991 17 2063 5 1.04 .01 

Alumina 

Ceramic 

Up 30 28 3987 17 
 

 1.04 .01 

Alumina 

Ceramic 

Dow

n 

30 25 3991 17 2063 5 1.05 .01 

Alumina 

Ceramic 

Dow

n 

30 20 3994 17 2060 5 1.05 .01 
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Alumina 

Ceramic 

Dow

n 

30 15 3994 17 2059 5 1.05 .01 

Alumina 

Ceramic 

Dow

n 

30 10 3994 17 2061 5 1.06 .01 

Alumina 

Ceramic 

Dow

n 

30 5 3994 17 2063 5 1.06 .01 

Alumina 

Ceramic 

Dow

n 

30 2 3994 17 2063 5 1.06 .01 

 

Table 2.A2- Dry rock velocities measured for Berea Sandstone and the alumina ceramic 

Sample Confining 

pressure 

(MPa) 

Vp (m/s) 𝛿Vp 

(m/s) 

Vs (m/s) 𝛿Vs 

(m/s)  

Berea 

Sandstone 

3 3050 14 2000 6 

Berea 

Sandstone 

4 3150 14 2060 6 

Berea 

Sandstone 

5 3240 14 2120 6 

Berea 

Sandstone 

6 3310 15 2160 6 

Berea 

Sandstone 

7 3390 15 2200 6 

Berea 

Sandstone 

8 3430 15 2240 6 

Berea 

Sandstone 

9 3480 16 2260 6 

Berea 

Sandstone 

10 3520 16 2290 6 

Berea 

Sandstone 

12 3600 16 2340 6 

Berea 

Sandstone 

14 3660 17 2390 6 

Berea 

Sandstone 

16 3710 17 2420 6 

Berea 

Sandstone 

18 3740 17 2450 6 

Berea 

Sandstone 

20 3780 17 2480 6 

Berea 

Sandstone 

23 3820 17 2510 6 

Berea 

Sandstone 

26 3850 18 2530 6 
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Berea 

Sandstone 

30 3880 18 2560 6 

Berea 

Sandstone 

33 3900 18 2570 6 

Berea 

Sandstone 

36 3920 18 2580 6 

Berea 

Sandstone 

40 3930 18 2600 6 

Berea 

Sandstone 

35 3920 18 2590 6 

Berea 

Sandstone 

30 3900 18 2570 6 

Berea 

Sandstone 

25 3870 18 2550 6 

Berea 

Sandstone 

20 3820 18 2520 6 

Berea 

Sandstone 

16 3770 17 2480 6 

Berea 

Sandstone 

12 3700 17 2430 6 

Berea 

Sandstone 

10 3640 17 2390 6 

Berea 

Sandstone 

8 3570 16 2340 6 

Berea 

Sandstone 

6 3470 15 2270 6 

Berea 

Sandstone 

4 3300 15 2160 6 

Berea 

Sandstone 

3 3180 14 2080 6 

Alumina 

Ceramic 

4 4090 17 2340 5 

Alumina 

Ceramic 

5 4120 17 2340 5 

Alumina 

Ceramic 

6 4150 17 2340 5 

Alumina 

Ceramic 

7 4160 17 2350 5 

Alumina 

Ceramic 

8 4170 17 2360 5 

Alumina 

Ceramic 

9 4180 17 2360 5 

Alumina 

Ceramic 

10 4190 17 2360 5 

Alumina 

Ceramic 

12 4200 17 2360 5 
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Alumina 

Ceramic 

14 4200 17 2370 5 

Alumina 

Ceramic 

16 4210 17 2370 5 

Alumina 

Ceramic 

18 4210 17 2380 5 

Alumina 

Ceramic 

20 4220 17 2380 5 

Alumina 

Ceramic 

22 4220 17 2380 5 

Alumina 

Ceramic 

24 4220 17 2380 5 

Alumina 

Ceramic 

26 4230 17 2380 5 

Alumina 

Ceramic 

28 4230 17 2380 5 

Alumina 

Ceramic 

30 4230 17 2380 5 

Alumina 

Ceramic 

32 4230 17 2380 5 

Alumina 

Ceramic 

34 4230 17 2380 5 

Alumina 

Ceramic 

36 4240 17 2380 5 

Alumina 

Ceramic 

40 4230 17 2380 5 

Alumina 

Ceramic 

35 4240 17 2380 5 

Alumina 

Ceramic 

30 4240 17 2380 5 

Alumina 

Ceramic 

25 4230 17 2380 5 

Alumina 

Ceramic 

20 4230 17 2380 5 

Alumina 

Ceramic 

15 4230 17 2380 5 

Alumina 

Ceramic 

10 4220 17 2380 5 

Alumina 

Ceramic 

5 4190 17 2370 5 
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Chapter 3 

Preliminary experiments towards 

understanding the influence of fractures on 

the anisotropy of electrical conductivity 

3.1) Introduction 
 

Anisotropy can be defined as the property of being directionally dependent so that the same 

physical property may have different values for the same material if the measurement direction is 

varied. It has long been recognized that the flow of current through the subsurface varies with 

direction of the applied voltage and that this anisotropy is controlled by geologic structure.   Indeed, 

Schlumberger et al. (1934) note from field observations that the resistivities perpendicular to 

geoelectric strike regularly exceed those parallel by 2 to 40 times.  They suggested that current 

flowed more easily through water-filled fractures that, too, more naturally ran parallel to the 

geoelectric strike. Curiously, despite this early recognition of the severity of electrical anisotropy, 

workers still commonly assume that the subsurface materials are electrically isotropic.  

Understanding the electrical conductivity anisotropy of a rock mass is complicated by the multiple 

mechanisms of electrical conduction that can act in porous media.  Charges can move through 

many parallel paths along the mineral surfaces, within the bulk of the electrolyte in the pore space, 

through the mineral solids, and across geologic structures at differing dimensional scales. Any of 

these paths may have preferential directions that would make the bulk conductivity anisotropic.  

This anisotropy can significantly influence the processing and interpretation of geophysical 

electrical surveys (e.g., Ellis et al,  2010; Leibecker et al, 2002; Marti, 2014; Brown et al, 2012; 

Newman et al, 2010)  and is a concern for the interpretation of various electrical logging techniques 
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(see Anderson et al. (1994) for a review) but although anisotropy has been found in the field, the 

source of this electrical anisotropy is rarely investigated in any detail.  

That said, there are some works dedicated to measuring electrical anisotropy in rock samples.   Hill 

(1972) measured the anisotropy of electrical conductivity and dielectric constants from 10 Hz to 

100 kHz on dry and highly resistive crystalline Precambrian Shield rocks.  Louis et al., (2003) 

determined acoustic, magnetic, and electrical anisotropy using three orthogonally cut core samples 

from each of two different sandstones.  Zisser and Nover (2009) carried out an extensive study 

comparing the pressure dependences of permeability and complex electrical conductivity 

anisotropies on tight sandstones to confining pressures of 100 MPa.  North et al. (2013) introduced 

a laboratory procedure for determining the resistivity tensor for a material that North and Best 

(2014) then used to measure the resistivity tensor of clean reservoir sandstones finding anisotropy 

ratios between 1.15 and 1.25.  Woodruff et al., (2014) and Woodruff et al., (2015) determine the 

conductivity tensor on a variety of shales.   David et al. (2017) describe a system that allows a 

simplified electrical resistivity tensor to be derived from multiple radial measurements on 

orthogonally-oriented sample cylinders cored from the same rock block.   

This, taken with the fact that electrical anisotropy plays a large role in processing CSEM and 

magnetotelluric data, highlights the need to better understand different causes of anisotropy and 

their relative influence on electrical measurements. For instance, it is plausible to suggest that the 

electrical anisotropy of a given formation may change after that formation has been hydraulically 

fractured with the induced fractures expected to align in the direction of the maximum horizontal 

stress, and this is often used to predict the direction that most fluid will flow.  The flow of both 

fluids and current (at low frequencies) make use of the same connected pathways; and inferences 

about permeability can sometimes be interchangeably applied to resistivity.  Understanding how 
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the anisotropy introduced by fractures interacts with the background anisotropy of the pore space 

is therefore relevant to accurate electrical imaging of the reservoir. This is in addition to modeling 

the behaviour of fluids injected into the ground. This is relevant to both the oil and gas, and 

geothermal industries. 

An additional complication to the problem is the role that surface conduction plays in the 

anisotropic response. Anisotropic surface conduction gives information about the mineral 

orientation (Robion et al., 2012) which reflects the loading and tectonic history and is not 

necessarily obvious from the present tectonic setting. However, pore space directional orientation 

is partly reflected by compaction which controls mineral orientation and so these two are closely 

related. It is desirable to separate anisotropy due to surface conduction and that due to pore space 

anisotropy if they are different. Woodruff et al. (2014) partly did this by using a combination of 

high and low salinity measurements on samples that were likely to have high surface conductivity 

with an obvious preferred orientation. The ratio between the resistivities measured perpendicular 

and parallel to bedding decreased with more saline electrolytes. This suggests that anisotropy due 

to mineral alignment will be stronger than that due to preferred pore space orientation (depending 

on the mineralogy).  

Workers (e.g., Revil et al., 2013) often assume that the principal directions of the conductivity 

tensor align with the bedding planes in sediments. Introduction of a variously oriented fracture to 

this matrix, however, may disrupt the primary current flow directions.  Further, although 

measurement techniques like that shown by North et al. (2013) are capable of separating surface 

conductivity tensor from the pore space conductivity tensor if used at multiple salinities, it is 

difficult to know exactly how much fractures affect the background rock without knowledge of its 

“uncracked” conductivity tensor. Although it has been shown that fractures significantly channel 
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current in an isotropic background medium (Tranter et al., 2018), it is not understood how much 

this can affect conductivity in relatively porous, permeable rocks where other conductive pathways 

exist. 

In this chapter, a series of electrical conductivity measurements on an artificial porous material 

containing oriented cracks are presented. The background matrix is constructed from glass beads 

and epoxy.  Using synthetic samples allows us to 1) verify that the background material is isotropic 

and 2) control the orientation of cracks. The samples showed relatively small anisotropic ratios 

(1.01-1.11) but showed a clear trend with the ratio of crack porosity to total porosity.  It is 

important to note that Han et al, (2018, 2019) have also recently carried out electrical conductivity 

and dielectric constant anisotropy measurements on synthetic sandstones containing known 

oriented flaws.  The synthetic sandstone samples here differ significantly in that they contain only 

a single large fracture within the otherwise porous medium.   This information can help in 

modeling the effects of fractures on a previously unfractured reservoir. Preferentially aligned 

fractures are often expected in the earth.  Joint sets, for example, are often strongly oriented.  Stress 

fields, too, tend to preferentially open or close different fractures sets in the earth as is often 

manifest as seismic anisotropy.    

The primary contribution here is the development of a novel experimental configuration to make 

measurements on artificial rock samples containing oriented fractures.  The paper includes a 

detailed description of the experimental method starting with the manufacture of artificial 

anisotropic samples with controlled crack porosity and followed by an account of the experimental 

procedures used to measure the electrical anisotropy.   The paper concludes with discussion of the 

results and their impact rock physics modeling. Before continuing a small note on terminology is 

necessary. In Chapter 2 a distinction was drawn between the appropriate use of the terms crack 
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and fracture. Here, the defects are fractures but the term crack porosity is still used to describe 

nominally flat porosity.  

3.2) Theory 
 

In the following we consider conduction in porous media where conduction takes place only 

through the pore space. We therefore ignore surface conductivity effects. 

Ohm’s law relates the electric field, E (in V/m) to the current density J (in A/m2) as 

𝐽𝑖 = 𝜎𝑖𝑗𝐸𝑗                                                                                               (3.1) 

 where 𝜎𝑖𝑗 is the conductivity, more commonly referred to by its inverse resistivity (𝜌 =
1

𝜎
) in 

geophysical literature and i and j are directional indices. In the lab 𝜎 is determined by obtaining 

the apparent material resistance R (in Ω) from voltage V (in V) and current, I (in A) measurements 

𝑅 =
𝑉

𝐼 
                                                                                                (3.2) 

This can be converted to resistivity or conductivity through a geometric parameter G such that 

𝜌 = 𝑅𝐺                                                                                               (3.3) 

When measurements are made in the axial direction on samples of length L with a constant cross-

sectional area A, the geometric factor G is simply the familiar A/L.  Here the measurements are 

made radially across a cylindrical sample and determination of G is more complicated as the 

geometries of the opposing curved electrodes must be considered.    For the right-cylindrical 

geometry used here, Wang et al. (2009) numerically solved for G arriving at an expression: 

𝐺 = 𝜂𝑑𝐿                                                                                              (3.4) 
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where d and L are the diameter and length (in m) and 𝜂 = 25.73 is a correction factor that applies 

to a geometry in which the electrodes are 30 mm wide extending the length of a cylindrical sample 

with 38 mm diameter.  

The conductivity of the rock is given in the form of 2nd-order tensor components: 

𝜎𝑖𝑗 = 𝜎𝑤(
1

𝐹
)𝑖𝑗                                                                                               (3.5), 

where  𝜎𝑤 is the conductivity of the electrolyte fully saturating the pore space and (
1

𝐹
)𝑖𝑗is the 

inverse formation factor given in Archie’s (1942) law as 

1

𝐹
= 𝜑𝑚                                                                                               (3.6) 

 where 𝜑 is the connected porosity and 𝑚 is the cementation exponent. Revil and Cathles (1999) 

show that the inverse formation factor is related to that portion of the porosity connected by lines 

of flux with higher weight given to cracks and narrow pore throats where electric field lines are 

denser. In this way, the cementation exponent m acts in decoupling the porosity not involved in 

conduction from that which is.  

Wyllie and Rose (1950) derived an expression for the formation factor of capillary tubes in terms 

of porosity as 

𝜎𝑟

𝜎𝑤
=

1

𝐹
=

𝜑

𝜏
                                                                                                (3.7) 

where 𝜎𝑟 is the whole rock conductivity and  𝜏 is the average tortuosity of flow paths in the rock 

given as: 

𝜏 =
𝐿𝑒

𝐿
                                                                                                      (3.8) 
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where 𝐿𝑒 is the effective path length illustrated in Fig. 3.1 and L is the straight-line distance from 

the beginning to the end of the path. Porosity in Eqn. 3.7 is a scalar but tortuosity is often expressed 

as the connectivity tensor T (e.g., Revil et al, 2013), the components of which are the inverse of 

the tortuosity factor in that direction so that: 

(
1

𝐹
)𝑖𝑗 = 𝜑𝑇𝑖𝑗                                                                                                  (3.9) 

The capillary tube model does not account for the branching nature of porosity or for dead end 

pores but is useful as a link between electrical measurements and fluid flow modeling. (Johnson 

et al, 1986). Nominally flat cracks do not cause a change in tortuosity in flow paths oriented 

perpendicular to them. So tortuosity values in the perpendicular direction can be seen as equivalent 

to the “uncracked” isotropic tortuosity. 

Conductivity models for anisotropic porous media have been developed by Mendelson and Cohen 

(1982) who extended the work of Sen et al. (1981) solving for the effective properties of composite 

dielectrics. They show that Archie’s law can be derived from this approach and that the 

cementation exponent is a shape parameter for inclusions.  DEM has the benefit of being able to 

model conductivity for the entirety of the frequency spectrum but does not offer the same analogy 

to transport problems due to the different mechanisms for conduction at high frequencies.  
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Figure 3.1. Illustration of the effect of cracks on flow paths Le shows the usual path current would 

have to travel and Lint shows the length of that path that is short circuited by the crack. 

3.3) Experimental method 
 

Artificial porous samples with macroscopic embedded “cracks” were constructed to study their 

effect on electrical anisotropy.  The manufacture of these samples and a radial-strap electrode array 

developed to measure their conductivity are reviewed.  

3.3.1) Synthetic samples 

 

Sample geometry is often problematic in electrical measurements, and this sometimes requires that 

complicated geometric correction factors be determined to obtain true material resistivities from 

the apparent values found that might be found by simply taking the ratio of measured voltage V to 

input current I.  This is particularly important when attempting to measure electrical anisotropy, 

and numerous geometries have been proposed to accomplish this (e.g., see Walmsley and Fisher, 
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2017).   In order to reduce these complications and to simplify the problem to a more tractable 2D 

situation, a cylindrical shape containing “cracks” fully extending along the axis was adopted.  Han 

et al. (2018) adapted a similar geometry but with octagonal cross-sectional shape to carry out their 

measurements.  

To simplify the analysis, measurements are made only parallel and perpendicular to the plane of 

the fractures with the implicit assumption that the current flux lines also run completely in parallel 

and perpendicular directions. Two-dimensional finite element simulations, similar to those of 

Wang et al., (2009) and Abousrafa et al., (2013) were carried out in order to verify the current 

paths.  The calculations were conducted on a circular cross-section of the cylinder using 

Matlab’s™ PDE tool box. The relationship between current density and electric field is specified 

by Ohm’s law (Eqn. 3.1) and the pde tool solves Poisson’s equation: 

−∇ ∙ (σ∇V) = Q                                                                                   (3.10)  

where  σ gives the conductivity of the material inside the circle, ∇V gives the gradient of voltage 

and Q specifies a current source in the figure, but Q = 0 for this simulation. The material is set to 

be homogeneous and isotropic.  

Fig. 3.2 shows the result of a circle with electrodes that are in contact with 30 mm along the 

circumference of the sample at two opposite sides. Dirichlet boundary conditions are applied at 

the electrodes with the potentials set to 2V and -2V. Elsewhere a Neumann boundary condition is 

used meaning that current cannot flow normal to boundaries other than at the electrodes (i.e. 𝐽 ∙ 𝒏 

= 0, where J is the current density and n is the normal vector to the surface). A crack is annotated 

in black perpendicular to the electric field. The conductivity is set to 2 S/m and a voltage difference 

of 4V is applied. The applied voltage is DC unlike the actual measurement current. The colour 
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shows electric field values and contours denote lines of equipotential. Arrows indicate current 

density direction. The direction of the current density vectors relative to the annotated crack shows 

that for the size of the electrodes used here, the current lines at the location of the crack will be 

perpendicular or parallel to the fracture for the two measurement directions.   

 

Figure 3.2. Result of simulation on a circular cross-section with colour bar indicating Electric 

potential. Electrodes are shown in brown with red arrows indicating the direction of current density 

vectors.     

The samples were constructed from a mixture of glass beads (Manus Abrasives, 44-88 µm 

diameters) cemented with a slow curing epoxy (West Systems) following procedures similar to 

Rathore et al. (1995) and Wang et al. (2017).   An advantage of using epoxy is that it is weakly 

hydrophobic meaning that the role of surface conductivity along the glass beads is reduced.  
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Specific bead/epoxy mixing ratios were used to obtain differing porosities with ratios of about 8:1 

to 7:1 found to give the best balance of porosity relative to material strength.    The mix was loaded 

into a cylindrical mould of machined aluminum that could later be split along the axis of the 

cylinder, and then compacted by shaking and pressing with a plunger. The interior diameter of the 

cylindrical mould was 3.81 cm (1.5”) but the sample lengths varied from about 3.0 to 3.8 cm (Table 

3.1).  Once the mix was appropriately compacted, an incision was made into the mixture using a 

flat steel ruler to make space for a water-soluble polysaccharide polymer (pullulan) strip (Listerine 

Pocketpacket™) that formed the inverse mold for the future fracture.  Use of the water-soluble 

strips avoided the precipitation of salts in the pore space produced in our first attempts at making 

internal fractures using aluminum strips leached with caustic NaOH (e.g., Wang et al., 2017).  For 

comparison, Han et al., (2018) used plastic pieces to create their penny shaped inclusions that were 

removed from the matrix by heating to 900°C.   The water-soluble strips were cut sufficiently long 

to allow them to extend the full sample length. Each strip was 0.060 mm thick and 22.0 mm wide; 

in order to make thicker fractures the strips were stacked on top of one another before being 

embedded in the sample.  However, it is important to note that two of the samples had multiple 

cracks inserted separately.   The number of strips used was consistent from sample to sample 

ensuring that they all had similar crack porosities but allowing for the flexibility of distributing the 

flaws differently in some samples (Fig. 3.3).  Once the strips were inserted the mix was again 

compacted and left to harden overnight.   The samples were then removed from the mould and 

further cured in an oven at 65 ◦C overnight.   De-ionized water was then percolated through the 

samples to dissolve the strips for 24 hours.  Finally, the samples were again oven dried.    Cleaving 

open some of the samples after the measurements verified that the strips were completely dissolved 

leaving behind the inverse mould crack (Fig. 3.5).  
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Figure 3.3. Simplified sample geometry containing a) single crack, and b) two separated cracks.  

One concern for the analysis of the results is the degree to which surface conduction along the 

internal surfaces of the sample might contribute to the overall bulk conductivity of the sample. It 

should be noted that the use of epoxy is particularly useful here since it is non-wetting with 

deionized water (Wang et al 2015), and this suggests too that it is difficult to develop electrical 

diffuse layers near the bead surfaces.  In order to satisfy the requirement that surface conductivity 

not be important, the resistivity of a subset of the samples was measured using electrolytes with 

differing salinities (i.e., giving differing σw).   The formation factor did not change with σw 
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indicating that surface conductivity was not important and that that the conductivity could be 

attributed to electrolytic current.  

For all the tests, the samples were saturated with a 1% NaCl by weight electrolyte made by 

dissolving reagent grade NaCl in distilled water; this is expected to give a nominal σw = 1.76 S/m 

at room temperature as was confirmed by measuring the fluid conductivity independently using a 

4-electrode configuration. Samples were saturated under vacuum overnight.      

The sample geometries and petrophysical characteristics are summarized in Table 3.1 and Fig.3.4 

shows a picture of an intact sample next to a cleaved one.   

The total porosity 𝜑 was determined by measuring the actual grain and bulk density of the samples 

prior to the electrical measurements. The grain density was measured using a Boyle’s law Helium 

pycnometer (Quantachrome Instruments™). The bulk density was determined by Archimedes’ 

method. This involved weighing the sample in air and then recording its weight when immersed 

in water. To account for any invasion of water when it was fully immersed, we weigh the sample 

after and subtract the weight of any water that had invaded the pore space. The bulk density can 

be determined by Eqn. 3.6 as: 

𝜌𝑏 =
𝑚𝑎𝑠𝑠 𝑖𝑛 𝑎𝑖𝑟

𝑚𝑎𝑠𝑠 𝑖𝑛 𝑎𝑖𝑟 − 𝑚𝑎𝑠𝑠 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟
× 𝜌𝑓                                          (3.6) 

where 𝜌𝑏 is the bulk density and 𝜌𝑓 is the density of the fluid. The porosity can then be determined 

by Eqn. 3.7: 

𝜑 =
𝜌𝑔 − 𝜌𝑏

𝜌𝑔 − 𝜌𝑎
                                                                                (3.7) 

where   𝜌𝑔 is the grain density and 𝜌𝑎 is the density of air.   
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The crack porosity 𝜑𝑐 is simply the ratio of the known volume of the pullulan strips inserted to the 

sample to the sample’s total volume.  

 

 

Figure 3.4. Photograph of a broken and cleaved sample showing clear fracture surface alongside 

an intact sample. Canadian quarter with 23.81 mm diameter for scale. 
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Table 3.1. Geometries of the constructed samples 

Sample 

ID 

Ratio of 

glass 

beads to 

epoxy 

number 

of 

stacked 

strips 

Total 

Porosity 

(ϕ) 

Crack 

Distribution 

Crack 

Aperture 

mm 

Crack 

Porosity 

(𝝋𝒄) 

Sample 

length 

(cm) 

A1 8:1 1 0.2475 single 0.06 0.0012 3.022 

A2 8:1 2 0.2491 single 0.12 0.0022 3.47 

A3 8:1 3 0.258 single 0.18 0.0035 3.187 

A4 8:1 4 0.2633 single 0.24 0.0044 3.523 

A5 8:1 5 0.2562 single 0.30 0.0052 3.723 

A6 8:1 2 0.2631 separated 0.06 x 2 0.0022 3.437 

A7 8:1 3 0.2591 separated 0.06 x 3 0.0035 3.111 

B1 8:1 0 0.2721 N/A N/A 0 6.335 

B2 8:1 0 0.2619 N/A N/A 0 5.851 

B3 8:1 0 0.2669 N/A N/A 0 6.365 

B4 8:1 0 0.2553 N/A N/A 0 5.907 

A8 7:1 1 0.2061 single 0.06 0.0012 3.296 

A9 7:1 2 0.206 single 0.12 0.0023 3.126 

A10 7:1 3 0.2086 single 0.18 0.0035 3.251 

A11 7:1 4 0.2039 single 0.24 0.0046 3.204 

A12 7:1 5 0.2106 single 0.30 0.0058 3.255 

B5 7:1 0 0.2289 N/A N/A 0 3.455 

B6 9:1 0 0.2665 N/A N/A 0 6.793 

B7 9:1 0 0.2769 N/A N/A 0 5.901 

B8 10:1 0 0.2908 N/A N/A 0 6.055 

 

It is useful to further examine the mixing ratio as a function of porosity (Fig. 3.5). Although the 

mixing ratio exercises some control over the porosity, it does allow for some variation for a given 

mixing ratio. The comparison suggests that construction of a relatively uniform porous matrix is 

relatively repeatable, but with some variation in porosity. This may be due to the precision of the 

scale used to measure out the ratios. Variations on the order of 0.1 g could cause differences 

observed between supposedly identical samples. Alternatively, it may be due to inconsistency in 

grain size distribution (manufacturer error) of the samples or differences between how the spheres 
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packed together for different samples although care was taken so that the sample construction 

process was identical from one sample to another.  Some combination of all three of these may 

also be responsible. 

 

Figure 3.5. Sample total porosity versus the glass bead: epoxy mass mixing ratio.  

3.3.2) Conductivity Measurements  

 

The tests employed the configuration shown in Fig. 3.6 with a 10 kHz AC, 1 µA current input 

supplied from a constant current source (Keithly™ 6221) with the subsequent voltage responses 

obtained with a lock-in-amplifier (Stanford Research™ SR830).  A strap-electrode design 

modified from Wang et al, (2009) was adopted.  We used 30mm wide strap electrodes extending 

the length of the sample since this gave the most accurate results according to Wang et al., (2009). 

This meant that we were averaging our measurements over a large portion of the sample which we 
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believe to be desirable since we want to see how the crack affects the entire sample and not just 

the area nearest to the crack itself.   The copper strap electrodes are attached to the acrylic mounting 

blocks (Fig. 3.7) that push the electrodes into contact with the sample.  

A 2-electrode method was employed primarily because of the additional difficulties that use of a 

4-electrode method would impose on the interpretation of the results within the essentially 2D 

configuration.  A strong reason for using a 4-electrode method is to avoid electrode polarization 

effects, and consequently to minimize these here the measurements were taken at 10 kHz.    In 

Chapter 2 we demonstrated that 2 and 4 electrode methods can give identical results. 

Voltage measurements were recorded and converted to resistivity using Eqns. 3.2 and 3.3.  As 

mentioned earlier the reported conductivity is just the inverse of resistivity. The value of 𝜂 in Eqn. 

3.4 is 25.73 as provided by Wang et al. (2009). 
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Figure 3.6. Experimental configuration consisting of sample shown oriented parallel to current 

flow between two strap-electrodes mounted in acrylic blocks.  The clamp pushes the electrodes 

against the sample.  
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Figure 3.7. Photograph of acrylic blocks and copper electrodes. Canadian quarter with 23.81 mm 

diameter for scale.  

The electrolyte-saturated sample was placed in between the acrylic sample holders and the clamp 

was used to ensure a good contact between the electrodes and sample. Three separate 

measurements were made in two directions; parallel and perpendicular to the strike of the fracture 

in each of the samples. The measurement order was altered for each pair of measurements.  

Evaporation during the tests was a concern as they were carried out in the open atmosphere at 

room conditions on the bench top.  This effect was reduced by immersing the sample in the 

saturating electrolyte after each pair of parallel and perpendicular measurements.   This led to a 

slow increase in the overall conductivity of the sample with each measurement. This is due to 

evaporation causing some salt to be left behind in the unsaturated part of the sample where fluids 

evaporated from followed by resaturation with the same electrolyte. This led to a slow increase in 

salinity of the electrolyte. This can be seen in Table 3.2. It means that the formation factors reported 
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are apparent formation factors and not true ones. Estimation of the true formation factor would 

require consistent fluid conductivities for all measurements.  Uncertainty in individual 

measurements were based on the uncertainty in the recorded voltage (1% uncertainty) and the 

lengths measured for the geometric factor (+/- .02mm). They were ~10-3 S/m for samples with an 

8:1 mixing ratio and ~5 x 10-4 S/m for samples with a 7:1 mixing ratio. Total uncertainties in the 

average anisotropy ratios also used the standard deviation in anisotropy ratios for individual 

measurements.  

3.4) Results 
 

The observed conductivities for all measurements along with anisotropy ratios are provided in 

Table 3.2 while the tortuosities, inverse formation factors and cementation exponents are reported 

in Table 3.3.  

Table 3.2. Observed conductivities for measurements taken parallel and perpendicular to the 

fracture strike. The average anisotropy ratio is the average of the individual ratios that can be 

calculated from the individual measurements. 

Sample 

ID 

Parallel 

conductivity 

(S/m) 

Perpendicular 

conductivity 

(S/m) 

Average 

parallel 

conductivity 

(S/m) 

Average 

perpendicular 

conductivity 

(S/m) 

Average 

Anisotropic 

ratio 

A1 0.113 0.107 0.117 0.114 1.024 

0.116 0.115 

0.123 0.122 

A2 0.102 0.100 0.109 0.105 1.038 

0.110 0.105 

0.114 0.109 

A3 0.145 0.136 0.148 0.140 1.055 

0.151 0.145 

0.148 0.140 

A4 0.169 0.162 0.176 0.168 1.048 
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0.178 0.171 

0.180 0.170 

A5 0.152 0.143 0.159 0.148 1.070 

0.159 0.147 

0.166 0.156 

A6 0.156 0.153 0.163 0.158 1.027 

0.162 0.156 

0.172 0.168 

A7 0.177 0.177 0.185 0.180 1.026 

0.189 0.181 

0.190 0.184 

A8 0.0676 0.0623 0.0686 0.0633 1.084 

0.0680 0.0635 

0.0703 0.0642 

A9 0.0884 0.0839 0.0890 0.0848 1.050 

0.0891 0.0854 

0.0897 0.0851 

A10 0.0810 0.0763 0.0862 0.0816 1.056 

0.0894 0.0844 

0.0887 0.0848 

A11 0.0870 0.0800 0.0886 0.0829 1.069 

0.0881 0.0820 

0.0908 0.0870 

A12 0.0900 0.0816 0.0928 0.0845 1.098 

0.0952 0.0864 

0.0933 0.0856 

B2 0.183  0.181 0.188 0.188  1.004 

0.190  0.190 

0.192  0.192 

B4 0.163 0.163  

0.169  

 

0.169 

 

1.002 0.172 0.171 

0.172 0.172 

 

Table 3.3. Summary of formation factors (F), cementation exponents (m) and tortuosities (𝜏) in 

parallel and perpendicular directions  

Sample 

ID 
(
𝟏

𝑭
) _|_ (

𝟏

𝑭
) || 

𝝉_|_ 𝝉|| m_|_ m|| 

A1 0.064 0.067 3.81 3.72 1.96 1.94 

A2 0.059 0.063 4.19 4.04 2.03 2.00 
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A3 0.080 0.084 3.24 3.08 1.87 1.83 

A4 0.095 0.10 2.77 2.64 1.76 1.73 

A5 0.084 0.090 3.04 2.83 1.82 1.76 

A6 0.090 0.093 2.93 2.84 1.80 1.78 

A7 0.10 0.11 2.53 2.46 1.69 1.67 

A8 0.036 0.039 5.73 5.29 2.11 2.05 

A9 0.048 0.051 4.28 4.07 1.92 1.89 

A10 0.046 0.049 4.50 4.26 1.96 1.92 

A11 0.047 0.050 4.33 4.05 1.92 1.88 

A12 0.048 0.053 4.39 3.99 1.95 1.89 

 

3.4.1) Absolute conductivity variation 

As anticipated, the conductivity both parallel and perpendicular to the fracture plane generally 

increased with the total porosity 𝜑 (Fig. 3.8) which includes crack and regular matrix porosity. 

This was most apparent for the samples with mixing ratios of 8:1, but not noticeable with the 

samples using a 7:1 mixing ratio. In Fig. 3.8 the samples with 7:1 mixing ratio are clustered 

together in the low porosity section of the graph where they do not seem to fall along a trend on 

their own.  It is also important to note that the samples are, again as anticipated, more conductive 

in the direction parallel to the fracture. Fig. 3.8 shows the average perpendicular and parallel 

conductivities as a function of porosity with Archie’s law plotted for cementations exponents of 

1.5 and 2 which are typical bounds for clean sandstones. They do not follow any obvious trend 

since the epoxy affects the cementation exponent in unpredictable ways. However, they generally 

fall inside the bounds expected for clean sandstone. 
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Figure 3.8. 1/F variation with porosity. Archie’s law plotted for m=1.5 and m=2. 

3.4.2) Anisotropy ratios 

 

To measure the anisotropy, we look at the ratio of measured conductivities in the two principal 

directions parallel and perpendicular to the fracture and plot this as functions of the ratio of crack 

porosity to total porosity (Fig. 3.9).  Although it displays some scatter and aside from one outlier, 

the anisotropy clearly increases with porosity ratio. In order to understand why sample A8 was 

such an outlier in the data we performed another microCT scan on this sample that revealed a 

heavily deviated fracture that extended from top to bottom. A comparative sample showed no such 

deviation. The crack porosity for this sample was higher than plotted and the geometry of the 

fracture is irregular. Fracture irregularities may also be responsible for some of the scatter in Fig. 

3.9 as small errors in the manufacturing process could have resulted in some fractures being 
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slightly more curved than others. This could cause the samples to deviate from the true trend (that 

if the fractures were perfectly straight). The line of best fit is shown in Fig. 3.9 and the equation is 

given in Eqn. 3.8. The fit excludes the outlier datapoint and was a weighted least square fit. 

Weights were assigned to the data based on the magnitude of the uncertainties for each anisotropy 

ratio. An arbitrarily high weight of one million was used to force the fit through the point (0,1) 

which represents isotropy. 

𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 𝑟𝑎𝑡𝑖𝑜 = 3.47 (
𝜑𝑐

𝜑
) + 1.00                                           (3.8) 

 

Figure 3.9. Anisotropy ratio as a function of crack porosity/total porosity ratio. Line of best fits 

excludes the outlier datapoint. Error bars are shown in grey. 
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The root mean square error for the fit to the data in Fig. 3.9 is 0.009 and the correlation coefficient 

for the data is 0.94. 

As discussed in the theory section and in Chapter 2 the formation factor can be interpreted as the 

porosity connected by lines of current, and, fractures and narrow pore throats are weighted more 

heavily due to the higher density of electric field lines. Fractures oriented perpendicular to the 

electric field are not expected to be involved in conduction and so perpendicular measurements 

can be used as a proxy for conductivity of the unfractured matrix. We offer some experimental 

evidence of these claims by examining the change in inverse formation factor between the parallel 

and perpendicular measurement direction as a function of the crack porosity and plot a 1:1 

trendline (Fig. 3.10).   
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Figure 3.10. Change in the inverse formation factor (difference between 1/F in the two 

measurement directions) vs crack porosity. 

3.5) Discussion 
 

The results presented here show an obvious trend between conductivity anisotropy and 
𝜑𝑐

𝜑
 for a 

material with aligned fractures and an isotropic matrix. This is an important step in quantifying 

how fractures affect electrical conductivity. We note that the preceding was limited to rocks with 

a relative high background porosity whereas fractures are expected to dominate pore space 

conduction at low matrix porosities. However, the observed trend agrees with that expectation and 

further work like this can be used to help constrain the empirical relationship derived here (Eqn. 

3.8) at lower matrix porosities. 
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An important point to discuss is how the anisotropy of the measured samples compares to 

previously published anisotropy ratios. We will restrict the following discussion to lab data as 

ratios found in the field are associated with features that exist at reservoir and regional scales (eg. 

Brown et al. 2012; Leibecker et al., 2002). 

Woodruff et al (2014) showed shales with anisotropy ratios on the order of 10 that decreased with 

electrolyte conductivity.  Woodruff et al. (2015) perform similar measurements and showed 

anisotropy ratios of 30. However, the reported fluid conductivity was .01 S/m which us sufficiently 

low that surface conductivity is expected to dominate. Both these results show that surface 

conductivity dominated in a low salinity environment; and consequently, the surface conductivity 

in their shales was more anisotropic than pore space conductivity. However, even at high salinities, 

samples used in those studies were far more anisotropic than those presented here and this can be 

explained by the fact that shales are composed of grains that are aligned perpendicular to the 

direction of compaction during diagenesis (Bachrach, 2011). This results in a pore space that is 

directionally anisotropic. 

David et al. (2017) and North and Best (2013) both showed that anisotropy may be much more 

prevalent than is usually assumed.  Using a novel geometry on three samples from two different 

blocks of porous sandstones (fractional porosities of 0.26 to 0.28), David et al. (2017) measured 

the full conductivity tensor finding ratios between the maximum and minimum principal 

conductivities (~1.09 and 1.15) that were similar to those found here.   North and Best (2013), 

from unique measurements on four different quarried quartz sandstones with porosities between 

0.13 and 0.23, showed that even these clean sand formations, which are often assumed to be 

isotropic, were anisotropic with conductivity ratios ranging from 1.15-1.25.  Their observed ratios 

exceed   the values here although it seems plausible that lowering the background porosity below 



98 

20 percent or increasing the crack porosity further could produce ratios in this range for the types 

of samples used in this study. This highlights the usefulness making measurements on controlled 

samples because a truly isotropic background matrix porosity is very difficult to find in nature. 

The only way to then understand how fractures interact with the background porosity is therefore 

through experiments like this where the isotropy of the background matrix can be guaranteed, and 

the orientation of the fractures is known. These are difficult things to verify in studies on natural 

specimens.  

The results presented here can be used for both modeling changes in conductivity and fluid flow. 

In instances when a reservoir is expected to have new fractures forming (for instance after 

hydraulic fracturing), it is desirable to know how the newly formed fractures will interact with the 

initial porosity. Eqn. 3.8 can be used to calculate the change in conductivity in the direction 

fractures are expected to align in the ambient stress field. The change in conductivity corresponds 

to a change in the inverse formation factor which can then be used to update the tortuosity. These 

values can then be used to model the new electrical imaging response or compute new tortuosity 

factors for use with permeability prediction (Johnson et al, 1986).  

3.6) Conclusions 
 

We have presented measurements on materials with oriented fracturess in an isotropic background 

matrix. These samples show an increase in anisotropy with increasing ratio of crack porosity to 

total porosity up to a maximum of ~1.1. These results can be used to help predict changes in 

conductivity expected when a reservoir is fractured which can in turn be used to inform transport 

models for the reservoir. Further work is required to constrain Eqn. 3.8 at higher 
𝜑𝑐

𝜑
 ratios and 

extend this analysis to examine the effects of fractures on the full conductivity tensor. This work 
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represents a starting point in constraining the effects of fractures in porous media. Future work 

will extend data to higher values of 
𝜑𝑐

𝜑
 and compare trends seen experimentally to those seen 

numerical models of conducting saturated grain packs.  
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Chapter 4 

Induced polarization in artificial sediments     

4.1) Introduction 
 

The frequency-dependent complex resistivity 𝜌∗(), which is often called the spectral induced 

polarization (SIP) in the geophysical literature, quantifies the capacity of a porous rock or soil to 

both transmit electrical current and to store charge.  SIP responses offer insights into pore-scale 

structures and interfacial processes within a fluid-saturated porous medium.   At low frequencies 

(0.0001-100 Hz) pore-space topology (Titov et al., 2002; Marshall and Maden,1959) and electro-

chemical interactions at the grain - pore fluid interface (Revil and Glover, 1998; Revil, 2012) 

control the extent of charge stored (i.e. the capacitance) during passage of current.  Consequently, 

the SIP depends in part on the porous material’s permeability and fluid-saturation.    

This linkage between SIP responses and petrophysical properties makes it valuable in mapping 

subsurface contaminants (Vanhala 1997) and in predicting permeability (Revil et al.. 2015, Slater 

and Lesmes, 2002) using various relationships (e.g., VanGenuchten, 1980).  The non-invasive 

nature of field electrical tomography measurements may allow for the economic mapping of clean 

and permeable aquifers.    Its utility can be extended to the monitoring of geological CO2 

sequestration as well as oil and gas exploration since the response is heavily dependent on partial 

water saturation (Jougnot et al., 2010). More recently SIP measurements have also been used to 

monitor biological processes in porous media including the biodegradation of hydrocarbons 

(Ustra, et al. 2016), the growth of microbial films (Atekwana and Slater, 2009), and the 

precipitation of sulphide minerals (Williams, et al. 2009). 
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Here, we focus on the interpretation of complex resistivity spectra at low frequencies in sandy 

sediments, i.e., those composed of primarily of nonconducting sand-sized mineral grains but also 

containing modest amounts of clay (<12% by weight).  A consensus on how to physically interpret 

observed spectra from these materials remains elusive, and two classes of models have been 

proposed in which either Stern layer (Revil, 2013) or membrane (Titov et al., 2002; Marshall and 

Madden, 1959) polarization dominate.  The problem is further complicated because both 

mechanisms, which are discussed in more detail below, may also simultaneously contribute to 

observed responses. 

The objective of this work is to address the issue of which mechanism controls electrical relaxation 

in weakly polarisable sediments.  This is accomplished with controlled complex electrical 

resistivity measurements on analog sediments constituted of mixtures of glass beads and various 

clays. In the remainder of the paper we provide a brief review of the relevant theoretical 

relationships and the existing conceptual models for conductance in porous media, describe the 

measurement procedure and experimental details and interpret the observed results in the context 

of existing mechanistic models and other published results. A practical goal of this work is to test 

differing decomposition strategies for extracting representative relaxation times. Extracting 

representative relaxation times is important for permeability prediction. The contribution 

concludes with a discussion on how the findings affect interpretation of SIP data.  
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4.2) Background 
 

In this section we first briefly provide the essential theoretical relationships, provide an overview 

of the models proposed to describe the complex resistivity and low frequency polarization of sandy 

sediments, and review the pertinent literature.   

Basic Theoretical Relationships and Definitions 

The response of a material to an input electrical signal is generally described by either the complex 

resistivity:  

𝜌∗ = 𝜌′ + 𝑖𝜌′′                                                                             (4.1𝑎) 

 

or the complex conductivity: 

𝜎∗ = 𝜎′ + 𝑖𝜎′′                                                                             (4.1𝑏) 

where the superscripts ∗, ', and " respectively indicate complex, real (in-phase), and imaginary 

(out-of-phase or quadrature) values.  It is worth noting that equations 4.1a and 4.1b are the inverse 

of each other (i.e., σ∗ =
1

ρ∗
).    These parameters are generally frequency dependent and this 

dispersive behaviour can provide insight on the various electrical relaxation processes existing in 

an uncharacterized material.    

In the laboratory, the complex resistivity of a sample under study is obtained first by finding its 

sample-dependent complex impedance 𝑍∗. This is accomplished at a given frequency  by 

injecting a known harmonic current I*(t) = Ioe
it  while measuring the resulting harmonic potential 
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V*(t) = Voe (it + θ) with phase lag   relative to I(t) across the sample. According to Ohm’s law, this 

impedance Z is then simply 

𝑍∗ =
𝑉∗

𝐼∗
 =

𝑉𝑜

𝐼𝑜
𝑒−𝑖𝜃 = 𝑍𝑜𝑒

−𝑖𝜃                                                          (4.2) 

Euler’s formula  

𝑒𝑖𝜃 = 𝑐𝑜𝑠(𝜃) + 𝑖𝑠𝑖𝑛(𝜃)                                                       (4.3) 

is substituted to recast 𝑍∗ into its real and imaginary parts 

𝑍∗ = 𝑍0 cos(𝜃) + 𝑖𝑍0 sin(𝜃) = 𝑍′ + 𝑍′′                                            (4.4) 

with real (in-phase) 𝑍′ and imaginary (out-of-phase) quadrature 𝑍′′ components.  From Eqn. 4.4, 

the phase    may be written  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑍′′

𝑍′
]  ≈  

𝑍′′

𝑍′
                                                         (4.5) 

valid if 𝑍′′ is small relative to 𝑍′.   

To convert the sample impedance into a material property, the sample’s geometric factor G, that 

in simple axially symmetric samples will depend on the sample length L and cross-sectional area 

A, must be found. For the simple case of a circular cylinder with the electrode in contact with the 

entire cross-section’s face, this is simply G = L/A.  The corresponding electrical properties are 

then: 

𝜌∗ =
1

𝜎∗
= 𝐺𝑅∗                                                                        (4.6) 

The frequency dependence of the electrical properties contains valuable information about the 

material’s SIP; the measurements obtain real-valued 𝜌′() and quadrature 𝜌′′() spectra.  
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Examination of Eqn. 4.5 suggests that 𝜌′′() is more directly related to the phase; and hence a goal 

may be to find the peak, or characteristic, frequency fp from the 𝜌′′() whereby the material’s 

characteristic relaxation time c = 1/2fp may be found.   As will be further discussed, this c would 

ideally be related to a single relaxation, but in reality, the real material behaviour is more 

complicated. Real materials exhibit multiple relaxation processes occurring over different 

time/length scales. The contribution of each process is weighted by the chargeability (M) 

associated with that process. M can be defined as the normalized conductivity change across a 

frequency band for SIP or as the ratio of the secondary to primary voltage for time domain 

measurements (Sumner ,1976; Weller et al., 2013).  

In earth materials the in-phase component 𝜌′ only weakly depends on frequency.  In contrast, the 

frequency dependence of the quadrature term 𝜌′′  (most representative of the phase lag by Eqn. 

4.5) is more variable and arises from a combination of dielectric and electrochemical polarisations 

that exhibit more complicated nonlinear behaviour.  At low frequencies (meaning here, typically 

less than 1 kHz) dielectric polarisations generally contribute negligibly to the quadrature resistivity 

”().  At these frequencies, however, the phase lags observed in sandy sediments are large. The 

large polarisations are instead due to processes occurring at the grain-fluid interface arising from 

charge imbalances that develop at the pore/grain scale. The frequency at which a phase lag is 

observed corresponds to the relative length scale over which charge imbalances develop. 

Therefore, at high frequency, phase lags represent polarization occurring over relatively smaller 

distances compared to those at lower frequencies. Electrochemical polarisations are consequently 

believed to reveal information about processes occurring over lengths that correspond to the grain 

or pore throat diameter/length.      
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Rocks and sediments often exhibit complicated quadrature spectra; and this is largely attributed to 

effects dependent on the distribution of polarization length scales (Leroy et al., 2008). For sandy 

sediments discussed here, the distribution could be influenced by either or both of the Stern layer 

or membrane polarizations; but it is still not clear which mechanism dominates any given 

spectrum.   Examination of the characteristic relaxation time c determined from the quadrature 

conductivity spectrum 𝜌′′() may provide insight into which mechanism is the most important.   

There is now a large amount of evidence that the relaxation time in these materials correlates 

closely to the pore diameter (e.g., Revil et al., 2012; Revil et. al., 2015; Scott and Barker, 2003) 

although no polarisation mechanism has been suggested that would only operate in the pore 

throats.  Unfortunately, the grain perimeters, pore-throat diameters, and pore-throat lengths are all 

geometrically related. Therefore, any mechanism associated with one of those length scales would 

correlate to all of them.   

4.2.1) Electric Double Layer (EDL) 

 

The electrical double layer (EDL) around a negatively charged grain immersed in an electrolyte is 

conceptually illustrated in Fig. 4.1a. The surfaces of clay minerals tend to be negatively charged. 

This is partly due to isomorphic substitutions that arise from defects in the mineral lattice and from 

pH dependent reactions with the pore water (Brady et. al.,1996). Silica glass and quartz grains also 

develop a surface charge primarily due to proton equilibria (Leroy et al., 2008). Once immersed 

in the electrolyte, ions with charge sign opposite to that of the mineral (hereafter referred to as 

counter ions of positive charge such as Na+ and Ca++) weakly adsorb to the mineral surface.  This 

creates a first layer, commonly called the Stern layer, of confined counter ions that do not interact 

with the bulk pore electrolyte.  Outside of this is a second diffuse layer in which the concentration 
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of counter ions is greater than that of the bulk electrolyte and from which the exchange of ions 

with the bulk electrolyte is allowed.  Together, these first and second layers are referred to as the 

double layer; their existence is consistent with molecular dynamic simulations (Wang et. al., 

2008).  They are most pronounced in low concentration electrolytes where the counterion charge 

density is much greater at the mineral surface than it is in the bulk electrolyte. Much of the theory 

was originally developed to describe double-layer phenomena for colloidal suspensions where the 

mineral particles together with their associated double layers are isolated (Fig. 4.1a).  In rocks and 

soils the situation is complicated because the mineral grains are in contact and this forces the 

diffuse layers to overlap (Fig. 4.1b).  This is agreed upon by proponents of both classes of IP 

models (Revil, 2012;Titov, et al. 2002).    
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Figure 4.1. (a) Formation of electrical double layer at and near the mineral surface.  Stern layer 

immediately adjacent to mineral surface in dark green.  Diffuse layer shown as lighter shaded 

green area.  Bulk electrolyte as grey region. (b) In the region between the mineral grains (i.e. the 

pore throat), the Stern layers are disconnected but the diffuse layers overlap and would be 

continuous throughout the porous medium.   (c) Two polarisation mechanisms at work under an 

applied electric field. The Stern layer polarisation occurring simultaneously with membrane 

polarisation as clay counterions are displaced as current flows through the narrow pore throat.        

4.2.2) Models   

 

The complex resistivity of rocks is often simply described by a parallel resistor model shown in 

Fig. 4.2 (Waxman and Smits,1968). In terms of conductivity: 

𝜎∗(𝜔) = 𝜎𝑓
′ + 𝜎𝑠

′(𝜔) + 𝑖𝜎𝑠
′′(𝜔)                                                                 (4.7) 

where  𝜎𝑓
′ is the in-phase conductivity due to charge migration through the electrolytic pore fluid, 

𝜎𝑠
′ is the in-phase conductivity due to charge migration along grain surfaces in the electrical double 
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layer of the minerals, and 𝜎𝑠
′′ is the quadrature component of the surface conductivity caused by 

polarisation. When necessary, more complicated models can be developed to account for multiple 

polarisation processes over the frequency range, but at lower frequencies this is probably an 

appropriate representation given the current understanding polarisation effects.  

 

Figure 4.2. a) Simplified microscopic cross-section through a porous rock with solid portions in 

grey, surface charge layers in orange and electrolyte liquid (blue) saturated pore space.  b) 

Equivalent circuit for the rock in which the overall complex conductivity *() consists of parallel 

conductive pathways through the electrolyte liquid and along grain boundaries. The solid minerals 

in grey are considered to be electrical insulators.   
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At frequencies above 100 Hz Maxwell-Wagner polarisation dominates.  This is attributed to 

interfacial effects between the bulk electrolyte and the electrical double layer or the grain surface 

and the electrical double layer. Maxwell-Wagner responses (non-zero quadrature conductivity at 

frequencies below those where dielectric polarization would be important) have been well 

predicted using Differential Effective Medium (DEM) theory (see Chelidze and Gueguen, 1999) 

for an overview of this approach) which calculates the complex permittivity of a two-material 

composite. The most important result of this approach is following Revil (2012): 

𝜎∗ =
𝜎𝑓

𝐹
(

1 −
𝜎𝑠

∗

𝜎𝑓

1 −
𝜎𝑠

∗

𝜎∗

)

𝑚

                                                                               (4.8𝑎) 

𝐹 = 𝜑−𝑚                                                                                                 (4.8𝑏) 

which is the same as the long-standing Bruggeman-Hanai equation (Bruggeman, 1935; Hanai, 

1968) where a star in the superscript indicates a complex quantity and subscripts are the same as 

previously described. F is the formation factor which has been shown to be the porosity 

dynamically connected by lines of current through the total pore space (Revil and Cathles, 1999; 

(Avellaneda and Torquato,1991).  The F in Eqn. 4.8b is the formation factor as it is expressed in 

Archie’s (1942) law where 𝜑 is the connected porosity and m is the so-called cementation 

exponent.  

Differential Effective Medium (DEM) theory can be used to derive expressions similar to Archie’s 

(1942) law and the Waxman Smits equation (Bussian, 1983, Sen et. al., 1981).   Regardless, at 

lower frequencies <100Hz, DEM fails to predict the large polarisations observed in rocks and soils. 

In this lower frequency range, the polarisations primarily arise due to the existence of the electrical 

double layer (EDL) but take place on length scales larger than Maxwell-Wagner polarisation.  For 

a broad pH range of 4-10 for the saturating liquid (Revil and Glover, 1998), the solid portions of 
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the porous materials, composed for example as quartz grains or glass beads, do develop surface 

charges, but it can be experimentally shown that polarisation through a pack of such clean grains 

is typically weak (Klein and Sill 1982; Leroy et al., 2008).  The addition of small amounts of clay 

minerals to such a bead pack increases the polarization dramatically as evidenced by larger 

quadrature conductivity.   However, it must be stressed that this holds only for small amounts of 

clay. Paradoxically, the addition of even more clay increases the surface conductivity further, thus 

easing charge mobility and potentially reducing the mixture’s capacity to store charge (Vacquier, 

1957). We say “potentially” here because processes such as lithification and fluid flow play a role 

in the evolution of pore space topology and polarizability of the sediments. This makes it difficult 

to make any definite statements based on clay content alone. 

Under an applied electric field, two mechanisms are thought to be responsible for the observed 

electrochemical polarisations and electrical relaxation times at low frequency (Fig. 4.1c):   

1. Stern layer polarisation: the inner layer of the electrical double layer polarises as counter ions 

migrate tangentially along the grain boundaries (Revil, 2012, Revil 2013, Jougnotet al., 2010). In 

this case the grain size or specific surface area of the particle being polarized will exercise control 

over the peak frequency in the quadrature spectrum.   

2. Membrane polarisation: clay counter ions are displaced from the diffuse layer that overlaps at 

grain contacts (Madden and Marshall, 1959; Titov et al., 2002). The excess accumulation of ions 

in turn causes electrolyte blockage at the pore throat boundary. This leads to a higher relative 

concentration of counterions at one end of each pore-throat. In this case, the length scale over 

which these charge imbalances develop would be associated with the average pore throat length at 

the “active” grain contacts (an active grain is defined as one where the electrical double layer is 

pronounced enough to control the observed polarisation). This means that the peak frequency is 
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not necessarily tied to the available surface area of those mineral grains (i.e. clays) with a 

pronounced electrical double layer, but instead is more closely related to the dimensions of the 

pore space topology that is primarily influenced by the rock’s supporting structural framework of 

the “passive” grains (defined as grains with either no EDL coating them or a small EDL which 

contributes little to observed polarisation). The charges redistribute themselves once the electric 

field is removed and the material regains electro-neutrality at the pore scale. The time taken for 

electro neutrality to be achieved is theoretically the characteristic electrical relaxation time c.   

To reiterate, this is either controlled by the grain size in the case of Stern layer polarisation or by 

the lengths of the idealized pore throats along which clay counter ions are displaced in the case of 

membrane polarisation. These are simplified conceptualisations of what occurs but they do capture 

what the length scales are for each process. Further discussion on the role of diffusivity is presented 

later. 

4.2.3) Characteristic Spectra 

 

In SIP measurements, the complex resistivity is recorded over a broad range of frequencies (mHz 

- kHz) producing spectra for the real 𝜌′() and imaginary 𝜌′′().    Here, we attempt to distinguish 

between membrane polarisation and Stern layer polarisation using measurements on 8 artificial 

porous samples constructed from a glass beads of differing sizes mixed with small amounts of 

clays with varying electrochemical properties.  These SIP measurements were conducted in a 

frequency range of 10 mHz to 1 kHz with the goal being to distinguish whether the dimensions of 

the glass beads or the surface characteristics of the clays had greater control over the observed 

response.  



115 

A further complication is that sediments rarely display a single relaxation time, instead tending to 

exhibit a distribution of times due to a distribution of length scales over which the charge 

imbalances develop. Fig. 4.3 shows hypothetical illustrative cases of the types of phase spectra 

() that may be expected at frequencies below 100 Hz.  

 
Figure 4.3- End member responses for different distribution of length scales. See text for details.  

 

Type a response have a clearly defined peak frequency fp and would be observed if only a single 

polarization, or a narrow closely spaced range of relaxation time distribution (RTD) exist in the 

material.  This would be an ideal experimental response since the characteristic relaxation time c 

can be easily found from frequency of the spectral peak.  

Type b responses suggest the pore space is characterized by a broad distribution of length scales.   

The corresponding spectrum is essentially constant at higher frequencies but has a minimum 
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frequency threshold below which the phase lag decays to zero, this threshold would indicate the 

largest length scale.  One might expect a similar maximum threshold for the smallest length scale 

existing in such a distribution but at the higher frequencies its effect is obscured by the further 

contributions to the phase lag from additional polarization processes that become more active.  

Type b responses have been observed (Lesmes and Frye, 2001) with some authors (Revil et al., 

2015) suggesting that the corner frequency gives fp and is indicative of the material’s characteristic 

relaxation time c. In that case it would be interpreted as the largest length scale over which 

polarisation occurs.   

Finally, the type c response is indicative of a broad distribution of length scales such that the phase 

lag is almost constant across all frequencies; in the absence of any clear extremum or threshold 

finding a clear fp indicative of a characteristic relaxation time is difficult or impossible.   

Real phase lag spectra (), or more precisely the 𝜌′′() as used below, may follow these 

illustrative cases or some combination of them. However, it is important to keep in mind that the 

functional goal of analysing the spectra in practical applications is to obtain an estimate of c that 

can then be used to predict permeability.  For this reason, we investigate use of a Debye 

decomposition as a possible way to standardize the estimation of characteristic relaxation times 

for permeability prediction. 

4.2.4) Spectra Decomposition 

 

 For a single Debye-like relaxation associated with only one characteristic relaxation time c, the 

frequency-dependent complex electrical resistivity 𝜌∗ () of a material would be (Nordsiek and 

Weller, 2008): 
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𝜌∗(𝜔) = 𝜌0 (1 − 𝑀 (1 −
1

1 + (𝑖𝜔𝜏𝑐)𝛼
))                                                               (4.9) 

where 𝜌0 is the DC resistivity, M is the chargeability, ω is angular frequency and 𝛼=1. Various 

empirical approaches for fitting data that do not conform to Eqn. 4.9 exist where 0 < 𝛼 < 1 (e.g. 

Pelton et al., 1978). The corresponding 𝜌′() and 𝜌′′() spectra for such a single Debye-like 

relaxation of Eqn. 4.9 are shown in Fig. 4.4 where the peak frequency fp is clearly interpretable at 

the maxima of 𝜌′′().   The essential idea behind Debye decomposition then is that a real observed 

spectrum consists of a linear superposition of numerous individual Debye spectra corresponding 

to a distribution of relaxation times and as weighted by their respective chargeabilities, as 

discussed in more detail later.  Debye decomposition is a technique that has been standard practice 

for curve fitting of time-domain induced polarization data (Tarasov and Titov, 2007).   Nordsiek 

and Weller (2008) assumed that their material could be characterized using a distribution of Debye-

like relaxations instead of just one and introduced this fitting procedure as an alternative 

empirically based model (e.g. Lukichev, 2014). 
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Figure 4.4. In-phase (solid line) and quadrature (dotted line) resistivity spectrum of a material with 

a single Debye characteristic relaxation time c = 1/2fp. 

4.2.5) Previous work 

 

Other workers have attempted to design experiments to shed light on the polarization mechanisms 

controlling electrical relaxation in sandy sediments. Klein and Sill (1982) conducted similar 

measurements on clay and glass bead mixtures with the goal of investigating how clay content and 

grain size affected characteristic relaxation times. They demonstrated that the glass bead size 

controlled the relaxation times but only did so for one clay type. They also showed an increase in 

relaxation time with increasing clay content going from 3% to 12% clay by weight.  
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Scott (2006) conducted an experiment on rock samples saturated with a viscous gel intending to 

increase the electrolyte viscosity to reduce the ionic mobility with the goal to assess the degree to 

which it influenced the polarization process. The characteristic frequency or relaxation times of 

the gel-saturated samples’ complex conductivity did not vary with mobility leading the authors to 

conclude that membrane mechanisms do not significantly affect polarization.  They reasoned that 

reduced ionic mobility leads to a longer time for charges to redistribute themselves once a charge 

imbalance is developed. However, they altered both the ionic mobility and the diffusion coefficient 

of the electrolyte (the two are related by the Einstein-Smoluchowski diffusion relation (Islam, 

2004)). This affects both the accumulation of charge imbalances and diffusion of those charges 

under the induced concentration gradients. Additionally, they conceded that the effect of the gel 

very close to the pore wall is not known and the ionic strength of the gel cannot be determined. 

How exactly these different effects and properties of the gel compete against each other is not 

known. These uncertainties make it difficult to interpret their results. They do agree with the 

general consensus that this is a diffusion-controlled process but further experiments like those 

performed on a larger number of samples may prove insightful along with tests on the wettability 

of the gel on the different mineral surfaces in the rock. However, the fact that rocks must first be 

saturated with an electrolyte and then later with the gel is a major limiting factor for these types of 

experiments.  

Weller et al. (2016) further investigated the relationship between induced polarization and pore 

radii by indirectly calculating diffusion coefficients for a database of rocks using a well-known 

relationship between pore radius and relaxation time (Schwarz,1962). Results suggested that either 

the pore throat radii are not the controlling length scale such that the actual length scale is much 

greater, or that the diffusion coefficient is highly variable depending on mineralogy (both may be 
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true as well).  The latter is almost certainly true given that the mineralogy affects the properties of 

the electrical double layer (among which is the diffusion coefficient within the EDL) and the 

topology of the pore space which affects the bulk diffusion coefficient of the entire rock. The 

relevance of the former is still debated and is the main subject of this paper.   Regardless, they did 

not find two distinct diffusion coefficients based on clay content as other authors have suggested 

(e.g., Revil, 2013), however the point that mineralogy affects the diffusion coefficient stands. 

Joseph et al. (2016) in measurements on sieved sands found that the Cole-Cole (1941) relaxation 

times depend on the grain sizes in agreement with other numerous authors (e.g., Leroy et al., 2008; 

Titov et al., 2002). They did not, however, attempt to control the mineralogy of their samples and 

so isolating whether grain or membrane polarization governs the responses is difficult.  

Breede et al. (2012) conducted SIP measurements on variably saturated sand and clay mixtures 

finding that the relaxation time decreased with decreasing saturation. They did not control for the 

effects of grain sizes in the sand but did vary the clay content. They suggest that their results are 

best explained by polarisation mechanisms in the pore space and not grain based models.  

Okay et al. (2014) investigated the effect of clay content on SIP measurements on sand and clay 

mixtures to examine the effect of increasing clay content on the IP response. Their samples 

produced complicated spectra which was modelled based on a combined Stern layer polarisation 

model and a Donnan (1924) equilibrium model for the surfaces of clay and sand. Their model fit 

the higher frequency data well (> 0.1Hz) but it failed at lower frequencies.  They concluded that 

that this failure was due to the presence of a membrane polarisation mechanism at low frequency. 

The complicated nature of their spectra made it difficult to distinguish whether grain sizes or 

surface areas affected relaxation times. 
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Leroy et al. (2008) reproduced the spectra observed on a glass beak packs saturated with NaCl 

electrolytes with conductivities of 5 mS/m by convolving the grain size distribution obtained from 

laser granulometry with the IP response of a single bead. Their model was based entirely on 

polarisation of the Stern layer.  

With these issues in mind, here we attempt to use a variety of clays of differing surface charge 

densities and surface areas in mixtures with glass beads of different sizes in order both to isolate 

the factors controlling the observed polarisations and to identify the associated length scales.  

4.3) Methods 
 

In this section we give an overview of the experimental details including the specifics of the 

acquisition system and the samples used in this study. In the case of the acquisition system this 

includes the components as well as the design and testing of the system. For the samples this 

includes their contents and the manufacturing procedure. 

Acquisition system 

A simplified diagram of the 4-electrode experimental configuration and a diagram of its equivalent 

circuit is shown in Fig. 4.5.    The system is activated with a constant AC current source (Keithly 

6221) and the resultant voltages recorded using a lock-in-amplifier (Stanford Research Systems 

SR830).   The current source sets the current’s magnitude Io and frequency f and communicates 

the input current phase to the amplifier as represented by the blue connection in Fig. 4.5a.  

Measurements were made for a range of frequencies between 10 mHz and 1 kHz for each sample. 

The use of a current source is advantageous in that it eliminates the need to measure signals across 

a shunt resistor minimizing the number of wires and connections required.  The amplifier measures 

the RMS voltage Vo with 1% uncertainty and its phase lag θ relative to that for the known injected 
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current. The complex resistivities or conductivities may then be calculated following Eqns. 4.2 to 

3.5. To avoid non-linear effects the current density was kept below 0.003 A/m2.  

Non-polarising Ag/AgCl electrodes are used for the potential electrodes to avoid polarisation 

effects. They are constructed using commercially available electrodes (3M™ Red Dot medical 

ECG electrodes) consisting of a 10 mm diameter Ag/AgCl pellet with a metal disk on top of the 

conductive gel in which the pellet sits. Both the metal disk and gel are removed before the electrode 

is attached to the measuring cell since exposure of the metal disk to the electrolyte during 

measurements would lead to polarisation. Each set of electrodes was used only once in order to 

avoid a reduction in measurement quality from one sample to another. To further reduce the risk 

of sample-electrode contact impedances, brine buffers containing the same electrolyte saturating 

the sample isolated the ends of the sample from the current electrodes.  
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Figure 4.5. a) Simplified diagram of the experimental 4-electrode configuration with the sample 

(black) sandwiched between two saline buffers that inject current.  The voltage difference is 

measured by a lock in amplifier between the two red electrodes separated a distance L axially along 

the sample. .  The constant current source is connected to the lock in amplifier to provide phase 

references.  The various impedances that need to be considered include those for the current 

electrodes including the saline buffer ZC, the lock-in-amplifier ZI, the voltage electrodes ZV. the 

portions of the sample between the saline buffers and the voltage electrodes ZIV, and the desired 

sample impedance ZS.  b) Simplified equivalent circuit showing the arrangement of the expected 

impedances in the system.  
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To understand the importance of eliminating contact impedances it is necessary to consider the 

equivalent circuit of a rock during the 4-electrode measurement technique, a complete and general 

review of which can be found in Zimmermann et al. (2008).   Bona et al. (2008) gives a simpler 

analysis in which common electrodes (either potential or voltage) are assumed to have the same 

contact impedance. The equivalent circuit of Bona et al (2008) for the 4-electrode system is shown 

in Fig 4.5b where Zc is the contact impedance of the current electrode, ZIV is the impedance of the 

portion of the sample lying between current and voltage electrodes, Zv is the contact impedance of 

the voltage electrodes, Zs is the sample impedance, and ZI is the input impedance of the signal 

analyser or amplifier. For the simplified case of Fig. 4.5b the impedance Zm actually measured is: 

𝑍𝑚 = 𝑍𝑠 (1 +
𝑍𝑐 + 𝑍𝑣 + 𝑍𝐼𝑉

𝑍𝐼
)                                                                  (4.10) 

which makes apparent that the larger the input impedance Zl of the signal analyser, the closer the 

measured value is to the actual desired sample impedance Zs.  The input impedance of the lock-in 

amplifier is 10 MΩ which is sufficient in the measurement of the relatively conductive samples 

used here. 

The stated phase accuracy for the lock-in amplifier of +/-0.01 degrees from the manufacturer’s 

specifications (~0.17 mrad).  However, at frequencies above 100 Hz the observed phase lags 

exceed these accuracies, and they deviate rapidly from the lower-frequency trend apparent in the 

phase spectrum observed for weak test electrolytes made by adding small amounts of NaCl to 

distilled water (Fig. 4.6).  The conductivities for these test electrolytes were 0.09 and 0.03 S/m.  

Ideally, for pure water no dispersion is expected at frequencies below 10 kHz   This problem is 

believed to stem from contact impedances of the voltage electrodes, similar to behaviours seen by 

Huisman et al (2014) for both metallic and non-polarising electrodes.  Above 100 Hz, this phase 
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error is also larger for the more resistive sample (Fig. 4.6) meaning that phase errors greater than 

10 mrad are expected at the higher frequencies.  

Conversely, instrumental drift was a concern for frequencies below 0.1Hz.  That said this drift 

never exceeded 1 mrad. 

 

Figure 4.6. (a) Phase spectrum for two water samples with different conductivities. (b) Phase 

spectra of clay-free glass bead packs. 
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4.3.1) Sample construction 

 

The commercially available glass beads, typically used for sand-blasting, came in a large #1 (0.420 

- 0.841 mm) and small #2 (0.074 - 0.125 mm) distributions of diameters. Previous work (Bouzidi, 

2003) indicated that each set may contain some beads smaller than that specified by the 

manufacturer. SIP measurements were made with glass beads that were either washed or not with 

deionized water, this washing did not seem to be critical as identical responses were seen. The 

complex conductivity measured on “clean” samples consisting of only packed glass beads did not 

display any significant polarization below 100 Hz (Fig. 4.6b).  This behaviour contrasts with that 

seen later for the “dirty” samples containing clay. Consequently, the glass beads may be referred 

to as “passive grains” while the clay minerals are called “active grains” to emphasize the role each 

plays in obtaining a non-zero quadrature conductivity.  Active grains are those which are primarily 

responsible for the observed response while passive grains are those which do to contribute to the 

observed phase lags.  

The dried clays employed originated from quarries in the Late Cretaceous Ravenscrag and 

Whitemud Formations of southern Saskatchewan. The four samples, provided by Plainsman Clay 

Ltd, Alberta, are primarily intended for ceramic manufacturing.  These samples were characterized 

using a variety of methods (Table 4.1).   The minerals contained in each sample were detected by 

standard XRD in the Dept. of Earth and Atmospheric Sciences at the University of Alberta. 

Quantitative modal analysis was not conducted.  Cation exchange capacity (CEC), which describes 

the total number of cations that can be adsorbed to the surface of a material per unit mass, was 

provided by routine agronomy measurements at the Natural Resources Analytical Laboratory at 

the University of Alberta. The specific surface areas of the sample were obtained using an 

Autosorb automated gas sorption analyser with nitrogen as the adsorbent gas as interpreted using 
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Brunauer, Emmett and Teller (BET) theory (Brunauer et al.,1938). Measurements were performed 

at the National Institute for Nano Technology (NINT).  

The electrolytes were prepared by adding laboratory grade NaCl (Fisher Scientific) to distilled 

water.   The NaCl concentrations for electrolytes that were finally used in the experiments were 

determined by trial and error because if the electrolyte conductivity is too high then little or no 

phase lag across the spectrum can be observed.  An electrolyte conductivity of ~0.02 S/m was 

found to reliably produce observable phase lags for all of the samples. The electrolytes were 

prepared by mixing small amounts of reagent grade NaCl into the distilled water until this desired 

conductivity was reached.  This electrolyte was then sealed in a container for later use.  The 

electrolyte’s conductivity was retested immediately before use to ensure that it had not changed.  

Bairlein et al. (2014) suggest four methods of sample preparation when forming their mixtures of 

natural quartz sands and clays into unconsolidated sediment samples for their SIP measurements; 

and we built on their efforts by combining elements of each as well as from our own experience. 

First, the glass beads and clay were wetted and mixed by hand in a small container (separate from 

the eventual sample holder) with the saturating electrolyte; we found that this ensured a more 

homogeneous distribution of clay and reduced the variations in clay distribution between samples, 

an example of the microscopic structure of a typical sample (Fig. 4.7) shows a uniform distribution 

of clay throughout. The material was then loaded into the cylindrical 3.52 cm diameter, ~10 cm 

length PVC sample holder and the electrolyte was added as necessary to ensure that the sample 

would be completely saturated.  While material was being added, the sample holder was tapped to 

facilitate compaction and the mixture and was stirred occasionally as new material was added. The 

material was gently compressed with a plunger. The sample holder was then sealed at both ends 

with filter paper.  
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Figure 4.7. SEM image of a sample constructed using a mixture of glass beads with varying sizes 

and 10% clay by weight. 

The properties of the four clays used are summarised in Table 4.1. The clays used were selected 

to provide distinct ranges of cation exchange capacities (CEC) and specific surface areas (SSA). 

The four clays combined with 2 sets of glass beads to give 8 samples (samples S1-S8) that were 

all 8% clay by weight. These were the samples used to study what controls the occurrence of a 

peak frequency.  Clay #2 differs from the others in that it is the only one that contained nontronite, 

a swelling clay within the montmorillonite family.   This made Clay #2 distinctive in terms of its 

CEC and SSA.  

 

 

 

Table 4.1. Characteristics of clay samples employed 
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Clay # Cation 

Exchange 

Capacity 

CEC - cmol/kg 

Specific 

Surface Area 

SSA - m2/g 

Effective 

Surface Charge 

Density 

QS cmol/m2 x 

103 

XRD minerals 

present 

Clay 1 7.56 11.19 0.676 Qza, Msb, Sac 

Clay 2 24.50 32.60 0.752 Qza, Klnd, Ilte, nonf 

Clay 3 8.87 14.88 0.596 Qza, Klnd, Msb 

Clay 4 4.83 4.80 1.01 Klnd, Qza, Msb,  

Mcg 
aquartz, bmuscovite, csanidined, kaolinite, eillite , fnontronite, gmicrocline 

Table 4.2 provides the petrophysical properties of the samples. Porosities were obtained using 

simple mass differences together with the known internal volume 𝑉𝑠 of the sample holder.  The 

mass of the saturated sample mixture Mt was determined as the difference of the measured masses 

of the holder when filled with the mixture and the holder’s mass.   Upon completion of the 

measurements, the sample’s sediments were removed from their PVC sample holder and then 

slowly air dried under ambient conditions in the laboratory.  This mass was repeatedly measured 

during this drying period until no further changes was found and this final value gave the solid 

mass 𝑀𝑠. The porosity is then simply  

𝜑 =
(𝑀𝑡 − 𝑀𝑠)

𝑉𝑠𝜌𝑓
                                                                                   (4.11) 

where 𝜌𝑓 is the density of the electrolyte.  To ensure that this method was appropriate, in two of 

these cases the sample sediments were further dried in an oven at ~ 70 ̊ C for an additional 24 

hours, and no change in mass was measured.  Repeatedly repacking the sample and drying suggests 

that the error in the porosity was less than +2% porosity.  

Table 4.2. Summary table for samples measured in this work. Glass beads diameter ranges are 

0.420 - 0.841 mm for #1, 0.074 - 0.125 mm for #2. 
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Ideally, we would have obtained measurements of each sample’s formation factors, F, and surface 

conductivities.  However, this was not possible as on the basis of experience we were unable to 

replace the saturating electrolyte with second one with differing conductivity without considerably 

altering the clay distribution.  

The pH of selected samples was measured after electrical measurements were completed using 

Fischer scientific litmus paper. Additionally, the pH of water with the different mixtures in it was 

monitored of 2 days. All of the measurements showed pH’s between 6 and 7. 

 

4.3.2) Debye Decomposition  

 

As mentioned earlier, Debye decomposition is a technique for fitting SIP spectra to obtain 

distributions of relaxation times. The utility of this is that average relaxation times (or a dominant 

Sample# Glass 

beads 

used 

Clay used 

(weight percent 

during 

packing) 

Porosity (%) 

(+/- 2%) 

S1 #1 Clay 3(8%) 30 

S2 #2 Clay 3(8%) 34 

S3 #1 Clay 2(8%) 29 

S4 #2 Clay 2(8%) 35 

S5 #1 Clay 1(8%) 32 

S6 #2 Clay 1(8%) - 

S7 #1 Clay 4(8%) 30 

S8 #2 Clay 4 (8%) 36 
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relaxation time) can then be used for permeability prediction assuming knowledge of grain or pore 

sizes. The decomposition presumes that the observed spectrum is described by a superposition of 

the appropriately weighted Debye curves associated with N relaxation times k, and chargeabilities 

Mk.  

𝜌∗(𝜔) = 𝜌0 (1 − ∑ 𝑀𝑘 (1 −
1

1 + 𝑖𝜔𝜏𝑘
)

𝑁

𝑘=1

)                                                       (4.12) 

Given that the functional goal of Debye decomposition is to ultimately obtain a single 

representative relaxation time that can then be used to predict permeability, it is worthwhile to 

consider how that relaxation times are determined.  Different estimates of the relaxation times or 

their distributions will depend on: 

1. The decomposition procedure employed and whether it assumes a discrete or a continuous RTD 

and,  

2. the selection criterion (e.g. mean or maximum chargeability) and the range of frequencies used 

for the determination.  

Here, we test these various methodologies to determine the relaxation times or their distributions 

using the complex conductivities measured in the laboratory. It is worthwhile to review the 

different approaches that have been applied in determining RTD.  

 Nordsiek and Weller (2008) method, modified slightly by Zisser et al. (2010), assumes a 

continuous distribution of relaxation times on the full recorded spectrum.  They estimate a mean 

relaxation time (𝜏̅) and take every measured frequency into account. 

𝜏̅ = 𝑒
∑ 𝑀𝑘ln (𝜏𝑘)𝑘

∑ 𝑀𝑘𝑘                                                                                    (4.13) 
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This approach involves a linear transformation of the measured data according to 

𝜌𝑛𝑜𝑟𝑚
∗ (𝜔) =

𝜌0 − 𝜌∗(𝜔)

𝜌0
                                                                         (4.14) 

with real  

𝜌𝑛𝑜𝑟𝑚
′ (𝜔) = ∑ 𝑀𝑘 ∗ (𝜔𝜏𝑘)

2 ∗

𝑛

𝑘=1

(1 + (𝜔𝜏𝑘)
2)−1                                  (4.15𝑎) 

and imaginary parts  

𝜌𝑛𝑜𝑟𝑚
′′ (𝜔) = ∑ 𝑀𝑘 ∗ (𝜔𝜏𝑘) ∗

𝑛

𝑘=1

(1 + (𝜔𝜏𝑘)
2)−1                                     (4.15𝑏) 

 

giving a system of linear equations which can be inverted via a non-negative least square fitting 

routine.  

 

(

 
 
 
 
 
 

(𝜔1𝜏1)2

1+(𝜔1𝜏1)2
⋯

(𝜔1𝜏𝑛)2
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∗ (
𝑀1

⋮
𝑀𝑛

) =

(

 
 
 
 

𝜌𝑛𝑜𝑟𝑚
′ (𝜔1)

⋮
𝜌𝑛𝑜𝑟𝑚

′ (𝜔𝑝)

𝑤𝜌𝑛𝑜𝑟𝑚
′′ (𝜔1)

⋮
𝑤𝜌𝑛𝑜𝑟𝑚

′′ (𝜔𝑝))

 
 
 
 

   (4.16) 

where  

𝑤 = 𝑠
∑ 𝜌′𝑝

𝑘=1

∑ 𝜌′′𝑝
𝑘=1

. 
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The difference between the inversions performed by Nordsiek and Weller (2008) and Zisser et al 

(2010) is simply a weighting factor w that allows for the misfit function to reliably fit both the real 

and imaginary data at the same time since they differ by orders of magnitude. The constant s in 

the expression for the weighting factors in Eqn. 4.16 was typically assigned a value of 1 but for 

some of the samples values between 0.6 and 3 were used (note s is simply a scaling factor). 

We initially used the method of Zisser et al. (2010) to estimate the true DC resistivity o although 

the observed in-phase value at the lowest recorded frequency allowed for a better final fit.   Florsch 

et al. (2014) alternatively proposed to use a Warburg decomposition model that they compared 

against a Debye decomposition. The Warburg model is simply an end-member (Cole-Cole 

parameter α = ½) Cole-Cole distribution (Cole and Cole 1941), which is a modification of the 

Debye distribution. Their procedure assumes a continuous distribution of relaxation times. In their 

approach they compute the response of a single relaxation time and deconvolve it from the 

complex conductivity spectrum to obtain the relaxation time distribution. The Debye 

decomposition performs similarly to the Warburg decomposition but they recommend the 

Warburg distribution since it gives a distribution that is more compatible with pore throat size 

distributions obtained from mercury porosimetry.    

Ustra et al. (2016) suggested a slightly different method in which a minimum number of relaxation 

times are used to fit the observed spectra. This represents a discrete distribution of relaxation times 

where the probability distribution function (pdf) is given by a series of weighted Dirac-δ. Whether 

or not the distribution is discrete or continuous is open for debate but the distinction is likely 

arbitrary as a good fit can be obtained with either method.  

We attempted a few different fitting procedures, including one that implemented a high-order 

least-squares regularization scheme. The differences in the results of the fitting procedures will be 
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discussed later but all of the relaxation times presented below were obtained using, essentially, the 

method of Zisser et al. (2010).  We supply the algorithm with N = 1000 relaxation times distributed 

equally over the frequency range measured. We then invert for the corresponding chargeabilities 

with the physical constraint that they be positive.  

For purposes of comparative assessment, each sample’s characteristic relaxation time c was 

determined using two different criteria for determining 𝜏𝑐.  In the first, a peak or a corner frequency 

was hand-picked from the quadrature spectre (𝜏ℎ𝑝) following Revil et al’s (2015) guidelines; a 

polynomial is fit to the data and the maximum of that function is chosen as the peak frequency. 

Alternatively, the frequency with the highest recorded phase lag can be used but this may lead to 

errors due to under-sampling.  

These are compared with estimates of the mean relaxation times calculated (Eqn. 4.13) from the 

RTD obtained by fitting simultaneously the in-phase 𝜌′() and quadrature 𝜌′′(). It is important 

to note that only those values of the in-phase or quadrature resistivities at frequencies below 100 

Hz were used in order to avoid nonelectrochemical relaxation processes, such as Maxwell-Wagner 

and spurious experimental electrode polarizations (Fig. 4.6).  Fortunately, this lower frequency 

range of 0.01-100 Hz is most applicable to field measurements (Slater and Lesmes, 2002).  

4.4) Results 
 

Before looking at the results of the Debye decomposition, it is useful to examine some of the 

data in a Cole-Cole diagram. This diagram plots the real and imaginary data against each other. 

Materials which exhibit a single Debye type relaxation time plot as a semicircle with the 2 x-

intercepts giving the high and low frequency cut-offs for the real part of the resistivity. Sample 

S5 which exhibits the most Debye like spectrum, can be seen in Fig. 4.8 along with a Debye 
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model and Cole-Cole model. The Cole-Cole model is a variant of Eqn. 4.9 where 𝛼 is an 

adjustable parameter meant to account for materials with a distribution of relaxation times as 

opposed to one. Fig. 4.8 shows a Cole-Cole model with 𝛼 = .7. Minimum and maximum 

resistivities for both models were adjusted to fit the data. Although the Cole-Cole diagram 

provides a somewhat satisfactory fit, it is apparent that a single relaxation time does not describe 

the material and the remaining data is poorly fit by either model. This provides further 

justification for the use of multiple Debye relaxation times to describe the samples.  

  

Figure 4.8- Cole-Cole diagram for sample S5 showing Debye and Cole-Cole models for 

comparison. 

The complex resistivity spectra obtained from inverting the entire dataset below 100 Hz for 

samples S1-S8 (Figs. 4.9-4.12) exhibit either Type a (clear peak) or Type b (corner frequency) 
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responses.  As mentioned earlier, a peak frequency fp is interpreted to mean that there is a dominant 

polarization length   scale, while a corner frequency indicates the largest polarization length scale 

within a distribution.  The best-fit Debye decompositions are shown in Figs. 4.9-4.12 as histograms 

of the chargeability vs relaxation time. For most of the samples, the characteristic frequency is 

interpreted from a clear peak in the quadrature spectrum.  The fit qualities do vary, however.  In 

particular, samples S1 and S2 exhibit more complicated spectra (Fig. 4.11) where determining a 

corner frequency is difficult.  Identifying the corner frequency in sample S2 was the most 

problematic; and the inflection point at which the quadrature spectrum rapidly tends to zero was 

chosen. One notable result from the Debye decompositions is that the inversions tend to produce 

discrete relaxation times similar to those discussed in Ustra et al (2016). Regularization (1st order 

Tikhonov regularization) produced more continuous RTDs but did not greatly affect the mean 

relaxation times which are the important parameter gained from the inversion; as this approach did 

not improve the analysis it was abandoned. Figs. 4.9-4.12 also show that the resistivity varied from 

sample to sample. The small difference in salinity of the electrolytes used for some samples 

accounts for some of this but it is mostly due to the different surface conductivities for the different 

samples (relevant to note that salinity in turn affects surface conductivity). Samples with smaller 

glass beads had significantly higher surface conductivities and thus have lower resistivities.  
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Figure 4.9. Data and Debye decomposition result for samples incorporating clay 1. (a) In-phase 

resistivity spectrum for sample using larger glass beads. (b) Quadrature resistivity spectrum for 

sample using larger glass beads. (c) Relaxation time distribution for sample using larger glass 

beads. (d) In-phase resistivity spectrum for sample using smaller glass beads. (e) Quadrature 

resistivity spectrum for sample using smaller glass beads. (f) Relaxation time distribution for 

sample using smaller glass beads. Arrow indicates the location of the “hand picked” characteristic 

frequency. 
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Figure 4.10. Data and Debye decomposition result for samples incorporating clay 2 (a) In-phase 

resistivity spectrum for sample using larger glass beads. (b) Quadrature resistivity spectrum for 

sample using larger glass beads. (c) Relaxation time distribution for sample using larger glass 

beads. (d) In-phase resistivity spectrum for sample using smaller glass beads. (e) Quadrature 

resistivity spectrum for sample using smaller glass beads. (f) Relaxation time distribution for 

sample using smaller glass beads. Arrow indicates the location of the “hand picked” characteristic 

frequency.  
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Figure 4.11. Data and Debye decomposition result for samples incorporating clay 3. (a) In-phase 

resistivity spectrum for sample using larger glass beads. (b) Quadrature resistivity spectrum for 

sample using larger glass beads. (c) Relaxation time distribution for sample using larger glass 

beads. (d) In-phase resistivity spectrum for sample using smaller glass beads. (e) Quadrature 

resistivity spectrum for sample using smaller glass beads. (f) Relaxation time distribution for 

sample using smaller glass beads. Arrow indicates the location of the “hand picked” characteristic 

frequency. 
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Figure 4.12. Data and debye decomposition result for samples incorporating clay 4. (a) In-phase 

resistivity spectrum for sample using larger glass beads. (b) Quadrature resistivity spectrum for 

sample using larger glass beads. (c) Relaxation time distribution for sample using larger glass 

beads. (d) In-phase resistivity spectrum for sample using smaller glass beads. (e) Quadrature 

resistivity spectrum for sample using smaller glass beads. (f) Relaxation time distribution for 

sample using smaller glass beads. Arrow indicates the location of the “hand picked” characteristic 

frequency.  
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Table 4.3. Summary of the relaxation times obtained from hand picking and from fitting real and 

imaginary spectra. 

Sample 𝝉𝒉𝒑(s) 𝝉𝒃(s) 

S1 1.81 0.0154 

S2 0.0316 0.00851 

S3 2.14 0.211 

S4 0.0784 0.00641 

S5 1.01 0.471 

S6 0.131 0.0766 

S7 1.18 0.615 

S8 0.09 0.0871 

 

The obtained relaxation times are summarized in Table 4.3. The mean relaxation times calculated 

applying Eqn. 4.13 to the RTD obtained from the Debye decomposition were generally lower than 

those determined from direct hand picking of a peak or a corner frequency.  Further, the smaller 

bead samples generally have shorter relaxation times than their coarse-grained counterpart (Fig. 

4.13).   Overlap in the relaxation times between the small and large bead samples comes from 

samples S1 and S2 for which the relaxation times determined by hand-picking of a corner 

frequency are most discrepant with those calculated from the RTD.    If only considering samples 

with a clear peak frequency response, the trend from the “handpicked” values that shows a clear 

division in relaxation time based on glass bead size remains. Fig. 4.14 shows the ratios of 

relaxation times for pairs of samples with the same clay type (𝑅𝑎𝑡𝑖𝑜 =

𝑅𝑒𝑙𝑎𝑥𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑐𝑜𝑟𝑠𝑒 𝑔𝑟𝑎𝑖𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑓𝑖𝑛𝑒 𝑔𝑟𝑎𝑖𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
). This result makes it apparent that hand picking resulted in 

the most similarity between estimates. Fig. 4.15 shows no apparent trends between specific surface 

area and relaxation times for any picking method. 
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Figure 4.13. Comparison of relaxation times estimated using different inversions of the complex 

resistivity versus mean glass bead diameter by (a) hand picking and (b) Debye decomposition of 

the in-phase and quadrature resistivity spectrum. 

 

Figure 4.14. Ratio of relaxation times for samples with the same clay type but different glass bead 

sizes for (a) hand picked values and (b) fitting both real and imaginary spectra.  
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Fig. 4.15 shows the relaxation times as estimated by the different methods as a function of the clay 

specific surface area.   Both show no clear relationship to the specific surface area of the clay.  This 

is not an obvious result because despite the fact that the observed responses require clay be 

incorporated to the mix, the relaxation times appear to depend on the glass bead dimensions.   

 

Figure 4.15. Relaxation time vs the clay specific surface area for relaxation times calculated by (a) 

hand picking and (b) Debye decomposition of the in-phase and quadrature resistivity spectrum. 

Filled and open symbols represent the samples composed of the larger and smaller beads, 

respectively.  

4.5) Discussion 
 

In this section we compare our results to the observations of earlier workers and interpret them 

within the context of various mechanistic models.  To facilitate this, we will first qualitatively 
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outline the existing mechanistic models particularly paying attention to their presumed dominant 

length scales. We will then examine our results along with existing results from literature in order 

to determine which mechanistic models are most likely to be correct, if any. 

4.5.1) Membrane polarization models  

 

In membrane polarization models the characteristic length scales controlling the relaxation 

processes depend on the idealized lengths 𝑙1 and 𝑙2 of, respectively, the large open pores and the 

narrow, ion-selective pore throats as outlined in Fig 4.16. It must be remembered that real pore 

structures have quite different geometries and the model of Fig. 4.16 was used to allow for 

development of tractable solutions.  For simplicity, this discussion is limited to Madden and 

Marshall’s (1959) model (MM) and to Titov et al.’s (2002) short and narrow pores model (SNP).   

However, all membrane polarization models have the same basic components shown in Fig. 4.16.  

The open pore regions denoted A in Fig. 4.16 are “passive”; the electrolyte ions move freely and 

are uniformly concentrated. The narrow ion-selective passages denoted B in Fig. 4.16, in contrast, 

have a higher concentration of counterions due to overlapping grain boundaries (and thus EDLs). 

This means that when a current is applied, the counterions are preferentially displaced in the 

direction of the current creating a surplus on one side of the pore throat relative to the other. 
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Because these are charged particles, the concentration gradient results in a space charge that is 

measured as the IP effect. 

   

Figure 4.16. Idealized pore system (top) and concentration distribution when electric current flows 

(bottom). C0 – equilibrium concentration, C* additional concentration under electric field. J is the 

current density. Region A denotes large open pores while region B denotes narrow, ion-selective 

pores.  

Although all membrane models have essentially these same characteristics, the specifics in the 

derivations of the relaxation time expressions lead to different conclusions about what length scale 

controls the relaxation time. This is true for the two membrane polarization models discussed here. 

MM produces a relaxation time that depends primarily on the length l1 of the passive zone A.  For 

the SNP, the relaxation time instead depends on the length l2 of active zone B. This problem was 

resolved by Bücker and Hördt (2013a, 2013b) who demonstrated that both behaviours can coexist 
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under limiting conditions of validity. Klein and Sill (1982) point out that some of the simplifying 

assumptions made in the MM model derivation prevent it from making accurate quantitative 

predictions. The same thing may be said about the SNP model. However, these models can still 

give insight into the length scales that control characteristic relaxation times. Interested readers are 

directed to the original papers mentioned above for a full derivation. Here we will go through the 

main results (in frequency domain) simply to illustrate what they predict as controlling the 

relaxation time.  

The MM model considers a series combination of clay free (denoted by subscript 1) and clay rich 

(denoted by subscript 2) pore throats to give a complex impedance following Klein and Sill (1982): 

𝑍∗(𝜔) =
𝑙𝐴

𝛽𝐴𝜇+𝐹𝑎
[

1

𝑆𝐴𝜃𝐴
+

𝐽

𝐻𝑆𝐵𝜃𝐵
+

(𝑆𝐵 − 𝑆𝐴)2

𝑆𝐵
2𝑆𝐴

2𝜃𝐵𝜃𝐴 (
𝑋𝐴𝜃𝐵

tanh𝑋𝐴
+

𝑋2𝜃𝐴𝐻
𝐵 tanh𝑋𝐵

)
]                     (4.17) 

where 

𝐻 =
𝑙𝐴
𝑙𝐵

 

𝐽 =
𝐷𝐴

𝐷𝐵
 

𝑆 =
𝑡−

𝑡+
 

𝑋𝑖 =
𝑟𝑖𝑙𝑖
2

 

𝜃𝑖 =
𝑠𝑖 + 1

𝑠𝑖
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𝑟𝑖 = (
𝑖𝜔𝜃𝑖

2𝐷𝑖
)1/2 

and 𝑙 is the length of a pore throat, 𝛽(units m2/V-s) is the ionic mobility, 𝜇+ is the bulk 

concentration of cations (units mol/m3), D is the diffusivity (m2/s), and t is the unitless transference 

number for cations (positive super script) and anions (negative superscript). The subscripts A and 

B denote the clay-free and clay-rich zones, respectively. Fa is Faraday’s constant (96500 

Coulomb/mol) and i is an index that can be A or B. Although this is not easily obvious from 

examination of the equations, Klein and Sill (1982) provided a series of examples to demonstrate 

that the relaxation time depends on the characteristic length lA for the clay free zone.  This is an 

important point that should be kept in mind when we look at the SNP model.  

The SNP model also consists of series combination of short and narrow pores containing clay 

(Region B in Fig. 4.16) and large and open pores that are clay-free (Region A in Fig. 4.16).   The 

SNP model further assumes that the lengths of the clay-free zones are much greater than those 

containing clay; and means that it is only applicable to sediments with a small amount of clay. 

This is appropriate for the samples used in this study. In the SNP model the complex resistivity is 

given by:     

𝜌∗(𝜔) = 𝜌0 (1 − 𝑀 (1 −
1 − 𝑒−2(𝑖𝜔𝜏)

1
2

2(𝑖𝜔𝜏)
1
2

) )                                                    (4.18) 

where  

𝑀 = 4
𝑙2∆𝑛2

𝐴𝐴 + 𝐴𝐵 + (
1
𝐿𝐴

+
1

𝑎𝐵𝐿𝐵
)
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𝜏𝑐 =
𝑙𝐵
2

4𝐷
                

𝐿𝑖 = 𝐴𝑖/𝑙𝑖 

where 𝐴 is a pore’s cross-sectional area, 𝜌0 is the DC resistivity, ∆𝑛 is the difference in ion 

transport numbers for large and narrow capillaries, 𝑎𝐵 is defined as the coefficient of efficiency of 

the active zone equal to the ratio between the conductivity of an average capillary and that of the 

bulk solution, all remaining parameters have been defined previously. From Eqn. 4.18 it should be 

apparent that the relaxation time 𝜏𝑐 in the SNP model depends on the characteristic length l2 of 

clay filled pore throats. This is what distinguishes it from the MM model and, as will be discussed 

later that has serious implications on the interpretation of the experimental results. 

4.5.2) Stern layer polarization models   

 

Numerous mathematical descriptions of the complex conductivity have emerged from variations 

of the Stern model (Leroy et al, 2008; Jougnot et al., 2010; Revil, 2012; Okay et al., 2014), and 

have been used successfully to describe complex conductivity in a variety of sandy clayey 

materials including those which exhibit a type c constant phase angle spectrum (Fig. 4.3).  

 The Stern layer models presume that the continuity of the diffuse layer through the porous material 

controls the migration of charges and hence the real part of the surface conductivity.  Polarization 

of the less mobile Stern layer, as illustrated (Fig. 4.1c) by the migration of the charges within the 

EDL closest to the mineral surface to one side of the mineral grain, controls the capacitance 

associated with the surface conductivity. The characteristic relaxation time (c) therefore has a 

dependence on the perimeter or surface area of the grain being polarized.  Thus, if the polarization 

is due to the polarization of clay particles, and not the pore throat length, which is controlled by 
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the glass beads, we will expect the characteristic relaxation time to correspond to the specific 

surface area of the clays and not the size of the glass beads.     

4.5.3) Comparison to Experimental results 

 

As mentioned earlier, Klein and Sill (1982) demonstrated that the characteristic relaxation time 

was most influenced by glass bead size for samples similar to those used here. They also showed 

the relaxation times increased with increasing clay content. Revil et al. (2015) noted the increase 

in c with increased clay content, but instead explained this in terms of the decreased diffusion 

coefficient for counter ions in the Stern layer of clay particles. If we interpret the change in c as a 

change in length instead of a change in D, the MM model suggests the increased relaxation times 

indicate larger separation distances between the ion selective zones (i.e. the clay filled pore 

throats). In this light, interpreting Klein and Sill’s result based on the MM model seems 

counterintuitive as the distance between ion selective zones should logically decrease upon the 

addition of clay.  

The SNP model, in which the relaxation times correspond to the “length” of the ion selective zones 

as opposed to the distances between them, may be more consistent with the observations.  In this 

scenario, added clay allows larger areas of the passive grains to be coated such that the length of 

the ion selective zone increases.  This happens regardless of any changes to the diffusion 

coefficients.  This occurs only to a point, however, in that the addition of further clay leads to a 

breakdown in the key assumption that the ion selective zones be much smaller than the passive 

zones.  This agrees with observations that clay-rich rocks are the least likely to exhibit a clear peak 

frequency fp. 
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Our results for samples S1-S8 show that the influence of the glass bead sizes on c dominates that 

of clay specific surface areas SSA (Figs. 4.13, 4.14).   This is despite the fact that measurable phase 

lags were not observed until clay was introduced to the glass beak packs.  Further, in the tests with 

the differing clays, the observed c do not appear to be affected by the clays’ SSA (Fig. 4.15).   

This suggests that the Stern layer polarizations, in which the ions are confined close to the clay 

surfaces, do not significantly contribute to the observed polarizations.  

At this point it seems clear that Stern layer polarization does not explain the difference in c for 

our samples. Also, the results for studies using samples with glass beads (Klein and Sill, 1982); 

Titov et al, 2002; Leroy et al,2008) can be explained by a membrane polarization model. That said, 

the majority of SIP data is collected on rocks where it is impossible to completely separate 

constituent minerals. Thus, sieve analysis and mercury injection have been the preferred methods 

for inferring characteristic pore length scales against which SIP relaxation times might be 

interpreted.  

When particle size distribution (PSD) is well characterized, workers (e.g. Leroy et al.,2008; 

Jougnout et al.,2010) have used the PSDs to fit the observed spectra well. Authors have interpreted 

this as support for Stern layer polarization. This neglects the differing effects different minerals 

may have on pore structure and electro-chemical properties.  

Scott and Baker (2003) obtained pore throat diameters using Hg injection porosimetry and showed 

a correlation between the pore throat diameters and c.  Scott (2006) later suggested that there is a 

polarization mechanism at work in the pore space, although they did not hypothesize what the 

responsible mechanism might be.   They suggested, on the basis that the dimensions of the pore 

throats measured by the mercury injection greatly exceeded the expected EDL thickness of ~100 
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nm (Lesmes and Frye, 2001), that membrane polarization was impossible.   However, their 

interpretation neglects the likely occurrence of membrane polarization at the small dimensions 

along grain contacts and the narrowest pore throats, and not in large open pores which are included 

in the mean.   

The concept of a pore throat length (𝑙𝐵) is illustrated in Fig. 4.16. While this provides a useful 

framework that allows for the development of analytic expressions, it is impossible to actually 

measure an average pore throat length in a granular material in order to demonstrate an association 

between it and c experimentally, and the current observations together with earlier glass bead and 

clay mixture experiments (Vaquier,1957; Klein and Sill, 1982; Titov et al,2002) are all consistent 

with SNP model.   Our results cannot be explained by the Stern layer model because, although the 

polarization is caused by the clay particles, the relaxation times do not correlate to the length scale 

of the clay. This means that the grains themselves do not polarize as the Stern layer model assumes.  

Other experimental observations (Klein and Sill, 1982) are inconsistent with the MM model. 

Consequently, the SNP model appears to be most consistent with all results examined here. 

4.6) Conclusion 
 

Seeking additional insight into the origins of low frequency (<100 Hz) electrical polarisations in 

porous sandy-sediments saturated with a weak NaCl electrolyte, we conducted experiments on 

packed mixtures of glass beads with small amounts of different clays.  Specifically, the 

measurements attempted to address whether the pore scale ionic displacements, that control the 

sediment’s characteristic relaxation time c, are most consistently described by either the 

membrane or the Stern-layer polarization models.   The two primary observations are: 
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1) The clay-free glass bead packs display little SIP response within the experimental detection 

limits, but clearly observable polarizations appear upon the addition of small amounts of clay.    

2)  In the clay-containing samples, the observed characteristic relaxation times c increase with the 

radii of the non-clay solid passive grains.  However, c is essentially independent of the differences 

in the clays as quantified by their significantly varying specific surface areas (SSA) and cation 

exchange capacities (CEC).  

Taken together, these observations suggest that Stern layer polarisation, that would depend on clay 

surface dimensions, cannot explain the observed c.   Membrane polarisation models, that depend 

primarily on the length of pore throats in the direction of current flow, most appropriately explain 

our observations. Observed correlations between pore throat diameter and c result from the 

correlation between an idealized pore throat length and the measurable pore throat diameter. 

Further studies of this type using a greater variety of glass bead sizes with better known grain 

size distributions can be used to constrain the relationship between grain size and relaxation time 

more precisely.   

The results presented here should influence the interpretation of IP data when conductive or semi-

conductive grains can be assumed absent. Changes in quadrature conductivity magnitudes may 

indicate a change in the surface properties of the grains which is influenced by the pore fluid 

chemistry. On the other hand, changes in the relaxation times indicate changes in polarization 

length scales which can be related to chemically inactive grains. An example of what my cause 

this is fractures, which, create a new network of narrow pore throats which can affect average 

relaxation times for the material. 
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Appendix 
Table 4.A1. Measured in-phase and quadrature resistivities at various frequencies for sample S1 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 118 0 

0.02 117 0.02 

0.04 117 0.12 

0.08 117 0.23 

0.1 117 0.25 

0.2 117 0.39 

0.4 117 0.47 

0.8 115 0.52 

1 115 0.54 

2 114 0.58 

4 113 0.61 

8 113 0.67 

10 113 0.61 

20 112 0.76 

40 111 0.93 

80 111 1.26 

100 111 1.39 

200 110 1.83 

400 110 2.62 

800 109 3.93 

1000 108 4.53 

 

Table 4.A2. Measured in-phase and quadrature resistivities at various frequencies for sample S2 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 27.6 0 

0.02 27.6 0 

0.04 27.6 0 

0.08 27.5 0 

0.1 27.5 0 

0.2 27.5 0 

0.4 27.5 0 

0.8 27.5 0 

1 27.5 0 

2 27.5 0.024 
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4 27.5 0.048 

8 27.5 0.057 

10 27.4 0.043 

20 27.4 0.072 

40 27.3 0.086 

80 27.3 0.100 

100 27.3 0.110 

200 27.2 0.138 

400 27.2 0.256 

800 27.1 0.402 

1000 27.1 0.482 

 

Table 4.A3. Measured in-phase and quadrature resistivities at various frequencies for sample S3 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 59.6 0.79 

0.02 59.6 0.83 

0.04 58.6 0.86 

0.08 57.5 0.87 

0.1 57.1 0.88 

0.2 56.5 0.85 

0.4 56.0 0.82 

0.8 55.4 0.80 

1 55.1 0.80 

2 54.6 0.76 

4 54.1 0.72 

8 53.6 0.68 

10 53.4 0.68 

20 52.9 0.67 

40 51.6 0.67 

80 51.4 0.68 

100 51.4 0.68 

200 51.1 0.68 

400 50.8 0.85 

800 50.5 0.94 

1000 50.5 0.99 
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Table 4.A4. Measured in-phase and quadrature resistivities at various frequencies for sample S4 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 30.6 0 

0.02 30.6 0.011 

0.04 30.6 0.005 

0.08 30.5 0.011 

0.1 30.5 0.005 

0.2 30.5 0.005 

0.4 30.5 0.011 

0.8 30.5 0.021 

1 30.5 0.037 

2 30.5 0.043 

4 30.5 0.037 

8 30.5 0.027 

10 30.4 0.021 

20 30.4 0.032 

40 30.4 0.058 

80 30.3 0.122 

100 30.3 0.153 

200 30.2 0.232 

400 30.1 0.341 

800 30.0 0.570 

1000 30.0 0.663 

 

Table 4.A5. Measured in-phase and quadrature resistivities at various frequencies for sample S5 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 108 1.82 

0.02 108 2.60 

0.04 108 3.29 

0.08 107 3.83 

0.1 107 4.00 

0.2 105 4.09 

0.4 102 3.76 

0.8 101 3.12 

1 100 2.88 

2 99 2.13 

4 99 1.44 

8 98 0.89 

10 98 0.70 

20 97 0.39 

40 97 0.27 

80 96 0.32 
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100 96 0.42 

200 95 0.78 

400 95 1.58 

800 95 3.14 

1000 95 3.91 

 

Table 4.A6. Measured in-phase and quadrature resistivities at various frequencies for sample S6 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 24.4 0 

0.02 24.4 0.034 

0.04 24.4 0.068 

0.08 24.5 0.090 

0.1 24.5 0.098 

0.2 24.4 0.153 

0.4 24.3 0.178 

0.8 24.3 0.195 

1 24.2 0.198 

2 24.1 0.193 

4 24.0 0.167 

8 23.9 0.133 

10 23.9 0.112 

20 23.8 0.0788 

40 23.7 0.066 

80 23.7 0.083 

100 23.7 0.095 

200 23.7 0.116 

400 23.6 0.214 

800 23.5 0.308 

1000 23.50 0.349 

 

Table 4.A7. Measured in-phase and quadrature resistivities at various frequencies for sample S7 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 66.4 0.60244 

0.02 67.0 0.72524 

0.04 65.7 0.83675 

0.08 65.4 0.90121 

0.1 65.3 0.9112 

0.2 64.9 0.90552 

0.4 64.6 0.82251 

0.8 64.3 0.70661 

1 64.2 0.63869 
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2 63.3 0.44225 

4 63.2 0.30872 

8 63.1 0.17614 

10 63.1 0.12109 

20 63.1 0.13219 

40 62.7 0.22967 

80 62.9 0.23037 

100 62.9 0.44981 

200 62.6 0.68857 

400 62.5 1.0693 

800 62.3 1.958 

1000 62.2 2.3679 

 

Table 4.A8. Measured in-phase and quadrature resistivities at various frequencies for sample S8 

Frequency (Hz) In-Phase resistivity (ohm-m) Quadrature Resistivity (ohm-m) 

0.01 23.4 0.090 

0.02 23.5 0.090 

0.04 23.5 0.094 

0.08 23.6 0.086 

0.1 23.6 0.086 

0.2 23.5 0.094 

0.4 23.5 0.098 

0.8 23.4 0.110 

1 23.4 0.114 

2 23.3 0.118 

4 23.2 0.114 

8 23.2 0.109 

10 23.1 0.105 

20 23.1 0.113 

40 23.0 0.124 

80 22.9 0.128 

100 22.9 0.136 

200 22.8 0.152 

400 22.8 0.195 

800 22.7 0.290 

1000 22.7 0.349 
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Chapter 5 

Conclusions and directions for future 

research 

5.1) Contributions of Work Described Here 
 

Electrical measurements hold a wealth of information on fluid properties and pore geometry. 

However, there remains a lack of understanding on how best to extract this information. To this 

end, the work presented has made 3 contributions by: i) Demonstrating how electrical properties 

can be used to help constrain inversions for elastic parameters, ii) providing a novel experimental 

setup for studying the effects of fracture induced anisotropy and iii) providing measurements 

which suggest that a membrane polarization mechanism is responsible for observed induced 

polarization responses.  

First, we contribute a set of measurements that show the nature of the pressure dependence for 

elastic wave velocities and electrical resistivities. Both are pressure dependent due to the opening 

and closing of microcracks. By treating the cracks as nominally flat, rough surfaces in contact, we 

were able to combine models for electrical conductivity and elastic stiffness of cracked/fractured 

rock. Doing this allowed us to constrain the microstructural parameters of the model better than 

had been done by previous workers while still fitting the data well. The model can be used to help 

predict changes in surveys (seismic and electrical) expected after well production or injection. 

We then presented a novel experimental set up for studying the effects of fractures on electrical 

anisotropy. The use of artificial samples allowed us to definitively show that the observed 

anisotropy was caused by fractures. It also allowed us to know the specific orientation of the 
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fracture and the crack porosity of that sample. The measured anisotropy ratios were used to provide 

an empirical equation that gives the anisotropy ratio as a function of the ratio of crack porosity to 

total porosity. It was also shown that the change in the inverse formation factors (in directions 

perpendicular and parallel to the fracture) were all quite close to the crack porosity. This supports 

the idea that the inverse formation factor is a measure of the porosity connected by lines of current. 

This work can be used to model the change in anisotropy expected in reservoirs after they have 

been fractured. 

Finally, we provided spectral induced polarisation measurements on artificial sediments. The 

sediments were composed of one of four types of clay and one of two sizes of glass beads. The 

experiment was designed to determined weather the observed response was most likely due to 

Stern layer polarization of membrane polarization. The results suggested that, although the clay 

grains caused the observed polarization, the glass bead size controlled the characteristic relaxation 

time. This along with other results in the literature suggest that membrane polarization is 

responsible for the observed relaxation times in rocks and sediments. An examination of Debye 

decomposition suggested that hand-picked relaxation times from observed spectra are more 

reliable than those picked from averaging relaxation times obtained from inversions. This work 

should affect the way changes in SIP spectra are interpreted. 

5.2) Suggestions for Future Research  
 

The first two chapters both dealt with the effects of cracks and fractures on electrical properties. 

The problems of pressure dependence and anisotropy were therefore examined independently. 

However, future research should integrate these two problems since they both are caused by cracks 
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and fractures. The following is a list of topics that we were unable to complete and remain to be 

done: 

• Further constrain the relationship between the anisotropy ratio and the ratio of crack 

porosity to total porosity in an environment with oriented fractures. 

• Perform elastic wave velocity and electrical conductivity measurements at elevated 

pressures to obtain full elastic stiffness and conductivity tensors for anisotropic rocks. 

• Model the effects of fractures on conductivity in terms of a crack density tensor like that 

used by Kachanov (1992). This would allow for better integration of the effective medium 

models for elastic parameters with an electrical conductivity model of cracked solids. 

The third chapter dealt with the mechanism behind induced polarization in sediments. Because of 

the measurement is so sensitive to noise (owing to very small phase lags that have to be measured), 

much of the time was dedicated to learning how to do the measurement accurately. Because of this 

there were several topics of interest that were not done. The following is a list of topics that we 

were unable to complete and remain to be done: 

• Examine the effects of cracks and fractures on induced polarization in rocks that typically 

show a clear peak frequency. 

• Examine the effects of different biofilm growths on characteristic relaxation time. This 

has been proposed as a mechanism for fracture healing in concrete and SIP is a suggested 

way of monitoring it.  
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