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. ;;? "}‘ ABSTRACT B
_J {.The stability analysis of a cla;s or non-linear systems is :
presented in this thesis The class of systems are thg\e which can be |
'represented by vector matrix state equations, ‘are analytic and have a
:non-linearity (which passes through the origin), in the feed-back loop.w
I}'Two<\ypes/of systems ere considered, the first is a continuous system,
vfthe second has the same system equation but is considered from the B

:sampled data point of view; with and without zero order hold Non-zero .
f initial conditions are considered from the outset ind - inter-sample
:stability in the case of the sampled data systems s considered. The
'determination of the input-output stability bounds is approached via the
,;VOlterra series, whose region of convergence and uniqueness is assured
‘

lby satisfying the Banaoh contract}on-mapping principle. Determination

of the contraction constant i!'achieved via the Frechet derivative. -"

. )
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: R A )
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T % CHAPTER I R
e INTRODUCTION . T,

M 4

' Modern technology has given rise to today s c0mplex systems many of
» which are only describable in terms of non-linear vector differential
equations; the suggestion that these systems can be analysed for

- ‘ !

stability by the application of straight—forward methods, applicable to

' simpler systems, is not always true Dimensionality can produce problems

ey

N which had not been considered at the outset; thus more sophisticated

‘

._‘,&«

techniques must be used in_the %etermination of system stability.

| What is system stabil y, and how is this stability determined?

A}

These questions are of paramount importance to, the systems engineer <

.’ -

- seeking the reqion of stability meaningful to his particular problem
v,
The concept of stability of a linear system with constant -

’

coefficients is basic to,control engineering, stability as defig'd by
' Bower and Schultheiss, []] is- that a ‘linear. system is stable if _ ‘

f only if its output response to every bounded input remains bounded

-

Thus a linear system can be theoretically stable for any input N

A

regardless of size. Such is not the case for non-linear systems

e

The stability of non-linear systems is often a local concept and is

possibly some function of the input.‘ The definitions of non-linear

‘ system stability existing in the literature are many, some\of which
referenced below. The list is by-no means exhaustive.,_ _ 5_ |
) '_*(i)v Kalman & Berttam 121 have given eight definitions of stabi' ty
';c(Z). Antosieuicz [3] has nine definitions.d;. | j ; |
';“i'ffidi Ingwerson [4} gives twenty definitions.; "g;f}j¢.i ");35.

“+ Numbers, placed. withinaquare brackets denote references.

<
e




\
rd

The definition of stability to be adOpted here is that of Zadeh TS],

’that a boundgd set of inputs gives rise to a bounded<set of

utputs, hereafter called B T1.B.O. stability In non-linear systems,

- o

‘_the determination of the exact st::ility boundary 1s extremely difficult

K and approximate techniques have, since the early 19509, become more o ,r

n’

apparent in the literature s is instructive t6 trace the development
of what is now called "stability analysis via the Volterra series"

An idea was conceived by the mathematician Volterra [6].. of creating

Sa qeneral theory of functions which depend uﬂon a continuous set of

‘ values of another function This theory is now called the "Theory%of e

Y

_ : >
-‘Functionals", a name coined by Badamard The theory 1ay virtually

f.dormant until Wiener (1942) utilized it in his research Barrett

utilizing the functioual power series (due to Volte;ra) and the work:
: .

accomplishedﬁby Wiener, discussed a method of expanding the 1nput -

output relationship of a non-linear system in terms of a functional

”

power series.‘,i

It was not until the late 19505 and early 19609/haq§ver,'that'the
R

+

petential of the Volterra series was realised

Brilliant [7] utilizing Wiener 8 effort specified the c0nditions

'_for an analytic system.; Elake [8] showed that ‘the Volterra seriX\\\Q/ '
' could be used to relate the input to the output of .a non-linear system. T4
b . ’ - ——

:Barrett [9] demonstrated Flake s concept by using Duffing 8 Equation ‘and-

. - Yo -

“by uti;iz{;g the analytic concept of Brilliant he prOVed that y ;-4 i .

, e qesulting Volterra series was c!hvergent. The convergence
oy L
@properties were directly related to houndedness and stability of the



-

B (N 3

Christensen [10] then proved that the convergence ésiperties of the ~

1Volterra serie were obtainable via the Banacp contraction prfhcxple.i?"'
”Then, by further application of the contraction principle he proved\" o

- “that a stable regiop could be found in. the Banach space under

b L

‘consideration, this space‘containeq?ghé(solutions of the non-linear ‘ “]“

@

sYStem which itself exhibited B. I.A .0. stability in the region‘/o

determined Corroborative evidence was now established between the

' methods diﬁplayed by Barrett and Christensen

i

Addition of initial conditions, uniqueness of the Volterra series ig N

Y

and a larger region of convergence were contributed by Trott and

gChristensen-lBAT/ [33] and - [ll] respectively.

Applications to discrete data systems was made by Rashed [12] and

' noplinearity - (——

Rao [13]. -
' : o : - : A 3 A
To date the. most significant results have been achieved with -
;systems that are reducable to the form shown below. '
, L T I output
: 14"9??,?1‘nt* ' e .%>
\).. ‘ ;' s
".| ' o ’

Thul the extension of the work of Christenlen. Trott, Rao, Raehed

to the multivariable systam is the next logical atop. e
M e T e e f:f,f Lo
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| ¥ . I : L R ‘i
' < ThlS thesis will extend their results to systems expre591ble as »_» » \L/-
L , .

non-linear vector: d1fferential equations The extension w111 be made .

o

via the contraction mapping pr1nc1ple ut11121ng the Frechet differential

and state-space matrix methods, [15], [24], [26] V‘The class of systems, .

' coq.}dered here will contain;a-time.invariant non-linearity pagsing
throughwthe origin ' e ‘ C : =

~

‘ Chapter II wi}l introduc¢ the notation and mathematics required in

v
“the sequel theorems current to this thesis will be stated and proofs
shown wheré necessary.A . _ |
?nlchapter III non-linear system eqhations wifl be examined, the
region of" stabi}ity determined by (1) reduction of the system equation ~iﬁ
to standard matrix form, and (2) by reduction)ef the system equation by

Heav1sxde 8 decompos1tion

The methods of Chapter III will‘ ‘extended in Chapter IV to cover

Y

‘discrete data.systems.



\ " CHAPTER II

. MATHEMATICAL DERIVATIONS

_’2.0‘ Introduction . . c f«’({fjfi "~~> ' . - 'p . .

~

The mathematics necessary for the derivntio of the materlal -
- : .
‘~‘required in the sequel is presented in this chapter. The object is not

“vto present a mathematical treatise, but rather ‘the: material necessary

' for the maintenance of continuity once the. development of the core of .

L

the thesis is underway. Functions representative of practical systems
: are considered and the space on which they operate is‘a Banach space
} , Matrices and norms have an- imgortant role in the ensuing

: mathematical development It is imp0881ble to study multi dimenSLOnal

.vsystems 1n a meanihgful fashion without matrices, while the norm is one

‘/

cf the foundation\stones of unctional analysis,/r"'
The Frechet (F) derivati e is approached via the F differential

which is approached via the Gat aux (G) differential K pictorial

) representation of the route taken in the development*of the F derivative .

) s shown in'Fig. 2, Ortega and Rheinbolt [19]

7

o '_uﬁiform.iﬁ'n:,'lﬂ B *5‘”illinear’in h
-~ N g t>'

G differential - - *_;"F'ditferentiel iv"‘rf : F derivative
¢ o | \ 0 L o '. ,,
él: \ I i ¢

RER BN : } ) 5 - lb- °
rigﬁ:e”zyf ”ﬂxnelationship between "F" differential and A
Lol - ‘the’ "F" derivative T SN

Loy

-



j'A-transformation'whiCh,takes,a domain of’the'Banach space X into | -
itself is considered and a contraction of the transformation will ‘exist .

" in the domain, if the following conditions are satigfied Nashed, [18]:

£1) The domain is-invariant~under_the.transformation.

<o ; :
(2} vfhefnorm of the F derlvative‘is less than one, ‘
.Some'o% ghe questions to‘hehanswered_in this‘chapter sre;
(1). ﬁhat are the-existence condltions for ‘the F'derivative'
.(2} What concltlons must eslst‘for an operator (mapplng functlon) ;
: , _ /

S to be cont1nuous;,

('3,)> Why use the F derlvatla

e

s

2.1 FunctiOnalfRepresentation.

. o I .
A control system can be. viewed as a transformation which maps Y

- ! -

"p01nts of the input space intozthe output space.v The process is -

' lteratlve.‘ The existence of a solutlon and ‘the method of obtalnlng it
. . - 1 .
will, for the system 1n question, depend upon the transformation.

N

Many exlstence theorems, in functlonal analysis, can be proved

o

’_w1th the aid of the Banach contraction - mappxng princ;ple. Clearly

the determlnatlon of the existencb of a solution for the system in’
»question via the contraction - dapping prlnciple is relevant in this ;‘
context R S L . » :
L : : : - R S ) - ‘l'.

. slnce the Banach contraetion - mapping princxple forms an 1nt€g§a15?
part of the mathematical development, a space conducive to t%ekuse of o
the principle is required. This spece, as stated in'%he introduction

to t}‘is Chapter' is a Banadh space. . ." .v - ) : " _‘- - § ’ 'A . .\ - "vj‘.'-, \



, ‘- s

' Definition 1: A,f'!transformation“, (denoted by ‘the -'symbol r - Gein'ma) ,

is a function defined- on a vector space X which ta.kes 1ts Values in '

,another» vector space _!_{_. An element of Y is alled _an’_ image of X€eX

" under I‘_w

\ | e o N
E v : - ' . o ' T . e e .. ' R
Definition 2: An "operator" is a tranefofmation,\‘v_ljose domain -and range

" 1lie in the san*pece. o S . ' .
‘ .o ) - e . ] * b Lot
* )

An operator will also be denoted by I‘_

" pefinition 3: A "space" R is a set of elements f, g, h, -—==, these:
’ . .}/ “1 '. 4‘ K . / .

” (elemente niay' be real or 'compl.ex-numbe‘rs,-’ ’vect‘:ors‘, matrices or functions
'y | T .

A of one or more variables. N e ST Lo

The spaces considered here are linear. , . - o

 Definition:4: 'A"'.‘linear ‘space" is one-in which the elements of the .

' space obey the laws o"f_l-in'ear'ity:.‘_. R

jDe‘finitionvS: " A "vector space",’ , consists of a set 6f quantities

Ky Yo === : (called veotors), af i:\'f%,opera'tions.,

| .,f (1) + (plus) defined aa ; "twise addition. e

-» (2) ',;' (multiplication) ‘@efined as. scalar multiplication. - A
. 'I‘he space is closed under + and . if the follouging axioms and their |
.-canbinations are satisfied: : . ; . /-‘ |
4,; '_ (A) 'b(_§_+'x_) - z,‘ Vx,,x,'z,-‘c x"_l R |

(b)  ex €X, ¥xe X and all ¢ -

e (c),' b. te = 6 ia the null vector. .



e
T e
'“'.‘.« -

§
MO . -

A linear space that has a finlte algebralc base is said to be

N -

f1n1te dimenslonal

. L o P S
- : : T S . N
R v L . LN R . . . . !
t i . B

Definition 6: The'"dimension n" of a vector space is the number of

relements in a basis." Every non-zero finite dimensional vector space has

a besie.. ‘
ENRE ' 0 | ’
" If X:is a finite dimen51onal vector space then every element of X
can be xepresented-in the followlng form , .
o . . n L . T .
o A . S - . ]
where the x, s form .the algebraic basis.

'Defintion 7: The "norm“ (”

_space X to RFE (the space of real numbers), and is said to be a’
functional of x. ‘To be a norm, the functional must satisfy the

f:fgllowinq axioms [21] [25]

-

(@ x| 5_‘0 VxeX

O lx*xl|<llxl|+|lxl| vmogex . @a
(o) Ilcx Il < Icl HXII v 5_'5'3(. amaveeg
@ ug-_uf-_ ol - I]x-xll x :‘

;m‘g;}f .. Hf*\:fl



By.inspection-of (2.3’ it ceane‘seen that'a norm is not a.linear‘5:§
“functional but because of (2. 3(d)) it is a continuous functional\\ o -
Thus the norm is a continuous functional but it is not
neceSsarily linear Loosely speaking, the norm of a vector is a"
measure of 1te “length", similarly the norm of a matrix A is a?m”

.meeeure of the "si;e of éﬁ." T
| : ?he-norm of a matrir yegior product_occure,frequently thfoughout
1tne matnemeticél develOpment; thuska.3) uilllbevaucmented oyrdnjti~:u o ..
additional condltion which connects matrix and vector norms.' ' |
o a given vector non%l a. compatible matrix norm is’ defined by
/ Nl u-_u ST

i || R
el ~

we 0 laslls ur_z;n il
"Proof:‘
Y=Ax ¥vx, yeX ‘
vhere  Am a4 -"‘-'1‘,_4,2. —m-my \
3 L= yr ¥y = v ¥y)



10
The supremum norm - details of which -aré contained in [23] - is used
| ,throuqhout-. ; - AU - S - , v
. ' . . s . * o “ : ) ‘v
- The 'defini_tioh_é of matxix and vector noxrms respectively are:

T e
N N

”A”' sup Z"‘u R N )

4 ”x”- sup sup. |x, (t) l A N ¢ P A
S EEEERSI e T

. Thus (2.5) caﬁ‘bg rewritten as SRR
< sup Zlaijisuﬁx (t) ') R ) I

(t)

therefore, X oo _ »
HxJI -IIAxll <IIAIIIlel L ', (2.9)

'rhus the norms chosen are compatible, and a lupplemey: ndition i.i. .

equation (2 9) can be :anludod in (2 3). o o |

e

Det:l.n!.tion 8:- An oporator I mppinq 3 mmd lpld. x 1nto :Ltul! :I.n

S

sai.d to be boundpd 11 thoro .xintl a mwMt )«0 luoh tl'm:, :

||r<_m< nnsu Yxexo a. a0
Dottniticm 9: "nmoh lpwo" 1- n oomphta. nornod-l.‘mm woto: . o
-paoé x npa« 10 oanplcu 1! nvcry cwahy uquonoo £:on !:ho lpaco hu S

Y

11:- l.tuit 1n t.hc omo




L1l

1.

Defgnition'lO: ‘A bounded\operator‘fj[which maps a Banach space X

into itself, is said-to satisfy'a "Lipschitz condition" if,

- - o v

.

Irw -rollexllz =gl - @
o VE L ex

vhere 6<K<oo. . . . T .

‘If K< l a contraction condition exists on X i e. the "distance" '

«

: between the transformed vectors is less than the "distance" between the o
‘original vectors. o | | | N -

A contraction ie norm dependent, 80. thatqa transformation may be a |

L contraction in one. norm but not in another. However, because the spaces :f

vbeing considred are finite dimensional ;he equivalent norm theorem, o B

Porter [16] will hold Thus a contractiqn under one norm will also be

a contraction under a. ditferent norm.;;dv“‘e : : 1 u}Q_W‘ =f7f; o

| By virtue of (2 3(d)) it is’ clear that (2. 11) demanda L be 3 .

f:'continuous. 7g'.~ ' »: K f_;L'p'jl‘ " |

| | Necessary and-eufficient conditione for P to be continuous are

‘ presented in eection 2, 3. ﬁ=further propertyowhich 15 essential to the |

. eneuing mathematical developnent is the concept of convexity.',}‘

P

“ 'Definition llx Let D c x, where X is arBenech epace. If x, x_e D then

the 'line legnent" connecting x and x.ie a subeet of D qiven hy

R T




~ The spaces congidered afe Banach and are all‘.]'.ocally‘conv_ex about |
.'someppintioegf.-‘ -
" Let x and y be vectors contained in an open sphere D of "radius

r> o, centred at -some point 50 e D. Then-

e 2, Il <=

and SR lly - xdl < r.}"_
" Eg | - a M P t e L [ ‘ ’e s
__»Estimgt'ing.- ;}ze qist@cev from X, ‘to a point z = ax + By on the line

‘ ‘S‘e'gﬁé'nf'. connecting x and 1, .r.es'ul'_t_s'v in
1mgg§M¥Jhigm;fﬁif%Hf'

t

||(1-B)(x—x)|| +||B(y_-x)l| R

.|A !

<1-B>l|x-x II +B||x Il

"

113~ 

a B,+ err .

r‘\

: Conclusion: Any point on t:he line segment connectmg X a.nd x_ belongs to

D. 'rherefore, the whole 1ine segment belongs to Di

~

B ;':Defini.tiorx 12\; 'rhe operator I‘ ia said to be "convex" if it satisfies o

i the following oondition, that'is, |

r<*+ﬂ< (J}P(ﬂgijiﬁ'; ;W?i»j/




]
f.clearly from defintions 7, 11 and 12, it is seen that the norm is a -
o

N

,convex functional

A further concept which will be. utilized in the §Equel is the: one;

‘fdimensional intermediate value theorem The difterence quotient of

»

differentiel calculue 1s written as ﬁ‘

f(x2)’-£"xlj : O

and ﬁhVleee the values of the function for distinct valuee-of k, '
| _

%

whereas the derivative of the function at a point éivee no informetion“s"

;;about the function at other'points._ Principally the difference

i'quotient iliustretes the propertiee of the function "in the lerge"

The derivative illustreteg,a local property, thet ia,‘ﬁin the emell"-f
Leter it will be negzssary to derive globel properties of the |

',ffunction i. e..prOperties over the whole of the subspace, from ‘the 1ocel

prOpertiee of the derivetive.' Thie will necessitate ueing the inter-:'

: mediate velue theorem.5,

1 - .
'_iﬂ ‘ N T : N . A" ., g - - N ] ) ; o

v‘fo <. X < x + h, end is di rentieble at’ every point of the open

4

i»intervel, o < x < x + h, then there exiete et leeet one velue where :

';‘o < A < 1; euch that fgifffftl-”

H‘;f_; B ..‘1_.vg‘i-;fﬁ);;}gixif;*:"tf_7 o L .
ATy lf_“-f?ﬁj*_;‘phﬁﬂi;.'1,tfpgi$;).; SRR SR
wtere ' :

Q;Intermediete Velue Theorem~ If f(x) ie continuous in a closed intervel,

q

13

St



,
_ - ' : :
' Theifdnctions to be considered in the succeeding sections are
elements of the space df'cbntinuous:functions from a doméin;bf R" into R".
"~ This space‘is called a "function space" and is written as C((S);'Rn),

where-§_c 5?, LEI o

Let R )
| £ec((e), RN
" and @’» t-_‘ S N S A
»,and the norﬁ\B( |

||f|' " Supllf (x(t))j|,i- o
'ﬂ.' T tee la, bl R
ke A

N

.'Thuéjthevfundtion spaée*is modified and may be written as

R A
| S \H (i(t))EC([a. b, (8) 15"_); :
whgré - A :‘ Ll o
c([a, b]. (S), R) = {f(x(t)) ‘f is’ céht’i‘hubﬁs'
| on-a domair s c R over t € [a, b], into R } [17] | c 3f ft‘-‘f“f~ ' .

°

!

2 2 The Frechet Differential_ _,”'

The differential has, by itself influenced the development of
mathematics more than any other single concept.J It is one of the most P

important concepts used in non-linear systems analysis.» a differentiat 'iﬁ,fﬂ
l’f_can play more than one majcr role signifieant in the theory and B

av‘application of non~linoar functional analysis, Nashed [18] The role

if of major interest here,:;is that of tha local approximatioﬁ‘of non—linear -

'.1

oporator hy a linean,operator._ﬂr ;;;;t:
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Continuity of the operator is one of the prime pre-requisites for
. the application of the Banach contraction - mapping fixed p01nt theorem, ;
as. has been stated in’ sedtion 2.1. __;', S '-' s _' EERES

In elementary calculus the concept of the partial derivative 18 .

Lo

.used as a means of determining the derivatiVe of a multi—variable '

function, each co-ordinate being considered separately.
_ ¢

/..v_ \
_Definition;14-: 1f 5_- (xl, X, f--—, X ) and x_=~(y1,'y2; "7‘11Yn) are

_"elements of a vector Space X, and y_differs from x only in one

A o-ordinate that is xi - y, for all i3 ' The "partial derivative" of

T
e

| f with respect to the jth- co-ordinate A8 written as

Cf(x) = lim  E(p) - £(O)

S Wy ey S e
‘iTherefore,jthe_tctai differentialfofyf:éannbe:vritten,as‘ o
. : a 'z E_f_(-_’f_)-d!cj ! (2.13)
It is well known that functions which exist in E are continudus
o argn L
sfat a qiven point if the derivative exists at that polnt~ Ortega }19]“-?; 2

¥
IR
.J

f.has demonatrvted that a. function in "n"-(n>1) variables can have *, @'31:4; .

;upartial derivatives with respect to’ each of its variables and yet stilll B

;ibe discontinuous. Clearly a atronger condition, than the existence oﬂ”

fithe partials. ie required to imply continuity of the Operator.y,i" L
n A stronger conditidn for continuity can be obtained via the ‘x;-d

ffdirectional derivative. .»f_};ff:T""“'



, k .'16”»

N

‘ .Definition 15" A function f 15 defined on an open set seX and x € S;

_assume that h ie a unit vector in x.» The "directional derivative" of f

Al o . |
at the _point X in' the dire__ction }_l__is then S I .

: ) . . PR

Clim o f(x + Ah) - £(0)
Voo

N ean

St

if the limit existe.
Since h is completely arbitrary, (2 14) muet contain (2 12) as a

special case, i.e. -a_, specisfic direction‘ ie considered.
. PR S T
. e N =

. '»Definition 16: ) "Open set" S c X has the following property

For all X € s there exists anr >0 such that if a neighborhood
"N(x r) ie erected about x, and y_ e N(x r) then the distance between '\j
‘v x and y_, d(x,y_)<r. . - , |

',V-Let €=z \d(x,z_) then e S

e
v

N(x,e) c N(x,r)

- ! t T4

0pen eete axe considered for the following reaeon. For all _‘ e

s c X there will be a neighborhood about x oompletely contained in

S (N(x,-)cs. Every point y_ € N(k,-) cen be written in the A o 5
following form: g_ -x + ch. where h e x and o is eufficiently small ‘

x

_->such thet X -i- ah € N(x,-) 'rhus one sided or inﬁinite derivetivee can |

v,be neqlected. o R R o A
- Further, it is to be noted that no reettictiona are ;unposed upon ’ _‘ ) x
” 'l u to the way in which it ie ellowed to’ epproech x. Which impliee

_, .ithat the neighborhood N(x.‘) mult be convex - (R

e If a function hu a directional derivative in every hex then all

) -f:the pertieh nuet exiet., Yet the function may be dilcontinuout at the o

,"»,» - : AR



given pOint [19]. Thus the existence of all the partials fails to 1mply \~;<
.continuity at the point. Ciearly, the extension of a syStem from n =_1f
. g
ton>1 cannot be obtained via: the directlonal derivative
A generalization of the directional derivative, introduced by °

‘Gateaux (1913) [19], is the differential. It does imply continuity

and{ at'the’eeme;time, permits the extension of the principal theorems

of derivativee'from»dimensione'of'n-=N1rto'n >l L
- pefinition 17: A function T maps anfopen:dOmain §;of,aivector space ) S

f'into,another vettor space Y, i.e.

- . R N -
. . . ¢

1=
%)
0
S
+
|

It has a ”differential” at’ x e S if there exists. another functiOn 1

‘fwhich satisfies the following conditions-

“

- '(1) 9_ is & function of two variables‘, both of which have n
Ldimensional ba\be.’ The differential of T ie written as g}x;hs Where"
X' € S is the point and h e X is th%’direction under consideration.

(2) _g_is homogeneoue in h and of degree one.

(3) The differential must exist. It must be noted that no

-

:.guarantee is given in advance that P hae a differential.- However, if r

,:is suitably(/ratricted . as will be shown 1ater - then g_can be shown

’\be unigue. "The diffgrential of r at x x in the direction h cm also

written a8 f:ft. |
U aczsl_%) r.u.ni T e eas
,whexe Y' ia the derivative of P at x and r (x) < ,‘.”._

AT Rt
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| pefinition 18: The "Gateaux differential® of a f.u‘nctionv_I‘_: X+ Y is
written as, J o ‘_ LT o
DF(x)h = 1im T(x + = T(x) - B
PLiwh =t La+e) ~ 10 o frgn, . (2.6
A Tt B ' Co '
1f the‘limit exists. 'Where 4 ié a Banach épace, but X néed not'be..
! i . S
Clearly conditions (1) and (3) of definition 17 are sat Bfied. P:oof'of.
i condition (2), definition 17, is now preaented, that is,- R &b -
!\ : > . . . . : ) ’ ' »
B (AR) = Anr'(x)h; | :
. LA AR x
CProof: | Sy

" For all X € E', replace t by tA in(2.16) then

— i ks —
b K3
tConcluoion§T~_': y
Ll | xmmm-unmum.'“F-»*f = (2.17).

:the homoganeity condition ie satisfied.

Definition 18 setisfien e11 the conditibne etated in definition 17,

§i equation (2 16) is valid. Thue a function r hes a-G differential

when (2 16) holﬁs in every direction._ Then Dr(x) aaeignn to each vector

fh exa vector DP(_)ht therefore, Dr(x) is a mapping. ;' _fi”tivi.“
.‘“'lifxt han been shown, by Ortega end,Rheinbqu,[JSJ, that the R
;é‘differentiel ie not. necellarily a’ linear operator._ The G differentiai

m, /lackinq in the rouowng delireble propertieu S j /. L

‘-'fili it ie not nececeaxily‘linear



(2) it has been ‘shown by Nashed [18], that a G dlfferentlal“can
':ex15t andvbe a contlnuous llnear operator while the funo!gon tself is .-
.dlscontlnous ‘j " :; C . - f*f/j X l“ R

Clearly then a stronger form of differentxal is required to overcome. |

these deflcienc1es The dlfferentlal now'to be con91dered is, the h
. differential..‘_’ . . | v "‘ "1 A: : ; B 3 . ) o 13
o

_ Definition 19: ’A mapping I Dec X > X_(where D is an open domain of x)

X and Y are normed real vector spaces; T is said to be "F dlfferentlable"

S

at x €D if the follow1ng representatlon holds for all

S : .
-heX 9 x + h € D; o clon : Do o
T+ w L mpwh twep. o @8 )
; . , , : . X
/ﬂh\re L(x) is a continuous linear operator ‘and L(x) "Dc 5 > Y.
Then L(x)h is called the F different1a1 of I at X and is wrltten
£<5>5;;g-(5>g R N P )
ST s S N A

e

~ Thus F (x) € L[x, x], where L[x, x} is the space of linear operators Y
which take a domain of X into Y.« Since the spaces X and Y are both |

‘normed'real vector spaces, it“will now be shown that 1£ the F ,ﬂ

‘differential exists it is. continuous.v

. }

Substitute (2 19) into (2 18) and take the norm of both sides
P . Co . ) s i

e

"I‘(x + m -T (x) - r <_)h|| |[1'w(x';. ‘h)'}lf'"'-“ o _.;'1(5,_20,;.- o

llnll "h” S R ;_

It is to be noted here that w(x; h) Y it is a mappinq, dependent

upon two‘n dimensional vectors and is called the remainder of the L



Adifferential; The map is-defined.for all-sufficiently small vectors

Lo~

Estbis X(h # 6) such that = '

Sl

'kz:"ﬁ"' o - o 'lil]n ”i(_’i, P_) ” = 1.10.., o o . : (2_‘-21)
: v ihlb o o, - I . .
g@, S ”—,'-*° el S

5

‘:;ﬁtt'make sense.
" Then - ’ |
o um e+ ;yy - oonll
||h||+o T el | i

s .
v . B

;lwhich is an alternatlve method of defining the F dlfferentlal [20]
Because of (2 21) the F dlfferent;al P (x)h, is continuous TThe

) proof part of which is reproduced'fiom Valnberg [20] Wlll now hp

presented: .

5

3Proof L: uD c x -+ Y and‘lf P is: differentlable at some x €D then

,given € >0 there exists N(x, 8). such that 1f x + h e N(x, 6), then

o T * B iR i 226

' ! ' - - . . . . ." O .‘ ' ° ..
. where . . - 'y EN(x, 8),.

’ —

u,The limit is obvxously taken for ||h|| ¥ .0, otherw;se the quotlent does

.= o S U iﬂ . .‘é.zzjv,

Nr+m -rw-rwall <elnll. o @

Colmibellg ks @2

20




s. i . ) TN

§f nqw épply'(z}3(d)) tdighe L.H:Sf§f (2.?§),th§§
s + — ,£.<.£>_‘_|| - Ii'_r__'.(gi"h_ll =
:llztg 'y - I - I'onll.
%.‘If“(z.zsy islﬁow‘sgbéfituted ihto (5.23) tﬁen

HI‘(x +h) - Nzé)ll <e IIhiI +||1‘ (x>h||

s 5‘_"&|| +'”1‘.-3 wll Ilall«

S l;
- ¢

" Now substitute (2.24) into (2.26) and write

e -t il <y - ]
‘whe?e o ” e |

LR

" then. Sl |
o -rallemg

L =

.whgn o R S -

R T O

"'Cbhclusionv.

- Since € is arbitrary and positiva this implies that F is o ‘

(2

(2

(2

(2.

(2

»?(2.

.25)

.26)

:27)

.28)

30, -

1)

21

200 v

f_continuous, and because of (2 3(d)) this implies that r'(x)h is also 11,' o

l‘continuous 4.f

oy :
A L hale

-.]"/.:vf'g -
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. The F differential. is htiiized Because<it sétisfies the'following
7¢onditions:

,.‘l) the F differential is defined in norm, thus it is a strong

' differential

(2) if the F diﬁferential exfsts then I
.(a)j‘the G_differential exists
(b)ﬂ»Pvis continnous s

" (e) the derivative is- unique

>
. &?‘ 3

(d): the derivative is a continuous linear operator

!

- (3) by comparing (2 20) and (2 23) and observing the conditlon };1

displayed in (2 24), then ,:1;“
ﬂﬂ&ﬁﬂ%ﬁﬁkdmw;fy~,o-‘ftmwt[*

. Q
: ]

"that ia, r is uniformly differentiable on D with respect to all x € D a
“ (4)I P'(x) is continuous in D iff r has a locally uniform |
;‘differential - condition (3) existe - and 1£ T (%) is locally bounded
Vom'p_.'m | | . '

’ Locally bounded means every x € D has a neighborhood N(x, °) 1n'

'fwhich ||r'(x)|| is bounded Vainberg [20]

Bounded in norm ie en immediate consequence of continpity, T'(x) 1s
‘uniformly continuous iff r(x) is uniformly differentidble. | R
(55 if r (x) is uniformly continuoue in an open-bounded convex

: domain D, then the P differential is uniform in D. -

| ‘;, Detaile of the proofs[for conditions (4) and (5) are to be found
in [18] [211 L 'Aalt -;Tj; _”;?57 1t"f.g_‘ij;, _” o "
By observing condition (2) proof of existence of the F differential

’ia a: prime criterion. A proof of this is offered in section 2 3. &,f”
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-

2.3 The Existence of the F Derivative

in_thellatter-part.of.section’2.é reesons for:utilizing‘the F

vﬂaerivativelwere statedi bne_condition which emerged_as heingtofl'

.'paramount-importance wasvthatAthe’F différential‘must erist.
‘»Inﬁthis'section sufficient conditions %or the proof.ot ekistencef oo

: : \
are . presented The presentation is made in the folloWing manner:

Q

bl,(l)j if the F derivative exists, then proofs ‘are presented which

. Wlll show that,

‘(a) the partial derivatives must exist and be continuous,

,(b); the Lipschitz condltion is satisfied for a multi— N

variable system

(2), if the partial dprivatives exist and- are continuous, then the :ﬁt
F differential exists: sufficient coﬁditions only.._ R _- R, N

: (35 from the existence of the F differential it will be: shown

that the F derivative exists and is a linear operator.'7f-d
" (4) an argument is presented which substantiates the unique

K

: representation/of the F. derivative, - if it exists and is a linear
3 operator - by a Jacobian matrix. fv'ﬁ»'.'% j¢;~; flfl- ‘gfk .
For convenience this representation will be used early in the

: section, but will not be justified until later.‘f

- ';f Figure 2 is instructive in the development of the F derivative :
| from the G differential. e;.;,f;eg;. ,Zcp:l:JV_i'A“ Hp*;rf“v - EE ;y?
vi:_ Suppose that the Fudifferentiel does exiet at a point x € D in the .

i direction h € x.' Previously it was stated, equation (2 15), that the th;

differential could be represented by gjx; h) Where 3_ S
1' (91, 92.----. qﬂ) | e

Wt
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"and o E -
. X . N . . Ve ]

h = (h,

h ,'hz, b))

7

Proof of exlstence of the part1al derivatlves, based on the

o T

hypothesrs that the: F d1fferent1al exlsts and can be represented as

;above, wrll nowAbe presented.,
.im:_.

A vector u is deflnee as u = (ul, u --—-; u, ) wﬁere ﬁl, u2 etc. .
are the unlt vectors whxch form the basis of the vector space X c R ;1'
,A compo ent of the vector u-i.e. uj; 1s deflnedsas | | .
iij = Yo, 0, ===, 0, l, o, 7---;‘0)1 a. 1 in the jth posxtion.. Thggpg.f"
.can.be~un1quely.writtendae o |

T e R s

=>— j; Lt s3e)
" then e
‘»,n:

e j? ‘ o ~r-:1. :;”:1 S ‘,f,-

~since g(x, h) is homogeneous in h of degree one. equation (2 37) can be = - '

i
(x; - -....""
§ juj) gi(x; h u) + gi(x; h ) + :
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S s
-t _“+ gi,-(.i‘,-; u by ._'.‘ S g o (?.39)
T 2 (0hy +a,0h, + -

: "_““ .y +_.ain‘_(§-)-hn.,>. R _' k ‘(.2.40‘)@

n

where ' . a _(®)h, =g (k wdh; . . . (2.42)
mere 0 Ay@hym g iy Dy g A
F:om:équati'on"(z;zd) _p_---’x:_'- 5 .t‘:hér‘éfqr‘e','__‘ !

B hj_yj _xj : V jul' 2, """' v n. . ' L - (2.43) _. :
If x is allowed to vary in one direction only, at a tine, then
"’here o < IAI <5 then o ‘ A

and Yk 'xk - o f.or k # j, therefare hk k0.

P

:’-substitutinq h an& hk :lnto equat:lon (2 41)




| . . : .
- - M . 3

t

[' since all the other terms of the summatlon are zero, by v1rtue of the o
- fact that x differs from x_only in the jth cb-ordinate.» If equatxon
: (2 15) 1s now substituted into (2 23) and only the ith component of T. is

considered then

- ‘H'I‘i‘(g'g ."»"*2-3‘) - DX =gl Y- x . _»(z~.4.e')."
. Now substitute (2.47) and h 5 = X into (2.48). |

o 1im P (x + Xu)) - T, (x) } gr (ég. P i :fi*»_;lf':,
Tama Mo e Aot AT g N

fbecadse'eiié-aibitreryfe%d poéitive‘this'imP;ies‘..,

T, (x+ xgj) -Mr RETR j‘ﬂ , ey 2.49)

. “X‘A .A .:‘.....' , _

. and also that ‘a; 3(x) exints; therefore, f:“”
o me

'v 'Q T S o L e F I
: s : v
“ : o : L R I

' CUnclusion~ RIS AR I , - R o

_ :th-(-, gi(x, “j) can be uniquely r,presanted by &, j(x)

" (2) Becaule of. the continuity conditi.on (equetion . 49)) the T

partial darivativeu cxio'

Therofors 1 tn‘ ¥ differential o exists th.n‘iuthe partial

derivatiVen mult




« . >v<
L .

5 A
:Substituté equation (2452),@ntd (2.4;)-ana wriﬁé;.

ar, (X)ﬁ T o S oo

| | i n"
S I R gi(x' h) _\>
. J=1

" {Replace hj; by equation ‘(2.’43)',‘then e
a
ari(x)

| = ;j__. EORE T

_Writing equation (2.48) in a more general form gives,

which can bel#éw;iften‘as, .
”Fi(g +h ) - I‘ (x) H <e ]Ih]l + I] gi(x; ‘h) || S '('2.'5_"6;) .
| e e ;o BT
Taking the norm of (2 54) :

ugi(x. mn-nZ 2 4, x, >u

3 ;ZJ:...

N o . " “, e » . . .- - . X
.o L : _. e ! ] s
- , :
i
‘

= <nZ ?_fnnx-xu

j=1

',,“.._ L

N

I axj"”l"?.‘."' e (257)




(2. 56) then it may be rewrltten as

from which it follows that:

»'Néwiletf,-f

“then . .. -

) thus the Lipschitz condition is satisfied on a component basis, becausa

:;of the initial hypothesis that the F differential exists. Proof that '

Therefore 1f (2 57) and (2 58) are now substltuted into the R.H.S of

{‘

e m -rll< - xll| e 4{

\ J_\'

."It was stated earlier that P (x) < w (by hypothe31s) therefore, each

“,component must also be bounded ‘that is .>'

') <o ¥i=1,2 ----,n B N - A

R .
Z "ax. ||<°° e 2.8l

Teen - rls ﬂiwil‘xr—iﬂzj’!l!% el

N

L

fvthb rssults stated in (2 63) can be eftended to include all i: where

fi 1, 2, =y n and he written as i’ff}‘f'



. where’,

( .

_ Banach spaces.’

M= 1,
8 sup {Mi}

i
'

will’nowvhe'presented.

L]

Proof-

Consider a sphere D c x

s-

'xo e D, let x, y e D and let

,-&s connecting the two points

<

'segment is dEfined in: terms

B

L'%,E@x > %
‘., .

oz ?-',,_:_t_:f thy__j— 5_)-,'

(2.65)

The proof is developed'vie the one dimensional

@

_intermediete value theOrem}’end utiliZes-the;principle of convexity in .

Ci . ~

of radius r>o, centred at some point .

—

x and Y a poznt z which 1s on the line

of x and x'by j~"_', c

o< X< 1.

Keeping A fixed and introducing a new function which depends only

wupon A i e..xjk), whi_‘

X+ A(x;- x) under r,'“

If now A = 1, then < -

EETUER L

Iix)

o _Y_(o) 'Q(nullvector), AT

is the ”distance" between the images of x and o

A line segment is’ considered »

- (2.66)

(2.67)

29

C2e8)

Co(2.69)



. therefore,

: Consider now the 1th component of Y that is y for is

»bpartitlon the interval lo, 1), 0= A <A < == <,A,

S v-if ar ) ari(x 3 e(xj X0

-yn-lm) Np—rm),-AV"“_iﬁ.iv (2.70)

"
[
‘.
N
N
]
i
1
3
)
-

1}

~'and'}k be two-differenp but fixod»points,in’the'paftition, therefore, -

Y0P =Tty | “\\-
R T Nge T S e
A ‘ o \-;' '
e T, (x Y (y, _}) + r (x)

L
‘

VNow, by considering each component of and y_e .g. xj, yj typically,

_'equa:ion¥}2,71)~can be“xewritten~as- - i_{_"»z "/—/) ’f

STaley  Aglyy = )Y S T g+ Al = X))

v

3Fi( )

RN S (x"-7A'Y(y Sx) e T2 s

ax

BT LA A

where . -

'*:.-ax' : 3x

Lj.tu_ R

TR R am
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~r

and : o L = L

i k;

A< B8 <
o )

~

T, () - | | | . |
é: is the mean 810pe:invthe'interval”(Ag,-XkYE ‘The material

‘:which Wasldevelop§d ear1ier anﬂ:culminatéd in equation, (2.53) is'héw:','
:uéiiizéd, that is, we can réwrite (2.71)- as ._: o

NP ) =) Bty k)

for all i =1, 2, ."'v"-llh’.'.

v, v, ) =y
But —— =i g 4 k.

R A R T

;’\ (2.74) p -

B
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cand 0 [

S s,

bl '.ql(‘i |

~di .

(2.75)

‘'where

f ' l<\ ’ |
written o Tl ' )
AN ) A an () |
Y™ ox e
e n

SO e A

e . ' . ol -

. .- -ar (AQV'.);’/.".:~ ' -'_' . ‘ ' S . ST = ) : | : E
Writing. ——"in the form a, (), equation, (2.51), then (2.76) can.be . .

'} 3
rewritten as

°




The elements of the Jacobian matrix are the first partial derivatives

of t£e~veétqi g,'witﬁfrespect:tb if§ éompohgnts.'iThg§jﬁeregobt;inea vié'
ﬁbelone dimensiqnal intermgdia%é falug ﬁheéiem; | ’

>N6w e*tend'phé regiod:be£§eén Xg'énd'kk tof%é =1 an§ Xk;¥'6;v£hen3
-equatién (2.?45.€3¢ be rewritten as B S |

-— !

YD -yglo) o dy () A (2.78)

where Ak',is an~iﬁtermédiate-v'lﬁe of'lk in the inﬁefval [Opil]ﬁthut

(2;79)"

and from equation (2.70)
- Yi(l_) - Yi(°) »='- l"i(x;) - rﬂ.’?) (,_2.,3(.))’: -

©
By virtue of (2.75) we can write




. .‘ﬁ, - . .
. . 34
‘ )‘\ . e
and taking.the horm of (2;81)' =
. . ] s - R N
i - rwll = [g - =l i
PR o : | o 3-1'.(-) - o . .
- s -2l 2ie2)
. j ) R o _
kwhich is valid for all X and X_in the neighborhood of | [22];ﬁ.i,*
- A comparison of (2. 64) and (2 82) reveals that
- o ‘k‘_n ar, (x) . .,(/ oo C H o
M o= f:Sung: ﬂ».ax; .H ,f;n‘ . SO (2.83)
_ I T I BT o R

~and since‘e is positive and erbitrery the equation (2;82$-can be
ﬁxewrittenmasf_f
Nz jl".,(;‘)li smflg-xlle e

! oo e

Conclusion _“' U R

The Lipschitz condition is satisfied for multivariable systems
The concept of the one dimeneional intermediate value theoreh hae
been used to extend the‘"local" properties of the F derivative to ghe
"global" properties of the qUOtient, as discussed in section 2 1 |
| ' It was- stated earlier in this section that- sufficient conditions
.y ' ‘

only exist in the proof of the F differential. Thesewconditions,will

now be developed
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Suppose that the partial derivatives do 'exisf_ and are continuous at
point _)‘c_, then there exists an ¢ > o such t_hat. if ye .N.(_)_&_, §/2). then
s iinipligs,’ Luenberger [31] = -
i S o@D
T, (1) Ql‘i»(g)j

. g \” ax. - 9x. .

<n. o fz8s)

—

e

[where. j and i= 1,2,“—--_-,: n. Because different hgj.éhborhodds exist for .

sach éomnent of x let

=* /.33
S e

iNow -]'.'et: N, = }ﬁ?h'u ‘such that -

PO = 6 (null vector), and _furtt_;e}:tgk _sat;éfies.‘ the ‘ following. ‘recﬁ'_xr‘e'_r‘ice.

w

»

xelationship.

3
¥ . .
L .

3

e

3 g

i B
P
!

)

gﬁhétéféré'; ) - 6 o .
SR & SO
M Jl< il gor a1 x. - S

put

) o . ? .‘ \ ] .
Bhos o o
L n@-n@e R T, @

AR



."3.6' .
now because of N E: Ejui‘.we can write (2.89) as follows
) - o

Jsl h

(34

T “n © : S o .
+ - T (3 : ’ . - . (3
ri(_gj hu) - ri(g)_a>§: P+ M) -T &+N ) ,(2'90?‘

' k=l . ,
and by substituting (2.86) into (2.90) the general term of {2.90) may b -
w:itten‘aS" A . [

;ti(§;+‘§k?‘e tif£5+ Ny ) - r (x +N ; + gkuk) F (x,+ 'k*l)-'
’ | o (2;91)c

ﬂhich is the difference of one - component of the operator F at two points, ~‘.

v Py

the two points differ only in the kth o—ordinate in the nelghborhood

m(x, §! /2) S ’i»».‘» S -J d. ; .
_ : : ; o RTINS

A néw function ie introduced at this point L

P(h u) = B &+ '_7 + -*lk‘*k’ R, XN

)ff:' :* o e B T _-‘(2,93)_

?‘d-the'interqedlete.velue cheoggmffcﬂﬁtilized egein”tovﬁricé»

o,

o 'f”f' Pw) - PO ST T T e
AL T hkuk — = P'(Ek) f.i o e @
B S LT o

piare R
BCEC R




Then

L Py +oyw ) - Plhyu) "

Y

‘»Fi(§_+ §§41‘+ hkukf+-xpk) 7_Pi(§_+~§k;l”+ hkuk)_‘;fk'

;akipg’(2.96§ to tﬁé iihit,‘i_+.g*then

Lo Tt o) = Pl
T T e

ATk KN, cBRW) L Ll e
=22 Bl A% L e

- ..axk"

- . . - B N

iNéw'réwrife (2.94).as fol;ows

B A i . S
U Phpu) - ‘= h P'(h IR e (2,98
R - P@ =metBay 0T 299

)

e

‘and substitute equations (2.92), (2.93) and(2.97) into (2.98) which '
results in - o

Taa B rRA) TGS RD




S

substitute :(2.99) into (2.90) to obtain -

o, (x . hu) - P (x) . Z: h& ar (x + gkuk)
L k=1 : :
: ~. axk.
S v ar (x + ¥ aT (%) S AT (x)
i 2 ’—1k< l Ekuk) e )uk‘

AT T T )5

- 3P (x) ar (x + B ar (x).f
 _’ "Z"jlh" xkx"‘+’§1hk hkuk )%‘

R Y

'and from equation1(2,53) it ié‘seén fhat 7,(‘ {;DL:;ffJ . .'f i‘ f.f;

n

o 2: . ‘°.' . v_vj .j 'v. ~.(2.101) - -

(x: h) =

kfl hk xk “

‘The remainder of the terms 1n the R H s, of equation (2 100) are now ; L

Y 2T

iconsidered, that is

* !‘*“x’ o1y (x) P

AP ST e

,axk, a"k "(2 100) .

38

%
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By combining (2.87) -and (2.88) it is seen that -

ey *&%H<IMH+HMH e e
; T zaoyy

_; < 2||h “ < 5-‘;i::tf r' s ;.;  }  .  ,-

Therefore, the combined effect of (2 85). (2 ee) and (z 103) on (z 102) B

will causa this to reduce to e(h). Thus (2 100) can be rewitten as ‘

ST R - TS g Gu W eem) T (2ol

but since x + gpisfx.éheh:(2ilc4);hay.be'rewrittgn-aé
M@ sn@ s e .

. Theréfore, e e N e

el e e e T

T R S A
e - - g wllelle ool




tonclusion

If the partial derivatlves exlst and -‘are continuous then the F
ﬂifferential exists; Sufflclent conditions only. , S P
. h : A\l oL ‘»

3.'1 Now that sufficient condit?pns have been established to prove the = . .

hxlstence of the F differential it only renalns to show that the F
derivative exists._ ' R ‘

In previous sections it was>stated.that the F differentlai was
homogeneous in h of degree one._ The proof was not presented at that :
time this will now be corrected. Also proof that the P d1fferent1a1 |
is llnear will be offered Sections of this proof are to be found ih i'

.

Proots

——

w
= .
"§
[
(D
b
et
’1
U
o )
joe
*
frc”
:1‘
[°d
a.
X
ot
ﬁ
’5‘
e
N
o
U
T
Q.-
e
iy
th
(13
':3
=]
(24
i e
[ I
"
w

'- _1_'- (54-5)- f-_I'_-( ')' g_(x. m) + a, : . :-;_,. . o : (2108)
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gt - goom =g wl<
B - Ix+m =T(x+h -T@|+F 0 (21100

ut -
Tx+m+n ~Tx+m=gx+rmh +a, (2.11)

Now substitute equations (2.107)and (2.111) into (2,110) and write -

. . ) ]

”_g_(x, m + h) - g_(x,»m) - g_(x; h)ll <
]lg_(x +mh) - 9_(x; hﬂl + -—” ) o T (2.112) e

.»_ -

&y generalizing equation (2 55) it is seen that Q(X, ') exists and is BRI

continuous, therefore, by suitable choice of 6

-
"'.

;od’iff(z;i;ﬁ)‘ie.eohefitufeé*inﬁo_(2;1#2):£5enef?; .

PRI

giwa+w-gwm - g pllees o @u
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Ly : S . Coe LT
bnclus{ CE T T

. .The addlt1V1tY property of g(s) is satisfled | I‘t 'wil'l be’

v
»

6

Eemembered that the homogeneity condition was satisfied 1n equation.

[2 17). ‘!'xlerefore, it can bq concluded that the F differential is ..
Linear in the variable h, and thus exists C "', J . | B

7 .1t can be seen from equation (2 52) that g_(x, ' ) = I'“'(:Ic)}h'.‘ T'he'”'."
>perator which assigns I‘ (x) to X is called the F derivative of I‘.‘: The o
lerivative has its domain in the same space as the original °operator, ..
llso it has the same range s;iace as the original 0perator | |

o Matrices are closely related to. linear transformations, this fact

is' well k‘nown Consuder the following system of "n" 1inear equations

©i(2.16), .

i b D * ’ﬂn*‘rix "f’ﬂ"n ey

Lt is oqually Wsll known that this let of ,n 1inear equations e ‘
usigns a unique set of "n variables 1 ; - -%_ ;—'; P B to every Ll
iet of h hg"', - :‘,'j_.h, ‘varia.bles. g This aaaignmant :I.s called a _'i Lih

‘ 2
‘%near transfomtion and is characterizad by an u‘ray of n

;;oef.:ici-nts, which is a matrix If the general row of (2 116) is

mpamd to,}the gen'v al.?'row_ from' (2. '3) it win ‘"be :seen that thsy
;1inear, equatidn. The":.' "

x) to bega lincar




Operator Its components can be shown to be the same. Thus,'theb-
' b

‘comparison reveals equivalency The Justification for writing F (x) as

‘a Jacobian matrix was not” revealed at the time that (2 76) was. 'ﬂ”x

-presented. In the 1ight of the proof mentioned i.e. the last proof 1n ‘1 .;
3 : A .
7this section, and the materia\\which followed the representation is .

ijstified.
:Conclusion ,
If F (x) exists and is a 11near operator it may be uniquely o

ﬁtep:esented by a Jacoblan matrix,-nashed [18].

‘2 4 ‘The Banach COntraction ] ping-rixed Point Principle

It was stated earlier 1n this chapter that the Banach contxaction

mapping-fiﬁed point principle would be used as a means of obtaining a
ﬁsol tion to the non-lineax q.gping problem.; For brevity 1t Wlll be s

?,alled the “fixed point principle"'if

4

A statement exists which asserts that under certain conditions an

i,

?Operator frOm a domain of a Banach space into itself admits a fixed :
Tpoint, that is l » ”H' Ehe | '

'7fjg§x*jféfgfj;7fdiﬁ-r

fthis means that a method of successive substitution yields a sequence

'\'-.
s

fconvemging to a aolution im\the space. SR




‘Letfz;be'a‘non-linear operatorlwhose domaih and ronge lie in the
o

same 8pqce.f The contraction condition is stated as: én‘operator F“fl

_is‘defined-ln‘N(x * a) and suppose there is a number K such that for ,'

.'»e.v.ery 'pair" of points o_gl*i, ’xz* € N;r(g' " a) then

o

‘The fixed point condition is written as

ol sxtllea-ne T eaue

Re

._If the conditionl of (2 %é‘l) and (2 113) are hoth ﬂ“‘-ilfied then a o

f nnique fmd pomt

7" R A sequenca ean be generated via the non—lincar operator I‘( ).

"'that is ° '

e -rognllexllge - xell - @

44
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'%?é subscript Pched to x* indicate thé_abp;okiﬁétién_tO"

the fingl sol
e lim x* = 1m0 EEERE T o

n'fr_cpl.,:_‘ ' :n.f'r,_co_‘:' Sy

j{ } o

‘T( ) be continu§u§ in )
fevazy point. in:thd
?that the supremun o
x anywhere ,'m the
iy _

A method which pieces toqether the "local“ solgtionn into a

. global" solution and extends the.region has been presented by chu and

lbiaz, [14] Trott and christansen;_;f,h{f’"

ftheir research |
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- , CHAPTER ITI

'CONTINUOUS CONTROL SYSTEMS AND THE VOLTERRA SERIES

v)’

'lO Introduction SRS P Lo

Th15 chapter draw upon the material derived and presented in

P

hapter II ‘ Evaluatlng the contractlon mapplng aﬁd fixed poxnt

v

ondltions are’ detazled 1n sect;ons 3. 1 and 3 2 respectlvely.. Details

f the Volterra series, its genegatlon etc., are to be found 1n'

Sy _~“

ectlon 3 3 -'155 a»'

o s

i l"E
Concluding this chapter is aecxlon 3 4, which contalns a
. S . 8
emonstratlon of the method whlch is developed 1n the the51s. where a .

ifferentlal equation representatlve of . a ptactléal non-llnear system

t sdlved.“ Previously the eqnation has been solved by Christensen [27]

o
"‘b> . Lt S SR . LREY
e IR TN

nd Barrett [9], but by a different i\)ethod.v

.4\
.1 Determination of the Contraction Condition

”>“Consider the foilowing matrix vTotoradifferential equation, which

a typical of non-linear systems, ‘.ﬁgjﬁzf’ﬁf{137T fﬁﬁf.::L




The solution Qf’(3;l)his well known to be, [30]’, |
uzf(ti = gjt);o’f'étgfh}sygx}e)de + étgxtlé)~g'£ﬂ—f(8))ds h: (3#2)5h

where b( )15 the state transxtion matrlx

' Slmilarly the solution of .i ff.:A‘ R IA;J

SL o R(E) = Ax(e) + By(R),
“'? ” o A  >f A
which 15 time invariant 1inear.matrix"vector differential equation,
e _
L 4 -

is known to be, Ogata [30]‘L§P . N A _?.'j
-‘35(,1';_)-}=..g('t‘)‘gq;},}gf‘g__‘(m)’ By(s)ds. <34> =

<Ifﬂd ; 8 (the hﬁilfmatrix) thehfiS.Z) takes the'sahejfoiﬁhaé (3f§),
therefore, i - Eo.i'h;;. :f;;e — n

The solution of (3 2) can be obﬁained by iteration techniques,v

which requiresathat a. convetgent sequence be developed. Let us then «

e e

" (3.5) e

SCIORE




ha

I ,
o .
EE .

%

(t.8) By(s)as. B € X))

w = LR wEGreNasl L (310

Eif'(3.i0) is hqw SUbétitu;ed into (3.7) then-.

L

L . .
, ' - S .- . . . )

Thé.séqueh&é reQuired in the sequel, and referred to above, will now be R

i o .t . a ~ 6 .
¢ ﬁeloped‘fromu(BLIO) that is'- ‘

)1 ere the subscript attached to xf indlcates the deqree Of approximation

- i OO '.

to the fmal resulb, that is x*l 13 the first apprdximtion to x.
g Now sub-titu"f (3 73 into (3 10) thus R B

| h*(t) - 5 m,s) & ,‘(3_( ) +: u*(snds

. ‘.a_. e

(3.8) -

’ x*(t) = x(t) + f ¢(t s) ( *(s))dsf,.“ .. - .' a,(j,li)‘ u

48




<y .

—

u ey =/ Q(t,f) gf_(xl*(s))ds

- £F.‘E(t,s) .g;f_(_z_c_.(s)_‘ﬁ %'(S))dé} B o0 ) _(3,.14) o

and if we let a (t) = _e_ (the n}lll vector)“:théen_ (3.14) .beco;g\es j

C wm = et s faEas, L (3.19)

where u (t) ia,the first approximation to the final solutioé:g;(ti. »
‘ The second appraximation is S SR »/

.~‘s o -

()= g"*g(t;ﬂs);.g‘”_tf_,_(g_(';)j+‘,_,9_1‘(s)__)as;' S eaer

Si‘milarly wit.h the third approximtion, and g0 on up to tne nth
approximation which is written as P .

S

N

/ i E,,@,\ gb(t s).a ( (s)+gn_l(s))as | (317) |

g
a

. 1¢ the appeopriate elesent of (3.12) is now substituted into (3.17) -

“then i J : R A

e

49
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herefore the general term £ (3.12) can be written as-
horetore the genaral temmpf (3.13) can be wriccen

(3.20)

' o ) ’ ,' " 3

{ new operaton P ‘has now been defined invﬁlving the approximations to

he final solution andAthe iteration leaaing to the solution can be

!ritten.gs ﬁ"" o j;V:VH;; o fvj:j;'.‘ . ‘~ ,““_.

L q32n

‘_’

ltarly seen that (3 2) 1s quivalent

B R A T N SR S

?}:.
-

rron tha enouing a:qunnnt:it il




. L a ._ . L ] ’\)“.,.: »
Colineey) - neepll cxlley -l

#here x* and 5_*2 ate‘iarbitf,a'ry __.a‘ndv‘o <K<1.

-1

From (3.20). it is seen that

o

* - *_~n *
s 35',,3 x2 I‘(x)

;d k

T(x* ) =u

-2

pubstitute (3.18) into (3.24) and write

Byt from (2.81)

f(x* (s)) - f(x* (s)) - [

*k

_1,"” '
*k

(-

TRty CURR AR

f(x* (s)) - f(x* (sn [—11(x*'- x* ).

51

(3.20)
@328
(326)




- 52

'ro make that which is to follow notatlonally sunple it w111 be”,-

necessary to make cex:tam substltutlons Inltlally let L

ds , . . o .. ‘: o T (3.30)

~‘,g}t)'5»£t|2;t;éy.

-wheré_ '2(‘5 ifs"’;ari.y_ "n .x a" nlafrix and

e

£t|tld5‘>.°'V1?;¢ff'Fnfav RIS @3l S

e

. C

by hypothesis.
’ T);en by definition

v e e las (3.32
Pyt = { ‘bik(ta)ds (3.32)

llas o0 e




53 -

The'original hypothesiS:(3;31)'ﬁeaﬁS'thétj
} "  ._..'

L

f o

lasso o ean

fproviding t > t T 'vg:j~ﬂ'ﬂl-l"‘tj '
.thus (3 36) can. be rewritten as L L T
and by indu¢tibhf

SR (E) 5P

“:’,uik . (e 'fj'kt_ig £ ). ,:, ? ,;L'.f ;_x?V.(3;3§)

Pt > aet)
Therefore, it anbe constuden thnt
o (ﬂ'P ’me)w«:m.;5;;,_;y.¢xwx;,
. ‘t-‘ L o . S PR S oo : - .

j-»where P is the supremm of the tems which satisry (3 40)

o8

'rhe P natrix 1l therefore dominated by a natrix of real mmbers, RRREE




R S o : o L
.and’ t*is Ehe~time'ihtérva1 under~con§ideration that is, o < t f_w"and g -
1s the tlme elapsed therefore o < s < t

Return agaln to (3 29) and let

L

sup

o ‘ z(t) = I (3.44)'

written as e
R ff_.sup 1 “..’»;?;”fiuf' o Sa ;
zkm(t?”‘, [ kj 3xk e i )
where 1<m <3 R

Then (3 29) can be rewritten as ;;aﬁ”

. _\‘_

‘(3.'4‘6)_‘

|g o(t s) @ (—;ki] (3= By )da _ |Z Pik z?m(t)

'~and by the oziginal definition o£ the norm (see equations 2 6 and 2 7) fj

U an




255:.

vSuﬁstikht;hg e1émén£S'Qf {3}12)?iggp (3-49iqééu;es ": ST

L R
B

thérefpre (3;49)'¢§ﬂ'bé'few:ifﬁép as .

S

|t pm | clez@llmr - xel  Gen

: *Téking»thé éuprémum'af_(3J§1);oVe; tfre$@l£é.;gn'«f

ffmp r(x ;) ;'r (x -*) ‘p"P ;(t) || ” x e _ 1*” (352) B
Cand since
?;;géjﬁii;wr?"; ;fE5;fAE;;{::fiil}li}¥5;ﬁ?ékégési;lg;;;i

r,‘: e

unx o -t “Pn 20 u I *,--;1«,* [ € X T

Ve




_ - 56"
“derivative and the contraction condition w1ll now be shown . R

) Let x1 _:5.2._.5 §_-‘C\§ ’ where S is a subspace of the Banach space x :
| and xl, x2 are arbitrary in S, also let*@_ S C x -+ x The- re—ferences
;for this section are [18] []9] and [26] who have utilized the mappmg

;function G as follows,

sup

|17_<x> - o >II ' oeret|

é(x'+Y(x —x))l

]| X, - xlll o (3 56)

Let us now,f.applg,_this ‘i_nequality«' to the niéppin'g S
Gw=Tw=Timw ~ . . o@sh.

g where x is fixed in “S and weS '

| Differentiating (3 57) with respect to w gives !

..“‘.

lnow replace w in (3 57) by xl,band then by %, and subtract one equation (j o
from the other, which results in B ' e SRR

G(xz)v— G(x) - I‘(x ) I‘(x >*- r (x) (x _1) : (359) Lo

% "’“ (360)




‘Now replace w in (3.58) by (x, + y(x, - x,)) and take the norm of the

'E';ésult ,

M&%ff&é'ﬁm‘ﬂg“ifﬂg’fﬂ’*rﬁm'
e - L
eigéd'gubé;iﬁaﬁe;(3§6o) aha“(3;61i’iﬁ£6'(3;56>f"
| lle ) - r(x) SD@, - x >|| i‘ﬁq

o o bv: Bt
SR AR

.-:f“%i;ﬁ,;}?ial3ff;}7, - r'<x)HlIx X "

" which can also be Written as . .7 .

'sup

“I‘(x ) r(x )“io<y<1

oizglli_:(ﬁi f:Y(xg.‘ x ))tl xs:psll '(x)ﬂ

‘inih&f?f']f*fos*ii

||r (x + Y(x -

llr'_<x + Y"‘ 5‘%’-"’“.‘-“"‘7?"42 U

5747

(el

)) =

-l

| (3.62)-‘ -

(3.63)




el

up R o
o<$§1" ;;(¥1 Y ylxys ¥1))||j|52 - Eillv'

Iy - e >u

—

.;vcw : ;:;;:‘ < izziuzf(i)lllria‘;.zi‘r

o :ﬁxlrﬁﬁtjvfll}};”."‘f‘elbe"hi;..' ,Tib . T(3;§6?.i o

Thus an upper bound is proV1ded for r(x *)'— F(x *) 1n terms of P'

‘ 1

Therefore, it can be concluded that 1f the norm of the F derlvative of
the operator P is lese than one, then the contractlon condltlon is:

satlsfied. 5 o '_'7;-f

It has been isown in (3 66) that the contraction conditlon is af

. \

‘eatisfied 1f ﬁhe norm of the F derxvative is less than one/ But how is ff/

this nerm to be evaluated in practlce? It will now be ShOWn tha; an v; l*h

equality does exist between (3 55) and (3 65), to some degree, and that
1t is possible to obtaiﬁ pract1ca1 estimate of the norm of’ the F T

derivatlve by determlning the norm of

R

and limiting its magnitude 0 be less than one.” ;‘

The epace being utili?fd hexe is the function space c([a b] s R )._'j;

"‘e descqibed 1n section 2 1 and specifies the domain of 5.»:'

"quuation,(3 2) is rewritten for convenience

~» -




i

" as: previously stated.

4{..

‘on'C(lab], S).. Thus I() is a mapping where

S N Ll

!{4

£

To determine the F derivative of F it is necessary to u lize Lemma

;}8 5 of Falb and DeJong []5], which is reatated he o fo' convenience

ENEFZaR N

‘2(1) ’Let s be anvopen domain in R ’ and T be an open set in Rl, whlch

: dOntains [a,b] Suppoae that T(t,x s) is a map of T x S x: T into R and

“
f.ib measurahle in s for each fixbd x( ) and t, and is continuous in x( )

for each fixed 8 and t

where AR j’ -‘;‘ - (:f"'JV o S e

'V;;'ﬁe L t is the ‘time interval under‘consideratlon.'f;*li' -

| ":'&.:‘n[ - s is the time elapsed and o< s < t. n S

gf x( ) is a typo of continuoua function then t is the time over whlch

d4-

phe function is being considered, _the time of duration. If the Zkapsed ‘

ima nnd tinal time are fixed then x( ) is continuoua by hypothesis.

Wh‘t is implied bY T( ) being measurable in s for each fixed £? :"‘f'
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Ll Tan e em x +ffoctis B y(e1as + oo o £xt(s)hds’ (3.70)



(1i1) There is an integrable function m(t,s) of s with

R m(t,s)as e e

e enae ST | < n(c.o0 ana | LT ey T x5 x
| S o o TTax T \
:(}iv): nm gbll T(t x,s) - T(t',x,s) || s = o2 S RREENEY -(_3_.?73:)_

‘1in b" a'r(t.x(s) s) _ ':?Sfﬁ"éi(g‘f)gsj s _o ', S B0 o

.ptﬁ ,

N

T om

for all t, t! in (/5] ‘and x(+). in C([a,b],8). Thus the mapping T given

by

fis a ditfetentiable mappinq of C([g,b] S) into C([a,b], R ) with the A

ide:ivativn of the mapping being giVen by {.‘ ,..-

r_.n.x»m . ) ymas G

‘:,whero u( ) € c((a.b], S).

’(3.72)_,‘
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- e
' (ii) establlehes the lemma by: utillzing these mapping functxons,

9. -

the mean value theorem and the Lebesque domlnated-convergence theorem;
quat;ons (2 20), (2 21) and (2 22) of the the31s are. simllar to' '

those used and proved by Falb and DeJong in- the establishment of . this _

"7v

lemma

Therefore, if

o ae, (8), s) = Nt.s) s ( m) R - B
B and"the{iimits of}the'iﬁteérationjere-eet,‘that*iéfe'-tofand;b -.t'then

o +

r'(x(t)) - £ o(t,-) -—1413(§>d; - e,,;f_jti,l_ (3.78)-

v

T N3 R : : ']?.',,’1‘ ST o ‘ 'u
- '[S-i] 15 a’ Jacdbian matrix o Cooe Ty -
. and r (x(t)) is the pzechet derxvative.ei e |
The norm of the P derivative can be written as S o ';';.‘ﬂ JET L,

!

'y

Ir II - Ikll <1ﬂ1' (x(t))ll e NCRDE
f:# z: £ -1k(t s)[ukj -—Ji (s)ds ' (B,SOL
j-l x-1 s Lot

lup

‘II xlf< 1ep

'il oftnn diftieutf to evaluate. Thh:efore. a coaraer N
eltimate otbtho”nonn 1u'tekon 1n practice. and tha% 1- f 4”';t} ?" .




.3f.'. : S :
'5;;: DR

< sgp (>L g (t s)|d

k=l =}
o S

 which can be called-

where tﬁé subscript i'C“-“mea'ns‘k:_c,:_&::sn_:*1:0 some degree. The: above is for
tite continuous system.‘ ;:-' e ' .f7_4 . B ‘f ’ -

3 v

It is welL knOWn that ‘the derivative is a resglt of’a limiting

ie

process. It is easily shown from *nr‘ -" . gi

e

* - T L . ol
” I‘(x ) (x ) - (51.1,) , "F)-I:-.-'(E'_l.) ”

. . _ * - x *
)/'-" xz_ xl

"I‘(x ") - l‘(x )ll S (3.83)
.f-qf'ﬁf ) : o
that, . _ . _ . _

I'(x. %) - T 4 -‘...r.'.'*)
L Tt p i - £

- ‘ o' (% )H +||r'( NIk 3.8
X2 ‘—1 D R

,.v:n°€ﬁe définition;of.éhc't dkriv;tivé,fchapter,Z,»it_Was shpwn that
!."v,;gm- Lo . : ‘ o . Vb - - e

S

LD L pgfee. o G

x*-\x? o

- :"“ .
in the 1limit.. Thus /4
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." ‘. f_.
lim N Lo ‘ - . . .o . 'J.
oy R K T *) = *y |l w L
Lyt NI - LY tH L (x%) ' L (.88
. Ty W - ® VI R * o g T o
‘,a,—\“):]; ""x2\‘ € .8 2(_‘2 ’ 3!_1 i ; : .
and , R
sub"“» i
r | ....v *
XN x* e s | Lix,* “" ) Hr (x*) 0 (3.87)
1Y =2 , —-x*
: X, * - X * : S .
oy IR
- ’ R - : . ) . . . . Q- ’ >. | o .‘ :\‘ \‘\')l. o
. alternatively . =~ e o ‘ L
© O suwp . : o ' L ,
Ce<y<l ”r *y .4 Y(x .- *))| “P I (x*) © (3.88)
- _i*. xz' € S : } o
:. >-.° - . e Lo s L '

e

It ie clearly seen that the L H S. of the inequalities (3 87) and o

(3 88) are estimatee of the norm of the actual derivative. Thej'

¢

-magnitude of the norm of the F’ derivative is required to prove that a

) contraction condition does exist. This was the conclusion that was

EIS

v ] :
reached following (3 66) : The practical determination of the fact, that ‘

&

: ﬂa contraction condition does actually exist, is. vital if a Volterra'

| -series solution ia to. be found for the problem. Details ot the ‘
Volterra series are to be found in section 3 3 Thus a practical S

. gt

5.method of evaluatinq~the norm- of tﬁe F derivative is required, this can =
be achievgdas follows. It can be shown from (3 87) and,(3 82) that o
LT r(x *N = r(x *) 'uP rn(*ei ."i'.: N ;J' E ) \;:};-ﬂ

udA : . . . L . ST . ‘ | | i
DR T e e g ‘ ronl



" and 1n_ '(3:54)' 1t was shown that L |
» i : K'\:\\
I‘-(x*)—r N N
ll ‘ _jxl ) 9“39 ® z(tﬂll o (3.90)
t-x* . . L
% " ‘G.A . - |
s L e . .

s

' ‘gherefore, 1f the u‘guments which teminated in (3 54) and (3 81) are
8

compared it is cleu‘ly seeq that (3 35) can be equated to (3 82), that

- &, B . O .

»,».'. “a N ) .

)

P £(t)

""‘%r”;r_"(xi) l..- K<l o

9P, |
‘—\ L i t i

eup uup
i .vt

Toae)

5 Pik ]m(t)' = K < 1 . | »_;w‘ o 7 ’. \

e "

o, - (‘-’.

K4

-'»It 1: concoded thhtathis is a coaru astimate of the norm of the F B :

derivative, but it is anny evaluated for practical syotems. ' 'rherefore, -

K

it can bc concluded 'a‘ if the magnitude of the coarse norm 1: 1imited

".to be mller than one tien the L H. s. of. (3 89) in allo leu than ohe.: -

- 'rha mqnitudo of the no '_ is controlled by 1imiting the size of s, more o

detaul ot thil are to b found in uction 3 3. j, o - p , 1

B 3 2 Detomimi:ion of. th- Mxed ?oim: COndition

3 rrom (3 19) ma (2.118) tho fi,xod point condition u written as

Bl F R T -.-,ﬁ,u'»'llfé-',(i'.-? DRI e S



which can be rewritten -as .

gy -gllca-mo L e

-and by:the.éefihi ign'of'ﬁo:ﬁbi
Joy g ll= "B Iy wwl<c aine o gew
v .

If u (t) = 0 and (3.14) is substituted into.(3.94) then

_sup

£°‘t'=> Y f(**(snds] < Q- x)u T @ues)

from which gt foliows that .

lg o (¢, s) ( *(s))ds} -{‘lj}t;s)il o £(x*(e)) [ds
L | . i . . - A o (\.

<

R < g IO(t,s)|ds R 3;_5_ (t))l (3 96) .

now utilizing (3.43) again, that is let

R e L

LR e L é_._ ADE TR NSRRI

lup

e ukjfj(x (t))' L eee

Thus (3.95) may be writtenas o



e

°L.

ikLk‘ ' L o ‘(3.‘9.9‘_)1..'

sup
i

Jgeseior o goxrconranl<
" and by the definition of norm

' sup
1’

Piknkl "g_g(t)“ @
o

' therefofé; _

7“f sup

6' ot ) 8 -(g_i(g)“)q.‘.t

("

SRR 8Up

e |fR i‘(t)“ e R (3».1.o~1,_)‘.: R

"geh¢e Sf-é@ﬁédriﬁqt(;}lbl) qnd_(3*95)»itfis,eqsily:séen'thgt.;f"“

i @wewu. e

LA

- sup
t

PRERAES '

P L(t)

: ﬁhen §hquixed p6intl&én&iﬁiqg ;§fﬂgﬁisfiéd;‘,w‘ "k}_;A‘ e

5.3 3 The Voltetra SQriel‘ o _ -

_ A Volterra leriel 1- a functional polynamial, that is a type of
'vaQer sariel ;hich qiven phe output explicitly 1n tcrm: of the 1nput
:‘1The seria‘ il ba:od:upon thn Weiertttasn thoo:tm yhich ntate-‘"any ';‘fiif 7   §
:-f‘mcﬂm, continuoun inia clou '-'intarvnl can be uniformly approximated o

t?;Within any prosotih.d,toierancc, ovnr thc 1nterva1, by somn polynomial u}ﬁ ’J1;,f




‘/"-

'l The use of the Volterra series as a representation of non-linean |

~systems is justified by the fsct that if the output of a system is ;‘,(J_ :

_continuously depghdent upon its input. and if the input takes 1ts values

.from a bounded subset of a normed linear space, then the output can’ be A

uniformly approximated by a Volterra series If the series converges

»then the system exhihits B I B 0..stability.: The deduction that a system

) o
 is B. I B 0. stable Via conVergence is important.‘ A convergence Ce

l;criterion has been developed by Christensen, [10] based on the contraction
» mapping principle and~the definition of an anelytic system._ This criterion '»d

'lwill be suitsbly modified to euit the vector matrix form utilized here, o

~

Asnd will be presented lator in thxs section

)

.67

It has elso been shown, by Trott and Christensen [33] ‘that the ::f,v -

fVolterrs series is unique provided certain conditions are satisfied

N P

NET) The norm of ‘the input is bounded Vﬂ'f’“
.‘(2) The fixed point condition holds
L (3) The contraction condition holds. -

N

pin netursl question is can the solution of (3 1) be expressed as a

1;the affirmstive, for%&fcless of systems, a Volterra series will now be L

‘l_generated via (3 19). qiﬁ'q-ﬂ

Y combining (3 54) and (3 55) and then suhstiéuting-elenentg 6f"{.'f

'(§ 12) into the result qives H»;k‘v,n*;~.:»;

.ﬁq!

.f‘volterra series? To show that the snswer to the above question is 1n L:”'



and by substituting the above equations into (3.103) results in .

,)‘ . ’
and by similar reasoning

:|Egjgﬂiﬂuligug‘f;f ¥;:»;_7 3x$m5i, 

By '5??1Y~iﬁgilthe _"ax‘_iém._.fﬂ'a = b|| »|la]l = lIb]] to (3. 105) -gives

|1|quh-u|wnun s
,,Qimi_lgrly{_g-» |
O Dgllexlly - gl ha b oo Leaen

| 'Now,;:‘édbs'tlﬁhte- '«’(_3‘;1](__5,5')",'!&:16.;[:(3'.;'016')] i_l’iﬁéj.‘(3..'_10?')_‘-'thgp,v-‘ R

Lol U Y

HuH<xuu~uu+ﬂn -uHHlH e

'-fh‘géhétgi[fdrhgaz*gagatiénjxa;xoa;‘aay,now;pe~wr1gteh‘aplj;f S

o @i

.t
L
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f- “9_ - u, “ @ +x + k2 + ‘—‘4-.,-‘ + i(n‘,l)v.;‘ U (3.110) N

where ‘
aup sup

U - ||u||< u: (t)‘ (3'5111)

'which isﬁﬁhe;gloéu:e 6fftﬁeﬂregion‘in théh-the so1u;ion u¥ ‘is ;o‘be’t.

,fmmdf-' ‘>’ M¢, A?IQ
Since (l +* l( + K"~ +‘-"'"'"."",-&,- 7) is a geometric series the sum .

over “n terms is ,]A_ 2f;>H.a : . 'IAf,‘  SRR

s Ty noo T R
Le Y K erE o e

S e

',becaune o<x<1 A j?fffiéfgtj5f~

C@aae
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which implies that.

gy muflca-wo N R0

- If (3 115) is compared with (2 118) it is easily seen that the
' inequality (3 115) is a statement of the fixed point condition
It will now be shown that the power sbries (3 110) is Convergent

[ o

Rewrite (3 110) in series form as follows . 51 ,f;‘7:f'

~ now if (3 104) and (3 105), and so on, ore lubstituted into (3 116) it o

~ can’ be rewtitten,aa :3'-"




‘therefore, . "

and in the limit as "n"+ -

BT ) g m ) e

=n . -n-l°

-which il the form o£ a onv.rgont leriel. ﬁ

Lol

RN £ S 1) A

3200

’*i It will now be lhown that tho powor loriel (3. 110) convarges in a

3 raqion whore o<x<1. ror detlill of pouer -criec and a--ociatad topics }p? f~’

§
P

, "° tYPfcllly Courlnt lnd aohn [281. Llck [29] ‘ :§5:;§;5;

uu n<x’n9.,-u ||

Suhntitut- (3 105) 1nto (3, 104) and writo 35?7~u""

.? ,,f(34i?2):f/:jf f
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Now apply the ratlo test to (3 118) via 1nequa11ty (3 123) to” prove

a

that the series (3 119) does indeed converge, that 1s, s

e (1 = KU v,; 'x TR @24

=

and because K<l the series converges.;. n i~‘;' SRR

Thua equation (3 19) has a unique series solutlon in the region .

where ;he following two conditions hold._

B -

||r1(u ) » r (u1)||< x||u = u, || ' (3.125)

@ !‘rom (3 *ns) ke e.H A-'-\{:\lfl'é. ’(i-af?:'.k);jvv.'_'er,i_si' because of

: eq\xation (3 19) m- can be rewritten a-

BENERT 9

e

ll (ul) -y, ||< <1 -.x)u. ST

S Cmany




-

o One finallpoint remalns to be developed hefore 1t can be shown -
that equation (3. l) can be cast lnto the form of a Volterra‘serles, and
that is a "convergence crlterion |

Therefore we quite naturally ask the follow1ng question, "When can

t be 1nferred that a Volterra series exists and is convergent for a |
given system if the contraction mapping principle sh0ws that system to
exhlblt B. L B O stability?" o | - L

Christensen [10] has answered this question for the single input-
single output system, his method will be extended here to covex |

multidimensional systems

~ The answer to the question posed above is simply, that the given L

system in addition to havxng a unique solution must also be analytic

[6] [7] [35] [37] »

sPecifically, in vectox form the Voltexra serles is written as. '

l‘.(t)"i*' ,‘{:E(t_)'y_(..t;t)‘_dt 4T ) , -

"‘bi'\ ; R . Sy

E

s .

@ 60
>~‘ R . —— -

-’ S 0"

?_l;)’(tl.----‘r )y_(t-‘l’ ) --:--_'

e

9.' - initial conditions on x(t) and its detivatives f. j’7

x(t) - ydtsm autput

*

'1fgu.£922£T17TZ?xﬁt‘?l?xxt-tz)drlﬁfzaf" fi.‘-u‘- | ,:;;7 g%égj ig !
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“which inesvthe'output x(t) for a.given input zjt) for the system in

question. o

Brilliant [7] has shown that if |
. S R f ;if." e
B LS o U I
for all i such thatt(§;23bl can be cast into the form R
Femee  em

‘:;na if'thé.righf”hﬁﬁd‘plde ofiis,l29) i?‘A.conv9r§ent'serie§; then the =~
given aystem is enalytic.. L BRI =
| :_ Now consider the series genefated in (3. 12) - This series T ;;s to
system (3 1) and it ie readily seen that, with the aid. of the mLterial
= developed in this section, the series can be cast into the form of :
(3 129), and ie convergent in the region considered.v Thus the system
['f ﬁhich is reprelented by equation (3 l) is an analytic system._

In conolusion, consider once agein equation (3. 1), if a Solutlon is '

:@‘ obtained for the equation by the uee of the contraction mapping :

' principle, then thie solution ie uniqua-v Ifo 1n addition, this : , ‘3,\.l:“

T sr‘ee . -
eolut}pn oan be oast into the form o! (3 129) then, (3 1) represents an -

epyltan Thue, it can be ateted that a Volterra series solution 1’ e
e Y "f - _jf ; ﬂ. ifv?f' '

B exilte to: the IYIWZ ’?'T,.. N L
L n: will now be shown. that equation (3 1) can be' cm into the form

of a volte:re eeties.- Subltitute (3 15) in (3 16) and write




< T '-‘c .

g = e 8 fixle) + [0e8) @ £x(s, ))ds ds, ERELS

.'sinilarly with u, (t), etg

 Now substitute (3 120) into equation (3 5) and write

D) e gt a k() b

SRR Y

. »iﬁg_(‘t‘)gc_o +ffoem By@as ERE TR

A

R
N

e fues '9..‘f'.,(x(,'8,‘))ds--+‘A;‘.'._,;'

L - N . . - . Lo )
a . . 2L i L .

&

S e T
e : .

- where

s e feem By ()

u =8 (null vector) -
__o,. Q v‘q,.‘.'. . , o

B e Lt Ll S

N

Similarly with u, '- ul and so"on.-.

Clearly equat:lon (3 131) is the vOltezrkseries.

-~

R
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_Conclusionx . B

This section has clearly shown that for a stable non-linear system

=

we can represent the output as a convergent power .séries if the
i
contraetion mapping and fixed point conditions are satisfied ' Funther— ' -

A

more, if the system eguation is analytic the resultlng power series

representing the. system output 18 a Volterra serles

@

PN V. . . N o

/ .
3.4 The Solution ‘of a Non-linear System \

To illustrate "and amplify the method which has been‘developed in
,the preceeding pages, the solution to a typical problem will now be
: offered. Previously, this seme problem has been solved by Christensen
[26] but by a different method It will be interesting, ‘in- the
_'sequel, to compare the results previously obtained, with those obtained

The system in question is represented by the followxng non—linear ,'

; differentiuliequstion o

kA kb x ax =yt (3.132)
5 . RS _ :

5 . o

Christensen [27] halrsolved this equation via a Volterra series by :

‘ onsidering it ag repreaenting a single input/eingle output non-linear B
iBYBhem HoweVer, in thil»section the equation‘will be solved by Caﬂtlngy
: it into the torm of (3. l) end utilizing the multidimensional Volterra ;, o B

series approech previously deVeloped The forn of (3 1) will be d,j S '
N obtsined by mtho&s stu-.od in Oqata [30] thet st -
o (i) notnsl state £o:u (series method) . 5, . b‘v". L'

(ii) &eavilidel deoonpositon (parallel uethodl, ;'-;‘a ‘ o
3 ) e o . RSN 4 ;,/,-

Ry

b
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3, 4 1 Normal State Form

Equation (3. 132) can be rewritten as.

e e - x a3
X, = y(t) = x) - X ax,

.fwhich,cﬁb be writteh.in Ve§t6r—mAtrixtforﬁ!a§
: _ \ : "’o‘." |-'° l
N s S R N & ! EEEE i 3 -

LT T I TR

Clearly (!3.'13'3) s of th‘e"f same forn as (3.1) the solution of which is
.given by equation (3 2) o |

The ltato tranlition nat:ix O(t.l) of equation (3 2) igffbundffrom

 £mp3iJT4@-5yﬂ V.“',%_.‘LDHV

: where aZf (~---) ia the 1nverle Laplaao transforn

Therefore, from (3 r33)

u? +m4 1

- (3. 133);‘-f

R
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'm‘v“

where

¢, te08) =}*£f _  .m +f{"i4.‘ a

e m+ 1l

- iy (- 3 - ey
l’( 8) ¢ (cos g'(t_‘-s) -*J; E 2 (3.136)

.‘and. o

1
(ts) 7 '-—-—--—-—*1-

Ao wdama 1

g li(t 8) Sin i f::: (t;s) g
B-ut_ ¢ 12 (tr;) "' Ozi _(§ .l) -..l'at'g“hg’re.fqte.'_“

oy = - e en

¥

| ::(35}38X
N - ‘ '

| and finally

(t s) : ,"’ ;§“+:;—"T.-
L. f+jmﬁ‘{1vU
.,I/:.-& . P

~.;_.' wﬁ{t 8%763;—-—4t

F o

o @)
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similarly with P 2, 921 . Rewriting (3.136) in polar form results -

DS

o [

(t s) - R ea(t ~s) Sin(b(t s) + e)

where .

g

” N .
[ o .

115 =243

-
L

a6 =372

D
N

105 r'a_diém N |

a5,

—_
. b(t-8) i+ 0 mbr
Then -
Cteweze8

: I

o
i

s, then from (3.148), vhen
IR TSHE
l - o then z - t + B/h

J'-lmntm vhon - -',;;_ - L z e T

N .:.

(3.141)

"-‘5‘:_'"»"#7_ . - t -v - thon 5+ -. el

| “"“““ ““ “PP" ““ m& 11-‘-“ m~ - and 8/b respectively.

now readjust the limits of integration to be. in terms of 2 rather than ]

(3.143)

(3144
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 substituting (3.143) and (3.144) into (3.141) results in

(t s) = R e ae/b(e Sin b ) ' .',;_" -tf7 - .(3~i46) L

'

Now. substitute (3 146) into (3 140) and adjust the linuts of

80

inteqration in accordance with (3 145) with the result that (3 140) can";

.now‘be written_§8_ f j? o ;'. Tv--v_ -’ﬂf P i, o

| "e/bé Sinbz|dz " ’  . - ;..

nTRe il

- a’-e".‘,‘°”"_(£’°¢“|sinbz.ldz. - § eMdanbilan) @247

: “:&'r IR S : IR '
~whiéh‘ﬁAY"01§6:b§ ﬁ:itten-as_ﬂ.F»-
Py mRe Bt

T

1

Where I and I are the intagrals in the brackets. ?he,iﬁtegggl-:i is p :;

evaluated first  4_ ‘;f":"

/:

1

S gm0

but since

'7imff o < a/b < ﬂ/b

NERTDISSE

S el (3,800

(3 149) may be removed and integrntion

‘ i

1’0 absoluxe valuo liqnfog;
pQEﬁLtﬂﬁd diroctlyk”f

£ e me i R wAm -




o

= £6/b azSi.n bz da

;az_ B ‘ “ e/b 4 “ ~ '.; ; ) . : "'
= (asin bz - bcos bz) N R ) AR

R R e TR

o asy
SO T TS L
-'-—-——' (asin 6 - bCos 9) +

- 2 ] e
a’2+b2 L | -,a,_+b2'

By substituting the values from (3 142) ;'ipt_o_ gquat»:::.lq.n"'(3.15:1.) , Il_ can
be evaluated as

o “Il - T"’E’ (aSin 6 - bCOB 0) + -—2—-—-—2- T
B

e sl sl D T T ede ’
Now consider the second integral of (3 149) namely 12 L A
. p 3 -

| Iz. £"e‘zl81nbz |dz | .A S ‘_ (3 153)

N

which i.s-fsoi\,r'o,d in/f_he fOlloHingmannex SRR
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From Figure 3 =~ \

o 2n+1)w/b . | -
>_ Enﬂ/b e Sin. bz dz o
=0 L

o taat'amgg I, m,, (3.154) ve find

( ]-.') /b . ez ( : b ' (2n+1)1r/b
2n+l)® az -3 aS n z - bCos bz) S _ _;_ '
émr/b Sin bz dz A ._+ ‘b‘2 R S 2mr/b AR

{ .;(‘

..‘__:b — Znan/b(l + ean/b (3 155)
2 2
a. +b S ST o

e I 0 U SO
,fénde'_T,g’
(2n+2)w/b L ;;;z* (2n+2)ﬂ/b

{2,,4.1),,/!, azSin bz dz -y (asin bz "bCOS bz) : o
e T . -b e (2n+1)1r/b a

’-"A_f-__._.__.-'-”b; ‘2“*1"”/”(1 +e "’b) : :.(3'.156?),‘ G




I

~.(l.

| _‘ 5 . - . aw/b)l (e 2na1r/b A(.2n+1’)'a'nA/b)~ s

- NE0-

B Q o au/k}l\j Znaﬂ/b
. . =
For c':'dménj.er»x'cg let e

r _e2a1r/b ]

'ﬁhu's- o

" 8‘ i

. __ml
‘gn _ZLZnan/b
n.o.: S

A[\/

”
|
.'O

éléarlyt,\(3.-1'5§).» 1; ageomtriq s‘en and. the ;pa_'::t;ial"sum to tnv terms .

s '

therefore; because

o (3.157)

‘,.

(359

e

© (3.6l
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 .'T{3:;§2)i ST




C(3.163)

e T e Y v
Hence substituting (3.158) -into (3.163) results in..

. : . S .

0

e
___,E:eznaj/y;..;,
LT

R 4 fr~‘ r

Now substituts (3.164) into (3.157) amd write -

(3.164)

2 (1 + “/b) ~;. 2an/b , 

et S 1= R R o
. SR : B - o .. .

v = “v*fi"'f'ﬁfj ;_ u;~v,_;u~.~:;__ SRR | o
B T UL SR LE aﬂ/b'. Gl e el T L
| L N(3.265) -

RN sl e T o T v
. ',.':.a2+b2 lfe R ‘ A I R S

t . .

Then by, substituting values from (3:142) into (3.165) I, canbe .

,e§31ﬁ3£§d jﬁ-gj,u a;¢_ R
LR f:fﬂQV» SRR o S

: -866 '
2.
rs +\f866

84’



g5

N
TR R . (3.167)

e Pewn .

:and if values from (3 142) are now substituted into @. fei);,ﬁhqn;éii}is[7

'found to be :

- 1 15 x .805 ‘e 'le 05/ 866 '

Pin _ S B

JrR i gt e AR e T

oo

-8,

-iv,-",Piz,_ 5 l’;z‘?'f’lqi;-<_.»» @.169)
AN f, cn :-ﬁ *:'- SO ’ e
) in polar torm and by utilizing the valuea given in ﬂ_ 5¥?'

-;Now rewrite (3 137
G 142), oquation . 169) oan be cast. into’s torm limilar o (3. 1§;)

;-Thus (3 169) mly be rewritten as}-f7gfifﬁﬂy:f

.;(} -. -

- £ o

sinht




By ‘comparing (3.137) and (3.138) it is seen that

~

P Ceam

. trerefore, -
The laat element of the P matrix, namely P 2, is determined in a manner
f identical to thnt ulod in the determination of P11 That is,;

Q ;;". .'.' " . . v'. ; i B
- T T L Vel

°zz-n~‘°"’(e“81nb=> B €

. therefore, . . .

'f?j8§§§(§‘555§¢l§£ﬁ52‘d?“;;gfe(beé?]s{nbz|g;jf ',,;Jf;kgff-iff"'

" ~ . . A . . [N . . .
R RTINS . A . . (X M

) R.“’/buz-:) e I £113.175) ﬁ




By direct sﬁbétitutioh-of v5luésHﬁioﬁ>(32142) into equati?h

(3. 176), it is found,:hat,l

&

2
5 K Sy _ o EE R
. here for convenience . . . = SR R

R SR .. ‘em‘r/,b\?," T
R Tty 3 & T e e

]

.~ O I . . . .

&

I, f-li%o:; £* :'

N

| Né;w':'pﬁt;qtif;uté' 43.178)" and (3. 177). into (3.175), -and jwri;cej_ |

R T S ’ SER e ,-‘ikl - i b 3
“ffben“by7!u§stitutngjvglugs;fxdm?(a.IAZ) into (3. 79) P 15 found to be o

vi.ﬁsféﬁkii {"fi3???in ' '/" ’ o
Py, =115 . X .334 . fe °5/ |

a1 =.-1383,(;(s'sin(1-05)1+ 'ééévCOs(l‘OS))’+“t86¢ T

_and ‘in accardarice. with equation (3 }sao/ it is found that

p. = pe®®/P(1:20 -0866) ?)7 LB
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Ceam

2

1, can béiévaludtedfﬁy'utilizinéyequggléh (3.165) thch,is~rewri£€én_'._‘

"'(3.178if' L




| 1¢20 <209 |

. where values of the elements ()

B and (3. 180)

| en 120 |

(3.181)

£ z_are given by (3.168),(3.171), (3.173).

»

. g‘vJ

The "size" of the vectors which satisfy the contraction magping and

fixed point condition can- now be determined.v
(3 55) tequirel that the norm of Pz(t) be less than one.
has already been found (3 182),

. and (3 133); therefore,_ ; P “}.:? ;;"‘ _'Aj o

~ Thus the'tésﬁlting;mattixwp;oduét,ofieﬁuﬁf*5ﬂ1(31475'ié}_>'

The contraction conditxon

The P mutrix

ow z(t) will be determined from (3 44)

(3.182)

s (3.183).



v

" where

and from (3.55) it follows that B P
: . ° : _— ‘ &
oo N o 7 ;

Pl ! . . . . . .
k . R

"

51m11arly with the fixed poipt conditxon, equatlon (3 102), the Vector

may be obtained by substituting e

dﬁ

is. . s L _ » '*v V  _;_ .

By utiliziyg the P matrix (3 182) Wé findgxhat / "~;_u‘ S g

3.1"'é)Wh;ch;rbdu66q;tg_:hqj S

St

“P LH <Nlu| 1.-2ox‘

PR

(see eqpation (3 186) for— arm on x ). >;]l ,f. ﬂ'
Subntitute (3 190) into (3 102) and write ' ‘i'f"” R "'-"yf=,

e

RERI- B

2L

lements of (3 133) into (3. 98), hat. e

89
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- .

SR _

And from (3.187) X can. be evaluated a¥ ‘ S |
. ) . § - . \;— N

f_( l3,'a'60|(1| ) -‘\, o . : ‘(3.19‘2’)“,
[

P .
. S ‘ ~. .
: J : BN

’

(<,

“and from (3.191)"

.
~ | . -nuls ' e 9
< 4 . .

X < Chglap - Lo - (3.193) .

nbwbletv

K= +6 | o ( _ 

U o2

Then from (3,192)

(3.194)

and from (3.193) ‘

"cog0s o f\ C(3.199)
‘taking the supremum of (3.194) and (3.195) it ia/ found that, C ]

X <ied05 . o (3.196)



‘ 3.4.2’ Heavisides'Decquosition'_ -f' :: \

) +

SRF

. W
w111 be obtalned via Heavisides decomp031t10n

' " ) . N
;-

S S : K o . : Y
Hence a bound on the output vector has been ‘determined, .via a Volterra -
series, LR

..

It is general%* recognlzed that the deflnltlon of state variable

relatlons is not unlque.A The state varlable relatlons in thls sectlon ) y €§3,

0

' Equatlon (3 132) can be represented in the follow1ng dlagramatlc

\ | ‘ AR o ‘ - .
form : i » : S . .

- o ) ‘ v

»

SN\ x(s) o

. Bl "

VJ b dac ko

»

Figure 4: Block Diagram of Equation (3.132)

Furthermore _2 . . . c¢an be decomposed.as . S EN

s 4+ m¥E 1 C , v

1 [ U S RN R L I

: - : y—

m + M4 1; M4 AL o - m+)‘2
where

R s ‘{_.—.3: Lo ©(3.198)



:and
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, . —l RES | , L A - \_
' A2. j"‘ y / T (3.199) N

therefore, ‘ ' ‘ ,
. .

f"\

~ (3.200)

S e . o (3.201)

*
4

The system of Fig. 4 can now be répresented as follows. | o -

. Pigure 5, Parallel Form of Equation (3,132)



: ¢ o | ‘ N .' o T "", . ) . . 93 :

"{where X = )% +,§2x2 < R ©(3.202)

<«

From Figqu'it’is-seen that »f 
R o
X, f'Y(t)‘— a(x) \ ‘k1x¥‘

AR, e C | (3.203)

= y(0 e’ g

ow_substitute (3.202) into (3.203), and write the resulting équatiQQ§
in.matr}x_fogm'és fqlloﬁs;, '
Y(t) . -.'\\:"

(3 204) “' {

. ~a(c,x +c x-)3
B U U

. h .3
‘7a‘cl¥l + c2¥2>'

0

By comparing (3 204) and (3 133) it is seen"that‘they é}evof‘the‘same

B vform, thus the procedure which was utilized in sectlon 3 4.1 w111 be

‘ 1 used again in this section.

The P matrix is determined firsﬁiand is fggpd t:‘o'_-'bfl:"~ . ‘.f<:~»

ff)/“ ,1_3"2, V'g”{e’aitldtﬂ'f‘ d_"_'.

R R A "
ol (34209




The. elemen'té of -the _z__ matrix are ‘constructed from (3.204) via equation O o
. o . . o - £ “. ’ - ) ’ .
' c > T A o o ST
(3.45), typically ’7 N TP L e

L@t

-k‘- : .(3.206).

e
.

. zkj

- Jal?®
S j

e .

therefore, e . R R

-a—-"\ o} - o (3.207)
*2 | T

951 . .
== * lc,l
%1 2

- ;f' ' sup R ‘
:zl :“lé‘.;.(|cl|

wh#chrdiffexslfrOm Z2 only in-theisubscript attached to ﬁaf",‘aﬂd,

o L

el el = 2 (3.208)
RO N TN R

- also. Ceio / o

af., {3, ‘ '

| ”.1 : 7"2:_’
3F91x1 * g% ‘

TR

. The . matrix product of equation (3.47) can. now be w?;ti;en%?; |

y

L - N .
EN e . .. A . i
: [ g o, 3y



c Jo] 20 7e

o L= 1 t

ol
5
o
Q
L
N
A
(o]
J
»

o

‘ A N

1
b
t

. Eén& beCAusé-

A
L

s ;hen'(3l212)}féducesfﬁo> T $*‘) P ok

t

| substitute (3.214) -into _(_'3,55)_.'3‘nd weite oo T

"therefbge, », S

. 1o etdmente of the % vastor can be conserueted frea (0,218 8 B '
Cepteally g Dol R

"%

: e RS BRI S Sz
“-f‘l‘t-;f-}"iéi\;tf',lfki‘;‘?).?\_ R TR

PEEERINS d e v .. SRR



7
S
[+
e

. . . . . .
5 . : . ) -~ 1

Thué tﬁe matrik,véCtor p;oduct;of (3.102) can now benwritten’as.} LA

-

A LS S

Capeeee |

L .
which reduces to
o Do e - S S L " :

, o . - o R L -
. 4-‘ . s .

g
‘74/-\
N ¥
O

— .

R
therefore,” - = o .
”
: -

3 < (

N —

o8 4:~3§)u.)‘1/3_ A (3.221)-

e . o . .

e e ey, et e

2

LT
A

K SR
13

o]
-




_and from (3.221) e

e

e T _
X s 430, “(3.223)

§
S

,J-““’

taklng the supremum of (3. 222) and 43i2§3¥ it i% fduhd>that.»
. . . ‘,_,l'~1v -_* g - " -_ - . ‘i'( I - X . - .. .
w7k S “4Y8 o (3.224)

L —

Hence a bound on'thgioutbﬁt vector has peenAdeterhined by the volterra =

series method .--

: * ‘The bound on the input vector X(t) will now be determlned
S e
Cbnsider equation (3 5) once again, if the initlal conditlons are <

a110wed‘to_be zero then the equatién may be written as.

S U e R € 1
Lo . _ - S , RGN o o

of (3.225) and write

. .Take

<f+ U N ‘ - ;(3.226) |

from the material in sections 3\\ and 3~2 it can ‘be- clearlY Seen ‘that
(3.182)vénd';hglxgvectqg_ .

~

Thun‘L cqn ba dbtormincd fram the P matrix
/. A A R IR

[



\

: . - (3.230)
. Sup Sup .

Yy Yi‘?’\’

pel

From (3.229) [ (can be rewritten as’ e N

. .
-~ FN . . o, . .

...", H = 1.201 . ‘

;. : -ﬁhe’n‘ (3226) ‘can. be r‘ewr_‘i.ttg'x.\.'as_ } - S
Y ’ ; . ‘,-‘f“

T3.233)

{

- .

' * ‘\ v . 7‘ 5 . “ T . K“. | | -
o o - R R S imn - (3.192) and write. S
' cubstitute (3.233) idﬁb3the'ébnt?ﬁcttoﬁ'?oaditlpnm( EEUNEC T

S e

SN

g imte (3230 T\
UbBtitu‘ting the 'al“es assumed for K' B LT \ poh
;andbyﬁ S e
"""’ SR ke _.j\'_; o {g";,‘,.; Ly S

o -
»
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N

. N ')‘(" N N . 4»' .- " B \ “,_ . ] ) A . . ) . : ’.“ )
From the fixed‘p01nt Fonditipn (3f93),'and'equation (3.15) is is
.ea511y shown that b

- o (1-Kx U o
/ « ! L) (3.236)

1

A o |
“ \?_. o ' v.
' ) ‘: . i " R e . : : . .

.and by substltutlng the values assumed for X, @, and' U inio (3.236), Y
r , . ST ' T

fiS_found_to'be . L .

| Taking_the supremum of (3 235) and (3. 237) lt is found éhat o
R » N . , .

-

s

Y < 173 .

PR

P e
”-Hence‘gnb§uhdion fhe“jﬁpﬁt’éector-hgs_beenidete;miﬁed._ A .

- .'..-.-\:.‘,- - N “ "‘.‘ B : . » & . A - ‘ . |
:Théref&:é. by thé3cdhtragtion;fixed'ppint-principleA F .

v

™~

Tet

'3“=F7  By normal state matrix methods and tﬁe"Voiééria’sérieglthé.gystem;-
.7é;f considered has been shown to be B 1. B 0. stable.;“‘ ~_j,>1 _3}f<z;_) R

5 Now determine the bound on tha input vector for the parallei Bystemg;.

rmined frOm the ‘P, matrlx (3 205)

.di””i hus ,t can be dete

1 ,[e. sec{:ion 3




2 o g IR I L ) oo

b

. . & ’," . N '. ' Lo ." . * . . ) ) \; N . - ,' . . o - .
', and (3.213) .a‘nd the ¥, vector ,(3,'2'04) ' tha_tvf L o
. - ‘. o l L : .'. ' }" o c ' . g ) : e : . s . Lo ,‘ . V\{‘,

4

" vhere Y is ddfined by (3.230) -

”   ’\{;§/$‘1-; T o e L (3.241)

. a“d 'T:.'j.‘ "

A N

'~ 1f e now ‘substitute (3. 241) fnto (3.234)" then '

<

LY < 226, PN S (G.42)
: als'_o,i_f,.we«-s}i_bétituté* (’}.2’41) im;o '@3.236)v_then
o

R (3.243)

L., and sincé o

S e ]

. megsampifes that




. . S - . ) | PR
Therefore by the contraction fixed point principle . . ,\\
. .‘ N ) ) . ) }\ ', -y . R —
Y < 226 : | o
5 PR ‘“.‘ A o 1 (3.245)
) -_* . : ‘\ N . . . .
X. < +416 _ ‘

Conclusion:’ .
—_— - o

' . :
The - paxallel method of erectlng the state equatlons and the .

.

::subsequent use of the Volterra serles has shown that B.I. B 0 stabllltf?x

-

eXI‘StS .

‘

In the worked example the A matrlx was a constant howqur, lﬁx_

PORLAN ,

S ' AR

*tlgé dependenk then the commuting rule whlch is 1nvoked inflinean 4

Tt = - v

_'systems must be 1nvoked here,_aﬁpropriately, 31nce a llnear system is'a

’Special;case~of a_nonl;pear‘system._ﬂ

lOl“



CHAPTER oo

SAMPLED DATA CONTROL SYSTEMS

3 4 0 ntroductlon

A

A very 1mportant subvclass oﬁ\control syste

o

~

A

ns aée those.of the ™

N

sampled data type. Sampled data control systems consxst of dynamlc .

' systems whose 1nputs are eithe

"~gamplefpgrlgdq,-5 B

spec1f1c 1nstants of time.

%

The two ty

Asd
~

r tlme sequences or are lmportant only at

- S

s .

pes of sampled data . systems con51dered here ‘are deflned“

<

pata’
‘Hold

‘Linear
Plant

€

"ﬁigure 61 Non-llﬁedy;iq@pled data syst

T.

o
. ’e‘,.

maintainl a steady 1nput

_ g§§‘)~ ; \qfv.,

to the linear plant during th

)

em with data hold.
‘*.}

;7e*' The error signal e(t) is aampled and fed into Ehe data h

e inebetween :

old whlch



O Tt 2 X WETEC L
4

T

ype "2 R | | |

Linear
pPlant

_fignref7§ ~ Non-linear gampled data gystem’ without data hold.
A : : _ : . "’ S W

i
) " . . . . _. . / »
The input to the’ linear plant e*(t), appears as a series of -pulses.

Thus the plant has ‘an input only durlng sample periods

The material deVeloped in the preceedinq sections w1ll pe extended

The components of the. systems are stiil

¥

to cover discrete data systems.

describahle by differential equatlons, put becquse the signal is .

uations will be generated from the

discrete a set of difference eq
' orlginal differential equations. iIt is%well known (15] [30] [32]a

ystems in. a mannerf

that-difference eduations represent discrete 8

analogous to the way differentiaL equations represent continuous systems .

»r -

e:“l"~S.stem o

1 Determination of Region of stabilit for~a T

G

Consider equation (3. 1) which represents a continuous non—llnear_-
v

system, it. is repeated here for conveniencebz
(t) = Ax(t) + g_y_(t) + g__f_(x(t)) R

P . ‘v"



v . el o Coe ) e R . /‘/]
Ty : ' . e . :

’ .. The solution of (4.1) "i_s'wel,l'kriowr'irf‘w e

( » . N ) .’A.\%;\

e v x(B) = 20)x(0) 4 ,(I;t?_(t\,s)gy_(s)‘ds-'

LN

+{fo(t,e) o fxlsnde. o (4.2
7s\‘: ' Q'ff_‘7ioy“?_ o -
' o N

‘Q method of descretlzlng (4 2) has be€ develOped by Ogata, [30]
N . . ’~ .
it is repeated here for reasons of contxnuxty

- Let t (n + l)T in (4 2), thus

o 9,
i ¥

| x((n+ 1T) = &ln + l)T)x(o) e f‘“””((n + 1)T,8) B y(s)ds

Y

R U ‘ |
+ £(nf'l);'r9_<<n +1j1,8) o £(x(sN)ds; . T(4.3)

Let t = nT in (4.2) then

W o

l‘;.(n"r)'.”'.'g(ri'l")gt_(o)'.-i-g“Tg_(nT's) B y(s)ds -

(4.9)
- ""Premultipl'y t4.4) by &(T)
emx(nm) = ol(n + IDx(o) + {Tol(n * 1)T,8) B y(s)ds |

Ty

& Mo(tn + 1T,e) @ E(x(81)ds. @.5)

[
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] . . ) Co ) '_x"i’; w - )
Now' subtract (4.5) from-(4.3) -, ‘ . N oon . E o :

/ . o . . N

x((n ¥ 1R @(T)x(nT)l— f‘“+1)T((n s 1)T,8) B y(s)ds, -
Cn+ DTs) B y(e)ds,

(n+l)T T

+X{T ¢ ((n + 1)T,8) a £(x(s))ds;  (4.6) Y

Therefore,

\ S . .
B ‘ (n+l)T S
Lx(m'+ D) = <x>('r)x(nT) * cp((n + 1)T,s) B y(s)ds

o N (ﬁ+1)T SRR o : :
L 9((n + 1T,s) g_f_(é(g)-)dsi, e ! (4.;7‘)"_

Now lef,

1= nl-s (4.8) L7

Theréfoté}

Bl ¥ DT,8) = o0 (4.9)

coand .
| ar.=ds . (3.10).

- The upper and lower limits of 1ntegration change from (n+1)T and’nT;
' LA S o .
B to '1‘ and o renpectively Thus, . . '

T Cmenre S A
oy 8 1)m s)--—as = f 0(T.r)—-dr REERERL £t S
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this follows from-the-preceediné remark$; ané by making the ‘ _

necessary substitutions into .(4.7).. Equation (4.7) can now be written

x((n + DT) = ¢MX(T) + [ (T, 1B y( + aTdr

e (A . . . ) ) - o . N ’.’ >

T

: +.f’¢(T,T)-d‘f(x(f_¥ nTy)dr . . 7 {4.12) -
o=t === S RS

R YS! k h(nT) n'= 0,1,2--- o | “(4.13) .
/ B { v - . »

7t

~ where

Thefefore;,A
» T

._z}1~f nT) = xjnTX;' vl ‘ -(4,1§)ﬁ :

: R ) | ] - |
£(x(r +aT)) = £(x(nT)). - A4.18)

. .sihcg\xﬁnT) éndﬁf(g}ng)) hzeVcbnétaht-betweep.samplingi§ns§ants

"‘tn.;y’my,bé*éaxen cutside the integrals,"thus = - - o or

Cxln DT = axEn + fEEOMTIED

R S +£ #(r,1) a4t £xnTH o

N
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. I8

Equatlon (4 17) can be consldered as representlng an updated
syetem at the. start of - each samplrng 1nstant _ The bound on x((n+l)T)

can be determlned from - equation (4 37) for some "n"; by ut11121ng the

e

'methods of Chapter 3. However, the bound 50 determined/is str1 tly

bov .

1ocal to that sample What ls actually requlred is the bound on the

/,

' output over the range of samp&es, gér n>o., Therefore, on thls'
’preMFEe equatlon (4 17) must be Wodlfled such that x((n+1)T) is related

,dlgectly to x(O), meanlng, the 1n1t1al condltlons at n—Of\ Thus ‘a table

. oﬁ’x((n+l)T) for n—O 1 2——r,m—l W1ll be constructed from whlch the . E
general form of x((n+l)T) x(mT) can. be found [32] |
Because x((n+l)T) ls a sampled output a. superscrlpt, a sbar(*),
‘jw111 be added to equatlon (4 B?) to 1nd1cate sampled functxons Thus
. Py : :
(4;17) fs reWritten as’
h‘\ ’ ¢ . . . R K - !
x*(mT) = x*((n +-1y7) = &(Mx*r) . - T
o+ [ ele;n) Bdry*(nT) - ™.
’ +.£ &(T,7) a dt £(x*(nT)) . L , , (4.19) . -
\f'w : DR o T T

€ = & (che i) matrin) then ©
. x (m'r) x*((n + 1)'1‘) = ¢(T)x* (nT)~ +, gg(w,f)'B_»cir yrinm. (4.20) ‘

, Sﬂlif:. -
- "'.“;T- ¢ o : o T :
Which iu the diacrete equation for ‘a lmnear sagﬁg-- - o

qu ].et n-O in equation (4. 19) then -



Mo~

P
b L AT, 8 aT Ext @),

Let g-i in (4.19) -

x*(21) = $(TIxM(T) + [O(T,T) B ATYNT)

+£ 2_,(‘1‘,1) 9_“5(&(’1‘)).‘ - — ,

" Now substitute (4.21) into (4.22)° ..

xe(2ny = SA M (0) + QT (T ) BT yHO) £

. L - - . . B . Y
[

, R LT o
. " and so on; until after ff"‘"-.t‘??‘i’f. '

v

Cw

th) - o mxwm +\—' g1 1”’{ o(fr 'r) B d-c y_*(:l.'r)
: = o i-o :
i Comel o gt
e B L e g dr 2D

©o108.

K4.21)

422
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The discrete state trans1tlon equatlon (4 24) 1s analogous to, and a .

e

special case of, 1ts continuous counter part,'equatlon (4 2) Thereforep

(4. 24) ‘can. be solved by methods analogous to those used in the solution

‘of (4 2) The necessary equations will be sultably modified to

v\accommodate a discrete data system fitted w1th a data hold devxce

Y

5 clearly (4 25) is of the same form as (3 11), thsFSis, a llnear system :,1

: with a perturbation. Thus the solution of (4 25) is obtained by

It is seen that the output x*(mT) is the summatlon of all the past ‘

contributions, result!ng from input pulses ranging from t=0 ‘o t=mT
/

'The upper limit of thé\summation (n (4 245 can be extended to infinlty

a

because 0((m—1-i)T{ a0 if i>m- 1.° Therefore (4\24) can be wrltten as’ Lo

\
N I.',
. o . A

T

x* (o) = Pt + LDy dhrsar prim e

iﬂo N -. ., ) | ," ->‘. i “.' . - ‘}
: . . R ) oy . )

S e ety ey g dr EERUT)A L aa2s)

"‘ieo_~z
RERS :

. .

casting it into the‘form of (3 28), the discrete version of (3 28) is

. ‘ Vetem B | =2

PR 1(51*)

Tqmg

o9




e I3 il\‘ v

' -

The subscrlpt attached to. the vector x* 1nd1e§tes the degree of

approximation7 i.e. xl‘ is the 1° approxlmation the fxnal solutlon

x*, o . ' -

—

L0

: the upper lim1t of the summatio:\Yn’14 27) has been extended to lnflnxty

-

to éover th‘ general case. However, the resultxng summat1on is a SR

L Y

geometric serli ' and summing over an infinlte number of terms is. easy

to handle providing the ratio hetween successive terms is 1ess than one.
Thus (4 27) may be written as. >. ”fn:' T “g,”a7r
\» @i . : .

Rty ""?ri(.;r)',‘ B (4.28)

- and"ageingie eiement;ofiihe;g_netfix;naY"be»ﬁritten as _f:"'

At theisihe‘time'mnkeﬁﬁne‘fei;oﬁinéisﬁbsﬁiﬁntienfvghntiis;"fe

Y :




—

111
Therefbije;:' -

1 of

sup
EJ"I Bx

A z/ (T) <

k" 4 Co .

| }Whéré L " ,15953'

.‘th,uxs" AT . S .
B oy ey TR e TH PR
S P gy -l

Emu EATH

PR

sup

‘b (T) ”u _||, (431) '

a’ﬁc
w0’ T, g
‘ o , o _'4.“
‘}andbythe dlef.init:'idn.'of.,the_norin,"f , S S
R VNS S T T P
R  »-‘ L ;n n’: Lo '
Ces N ety p ('r)‘

: P'Z(T)|‘}' R ¢35 2 B
Tk L k3Tam' H—~ B RO
We now have sufficient information to determine ghé fixedvgpint a“§ th¢,

contraction conditidh. ,_"‘

3 f.’d 2 & Convergence Criterion for Diacrete 8ystems o | |
The aquationa which represent a continuous non—linear syatem and ltSiﬁj

'f-f»,solution are written as: (4 1) and (4 2. respectively.,. ?quatim @ ﬁ’ s .
T R T 25) ,-'




A ) ) ‘ ‘
’ : e . s o

The sequence developed converges to a unxque flxed poxnt x*( )ln a

_sphexe s of radxus U centred at xt ( ), 1f ‘the followlng °°“d1t10n5 are’ RO
(a) contraction condition, (2.117),

: ) - ) ¢ - .' - .

[
~

(B) fixed point condition, (2.118),

€

e - 3(_0‘l|< (1—x) oo V.

- where ' o<K<1. .

The fact that a Volterra serles can represent a dxscrete data SR
system in the reglon in which the contractxon mapplng pr1nc1p1e shows

that B I B 0. stab111ty‘exxsts can be ]ustlfled on the ‘same. basxs as

AP

has been done for the contlnuous system, naméiy sectlon 3. 3

The unxqueness of the Volterra series follows dxrectly from the
contraction napping princ1ple and analyt1c1tx.of the system follows
b ; A_ : : 9 {; ’ i N
’ "frqqqthe.fact_that the serles obtained can be cast }nto the form o

. .
J " :
LEPTORE SERUEDIE
i SR
o .
&=
v e )
: v
o
. -
..' r
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on3

A 3 The Solutlon of A Non—llnear Type "l“‘Aystem'

The theoret1ca1 work requlred for the determlnatlon of the Ff
'7'stab1}ity bound of ‘a. type "1" system is detailed in sectlon 4 1, 'A I

g !practloal demonstratlon of the method wihi be offered in thls sectlon.

ff?Thejv _near system represented by equatlon (3 132) w111 be used agaln.

',fThls w111 romote, among other thlngs, A convenlent comparléon of system

: : “a
Stablllty between the oontxnuous versxon and the sampled data system

"”frw1th data hold keep;ng ln m1nd that poth represent the same non- llnear'

';'dxfferentlakkequatxon.::ﬁaf : Q'l,i fﬁ fyL*' '
The bound on the output vector x* w111 be determlned via the flxed
Y St

. p01nt conditlon (3 91) and the contractlon conditlon (3 102), ¢% -
i _

’H',actual bound is obtained by takxng the supremum of the two results

Equation (3 132) is rewrltten here for convenience i -1" Ty

% ¢ x b x ~ox = y(&)y, -

Dt G e _
" this equation is now rewritten in. matrix vector fomm, the same as .. -

(3':1-33) :tﬁa:t,jis} . [ . ‘g f s R R _

' whichisofthesameform ?5--‘4}9 7Vi:j-_¢,-' o

k\"x(t) i- A x(t) g B Y.(t } 9_2‘ (,)




' The material developed in sectlons 4 1 and 3.4 will be utrTrzed

Al E
.

here to obtaln the solutlon of the Type “1" system ver51on of equat1on
?(3 133) - The solutlon of thlS equetlon, when consxdered as. representlng
Ca- sampled data system, 15 glven 1n general ‘terms: by (4 25) .Further it is .

‘“noted that the P matrix 1s ohe of the pr1nc1p1es used 1n the determlnatlon o

*

S J .
L of the bound on x* and 1f (3 42) and (4 27) are compared it is seen that

. . -
E -

' -,they dlffer, among other thlngs, 1n/the argument of the state tranSIthn

tmatrlx. Therefore, 1f the argumenét(t—s) used in equatlons (3. 136) -

(3. 139L 13 rep;aced by (T), where T is the sample tlme, then these }
: equations may be used agaln ‘in the determxnatlon ‘of - the P matrix.

Thua if we allow T to equal l second, then.from (3.136)A ' Q

,
-

) i’(fr;)'»s-e’f-"T,(cw -866T + 1 5in+B6GT) = 658, (4.33)

5, and from -(3;137\ o

o

L e Telwer
VIS i"'?'vu' ,v: ;; - -461, . (4.34)
Y f.'}{i ;.lr 't‘ni'fhéhth;i:“- ,;} : .

SN ('r) - (Cos-866 L Sin-866'r)

w e : T
R . .

8 over an infinite number of

e 'rhe aumation of (a. 28) i

4>(4 34) and (4 35) that each of the elements of



the P matrix is less than one. Therefore, because dﬁk_'(T) <'1in (4.28)
B | : R S X ke
- then. EEUE 1 TR
‘ i o . S

k] 1 d)kj . ) S v . . R .# =

) Now substltute the values obtamed in (4 33), (4/34) / qd (4 3?3 into
N \O' .
- (4.36)., ';Ln S!}»CCESSlon. “Thuss values for the elements of the P matrlx are

now determined and found to be S 3

\ .\pll < 292 L

PR NS C 86 S S I
D R~ o S o (4.37)

LI _’".< 0-683 -
I A 1 @
B ‘s a result of th';sj; the p matrix is written as

: s ¥,

e

-

1486 |

pw
i

1

'rhe z matrix will riow be determined from (4 29) Eiex_nent_s_fbf.tﬁe E

@mx‘ will be determined first, where

1L

©(4.38) -



s S
Therefore,

7 thus - R oo

-Whlch is of the same form as’ (3 140) Th\qefore, the materlal devel

s

_|E'ij('r')|‘g .lal.cl)'IQij(Tv,r)‘dr N - (4.40)

S Al'El'l(T)l ilalg: '|?ii(T.?)|dT.i.,.‘ ; _; : -(4.‘,41‘)_

7fﬂ1n Chapter 3 w1ll be htlllzed agaln, startlng at (3. 141) "and the ‘;_

SRS e e e e e

E Fo 2 T .
A

I 4 T+0/b |

B
ensulng development through to (3 146) ’ Therefore._ - L

A . - - .,.

! L e
e

Iea.

6
(T)<||Rea/b6/b

, . 5 - N
the values of a, 6 R and b, até as given ih5(3.142)'which is

w23 T

beV3/z .

S 8= 105 * ~
A . . ”: a.= f’s'
Y‘I‘ .“‘. .

Because'the upper ltmit is less than w/b

S

slnbzldz, L 4

= 3-63 the absolute value signs -‘ "

116

- =




- . | o N § 3

o ,—'SZSiﬁ-866zd'z»
E T AR

N
<
™~
.
. | g
-2
B e
N
—
(]

-

(4.44)

A
e}
I
N'.
=

o

Si@ilarly with the remaining terms of the §<matrix namely .

E, (T) = By (T) < %296 |a| o o (4.45)

Eyp(™ < sgolgl A (446
Thé values. of the'eléments of. the § matrix-have>ndw pe determined, thus

em < | ] le

-y

u’r‘?-' . : -
.296  ++530

872 © +296| ‘ > L B
e e 1

L

N L

- Assuming that |q|g~unit»matrix;'then'thé Z matrix can be written as

o substitute (4.38) and (4.48) into (4.32), and write

1



-

%gyﬂﬂiﬁp il
o Lo-_es 1‘;14_ 1-595*-2

< sup-

" Thus '

| vexistence qf a fixed point condit1on can now be determ1

: the equation (4 52) has resulted from

. . 'A . . B . . X ¢ i

H&yhﬂi&%fzj,

. 8up sup (4.5D)

i

[

B

By comparing (4.50) ith (3.55) it is clear that © R

‘r.. SR : S " s .
5°'5_6§_.2' = X<l S - S . (4.52-)

the contractlpn condltion ‘The .

ned from (3 102)
}

e pm e a0v- :
R e S

The P matxix has alteady been determined (see xnequality (4 38),

i .

-

L(T) -

et

"l) A’ 2‘ ‘ ‘ ) - . -
¢ sesexr L - B N (4.49)

(450

(4.53) B

(4 54)

114
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. $ubstitute (4.47) into (4.54) and write |

Lo 872 - 296 [ o

L L(TY < B :
L(T) < ,

.296  +530| | x*

.296& 5*3 T ' ’ . oo - ' e s T )

]e530 x*7. ] . S O (4.55)

-

Substituting (4.38) and (4.55) into (4.53) enables the L.H.S. of (4.53) |

- to 'be eval'uated; and consequently the R.H.S,; thus, E A

IR oy 2se2 186 |
oo e rm ]l < sup o

068  1-14

: . v
1.355*3
i-sup’ T

" 1-60x+> l |

C leumll s s,

0
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- | % . K
_ Inequalities (4.52) and (4.58) will now be ‘used in the “evaluation of
X from '(4..52) e P

3 . I ) . .

I e L S a9y

. and ffom (4.58) - - e / -

'l’

'—\——“\

and lf K, and U are ass:.gned values that 13({et K = +6 and U.‘='-2-""

t.hen by the contraction condition, (4 59) , L L L .
Ly S g o ' | ~

e . X.<0e328 0 . N C N3

1
>

L4 L

-

» .and by the f£ixed pointwdond_itien . ‘
X <0348 . R A

1f wa now take the supremun of (4.61) and (4.62) it is easily seen that

CoFeess Cwen Y
. : Henca a bound on the output vector for a non—linear smpled date System,_'

s

o .. _which 13 f.itted with a samplo hold device has been determined. Thus L

" 4i:"’.;illustrating the applicability of the vOlterra senes to the solutlon of.

| \_hon-linear vampled da.ta‘voctor systems. } R |



fa Non—linear Type "2" Sys

tem

l'4 4 The Solutlon a
L The determlnat
"w111 be offered in

general formula &11

ion of the stabillty region for a Type "2“ system'

this section . At the beglnnlng of the section a

1 be . developed from Whlch f

determlned 'This will be followed by a praetlc

fmethod The worked
quatlon as- has bee

Equation (3 132),

X +

-

matrix“fOrm'eé7_”

'iwhlch was cited ear

In section 4 3

example will again use the'

e

tablllty bounds can be L

al demonstratlon of the '

same ba31c system

n used in the earller worked examples namely

at is

X + X —axs = ¥(B).

© St

s

lier as equatlon (3 133)

1t was noted that thls eqpatlon was- of th

: as (4 1) '3 "‘_ ,,“J "

e

i x(t) L A

ﬂhis example is used agein for a number o

‘ *:iimportant of'which

x(t) #B y_(t) ro f(x(t)):‘;. '

is that 1t will provid

£ reasons, the most .

e same form
« -
O

Cf-',ﬁbmparing stability regions for various configuratlons °f the same B

. ‘- B .. R N g ".-' ., .

e us with a convenient means of d,ﬁ

'";“it.has-beenshoWn,previoe91Y-that‘this equation'may:be writteh.in’vectorf"g p
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-

o

A oeneral formula for the stahility region of‘a type:“lhhSYSteﬁ\'-.
-"_'has been obtained 1n section 4 1, a.nd because of ‘the baSic 51m11arities
';between a type "1" and type "2“ system a large proporation ‘of the, |
material developed ln that section W1Dl be utilized again here ‘The .
:'determination of a. general formula for the stabillty bound in x* for the .

\

t‘type "2“ system will therefore be initiated from equatlon (4, 12) The;;'

s

' material pre edin ’_’19 equation is. not reproduced in. this section

: &' The dafa hold is not present in the tﬁpe "2“ system fThjEEfore, thei
"input sign 1. of the linear plant is a series,g§~di§cret’“finite pulses

1 spaced "T",'econds apart.; Thus the input sxgnal ‘to the linear plant at

.)',

% .

g v 9.5.(& ,(n'rm 5(t=xm de T e

" where ..

Il for t==n’1‘ R R S R R
", G(t-nT) - e zj B TR L (4:65)
0. for t#nT.,rﬂ e

\-v

'. NoweXPand (4.64) md rewrita ,:_'a"s".. > L

V:;then by substitue”ng (4"66) 1n:b‘f4;12) and applying eqnations (4 15)“ :

re nedessary. results in (4 12) being modified and
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o x*((n+l)T) @(T) x*(nT) + I ¢(T t) f( x*(1+aT)) ﬁ(f)df e

LM B y*(t4nD) §(m)dT. R C 1) B

Because of the delta function -(4.65), ‘equation (4.67) réduces to

S (el = (7] x*(nT). + &(T) g;__".f_f;(x;‘(n'r) y
semeyram. ;,‘(4:.?)*,

S Nowipodify equation (4 68) such 'that the initial cond;t;ons, i. é\

. x*(O), are related to x* (n+1)T)-— see equation

Therefore,.~ 

e e M
. . T

R

x*(m‘l‘) -4 ('r) x*(O) s 4" (-r) 5 x*m')

-l ico ET R e T
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‘and by comparing (4.70) with (4.25) is is seen that they differ only in

._.the following integta1, ‘ ) N : & : | T  ‘ y
B TS T Lo -

S o ferman. (4.71) °
o) . ol R . N N . - A N g N '. N N . .

,.fclearly then (4 70) is a Spe01a1 case .of equatlon (4 25) The mﬁﬁ?bd .f

'j_,used to solve (4 25) w1ll be utlllzed agaln except that the E matrlx is

replaced by the unit matrix. Thus equation (4 70) may now be written 1n -

1ts solution form _rﬁﬂf=,kf

@

B s DR : . P
: . : N : A\:




,e ',‘,‘_ ‘ t‘.“ o - B l’;>;:‘>’ .
‘ determlned by- us1ng (4.29) and allowing é i, |

Thus.v' s

_ which £or the example in :

@,

EA

v RN

1 then enough informatlon ex1sts to. enable us to '

‘." :

{f¢' and 1f we allow lul

which is rewrltten here for convencxence f-*; 'i"; AR

4‘_‘,

determine (4 32),

e | |l

k ' “,\C'_ .
SR L) O

B A e
" Therefore, ' . .

P

T ;lz%ﬁé‘.  Ig85n"_j;
o fpz@llEsee b L
e R L Rt B IR

e
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" and from (3.55) it _is' clear that '

-1 559X 2= kel, (4.76)

whlch is a statement of the contr;ctlon condltlon. . \/
. . . ( . . . . . . ‘
J obtained 3 (3 99) , that is . |

‘l‘he fixed pomt conditlon is. easn

”,‘r‘PngyT)|l<(1-x)u' T wam

o -

‘I‘he P u\a ix is already known and the L vector can be detemined from o
L o ,a_‘_.. e
(4 54) and (4 55) \remembexmg that E Therefore, S

(4;.75')' v"

| 2092 186




stmtlarly fron equation (4.80)

(1 K)U

186 ’1/3 .

R
.3_,<(

 then ‘from the contraction’ condition (4.81)

s

SRR SR <0327,

. ‘

i
T

s

R BT

'.‘g'

¢

‘ N N M B
. . LY

ifwenowallow. i

el

Cx?ij;)"

| '.:an:d..frdti ‘the fixedpoint cqhdi_"t_i"onf (4.82) e

(4.84)

>7'_~(4;§2)"

(4.81)

127



. Conclus:.ons On Sections 4 3 a.nd 4 4:
'rhe bounds on x are smaller tham the correspond:.ng bounds for a
contlnuous sYstem._ 'I‘his 18 to be expected smce a’ sampled data system

tends to make the systen less stable than a contmuous data systextf I ’

4 5 Inbetween snplmg of 'rype "1" and Type "2" Systems

knovledge of the behaviour of a system betWeen samplmg lnstéhts IR
Is mpon:ant to the systuns engineer same systems wh:.ch are des:gned e

g to have a fuute settling tme at sample mstants do not)ecessanly

<

Settle to an egulxbrim condxtion betveen sanples. That :.s, undershoots_'. S

and oversboots nay occur betveen sa-ples and not be detected One of the‘ A

inportant advantages of the st,ate varnble :nethod over thb z tra.nsfom

method is tbat it can be easily nodif;x.ed.. Thus the state and output of

scrj.bable between sauple penods. S

' fiqure Py is repmduced here to assist m ilzlu's't’reéihg

the in ﬁhe_éeteriihetzon of t.he ontput st”abxhty reqion. S s |
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'.eguation (3 l) This repetitious use of (3 1) will illuStrate cléhrly

what 1s happeniﬂg rn the stabiligy region of a data system as opposed tof’

'a continuous system. jl

.- . . N O L

When coﬁsidering in between sampling the system 1s open loop as ly

P2

.-f,shown, in Fig. 6. Actually what is- required by the systems dESigner is SRS

i :the bound on the continuous system output, x(t)

Consider then a, particular sampling instant n",ithusg
U Sl R e i R’tf L pviff\\g R

T

nT et MDD (4.87)

(4.88)

e?/%_uﬁ

n sample periods. is~a constant
Thus the solution of

TR

40 i



t= T, T

ggmmT o e

-3jwhere ,f»~'_”: ) 'o<A<1 ;

, pand substitute (4 91) into (4 90) and write_‘

\ ' ' , (n+d)T ‘
) x*((n+A)T) & ¢(AT)x*(nm) + zf(nT)éT ;AU s)Bds SIS

| | (ntM)T T
o +. f(x*(“T))AT : ¢((n+A)T s) ads. - S 14.92)

-y
i "
T4

- 1f nowrweAlet

g

N gy

U g = (T I (0
E L ' --Q‘ .
ﬁthe;gfore;' S

- (n+A)T B S R
- & !“n*m' e--cde of QOTO-E 4:98)

.‘_J}Thﬁé’éQQAticn;cdySz)'cAn.naw be rewgitten as .
AT

x*((n+A)T) - O(AT)x*(nT) + x_(nT)£ Q(AT T)BdT:.'

(nﬁ))g O(AT,T) a dt, - LT o (§f961




therefore, e R

and it is observed that (4. 96) is analogous to (4 17) - as expected

Also it 15 now possible to determlne the bound on x(t) - after the nth

sample~—]at anybime "t in the,interval_ ‘ L

-— . a

A

nT < t TwEET . N

L3

.. By compéklng equatlons (4 96) and (3 11) 1t is ea51ly seen that they too

are analogous, therefore the Solutlon of (4 96) will be Obtalned by

4

- casting 1t lnto the form of (3 28) Tgat is

Ty o AT : :
 »£}§2*),—A£j§i*) ‘£ "¢ (AT, T) udo

S E(AT) £ Q(AT r) a dr L [T

'-'\.

Co@en
(4.98)

(4.99)

o 'jf(t) - ’“pL |ij“”’“ | I (200
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thes, 7 T e

AT - o, | | e
f @(AT T) a dt ||u2e_\ﬁl"~.f :

° . - - : O

sup

: S
< up

(t)J”u - u “ : .\ T ‘, .' «‘4101) .

and by the definition of norm -

3 .

ao, ’ " e -

It is to be remembered that the in between sample stabillty is belng
;A sought for a type "1“ system version of equatlon (3 1),‘w1th sample
| period 1 eecond. Material that was preV1ously developed for the deter-
mination of sample stablllty will be used agaln..The elements of the E
matrix will be determined firet. 'l‘his willbe followed by the determna— :
tion of the elenents of the z vector._ Formulas, inequalitles, etc.ev -
- appropriate t.o th'is, and pfeviously developed, will be utillzed again. |

A
The elemente of’the E matrix will now be evaluated etartlng w1th

¥

'1~,;; "ﬁ"fio,f .e 7~/¢j:1-j\_ RO d'(x'z‘,{;;lh-i_" l'? -_17‘A>f~r:“il_;' .:;:“5

,ﬁw@fufi* 7’-a6/b ;@fazﬂ.-'::_ B

[

and replecing , by AT in this inequality as in\(4 99) results in (4 42)

f%f

-U;_i ii{i93ie f?;f'
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LY

’Clearly (4. 42) is a spec1al cage of‘(4 103); when A = 1. ByAsiﬁilar -
‘ methods E (AT), _ (AT) and E (AT) Wlll be determlned vTAe . |
' magnitudes of the elements of the E matrlx are llsted below for varlous
values~of~A,>where T ; 1seq._ | | |
3:'.-:A_':',|éiilv‘ | . Isizl?1E21| * l?’
TR 108 . el .ﬂ-;#iil..f

_aéﬁ 25 eois +254

4 e we0t w0 L
+6 568 w'f'f:fiizsf;ﬂf a3 : ni B (43104)'
i f,f:.7v', i.651 ;i L ee163. - .,: f-462',. |
:le'}? 723 “;l 'l:f?;jds" Lo _.492__.AA
B = R

CU o ai108)




4

‘By the fixed point.conditibh'
Y

‘ ‘sup| ]
_;”;}t)]l <7F

< sdp '

\‘ For K - -6 and U =.-2 a table of bounds on x fdt va?i°ﬁ$‘v§1ues bf'Acl

Kl

- are listed below,

A Pixed Point Contraction -~ X - '
1 o vas T
B S T ‘1”os 754 |

: 1.;5 -f3} t'"‘597?:"3'f1  0 < »597* ST e

¥€~ ;6vi ¥w7;*“é5?4;;;'ji f‘f687,“ ” ;"f-574
A.:?ﬁzif“zfa”'f‘557‘f7 . egss ’;jf]'¢557,1

| A;;7‘54gif:w  1f;,,537f: };;‘; ;545?
..$11'537i2:f“5T»:f1‘622';‘177-iif-$§7}:>.

(4.106)

asan °pcn 1oop system, a8 :m:f,
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oy

x(t) = 2“"%)-"—-‘;0) ‘f {ég‘(t._s) g_.g_(s‘)-_é_(sv_to)_d‘s‘

o(t,8) & f(x(s))8(s-t )ds,
0 - R

o +{

<~.:BeC#\18'e of the delta fﬁnctidn‘equation_f (4.108) _reduces’ to

- -
N .

e
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 Thus |

" s“" ¢(AT) o

R AE N L2

L

X 'l Prs®

IA )

- mp i t K .";: e .n, R S
kl PszJnr*tA)l-;" R R Lt




o e
" !P12|=.|P2’1[ '-.,“le'ziz'l ST .

\

e257 . .’ ' ..700 :

| ""'.’}9'.?" E el a0y
‘g matrix are cbtainable from (4.73), and (4.78). The .

e
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By the’ fiXéd point ‘condition R S I (/ o

I AT e

< sup O R N S R R U (4.122)
ELIBEEE B S N

The table of bounds on x for varioua values of Av'with K e 6 and o .2’

4 e i
Contraction X
446 Cagge

'23~463'_f Loveey T

.434 Cvage T

Tk
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~

'that providing the parent equatlon can be wrltten in- the form of (3 l)
\ v {‘

' 'and is. analytlc\then a Voltenra serles solutlon eXIStS, 1f the A‘vl .f.
fcontractlon and fxxed point condltlons are satisfled p _i _'..'.‘ g e
4 6 The Determination of the Bonnd\§n the Input Vector | |

The bound on the input vector xf(t3 will now: be determlned\VLa the .‘“i_'
Vﬂmethbd presented in the latter‘part of section 3. 4 2 commencing at

(3 225* namely, R T

(4.124) -




[}

-where

TWR il

and by examination of (4.128) it is clearly seen. that it may be rewritten

i/ .

opsES o aam

TR E TR

PR
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(-—-———--')(1 - 19 1/3 T e
,nlul ST -

PBund to be
" (4.136) -

e .
»

jpremum Of (4.134) and (4.136) it is seen that

Vool



“ CHAPTER V

) concLAsxen'
o (. ’ Lo B . R '9 )
"5The tnsiis has utilized the convefbence properties of the Volterra :

;aeries Via the Banach contraction mapping principle to prove that

\‘_

::bounded input - bounded output stabiliéy does exist for a certain class

*linear systems. To ensure that the grqdient of the

"of nultivariate no
/

o7,

p-non-linearity doesxno- exceed ‘the- design figure, the power of the

e
. 8

Tj Frechet deriv;t1Ve was enlisted.f ;,‘

The clasa of systems applicable to this thesis are those ‘whose

>

characterizing differential equations satisfy the following conditions-f

(1) the differential equationu can be cast 1nto vector matrix

g

without
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. Volterra serles, ‘has been deVeloped by Chrlstensen [1o] and [33]
respectlvely These crlterla are based on* the contractlon mapplng and

-'flxed point pr:.nc'lples and upon the defmltlon of an analytlc system .

-
I

- expounded by Bnlllant [7] S I S

3

Based upon the methods developed by Chrlstensen, the .1dea behmd |
- the thesis was to f:.nd, erect and-d-emonstrate a s:.mple procedure whereb;
' 'once the vector matnx form of the x}on-lmear d e. was: known, it would be '
comparatlyely easy to determme the regmn in whlch B :1,B.0. Stablllty |
.held, and that a Volterra serles did e’xlst. As prevmusly stated two ‘
ba.s:.c tests were: developed by~ ChrLstensen . |
Cg

(a) the convergence test [10] . E P \_) R

"(b)_thevuni-'.'

."Test (a) determmesr. - the representatlve Volterra series is convergent

, ":‘fso, how large: is- the region of convergence.

' The method of thls test : ' o

f'_._""_-displayed in’ thans 3 4 1 and 3. 4 2 from (3 184~) to (3 192) and (3 212) S

Also test (b) detennines if the represé?ztative Volterra

Sy2

""lif so how large is t'h‘e region of \.1rxi.‘f~1u<’-‘l'“'*5s '_ Thé’ L ,
| eéi‘.

; )

‘ test can be_ made@to apply simu ﬁaneously '
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various«Step,inputs' The equatiOn was eolved by‘the'RnngE‘Kutta method
- and plotted with the aid of a Honeywe11.316 computer " From the curve.it

is. clearly seen’ that the system 1s unstable if”
: e

’ . . : . . : ‘ 'V ‘ h " ™~

|y | o STCRIE

_For

gt fmeaso - s

_ , o .

It must be conceded that the-resultsvobtained‘in Chapters 3 and 4 are |

conservative. Principally they are based on:

(1) the assumption that the non—linear feed ‘pack’ network 1s

3

L exerting maximum effort to n\ake the system go unstable. c), ‘ .

T ;It_' (2) generally it is only possible - ae has been demonstrated in

the theéis - to compute the bounds on the norm of the 1nput/output
(3) the sup norm hes beeﬂ‘oeéé_throoghout, that is ~

P S R r‘.ar . .i‘ : Sl L
1via"ﬂ'-.':‘t>- |lx(t)ﬂ - eup‘x (t)‘ } ,t'. : } f‘{, | '3‘534?.

T

R . ) g

" oﬁVthe vector iq represented by its 1argest aft

o I . . oo'
. . “

e .y

manin%g that the "-ue

5

P
RN

RN



Tbexbopnds on the compqpents'of the continuodeesysﬁem are i

[
e

X <405 T \‘ S (5.5).

eewd o L (5.8)

B TR

Jgo] < T e

Ctdsseentmat o c i v
x| < -188 L 6 . (5.8)
'.Clearly by comparing (5 2) wlth (5 7) ;Rd (5 3) w1th (5 8). 1t 13 seen

in spxte of thxs short-coming

B N

»‘ethat the redhlts are conservat;ve.::ﬂowever,
'fethe method developed here y@ reallstlc xn that not only is stabllity S;de;
djedetermined but aiso the "size of the stability region is found.xig_.'“
WOrk 1s required to establish a method for predicting the advent of
déi;limit cycles onCe bounded input -.bounded output stabxlity has been .

.fFedetermihed. Aleo,‘i/eriterion needs to be established.which yxll enable 7}7

ne controllability end observabllity of

. r'o‘..

:Tithe systems designer to detexmi

- . K-S

"'.the multivariable non-linear system’. |
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