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Abstract

Data transfers happen frequently in server clusters for software and application de-

ployment, and in parallel computing clusters to transmit parameters in batches among

servers between computation stages. This thesis presents Cooper, an optimized proto-

type system to speedup multi-batch data transfers among a cluster of servers, leveraging

a theoretically proven optimal algorithm called “permutation gossip” which employs ran-

domly permuted node connections to best utilize bandwidth and random linear code to

maximize the useful information transmitted. By chunking the file into a proper num-

ber of blocks, we present a pipelining technique to parallelize the coding operation and

network transfer on the process level, realizing the theoretically promised benefits of

random linear codes. More importantly, for batch-based or multi-file transfers, we pro-

pose priority-based scheduling algorithms to overlap the transfers of different batches,

which further reduce the transfer finish time of each batch, while only delaying the first

batch for a constant time. We present an asynchronous and distributed prototype im-

plementation of Cooper and deploy it on Amazon EC2 for evaluation. Based on results

from real experiments, we show that Cooper can significantly speedup data transfers

and reduce redundant transmissions in server clusters as compared to state-of-the-art

content distribution tools, including BitTorrent and an optimized random-block transfer

strategy based on buffer negotiation in a wide range of practical settings.
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Chapter 1

Introduction

Data transfers frequently happen in server clusters comprised of loosely or tightly con-

nected computers that work together to conduct scientific experiments, perform enter-

prise operations, or accomplish parallel computing tasks. For example, in a university

laboratory, educational program and software may need be distributed to every com-

puter for student lab sections, while on another day all the laboratory servers may need

be reinstalled with customized applications to run scientific experiments. As another

example, in iterative parallel computing clusters such as Spark [2] and Dryad [3], which

are designed to solve machine learning tasks in parallel, large amounts of parameters

and intermediate calculations must be transferred among servers between computation

stages, as shown in Fig. 1.1. Measurements [1] show that data transfers can consume

40%−50% of the total algorithm running time in such computing clusters, for tasks like

movie recommendation through collaborative filtering [4], and spam link identification

on Twitter [5]. In all the abovementioned jobs, an efficient content distribution utility

is needed to expedite data dissemination among a cluster of servers.

This thesis presents Cooper (COding On PERmutation topologies), an optimized pro-

totype system to speedup data dissemination in server/computing clusters. Cooper

arranges all nodes in time-varied random permutations so that each node transmits a

coded block to its successor by randomly combining all the blocks it holds using random

linear network coding (RLNC) [6]. Since computers in a cluster are usually connected

1
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Figure 1.1: The workflow of a collaborative filtering algorithm in a computing cluster
[1].

through fast local area networks (LAN) with homogenous and easily configurable net-

work and disk I/O capacities, permuted connections are not only feasible, but also able

to utilize network bandwidth optimally.

In fact, prior theoretical studies have analyzed the time of broadcasting k blocks from a

single source to n− 1 nodes, where each node can upload 1 block and download 1 block

per round. It is well known that the optimal broadcast finish time in such a scenario is

k + dlog2 ne, which can be achieved by a fully centralized and thus impractical sender-

receiver pairing and block selection schedule [7]. In comparison, with coded permutation

gossip, where a random permutation of all nodes is formed in each round and each node

transmits a coded block to its immediate successor, the broadcast can finish within time

k + O(log n + log k) with high probability. Simulations further show that the coded

permutation gossip finishes within time k + dlog2 ne+ C [8], with C ≈ 4, which is close

to the theoretical limit of k+ dlog2 ne rounds. Therefore, Cooper enjoys the advantages

of gossiping protocols in terms of robustness and ease to manage, while still achieving

near-optimal utilization of network resources as in tree-packing structured multicast.

This thesis takes one step further to implement and optimize the coded permutation

gossip in reality, while asking the following questions: 1) With encoding and decoding

latencies considered, can coded transmission indeed achieve its theoretically-promised

benefit and how? 2) Given a file of a fixed size, how many blocks should the file be

chuncked into to achieve the best performance in practice? 3) Is it faster to distribute
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a large file as a whole or divide the file into smaller batches and distribute the batches

instead? 4) If multiple batches of data are distributed, can we intelligently schedule

different batches so that each batch will finish earlier than if transferred sequentially

one after another?

To answer these questions, this thesis incorporate multiple inventions in the design of

Cooper to boost up performance in practice. First, a pipelining technique is proposed

to perform coding operations and data transfers as parallel processes on each node,

which successfully hides coding latency when chunking the file into a fine-tuned num-

ber of blocks. Second, an asynchronous transfer control model is adopted to convert

the time-slotted theoretical model into real implementation. Third, this thesis con-

sider multi-batch data distribution, and propose a priority-based scheduling strategy to

smartly overlap the distribution of consecutive batches. Based on some derived theoret-

ical insights, this thesis proposes a smart overlapping scheme for multi-batch scheduling

to reduce the total broadcast finish time. Fourth, the feasibility of using off-the-shelf

commodity multi-core processors is discussed on an asynchronous yet fine-tuned coding-

transfer pipeline to further enhance performance.

I have prototyped Cooper, using Apache Thrift [9], a software library developed at Face-

book to expedite development and implementation of efficient and scalable backend

services as well as Boost C++ libraries [10] on Linux Systems. While leveraging in-

sights from time-slotted theoretical analysis, Cooper does not require synchronized im-

plementation, but allows nodes to perform encoding, decoding, local transfer controls

and inter-batch scheduling in a completely asynchronous manner. Specifically, Cooper

runs multiple processes on each node and exploits process-level parallelism to optimally

pipeline coding operations and sending/receiving actions. In addition, it can also utilize

the multi-core processors widely available on most modern servers to launch multiple

light-weight encoders, which further expedite the broadcast process.

I deploy Cooper on Amazon EC2 [11] and perform extensive experiments to verify the

various proposed theoretically inspired algorithms and demonstrate that Cooper can

reduce the time to broadcast a single file by 40% over a state-of-the-art BitTorrent

[12] system and a random block dissemination scheme with buffer negotiation in real

computing clusters in the cloud. Moreover, I show the counter-intuitive result that

by temporarily prioritizing later batches or files, the inter-batch scheduling algorithm
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in Cooper can beat the more intuitive early-batch-first strategy, and significantly out-

performs sequential dissemination of multiple batches, which is a common practice in

today’s systems.



Chapter 2

System Model and Background

Consider a theoretical model for data transfers in clusters. The server cluster over which

data dissemination is performed is modeled as a network of n nodes, where each node

can transmit packets to any other node through a TCP connection. The data to be

disseminated is divided into k uniform-sized blocks. Assume the time is slotted and

data transfer happens in rounds. Each node can send (upload) at most 1 data block to

another node and receive (download) at most 1 data block from another node in each

round. The reason is that servers installed in a same generation can be viewed to have

homogeneous I/O capacities and network bandwidth. The objective is to disseminate

all k blocks to all n nodes from a single source or multiple source nodes. Apparently,

the most time-consuming case is one-to-all transfer or broadcast, where only a single

source node holds all k blocks initially. In this thesis, I focus on such a challenging case

of broadcast transfer, as illustrated by the example in Fig. 1.1.

The above model is more suitable to a server cluster or computing cluster than an

Internet overlay network. Nodes in a server cluster usually have similar configurations

of CPU, memory and network I/O. Furthermore, cluster nodes are often collocated

geographically in enterprises, campus networks or datacenters, so that it is easy to

estimate network condition and reserve bandwidth. These facts eliminate the need

for sophisticated bandwidth allocation schemes (such as tree-packing) as required in

structured multicast over a heterogeneous network and justifies the feasibility of using

simple gossip-like protocols to best utilize network bandwidth.

5
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2.1 Gossips and Permuted Gossips

It is a classical result that in broadcast transfer, if each node can upload at most 1

block to another node and download at most 1 block from another node per round, the

best possible broadcast finish time is k + dlog2 ne rounds, which can be achieved by a

fully centralized sender-receiver pairing schedule and block selection strategy [7]. Since

centralized scheduling is not practical, decentralized gossip schemes have been heavily

studied to approach the above limit.

The random phone call (or random contact) is the most popular model in gossiping

literature [13], where in each round, each node chooses a random node as its receiver (or

sender) to push (or pull) a block. Under this model [13], if each node holds one of the k

blocks initially, and in each round transmits a coded block (using RLNC) to a random

receiver, the finish time is ck+O(
√
k log(k) log(n)) rounds with high probability, where c

is a constant between 3−6. This bound is further tightened in [14], which proves a finish

time of k+o(k) for the pull version. However, these results hold only if every node holds

a subset of k blocks initially, which is not broadcast transfer. More importantly, they

assume each node’s download capacity (or upload capacity in the pull case) can exceed 1

block per round, since there may be multiple nodes pushing to (or pulling from) a node

at the same time. This assumption is hard to justify for servers in a cluster with roughly

uniform capacities. On the other hand, with random phone call, some nodes may not be

chosen by any senders (or receivers) in a round, which will cause link underutilization.

A new class of “controlled” gossips is described in [15], [8] based on a simple permutation

rule that does not violate the node upload/download capacity of 1 block per round while

achieving better link utilization:

RLNC + Random Permutation: In each round, a uniformly random permutation,

u1, u2, . . . , un of all n nodes is formed, such that node ui, 1 ≤ i < n, sends a coded block

(encoded with RLNC) to node uj where j = i+ 1 mod n.

The permutation rule can be easily realized in a computing cluster, where we have

almost homogeneous server download/upload capacities with full control of the server

connection topology. On the other hand, with permutation-based receiver selection,

data transmission is still fully distributed via RLNC. Therefore, this semi-decentralized

algorithm acts like a “controlled gossip”, taking advantage of full control over topologies,
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while avoiding the hassle of scheduling large amounts of block transfers. In other words,

the coded permutation gossip enjoys the high network utilization of structured multicast

as well as the robustness and ease of distributed implementation in gossip-like protocols.

In theory, Random Permutation with RLNC has dramatically reduced the broadcast

finish time to k + O(log n+ log k) rounds (with high probability for a field size q > n),

which is close to the aforementioned theoretical limit of k + dlog2 ne, without violating

the node upload/download capacity constraint. Simulation has shown that for a field

size of q = 28, k = 200 and n varied between 20 and 300, the broadcast finish time

of Random Permutation with RLNC is almost always within k + dlog2 ne + C rounds,

with C = 4. In contrast, the finish time of Random Permutation with a Random Block

scheme (that like BitTorrent, transmits a random block held by the sender but not the

receiver) could be 30− 50 rounds more than the theoretical limit k + dlog2 ne.



Chapter 3

Pipelining

In this chapter, I ask — can we still achieve the theoretically alleged benefit of coded

permutation gossip in practice, if we consider encoding and decoding latencies? I show

that if we arrange the coding and transmission in a computing pipeline, where the

output of the coding (transmission) is the input of transmission (coding), coding and

transmission can be done in parallel, with coding latency hided, when the number of

blocks k reaches a sweet spot k∗.

To answer the above question, realistic parameters are assigned to the time-slotted model

described in Chapter 2. Assume the file is F MB, chunked into k blocks, each of size

B = F/k, and the download and upload capacities of each node are both W Mbps. Now

the real time span of each round is T = B/W = F/kW . Since the broadcast finish time

of Random Permutation + RLNC is always within k+ dlog2 ne+C rounds with C = 4,

its real finish time appears to be given by

TTransfer = (k + dlog2 ne+ C) · T

= (k + dlog2 ne+ C) · F
kW

=

(
1 +
dlog2 ne+ C

k

)
F

W

When the file size F , bandwidth W , number of nodes n are fixed, the larger the k is,

the smaller the finish time. When k →∞, surprisingly, the finish time of the last node

and every node will be F/W . This means that when k → ∞, each node can download

the file from the source as if there are no other nodes competing for bandwidth. In

8
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comparison, recall that in sequential download without gossiping, the source node needs

to transmit k blocks to the other n−1 nodes one after another, and in this scenario, the

last node will finish download at time (n− 1)F/W . The broadcast finish time reduction

from (n− 1)F/W to F/W seems to be surprising.

Nevertheless, the above argument is incorrect in practice—if the computation time to

encode and decode blocks is considered, it turns out that an infinite k will lead to infinite

computation time so that no node can ever finish downloading. To verify this, I wrote

a C program that can perform RLNC operations (with field size q = 28) on randomly

generated real data blocks of any predefined size B. I analyze how computation overhead

of RLNC can affect dissemination. I run the program to simulate the broadcast session

for a given set of n, k and block size B on a single machine with a 2.6 GHz Intel Core

i7 processor. The progressive decoding is applied, that is, whenever a node receives a

new (coded) block, it will perform Gaussian elimination for this block together with all

previously received blocks. The elapsed time of the entire program is recorded until

broadcast finishes. Since no real network transfer happened, we can divide the total

elapsed time by the number of nodes n to estimate how much time on average each node

will spend on computation in a parallel cluster of n nodes.

The total computation time (including both encoding and decoding) of each node for

the entire broadcast session is plotted in Fig. 3.1. I observe that the total computation

time per node 1) is linear to the block size B, and 2) is a convex increasing function of

the number of blocks k. Therefore, for a fixed n and field size q on a given processor,

we can do the profiling in Fig. 3.1 and approximately model the computation time per

node for the entire broadcast session as

TCompute = βBkα = βFkα−1,

where F = Bk, the positive constants α, β depend on n, q and the processor, and we

have α ≥ 1 due to the convexity in k as in Fig. 3.1(b).

Therefore, there is a tradeoff between throughput efficiency and coding complexity as

k varies. A larger k will hamper the broadcast due to increased coding latency. On

the other hand, a larger k can benefit the throughput since the overhead dlog2 ne + C

in broadcast finish time k + dlog2 ne + C (rounds) becomes neglegible. The question

is—how large should k be to achieve the lowest real broadcast finish time in seconds?
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Figure 3.1: Mean encode + decode time per node in the entire broadcast session.

To hide the coding latency, I propose to pipeline transmission and computation: in each

round, we let each node do the following 3 steps simultaneously as the resources they

mainly use are different:

• receiving a new coded block;

• decoding the block received in the previous round (progressively) and encoding a

new block;

• sending out a new block encoded in the previous round.

Since both transfer and computation times vary as k,B vary, we need to carefully chunk

the file to leverage the throughput benefit of RLNC while hiding its coding latency.

If the time spent on decoding and encoding per round by each node is smaller than

the time to transfer (send or receive) a block, coding operations will not become the

bottleneck of the pipelined process at each node, and the length of each round is still

T = B/W . However, if the time spent on coding per round is greater than the time to

transfer a block at a node, coding will become the bottleneck, and the length of each

round will be the computation time for progressively decoding and encoding a block.

Due to the above arguments, the broadcast finish time in seconds in a pipelined imple-

mentation can be estimated by

TBroadcast = max

{(
1 +
dlog2 ne+ C

k

)
F

W
, βFkα−1

}
, (3.1)
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depending on whether transmission or computation constitutes the bottleneck. Clearly,

the lowest broadcast finish time is achieved by the k∗ such that computation time equals

to transfer time, i.e., TTransfer(k
∗) = TCompute(k

∗).

The reason is that if we have a k > k∗, then TCompute(k) increases and TTransfer(k)

decreases, and thus TBroadcast(k) = TCompute(k) > TCompute(k
∗). If we have a k < k∗, then

TTransfer(k) increases and TCompute(k) decreases, and thus TBroadcast(k) = TTransfer(k) >

TTransfer(k
∗). Equivalently speaking, the lowest broadcast finish time is achieved by the

k∗ such that computation time roughly equals to transfer time per round at each node.

Figure 3.2: Processes of transmission and coding with and without pipeline at best
case on each task node.

Suppose that the computation time equals to the transfer time (sending or receiving

time) per round. As illustrated in Fig. 3.2 for a particular node, with pipelining at t1,

the following 3 processes can happen simultaneously: sending block 1, encoding block 2

(after decoding a previously received block) and receiving block 3, which means we can

hide the encoding latency of block 2. In contrast, without pipelining, only sending block

1 and receiving block 2 happen together, and we need extra time to encode each block.

In Fig. 3.2, without pipelining, only 3 blocks have been received by this node at time
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t3, whereas with pipelining, 5 blocks have been received at t3. Note that in the actual

implementation to be described in Chapter 5, pipelining is achieved asynchronously only

by fine-tuning k to equalize independent transfer and computation processes instead of

through a time-sliced fashion or synchronized barrier controls. Therefore, Fig. 3.2 is

only a conceptual illustration, while in reality, computation and transfer processes may

not exactly align on the timeline.

Finally, it is worth noting that the file size F does not affect the value of k∗, as shown

from (3.1). The optimal k∗ is determined by the bandwidth, the processor, number of

nodes n and the field size q for coding, no matter what file is to be broadcasted. In fact,

it is not hard to check that the critical k∗ equalizing computation and transmission time

increases as network bandwidth decreases and as computing power increases. For this

reason, disseminating an extremely large file in k blocks is the same as dividing the file

into several smaller batches, each comprised of k blocks, and disseminating the batches

sequentially.



Chapter 4

Multi-Batch Scheduling

Multi-batch scheduling algorithms are important to study due to two reasons. First,

for a single file, since there is a limit k∗ on the number of blocks it should be divided

into to avoid excessive computational time, we could divide it into multiple smaller

batches, each consisting of k∗ blocks, which are transferred one after another. As has

been mentioned at the end of Chapter 3, if such batches are transferred sequentially,

the total broadcast finish time would be the same as transferring the large file in k∗

blocks directly. However, the more fine-grained batch-based approach will better utilize

the pipeline: when the first batch is close to finish and few nodes can receive innovative

blocks in this batch, the second batch can start to better utilize the resources. Second,

when different files arrive at the source one after another, we need a scheduling algorithm

to make sure the files are delivered to task nodes at the highest throughput. In both of

the above scenarios, the key is to devise a scheduling algorithm to decide the blocks of

which batch (or file) enjoys the higher priority in transmission at a given point.

4.1 Early Batch First

Two batches of blocks with random broadcast finish times of F1 and F2 rounds are

firstly considered, respectively. If the two batches are broadcast sequentially, the overall

expected broadcast finish time will be

E[F1 + F2] = E[F1] + E[F2]

13



Chapter 4. Multi-Batch Scheduling 14

rounds. The question is — can we reduce this by overlapping the broadcasts of the two

batches, while keeping the finish time of the first batch almost the same as before?

A simple overlapping scheme is to allow the transfers of both batch 1 and batch 2, while

giving priority to blocks of batch 1:

Algorithm 1. (Overlap-1) On the random permutation topology formed in each round,

each node transmits an encoded block of batch 1 to its target receiver, if the receiver

has not decoded batch 1 yet. Otherwise, the node transmits an encoded block of batch

2 to the target receiver if it can.

When most nodes in the network have obtained an enough number of batch-1 blocks,

they can start disseminating batch-2 blocks immediately without having to wait until

the broadcast of batch 1 finishes in the entire network. With Overlap-1, the broadcast

finish time of batch 1 will still be F1, since it is always prioritized, while the broadcast

finish time of both batches becomes less than E[F1 +F2]. Nevertheless, with Overlap-1,

it turns out that the overlapping phase between batch 1 and batch 2 is rather short,

which implies the saving coming from overlapping is limited. In fact, it is difficult to

characterize the exact saving on broadcast finish time of both batches in Overlap-1.

4.2 Temporarily Prioritize the Next Batch

In the following theorem, however, the possibility of a new overlapping scheme is pointed

out, by showing that if we do not always prioritize batch 1, but instead give priority

to batch 2 for Θ(log n) rounds before batch 1 finishes broadcasting, we can achieve a

saving on the total broadcast finish time by an order of Θ(log n) for two batches.

Theorem 4.1. Let m = b logn2 c. Suppose that the source starts broadcasting batch 1 and

batch 2, respectively, in round 1 and round F1 −m+ 1 (i.e., m rounds before the finish

time of the first batch). Suppose that from round F1−m+1 to F1, called the overlapping

phase, the priority is given to batch 2, that is if a node has blocks from both batches, it

will use its outgoing link for the second batch. From round F1 + 1 onward, the priority

is given back to batch 1.

Then, the expected broadcast finish time of both batches will be at most E[F1]+E[F2]−m+

2.7
1− 2√

n

. In addition, the expected broadcast finish time of batch 1 is at most E[F1]+
2.7

1− 2√
n

.
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The proof of the above theorem can be found [16]. Admittedly, the overlapping scheme in

Theorem 4.1 is only theoretical because it is hard to know the finish time of batch 1 and

thus the start of the overlapping phase exactly, as F1 is a random variable. However,

Theorem 4.1 implies that by giving priority to batch 2 for a few rounds during the

overlapping phase, we can save the total broadcast finish time by an order of Θ(log n)

while delaying the finish time of batch 1 by at most 2.7 rounds when n is big enough.

If there are more than two batches, we can repeat the overlapping process explained

in the statement of Theorem 4.1. For b ≥ 3 batches, let the transfer of batch b start

m = b logn2 c rounds before the finish time of batch b− 1, or right after the finish time of

batch b − 2 (although a rare case in practice), whichever comes last. Again, as before,

batch b will have priority in the first m rounds after the start of its transmission, and

then the the priority is given back to batch b − 1 until batch b − 1 finishes. Then, the

following corollary is a straightforward result derived from Theorem 4.1, which shows

that the saving for b batches is at least Θ(b log n). A proof sketch of this corollary can

be found in [16].

Corollary 4.2. Suppose there are b ≥ 2 batches. The expected saving in the overall

finish time of b batches using the overlapping scheme explained above over the sequential

broadcasts of these b batches one after another is at least

(b− 1)

(⌊
log n

2

⌋
− 2.7

1− 2√
n

)
.

Moreover, the expected delay in the finish time of batch 1 is at most 2.7
1− 2√

n

.

Motivated by the insights offered by the above analysis, we may further speedup multi-

batch transfers if we allow the blocks of the next batch to be transferred for Θ(log2 n)

rounds with higher priority before the current batch finishes completely. Based on this

observation, this thesis proposes another practical multi-batch scheduling scheme called

Overlap-2:

Algorithm 2. (Overlap-2) Suppose batch 1 and batch 2 have k1 and k2 blocks, respec-

tively. On the random permutation topology formed in each round, each node transmits

an encoded block of batch 1 in the first k1 + C1 rounds, where C1 is a small integer

constant. In the next dlog2 ne rounds, batch 2 will have a higher priority, that is, batch

1 blocks should not be transmitted unless the node cannot transmit a block of batch 2
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or its target receiver has already decoded batch 2. From round k1 + C1 + �log2 n� + 1

onward, the priority is given back to batch 1 until it finishes. Then, the transfer of batch

3 starts in round k1 +C1 + �log2 n�+ k2 +C2 + 1 and the above process is repeated for

batch 2 and batch 3.

Figure 4.1: Priority-based multi-batch scheduling algorithm: Overlap-1.

Figure 4.2: Priority-based multi-batch scheduling algorithm: Overlap-2.

Counterintuitively, we will show through experiments in Chapter 6 that Overlap-2 can

beat Overlap-1 in terms of total broadcast finish time by squeezing in some batch-2

transfers without affecting batch 1 too much. In general, the major difference of the two

schemes is what time to give which batch a higher priority for transferring.

The first 3 phases in Fig. 4.1 and Fig. 4.2 illustrate a comparison between Overlap-1 and

Overlap-2. After transferring k1+C1 rounds of batch 1, Overlap-2 gives a higher priority

to batch 2 during the next �log2 n� rounds. However, since few nodes have received blocks

of batch 2 so far, most nodes are still sending out blocks of batch 1 during Phase 2 and

the broadcast of batch 1 is generally finishing up. According to the theoretical result

[8], the broadcast of batch 1 will almost finish in round k1 + �log2 n�+C, if batch 2 did

not affect batch 1 much in Phase 2, which means batch 1 almost finishes in the first two
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phases. Therefore, in Phase 3 starting from round k1 + dlog2 ne+C1 + 1, mainly batch-

2 blocks are being transferred. Since we have already transferred batch 2 for dlog2 ne

rounds in Phase 2, the broadcast of batch 2 will almost finish in another k2+C2 rounds.

Hence, the finish time of both batches should be approximately k1 + dlog2 ne + C + k2

rounds.

Consequently, Overlap-2 may outperform Overlap-1, since more blocks of batch 2 are

transferred during Phase 2 of dlog2 ne rounds without affecting the transfers of batch 1

too much. In contrast, with Overlap-1 the cutoff of batch 1 happens at almost the same

time for all nodes, making it hard to save rounds from the shorter overlapping phase.

For more than two batches, the comparison between Overlap-1 and Overlap-2 is illus-

trated in Fig. 4.1 and Fig. 4.2 as well, which outline the batches transferred in the

network together with their priority. Note that since the time to finish broadcasting

both batch 1 and batch 2 should be at least k1 + k2 + dlog2 ne + C rounds (achieved

when cross-batch encoding is allowed) [7, 8], there is no point to start batch 3 before

round k1 + k2 + dlog2 ne+ C. The same principle applies to batch 4, 5, . . . and so on.



Chapter 5

Asynchronous Prototype

Implementation

I have implemented an efficient asynchronous transmission system named Cooper, through

Apache Thrift and Boost C++ libraries on Linux Systems. There are mainly two kinds

of nodes in Cooper : source node and task nodes. Source node initially holds all the data

blocks possibly grouped in different batches, while task nodes are target nodes to re-

ceive all the data. The entire distributed system consists of multiple processes, including

send/receive agents, the encoder and decoder, running asynchronously on each node.

As shown in Fig. 5.1, on a high level, Cooper employs an Inter-Transfer Controller,

located either on the source or on a separate centralized controller node, to coordinate

the processes on different nodes. There are three components in the Inter-Transfer

Controller : the Topology Generator, the Status Monitor and the Priority Indicator.

Before starting entire transmission process begins, the Topology Generator generates

a list of random permutations in advance based on which each node will determine

its target receiver according to some protocol to be elaborated. The Status Monitor

monitors the transferring status of each task node: once it detects that a task node

has received all the blocks of a batch, the Status Monitor will notify other task nodes

immediately, so that they will ignore this node when transferring the batch. In addition,

for multiple batch transferring, the Priority Indicator dynamically updates the priority

of the batches, based on a given multi-batch scheduling algorithm.

18
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Figure 5.1: Architecture of Cooper transmission system.

Each task node has a Transfer Controller, that exchanges signals with the Inter-Transfer

Controller to perform each block transfer. When a node finishes transmitting a block

to its receiver, its Transfer Controller will read the permutation list generated by the

Topology Generator on the Inter-Transfer Controller and take its downstream neighbour

in the next permutation in the list as its designated receiver. Recall that our permuta-

tion scheme requires that each node receive from only one other node and send to only

one other node at the same time to best utilize the homogeneous bandwidth capacity

in the cluster. To make sure each node is receiving blocks from only one sender in this

asynchronous system, the Transfer Controller will check whether the receiving port of

its next designated receiver is occupied. If this designated receiver is busy, the Trans-

fer Controller will further check its downstream neighbour in the next permutation in

the list until an available node is found. In addition, maintaining only one sender for

each receiver can facilitate process pipelining, which will be clear in the later part of

this chapter. The transfer controller also receives signals from the Status Monitor and

Priority Indicator to determine which nodes to ignore and which batch has a higher

priority.

The Transfer Controller launches the Send Agent of its own node and Receive Agent

of its receiver simultaneously to perform a block transfer. The Send Agent and the

Receive Agent are implemented by the Apache Thrift framework based on TCP sockets.
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Once the current block transfer finishes, the Transfer Controller reports to the Status

Monitor, and then repeats the above process to transfer the next block.

5.1 Asynchronous Processes

In Cooper, I propose to pipeline transmission and computation to hide the coding latency.

For this purpose, I launch the following 4 asynchronous processes on each node for each

batch:

• Receive Agent: receiving a new encoded block;

• Encoder: encoding a new block;

• Send Agent: sending out a new encoded block;

• Decoder: decoding entire received blocks.

Figure 5.2: Asynchronous processes executed on each task node. The Encoder keeps
generating encoded blocks, while the Send Agent keeps sending out the newly encoded

blocks. The two processes are independent.

Note that on the source node, there is no Decoder or Receive Agent. All the above

4 processes run individually and asynchronously on each task node and are connected
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with each other by reading from or writing to predefined locations on disk, as shown

in Fig. 5.2. When the Receive Agent receives a new encoded block i, it puts this block

into the file (or folder) A on disk. The Encoder keeps generating encoded blocks one by

one based on all the received blocks in file A and saves each newly encoded block in file

(or folder) B. The Transfer Controller monitors file B constantly. On the other hand,

the Send Agent runs independently of the encoder and when a block transfer happens,

simply sends out the most recently generated encoded block to its designated receiver

determined by the Inter-Transfer Controller. Apparently, due to the asynchronous send

and encoded processes, it is possible that a node may send out the same encoded block

multiple times if the encoding process is slow, or the node might have encoded multiple

blocks before a block is sent out, if the send process is slow.

The Decoder behaves differently from the pipeline concept described in Chapter 3. For

a batch of k blocks, the Decoder is launched on a node only if it has received k blocks

of that batch in file A. If the decode process fails, decoding will be repeated every time

a new encoded block is received and added to file A until success. The reason to launch

the decoder only in the end is that when k is properly chosen, the decoding time will

be relatively short, as will be shown in Chapter 6, and thus there is no need to perform

decoding progressively for each received block.

5.2 Process-Level Parallelism

Now I describe how to achieve the pipelining of transmission and coding on each node

in this asynchronous distributed system. Specifically, I aim to equalize the running time

of the following 3 asynchronous processes on each node (with decoding only happens in

the end for all received blocks):

• receiving a new encoded block;

• encoding a new block;

• sending out a new encoded block.

Receiving and sending take roughly the same time in a homogenous network environ-

ment. Therefore, I fine tune the block number k only to equalize the time to encode a
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block and the time to send one so that process-level parallelism can be roughly achieved

on each node. Let us now describe what happens if encoding time and transfer time

are not equal in the asynchronous system. If the encoding time is greater transfer time,

coding latency will delay the entire transmission process and redundant coded blocks

might be sent multiple times. On the other hand, if the transfer time is greater than

encoding time, some of the encoded blocks will not be transferred, wasting resources. I

will show through the experiments in Chapter 6 that perfect pipelining with equalized

encoding and transfer times will indeed achieve the minimum broadcast finish time.

5.3 Inter-Batch Scheduling

I implement both Overlap-1 and Overlap-2, the two multi-batch scheduling algorithms

proposed in Chapter 4 which assign different priorities to different batches of data. In

an asynchronous transmission system, there is no notion of rounds. Therefore, I define

each “round” as the time that the source spends to transmit each block, i.e., round i

begins when the source starts to transmit the ith block (of any batch). Specifically, for

Overlap-1, an earlier batch is always assigned a higher priority than a later batch. For

Overlap-1, as an example, the overlapping phase of batch 1 and batch 2 starts after the

source has sent out k1 + C1 blocks (of any batch) and so on.

In the implementation, I use a Priority Indicator on Intel-Transfer Controller to manage

the priority assigned to each batch at a particular point and notify each Transfer Con-

troller during execution. In addition, to avoid excessive encoding workload, I only encode

for the “live” batches. For instance, with Overlap-2, after k1 + C1 + dlog2 ne+ k2 + C2

rounds, only batch 2 and batch 3 are alive. In fact, broadcast of batch 1 has already

finished and its encoding processes are killed.

5.4 Multi-Encoders on Multi-Cores

Most of commodity desktop computers have multi-core processors nowadays. I further

explore the benefit of additional parallelism of launching multiple encoding processes

simultaneously. More specifically, I launch two encoding processes, each running a dif-

ferent core in parallel, while the send processes still work sequentially, as show in Fig. 5.3.
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Therefore, if I increase k such that the time to transfer a block equals to Tencode/2, where

Tencode is the time to encode a block on each encoder, then during Tencode I will have two

encoded blocks generated in parallel as well as two encoded blocks (generated during

the previous Tencode) transmitted sequentially. This way I still achieve perfect pipelining

of transfer and coding , as if the coding latency is hided.

Figure 5.3: Processes with two parallel encoders.

However, with two parallel encoders, I end up having a larger k∗ which almost doubles the

k∗ with one encoder (as will be shown in Chapter 6). This means that the overhead part

�logn�+C in the finish time becomes less significant as compared to the number of blocks

k∗, increasing the throughput and further reducing broadcast finish time according to

the theory. With the presence of multi-encoders, the encoded blocks are transmitted in

a round-robin fashion.



Chapter 6

Performance Evaluation

In this chapter, an extensive performance evaluation of the proposed mechanisms is

provided by deploying and measuring the developed asynchronous prototype system

Cooper on Amazon EC2. I show that Cooper significantly outperforms state-of-the-art

content distribution tools such as BitTorrent in terms of broadcast transfer speed. To

ensure fair comparison in a controlled network environment, I set the upload capacity

and download capacity at each node to be either all 10 Mbps or all 15 Mbps. Besides,

the computation capability varies between different groups of experiments due to the

workload change. However, I attempt to maintain the same experimental environment

for all experiments in the same.
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Figure 6.1: Average computation and transferring time per node with error bars, as
block size varies.
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Figure 6.2: Average computation and transferring time per node with error bars, as
block number k varies.

6.1 Evaluation for Pipelining

I first verify the effectiveness of pipelining via small-scale experiments on 4 desktop

computers located in a campus environment, each with quad-core 2.6 GHz Intel Core

i7. The operating system is Linux Ubuntu 12.04.

Verifying the computation time model. From simulations in Fig. 3.1), I have ob-

served the computation time per node (with progressive decoding) Tcompute = βBkα, for

α ≥ 1. Now I verify that Tencode alone (without progressive decoding as in the imple-

mentation) follows the same trend. Fig. 6.1 plots the average encoding and transferring

time per block (with error bars) per node, as well as the total decoding time per node

in the end, as the block size B varies, when the number of blocks k is fixed. A clear

linearly increasing trend is observed for encoding time per block with almost constant

slope.

Furthermore, I observe that the total decoding time in the end is approximately linear

to the block size and is not large, justifying the reason why I only pipeline encoding

alone and transfer in implementation. Similarly, Fig. 6.2 plots the same variables as

the number of blocks k varies, when the block size is fixed as 10 MB, which shows that

encoding time per block is convexly increasing as k increases, verifying the simulation

results on computation time.
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Figure 6.3: The finish time under different k with error bars, when the file size is
fixed to 100 MB.
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Figure 6.4: Average encoding and transferring time per node per block with error
bars, when the file size is fixed to 100 MB.
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Verifying the Optimality of Pipelining. In Chapter 3, the lowest broadcast finish

time is achieved by the k∗ such that computation time equals to transferring time has

been argued. In practical implementation of Cooper, I only need to find the k∗ that

equalizes the encoding time and transferring time per block. I evaluate the times to

broadcast a file of a fixe size (100 MB) with Cooper, as I chunk the file into different

numbers of blocks k, as shown in Fig. 6.3. As we can see, if the network bandwidth is

15 Mbps, the lowest broadcast time is obtained at k∗ = 22, while for 10 Mbps network

bandwidth, the lowest broadcast finish time is achieved at k∗ = 35. Moreover, Fig. 6.4

shows that with 15 Mbps bandwidth, the transferring time is roughly equal to the

encoding time per block when k is 22, and for 10 Mbps the two quantities are roughly

the same when k is 35. Therefore, I verify that the lowest broadcast finish time is

achieved when the encoding time per block equals to the transferring time per block in

the implementation.
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Figure 6.5: The finish time when setting different number of blocks with error bars.
(Network bandwidth: 15 Mbps)

Pipelining with Double Encoders. I further evaluate benefit of the pipelining mech-

anism with two parallel encoders. It is worth noting that the computation time for

this set of tests becomes longer than in previous experiments, due to the unpredictable

changes in workload on the campus desktops. As a result, I obtain different computation

time measurements from the previous figures.

As shown in Fig. 6.5, the lowest broadcast finish time of one encoder is 75 seconds,

achieved when k = 15, while for two encoders, the best broadcast time is 70 seconds,
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Figure 6.6: Average computation and transferring time per node per round with error
bars, when file size is fixed as 100MB. (Network bandwidth: 15 Mbps)

achieved when k = 30. By further checking Fig. 6.6, I find that when k = 15 equalizes

the encoding time and transferring time, whereas when k = 30, the average encoding

time is same as twice the average transferring time. Thus, I have verified that two

parallel encoders indeed can enhance the performance of Cooper, while the right k in

this case roughly doubles that of using one encoder.

6.2 Comparisons with Other Systems

In this part, the performance of Cooper is compared with BitTorrent and a baseline

rand block negotiation scheme on Amazon EC2, when Cooper uses one encoder, two

encoders and batch-based file transfers. I launched 20 t2.medium instances from Amazon

EC2 (South American region), each with 2 cores, 4 GB memory and low to moderate

network performance running Linux Ubuntu 14.04. The same network environments is

maintained for all experiments in each group. The file size to be broadcast is fixed to

100 MB for all systems. The network bandwidth is around 15 Mbps. I first describe the

baseline systems to be compared against as well as the parameter settings in Cooper :

A Random Block Scheme (RB): a scheme adopting the same (asynchronous) im-

plementation of Cooper except that it does not transmit coded blocks. Instead, for each

node, I maintain a buffer map of received blocks, keep updating this buffer map to all
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other nodes during running time once in a while. For the transmission of each block,

the sender will send a random block that its target receiver does not have. If there is no

such a block, the sender will proceed to check its target receiver in the next permuta-

tion generated by the topology generator. After receiving each new block, the receiver

updates its buffer map and synchronize the buffer map to others periodically.

To achieve the best performance of RB, the buffer update frequency is optimized. The

reason is that, if we synchronize the buffer map too often, there will be signalling over-

head that downgrades the performance; if we synchronize less often, there will be re-

dundantly transferred blocks, due to outdated buffer maps which hurts the finish time

too. The best performance is achieved on Amazon EC2 if each node updates its buffer

map to other nodes upon receiving every other block. The number of blocks k for RB is

further tuned, as shown in Fig. 6.7, from which I observe that the best performance of

RB is achieved when k = 100. Note that the optimal k for random block is much larger

than in Cooper, because there is no coding operation.
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Figure 6.7: The finish time of RB on 20 t2.medium instances of Amazon EC2, with
file size is fixed as 100 MB and k varies.

BitTorrent (BT): I deploy rTorrent [17], which is a command-line-based BitTorrent

client written in C++ with high performance, based on the libTorrent libraries for Unix.

The performance of rTorrent is carefully optimized on EC2 by configuring its various

parameters, like number of simultaneous connections.
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Tuning Cooper. The best broadcast performance has already been verified that it is

achieved under perfect pipelining with the right k∗ equalizing encoding and transferring

time (in the two-encoder case, the encoding time should double the transferring time).

Therefore, for Cooper, some profiling (that is done lightweight on a single node) is first

employed to find the right k∗ for both one-encode and two-encoder cases. As illustrated

in Fig. 6.8 and Fig. 6.9, I observe that on t2.medium instances of Amazon EC2, k∗ for

pipelining with one encoder is around 16, while for pipelining with two encoders, k∗ is

around 30.
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Figure 6.8: The finish time of Cooper on 20 t2.medium instances of Amazon EC2,
with file size is fixed as 100 MB and k varies.

In Fig. 6.10, the broadcast finish times is compared for a 100 MB file under 5 different

schemes: Cooper with a single encoder, Cooper with double encoders, Cooper with

batch-based transfers, Random Block (RB) and rTorrent (BT). For Cooper with batch-

based transfers, I divide the file into 3 batches and apply the inter-batch scheduling

algorithm Overlap-2. From Fig. 6.10, we see that the broadcast finish time of 100 MB

file for Random Block and BitTorrent is around 115 seconds and 106 seconds respectively,

while for Cooper with one encoder, the finish time is around only 80 seconds, significantly

outperform both Random Block and BitTorrent. Moreover, Cooper with double encoders

further reduces the broadcast time to around 70 seconds.

The highest performance is achieved by chunking the file into 3 batches, scheduled with

Overlap-2, which achieves a finish time of 60 seconds. Therefore, we conclude that,
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Figure 6.9: Average computation and transferring time per node per round on 20
t2.medium instances of Amazon EC2, when file size is fixed as 100MB.
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Figure 6.10: Comparison of finish time between Cooper and baseline algorithms, with
file size fixed as 100MB.
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Cooper can significantly speedup data dissemination in computer clusters, especially

using a multi-batch-based scheduling algorithm.

6.3 Multi-Batch Scheduling Algorithms.

Fig. 6.10 has shown that inter-batch scheduling can reduce broadcast finish time for

multi-batch transfers or when transferring a large file in smaller batches. In this part, the

performance of the proposed inter-batch scheduling algorithms Overlap-1 and Overlap-2

is evaluated on Amazon EC2, as well as traditional non-overlapping sequential transfers.

The experiment environment is the same as in Section 6.2. The size of each batch is 100

MB. And I apply Cooper with a single encoder in all experiments here.
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Figure 6.11: Finish time of transferring two batches with Overlap-2 on different C1.

The right k on t2.medium instances of Amazon EC2 is around 16. And another set of

parameters I need to tune is C1, C2, . . ., the small constants to determine the lengths

of non-overlapping phase in Overlap-2. I tried several experiments and find that the

best broadcast finish time for Overlap-2 is achieved by setting C1 = C2 = . . . = 1, as

shown in Fig. 6.11. To compare the performance of Overlap-1 and Overlap-2, their total

broadcast finish times is evaluated when transferring 2 and 3 batches, as compared to

sequential transfers of these batches one after another.
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Figure 6.12: The finish time of transferring two and three batches with different
priority-based algorithms.

As shown in Fig. 6.12, for two files (or batches), the finish time of sequential approach is

around 160 = 80× 2 seconds , while with Overlap-1, it is reduced to 135 seconds, which

means overlapping does speedup performance. Moreover, the total broadcast finish time

of Overlap-2 is only around 128 seconds, which is even better than Overlap-1. For three

batches, the differences among the three approaches are more more obvious, especially

the gap between Overlap-1 and Overlap-2.
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To understand the underlying mechanisms of overlapping, I collect logging data from

one experiment, and illustrate the numbers of finished nodes during running time in

Fig. 6.13 for both Overlap-1 and Overlap-2, and illustrate the number of received blocks

at every node for Overlap-1 and Overlap-2, respectively, in Fig. 6.14 and Fig. 6.15. The

total number of nodes to receive blocks is 19 (except the source). And suppose there

are two files (or batches) to be broadcast.
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Figure 6.14: The number of blocks received (by each node) during running time when
using algorithm Overlap-1 to transfer two batches.
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Figure 6.15: The number of blocks received (by each node) during running time when
using algorithm Overlap-2 to transfer two files.
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In Fig. 6.13, the two lines on the left represent the numbers of nodes who have finished

file 1, in Overlap-1 and Overlap-2, respectively, while the two lines on the right are for

file 2. As we can see, with Overlap-1, it takes around 90 seconds to finish broadcasting

file 1 to all receivers and 135 seconds to finish broadcasting file 2. In contrast, it costs

Overlap-2 90 seconds as well to finish broadcasting file 1 but only 128 seconds to finish

file 2. In terms of the first finished node, Overlap-1 spends 30 seconds whereas Overlap-2

takes around 50 seconds.

The reason underlying the advantage of Overlap-2 is that for Overlap-1, I give priority

to file 1 all the time until finishing broadcast of file 1, while for Overlap-2, after Phase 1,

priority is granted to file 2 temporarily. In Fig. 6.14 and Fig. 6.15, each line is for each

specific node, representing the number of blocks received by this specific node as time

progresses. As we can see from the two figures, for each node, Overlap-1 only receives

blocks of file 2 after finishing receiving file 1, whereas Overlap-2 squeezes in some file-

2 transfers during the early stage when broadcasting file 1. However, by doing this,

Overlap-2 actually does not affect the broadcast finish time of file 1 much, since after

all, few nodes can transmit file-2 blocks at the beginning. Therefore, the finish time of

file 1 of the two algorithms is close. Moreover, since Overlap-2 has already transferred

several blocks of file 2 during the early stage, file 2 will be finished faster, reducing the

total broadcast time of two files.



Chapter 7

Related Work

Generally, the objective of content dissemination protocols is to minimize the total

broadcast finish time, subject to node capacity constraints. And traditional solutions

for content dissemination protocols are mostly based on multiple trees. Chiu et al. [18]

and Li et al. [19] show that the maximum feasible broadcast rate limited by the node

download capacity constraints can be achieved by packing only depth-1 and depth-2

spanning or Steiner trees. And the maximum data streaming rate is then obtained

by assigning rates to the constructed multi-trees. Chen et al. [20] further describe a

primal-dual algorithm for the distributed implementation of tree construction and rate

allocation. However, tree-based algorithms remains largely centralized with non-trivial

structure maintenance overhead. Even in distributed implementation, it is not certain if

the algorithm can converge with the presence of node dynamics or random failures. The

frequently changing dissemination tasks in a server cluster also makes a tree-solution

cumbersome to manage.

Gossip algorithms, on the other hand, enjoys the superior adaptability to arbitrary net-

work and topology and the simplicity of implementation. Sanghavi et al. [21] show the

order-optimality of non-coding gossiping, with the aid of node buffer state exchanges.

With node state reconciliation, Massoulie et al. [22] prove the strict optimality of non-

coding block selection protocols. However, it is theoretically shown in [23] that, a com-

mon problem with gossip protocols that require state exchanges is that their success

heavily depends on the accuracy and frequency of state updates. As compared to these

36



Chapter 7. Related Work 37

works, the use of network coding completely eliminates the need of node buffer ex-

changes, further reducing the block scheduling overhead that escalates as k grows.

Deb et al. [13] show the order-optimality of network coding gossip in a random phone

call model, assuming k blocks are spread across the network to start with. Haeupler [14]

further proves that a finish time of k+ o(k) is achieved in the same model for a random

pull protocol when each node holds a subset of k blocks initially. For the case that only

one source node wants to broadcast its blocks to all other nodes, optimal pipelining

in k is not known yet. Shifting away from the random phone call model, a class of

sender-receiver pairing rules satisfying a simple permutation condition is adopted which

can approach the optimal broadcast time of k + dlog2Ne regardless of the initial states

of nodes. Such a permutation is easily implemented in any controllable server clus-

ters. Finally, different from previous works [13, 18–22, 24, 25] that assume unbounded

node download capacities, both node upload and download bandwidth constraints are

considered which may both be present in reality.

In computing or server clusters, multi-node transfer operations have a significant impact

on the performance of cluster applications, Orchestra [1] is proposed as an architecture

that enables global control both across and within different transfers to optimize perfor-

mance. For data broadcasts, Orchestra uses a BitTorrent-like scheme called Cornet to

speed up data dissemination. [26] proposes Torchestra to reduce delays by separating

interactive and bulk traffic onto two different TCP connections between each pair of

nodes. A general deployment advisor named ClouDiA is proposed in [27] which selects

application node deployments minimizing either the largest latency between application

nodes, or the longest critical path among all application nodes. Natjam system proposed

in [28] supports arbitrary job priorities, hard real-time scheduling, and efficient preemp-

tion for Mapreduce clusters that are resource-constrained. In [29], they present a system

that reduces the skew impact by transparently predicting data communication volume

at runtime and mapping the many end-to-end flows among the various processes to the

underlying network, using emerging software-defined networking technologies to avoid

hotspots in the network. And in [30], they propose a new dynamic network optimizer

called OFScheduler for heterogeneous clusters to relieve the network traffic during the

execution of MapReduce jobs, which focuses on reducing bandwith competition, balanc-

ing the workload of network links and increasing bandwidth utilization. In this thesis,
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we show that the proposed coded permutation gossip with smart inter-batch scheduling

can further save broadcast time by nearly 40% over BitTorrent-like protocols.



Chapter 8

Conclusion

In this thesis, an asynchronous and distributed prototype system is presented, named

Cooper, to speedup data dissemination in computer clusters, in which the “permuta-

tion gossip” is leveraged to optimally utilize network bandwidth. More specifically, all

nodes into time-varied random permutation topologies are arranged, on which each node

transmits coded blocks using RLNC.

To boost up performance in practice, multiple inventions are incorporated in the design

of Cooper. First, a pipelining technique is proposed to perform coding operations and

data transferring in parallel on the process level, to hide coding latency when chunking

the file into some fine-tuned number of blocks. Generally speaking, I aim to equalize

the running time of the following asynchronous processes on each node: 1) receiving

a new encoded block; 2) encoding a new block; 3) sending out a new encoded block.

Second, an asynchronous transmission control model is adopted to convert the time-

slotted theoretical model into real implementation. Third, for multi-batch data transfer,

two priority-based scheduling algorithms are proposed to overlap the transmission of

consecutive batches and reduce the total broadcast finish time: Overlap-1 and Overlap-

2. The main difference of the two strategies is to decide the blocks of which batch/file

enjoys the higher priority in transmission at a given point. Fourth, the feasibility of using

multi-core processors is explored on a fine-tuned asynchronous coding-transfer pipeline

to achieve better performance.

Cooper is deployed on Amazon EC2 and perform extensive real experiments to verify

the proposed theoretically inspired algorithms, as compared to state-to-the art content
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distribution tools, including BitTorrent and an optimized random block negotiation

scheme. Based on results from real experiments, I find that Cooper (with a single

encoder) can significantly reduce the time to broadcast a file by 25% over BitTorrent

and 30% over the random-block scheme. Moreover, Cooper with parallel double encoders

further increase the performance gap to 34% and 40%. Furthermore, with batch-based

transfers and the proposed multi-batch scheduling, the savings reach 44% and 48%.

In addition, the performance of the proposed inter-batch scheduling algorithms Overlap-

1 and Overlap-2 is evaluated on Amazon EC2, as well as traditional sequential transfers,

with applying Cooper with a single encoder. From experiment results, we get that multi-

batch-based algorithms significant reduce the total broadcast finish time, and Overlap-

2 performs better than Overlap-1. Also, the underlying mechanisms of overlapping is

further explored, by illustrating the numbers of finished nodes and the number of finished

blocks at each node for Overlap-1 and Overlap-2 during running time.
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