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ABSTRACT 

Flooding is one of the most frequently met disasters in urban areas in the context of climate 

change and more intensive anthropogenic activities. Urban drainage system (UDS), defined as 

surface runoff and sewage collection and transport system, is an essential part of urbanization. 

The capacity of UDS can substantially influence the flooding levels of urban catchments. 

However, there are always bottle necks in the complex sewer network that substantially affect 

the capacity of UDS and thus worsen urban flooding.  

To improve the performance of UDS, multi-objective evolutionary algorithms (MOEAs) have 

been applied to optimize UDS, as they can explore trade-offs between conflicting objectives. 

However, most previous studies only conducted pipe size optimization in a small-scale area 

(with less than 100 sewers) without considering pipe slope and engineering criteria. This thesis 

focuses on urban stormwater drainage system and aims to develop and evaluate a method for 

simultaneously optimizing sewer size and slope in a large-scale area (with 2930 sewers). The 

goal is to minimize the sewer rehabilitation/upgrade costs and flood volume in the complex in 

real-life storm sewer network.  

To realize the goal, a new storm sewer network optimization system was proposed that 

integrated a storm water management model (PCSWMM) with one of MOEAs Preference-

inspired coevolutionary algorithm (PICEA-g) using a programming language (MATLAB) as 

the platform. Specific improvements were made to the PICEA-g algorithm to better tackle the 

problem, which include new methodologies for initializing candidate solutions, the use of 

divide and conquer technique, enhanced goal vector boundaries and fitness calculation, and 
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enhanced genetic operators (crossover and mutation).  

The new optimization system was tested in a small sample area (16.68 ha and 78 conduits) and 

applied to the entire study area (777.6 ha and 2930 conduits) based on both 1D and 2D 

hydraulic modeling of the UDS. Sewer pipe size and slope were used as decision variables, and 

then the number of flooded nodes (manholes) and cost were taken as objective functions. The 

results of the storm sewer network before and after the optimization were compared and 

discussed, indicating a significant improvement by using the optimization system. For the test 

area, the flooded nodes reduced from 15 to 0 after optimization. For the study area, the flooded 

manholes decreased from 284 to 115 in the 1D model; when using the 2D model, the flooded 

nodes dropped from 73 to 30 and 44 in two different modeling scenarios. This comparison 

indicated that the new optimization system worked effectively using both 1D and 2D modeling. 

The optimization system can be used as a tool to assist drainage network engineers in 

developing sewer network optimization strategies and prioritizing detailed 

rehabilitation/upgrade projects at different scales (single or multiple neighborhood scale, city-

wide and regional scale). 

Finally, limitations of the optimization system such as practicability, variation range and 

software were discussed. And future research directions were suggested at the end of the thesis.  
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Introduction 

One of the most frequent natural calamities is flooding. They have the greatest worldwide 

impact and frequently cause substantial infrastructure damage, traffic disruptions, economic 

losses and even death of people (Schmitt et al., 2004; Hammond et al., 2015). Urban regions 

are particularly vulnerable to flooding, which is typically caused by insufficient urban drainage 

systems (UDSs) (Schmitt et al., 2004). UDSs are made up of a catchment that converts the 

meteorological input to runoff, constructed drainage system components such as pipelines, 

reservoirs, treatment, and receiving waters (Salerno et al., 2018). Climate change and increased 

urbanization are the primary causes of UDS failure (Salerno et al., 2018). Adjusting the current 

UDSs with minimal investment and optimum system efficiency is important in addressing the 

difficulties of an uncertain environment and rapid urbanization (Yazdanfar and Sharma 2015). 

Urban growth changes the hydrology of the environment and often has a detrimental impact on 

water quality. Urban land development alters land uses, increasing the quantity of stormwater 

runoff while generally lowering its quality, which depends on the existence/use of stormwater 

best management practices (BMPs). Stormwater from a site can be managed in a variety of 

ways, such as transportation, holding, processing, reusing, infiltration, and evaporation 

(Ahiablame et al., 2012). 

Nowadays, separate storm sewer system must be designed, as combined sewer systems are no 

longer allowed. The typical components of a stormwater drainage systems include minor and 

major systems. The minor system (underground sewer pipe network) conveys flows from the 

more frequent, low intensity storm events, offering a minimal degree of service. In general, the 

hydraulic grade line (HGL) of a storm sewer must be at or below the pipe’s obvert to transport 

design flow (Senior et al., 2018). Extreme rainstorm events that produce more runoff than the 

minor system can handle are transported by the major system, which includes roads, storage 
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spaces, swales, etc. 

Numerous physical processes interact throughout the stormwater runoff process, including the 

precipitation event, interception and depression storage, evaporation, and infiltration. Although 

there are numerous ways to estimate runoff volumes and flows, caution should be taken when 

conducting the analysis because the runoff process is complex. A thorough grasp of the runoff 

mechanism and the modelling strategy is necessary for the analysis. Runoff can be estimated 

using a variety of techniques, which consist of the rational method, SCS method, Horton 

method and deterministic methods. Besides, there are many computer models (SWMHYMO, 

EPA SWMM, XP-SWMM, etc.) that have been created for the hydraulic and/or hydrological 

assessments (Barraud et al., 2022). 

The United States Environmental Protection Agency (USEPA) developed the Stormwater 

Management Model (SWMM) in 1971. Since then, SWMM has been widely used to simulate 

runoff quantity and quality from metropolitan areas for single or multiple storm events. 

SWMM’s hydrologic activities take place on a variety of subcatchment regions that include 

both pervious and impervious sub-areas. Through subareas, subcatchments, drainage 

conveyance systems (pipes or channels), storage/treatment facilities, and diversion structures, 

runoff or overland flow can be transported and routed. At specific nodes from subcatchments, 

water quality constituents can be modelled using a hydraulic network with optional first order 

decay and associated pollution removal using BMPs and Low Impact Development (LID) in 

EPA SWMM (Sutherland and Jelen, 2003). Based on EPA SWMM, there is a spatial decision 

support system called PC SWMM. It features a cutting-edge, GIS engine that smoothly 

integrates with the most recent GIS data formats and offers smart tools for speeding up model 

construction, optimization, and analysis in a wide range of applications. Including the entire 

EPA SWMM engine, PC SWMM takes into account different hydrologic procedures such as 

precipitation, evaporation, the accumulation and melting of snow, interflow, overland flow 



3 
 

routing in nonlinear reservoirs, infiltration of water into soil layers that are not saturated, and 

percolation of this water into subsurface water layers (Huber and Roesner, 2012). 

A drainage system can be modelled using stormwater computer models for both single and 

multiple continuous rainfall events. While a continuous model is a simulation that models both 

dry and wet hydrological processes using a long-term continuous record of atmospheric data, 

a single event model is described as a simulation of a storm event. In single event modelling, 

a design single storm event, usually lasting 1 to 24 hours, is used to examine how a drainage 

system will react. The return frequency of the modelled storm is typically 1:5 year or 1:100 

year (Huber et al., 2005). For continuous modelling, a drainage area’s runoff is modelled over 

a set amount of time, e.g., several months or years. The continuous model incorporates a 

precipitation file obtained from different sources, e.g., the Meteorological Service of Canada. 

Typically, hourly rainfall totals are included in the precipitation file. Snowmelt modelling can 

also be done by using temperature files (Maheepala et al., 2001). 

An intensive-duration-frequency (IDF) curve, which is related with local rainfall 

characteristics, is frequently used in the design of UDS (Adams et al., 1986). Although this 

traditional IDF-based approach such as the rationale method is straightforward and useful, the 

resulting UDS design is either unreasonable (i.e., the final solution cannot transmit the runoff 

generated by the design storm event), which will increase the risk of flooding, or the UDS is 

over-designed, which results in an unnecessary high investment (Lin et al., 2020). The primary 

problem is that this traditional approach may not accurately represent the actual rainfall process, 

particularly in the context of climate change (Jato-Espino et al., 2016). 

The usage of optimization techniques to resolve UDS issues has increased recently due to their 

superior computational effectiveness and design correctness compared to more conventional 

techniques in dealing with complex scenarios (Nicklow et al., 2010). Single objective 
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optimization was used initially, and it only considered the minimum cost of an UDS design 

(Lowe, 2010). Then, multi-objective evolutionary algorithms (MOEAs) have been created to 

balance competing UDS objectives (such as cost and flood damages) (Barreto et al., 2010; 

Mofrad and Yazdi, 2022). 

A multi-objective optimization problem (MOP) has goals that may conflict with each other and 

has a set of Pareto optimal solutions. By letting a population of solutions evolve over time, 

MOEAs can get close to the Pareto optimal set (a set of solutions that are non-dominated by 

each other but superior to the rest of the solutions in the search space) in a single run 

(Shojaeefard et al., 2014). MOEAs were initially primarily employed in the field of water 

distribution systems, which performed well in serveral case studies (Choi et al., 2017; Wang et 

al., 2015).  

Barreto et al. (2010) used MOEAs to evaluate UDS rehabilitation scenarios, contrasting 

investment against flood damages. A multi-objective optimization model of greywater reuse 

was created by Penn et al. (2013) with the goal of quantitatively balancing the costs and potable 

water demand reduction. To reduce damage costs and intervention expenses, Vojinovic et al. 

(2014) focused on multi-objective rehabilitation of UDS under uncertainties (climate change, 

urbanization, population expansion, and ageing of pipes). The application of MOEAs for the 

rehabilitation of storm sewer pipe networks was studied by  Yazdi et al. (2017), who linked the 

MOEAs to the EPASWMM model. In addition, MOEAs were used by Bayas-Jiménez et al. 

(2019) to control the flood in UDSs due to climate change. Ngamalieu-Nengoue et al. (2019) 

conducted research on urban drainage rehabilitation utilizing MOEAs to replace pipes and add 

storage tanks. Recently, Lin et al. (2020) developed an engineering‐based design method 

(EBDM) to generate approximate solutions to initialize the MOEA’s search and improve the 

effectiveness of multi-objective optimization design. 
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For MOEAs, one of the most popular evolutionary algorithms is the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) (Wang et al., 2018). NSGA-II has been used to address a 

variety of multi-objective optimization issues in UDS because of its high reliability and 

optimization effectiveness (Nicklow et al. 2010). It was applied to UDS rehabilitation by 

Barreto et al. (2010), Vojinovic et al. (2014), and Bayas-Jiménez et al. (2019). Besides, in 2004, 

the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm was proposed by Coello 

et al. (2004) to solve MOPs. Yazdi et al. (2017) studied on rehabilitation of storm sewer pipe 

networks by using both NSGA-II and MOPSO. In addition, Yazdi et al. (2016) used Non-

dominated Sorting Differential Evolution (NSDE) to study the rehabilitation of UDSs.  

Moreover, Ngamalieu-Nengoue et al. (2019) applied both Pseudo Genetic Algorithm (PGA) 

and NSGA-II to UDS optimization. The majority of earlier studies did not take into account 

the UDS engineering design criterion that a sewer pipe size should, in general, not be less than 

that of its upstream pipes (Lin et al., 2020). Additionally, the decision variable used in the 

literature to constrain the UDS optimization was solely sewer pipe size. Moreover, in most case 

studies that have been reported, the study areas were small, with less than 100 sewers.  

For large-scale MOPs, divide and conquer technique was proposed to divide the original search 

space of a MOP so that an algorithm only needs to search in one or more subspaces (Hong et 

al. 2021). With this technique, a complex problem can be divided into several low dimensional 

subproblems that are easier to deal with (Lv et al., 2021). In UDS optimization, the divide and 

conquer technique may be used to break up the optimization process for each subcatchment; 

and then, the best solutions from each subcatchment are put together to make a new set of best 

solutions (Yu et al., 2022). 

In this research, the focus is on storm sewer network optimization for urban flood mitigation. 

A new storm sewer network optimization system was proposed that integrated a storm water 

management model (PCSWMM) with one of MOEAs Preference-Inspired Coevolutionary 
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Algorithm (PICEA-g) using a programming language (MATLAB) as the platform. Both 1D 

model (i.e., storm sewer pipe network) and 2D model (i.e., both storm sewer network and 2-D 

surface flow) were used as the base separately to achieve automatic optimization. Both sewer 

pipe size and pipe slope were used as decision variables, compared to the sole decision variable 

of pipe size in the literature, and the number of flooded nodes and cost were used as objective 

functions. Also, divide and conquer technique were applied in this research, which has not been 

used in previous UDS optimization problems. More importantly, this research expanded the 

UDS optimization from small-scaled areas (with less than 100 sewers) in the literature to a 

large-scaled area (with 2930 sewers).  The main goal of this study is to develop and evaluate a 

new MOEAs method for determining the ideal pipe size and slope of a real-life complex storm 

sewer network to minimize the sewer rehabilitation costs and flood volume. The new 

optimization system developed from this study will aid in the proper design and 

rehabilitation/upgrade of urban stormwater drainage systems.   
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1 Literature review 

1.1 UDS optimization 

Using specialized mathematical methods, optimization is the process of selecting the best 

candidate solution or optimum solution from a set of options. A certain function known as the 

objective function may be maximized or minimized during optimization, depending on the 

methodology’s needed target. Additionally, in order to achieve the best possible solution, the 

decision variable and an optimization process constraint must be defined prior to formulation. 

An optimization model is a decision-making model that employs certain programmed 

mathematical methods (Walski et al., 2003). 

After defining the optimization issue, setting the objective functions, and setting the decision 

variables, the next stage is to continue with the optimization algorithm, which is used to 

minimize or maximize the objective function depending on the goal of the optimization. And 

until a good solution is found, this is done by adjusting the decision variables and taking the 

limitations into account (Wang et al., 2020). 

Due to the complexity of UDS, optimization has become more important, and the 

computational models employed for these purposes have advanced quickly in terms of 

development and computational capacity. Urban drainage infrastructure optimization aims to 

reduce intervention costs and flooding while maintaining a certain level of performance (Burch 

et al., 2010). Also, many conditions must be met in order to achieve the optimum design 

because of the complicated characteristics of UDS, and these kinds of issues are known as 

MOPs. Finding a single solution that can optimum all objectives concurrently is unachievable 

due to the conflict between the many aims. It is crucial for a decision maker to look for the best 

trade-off solutions, also known as Pareto optimum solutions (Hong et al., 2021), for multi-

objective optimization issues. 
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The number of decision variables and the number of objectives are two important determinants 

of the issue size in MOPs. The objective function is a mathematical formula that evaluates the 

fitness of chromosomes and quantifies the degree to which the goals are met. For instance, 

minimizing the costs and flooding volume. The parameters that may be altered to enhance a 

system’s performance are known as decision variables, such as the pipe’s diameter. Constraints 

are the limits or restrictions that must be taken into account when evaluating networks and 

solutions while the network is in operation. Constraints may be imposed explicitly on decision 

variables or implicitly on other system factors (for example, the net head loss around a loop 

must be zero) (Walski et al., 2003). 

The genetic algorithm is one of the most popular methods for resolving optimization issues out 

of all the strategies that have been devised. Urban drainage system optimization problems have 

nonlinear objective functions that are unknown analytically and can have a variety of minimum 

or maximum values (Kebede., 2014). 

1.1.1 Single objective optimization 

Single objective optimization is the process of using a mathematical formulation to discover 

the optimal result that satisfies the maximum or minimum values of a single objective function. 

Single objective optimization was used, with the UDS design’s least cost as the only factor 

(Ahmadi et al., 2018; Lowe, 2010). By integrating different objectives into one or by employing 

one objective function and using the others as constraints, MOPs can also be reduced to a single 

objective, allowing all of the objective functions to be quantified as a single function. As a 

result, prioritizing involves simply combining the objective functions into one objective with 

the same units (Savic, 2002). 

Different optimization issues have addressed a variety of objectives, and single objective 

optimization is one of these tools that reveals information about the problem’s nature. However, 
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this method does not yield a collection of options that give decision makers options. 

Consider the following pipe sizing example with two objectives: to minimize cost 𝑓(𝑥) and to 

maximize benefits 𝑓(𝑦) . Max 𝑓(𝑦)  is identical to min −𝑓(𝑦) = 𝑚𝑖𝑛𝑓′(𝑦) when 𝑓(𝑦)  is 

multiplied by −1. Since 𝑓 = 𝑚𝑖𝑛𝑓(𝑥) + 𝑓′(𝑦), the two goals can be integrated into a single 

objective function (𝑦) (Kebede, 2014). 

1.1.2 Multi-objective optimization 

A numerical method called multi-objective optimization was created to obtain a compromise 

optimal solution for multiple competing objectives and is used to evaluate the outcomes. Each 

solution in multi-objective optimization is not dominated by another solution to produce a 

single solution, unlike single objective optimization, thanks to the obtained tradeoffs, which 

make decision-making simpler. Based on the goals of the objective functions, the objective 

functions in a multi-objective optimization interact to produce a compromise solution known 

as the Pareto optimal front (Savic, 2002). 

In a multi-objective optimization, one objective must be made worse in order to make the other 

objective better, and vice versa, to get a compromise solution between the two objective 

functions. Because the output of multi-objective optimization provides a wider range of 

possibilities, it is preferable to employ it for decision-making. A Pareto front displaying the 

compromised outcome of the objective functions is the result of multi-objective optimization. 

Urban drainage design and rehabilitation projects require a lot of time-consuming manual trial 

and error, and it is challenging to find the best solution in a vast drainage network with a variety 

of pipe diameters and slopes in each area. Optimization associated with urban drainage models 

offers better performance in these projects. A few network parameters are combined in a 

standard design procedure (Vélez et al., 2007). 

MOEAs were initially primarily applied in the field of water distribution systems and did well 
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in case studies (Choi et al., 2017; Wang et al., 2015). Although MOEA applications in the field 

of UDS are already widespread, distinct MOEAs’ performances still need to be improved 

(Yazdi et al., 2017). Additionally, there is currently a lack of study on how to find the best 

solutions using better relevant parameter settings and searching operators. 

In order to compare investment against flood damages in UDS rehabilitation scenarios, Barreto 

et al. (2010) employed MOEAs. Using a genetic algorithm, Sun et al. (2011) developed a risk-

based strategy and determined the ideal pipe diameters and slopes in a UDS by using genetic 

algorithm. Delelegn et al. (2011) used the Non-dominated Sorting Genetic Algorithm II (NSGA 

II) with a 1D-2D hydraulic model to create detention ponds in metropolitan areas using the 

return period approach. Similar to this, Park et al. (2012) used GA to optimize the storage 

capacity, outflow structure diameter, and quantity of detention ponds in an urban region in 

South Korea. The first multi-objective optimization model with the goal of quantitatively 

balancing the cost of on-site and local graywater was created by Penn et al. (2013). To reduce 

damage costs and intervention expenses, Vojinovic et al. (2014) concentrated on multi-

objective rehabilitation of UDS under uncertainty (climate change, urbanization, population 

expansion, and ageing of pipes). J. examined the use of MOEAs for the restoration of storm 

sewer pipe networks. In order to improve the rehabilitation of UDSs under a fixed design storm, 

Yazdi et al. (2017) integrate the EPA-SWMM hydraulic model with three distinct MOEAs, 

including NSGA-II, Multi-Objective Particle Swarm Optimization (MOPSO), and Non-

dominated Sorting Harmony Search NSHS. The EPASWMM model was connected to the 

algorithms by Yazdi et al. (2018). Additionally, Bayas-Jiménez et al. (2019) used MOEAs to 

manage the flood in metropolitan area drainage networks brought on by climate change. 

Ngamalieu-Nengoue et al. (2019) conducted research on urban drainage rehabilitation utilizing 

MOEAs to replace pipes and add storage tanks. In order to begin the MOEA’s search and 

increase the efficacy of multi-objective optimization design, Lin et al. created an engineering-
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based design technique in 2020. Table 1.1 summarizes the studies on multi-objective 

optimization for urban drainage systems. 

Even though MOEA-based methods have been successfully used to find the best ways to design 

UDSs, they are not always easy to use in real life. One important problem is the low 

convergence rate (Lin et al., 2020), which affects how well the MOEA-based optimization 

methods use computers (Fu et al., 2009; Wang et al., 2018). This is because the MOEAs use 

physically based UDS simulation models for fitness evaluation and search, which can be hard 

to run on a computer (Maier et al., 2014). For example, in Hadka and Reed 2013s’ study, a 

preliminary test was done where a UDS with 53 pipes was optimized by a benchmark MOEA 

algorithm Borg and SWMM. Simulations showed that if 1,000,000 evaluations were allowed, 

this optimization would take about 15 days on a 2.9GHz Dell PC (Inter R) and about 360 hours. 

In real-world applications, MOEAs often require such a large number of evaluations (Wang et 

al., 2015). This extra work on the computer can take up a lot of the time that is usually available 

for the UDS design, which is usually a few hours to a few days (Wang et al., 2015). Even 

though techniques like metamodels (Fu et al., 2009) and the GAHP model (Hassan et al., 2018) 

have been made to improve the computational efficiency of MOEA optimization for UDS 

designs, their performance is still not good, especially when dealing with large real-world 

UDSs (Maier et al., 2014). 



12 
 

Table 1.1 Summary of studies on multi-objective optimization for urban drainage system 

Study Algorithm/

Method 

Objectives Decision variables Case study Limitations 

Seyedashraf 

et al. (2021) 

NSGA-II To expand the capacity of an 

existing drainage network 

within a region of interest using 

sustainable drainage assets 

The types of 

sustainable 

drainage assets and 

surface area 

Case study 1 is an 84 ha urban catchment, with 64 

subcatchments, 566 manholes, and 511conduits. 

Case study 2 is a 66 ha urban catchment area in 

Windsor, Canada 

Focus on sustainable 

drainage assets 

Lin et al. 

(2020) 

EBDM To enhance the multi-objective 

optimization efficiency 

Pipe size and slope Case Study 1 is a university campus in Hanghzhou, 

China, with a drainage area of 8.1 ha and 19 

subcatchments.  

Case Study 2 has a drainage area of 29 ha 

consisting of 53 subcatchments 

Small-scale; 

hydraulic model not 

used 

Ngamalieu-

Nengoue et 

al. (2019) 

NSGA-II 

and 

PGA 

To optimize the rehabilitation 

process and reduce search space 

Pipe size In Ayurá district, Medellin city, Colombia, with a 

drainage area over 22.5 ha,73 nodes. 

 

Small-scale; 

engineering criteria 

and pipe slope not 

considered 

Ngamalieu-

Nengoue et 

al. (2019) 

NSGA-II To urban drainage networks 

rehabilitation and reduce 

investment costs. 

Pipe size In E-Chicó district, Bogotá city, Colombia, with a 

drainage area over 51ha, 35nodes. 

 

 

Small-scale; 

engineering criteria 

and pipe slope not 

considered 

Bayas-

Jiménez et 

al. (2019) 

NSGA-II To reduce the cost of 

rehabilitation of drainage 

networks and provide resilience 

to cities in climate change 

scenarios. 

Pipe size In E-Chicó district, Bogotá city, Colombia, with a 

drainage area over 51ha, 35nodes. 

 

Small-scale; 

engineering criteria 

and pipe slope not 

considered 
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Study Algorithm/

Method 
Objectives Decision variables Case study Limitations 

Yazdi et al. 

(2018) 

NSGA-II 

and 

MOPSO 

To assign optimal rehabilitation 

plans for sewer pipe network 

Pipe size In Seoul, South Korea with a drainage area of 

44 ha, 32 pipes, nodes and subcatchments 

Small-scale; 

engineering criteria 

and pipe slope not 

considered 

Yazdi et al. 

(2017) 

NSGA-II, 

NSDE and 

NSHS 

To compare rehabilitation 

plans of UDS network by using 

different algorithm 

Pipe size In Yongdub, South Korea with a drainage area of 

101 pipes and nodes, and 102 subcatchments 

Small-scale; 

engineering criteria 

and pipe slope not 

considered 

Vojinovic et 

al. (2014) 

NSGA-II To accommodate the effects of 

uncertainties into the design 

and rehabilitation of UDS and 

minimize damage costs and 

intervention costs. 

Pipe size 

 

In Dhaka, Bangladesh with a drainage area of 830 

ha and 88 sewer links with a 

total length of 13,635 m. 

Engineering criteria 

and pipe slope not 

considered; hydraulic 

model not used 

Penn et al. 

(2013) 

NSGA-II To quantitatively trade off the 

cost of graywater and the total 

amount of flow discharged into 

the municipal sewer system 

Pipe size  In central Israel, with a sewer system of 154 nodes 

and 153 links 

Only consider 

graywater 

Delelegn et 

al. (2011) 

NSGA-II To evaluate sewer pipe design 

scenarios contrasting 

investment against flood 

damages 

Storage volumes In West Garforth, UK Only consider storage 

reservoirs as the 

intervention 

Barreto et 

al. (2010) 

NSGA-II 

and 

ε-MOEA 

To evaluate urban drainage 

rehabilitation scenarios 

contrasting investment against 

flood damages 

Cost A drainage system of 12 pipes, 13 manholes, and 

11 subcatchments 

Small-scale; 

hydraulic model not 

used 
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In addition to not being very effective, one problem with MOEA-based approaches is that the 

UDS design solutions that are found are often not practical (Lin et al., 2020). In the multi-

objective optimization framework, this issue has often been left out (Walski, 2001). For 

example, most of the studies that have already done are about fixing up urban drainage systems 

by changing the size of the pipes. The size of the pipe was used as a decision variable, but the 

slope of the pipe, which is another important factor, was not considered. (Bayas-Jiménez et al., 

2019, Yazdi, 2017, Vojinovic et al., 2014). This leads to the limitation of UDSs optimization.  

At the same time, most of the MOEA-based optimization methods used didn’t take into account 

the engineering criterion of the UDS design that a pipe’s size shouldn’t be smaller than the size 

of the pipes upstream (Ngamalieu-Nengoue et al., 2019; Vojinovic et al., 2014; Yazdi, 2018). 

Also, many of the methods used in the past only used simple statistics, such as the average or 

sum of the flood volumes or peak flows in the pipes, to show how reliable the system was (Liu 

et al., 2018; Mohammadiun et al., 2018). But these simple statistics can be less useful in real 

life because they can’t show how the flood volumes and peak flows are spread out across the 

entire UDS. This can make the risk of flooding high in some places with high flood volumes 

or pipe peak flows (Lin et al., 2020). 

In 2011, Delelegn et al. used a 1D2D coupled model of SWMM5 linked with NSGA-II to do 

multi-objective optimization of the cost-benefit of urban flood management. By using SIMBA6 

(an extended version of EPA SWMM), Penn et al. (2013) made the first multi-objective 

optimization model that tried to figure out how to trade off the cost of local graywater. 

Rathnayake and Tanyimboh (2015) used SWMM 5.0 to study multi-objective optimization of 

combined sewer systems which goal was to minimize the bad effects of combined sewer 

overflows on the environment. J. Yazdi et al. (2016) came up with a way to fix up urban 

drainage systems that is based on resilience and combines NSDE and the EPA-SWMM 

simulation model. In the paper by Ngamalieu-Nengoue et al. (2019), SWMM is first connected 
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to PGA for the search space reduction. This search space reduction method is used to reduce 

the number in decision variables of urban drainage network optimization. Also, the SWMM 

model was used to simulate how the drainage system works so that Seyedashraf et al. could 

use sustainable drainage assets to increase the capacity of an existing drainage network in an 

area of interest (2020). 

In order to make pipe optimization simpler and more efficient, most studies were limited to 

small study areas. For instance, the case study 1 in Lin et al. (2019) is a university campus in 

Hangzhou, China, with a drainage area of 8.1 ha and 19 subcatchments and case study 2 has a 

drainage area of 29 ha consisting of 53 subcatchments. In Ngamalieu-Nengoue et al. (2019), a 

subcatchment of the drainage network of Ayurá district, Medellin city Colombia was used, and 

this network was extended over 22.5 ha (73 nodes). The case study used by Yazidi et al. (2017) 

is a storm sewer pipe system in the south part of Seoul, South Korea, with an area of 44 ha and 

including 32 pipes. In 2010, Wilmer Barreto et al. conducted research on a network system 

consisting of 12 pipes, 13 manholes, and 11 subcatchments. 

1.2 Multi-objective evolutionary algorithms (MOEAs) 

1.2.1 Genetic algorithm (GA) 

Genetic algorithm (GA) was first introduced by John Holland in 1975, and he continued to 

research it with his team in order to advance it. However, over the past ten years, a lot of work 

has been put into researching and developing genetic algorithms. A genetic algorithm employs 

a numerical model to tackle issues related to the evolution of individuals through the processes 

of selection and reproduction. In a genetic algorithm, a population’s survival is determined by 

how well it adapts to its environment. To maintain a population of individuals that survives the 

process, specific rules of selection cross-over and mutation are used. A genetic algorithm bases 

its selection criterion on people with high fitness values, and as a result, chromosomes in a 
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population are either deleted or preserved depending on fitness at the time of evaluation. By 

combining two or more chromosomes and altering certain parameters, a genetic algorithm 

creates new children through a process of cross-over and mutation. Individuals’ genetic 

information is represented by arrays of binary data or genes, so simple maneuvering causes 

mutation and cross-over to occur (Murphy et al., 1993). 

Murphy et al. (1993) developed and used an enhanced evolutionary method for pipe network 

optimization, and decision variables were represented using grey coding as opposed to binary 

coding. The performance of improved genetic algorithms was shown to be superior to that of 

traditional optimization methods when compared in their solutions. Vairavamoorthy and Ali 

(2000) developed an enhanced genetic algorithm, also known as a real coded algorithm, for a 

water distribution system. The project’s goal was to reduce the capital cost of the network by 

ensuring that each node had sufficient pressure. Tests on the performance of various networks 

were used to determine the method's effectiveness and robustness. 

In contrast to traditional algorithms, genetic algorithms deal with populations rather than a 

single answer. A population’s individual chromosome is represented by the value chosen for 

the decision variable, and each generation selects the chromosomes that match the following 

generation’s needs the best. The chromosomes may persist for many generations or be replaced 

by others in the process to select the greatest match depending on their intended function and 

fitness (Liong et al., 1995). After establishing the fitness of the chromosomes and representing 

the genes, the cycle proceeds by initializing a random population. The needed solution will be 

improved by repeating the mutation, crossover, and selection operators until the termination 

requirement is met. On Figure 1.1, the structure of GA is depicted (Kebede., 2014). 
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Figure 1.1 Structure of GA Model (Kebede., 2014) 

1.2.2 Multi-objective particle swarm optimization (MOPSO) algorithm 

A social search technique called particle swarm optimization (PSO) was motivated by the 

motion of a flock of birds (Kennedy and Eberhart, 1995). PSO has been proven effective in a 

number of different optimization projects. This algorithm is based on the idea that each particle 

determines where it will be at any given time based on where it has been so far in the group 

and where it will be at the best spot in its immediate vicinity. The great speed of convergence 

that PSO’s method exhibits for single-objective optimization makes it seem particularly well 

suited for multi-objective optimization (Coello et al., 2004). For managing multiple objectives, 
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several different algorithms have been proposed to expand PSO (Parsopoulos and Vrahatis, 

2002; Ray and Liew, 2002). This multi-objective problem was solved using the multi-objective 

particle swarm optimization (MOPSO) technique, which was developed by Coello et al. (2004) 

and has been successfully used to solve a variety of engineering challenges. Water engineering 

applications include managing irrigation and drain water (Noory et al., 2010), parameter 

calibration of flood routing models (Azadnia and Zahraie, 2010), optimal reservoir operation 

(Baltar and Fontane, 2008), auto calibration of reservoir water quality modelling (Afshar et al., 

2013) and water allocation (Liu et al., 2013). A secondary repository of particles is employed 

by the MOPSO algorithm, and later, other particles use this repository to direct their own flight. 

The non-dominance criterion is used to choose the particles that can enter the repository. 

Members of the repository are scattered among the grid boxes, or hypercubes, created from the 

objective space of non-dominated solutions that was discovered. First, a grid or hypercube 

based on the roulette wheel approach is chosen to choose the leader. This makes it more likely 

that a hypercube with fewer non-dominated members will be chosen. The leader of the 

hypercube is then chosen at random from among its members. Additionally, MOPSO has a 

unique mutation operator that enhances the algorithm’s exploratory capabilities (Coello et al., 

2004).  

In addition to the MOPSO algorithm, the idea of nondominance has been applied in many well-

known multi-objective meta-heuristic algorithms for sorting individuals according to the values 

of the objective function, including microGA, Niched Pareto Genetic Algorithm (NPGA), 

Strength Pareto Evolutionary Algorithm (SPEA), and NSGA-II (Yazdi et al., 2015). 

1.2.3 Non-dominated sorting genetic algorithm II (NSGA-II) 

One of the most well-known elitist multi-objective optimization methods, NSGA-II ensures 

the performance of a solution through generations, where the most adaptable solution advances 
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to the following generation and requires no hydraulic parameters to function. The advantage of 

NSGA-II is its quick, selective solution of multi-objective optimization algorithms (Deb, 2002). 

Because NSGA-II compares more than one objective and uses the non-dominated technique of 

ranking to assess the fitness of the chromosomes within a generation, the search process for 

basic genetic algorithms differs from NSGA-II. The dominance of one solution is examined 

using the fitness of each optimization objective. Additionally, the crowding distance approach 

will be utilized to assess two chromosomes with the same rank of dominance, and this results 

in a uniformly distributed Pareto front with the best possible outcome (Deb, 2002). 

Kebede (2014) used a hydrodynamic simulation model integrated with NSGA-II, which 

increased the significance of NSGA-II. In his study, one of the integrated model’s objectives 

was to reduce flooding in the drainage network during design or restoration, so the main focus 

should be on solutions with little to no flooding. Zare et al. (2012) found the best places for 

LID practices in Tehran by looking at costs, improvement of quality indices, and amount of 

surface runoff. They used two widely used MOEAs: NSGA-II and MOPSO. They reported that 

NSGA-II does better than MOPSO based on several residual metrics. 

Yazdi et al. (2017) examined MOPSO and NSGA-II for determining the best restoration 

strategies for sewer pipe networks. In order to find the most effective rehabilitation plans for 

pipe replacements, these algorithms were then connected to the EPA SWMM hydraulic model 

and applied to a storm sewer pipe network case study in Seoul, South Korea. The outcomes 

demonstrated that the algorithms under consideration had various tendencies when tackling the 

benchmark tests and rehabilitation issues. The sorting approach used by the NSGA-II and 

MOPSO algorithms differs significantly. While the MOPSO method simply selects non-

dominated members as the external repository and does not explicitly sort members in the 

repository or in the population, the NSGA-II algorithm sorts all population members based on 
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the two mentioned criteria. And the NSGA-II approach offers a simpler process for creating 

the following generation. 

1.2.4 Epsilon multi-EA (ε-MOEA) 

The foundation of ε-MOEA, as proposed by Laumanns et al. (2002) and Deb et al. (2003), is 

the idea of ε-dominance, which forbids the existence of two solutions for any objective function 

that differ by less than. In Lausannes’s study, they proposed the approximate Pareto set as a 

solution concept for evolutionary multi-objective optimization. It is theoretically appealing 

because it helps to build algorithms with the desired convergence and distribution properties, 

and it is practically important because it works with a solution set with a limited size and a 

predetermined resolution. 

By providing a suitable value for ε, it is possible to keep this algorithm’s convergence and 

diversity properties. The objective space is broken up into a grid of hyperboxes, the size of 

which can be changed by the choice of ε. The dominance of the hyperbox for each hyperbox 

containing a solution is examined. One solution is kept for each nondominated hyperbox in ε-

MOEA using the archive technique proposed in Deb et al. (2003). The following details the 

unique dominance checking procedure (Figure 1.2). The dominated archive members (D) are 

first discarded if the hyperbox of a new solution (C) dominates another hyperbox (D) in the 

archive. Second, the dominating solutions are eliminated when there are many solutions in the 

same hyperbox (A,B) (B). Third, if a hyperbox (E, F) contains more than one nondominated 

solution, one of them is chosen at random. Deb et al. (2005) recommended picking the solution 

(E) that is most near the hyperbox’s origin for the third phase. 
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Figure 1.2 Illustration of ε-dominance concept (minimizing f1 and f2) (Deb et al. 2005) 

Both NSGA-II and ε-MOEA were put to the test by Barreto et al. (2010) for the best 

rehabilitation of urban drainage systems. It is discovered that the NSGA-II algorithm performs 

better with smaller population sizes, while it performs worse with larger population sizes. It is 

discovered that the MOEA algorithm is less sensitive to population size. Additionally, when 

processing time is crucial, the lower cardinality of ε-MOEA is a valuable characteristic for 

optimizing urban drainage networks. When the population size is raised, the diversity of the 

generated sets of solutions, however, is not as good as that of NSGA-II. 

1.2.5 Preference-inspired coevolutionary algorithm (PICEA-g) 

The Pareto-dominance relation’s diminished capacity to provide comparison between various 

solutions has been noted as one of the primary issues for multi-objective optimization (Deb et 

al., 2002). Due to this lack of comparability, Pareto-dominance algorithms have difficulty 

directing the search toward the Pareto front. But it is able to compare other incomparable 
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options by considering the preferences of the decision-maker (Purshouse and Fleming, 2007). 

Coevolving the preference family with the typical population of candidate solutions is one 

technique to potentially keep the family relevant as the search advances. The preferences would 

gain fitness by providing comparability between solutions, and the solutions would earn fitness 

by performing well against the preferences. This method was initially presented as PICEA-g 

by Wang et al. (2013), which was a more effective approach for MOPs. In Wang et al. (2013) 

s’ research on first realization of PICEA-g, Lohn et al. (2002) s’ method of fitness assignment 

was retained. According to Lohn et al. (2002), increasing variety along the Pareto front might 

be accomplished by coevolving a family of target vectors. 

By satisfying a certain set of goal vectors in objective space, candidate solutions earn fitness 

according to Lohn et al (2002) s’ fitness assignment method, but the fitness contribution must 

be split among other solutions that also meet those targets. Targets can only become fit by being 

fulfilled by a candidate solution, and the more frequently other solutions in the population 

satisfy the targets, the less fit they become. Overall, the objective is for the targets to adaptively 

direct the solution population in the direction of the Pareto front. In other words, the target 

population and the population of candidate solutions coevolve toward the Pareto front. 

By using PICEA-g, a family of preferences was coevolved with candidate solutions, the 

preferences gain higher fitness by being satisfied by fewer candidate solutions, and the 

candidate solutions gain fitness by meeting as many preferences as possible. The PICEA-g 

algorithm can optimize three or more goals. According to the empirical results, PICEA-g 

showed highly competitive performance and can therefore make a strong claim for use on 

many-objective problems (Wang et al., 2013). By providing a family of goal vectors in PICEA-

g, candidate solutions receive a new fitness assignment and are guided towards the Pareto 

optimal front. PICEA-g overcomes the issue of poor performance of NSGA-II when the 
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objective number is large (Wang et al., 2013). In addition, PICEA-g was applied to optimize 

LID spatial allocation in previous studies (Men et al., 2020; Yu et al., 2022). 

 

 

Figure 1.3 An elitist framework of PICEA-g (Wang et al, 2013). 

A flowchart of PICEA-g elitist framework is depicted in Figure 1.3. A population of candidate 

solutions 𝑆  (fixed size of 𝑁 ) and goal vectors 𝐺  (fixed size of 𝑁𝑔 ) are evolved for a fixed 

number of max generations. They will co-evolve for a preset number of generations.  The fixed 

size of 𝑁 is determined as 100 in this study. In each generation, parent solutions S goes through 

genetic variation operators (crossover and mutation) and generate offspring solutions Sc (fixed 

size of 𝑁). Meanwhile, new goal vectors 𝐺𝑐 (fixed size of 𝑁𝑔) are generated randomly in a 

defined space. Fitness is then calculated for each population of S, Sc, G, and Gc. After sorting 

the fitness of individuals in the combined population of (𝑆 + 𝑆𝑐 ) and (𝐺 + 𝐺𝑐 ), the best 

𝑁  solutions and 𝑁𝑔  goal vectors will become the new population of 𝑆  and 𝐺  in the next 

generation (Wang et al., 2013). 
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1.3 Divide and conquer technique 

As practical needs led to research on designing MOEAs with high scalability, ideas like 

simplifying large-scale MOPs with the divide and conquer technique and dimensionality 

reduction and improving the search ability of MOEAs by rebalancing exploration and 

exploitation were put forward (Antonio and Coello, 2013; Qian and Yu, 2017). With the divide 

and conquer method, a hard problem can be broken down into a number of smaller problems 

that are easier to solve (Lv et al., 2016). In UDS optimization, the divide and conquer technique 

is used to break up the optimization process for each subcatchment. Then, the best solutions 

from each subcatchment are put together to make a new set of best solutions (Yu et al., 2022). 

The goal of the divide and conquer technique is to divide or change the original search space 

of a MOP so that an algorithm only needs to search in one or more subspaces. Since the 

subspaces are usually low-dimensional, these methods can help get rid of the curse of 

dimensionality that comes from adding more decision variables. On the other hand, to avoid 

the problem that some Pareto-optimal solutions fall outside of the subspaces made by space 

division or transformation, which would lead to poor performance, the enhanced search-based 

approach directly explores the original search space, but with better search abilities (Hong et 

al. 2021). 

In Hong et al. 2021, it was shown that divide and conquer based large scale MOEAs work well 

to solve most large-scale MOPs where there are no or weak correlations between the decision 

variables. In 2016, Lv et al. applied the divide and conquer strategy with the cooperative co-

evolution algorithm to manage air traffic flow. Cooper et al. (2014) used the divide and conquer 

method to solve the problem of how to design a large-scale public transportation network. And 

Antonio and Coello (2013) came up with a plan for cooperative coevolution that used the divide 

and conquer strategy.  Besides, divide and conquer technique was widely applied to vehicle 
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routing problems (Watanabe et al. 2015), resource allocation problems (Friese et al. 2016) and 

engineering design problems (Gaur et al. 2017). 

  



26 
 

2 Knowledge gaps and research objectives 

2.1    Knowledge gaps 

Based on the above literature review on solving MOPs by using MOEAs for UDS, the 

following knowledge gaps were identified: 

1) Existing studies on MOEAs only used sewer pipe size as the sole decision variable in UDS 

optimization, while the other important factor, sewer pipe slope, has not been considered. Also, 

the connection of pipes is still an issue for practical engineering applications because the 

decision variable in original MOEAs is independent, and the variation is random. 

2) Most UDS optimization solutions obtained by MOEA-based approaches are found not to be 

practical. The engineering criteria of the UDS design have been barely considered in the 

optimization, e.g., a pipe size generally should not be smaller than the upstream pipe sizes. 

3) Physically based UDS simulation models are used in MOEAs for fitness evaluation and 

search, which can be challenging to run on a computer. Even though some techniques have 

been developed to improve the computational efficiency of MOEA optimization for UDSs, 

their performance is still not satisfactory. 

4) In order to make sewer pipe optimization simpler and more efficient, most studies are limited 

to small study areas that include less than 100 pipes. 

5) When using hydraulic models to solve MOPs, most studies are limited to 1D models. 2D 

models have not been applied due to the efficiency of optimization, and the results have been 

compared with 1D modeling results. 

2.2    Research objectives 

The overall research objective is to fill the above-mentioned knowledge gaps for UDS 

optimization, focusing on a large, complex, real-life, urban storm sewer network for flood 
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mitigation purpose. The specific objectives of this study are as follows: 

1) To create and evaluate a method for determining the ideal sewer pipe size and slope of 

stormwater drainage systems to minimize the costs of sewer system rehabilitation/upgrade and 

flood volumes. 

2) To ensure the connection of sewer pipe system and consider the UDS engineering design 

criterion by setting variation conditions for candidate solutions. 

3) To improve the computational efficiency of MOEA optimization for UDS designs by using 

parallel computing in Matlab. 

4) To simplify large-scale MOPs with the divide and conquer technique so that the best 

solutions from each subcatchment are put together to make a new set of best solutions. 

5) To apply both 1D and 2D hydraulic models in the sewer network optimization and compare 

their results to examine and improve the efficiency of the optimization. 
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3 Methodology 

3.1     Study area and existing models 

3.1.1 Study area and PCSWMM model 

In this study, the study area is a drainage area of 777.6 ha consisting of 2200 subcatchments, 

2927 junctions and 2932 conduits (Figure 3.1). The main land use of this study area is 

residential with a mix of commercial and industrial and the average impervious of the study 

area is 54.14%. City A 1 hour 10 years design storm is set as the time series of this model. In 

addition, there is a test area that is part of the study area located in city A (Figure 3.2). The test 

area is a 16.68 ha area which contains 74 subcatchments, 78 junctions and conduits. 

 

Figure 3.4 Study area with 1D storm sewer network model. 
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Figure 3.5 Location of test area in the entire study area. 

Junctions were categorized depending on the amount of freeboard in PCSWMM model. 

Freeboard was defined as maximum HGL (Hydraulic Grade Line) - ground elevation. The 

junction was defined as flooded when freeboard > 0, high risk when freeboard <= 0 and > -

0.35, and low risk when freeboard <= -0.35. Conduits were also categorized into three types 

based on capacity limited (CL) which is the number of hours during the simulation in which 

the flow through the conduit was limited by its capacity. The CL is a computational measure in 

SWMM for evaluating sewer pipe capacity limitation. A pipe is flagged as limited during a 

timestep if both pipe ends are full and the hydraulic gradient is greater than the slope of the 

pipe (SWMM User’s Manual, 2015). This metric was very useful for pipe upgrades 

optimization. The conduit was defined as very limited when CL >= 0.1 hr, somewhat limited 

when CL >= 0.01 and < 0.1hr, and not limited when CL < 0.01hr.  
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3.1.2 Flooded area 

In this study, only manholes were considering as flooded nodes and only conduits were 

considered for upsizing (no orifice, weir, etc.). Then, Manhole-HGL matrix was created by 

finding position of node depth summary from PCSWMM report file. At last, the flooded nodes 

were determined based on conditions that freeboard> 0. 

Flooded nodes were integrated into different flooded areas. To determine the flooded range of 

one flooded node, different numbers of connected conduits were tested in this study. For 

instance, four connected conduits both upstream and downstream were used to determine the 

flooded range at first and two connected conduits from both upstream and downstream were 

also tested. The results of flooded area by using different numbers of connected conduits were 

compared, and three connected conduits from upstream and four connected conduits from 

downstream were finally selected in this study. If there is any flooded node or its flooded range 

intersects another junction’s flooded range, the flooded range of these flooded nodes would be 

combined to one flooded area. If there is no intersection of two flooded ranges, the flooded 

area would only be the flooded range of the flooded node.  

  

Figure 3.6 An example of generating one flooded area. 

An example of generating a flooded area is shown in Figure 3.3. Node 4 and node 8 were two 

flooded nodes on the route 1-12. For node 4, considering three connected conduits from 

upstream and four connected conduits from downstream, the flooded range was from node 1 
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to node 8. Meanwhile, the flooded range of node 8 was node 5-12. Due to the intersection of 

these two flooded ranges, node 4 and node 8 combined to form one flooded area that included 

nodes 1-12. 

3.1.3 1D and 2D models 

Due to the presence of roads, buildings, and other infrastructure, it is sometimes difficult to 

depict the flow patterns effectively using 1D modeling. A distinction between a 1D model and 

a 2D model reveals that while performing a 1D model, the water flow is assumed to run in a 

longitudinal direction in a flood plain or water channels (Rungo and Olesen 2003). Also, the 

1D model equations are derived using the law of conservation of mass and energy. In contrast, 

2D modeling is performed by integrating the water flow equations over the depth of water flow 

to find the average velocities of the flowing water at different depths using finite element 

methods and other relevant numerical methods (Sanders 2007). 

In this study, a 1D model of the subject region was converted into a 2D model because 1D 

models are sometimes inadequate for modeling urban and complex systems. And 2D model 

was run in the end with optimized solution to see more representative and realistic results. The 

direct connection method was used to generate the 2D model, which allowed the 1D 

conveyance network to be directly connected to the 2D floodplain. A boundary layer was 

necessary as the initial step in constructing a 2D model in order to determine the extent of the 

2D model domain. In the model setup, a 2D boundary layer with a 15 m resolution hexagonal 

mesh and a roughness coefficient of 0.033 was added, while a point layer or so-called 2D node 

layer was created using the DEM elevation data to represent the floodplain topography. Based 

on the features of the previously established layers, a 2D mesh layer with 52176 junction points 

and 2D cells was generated. Using PCSWMM’s connection tool, each 1D junction was then 

connected to the closest 2D junction point for 2D simulation. This connection enables the free 
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transfer of flow from the 1D drainage model to the 2D model for estimating flood extents. 

3.1.4 Local design standards 

Without prior approval, sewer pipelines should not be surcharged for design flows (e.g., 1:100 

year). The maximum 1:100 year HGL shall be at least 1.2 m below the ground surface in cases 

where surcharge cannot be avoided to preserve ensure catchbasin interception (Senior et al., 

2018). Typically, the actual velocity corresponding to the design flow must be greater than 0.60 

m/s and less than 3.0 m/s in storm sewers. Supercritical flow should not happen unless 

considerations for structural stability and longevity are provided in the design. The minimum 

depth of cover from the pipe obvert to the finished road grade for public storm sewers is 1.20 

m. And the minimum depth of cover from the pipe obvert to finished grade for private property 

connections is 1.00 m (The City of A Water Resources, 2011).  

Sewer pipe changes in size, grade, or direction must be made in manholes (MHs), unless the 

sewer is curved. The maximum distance between MHs must be 185 m, and an MH is always 

required at the upper end of a sewer for maintenance reasons. If the drop is equal to the 

difference in pipe diameter, the elevation of the obverts should be kept continuous to maintain 

the energy gradient. For manhole drops, at MHs where the downstream pipe has a larger 

diameter than the upstream ones, the drop must be equal to or greater than the difference in 

pipe diameter. Where no change in pipe diameter occurs, a minimum drop of 30 mm is required 

in a through MH, and a minimum drop of 60 mm is required in a bend. In general, large drops 

are discouraged because of hydraulic considerations. For drops greater than 1.0 m, a specially 

designed drop MH might be necessary to address hydraulic requirements due to the elevation 

change (The City of A Water Resources, 2011). 

3.1.5 Assumptions 

This study assumed that the downstream pipe size should not be less than the upstream pipe 
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size in most cases. And the invert at junction and inlet outlet elevation were assumed the same. 

In addition, the maximum depth of pipe was set as 15m to avoid high construction costs.  

3.2     Overall optimization structure 

The three essential components of this optimization system were the hydrologic process 

computation module PCSWMM, the optimization algorithm PICEA-g, and the platform 

MATLAB which interacts with and integrates all the system’s components. The system started 

with establishing the objective functions (cost and flooded nodes) and decision variables (pipe 

size and slope). On the basis of the determined range of each decision variable, a user-specified 

number of candidate solutions were generated.  

Because of the large size of the study area, the simulation process took a long time. To improve 

the computational efficiency of MOEA optimization for UDS designs, parallel computing in 

MATLAB was applied to this study. Without parallel computing, the original running time for 

the study area in MATLAB was around 10 days. This period can be shorten to 1-2 days when 

parallel computing was applied. In addition, divide and conquer technique was used to solve 

the large-scale model. By downscaling the optimization issue, this technique can achieve better 

optimization results in a more efficient way and achieve the optimization that would be 

impossible in a large-scale (when decision variables are too much).  Moreover, this study took 

into account the UDS engineering criterion that a pipe’s size should not be less than that of its 

upstream pipes in most cases. 

Scenario 1 uses the PCSWMM 1D modelling results of the study area for optimization and 

scenario 2 is the condition uses the PCSWMM 2D modelling results of the study area for 

optimization. These two scenarios are different in junction depth and pipe capacity limited 

which are used in MATLAB to do pipe optimization. In scenario 1, there are 284 flooded 

manholes and 342 very limited conduits while the numbers reduce to 73 and 294 respectively 
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in scenario 2. Because in 1D scenario, the flood is only considered in junctions. However, in 

2D scenario, the water will spread to the ground surface when the junction is flooded. 

Figure 3.4 presents the overall structure of the optimization system for Scenario 1 and Scenario 

2. Divide results for each flooded area were obtained from candidate solutions in each scenario. 

Then results for the whole study area were generated by applying conquer technique. The 

conquer results would go through the process of evolving (crossover and mutation) and finally 

optimal solutions were created in 1D model, and the processes were completed in the platform 

MATLAB. In this study, the final optimal solutions were utilized to run 2D model to compare 

the results of different scenarios in 2D model. The details of process of divide, conquer and 

evolving are shown in Figure 3.5, 3.6 and 3.9 respectively.  
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Figure 3.7 Structure of optimization system for scenario 1 and scenario 2. 
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3.3     Divide and conquer technique 

3.3.1 Divide 

In this study, divide and conquer technique was applied to evolve the optimization results. 

divide and conquer technique can decompose the optimization process for each individual 

flooded area, and then combine the divide solutions from each flooded area into new sets of 

optimal solutions. For the optimization process, there are 37 flooded areas in the study area. 

For each flooded area, the model simulated 20 divide solutions by changing the pipe slope and 

size while the rest of the 36 areas remained the same. So, there would be initial 740 divide 

solutions in total.  

  

Figure 3.8 Process of divide for scenario 1 and scenario 2. 

The process of divide is shown in Figure 3.5. With the candidate solutions generated in scenario 

1 and scenario 2, the total cost of pipe system changing was determined using Table 3.1. The 

subsequent step was to alter the SWMM input file based on the decision variables of each 

candidate solution and start SWMM simulation by using the dynamic link library files of 

SWMM (run one SWMM simulation for each candidate solution). PCSWMM is not an open-

source application, however its engine is EPASWMM, therefore its input file can be edited in 
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MATLAB. 

Once the simulation was complete, the objective function value (the number of flooded nodes 

and cost) was obtained from the SWMM output file. Each candidate solution linked to a distinct 

SWMM simulation and a distinct set of goal function values. Thus, divide solutions and related 

objective function values were obtained. 

3.3.2 Conquer 

The roulette wheel was applied in divide and conquer technique for selecting one divide 

solution from the entire solution population. To determine the possibility of selecting each area, 

the equations are written as follows: 

𝐴𝑣𝑔_𝐹𝑅𝑅𝐷𝑆𝑖,𝑚
=

max (𝐴𝑣𝑔_𝐹𝑅𝐷𝑆𝑖,𝑚
,0)

𝐴𝑣𝑔_𝐶𝐷𝑆𝑖,𝑚

                                   (3.1) 

where 𝐷𝑆 is the divide solution;  𝑚 is the number of each area; 𝑖 is the number of each divide 

solution. 𝐴𝑣𝑔_𝐹𝑅𝐷𝑆𝑖,𝑚
  is the average number of flooded node reduction; 𝐴𝑣𝑔_𝐶𝐷𝑆𝑖,𝑚

  is the 

average cost for each divide solution and 𝐴𝑣𝑔_𝐹𝑅𝑅𝐷𝑆𝑖,𝑚
  is the average of flooded node 

reduction ratio for each divide solution.  

𝑃(𝐴𝑟𝑒𝑎𝑚) =
𝐴𝑣𝑔_𝐹𝑅𝑅𝐷𝑆𝑖,𝑚

∑ 𝐴𝑣𝑔_𝐹𝑅𝑅𝐷𝑆𝑖,𝑚
𝑀
𝑚=1

                                       (3.2) 

where 𝑃(𝐴𝑟𝑒𝑎𝑚)  is the possibility of selecting each area; M is the maximum number of 

flooded areas which is 37 in this study area. ∑ 𝐴𝑣𝑔_𝐹𝑅𝑅𝐷𝑆𝑖,𝑚

𝑀
𝑚=1 is the sum of the average 

flooded node reduction ration in 37 flooded area. 

In this study, cost is calculated by Table 3.1 based on pipe size and depth range. 
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Table 3.2 Cost ($CAD) calculation table with pipe size (mm) and depth ranges in meters (m) 

(The City of A Water Resources, 2011) 

Pipe 

size 

(mm) 

Depth ranges in meters (m) 

0-2.5 2.5-

3.0 

3.0-

3.5 

3.5-

4.0 

4.0-

4.5 

4.5-

5.0 

5.0-

5.5 

5.5-

6.0 

6.0-

6.5 

6.5-

7.0 

150 145 149 154 158 163 168 176 185 195 204 

200 160 170 180 191 202 214 236 259 285 313 

250 160 170 180 191 202 214 236 259 285 313 

300 168 181 196 212 229 247 272 299 329 361 

375 193 209 225 243 263 284 312 343 378 416 

450 213 230 248 268 289 312 343 378 416 457 

525 234 255 278 303 330 360 388 420 453 489 

600 257 288 323 361 405 453 489 529 571 617 

675 283 317 355 397 445 481 519 561 606 654 

750 311 342 376 414 456 501 551 606 667 734 

900 358 397 441 489 543 603 669 743 825 915 

1050 429 494 568 653 751 864 933 1007 1088 1175 

1200 515 593 681 784 901 1036 1140 1254 1379 1517 

1350 618 711 818 940 1081 1244 1368 1505 1655 1821 

1500 742 853 981 1128 1298 1492 1671 1872 2097 2348 

1650 890 1024 1178 1354 1557 1791 1970 2167 2384 2622 

1800 1068 1282 1539 1539 2216 2659 2925 3217 3539 3893 

 

To determine the possibility of selecting each divide solution 𝐷𝑆𝑖  in one flooded area, the 

equations are: 

𝐹𝑅𝑅𝐷𝑆𝑖
=

max (𝐹𝑅𝐷𝑆𝑖
,0)

𝐶𝐷𝑆𝑖

                                               (3.3) 

where 𝐹𝑅𝐷𝑆𝑖
  is the number of flooded node reduction and 𝐶𝐷𝑆𝑖

  is the cost for each divide 

solution. 𝐹𝑅𝑅𝐷𝑆𝑖
 is the flooded node reduction ratio for each divide solution. 

 

𝑃(𝐷𝑆𝑖) =
𝐹𝑅𝑅𝐷𝑆𝑖

∑ 𝐹𝑅𝑅𝐷𝑆𝑖
𝑁
𝑛=1

                                                 (3.4) 

where 𝑃(𝐷𝑆𝑖) is the possibility of selecting each divide solution 𝐷𝑆𝑖 in one flooded area,  𝑛 is 
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the number of 𝐷𝑆  in one area and 𝑁  is the total number of 𝐷𝑆  in one area which is 20. 

∑ 𝐹𝑅𝑅𝐷𝑆𝑖

𝑁
𝑛=1 is the sum of flooded node reduction ration in 20 divide solutions. 

  

Figure 3.9 Process of conquer for scenario 1 and scenario 2. 

As a result, areas and divide solutions with higher ratio of flooded nodes have higher chance 

of being selected. These selected areas and divide solutions can generate candidate solutions. 

To some extent, this method ensures that the better divide solutions are more likely to be 

selected.  

Process of conquer is shown in Figure 3.6. The divide solutions were selected by conquer 

technique using roulette wheel. Then SWMM input file was modified based on conquer 

solutions for the whole study area. After all, conquer solutions and objective function values 

were gained through output file of SWMM simulation in MATLAB. 

In addition, the method of conquer by selecting results randomly which means each divide 

solution has the same probability of being selected was also applied in this study. The results 

obtained by these two different methods are compared in this thesis. 
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3.4     Improvement to PICEA-g 

3.4.1 Initialize candidate solutions 

In the original PICEA-g algorithm, the value of each decision variable in the initial set of 

candidate solutions is created arbitrarily within the decision variable constraints. Diversity and 

unpredictability of candidate solutions can be obtained when the number of decision variables 

is small. But when the number is great, the total of decision variables approaches the mean of 

the sum of choice variable bounds. In this study, the creation of candidate solutions is not as 

random as in the original algorithm, as random pipe size and slope would result in pipe 

disconnection and break the technical criteria of the UDS design. 

Table 3.3 Minimum slope for different pipe size (The City of A Water Resources, 2011) 

 

To create pipe diameter solutions, the pipe CL was checked in advance. one increment is the 

increment in pipe size modification in Table 3.2. The probabilities and number of increment 

were finally decided by the author after testing different numbers. 
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• If CL >0.01hr, a 40% probability increase for 2 increments and a 60% probability 

increase for 4 increments were established.  

• If CL＞0 and ≤ 0.01 hr, there was a 70% chance of increasing 2 increments and a 30% 

chance of increasing 3 increments would be set.  

• If CL equaled 0 hour, 80% would remain the same, 20% would raise 2 increments.  

Looking at all the routes contain the flooded junctions, from downstream, the maximum 

diameter was figured out, from upstream, the minimum diameter was figured out, meanwhile 

from the most upstream, the absolute minimum diameter was generated. Then new pipe 

diameter was created, and it would be checked with the min and max diameter values. Also, 

downstream pipe size would be equal or larger than upstream pipe size. 

To create the slope of pipe solution, minimum slope was used to gain the minimum invert 

elevation at each junction from downstream and then minimum slope was utilized to determine 

the maximum invert elevation at each junction from upstream by applying new pipe diameters 

and Table 3.2. Depending on pipe CL, new elevations at each node could be set. Meanwhile, 

the elevation of the most upstream node and the most downstream node would not be changed. 

Also, the elevation range was defined as the difference between node elevation and minimum 

elevation when slope increased. To pick a random value within the elevation range, the 

increment = (random (0-1))2 ×elevation range. 

• If the pipe CL＞0.01hr, there was an 80% chance that the slope would grow by 1 

increment and a 20% chance that it would remain the same.  

• If CL＞0 and ≤ 0.01 hr, a 40% chance of increasing the slope by 0.5 increment and a 

60% chance of maintaining the slope would be set.  

• If CL equaled 0 hours, 40% would remain the same, 30% would decrease by 0.25 
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increment, and 30% would increase by 0.25 increment.  

Figure 3.7 presents an example of generating a solution of pipe slope. From the most 

downstream junction 6, the minimum elevation is determined by applying the minimum slope 

of new pipes while the minimum elevation is determined from the most upstream junction 1. 

Then, the change of pipe slope would within the maximum and minimum elevations depending 

on pipe capacity when the elevations of node 1 and node 6 remain stable. 

  

Figure 3.10 An example of generating a solution of pipe slope. 

3.4.2 Enhanced goal vectors boundaries – cutting plane 

Wang (2013) developed an improved technique termed cutting plane to aid in the development 

of goal vectors that are more beneficial in directing candidate solutions toward the Pareto 

optimal front as PICEA-g’s performance is influenced by goal vectors, particularly the bounded 

space of goal vectors. 

 In this study, the cutting plane was utilized to redefine the bound space of goal vectors, 

ensuring that no single goal vector either dominated or was dominated by all candidate 

solutions. Figure 3.8 illustrates an example of an optimization problem involving the 

minimization of two objectives in order to explain the cutting plane. Goal vectors are created 

at random within the bound space. In the original PICEA-g algorithm, the bound space of goal 

vectors is OKHL. The cutting plane divides the bound space from OKHL to DAGBCFM4-1E 

(gray area), where E and F are the extreme points and M1-4 are the non-dominated solutions. In 
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the original bound space, any goal vectors that fall within the region OKDEM1-4FL cannot be 

dominated by any solutions, whereas any goal vectors that fall within the region AHNG could 

be dominated by all solutions. Therefore, any goal vectors that fall outside the region 

DAGBCFM4-1E (gray area) are wasted and ineffective. Meantime, objective 𝑓2 is far from the 

Pareto optimal front rather than object 𝑓1 (pick any point along with EF). For example, in this 

study, 𝑓1 and 𝑓2 are determined as the number of flooded node and the cost. Because GBCF’s 

area is larger than DAGE’s, more goal vectors fall inside the region GBCF rather than DAGE 

when using the cutting plane approach, resulting in a greater emphasis on steering solutions 

towards target 𝑓2 in the following generation. 

 

Figure 3.11 An example of two objective problem using the cutting plane (Wang et al., 2013). 

3.4.3 Enhanced fitness calculation 

The fitness value represents how individual of candidate solution population performs in 

achieving the Pareto optimal front (Wang et al., 2013). The fitness value (Fit) of candidate 

solutions (cs) and goal vectors (gv) are calculated as Eq. 3.5-3.7 (Wang et al., 2013): 
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𝐹𝑖𝑡𝑐𝑠 = ∑
1

𝑛𝑔𝑣
𝑔∈𝐺⨄𝐺𝐶|𝑠≼𝑔

 (3.5) 

𝐹𝑖𝑡𝑔𝑣 =  
1

1 + 𝛾
 (3.6) 

𝛾 =  {

1             𝑛𝑔𝑣 = 0 

𝑛𝑔𝑣 − 1

2𝑁 − 1
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.7) 

where g and G represents goal vectors; GC is the offspring goal vectors; s represents solutions; 

𝑛𝑔𝑣 is the number of solutions that dominate the goal vector gv; and N is the population size of 

candidate solutions. One point dominates another point means the value of one point’s position 

in all dimensions are smaller than those of another point when all objectives are minimized. 

An example of Eq. 3.5-3.7 is shown in Example A1. 

Two candidate solutions could have the same fitness value when one of them dominates the 

other. Therefore, the original approach for calculating fitness cannot sort candidate solutions 

effectively without taking into account the dominance connections among candidate solutions 

themselves. Paknejad et al. (2021) developed a new method to improve fitness value 

calculation (Eq. 3.8-3.9), which was implemented in this study.  

𝐹𝑖𝑡𝑐𝑠 = ∑
1

𝑛𝑔𝑣
𝑔∈𝐺⨄𝐺𝐶|𝑠≼𝑔

× 𝐹𝑖𝑡𝑔𝑣 +
1

𝑟𝑎𝑛𝑘𝑐𝑠
 (3.8) 

𝑅𝑎𝑛𝑘𝑐𝑠 = 1 + 𝑃 (3.9) 

where P is how many individuals dominate CSi at the current population. Then, the new fitness 

values can sort the domination relationships between the candidate solutions. An example of 
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Eq. 3.8-3.9 is shown in Example A2. 

3.4.4 Enhanced genetic operator – crossover and mutation 

The evolving process of optimization system is consisting of crossover and mutation. There 

are three types of crossovers used by PICEA-g (single-point crossover, uniform crossover, and 

simulated binary crossover) (Deb and Agrawal, 1994). And polynomial mutation is used as 

genetic operators (Deb et al., 2002) which are crucial for the generation of offspring solutions 

and the evolution of solutions. Adjustments or the acquisition of various genetic operators are 

necessary to increase the algorithm’s performance for diverse issues and settings (Srinivas and 

Patnaik, 1994). Utilizing a logistic map and a roulette wheel in crossover and mutation 

operators was proposed by Paknejad et al. (2021), and it was also applied and adjusted in this 

study to improve the allocation solutions. 

  

Figure 3.12 Process of evolving (crossover and mutation) for scenario 1 and scenario 2. 
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Figure 3.9 shows the evolving process. In the SWMM simulation, the PICEA-g optimization 

algorithm would generate a set of goal vectors that were utilized to determine the fitness value 

of the present population of solutions. After sorting the fitness of each individual solution, the 

algorithm would use genetic operators (crossover and mutation) to evolve the current 

population of solutions into a better population of solutions in the next generation, which were 

closer to the Pareto optimal solutions than the initial candidate solutions. The subsequent steps 

were identical to the preceding steps and created a loop consisting of modifying SWMM inputs, 

running SWMM simulation, receiving objective function values, and generating new solutions. 

The loop would end when the maximum number of iterations given in the user’s configuration 

was reached (maximum number of generations in this study was set to 20). 

3.4.4.1 Logistic map 

May (2004) introduced the logistic map to generate chaotic sequences, and its mathematical 

equation is as follows: 

𝑋𝑛+1 = 𝑟𝑋𝑛(1 − 𝑋𝑛)                                                      (3.10) 

where Xn is a number bounded on [0, 1], and r is a parameter in the range of [0, 4]. The r value 

changes the behavior of the logistic sequence, e.g., when 3.57 < r ≤ 4, the logistic sequence 

develops chaotic behavior. In this study, the value of r is set as 3.75. The logistic map was 

applied in crossover and mutation operators to increase the solution sets variation. (Paknejad 

et al., 2021). 

3.4.4.2 Roulette wheel 

The roulette wheel was applied in crossover operator and divide and conquer technique for 

selecting one solution set from the entire solution population. Higher fitness value of one 

solution set means higher chance of being selected. The probability of selecting one 𝐶𝑆𝑖 is:   
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𝑃(𝐶𝑆𝑖) =
𝐹𝑖𝑡𝐶𝑆𝑖

∑ 𝐹𝑖𝑡𝐶𝑆𝑗
𝑁
𝑗=1

                                                       (3.11) 

3.4.4.3 Crossover 

At each index, the crossover operator extracts one solution from each of the two selected sets 

(one pair) of parent solutions and combines them into a single set of offspring solutions. For 

each set of parent solutions, its paired set of parent solutions were selected by using roulette 

wheel. When a random number was less than a predetermined crossover probability, this pair 

of parent solutions would undergo crossover. In this study, the probability to do crossover is 

0.75. For each individual index of the new offspring solution, if the generated chaotic sequence 

by the logistic map was ≤0.75, this individual offspring solution was extracted from the first 

parent solution at the same index. Otherwise, it was removed from the second parent solution. 

3.4.4.4 Mutation 

With the enhanced mutation operator, solutions in this study were guided to implement at a 

lower cost. As the same as crossover, the probability for each offspring to do mutation is also 

0.75. To reduce the cost, the mutation operator increased the flooded areas by choosing new 

flooded areas from original large flooded areas. For example, the maximum connected conduits 

were 4 when generating the original flooded areas, while the maximum connected conduits 

were 2 when choosing new flooded areas by using mutation operator. As a result, one original 

flooded area can be divided to several small flooded areas to do pipe optimization by changing 

less pipe diameter and slope. The changing of flooded areas was chosen when the logistic map 

was ≤0.5. 

3.4.4.5 Algorithm stopping criteria 

There are four conditions outlined by Martí et al. (2016) which MOEA iterations should end if 

any of the following apply: 1) the present solution is close to optimal; 2) the present solution 
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is acceptable, and no improvement can be made by additional iterations; 3) MOEA cannot 

converge to any solution; or 4) computation time is adequate. To further justify that the model 

terminates after 20 generations, the mutual dominance rate indicator (MDR) is used to identify 

the stopping condition (Martí et al., 20). The equation reads as follows: 

𝐼𝑚𝑑𝑟(𝑃∗
𝑡, 𝑃∗

𝑡−1) =
|∆(𝑃∗

𝑡−1,𝑃∗
𝑡)|

|𝑃∗
𝑡−1|

−
|∆(𝑃∗

𝑡,𝑃∗
𝑡−1)|

|𝑃∗
𝑡|

                                  (3.12) 

 

where 𝑡 is the iteration number, 𝑃∗
𝑡 are the solution sets at 𝑡𝑡ℎ iteration, |𝑃∗

𝑡| is the number of 

𝑃∗
𝑡 elements, and ∆(𝑃∗

𝑡−1, 𝑃∗
𝑡) gives the elements of 𝑃∗

𝑡−1 that are dominated by at least one 

element of 𝑃∗
𝑡. 𝐼𝑚𝑑𝑟 is the progress (MDR) indicator that provides information regarding the 

improvement of solutions in each iteration. 
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4 Results and discussion 

4.1 Test area 

Before optimization, there were 15 flooded manholes and 7 high-risk manholes in the test area. 

Using the method of finding flooded area, all these flooded manholes were determined to be 

within one flooded area. The number of both flooded and high-risk manholes reduced to 0 after 

optimization. For very limited conduits, the number dropped from 7 to 0 as well. Figures 4.1 

and 4.2 show the test area before and after optimization respectively. 

 

Figure 4.13 Before optimization: existing manhole flooding risks and storm sewer conduit 

(pipe) conditions in the test area. 

Choosing one route (green dash line in Figure 4.3) to check the change between existing and 

optimal, the profiles of both were generated. Figure 4.3 is the profile of the existing route and 

Figure 4.4 is the profile of the optimal route. In the existing profile, there were 5 flooded 

manholes whose HGL was above the ground elevation and these flooded manholes are 
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manholes whose HGL was above the ground elevation and these flooded manholes are 

concentrated upstream of the pipe routes. 

 

Figure 4.14 After optimization: manhole flooding risks and storm sewer conduit (pipe) 

conditions in the test area. 

As it can be seen from the profiles, most of the pipe size were increased to reduce the effect of 

flooding. Obviously, the diameter of the most upstream conduit 1 (NC_10_POI_0065) was 

increased from to 0.375m to 0.525m. Then, from conduit 2 (NC_10_POI_0064) to conduit 3 

(NC_10_POI_0072) the diameter was raised from 0.45m to 0.675m. For conduit 4 

(NC_10_POI_0074), the diameter was changed from 0.525m to 0.9m. The diameter of conduit 

5 (NC_10_POI_0084) to conduit 6 (NC_10_POI_0011) was 0.75 in existing model, and it 

turned to 0.9m after optimization. For the very limited conduit route conduit 7 

(NC_10_POI_0016) to conduit 8 (NC_10_POI_0024), the size increased by 0.15m. The 

diameter of downstream conduit 9 (NC_10_POI_0032) to conduit 10 (NC_10_POI_0027) 
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grew from 1.05m to 1.5m. And the slope of conduit 11 (NC_10_POI_0027) and conduit 12 

(NC_10_POI_0025) had a significant growth, while the elevation of the most upstream and 

downstream junction kept the same as before. As a result, the number of flooded nodes dropped 

to 0 after optimization. Due to the significant improvement of pipe optimization, the 

optimization system was applied to the whole study area to investigate the effect in large scale. 

Meanwhile, overdesign was observed after optimization especially for conduit 9, 10 and 11 

which diameters increased from 1.05m to 1.5m. For the test area, solution with lowest flooded 

node was determined as optimal solution while cost was not considered and this solution have 

not been evolved, so overdesign can be found in some solutions. The tables of conduits in 

selected sewer trunk were presented in table A1 and table A2. 

Figure 4.5 presents the objective function values (number of flooded nodes and cost) of each 

solution. These solutions were not close to the Pareto optimal front as divide and conquer 

technique and evolving process were not applied in test area due to the only one flooded area. 

For solutions with 0 flooded node, the cost ranged from 0.6×106 CAD$ to 0.7×106 CAD$. Also, 

these solutions have not been evolved. 

Yazdi et al. (2016) studied on hydraulic rehabilitation of UDS network by using NSGA-II to 

change pipe size. The case study area consisted of 101 pipes and nodes, and 102 subcatchments 

which were similar to the test area in this study. From the results of optimal solutions, the 

flooded volume decreased from 11m3 to 7m3 when the cost was approximately 1.2×106 

CAD$ (Yazdi et al., 2016). Lin et al. (2020) applied EBDM to do pipe optimization of UDS 

which case study had a drainage area of 29 ha consisting of 53 subcatchments. The results 

showed that the cost was about 1.4 ×106 CAD$ while the flooded volume decreased from 15m3 

to 0 m3 (Lin et al., 2020). However, in this sample test, the flooded volume dropped from 53 

m3to 1 m3 while the cost was around 0.6×106 CAD$ which was half as other studies. The 

comparison indicated a significant improvement in UDS network optimization in this study as 
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the reduction of flooded volume was obvious while the cost was minimal. 

 

Figure 4.15 Before optimization: the profile of the selected storm sewer trunk in the test area. 
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Figure 4.16 After optimization: the profile of the selected storm sewer trunk in the test area. 

 

Figure 4.17 The objective function values of each solution – the number of flooded nodes 

(manholes) vs. cost. 
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4.2 The entire study area 

4.2.1 Results based on 1D model 

284 flooded manholes and 47 high-risk manholes were founded in this study area’s 1D model 

(scenario 1). All these flooded manholes generated 37 flooded areas which are shown in Figure 

4.6. One of the optimal solutions with less flooded nodes was selected as an example of the 

final optimal solution and the results below were based on this final solution. After optimization, 

the number of flooded nodes decreased to 115 and the number of high-risk nodes dropped to 

38 (Figure 4.7). 

 

Figure 4.18 Before optimization: flooded areas in the study area based on the 1D model. 
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Figure 4.19 After optimization: flooded areas in the study area based on the 1D model. 

There was an obvious reduction of flooded nodes in flooded area 1,2 and 21. Figure 4.8 shows 

the comparison in area 1 where the flooded nodes reduced from 68 to 32 and pipe size variation 

is also indicated.  

The profile, including the most upstream conduits 13 (NC_10_PKD_0248) to the most 

downstream conduits 14 (NC_10_MON_0039) which reflected the change of pipe slope and 

size, are presented in Figure 4.9 (existing) and Figure 4.10(optimal). There was a total 15 of 

flooded nodes before originally and the number dropped to 8 after optimization in this profile. 

The invert elevation of the most upstream junction 1 (NJ_10_PKD_0258) and most 

downstream junction 2 (NJ_10_MON_0076) remained the same while the pipe size and slope 

were changed in this area. All the inlet and outlet elevations of conduits were set to the invert 

of the junctions. Comparing the profiles, all of the conduits’ diameter increased in different 

degrees. For instance, the diameter of conduit 13 (NC_10_PKD_0248) increased from 0.375m 
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to 0.6m and the diameter of conduit 15 (NC_10_PKD_0246) increased from 0.6m to 1.05m. 

The CL of conduit 13 and conduit 15 was 0.01 hr and 0.03 hr. Thus, there were 3 increments 

increasing in conduit 13 and 4 increments increasing in conduit 15. Table A3 and Table A4 

present the length, diameter, and slope of conduits in selected sewer trunk. 

 

Figure 4.20 The comparison of Flooded Area 1 in the study area before (left) and after (right) 

optimization, using the 1D model (Scenario 1). The selected route (in green color) is used for 

generating the profile. 
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Figure 4.21 Before optimization: the profile of selected sewer trunk in Flooded Area 1of the 

study area, using the 1D model. 

 

Figure 4.22 After optimization: the profile of selected sewer trunk in Flooded Area 1of the 

study area, using the 1D model. 

By using divide and conquer technique, the study area was divided into 37 flooded areas 
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(Figure 4.6). For each flooded area, the model simulated 20 divide solutions by changing the 

pipe slope and diameter while the rest of 36 areas remained the same. Figure 4.11 presents the 

average reduction number of flooded nodes in the whole study area when each flooded area 

was optimized. For instance, there were 27 reduced flooded nodes which was the average of 

20 divide solutions only when flooded area 1 was optimized and area 2 - area 37 were not 

changed.  

 

Figure 4.23 The average number of flooded nodes reduction in each area (1D model). 

One factor that influenced the reduction number of flooded nodes was the original number of 

flooded nodes. For example, the optimization to area 1, area 2 and area 21 was much effective 

in the reduction of total flooded nodes as these areas had large number of flooded nodes before 

optimization. Area 21 had 28 flooded nodes before optimization and the average reduction was 

19 in this area. For areas including few flooded nodes such as area 10,16, 28 and 37 before 

optimization, the flooded nodes were found not to be reduced on average after optimization. 
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The other factor was the location of the area. For instance, area 26 was located upstream, and 

there were several flooded areas located downstream of area 26. Area 17 was also located 

upstream, but there was no flooded area located downstream. The average reductions of 

flooded nodes were 2 and 6 in area 26 and area 17 respectively. Besides, the optimization to 

some areas such as area 3, 4, 7, 8, 12, 13, 16, 25, 28, 32, 34, 35 and area 37 resulted in an 

increase in the flooded nodes numbers as some changes in pipe size and slope may lead to new 

flooded junctions in other related flooded areas. For example, area 3 and area 4 were located 

upstream, and the optimization to these two areas could lead to an increase in flooded nodes in 

the downstream area. 

Looking through the 37 flooded areas, area 4, 7, 13, 14, 19, 23, 24, 28, 32 and 34 were not 

optimized in the final optimal solution. Among these areas, the average number of flooded 

nodes was rising due to the optimization of area 4, 7, 13 25, 28 and 34. Also, some of these 

areas such as area 14, 23, 24 and 32 only contained a small number of conduits and junctions 

so the optimizations in these areas do not significantly affect the overall flooded number of 

total study area. Considering the fitness of candidate solutions, these areas were determined 

not to be optimized in mutation process so as to reduce the number of pipes that need to be 

changed and control the cost. 
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Figure 4.24 The objective function values of solutions (number of flooded nodes vs. cost), 

obtained by conquer with roulette wheel and by conquer randomly using the 1D model 

(Scenario 1). 

Figure 4.12 describes the difference between conquer technique which using roulette wheel 

and conquer randomly. From the performance of the total of 200 candidate solutions, it is clear 

that conquer using roulette wheel was more effective than conquer randomly. For random 

conquer, there were even more flooded nodes than the initial 284 flooded nodes in some 

candidate solutions and the costs of most candidate solutions with less flooded nodes (160-200) 

are above 1.7×107 CAD. Meanwhile, if roulette wheel was applied, a high percentage of 

candidate solutions reduced the number of flooded nodes while the lowest number of flooded 

nodes was below 120 which was much lower than that in random conquer candidate solutions. 

Also, in this situation, solutions with 160- 200 flooded nodes only costed 0.5×107 – 1.0×107 

CAD which was more economical than conquer randomly. The reason is, by using roulette 

wheel, candidate solutions with higher fitness value were more likely to be selected while 
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random conquer do not considered the fitness value and selected each candidate solution with 

same probability. 

 

Figure 4.25 The objective function values of solutions obtained after conquer technique, 1st 

generation evolving and 20th generation evolving in Scenario 1. 

The evolving process is shown in Figure 4.13 by plotting 100 solutions after evolving for 0, 1 

and 20 generations. These 100 solutions were selected by higher fitness from total of 200 

solutions after evolving. Candidate solutions improved significantly from the 1st to 20th 

generation and were close to the Pareto optimum front. Optimal solutions were more 

concentrative and more like a curve at the 20th generation. 

To determine the generation number, the mutual domination rate (MDR) was calculated with 

Eq. 3.12 by using 100 candidate solutions. The calculate results are presented in Figure 4.14. 

With the growth of iterations number, 𝐼𝑚𝑑𝑟 decreased significantly. At the 20th generation, both 

𝐼𝑚𝑑𝑟 values and linear regression line were all less than 0.1 which proved that solutions in the 
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current generation have limited improvements compared to those in the previous generation 

(Martí et al., 2016). Therefore, the generation number 20 was determined as an appropriate and 

efficient number for the iteration stopping criteria. 

 

Figure 4.26 Calculation results of 𝐼𝑚𝑑𝑟 with generations. 

Table 4.1 presents how the number of non-dominated solutions varies with the number of 

generations. In 1st generation, the number of non-dominated solutions which were the 

“absolute” optimal solutions were only 25 while the number of non-dominated solutions was 

74 in 20th generation as the number of non-dominated solutions increased with the number of 

generations to a large extent. To ensure that the same number of solutions were chosen for 

comparison, 100 solutions were selected from 1st generation even though some dominated 

solutions were included. 
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Table 4.4 The number of non-dominated solutions after each generation 

Generation Non-dominated Solutions 

1 25 

2 31 

3 31 

4 37 

5 42 

6 46 

7 48 

8 50 

9 50 

10 55 

11 57 

12 58 

13 63 

14 66 

15 67 

16 73 

17 73 

18 74 

19 70 

20 74 

Looking at the 20th generation optimal solutions, there were 74 non-dominated solutions. 

Among these solutions, the selected times of each area divide solution were different. For 

example, divide solutions of area 1 were picked 14 times and divide solutions of area 2 were 

picked 67 times. Furthermore, divide solutions of area 5, 20, 21 were selected 69, 36, 26 times 

respectively. From Figure 4.12, it proved that the optimization to area 1, 2, 5, 20, 21 was more 

effective in the reduction of flooded nodes. Thus, divide solutions of these area with higher 

fitness were selected as optimal solutions with higher possibilities, which accelerated the 

convergence of the offspring solutions. On the contrary, divide solutions of area 7, 11, 12, 13, 

14, 15, 23 and 24 were not picked among 74 non-dominated solutions because the optimization 

effects of these area were minimal or even lead to an increase of the flooded nodes. 

From the optimal solution, which flooded areas are suitable for this optimization system of 

changing pipe size and slope can be obviously discovered. The optimal solution provides 

engineers with a tentative idea of expected effect by pipe optimization and corresponding cost. 
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However, this method may be limited for some flooded area, such as area 12 and area 25 To 

figure out this problem, other method, for instance, BMPs and LID, are supposed to be applied 

to improve flood situation. 

4.2.2 Results based on 2D model  

 

Figure 4.27 Before optimization: flooded area in the study area by using the 2D model. 

The result of 2D simulation of existing study area including 28 flooded areas is shown in Figure 

4.15. It was created by using interconnected nodes, cells and links which represent the physical 

features of the area being modeled. 73 flooded manholes and 79 high-risk manholes were found 

in the study area scenario 2. In this study, both optimization results based on scenario 1 and 

scenario 2 were simulated by 2D model to compare with the original 2D model. Under scenario 

1, there were 284 flooded manholes and 342 very limited conduits while the numbers reduced 

to 73 and 294 respectively under scenario 2. And the flooded areas dropped from 37 to 28 when 
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the 1D model converted to 2D model. 

Scenario 1 was using the PCSWMM 1D modelling results of the study area for optimization 

and scenario 2 was using the PCSWMM 2D modelling results for optimization. Thus, scenario 

1 only considered the flood at junctions while in scenario 2 water would spread to the ground 

surface when the junction was flooded. As a result, the HGL in scenario 1 was much higher 

than the HGL in scenario 2, and there were more flooded nodes in scenario 1. 

 

Figure 4.28 After optimization: flooded area in the study area of Scenario 1 by using the 2D 

model. 
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Figure 4.29 After optimization: flooded area in the study area of Scenario 2 by using the 2D 

model. 

After optimization, there were 30 flooded nodes and 30 high-risk nodes in 2D model of scenario 

1 (Figure 4.16). And 44 flooded nodes and 59 high-risk nodes were found in 2D model of 

scenario 2 (Figure 4.17). The total area of surface flooding in existing condition (Figure 4.15) 

was 13.17ha and the total area of surface flooding after optimization (Figure 4.16 and Figure 

4.17) were 3.67ha and 11.03ha, separately. Compared to Figure 4.17, the improvement of 

surface flooding was more significant in Figure 5.16 as less area of surface flooding was 

observed. 

Figure 4.18 compares flooded area 6 in existing and optimal study area 2D model of scenario 

1 and Figure 4.19 compares flooded area 6 in existing and optimal study area 2D model of 

scenario 2.  In existing area, large-scale of surface flooding were founded surrounding area 6. 

As shown in Figure 4.18, it is obvious that the flooded nodes in area 6 decreased from 11 to 3 
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when most of conduits were upsized. At the same time, the large-scale surface ponding in 

existing model almost disappeared when the flooding depth decreased below 0 after 

optimization. However, the improvement of optimization results in scenario 2 (Figure 4.19) 

was not significant as scenario 1 as there was only one reduction number of flooded nodes even 

if most of pipes were upsized. In addition, the flooding depth decreased slightly in this area 

whereas large-scale of surface flooding still existed after optimization. 

 

Figure 4.30 The comparison of Flooded Area 6 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 2D model. The selected sewer trunk route (green 

color) is used for generating the profile. 



68 
 

 

Figure 4.31 The comparison of Flooded Area 6 in the study area before (left) and after (right) 

optimization, under Scenario 2 by using the 2D model.  

The 2D modeling profiles of a typical route in flooded area 6 before and after optimization in 

profile are compared in Figure 4.20 and Figure 4.21. A total of 4 flooded nodes were observed 

in existing profile and there was only 1 flooded node after optimization. The slope of this pipe 

route was decreased slightly while all of conduits were upsized. For instance, the diameter of 

conduit 16 (NC_10_PKD_0285) and conduit 17 (NC_10_PKD_0255) increased from 0.45m 

to 0.6m and 0.9m to 1.05m respectively. The length, diameter and slope of conduits in selected 

sewer trunk were shown in Table A5 and Table A6. 
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Figure 4.32 Before optimization: the profile of selected storm sewer trunk route in Flooded 

Area 6 of the study area, using the 2D model. 

 

Figure 4.33 After optimization: the profile of selected storm sewer trunk route in Flooded Area 

6 of the study area, under Scenario 1 by using the 2D model. 

The comparison of solutions’ objective function values obtained by conquer with roulette 
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wheel in scenario 1 and scenario 2 is shown in Figure 4.22. The objective function values of 

conquer solutions in scenario 1 were more evenly dispersed, whereas the values in scenario 2 

concentrated around 280 of flooded nodes which was closed to existing flooded nodes. It 

indicated that the result based on scenario 1 is more effective than the result based on scenario 

2. Because the number of changed pipe was larger in scenario 1 as there were more flooded 

nodes and very limited conduits in scenario 1. 

 

Figure 4.34 The comparison between Scenario 1 and Scenario 2 for conquer solutions’ 

objective function values (number of flooded nodes vs. cost). 

Figure 4.23 presents the objective function values of solutions obtained after conquer technique, 

1st generation of evolving and 20th generation of evolving in scenario 2. Compared to conquer 

solutions and 1st generation solutions, 20th generation solutions were more like a curve. The 

number of flooded nodes reduced to about 250 in some of 20th generation solutions while the 

number of 1st generation solutions was around 270 which were close to conquer solutions. 
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However, the improvement from 1st generation solutions to 20th generation solutions in 

scenario 2 was not as significant as it in scenario 1 when compared with Figure 4.12. 

 

Figure 4.35 The objective function values of solutions obtained after conquer technique, 1st 

generation of evolving and 20th generation of evolving in scenario 2. 

Although these results were compared in 2D model, all the optimal processes in MATLAB 

were through 1D modeling. The main reason is that PCSWMM is not an open-source software, 

the open-source code MATLAB using is from EPASWMM. However, there is no 2D model in 

EPASWMM. Even if the source code of PCSWMM is opened, another limitation is that doing 

2D modeling is time-consuming as it costs about 3 hours to run a 2D model for one time. 

During the process of optimization, the model needs to be run for 2660 times in total. If 2D 

modeling is applied in optimal process, the running time of the model in MATLAB will exceed 

330 days. Although parallel computing is applied, the total running time would be shorten to 

approximately 30 days as parallel computing cannot ensure the running speed of each core is 
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same and running speed is limited by computer memory. Overall, doing 2D modeling in 

MATLAB optimal process is still unpractical.  

Compared 2D model and 1D model, the pipe variation in 1D model is more effective before 

and after optimization as the flooded manholes reduced from 284 to 115 in 1D model. In 

addition, 1D model focused on the stormwater pipe system, while 2D model took surface 

flooding into consideration. In this study, the optimization aimed at changing of stormwater 

pipe size and slop but not surface condition. Therefore, 1D modeling, which is more intuitive 

and efficient, should be used to verify the effect of the pipe optimization system. 

4.2.3 Limitations 

Although the optimization method in this study gives users flexibility in using it in different 

study areas, in different scales and with customized modifications, some limitations still exist 

in this study. First, the invert elevation at the junction were assumed the same as the inlet and 

outlet elevations of connected sewer pipes but in most engineering cases there are differences 

between the invert elevation at the junction and the inlet and outlet elevations of connected 

sewer pipes. Also, pipes were connected based on the bottom of pipe in this study however 

different pipe connection methods are applied in practical engineering. Second, this study 

assumed that the downstream pipe size cannot be less than the upstream pipe size. But in 

practical engineering, the downstream pipe can be found to be smaller than the upstream pipe 

size in some cases, where the downstream pipe slope is larger and thus the downstream pipe 

capacity is larger or equivalent, compared to the upstream pipe. 

Third, there is a limit to the number of increments to increase the pipe size in the optimization, 

in which the maximum increments for raising pipe size were limited to four. However, the 

magnitude of pipe size and slope variation depends on actual engineering conditions and 

topographical conditions. The pipe size was only considered to be upsized or remain the same 
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when determining the initial candidate solutions, i.e., decrease of pipe size was not considered. 

Therefore, overdesign can be observed in some areas especially for the test area as solutions 

were not evolved in the test area. And this method does not consider drop manholes which are 

utilized in steep areas or when the inlet pipe has an invert elevation significantly higher than 

the invert of the outlet pipe.  

Moreover, when varying the pipe size, all pipes were assumed to be circular pipes and only the 

diameters are changed. But in the original situation, there are a small number of pipes in 

rectangular shape. For this type of pipes, only the heights (maximum depth of cross section) 

were changed while the widths remained the same. And velocity in sewer pipes was not 

considered in this study. 

At last, the method in this study is only suitable for SWMM models including PCSWMM, 

EPASWMM, XPSWMM, etc., and cannot be used for other stormwater management software 

(e.g., MIKE) because they are not open-source software. And all the optimal process in 

MATLAB were through the 1D modeling as the 2D modeling is too time-consuming and it 

cannot be applied to MATLAB optimal process.  
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5 Conclusion and future research 

5.1 Conclusion 

In this study, a multi-objective optimization algorithm based on PICEA-g for a large-scale 

storm sewer network optimization has been proposed, which can be also applied to sanitary 

sewer network. Sewer pipe size and slope were determined as decision variables, and the 

number of flooded nodes and cost were taken as objective functions. The new optimization 

system can be used as a tool to assist drainage network engineers, managers and other decision 

makers in developing optimization strategies and projects for sewer system rehabilitation or 

upgrade to mitigate urban pluvial flooding in the context of climate change and increased 

anthropogenic activities. 

Differing from previous optimization algorithms in the literature, significant improvements 

were made to the optimization algorithm, including new approaches for initializing candidate 

solutions, applying divide and conquer technique, enhanced goal vector boundaries and fitness 

calculation, and enhanced genetic operators by adopting the logistic map and roulette wheel. 

These improvements were demonstrated to significantly enhance the algorithm’s performance. 

Specific and detailed improvements are as follows: (1) The initial candidate solutions were 

created diversely to cover the entire possible value range of objective functions and to avert 

the aggregation of produced optimal solutions so that the non-dominated solutions can be closer 

to the Pareto optimal front. (2) At the same time, the creation of candidate solutions was limited 

by decision variable constraints to ensure the pipe connection and follow the UDS design 

criteria. (3) In the process of divide and conquer, the optimization process was first decomposed 

for each individual flooded area, and then these divide solutions were combined by conquer 

technique into new sets of conquer solutions for the entire study area. (4) With the aid of 

roulette wheel, areas and divide solutions with a higher ratio of flooded nodes had a higher 
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chance of being selected by conquer technique. (5) Cutting plane was utilized in this study to 

sort candidate solutions and increase their diversity by keeping each goal vector useful with 

modified genetic operators. (6) In addition, enhanced fitness calculation helped sort the 

dominance relationships between candidate solutions. (7) In evolving process, the logistic map 

generated a chaotic sequence that increased the randomness and diversity of offspring solutions 

and roulette wheel helped accelerate the convergence of the offspring solutions.  

Compared with previous studies that only optimized sewer pipe size in a small area (with less 

than 100 pipes), this study considered the optimizations of both sewer pipe size and slope in a 

real-life, complex storm sewer network in a large area (with 2930 pipes) to improve its 

performance in urban pluvial flooding. The new optimization system was first demonstrated in 

a small test area, and then in the entire study area. For the test area, the flooded manholes and 

high-risk manholes were reduced from 15 and 7 to 0 after optimization at a cost of 0.6×106 

CAD$. The comparison with previous case studies indicated a significant improvement in 

sewer network optimization in this study because the reduction of flooded volume was 

substantial while the cost was minimal.  

For the entire study area, the flooded manholes decreased from 284 to 115 after the 

optimization and high-risk manholes decreased from 47 to 38 using the 1D model at a cost of 

17×106 CAD$. Using the 2D model, the flooded nodes dropped from 73 to 30 and 44 under 

Scenarios 1 and 2, respectively, where Scenario 1 was the condition that using the PCSWMM 

1D modelling results of the study area for optimization and scenario 2 was the condition that 

using the PCSWMM 2D modelling results of the study area for optimization. Also, the high-

risk manholes dropped from 79 to 30 and 59 under Scenarios 1 and 2, respectively; and the 

cost was around 2.5×106 CAD$ when using scenario 2. In this study, results from the 1D 

modeling were more intuitive and efficient to verify the effect of storm sewer pipe system 

optimization as they aimed at sewer pipe size and slope variations, without consideration of 
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ground surface condition. In practical engineering, the optimal solution can be chosen and 

modified in accordance with other constraints, such as engineering design criteria, budget 

availability and risk assessment.  

5.2 Future research 

For future research, further improvements to the proposed optimization system can be made in 

the following aspects. As the current optimization only focuses on changing sewer pipe size 

and slope, the improvements to urban flooding are still limited. In order to better solve this 

problem, other measures such as dry ponds, storage tanks, LID and BMPs can be combined 

with varying sewer pipe size and slope so that better flood mitigation effect of urban drainage 

system can be achieved. In this study, the study area was divided into different flooded areas, 

and flooded areas where pipe upgrades had a marginal effect have been found. Thus, these 

flooded areas could be prioritized for adding dry ponds and storage tanks or applying LID and 

BMPs in future research. For implementing LID-BMPs, incorporating GIS information and 

conducting geodata analysis automatically can help to identify the feasible location. 

Currently, the way to determine the selection of decision variables is through junction HGL, 

and the optimization is only focused on pipes in selected flooded areas generated by flooded 

nodes. Also, the way to adjust pipe size and slope is based on current pipe capacity limitation. 

Other criteria and parameters, such as hours flooded, total flood volume, maximum flood rate, 

etc., can be used to choose the decision variables and figure out the sewer pipe optimization 

range in study area to achieve more effective solutions. 

Besides, the optimization system in this study aims at storm sewer network based on the 

PCSWMM model. To expand the scope of application, this optimization system needs to be 

adjusted to sanitary system or combined system and incorporate other stormwater management 

software such as MIKE in future studies. In this way, the proposed optimization system can 
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better provide reliable optimization solutions to decision makers when facing different 

engineering optimization problems. Also, other algorithms, such as NSGA-II and ε-MOEA, 

can be used in same study area to compare with the solutions generated from PICEA-g. 

At last, the engineering practicability of this method is supposed to be improved. For instance, 

the upgrades of pipe size were limited to 4 increments in this study, but the magnitudes of pipe 

size and slope variations depend on actual engineering conditions and topographical conditions. 

And a drop manhole can be utilized in steep ground areas or where the elevation of the inlet 

pipe is much higher than the elevation of the outlet pipe. Thus, GIS can be incorporated for 

decision making and Python can be used instead of MATLAB as it has geodata analysis 

packages such as Geopanda and GDAL. Incorporating GIS can help us not just change the 

current pipe system and adjust pipe slope with topographical conditions but also add drop 

manholes at feasible locations. 
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Appendix 

Example A1. An example of Eq. 3.5-3.7 

An example of an optimization problem with 2 minimizing objectives, 4 candidate solutions, 

and 4 goal vectors are used in Paknejad et al. (2021) to explain this fitness method as shown in 

Figure A1.  

Figure A1 An example of how to calculate fitness value in a two-objective problem (Paknejad 

et al., 2021) 

Candidate solutions CS2 and CS4 are parent solutions while CS1 and CS3 are offspring solutions, 

so N = 2. In this example, the fitness values of the four candidate solutions are calculated as: 
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𝐹𝑖𝑡𝑐𝑠3 =
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In this case, the fitness values of CS1 and CS2 are the same while CS3 is dominated by CS4. 

Using the calculation of fitness value of CS3 as an example, gv3 and gv4 are the two goal vectors 

that are dominated by CS3. Therefore, the fitness value of CS3 is equal to the sum of 
1

𝑛𝑔𝑣3
 and 

1

𝑛𝑔𝑣4
. 

The fitness values of the four goal vectors are calculated as: 
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Example A2. An example of Eq. 3.8-3.9 

New fitness values of the four candidate solutions are calculated as (Yu et al, 2022): 

𝑟𝑎𝑛𝑘𝑐𝑠1 = 1 + 0 = 1    
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𝑟𝑎𝑛𝑘𝑐𝑠2 = 1 + 1 = 2    

𝑟𝑎𝑛𝑘𝑐𝑠3 = 1 + 0 = 1    

𝑟𝑎𝑛𝑘𝑐𝑠4 = 1 + 1 = 2    

 𝐹𝑖𝑡𝑐𝑠1 =
1

𝑛𝑔𝑣1
× 𝐹𝑖𝑡𝑔𝑣1 +

1

𝑛𝑔𝑣2
× 𝐹𝑖𝑡𝑔𝑣2 +

1

𝑛𝑔𝑣3
× 𝐹𝑖𝑡𝑔𝑣3 +

1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠1

=
1

2
×

3

4
+

1

2
×

3

4
+

1

3
×

3

5
+

1

4
×

1

2
+

1

1
=

22

10
 

𝐹𝑖𝑡𝑐𝑠2 =
1

𝑛𝑔𝑣1
× 𝐹𝑖𝑡𝑔𝑣1 +

1

𝑛𝑔𝑣2
× 𝐹𝑖𝑡𝑔𝑣2 +

1

𝑛𝑔𝑣3
× 𝐹𝑖𝑡𝑔𝑣3 +

1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠2

=
1

2
×

3

4
+

1

2
×

3

4
+

1

3
×

3

5
+

1

4
×

1

2
+

1

2
=

17

10
 

𝐹𝑖𝑡𝑐𝑠3 =
1

𝑛𝑔𝑣3
× 𝐹𝑖𝑡𝑔𝑣3 +

1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠3
=

1

3
×

3

5
+

1

4
×

1

2
+

1

1
=

53

40
 

𝐹𝑖𝑡𝑐𝑠4 =
1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠4
=

1

4
×

1

2
+

1

2
=

5

8
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Figure A2 The comparison of Flooded Area 1 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A3 The comparison of Flooded Area 2 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A4 The comparison of Flooded Area 3 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A5 The comparison of Flooded Area 4 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A6 The comparison of Flooded Area 5 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A7 The comparison of Flooded Area 6 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A8 The comparison of Flooded Area 7 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A9 The comparison of Flooded Area 8 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A10 The comparison of Flooded Area 9 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A11 The comparison of Flooded Area 10 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A12 The comparison of Flooded Area 11 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A13 The comparison of Flooded Area 12 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A14 The comparison of Flooded Area 13 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A15 The comparison of Flooded Area 14 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 



99 
 

 

Figure A16 The comparison of Flooded Area 15 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A17 The comparison of Flooded Area 16 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A18 The comparison of Flooded Area 17 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A19 The comparison of Flooded Area 18 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A20 The comparison of Flooded Area 19 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A21 The comparison of Flooded Area 20 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A22 The comparison of Flooded Area 21 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A23 The comparison of Flooded Area 22 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A24 The comparison of Flooded Area 23 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A25 The comparison of Flooded Area 24 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A26 The comparison of Flooded Area 25 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A27 The comparison of Flooded Area 26 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A28 The comparison of Flooded Area 27 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A29 The comparison of Flooded Area 28 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 



106 
 

 

Figure A30 The comparison of Flooded Area 29 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A31 The comparison of Flooded Area 30 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A32 The comparison of Flooded Area 31 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A33 The comparison of Flooded Area 32 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A34 The comparison of Flooded Area 33 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A35 The comparison of Flooded Area 34 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A36 The comparison of Flooded Area 35 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 

 

Figure A37 The comparison of Flooded Area 36 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Figure A38 The comparison of Flooded Area 37 in the study area before (left) and after (right) 

optimization, under Scenario 1 by using the 1D model. 
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Table A1 Before optimization: the selected conduits of the storm sewer trunk in the test area. 

Name Length 

(m) 

Geom1 

(m) 

Slope 

(m/m) 

NC_10_POI_0011 33.6 0.75 0.00080 

NC_10_POI_0015 6.96 0.75 0.00086 

NC_10_POI_0016 68.04 0.9 0.00220 

NC_10_POI_0020 68.95 0.9 0.00244 

NC_10_POI_0023 38.1 1.35 0.00992 

NC_10_POI_0024 48.08 0.9 0.00146 

NC_10_POI_0025 9.14 1.35 0.08576 

NC_10_POI_0027 24.38 1.05 0.00837 

NC_10_POI_0028 73.96 1.05 0.00251 

NC_10_POI_0032 116.42 1.05 0.00228 

NC_10_POI_0064 21.93 0.45 0.00483 

NC_10_POI_0065 79.02 0.375 0.02353 

NC_10_POI_0067 36.91 0.45 0.00125 

NC_10_POI_0069 26.6 0.45 0.00229 

NC_10_POI_0072 48.8 0.45 0.00316 

NC_10_POI_0074 68.26 0.525 0.00819 

NC_10_POI_0084 27.05 0.75 0.00362 

NC_10_POI_0089 67.34 0.75 0.00235 

 

Table A2 After optimization: the selected conduits of the storm sewer trunk in the test area. 

Name Length 

(m) 

Geom1 

(m) 

Slope 

(m/m) 

NC_10_POI_0011 33.6 0.9 0.00380 

NC_10_POI_0015 6.96 1.05 0.03272 

NC_10_POI_0016 68.04 1.05 0.00100 

NC_10_POI_0020 68.95 1.05 0.00272 

NC_10_POI_0023 38.1 1.35 0.00992 

NC_10_POI_0024 48.08 1.05 0.00100 

NC_10_POI_0025 9.14 1.35 0.08576 

NC_10_POI_0027 24.38 1.5 0.05398 

NC_10_POI_0028 73.96 1.5 0.00100 

NC_10_POI_0032 116.42 1.5 0.00100 

NC_10_POI_0064 21.93 0.675 0.00110 

NC_10_POI_0065 79.02 0.525 0.01664 

NC_10_POI_0067 36.91 0.675 0.00324 

NC_10_POI_0069 26.6 0.675 0.00110 

NC_10_POI_0072 48.8 0.675 0.00411 

NC_10_POI_0074 68.26 0.9 0.00100 

NC_10_POI_0084 27.05 0.9 0.00310 

NC_10_POI_0089 67.34 0.9 0.00100 
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Table A3 Before optimization: the selected conduits of the storm sewer trunk in the study area, 

using the 1D model. 

Name Length 

(m) 

Diameter 

(m) 

Slope 

(m/m) 

NC_10_MON_0022 39.43 1.65 0.00276 

NC_10_MON_0023 123.75 1.65 0.00297 

NC_10_MON_0030 24.18 1.65 0.03936 

NC_10_MON_0039 108.59 1.65 0.00307 

NC_10_MON_0041 70.59 1.65 0.00278 

NC_10_PKD_0179 11.32 0.9 0.00097 

NC_10_PKD_0199 30.87 1.05 0.00198 

NC_10_PKD_0200 9.5 1.05 0.00211 

NC_10_PKD_0201 46.66 1.05 0.00199 

NC_10_PKD_0202 53.7 1.05 0.00181 

NC_10_PKD_0203 15.3 0.9 0.00229 

NC_10_PKD_0204 58.81 0.9 0.00221 

NC_10_PKD_0222 90.35 0.6 0.00423 

NC_10_PKD_0236 63 0.6 0.00460 

NC_10_PKD_0246 26.89 0.6 0.00446 

NC_10_PKD_0248 40 0.375 0.01215 

NC_10_PKD_0249 4 0.6 0.01225 

NC_10_PKD_0255 49.86 0.9 0.00201 

NC_10_PKD_0260 16.63 0.9 0.00204 

NC_10_PKD_0264 30.79 0.75 0.00299 
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Table A4 After optimization: the selected conduits of the storm sewer trunk in the study area, 

using the 1D model. 

Name Length 

(m) 

Diameter 

(m) 

Slope 

(m/m) 

NC_10_MON_0022 39.43 1.8 0.00768 

NC_10_MON_0023 123.75 1.8 0.00381 

NC_10_MON_0030 24.18 1.8 0.04219 

NC_10_MON_0039 108.59 1.65 0.00307 

NC_10_MON_0041 70.59 1.8 0.00222 

NC_10_PKD_0179 11.32 1.95 0.00100 

NC_10_PKD_0199 30.87 1.2 0.00193 

NC_10_PKD_0200 9.5 1.2 0.00198 

NC_10_PKD_0201 46.66 1.2 0.00276 

NC_10_PKD_0202 53.7 1.2 0.00220 

NC_10_PKD_0203 15.3 1.05 0.00333 

NC_10_PKD_0204 58.81 1.05 0.00221 

NC_10_PKD_0222 90.35 1.05 0.00423 

NC_10_PKD_0236 63 1.05 0.00508 

NC_10_PKD_0246 26.89 1.05 0.00484 

NC_10_PKD_0248 40 0.6 0.00168 

NC_10_PKD_0249 4 0.675 0.01178 

NC_10_PKD_0255 49.86 1.05 0.00201 

NC_10_PKD_0260 16.63 1.05 0.00204 

NC_10_PKD_0264 30.79 1.05 0.00299 
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Table A 5 Before optimization: the selected conduits of the storm sewer trunk in the study area, 

using the 2D model. 

Name Length 

(m) 

Diameter 

(m) 

Slope 

(m/m) 

NC_10_PKD_0201 46.66 1.05 0.00199 

NC_10_PKD_0202 53.7 1.05 0.00181 

NC_10_PKD_0203 15.3 0.9 0.00229 

NC_10_PKD_0204 58.81 0.9 0.00221 

NC_10_PKD_0255 49.86 0.9 0.00201 

NC_10_PKD_0260 16.63 0.9 0.00204 

NC_10_PKD_0264 30.79 0.75 0.00299 

NC_10_PKD_0267 20.95 0.75 0.00420 

NC_10_PKD_0271 6.85 0.75 0.00292 

NC_10_PKD_0275 44.64 0.75 0.00202 

NC_10_PKD_0277 34.16 0.375 0.00650 

NC_10_PKD_0280 52.56 0.75 0.00200 

NC_10_PKD_0282 33.38 0.45 0.00653 

NC_10_PKD_0285 44.31 0.45 0.00650 

NC_10_PKD_0290 28.95 0.45 0.00290 

NC_10_PKD_0291 46.03 0.675 0.00202 

NC_10_PKD_0294 30.44 0.675 0.00204 

Table A6 After optimization: the selected conduits of the storm sewer trunk in the study area 

under scenario 1, using the 2D model. 

Name Length 

(m) 

Diameter 

(m) 

Slope 

(m/m) 

NC_10_PKD_0201 46.66 1.2 0.00274 

NC_10_PKD_0202 53.7 1.2 0.00220 

NC_10_PKD_0203 15.3 1.05 0.00333 

NC_10_PKD_0204 58.81 1.05 0.00221 

NC_10_PKD_0255 49.86 1.05 0.00201 

NC_10_PKD_0260 16.63 1.05 0.00204 

NC_10_PKD_0264 30.79 1.05 0.00299 

NC_10_PKD_0267 20.95 0.9 0.00420 

NC_10_PKD_0271 6.85 0.9 0.00818 

NC_10_PKD_0275 44.64 0.9 0.00202 

NC_10_PKD_0277 34.16 0.525 0.00345 

NC_10_PKD_0280 52.56 0.9 0.00150 

NC_10_PKD_0282 33.38 0.6 0.00923 

NC_10_PKD_0285 44.31 0.6 0.00650 

NC_10_PKD_0290 28.95 0.6 0.00290 

NC_10_PKD_0291 46.03 0.9 0.00202 

NC_10_PKD_0294 30.44 0.9 0.00204 

 


