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Abstract 

Human activities are increasingly fragmenting the natural world. A unifying theme in this thesis 

is understanding the expected diversity within artificially or naturally discrete habitat networks. I 

start by testing a common expectation regarding the species composition of small habitat 

patches, which are usually assumed to support only common species. In a meta-study of 175 

published studies, I found that in over 80% of datasets, some species were found only in the 

smallest patches. Moreover, loss of only the smallest patches comprising less than 20% of total 

habitat area would remove, on average, 12.7% of species, more than twice the 5.8% predicted 

from species-area relationships. This suggests that groups of small patches should not be 

assumed to comprise only common species. I then explored a second commonly held, but little 

tested, theory - that rapid accumulation of species when patches are combined in small-to-large 

size order is due to high beta diversity, driven by habitat heterogeneity. Using 38 published 

abundance datasets, I test competing explanations for the observed difference in the species 

richness of groups of small patches, relative to the largest patch using path analysis. I found that 

beta diversity, evenness of species abundance and size-bias in sampling efficiency explain 

comparable amounts of variation. Both increased and decreased evenness contributed to 

differences in species richness, suggesting multiple mechanisms contribute to differences in 

species richness between large and small patches. I conclude that assuming habitat heterogeneity 

accounts for the rapid accumulation of species when combining patches in small-to-large order is 

an over-simplification. This chapter also provides the first objective evidence that less effective 

sampling of larger patches could over-estimate the difference in species richness between groups 

of small patches and a single large patch. I next used sampling theory to develop and validate a 

suite of models predicting the expected number of shared species under any spatial and 

abundance distribution, allowing the effects of sub-division to be distinguished from the effects 
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of habitat loss. The models were validated using empirical and simulated data and predict shared 

species and total species number in sub-divided habitat with high accuracy (R2 > 0.99, relative 

root mean square error < 0.05). Using the models, I show that only when individuals are 

randomly positioned will the number of species be unaffected by sub-division; any amount of 

intraspecific aggregation results in an increase in the expected species richness of sub-divided, 

relative to contiguous, habitat of equal total area. In other words, several small patches should 

contain more species than a single large patch as this is a probable consequence of intraspecific 

aggregation. Although this does not preclude some independent positive effect of sub-division on 

species diversity, it is not necessary to invoke such a mechanism to explain the presence of more 

species in sub-divided habitat. In my final data chapter, I use the new models to explore the 

effects of habitat loss and sub-division for different spatial and abundance distributions. I 

simulate the destruction of 20-90% of original habitat area, comparing the number of species that 

would be present if the remaining proportion of habitat was divided into 1-32 patches. This 

analysis showed that as the amount of sub-division of a given area increases (i.e., as the 

remaining habitat is broken into more, but smaller, pieces), the number of additional species 

reaches a maximum, indicating a diminishing ‘benefit’. Second, it showed that under the most 

even species abundance distributions (hereafter SAD), the loss of 90% of habitat (i.e., 90% of 

individuals), removed less than 3% of original species, compared with up to 40% under the least 

even SAD. A general prediction follows, where highly even SAD, (e.g., typical of tropical 

forest), could suffer few initial extinctions from habitat loss, but be vulnerable to delayed 

extinction, while less even SAD (e.g., typical of higher latitudes) might face the reverse 

situation. This thesis makes applied and theoretical contributions to conservation biology by 

providing insights relating directly to the SLOSS and fragmentation per se debates. From an 
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applied perspective, it contributes new understanding relating to rapid species accumulation in 

small patches. The main theoretical contribution has been the application of sampling theory to 

predict the expected number of species under sub-division and habitat loss.  
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Context and snapshot of research 

At the time of initiating this research, the question of how diversity is affected by sub-division 

was not only incompletely understood, it was highly controversial. This thesis contributes to 

resolving this controversy by improving understanding of the expected patterns of diversity in 

discrete habitat patch networks, both natural and artificial. Central to debate in the contemporary 

(and historical) literature are two questions: (i) the importance – or not – of small patches of 

habitat for biodiversity conservation and (ii) whether the effects of sub-division on species 

diversity can be interpreted as positive or negative. I address both. After reviewing the 

theoretical landscape in Chapter 1, I present four chapters, formatted for publication, that address 

both theoretical and applied aspects of the questions. 

 In Chapter 2, I demonstrate that the commonly held notion that small patches contain 

only common species is typically not correct. The implication is that the loss of groups of 

small habitat patches – whether naturally occurring or created by fragmentation – can be 

expected to reduce species representation across habitat networks.  

 In Chapter 3, I consider a well-known ecological pattern where groups of small patches 

usually contain more species than a single large patch of equal total area. I test the most 

common explanation - beta diversity due to environmental heterogeneity – against three 

alternative hypotheses. I illustrate the potential for some largely ignored, alternative 

explanations to contribute to this pattern and show richness differences could be over-

estimated due to a size-dependence in sampling efficiency. 

 In Chapter 4, I develop an analytical modelling approach to identify the expected effects 

of habitat sub-division on diversity (as distinct from habitat loss) and validate it using 

simulated and empirical data. I show that common patterns of species accumulation 



xiv 

among sub-divided habitat are a statistical expectation when intraspecific aggregation is 

present. I discuss the importance of this finding for the fragmentation per se debate. 

 In Chapter 5, I apply the modelling framework of Chapter 4 to demonstrate the relative 

effects of spatial and abundance distributions adding several additional insights to those 

of Chapter 4.  

Finally, in Chapter 6, I review the overall implications of my research for the expectation of 

species richness in sub-divided habitat. I highlight future directions for investigation and discuss 

some limitations and uncertainties. 
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Chapter One: Introduction  

1.1 Species conservation in an increasingly patchy world 

It has been estimated that by the end of the 20th century, more than half of the terrestrial land 

surface had become dominated by human land uses (Ellis et al., 2010). As a result of this 

burgeoning human geographical footprint, it has been argued that conservation reserves will not 

determine the future of biodiversity (Chazdon et al., 2009, Kareiva and Marvier, 2012, 

Mendenhall et al., 2014). Rather it will depend on how well diversity can persist in these mixed 

‘countryside landscapes’ (Daily et al., 2001, Pereira and Daily, 2006), where self-assembling 

pockets of semi-natural habitat persist, immersed in a landscape matrix dominated by human 

land uses.  

 

My research interests are inspired by recognition that there exists, within those human-

dominated landscapes, many different networks of discrete patches of semi-natural habitat. 

Among these are formerly continuous biomes (e.g., woodland, forest, grassland) that now find 

themselves as isolated patches, surrounded by other contrasting land cover. But there are also 

those habitat types, whose patches have always existed in isolation from one another, such as 

lakes and wetlands. When species’ populations within these discrete habitat networks are 

connected via dispersal, they are referred to as metacommunities (Hanski and Gilpin, 1991, 

Wilson, 1992). Classical metacommunity ecology essentially emerged as an umbrella framework 

that integrates many different ecological theories relevant to patchy habitats, including niche 

theory, mass effects, patch dynamics and competition theory (synthesised in Leibold et al., 

2004). Within the metacommunity framework, these theories are understood via their position 

along three major axes of variation: ecological equivalence of species, dispersal and 
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environmental heterogeneity (Leibold et al., 2004, Logue et al., 2011, Winegardner et al., 2012). 

What emerges at the intersection of these axes is the distribution of individuals in space and time 

that determines the patterns of diversity we observe. 

 

Although the metacommunity framework is conceptually appealing, it is not clear how the many 

constituent theories can be used to understand the effects of habitat sub-division in a predictive 

sense. In this thesis, my focus is instead on testing the role of different spatial patterns and 

abundance distributions in leading to the patterns of diversity we observe in sub-divided habitat. 

In the first two data chapters, I consider all types of discrete habitat networks, natural or 

artificial, including continental, oceanic and inland island archipelagos, habitat islands and 

remnant fragments. However, the intensity of debate in the current literature, provided a clear 

imperative to understand the role of fragmentation (or more neutrally ‘sub-division’) on 

diversity. Within the context of habitat loss and sub-division, I explore how variations in spatial 

and abundance distributions affect our expectation for species diversity in sub-divided habitat. It 

is my belief that such understanding holds the potential to resolve much of the controversy 

around the effects of habitat sub-division on diversity.  

 

In the remainder of this introductory chapter, I define some important terminology, before 

reviewing some of the controversies at the heart of recent (and not so recent) debate over the 

effects of sub-division on diversity (section 1.3) and illustrating how my research fits within this 

ecological milieu (section 1.4). 
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1.2 Defining ‘diversity’ for the purposes of this thesis 

There are many elements to biological diversity (Magurran, 2009, Maurer and McGill, 2011). In 

this thesis, I have intentionally focussed on the simplest and most widely used measure; the 

number of species present, or species richness. Although richness is an incomplete measure of 

diversity that can be problematic to estimate (Gotelli and Colwell, 2011, Maurer and McGill, 

2011, Chao and Jost, 2012), it is also an intuitive and iconic metric that is meaningful to 

scientists, politicians, policy makers and the general public alike (Magurran and McGill, 2011). 

It is also the most widely available type of species data. 

 

More importantly, it is arguable that research into the determinants of species richness has been 

heavily weighted towards patch-scale patterns, with the great majority of effort focused on 

understanding the mechanisms determining local scale (alpha) diversity; or, how compositional 

change (beta diversity) arises among the sampling units at which alpha diversity is quantified. 

Fragmentation research has also been weighted toward local (patch) scale diversity (Haila, 2002, 

McGarigal and Cushman, 2002) at the expense of patterns that emerge in networks of habitat 

patches (Fahrig, 2017, Fahrig, 2019, Lindenmayer, 2019). My research focuses on understanding 

how landscape-scale species richness of discrete habitat networks is shaped by spatial and 

abundance distributions, within the constraints of patch number and size. A theoretical 

expectation for this has been lacking in the context of interpreting the effects of habitat sub-

division on diversity. 
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1.3 A brief review of controversy in habitat sub-division research  

If controversy over the effects of habitat sub-division on species richness could be traced to a 

single source, it would probably be the application of Macarthur and Wilson’s (1967) 

equilibrium theory of island biogeography to conservation reserve design. This came to a head 

with the publication of a set of design principles partially attributed to island biogeography 

theory claiming a large reserve will hold more species at equilibrium than a small reserve 

(Diamond, 1975b). Others disagreed that this conclusion followed inevitably from island 

biogeography theory, arguing it makes no prediction of the total diversity among a group of 

smaller islands of equivalent total area (Simberloff and Abele, 1976, Higgs and Usher, 1980). 

The total number of species, they argued, will depend on species overlap among the small 

patches and empirical evidence tended to support more species being present in a group of 

smaller sites (Simberloff, 1976, Simberloff and Abele, 1976). These exchanges ignited the well-

known controversy over conservation reserve design referred to as the ‘single-large-or-several-

small’ (SLOSS) debate. Rather than ever being resolved, the SLOSS debate seems to have ended 

up as a general consensus that there exists no ‘one size fits all’ geometric basis for designing 

conservation reserves (e.g., Shafer, 1990, Lomolino, 1994, Ovaskainen, 2002, Hokkanen et al., 

2009, Tjørve, 2010). In fact, as I suggest below, it is arguable that it has simply re-emerged 

under a different name.  

 

Another major piece of the habitat-subdivision-controversy jigsaw was put in place by Quinn 

and Harrison (1988), who introduced a graphical method to compare the accumulation of species 

with area in discrete habitat networks (islands and habitat islands; see Chapter 3). Their method 

involved building species accumulation curves in patch size order – from the smallest to the 
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largest and the reverse - and plotting them on a common set of axes. The resulting pair of curves 

allows comparison of the rate of accumulation of species with area when adding small, relative 

to large, patches. In an analysis of 30 datasets, they found 29 in which the small-to-large curves 

approached asymptote (i.e., total species richness of all patches) at a smaller accumulated area 

than the large-to-small curve (Quinn and Harrison, 1988). This pattern, partially established as an 

empirical expectation by Simberloff and others at the onset of the SLOSS debate, has been 

repeatedly demonstrated in diverse habitat types (island, fragments, habitat islands) and taxa 

(e.g., Robinson and Quinn, 1992, Baz and Garcia Boyero, 1996, Tscharntke et al., 2002b, 

Peintinger et al., 2003).  

 

The typical explanation offered for more rapid accumulation of species through combining the 

smallest patches is that it is probably due to increased environmental heterogeneity as the small 

patches are distributed over a wider extent than a single consolidated patch (Gilpin and 

Diamond, 1980, Kitchener et al., 1980, Fahrig, 2017). I have however found only two, very 

recent, explicit tests of this hypothesis, both in freshwater island systems (Liu et al., 2018, 

MacDonald et al., 2018b). Other possible explanations exist (see Chapter 3). In my view, 

attempting to understand why this curiously ubiquitous macroecological pattern arises would be 

more productive than arguing the merits of the pattern for informing conservation. 

 

Irrespective of the cause, one of the important interpretations of the small-to-large pattern is that 

it suggests small patches are not depauperate in diversity (Fahrig, 2017, Fahrig, 2018, Fahrig et 

al., 2019). This assertion has been central in the most recent incarnation of the ‘how does habitat 

sub-division affect diversity’ controversy, known as the ‘fragmentation per se’ debate (Fahrig, 
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2017, Haddad et al., 2017, Fahrig, 2018, Fletcher et al., 2018, Fahrig et al., 2019). At a time 

when action is urgently needed to address biodiversity decline to offset the expansion of human 

activity (Brooks et al., 2002, Butchart et al., 2010, Pereira et al., 2010, Newbold et al., 2015), 

policy-makers are faced with conflicting views on how best to preserve diversity. Despite 

decades of research effort on the effects of fragmentation (reviews in Wilcox and Murphy, 1985, 

Shafer, 1990, Saunders et al., 1991, Andrén, 1994, Fahrig, 2003, Fischer and Lindenmayer, 

2007, Didham et al., 2012, Fahrig, 2017), ecologists are arguably as far as ever from reaching 

consensus. 

 

1.4 Setting the scene: competing paradigms for the organization of species diversity across 

discrete habitat networks 

To a useful generalization, the entire debate over habitat sub-division can be summarised as a 

tension between two equally well supported theoretical paradigms (Fahrig, 2017). Rather than 

truly distinct theoretical paradigms, they represent convenient end points for illustration; there is 

certainly overlap of ideas within and among them. However, by simplifying them in this way, 

they help to emphasise the contrasting views embodied in the habitat sub-division debate. I will 

refer to them as the ‘spatial coexistence’ and ‘extinction-colonisation’ paradigms. The research 

in this thesis can be mapped onto some points of conflict for these two theoretical paradigms, 

within the context of the predictions they make for the effects of sub-division on species 

composition and richness (Fig. 1.1).  

 

What I call the ‘spatial coexistence’ paradigm is a body of research that has focussed on 

explaining how coexistence is achieved by spatial partitioning of species. It emphasises the role 



 

7 

of niche theory in determining where species live; the optimal environmental conditions for 

different species are separated in space (or time), which supports their coexistence (Hutchinson, 

1957, Macarthur and Levins, 1967). It also includes theories that explain species coexistence 

across patches through escaping superior competitors, such as the competition-colonization 

theory (Levins and Culver, 1971, Tilman, 1994). Spatial coexistence theory then, largely 

provides explanations for patterns of beta diversity (here meaning differences in composition 

among habitat patches) in discrete habitat networks (Fig. 1.1).  

 

In contrast, the paradigm I refer to as ‘extinction-colonization’ emphasises the role of 

demographic rates in determining the persistence of populations and therefore species 

coexistence in space. This includes an influential set of theories such as nested subsets, 

metapopulations and island biogeography (MacArthur and Wilson, 1967, Patterson and Atmar, 

1986, Hanski, 1999). Among the predictions from this view of sub-divided habitat is that small 

patches provide poor habitat, being prone to higher extinction due to supporting only small 

populations. Species assembly within patches under this paradigm is largely assumed to be a 

more-or-less neutral function of dispersal and extinction rates, meaning the most common and 

abundant species have the highest probability of being present in the smallest patches (Fig. 1.1). 

 

Classical metacommunity theory (Leibold et al., 2004) largely integrates the bodies of theory I 

refer to as the spatial coexistence and extinction-colonization paradigms. In contrast, sampling 

theory does not (necessarily) make any specific claim about the roles of niche, competitive, 

demographic or other ecological processes. Rather it uses the different patterns of distribution 

that arise as a result of the integration of these processes to predict the resulting species diversity 
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patterns in space (Kobayashi, 1985, He and Legendre, 2002, Plotkin and Muller-Landau, 2002, 

Green and Ostling, 2003, Harte et al., 2008, Kitzes and Harte, 2014, Kitzes and Harte, 2015). 

Spatial sampling theory has advanced understanding and expectation for how species diversity 

assembles, and scales, with area. However, there have been few attempts to use sampling theory 

to directly address the question of sub-division (Harte and Kitzes, 2012, Hanski et al., 2013). 

One of the useful contributions spatial sampling theory could make to the debate over the effects 

of sub-division is providing an expectation for what diversity in sub-divided habitat should look 

like. Attempts to date have tended to focus on establishing upper and lower bounds (Arnillas et 

al., 2017, Chisholm et al., 2018). 

 

Among my contributions in this thesis is the application of sampling-theory-based methods and 

predictions to the question of how sub-division affects species richness (Chapters 4-5). By so 

doing, I hope to resolve some of the uncertainties over the way that diversity should be expected 

to assemble in discrete habitat patches, given different spatial and abundance distributions in 

continuous habitat.  

 

1.5 Hypotheses under test 

Having set out the broad theoretical scene, I can explain the relevance of my thesis chapters 

within this context, shown diagrammatically in Fig. 1.1.  

 

In Chapter 2, I test the hypothesis that small patches typically contain only common species. I 

reason that if this were true, then the destruction of only the smallest patches would not reduce 

the number of species found across the network of discrete habitat patches. In contrast, were 
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some species distributed only within the smallest patches then removing patches in order of 

increasing size will reduce the total number of species. I use a database of 175 published datasets 

to test the hypothesis by removing all patches to a maximum of 20% of the total area of all 

patches. I then analyze proportional species loss using regression. I anticipated that the loss of 

only the smallest patches would reduce total species number, particularly for plants and 

invertebrates in aquatic habitat islands such as wetlands. 

 

In Chapter 3 I challenge the most-common explanation for the rapid accumulation of species 

among several small patches relative to individual large patches of equivalent area: that it is due 

to increased beta diversity. I pose three alternative hypotheses (i) that a shift in competitive 

hierarchies could produce the same effect by altering species abundance distributions in the 

small patches; (ii) that size-dependent disproportionate sampling effort could be underestimating 

richness of the large patches; and, (iii) that it depends on taxonomic group. Using 38 published 

abundance datasets I use individual-based null models and confirmatory path analysis to test 

support for the four hypotheses to explain the difference in richness within the single largest 

patch and the combined smallest patches (to a lesser or equal total area). I anticipated that both 

sampling and evenness in abundance will contribute to differences and that small-to-large 

dominance in richness will differ among taxa. 
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Figure 1.1 Thesis outline showing hypotheses under test within the context of relevant ecological theory
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In Chapter 4 I develop a modelling framework to test how sub-division (fragmentation per se), 

as opposed to habitat loss, affects species diversity. To achieve this, I combine the sampling 

theory used to derive species-area relationships from species abundance distributions (Fig. 1.2) 

and spatial patterns (Fig. 1.3) to model zeta diversity (the expected number of species shared 

among all sites) of multiple patches of habitat. I validate the model using empirical and 

simulated data. The validated framework introduces a novel means to investigate the effects of 

sub-division on species richness analytically. 

 

In Chapter 5 I apply the modelling framework developed in Chapter 3 to simulated landscapes 

to test the hypothesis that total species numbers across multiple patches depend on the relative 

evenness of their species abundance distributions and their spatial distributions. I created 

landscapes that combine four different species abundance distributions of increasing evenness 

(approximating the range of the niche pre-emption to the broken stick species abundance 

models) with four different spatial patterns (three levels of aggregation and random placement) 

in a factorial experiment. I then destroyed increasing fractions of habitat (20-90%) and compared 

the diversity patterns as the remaining areas were sub-divided into 1-32 patches of equal size. 

Simulations explain some commonly observed patterns in sub-divided habitat and pose some 

new hypotheses. 
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Figure 1.2 Rank abundance distributions contrasting in evenness. Each curve represents a 

different species abundance distribution (SAD), with Pielou’s evenness shown in the legend. 

If all species had equal abundance, the SAD would be a horizontal line with evenness of 1. 

 

 

Figure 1.3 Contrasting intraspecific spatial patterns. Each panel illustrates the location of 

100 individuals from a single species distributed according to a spatial pattern shown in the 

panel heading. 
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Chapter Two: Loss of only the smallest patches will reduce species diversity in most 

discrete habitat networks 

2.1 Abstract 

Under many global-change scenarios, small habitat patches are the most vulnerable to 

destruction. For example, smaller ponds are at greater risk in a drying climate and their loss 

would remove any obligate aquatic individuals present. I asked what proportional loss of species 

diversity from metacommunities comprised of discrete habitat patches should be expected from 

attrition (complete loss) of only the smallest patches under such a premise. I analyzed 175 

published datasets for different taxonomic groups (vertebrates, invertebrates and plants) and 

habitat types (islands, habitat islands and fragments). I simulated the destruction of only the 

smallest patches to an approximate 20% of total area (range 15.2 – 24.2%) and analyzed species 

loss. Mean [±95% CI] species loss was 12.7% [10.8, 14.6], although 18.3% of datasets lost no 

species. Four broad patterns of species loss were evident, reflecting underlying differences in 

minimum area requirements and spatial turnover among patches. Regression modeling showed 

species loss increased with greater species turnover among patches (βSIM) and decreased with 

greater slope of the power-law species-area relationship. Losses also increased with greater 

numbers of single-patch endemics and with increasing proportions of patches destroyed. After 

accounting for these predictors, neither taxonomic group nor habitat type explained variation in 

species loss. Attrition of the smallest patches removed species in >80% of metacommunities, 

despite all larger patches and >75% of total area remaining intact. At both 10 and 20% area 

reduction, median species loss across all datasets was around 50% higher than predicted from 

methods based on the species-area-relationship. I conclude that any mechanism of global change 
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that selectively destroys small habitat patches will lead to imminent extinctions in most discrete 

metacommunities. 

 

2.2 Introduction 

Networks consisting of discrete patches of habitat arise naturally from environmental 

heterogeneity and artificially through human habitat fragmentation. Species accumulation curves 

can be built for such networks by combining patches in order of their size – either from the 

smallest to the largest or the reverse. When the two curves are compared to determine the 

number of species accumulated for a given amount of area, the small-to-large ordering typically 

accumulates many more species (e.g., Quinn and Harrison, 1988, Cook, 1995). Early interest in 

this pattern was largely driven by controversy over conservation reserve design (i.e., the SLOSS 

debate; Diamond, 1975b, Simberloff and Abele, 1976) but the plotting of size-ordered species 

accumulation curves remains a popular means to compare the diversity of groups of smaller sites 

(e.g., Fischer and Lindenmayer, 2002, Le Roux et al., 2015, Richardson et al., 2015) or to 

explore differences in this pattern among groups of species or management areas (e.g., Peintinger 

et al., 2003, Mitsuo et al., 2011, Gavish et al., 2012). There is however a conservation 

implication of this pattern that has been largely ignored: how would the systematic loss of the 

smallest patches affect the species diversity of discrete habitat networks? 

 

This is an important question given the conservation value of small patches for a diverse range of 

taxonomic groups and discrete habitat types, including reptiles, birds and plants in forest and 

grassland fragments (Turner and Corlett, 1996, Fischer and Lindenmayer, 2002, Rosch et al., 
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2015, Lion et al., 2016), invertebrates and vascular plants in lakes and wetlands (Virolainen et 

al., 1998, Peintinger et al., 2003, Scheffer et al., 2006, Richardson et al., 2015) and invertebrates 

on oceanic and continental islands (Borges and Brown, 1999, Dapporto and Dennis, 2008).  

 

For many metacommunity types, the loss of patches in approximate order of increasing size is 

plausible under different global-change scenarios. For example, smaller terrestrial remnants are 

more susceptible to complete loss (attrition) following landscape fragmentation (Forman, 1995). 

In tropical rainforest fragments, reduction in biomass and recruitment at patch edges (Laurance 

et al., 1997) can result in an inward contraction of the patch, with small patches at greater risk of 

attrition (Gascon et al., 2000). Smaller forest fragments are also more prone to on-going 

clearance for agriculture as they often lack formal conservation protection (Piquer-Rodriguez et 

al., 2015). Aquatic metacommunities are perhaps at even greater attrition risk, with the loss of 

smaller ponds and wetlands occurring during agricultural expansion (Serran and Creed, 2016), 

landscape drainage (McCauley et al., 2015) or in drying climates (Zacharias and Zamparas, 

2010). For wetlands in an agricultural landscape in southern Australia, loss of patches in small-

to-large size order would result in a near-worst-case loss of vascular plant species from the 

metacommunity (Deane et al., 2017a). 

 

Habitat loss from fragmentation is unequivocally detrimental for biodiversity (Fahrig, 2003, 

Haddad et al., 2015), yet in heavily modified landscapes, any remnant patches of native habitat 

become critical for biodiversity conservation (e.g., Tscharntke et al., 2002a, Lindborg et al., 

2014, Decocq et al., 2016). Even if current trends of fragmentation could be halted immediately, 

the legacy of decades of land clearance still need to be understood and managed (Haddad et al., 
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2015) and there is increasing interest in understanding the consequences of different patch loss 

patterns on fragmented landscapes (e.g., Economo, 2011, Mouquet et al., 2013, Arnillas et al., 

2017, Chisholm et al., 2018, Resetarits et al., 2018). Quantifying the risk to biodiversity 

associated with loss of smaller patches from discrete habitat ‘archipelagos’ of all types is an 

important step toward planning any necessary conservation interventions.  

 

Destruction of smaller patches would result in the lowest - possibly zero - loss of species from a 

landscape where the species composition of smaller sites comprised subsets of the species found 

in larger sites – that is, under strong nestedness on a gradient of patch area (Darlington, 1957, 

Patterson and Atmar, 1986, Worthen, 1996). For this to occur, habitat diversity, quality and 

availability would all need to scale predictably with patch area (Simberloff and Martin, 1991, 

Wright et al., 1998, Honnay et al., 1999). However, the commonly observed pattern of rapid 

small-to-large species accumulation (Quinn and Harrison, 1988), coupled with the low tendency 

for island, or habitat island, biota to form nested subsets by richness or area (Matthews et al., 

2015) suggests this is probably rare in nature. With destruction of the smallest patches, I 

expected the more random cooccurrence patterns of invertebrates (Baz and Garcia Boyero, 1996, 

Boecklen, 1997, Scheffer et al., 2006) and the tendency for rare plants to occur in small 

terrestrial and wetland patches (Simberloff and Gotelli, 1984, Richardson et al., 2015, Deane et 

al., 2016) would result in higher proportional loss of species among invertebrate and plant 

metacommunities. In contrast, the larger minimum area requirements, greater mobility and more 

nested matrix structures of mammal and bird metacommunities (Patterson and Atmar, 1986, 

Watling and Donnelly, 2006, Matthews et al., 2016) should lead to lower species loss. 
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Using published data, I modeled the loss of species following the destruction of the smallest 

patches to represent an approximate 20% reduction in total habitat area. This is half the 

maximum acceptable habitat loss threshold suggested by Yin et al. (2017) but consistent with a 

loss of habitat that might occur with attrition of only the smallest patches under the global-

change scenarios described above. I compared observed species loss against a null model 

assuming random placement of species among patches and modeled the loss of species as a 

function of predictors quantifying nestedness on gradients of area and richness, area-scaling 

relationships, species turnover and cooccurrence patterns. Results confirmed my general 

expectations and demonstrated that overall diversity in more than 80% of metacommunities 

would be reduced following destruction of only the smallest patches. 

 

2.3 Methods 

2.3.1 Simulating patch attrition and quantifying species loss  

For each dataset, I ranked patches in increasing size order and simulated destruction of patches 

constituting a target proportion of 20% of the total area of all patches in the metacommunity. As 

patches were irregularly sized, it was usually not possible to select patches that removed 

precisely 20% of area. Instead I removed the number of patches that resulted in an area loss 

between 15 and 25%, selecting the closest value to 20%. For 11 datasets it was not possible to 

obtain a percentage of total area within this window, leaving 164 datasets for analysis at a 

notional 20% area reduction (Table 2.1, Appendix A.1). I included the exact proportional area 

removed as a covariate in all models to account for variation in this value. I also tested for any 
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sensitivity in proportional species loss to the integer number of removed patches, the proportion 

of total area these constituted and the proportion of total patch number. I found no evidence for 

proportional area (Pearson’s r = 0.05, t161 = 0.51, p = 0.60), or number of patches removed (r = 

0.09, t161 = 1.2, p = 0.22). However, the proportion of total patches removed to achieve a 20% 

reduction in area had a weak, yet statistically significant, positive association with the proportion 

of species removed (r = 0.23, t161 = 3.0, p = 0.002). I included both the integer number and 

proportion of total sites removed as predictors (see Predictor Variables). While selection of 20% 

was effectively an arbitrary proportion of area to remove, I was guided by a recently proposed 

maximum acceptable loss threshold of 40% (Yin et al., 2017) and chose this as a realistic amount 

of habitat that might be destroyed. I re-ran the same analysis by removing a notional 10% of area 

(actual range 5.3-14.9%; results presented in Table 2.5, Section 2.8) but that did not qualitatively 

change the results of 20% removal. I conclude that the results provide broad inference on the risk 

of species loss that could be expected following destruction of the smallest patches while 

retaining 80% of total area in the largest patches in a diverse range of taxonomic groups and 

discrete habitat types.  

 

Prior to analysis, I tested for any evidence that differences in sampling effort across the studies 

might affect estimates of species loss. I was particularly concerned that studies using only a 

single census might underestimate species incidence relative to studies that collated surveys from 

multiple studies or repeated sampling events, but found little evidence of any effect of survey 

methods on proportional species loss at 10% (Wilcoxon rank sum test; W = 3163, p = 0.85) or 

20% (W = 2527, p = 0.20) area loss.  
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2.3.2 Sources of data 

I compiled data from published sources providing near-complete census data for discrete habitat 

patch networks. I included ‘true’ islands (i.e. terrestrial habitat surrounded by water, whether 

marine or freshwater), habitat islands (which I define as naturally occurring patches of habitat 

surrounded by a hostile matrix, e.g., lakes, wetlands, montane or ‘sky’ islands) and fragments of 

vegetation of any type. I included hilltop islands created by flooding during the creation of water 

reservoirs. Data were compiled from the following three sources: (1) “Web of Science” literature 

searches, January 2017, (using keywords: NESTED*; SPECIES AREA; INCIDENCE; 

OCCURRENCE; DIVERSITY; ISLAND; HABITAT ISLAND; FRAGMENT*, (2) citation 

tracking and by reviewing reference lists from comparable meta-studies (e.g., Quinn and 

Harrison, 1988, Cook, 1995, Matthews et al., 2015), and (3) the original sources of datasets 

provided with the software program of Atmar and Patterson (1995). Through this approach I 

identified 175 datasets providing minimum information on patch area and presence-absence (or 

abundance) of each species within each patch (see Appendix A.1 for a list of data sources).  
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Table 2.1 Distribution of datasets among discrete habitat types and taxonomic groups for a 

20% reduction in area.  ‘Inland archipelagos’ are either lake or hilltop islands isolated by 

flooding following reservoir creation; ‘Continental archipelagos’ are marine islands located 

on the continental shelf or within bays near to contiguous mainland areas; ‘Oceanic 

archipelagos’ are found in the open ocean far from any continental mainland areas; ‘Forest 

fragments’ were predominantly tropical, but include some sub-tropical and temperate 

woodlands; ‘Patchy vegetation’ consists of structurally defined natural habitat islands of 

vegetation isolated by a contrasting vegetation matrix, e.g., naturally occurring forest 

patches (capões) in Brazilian grasslands; ‘Montane (sky) islands’ are high elevation sites in 

mountain ranges isolated by intervening non-mountainous areas; ‘Wetlands and lakes’ 

were permanent or semi-permanent waterbodies but include some riverine floodplain 

wetlands and lake systems periodically connected via river systems. Taxonomic groups 

were: invert = invertebrates, plant = vascular plants and fungi; vert NV = non-volant 

vertebrates; vert V = volant vertebrates.  

Patch type Taxonomic group Total 

count:  invert plant vert NV vert V 

Inland archipelagos 1 2 3 3 9 

Continental archipelagos 16 1 9 6 32 

Oceanic archipelagos 2 5 1 8 16 

Forest fragments 13 6 12 16 47 

Grass/shrubland 

fragments 

5 3 6 3 17 

Montane (sky) islands - - 5 7 12 

Patchy vegetation 1 - 1 3 5 

Wetlands and lakes 14 8 2 2 26 

Total count: 52 25 39 48 164 
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2.3.3 Comparison of species loss with the random-placement model 

To provide a null model to compare loss of species with area I used the random-placement 

species-area model (Arrhenius, 1921, Coleman, 1981). This model predicts the number of 

species found in sub-area a of larger area A, assuming species are randomly located in space. The 

random-placement species-area curve and its variance are (Coleman, 1981):  

 𝑆𝑎 = 𝑆 − ∑ (1 −
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𝐴
)
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where 𝑛𝑖 is the abundance of species i. The probability of presence within sub-area a is the 

complement of the probability of absence and the equivalent endemics-area relationship 

predicting species found only in a given sub-area is (Green and Ostling, 2003):  
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𝑎
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with corresponding variance:  
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For these data, I lacked knowledge of species abundance, but instead used the distribution of 

species incidence (presence-absence) on patches to estimate the random placement model. I first 
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calculated the column sums of each site by species presence-absence matrix and then used this 

incidence vector in equations 2.3 and 2.4 in place of the abundance vector ni. I was not aware of 

prior application of the random-placement model using incidences across discrete habitat patches 

and so first verified equations 2.3 and 2.4 using a re-sampling approach. I removed patches in 

random order and recorded accumulated species and area lost at each increment. I repeated this 

process many times and averaged over both species lost and area removed to produce a smooth 

curve. As shown in Figure 2.3 (Section 2.8), equation 2.1 closely predicts expected loss of 

species based on removing patches in random order, while an interval of 2 standard deviations 

above and below the expectation calculated with 2.2 closely coincide with 95% empirical 

confidence limits from re-sampling.  

 

In this analysis, I used the random-placement endemics-area model in two ways. First, I 

subtracted the observed species loss at the notional area reduction threshold with two standard 

deviations above the random placement prediction based on 2.2. This takes a positive value if the 

observed species loss exceeds the upper 95% confidence interval of the random placement 

model. I used this value (denoted ‘rp20’) as a response variable in regression modeling as 

described in the following section. Second, I used the random placement prediction as a 

qualitative null model, comparing the observed pattern of small-to-large species-loss curve 

against the null model to identify differences among datasets. I grouped these into a minimum 

number of pattern types and used this to help infer possible mechanisms that could restrict some 

species to smaller patches that would result in their loss were those patches all to be destroyed. 
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2.4 Regression analyses 

I used regression modeling to explore variations in species loss among datasets following 

destruction of small patches. I built two sets of models each using different response variables (i) 

proportional species loss (spr20, the ratio of observed species loss and overall diversity) and (ii) 

deviations from the random-placement model prediction (rp20, calculated as described in the 

previous section). These provide complementary information as spr20 quantifies absolute species 

loss, while rp20 indicates the difference in species loss from a null expectation under a 

hypothesis of random placement of species among patches after having accounted for differences 

in the incidence distribution among datasets.  

 

As predictor variables, I required measures to compare different matrix characteristics. Two 

broad approaches have been used to analyze the internal matrix structure for presence absence 

data. The most common approach historically has been to analyze individual measures such as 

cooccurrence or nestedness (e.g., Diamond, 1975a, Patterson and Atmar, 1986). More recently 

there has been interest in classifying metacommunities within a framework according to their 

degree of coherence, turnover and boundary clumping (Leibold and Mikkelson, 2002, Presley et 

al., 2010). As my interest was in understanding how matrix structures affect species loss rather 

than classification, I used a combination of individual measures of matrix structure quantifying 

cooccurrence, β-diversity and nestedness, while accounting for differences in matrix dimensions 

(Ulrich et al., 2018).  
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For cooccurrence, I calculated the C-score, which measures the number of checkerboard pairs of 

species occurrences (Diamond, 1975a) relative to the maximum possible number, with the matrix 

ordered by marginal totals (Stone and Roberts, 1990). C-scores that take higher values indicate 

lower cooccurrence of species pairs, and a matrix that is, on average, more segregated. I used 

two measures of β-diversity, proportional turnover (βP = 1 – α/γ where α is mean species richness 

of patches and γ represents overall metacommunity species richness) quantifying the proportion 

of species among all patches not found in a single patch (Tuomisto, 2010); and, βSIM, the 

multiple-site generalization of Simpson’s pairwise dissimilarity measure quantifying species 

turnover among sites independently of differences in species richness (Simpson, 1943, Baselga, 

2010). For nestedness, I used the NODF metric of Almeida-Neto et al. (2008), calculated along 

gradients of species richness (NODFSR) and patch area (NODFAR). The overall NODF statistic is 

the weighted average of two separate components representing paired overlap among sites and 

species. For a gradient of species richness, these quantify overlap in composition of species 

found in depauperate and speciose sites, and cooccurrence of narrowly distributed species with 

those found more widely. Ulrich et al. (2018) show raw scores for individual measures of 

internal structure depend non-linearly on matrix dimensions and suggest the use of effect sizes 

based on null model comparisons and the use of the number of sites and species as statistical 

covariates in regression. For each matrix I calculated normalized effect sizes as the raw metric 

score minus the mean of 1000 null communities simulated using the fixed-fixed algorithm 

(Ulrich et al., 2018) for the C-score and NODF metrics (based on both patch area and species 

richness gradients) using R-package vegan (Oksanen et al., 2017).  
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In addition to the measures of matrix structure described above, I was interested in how the 

scaling of species number with area affected the importance of smaller patches for 

metacommunity diversity. If species number increases more rapidly with increments in area, then 

smaller patches are likely to contain relatively small proportions of overall diversity. To provide 

a measure of differences in this scaling relationship between richness and area I fit the power-

law island species-area model, 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑐 ×  𝐴𝑟𝑒𝑎𝑧, where c and z are parameters and larger 

positive values for the exponent z indicate higher rates of species accumulation with increasing 

area (Connor and McCoy, 1979). I fit the power-law model to each dataset and used the fitted z 

as a predictor in regression modeling, expecting that higher values for z would be more likely to 

result in lower proportional species loss for removal of small sites as they would contain 

relatively few species. I also included the proportion of species that were found in only one patch 

(single-patch endemics) as a predictor expecting the loss of species would increase for larger 

proportions of endemic species. 

 

Finally, to test for any intrinsic variation attributable to life form or patch isolation, I included 

three categorical descriptors of the datasets. The first captured broad differences among 

taxonomic groups following comparable meta-studies (e.g., Gotelli and McCabe, 2002, 

Matthews et al., 2016), while retaining adequate sample size within factor levels: taxonomic 

group (comprising four levels: invertebrates, volant vertebrates, non-volant vertebrates and 

plants; plants here included both vascular plants, lichen and fungi, which I grouped together as 

sessile organisms). The second categorical predictor was based on differences in phase contrast 

between the matrix and the habitat patch as suggested by Watson (2002) (comprising three 
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levels: water-terrestrial, terrestrial-terrestrial, terrestrial-water). Finally, I tested for differences in 

species loss among habitat types (comprising three levels: true islands, habitat islands and 

fragments). 

 

My final predictor set for the regression modeling comprised (i) 8 continuous variables: 

normalized effect sizes for the C-score (Cs) and the two nestedness statistics on gradients of 

species richness and area (NODFSR, NODFAR); the two β-diversity measures (βP and βSIM); the 

exponent of the power-law species-area model (zSAR); the proportion of species found in only 

one patch (prEnd); the proportion of total site number removed (prSite); (ii) three categorical 

predictors (matrix contrast, CT; taxonomic group TG; and patch type PT); and, (iii) three 

continuous statistical covariates proportional area destroyed (area), log-transformed overall 

number of species (lnSpp) and number of sites (lnSite). I also tested for differences in the 

proportion of species among the categorical predictors using the Kruskal-Wallis statistic and did 

post hoc comparisons using Fisher’s least significant difference with a Type I error probability of 

0.05, implemented with R-package agricolae (de Mendiburu, 2017). 

 

2.4.1 Model and predictor selection and uncertainty 

I modeled proportional species loss for notional area reductions of 20% (spr20; also repeated for 

a 10% reduction - Table 2.5) using binomial generalized linear mixed models (GLMM). 

Following Warton and Hui (2011), the random effect in the model is a normally distributed 

intercept for each dataset to account for overdispersion in the binomial response (a global model 

including all predictors had a ratio of residual deviance to degrees of freedom of 2.3). I then fit a 
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global model using only linear combinations of all predictors and used all subsets selection based 

on Akaike’s Information Criterion corrected for small sample size (AICc) to select the top-ranked 

model and quantify model selection uncertainty among the candidate set. Modeling was done 

using R-packages lme4 (Bates et al., 2015) and MuMIn (Barton, 2017). I calculated pseudo-R2 

for the top-ranked model based on a likelihood ratio test against a model containing only an 

intercept (Nagelkerke, 1991).  

 

For the response variable measuring deviation from the random-placement model (rp20) I used 

multiple linear regression and followed the same model selection approach described above. All 

predictors used in regression modeling were standardized to allow for comparison of coefficients 

as a measure of effect size. 

 

2.5 Results 

Across all datasets, proportional species loss for destruction of the smallest patches at a notional 

20% loss of area (range: 15.2 – 24.2) was 0.127 [0.108, 0.146] (mean ± [95 % CI]). The number 

of species removed exceeded the upper 95% confidence limit for the random-placement model in 

75 datasets (45.7% of the total number), while no species were removed in 30 datasets (18.3%). 

There were statistically detectable differences in proportional species loss among the different 

taxonomic groups (Kruskal-Wallis χ2 = 21.0, df = 3, p < 0.001) and contrasts in matrix phase (χ2 

= 8.6, df = 2, p = 0.014), but not among patch types (χ2 = 0.3, df = 2, p = 0.86). Invertebrates and 

plants had higher proportional loss than groups of volant vertebrates and non-volant vertebrates, 
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while aquatic habitat surrounded by a terrestrial matrix was higher than terrestrial habitat in a 

terrestrial matrix but neither differed from terrestrial habitat in a water matrix (Fig. 2.1). 

 

Figure 2.1 Proportional species loss for 20% area reduction  a. taxonomic groups (Invert = 

invertebrates, Plant = vascular plants and fungi; Vert (NV) = non-volant vertebrates); Vert 

(V) = volant vertebrates) and b. differences in phase contrast between the habitat and the 

matrix (Tt = terrestrial habitat, terrestrial matrix; Tw = terrestrial habitat, water matrix; 

Wt = aquatic habitat, terrestrial matrix). Boxplots show the distribution of proportional 

species loss among groups and those with the same letter code do not differ at the 5% level 

based on Fisher’s least significant difference.  

 

Although proportional species-loss as patches were removed in small-to-large order did not 

typically follow a smooth curve, four broad patterns were evident (Fig. 2.2; Table 2.2; Appendix 
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A.2). In threshold patterns, species loss commenced only after some patch-size was exceeded 

(Fig. 2.2a) and commonly resulted in zero species loss at 20% area reduction. Random patterns 

(Fig. 2.2b) were consistent with the random-placement model and typically resulted in low, but 

non-zero, proportional species loss for a 20% area loss. Step patterns emerged where destruction 

of most small patches led to no species loss but removing a limited number of sites did (Fig. 

2.2c). In some cases, this pattern produced proportional loss of species exceeding the random-

placement prediction, although most small sites did not contribute to this. A linear pattern of 

species loss occurred where the loss of most small patches contributed to species loss from the 

metacommunity, resulting in a proportional loss of species that clearly exceeded the upper 

confidence limits of the random placement prediction (Fig. 2.2d).  
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Figure 2.2 Example datasets illustrating four patterns of species loss from 

metacommunities as patches are removed in small-to-large size order.  The solid line is the 

random placement endemics-area curve, with dashed lines indicating an approximate 95% 

confidence limit. Points show the cumulative loss of species associated with the removal of 

each patch and all patches smaller than it. The vertical dashed line shows where species 

loss was for the notional 20% loss of area; patterns illustrated refer to the area to the left of 

this line. See also Table 2. a). Threshold pattern (~20% of datasets): destruction of small 

patches results in no species loss, which occurs only after removal of patches exceeding 

some size threshold. Data: mammals in montane islands of the U.S. Great Basin (Brown, 

1978); b). Random pattern (~9% of datasets): species loss follows the random-placement 

model. Data: birds in natural forest patches in southern Brazil (Dos Anjos and Bocon, 

1999); c). Step pattern (~44% of datasets): species loss occurs in a stepwise manner, with 

destruction of most small patches not removing species while a select few did. Data: 

orthopterans in grassland fragments, Austria (Essl and Dirnbock, 2012); d). Linear pattern 

(~27% of datasets): loss of most small patches results in species loss with the accumulated 
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proportion removed consistently exceeding the upper 95% confidence limit of the random 

placement model. Data: spiders in vegetation fragments, Israel (Gavish et al., 2012).  

 

Table 2.2 Proportion of datasets for different life form groups that followed each species-

loss pattern at 20% area loss.  See Table 1 for a breakdown of datasets by patch type and 

Fig. 2 for a description of the species-loss patterns. Bolding indicates the most common 

pattern for each life form. See also Appendix A.2 for size-ordered species-loss curves for all 

datasets. 

Life form Threshold Random Stepped Linear 

Invertebrates 0.04 0.13 0.40 0.43 

Plants 0.04 0.21 0.33 0.38 

Non-volant vertebrates 0.35 0.02 0.51 0.07 

Volant vertebrates 0.27 0.06 0.42 0.23 

  

For regression models of proportional species loss at a 20% habitat reduction (i.e., spr20) there 

was little uncertainty in model selection, with five models in a 95% confidence set (Table 2.3). 

The top ranked binomial GLMM (wAICc = 0.5; pseudo-R2 = 0.67; Tables 2.3, 2.4) contained a 

total of eight predictors, although three of these were statistical covariates. Of the five retained 

by model selection, four were retained in all models (Table 2.3). The strongest effect size based 

on standardized coefficients was for the multiple-site species turnover measure, βSIM, which had 

a positive effect (Table 2.4). The exponent of the power-law species-area relationship (zSAR) and 

the proportion of single-patch endemics had effects of similar magnitude but were opposite in 

their effects: larger zSAR was associated with lower species loss, while species loss increased with 

an increasing proportion of endemic species (Table 2.4). A larger proportion of patches 

destroyed was also associated with higher species loss. C-score was the final predictor in the top-
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ranked model but had a small coefficient value (Table 2.4) and was one of four predictors found 

in only one model in the 95% confidence set, the others being nestedness by area (NODFAR, 2nd  

ranked model, wAICc = 0.16), nestedness by species richness (NODFSR, 5th ranked model, 

wAICc = 0.08) and the categorical predictor indicating the phase contrast between the habitat and 

the matrix (CT, 4th ranked  model, wAICc = 0.12).  

 

Regression models for a notional 10% loss of area (range = 5.3 - 14.9%) produced results 

qualitatively similar to that of the 20% reduction described above (Table 2.5). The number of 

datasets losing no species was higher (23.4% of datasets) while mean (± [95 % CI]) species loss 

was lower at 0.080 [0.067, 0.093]. The proportion of datasets exceeding the random-placement 

prediction at the 5% level was also slightly lower (42%). Model selection results for 10% area 

reduction were consistent with a 20% loss (spr20), with each of the six models comprising the 

95% confidence set containing the same four predictors common to all models for 20% area loss 

(i.e., prEnd, prSite, zSAR and Cscor; Table 2.5). There were some changes in their relative effect 

size though, with the proportion of single-patch endemics having the largest coefficient values at 

10% area reduction (Table 2.5). Model uncertainty was also higher, with the top-ranked model 

having a weight of support (wAICc) of 0.33.  
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Table 2.3 Model selection results for the 95% confidence set of binomial GLMM  (i.e., for 

spr20), ranked by Akaike’s Information Criterion corrected for small sample size (AICc). 

Model structures and selection statistics are shown in rows, each representing a model in 

order of decreasing weight of support. Inclusion of predictors in each model are shown by 

the symbols, with open circles denoting negative coefficients. Predictor codes refer to the 

following measures (see Methods): βSIM = multiple-site measure of overall species 

turnover; zSAR = the exponent of the power-law island species-area relationship; prE = 

proportion of endemics (species found in only one patch); prS = proportion of sites 

removed; Cs = normalized effect size for the C-score; NA = normalized effect size for 

NODF nestedness statistic on a patch area gradient; NS = normalized effect size for NODF 

nestedness statistic on a patch species richness gradient. Model selection statistics: df = 

model degrees of freedom; LL = log likelihood; ∆AICc is the difference in AICc compared 

with the top-ranked model of lowest AICc; wAICc is the weight of support for the model. 

Statistical covariates included in all models were the total number of sites and species in the 

metacommunity (both log-transformed) and proportional area removed.  

Rank Predictors df LL ∆AICc wAICc 

βSIM zSAR prE prS Cs NA NS CT 

1 • ◦ • • ◦    10 -386.2 - 0.50 

2 • ◦ • •  •   10 -387.4 2.2 0.16 

3 • ◦ • •     9 -386.5 2.5 0.14 

4 • ◦ • •    • 11 -388.1 2.9 0.12 

5 • ◦ • •   •  10 -386.3 3.6 0.08 

 

When the deviation from the random placement model prediction (rp20) rather than proportional 

species loss was used as the response variable in regression models, results were again similar 

(Table 2.6, Chapter 2 Supporting information). Model uncertainty was much greater in this 
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analysis, with 35 models in the 95% confidence set. The most notable difference for rp20 from 

the species-loss models (spr20) was the absence of the proportion of local endemics (prEnd) 

among the predictors in the five models receiving at least 5% support (Table 2.6). This is readily 

understood as the random-placement model is based on the incidence distribution and large 

numbers of rare species increase the expected loss of species, removing their influence on the 

resulting deviation from the model. Other predictors were as for the proportional species loss for 

20% area reduction (spr20), with the two largest effect sizes being a negative influence of the 

power-law island SAR exponent (zSAR) and a positive effect from increasing multiple-site species 

turnover (βSIM), which together accounted for 66% of explained variation (Table 2.6). 
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Table 2.4 Standardized coefficients for top-ranked spr20 model  (wAICc = 0.5, see Table 3) 

for proportional species loss when removing patches in size order to a total of 20% area 

destroyed. Pseudo-R2 = 0.67. Est. = estimated coefficient, SE = standard error, z-stat = z-

statistic for each coefficient; P(>|z|) = Type I error probability. Note lnSite, lnSpp and area 

were included in all models to account for differences in matrix dimensions and 

proportional area removed. Other predictors selected based on all-subsets selection from a 

global model including 8 continuous and 2 categorical predictors. Standard deviation for 

random term accounting for overdispersion = 0.36. 

Code  Description of predictor Est. SE z-stat P(>|z|) 

Int Intercept -2.27 0.06 -36.8 <0.001 

βSIM multi-site species turnover 0.57 0.10 5.8 <0.001 

zSAR exponent of power-law SAR -0.47 0.05 -9.3 <0.001 

prEnd proportion of endemic species 0.47 0.07 6.6 <0.001 

prSite proportion of total sites 0.33 0.05 6.3 <0.001 

Cscor C-score (normalized effect size) -0.13 0.06 -2.2 0.03 

area proportion of area removed 0.04 0.05 0.7 0.48 

lnSpp total number of species (log) 0.06 0.06 1.0 0.31 

lnSite total number of sites (log) -0.29 0.08 -3.4 <0.001 

 

2.6 Discussion 

2.6.1 Loss of only the smallest patches would reduce diversity in most metacommunities 

Rapid accumulation of species diversity when patches are combined in small-to-large size order 

is a well-known phenomenon (e.g., Quinn and Harrison, 1988, Cook, 1995, Peintinger et al., 

2003), yet there has been little interest in quantifying how the loss of small patches would impact 

overall diversity in metacommunities (although see Deane et al., 2017a). I found that sequential 
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destruction of the smallest patches would remove at least some species in over 80% of 

metacommunities, even if the largest patches (containing > 75% of total area) remained intact.  

 

Theoretical and experimental studies are increasingly concerned with how various landscape 

configurations or patterns of patch-loss could impact overall metacommunity diversity 

(Economo, 2011, Mouquet et al., 2013, Arnillas et al., 2017, Chisholm et al., 2018, Resetarits et 

al., 2018); given the size-related attrition risk facing many discrete habitat types under global 

change, it seems prudent to understand the importance of small patches in this context. Although 

I found that plants and invertebrates systems lost a significantly higher proportion of species, 

these differences can be attributed to differences in species turnover and area-scaling of diversity 

(Fig. 2.4, Chapter 2 Supporting information), which largely determined the proportional loss of 

species. After accounting for these patterns, neither taxonomic group nor matrix contrast 

explained any additional variation. Although individual size-ordered species-loss curves differed 

considerably, four distinct patterns were evident, suggesting a limited number of ways the loss of 

small patches would impact overall diversity. 

 

2.6.2 Accounting for the different patterns of patch-size-ordered species loss curves 

Small habitat patches in discrete networks are generally assumed (and often found) to be 

dominated by generalist species (e.g., Bender et al., 1998, Sfenthourakis and Triantis, 2009, 

Capizzi et al., 2015). If small patches support only these widespread generalist species, their 

destruction would not reduce overall species diversity. I observed this in the threshold pattern, 

for around 20% of metacommunities. Predictably, this was most common in vertebrates, 
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particularly non-volant groups, which tend toward nested distributions and large minimum area 

requirements (Patterson and Atmar, 1986, Wang et al., 2010). However, 68% of vertebrate 

datasets lost at least one species for a 20% reduction in total area, suggesting the impact from 

small patch destruction for these groups is lower, but not entirely negligible.  

 

I found a stepped pattern of species loss was the most common response, where loss of most 

small patches removed no species yet removal of a select few did. This indicates that some rare 

species were found only within small patches, though most were more widespread. There are at 

least two biological explanations. First, if some species were actively colonizing the smallest 

patches, cumulative loss of those patches might remove these species. Both amphibian and 

invertebrate taxa have been found to actively colonize smaller patches to avoid predatory fish 

(Chesson, 1984, Resetarits and Wilbur, 1989, Resetarits and Binckley, 2014). Second, if certain 

environmental conditions were associated only with smaller patches, these might support species 

not found in larger sites. This is consistent with a species sorting metacommunity (Leibold et al., 

2004), a commonly identified paradigm in both terrestrial and aquatic systems (Cottenie, 2005, 

Logue et al., 2011, Heino et al., 2015). Historical or evolutionary factors can also produce unique 

species composition in small habitat patches. In the Azores, for example, the number of endemic 

arthropod species depends more on geological age than island area (Borges and Brown, 1999).  

 

In about 25% of datasets, loss of most small patches reduced overall diversity. I refer to this as 

the linear pattern although the actual shape of the response differed widely among datasets (see 

Appendix A.2 for all species loss curves). The linear pattern was most common in vascular plant 

and invertebrate metacommunities, which tend toward more segregated (Wellborn et al., 1996, 



 

43 

 

Gotelli and McCabe, 2002, Scheffer et al., 2006) less nested matrix structures (Boecklen, 1997, 

Peintinger et al., 2003). These matrix characteristics favor increased spatial turnover and higher 

numbers of locally endemic species, both of which were positively correlated with species loss in 

this study. Post hoc analyses suggest these predictors also explained much of the variation in 

species loss among taxonomic groups (Section 2.8.1, Chapter 2 Supporting information).  

 

The spatial turnover component of β-diversity (βSIM) represents replacement, rather than loss, of 

species among sites (Baselga, 2010) and is therefore a measure of how likely it is that patches 

will contain different species. Spatial turnover depends on environmental, spatial and organismal 

characteristics (Nekola and White, 1999) and these are difficult to disentangle. However, in 

heterogeneous environments, rates of dispersal differentiate the metacommunity paradigms of 

mass effects and species sorting (Leibold et al., 2004, Logue et al., 2011). High rates of dispersal 

would be expected to homogenize composition (Mouquet and Loreau, 2003), reducing 

endemicity and allowing species to persist within (or re-colonize) sink habitats with low or 

negative population growth rates by immigrating from source populations (Brown and Kodric-

Brown, 1977, Shmida and Ellner, 1984, Pulliam, 1988). In contrast, intermediate dispersal favors 

increased turnover due to spatial niche separation, where each species occupies optimal 

environmental conditions (Leibold et al., 2004). The linear pattern of species loss appears to be 

favored under greater among-patch environmental heterogeneity and moderate dispersal. The 

differences I observed in species loss among taxonomic groups are likely to be due to the 

different scales at which they experience heterogeneity. 
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In around 10% of datasets, I found species loss for small patch removal consistent with the 

random placement of species across patches (Connor and McCoy, 1979, Coleman, 1981, 

Andrén, 1994). This pattern occurred in a diverse set of metacommunities subject to cyclical 

disturbance, including long-distance migratory birds of Finnish taiga-forest fragments (Haila et 

al., 1993), invertebrates of temporary natural ponds or artificial water storages (Urban, 2004, 

Markwell and Fellows, 2008) and weedy plants in vacant urban lots (Crowe, 1979). Bird 

metacommunities from naturally-occurring forest patches in Brazil (Dos Anjos and Bocon, 1999) 

and fragmented temperate British (McCollin, 1993) and US (Blake, 1991) woodland fragments 

also followed this pattern. 

 

2.6.3 The role of area-scaling of diversity and patch number  

The exponent (z-value) for the island species-area relationship (ISAR) had a negative correlation 

with proportional species loss from smaller patches though the distribution of values did not 

differ among life forms (Section 2.8.1). When species-area curves are built in a cumulative 

fashion by adding only those new species encountered as the sampled area increases, larger 

exponents indicate higher species turnover in the metacommunity (Tjorve and Tjorve, 2008) and 

there should be a high positive correlation between species turnover and exponents. However, 

this relationship does not hold for island species-area relationships (e.g., the Pearson correlation 

between βSIM and zSAR for my data was -0.08), because they are built from discrete samples and 

compositional overlap among sites is unknown (Simberloff and Abele, 1976). For ISAR, smaller 

exponents simply mean there is less disparity in local species number between small and large 

patches. If fewer species are present in small patches relative to large ones, there should also be 
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fewer rare species and the impact of small patch loss on overall diversity should in general 

decrease as ISAR exponents increase as I found.  

 

Island species-area relationships themselves have a long, though controversial, history of use in 

area-based extinction prediction (reviewed in Lewis, 2006). Although I do not use ISAR to 

predict species loss directly, it is interesting to place modeled species loss within this historical 

context. A traditional power-law species-area estimate assuming a z-value of 0.25 (e.g., May et 

al., 1995) would suggest losses of ~4 and 7% of species for the destruction of 15 and 25% of 

total area, respectively. This is around 50% lower than median proportional species loss across 

all datasets (~ 6 and 10%). The shortcomings of this approach are however well known and 

improving extinction predictions in fragmented landscapes is an active area of research (e.g., 

With, 2016, Arnillas et al., 2017, Chisholm et al., 2018). 

 

Species loss also increased with the destruction of larger proportions of total patch number. 

Since all species occupy a finite number of patches, increasing the proportion of patches 

destroyed must increase the probability of overall species loss – unless only widespread species 

are present in those patches. Even when area is controlled for, the number of species 

accumulated often increases with patch number (e.g., Simberloff and Gotelli, 1984, Baz and 

Garcia Boyero, 1996, Hu et al., 2012). Hu et al. (2012), found that this pattern was driven by rare 

plant species, their number increasing monotonically with the number of reservoir-lake islands 

accumulated, while all common species were sampled at around half total island number. Deane 

et al. (2016) reported a similar pattern for rare plant species in seasonal wetlands of an 

agricultural landscape in southern Australia, which increased the number of wetlands required to 
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represent all species by 50%. The importance of patch number in this analysis suggests 

metacommunities comprising few large and many small habitat patches might lose a greater 

proportion of species from any process resulting in small-to-large size-ordered patch attrition.  

 

2.6.4 Uncertainties and limitations 

My scenarios model imminent (or immediate) extinction - where all individuals of a species are 

contained within destroyed habitat (Kinzig and Harte, 2000). From a conservation perspective, 

this considers only species representation, not persistence (Margules and Pressey, 2000). 

Similarly, I ignore any impact of small patch loss on species committed to extinction from 

reduced habitat area (i.e. extinction debt; Diamond, 1972, Tilman et al., 1994). Small patch loss 

could have on-going effects on population dynamics affecting persistence and extinction debt, 

for example by reducing colonization success where patches provide stepping-stones that 

facilitate dispersal (MacArthur and Wilson, 1967, Semlitsch and Bodie, 1998, Lindborg et al., 

2014). Extinction debt can comprise a large proportion of extant diversity (Triantis et al., 2010, 

Halley et al., 2014) and small patch loss might also expedite this by imminent extinction of 

already rare species and by reducing the number of occupied patches. Any such longer-term 

impacts remain unknown. 

 

Methodologically, my analysis is limited by not incorporating information on environmental 

constraints, landscape structure and variations in species functional traits (e.g., dispersal ability) 

supporting a detailed understanding of metacommunity structures (Ulrich et al., 2017). Although 

I analyzed matrices of different dimensions, I used these as statistical covariates and normalized 
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effect sizes to counter any bias (Ulrich et al., 2018). I also tested for bias due to differences in 

census techniques (Methods) or study extent (Section 2.8.1) but found no evidence of this. One 

possible source of bias I could not quantify arises from researchers avoiding small sites known to 

be of low or zero biodiversity. Such bias is quite probable and would reduce the impact of small 

patch loss. On the other hand, under many global change scenarios (e.g., drought, sea level rise) 

loss of smaller patches would not occur in isolation but with concurrent reduction in the size of 

larger patches. This would further increase the risk of imminent and on-going species extinction. 

While I lack the data to investigate such impacts, it is important that future research considers the 

consequences of patch-size reduction across the metacommunity in addition to the complete loss 

of the smallest patches. 

 

Finally, I emphasize that the impacts of habitat loss on landscape biodiversity are well 

established (Wilcox and Murphy, 1985, Fahrig, 2003, Haddad et al., 2015). I consider only the 

species diversity contained within networks of discrete habitat patches and no comparison with 

the diversity that would be maintained within large extents of contiguous habitat can be inferred. 

 

2.6.5 Conclusions 

In this chapter I have tested a common assumption for small habitat patches that relates most 

directly to the extinction/colonization theoretical paradigm introduced in Chapter 1. In general, 

the results suggest that groups of small patches will typically contain some species not present in 

larger patches. Three of the four patterns adopted by the species loss curves, can be roughly 

assigned to what might be expected under the two theoretical paradigms, the threshold and 
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random models aligning with extinction/colonization and the linear model with that of spatial 

coexistence theory. The prevalence of these among datasets suggest roughly similar support for 

the two theoretical paradigms in controlling the composition of small patches in discrete habitat 

networks. The step model – the individually most commonly observed – has elements of both 

paradigms suggesting a combination of both paradigms is usually involved.  
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2.8 Supporting Information for Chapter 2 

 

 

Figure 2.3 Comparison of random placement model and variance with resampling based 

patch removal.  Resampling (red) curves are the mean number of species removed over 

2000 iterations of removing patches in random order and calculating both the area and 

species number.  Random placement (black) curves were calculating using equation 2a and 

2b from the main text, solid line is the estimate, dashed lines show the estimate ± 2SD



 

60 

 

Table 2.5 Model selection results for proportional species loss at 10% loss of total area.  Shown are the 95% confidence set of 

all Binomial GLMM models ranked by Akaike’s Information Criterion corrected for small sample size (AICc). Model 

structures, standardized regression coefficients and selection statistics are shown in rows, each representing a model in order 

of decreasing weight of support. Predictor codes: area = proportion of total area removed; lnSite = logarithm of number of 

sites (patches); lnSpp = natural logarithm of total metacommunity species richness; βsim = ; βP = ; C-score = checkerboard score 

(normalized effect size); CT = matrix phase contrast (categorical predictor); NODFA = nestedness on a gradient of patch area 

(normalized effect size for NODF metric); NODFS = nestedness on a gradient of species richness (normalized effect size for 

NODF metric); prE = proportion of local endemics; prS = proportion of sites removed; zSAR = the exponent of the power-law 

island species area relationship. Selection statistics: df = model degrees of freedom; LL = log likelihood; ∆AICc is the difference 

in AICc vs. top-ranked model; wAICc = weight of support. 

Rnk Predictors Selection statistics 

Int area† lnSite† lnSpp† βsim βP C-

score 

CT NODF

A 

NODFS prE prS zSAR df LL AICc ∆AICc wAICc 

1 -2.82 0.074 -0.228 0.023 0.45 - - - - - 0.551 0.316 -0.465 9 -348.5 716.1 - 0.33 

2 -2.82 0.075 -0.206 0.045 0.44 - -0.051 - - - 0.558 0.328 -0.469 10 -348.1 717.5 1.4 0.17 

3 -2.89 0.076 -0.26 0.035 0.43 - - + - - 0.527 0.33 -0.458 11 -347.0 717.6 1.5 0.16 

4 -2.82 0.072 -0.227 0.026 0.45 - - - -0.030 - 0.546 0.314 -0.465 10 -348.4 718.1 2.0 0.12 

5 -2.82 0.074 -0.241 0.021 0.42 0.058 - - - - 0.528 0.308 -0.479 10 -348.4 718.2 2.1 0.12 

6 -2.82 0.074 -0.228 0.023 0.46 - - - - -0.006 0.549 0.315 -0.465 10 -348.5 718.4 2.3 0.11 

† statistical covariates included in all models to account for variations in actual area destroyed and differences in matrix dimensions 
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Table 2.6 Model selection results for deviation from random placement model (rp20) at destruction of 20% of total area. 

Shown are all models with at least 5 % of support, ranked by Akaike’s Information Criterion corrected for small sample size 

(AICc). Model structures, standardized regression coefficients and selection statistics are shown in rows, each representing a 

model in order of decreasing weight of support. Predictor codes: area = proportion of total area removed; lnSite = logarithm of 

number of sites (patches); lnSpp = natural logarithm of total metacommunity species richness; βSIM = species turnover 

component of the multiple site beta diversity partition (Baselga, 2010); CN = normalized effect size for C-score (Stone and 

Roberts, 1990); CT = matrix contrast, categorical predictor based on phase of habitat (i.e. terrestrial or water) and that of the 

surrounding matrix; NODFAR = NODF metric (Almeida-Neto et al., 2008) on a gradient of patch area; prS = proportion of 

sites removed; zSAR = the exponent of the power-law island species area relationship. Selection statistics: df = model degrees of 

freedom; LL = log likelihood; ∆AICc is the difference in AICc vs. top-ranked model; wAICc = weight of support. 

Rnk Predictors Selection statistics 

Int area† lnSite† lnSpp† βSIM βP CN CT NODFAR prS zsar df LL AICc ∆AICc wAICc 

1 0.001 -0.002 -0.015 0.012 0.022 - -0.008 - -0.006 0.010 -0.024 10 348 -674.6 - 0.34 

2 0.002 -0.002 -0.017 0.009 0.014 0.011 0 - -0.005 0.008 -0.028 10 347.858 -674.3 0.28 0.30 

3 0.002 -0.002 -0.017 0.010 0.016 0.010 -0.005 - - 0.010 -0.027 10 347.319 -673.2 1.36 0.17 

4 0.002 -0.002 -0.018 0.008 0.015 0.010 - - - 0.009 -0.027 9 345.574 -672.0 2.58 0.09 

5 -0.001 -0.002 -0.018 0.011 0.020 - - + -0.006 0.011 -0.023 11 347.851 -672.0 2.6 0.09 

† statistical covariates included in all models to account for variations in actual area destroyed and differences in matrix dimensions 
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2.8.1 Post hoc tests 

Influence of regressors on species loss 

After regression analysis showed taxonomic group did not contribute to explained species loss 

after accounting for other predictors, I tested which, if any, of the three most influential 

regression predictors accounted for this. I found that species turnover (βSIM; Kruskal-Wallis χ2 = 

21.2, df = 3, p < 0.001) and the proportion of single-patch endemics (Kruskal-Wallis χ2 = 20.9, 

df = 3, p < 0.001) largely explained the different species loss patterns among taxonomic groups 

(Fig. 2.4). In contrast, exponent values for the island species-area relationship did not differ 

among taxonomic groups (Kruskal-Wallis χ2 = 3.4, df = 3, p = 0.34).  

 

Sensitivity of results to study extent and latitudinal range 

Given the differences among datasets in terms of their geographical scope I tested for any 

sensitivity of the proportional species loss observed (spr20) to log-transformed study extent 

(Pearson’s r = 0.07, t = 0.88, df = 163, p = 0.38) and latitudinal range (r = 0.06, t = 0.75, df = 

163, p = 0.45) and conclude that the loss of species from small patches was not influenced by 

variation in either variable among studies. 
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Figure 2.4 Distribution of predictor metrics as a function of taxonomic group. a. βSIM b. 

proportion of species found in only one patch (single-patch endemics); c. power-law island 

species area relationship exponent. Compare Fig 2.1, main text. Groups marked with the 

same letter do not differ at the 5% level. 
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Chapter Three: Changes in the evenness of species abundance distributions and sampling 

bias contribute to the SLOSS pattern of species richness in discrete habitats  

3.1 Abstract 

Paired species-accumulation curves, ordered from small-to-large and large-to-small (aka SLOSS 

analysis), often suggest several small patches contain more species than a single large patch of 

comparable area. This is most often attributed to higher beta diversity driven by increased 

environmental heterogeneity in sub-divided habitat. However, few tests of this, or competing 

explanations, have been attempted. Here I test four competing hypotheses to explain the 

difference in species richness between groups of small patches and a single large patch: (i) beta 

diversity (BD); (ii) changes in the evenness of species abundance (EV); (iii) decreased sampling 

efficiency in larger patches (SE); and, (iv) intrinsic taxonomic characteristics. Using 38 

published abundance datasets from discrete faunal habitat networks (fragments, islands and 

habitat islands), I test the direct and indirect effects of each hypothesis on the observed richness 

differences using confirmatory path analysis. Broad taxonomic grouping (invertebrates > birds = 

non-volant vertebrates) directly accounted for most of the variation in richness difference but 

BD, EV and SE had comparable effect sizes (standardized coefficients = 0.32, 0.25 and -0.22 

respectively), each accounting for 16-18% of explained variation. Taxonomic group and EV also 

mediated the strength of BD. These results suggest that, for animal taxa, changes in the 

distribution of species abundance across multiple small patches and less effective sampling of 

larger patches are plausible alternative explanations to beta diversity for observed differences in 

species richness between several small and single large patches. Limited prior consideration of 

these possibilities could have contributed to the SLOSS and related debates. 
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3.2 Introduction 

Whether or not small habitat patches contribute to biodiversity conservation, is perhaps the most 

controversial and enduring unresolved question in conservation biology (e.g., Diamond, 1975b, 

Simberloff and Abele, 1976, Fletcher et al., 2018, Fahrig et al., 2019). Originally, this question 

divided opinion on conservation reserve design principles - whether a single large (SL) or several 

small (SS) reserves protect more species (i.e., the SLOSS debate; Diamond, 1975b, Simberloff 

and Abele, 1976, Gilpin and Diamond, 1980, Higgs and Usher, 1980). More recently, the 

conservation value of small patches has been a key point of difference in debate over the impacts 

of fragmentation per se (Fahrig, 2017, Fletcher et al., 2018, Fahrig et al., 2019). Probably no 

other method of data presentation has been more influential to both debates than the comparison 

of species accumulation curves ordered according to patch size: from the smallest to the largest 

and the reverse (Fig. 3.1). As noted by Quinn and Harrison (1988) when introducing the method 

(hereafter QH curves), comparing the curves usually implies that a collection of small patches 

will contain more species – often many more – than the equivalent area contained in a single 

large patch (e.g., Quinn and Harrison, 1988, Peintinger et al., 2003, Arroyo-Rodriguez et al., 

2009, Richardson et al., 2015, Rosch et al., 2015). Despite its prevalence and the enduring 

controversies surrounding the pattern, its causes remain poorly understood (Fahrig, 2017, Liu et 

al., 2018). Establishing the underlying mechanisms could inform debate over reserve design and 

fragmentation and contribute to understanding assembly of species diversity in 

metacommunities. 
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Figure 3.1 Example of a Quinn-Harrison type curve. Each curve represents a species 

accumulation for the same dataset with the only difference being the order in which the 

sites (patches, islands, etc.) are accumulated. The small-to-large curve starts with the 

smallest patch and combines sites in increasing size order, the large-to-small curve does the 

opposite. Data are birds in mangrove fragments from Australia (Mohd-Azlan and Lawes, 

2011) 

 

In metacommunity theory (Leibold et al., 2004), spatially discrete habitat networks within a 

landscape are generally conceptualized as organizing along three main axes: species equivalence, 

environmental variation, and dispersal (Logue et al., 2011). Explanations for patterns of diversity 

in spatially discrete habitats should reflect the influence of these processes and the ways in which 

they are mediated by the characteristics of the landscape (Fournier et al., 2017, Rybicki et al., 

2018). Given differences in life histories, minimum area requirements, mobility and body size 

among taxonomic groups, one might expect large differences in their QH curves. Empirical 

evidence from published studies using QH curves in fact suggests the pattern of rapid initial 

increase in richness under small-to-large accumulation of patches is quite consistent across taxa. 
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It is widely reported for plants and invertebrates (e.g., Quinn and Harrison, 1988, Tscharntke et 

al., 2002b, Peintinger et al., 2003, Gavish et al., 2012, Richardson et al., 2015, Rosch et al., 2015, 

Liu et al., 2018) and has also been demonstrated in birds (Baldi and Kisbenedek, 2000), 

herpetofauna (McCoy and Mushinsky, 1994, Oertli et al., 2002) and mammals (Quinn and 

Harrison, 1988, Robinson and Quinn, 1992). Despite this apparent consistency among taxa, it 

seems reasonable to expect that differences in life history traits will affect their relative 

accumulation within and among patches (Qian and Ricklefs, 2012) and at least partially 

contribute to observed patterns of species accumulation.  

 

The most common explanation for higher species richness among groups of smaller patches than 

within a single large patch is increased environmental heterogeneity (e.g.,Kitchener et al., 1980, 

Simberloff and Gotelli, 1984, Tscharntke et al., 2002a, Rosch et al., 2015, Fahrig, 2017). This is 

essentially distance-decay in environmental similarity (Nekola and White, 1999), where the 

much wider spatial extent over which groups of smaller patches are distributed relative to a 

single patch of comparable area is likely to encompass a broader range of environmental 

conditions (Kitchener et al., 1980). As environmental heterogeneity accumulates more rapidly, 

this drives higher beta diversity and greater number of species among the smaller patches 

(Tscharntke et al., 2002b, Fahrig, 2017). Just such a relationship has been demonstrated for 

artificially-fragmented plant communities on islands within a water-supply-reservoir lake in 

China (Liu et al., 2018) and in natural lake islands in Canada (MacDonald et al., 2018b). 

However, smaller patches are also thought to be more susceptible to stochastic influences such as 

ecological drift or priority effects (Chase, 2003, Fukami, 2004), which could also lead to 
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differentiation in the composition of small patches. Irrespective of whether it is driven by 

deterministic and/or stochastic influences, higher beta diversity is the leading explanation offered 

for the SLOSS pattern.  

 

Without necessarily specifying a mechanism, species-area sampling theory provides a 

complementary way to consider the question: any process that increases the evenness in species 

abundance, or decreases intraspecific clustering (i.e., spatial aggregation), should increase the 

number of species observed in a given area (He and Legendre, 2002). In contrast, when these 

two variables move in the other direction (decreased evenness and increased aggregation), the 

effect is to decrease compositional similarity and higher endemicity (Plotkin and Muller-Landau, 

2002, Green and Ostling, 2003). If the latter conditions prevail, this then must increase beta 

diversity and result in more species being present among groups of smaller patches than a single 

large patch (Kobayashi, 1983). As habitat sub-division alters the evenness of species abundances 

both within and among groups of patches (Quinn and Robinson, 1987, Wilson et al., 1999, 

Cushman and McGargal, 2003, Marini et al., 2014), this could provide a competing, though not 

necessarily independent, explanation for more rapid accumulation of species among vs. within 

patches. Thus, changes in evenness of abundance in discrete patches could act directly by 

increasing within patch species number or indirectly via altering the strength of beta diversity 

and increasing among-patch species accumulation. 

 

However, another important source of uncertainty in the use of QH curves are the data 

themselves. The method requires near-complete census data for each patch, which is problematic 

in patches of different size because of a confounding of patch size and sampling effort (Hill et 
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al., 1994, Rosenzweig, 1995, Gavish et al., 2012). Difficulty in obtaining a complete census 

should also increase with patch area, meaning rare species might be more likely to be 

encountered in smaller patches (Deane and He, 2018). It is unknown whether such a sampling 

bias contributes to the more common SLOSS observation of more species in groups of smaller 

patches. Unlike species density, the density of individuals in a plant or animal assemblage tends 

to remain constant across different sampling areas (Connor et al., 2000, He et al., 2002). This is 

often an assumption in ecological theory (MacArthur and Wilson, 1967, Hubbell, 2001, Harte et 

al., 2008). If the proportion of individuals sampled in a patch declines with patch size, it seems 

probable that smaller patches will represent a more reliable census than larger patches. If 

individual density is assumed to be constant, a simple proxy measure of sampling bias within a 

given study system could then be based on the proportion of total individuals sampled from each 

habitat, allowing a test of its influence on the SLOSS pattern.  

 

Here I use 38 published faunal abundance datasets from discrete habitat networks to test support 

for four possible explanations for more rapid accumulation of species in several small patches 

relative to a single large patch: taxonomy, beta diversity, evenness of species abundances, and 

size-dependent sampling efficiency. I found some support for all of these, suggesting that 

automatically assuming it is driven by beta diversity alone might be an over-simplification. 
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3.3 Methods 

3.3.1 Data sources and pre-processing 

Although size-ordered species accumulation curves only require presence-absence data in 

discrete habitats (such as islands, insular habitats such as wetlands, or fragments of formerly 

continuous biomes), to test inference on diversity and fragmentation using QH curves, to test the 

four competing explanations for differences in species richness, abundance data in each habitat 

patch are needed. Such data allow us to use individual-based methods to test for differences in 

species number and diversity among samples drawn from smaller and larger patches and 

determine possible size-related differences in sampling density. I used a subset of datasets that 

were compiled using literature searches and citation tracking in Chapter 2 (see also Deane and 

He, 2018), limiting analysis to those datasets presenting either the number of sampled 

individuals, or relative and total abundances from which this could be calculated, yielding 38 

datasets (Appendix B). Datasets were mostly from fragmented forests, woodlands or grasslands 

(n = 27) but also included some from islands (n = 5) and habitat islands (n = 6). All represented 

taxa were animals, predominantly birds and invertebrates (n = 16 each) but also included were 

mammals (n = 3) and amphibians (n = 3). For analysis purposes, I simplified this to three broad 

taxonomic groups: invertebrates, birds and non-volant vertebrates. Appendix B lists the sources 

and provides metadata on each included study. 

 

3.3.2 Confirmatory path analysis 

As a response variable I used a literal test of the ‘single large or several small’ pattern. I 

calculated the arithmetic difference in the number of species contained within the single largest 
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patch and all smallest patches up to an equivalent (or smaller) area (Fig. 3.2). To account for 

differences in overall species richness among datasets, I normalized the difference by total 

number of species observed across all patches (i.e., gamma diversity for the study).  

 

Figure 3.2 Calculation of the response variable. The number of species found in the group 

of smallest patches whose area was closest to, while still less than, the area of the single 

large patch was subtracted from the number of species found in the latter. The difference 

was then adjusted for differences in diversity among datasets by dividing by the observed 

number of species across all patches (here 70 species). Data as per Fig. 3.1. 

 

To test support for the four competing hypotheses in explaining the difference in species 

richness, I used confirmatory path analysis (Shipley, 2000, Shipley, 2009). Like structural 

equation modelling (SEM), confirmatory path analysis is graphically based, using two or more 

equations to represent hypothesised direct and indirect causal links between dependent and 

independent variables. Typically, the equations are implemented in a multiple regression 

framework, with model coefficients indicating the direction and magnitude of different 
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predictors. Traditional structural equation models solve all equations simultaneously, estimating 

coefficients with a single variance-covariance matrix that requires independence of observations 

and normally distributed errors. Piecewise structural equation modelling (Lefcheck, 2016) 

instead estimates coefficients within each equation separately and these are combined at a later 

stage of analysis to infer support for hypothesised causal pathways explicit within the model 

equations. This approach allows for the use of models incorporating multilevel designs (Shipley 

2000, 2009), as is the case here.  

 

I encoded the four hypotheses proposed to explain differences in species richness within and 

among patches into a simple confirmatory path analysis, which is based on a conceptual diagram 

illustrating the ways in which they might act to moderate species richness directly and indirectly 

(Fig 3.3). Four regression models were needed to implement the full path analysis: 

𝑆𝑅𝑑 ~ 𝐵𝑑𝑒𝑣 + 𝐸𝑉𝑑 + 𝑆𝐸 + 𝑇𝑎𝑥𝑎      (1) 

𝐵𝑑𝑒𝑣 ~ 𝑇𝑎𝑥𝑎 + 𝐸𝑉𝑑      (2) 

𝐸𝑉𝑑 ~ 𝑇𝑎𝑥𝑎        (3) 

𝑆𝐸 ~ 𝑇𝑎𝑥𝑎        (4) 

where SRd is the difference in species richness between the group of smallest patches and the 

single large patch, taking a positive value if more species were found in the group of small 

patches; Bdev, and EVd are predictors quantifying observed beta diversity and evenness of 

abundance in the small patches relative to null models for each (see Sections 3.3.3; 3.3.4). In 

each case, a positive value indicates small patches had higher beta diversity or were more even 

than null model predictions. SE indicates the sampling efficiency for the dataset, with more 

positive values implying less difference in sampling effectiveness for small, relative to large, 
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patches. Model 1 describes the direct effects of the four predictors, while models 2-4 describe the 

indirect effects of various predictors on one another.  

 

Figure 3.3 Conceptual model for the factors influencing the difference in observed species 

in a collection of small patches relative to the largest patch. Taxonomy, beta diversity, 

evenness in species abundance distributions and sampling efficiency are all theorised to 

have a direct influence. Taxonomy also has indirect effects via the influence of different life 

history characteristics such as fecundity, mobility and body size in mediating beta 

diversity, species abundance distributions and, via differences in detectability, on sampling 

efficiency.  

 

As four studies provided more than 1 dataset (range 2-4; Appendix B), I implemented the 

individual regressions with a two-level linear mixed model that included a random intercept to 
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account for within- and among-study variation. Model fits were assessed using the coefficient of 

determination, evaluated separately for marginal (R2m; accounting for the variance explained in 

the response relative to a model containing only an intercept for the fixed effects) and 

conditional contributions (R2c; which includes variation accounted for by both fixed and random 

effects) as described in Nakagawa and Schielzeth (2013). Additionally, I tested for any 

confounding effects of possible covariates specific to different studies. For example, each dataset 

inevitably differed in the total area for the group of small patches and the area of the single 

largest patch in the dataset used to compare species richness. They also differed in the number of 

small patches that were combined to compare with the largest patch. To test for any sensitivity in 

the results to these variations, I calculated the Pearson correlation between each covariate with 

model residuals. I found no evidence that these differences among datasets accounted for any 

unexplained variation in results (all p > 0.38). 

 

After fitting the full path analysis (4 models), I iteratively tested alternative structures, adopting 

the model with the lowest AIC (ΔAIC to second ranked model >10). I tested the overall path 

model fit using Shipley's directional separation (d-sep) test, which tests whether the causal 

independence among predictors implied in the graphical model are supported (Shipley, 2000). 

For example, the path model assumes beta diversity and sampling efficiency are independent 

(there is no path between them; Fig. 3.3). The d-sep test is used to verify these assumptions in 

model structure. The test statistic for directional separation is Fisher's C which has a χ2 

distribution with 2k degrees of freedom, where k is the number of tests of independence (Shipley 

2009).  
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To establish the strength of support for each hypothesis, I used standardized coefficients. As no 

single path coefficient can be calculated for categorical predictors in confirmatory path analysis I 

instead used ANOVA to identify the overall statistical significance for taxonomy and calculated 

marginal means for each level (invertebrates, birds, non-volant vertebrates) to indicate the 

direction of effects (Lefcheck, 2016). To test for any difference in coefficients between the levels 

of categorical predictors, I did pairwise post hoc tests using the Tukey-Kramer method to correct 

for multiple tests. As an alternative effect size for the direct effects of each predictor in Model 1, 

I used Cohen’s (1977) effect size index f2, where for predictor B: 𝑓𝐵
2 =

𝑅𝐴𝐵
2 −𝑅𝐴

2

1−𝑅𝐴𝐵
2 , where 𝑅𝐴𝐵

2  and 

𝑅𝐴
2 are the proportion of variance explained by the fixed effects for models including all 

predictors and that omitting the predictor of interest (here predictor B), respectively. Thus, 𝑓𝐵
2 

provides the proportion of explained variation by predictor B, relative to the proportion of 

unexplained variation in the full model. 

 

3.3.3 Quantifying beta diversity among the small patches 

As a predictor of the strength of beta diversity in regression analysis, I used an individual-based 

null model to calculate a beta deviation statistic, thematically following Kraft et al. (2011). First, 

I calculated the observed beta partition for only the smallest patches, β𝑆𝑆 = (1 − α̅𝑆𝑆 γ𝑆𝑆⁄ ), 

where  ᾱSS and γSS are the mean richness per a small patch and the total richness among the all 

small patches, respectively, and βSS is the observed beta diversity. This takes values from 0 – 1 

and represents proportional turnover (Tuomisto, 2010), where in this application it is the 

turnover within the small patches.  
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As each study differed in total diversity and the number of patches, I used an individual-based 

null model to determine how widely the observed turnover differs from that expected based on 

the characteristics of each dataset. The null model re-sampled the same number of individuals for 

each patch as in the observed data from the overall (“regional”) species abundance distribution of 

the grouped patches. The probability of sampling an individual from a given species in the null 

model algorithm depends on its relative abundance in the regional SAD. This sampling 

procedure simulates the expected distribution of species across the patches if individuals are 

randomly positioned within them. A beta deviation statistic is then calculated for each dataset as 

the observed beta β𝑆𝑆 minus the mean β𝑆𝑆 of the simulated null communities, divided by the 

standard deviation β𝑆𝑆 of the simulations. Thus, a positive value for the beta deviation means the 

observed species turnover among small patches is greater than the expected (i.e., assuming 

individuals were randomly distributed among patches and the overall SAD for the dataset 

represents the true landscape SAD). I calculated beta deviation from 1000 null model 

simulations. 

 

3.3.4 Quantifying evenness in species abundance distributions (SAD) 

I quantified evenness using Pielou’s (1975) measure; the ratio of the Shannon diversity and the 

log of total species number (hereafter evenness). This measure (also known as Shannon 

evenness) is among the best measures of the evenness property of species abundance 

distributions and is the most reliable measure of this property for smaller sample sizes (McGill, 

2011). To quantify the relative evenness in abundance distributions among the small patches, I 
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again used a null model approach. I assumed the regional SAD (the sum of abundances of every 

species across all patches) reflects the underlying distribution of abundances for the landscape. I 

pooled the abundances for the small patches only and calculated their observed evenness. I then 

simulated null abundance distributions by drawing the same total number of individuals as were 

observed in the pooled small patches from the regional SAD and calculated evenness for each of 

these. The evenness deviation statistic was calculated as for the beta deviation as the observed 

evenness minus the mean evenness of the simulated small patch SAD divided by the standard 

deviation in the null simulations. I again simulated 1000 null communities. Thus, a positive 

value for the evenness deviation indicates an observed distribution of abundance among the 

small patches that is higher (closer to a horizontal rank abundance distribution) than would be 

expected for the number of individuals given the regional SAD. 

 

3.3.5 Testing for patch size-dependence in sampling efficiency 

I also included a predictor intended to reflect differences among the studies in their efficiency in 

sampling larger sites. My hypothesis here is that size bias in sampling (where smaller patches 

received proportionally more sampling effort) will increase the likelihood that the richness of the 

smaller patches is disproportionately sampled. To create a predictor, I assume constant faunal 

density across patches (Connor et al., 2000) and therefore, that the strength of any negative 

correlation between sampling density (which I define as the number of individuals comprising 

the sample for that patch divided by its area) and the area of the patch also reflects how strongly 

proportional sampling effort decreased with patch size within that study. For each dataset, I 

estimated faunal density for each patch as the ratio of the number of sampled individuals and the 
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patch area. Finding a strong non-linear pattern in most datasets, I calculated the Pearson 

correlation coefficient of sampling density with the log of patch area. I used this as a proxy 

measure of the likely magnitude of disproportionate sampling as a function of patch area.   

All statistical analyses were done with R-3.6.1 (R Core Team, 2019) with custom packages nlme 

(Pinheiro et al., 2019), piecewiseSEM (Lefcheck, 2016) and emmeans (Lenth, 2019) used 

respectively for regression modelling, confirmatory path analysis and post hoc tests among levels 

for the taxonomy categorical predictor. 

 

3.4 Results 

3.4.1 Trends in richness and predictors within and among taxa 

The difference in species richness between a group of the smallest patches and the single largest 

patch was positive for 27 (71%) of 38 datasets, with a mean difference between them equal to 

23.5% of overall (gamma) diversity. Richness differences were highest among invertebrates 

(𝑆𝑅𝑑̅̅ ̅̅ ̅
𝑖𝑛𝑣 = 0.46) and lowest for birds (𝑆𝑅𝑑̅̅ ̅̅ ̅

𝑏𝑖𝑟𝑑𝑠 = 0.04). Across all datasets, beta deviation had 

a mean value of 1.25 (units = standard deviation in the null model distribution), indicating the 

observed beta partition in most datasets was higher than expected if species had assembled 

within the smallest patches at random. Invertebrates had the highest mean beta deviation 

(𝐵𝐷̅̅ ̅̅
𝑖𝑛𝑣 = 1.91), birds the least (𝐵𝐷̅̅ ̅̅

𝑏𝑖𝑟𝑑𝑠 = 0.77). Evenness deviation had a mean value of -

1.65, indicating abundances were typically less even among small patches than expected given 

the regional distribution. Mean deviations from the regional SAD were least negative for non-

volant vertebrates (𝐸𝑉̅̅ ̅̅
𝑣𝑒𝑟𝑡 = −0.20) and most negative for invertebrates (𝐸𝑉̅̅ ̅̅

𝑖𝑛𝑣 = −2.34). I 

found there was a significantly negative correlation (P-value <0.05) between log area and 
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sampling density (number of individuals sampled/area of patch) in 30 of 38 datasets and the 

mean correlation across all datasets was -0.62. Invertebrates had the most negative mean 

correlation with patch area (𝑆𝐸̅̅̅̅
𝑖𝑛𝑣 = −0.72), non-volant vertebrates the least negative 

(𝑆𝐸̅̅̅̅
𝑣𝑒𝑟𝑡 = −0.52). 

 

3.4.2 Confirmatory path analysis modelling 

The path model with the most support included all direct effects but did not include an indirect 

influence of taxa on evenness or sampling efficiency (Fig. 3.4). All independence claims were 

supported by directional separation tests (Fisher’s C = -1.23, df = 7, p = 0.26). The direct effects 

including all four hypothesised predictors explained 73% of the variation in species richness 

differences (Fig. 3.4), which increased to 94% when the additional variance accounted for by the 

inclusion of the random effect (different data sources) in the model (Intraclass correlation 

coefficient = 0.75; Fig. 3.4, Tables 3.1, 3.2).  

 



 

80 

 

 

Figure 3.4 Results of confirmatory path analysis. Coefficients are only shown for pathways 

with Type I error probabilities < 0.05 (* = p < 0.05; *** = p < 0.001). For the effects of taxa, 

least squares means for each factor level is shown along with compact letter display of 

pairwise differences significant at the 5% level using the Tukey-Kramer method to adjust 

for multiple comparison; factor levels with the same letter are not significantly different 

from one another. R2m = variance explained only by the fixed effects in the model. For the 

main pathway, the conditional variance in species richness difference explained (i.e., 

including the random intercept for source study) R2c = 0.94 (see also Tables 3.1, 3.2).  
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Table 3.1 Overall results of confirmatory path analysis. The structure for the final path 

model (Fig. 3.4) included regression equations 1 and 2 (‘Model’ see Methods). Response 

SRd is the difference in species richness between the group of small patches and the single 

largest patch for each dataset, while response BD is the beta deviation. EV is the evenness 

of abundance distributions, SE is the implied size-dependence in sampling efficiency TAXA 

is a categorical predictor with levels INV= invertebrates, BIRDS and VERTn = non-volant 

vertebrates. Shown are the estimated coefficient in the path model, along with the standard 

error, degrees of freedom critical value and type I error probability. 

Model Response Predictor Estimate Std. Err. df Crit. value P-value 

1 SRd BD 0.342 0.146 6 2.34 0.058 

  SE -0.226 0.099 6 -2.27 0.064 

  EV 0.249 0.118 6 2.10 0.080 

  TAXA   2 24.93 <0.001 

  INV 0.654 0.173 28 3.78 <0.001 

  VERTn -0.377 0.235 26 -1.60 0.122 

  BIRDS -0.469 0.189 26 -2.48 0.020 

2 BD EV -0.529 0.109 8 -4.86 0.001 

  TAXA   2 9.65 <0.001 

  INV 0.561 0.189 28 2.97 0.006 

  VERTn -0.027 0.289 26 -0.094 0.926 

  BIRDS -0.281 0.229 26 -1.23 0.230 

 

After accounting for all predictors, invertebrate taxa had a larger mean difference in species 

richness than either birds or non-volant vertebrates, while birds and non-volant mammals did not 

differ from one another (Fig 3.4; Table 3.1). The categorical predictor for taxa directly accounted 

for the most individual variation explained by any predictor relative to the unexplained variation 

(𝑓𝑡𝑎𝑥𝑎
2 = 0.93). The other three hypotheses accounted for similar amounts of explained, relative 
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to unexplained, variation (𝑓𝐵𝐷
2 = 0.18; 𝑓𝐸𝑉

2 = 0.164; 𝑓𝑆𝐸
2 = 0.166; Fig 3.4; Table 2). Taxonomic 

grouping and evenness deviation had indirect effects on richness differences, both via their 

influence on beta diversity (R2m = 0.52). Beta deviation was more positive for invertebrates than 

birds but did not differ between either of those groups relative to non-volant mammals. More 

even distribution of abundance among the small patches had a strong negative effect on beta 

deviation (Fig 3.4; Table 3.1). 

 

Table 3.2 Type III ANOVA table for contribution of each predictor in confirmatory path 

analysis (see also Table 3.1, Fig. 3.4). SRd = difference in species richness between the 

several small patches and the single largest patch. Other predictors are as for Table 3.1. 

Response Predictor Test Stat df P-value 

SRd EV 6.5 1 0.022 

SRd BD 6.5 1 0.011 

SRd SE 6.5 1 0.014 

SRd TAXA 6.5 1 <0.001 

BD TAXA 9.7 2 0.008 

BD EV 9.7 2 0.396 

 

3.5 Discussion 

More rapid accumulation of species when sites are combined in small-to-large size order is a 

very common observation for a wide range of taxa (Quinn and Harrison, 1988, Robinson and 

Quinn, 1992, Cook, 1995, Peintinger et al., 2003, Richardson et al., 2015). This has been among 

the evidence used to argue that sub-division has neutral to positive effects on species diversity 

(Fahrig, 2017, Fahrig et al., 2019), although this conclusion remains controversial (Haddad et al., 
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2015, Fletcher et al., 2018). The most common explanation for greater species richness in groups 

of smaller patches is that increased environmental heterogeneity in sub-divided habitats 

promotes beta diversity among them (e.g., Quinn and Harrison, 1988, Tscharntke et al., 2002b, 

Fahrig, 2017). While this has recently been demonstrated empirically for plants and butterflies 

on lake reservoir islands (Liu et al., 2018, MacDonald et al., 2018b), few direct tests of this or 

competing explanations exist. It seems reasonable to consider other possibilities, as the 

distribution of diversity in any landscape reflects not only environmentally or stochastically 

driven species turnover, but the interaction of many possible competitive and other assembly 

mechanisms (e.g., Shmida and Wilson, 1985, Tilman, 1994, Hubbell, 2001, Fukami, 2004, 

Leibold et al., 2004).  

 

In addition to the spatial distribution of species, which determines beta diversity in continuous 

and discrete habitats, the commonness and rarity pattern of a community as described by species-

abundance distributions can also influence diversity patterns (He and Legendre, 2002, Plotkin 

and Muller-Landau, 2002, Harte et al., 2008). This study shows that after accounting for intrinsic 

differences among taxa, evenness of species abundance distributions directly explained a similar 

amount of variation in richness differences as beta diversity. As expected, evenness of 

abundance among the small patches also moderated the observed beta diversity (Plotkin and 

Muller-Landau, 2002). Results also suggest that disproportionate sampling efficiency in larger 

patches could over-estimate the richness differences between large patches and groups of small 

ones. It is perhaps surprising that these factors have not been more widely considered in 
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addressing the SLOSS debate. The omission of these factors in past studies, particularly given 

their opposite effects on the richness difference, has likely contributed to the controversy. 

 

3.5.1 Sub-division could affect species richness by altering species abundance distributions 

How global change processes such as fragmentation affect the relative commonness of species is 

not yet well understood, especially in mobile taxa (Marini et al., 2014). At the scale of individual 

fragments, decreasing area tends to result in less even species abundance distributions in plants 

(Wilson et al., 1999) and mobile insects (Marini et al., 2014). However, when the abundances 

across multiple discrete patches are combined, the opposite pattern has emerged, at least for 

experimental plant communities (Quinn and Robinson, 1987) and birds in forest fragments 

(Cushman and McGargal, 2003). One explanation offered is priority effects, where the 

colonization history of the site determines which species become dominant in smaller patches 

(Cushman and McGargal, 2003, Fukami, 2004, Chase, 2010). 

 

Increases in the evenness of pooled abundances among small habitat patches should increase 

local richness but decrease beta diversity (He and Legendre, 2002, Plotkin and Muller-Landau, 

2002). These results suggest the effect of increasing local richness can be large enough to explain 

elevated diversity in groups of small patches. For example, some patch-size-dependence in 

evenness would explain Simberloff and Gotelli’s (1984) observation that small patches of 

vegetation in the prairie-forest ecotone consistently contained more species than null model 

predictions, while larger patches contained fewer. On the other hand, as expected (Plotkin and 

Muller-Landau, 2002, Green and Ostling, 2003), decreased evenness among small patches 
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increased beta diversity, the usual explanation for higher richness in sub-divided habitat. 

However, while elevated beta diversity could arise from drift or environmental heterogeneity 

(Tscharntke et al., 2002b, Chase, 2003, Liu et al., 2018), this discounts a possible role for 

changes in competitive or mass effects (Levins and Culver, 1971, Shmida and Wilson, 1985, 

Tilman, 1994), which will also change with sub-division.  

 

The role of evenness in this analysis thus raises some questions for future investigation. First it 

suggests a need to quantify, and to better understand, the mechanism of changes in evenness 

within and among patches following habitat sub-division. Second, it suggests that SLOSS type 

differences in richness following land clearance and sub-division could depend on the pre-

fragmentation distribution of abundance. For example, as most temperate taxa are less evenly 

distributed than those in the tropics (Alroy, 2015), within a taxon and habitat type, the strength of 

dominance in richness for groups of small patches might increase with latitude. 

 

3.5.2 Taxonomic grouping dominated explained variation in SLOSS 

I found richness differences in groups of small patches relative to a single large patch were most 

strongly associated with taxonomic group, which directly accounted for most of the explained 

variation among datasets. In this analysis, all ten datasets where the single largest patch 

contained more species were either birds (8/16 datasets) or mammals (2/3 datasets). However, I 

doubt this provides reliable general SLOSS inference for these taxa. For non-volant vertebrates, I 

clearly had too few datasets (n = 6) to draw any wider inference. Even though replication for 

birds was higher (n = 16), these included 7 datasets on high-latitude migratory birds from just 
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two studies (Haila, 1983, Haila et al., 1993) and both studies showed colonization among patches 

to be consistent with random placement of species. Under random placement, the probability a 

species is present in a patch depends only on the number of individuals and the proportion of 

total habitat area constituted by the patch (Coleman, 1981). Random spatial patterns decrease 

beta diversity among, and endemicity within, patches of all sizes (Plotkin and Muller-Landau, 

2002, Green and Ostling, 2003). Quinn-Harrison type curves under perfect random placement 

will be identical, but nestedness in species distribution across natural habitats tends to result in 

large patches containing more species than groups of small patches. Such was the case here for 6 

out of 7 high latitude migratory bird datasets. Among other bird datasets, the species richness of 

the largest patch exceeded that of the group of several small patches in 1 of 9 datasets.  

 

Although Quinn & Harrison’s (1988) metastudy showed a strong small patch dominance of 

richness for most island and habitat-island datasets regardless of taxa, far less SLOSS related 

evidence has been presented for vertebrates - particularly mammals. For example, Fahrig (2017) 

in a meta-analysis of the SLOSS literature identified 60 relevant studies: 77% were either plants 

or invertebrates, 13% were birds and 10% were other vertebrates (2 fish, 4 herpetofauna). The 

combination of an unbalanced literature and my own non-representative data sources make it 

difficult to draw any general taxonomic inference for the SLOSS pattern as implied by QH 

curves. However, consistent with the lower probability of observing rare species in small patches 

(Deane and He, 2018), evidence suggests birds and mammals are less likely to have greater 

richness in groups of small patches than plants and invertebrates, as the former groups in general 
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require large habitat areas to maintain viable population sizes (Patterson and Atmar, 1986, 

Crooks et al., 2001, Gibson et al., 2013).  

 

3.5.3 Uncertainties 

A major limitation with this analysis is the small number of datasets and the resulting wide range 

of taxa lumped within my broad taxonomic groupings. I recognize the enormous scope for 

variation within each group and the unequal representation of non-volant vertebrates limit the 

generality. I also acknowledge the complete lack of data for sessile organisms. Another source of 

variability was the different habitat types (islands, habitat islands and fragments) from which the 

data were collected. In my analysis, this variability probably accounts for most of the 20% of 

variation explained by the random intercept term in the regression models, which represented the 

different data sources. I was also unable to include differences in landscape properties but such 

factors as the matrix land use, connectivity and remaining habitat in the landscape are likely to 

affect species coexistence in metacommunities and, therefore, the assembly of diversity 

(Fournier et al., 2017, Rybicki et al., 2018).  

 

Finally, while my main interest has been in understanding the macroecological pattern of small 

patch dominance in species richness, my results cast new doubt on the reliability of inference 

obtained from QH curves. Specifically, I question whether it is reasonable to expect that 

similarly complete species lists can be obtained from patches that often differ in size by several 

orders of magnitude. Related problems associated with the confounding of sampling effort with 

patch size have been noted (Gavish et al., 2012), although careful study design can support 
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analyses that control for this (Liu et al., 2018, MacDonald et al., 2018a, MacDonald et al., 

2018b). Overall, I agree it is doubtful that QH curves can provide reliable inference (Ramsey, 

1989, Mac Nally and Lake, 1999, Alberto and Manly, 2006, Gavish et al., 2012) and direct tests 

of potential competing mechanistic explanations (e.g., Liu et al., 2018) seem to present a more 

promising means to understand the assembly of diversity in sub-divided landscapes. 

3.6 Conclusions 

In this chapter I have elaborated on the complexity underlying the relationship between sub-

division and diversity in discrete habitat networks. I have confirmed that relative evenness of 

abundance is a reliable predictor of species richness differences in the SLOSS debate and the 

effects of sub-division on diversity, including increased beta diversity, are mediated by changes 

in evenness. Importantly, I have demonstrated a likely role for differential sampling efficiency in 

over-stating the differences, although the modest effect size suggests this is not adequate to 

entirely explain observed differences. 
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Chapter Four: A shared species model to determine the expected effects of habitat loss and 

fragmentation on species diversity  

4.1 Abstract 

Understanding the effects of habitat fragmentation on species diversity is an enduring problem in 

ecology and conservation biology. Species-area relationships derived from sampling theory 

describe the scaling of species richness with area under varying patterns of aggregation and 

species abundance distributions but do not predict the effects of habitat sub-division. I use 

sampling theory to instead derive a model for the expected number of species shared in multiple 

samples (zeta diversity), allowing the effects of sub-division on diversity to be determined 

analytically. Under random placement of individuals, the model is parameter-free. For non-

random spatial distributions, it can be modelled at the cost of a single fitting constant, which 

scales with sampling area according to a power function. In both cases, zeta diversity models can 

be used to calculate values such as gamma diversity and the number of species found in only a 

single patch (single-patch endemics; SPE) allowing the effects of sub-division to be predicted. I 

validate model predictive performance in simulated sub-divided landscapes using empirical and 

simulated data under random and non-random placement of individuals, comparing observed 

gamma diversity and SPE against the predictions of the analytical model and those based on the 

equivalent area within a single fragment. The model accurately re-produces emergent properties 

of diversity in sub-divided habitat, showing the relative number of species in several small vs a 

single large patch depends on intraspecific spatial patterns; aggregated distributions result in 

greater diversity in sub-divided habitats while the number does not differ under random 
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placement. Through the shared species model, I provide a framework for quantifying the effect 

of landscape fragmentation on species diversity. 

 

4.2 Introduction 

What, if any, difference in species richness should be expected between a single continuous 

patch of habitat and a group of discrete habitat patches of equal total area? Application of this 

question to conservation reserve design sparked debate that has remained unresolved since it 

emerged during the 1970s (Diamond, 1975b, Simberloff and Abele, 1976, Gilpin and Diamond, 

1980, Higgs and Usher, 1980, Quinn and Harrison, 1988). More recently, it has been re-invented 

as conflicting opinion on the biodiversity impacts of fragmentation per se (Fahrig, 2017, Haddad 

et al., 2017, Fletcher et al., 2018, Fahrig et al., 2019). Essentially, it is a problem of spatial 

turnover: how species composition changes with area. Spatial sampling theory approaches this 

question by combining two macroecological patterns: species abundance and spatial distribution 

patterns. This approach can predict both important diversity patterns (He and Legendre, 2002) 

and how compositional similarity changes among pairs of sites (Plotkin and Muller-Landau, 

2002). Here I use sampling theory to derive a model for the expected number of species shared 

among multiple sites – the zeta diversity (Hui and McGeoch, 2014). From zeta diversity, a range 

of different diversity measures can be calculated (Hui and McGeoch, 2014, Arita, 2017, Lu et al., 

2019); I use this to predict expected species richness patterns under any combination of patch 

number and size.  
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The simplest way to compare the species composition of any number of discrete samples, or 

habitat patches, is to ask how many species they share. While the absence of a species at a site 

does not provide conclusive evidence that the site is not suitable for that species, its presence is 

evidence that it is able to live at the site (Legendre and Legendre, 2012). This must be the case 

even if viability of that population occasionally (or entirely) depends on propagules from outside 

sources (Brown and Kodric-Brown, 1977, Shmida and Wilson, 1985, Pulliam, 1988). The 

number of species shared between two samples is also central to the calculation of measures of 

pairwise association and dozens of alternative similarity (and dissimilarity) metrics have been 

developed (reviewed in Jost et al., 2011, Legendre and Legendre, 2012). Each of these measures 

provides slightly different information about the compositional patterns demonstrated by two or 

more samples (Tuomisto, 2010, Legendre, 2014). More recently, interest has extended to 

consider how diversity is shared among multiple sites in a network (e.g., Diserud and Ødegaard, 

2007, Chao et al., 2008, Arita, 2017, Lu et al., 2019). The concept of zeta diversity – the number 

of species shared among any number of samples (Hui and McGeoch, 2014) – unifies similarity 

theory, showing shared species are a fundamental unit of currency from which multiple diversity 

patterns can be derived (Hui and McGeoch, 2014, Arita, 2017, Lu et al., 2019). Typically, zeta 

diversity is calculated from occupancy data but here I illustrate how it can be calculated using 

spatial sampling theory.  

 

The species-area relationship (SAR) bears a strong relationship with measures of compositional 

similarity, as both describe turnover in space (Lande, 1996, Harte and Kinzig, 1997, Koleff et al., 

2003, Tjørve and Tjørve, 2008, Pan, 2015). The SAR has been an important means for exploring 
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how species number scales with area (e.g., Arrhenius, 1921, Preston, 1962, Coleman, 1981, He 

and Legendre, 2002, Wilber et al., 2015). It has also been used to derive an expected species 

overlap among areas, allowing its use in predicting the impacts of habitat loss (Harte and Kinzig, 

1997, Harte et al., 1999, Tjørve, 2002, Tjørve, 2010), or sub-division, usually under an 

assumption of a power law form (Simberloff and Abele, 1976, Higgs and Usher, 1980, Tjørve 

and Tjørve, 2008, Tjørve, 2010, Hanski et al., 2013, Rybicki and Hanski, 2013). The power law 

SAR has also been adapted for use in fragmented habitat by incorporating an extra term derived 

from metapopulation theory (Hanski et al., 2013).  

 

Unlike SAR based on the power law though, species-area models derived from spatial sampling 

theory depend only on species abundance and spatial distributions and have shown how 

variations in these fundamental ecological characteristics affect the way in which local diversity 

scales with area (He and Legendre, 2002, Green and Ostling, 2003, Tjørve et al., 2008, Kitzes 

and Harte, 2014). Similarly, Plotkin and Muller-Landau (2002) derived the expectation for 

patterns of similarity between two sites under different species abundance distributions and 

spatial patterns. The same basic sampling theory can be used to ask how the expected number of 

species shared among – or endemic to - multiple samples should change based on ecological 

(species abundance distributions and spatial patterns) and geometric (sampling area and number) 

constraints.  

 

With the expected number of shared species among samples (their zeta diversity) established, 

general formulae for a range of incidence-based diversity measures can be calculated (Hui and 

McGeoch, 2014, Lu et al., 2019). For example, if ζ2 denotes zeta diversity of order 2 (the 
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expected number of species shared in two samples), then Jaccard’s pairwise similarity index is 

ζ2 (2ζ1 −  ζ2)⁄  (Hui and McGeoch, 2014). Similarly, a formula for the total number of species in 

a group of samples can be derived based on their zeta diversity (Methods). Rather than using 

species incidence as in the original derivation of zeta diversity (Hui and McGeoch, 2014), here I 

use abundance data to calculate the expected number of shared species, and demonstrate the use 

of the general formulae based on the zeta diversity partition accurately predicts the expected 

effects of sub-division on diversity. 

 

My aims for this chapter are to (i) derive a model to predict the number of shared species in 

equal-sized sampling areas for random and non-random placement of individuals; (ii) validate 

the model predictions for a range of spatial and abundance distributions; (iii) use the models to 

demonstrate how shared species should be expected to change under different constraints, both 

ecological (abundance and spatial distributions) and geometrical (patch area and number).  

 

4.3 Methods 

4.3.1 Shared species under random placement 

Species-area relationships have been shown to be ultimately determined by the abundance of 

individuals of each species and their spatial pattern (He and Legendre, 2002). Assuming random 

and independent placement of the individuals of each species in space, the expected number of 

species found in subarea a, of total area A, is given by the sum over all species of the probability 

that at least one individual of the species is present (Arrhenius, 1921, Coleman, 1981):  
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𝑆
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𝑎

𝐴
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] (4.1) 

   

Retaining the assumptions of independent and random spatial distribution, if two independent 

samples of size a are obtained from the same community, the expected number of species in 

common is the sum over all species of the product of the probabilities that at least one individual 

of each species is present in each sample. More generally, among m samples, each equal to 

subarea a of total area A, the expected number of shared species SSm|a should follow: 

 𝐸(𝑆𝑆𝑚|𝑎) = ∑ 𝑃1,𝑖

𝑆

𝑖=1

⋅ 𝑃2,𝑖 ⋅. . .⋅ 𝑃𝑚,𝑖 = ∑ [1 − (1 −
𝑎

𝐴
)

𝑁𝑖

]
𝑚

 (4.2) 

 

Thus, assuming random placement of individuals, the expected number of species present in 

repeated samples of a given area from an assemblage depends only on the abundance vector Ni. 

As species abundance distributions become more even, the number of shared species increases, 

(Plotkin and Muller-Landau, 2002).  

 

4.3.2 Shared species under non-random placement 

Eq. 4.2 predicts the number of species shared among m samples of area a, provided individuals 

from each species are randomly located in space. However, it is most common for species to be 

clustered (aggregated) in space (He et al., 1997, Condit et al., 2000). Intraspecific aggregation 

has the effect of decreasing the expected number of species in sub-area a (He and Legendre, 

2002) and in decreasing the expected compositional similarity of two samples (Plotkin and 

Muller-Landau, 2002). He and Legendre (2002) adapted the sampling SAR for aggregated 
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species spatial distributions based on the negative binomial distribution. Using the same logic as 

for the random placement of individuals, this suggests a model for expected shared species in m 

samples under non-random placement:    

 

 𝐸(𝑆𝑆𝑚|𝑎) = 𝑆 [1 − (1 −
𝑎

𝐴
)] [ ∑ (1 +

𝑁𝑖𝑎

𝐴𝑘𝑖
)

−𝑘𝑖

 

𝑆

𝑖=1

]

𝑚

 (4.3) 

 

where: S is the total number of species in the assemblage, Ni is a vector of the abundance of each 

species and ki is a parameter describing the spatial distribution of species i in sub-area a of total 

area A. The term (1 − 𝑎 𝐴⁄ ) is required to ensure the number of species is zero when a = 0, and 

S, when a = A but is only a statistical modification with no theoretical justification (He and 

Legendre, 2002). In the study of fragmented landscapes, the main interest is in understanding 

how small to moderate sized fractions of the original habitat area are affected. This suggests that 

values of the remaining fraction near 0 or A will not be relevant and the correction factor 

(1 − 𝑎 𝐴⁄ ) is unnecessary and can thus be omitted from Eq. 4.3.  

 

The value of ki depends on the mean abundance of species i in area a. If µi is the mean density of 

species i in area a, ki varies over the intervals (-∞, -µi) and (0, ∞). Negative values of k represent 

the probability of presence of a species in sub-area a derived from a binomial distribution; as ki 

approaches -µi from the negative side, this describes an increasingly regular spatial distribution 

(He and Legendre, 2002). Positive values of k represent the probability of presence of the species 

derived from the negative binomial distribution, varying over the interval (0, ∞), where values 

approaching 0 reflect increasingly aggregated spatial patterns (He and Legendre, 2002).  
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Parameter k can be generalized using a constant scaling factor, c, for all species to convert mean 

density to k. Although every species in the community typically follows a distinct spatial pattern 

(He et al., 1997, Condit et al., 2000), the value for c that gives the best fit to all species in an 

assemblage can be obtained using maximum likelihood or other optimization methods (Plotkin 

and Muller-Landau, 2002). One advantage of using a single community-level estimate for c at 

each grain is the area-scaling of the term can be explored (Plotkin and Muller-Landau, 2002). 

Conceptually, scaling factor c represents the attraction of intraspecific individuals within area a; 

under aggregated spatial distributions intraspecific individuals have an attractive effect, meaning 

c takes positive values, while in regular spatial patterns the effect of conspecifics is inhibitory, 

resulting in a negative value for c (Zillio and He, 2010).  

 

An alternative interpretation of c is as a model parameter that can be used to fit Eq. 4.3 to 

observed data: 𝑘𝑖 = 𝑁𝑖𝑎 𝐴𝑐⁄ . Removing the unnecessary term constraining the estimated number 

of species shared at extreme area values (0 and A), results in a non-random model for the number 

of species shared in m samples: 

 𝐸(𝑆𝑆𝑚|𝑎) =  ∑(1 − (1 + 𝑐)−𝑘𝑖)𝑚 

𝑆

𝑖=1

 (4.4) 

 

where all notation is as described above.  

 

An alternative to omitting the constraining term in Eq. 4.4, is to base the shared species 

probability calculation on the finite negative binomial distribution derived by Zillio and He 
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(2010). This is the correct probability distribution for spatial aggregation in a finite population 

and removes the need for the constraining term. Based on the finite negative binomial 

distribution (Zillio and He, 2010) the expected number of shared species in m samples of area a, 

is:  

 𝐸(𝑆𝑆𝑚|𝛼,𝑘,𝑁 ) =  ∑ [1 −
Γ(𝑁𝑖 + 𝑘𝑖 ⁄ 𝛼 − 𝑘𝑖)Γ(𝑘𝑖 ⁄ 𝛼)

Γ(𝑁𝑖 + 𝑘𝑖 𝛼⁄ )Γ(𝑘𝑖 𝛼⁄ − 𝑘𝑖)
]

𝑚𝑆

𝑖=1

 (4.5) 

 

where 𝛼 =  𝑎 𝐴⁄ ; m, ki, and Ni have the same interpretation as Eq. 4.4; and, Γ(n) = (n – 1)! is the 

gamma function. As with Eq. 4.3 and 4.4, parameter k adjusts the expected mean density of each 

species in area a according to its spatial distribution and has the same derivation and 

interpretation as for Eq. 4.4 (He and Legendre, 2002, Zillio and He, 2010). Compared to Eq. 4.4, 

Eq. 4.5 is more complex and requires additional computational effort due to the large numbers 

required for the gamma function. Unless the predictive performance represents a substantial 

improvement, the additional complexity might not be warranted. Thus, in this chapter I compare 

the performance of the two non-random shared species models, eq. 4.4 and 4.5, using c as a 

fitting constant to validate model predictions against empirical and simulated data. I also explore 

the scaling of c with area in both models (Eq. 4.4, 4.5) under different ecological constraints 

(SAD and spatial pattern).  

 

4.4 Diversity modelling 

The expected number of species shared among m patches has recently been defined as the zeta 

diversity of order m (Hui and McGeoch, 2014). With this information, a number of useful 
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diversity values can be calculated for the patches based on these shared components (Hui and 

McGeoch, 2014). Having obtained estimates for zeta diversity from the shared species models, I 

use the relationships derived for zeta diversity to calculate the total number of expected species 

in all patches combined (i.e., gamma diversity) and the number of species found in only a single 

patch (single-patch endemics). Thus, the shared species models can be used to predict expected 

patterns of diversity in landscapes comprising any number of samples (or fragments), m, of area 

a, provided complete knowledge of species abundances and spatial distributions in the original 

study extent of interest A are available. Although this is rarely the case in actual datasets, it 

allows for analytical tests of the effects of fragmentation on landscapes by intentionally 

manipulating the abundance distributions and spatial patterns according to known or theorised 

values.  

 

4.4.1 Estimating gamma diversity for m fragments of size a 

The number of species expected in one sample of area a (alpha diversity) is calculated using the 

shared species formulae, with m = 1. The expected number of species shared (zeta diversity) 

among any number of samples m of size a can be determined. From the expected shared species, 

gamma diversity in m samples of area a can be calculated recursively following the inclusion-

exclusion formula given in Hui and McGeoch (2014): 

 γ𝑚,𝑎 = ∑(−1)𝑗+1

𝑚

𝑗=1

(
𝑚

𝑗
) 𝑆𝑆𝑗 (4.6) 
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where: γm, a = the total number of species contained in m samples of area a and SSj = the number 

of species shared in j samples (j = 1, 2,…, m). Referring to Fig. 4.1, the derivation of Eq. 4.6 can 

be illustrated for 3 sites of area a.  

 

γ𝑚,𝑎 = (
3

1
) 𝑆𝑆1 −  (

3

2
) 𝑆𝑆𝑠 +  (

3

3
) 𝑆𝑆3 

Figure 4.1 Venn diagram illustrating the recursive calculation of gamma diversity from 

shared species (zeta diversity) components using Eq. 4.6. Each panel shows the area of 

‘species space’ represented by each term of the recursion for three sites shown below the 

figure. 

 

Each sample has a total richness equal to the alpha diversity for area a (i.e., the average number 

of species shared in 1 site = SS1). Ignoring species shared among 2 or more sites, the maximum 

possible total number of species = (3
1
) 𝑆𝑆1(left panel). To obtain total number of species across 

the three samples (gamma diversity), the species shared among 2 (SS2) and 3 (SS3) sites must be 

corrected for. There are three possible ways to share species among 2 sites (centre panel), so 

these are excluded from the total count (i.e., the second term in the summation: −(3
2
) 𝑆𝑆2). As 

the number of species shared in three sites (right panel) has been completely removed with the 



 

105 

 

exclusion of the species shared in 2 sites, this must be replaced = (3
3
) 𝑆𝑆3. The recursion can be 

easily extended to additional sites (Hui and McGeoch, 2014). 

 

4.4.2 Estimating beta diversity for m fragments of size a 

As alpha and gamma diversity can be obtained as described above, Whittaker’s (1960) 

multiplicative, or Lande et al’s (1996) additive, beta diversity partitions can be calculated 

directly. 

 

4.4.3 Single patch endemic species 

Single-species metapopulation theory predicts that extinction risk is a function of the number of 

occupied patches (Hanski, 1999). The species most at risk of extinction from a metacommunity 

then should be those maintaining only a single sub-population (hereafter, single-patch endemics). 

This can be calculated from zeta diversity as a function of the number of sites sampled, m, 

according to the formula (Hui and McGeoch, 2014) Sm – Sm-1, where Sm and Sm-1 are calculated 

from shared species using either Eq.4.4 or 4.5. Note that the number of species expected to be 

endemic to any number of fragments can be calculated as the difference between the shared 

species in one less sample.  

 

4.5 Model validation 

Model validation consisted of comparing observed values for shared species, gamma diversity 

and single-patch endemic species obtained from sub-sampling simulated and actual landscapes 

(hereafter validation landscapes) for different combinations of patch area, a, and patch number, 
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m. To provide a point of reference, I also sampled the landscape at the total pooled sampling area 

(i.e., observed species richness at area a x m), allowing comparison of observed and modelled 

species number in sub-divided habitat with that found in a single continuous patch of equivalent 

total area.  

 

I compared the mean observed shared species, gamma diversity and single-patch endemics with 

the predicted value for the random, and for both non-random, shared species models (Eq. 4.4 and 

4.5). Goodness of fit was assessed using the coefficient of determination (R2) and relative root-

mean-square error (rRMSE) between observed and predicted values for shared species, gamma 

diversity and single-patch endemics in each landscape for each model. Model fit was also 

assessed graphically, with predicted values falling within 95% confidence limits in observed 

mean of simulated data considered to represent adequate performance.  

 

4.5.1 Validation landscapes 

To validate models, I used both simulated and empirical datasets representing 50-ha landscapes 

with species distributed according to different abundance distributions and spatial patterns 

(hereafter ‘validation landscapes’). Empirical data were from the 50-ha Barro Colorado stem-

mapped forest plot (Hubbell et al., 2005), 2005 census (211845 live stems and 301 tree/shrub 

species). In simulated landscapes, I independently varied the spatial pattern while retaining a 

common species abundance distribution and varied the species abundance distribution under a 

constant set of spatial constraints.  
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To validate model performance under contrasting spatial patterns, I used the observed data and 

also simulated three landscapes (as described below) using the BCI empirical SAD, but with 

individuals positioned (i) at random, (ii) adopting more aggregated intraspecific clustering than 

observed at BCI; and, (iii) with more regular (dispersed) spatial patterns than at BCI. To simulate 

random placement landscapes, I used the empirical SAD, but rather than using the observed xy 

locations from the stem-mapping, I randomly positioned individuals in 50-ha space. To validate 

the non-random shared species models I simulated one regular and two aggregated 50-ha 

landscapes using the Strauss and Thomas point pattern processes respectively. The Thomas 

process requires two parameters, one controlling the number of parent nodes (µ), the other 

representing the standard deviation of the dispersal kernel and thus controlling the strength of 

clustering of intraspecific individuals (σ). Simulated landscapes used parameter values of µ that 

increased with the abundance of the species (<100 = 5; 100 - 1000 = 10; > 10000 = 20) and σ 

values of 25 and 50-m. The Strauss point pattern process has three parameters, β, controlling the 

intensity of the effect; r, the inhibition radius within which conspecifics are excluded; and, the 

inhibition strength, γ, which determines how strongly the inhibition radius is enforced. Parameter 

r was assigned a value that depended on the abundance of the species, setting this to A/√Ni (the 

distance between individuals in a lattice). Inhibition strength takes values from 0-1, with low 

values leading to strong enforcement of the inhibition distance. I set this value to 0.1, providing a 

more regular than random spatial distribution for each species. Regular landscapes were 

simulated using a Metropolis-Hastings algorithm, with both aggregated and regular spatial 

patterns simulated using R package ‘spatstat’ (Baddeley et al., 2015).  
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To validate model performance under different species abundance distributions, I simulated four 

landscapes with intraspecific clustering similar to that of the empirical data (see following 

paragraph), but with species abundances distributed according to (i) the BCI empirical SAD plus 

three common SAD models; (ii) broken stick, (iii) log normal, and (iv) log series. All simulated 

SAD were based on the observed data (total species = 301, total abundance = 211 845). The 

three validation landscapes varying the SAD were created by simulating three abundance vectors 

based on the broken stick, log normal and log series species abundance distribution models using 

R package ‘sads’ (Prado et al., 2017). The three SAD represented a gradient of Pielou’s evenness 

(Pielou, 1975): broken stick (~0.93); lognormal (~0.87); log series (~0.70); with the empirical 

data similar in evenness to the log series (0.69). The spatial pattern used in the SAD validation 

was as described above for the simulated aggregated landscape. I used a value for sigma of 50 m, 

which had the closest sampling properties (alpha diversity, c-parameter estimates) to the 

empirical data of all spatial patterns. 

 

After simulating each landscape, they were sub-sampled at different sampling grains and number 

of replicate samples to use as observed data. Sub-samples were square quadrats at 5-m 

increments from 5 x 5 to 50 x 50 yielding ten sampling grains (25, 100, 225, 400, 625, 900, 

1225, 1600, 2025, and 2500-m2) with shared species calculated for 5, 10, 15, 20, 25 and 30 

samples at each grain.  

 

At each sampling grain a, parameter c was estimated numerically as the value returning the 

smallest absolute difference between modelled and observed mean species richness (alpha 

diversity) at the relevant grain size (i.e., setting m = 1 in Eq. 4.4 and 4.5). The best-fit estimate 
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for c was inserted into the relevant equation and used to calculate zeta diversity for m samples at 

that grain size. Zeta diversity was then used to calculate expected gamma diversity and single-

patch endemics as described above. The predicted values for gamma diversity and single patch 

endemics were then compared with the mean of observed values from 100 replicate sets of 

samples for each combination of a and m in each validation landscape. 

  

4.5.2 Scaling properties of the c-parameter in non-random models  

As discussed under model development, parameter ki in the non-random species area model 

represents the intraspecific spatial pattern for species i. For the negative and finite negative 

binomial spatial distributions, the parameter scales according to a power law and can be 

estimated at any scale once a base scale value is known (Plotkin and Muller-Landau, 2002, He 

and Hubbell, 2003):  

 𝑐𝑎 = 𝑐0

𝑎

𝑎0

𝑧

 (4.7) 

 

where ci is the value of the scaling parameter at the spatial grain to be estimated at scale ai; c0 is 

the value of the parameter as base scale a0 and z is a parameter describing the scaling 

relationship. Using the community-level scaling factor c as a fitting parameter allows the 

exploration of scaling of this parameter with the area used to model alpha diversity. Here I fit 

separate estimates of the c-parameter at each scale to predict shared species. I also use 400 m2 as 

the base scale (a0) as an estimate of c0 and test the predictive ability of the power function to 

estimate the scaling of the c-parameter with area in each of the different validation landscapes.  
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4.5.3 Patterns of shared species under different sampling and ecological constraints 

Finally, I use the models to illustrate how the number of shared species is affected by three 

constraints: sampling grain; species abundance distribution; and, spatial patterns. In this analysis, 

I simulated landscapes with a total number of species, S = 250, distributed according to different 

species abundance distributions among N = 250000 individuals, over a total study area A = 50 

ha. To illustrate the effects of sample area, I used a random placement of individuals and 

sampled 20 quadrats at six sampling grains; 0.05, 0.1, 0.25, 0.5, 0.75 and 1-ha. For the effects of 

the SAD, I simulated five different species abundance distributions varying in evenness. I 

bounded predictions using two extreme, though ecologically unrealistic, species abundance 

distributions; (i) where all species have an equal number of individuals (𝑁𝑖 = 𝑁 𝑆⁄ ) (hereafter 

‘most even’ SAD), and, (ii) where all but one species are singletons, with the remaining species 

having abundance 𝑁 − (𝑆 − 1) (‘least even’ SAD). Between these two extreme cases, I used the 

three SAD models used in validation (broken stick, lognormal, log series), which differ in their 

relative evenness in species abundance.  

 

Note that for all SAD used other than the lognormal SAD, the random placement species-area 

model has an analytical solution (He and Legendre, 2002), which can also be extended to predict 

shared species in multiple samples of area a. However, to remain consistent, here I used the 

random placement shared species model (Eq. 4.2) with simulated series species abundance 

distribution (SAD) models, generated using R package ‘sads’ (Prado et al., 2017). The five SAD 

represent a gradient of evenness according to Pielou’s measure (Pielou, 1975); most even 

(Pielou’s evenness = 1), broken stick (~0.93), lognormal (~0.85), log series (~0.70), and, least 
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even (< 0.01). To examine the effect of spatial aggregation, I used the negative-binomial-based 

non-random model (Eq. 4.4), varying scaling factor c to represent regular (1/c = -1.01), random 

(1/c = 10), aggregated (1/c = 0.1) and highly aggregated (1/c = 0.01) spatial distributions (He and 

Legendre, 2002, Green and Ostling, 2003). For the species abundance vector in the non-random 

model, I used the log normal species abundance distribution described above. Sampling grain for 

the evenness and spatial scenarios was 0.25 ha and shared species were calculated for 20 

samples. I normalized the predicted shared species to a proportion of total original landscape 

species number to provide a relative measure. All simulations and modelling were done in R 

3.5.1 (R Core Team, 2019).  

 

4.6 Results 

4.6.1 Shared species model 

At a 400-m2 sampling grain, the number of species shared across multiple samples for random 

and non-random intraspecific spatial patterns were reliably predicted by the corresponding 

shared species models (Fig. 4.2). Predicted shared species for aggregated, random and empirical 

landscapes were all within 95% confidence limits for the observed data from repeated sampling 

of validation landscapes (Fig. 4.2). For regular intraspecific spatial patterns, the non-random 

model systematically under-predicted shared species, falling below the lower confidence interval 

(Fig. 4.2c). With increasing sampling grain, shared species model predictions in aggregated 

landscapes also tended to deviate from 95% confidence limits, although lying above and 

suggesting overprediction of shared species (the model predicted more shared species than were 

observed). For regular spatial patterns, increasing sampling grain led to the opposite pattern, 
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increasingly under-predicting. However, even at the maximum sampling grain used in validation 

(2500 m2), predicted shared species were close to empirical confidence limits (see Supporting 

information, Section 4.11, Fig. 4.7).  

 

Figure 4.2 Predicted and observed shared species for 20 400-m2 quadrat samples randomly 

located in simulated and observed 50-ha landscapes. All landscapes use the empirical Barro 

Colorado Island (BCI; 2005 census year) species abundance distribution but vary in spatial 

pattern; (a) high intraspecific aggregation, (b) empirical BCI data, (c) regular intraspecific 

pattern, and, (d) random placement. Each panel shows the mean (open triangles) and 95% 

confidence limits (grey dashed lines) in observed shared species from 100 repeat samples. 

Open circles in panels a-c are model predictions using the best fit estimate for the c-
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parameter for Eq. 4.4 fit to mean alpha diversity. Panel (d) is the random placement model 

(Eq. 4.2). 

 

For intraspecific spatial aggregation comparable to that observed in the empirical data, the non-

random model predicted the number of shared species equally well for landscapes based on 

common species abundance distributions (broken stick, lognormal, log series; Fig. 4.8, Section 

4.11). Although the model based on the finite negative binomial model tended to perform 

slightly better overall, there was little difference in performance of the two non-random models 

in terms of shared species (Table 4.1). 

 

Table 4.1 Model validation for random (Eq. 2) and two non-random shared species models 

(Eq. 4.4 and 4.5; denoted 4 and 5 below), with estimated gamma diversity and single-patch 

endemics for each model under contrasting spatial distributions. 

 Validation 

landscape 

Measurement Model rRMSE R2 

Empirical Shared species Eq. 4/5 0.371 / 0.366 0.999 / 0.999 

 Gamma diversity Eq. 4/5 0.031 / 0.027 0.999 / 0.999 

 SPE Eq. 4/5 0.029 / 0.028 0.963 / 0.948 

Aggregated Shared species Eq. 4/5 0.271 / 0.078 0.998 / 0.999 

(sigma=50) Gamma diversity Eq. 4/5 0.047 / 0.016 0.999 / 0.999 

 SPE Eq. 4/5 0.046 / 0.028 0.980 / 0.988 

Aggregated Shared species Eq. 4/5 0.271 / 0.265  0.999 / 0.999 

(sigma=25) Gamma diversity Eq. 4/5 0.046 / 0.044  0.999 / 0.999 

 SPE Eq. 4/5 0.047 / 0.030 0.980 / 0.987 

Regular Shared species Eq. 4/5 0.289 / 0.295 0.999 / 0.998 

 Gamma diversity Eq. 4/5 0.029 / 0.026 0.999 / 0.999 
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 SPE Eq. 4/5 0.047 / 0.068 0.962 / 0.966 

Random Shared species Eq. 2 0.007 0.999 

 Gamma diversity Eq. 2 0.004 0.999 

 SPE Eq. 2 0.027 0.994 

 

4.6.2 Validation of diversity predictions 

Gamma diversity in sub-divided habitat was closely predicted (all R2 > 0.99; rRMSE <0.047) for 

all models in all validation landscapes (Fig. 4.3, Table 4.1). The number of species found in a 

continuous area compared with that in sub-divided patches depended on spatial pattern; in 

aggregated and empirical landscapes, gamma diversity was lower in the single large patch (Fig. 

4.3, 4.9). For regular landscapes, the model slightly over-predicted gamma diversity, although 

this estimate was nearly identical to the observed species in the continuous area, which lay above 

that of the sub-divided habitat, albeit within the 95% confidence limits in the observed sub-

divided habitat (Fig 4.3c). Under random placement, shared species and gamma diversity were 

effectively in perfect agreement with mean observed data for all models (R2 > 0.999; Table 4.1; 

Fig. 4.3d) and the number of species in continuous and sub-divided habitats at all grains was the 

same (Fig. 4.3d).  
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Figure 4.3 Observed and modelled gamma diversity for 20 samples from simulated and 

observed 50-ha landscapes varying sampling grain and spatial pattern. (a) highly 

aggregated intraspecific pattern; (b) empirical BCI data; (c) regular intraspecific pattern; 

and, (d) random placement. Each panel shows the mean (open triangles) and 95% 

confidence limits (grey dashed lines) in observed shared species from 100 repeat samples 

and the species richness for continuous areas of the same total size (+). 

 

Single-patch endemics were closely predicted using the non-random shared species models, 

though not quite as well as gamma diversity (R2 > 0.94; rRMSE < 0.068; Fig. 4.4). However, this 

component of diversity had considerable within-landscape variability relative to the variations in 

observed gamma diversity (Fig. 4.4). There was little difference in the predictive performance of 



 

116 

 

the two non-random models for shared species, modelled gamma diversity or single-patch 

endemics (Table 4.1), although where differences were observed, the finite negative binomial 

model tended to be superior.  

 

 

Figure 4.4 Observed (± 95% empirical confidence limits) and modelled single-patch 

endemic species from validation landscapes using the empirical BCI species abundance 

distribution but differing in spatial pattern. (a) highly aggregated intraspecific pattern; (b) 

empirical BCI data; (c) regular intraspecific pattern; and, (d) random placement. Each 

panel shows the mean (open triangles) and 95% confidence limits (grey dashed lines) in 

observed shared species from 100 repeat samples. 
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4.7 Scaling properties of non-random model c-parameter 

The estimated c-parameter for aggregated spatial patterns scaled according to a power law over 

the range of spatial grains considered and was well predicted by Eq. 4.7 for both non-random 

shared species models (all R2 > 0.99). Similarly, both the scaling exponent, z, and the estimated 

base scale value for c0 were very similar in both non-random models, never differing by more 

than 3%. For a given modelled pattern of spatial aggregation, differences in species abundance 

distribution produced little change in base scale estimate (e.g., for landscapes with a sigma of 50 

m, values for the different SAD differed by less than 9%; Table 4.2). However, the exponent 

value increased consistently with more even abundance distribution (e.g., log series = 0.63, 

broken stick = 0.84; Table 4.2). Although based on comparing only two values, changing spatial 

aggregation for a given SAD appeared to have the opposite effect, where increasing aggregation 

increased the estimated base-scale c-parameter, while having a limited affect on z (Table 4.2). 

Unlike the aggregated and empirical data, for random and regular landscapes the scaling 

relationship did not follow a power law and appeared not to scale consistently with spatial grain 

but rather adopted values close to zero as expected for random placement (Fig. 4.5).  
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Figure 4.5 Scaling of the c-parameter for the non-random shared species model. Points 

show the fitted estimate for each grain and the curve is the best fit power function (Eq. 4.7). 

(a) simulated highly aggregated spatial pattern; (b) empirical data for BCI; (c) random 

placement; (d) simulated regular distribution. For each grain, the scaling factor was 

estimated numerically as the value providing the best fit of Eq. 4.4 to mean alpha diversity 

calculated from 200 randomly positioned quadrats in each landscape.  
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Table 4.2 Area scaling of fitting constant c in non-random shared species models in 

simulated and empirical validation landscapes.  Shown are the coefficient of determination 

(R2) and root-mean square error (RMSE) and estimated model parameters (α, β, γ) for the 

power exponential function model fit to estimated c at each spatial grain (see also Fig. 4.5). 

Each row shows the results for actual data (Empirical = Barro Colorado Island) or 

simulated 50-ha landscapes varying either spatial pattern (H. aggregated, L. Aggregated = 

high and low intraspecific aggregation, Regular) or species abundance distribution at low 

aggregation (Broken stick, Log normal, Log series). 

Model Landscape z c0 R2 

Eq 4 Empirical 0.357 0.966 0.994 

 H. Aggregated  0.75 0.718 0.998 

 L. Aggregated 0.769 0.155 0.999 

 Broken stick 0.842 0.168 0.999 

 Lognormal 0.77 0.164 0.998 

 Log series 0.633 0.19 0.999 

Eq 5 Empirical 0.365 0.973 0.995 

 H. aggregation 0.759 0.724 0.998 

 L. aggregation 0.778 0.157 0.999 

 Broken stick 0.845 0.167 0.999 

 Lognormal 0.775 0.163 0.998 

 Log series 0.648 0.188 0.998 

 

4.8 The effects of ecological and sampling constraints on shared species 

The expected proportion of total landscape diversity shared among samples is a (generally non-

linear) decreasing function of sample number under any of the constraints analysed (Fig. 4.6). 

With decreasing sampling area and less even species abundance distributions, the number of 

shared species decreases (Fig. 4.6a, b). Spatial pattern has a strong influence on the expected 
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number of shared species, with > 80% of all species predicted to be shared between 20 samples 

of 0.25-ha area under a regular spatial distribution and fewer than 10% in highly aggregated 

landscapes (Fig. 4.6c).  

 

 

Figure 4.6 Change in expected species shared among 20 samples with variation in: (a) 

sampling area; (b) species abundance distribution; and, (c) intraspecific spatial 

distribution. Shared species in panels (b) and (c) were calculated using a 0.25-ha sampling 

grain. Proportional values on the y-axis represent shared species from a total species pool 

of 250, distributed among 250000 individuals according to the adopted SAD. In panel (b) 

individuals were randomly placed and the evenness of the SAD decreases in the order: 

most even (ME) > broken stick (BS) > lognormal (LN) > log series (LS) > least even (LE). 

In panel (c) a log normal species abundance distribution was used and the value of the 

scaling factor c simulates the effect of different intraspecific spatial patterns: -1.01 

indicating a distribution more regular than random; 10, indicating approximately random 

placement; 0.1, indicating moderate intraspecific aggregation (clumping); and 0.01, 

indicating strong aggregation.  
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4.9 Discussion 

Although methods exist to predict the number of species lost when a known proportion of total 

habitat is destroyed (Pereira and Daily, 2006, He and Hubbell, 2011, Hanski et al., 2013), no 

existing framework can model the expected pattern of species diversity across multiple patches 

of sub-divided habitat. Understanding of any future biotic relaxation in sub-divided habitat 

should be based on such an expectation. The proposed framework addresses this gap, by 

modelling the expected number of shared species (the zeta diversity) and thereby allowing 

multiple different diversity patterns to be calculated. I demonstrate the approach works well for 

gamma diversity and single-patch endemics under different species abundance and spatial 

distribution patterns, but the intermediate step of calculating shared species allows a range of 

metrics to be calculated (Hui and McGeoch, 2014). This supports analytical approaches to 

understand the effects of different fragmentation scenarios under various ecological constraints 

on species abundance and spatial distributions.  

 

As one example of application, the framework accurately reproduces the higher gamma diversity 

of groups of small patches relative to that in an equivalent area of continuous habitat, but in so 

doing highlights a key point; this is only the case for spatially aggregated assemblages. 

Kobayashi (1985), demonstrated this same result analytically almost 40 years ago, but it seems 

not to be widely appreciated (Fahrig, 2017). Even sub-samples from continuous habitats (as used 

in model validation here) exhibit the ‘several small patches contain more species than a single 

large patch’ pattern under predominantly aggregated spatial patterns. This suggests the most 

parsimonious explanation for why higher diversity in sub-divided habitat is observed so 
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frequently (e.g., Quinn and Harrison, 1988 and similar studies) is perhaps simply the prevalence 

of intraspecific spatial aggregation in nature (He et al., 1997, Condit et al., 2000). Although this 

does not preclude some independent positive effect of sub-division on species diversity (Fahrig, 

2017), it is not necessary to invoke such a mechanism to explain it. 

 

Similarly, while I used data sub-sampled from a continuous habitat to validate the models, results 

point to a largely statistical, or geometrical, explanation for some known patterns of 

compositional turnover in fragmented habitats. Assuming constant sample-level (alpha) 

diversity, the fewer species that are shared among a group of samples, the greater their overall 

(gamma) diversity (Whittaker, 1960, Jost et al., 2011). Fragmented landscapes often present just 

such an increase in dissimilarity (i.e., the complementary pattern to similarity), which helps 

explain how landscape species numbers can be maintained after fragmentation (reviewed in 

Tscharntke et al., 2012) or following invasion (Powell et al., 2013). The modelling framework 

has potential for further development to explore such questions. 

 

The number of species found in only a single patch were also closely predicted by the 

framework. There were consistent patterns and limited variation in the number of single patch 

endemics across the different landscapes for a given abundance distribution. Relative to the 

observed gamma diversity though, there was a much wider scatter in confidence limits in the 

simulated and empirical landscapes. Both the similar numbers across spatial patterns and the 

wide scatter in observed data probably reflect the more random spatial patterns observed in less 

common species (He et al., 1997), which are, of course, the ones most likely to be found in only 

a single patch. This confirms the mathematical proof by He and Hubbell (2011) that endemics-
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area curves follow random placement irrespective of spatial aggregation. Further investigation is 

warranted into how the number of species confined to one, or a few, patches changes with 

ecological and geometric constraints. 

 

Although model predictive performance was generally good, there was some systematic over 

prediction of shared species with increasing grain. A possible explanation for this is the 

distributional assumptions of the model, that species’ spatial patterns follow a negative (or finite 

negative) binomial distribution. As sample grain increases, an increasing proportion of species 

will have a spatial distribution approaching saturation (i.e., presence in every sample). This could 

then result in over-estimation of the community level aggregation parameter c and, as a result, 

over-estimation of the shared species. This suggests the over-prediction could be a limitation of 

the data, rather than the models themselves. It was interesting to note that even despite the 

increasing over-prediction of shared species in aggregated spatial patterns (and under-prediction 

in regular landscapes) at larger grain sizes, the diversity values estimated from these remained 

within 95% confidence limits and it seems to not present a serious limitation on this aspect of 

model performance.  

 

The generally poorer fit of regular spatial distributions might also reflect the nature of the data. I 

expected that regular spatial distributions would result in the opposite diversity pattern to that of 

aggregated landscapes (i.e., more species contained within a single large area than several small 

patches). However, the data from the simulated regularly distributed landscapes differed little 

from the random model, although numerically this difference could be important. This did not 
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change even when individuals for each species were positioned as in a square lattice (result not 

shown) and appears to reflect the overlapping distribution of many species.  

 

Similarly, the fitted parameter estimates for c in both the random and regular landscapes were 

both consistent with expected model behaviour for random placement, rather than favouring 

negative values for regular distributions (He and Legendre, 2002, Zillio and He, 2010). As the 

value for the k parameter in the negative binomial distribution increases, the probability of 

observing a species in area a converges to the random expectation under a Poisson distribution 

(Plotkin and Muller-Landau, 2002). In the non-random model, values of c near to zero result in 

large values for k. The reason the simulated regular landscapes appear like those under random 

placement might be because the number of species used in simulations meant that spatial patterns 

at the assemblage level were almost indistinguishable from random. Indeed, simulated regular 

distributions in He and Legendre (2002) showed much smaller variations from random than 

aggregated distributions. This is possibly because of physical limits to the range of variability; 

the strongest possible aggregation that can be simulated is where all individuals of a species 

occupy a single point in space, while distributions are limited to a maximum intraspecific 

interaction radius of A/√N in a perfect lattice. For individual species, regular spatial distributions 

have been predicted to result in stronger, geometry-dependent impacts from fragmentation than 

species with random placement (May et al., 2019) and this warrants further investigation for 

multi-species assemblages.  

 

It is known that patterns of spatial abundance change with the scale at which they are observed 

(Wright, 1991, Plotkin and Muller-Landau, 2002, He and Hubbell, 2003, Conlisk et al., 2012). 
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For use in simulation, it is important to understand the scaling behaviour of the c parameter as 

the spatial grain changes so that an appropriate value for each grain can be estimated. At small 

proportions of total study extent, the scaling parameter (k) in the negative binomial distribution 

(essentially replaced by fitting/scaling parameter c) tends to be self-similar, scaling according to 

a power-law, with an exponent in the range 0.2 - 0.6 (Wright, 1991, Plotkin and Muller-Landau, 

2002, He and Hubbell, 2003). This relationship requires confirmation and better understanding if 

the modelling framework is to be used to model the effects of fragmentation. It is explored in 

Appendix C.  

 

The main intended application for the framework is in simulations to help understand how 

different constraints such as species abundance distributions, spatial patterns and the number and 

size of fragments in a landscape affect the expected patterns of diversity. If used to simulate the 

effects of fragmentation in this way, this assumes habitat loss and sub-division is instantaneous 

and no biotic relaxation has taken place. Although this is unrealistic, its value is in providing a 

null expectation for the effects of sub-division of habitat on diversity as discussed above; it is the 

deviations from this expectation that then require biological interpretation. In addition to 

understanding the emergent patterns such as variation in the gamma diversity and number of 

single-patch endemic species, variations in expected shared species are also potentially useful. 

For example, as the models predict zeta diversity (Hui and McGeoch, 2014) they could 

potentially help elaborate the causal factors underlying its two main (power law and exponential) 

functional forms. They could also be used to explore the other elements of diversity that can be 
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derived from zeta diversity including similarity indices, occupancy frequency distributions and 

species accumulation curves (Hui and McGeoch, 2014). 

 

Although Eq. 4.4 and 4.5 were derived based on complete information being available for the 

abundance of all species across the total area A, these types of data are generally not available in 

empirical investigations. Plotkin and Muller-Landau (2002) found it was not necessary to have 

information on the complete species number for a landscape to predict the similarity of two 

samples. The interpretation of scaling factor c as a fitting parameter, allows the non-random 

models to be used to predict shared and endemic species with information available from a 

collection of samples. Thus, while model validation for Eq. 4.4 and 4.5 were done under the 

assumption of complete knowledge, they can also predict shared species in an empirical sample 

where the global SAD is replaced by the empirical abundance data and the global extent A is 

replaced by m x a. Applications of this nature will require further model development and 

validation on empirical data. 

4.10 Conclusion 

In this chapter I have developed a model that provides a statistical expectation for the effects of 

sub-division as distinct from area in sub-divided habitat. This expectation clarifies the role of 

sub-division alone in determining the resulting diversity and has clear implications for both the 

fragmentation per se and SLOSS debates. 
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4.12 Supporting information for Chapter 4 

 

 

Figure 4.7 Observed and modelled shared species at 2500-m2 sampling grain for BCI data.  

The model fit to alpha diversity systematically over-predicted shared species at sampling 

grains exceeding ~900 m2. Points show observed and predicted shared species for 

increasing numbers of samples, with dashed lines showing 95% confidence limits in 

observed shared species from 100 replicate samples of the BCI landscape. 
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Figure 4.8 Shared species model validation under contrasting species abundance 

distributions and constant spatial aggregation at 400-m2 sampling grain.  Each panel shows 

the observed (± 95% confidence limits) and modelled shared species using Eq. 4 for a 

simulated validation landscape. In each landscape intraspecific aggregation was held 

constant (sigma = 50 m) but the observed BCI total species (S = 301) and number of 

individuals (N = 211845) distributed according to different abundance distributions: (a) log 

series (b) empirical (c) broken stick (d) log normal.  
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Figure 4.9 Observed and modelled gamma diversity for 20 samples from simulated 50-ha 

landscapes varying sampling grain and species abundance distribution. (a) BCI empirical 

SAD; (b) log series; (c) broken stick; and, (d) log normal. Each panel shows the mean (open 

triangles) and 95% confidence limits (grey dashed lines) in observed shared species from 

100 repeat samples and the species richness for continuous areas of the same total size (+). 

Landscapes simulated aggregated spatial patterns for each species using the Thomas point 

pattern process, with the dispersal parameter (sigma) set to 50 m.   
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Chapter Five: Expected patterns of species loss under habitat destruction and sub-division 

depend on species’ abundances and spatial distributions 

5.1 Abstract 

The effects of habitat sub-division on diversity are highly controversial. Here, I simulate the 

effects of both habitat loss and sub-division on species diversity using an analytical modelling 

framework. I model changes in proportional species loss and the number of remaining species 

confined to a single patch (single-patch endemics) for destruction of 20-90% of total habitat area. 

I compare these effects over gradients of species evenness and spatial aggregation at 6 different 

levels of sub-division. Only under random placement was loss of species unaffected by sub-

division; under any level of intraspecific aggregation, more species were retained in the sub-

divided habitat. For ecologically realistic evenness and aggregation, increasing the number of 

habitat patches from 1 to 32 preserved an additional 2-5% of original species richness and 

reduced the number of surviving species confined to a single patch. Both the magnitude of 

species losses and the moderating effects of sub-division were more sensitive to changes in 

relative abundance than the strength of intraspecific aggregation. Highly even abundance 

distributions resulted in <3% of original species being lost at 80% reduction of area while at low 

evenness, this value approached 40%. I suggest some apparently positive effects of sub-division 

on species diversity can be attributed to intraspecific aggregation, with clear relevance for the 

fragmentation per se debate. Findings underline the importance of understanding 

macroecological patterns in predicting the impacts of habitat loss; as evenness of the pre-

clearance assemblage increases, the risk of species loss likely shifts from imminent to delayed 

extinction. 



 

135 

 

5.2 Introduction 

It has been estimated that by the end of the 20th century more than half of the global terrestrial 

land surface was dominated by human land use (Ellis et al., 2010). It is increasingly apparent that 

the future of biodiversity will depend not only on formal conservation reserve networks, but also 

on how well it can be integrated within the mixed-land-use ‘countryside’ landscapes that result 

from ever-expanding human activity (Pereira and Daily, 2006, Proença and Pereira, 2013, 

Mendenhall et al., 2014). A confusing obstacle policy makers currently face in fostering positive 

countryside biodiversity outcomes is conflicting ecological opinion on how habitat sub-division 

(fragmentation per se) affects species diversity (e.g., Fahrig, 2017, Haddad et al., 2017, Fletcher 

et al., 2018, Fahrig et al., 2019). Ecologists currently disagree not only on how sub-division 

affects diversity (Fletcher et al., 2018, Fahrig et al., 2019), but also on whether the conceptually 

separate processes of habitat loss and sub-division can be considered independently at all 

(Didham et al., 2012, Fahrig, 2017, Fahrig, 2019). Part of the problem lies in the practical 

difficulty of distinguishing these effects experimentally (Haila and Hanski, 1984, McGarigal and 

Cushman, 2002); here I avoid these potential pitfalls by using an analytical model to predict the 

expected effects of sub-division on patterns of diversity at different levels of habitat loss. 

 

Land clearance results in two distinct processes (Wilcox, 1980); reduction in total habitat area, 

and, its breaking apart into discrete habitat patches ('fragmentation per se'; Fahrig, 2003). Habitat 

loss is unequivocally counted among the leading anthropogenic causes of extinction (Brooks et 

al., 2002, Butchart et al., 2010), but the effects of habitat sub-division are highly controversial. 

The key point of disagreement relates to whether the effects of fragmentation per se (i.e., 
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controlling for the negative impacts of habitat loss) are typically positive or negative for diversity 

(Fahrig, 2017, Haddad et al., 2017, Fletcher et al., 2018, Fahrig et al., 2019). Here I will show 

that the truth is probably that it is neither; rather that (at least some of) the observed patterns 

interpreted as being positive are a probable consequence of the prevailing macroecological 

patterns.  

 

To some extent, the fragmentation per se controversy can be viewed as a continuation of the 

single-large-or-several-small debate over conservation reserve design originating in the 1970s 

(Diamond, 1975b, Simberloff and Abele, 1976, Higgs and Usher, 1980). This debate was largely 

fueled by the observation that groups of small patches typically contain more species than a 

single large patch of equivalent area – an observation with considerable empirical support 

(reviewed in Quinn and Harrison, 1988, Fahrig, 2017). The explanation offered for greater 

species numbers in sub-divided habitat is usually increased environmental heterogeneity and 

higher beta diversity (Kitchener et al., 1980, Simberloff and Gotelli, 1984, Tscharntke et al., 

2002b, Fahrig, 2017). However, theoretical justification for this pattern has also been proposed, 

particularly for aggregated spatial distributions (Simberloff and Abele, 1976, Higgs and Usher, 

1980; Chapter 4, Kobayashi, 1983, Kobayashi, 1985). If a greater number of species being 

present within sub-divided habitat is the expected pattern for assemblages where intraspecific 

aggregation dominates (Kobayashi, 1985), then it should probably be viewed as a null 

expectation. 

 

There are two distinct species-loss processes recognized to result from habitat destruction. 

Imminent (also ‘immediate’ or ‘instantaneous’) extinctions are ‘cookie cutter’ losses where a 
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species is lost from a landscape during clearance because all individuals of the species were 

found in the destroyed habitat (Harte and Kinzig, 1997). Delayed extinction (also biotic 

relaxation, extinction debt) occurs over some unspecified period of time after initial habitat 

destruction as a result of the demographic impacts of habitat loss and fragmentation such as 

reduced population size or isolation of sub-populations (Diamond, 1972, Tilman et al., 1994, 

Mouquet et al., 2011). These two stages of extinction map broadly onto the two elements of 

systematic conservation planning; species representation and persistence (Margules and Pressey, 

2000). Imminent extinctions represent a reduction in landscape species representation due to 

clearance, while delayed extinctions threaten persistence of the species that remain in the isolated 

fragments. 

 

Understanding how fragmentation of habitat affects imminent and delayed extinction are both 

the subject of considerable current research effort (Claudino et al., 2015, Hanski, 2015, Arnillas 

et al., 2017, Deane et al., 2017a, Chisholm et al., 2018, MacDonald et al., 2018a, Rybicki et al., 

2018, May et al., 2019). Here my main interest is in determining whether fragmentation could 

moderate loss of species from the landscape by preserving more species in undestroyed habitat, 

which relates only to imminent extinctions. However, to have some understanding of the effects 

of fragmentation on persistence over the longer term, I adopt a metapopulation view of the 

problem. I assume that, after fragmentation, species confined to a single sub-population (i.e., 

within a single fragment – hereafter single-patch endemics) will have the highest risk of 

extinction (Hanski, 1999). It is reasonable to expect that, as the number of remaining patches 

increases (albeit of smaller area), the number of species confined to a single patch should 
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decrease. Empirical data suggests that this can indeed be the case and, moreover, that this occurs 

concurrently with increasing gamma diversity (Fig. 5.1). These phenomena are important to 

understand as they suggest fragmented landscapes could perhaps exhibit patterns that are 

interpretable as arising from some positive effect of fragmentation (hereafter, ‘sub-division’ to 

distinguish the breaking apart of habitat from its loss), whereas they are attributable to the way a 

sub-divided geometry samples the landscape under intraspecific aggregation. 

 

Figure 5.1 Variations in empirical diversity patterns from sub-division of sampling area. 

(a) species richness; (b) additive beta diversity; (c) total observed species (gamma 

diversity); (d) number of species confined to a single patch (single-patch endemics). Data 

are from 200 randomly positioned sets of samples taken from the Barro Colorado Island 
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stem-mapped forest plot data (2005 census). Each panel shows how diversity changes as a 

sampling area representing 15% of the 50-ha plot is sub-divided among the number of 

plots shown on the x-axis. 

 

5.3 Methods 

5.3.1 Modelling framework 

The modelling framework developed in Chapter 4 provides a means to analyse the effects of 

different sub-division and habitat loss scenarios on species diversity. The framework consists of 

first calculating the number of shared species, which is a function of fragment area (a), the 

number of fragments (m), the species abundance distribution over the study extent (S species, 

with abundance Ni) and the intraspecific spatial pattern for individuals. When individuals are 

randomly positioned with respect to one another, the number of shared species is obtained from 

(Chapter 4): 

 

 𝐸(𝑆𝑆𝑚|𝑎) = ∑ [1 − (1 −
𝑎

𝐴
)

𝑁𝑖

]
𝑚

 (5.1) 

 

For non-random placement of individuals, the equivalent model is: 

 

 𝐸(𝑆𝑆𝑚|𝑎) =  ∑(1 − (1 + 𝑐)−𝑘𝑖)𝑚 

𝑆

𝑖=1

 (5.2) 

 

where ki = 𝑎𝑁𝑖 𝐴𝑐⁄ . Non-random models thus require specification of a single parameter, 

community-level scaling factor, c, the value of which depends on spatial scale and intraspecific 
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spatial pattern (Appendix C). However, as c scales consistently with area (Plotkin and Muller-

Landau, 2002, Chapter 4, He and Hubbell, 2003), it is only necessary to know its value at some 

base spatial scale (0 < a0 < A), to calculate its value at any fraction of the total area of interest 

from the scaling relationship (Chapter 4; Appendix C): 

 

 

𝑐𝑎 = 𝑐0 (
𝑎

 𝑎𝑜
)

𝑧

 

 

(5.3) 

 

Once shared species have been calculated, zeta diversity theory (Hui and McGeoch, 2014) can be 

used to quantify the emergent properties of diversity resulting in the landscape (Chapter 4).  

 

By varying evenness of species abundance distributions and strength of intraspecific aggregation 

independently, a ‘crossed’ experimental design can be implemented. By then sub-dividing the 

amount of remaining habitat among different numbers of equal-sized patches, the effects of these 

geometrical constraints on the expected diversity patterns under the different ecological 

constraints can be analysed. The modelling framework provides a statistical expectation for the 

species richness within and among samples if sub-division into patches were to occur 

instantaneously. It is most likely to reflect reality in a relatively homogeneous pre-clearance 

landscape (at least one lacking strong directional environmental gradients). 
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5.3.2 Specifying species abundance and spatial distributions 

To be of practical use, the range of ecological conditions represented in simulations should 

ideally fall along a gradient that spans the set of conditions likely to be observed in nature, 

requiring some reference to observed data. The most detailed enumeration of species and spatial 

distributions for complete assemblages has been for forest trees (e.g., Condit et al., 1996, He et 

al., 1997, Condit et al., 2000, He and Hubbell, 2003). Here, I used values for the total number of 

species (S) and individuals (N) for to the 2005 census data from the 50-ha Barro Colorado Island 

(BCI) stem-mapped plot (Hubbell et al., 2005), comprising 301 species and 211845 living stems. 

Provided the underlying model assumptions of stationarity and isotropy in spatial processes hold, 

the shared species model will scale to any area, suggesting these values could be used directly. 

However, more severe impacts of habitat loss might not emerge until at least 70-90% of the area 

is cleared (Andrén, 1994, Swift and Hannon, 2010). To sub-divide the remaining habitat into 32 

patches would result in habitat fragments of only 40 m2. Therefore, to ensure the minimum 

habitat area of interest includes an adequate number of individuals to characterise the underlying 

species abundance distribution, I adopted a study extent of 10 x 10-km.  

 

To characterise the species abundance distribution when area was extrapolated from 50-ha to 100 

km2, I first scaled the number of individuals linearly, assuming a similar individual density as 

BCI (≈0.4 individuals/m2) giving 40 million individuals in the larger landscape. I then used a 

species-individual model based on the logistic function (He and Legendre, 1996) for the BCI plot 

(2005 census) to estimate the number of species this would be expected to represent. I fit 200 

realizations of the logistic model using 100 repeated random samples of 2000 individuals and 
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extrapolated each model to estimate the number of species at 40 million individuals. This yielded 

333.9 [318.2, 353.4] species (mean ± [ 95% confidence limits]) and I adopted 330 as a base 

number of species for simulations.  

 

The base values of S = 330 species and N = 40 million individuals were then used as the 

dimensions from which to estimate species abundance distributions that differed in evenness. To 

vary evenness in species abundance, I used the zero-truncated negative binomial distribution 

(TNBD), a commonly-used distribution in applications where a systematic variation in evenness 

is desired without changing the underlying distribution model (e.g., He and Legendre, 2002, 

Wilber et al., 2015). I systematically varied the shape parameter, gamma, which determines the 

evenness of the resulting SAD, using values from 0.1 to 1.0 in increments of 0.1. As values for 

gamma exceeding 0.5 showed little difference in species loss, I present results for 0.1, 0.2, 0.3 

and 0.5 which had values for Pielou’s evenness (PE) of 0.68, 0.77, 0.82 and 0.88, respectively.  

 

As discussed above, the shared species model incorporates non-random spatial patterns by 

changing the value of c0 and z in Equation 5.3. Thus, the effects of aggregation can be 

incorporated in model predictions by varying their values (Chapter 4; Appendix C). I use three 

pairs of values (Table 5.1), simulating landscapes with low, moderate and high levels of 

intraspecific clustering (Appendix C). I created landscapes using every combination of each 

spatial and species abundance distribution (i.e., a crossed design), yielding 16 scenarios; four 

levels of evenness in abundance by four spatial patterns (random plus three strengths of 

aggregation). It is theoretically possible to simulate regular distributions, but this is of little 

practical relevance as few species follow such a spatial distribution and, to my knowledge, it has 
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never been demonstrated in any multi-species assemblage. Moreover, simulations showed the 

effects of this on diversity differed little from that of random placement (Chapter 4), so I 

consider random placement simulations to adequately represent non-aggregated patterns. Based 

on comparative species richness with simulated communities (Appendix C), the strength of 

aggregation (at the community-level) in the empirical data for BCI is comparable to that 

produced in the moderate aggregation scenario. Thus, of the 16 scenarios, I consider the 

moderate aggregation and with evenness of 0.77 or 0.82 present the most typical ecological 

scenarios, at least in terms of similarity with ecosystems with properties comparable to the BCI 

data.  

 

Table 5.1 Parameter values used to incorporate different levels of intraspecific aggregation 

in model predictions. 

Spatial scenario Base value c0 Exponent (z) 

Weak aggregation 0.2 0.8 

Moderate aggregation 1 0.7 

Strong aggregation 4 0.6 

 

To extend the simulations to consider a broader range of ecosystem types, I also investigated the 

effects of varying individual density and overall species number. The intent behind this analysis 

was to identify any systematic variation from the base conditions as individual density increased 

or decreased, which can help to infer whether the results would change for non-tree organisms 

that differed greatly in their relative density. I therefore created communities where both the base 

richness (330 species) and individual density (0.4 m-2) were each doubled and halved. While this 

resulted in 9 different combinations, only five of these provide unique combinations of 
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individual density and species number (because doubling or halving both species richness and 

abundance results in the same model prediction). In addition to the three base conditions (330 

species with 0.2, 0.4 and 0.8 individuals/m2), I modelled landscapes with 165 species and 

individual density of 0.8 m2 and 660 species with 0.2 m2. I identify these scenarios by using the 

ratio of the mean number of individuals per species relative to the base scenario (330 species at 

0.4 m2). Thus, N/S = 0.25 (660 species with individual density of 0.2 ind/m2) refers to a scenario 

with 25% of the mean number of individuals per species relative to the base scenario, N/S = 0.5 

(330 species at 0.2 ind/m2) represents half the individual density, N/S = 2 (330 species at 0.8 

ind/m2) a factor of 2, and, N/S = 4 (165 species at 0.8 ind/m2) four times the base scenario 

density. As with the base scenario, I calculated these for each of the 16 spatial and abundance 

distributions. As results differed consistently from the base scenario within each combination of 

spatial and abundance distributions, I present only the results for moderate aggregation and 

Pielou’s evenness = 0.77. 

 

5.3.3 Analyzing the effects of sub-division 

Using the above four species abundance distributions and patterns of spatial aggregation 

(hereafter, scenario), I calculated the number of species remaining in the landscape after 

simulating the destruction of habitat from 20 to 90% of the original area in 10% increments. For 

each incremental loss of area, I divided the remaining habitat among five levels of sub-division 

determined from 2n (where n = 1, 2, 3, 4, 5), yielding 2-32 patches. Thus, for each 10% loss of 

habitat area, I divided the remaining habitat area, x (where x = 80, 70, 60, … , 10%), into five 

sub-divisions of n patches (where n = 2, 4, 8, … , 32), each of area x/n. I also calculated the 
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equivalent number of species contained in a single contiguous patch (i.e., of area x) as an 

additional point of comparison yielding 6 levels of sub-division from 1 - 32 patches. For each 

scenario, I calculated gamma diversity and single-patch endemics from expected shared species 

as described in Section 5.3.1 (see also Chapter 4) under each sub-division (excluding single-

patch endemics for the single patch scenario as this must include all remaining species). To 

facilitate comparison among scenarios, I report the proportional loss of species relative to the 

original gamma diversity and the proportion of single patch endemics relative to the predicted 

number of surviving species. Proportional species loss can be compared directly among 

scenarios, but for single-patch endemics, the proportion of remaining species will not be 

independent of the geometry (i.e., as patch number increases, the number of species confined to 

only one patch is likely to decline). Thus, the effects of sub-division on single-patch endemics 

are interpreted relative to that observed for random placement for a given species abundance 

distribution. All modelling was done in R 3.5.1 (R Core Team, 2019) with species abundance 

distributions modelled using R package ‘sads’ (Prado et al., 2017). 

 

5.4 Results 

General effect of habitat reduction 

Across all sub-division, spatial and abundance distribution scenarios, proportional species loss 

increased with decreasing evenness in abundance and with increasing strength of aggregation 

(Fig. 5.2). However, the magnitude of species loss was more sensitive to relative abundance, 

increasing 20-fold over the evenness gradient considered compared with a doubling over the 

spatial gradient (from random placement to strong aggregation; Fig 5.2). Broadly, a decrease in 
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Pielou’s evenness of ~ 0.05 resulted in more than a doubling of proportional species loss for a 

given spatial pattern.  

 

Loss of species as a function of habitat reduction was slightly curvilinear, with the slope of the 

species-loss curve increasing as more area was removed, particularly as habitat loss increased 

from 80-90% (Fig. 5.2, 5.3). Non-linearity was more apparent in the most evenly distributed 

abundance scenarios and the most highly aggregated spatial distributions, although these 

scenarios also resulted in the lowest proportional species loss (Fig. 5.2). For example, even under 

moderate levels of aggregation, the most even SAD resulted in fewer than 3% of species being 

lost at 80% of habitat loss. 
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Figure 5.2 Predicted effects of sub-division and habitat reduction on species loss under 

different spatial and abundance distributions. Each panel represents simulated 

assemblages with a different combination of spatial pattern (organised into rows, 

increasing in aggregation from left to right) and evenness (columns; decreasing in evenness 

from top to bottom). Within each panel, the proportion of species lost (y-axes) are given for 

increasing proportions of habitat loss (x-axes), where the remaining habitat is divided into 

different numbers of equal-sized fragments (indicated by line colour). Note y-axis values 

differ for each row to make patterns clearer. 
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For a given spatial and abundance distribution, the mean number of individuals per species also 

affected proportional loss of species, which increased with higher mean abundance per species 

(Fig. 5.3). At moderate spatial aggregation and evenness (PE= 0.77), an eight-fold change in 

mean abundance per species increased the proportion of species lost for an 80% loss of habitat 

area by 6-8% depending on the amount of sub-division considered (Fig. 5.3). 

 

Effects of sub-division 

With any level of intraspecific aggregation, more species were predicted for sub-divided habitat, 

decreasing proportional species loss (Fig. 5.2, 5.3; Table 5.2). For an 80% reduction in total 

habitat area, sub-division from a single contiguous area to 32 separate patches was predicted to 

reduce proportional species loss by between 0.6 and 7% (Table 5.2). As for proportional species 

loss, evenness of species abundance distribution largely determined the strength of this effect of 

sub-division; for base-level diversity (330 species), the mean additional number of species at 

minimum and maximum evenness (PE = 0.68, PE = 87) were 2.9 and 21.7 species respectively. 

 

Also consistent with proportional species loss, this moderating effect of sub-division on species 

loss increased in effect size with increasing mean abundance per species (Fig. 5.3). At 80% 

habitat reduction of habitat, the minimum mean abundance per species (N/S = 0.25 x base 

scenario) sub-division into 32 patches preserved 3.5% more species than that of a single patch; at 

maximum mean abundance per species (N/S = 4 x base scenario) 6.1% more species were 

predicted in the sub-divided habitat.  
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For all scenarios, as the number of patches into which the habitat was sub-divided increased, the 

number of extra species found decreased proportionally. So, taking the non-random base-

diversity scenarios (S = 330 species) at 80% habitat loss as an example, a doubling in the number 

of patches from 1-2 on average increased the number of species present by 2.9, while doubling 

from 16-32 patches increased the number of species on average by 1.9. This suggests the 

increase in species number under increasing sub-division will attain some maximum value above 

which the total number of species contained within the sub-divided habitat will no longer 

increase; that is, sub-division results in diminishing returns in terms of the number of species that 

are contained in the total area. 
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Figure 5.3 Predicted effects of differences in relative abundance on species loss.  Each panel 

represents a different relative abundance to the base scenarios presented in Fig. 5.2, with 

the difference in the ratio of mean abundance per species relative to that of the base 

scenario shown in each panel. (a) N/S = 0.25 (S0 = 660, mean individual density = 0.2/m2), 

(b) N/S = 0.5 (330, 0.2/m2); (c) N/S = 2 (330, 0.8/m2); (d) N/S = 4 (165, 0.8/m2). The scenarios 

shown are as per Fig. 5.2, showing the percentage of species lost for 10-80% of habitat 

clearance under 6 sub-division scenarios from n = 1 - 32 under aggregation (coloured lines) 

and the corresponding random placement values in black. The species abundance 

distribution used was PE = 0.77, with moderate spatial aggregation. 
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Table 5.2 Effect of sub-division on proportion of original species lost  for different species 

abundance distribution (Evenness) and strength of intraspecific aggregation (Aggregation). 

% change is the difference in the proportion of original species diversity predicted at an 

80% habitat reduction, when remaining habitat is contained in a single contiguous patch 

vs. being sub-divided into 32 patches of equal total area. Random placement scenarios did 

not differ under sub-division (other than rounding errors).  

Aggregation Evenness % change  

Low PE = 0.68 6.6 

 PE = 0.77 3.9 

 PE = 0.82 2.1 

 PE = 0.87 0.6 

Moderate PE = 0.68 6.8 

 PE = 0.77 4.6 

 PE = 0.82 2.8 

 PE = 0.87 0.9 

High PE = 0.68 6.3 

 PE = 0.77 4.9 

 PE = 0.82 3.2 

 PE = 0.87 1.2 

 

The predicted proportion of single-patch-endemic species depended mainly on species 

abundance distributions, increasing with decreasing evenness, ranging from < 2% to 7-10% of 

remaining species as evenness decreased (Fig. 5.4). However, the direction of change with 

increasing habitat loss was complex (Fig. 5.4). Considering the results for random placement 

(which shows the expected change in single-patch endemics that arises purely because the 

number of remaining patches changes, thus providing a baseline), the number of single patch 

endemic species always increased as habitat loss proceeded at high evenness, but decreased at 
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low evenness (compare Fig. 5.4a and 5.4m). There was a similar non-linear response to habitat 

loss with evenness in the aggregated spatial patterns, but this was less obvious (e.g. compare Fig. 

5.4c and 5.4o).  

 

The effects of sub-division on the number of single patch endemic species also changed with 

both evenness and spatial pattern. Sub-division had the greatest relative difference in more even 

and highly aggregated communities (e.g., Fig. 5.4d, 5.4h). In general, increasing sub-division 

decreased the number of single-patch endemics while habitat loss increased it (Fig 5.4, panels b-

d, f-h). However, for the least even abundance distribution, the proportion of remaining species 

confined to a single patch remained almost constant at around 7-10% under any level of 

aggregation (Fig. 5.4, panels n - p). 
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Figure 5.4 Predicted effects of sub-division and habitat reduction on the proportion of 

single-patch endemic species under different spatial and abundance distributions. Each 

panel represents simulated assemblages with a different combination of spatial pattern 

(columns, increasing in aggregation from left to right) and evenness (rows; decreasing in 

evenness from top to bottom). Within each panel, the proportion of species found in only a 

single patch (single-patch endemic species; y-axes) are given for increasing proportions of 

habitat loss (x-axes), where the remaining habitat is divided into different numbers of 

equal-sized fragments (indicated by line colour).  
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5.5 Discussion 

Ecologists have predicted the effects of habitat loss on diversity using species-area-based models 

for over 40 years (e.g., Simberloff, 1974, Pimm and Askins, 1995, Brooks et al., 1999, Brook et 

al., 2003, Lewis, 2006, He and Hubbell, 2011, Halley et al., 2013). Recent research seeks to 

build on this understanding by developing methods that can explicitly account for the effects of 

sub-division of the remaining habitat (Hanski et al., 2013, Claudino et al., 2015, Arnillas et al., 

2017, Deane et al., 2017a, Chisholm et al., 2018, Deane and He, 2018), of ecological processes 

(Matias et al., 2014), for delayed extinction (Halley et al., 2014, Claudino et al., 2015, Kitzes and 

Harte, 2015), and for the species-level effects of the geometry of habitat loss (May et al., 2019). 

This study contributes to this growing body of knowledge by showing how sub-division 

moderates the expected diversity patterns, simulating the effects of fragmentation per se 

following habitat destruction. The results help explain a body of empirical evidence suggesting a 

group of small patches often contain more species than a single large patch of equivalent area, 

and re-affirm this as a predictable consequence of intraspecific aggregation (Kobayashi, 1983, 

Kobayashi, 1985). Models also provide the first estimates for the expected magnitude of this sub-

division ‘richness subsidy’, showing it could be expected to preserve an additional 3-5% of 

original species diversity over that expected for a single patch under ecological conditions 

consistent with those assumed for the base scenario.  

 

Of those studies that have examined the effect of fragmentation or the geometry of habitat loss 

on species diversity, most have used some extension of species area relationships (Hanski et al., 

2013, Rybicki and Hanski, 2013, Halley et al., 2014, Keil et al., 2015), or derived bounding 
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estimates for the range of species loss for differing amounts of species overlap among patches 

and patterns of fragmentation (Arnillas et al., 2017, Chisholm et al., 2018). In contrast, I use 

species abundance and spatial patterns to predict the expected overlap in species (Plotkin and 

Muller-Landau, 2002), and calculate the exact number of species expected to be found in sub-

divided habitat. Where most prior studies agree, is that sub-division of habitat tends to ameliorate 

the conservation of species to some extent.  

 

The typical explanation offered for elevated species richness among sub-divided habitat patches 

is a promotion of beta diversity in the fragmented habitat explained by differences in dispersal or 

environmental heterogeneity (Kitchener et al., 1980, Tscharntke et al., 2002b, Fahrig, 2017). 

Based on this analysis, and prior evidence, I suggest that the simplest hypothesis is that these 

patterns arise as a probable consequence of intraspecific aggregation of individuals (Kobayashi, 

1983, Kobayashi, 1985, He and Legendre, 2002, Plotkin and Muller-Landau, 2002, Green and 

Ostling, 2003). Given the prevalence of intraspecific aggregation in nature (Wright, 1991, 

Kretzschmar and Adler, 1993, He et al., 1997), perhaps this view should form the basic 

expectation for how diversity initially assembles in newly sub-divided habitat. Following habitat 

reduction and isolation, species richness within and among patches will almost certainly change 

as the new habitat structure matures. The number of species in patches of sub-divided habitat 

could be enhanced further by increased beta diversity due to drift or sorting along environmental 

axes (Chase, 2003, Liu et al., 2018) and promoted, or eroded, due to changes in competitive or 

extinction and colonization processes among the newly isolated patches (MacArthur and Wilson, 

1967, Patterson and Atmar, 1986, Leibold and Loeuille, 2015, Lu et al., 2019). Interpretation of 
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the observed diversity of fragmented landscapes should probably commence with an expectation 

that species diversity was higher than a contiguous area of the original habitat would have 

contained. 

 

In terms of the overall impact of habitat destruction on species richness predicted, there was a 

much stronger effect of evenness in abundance distributions than the strength of spatial 

aggregation. It seems any amount of aggregation results in some elevated species richness under 

sub-division, but its magnitude depends more on evenness. Under a highly uneven pre-clearance 

distribution of abundance, my results suggest many species will be lost to imminent extinctions. 

More even communities lose few species initially, suggesting a higher potential for delayed 

extinctions should exist in such communities as they relax to the new habitat configuration. This 

general result is consistent with Kitzes and Harte (2015) who modelled imminent and delayed 

extinction in global biodiversity hotspots using a related sampling-theory-based approach. In 

their study, more even abundance distributions assumed for bird communities resulted in no 

imminent extinction and high extinction debt, while less evenly distributed plant communities 

were predicted to have imminent extinction of 5-14% of species for 70-95% habitat reduction but 

no extinction debt (Kitzes and Harte, 2015). The imminent extinction estimates accord well with 

my results under maximum sub-division: for even distributions I predict fewer than 1.5% species 

loss at 90% habitat reduction; for less even distributions, 80-90% of habitat loss predicted 3.5-

12.5% imminent extinctions. While I did not explicitly predict extinction debt, at intermediate 

evenness approximately 3-5% of species remaining after habitat loss were single-patch 

endemics. This proportion was consistent for a range of aggregation strengths, varying little from 
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the null expectation under random placement. If species confined to a single remaining sub-

population in a landscape are viewed as vulnerable to future extinction, this might represent a 

baseline expectation for minimum extinction debt in low-moderately even assemblages in 

fragmented landscapes. 

 

Some of my other results are consistent with established patterns for the assembly of diversity in 

discrete habitat networks. For example, diminishing returns in the total number of species found 

from sub-dividing habitat over a greater number of patches has been shown empirically through 

negative area-to-patch number interaction terms in regressions of re-sampled habitat 

‘archipelagos’ (Simberloff and Gotelli, 1984, McCoy and Mushinsky, 1994). Similarly, the 

increasing effect of sub-division with increasing mean abundance per species is consistent with 

the higher sub-division differential in richness relative to that of a single large patch found in 

more abundant taxa such as invertebrates often reported for empirical data (Tscharntke et al., 

2002b, Rosch et al., 2015, Deane and He, 2018; Chapter 3). It also aligns with the general 

expectation of elevated beta diversity in fragmented landscapes (reviewed in Tscharntke et al., 

2012). 

 

As in any modelling study, simplification is necessary to achieve generality. Some key 

simplifying assumptions here were that (i) no specific pattern of sub-division is proposed, rather 

the models predict a statistical expectation, and, (ii) models predict an initial configuration of 

diversity that would be present were all the habitat loss and sub-division to occur 

instantaneously. There are important caveats associated with both assumptions. The precise 

geometry of clearance and the shape of the remaining habitat will affect the remaining species 
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(Harte and Kinzig, 1997, Ney-Nifle and Mangel, 2000, Pereira et al., 2012, Keil et al., 2015) and 

the impact on individual populations (May et al., 2019). It will also affect delayed extinctions 

(Tilman et al., 1997, Claudino et al., 2015). The assumption of instantaneous habitat loss, while 

not uncommon for studies of this nature (e.g., Kitzes and Harte, 2015), is obviously unlikely to 

occur in reality. The biological implication is, as discussed, that results assume that no biotic 

relaxation of the remaining populations has occurred. Despite these limitations, I suggest the 

results are useful as a null model for the expected effects of sub-division, particularly given the 

extent to which they accord with some commonly observed patterns of diversity in discrete 

habitat networks. 

 

5.6 Conclusion 

In this chapter I have further elaborated on the independent effects of sub-division in 

ameliorating species conservation under habitat loss. More, smaller patches will sample more 

species from the original landscape, but the effect typically constitutes only a few percent of the 

original diversity (3-5%). Moreover, as the remaining area is divided up among ever more 

numerous, but smaller patches, the increase in sampled species decreases. In a conservation 

reserve design context, this could be interpreted as supporting a small number of large reserves; 

such a design this would compromise between sampling more species from the original 

landscape while maintaining larger, more viable populations within each reserve.  
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Chapter Six: Conclusions  

In this thesis I have focused on studying discrete habitat networks by addressing three questions 

critical for conservation; (i) whether small patches typically comprise only common generalist 

species, (ii) whether beta diversity alone can adequately explain the more rapid accumulation of 

species typically observed among small patches relative to a single larger patch, and, (iii) how 

one should expect diversity to change at varying levels of sub-division under different spatial and 

abundance distributions. Several common themes emerged, some confirmatory or explanatory of 

previously proposed patterns, others identifying new hypotheses to explore.  

 

Chapter 2 shows that removing all the smallest patches in most discrete habitat networks 

(whether naturally occurring or created as a result of land clearance) would remove at least some 

species from that network. The proportional loss of species would be high, relative to that 

expected for only a reduction in area, particularly for plants and invertebrate groups. However, 

even mammals, which lost the smallest proportion of species, still lost at least one species in 

50% of datasets; the risk for vertebrate groups under loss of small patches is lower, but not zero. 

Given the greater propensity for destruction of small habitat patches under various global change 

processes, the potential for rapid loss of species is concerning.  

 

Chapter 3 introduces two new competing hypotheses for the more rapid accumulation of species 

with area than the standard explanation; that it is due to increased species sorting along more 

spatially extensive environmental gradients. Increased evenness in the distribution of abundance 

in smaller patches could explain around the same amount of variation, while size-dependent 
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disproportionate sampling efficiency that decreases with patch size, also accounted for a similar 

amount of explained variation. It is arguable that evenness is of questionable predictive value, as 

it is not in itself a mechanism. However, having confirmed increased evenness directly increases 

differences in richness between small and large patches, while decreases in evenness increase the 

impact of beta diversity, evenness offers scope as a unifying metric to investigate the effects of 

habitat sub-division on diversity. Clearly any question of sampling efficiency raises uncertainties 

over the inference that can be drawn using Quinn-Harrison curves. It also suggests that the 

strength of the findings of Chapter 2 could be overstated via the same sampling bias, where rare 

species are systematically under-recorded in large patches. This is somewhat ironic, because it 

was my lingering concern over this source of uncertainty around the findings of Chapter 2 that 

inspired this test in Chapter 3. 

 

Chapters 4 and 5 are more theoretical and deductive than the inductive meta-studies of chapters 2 

and 3. Together, I hope the main result of publishing chapters 4 and 5 will be recognition that 

there is no need to invoke some unspecified positive effect of sub-division to explain modest 

increases in diversity. It is a probable outcome for assemblages with uneven distribution of 

abundance and the prevalence of intraspecific aggregation in most taxa. Other useful findings 

from the study were the diminishing returns in the increase of species richness due to sub-

division and quantifying effect sizes for the ‘species richness subsidy’ from sub-division. The 

small effect sizes involved also offers an explanation as to why purported positive effects of 

fragmentation per se, when detected, tend to be weak. A final contribution was a base line 

estimate of extinction debt under log series type species abundance distributions of 3-5%. 
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6.1 Synthesis and major contributions 

The main contribution of my thesis has been to apply sampling theory to demonstrate how the 

expected species richness in sub-divided habitat depends on underlying spatial and abundance 

distributions of species. From this, I calculated the expected number of shared species, which 

others identified as being critical to resolving the SLOSS debate very early on (Simberloff and 

Abele, 1976, Higgs and Usher, 1980). To date however, it has only been possible to do this using 

the power law species-area relationship (Simberloff and Abele, 1976, Harte and Kinzig, 1997, 

Tjørve and Tjørve, 2008), which requires an unrealistic assumption of self similarity. The 

analytical shared species models I derived in Chapter 4 addressed this, providing the ability to 

calculate the expected number of shared species under different species abundance and spatial 

patterns. Moreover, by leveraging the recently derived zeta diversity partition (Hui and 

McGeoch, 2014), the probable consequences of sub-division for species richness can be shown 

to depend on spatial and abundance distributions - something which has been previously 

suggested (Kobayashi, 1985), but remains poorly understood.  

 

Having an expectation for patterns of species richness in sub-divided habitat can help to resolve 

both the ‘SLOSS’, and ‘fragmentation per se’ debates, which - I argue herein - essentially arise 

from the same misunderstanding of the consequences of intraspecific aggregation for the 

expected number of species sub-divided habitat will contain. If the individuals of all species are 

randomly positioned, the number of species depends only on total habitat area; in any other 

situation, the statistical expectation can be predicted if relative abundance and spatial patterns are 
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known. Unequal abundance and intraspecific aggregation results in a statistical expectation that 

sub-division of habitat means more species will be present in a group of small patches than a 

single large patch. Because intraspecific aggregation pre-dominates in nature, this should be the 

a priori expectation, but whether that should be interpreted as a positive effect on diversity is 

questionable.  

 

The models in Chapter 4 can be used to develop an expectation for the effects of sub-division 

and are useful for theoretical applications, such as I demonstrated in Chapter 5. This type of 

analysis could be done in any terrestrial, marine or freshwater system where spatial and relative 

abundance information are available. I discuss some other potential uses for the models in 

Section 6.2. 

 

In the meta-studies of chapters 2 and 3, I have challenged common, but largely untested, 

assumptions used to explain the relative diversity of several small vs. single large patches and 

found both are, at best, over-simplifications. I show the distributions of some species in spatially 

discrete habitat types, natural and artificial, are confined to small patches and their loss would 

remove species. The results of these chapters can be interpreted in the light of the two theoretical 

paradigms posited in Chapter 1. For example, three of the four different species-loss-curve 

models presented in Fig. 2.2 can be directly assigned to one or other of the paradigms, so by 

comparing the proportion of datasets falling within each category, an informal test of the strength 

of support for each can be made. The threshold and random models (Fig. 2.2 a and b, 

respectively) are both in accord with the predictions of the extinction/colonization paradigm. 

Together these accounted for around 29% of datasets. In comparison, the linear model - which 
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directly follows from the spatial coexistence paradigm - was supported in 27% of datasets. The 

step model is not as easily assigned to either of the two paradigms, as it will depend on the 

specific mechanism generating the pattern. As a result, I conclude there is a similar amount of 

support for both theoretical paradigms, illustrating why debate around the importance of small 

patches has been so difficult to resolve. 

 

While I remain somewhat guarded as to whether chapters 2 and 3 suggest that small patches are 

critical for biodiversity conservation (Wintle et al., 2019), available data indicate (uncertainties 

raised in Chapter 3 notwithstanding) that they are often critical for species representation and I 

propose some reasons why this is the case in Chapter 2. Improving our understanding of why 

some species are localized to small patches is important as it also holds relevance for both the 

SLOSS and fragmentation per se debates in terms of the role of small patches. For fragmented 

biomes, the ubiquity of this finding suggests that the initial expectation of sub-division under 

intraspecific aggregation (i.e., higher richness among groups of smaller patches) probably 

persists and possibly even strengthens over time, rather than eroding into nested subsets by patch 

area (Patterson and Atmar, 1986). Chapter 3 suggests this is as likely to be due to changes in 

evenness from priority effects and/or shifts in competitive hierarchies as increased beta diversity 

driven by habitat heterogeneity. Either (or indeed, both) of these mechanisms would explain why 

diversity of isolated patches might retain or increase their compositional differences through 

time. Both findings warrant more attention. 
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6.2 Limitations and future work 

Throughout this thesis I have adopted a predominantly binary view of the landscape, where a 

patch either represents viable habitat or it does not. This approach implicitly assumes that (i) 

either all patches are of suitable quality for all species, or there is adequate dispersal among 

patches for species to reach optimal patches, and, (ii) that non-patch areas of a landscape (i.e., 

the matrix) are of no habitat value. Both assumptions are over-simplifications, with habitat 

suitability or quality (Soule and Simberloff, 1986, Mortelliti et al., 2010), landscape connectivity 

(Taylor et al., 1993, Kindlmann and Burel, 2008) and matrix composition (Andrén, 1994, 

Ricketts, 2001) known to affect the observed diversity within and among patches. However, 

despite the ecological limitations of such a binary view of landscapes, it nonetheless represents a 

null model from which we can infer statistical expectations. Moreover, in a practical sense, the 

legislative frameworks within which natural habitats are managed are typically categorical in 

their treatment of landscape units, so having appropriate null expectations is important.  

 

Similarly, I have adopted a predominantly neutral view of the ecological processes that produce 

the observed variations in spatial and abundance distributions. To thoroughly summarise 

theoretical and empirical evidence relating these patterns to their generating processes is beyond 

the scope of this thesis, but it is an important direction for future research of this nature. Thus, 

for completeness, some consideration of this topic is appropriate. Essentially, both spatial and 

abundance patterns reflect the mechanisms determining coexistence, albeit at different scales. 

The species abundance distribution in one sense expresses the outomce of coexistence 

mechanisms at a landscape scale, while the spatial pattern can tell us how this scales with area. 
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Chesson (2000), suggests conceptualizing the differences among species that allow for 

coexistence as a niche space comprising four axes; resources, natural enemies, space and time.  

 

For discrete habitat networks, we can integrate Chesson’s coexistence-niche space within a 

metacommunity framework, considering axes of species equivalence, environmental 

heterogeneity and dispersal (Logue et al., 2011). Overlain on this conceptual metacommunity 

space, disturbance intensity and frequency also play a role in the observed diversity patterns over 

time (Levin and Paine, 1974, Sousa, 1984). Following Chesson’s coexistence-niche concept, the 

greater the number of dimensions involved in each axis, and/or the more finely that this niche 

space is partitioned, the more species can coexist. Smaller overlap in preferred conditions (i.e., a 

narrower per-species niche width indicating greater specialization), should promote a more even 

distribution of abundance.  

 

The scale at which coexistence is determined among species will vary according to trophic rank 

and body size, which largely determines minimum area and energy requirements (Brown and 

Maurer, 1989). Indeed, differences in body size accounted for much of the variation in response 

among taxonomic groups found in chapters 2 and 3. In discrete habitat networks, an interaction 

between patch-scale environmental heterogeneity and among-patch dispersal rates can, in theory, 

determine regional species abundance distributions (Mouquet and Loreau, 2003). At high levels 

of dispersal, regionally dominant species occur at all sites, leading to a less even distribution of 

abundance – a pattern I have previously observed in highly connected wetland plant 

communities (Deane et al., 2017b). Conversely, at low levels of dispersal, regional species 
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abundance distributions are predicted to be more even, as dominant competitors are restricted to 

fewer patches (Mouquet and Loreau, 2003). Disturbance will reset successional trajectories, with 

effects on abundance distributions. For example, evenness tends to be lower in early successional 

communities, increasing with time since disturbance (Bazzaz, 1975, Hill et al., 1995). 

 

For spatial distributions, the local-scale processes that determine coexistence are of most interest,  

as the strength of intraspecific aggregation decreases with increasing sampling area (Plotkin and 

Muller-Landau, 2002, Conlisk et al., 2012). Indeed, in Chapter 4, I confirm this theoretical 

expectation of decreasing aggregation follows a power-law scaling relationship with area at the 

community level (Plotkin and Muller-Landau, 2002, He and Hubbell, 2003). As aggregation 

decreases with area, the observed spatial pattern will depend on an interaction between fine-scale 

heterogeneity in environmental conditions and biological competition. Generally, any 

mechanism generating negative density dependence in recruitment success in the vicinity of 

adult conspecifics would tend to result in more regular distributions, with the Janzen-Connell 

effect one example (reviewed in Wright, 2002). On the other hand, if heterogeneity in 

environmental conditions occurs at scales over which competition operates (i.e., among near 

neighbours), then it is likely the species most suited to local conditions will dominate, promoting 

aggregated spatial patterns. An example of such a situation is the strong zonation along depth 

gradients observed among aquatic macrophytes. Interestingly though, random processes can also 

produce non- random spatial patterns. For example, the negative binomial, and finite negative 

binomial distributions can be generated by a range of stochastic processes influencing 

demographic rates (Boswell and Patil, 1970, Zillio and He, 2010). 
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Future work that follows from this thesis include testing of some of the implied patterns in the 

meta-studies and further validation and development of the shared species models. Most 

importantly, I believe the work demonstrates the value of obtaining additional detail on spatial 

and abundance distributions in nature. My personal feeling is that research has focussed heavily 

on finding ever more statistical models to fit species abundances to, while syntheses of 

systematic variation in the influential properties of relative abundance, particularly evenness, 

among taxa and biomes would provide more value in being able to predict the consequences of 

global change. A global synthesis of variations in Pielou’s evenness (rather than the best fitting 

species abundance model) among taxonomic groups and habitat types, in contiguous and sub-

divided habitats could be very informative; I note that a recently compiled database makes such 

an analysis possible (Chase et al., 2019). 

 

Among the more interesting, if speculative, hypotheses that arose during the work for future 

consideration was the trade-off between imminent and delayed extinction implied by the results 

of Chapter 5. Kitzes and Harte (2015) reached a similar conclusion. There would seem to be an 

opportunity to use sampling theory, perhaps by integrating it with metapopulation theory (Hanski 

et al., 2013), to directly predict the relaxation of cleared landscapes. Similarly, the four different 

species loss categories I identified in Chapter 2 offer broad scope to investigate the hypothesised 

link between these patterns and the mechanisms I proposed in that chapter (e.g., the random-

placement of species among patches in highly disturbed biomes and the interaction between 

body size and habitat heterogeneity in producing the linear pattern). Another hypothesis worthy 



 

173 

 

of further exploration was the possible latitudinal gradient in the SLOSS effect due to the general 

decline in evenness (Chapter 3). Representing both an uncertainty in my own conclusions and a 

direction for future work, Chapters 2 and 3 also highlighted the need to investigate the role of 

size-dependent sampling efficiency in producing SLOSS-type patterns. The taxonomic bias in 

published Quinn-Harrison curves could also be addressed to provide a valid test of the generality 

of this pattern in vertebrates. 

 

Perhaps the most useful future development for the shared species models is their application to 

empirical, rather than simulated, abundance data. In preliminary testing, the non-random models 

can provide a reliable fit to observed species overlap from empirical samples (i.e., with no 

knowledge of the underlying abundance or spatial distributions of the sampled assemblage). In 

such a case, scaling factor c then has use not only as a fitting parameter, but potentially as a 

measure of expected overlap among patches (particularly if the variance for expect shared 

species was derived to statistically differentiate among groups of samples).  

 

Other model developments would include addressing uncertainty in the scaling of the model 

parameters; additional validation with landscapes other than stem-mapped forests to test model 

predictions is warranted. Other modifications could be incorporated to allow more complex 

spatial phenomena, such as environmental gradients to be simulated and are necessary if the 

model is to provide reliable predictions over larger extents where the assumptions of stationarity 

and isotropy are unlikely to be met. Incorporating distance decay of similarity in model structure 

would also provide a valuable improvement.  
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Despite the promise of these new hypotheses, and work that could be based on them, I stress this 

type of theoretical development must be supported by improved and targeted empirical data 

collection. Model validation and scenarios herein relied heavily on spatial and diversity patterns 

consistent with stem-mapped forest plots. We have no information on the assemblage structure 

of similar forests when they occur as isolated patches. It is not even clear if the assumption of 

constant values for individual density – the cornerstone of many ecological theories – is valid in 

sub-divided habitat. Perhaps this is unlikely. More information on the species abundance 

distribution of entire assemblages other than trees, while undoubtedly costly, would almost 

certainly prove equally useful for improving our ability to provide practical tools and 

ecologically realistic predictions. This is especially important for trophic levels other than 

primary producers. Were such detailed species abundance and spatial data available at a single 

location at multiple trophic levels, it would provide the data necessary to begin the work of 

incorporating sampling theory based (and other) approaches for modelling diversity at the 

ecological network level. Such detailed understanding would be invaluable for informing our 

baseline understanding of the expected human impacts on biodiversity. 

 

6.3  References 

ANDRÉN, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with 

different proportions of suitable habitat- a review. Oikos, 71, 355-366. 

BAZZAZ, F. A. 1975. Plant species-diversity in old-field successional ecosystems in southern 

Illinois. Ecology, 56, 485-488. 

BOSWELL, M. T. & PATIL, G. P. 1970. Chance mechanisms generating the negative binomial 

distribution. In: PATIL, G. P. (ed.) Random counts in models and structures. University 

Park, Pennsylvania, USA.: Pennsylvania State University Press. 

BROWN, J. H. & MAURER, B. A. 1989. Macroecology - the division  of food and space among 

species on continents. Science, 243, 1145-1150. 



 

175 

 

CHASE, J. M., LIEBERGESELL, M., SAGOUIS, A., MAY, F., BLOWES, S. A., BERG, Å., 

BERNARD, E., BROSI, B. J., CADOTTE, M. W., CAYUELA, L., CHIARELLO, A. G., 

COSSON, J.-F., CRESSWELL, W., DAMI, F. D., DAUBER, J., DICKMAN, C. R., 

DIDHAM, R. K., EDWARDS, D. P., FARNEDA, F. Z., GAVISH, Y., GONÇALVES-

SOUZA, T., GUADAGNIN, D. L., HENRY, M., LÓPEZ-BAUCELLS, A., KAPPES, H., 

MACNALLY, R., MANU, S., MARTENSEN, A. C., MCCOLLIN, D., MEYER, C. F. 

J., NECKEL-OLIVEIRA, S., NOGUEIRA, A., PONS, J.-M., RAHEEM, D. C., RAMOS, 

F. N., ROCHA, R., SAM, K., SLADE, E., STIREMAN III, J. O., STRUEBIG, M. J., 

VASCONCELOS, H. & ZIV, Y. 2019. FragSAD: A database of diversity and species 

abundance distributions from habitat fragments. Ecology, 0. 

CHESSON, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of 

Ecology and Systematics, 31, 343-+. 

CONLISK, J., CONLISK, E., KASSIM, A., BILLICK, I. & HARTE, J. 2012. The shape of a 

species' spatial abundance distribution. Global Ecology and Biogeography, 21, 1167-

1178. 

DEANE, D. C., FORDHAM, D. A., STEVENS, A. K. & BRADSHAW, C. J. A. 2017. 

Dispersal-driven homogenization of wetland vegetation revealed from local contributions 

to β-diversity. Journal of Vegetation Science, 28, 893-902. 

HANSKI, I., ZURITA, G. A., ISABEL BELLOCQ, M. & RYBICKI, J. 2013. Species-

fragmented area relationship. Proceedings of the National Academy of Sciences of the 

United States of America, 110, 12715-12720. 

HARTE, J. & KINZIG, A. P. 1997. On the implications of species-area relationships for 

endemism, spatial turnover, and food web patterns. Oikos, 80, 417-427. 

HE, F. & HUBBELL, S. P. 2003. Percolation theory for the distribution and abundance of 

species. Physical Review Letters, 91. 

HIGGS, A. J. & USHER, M. B. 1980. Should nature reserves be large or small. Nature, 285, 

568-569. 

HILL, J. K., HAMER, K. C., LACE, L. A. & BANHAM, W. M. 1995. Effects of selective 

logging on tropical forest butterflies on Buru, Indonesia. Journal of Applied Ecology, 32, 

754-760. 

HUI, C. & MCGEOCH, M. A. 2014. Zeta Diversity as a Concept and Metric That Unifies 

Incidence-Based Biodiversity Patterns. American Naturalist, 184, 684-694. 

KINDLMANN, P. & BUREL, F. 2008. Connectivity measures: A review. Landscape Ecology, 

23, 879-890. 

KITZES, J. & HARTE, J. 2015. Predicting extinction debt from community patterns. Ecology, 

96, 2127-2136. 

KOBAYASHI, S. 1985. Species diversity preserved in different numbers of nature reserves of 

the same total area. Researches on Population Ecology, 27, 137-143. 

LEVIN, S. A. & PAINE, R. T. 1974. Disturbance, patch formation, and community structure. 

Proceedings of the National Academy of Sciences of the United States of America, 71, 

2744-2747. 

LOGUE, J. B., MOUQUET, N., PETER, H., HILLEBRAND, H. & METACOMMUNITY 

WORKING, G. 2011. Empirical approaches to metacommunities: a review and 

comparison with theory. Trends in Ecology & Evolution, 26, 482-491. 



 

176 

 

MORTELLITI, A., AMORI, G. & BOITANI, L. 2010. The role of habitat quality in fragmented 

landscapes: a conceptual overview and prospectus for future research. Oecologia, 163, 

535-547. 

MOUQUET, N. & LOREAU, M. 2003. Community patterns in source-sink metacommunities. 

American Naturalist, 162, 544-557. 

PATTERSON, B. D. & ATMAR, W. 1986. Nested subsets and the structure of insular 

mammalian faunas and archipelagoes. Biological Journal of the Linnean Society, 28, 65-

82. 

PLOTKIN, J. B. & MULLER-LANDAU, H. C. 2002. Sampling the species composition of a 

landscape. Ecology, 83, 3344-3356. 

RICKETTS, T. H. 2001. The matrix matters: Effective isolation in fragmented landscapes. 

American Naturalist, 158, 87-99. 

SIMBERLOFF, D. S. & ABELE, L. G. 1976. Island Biogeography Theory and conservation 

practice. Science, 191, 285-286. 

SOULE, M. E. & SIMBERLOFF, D. 1986. What do genetics and ecology tell us about the 

design of nature-reserves. Biological Conservation, 35, 19-40. 

SOUSA, W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecology 

and Systematics, 15, 353-391. 

TAYLOR, P. D., FAHRIG, L., HENEIN, K. & MERRIAM, G. 1993. Connectivity is a vital 

element of landscape structure. Oikos, 68, 571-573. 

TJØRVE, E. & TJØRVE, K. M. C. 2008. The species-area relationship, self-similarity, and the 

true meaning of the z-value. Ecology, 89, 3528-3533. 

WINTLE, B. A., KUJALA, H., WHITEHEAD, A., CAMERON, A., VELOZ, S., KUKKALA, 

A., MOILANEN, A., GORDON, A., LENTINI, P. E., CADENHEAD, N. C. R. & 

BEKESSY, S. A. 2019. Global synthesis of conservation studies reveals the importance 

of small habitat patches for biodiversity. Proceedings of the National Academy of 

Sciences of the United States of America, 116, 909-914. 

WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species 

coexistence. Oecologia, 130, 1-14. 

ZILLIO, T. & HE, F. 2010. Modeling spatial aggregation of finite populations. Ecology, 91, 

3698-3706. 

 



 

177 

 

BIBLIOGRAPHY 

ALBERTO, J. A. N. & MANLY, B. F. J. 2006. The generation of diversity in systems of patches 

and ranked dominance. Journal of Biogeography, 33, 609-621. 

ALMEIDA-NETO, M., GUIMARAES, P., GUIMARAES, P. R., LOYOLA, R. D. & ULRICH, 

W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling 

concept and measurement. Oikos, 117, 1227-1239. 

ALROY, J. 2015. The shape of terrestrial abundance distributions. Science Advances, 1. 

ANDRÉN, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with 

different proportions of suitable habitat- a review. Oikos, 71, 355-366. 

ARITA, H. T. 2017. Multisite and multispecies measures of overlap, co-occurrence, and co-

diversity. Ecography, 40, 709-718. 

ARNILLAS, C. A., TOVAR, C., CADOTTE, M. W. & BUYTAERT, W. 2017. From patches to 

richness: assessing the potential impact of landscape transformation on biodiversity. 

Ecosphere, 8. 

ARRHENIUS, O. 1921. Species and area. Journal of Ecology, 9, 95-99. 

ARROYO-RODRIGUEZ, V., PINEDA, E., ESCOBAR, F. & BENITEZ-MALVIDO, J. 2009. 

Value of Small Patches in the Conservation of Plant-Species Diversity in Highly 

Fragmented Rainforest. Conservation Biology, 23, 729-739. 

ATMAR, W. & PATTERSON, B. D. 1995. The Nestedness Temperature Calculator: A Visual 

Basic Program, Including 294 Presence absence Matrices. Chicago, IL: AICS Research, 

Inc., University Park, NM and The Field Museum. 

BADDELEY, A., RUBAK, E. & TURNER, R. 2015. Spatial Point Patterns: Methodology and 

Applications with R, London, Chapman and Hall/CRC Press. 

BALDI, A. & KISBENEDEK, T. 2000. Bird species numbers in an archipelago of reeds at Lake 

Velence, Hungary. Global Ecology and Biogeography, 9, 451-461. 

BARTON, K. 2017. MuMIn: Multi-Model Inference. . MuMIn: Multi-Model Inference.: R 

package version 1.40.0. Available at: https://CRAN.R-project.org/package=MuMIn 

(accessed 7 Oct 2017). 

BASELGA, A. 2010. Partitioning the turnover and nestedness components of beta diversity. 

Global Ecology and Biogeography, 19, 134-143. 

BATES, D., MAECHLER, M., BOLKER, B. M. & WALKER, S. 2015. Fitting Linear Mixed-

Effects Models Using lme4. Journal of Statistical Software, 67, 1-48. 

BAZ, A. & GARCIA BOYERO, A. 1996. The SLOSS dilemma: A butterfly case study. 

Biodiversity and Conservation, 5, 493-502. 

BAZZAZ, F. A. 1975. Plant species-diversity in old-field successional ecosystems in southern 

Illinois. Ecology, 56, 485-488. 

BENDER, D. J., CONTRERAS, T. A. & FAHRIG, L. 1998. Habitat loss and population decline: 

A meta-analysis of the patch size effect. Ecology, 79, 517-533. 

BLAKE, J. G. 1991. Nested subsets and the distribution of birds on isolated woodlots. 

Conservation Biology, 5, 58-66. 

BOECKLEN, W. J. 1997. Nestedness, biogeographic theory, and the design of nature reserves. 

Oecologia, 112, 123-142. 

https://cran.r-project.org/package=MuMIn


 

178 

 

BORGES, P. A. V. & BROWN, V. K. 1999. Effect of island geological age on the arthropod 

species richness of Azorean pastures. Biological Journal of the Linnean Society, 66, 373-

410. 

BOSWELL, M. T. & PATIL, G. P. 1970. Chance mechanisms generating the negative binomial 

distribution. In: PATIL, G. P. (ed.) Random counts in models and structures. University 

Park, Pennsylvania, USA.: Pennsylvania State University Press. 

BROOK, B. W., SODHI, N. S. & NG, P. K. L. 2003. Catastrophic extinctions follow 

deforestation in Singapore. Nature, 424, 420-423. 

BROOKS, T. M., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. B., 

RYLANDS, A. B., KONSTANT, W. R., FLICK, P., PILGRIM, J., OLDFIELD, S., 

MAGIN, G. & HILTON-TAYLOR, C. 2002. Habitat loss and extinction in the hotspots 

of biodiversity. Conservation Biology, 16, 909-923. 

BROOKS, T. M., PIMM, S. L., KAPOS, V. & RAVILIOUS, C. 1999. Threat from deforestation 

to montane and lowland birds and mammals in insular South-east Asia. Journal of 

Animal Ecology, 68, 1061-1078. 

BROWN, J. H. 1978. The theory of insular biogeography and the distribution of boreal birds and 

mammals. Great Basin Naturalist Memoirs, 209-227. 

BROWN, J. H. & KODRIC-BROWN, A. 1977. Turnover rates in insular biogeography - effect 

of immigration on extinction. Ecology, 58, 445-449. 

BROWN, J. H. & MAURER, B. A. 1989. Macroecology - the division  of food and space among 

species on continents. Science, 243, 1145-1150. 

BUTCHART, S. H. M., WALPOLE, M., COLLEN, B., VAN STRIEN, A., SCHARLEMANN, 

J. P. W., ALMOND, R. E. A., BAILLIE, J. E. M., BOMHARD, B., BROWN, C., 

BRUNO, J., CARPENTER, K. E., CARR, G. M., CHANSON, J., CHENERY, A. M., 

CSIRKE, J., DAVIDSON, N. C., DENTENER, F., FOSTER, M., GALLI, A., 

GALLOWAY, J. N., GENOVESI, P., GREGORY, R. D., HOCKINGS, M., KAPOS, V., 

LAMARQUE, J. F., LEVERINGTON, F., LOH, J., MCGEOCH, M. A., MCRAE, L., 

MINASYAN, A., MORCILLO, M. H., OLDFIELD, T. E. E., PAULY, D., QUADER, S., 

REVENGA, C., SAUER, J. R., SKOLNIK, B., SPEAR, D., STANWELL-SMITH, D., 

STUART, S. N., SYMES, A., TIERNEY, M., TYRRELL, T. D., VIE, J. C. & WATSON, 

R. 2010. Global Biodiversity: Indicators of Recent Declines. Science, 328, 1164-1168. 

CAPIZZI, D., LUISELLI, L. & PAPI, R. 2015. Temporal changes in Mediterranean bird 

communities across fragmented and continuous forests. Ecological Research, 30, 615-

624. 

CHAO, A. & JOST, L. 2012. Coverage-based rarefaction and extrapolation: standardizing 

samples by completeness rather than size. Ecology, 93, 2533-2547. 

CHAO, A., JOST, L., CHIANG, S. C., JIANG, Y. H. & CHAZDON, R. L. 2008. A Two-Stage 

Probabilistic Approach to Multiple-Community Similarity Indices. Biometrics, 64, 1178-

1186. 

CHASE, J. M. 2003. Community assembly: when should history matter? Oecologia, 136, 489-

498. 

CHASE, J. M. 2010. Stochastic Community Assembly Causes Higher Biodiversity in More 

Productive Environments. Science, 328, 1388-1391. 



 

179 

 

CHASE, J. M., LIEBERGESELL, M., SAGOUIS, A., MAY, F., BLOWES, S. A., BERG, Å., 

BERNARD, E., BROSI, B. J., CADOTTE, M. W., CAYUELA, L., CHIARELLO, A. G., 

COSSON, J.-F., CRESSWELL, W., DAMI, F. D., DAUBER, J., DICKMAN, C. R., 

DIDHAM, R. K., EDWARDS, D. P., FARNEDA, F. Z., GAVISH, Y., GONÇALVES-

SOUZA, T., GUADAGNIN, D. L., HENRY, M., LÓPEZ-BAUCELLS, A., KAPPES, H., 

MACNALLY, R., MANU, S., MARTENSEN, A. C., MCCOLLIN, D., MEYER, C. F. 

J., NECKEL-OLIVEIRA, S., NOGUEIRA, A., PONS, J.-M., RAHEEM, D. C., RAMOS, 

F. N., ROCHA, R., SAM, K., SLADE, E., STIREMAN III, J. O., STRUEBIG, M. J., 

VASCONCELOS, H. & ZIV, Y. 2019. FragSAD: A database of diversity and species 

abundance distributions from habitat fragments. Ecology, 0. 

CHAZDON, R. L., HARVEY, C. A., KOMAR, O., GRIFFITH, D. M., FERGUSON, B. G., 

MARTINEZ-RAMOS, M., MORALES, H., NIGH, R., SOTO-PINTO, L., VAN 

BREUGEL, M. & PHILPOTT, S. M. 2009. Beyond Reserves: A Research Agenda for 

Conserving Biodiversity in Human-modified Tropical Landscapes. Biotropica, 41, 142-

153. 

CHESSON, J. 1984. Effect of notonectids (Hemiptera, Notonectidae) on mosquitos (Diptera, 

Culicidae) - predation or selective oviposition. Environmental Entomology, 13, 531-538. 

CHESSON, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of 

Ecology and Systematics, 31, 343-+. 

CHISHOLM, R. A., LIM, F., YEOH, Y. S., SEAH, W. W., CONDIT, R. & ROSINDELL, J. 

2018. Species-area relationships and biodiversity loss in fragmented landscapes. Ecol 

Lett, 21, 804-813. 

CLAUDINO, E. S., GOMES, M. A. F. & CAMPOS, P. R. A. 2015. Extinction debt and the role 

of static and dynamical fragmentation on biodiversity. Ecological Complexity, 21, 150-

155. 

COHEN, J. 1977. Statistical power analysis for the behavioral sciences, New York, Academic 

Press  

COLEMAN, B. D. 1981. On random placement and species-area relations. Mathematical 

Biosciences, 54, 191-215. 

CONDIT, R., ASHTON, P. S., BAKER, P., BUNYAVEJCHEWIN, S., GUNATILLEKE, S., 

GUNATILLEKE, N., HUBBELL, S. P., FOSTER, R. B., ITOH, A., LAFRANKIE, J. V., 

LEE, H. S., LOSOS, E., MANOKARAN, N., SUKUMAR, R. & YAMAKURA, T. 2000. 

Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418. 

CONDIT, R., HUBBELL, S. P., LAFRANKIE, J. V., SUKUMAR, R., MANOKARAN, N., 

FOSTER, R. B. & ASHTON, P. S. 1996. Species-area and species-individual 

relationships for tropical trees: A comparison of three 50-ha plots. Journal of Ecology, 

84, 549-562. 

CONLISK, J., CONLISK, E., KASSIM, A., BILLICK, I. & HARTE, J. 2012. The shape of a 

species' spatial abundance distribution. Global Ecology and Biogeography, 21, 1167-

1178. 

CONNOR, E. F., COURTNEY, A. C. & YODER, J. M. 2000. Individuals-area relationships: 

The relationship between animal population density and area. Ecology, 81, 734-748. 

CONNOR, E. F. & MCCOY, E. D. 1979. Statistics and biology of the species-area relationship. 

American Naturalist, 113, 791-833. 



 

180 

 

COOK, R. R. 1995. The relationship between nested subsets, habitat subdivision, and species-

diversity. Oecologia, 101, 204-210. 

COTTENIE, K. 2005. Integrating environmental and spatial processes in ecological community 

dynamics. Ecology Letters, 8, 1175-1182. 

CROOKS, K. R., SUAREZ, A. V., BOLGER, D. T. & SOULE, M. E. 2001. Extinction and 

colonization of birds on habitat islands. Conservation Biology, 15, 159-172. 

CROWE, T. M. 1979. Lots of weeds - insular phytogeography of vacant urban lots. Journal of 

Biogeography, 6, 169-181. 

CUSHMAN, S. A. & MCGARGAL, K. 2003. Landscape-level patterns of avian diversity in the 

Oregon Coast Range. Ecological Monographs, 73, 259-281. 

DAILY, G. C., EHRLICH, P. R. & SANCHEZ-AZOFEIFA, G. A. 2001. Countryside 

biogeography: Use of human-dominated habitats by the avifauna of southern Costa Rica. 

Ecological Applications, 11, 1-13. 

DAPPORTO, L. & DENNIS, R. L. H. 2008. Island size is not the only consideration. Ranking 

priorities for the conservation of butterflies on Italian offshore islands. Journal of Insect 

Conservation, 12, 237-249. 

DARLINGTON, P. J. 1957. Zoogeography; the geographical distribution of animals, New 

York, John Wiley & Sons. 

DE MENDIBURU, F. 2017. agricolae: Statistical Procedures for Agricultural Research. R 

package version 1.2-8. Available at: https://CRAN.R-project.org/package=agricolae 

(accessed 7 Oct 2017). 

DEANE, D. C., FORDHAM, D. A., HE, F. & BRADSHAW, C. J. A. 2016. Diversity patterns of 

seasonal wetland plant communities mainly driven by rare terrestrial species. Biodiversity 

and Conservation, 25, 1569-1585. 

DEANE, D. C., FORDHAM, D. A., HE, F. & BRADSHAW, C. J. A. 2017a. Future extinction 

risk of wetland plants is higher from individual patch loss than total area reduction. 

Biological Conservation, 209, 27-33. 

DEANE, D. C., FORDHAM, D. A., STEVENS, A. K. & BRADSHAW, C. J. A. 2017b. 

Dispersal-driven homogenization of wetland vegetation revealed from local contributions 

to β-diversity. Journal of Vegetation Science, 28, 893-902. 

DEANE, D. C. & HE, F. 2018. Loss of only the smallest patches will reduce species diversity in 

most discrete habitat networks. Global Change Biology, 24, 5802-5814. 

DECOCQ, G., ANDRIEU, E., BRUNET, J., CHABRERIE, O., DE FRENNE, P., DE SMEDT, 

P., DECONCHAT, M., DIEKMANN, M., EHRMANN, S., GIFFARD, B., MIFSUD, E. 

G., HANSEN, K., HERMY, M., KOLB, A., LENOIR, J., LIIRA, J., MOLDAN, F., 

PROKOFIEVA, I., ROSENQVIST, L., VARELA, E., VALDES, A., VERHEYEN, K. & 

WULF, M. 2016. Ecosystem Services from Small Forest Patches in Agricultural 

Landscapes. Current Forestry Reports, 2, 30-44. 

DIAMOND, J. M. 1972. Biogeographic kinetics - estimation of relaxation-times for avifaunas of 

southwest Pacific islands. Proceedings of the National Academy of Sciences of the United 

States of America, 69, 3199-&. 

DIAMOND, J. M. 1975a. Assembly of species communities. In: CODY, M. L. & DIAMOND, J. 

M. (eds.) Ecology and Evolution of Communities. Cambridge: Harvard University Press  

https://cran.r-project.org/package=agricolae


 

181 

 

DIAMOND, J. M. 1975b. The island dilemma: lessons of modern biogeographic studies for the 

design of natural reserves. Biological Conserv, 7, 129-145. 

DIDHAM, R. K., KAPOS, V. & EWERS, R. M. 2012. Rethinking the conceptual foundations of 

habitat fragmentation research. Oikos, 121, 161-170. 

DISERUD, O. H. & ØDEGAARD, F. 2007. A multiple-site similarity measure. Biology Letters, 

3, 20-22. 

DOS ANJOS, L. & BOCON, R. 1999. Bird communities in natural forest patches in southern 

Brazil. Wilson Bulletin, 111, 397-414. 

ECONOMO, E. P. 2011. Biodiversity Conservation in Metacommunity Networks: Linking 

Pattern and Persistence. American Naturalist, 177, E167-E180. 

ELLIS, E. C., GOLDEWIJK, K. K., SIEBERT, S., LIGHTMAN, D. & RAMANKUTTY, N. 

2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and 

Biogeography, 19, 589-606. 

ESSL, F. & DIRNBOCK, T. 2012. What determines Orthoptera species distribution and richness 

in temperate semi-natural dry grassland remnants? Biodiversity and Conservation, 21, 

2525-2537. 

FAHRIG, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology 

Evolution and Systematics, 34, 487-515. 

FAHRIG, L. 2017. Ecological Responses to Habitat Fragmentation Per Se. In: FUTUYMA, D. J. 

(ed.) Annual Review of Ecology, Evolution, and Systematics, Vol 48. Palo Alto: Annual 

Reviews. 

FAHRIG, L. 2018. Forty years of bias in habitat fragmentation research. 

FAHRIG, L. 2019. Habitat fragmentation: A long and tangled tale. Global Ecology and 

Biogeography, 28, 33-41. 

FAHRIG, L., ARROYO-RODRÍGUEZ, V., BENNETT, J. R., BOUCHER-LALONDE, V., 

CAZETTA, E., CURRIE, D. J., EIGENBROD, F., FORD, A. T., HARRISON, S. P., 

JAEGER, J. A. G., KOPER, N., MARTIN, A. E., MARTIN, J.-L., METZGER, J. P., 

MORRISON, P., RHODES, J. R., SAUNDERS, D. A., SIMBERLOFF, D., SMITH, A. 

C., TISCHENDORF, L., VELLEND, M. & WATLING, J. I. 2019. Is habitat 

fragmentation bad for biodiversity? Biological Conservation, 230, 179-186. 

FISCHER, J. & LINDENMAYER, D. B. 2002. Small patches can be valuable for biodiversity 

conservation: two case studies on birds in southeastern Australia. Biological 

Conservation, 106, 129-136. 

FISCHER, J. & LINDENMAYER, D. B. 2007. Landscape modification and habitat 

fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265-280. 

FLETCHER, R. J., DIDHAM, R. K., BANKS-LEITE, C., BARLOW, J., EWERS, R. M., 

ROSINDELL, J., HOLT, R. D., GONZALEZ, A., PARDINI, R., DAMSCHEN, E. I., 

MELO, F. P. L., RIES, L., PREVEDELLO, J. A., TSCHARNTKE, T., LAURANCE, W. 

F., LOVEJOY, T. & HADDAD, N. M. 2018. Is habitat fragmentation good for 

biodiversity? Biological Conservation, 226, 9-15. 

FORMAN, R. T. T. 1995. Land mosaics: the ecology of landscapes and regions, Cambridge, 

UK, Cambridge University Press. 



 

182 

 

FOURNIER, B., MOUQUET, N., LEIBOLD, M. A. & GRAVEL, D. 2017. An integrative 

framework of coexistence mechanisms in competitive metacommunities. Ecography, 40, 

630-641. 

FUKAMI, T. 2004. Assembly history interacts with ecosystem size to influence species 

diversity. Ecology, 85, 3234-3242. 

GASCON, C., WILLIAMSON, G. B. & DA FONSECA, G. A. B. 2000. Ecology - Receding 

forest edges and vanishing reserves. Science, 288, 1356-1358. 

GAVISH, Y., ZIV, Y. & ROSENZWEIG, M. L. 2012. Decoupling Fragmentation from Habitat 

Loss for Spiders in Patchy Agricultural Landscapes. Conservation Biology, 26, 150-159. 

GIBSON, L., LYNAM, A. J., BRADSHAW, C. J. A., HE, F., BICKFORD, D. P., WOODRUFF, 

D. S., BUMRUNGSRI, S. & LAURANCE, W. F. 2013. Near-Complete Extinction of 

Native Small Mammal Fauna 25 Years After Forest Fragmentation. Science, 341, 1508-

1510. 

GILPIN, M. E. & DIAMOND, J. M. 1980. Subdivision of nature reserves and the maintenance 

of species-diversity. Nature, 285, 567-568. 

GOTELLI, N. J. & COLWELL, R. K. 2011. Estimating species richness, Oxford University 

Press. 

GOTELLI, N. J. & MCCABE, D. J. 2002. Species co-occurrence: A meta-analysis of J. M. 

Diamond's assembly rules model. Ecology, 83, 2091-2096. 

GREEN, J. L. & OSTLING, A. 2003. Endemics-area relationships: The influence of species 

dominance and spatial aggregation. Ecology, 84, 3090-3097. 

HADDAD, N. M., BRUDVIG, L. A., CLOBERT, J., DAVIES, K. F., GONZALEZ, A., HOLT, 

R. D., LOVEJOY, T. E., SEXTON, J. O., AUSTIN, M. P., COLLINS, C. D., COOK, W. 

M., DAMSCHEN, E. I., EWERS, R. M., FOSTER, B. L., JENKINS, C. N., KING, A. J., 

LAURANCE, W. F., LEVEY, D. J., MARGULES, C. R., MELBOURNE, B. A., 

NICHOLLS, A. O., ORROCK, J. L., SONG, D. X. & TOWNSHEND, J. R. 2015. 

Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1, 

9. 

HADDAD, N. M., GONZALEZ, A., BRUDVIG, L. A., BURT, M. A., LEVEY, D. J. & 

DAMSCHEN, E. I. 2017. Experimental evidence does not support the Habitat Amount 

Hypothesis. Ecography, 40, 48-55. 

HAILA, Y. 1983. Land birds on northern islands - a sampling metaphor for insular colonization. 

Oikos, 41, 334-351. 

HAILA, Y. 2002. A conceptual genealogy of fragmentation research: From island biogeography 

to landscape ecology. Ecological Applications, 12, 321-334. 

HAILA, Y. & HANSKI, I. K. 1984. Methodology for studying the effect of habitat 

fragmentation on land birds. Annales Zoologici Fennici, 21, 393-397. 

HAILA, Y., HANSKI, I. K. & RAIVIO, S. 1993. Turnover of breeding birds in small forest 

fragments - the sampling colonization hypothesis corroborated. Ecology, 74, 714-725. 

HALLEY, J. M., SGARDELI, V. & MONOKROUSOS, N. 2013. Species-area relationships and 

extinction forecasts. Year in Ecology and Conservation Biology, 1286, 50-61. 

HALLEY, J. M., SGARDELI, V. & TRIANTIS, K. A. 2014. Extinction debt and the species-

area relationship: a neutral perspective. Global Ecology and Biogeography, 23, 113-123. 

HANSKI, I. 1999. Metapopulation ecology, Oxford, Oxford University Press. 



 

183 

 

HANSKI, I. 2015. Habitat fragmentation and species richness. Journal of Biogeography, 42, 

989-993. 

HANSKI, I. & GILPIN, M. 1991. Metapopulation dynamics - brief history and conceptual 

domain. Biological Journal of the Linnean Society, 42, 3-16. 

HANSKI, I., ZURITA, G. A., ISABEL BELLOCQ, M. & RYBICKI, J. 2013. Species-

fragmented area relationship. Proceedings of the National Academy of Sciences of the 

United States of America, 110, 12715-12720. 

HARTE, J., KINZIG, A. & GREEN, J. 1999. Self-similarity in the distribution and abundance of 

species. Science, 284, 334-336. 

HARTE, J. & KINZIG, A. P. 1997. On the implications of species-area relationships for 

endemism, spatial turnover, and food web patterns. Oikos, 80, 417-427. 

HARTE, J. & KITZES, J. 2012. The use and misuse of species-area relationships in predicting 

climate-driven extinction. In: HANNAH, L. (ed.) Saving a million species: extinction 

risk from climate change. 

HARTE, J., ZILLIO, T., CONLISK, E. & SMITH, A. B. 2008. Maximum entropy and the state-

variable approach to macroecology. Ecology, 89, 2700-2711. 

HE, F. & HUBBELL, S. P. 2003. Percolation theory for the distribution and abundance of 

species. Physical Review Letters, 91. 

HE, F. & HUBBELL, S. P. 2011. Species-area relationships always overestimate extinction rates 

from habitat loss. Nature, 473, 368-71. 

HE, F., LAFRANKIE, J. V. & SONG, B. 2002. Scale dependence of tree abundance and 

richness in a tropical rain forest, Malaysia. Landscape Ecology, 17, 559-568. 

HE, F. & LEGENDRE, P. 1996. On species-area relations. American Naturalist, 148, 719-737. 

HE, F. & LEGENDRE, P. 2002. Species diversity patterns derived from species-area models. 

Ecology, 83, 1185-1198. 

HE, F., LEGENDRE, P. & LAFRANKIE, J. V. 1997. Distribution patterns of tree species in a 

Malaysian tropical rain forest. Journal of Vegetation Science, 8, 105-114. 

HEINO, J., MELO, A. S., SIQUEIRA, T., SOININEN, J., VALANKO, S. & BINI, L. M. 2015. 

Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, 

processes and prospects. Freshwater Biology, 60, 845-869. 

HIGGS, A. J. & USHER, M. B. 1980. Should nature reserves be large or small. Nature, 285, 

568-569. 

HILL, J. K., HAMER, K. C., LACE, L. A. & BANHAM, W. M. 1995. Effects of selective 

logging on tropical forest butterflies on Buru, Indonesia. Journal of Applied Ecology, 32, 

754-760. 

HILL, J. L., CURRAN, P. J. & FOODY, G. M. 1994. The effect of sampling on the species-area 

curve. Global Ecology and Biogeography Letters, 4, 97-106. 

HOKKANEN, P. J., KOUKI, J. & KOMONEN, A. 2009. Nestedness, SLOSS and conservation 

networks of boreal herb-rich forests. Applied Vegetation Science, 12, 295-303. 

HONNAY, O., HERMY, M. & COPPIN, P. 1999. Nested plant communities in deciduous forest 

fragments: species relaxation or nested habitats? Oikos, 84, 119-129. 

HU, G., WU, J. G., FEELEY, K. J., XU, G. F. & YU, M. J. 2012. The Effects of Landscape 

Variables on the Species-Area Relationship during Late-Stage Habitat Fragmentation. 

Plos One, 7. 



 

184 

 

HUBBELL, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography, 

Monographs in Population Biology, Princeton, Princeton University Press. 

HUBBELL, S. P., CONDIT, R. & FOSTER, R. B. 2005. Barro Colorado Forest Census Plot 

Data URL  https://ctfs.arnarb.harvard.edu/webatlas/datasets/bci. 

HUI, C. & MCGEOCH, M. A. 2014. Zeta Diversity as a Concept and Metric That Unifies 

Incidence-Based Biodiversity Patterns. American Naturalist, 184, 684-694. 

HUTCHINSON, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium on 

Quantitative Biology, 22, 415-427. 

JOST, L., CHAO, A. & CHAZDON, R. L. 2011. Compositional similarity and β (beta) diversity. 

KAREIVA, P. & MARVIER, M. 2012. What Is Conservation Science? Bioscience, 62, 962-969. 

KEIL, P., STORCH, D. & JETZ, W. 2015. On the decline of biodiversity due to area loss. 

Nature Communications, 6. 

KINDLMANN, P. & BUREL, F. 2008. Connectivity measures: A review. Landscape Ecology, 

23, 879-890. 

KINZIG, A. P. & HARTE, J. 2000. Implications of endemics-area relationships for estimates of 

species extinctions. Ecology, 81, 3305-3311. 

KITCHENER, D. J., CHAPMAN, A., DELL, J. & MUIR, B. G. 1980. Lizard assemblage and 

reserve size and structure in the western Australian wheatbelt - some implications for 

conservation. Biological Conservation, 17, 25-62. 

KITZES, J. & HARTE, J. 2014. Beyond the species-area relationship: improving 

macroecological extinction estimates. Methods in Ecology and Evolution, 5, 1-8. 

KITZES, J. & HARTE, J. 2015. Predicting extinction debt from community patterns. Ecology, 

96, 2127-2136. 

KOBAYASHI, S. 1983. The species-area relationship for archipelago biotas - islands as samples 

from a species pool. Researches on Population Ecology, 25, 221-237. 

KOBAYASHI, S. 1985. Species diversity preserved in different numbers of nature reserves of 

the same total area. Researches on Population Ecology, 27, 137-143. 

KOLEFF, P., GASTON, K. J. & LENNON, J. J. 2003. Measuring beta diversity for presence-

absence data. Journal of Animal Ecology, 72, 367-382. 

KRAFT, N. J. B., COMITA, L. S., CHASE, J. M., SANDERS, N. J., SWENSON, N. G., 

CRIST, T. O., STEGEN, J. C., VELLEND, M., BOYLE, B., ANDERSON, M. J., 

CORNELL, H. V., DAVIES, K. F., FREESTONE, A. L., INOUYE, B. D., HARRISON, 

S. P. & MYERS, J. A. 2011. Disentangling the Drivers of beta Diversity Along 

Latitudinal and Elevational Gradients. Science, 333, 1755-1758. 

KRETZSCHMAR, M. & ADLER, F. R. 1993. Aggregated distributions in models for patchy 

populations. Theoretical Population Biology, 43, 1-30. 

LANDE, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple 

communities. Oikos, 76, 5-13. 

LAURANCE, W. F., LAURANCE, S. G., FERREIRA, L. V., RANKINDEMERONA, J. M., 

GASCON, C. & LOVEJOY, T. E. 1997. Biomass collapse in Amazonian forest 

fragments. Science, 278, 1117-1118. 

LE ROUX, D. S., IKIN, K., LINDENMAYER, D. B., MANNING, A. D. & GIBBONS, P. 2015. 

Single large or several small? Applying biogeographic principles to tree-level 

conservation and biodiversity offsets. Biological Conservation, 191, 558-566. 

https://ctfs.arnarb.harvard.edu/webatlas/datasets/bci


 

185 

 

LEFCHECK, J. S. 2016. PIECEWISESEM: Piecewise structural equation modelling in R for 

ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579. 

LEGENDRE, P. 2014. Interpreting the replacement and richness difference components of beta 

diversity. Global Ecology and Biogeography, 23, 1324-1334. 

LEGENDRE, P. & LEGENDRE, L. 2012. Numerical ecology. Third English edition, Oxford, 

UK, Elsevier. 

LEIBOLD, M. A., HOLYOAK, M., MOUQUET, N., AMARASEKARE, P., CHASE, J. M., 

HOOPES, M. F., HOLT, R. D., SHURIN, J. B., LAW, R., TILMAN, D., LOREAU, M. 

& GONZALEZ, A. 2004. The metacommunity concept: a framework for multi-scale 

community ecology. Ecology Letters, 7, 601-613. 

LEIBOLD, M. A. & LOEUILLE, N. 2015. Species sorting and patch dynamics in harlequin 

metacommunities affect the relative importance of environment and space. Ecology, 96, 

3227-3233. 

LEIBOLD, M. A. & MIKKELSON, G. M. 2002. Coherence, species turnover, and boundary 

clumping: elements of meta-community structure. Oikos, 97, 237-250. 

LENTH, R. 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package 

version 1.4.1. accessed August 2019. 

LEVIN, S. A. & PAINE, R. T. 1974. Disturbance, patch formation, and community structure. 

Proceedings of the National Academy of Sciences of the United States of America, 71, 

2744-2747. 

LEVINS, R. & CULVER, D. 1971. Regional coexistence of species and competition between 

rare species. Proceedings of the National Academy of Sciences of the United States of 

America, 68, 1246-&. 

LEWIS, O. T. 2006. Climate change, species-area curves and the extinction crisis. Philosophical 

Transactions of the Royal Society B-Biological Sciences, 361, 163-171. 

LINDBORG, R., PLUE, J., ANDERSSON, K. & COUSINS, S. A. O. 2014. Function of small 

habitat elements for enhancing plant diversity in different agricultural landscapes. 

Biological Conservation, 169, 206-213. 

LINDENMAYER, D. 2019. Small patches make critical contributions to biodiversity 

conservation. Proceedings of the National Academy of Sciences of the United States of 

America, 116, 717-719. 

LION, M. B., GARDA, A. A., SANTANA, D. J. & FONSECA, C. R. 2016. The Conservation 

Value of Small Fragments For Atlantic Forest Reptiles. Biotropica, 48, 265-275. 

LIU, J. L., VELLEND, M., WANG, Z. H. & YU, M. J. 2018. High beta diversity among small 

islands is due to environmental heterogeneity rather than ecological drift. Journal of 

Biogeography, 45, 2252-2261. 

LOGUE, J. B., MOUQUET, N., PETER, H., HILLEBRAND, H. & METACOMMUNITY 

WORKING, G. 2011. Empirical approaches to metacommunities: a review and 

comparison with theory. Trends in Ecology & Evolution, 26, 482-491. 

LOMOLINO, M. V. 1994. An evaluation of alternative strategies for building networks of nature 

reserves. Biological Conservation, 69, 243-249. 

LU, M. Y., VASSEUR, D. & JETZ, W. 2019. Beta Diversity Patterns Derived from Island 

Biogeography Theory. American Naturalist, 194, E52-E65. 



 

186 

 

MAC NALLY, R. & LAKE, P. S. 1999. On the generation of diversity in archipelagos: a re-

evaluation of the Quinn-Harrison 'saturation index'. Journal of Biogeography, 26, 285-

295. 

MACARTHUR, R. & LEVINS, R. 1967. The limiting similarity convergence and divergence of 

coexisting species. American Naturalist, 101, 377-+. 

MACARTHUR, R. & WILSON, E. 1967. The theory of island biogeography, Princeton, NJ, 

Princeton University Press. 

MACDONALD, Z. G., ANDERSON, I. D., ACORN, J. H. & NIELSEN, S. E. 2018a. 

Decoupling habitat fragmentation from habitat loss: butterfly species mobility obscures 

fragmentation effects in a naturally fragmented landscape of lake islands. Oecologia, 186, 

11-27. 

MACDONALD, Z. G., ANDERSON, I. D., ACORN, J. H. & NIELSEN, S. E. 2018b. The 

theory of island biogeography, the sample-area effect, and the habitat diversity 

hypothesis: complementarity in a naturally fragmented landscape of lake islands. Journal 

of Biogeography, 45, 2730-2743. 

MAGURRAN, A. E. 2009. Measuring Biological Diversity, Oxford, Blackwell. 

MAGURRAN, A. E. & MCGILL, B. J. 2011. Challenges and opportunities in the measurement 

and assessment of biological diversity. 

MARGULES, C. R. & PRESSEY, R. L. 2000. Systematic conservation planning. Nature, 405, 

243-253. 

MARINI, L., OCKINGER, E., BERGMAN, K.-O., JAUKER, B., KRAUSS, J., KUUSSAARI, 

M., POYRY, J., SMITH, H. G., STEFFAN-DEWENTER, I. & BOMMARCO, R. 2014. 

Contrasting effects of habitat area and connectivity on evenness of pollinator 

communities. Ecography, 37, 544-551. 

MARKWELL, K. A. & FELLOWS, C. S. 2008. Habitat and biodiversity of on-farm water 

storages: A case study in Southeast Queensland, Australia. Environmental Management, 

41, 234-249. 

MATIAS, M. G., GRAVEL, D., GUILHAUMON, F., DESJARDINS-PROULX, P., LOREAU, 

M., MUENKEMUELLER, T. & MOUQUET, N. 2014. Estimates of species extinctions 

from species-area relationships strongly depend on ecological context. Ecography, 37, 

431-442. 

MATTHEWS, T. J., COTTEE-JONES, H. E. W. & WHITTAKER, R. J. 2015. Quantifying and 

interpreting nestedness in habitat islands: a synthetic analysis of multiple datasets. 

Diversity and Distributions, 21, 392-404. 

MATTHEWS, T. J., GUILHAUMON, F., TRIANTIS, K. A., BORREGAARD, M. K. & 

WHITTAKER, R. J. 2016. On the form of species-area relationships in habitat islands 

and true islands. Global Ecology and Biogeography, 25, 847-858. 

MAURER, B. A. & MCGILL, B. J. 2011. Measurement of species diversity. 

MAY, F., ROSENBAUM, B., SCHURR, F. M. & CHASE, J. M. 2019. The geometry of habitat 

fragmentation: Effects of species distribution patterns on extinction risk due to habitat 

conversion. Ecology and Evolution, 9, 2775-2790. 

MAY, R. M., LAWTON, J. H. & STORK, N. E. 1995. Assessing extinction rates, Oxford, US, 

Oxford University Press. 



 

187 

 

MCCAULEY, L. A., ANTEAU, M. J., VAN DER BURG, M. P. & WILTERMUTH, M. T. 

2015. Land use and wetland drainage affect water levels and dynamics of remaining 

wetlands. Ecosphere, 6, 1-22. 

MCCOLLIN, D. 1993. Avian distribution patterns in a fragmented wooded landscape (North 

Humberside, UK) - the role of between-patch and within-patch structure. Global Ecology 

and Biogeography Letters, 3, 48-62. 

MCCOY, E. D. & MUSHINSKY, H. R. 1994. Effects of fragmentation on the richness of 

vertebrates in the Florida scrub habitat. Ecology, 75, 446-457. 

MCGARIGAL, K. & CUSHMAN, S. A. 2002. Comparative evaluation of experimental 

approaches to the study of habitat fragmentation effects. Ecological Applications, 12, 

335-345. 

MCGILL, B. J. 2011. Species abundance distributions, New York, Oxford University Press. 

MENDENHALL, C. D., KARP, D. S., MEYER, C. F. J., HADLY, E. A. & DAILY, G. C. 2014. 

Predicting biodiversity change and averting collapse in agricultural landscapes. Nature, 

509, 213-+. 

MITSUO, Y., TSUNODA, H., OHIRA, M., DOI, M. & SENGA, Y. 2011. Nested subset 

patterns of species composition in a pond-dwelling fish fauna. Ecological Research, 26, 

311-316. 

MOHD-AZLAN, J. & LAWES, M. J. 2011. The effect of the surrounding landscape matrix on 

mangrove bird community assembly in north Australia. Biological Conservation, 144, 

2134-2141. 

MORTELLITI, A., AMORI, G. & BOITANI, L. 2010. The role of habitat quality in fragmented 

landscapes: a conceptual overview and prospectus for future research. Oecologia, 163, 

535-547. 

MOUQUET, N., GRAVEL, D., MASSOL, F. & CALCAGNO, V. 2013. Extending the concept 

of keystone species to communities and ecosystems. Ecology Letters, 16, 1-8. 

MOUQUET, N. & LOREAU, M. 2003. Community patterns in source-sink metacommunities. 

American Naturalist, 162, 544-557. 

MOUQUET, N., MATTHIESSEN, B., MILLER, T. & GONZALEZ, A. 2011. Extinction Debt 

in Source-Sink Metacommunities. Plos One, 6. 

NAGELKERKE, N. J. D. 1991. A note on a general definition of the coefficient of 

determination. Biometrika, 78, 691-692. 

NAKAGAWA, S. & SCHIELZETH, H. 2013. A general and simple method for obtaining R2 

from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133-

142. 

NEKOLA, J. C. & WHITE, P. S. 1999. The distance decay of similarity in biogeography and 

ecology. Journal of Biogeography, 26, 867-878. 

NEWBOLD, T., HUDSON, L. N., HILL, S. L. L., CONTU, S., LYSENKO, I., SENIOR, R. A., 

BORGER, L., BENNETT, D. J., CHOIMES, A., COLLEN, B., DAY, J., DE PALMA, 

A., DIAZ, S., ECHEVERRIA-LONDONO, S., EDGAR, M. J., FELDMAN, A., 

GARON, M., HARRISON, M. L. K., ALHUSSEINI, T., INGRAM, D. J., ITESCU, Y., 

KATTGE, J., KEMP, V., KIRKPATRICK, L., KLEYER, M., CORREIA, D. L. P., 

MARTIN, C. D., MEIRI, S., NOVOSOLOV, M., PAN, Y., PHILLIPS, H. R. P., 

PURVES, D. W., ROBINSON, A., SIMPSON, J., TUCK, S. L., WEIHER, E., WHITE, 



 

188 

 

H. J., EWERS, R. M., MACE, G. M., SCHARLEMANN, J. P. W. & PURVIS, A. 2015. 

Global effects of land use on local terrestrial biodiversity. Nature, 520, 45-+. 

NEY-NIFLE, M. & MANGEL, M. 2000. Habitat loss and changes in the species-area 

relationship. Conservation Biology, 14, 893-898. 

OERTLI, B., AUDERSET JOYE, D., CASTELLA, E., JUGE, R., CAMBIN, D. & 

LACHAVANNE, J. B. 2002. Does size matter? The relationship between pond area and 

biodiversity. Biological Conservation, 104, 59-70. 

OKSANEN, J., BLANCHET, G., FRIENDLY, M., KINDT, R., LEGENDRE, P., MCGLINN, 

D., MINCHIN, P., O'HARA, R., SIMPSON, G., SOLYMOS, P., STEVENS, M., 

SZOECS, E. & WAGNER, H. 2017. vegan: Community Ecology Package. R package 

version 2.4-4. Available at: https://CRAN.R-project.org/package=vegan (accessed 7 Oct 

2017). 

OVASKAINEN, O. 2002. Long-term persistence of species and the SLOSS problem. Journal of 

Theoretical Biology, 218, 419-433. 

PAN, X. B. 2015. Reconstruct Species-Area Theory Using Set Theory. National Academy 

Science Letters-India, 38, 173-177. 

PATTERSON, B. D. & ATMAR, W. 1986. Nested subsets and the structure of insular 

mammalian faunas and archipelagoes. Biological Journal of the Linnean Society, 28, 65-

82. 

PEINTINGER, M., BERGAMINI, A. & SCHMID, B. 2003. Species-area relationships and 

nestedness of four taxonomic groups in fragmented wetlands. Basic and Applied Ecology, 

4, 385-394. 

PEREIRA, H. M., BORDA-DE-AGUA, L. & MARTINS, I. S. 2012. Geometry and scale in 

species-area relationships. Nature, 482, E3-4; author reply E5-6. 

PEREIRA, H. M. & DAILY, G. C. 2006. Modeling biodiversity dynamics in countryside 

landscapes. Ecology, 87, 1877-1885. 

PEREIRA, H. M., LEADLEY, P. W., PROENCA, V., ALKEMADE, R., SCHARLEMANN, J. 

P. W., FERNANDEZ-MANJARRES, J. F., ARAUJO, M. B., BALVANERA, P., 

BIGGS, R., CHEUNG, W. W. L., CHINI, L., COOPER, H. D., GILMAN, E. L., 

GUENETTE, S., HURTT, G. C., HUNTINGTON, H. P., MACE, G. M., OBERDORFF, 

T., REVENGA, C., RODRIGUES, P., SCHOLES, R. J., SUMAILA, U. R. & 

WALPOLE, M. 2010. Scenarios for Global Biodiversity in the 21st Century. Science, 

330, 1496-1501. 

PIELOU, E. C. 1975. Ecological diversity, New York, Wiley. 

PIMM, S. L. & ASKINS, R. A. 1995. Forest losses predict bird extinctions in eastern North 

America. Proceedings of the National Academy of Sciences of the United States of 

America, 92, 9343-9347. 

PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D. & TEAM, R. C. 2019. nlme: Linear 

and Nonlinear Mixed Effects Models. R-package 3.1-141, Accessed August 2019. 

PIQUER-RODRIGUEZ, M., TORELLA, S., GAVIER-PIZARRO, G., VOLANTE, J., SOMMA, 

D., GINZBURG, R. & KUEMMERLE, T. 2015. Effects of past and future land 

conversions on forest connectivity in the Argentine Chaco. Landscape Ecology, 30, 817-

833. 

https://cran.r-project.org/package=vegan


 

189 

 

PLOTKIN, J. B. & MULLER-LANDAU, H. C. 2002. Sampling the species composition of a 

landscape. Ecology, 83, 3344-3356. 

POWELL, K. I., CHASE, J. M. & KNIGHT, T. M. 2013. Invasive Plants Have Scale-Dependent 

Effects on Diversity by Altering Species-Area Relationships. Science, 339, 316-318. 

PRADO, P. I., MIRANDA, M. D. & CHALOM, A. 2017. sads: Maximum Likelihood Models 

for Species Abundance Distributions. R package version 0.4.0. Available at: 

https://CRAN.R-project.org/package=sads (accessed 26 Oct 2017). 

PRESLEY, S. J., HIGGINS, C. L. & WILLIG, M. R. 2010. A comprehensive framework for the 

evaluation of metacommunity structure. Oikos, 119, 908-917. 

PRESTON, F. W. 1962. Canonical distribution of commonness and rarity: Part I. Ecology, 43, 

185-215. 

PROENÇA, V. & PEREIRA, H. M. 2013. Species–area models to assess biodiversity change in 

multi-habitat landscapes: The importance of species habitat affinity. Basic and Applied 

Ecology, 14, 102-114. 

PULLIAM, H. R. 1988. Sources, sinks and population regulation. American Naturalist, 132, 

652-661. 

QIAN, H. & RICKLEFS, R. E. 2012. Disentangling the effects of geographic distance and 

environmental dissimilarity on global patterns of species turnover. Global Ecology and 

Biogeography, 21, 341-351. 

QUINN, J. F. & HARRISON, S. P. 1988. Effects of habitat fragmentation and isolation on 

species richness - evidence from biogeographic patterns. Oecologia, 75, 132-140. 

QUINN, J. F. & ROBINSON, G. R. 1987. The effects of experimental subdivision on flowering 

plant diversity in a California annual grassland. Journal of Ecology, 75, 837-855. 

R CORE TEAM 2019. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing,  Vienna, Austria. Available at: http://www.R-project.org/ 

(accessed 18 August 2019). 

RAMSEY, F. L. 1989. Comments on a saturation index. Oecologia, 81, 569-570. 

RESETARITS, E. J., CATHEY, S. E. & LEIBOLD, M. A. 2018. Testing the keystone 

community concept: effects of landscape, patch removal, and environment on 

metacommunity structure. Ecology, 99, 57-67. 

RESETARITS, W. J., JR. & BINCKLEY, C. A. 2014. Species responses of colonising beetles to 

variation in patch quality, number, and context in experimental aquatic landscapes. 

Ecological Entomology, 39, 226-235. 

RESETARITS, W. J. & WILBUR, H. M. 1989. Choice of oviposition site by Hyla chrysoscelis - 

role of predators and competitors. Ecology, 70, 220-228. 

RICHARDSON, S. J., CLAYTON, R., RANCE, B. D., BROADBENT, H., MCGLONE, M. S. 

& WILMSHURST, J. M. 2015. Small wetlands are critical for safeguarding rare and 

threatened plant species. Applied Vegetation Science, 18, 230-241. 

RICKETTS, T. H. 2001. The matrix matters: Effective isolation in fragmented landscapes. 

American Naturalist, 158, 87-99. 

ROBINSON, G. R. & QUINN, J. F. 1992. Habitat fragmentation, species diversity, extinction, 

and design of nature reserves, Dordrecht, Netherlands, Kluwer Academic Publishers. 

https://cran.r-project.org/package=sads
http://www.r-project.org/


 

190 

 

ROSCH, V., TSCHARNTKE, T., SCHERBER, C. & BATARY, P. 2015. Biodiversity 

conservation across taxa and landscapes requires many small as well as single large 

habitat fragments. Oecologia, 179, 209-222. 

ROSENZWEIG, M. L. 1995. Species Diversity in Space and Time, 40 West 20th Street, New 

York, NY, Cambridge University Press. 

RYBICKI, J., ABREGO, N. & OVASKAINEN, O. 2018. Habitat fragmentation and species 

diversity in competitive species communities. bioRxiv, 363234. 

RYBICKI, J. & HANSKI, I. 2013. Species-area relationships and extinctions caused by habitat 

loss and fragmentation. Ecology Letters, 16, 27-38. 

SAUNDERS, D. A., HOBBS, R. J. & MARGULES, C. R. 1991. Biological consequences of 

ecosystem fragmentation - a review. Conservation Biology, 5, 18-32. 

SCHEFFER, M., VAN GEEST, G. J., ZIMMER, K., JEPPESEN, E., SONDERGAARD, M., 

BUTLER, M. G., HANSON, M. A., DECLERCK, S. & DE MEESTER, L. 2006. Small 

habitat size and isolation can promote species richness: second-order effects on 

biodiversity in shallow lakes and ponds. Oikos, 112, 227-231. 

SEMLITSCH, R. D. & BODIE, J. R. 1998. Are small, isolated wetlands expendable? 

Conservation Biology, 12, 1129-1133. 

SERRAN, J. N. & CREED, I. F. 2016. New mapping techniques to estimate the preferential loss 

of small wetlands on prairie landscapes. Hydrological Processes, 30, 396-409. 

SFENTHOURAKIS, S. & TRIANTIS, K. A. 2009. Habitat diversity, ecological requirements of 

species and the Small Island Effect. Diversity and Distributions, 15, 131-140. 

SHAFER, C. L. 1990. Nature reserves: island theory and conservation practice  Washington, 

Smithsonian Institution Press. 

SHIPLEY, B. 2000. A New Inferential Test for Path Models Based on Directed Acyclic Graphs. 

Structural Equation Modeling-a Multidisciplinary Journal, 7, 206-218. 

SHIPLEY, B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology, 90, 

363-368. 

SHMIDA, A. & ELLNER, S. 1984. Coexistence of plant-species with similar niches. Vegetatio, 

58, 29-55. 

SHMIDA, A. & WILSON, M. V. 1985. Biological determinants of species-diversity. Journal of 

Biogeography, 12, 1-20. 

SIMBERLOFF, D. 1976. Experimental zoogeography of islands - effects of island size. Ecology, 

57, 629-648. 

SIMBERLOFF, D. & GOTELLI, N. 1984. Effects of insularization on plant-species richness in 

the prairie-forest ecotone. Biological Conservation, 29, 27-46. 

SIMBERLOFF, D. & MARTIN, J. L. 1991. Nestedness of insular avifaunas - simple summary 

statistics masking complex species patterns. Ornis Fennica, 68, 178-192. 

SIMBERLOFF, D. S. 1974. Permo-Triassic extinctions - effects of area on biotic equilibrium. 

Journal of Geology, 82, 267-274. 

SIMBERLOFF, D. S. & ABELE, L. G. 1976. Island Biogeography Theory and conservation 

practice. Science, 191, 285-286. 

SIMPSON, G. G. 1943. Mammals and the nature of continents. American Journal of Science, 

241, 1-31. 



 

191 

 

SOULE, M. E. & SIMBERLOFF, D. 1986. What do genetics and ecology tell us about the 

design of nature-reserves. Biological Conservation, 35, 19-40. 

SOUSA, W. P. 1984. The role of disturbance in natural communities. Annual Review of Ecology 

and Systematics, 15, 353-391. 

STONE, L. & ROBERTS, A. 1990. The checkerboard score and species distributions. 

Oecologia, 85, 74-79. 

SWIFT, T. L. & HANNON, S. J. 2010. Critical thresholds associated with habitat loss: a review 

of the concepts, evidence, and applications. Biol Rev Camb Philos Soc, 85, 35-53. 

TAYLOR, P. D., FAHRIG, L., HENEIN, K. & MERRIAM, G. 1993. Connectivity is a vital 

element of landscape structure. Oikos, 68, 571-573. 

TILMAN, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology, 75, 2-

16. 

TILMAN, D., LEHMAN, C. L. & YIN, C. 1997. Habitat destruction, dispersal, and deterministic 

extinction in competitive communities. American Naturalist, 149, 407-435. 

TILMAN, D., MAY, R. M., LEHMAN, C. L. & NOWAK, M. A. 1994. Habitat destruction and 

extinction debt. Nature, 371, 65-66. 

TJØRVE, E. 2002. Habitat size and number in multi-habitat landscapes: a model approach based 

on species-area curves. Ecography, 25, 17-24. 

TJØRVE, E. 2010. How to resolve the SLOSS debate: Lessons from species-diversity models. 

Journal of Theoretical Biology, 264, 604-612. 

TJØRVE, E., KUNIN, W. E., POLCE, C. & CALF TJØRVE, K. M. 2008. Species-area 

relationship: separating the effects of species abundance and spatial distribution. Journal 

of Ecology, 96, 1141-1151. 

TJORVE, E. & TJORVE, K. M. C. 2008. The species-area relationship, self-similarity, and the 

true meaning of the z-value. Ecology, 89, 3528-3533. 

TJØRVE, E. & TJØRVE, K. M. C. 2008. The species-area relationship, self-similarity, and the 

true meaning of the z-value. Ecology, 89, 3528-3533. 

TRIANTIS, K. A., BORGES, P. A. V., LADLE, R. J., HORTAL, J., CARDOSO, P., GASPAR, 

C., DINIS, F., MENDONCA, E., SILVEIRA, L. M. A., GABRIEL, R., MELO, C., 

SANTOS, A. M. C., AMORIM, I. R., RIBEIRO, S. P., SERRANO, A. R. M., 

QUARTAU, J. A. & WHITTAKER, R. J. 2010. Extinction debt on oceanic islands. 

Ecography, 33, 285-294. 

TSCHARNTKE, T., STEFFAN-DEWENTER, I., KRUESS, A. & THIES, C. 2002a. 

Characteristics of insect populations on habitat fragments: A mini review. Ecological 

Research, 17, 229-239. 

TSCHARNTKE, T., STEFFAN-DEWENTER, I., KRUESS, A. & THIES, C. 2002b. 

Contribution of small habitat fragments to conservation of insect communities of 

grassland-cropland landscapes. Ecological Applications, 12, 354-363. 

TSCHARNTKE, T., TYLIANAKIS, J. M., RAND, T. A., DIDHAM, R. K., FAHRIG, L., 

BATARY, P., BENGTSSON, J., CLOUGH, Y., CRIST, T. O., DORMANN, C. F., 

EWERS, R. M., FRUND, J., HOLT, R. D., HOLZSCHUH, A., KLEIN, A. M., KLEIJN, 

D., KREMEN, C., LANDIS, D. A., LAURANCE, W., LINDENMAYER, D., 

SCHERBER, C., SODHI, N., STEFFAN-DEWENTER, I., THIES, C., VAN DER 



 

192 

 

PUTTEN, W. H. & WESTPHAL, C. 2012. Landscape moderation of biodiversity 

patterns and processes - eight hypotheses. Biological Reviews, 87, 661-685. 

TUOMISTO, H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 

1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-

22. 

TURNER, I. M. & CORLETT, R. T. 1996. The conservation value of small, isolated fragments 

of lowland tropical rain forest. Trends in Ecology & Evolution, 11, 330-333. 

ULRICH, W., KRYSZEWSKI, W., SEWERNIAK, P., PUCHALKA, R., STRONA, G. & 

GOTELLI, N. J. 2017. A comprehensive framework for the study of species co-

occurrences, nestedness and turnover. Oikos, 126, 1607-1616. 

ULRICH, W., KUBOTA, Y., KUSUMOTO, B., BASELGA, A., TUOMISTO, H. & GOTELLI, 

N. J. 2018. Species richness correlates of raw and standardized co-occurrence metrics. 

Global Ecology and Biogeography, 27, 395-399. 

URBAN, M. C. 2004. Disturbance heterogeneity determines freshwater metacommunity 

structure. Ecology, 85, 2971-2978. 

VIROLAINEN, K. M., SUOMI, T., SUHONEN, J. & KUITUNEN, M. 1998. Conservation of 

vascular plants in single large and several small mires: species richness, rarity and 

taxonomic diversity. Journal of Applied Ecology, 35, 700-707. 

WANG, Y. P., BAO, Y. X., YU, M. J., XU, G. F. & DING, P. 2010. Nestedness for different 

reasons: the distributions of birds, lizards and small mammals on islands of an inundated 

lake. Diversity and Distributions, 16, 862-873. 

WARTON, D. I. & HUI, F. K. C. 2011. The arcsine is asinine: the analysis of proportions in 

ecology. Ecology, 92, 3-10. 

WATLING, J. I. & DONNELLY, M. A. 2006. Fragments as islands: a synthesis of faunal 

responses to habitat patchiness. Conservation Biology, 20, 1016-1025. 

WATSON, D. M. 2002. A conceptual framework for studying species composition in fragments, 

islands and other patchy ecosystems. Journal of Biogeography, 29, 823-834. 

WELLBORN, G. A., SKELLY, D. K. & WERNER, E. E. 1996. Mechanisms creating 

community structure across a freshwater habitat gradient. Annual Review of Ecology and 

Systematics, 27, 337-363. 

WHITTAKER, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. 

Ecological Monographs, 30, 280-338. 

WILBER, M. Q., KITZES, J. & HARTE, J. 2015. Scale collapse and the emergence of the 

power law species-area relationship. Global Ecology and Biogeography, 24, 883-895. 

WILCOX, B. A. 1980. Insular ecology and conservation. In: SOULE, M. E. & WILCOX, B. A. 

(eds.) Conservation biology. Sunderland, Massachusetts: Sinauer Associates, Inc. 

WILCOX, B. A. & MURPHY, D. D. 1985. Conservation strategy - the effects of fragmentation 

on extinction. American Naturalist, 125, 879-887. 

WILSON, D. S. 1992. Complex interactions in metacommunities, with implications for 

biodiversity and higher levels of selection. Ecology, 73, 1984-2000. 

WILSON, J. B., STEEL, J. B., KING, W. M. & GITAY, H. 1999. The effect of spatial scale on 

evenness. Journal of Vegetation Science, 10, 463-468. 



 

193 

 

WINEGARDNER, A. K., JONES, B. K., NG, I. S. Y., SIQUEIRA, T. & COTTENIE, K. 2012. 

The terminology of metacommunity ecology. Trends in Ecology and Evolution, 27, 253-

254. 

WINTLE, B. A., KUJALA, H., WHITEHEAD, A., CAMERON, A., VELOZ, S., KUKKALA, 

A., MOILANEN, A., GORDON, A., LENTINI, P. E., CADENHEAD, N. C. R. & 

BEKESSY, S. A. 2019. Global synthesis of conservation studies reveals the importance 

of small habitat patches for biodiversity. Proceedings of the National Academy of 

Sciences of the United States of America, 116, 909-914. 

WITH, K. A. 2016. Are landscapes more than the sum of their patches? Landscape Ecology, 31, 

969-980. 

WORTHEN, W. B. 1996. Community composition and nested-subset analyses: Basic descriptors 

for community ecology. Oikos, 76, 417-426. 

WRIGHT, D. H. 1991. Correlations between incidence and abundance are expected by chance. 

Journal of Biogeography, 18, 463-466. 

WRIGHT, D. H., PATTERSON, B. D., MIKKELSON, G. M., CUTLER, A. & ATMAR, W. 

1998. A comparative analysis of nested subset patterns of species composition. 

Oecologia, 113, 1-20. 

WRIGHT, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species 

coexistence. Oecologia, 130, 1-14. 

YIN, D. Y., LEROUX, S. J. & HE, F. 2017. Methods and models for identifying thresholds of 

habitat loss. Ecography, 40, 131-143. 

ZACHARIAS, I. & ZAMPARAS, M. 2010. Mediterranean temporary ponds. A disappearing 

ecosystem. Biodiversity and Conservation, 19, 3827-3834. 

ZILLIO, T. & HE, F. 2010. Modeling spatial aggregation of finite populations. Ecology, 91, 

3698-3706. 

 

 

 



 

194 

 

APPENDIX A: DATA SOURCES AND SPECIES LOSS CURVES 

 

A.1. Data sources 

Table A.1 Data sources used in Chapter 2 and 3 
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Bloch, 1983) 
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Passenger Pigeon, 39, 313-319,illust. 

brdFFfPTt_Marini 2 (Marini, 2001) Marini MA (2001) Effects of forest fragmentation on birds of the cerrado region, Brazil. Bird 
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mammals. Great Basin Naturalist Memoirs, 209-227. 
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1986) 
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brdFHmMTt_Kratter 2 (Kratter, 1992) Kratter AW (1992) Montane avian biogeography in southern California and Baja California. 

Journal of Biogeography, 19, 269-283. 

brdFHmMTt_Nores 2 (Nores, 1995) Nores M (1995) Insular biogeography of birds on mountain-tops in north-western Argentina. 

Journal of Biogeography, 22, 61-70. 

brdFHvGTt_Anjos 2 (Dos Anjos & 

Bocon, 1999) 
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brdFHvNTt_Andrade 2 (Andrade & 

Marini, 2002) 

Andrade RD, Marini MA (2002) Bird species richness in natural forest patches in southeast 

Brazil. Lundiana, 3, 141-149. 

brdFHvNTt_Edenius 2, 3 (Edenius & 

Sjoberg, 1997) 

Edenius L, Sjoberg K (1997) Distribution of birds in natural landscape mosaics of old-

growth forests in northern Sweden: relations to habitat area and landscape context. 

Ecography, 20, 425-431. 

brdFHwNWt_Gotmark 2, 3 (Gotmark et al., 

1986) 

Gotmark F, Ahlund M, Eriksson MOG (1986) Are indexes reliable for assessing 
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2007) 

Waanders, P. (2007) River Murray wetland bird surveys. In: Draft report on the Bird survey 

component of the 2006 SA River Murray Wetlands Baseline Survey 
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Transactions of the American Fisheries Society, 122, 1043-1057. 
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2014) 
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2015) 
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Fig. A.1 Global distribution of datasets used in Chapters 2 and 3 
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A.2. Species-loss curves 

This section presents the species-loss curves for every dataset. Each panel represents a different 

dataset and can be referenced against the data sources in Section A.1. The solid dark line is the 

random placement endemics-area curve, with dashed lines indicating an approximate 95% 

confidence limit (see Equations 2.3 and 2.4). Points show the cumulative loss of species 

associated with the removal of each patch and the patches smaller than it. The vertical dashed 

line indicates the point where species loss for the notional 20% loss of area was quantified. 
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APPENDIX B: CHAPTER 3 METADATA 

Table B.1 Data sources for Chapter 3. See Table A.1 for full citation information. 

study slife patch Source summary Country nSpp nPatch Effort control 

1 bird island Haila, Haila et al 1983 Birds in a continental 

archipelago 

Finland 63 44 Multiple census over multiple years; authors 

express some doubt over single visit islands 

1 bird island       

1 bird island       

2 bird fragment Capizzi et al 2015 Birds in forest fragments  Italy 42 17 Each site 17 point counts, but larger sites were 

more widely spaced;  

2 bird fragment       

3 bird fragment Daily et al 2001 Birds in forest fragments vs 

open ag landscape 

Costa Rica 131 8 Filled areas with survey patches, many as 

possible 

4 bird fragment Haila 1993 Birds - forest fragments Finland  29 13 The mapping method - search the whole fragment 

4 bird fragment       

4 bird fragment       

4 bird fragment       

5 bird fragment Holbech et al 2005 Birds in logged forest 

fragments 

Ghana 147 15 Multiple sampling methods, area-based; used 

statistical re-sampling in analysis 

6 bird fragment Wang et al 2013 Wintering birds in urban 

woodlots 

China 93 42 Transects per area; number of transects per 

woodlot decided roughly according to its size 

7 bird fragment Mohd-Azlan 2011 Mangrove birds in Darwin 

harbour 

Australia 70 13 Length of ts; more transects in larger patches 
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study slife patch Source summary Country nSpp nPatch Effort control 

8 bird habitat 

island 

Edenius 1997 Breeding birds in forest and 

mire natural mosaic 

Sweden 23 18 Territory mapping; multiple visits 

9 bird habitat 

island 

Gotmark 1986 Breeding birds in bogs and 

meadows 

Sweden (SW)  18 62 Repeated survey to attain a census of pairs of 

breeding birds 

9 bird habitat 

island 

      

10 vertN fragment Vallan 2000 Amphibians in fragmented 

forest 

Madagascar 30 6 Systematic search; multiple visits; search period 

lasted 40 min to 3 h, depending on patch size  

11 vertN fragment Pineder & Hallfter 2004 Anurans in cloud forest Mexico 21 10 Proportional sampling verified by SAC as >80% 

complete 

12 vertN habitat 

island 

Almeida-Gomez et al 2016 Amphibians in temporary 

ponds 

Brazil 23 11 Chao 1 completeness (all >75%) 

13 inv habitat 

island 

Ball et al 2015 Littoral macroinvertebrates 

of dune lakes 

New Zealand 72 17 Equally spaced around pond 

14 inv habitat 

island 

Deane and Walters 2008 Littoral macroinvertebrates 

in semi-arid ponds 

Australia 79 7 Longer sampling sweeps in larger pools 

15 inv island Xu et al 2017 Butterflies in the Zhoushan 

Archipelago, China 

East China 

Sea 

68 42 Sampling effort roughly proportional to island area 

16 inv fragment Baz & Garcia 1996 Butterflies in fragmented 

landscape 

Spain 81 13 Sampled for 9 days, SAC asymptotes at 6 

17 inv fragment Benedick 2006 Butterflies in fragments in 

Borneo 

Borneo 79 8 Systematic, assume near complete: 2 x 12 days 

of sampling with 20 baited traps in each patch; 

4800 trapping hours across 8 patches 
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study slife patch Source summary Country nSpp nPatch Effort control 

18 inv fragment Filgueiras 2011 Dung beetles in Atlantic 

forest frags 

Brazil 30 18 Systematic, assume near complete: 10 x 4 baited 

traps spread over 200 m in center of each patch 

plus flight interception trap 

19 inv fragment Nyeko 2009 Dung beetles in forest frags Uganda 45 6 Systematic, assume near complete; 8 baited traps 

at 50-m intervals in center of each patch visited 

monthly for 13 months 

20 inv fragment Usher & Keiller 1998 Moths in artificial woodland 

patches 

UK 214 18 Systematic, assumed near complete; 24 UV light 

trapping nights, multiple locations at each site  

21 inv fragment Baldi & Kisbenedeck 1999 

(1992 survey) 

Orthopterans, shrub 

fragments in grass matrix 

Hungary 32 26 Adjusted length of transect to size of patch 

21 inv fragment Baldi & Kisbenedeck 1999 

(1993 survey) 

Orthopterans, shrub 

fragments in grass matrix 

Hungary 36 26 Adjusted length of transect to size of patch 

22 inv fragment Nufio et al 2011 Orthopterans, grassland 

frags Colorado 

US 38 13 Proportional to fragment area; 2 levels of density 

sampling 

23 inv island Davis et al 2003 Termites in f/w land bridge 

islands from reservoir 

French 

Guiana 

99 10 Systematic but assume near complete; 100 m 

transects sampled multiple times 

24 inv fragment Galle 2008 Spiders in forest frags 

among grassland 

Hungary 13 15 No. of traps/patch; 5-15 depending on size 

25 inv fragment Gaublomme et al 2008 Beetles in urban forest 

frags 

Belgium 94 10 Trap numbers; 9-15 depending on size 

26 inv fragment Melliger et al 2018 Ants in urban/ag. forest 

frags 

Swiss 28 26 Systematic, assume near complete; 60 trapping 

weeks per site 12 x 5 traps moved regularly 
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study slife patch Source summary Country nSpp nPatch Effort control 

26 inv fragment Melliger et al 2018 Spiders in urban/ag. forest 

frags 

Swiss 109 26 Systematic, assume near complete; 60 trapping 

weeks per site 12 x 5 traps moved regularly 

27 vertN fragment Matthiae 1981 Mammals in woodland 

forest fragments 

US-Wisconsin 13 22 Multiple methods; intensive spring observation; 

fall-trapping proportional to patch area  

28 vertN fragment Silva 2001 Mammals in forest frags in 

a National Park 

Canada 11 14 Trapping grid representing ~9–10% of the area 

covered by the whole fragment 

29 vertN fragment Bolger et al 1997 Birds in chaparral scrub 

fragments, urban matrix 

US-California 9 25 Not stated - assume near complete. Matched 

mainland areas to patch size distribution 
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APPENDIX C: EFFECTS OF SPATIAL AGGREGATION AND SPECIES ABUNDANCE 

ON SHARED SPECIES MODEL PARAMETER SCALING PROPERTIES 

C.1. INTRODUCTION 

To model the effects of sub-division and any change in this due to variations in species 

abundance and spatial aggregation it is necessary to use the non-random models from Chapter 4. 

For the estimates to produce realistic patterns of diversity under these different constraints 

requires that suitable values are assigned to the scaling exponent (z) and base-scale estimate of 

the c-parameter (c0) used to scale c with spatial grain. This analysis seeks to identify any 

systematic variations in these parameters that occur with changes in evenness and aggregation 

such that suitable parameter sets to model realistic levels of evenness and aggregation can be 

obtained. 

 

In theory, each species should have a unique value for ki, the parameter in the shared species 

models derived in Chapter 4 based on the negative binomial and finite negative binomial 

distributions controlling spatial pattern. However, a single community-level parameter, c, used to 

convert mean density to spatial pattern allows for an adequate fit to data where (Chapter 4):  

𝑘𝑖 = 𝑁𝑖𝑎 𝐴𝑐⁄ . This is then used in the shared species model (here based on the negative binomial 

distribution): 

 𝐸(𝑆𝑆𝑚|𝑎) =  ∑(1 − (1 + 𝑐)−𝑘𝑖)𝑚 

𝑆

𝑖=1

 (1) 
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However, a unique value of c is required at every spatial grain of interest. Fortunately, the value 

of k in the negative binomial distribution (equivalent to c in Eq. 1) follows a predictable scaling 

relationship with area (Plotkin and Muller-Landau, 2002, He and Hubbell, 2003) according to:  

 

 

𝑐𝑎 = 𝑐0 (
𝑎

𝑎𝑜
)

𝑧

 

 

(2) 

 

where ci is the value of the scaling parameter at the spatial grain to be estimated, ai; c0 is the 

value of the parameter at base scale a0 and z is a fitting constant describing the scaling 

relationship. Note that the ratio removes the need to consider area units; the scaling relationship 

only relies on the ratio of the base scale and the scale of interest in modelling. This relationship 

simplifies the use of the shared species model at different spatial grains, as c can be calculated 

using Eq. 2 at any scale, provided the base scale estimate c0, and the exponent of the relationship 

z, are known. It is the aim of this study to (i) confirm the scaling relationship observed for the 

negative binomial distribution described by Eq. 2. is reliable for the shared species model based 

on the negative binomial distribution (Eq. 1); (ii) determine how the two parameters of interest 

(c0 and z) vary under different conditions of spatial aggregation and evenness in species 

abundance.  

 

C.2. METHODS 

C.2.1. Validation landscapes 

As with Chapter 4 I created simulated 50-ha landscapes based on the empirical data for Barro 

Colorado Island (2005 census, 211845 living stems, 301 species). While maintaining the 
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observed value of individuals and species, I systematically varied both the distribution of 

abundance and the spatial placement of individuals on the landscape. This provided a ‘crossed’ 

dataset with which to explore the effects of varying both evenness and aggregation and their 

effects on one another. I randomly sampled species richness for each simulated landscape at 

different spatial grains and fit the shared species model with m = 1 (i.e., the equivalent species-

area model) to estimate c at each grain. Then, selecting one value of a as the base scale (and 

thereby defining c0 for that landscape) I used Eq. 2 to predict the observed values by estimating 

scaling exponent z in each landscape.  

 

C.2.2. Generating simulation landscapes 

I used the same approach to generate aggregated landscapes as in Chapter 4, using the Thomas 

point pattern process. Here I used a wider range of values for the sigma parameter controlling the 

dispersal kernel for the Thomas process, varying this from 10 - 50 in 5-m increments. As the 

observed BCI data produce species richness values that are similar to simulated landscapes with 

sigma in the range 30-40 m, I assume this range of aggregation covers the gradient one would 

expect to observe in nature from the highest levels of intraspecific aggregation close to that 

expected under random placement.  

 

To systematically vary evenness of species abundance I used the zero-truncated negative 

binomial distribution (TNBD), varying the parameter gamma, which controls the shape of the 

distribution and the evenness of the resulting SAD. As a result, the TNBD is a commonly used 

distribution in applications where a systematic variation in evenness is desired without changing 

the underlying distribution model (e.g., He and Legendre, 2002, Wilber et al., 2015), and a 
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number of widely used SAD models can be obtained by varying the value of gamma. For 

example, a value for gamma of 1 is equivalent to Macarthur’s broken stick apportionment model 

and a value of zero is the log series, while intermediate values are close to the log normal 

(Wilber et al., 2015). I used values for gamma = 0.1 – 1.0 in increments of 0.1, yielding ten 

different species abundance distributions of increasing evenness (Table C.1). I quantified relative 

evenness in the different SAD using Pielou’s measure, 𝐻′/ ln 𝑆 , where 𝐻′is Shannon 

information and S is the total number of species (Pielou, 1975). I created landscapes using every 

combination of each spatial and species abundance distribution (i.e., a crossed factorial study), 

yielding 80 landscapes in total (Table C.2). Species abundance distributions were modelled using 

R package ‘sads’ (Prado et al., 2017) and simulated aggregated landscapes using the rThomas 

function in R package ‘spatstat’ (Baddeley et al., 2015).  

 

I sub-sampled each landscape using square quadrats at 5-m increments from 5 x 5 to 50 x 50 

yielding ten sampling grains (25, 100, 225, 400, 625, 900, 1225, 1600, 2025, and 2500-m2), 

repeating this sampling 100 times and estimating mean species richness at each grain for each 

landscape. I then fit the species-area model for each model at each grain to estimate the best-

fitting c-parameter for that grain (all species richness values were correct to 2 decimal places). I 

then used non-linear least squares to fit Eq. 2 to the observed c values at each spatial grain, using 

the fitted value at 400 m2 as a base level. I test the fit of Eq. 2 to each set of c-parameters in each 

landscape using the coefficient of determination. Finally, I inspected the effects of varying 

evenness and spatial aggregation on the observed value of c at the base scale and scaling 

exponent z. All simulations and modelling were done in R 3.5.1 (R Core Team, 2019). 
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C.3. RESULTS   

The ten SAD represented a gradient of evenness according to Pielou’s measure (0.67-0.93; Table 

C.1). In terms of their similarity with commonly used SAD models, distributions with gamma < 

0.4 were most like a log series SAD, while values from 0.4-0.5 resembled the log normal SAD 

and larger values were more like the broken stick (Table C.1Error! Reference source not 

found.). For comparison, the best fitting model for the empirical SAD was the log normal (ΔAIC 

to second ranked model = 9.5). The TNBD using the best fit estimate for gamma to the empirical 

data (gamma = 0.14) did not fit the empirical data well, although it had around the same support 

as the log series (ΔAIC = 1.0).  

 

Table C.1 Statistics and best fitting SAD model for simulated abundance distributions. 

Gamma is the gamma parameter used to simulate SAD, evenness is Pielou’s evenness, Top 

and 2nd ranked SAD are the best and second-best fitting species abundance distribution 

model, ranked according to AIC from log series, log normal, broken stick, negative 

binomial and geometric series models. All models based on 301 species and 211 845 

individuals. 

Gamma Evenness Top SAD Second ranked 

0.1 0.67 log series TNBD 

0.2 0.77 log series TNBD 

0.3 0.82 TNBD log series 

0.4 0.85 TNBD log normal 

0.5 0.87 TNBD log normal 

0.6 0.89 TNBD broken stick 

0.7 0.9 TNBD broken stick 
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0.8 0.91 TNBD broken stick 

0.9 0.92 broken stick TNBD 

1.0 0.93 broken stick TNBD 

 

For all simulated landscapes, the scaling relationship described variation in the c-parameter with 

sampling grain well (all R2 > 0.970, mean = 0.993; Table C.2). 

 

Table C.2 Results for all 80 simulated landscapes. Each row represents a different 

landscape with spatial aggregation determined by the sigma parameter of the Thomas 

point pattern process (Sigma), evenness of abundance distribution determined by the 

gamma parameter of the TNBD (Gamma). SR0 is the mean species richness at the base 

scale (400 m2); c0 is the corresponding estimate for the c-parameter in each landscape; z is 

the estimated scaling exponent in Eq. 2; R2 is the coefficient of determination for the fit of 

the scaling relationship to the observed data. 

Simulation Sigma Gamma c0 z R2 SR0 

1 10 0.1 5.228 0.503 0.976 31.24 

2 15 0.1 2.427 0.631 0.986 38.235 

3 20 0.1 1.287 0.658 0.988 42.95 

4 25 0.1 0.8 0.708 0.988 45.69 

5 30 0.1 0.495 0.799 0.993 47.78 

6 35 0.1 0.34 0.8 0.995 48.995 

7 40 0.1 0.328 0.632 0.994 49.09 

8 50 0.1 0.173 0.746 0.974 50.45 

9 10 0.2 5.146 0.542 0.978 38.925 

10 15 0.2 2.325 0.665 0.986 49.645 

11 20 0.2 1.237 0.749 0.994 56.755 

12 25 0.2 0.85 0.694 0.996 60.155 

13 30 0.2 0.514 0.776 0.994 63.715 
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14 35 0.2 0.379 0.72 0.988 65.355 

15 40 0.2 0.303 0.711 0.984 66.35 

16 50 0.2 0.169 0.774 0.97 68.24 

17 10 0.3 4.827 0.573 0.976 43.73 

18 15 0.3 2.334 0.677 0.992 55.465 

19 20 0.3 1.235 0.74 0.993 64.255 

20 25 0.3 0.761 0.756 0.997 69.535 

21 30 0.3 0.551 0.749 0.997 72.345 

22 35 0.3 0.375 0.765 0.993 75.005 

23 40 0.3 0.259 0.813 0.995 76.935 

24 50 0.3 0.151 0.834 0.993 78.89 

25 10 0.4 4.621 0.587 0.98 46.895 

26 15 0.4 2.267 0.702 0.993 59.645 

27 20 0.4 1.293 0.744 0.995 68.43 

28 25 0.4 0.73 0.814 0.998 75.54 

29 30 0.4 0.485 0.846 0.994 79.4 

30 35 0.4 0.377 0.775 0.993 81.32 

31 40 0.4 0.277 0.788 0.998 83.2 

32 50 0.4 0.208 0.651 0.985 84.605 

33 10 0.5 4.885 0.565 0.986 47.45 

34 15 0.5 2.173 0.739 0.991 63 

35 20 0.5 1.187 0.795 0.995 73.065 

36 25 0.5 0.761 0.824 0.998 79.03 

37 30 0.5 0.509 0.825 0.999 83.31 

38 35 0.5 0.324 0.873 0.997 86.935 

39 40 0.5 0.264 0.826 0.996 88.225 

40 50 0.5 0.16 0.837 0.99 90.595 

41 10 0.6 4.639 0.6 0.983 49.645 
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42 15 0.6 2.205 0.741 0.992 64.66 

43 20 0.6 1.136 0.816 0.992 76.305 

44 25 0.6 0.741 0.814 0.991 82.33 

45 30 0.6 0.504 0.826 0.997 86.665 

46 35 0.6 0.351 0.853 0.998 89.84 

47 40 0.6 0.262 0.854 0.996 91.86 

48 50 0.6 0.16 0.871 0.995 94.365 

49 10 0.7 4.758 0.593 0.987 49.995 

50 15 0.7 2.193 0.728 0.995 66.245 

51 20 0.7 1.229 0.791 0.995 77.015 

52 25 0.7 0.766 0.816 0.996 84.19 

53 30 0.7 0.509 0.821 0.998 89.095 

54 35 0.7 0.399 0.766 0.998 91.465 

55 40 0.7 0.272 0.809 0.998 94.43 

56 50 0.7 0.149 0.878 0.993 97.61 

57 10 0.8 4.612 0.606 0.986 51.36 

58 15 0.8 2.139 0.741 0.993 67.935 

59 20 0.8 1.188 0.816 0.993 79.15 

60 25 0.8 0.788 0.811 0.998 85.63 

61 30 0.8 0.504 0.854 0.999 91.24 

62 35 0.8 0.37 0.82 0.999 94.275 

63 40 0.8 0.268 0.825 0.996 96.795 

64 50 0.8 0.203 0.721 0.988 98.52 

65 10 0.9 4.648 0.601 0.993 51.75 

66 15 0.9 2.189 0.743 0.995 68.415 

67 20 0.9 1.139 0.829 0.996 81.18 

68 25 0.9 0.698 0.887 0.998 88.845 

69 30 0.9 0.485 0.854 0.998 93.345 
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70 35 0.9 0.325 0.906 0.998 97.185 

71 40 0.9 0.262 0.849 0.999 98.84 

72 50 0.9 0.172 0.82 0.995 101.325 

73 10 1 4.653 0.593 0.988 52.19 

74 15 1 2.176 0.729 0.993 69.325 

75 20 1 1.17 0.828 0.998 81.785 

76 25 1 0.741 0.853 0.998 89.275 

77 30 1 0.487 0.888 0.999 94.71 

78 35 1 0.352 0.851 0.998 97.995 

79 40 1 0.262 0.85 0.998 100.4 

80 50 1 0.161 0.876 0.997 103.305 

 

Estimates for base scale c0 at 400 m2 were a decreasing function of aggregation, particularly over 

the range of sigma values from 10-30 m. For landscapes simulated with sigma > 30 m, values for 

the parameter changed little (Fig. C.1a, 8.3).  The scaling exponent showed the opposite pattern, 

increasing rapidly over the range in sigma from 10-25 m and then remaining constant, albeit with 

some suggestion of increasing scatter as landscapes became less aggregated (sigma values > 0.4; 

Fig. C.2b, C.4). This suggests it is unnecessary to explore landscapes with c0 or z values 

corresponding to landscapes with aggregation exceeding that simulated at sigma ≈ 50, as their 

behaviour will be effectively modelled with the random placement model.  
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Fig. C.1 Effect of spatial aggregation on (a) the c-parameter estimated at base scale of 400 

m2 and (b) the exponent used to scale the parameter with spatial grain. In contrast with the 

effect of aggregation, evenness of SAD in the underlying landscape had relatively little 

effect on the estimates of c0 or z (Fig. C.2). There was a slight positive increase in the 

exponent value with increasing evenness but there was considerable overlap at all levels of 

evenness modelled. This suggests that evenness of abundance distribution can be largely 

ignored in simulations.  
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Fig. C.2 Effect of evenness on (a) estimated c-parameter at base scale of 400 m2 and (b) the 

exponent used to scale the parameter with spatial grain. 
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Fig. C.3 Effects of evenness and aggregation on the base scale estimate of c. Colour bar 

shows changes in the value of c0. 
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Fig. C.4 Effects of evenness and aggregation on the fitted scaling exponent, z. Colour bar 

shows the values of the exponent.  

 

C.4. CONCLUSIONS 

The results confirm the scaling relationship is a reliable means to predict the value of c at any 

spatial grain once a base scale value is established, consistent with previous findings on the 

negative binomial distribution aggregation parameter, k, in other applications (Plotkin and 

Muller-Landau, 2002, He and Hubbell, 2003). Results also demonstrate an opposing non-linear 

dependence of both c0 and z on aggregation and a small linear dependence on evenness. This 

makes sense in terms of what is known about model derivation and how c fits into the non-

random model, i.e.:  𝑘𝑖 = 𝑁𝑖𝑎 𝐴𝑐⁄ . Parameter c alters mean species density under a random 
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assumption (𝑁𝑖𝑎 𝐴⁄ ) to a lower value consistent with the amount of aggregation present in the 

community. Larger values for c increasingly attenuate mean density as expected in more highly 

clustered spatial patterns. This analysis suggests that values of sigma that result in simulated 

communities with a much higher level of aggregation than present (at least) in the Barro 

Colorado Island tree assemblage result in values for a base scale of 400 m2 around 5-6. In 

simulated landscapes this value rapidly declines as a negative exponential function of sigma in 

these simulations (where 𝑐0 = 17.1𝑒𝑥𝑝−0.13𝜎; R2 = 0.99). As increasing values of sigma produce 

spatial patterns approaching that of random placement, the value for c0 becomes extremely small, 

consistent with expected model behaviour, where random placement of individuals is represented 

by larger values of ki (requiring small values of c; Chapter 4).  

 

It is expected that aggregation should decrease with census area (Conlisk et al., 2012) and the 

scaling exponent describes this change in aggregation from the perspective of the model. 

Concurrent with the rapid decrease in c0 as spatial patterns change from highly aggregated to 

nearly random, the scaling exponent z initially increases rapidly from around 0.6 to a value near 

0.8. This range in values is consistent with other empirical fits of the aggregation-scaling 

relationship to BCI and other data (Wright, 1991, Plotkin and Muller-Landau, 2002, He and 

Hubbell, 2003). 

 

This analysis has implications for modelling aggregated scenarios using the modelling 

framework of Chapter 4, where suitable values need to be selected to produce realistic results. 

Based on this analysis, and a base scale corresponding to a similar proportion of the total area 

(i.e., 400 m2 in 50-ha = 0.08%), highly aggregated assemblages could adopt values in the range 
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c0 = 4-5 and z = 0.5-0.6, while weak aggregation could be modelled using values near to c0 = 0.2-

1.0 and z = 0.8-0.9. If intermediate levels of aggregation were desired, these ranges could be 

interpolated linearly. The random placement model requires no fitting and can therefore provide 

a qualitative verification of model predictions independent of the spatial scale being considered. 


