
University of Alberta

PROGRAM CLONING - AN EVOLUTIONARY APPROACH

FOR SOLVING SOFTWARE ENGINEERING PROBLEMS

by

Xinwei Chai ©
A thesis submitted to the Faculty of Graduate studies and Research in partial

fulfillment of the requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Spring, 2004

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96457-4
Our file Notre reference
ISBN: 0-612-96457-4

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

As an evolutionary-based machine-learning method, Genetic Programming (GP) is

widely used to solve diverse problems. However, this powerful but still young algorithm

has not been tried on program understanding and reproduction for real programs in any

general high-level computer language. In fact, such an automatic program understanding

and reproduction process is definitely in need not only for software production processes

but also for a variety of software engineering activities. This thesis presents such an

approach - Program Cloning, which is based on GP and aims to automatically produce

general-purpose programs according to an understanding of the target problems. The

Program-Cloning method will significantly benefit diverse software engineering topics

such as software testing, software quality assurance, safety-critical software designing,

software modeling, software reengineering and agile software engineering. Based on our

Program-Cloning experiments and the corresponding results, this thesis demonstrates its

principle and possible applications.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I would like to thank my supervisors Dr. James Miller and Dr. Marek Reformat, for their

support and guidance throughout. I ’m grateful to their valuable instructions and ideas

regarding this research and their continuously and patiently advising on academic writing.

Thanks also go to Dr. Dave Clybum, who provided great help on my academic

writing for this thesis.

Thanks must also go to my fellow graduate students. Thanks to all the members in the

STEAM lab: Zhichao Yin, Ping Li, Bengee Lee, H.C. Yeoh, Maggie Xiao, Howard

Zhang and Yunbo Zhou for their priceless advice and discussion.

I would like to dedicate this thesis with my love to my parents, my brother and my

sister-in-law in Beijing. Their unconditional love and encouragement always accompany

me wherever I go, and empower me whatever I do.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Contents

Chapter 1 Introduction...1

1.1 Genetic Programming (GP).. 4

1.2 Program cloning..7

1.3 Thesis contributions...9

1.4 Thesis outline.. 9

Chapter 2 Experiments in automatic programming for general purposes...10

2.1 Introduction..10

2.2 Strongly-typed G P.. 12

2.3 Statistical results under different GP evolution strategies...17

2.4. Fighting with individual bloating... 24

2.5. Representation o f diverse program structures..27

2.5.1 Trials on the Triangle.c program ... 27
2.5.2 Trials on the Extract.cpp program ... 29

2.5.3 Trials on the Joumey.cpp program .. 33

2.6 Conclusions and the following work...35

Chapter 3 Implementation of the program-cloning package... 36

3.1 Architecture... 36

3.2 Implementation Features...37
3.2.1 Strong typing... 38
3.2.2 Exception handling...43

3.2.3 Input/Output handling... 45

3.2.4 C onstant...47
3.2.5 Dynamic fitness calculation... 50
3.2.6 Issues concerning implementing GP in Java... 52
3.2.7 Sub-function.. 58
3.2.8 Assigning suitable rates for crossover, mutation and reproduction...60
3.2.9 Number o f test cases..61
3.2.10 Dynamic mutation probability and other implementation aspects..62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4 Experiments with program cloning using program-cloning package

4.1 Triangle.c..

4.2 Extract.cpp..

4.3 Joum ey.cpp...

4.4 N extD ate...

4.5 Com m ission..

Chapter 5 Applying program cloning in software engineering................................

5.1 Complexity measurement...

5.2 Mutant software test..

5.3 N-Version software design...

5.4 Test first..

5.5 Test data evaluation...

5.6 Automatic test data generation..

Chapter 6 Conclusions and Future w ork...

6.1 Conclusion..

6.2 Future w ork ...

Bibliography...

..64

..65

..72

..77

..82

..84

..88

..89

..93

..95

..97

..98

100

106

106

107

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

Table 2.2.1 Key features..16

Table 2.3.1 Attributes and parameters for each trial... 19

Table 2.5.2.1. Parameters and settings for trials o f Extract.cpp ..32

Table 3.2.6.1 Main node set defined in P C P .. 54

Table 3.2.8.1 Genetic-operation proportion..60

Table 4.1.1 Constraints of basic function-types...68

Table 4.2.1 Different parameters for trials with Extract.cpp .. 75

Table 4.3.1 Decision table o f Journey.cpp ...79

Table 4.4.1. Designing fitness cases...83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

Figure 1.1.1 GP’s principle..4

Figure 1.1.2 Crossover..7

Figure 1.1.3 Mutation..7

Figure 2.2.1 Code segment of Journey.cpp...14

Figure 2.3.1 Code of Triangle.c..18

Figure 2.4.1 Performance with double tournament... 26

Figure 2.4.2 Performance with dynamic parsimony pressure...26

Figure 2.5.1.1 Perfect solution expressed in C ...29

Figure 2.5.2.1 Code of Extract.cpp .. 30

Figure 2.5.3.1 Code fragment o f Journey.cpp.. 33

Figure 2.5.3.2 Cloning program translated in C language...35

Figure 3.1.1 Architecture of P C P ..36

Figure 3.2.1.1. Four invalid individuals.. 39

Figure 3.2.4.1. Parse tree with constant terminals... 49

Figure 3.2.5.1 Pseudo code for individual fitness calculating... 51

Figure 3.2.10.1. Diversity o f population... 63

Figure 4.1.1 A solution tree for triangle.. 65

Figure 4.1.2 Comparing best programs from GP trials with 60 and 30 cases.. 69

Figure 4.2.1 Simplified solution in trials with Extract.cpp ... 77

Figure 4.3.1 The Best solution 1 in pseudo code ...80

Figure 4.3.2 The Best solution 2 in pseudo code ...81

Figure 4.5.1 Adopting A rray ... 85

Figure 5.5.1 Test data evaluation...99

Figure 5.6.1 Fland-written test data generator for Triangle.c.. 104

Figure 5.6.2 Automatic test data generation... 105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

Software engineering arose out of the software crisis in the late 60s, however, despite many

innovations, software development is still in a state o f crisis. Studies from Standish Group have

shown that 31.1% of projects will be canceled before they ever get completed. Further results indicate

that 52.7% o f projects will cost 189% of their original estimates. According to the Standish Group, the

United State spends more than $250 billion each year on IT application development o f approximately

175,000 projects. O f these 31% are cancelled, 53% are changed and 16% successful.

The root cause o f software crisis is the very character o f software - different from normal

products, software is the direct product of human intelligence. As described by Brooks [Broo86],

complexity, conformity, changeability and invisibility construct the essential difficulties for software

development. In addition, accidental difficulties exist, relating to the production of software. Software

engineers and project managers have tried and are trying different software engineering process,

methods and tools in order to economically obtain reliable and efficient software. Current directions

for software engineering include agile software engineering, aspect programming and the unified

software development process. However, while the wide applicability o f stock hardware has driven

demand up and manufacturing cost per unit dramatically down, the same trends have led to increasing

demand for ever more complex software for an astounding variety o f uses [Gumn96], "Large"

programs now can have 1,000,000 to 5,000,000 lines, and some commercial software, such as

Microsoft Word or Microsoft Excel are moving into the 10,000,000+ range [Coll03], In contrast, due

to the very character o f software, the vast majority o f computer code is still “handcrafted from raw

* The Standish Group. CHO AS C hronicles II, The Standish Group International Inc., 2001

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

programming languages by artisans using techniques that are neither measurable nor repeatable

consistently”, and “software seems like malleable stuff, most programs are actually intricate plexuses

of brittle logic through which data of only the right kind may pass” [Gibb94], As a result, success in

software development still depends most upon the quality of the people involved. Although the art of

programming has been continually refinement for more than half a century, software development has

reached a stage that the current development processes and models struggle to cope with the

complexity o f modem applications.

In Brooks’ [Broo86], automatic programming is mentioned as one technical development that are

most often advanced as a potential “silver bullet”. However, automatic programming is only

commonly found in mle-based problems. When handling high-level languages, current automatic

programming focuses on glamour but not semantic content and struggles to generalize to industrial

systems. Still, automatic or semiautomatic programming or problem learning provides a potential

solution to software crisis, and eventually, the automatic programming technologies will become

mature enough to provide a silver bullet for software development.

To contribute to the maturity of automatic programming, our research tried to work out an

approach to automatically comprehend a problem and find its solution programs in high-level

languages. Diverse heuristic machine learning methods or algorithms may contribute to the automatic

programming, for example, Genetic Programming (GP), Simulated Annealing and Grammatical

Evolution [OnryOl], Genetic programming is a young and powerful machine-leaming algorithm.

Using hierarchical structures that are dynamically shaped, GP can express many logic-included

structures including conditions, iterations and combined data types. As an evolutionary algorithm, GP

has the capability to solve problems which are too complex to be well understood, which is accord

with the demand for problem understanding - the most difficult part in software development. Our

research is based on GP. As an initial try to apply GP on automatic programming using standard

computer languages for arbitrary problems, our experiments focus on automatic comprehension and

solution production for a series of simple problems. In addition, our automatic problem

learning/programming approach aims to solve a series o f concrete problems in software engineering

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

areas including software testing, software complexity measurement and test-driven software

development.

Based on the Genetic Algorithm (GA), Genetic Programming (GP) adopts more complex

individual structures for its genetic evolution process and is widely applied as a machine-leaming

algorithm. Since Koza introduced GP in 1992 [Koza92], it has been adopted in a broad variety of

problems, such as image processing, electrical circuit designing, robot controlling and system

modeling and designing in economics and biology domains. However, since GP is still a

comparatively new field, its potential uses in a large number o f other domains in which heuristic

machine-leaming processes are required have not been investigated to date. In this thesis, a new

method based on GP, program cloning, is proposed and explained by our trials. In addition, program

cloning’s most promising applications in software engineering are proposed and analyzed.

Unlike GP’s typical applications, such as symbolic regression, artificial ant and 11-multiplexer

[Koza92], program-cloning aims to automatically create “general-purpose programs” based on an

understanding of the original program’s solution for a certain problem or o f the problem’s

specification. Because of its “general purpose” target, the GP process of program-cloning puts greater

emphasis on the language elements used to compose individual solutions, not the specific problem

details. In conventional GP programs, individual programs are represented by symbolic or

operator-like elements focused on formula or rule-like solutions. For example, one o f GP’s typical

application the simple symbolic regression is to search the mathematic expression y=x4+x3+x2+x; and

to solve this problem, limited arithmetic operations like +, -, * and / are generally adopted as GP’s

function types. In contrast, program cloning uses more complex and flexible language elements and

can simulate more complex logic in a program with the final target of competing with hand-written

programs. For example, basic programming elements such as arithmetic operations, logic operations,

comparing operation and program flow control structures are included in function set to solve

problems with whatever purpose like information abstraction, data processing or commercial

computing (see chapter 4).

In this chapter, in order to introduce the profile of program cloning step by step, we will cover the

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

following topics in the subsequent four sections:

1) Genetic Programming,

2) Program cloning,

3) Thesis contributions, and

4) Thesis outline

Initialization E volution Output

The
Target

Problem

r Terminal Set

In i t i a l r a n d o m p o p u l a t i o n

Function Set

Environment definition
(Fitness cases)

Termination Criterion

Paramete rs/setti ngs

Figure 1.1.1 G P ’s principle

The best
solution

1.1 Genetic Programming (GP)

Genetic programming (GP) is an extension o f the Genetic Algorithm (GA). As important evolutionary

algorithms, GA and GP are widely applied in order to solve problems whose solution spaces are too

complex to be understood or efficiently explored by traditional methods. The basic idea of GA

originates from Darwin’s natural selection theory. In nature, creatures on earth have been evolving

generation by generation according to the survival of the fittest law; in science, a solution in a certain

problem-specified environment can also be evolved generation by generation for improving solutions

to a target problem. GP extends GA by adopting hierarchical individual structure, whose content and

shape are both dynamically constructed, instead of GA’s fix-length strings individual structure, whose

shape are statically determined. For example, to solve the eight-queens problem, GA’s individuals can

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

adopt a numeric array which has fixed 8 elements; in contract, GP’s individuals generally adopt a

tree-based structure with diverse shapes like the trees in Figure 1.1.2. This character enables GP to

solve more complex problems and to be an ideal machine learning method in artificial intelligence.

GP’s main process can be illustrated by Figure 1.1.1.

According to the specific problem, initialization work before GP evolution is required. The

initialization includes determining elements in the terminal and function sets, defining the evolving

environment, which is generally a data set of fitness-evaluation cases, determining termination

criterion and configuring parameters and settings within GP algorithm. In the G P’s evolution, an initial

population, which includes a predefined number o f solution individuals, is established according to

certain individual construction rules, and then, the individuals are evaluated under the defined

environment. Then, the termination criterion is examined to determine whether to terminate the GP

evolving and output the best solution or to perform genetic operations to create the next generation

and then enter the next GP evolving loop. To understand the GP algorithm, some key-concepts must be

clarified, and we list and explain them as the following.

Function and terminal sets: Terminal and function are two kinds o f basic components for

constructing GP’s solution individuals, these components are genes, and in this thesis they are also

mentioned as primary elements. Generally, the terminals represent interface variables for the problem

and basic operations and necessary constants that can be useful to express a solution. The functions

represent parameter-needed operations, such as arithmetic operations, mathematical functions, logic

operations, conditional operators, iteration control structure, flow control operations and any other

domain-specific function that can be used for the target problem. To solve the target problem, the

terminal set and the function set must be sufficient enough; to make sure that every solution individual

created by mechanically combining primary elements is valid to GP evolving process, the terminal set

and the function set must be closured.

Individual, population and generation: In GP, one hierarchical structure (generally tree-based

structure) that is composed by primary elements is a potential solution to the target problem and is an

individual in G P’s evolving process. To carry out selection based on the survival of the fittest, a

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

population, composed of a certain number of individuals, is used in G P’s evolving process. The

individuals of a population keep changing along with the evolving iteration, and each loop is one

generation. The population in the first generation, the initial population, is composed of individuals

which are created by combining elements randomly selected from the function set and the terminal set.

Problem environment'. For natural selection, the evolution environment is the surface of earth; for

GP’s selection, the evolution environment is the outside behavior of the target problem. In GP, a

problem’s behavior can be reflected by data sets or by a feedback source [Kush02], and all trials in

this thesis adopt the former method. The cases in the data sets are called fitness cases with respect to

GP algorithm or test cases with respect to the programs being cloned.

Fitness measure: Fitness measure is a quantitative way to express how well an individual to fit the

problem environment or to solve the problem, and in this thesis, fitness measure is also mention as

fitness function or object function. Fitness measuring is based on the problem environment definition,

and like natural selection, selecting individuals to enter or partly enter the next generation is based on

the fitness values of individuals, and fitness thus acts as the driving force in G P’s evolution. Koza

[Koza92] has introduced four fitness measures: raw fitness, standardized fitness, adjusted fitness and

nonnalized fitness, and our trials in this thesis adopted the first three.

Genetic Operations: To achieve steady improvement o f the population’s fitness, individuals from

the second generation are created by carrying out a series o f operations on selected individuals of the

previous generation. These operations are called genetic operations, and the most frequently used

genetic operations are crossover, reproduction and mutation.

1) Crossover Operation: As shown in Figure 1.1.2, in a crossover operation, two parent-individuals

exchange sub-trees rooted at the randomly selected nodes to form two child-individuals.

2) Reproduction: Reproduction is asexual because it is carried out on one parent, and it simply

duplicates the parent individual to create a new one, the offspring.

3) Mutation: As shown in Figure 1.1.3, mutation is also asexual. In the mutation operation, one

individual is selected based on its fitness, from this individual’s tree structure, a mutation point is

randomly chosen, and then, the original sub-tree rooted at this point is substituted by a new one,

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

which is constructed by combining randomly selected primary elements.

/

C rossover

2

C hild-Solution 2C hild-Solution 1Parent-Solution 1 Parent-Solution 2

Figure 1.1.2 C rossover betw een parent-solution 1 and 2, where the red-circled node is selected to carry out crossover

M utation

►

C hild-Solution 1Parent-Solution 1

Figure 1.1.3 M utation upon parent-solution 1, w here the red-circled node is selected to carry out m utation

1.2 Program cloning

Operating on fixed-length character strings, GA can resolve only certain problems that can be solved

by simple and static solutions; to overcome this defect, GP was devised based on GA. GP represents

solutions by hierarchical computer programs [Koza92], which enables it to provide more complex,

flexible and logical solutions than GA. For example, conditional and iteration operations are usually

used in GP to solve certain problems. Based on Koza’s claim [Koza92] that “for problems that can be

viewed as requiring discovery o f a computer program that produces some desired outputs for

particular inputs, ... GP provides a way to search for this fittest individual computer program”, we

believe that GP provides a way to understand a problem and its solutions as a black box and to work

out a solution or substitute solutions as a white box for that problem. This belief is one of program

cloning’s principles. Program Cloning is the production of a system from its external interactions

[Mirc04], Program cloning’s another basis is that instead of being limited to artificial intelligence,

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

symbolic processing, and machine learning domains, GP can be extended to apply on any problem as

long as its specification can be fully reflected by input/output sets and its solutions can be expressed in

a program style.

The program-cloning concept arose from our attempt to apply GA to automatic software-test-data

generation. Aiming to reach a certain testing coverage, we kept modifying the test cases in order to

meet predications at each branch o f the software under test (SUT). The intermediate variables, which

often appear in branch predications, have to be substituted by input variables because input variables

are the only values that we can adjust in the test cases. Hence, we must find a way to enable the

test-data-generation program to understand how to express or deduce the intermediate variables from

the input variables, and this is where the GP is introduced. This procedure can be understood as a

series of steps to understand a program and then to express this understanding, and the program being

understood may serve for any problem and may be in any language.

The main idea behind program cloning can be summarized as follows: 1) it is a GP application for

automatically creating programs, 2) these programs have general purposes, 3) these programs

are similar to hand-written programs using a general high-level computer language, 4) through the

input/output set, it tries to understand the problem specification or the original program, and 5) the

new program reflects the understanding achieved in 4).

A recently developed topic, grammatical evolution (GE), [OneiOl] [OnryOl] also aims to generate

programs in an arbitrary language, and its key approach is to represent individuals in variable-length

binary strings, through grammar definition using Backus-Naur forms (BNF) and

genotype-to-phenotype mapping process to produce and evolve programs. Compared with program

cloning, GE, however, focuses only on producing the final programs in arbitrary languages through

explaining BNF, not general-purpose programs. In contrast, program cloning puts emphasis on the

practices o f creating general purpose programs and takes it for granted that post-processing

manipulation can easily translate solutions into any language.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.3 Thesis contributions

With respect to the program-cloning problem, there are three contributions in this thesis. 1) Adopting

ECJ, which is a general-purpose genetic programming package [Luke02], we experimented with a

series o f trials utilizing GP to simulate programs with diverse structure characters. 2) Based on the

experiments involved in 1), we designed and implemented a trial version GP package, which focuses

particularly on the program-cloning problem, and using this package, we carried out more trials to

clone programs with different levels of complexity, according to the original program o f a problem or

the problem specification. Typical samples are selected and described in this thesis. 3) Based on our

trials, we propose six possible applications in software engineering domain that can benefit from the

program-cloning technique.

1.4 Thesis outline

The content o f this thesis is organized as following. Chapter 2 discusses program cloning experiments

based on a general-purpose GP package; Chapter 3 described the implementation o f the trial version of

a program-cloning specific GP package; Chapter 4 discusses typical samples o f program cloning

experiments based

application domains

work.

on our program-cloning specific GP package; Chapter 5 proposes hopeful

for program cloning; and Chapter 6 offers conclusions and suggestions for future

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Experiments in automatic programming for general purposes

2.1 Introduction

Genetic programming (GP) is an important approach in automatic programming. Its typical

application includes diverse symbolic expression problems, numerical or logical expression seeking

and game-solution problems. However, its real attraction is the potentiality for automatically

implementing complex programs, which are normally written by programmers in general languages

like C and Java. This chapter describes our initial attempts to automatically create programs to

implement arbitrary problems or clone general-purpose programs. The experiment described in this

chapter is based on Luke’s general-purpose GP package, ECJ version 10, [Luke02]; our attempt in this

chapter is called automatically programming for general purposes (APGP).

To simulate a real program, the key for the GP algorithm is the individual’s structure, which must

be applicable to a program with any arbitrary purpose. To compose such an individual structure, both

the node set and constructing rules are quite different from those in a traditional GP application.

First, the nodes should provide the flexibility and efficiency to construct an arbitrary program,

which mimics the commands and control instructions found in general languages. In a typical GP

problem, the terminals and functions in the node set are correspondingly simple and problem-specific.

For different GP applications, their node sets are generally totally different. For example, the node set

for the ant problem [Koza92] generally includes "if-Food-Ahead", "left", "right" and "move"; and for

the symbolic regression problem [Koza92] includes "add", "sub", "mul", "div", "exp" and "log".

However, in our problem o f automatic programming for general purposes (APGP), the node set of GP

must include functions such as "if-then-else", "loop", "assignment" and "procedure definition" as well

as some optional function packages, which mimic libraries in a programming language. For example,

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

when cloning programs on numerical problems, the APGP should include the package o f "math".

Second, for the APGP problem, the individual structure o f GP is much more complex and flexible

than that for traditional GP problems. For example, it is very common for an arbitrary program to

declare a temporary variable, assign a value to it and retrieve the value from this temporary variable.

So, special data structures and operations should be designed to clone these operations. At the same

time, in order to make the GP searching more sufficient, the construction rules should be restrictive

enough to guarantee that all of the individuals are valid. The strongly typed technique is an efficient

approach for GP to handle complex individual structures, and simultaneously preserve the closure

attribute o f the node set. In the APGP problem, the application o f strongly typed technique brings new

content. For instance, for a general application o f strongly typed GP, when matching a child node to a

parent node in an individual, we need only consider their data-types; In the APGP, only checking the

nodes' data-types is often insufficient, e.g., to a parent function o f "integer assignment", its first child

(the left hand side of the operation) should be not only an integer but also a variable, and a constant

integer can not be matched here.

Besides the individual structure, there are many other factors that affect the GP's efficiency, e.g.

individual-bloat control approaches, random number generators, selection methods and GP parameter

settings. Our experiments focused mainly on the following four aspects:

1) Strongly-typed GP,

2) Comparison of GP's behavior under different operations, selection methods, variable domains

and bloating refraining approaches,

3) Experiments with individual bloating control and

4) Representation o f diverse program structures.

All our experiments were based on a GP package, ECJ [Luke02]. This package was developed by

Sean Luke in Java, and comprehensively implements GP system. It provides diverse facilities such as

Mersenne Twister Fast-random-number generator, strongly typed, Ephemeral Random Constants and

Automatically-Defined Functions [Koza92]. ECJ was designed to be flexible and modifiable by using

hierarchical parameter files, which defines tens to hundreds o f parameters to establish the whole

1 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

algorithm strategy. As a general purpose GP package, ECJ is very efficient for most o f the typical GP

problems.

However, when applying the ECJ package to the APGP problem, we had to rewrite a number of

the basic classes like the individual builder (JoGrowBuilder), the individual class (JoGPIndividual)

and the crossover operation class (JoCrossoverPipeline). Unfortunately, there are still several

un-applicable points in ECJ to the APGP problem, which are difficult to improve and thus impose a

limitation on our trials, for example, the strongly typed construction for an individual. On the other

hand, the whole mechanism o f ECJ, which was delicately designed to achieve generality for diverse

GP problems, is unnecessary in our research. In fact, a program-cloning specific implementation o f GP

is definitely helpful in order to carry out an extensive research on this problem, and the relative

experiments and studies will be described in the next chapter, and the experiments using ECJ provide

basis for further work.

In the following sections, we will depict the four experiment aspects respectively; finally, in the

conclusions section, we will summarize the experiments in this chapter and point out the direction for

further work.

2.2 Strongly-typed GP

In the standard GP, elements in the function set and the terminal set generally have no data type or

single data type. For example, in the typical GP application, simple symbolic regression problem,

whose target function is x4+x3+x2+x, every element in GP adopts float data type. In order to carry out

genetic operations on the individuals, the elements that are used to construct individuals must satisfy

the requirements of closure and sufficiency. Although for each target problem, a particular GP

application is designed, there is no way to guarantee that its individuals satisfy some complex

constraints o f the target problem. Consequently, the solution space is unnecessary huge and the large

number o f invalid individuals depress the success rate badly.

Then, it is natural for people to resort to strongly typed genetic programming (STGP). Strongly

typed genetic programming is an enhanced version of genetic programming [Mont95] which enforces

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

data type constraints and whose use of generic functions and generic data types makes it more

powerful than other approaches to type constraint enforcement [Mont95]. When applying GP to solve

a certain problem, without losing generality, the more restrictions added to the individual, the smaller

the solution space is and the greater the probability of locating the target solution becomes. Before the

proposal o f STGP, Koza [Koza92] has defined constrained syntactic structures, by which he defined

syntaxes by directly specifying what kind of children each non-terminal can possess. The basic STGP

does this indirectly by specifying the data types of each child and the return types of each node

[Koza92], Although loses a certain degree o f flexibility, the data type concept provides basis for the

techniques o f generic functions and generic data types. The generic functions and generic data types

aim to provide GP with the possibility of not only handling problems such as the symbolic

manipulation o f vectors and matrices but also the ability to create large and complex programs rather

than just small and simple programs [Mont95],

In our experiments in applying GP to the APGP problem, we found that in order to represent an

arbitrary program, both Koza's constrained syntactic structures [Koza92] and Montana's STGP with

data types specifying [Mont95] are helpful. Data type specifying makes it possible to handle multiple

data type conditions and clone the data typing operations in general programming languages. However,

under certain conditions, it is necessary to define more detailed constraints, i.e. what kind of children

each non-terminal can have. For example, for the non-terminal function "integer assignment", its first

child should be not only integer but also a variable, and a constant integer does not match here.

Montana's generic function, similar to the template concept in C++ language, is a function that can

take a variety of different argument types and, in general, return values of a variety o f different types

[Mont95], The generic data type, similar to the abstract class in object oriented language, is not a true

data type but rather a set o f possible data types [Mont95], The generic function and the generic data

type can be used to clone special usages in a programming language. However, Montana's other three

proposals, void data type, local variables and run time error [Mont95], are obviously very applicable

in the APGP problem.

In an arbitrary program, there are many control structures that cannot be represented in normal

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ways. Under these conditions, the easiest method is to add the particular constraints directly into the

rules of individual representation. For example, for the "if-then-else" function node, its first child is

functional only if it is a logic expression; hence, the first child should be a non-terminal node; and

consequently, the "if-then-else" should not occur in the last second layer in a tree-based individual. In

a GP implementation that focuses only on the APGP problem, designing a mechanism for adding,

selecting and modifying those specific constraints is not difficult. But for a general GP package like

ECJ, adding a complex constraint is difficult and often depresses the efficiency o f the original

package.

The following is one o f our experiments, which clones a code segment in an arbitrary program,

Journey.cpp. The background o f Journey.cpp problem is the Collatz Problem or the 3x+l Problem

[Vard91], which is defined as: the series a„ (n=0, 1, 2, ...), which equals to an_i / 2 for an even a„_i and

3 * a„_i + l for an odd an.l5 always converges to 1 for any positive value o f a0. For example, when a0

equals 3, the series is 3, 10, 5, 16, 8, 4, 2, 1; when a0 equals 5, the series is 5, 16, 8, 4, 2, 1. The

Journey.cpp program calculates the series for each number (a0) in an integer set, and locates the

maximum value among the peak-values o f the series.

int n = current; //current is an init value

int peak=n;

if(n % 2){

n = 3 * n + 1;

if(n < 1){

cerr « current « "Integer multiplication failure\n";

exit(2);

}

i f (n> peak)

peak = n;

} else

n = n / 2;

Figure 2.2.1 C ode segm ent o f Journey.cpp

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Our trials focus on the code fragment that calculates the series (a„), and modifies peak if peak is

smaller than an. The code segment is shown by Figure 2.2.1. This program includes three if-then-else

structures, two input variables, n and peak, and two output variables, n and peak.

Table 2.2.1 summarizes the key features in this trial.

Objective: To search an arbitrary program that implements the same function as the target

code segment.

Data Types: Integer, Boolean and float[1].

Terminal Set: Variable n, variable peak and a random constant by range (-10,10) in integer.

Function S e t[2]: +, -, *, /, %, =, >, <, Assignment, If, Sequence (to represent sequentially

execution o f commands)

Node

constraints:

Individuals return float values [1]; variable n and variable peak adopt integer

values; arithmetic operations, +, -, *, /, % adopt 2 integer children and return

integers; comparing operations, =, >, < adopt 2 integer children and return

Booleans; Assignment [3] adopt 2 integer children with the first child

representing a variable and return floats; Sequence adopts 2 float children and

returns floats; and If adopts 3 children with data types Boolean, float and float

respectively and returns floats.

Fitness

Calculation:

20 test cases are designed according to the code segment; the evaluation process

for an individual clone is: given input and output values by 20 test cases, the

values of a cloning program are matched with the output, one unit is scored per

successful output; perfect score is 40 units; standard fitness = raw fitness = the

number o f un-matching cases; and adjust fitness = l/(l+standard fitness).

Hits: The number of matching cases.

Parameters and

settings [3]:

Population number = 4000, Maximum generation = 501, Cross-Over Probability

= 0.7, Mutation Probability = 0.25, Reproduction Probability = 0.05,

Tournament Selection

Success Adjust fitness = 1.0 or Hits = 40

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Predicate:

Specific rules of

construction:

Since the function nodes If and Sequence must not have children o f terminal

node, they should not occur in the second last layer in a tree-based structure.

Table 2.2.1 K ey features

[1] All of the float data types here should be void types, and there are two reasons that we use float

here: firstly, it is necessary to clone the "exist (2)" command in the code segment, instead o f Mantana's

run-time-error due to the ECJ package, we utilize a data type to represent whether the execution is

successful executed; Secondly, although a Boolean (or integer) type seems more reasonable instead of

float type, the Boolean (integer) type has been used for variables and the STGP in ECJ package does

not distinguish nodes with same data type, e.g., a "Sequence" node with two Boolean children may be

given a child node, ">" or "<". Thus, in order to simplify the trial, we simply utilized the float data

type.

[2] Function set includes two classes of nodes: the first class is for arbitrary program representation

such as Assignment, Sequence and If, and the second class is for numerical operations such as +, -, *, /,

%, =, >, <. Although all these operations are very basic for a programming language, a little larger

node set may depress the GP's efficiency significantly. Hence, optional function set packages, each of

which is assigned a certain probability o f being selected, may compensate for GP's efficiency in the

APGP problem.

[3] Since APGP is not a typical GP application, standard experiential parameters are not quite

available for it. In this chapter, the parameters and settings listed are experiential values derived from

our trials. However, the parameters or settings given here are not the only applicable ones.

The above three annotations are applicable to all of the trials in this chapter.

A typical successful individual is shown below, where "Assignment" is represent by ":=" and

"Sequence" by (-> (if (> n (+ (% n n) (* (% (% n 2) peak) peak))) (:= n (/ n 2)) (:= n (+ I (* 3

n)))) O f (> p eakn) (:=peakpeak) (:=peakn)))

Although some meaningless logic exists in this individual, most o f the functions in the original

code segment are implemented and most of the operations in this individual are reasonable.

For the 53 trials we executed, two solutions with perfect scores are achieved: one with 423

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

generations and the other with 327 generations. The low successful rate is due to the unnecessary

entangling between the two variables. Trials on a similar code segment that contains two independent

variables achieve significantly higher successful rate. This issue is discussed in depth in Section 2.4.

Moreover, most o f the trials reach a final score greater than 36 out o f 40 within 501 generations. We

believe that an increased rate o f perfect scores (i.e. perfect cloning) can be achieved by increasing the

maximum number o f generations.

2.3 Statistical results under different GP evolution strategies

As part of our experiments with GP, we compare the GP's results under the following different

conditions:

1) Three genetic operations, crossover, mutation and reproduction against two genetic operations,

crossover and reproduction,

2) Greedily over-selecting versus tournament selecting,

3) A problem solution domain o f [-10,10] against a problem solution domain of [-100,100] and

4) Diverse bloating refraining approaches.

All o f the trials are carried out on cloning the same function of Triangle.c, the most widely used

example in software testing literature [Jorg02]. The function is defined in Figure 2.3.1.

int triang(int i, int j,in t k){

int tri=0;

if((i< = 0) || (j<=0) || (k<=0))

return 4;

if(i==j)

tri + = /;

if(i==k)

tri +=2;

if0==k)

tri +=3;

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

i f(tr i- -0){

i f((i+j< ~k) II 6 +k <=i) II ((i+k) <=j))

tri=4;

else

tri = 1;

return tri;

}

i f (tri > 3)

tri = 3;

else i f ((tri == 1) && ((i+j) >k))

tri =2;

else i f ((tri == 2) && ((i+k) >j))

tri =2;

else i f ((tri == 3) && ((j+k) >i))

tri =2;

else

tri = 4;

return tri;

}

Figure 2.3.1 C ode o f Triangle.c

Except further specifications, the attributes and parameters for each trial are shown in Table 2.3.1.

Objective: Search for a program that implements the same function as the target

code segment.

Data Type Specifying: Integer and Boolean

Terminal Set: Variable i, Variable j, Variable k and a random constant integer with the

same range as i, j, k

Function Set: +, *, =, >, <, Assignment, If

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Node constraints: Return type: integer;

i, j, k: integer

+, -, *: 2 integer children, return integer;

=, >, <: 2 integer children, return Boolean;

If: 3 children of data type Boolean, integer and integer, return integer.

Fitness Calculation: 18 test cases are designed according to the target function; the evaluation

process for an individual clone is: given inputs from the test cases; score

one unit per successful output from the test cases; perfect score = 18

units; standard fitness = raw fitness = the number of un-matching cases;

adjust fitness = l/(l+standard fitness)

Hits: The number o f matching cases.

Parameters and setting: Population number = 1500, Maximum generation = 251, Cross-Over

Probability = 0.9, Mutation Probability = 0.0, Reproduction Probability

= 0.1, Tournament Selection

Success Predicate: Adjust fitness = 1.0 or Hits = 18

Rules o f construction: Since the function nodes, If, must not have children o f terminal node, it

should not occur in the last second lay within a tree-based structure.

Table 2.3.1 A ttributes and param eters for each trial

In the following paragraphs, we will present our experiments under four conditions respectively.

1) Three genetic operations, crossover, mutation and reproduction against two genetic operations,

crossover and reproduction: As Koza illustrated, the genetic operations need not include mutation

because the crossover operation has a side effect similar to mutation. However, this point o f view

is not accepted by all o f the researchers and many GP applications insist on the mutation

operation in the evolution process. Hence an unanswered research questions is: what is the effect

of mutation in the APGP domain?

The crossover utilized here is based on Koza’s "Sub-tree Crossover" [Koza92] along with

strongly typed consideration. Firstly, two individuals are selected, then a single tree (chromosome)

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for each individual is chosen. Then, a random node is selected in each tree such that the two

nodes have the same return type. Finally, if by swapping the sub-trees at these nodes, the two new

trees will not violate the maximum depth constraints, the swapping is performed and the two new

trees are created; otherwise, repeating searching for random nodes is carried out.

The mutation utilized here is the strongly typed version o f the Koza's "Point Mutation"

[Koza92], Additionally, we have utilized the tree depth restrictions on the mutation operator, if

the tree gets deeper than the maximum tree depth, the new sub-tree is rejected and another tree is

created and evaluated.

The reproduction operation is very simple, it makes a copy o f the individuals, which are

selected according to a certain selection method, like fitness-proportionate selection or

tournament selection. If an individual has already been cloned, it will not be cloned again

[Luke02],

In the trials with only crossover and reproduction operations, the probability of crossover and

reproduction are set as 0.9 and 0.1 respectively. The result is:

♦ Number o f independent trials: 15,

♦ Number o f success trials: 6,

♦ Successful rate: 40%

In the trials with crossover, mutation and reproduction operations, the probability of crossover,

mutation and reproduction are set as 0.9, 0.1 and 0.1 respectively. The result is:

♦ Number o f independent trials: 23,

♦ Number o f success trials: 9,

♦ Successful rate: 3 9.1 %

According to the results, no obvious effect by mutation operation exists.

2) Greedily over-selecting versus tournament selecting: Greedily over-selecting is generally based

on fitness-proportionate selection. It is recommended by Koza [Koza92] for problems where the

population size is larger than 1000. Although tournament selection generally seems to be

favoured by GP researchers, the unresolved question remains: can it match with Greedily

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

over-selecting in case o f large population? This trial is significant because for the APGP problem,

the GP evolution generally need very large populations.

In the first set of trials for greedily over-selecting, the population size is 1500; greedily

over-selecting is carried out on the crossover and reproduction operations, each o f which has an

operation chance of 0.9 and 0.1; and 16% of the population with superior fitness have a 80%

chance o f being selected. The result is:

♦ Number o f independent trials: 12,

♦ Number o f success trials: 2,

♦ Successful rate: 16.7%

In the second set of trials for greedily over-selecting, the population size is 4000; greedily

over-selecting is carried out on the crossover, mutation and reproduction operations, each of

which has an operation chance of 0.7, 0.25 and 0.05; 31 test cases were used to calculate the

fitness; the maximum number of generations is 1501; and 8% of the population with superior

fitness have a 80% chance o f being selected. The result is:

♦ Number of independent trials: 25,

♦ Number of success trials: 0,

♦ Successful rate: 0%

In the first set o f trials for tournament selection, the population size is 1500; the tournament

selection is carried out on the crossover and reproduction operations, each of which has an

operation chance of 0.9 and 0.1; and the tournament size is 7. The result is:

♦ Number o f independent trials: 15,

♦ Number o f success trials: 6,

♦ Successful rate: 40%

In the second set o f trials for tournament selection, the population size is 4000; the tournament

selection is carried out on the crossover, mutation and reproduction operations, each o f which has

an operation chance of 0.7, 0.25 and 0.05; 31 test cases were used to calculate the fitness; and the

tournament size is 7. The result is:

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

♦ Number o f independent trials: 25,

♦ Number o f success trials: 3,

♦ Successful rate: 12%

It is obvious that tournament selection behaves much better than the greedily over-selecting.

3) A problem solution domain of [-10,10] against a problem solution domain o f [-100,100): With the

expanding of the range of the solution domain, the solution space expands and the successful rate

of GP declines. However, as long as the decline in the efficiency is not too significant, the

application of GP should still be an acceptable option.

In our experiments, variables and the random integer constant have the same ranges of values,

[-100,100] or [-10,10), the population size is always 2500. The result is:

Smaller range condition [-10,10]:

♦ Number of independent trials: 24,

♦ Number of success trials: 18,

♦ Successful rate: 75%

Larger range condition [-100,100]:

♦ Number of independent trials: 116,

♦ Number of success trials: 8,

♦ Successful rate: 6.9%

Although the successful rate drops significantly, in the trials with the range of values of [-100,

100), we noticed that 86 out of 116 trials meet more than 15 out o f 18 test cases. Thus by

increasing the population or allowing more generation iteration, we believe that a significantly

greater high successful rate can be achieved. Hence, the GP behavior is still considered to be

acceptable.

4) Diverse bloating refraining approaches: One of the foremost challenges to scaling genetic

programming is bloat, which is the tendency of GP's individuals to grow in size along with the

evolution process. Among the diverse bloat control techniques, we experimented with parsimony

pressure method [Koza92][Soul98], strength pareto evolutionary algorithm (SPEA2) with the

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

second object as the size of individuals [BlbrOl] and Sean Luke's nonparametric parsimony

pressure method [Lupa02]. Listed here is part o f the trial results, and the detailed description is

given in Section 2.4.

Parsimony pressure method with the parametric coefficient 0.001: 31 test cases with the range

[-100,100] are utilized in the fitness calculation; maximum number of generations is 1501;

population size is 4000; selection method is tournament selection; and three operations, mutation

and crossover and reproduction, are adopted with the probability o f 0.7, 0.25 and 0.05

respectively; maximum initial individual depth is 4; maximum individual depth after crossover is

8. The result is:

♦ Number of independent trials: 24,

♦ Number o f success trials: 0,

♦ Successful rate: 0%

♦ Average value of the best individuals: 21.4

Parsimony pressure method with the parametric coefficient 0.01: The settings are same as above.

The result is:

♦ Number of independent trials: 53,

♦ Number of success trials: 0,

♦ Successful rate: 0%

♦ Average value o f the best individuals: 22.0

Parsimony pressure method with a dynamic parametric coefficient: The parametric coefficient

sequence is {0.0f, O.OOOOlf, O.OOOOlf, O.OOOlf, O.OOOlf, O.OOlf}, where each parametric

coefficient adapts to the individuals in size o f the range, [40*(i-l), 40*i] (here, i is the index o f a

coefficient starting from 1); the other settings are same as above. The result is:

♦ Number of independent trials: 24,

♦ Number o f success trials: 3,

♦ Successful rate: 12%

♦ Average length o f the success individuals: 26.5

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Parsimony pressure method with a dynamic parametric coefficient is more efficient than that with

a constant parametric coefficient.

2.4. Fighting with individual bloating

The tendency that the sizes of trees grow rapidly during a GP evolution is well known as the bloating

phenomenon. Currently, there are several theory explanations for the cause(s) of bloating. Each of

these theories depends, to some extent, on the presence of void code and the destructive nature of the

crossover operation [BlbrOl] [Soul98], Although the code growth is a protective response to the

destruction o f crossover, the bloating phenomenon does nothing to increase the fitness o f the

individuals. On the other side, bloating caused the GP to quickly exhaust all o f the available resources.

For example, when cloning the program of Triangle.c with 31 test cases, if no bloat control method is

utilized, on a standard PC, the evolution may terminate within 100 generations with an out of memory

exception. Another hazard o f bloating is that, even if a final solution is found, the solution with a

massive size is generally not really useful. For example, in our trials to clone the Triangle.c program

with 18 test cases without bloating control, the final solution found may contain 200 nodes, including

much meaningless logic.

The most basic approach to bloat control is maximal depth restriction [Koza92], Here, when a

child is created by removing a sub-tree from a parent and replacing it with another sub-tree (as is done

in sub-tree crossover or sub-tree mutation), if the child exceeds a maximal depth limit, the child is

rejected and this process repeats until a child with an acceptable depth is created or the maximum

repeating number is reached. In the later condition, a copy o f the original parent takes its place in the

new generation.

Combining with maximal depth restrictions, several techniques can be applied. Optional bloat

control techniques include: code editing, population truncation, parsimony pressure, pareto parsimony

pressure, explicitly defined introns and Sean Luke's nonparametric parsimony pressure [Lupa02]. We

experimented with parsimony pressure, pareto parsimony pressure and Sean Luke's nonparametric

parsimony pressure, combining with maximal depth restriction.

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Amongst the diverse techniques, parsimony pressure is a very popular bloat-control technique and

has some level of acceptance within the GP community compared to the other techniques. The basic

parsimony pressure or constant parsimony pressure penalizes larger programs by adding a size

dependent term to their fitness. The standard fitness o f an individual is calculated by adding the size of

the individual, weighted with a parsimony factor a , to the original fitness: F l= FO + a *Size.

Constant parsimony pressure is efficient and easy to calculate. However, two main aspects hinder the

utilization o f it. Firstly, it is difficult to assign a suitable value for a . In its fitness calculation, a

represents how many units o f size are worth one unit o f raw fitness [Lupa02], But, there is no direct

relationship between the fitness value and the individual size. For different problems, a can be quite

different. Secondly, the GP evolution process is not uniform, thus an a works well at the beginning

phase may impede the GP converging to the final solution in the later phase. Consequently, the

adaptive parsimony pressure technique, in which a is varied constantly during the evolution, is

proposed.

Pareto parsimony pressure is used in multiple-objective evolutionary systems. When it is applied

to reduce bloat in GP, it treats the size o f individuals as the second objective that has the same

importance as the first objective. Then, it aims to find a set of solutions that cannot be improved in one

objective without degradation in another [BlbrOl], Strength Pareto Evolutionary Algorithm (SPEA) is

an improved version o f the standard pareto parsimony pressure; SPEA2 further improves SPEA in the

fitness assignment.

Sean Luke later proposed a nonparametric parsimony pressure concept [Lupa02], In his main

method called double tournament, tournament selection is utilized twice. The double tournament

algorithm selects an individual using tournament selection, however the tournament contestants are

not chosen at random with replacement from the population. Instead, they were the winners of another

tournament selection. The two tournament selections are based on fitness and size of individual

respectively.

ECJ package, upon which our trials are based, implemented SPEA2 and the double tournament

method. The target program is Triangle.c with parameter settings as before was used. However, the

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

results for SPEA2 are poor. SPEA2 is a complex algorithm, and it requires so many resources that

within ten generations, it terminates with an out o f memory exception on a standard PC. For the

double tournament method, we set the parsimony tournament size as 1.3 according to [Lupa02].

However, its results are unstable and the value of fitness and length o f individuals fluctuate violently.

Worst of all, as illustrated by Figure 2.4.1, there is no converging tendency in its iteration. Contrast

this with Figure 2.4.2, which shows the performance o f the dynamic parsimony pressure algorithm.

- Evaluation Tim e (100 s)16 —

Average size o f individuals (/ j

Average depth o f individuals (]

8 A Average adjusted fitness (*
100)

Best adjusted fitness (* 100)

generation

Figure 2.4.1 Perform ance with double tournam ent

120

100 Evaluation Tim e (100 ms)

Average size o f individuals (/

Average depth o f individuals (

Average adjusted fitness (*
100) ;
Best adjusted fitness (* 100) :

20

A A_A A _A _A ZuA_/VA_/VA_A A_A_/VAA_
h1111111ill111111!i i i !1 1 1 1 1 1 i i i i i i T i i i i i m i 1 1 n r m n r m i i TmTit n m rrn-nTrm

' O T t r
m 'sO r

generation

<N oo<N

Figure 2.4.2 Perform ance w ith dynam ic parsim ony pressure

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The lack o f success for the double tournament method could be due to the value o f the parsimony

tournament size, which although recommended by Sean Luke [Lupa02], might not be suitable in the

APGP domain.

Based on the ECJ package, we have also experimented with the constant parsimony pressure and

dynamic parsimony pressure for our problem domain. The target program is Triangle.c. Although the

constant parsimony pressure works poorly, we can achieve excellent results by applying dynamic

parsimony pressure.

The dynamic parsimony pressure is an extension o f the constant parsimony pressure. The key in

the dynamic parsimony pressure is the variation o f a . For individuals with different lengths, the

parametric coefficient, a , is different. Thus the parsimony pressure is no longer linear. According to

the result, the nonlinear parsimony pressure seems more efficient in adapting to the evolution process.

However, GP's behavior is sensitive to the setting o f the a value within array. For different problems,

their settings o f a value array should be different. Fortunately, our research problems focus on the

APGP problem, hence, we expect that there is an a value sequence which provides reasonable

results for this single domain. Furthermore, the dynamic parsimony pressure proves that a certain

adaptive parsimony pressure, which guarantees effective bloat control, exists.

2.5. Representation of diverse program structures

Three programs, Triangle.c, exact,cpp, Journey.cpp, were selected to be cloned in our experiments.

Each of them has specific characteristics. The trial emphasis for each program is different according to

the program's characteristic.

2.5.1 Trials on the Triangle.c program

Same as the trials in Section 2.2, the trials in this section focus on triangle function. Detailed function

description and code for this program have been given at the beginning of Section 2.2. This program is

considered relatively simple. The function under estimation has n (n>=l, here n=3) inputs in the form

o f parameters and one output as the return value of this function. No reference parameter is used and

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

all o f the data types are the basic data type, integer. This characteristic enables us to borrow the

existing GP individual representation (which is used in the traditional GP problems such as the

symbolic regression) in the program-cloning process. However the second characteristic, abundant

if-then-else logic, adds complexities to our GP application. In this program, 10 out o f 27 commands

are if (else if) commands; in addition, nested conditional structures exist. Finally, one intermediate

variable is used in the function to represent the combined effect o f the inputs to the return value.

The individual representation is a tree-based structure, one tree (chromosome) is used for each

individual and the terminals and return for each tree are integer. To describe such a program in GP, we

defined 11 elements in the node set, 4 in the tenninal set and 7 in the function set. The terminal set

includes i, j and k, each represents one input parameter with the type o f integer, and one integer

constant with a random value. The function set includes three numerical computing operations, +, -

and *, three comparison operations, =, > and < and the if-then-else logic operation, if. The if function

has three children: the first one, which represents the predicate of if, is in Boolean type; the second

one is in integer type and will be evaluated when the first child returns true; and the last children is in

integer type and will be evaluated when the fist child returns false. In this trial, no special function is

designed to represent the operations on the intermediate variable because the combination of several

other operations in the node set covers the same function. Other parameters and settings are as

described in the table in Section 2.2.

The trials on this program are described in the dynamic parametric method in Section 2.2. Out of

the 25 trials, 3 o f them achieved perfect solutions and all o f the trials passed more than 25 out of 31

test cases. One o f the perfect solutions is as the following:

(if (> (+ (- (* i 3) (+ k j)) k) k) (if (< i (+ k j)) (if (= k i) (if (= k j) 3 2) (if (= i j) 2 (if (= k j) 2 1))) 4) 4)

To see the internal logic more clearly, we express the above line into a C program as in Figure 2.5.1.1:

i f (3 * i - (k + j) + k < = k)

return 4;

else if (i >= j + k)

return 4;

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

else if (k == i)

if(k == j)

return 3;

else

return 2;

else if(i == j)

return 2;

else if(k==j)

return 2;

else

return 1;

Figure 2.5.1.1 Perfect solution expressed in C

Now, it is clear that except the first predication, all o f the subsequent logic is reasonable. The

occurrence o f the first predication can be due to the misinterpretation o f a particular test case(s). By

modifying the test cases to be more representative, prolonging the GP evolution process or polishing

the GP algorithm to be more efficient, better solutions can be found. However, for this problem, the

cloned program is sufficient to deduce a totally correct version of the original program by adopting

some other techniques. For example, using metamorphic relation analysis [Chtz02], we can work out

that any permutation of a triple (i, j, k), causes the triangle function to produce the same result;

applying this rule to the above program, the first condition can easily be removed and the missing

predications, j >— i + k and k >= j + i, can be fetched.

2.5.2 Trials on the Extract.cpp program

Extract, cpp is a program for decrypting direction and hour values from a five digital number using

certain rules. The code to be cloned in this trial is a fragment within the whole implementation. The

function o f this fragment is to check the validity o f the five digits in the number, compute the value

that represents the direction, which range from 1 to 8, from the first two digits and calculate the value

of the hour from the digits arguments. Furthermore, the value o f the hour is checked to make sure that

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

it is not only reasonable for represent hours in a day but also not within the special time range from

5:00 o’clock to 17 o ’clock. The program fragment to be cloned is shown in Figure 2.5.2.1.

i f (iDigitl * iDigit2 * iDigit3 * iDigit4 * iDigit5 == 0){

cout « "Invalid code: all digits must be non-zero." « endl;

}else{

iExtractionHour = (iDigit3 * iDigit5) - iDigit4;

i f (iExtraetionHour<0 || (iExtractionHour>5 && iExtractionHour< 17) || iExtractionHour>23){

cout « "Invalid code: incorrect extraction time provided." « endl;

}else{

i f (((iDigitl +iDigit2) % 2) != 0){

cout « "Invalid code: incorrect extraction location provided." « endl;

}else{

i f (iDigitl == iDigitl) {

iExtractionLocation = 1;

}else{

i f (iDigitl <iDigit2)

iExtractionLocation = iDigit2;

else

iExtractionLocation = iDigitl;

}

}}}

Figure 2.5.2.1 Code o f E xtract.cpp

The inputs for this fragment are five integers, each of which represents one o f the five digits. The

outputs o f the fragment include: 1) "Invalid code" messages, which represent invalid digits, or nothing

indicating a success transaction, 2) the direction represented by an integer number and 3) the hour

represented by an integer number. To simplify the problem, in our cloned program, we use Boolean

values to represent whether the transaction is successful. This code fragment has n (n>=l, here n=5)

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

inputs and n (n>=l, here n=3) outputs. This code fragment equals to a function that has 7 parameters

of 5 value parameters and 2 reference parameters and returns a Boolean value.

In order to symbolize three outputs for the solution, we used three trees (chromosomes) for one

individual: the first tree for the hour, the second tree for the direction and the third tree for the main

body of the code. The first two trees return integer values and the tree for main body returns a Boolean

value. The terminals for those three trees include five variables representing the five digits, one integer

constant with a random value with range from -100 to 100 and one Boolean constant with a random

value. Additionally, the third tree has two more terminals: the fist two trees, which act as two

automatic defined functions (ADF) [Koza92] for the third tree. However, in the fitness computation

for the individual that they represent, the output from each tree is matched with the correspond output

in the test cases and contributes to the final fitness.

Representing the code fragment in this way, we have divided the whole code fragment into three

sub-functions each o f which has 5 inputs and 1 return. Simultaneously, we have provided the cloning

process with the information that the hour and direction are independent variables. Thus we reduced

the searching space of GP with the cost of losing a little automation. Our experiments suggest that the

information, which can be deduced from functional specification, is very helpful in searching a perfect

cloning program. In addition, a sequentially performing procedure is needed. This procedure produces

the cloning program for one o f the independent sub-functions, delivers the result to the sub-functions

that require this information, and then continues the next cloning process.

The parameters and settings for this GP application is shown in Table 2.5.2.1.

Objective: Search a clone program that implement the same function as the code

fragment in Extract, cpp.

Data Type Specifying: Integer, Boolean.

Terminal Set: Variable d l, d2, d3, d4, d5, an integer constant of random value (range:

-100 ~ 100) and a Boolean constant o f random value.

Function Set: +, -, *, %, =, >, >=, <, <=, If-Bool (if-then-else logic, return Boolean),

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If-Int (if-then-else logic, return integer)

Node constraints: Return type: treel: integer, tree2: integer and tree3: Boolean;

Variable dl~d5 are integer type

+, -, *, %: with 2 integer children, return integer;

=, >, >=, <, <=: with 2 integer children, return Boolean;

If-Bool: all three children and return are Boolean type; not be used in

ADFs

If-Int: the first child in Boolean type and the other two children and

return are integer type.

Fitness Calculation: 50 test cases are designed according to the code segment; an evaluation

process for a individual gets input values from the 50 test cases and the

output of each tree is compared with the corresponding output in test

cases; score one unit per successful output; perfect score = 150, standard

fitness = raw fitness = the number o f unmatching cases; adjust fitness =

l/(l+standard fitness)

Hits: The number o f matching cases.

Parameters and setting: Population number = 4000, Maximum generation = 501, Cross-Over

Probability = 0.7, Mutation Probability = 0.25, Reproduction Probability

= 0.05, Tournament Selection

Success Predicate: Adjust fitness = 1.0 or Hits = 150

Table 2.5.2.1. Param eters and settings for trials o f E xtract.cpp

In our trials, the ADFs that represent the hour and direction can be easily found. However perfect

solutions for the third tree, which represents the main code fragment, are difficult to be found using

the parameters and settings in Table 2.5.2.1. The best individual listed here still misses 2 test cases:

Tree 1:

(- (* d5 d3) d4)

Tree 2:

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(if-int (= d2 d l) 1 (if-int (<= d2 d l) d l d2))

Tree 3:

(if-bool (>= (* 32 d2) d4) (if-bool (if-bool(< d l (if-int (>= d2 ADF0[1]) d l d3)) (>=(- ADFOfl] d2) d4)

(if-bool (<= (% d2 (* d3 d5)) (if-int (>= d2 ADF0[1]) d l d3)) 0(if-bool (> d5 d4) (= d3 d4) 0))) (>= (*

33 ADF0[1]) (* (* d3 d5) ADF0[1])) 0) 0)

One main reason for the poor representation for the main code fragment is in that we clone three

sub-functions concurrently instead o f sequentially. Consequently, the destructive effect of the

crossover operation is more prominent than that in a condition with simpler individuals. In addition,

the fitness calculation o f the individual has to integrate the fitness of several trees (chromosomes), and

a simple summation o f the fitness for each tree (as in this trial) is generally unreasonable.

2.5.3 Trials on the Journey.cpp program

The background of Journey.cpp problem is the Collatz Problem or the 3n+l Problem, which is

described in Section 2.2. Our trials focus on the code fragment that calculates the series and the

maximum value for one a0. The code fragment to be cloned is shown in Figure 2.5.3.1.

int n = current;

int peak=n;

while (n != 1){

if(n % 2)

n = 3*n + 1;

else

n = n / 2;

i f (n> peak)

peak = n;

}

Figure 2.5.3.1 Code fragm ent o f Journey.cpp

The inputs for this fragment are two integer variables, n and peak. The outputs of the fragment are two

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

integer variables, n and peak. If this code fragment is in the form o f a function, the function has 2

reference parameters and no return. The second characteristic of this code fragment is the loop

structure.

In this trial, instead o f the ADF, we used a new function (assignment), which implements the

assignment function for variables, to assist cloning the calculations on variables. The individual

contains only one tree and a hash-table data structure, which assist assignment operation by storing

variables indexed by variable names. Thus, the reference parameters and intermediate variables are

easily to be initialized, modified, reset and retrieved. The assignment operation modifies the value of a

variable in that hash-table. Finally, another function, Sequence, is introduced to clone an arbitrary

program.

This program has another characteristic — the commonly used program structure of a loop. Hence,

the loop function is introduced into the node set o f GP. The loop has two children: the first one is

Boolean type, which represents a loop predicate; the second one represents the loop body. The loop,

loop body and the sequence function mentioned above should return no type, or return a Boolean type

that represents whether the program is successfully executed.

In our experiments, none of the trials clone the whole code fragment within one GP meeting all of

the 20 test cases. Then, we divided the code cloning into two steps: cloning the loop body first and

then the loop structure. Among the 53 trials on cloning the loop body, 2 achieved perfect scores and 39

solve more than 36 out o f 40 test cases. This two-stage process enables the system finding a perfect

solution for the loop structure nearly every trial. A cloning program for the loop body with a perfect

score is as follows (":=" represents the assignment function, "->" represents the sequence function):

C"> (if (> n (+ (% n n) (* (%> (%> n 2) peak) peak))) (:= n (/ n 2)) (:= n (+ 1 (* 3 n)))) (if (> peak n)

(:=peak peak) (:=peak n)))

Translating into C, the above program can be re-expressed as shown in Figure 2.5.3.2.

if(n > n % 2 % peak * peak)

n = n 12;

else

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

n = 3 * n + 1;

i f (peak > n)

peak = peak;

else

peak = n;

Figure 2.5.3.2 Cloning program translated in C language

Although the predicate of the first " if’ looks strange, the cloning program is 100% correct in logic.

2.6 Conclusions and the following work

Our APGP experiment based on general-purpose GP package, ECJ, is very fundamental. Only limited

techniques are tried and the target programs in our trials are simple. Nevertheless, the results of our

trials seem to suggest that it is very possible to clone more complex programs or automatically

implement high complexity programs that can compete with hand-written programs. Besides diverse

techniques that focus on the GP evolution process, adopting a more flexible way to represent programs

is very important. To carry out further research on program cloning, a particular GP package of

program cloning is required.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Implementation of the program-cloning package

Based on the program-cloning experiments using the general-purpose GP package, ECJ [Luke02], we

designed and implemented a trial version for a program-cloning specific GP package. This package

will be referred to as the program-cloning package or PCP later in this thesis. PCP provides the

convenience of configuring and performing a program-cloning process for different

programs/problems. Compared with the ECJ package, PCP includes more approaches to fit the GP

evolution process into the program-cloning problem, thus making it more flexible and efficient than

ECJ.

3.1 Architecture

The trial version of the program-cloning package was implemented in Java, version j2sdkl.4 .0_01.

The whole package can be divided into four parts: the main body o f the GP algorithm, the

function/terminal set for constructing a solution, specification o f programs being cloned, and assistant

utilities. The architecture o f PCP is shown in Figure 3.1.1.

fZ 1) Main

body of GP
Algorithm

CT
2) Prim ary

elem ents

3) Prob lem s’

Specifications
w W

A {)

4) Assistant Utilities

Figure 3.1.1 A rchitecture o fP C P

1) Classes under the main directory construct the main body o f the GP algorithm and implement

basic structures such as nodes, individuals and populations. These classes, building the main part

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of PCP, reflect most o f the characters in PCP’s implementation and are invariable for different

program-cloning applications.

2) Classes under the function subdirectory provide optional function/terminal node-types that are

used to construct GP’s individual programs. This directory contains a whole primary-element set

for the program-cloning problem; however, when carrying out program cloning for different

programs, we need to carefully choose different subset of elements with respect to the characters

of target problems. For example, it is necessary to include a string-copy function to clone a

string-processing program, but not for a numeral-processing program. In this element set, we can

conveniently add new function/terminal node-types or extend old ones.

3) A class under the program subdirectory describes the target programs to be cloned and the

corresponding GP settings. In this thesis, such a class is called a problem specification class. In

the same way that program cloning is a G P’s application, cloning a particular program is a

program-cloning’s application. To establish the program-cloning’s application, the only work is to

create a specification class for the problem of interest.

The most difficult point in defining a program specification is how to express the GP

searching environment in a way that can sufficiently reflect the target problem. Generally,

problems’ behaviors can be reflected by data sets or by a feedback source [Kush02], In our

experiments, data sets are adopted to specify a program’s GP searching context. In this way, each

program-specification class defines a set of typical test cases of the target problem, each of which

corresponds to an input/output case. All o f the cases are selected deliberately in order to

completely reflect the function contour of the target problem. The GP evaluation process is then

based on how the potential solution accords with the test cases.

4) Classes under util are assistant utilities such as a random number generator and quick sorting tools

for the population.

3.2 Implementation Features

As described in Section 1.2, program cloning is a new subject in GP’s application domain. When

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

fitting the GP algorithm into the program-cloning problem, approaches focusing on the following

aspects are devised, tested and adopted in PCP:

1) Strong typing

2) Exception handling

3) Input/Output handling

4) Constant

5) Dynamic fitness calculation

6) Issues concerning implementing GP in Java

7) Sub-function

8) Assigning suitable rates for crossover, mutation and reproduction

9) The number o f test cases

10) Dynamic mutation probability and other implementation aspects

3.2.1 Strong typing

The individuals in PCP are represented in a tree-based structure. In order to deal with the

unnecessarily huge solution space for GP searching, both Montana's Strongly Typed Genetic

Programming (STGP) [Mont95] and Koza's constrained syntactic structure [Koza92] are adopted in

PCP. Moreover, with respect to the program-cloning problem, we introduced new contents into the

above two methods.

As explored by Koza [Koza92], for a complex GP application, the potential solution space is

generally invalidly huge, making it important to reduce the searching domain by introducing

restrictions that can be deduced from problems’ specifications. For the program-cloning problem, the

solution space can be especially invalidly huge due to the great number o f optional elements in any

programming language. For example, under conditions with 10 optional elements and with the

maximum depth o f an individual tree being 8, if no restriction or rule is added onto the solution space,

even the binary full tree individuals include 10255 cases, most o f which, however, are insignificant, but

lower the GP’s searching efficiency.

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

See the trees in Figure 3.2.1.1.

if
/ , \ ~ < nop nop < t:=m t:=n/ | \ / \ m „ / \

in >n t:=m t:=n m n n n

1) invalid individual 2) insignificant 3) insignificant 4) partly insignificant

Figure 3.2.1.1. Four invalid individuals (:= is assignm ent operation, nop m eans no operation)

In the first tree, because the constant value 5 is unreasonably assigned to an i f structure, this

assignment operation is invalid and inexecutable; the second tree, although valid in syntax, is

obviously logically invalid and generally contributes very little to the GP searching process; in the

same way as the second tree, the third is incomplete in logic because a reasonable root function of a

general program which program cloning concern should not be a comparing operation; and finally, the

fourth tree is partially insignificant in that the predication of i f m<m, is too weak to act as a branch

point and leads the whole tree to retrogress to t:=n.

For a hand-written program, compilers depend on syntax rules to exclude the syntax invalidation;

programmers use common sense to avoid the obvious logic deficient conditions; and programmers

also depend on programming experiments to avoid more complex logic errors.

Excluding invalidation cases in GP’s population and reducing GP’s searching space, are essential

to speed up GP searching process among the huge number o f optional individuals. Koza's constrained

syntactic structure [Koza92] and Montana's strongly typed genetic programming (STGP) [Mont95]

both provide solutions for the above problem. As described in Section 2.2, our previous trials o f APGP

adopted both Koza's and Montana's methods, and the results proved that these two methods,

complementing each other, well accelerated GP searching process in the program-cloning problem.

Based on the previous experiments, the above two methods again are adopted and extended in PCP.

Within the framework of the program-cloning specific package, we can conveniently define,

redefine or extend syntax structures which include more restrict constraints. In our previous

experiments, the data-type checking and constraints defined for function nodes aim to keeping out

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

trees which are syntactically invalid. However, because insignificant or partly insignificant trees (tree

2, tree3 and tree 4 in Figure 3.2.1.1), in the same way as syntactically invalid tree (tree 1 in Figure

3.2.1.1), cannot be the target solution, they should also be omitted by the valid solution space.

Consequently, PCP defines a series of constraints to keep out the meaningless or insignificant

structures during individual constructing and genetic operating, and at the same time, adopts data type

checking and syntax constraints as well.

In a GP application, to exclude the meaningless structures from individuals generally requires

special knowledge from the application domain. Because a general-purpose GP package, like the ECJ,

is independent of any application, it cannot provide a convenient way to define constraints excluding

meaningless structures (as described in Chapter 2). For the program-cloning problem, the special

knowledge includes general syntaxes of programming languages and common sense o f programmers.

PCP adopted the above knowledge to define constraints within primary elements under its function

subdirectory (see Section 3.1 Architecture); a program-cloning’s application, if necessary, can

redefine or expand constraints through extending primary-element classes.

Three main constraint types in PCP are described as the following:

1) Position constraints:

♦ Root set: As shown by the third tree in Figure 3.2.1.1, not every function can act as the

function for root node of an individual. So we defined a root-function set and make it

containing structure-controlling functions such as seq (sequential executing), If-then-else and

loop, and the assignment function.

♦ Layer checking: As described in Section 2.2 Strongly typed GP, some functions like i f and

seq can take only functions as children node; so, comprised in a tree structure, they must be

ensured to locate at least above the lowest layer o f function-nodes.

2) Possible function/terminal set of children: we adopted Koza's constrained syntactic structure and

defined possible child types for each node. For example, the function Or can only have Boolean

type children; so we define its child type set to include Equal, Gthan (greater than), Lthen (less

than), GthenE (greater than or equal to), LthanE (less than or equal to), and, Or, and Not.

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3) Content checking aims to reduce the insignificant structures within an individual such as tree 2

and tree 4 in Figure 3.2.1.1. For example, for a comparison function, like <, we define a constraint

to make sure that different children are assigned to it.

Numerous rules and programming common senses can be adopted in the program-cloning process to

guarantee the validation o f individuals and reduce GP’s searching space. Only a limited number of

rules are abstracted into constraints in our trials, however, the results shown in the next chapter

suggest that even very limited usages of the rales and programming common sense enable GP’s

searching efficiency obviously improved. The more complex the target program being cloned, the

larger the function set is needed to construct an individual program and the more important it is to

adopt problem-specific knowledge to reduce GP searching space.

From Montana's STGP, we borrowed four methods: data typing, VOID data type, local variables

and errors handling [Mont95].

1) Data typing: The data typing defines data types for each variable, constant, function and

function’s argument, and then keeps out certain invalid individuals/structures by ensuring that data

types of parents and children are consistent. Since Montana's data typing is coherent with computer

languages’ data typing, when PCP simulates a hand written program in a general computer language

like C and java, the data typing method is definitely useful in order to exclude individuals with data

typing errors from solution space.

PCP has implemented basic data types: notype, int, double, Boolean and string. The notype

corresponds to the VOID data type in Montana's STGP and is assigned to program-flow-control

functions, such as seq, if, loop, assign and nop. Recall that in PCP, the root of an individual tree

should belong to a node-type of seq, if, loop or assign, and thus individuals in PCP return nothing.

Actually, an individual program’ execution results are reflected by the output variables which function

in a GP’s individual program in the same way as C language’s reference parameters which are defined

for output purpose. This usage, mentioned as acting via “side effects” by Montana [Mont95], and is

one of the main differences between program cloning and conventional GP applications. Using return

or output variables, PCP’s individual programs are more similar to general programs. Detailed

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

description o f the usage o f output variables will be provided in Section 3.2.3 Input/Output handling.

In PCP’s data typing method, terminal types such as the input, output and constant can represent

variables/values o f any type, and their definitions should be included in the target problem’s

specification class. The comparison operations like >, = and < and logical operations like not, and

and or return Boolean type. The computation operations like +, -, * and / return data types same as

their inputs. For example, when having two integer inputs, + returns values of integer type; when

having two string inputs, + returns values o f string type. All comparison operations and computation

operations should accept inputs having different but compatible data types.

Data typing is applied in individual construction and genetic operation. The optional children are

checked to make sure having compatible data types with their parent, and simultaneously, children’s

types are compatible to each other. For example, for the + function, if the first child is a float, the

second one cannot be assigned to representing a string variable. Also, a crossover operation is denied

if it is carried out between a sub-tree returning integer and another one returning string.

2) VOID data type: As described in the above method, in PCP, VOID data type is widely adopted

by program flow controlling operations. In fact, all individual programs in PCP return VOID types and

this is an important difference between program cloning and conventional GP applications.

3) Local variables: Local variable is a basic usage in hand-written programs using any high-level

language. In PCP, applications can use the input node-type to define local variables in the same way

as defining input variables. The input node-type contains one data-type definition and one initial value

definition, and default initial values are defined for each data type. PCP’s local variable method

borrowed ideas from Montana's “Local Variables” [Mont95],

4) Errors handling: The error handling is one of the main characters o f PCP. Different from

Montana's Run-Time errors handling method, PCP’s error handling can not only resolve individuals’

abnormal executions like Division-By-Zero or Too-Much-Time [Mont95] but also simulate the invalid

return conditions in normal programs. For example, programs, at the beginning o f their codes,

generally check the validation o f their parameters, and if any input is invalid, a program may terminate

its execution after returning an error code or message. PCP defined a special terminal node

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

InvalidException to simulate programs’ invalidation returning conditions. Whenever the evaluation

process encounters InvalidException, the evaluation process terminates itself after setting a particular

state false; and if the expected behavior here is invalid returning, the program under evaluation scores.

Detailed description of InvalidException will be given in the next section.

3.2.2 Exception handling

The syntax constraints and data typing exclude certain types of invalid individuals during population

initializing and genetic operating phase and thus, avoid the consequent errors occurring during the

evaluation process. However, many other unwanted conditions, which generally break the closure of

the function set and terminal set, might appear during GP evolution. To prevent these unwanted

conditions, we can carefully design particular treatment for each condition, or we can adopt a more

general and easier approach, exception handling, for all o f these conditions. Exception handling acts

during individual evaluation process, and since the evaluation process is the most time costing part in

the GP algorithm, we should use exception handling only for the unwanted conditions which cannot

be excluded during population initializing and genetic operating phase. In this section, we introduce

how PCP adopts exception handling to deal with undefined operations (e.g., divide by zero) and how

PCP uses exception handling to simulate programs’ intermediately termination behaviour.

Implemented in Java language, PCP adopted Java’s inherent exception mechanism. The exception

handling process is describe as the following:

1) During evaluation, in case an unexpected abnormal operation (e.g., divide by zero) occurs,

evaluation on the current tree stops at the evaluation method o f the last function.

2) Java Virtual Machine (JVM) throws a particular exception according to the execution situation,

and the exception is caught by evaluation method.

3) The evaluation method immediately resorts to exception handling part and abandons the current

evaluation results. The exception handling part analyzes the exception and assigns different

scores to individuals causing different exceptions.

PCP’s exception handling considers the following two conditions:

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1) Program-invalid-retum: In a program, it is normal to abort the execution under certain

conditions, for example, in the digitals processing program Extract.c in Section 2.5.2, if one of

the inputs values is equal or less than zero, the execution terminates after displaying an error

information. PCP simulates these invalid returning conditions through exception handling.

Firstly, we defined a procedure node-type, Exp. Being one of the primary elements, Exp is

arbitrarily selected to assemble a possible program. During evaluation on an Exp, the exception,

invalidException, which represents an invalid-returning condition, is created and thrown. The

outside program which calls evaluation procedure catches the invalidException, and then, the

exception handling part calculates the raw fitness for the current individual according to the

corresponding fitness case, which should reflect the target problem. If the expected behaviour of

the problem is invalid returning, the current individual scores one; otherwise it scores zero.

In G P’s application, errors such as Montana's Inversion-Of-Singular-Matrix and

Bad-List-Element [Mont95] belong to the programs’ invalid returning conditions and can be

resolved by PCP’s exception handling method.

2) Closure compensation: Closure is one o f the main requirements for the function set, which

states that any non-terminal should be able to handle, as an argument, any value from a

candidate function or terminal [Koza92], In order to achieve closure, particular operations

concerning abnormal situations are generally defined for specific problems. For example, for

the arithmetic operation division, in order to permit zero acting as the second operator, the

invalid situation divide-by-zero is defined to return 1. Obviously, this method potentially can

misguide GP’s searching. Adding constraints to function node can also avoid invalid operation

and achieve closure.

In PCP, we tried another approach which ignored the possible invalid operations in

functions’ definition problem, remained them until evaluation process and then, caught and

analyzed the error exceptions and scored the individuals containing them. So, in PCP, for

operations such as divide-by-zero, square-root-negative and array-index-out-of-bound, instead

of adding constraints or assigning a random value, we simply permit them contributing to

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

individuals’ structures. During evaluation, exceptions, for example float-overflow, occur, and

depending on Java's exception mechanism, PCP’s exception handling part catches the

exceptions, and according to the exception information, assigns poor scores to the

corresponding individuals.

To handle the closure conflicting, in Montana's approach, a function returns null to signal that an

invalid operation or a close conflict occurs; in Koza’s, a function simply returns a particular value for

invalid operations. By using exception handling, PCP’s extended Montana's method in order to

avoid misleading effects caused from the particular values. Moreover, PCP used exception handling to

simulate invalid returning in a program, and the successful application on cloning Extract.cpp is

shown in Section 4.2.

3.2.3 Input/Output handling

Individual representation is very important in GP algorithm. In program-cloning problem, the solution

being represented is a normal high-level program, which includes more complex behaviors than

conventional GP applications. However, the whole profde o f the target problem, which is GP’s

evaluation environment, is expressed by input/output cases. To well reflect a problem’s character and

also simulate the usages o f variables in a program, PCP used two special terminal types: Input and

Output.

In conventional GP applications, an individual program can return one value as this individual’s

evaluation result or create certain side effects during its execution. The evaluation-result value or the

side effects reflect how well the target individual adapts to the evolving environment and act as basis

for fitness calculation. When applying GP to clone a normal program, we need to consider many

inputs, outputs and their relationships for the problem being cloned. For example, extract.c, as shown

in Section 2.5.2, has five inputs, two outputs, and one status indicating whether the execution get

success. Hence, instead o f calculating an individual’s evaluation-value, PCP’s evaluation process

executes an individual program and records the evaluation results or side effects using variable

terminals, which are expressed by Input and Output.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In PCP, two instance containers for Input and Output are defined respectively to hold instances of

all input and output variables. During population initialization, the containers are assigned to concrete

variables according to the problem specification class. At the same time, individual programs are

defined to return nothing, thus all o f the operations defined in a tree work around the input/output

variables. Finally, the individual’s fitness is calculated according to the execution result recorded in

the Output (or Input) instances.

Since many program elements, especially diverse I/O operations such as standard output to screen

and I/O stream operations are difficult to simulate in evolution algorithms, the program-cloning

method may be unpractical or even inapplicable for certain problems. As well, in order to simulate a

certain program by GP, it is often necessary to simplify the target problem. For example, the two

typical usages, reading arguments from standard input and error message displaying, can be simplified

as using input and output variables respectively. In PCP, the Input can represent functions’ arguments,

global variables in the target program, and values read from outside; the Output represents reference

parameters which return values, messages being displayed, functions’ return values, and global

variables modified by the target program.

The Input terminal type is defined in a Java class, each input variable is represented in an Input

object, and all o f the Input objects are recorded in Input's static object array - inputs, and besides

sharing inputs, each Input object also includes information like initial values, latest values and its data

type for its own input variable. During GP algorithm initialization, one Input object is created as an

instance container holding references for all input variables. According to the problem specification

class, Input objects are then created for input variables, and references to these objects are added into

this instance container’s static array inputs. During individual constmction, from the static array inputs,

PCP randomly selects Input instances as terminals to assemble individual trees. During individual

evaluation, input values stored in the Input objects are accessed for calculations, changed by the

assignment function and retrieved for consequent program execution. Because Input not only records a

variable’s initial value but also keeps recording the variable’s latest values during the program

execution, Input can also represent intermediate variables.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In the same way that Input functions in program cloning, Output is used to represent output

variables. Each Output object records information like initial values, latest values, output values

expected and the data type for its output variable. A static object array — outputs is defined in an

instance container and shared by all Output objects. When representing an output variable, an Output

object generally adopts default initial values for evaluation, and the default values are determined by

the output variable’s data type. For example, an integer output variable has a set o f initial values zero,

and a Boolean output variable has a set of initial values false. During GP algorithm initialization, one

Output object is created as an instance container holding references for all output variables. According

to the problem specification class, Output objects are then created for output variables, and references

to these objects are added into this instance container’s static array outputs. During individual

construction, from the static array outputs, PCP randomly selects Output instances as terminals to

assemble individual trees. During individual evaluation, output values stored in the Output objects are

accessed for calculations, changed by the assignment function and retrieved for consequent program

execution. After an individual program is executed, every output variable is checked to see whether its

latest value agrees with its output value expected and/or how close the two values are, and this

comparing result is then used to calculate the target individual’s fitness.

Input and Output work in the same way, and by carefully expanding any one o f them, a common

class can be created to represent all variable usage conditions in a problem.

3.2.4 Constant

Being another type of terminal node, a constant works in a quite different way from a variable

terminal. As described in Section 3.3.3, a variable terminal is a predefined variable that is evaluated

using fitness cases defined in the problem specification class, and contributes to a parse tree through

the way it is combined with other functions and terminals. In contrast, a constant represents a concrete

value randomly selected within a range determined by the problem, and contributes to a parse tree not

only through the way this constant is combined with other functions and tenninals but also by its

value.

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To simulate a normal program, three types of constants are adopted in PCP:

1) The problem specific constant values, which are defined in the problem specification or are well

known constants in the problem domain. For example, n and e are well known mathematic

constants.

2) Simple constants that are frequently adopted in programs and generally act as threshold values.

For example, 0, 1 ,-1 , true, false and null.

3) Other values, which relate to the problem’s implementation details and are generally hard to

deduced without deep understanding of the target problem.

To represent the arbitrary values that may appear anywhere in GP's individual trees, Koza introduced

the special terminal type calling ephemeral random constant [Koza92], During population

initialization, if the ephemeral random constant is used to act as an endpoint in an individual tree, a

concrete value with a specified data type in a specified range is randomly created and assigned to that

point. Once produced and inserted into an individual program, the value remains fixed. Furthermore,

Koza defined three ways that constant atoms can enter a problem:

1) Automatically produced by GP for simple constants, for example, the little sub-tree X /X deduces

constant 1;

2) Created most of the constants using ephemeral random constant; and

3) Explicitly included a set o f particular values in GP.

Note that the second and third approaches exactly correspond to PCP’s third and first types of

constants respectively; the first approach, as well, is adoptable for program cloning to provide simple

values that are frequently used in a nonnal program.

In PCP, the way to manipulate constants for an individual tree is devised with the background of

program cloning; however, PCP’s approach mostly agrees with Koza's method o f producing constant

terminals, especially the concept o f ephemeral random constant. In PCP’s constant manipulation

method, firstly, for constants, a Constant class was defined as a node type. Besides basic elements

applicable to all node-types, the Constant class includes a variable range for setting the constants’

range concerning the target problem, and a variable specials for explicitly including a set of particular

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

values which are defined by in the application’s problem specification class. To choose an arbitrary

value, a certain possibility (10% in our trials) is assigned to elements in specials, while the left

opportunity is shared by values within the range. During individual construction, Constant, along with

other node-types, is randomly selected for end nodes to compose an individual tree. A constant

terminal itself has no data type or can have any data type; in PCP, a constant terminal’s data type is

assigned during individual initialization and determined by its context in a parse tree. For example, in

the tree 1) in Figure 3.2.4.1, C l ’s data type is determined by its brother, tri. In Section 3.2.6, detailed

explanation about data types will be given.

evaluated

Cl

C2

1) A new ly created parse tree 2) An evaluated parse tree

Figure 3.2.4.1. Parse tree with constant term inals (, w here"C l, C2" represent tw o constants)

Before its first evaluation, a constant node has no value, which is shown by tree 1) in Figure 3.2.4.1.

Then, during evaluation, if a no-value constant node is encountered, evaluate method defined in

Constant class functions; and according to the constant node’s data type, a random value is selected

either from the constant range or from the specials array, and assigned to the node, as shown by tree 2)

in Figure 3.2.4.1. After it evaluation, a constant node gets a value, and this value is fixed throughout

the subsequent evolution process, and through crossover operation, this value is allocated and

functions in diverse combination forms.

Compared with Koza's constant handling approach, PCP’s method has two different usages: 1)

Some frequently used constants like 0, 1, -1, true and false are added into the specials array to give

them more opportunities to compose a parse tree. 2) Instead o f assigning values to constant nodes

during individual initiation, PCP creates and assigns random values to constant nodes during

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

evaluation, and thus saves the assigning operations on unreachable constant nodes.

3.2.5 Dynamic fitness calculation

Fitness is the basis of GP selection and the root force of evolution. When simulating natural selection

process, it is kernel for GP to reflect how well an individual fits the problem environment through

fitness measurement. Most o f the GP implementations rate fitness with an explicit fitness measure for

each individual in the population. In PCP, an individual’s fitness is calculated through the following

steps:

1) In each problem specification class, a set o f fitness cases is defined as the evolution

environment for population. To compose a small set of samplings for the entire domain space, the

fitness cases should be selected deliberately in order to reflect the whole contour o f the program being

cloned. Otherwise, if we simply use randomly selected fitness cases, in order to reflect every character

of the target problem, a much larger number of cases are needed. In PCP’s trials, the number of fitness

cases ranged from 30 to 90, the more the fitness cases the more time cost in GP. A too small set of

fitness cases may causes immature convergence, and the results o f PCP’s trials (see Section 4.1)

showed that for a simple programs-cloning problem, GP evolves well with 50 to 60 fitness cases.

2) Under each fitness case, each unevaluated individual program is executed, and the execution

results for this program are recorded in Output's objects (as explained in Section 3.2.3). For each

individual, its execution results are then compared with its anticipated results, and according to how

coincident the real results are with the correct results, this individual gains a certain score.

Generally, for G P’s applications which search for calculation formulas, the above score is

measured by the absolute difference between the anticipated results and the real results. However, for

other problems like the artificial ant, an individual scores one or zero respectively for each case that is

satisfied or not. In PCP, considering that the programs being cloned may focus on diverse problems,

we adopted both of the above approaches for fitness calculation, and a user can define in the problem

specification class which one is suitable for the target problem. Finally, the sum o f scores reflects how

well the individual fits the problem environment or can solve the problem. A pseudo code for

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

individual fitness calculating is shown in Figure 3.2.5.1.

For all individuals { \ individual i\

For all fitness case{ \ case j\

Result = evaluate (individual i)

I f problem type 1

For all result variablesf

Score o f individual i += \ anticipating result o f case j — Result\ — (1)

}

Else i f anticipating result o f case j == Result — (2)

For all result variablesf

Score o f individual i += 1

}

}

}

Figure 3.2.5.1 Pseudo code for individual fitness calculating (w here form ula (1) and (2) focus on the above two

raw fitness m easurem ents respectively)

3) With Koza’s fitness calculation method [Koza92], the score obtained in step 2) is called raw fitness,

i.e., r(i) where i represents an arbitrary individual. In order to reveal the subtle difference among

individuals’ fitness, we need to translate raw fitness values into adjusted fitness values. The adjusted

fitness a(i,t) is computed from the standardized fitness s(i,t) as: a(i,t)= 1 / (1 + s (i , t)) . An

individual’s standardized fitness equals to its raw fitness in case formula (1) in Figure 3.2.5.1 is

adopted and otherwise, equals to fu ll mark - r(i), where the fu ll mark is calculated during GP

initialization.

Based on fitness values, individuals are ranked and selected and take part in genetic operations,

and new offspring occur, and superior genes enter into the next evolution loop.

One big problem in the genetic algorithm is that the searching space is not uniform. Even with the

fitness cases well representing the problem details, peaks and coves in the solution space hinder the

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

evolution approaching to the final program. In program cloning, since the target program is made of a

series of compositive instructions that have no inherent relationship, an individual generally includes

only one or several segments o f the final program. A common unsuccessful case in our trials is that the

population’s best individual which missed only one or two fitness cases seemed to be blocked forever

during G P’s evolution. The un-uniform solution space causes some individuals to evolve quickly

while missing some aspects o f the problem; and meanwhile, individuals which meet the minor one or

two fitness cases have no opportunities to enter the genetic operations due to low fitness.

To solve this problem, PCP adopted an improved measurement for fitness calculation, which

assigns higher priorities to individuals meeting new fitness cases. To do so, we introduced two

variables into the evaluation method: newHits which records how many new fitness cases are met by

the current individual, and missed which records indexes o f the fitness cases that have not been

covered by the population. An individual’s final fitness, which is the basis o f evolution selection, is

calculated by the following formula:

Fitness = newHits / missed.length *

(bestSolution.fitness - currentSolution.fitness) * w + adjust fitness,

where bestSolution is the individual who possesses the highest fitness until this point, currentSolution

is the individual currently being evaluated and w is a constant value acting as the weight of the

amendment part (in PCP, w is 50%). With this fitness measurement, the more new cases an individual

meets, and the fewer cases the whole population misses, the more opportunities the individual has for

surviving. And the difference between the current individual’s fitness and the best solution’s fitness

acts in the measurement to reduce the difference between their selection opportunities. The usage and

consequent result of the improved fitness measurement is explained with the sample in Section 4.1.

3.2.6 Issues concerning implementing G P in Java

The most popular and mature individuals’ structure for GP is parse tree, and how to manipulate parse

tree structures and carry out evaluation on them is the kernel in G P’s implementations. LISP is a

common language for GP’s implementation. One S-expression in LISP is a structurally ready parse

tree however expressed in a linear fashion: each element of terminal set is a variable or constant value

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in LISP; and each function is expressed using a bracket pair, the identification and correspond

sub-trees. So it is straightforward to generate and evaluate LISP individual programs. However, LISP

is not the only language for GP’s implementation. Pursuing efficiency and flexibility, people have

implemented GP in diverse languages, such as C, C++, and Java. Due to the successful experiments

with ECJ GP package (in Java) for APGP (see Chapter 2), we implemented PCP in Java language.

PCP adopted the parse tree as its individual structure, and the tree-based manipulations include: 1)

node representation and evaluation, 2) individual representation and evaluation, and 3) genetic

operation.

1) Node representation and evaluation:

As described in Section 1.1, GP has two types of primary elements: function and terminal. In a

tree-based GP package, functions work at a parse tree’s internal nodes, and terminals work at a parse

tree’s leaves. PCP expressed nodes based on the pointer-base approach, in which each node in a tree

used pointers/handles pointing to its children and parent. In PCP, besides parent and children, a node’s

attributes also included node-type, value and value’s data type. Each node-type expressed to a primary

element (a function or a terminal), and the node-type determined a node’s other contents. For example,

a node with node-type o f + has to have one numeric value, one numeric type such as integer or float,

two numeric children and a parent which accepts numeric input at this node’s position. In PCP, the

node-types (or function set and terminal set) experimented with in our trials are defined in Table

3.2.6.1:

+, *, /, % In function set, arithmetic operations

>, >=, =, <=, < In function set, relation operations

And, Or, Not In function set, logical operations

Input In terminal set, represents input/intermediate variables, see Section 3.2.3

Output In terminal set, represents output/intermediate variables, see Section 3.2.3

Constant In terminal set, represents constant values, see Section 3.2.4

I f In function set, represents if-then-else program stmcture

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Loop In function set, represents loop program structure

Seq In function set, represents sequentially performing program structure

SubFunction In terminal set, represents sub-functions, see Section 3.2.7

Nop In terminal set, represents no-operation

Assignment In function set, represents assignment operation

Exp In terminal set, represents intermediate return, see Section 3.2.2

Table 3.2.6.1 M ain node set defined in PCP

In any programming language, the language components are far more than what are listed above.

However, restricting the size of the function or terminal set is one o f the keys for successful GP

searching. In a particular GP application, elements in the function set and the terminal set can be

deliberately selected to fit the target problem or the problem domain. In the program-cloning problem,

although we try to simulate an arbitrary program of any purpose, the large number o f language

components forced us to narrow the node-types to a small set concerning the particular program being

cloned. We assumed that by analyzing original programs or similar programs in the same problem

domain, using computer-language syntax rules and operating on a friendly GUI, program cloning’s

users can conveniently determine and deploy node-type set for a particular problem.

In PCP’s implementation, we defined the class NodeType for node-type, and this class includes an

abstract evaluate method and utilities performing data typing and syntax constraints checking

according to the rules defined in each concrete node-type class. A concrete node-type class extended

NodeType and generally included the following information: node-type name, can or not be a root

node, children types, special constraints or rules and most o f all, the evaluation process.

For example, the Equal included information as following:

♦ name =

♦ canBeRoot = false;

♦ childrenName = new String[][] {

{''Add'', "Sub", "Mul", "Div", "Mod", "Input", "Output"}, {"Add", "Sub", "Mul

", "Div", "Mod", "Const", "Input", "Output"}};

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

♦ public Boolean constraint (Nodeparent, Function son, intposition, int depth)(...)

♦ public Object eval(Node[] children,int caseIndex,Node node) throws InvalidException (...)

When Equal is used in composing an individual, the super class NodeType makes sure that nodes with

type of Equal are not at a root position, only node-types whose names are listed in children types can

be used to compose children nodes, and children’s data-types are compatible. During individuals’

constructions and genetic operations, Equal's constraint method is executed checking node-types and

content of children to make sure that the operation between the two children are significant (as

described in Section 3.2.1). During individuals’ evaluation, Equal's evaluate method is executed

calling children’s evaluate procedures to get their values and carrying out comparing between the

values and returning a Boolean result.

Special node-type classes like Input, Output, Constant, Exception and SubFunction included more

complex usages, and are discussed in detail in other sections in this chapter.

2) Individual representation and evaluation:

Based on the node representation approach, PCP’s individual representation is simple. Beginning from

randomly selecting a root node-type and creating the root node, the individual construction procedure

expands root node by finding suitable children for it, and simultaneously sets parent and children's

pointers to each other. The children nodes are further expanded and this node-expanding process

continues until all nodes newly created are terminals. Hence, a parse tree can be represented by an

instanced root node and, tracing the root, access every node. An individual’s other main elements

include: an evaluated-or-not indicator, an adjusted fitness and a raw fitness.

The evaluation on an individual begins from root node evaluation, which then post-order-scans

the roofs parse tree and at the same time invokes children evaluation. G P’s one individual evaluation

is to execute the individual program, entering from one entrance, which is initialized by fitness cases,

and outing by many exits, from which fitness is calculated. To calculate the fitness, the execution

results recorded in Output class are compared with expected results predefined in the problem

specification class. The detailed fitness calculation method is described in 3.2.5.

3) Genetic operations

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

As described in Section 1.2, GP’s genetic operations mainly include crossover, mutation and

reproduction. Together with fitness-based selection, they establish the kernel part o f GP algorithm.

Among the three genetic operations, crossover is generally thought to be the most contributing

operation, and in contrast, mutation is generally ignored [Koza92], However, our trials show that

mutation also plays an important role in an evolution process, for example, a subtle modification of

the mutation rate results in totally different GP behaviour.

Depending on fitness-based selection, genetic operations force the evolution toward environment

fitting direction and thus distinguish genetic algorithms from random searching process. To carry out

fitness-based selection, PCP calculated adjusted-fitness for each individual and adopted the traditional

tournament selection with a size of 7. As explored by trials cloning Triangle.c, the success rate of GP

searching with a toumament-selection size of 7 is 3 times bigger than that with size o f 2.

The crossover operation begins from fitness-based selecting two parent individuals; then, on each

parent tree, an operation node is randomly selected; and exchange is carried out between the two

sub-trees rooted at the nodes being selected. Crossover operations on nodes of different positions in a

parse tree cause different levels of exchanging; Koza has shown that internal nodes should be given

more opportunities than terminal nodes for genetic operations. Generally, to select an operation node,

a certain percentage is used to determin the possibility that internal nodes are likely to be selected. In

PCP, this internal node percentage adopted Koza’s experiential value, 90%, which enable around 90%

genetic operations are carried out on internal nodes and 10% on terminal nodes.

Not in all GP application, the root node can be selected to carry out crossover, which results in

combining a whole tree into another one. However, in PCP, root nodes take part in crossover due to

the consideration that simple trees having only 2 or 3 layers are liable to be accordable with subtle

instructions in a program, adding such a simple tree to another one or combining a series of simple

trees together is liable to approach the target program. For example, when cloning the Triangle.c,

simple tree like tri := 4, and tri := 0 are definitely component in the target parse tree, thus adding

these instructions into other promising individuals can accelerate the evolution.

After exchanging points for parent individuals are identified, compatibility checking is carried out

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

on them. Data typing and syntax constraints are adopted to exclude invalid individuals. For example,

in parent tree A, a node a, whose parent is node aa, is selected to exchange with node b in parent tree

B. One offspring is created based on tree A, through replacing the sub-tree rooted at node a by the

sub-tree rooted at node b. Firstly, the depth constraint must be satisfied: the depth o f the offspring to

be created must be less than the predefined maximum depth. Then, root checking is performed: in case

a is the root node in tree A, the node-type o f b must belong to the root node-type set. Then, b ’s

node-type must be a possible children node-type of the a a ’s node-type. Also, all of other constraints

defined in a a ’s node-type must be satisfied by b 's type. Finally, the basic data type o f b must be

compatible with aa. After the compatible checking, exchange between sub-trees is implemented by

simply setting pointer/handle of the parent node to point to the substitute sub-tree, and then setting the

individual’s evaluated mark to false.

The mutation operation introduces random changes in population, and PCP depends on mutation

to increase diversity. The single parent and target node to carry out mutation operation is selected by

the same methods used in crossover operation. Once mutation node is located, a sub-tree rooted at the

mutation node is built up in the same way as constructing individuals. To prevent individual bloating,

the depth of the new offspring is limited to the predefined maximum mutation depth. Finally, the

evaluated mark for the new individual is set to false.

When carrying out crossover, mutation or individual construction operations, it is not guarantee

that an individual is created successfully. During crossover operation, failing o f the compatible

checking results in dumping of the current crossover. During individual construction and mutation

operations, if the child type which is randomly selected, cannot pass data typing and syntax constraints,

the selected type is abandoned; and in case after a certain number of trying, still no suitable child type

is found, the individual under construction is deemed malformed and discarded.

To implement mutation and crossover in Java, one important issue is how to clone a parse tree

object. For example, in crossover operation, the offspring are two combing structures of the parents.

Both the main tree and the sub-tree should be copied into the offspring, and not only nodes but also

pointers should be duplicated. In PCP, both the Individual class and the Node class have their clone

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

method respectively.

3.2.7 Sub-function

To solve a complex problem, it is natural to adopt divide-and-conquer strategy: decompose the whole

problem into several simple ones, solve each o f the sub-problems, and combine the solutions for

sub-problems to solve the whole problem. This method is a very common usage in software

programming, and each sub-problem corresponds to a subroutine in a program. Using subroutines can

simplify the target problem, introduce flexibility in a solution and improve implementation efficiency.

Based on divide-and-conquer strategy, for program cloning, we devised the sub-function method, and

this method simulated the subroutine usage in a program, reduced the target solutions’ complexity and

reduced the necessary primary elements for constructing each sub-function trees.

In conventional GP applications, automatically defined function (ADF) is a popular method to

carry out divide-and-conquer strategy. When utilizing ADF mechanism, GP process searches a main

tree concerning the whole problem and at the same time, a number o f sub-function trees concerning

the sub-problems. The element set for the main tree and function trees are different according to their

particular problems; however, the element set of the main tree must include the special operation ADF,

which performs calling to the sub-functions. During evaluation, the execution entrance is the main

tree’s root, and through ADF nodes the sub-functions are executed.

However, as shown in Section 2.5.2, ADF does not work well for the program-cloning problem.

Even to cloning a simple program as Extract.cpp, the best solution o f the main body was far from

ideal. The problem is that the searching for the main tree and the sub-function trees are simultaneous,

and the evaluation process and fitness measurement are carried out for the main tree and the

sub-function trees together, and thus one fitness value is used to reflect not only how the main solution

tree fits the main problem but also how the subroutines fit the sub-problems. When applying GP to the

program-cloning problem, since an individual’s structure is more complex than that in a conventional

GP application the above problem is more prominent and serious.

Different from ADF, our sub-function method search solutions for main tree and sub-function

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tree(s) consequently instead of concurrently and thus greatly simplified the searching process. The

concrete method is described as the following:

1) A new node-type SubFunction is defined to represent the action o f sub-functions calling. The

SubFunction class contains a class-variable subFuns, which is an array records all callable

sub-functions, and each o f these sub-functions is a SubFunction’s object. When building up a

main tree, SubFunction may be selected as a terminal node-type, and then a concrete sub-function

in subFuns is randomly selected to instance the current node. During the main tree’s evaluation, in

case SubFunction is encountered, the expected output o f the corresponding sub-function, which is

predefined in the sub-function’s problem specification class, is returned.

2) To describe a program being cloned which adopts the sub-function method, more than one

problem specification class should be defined. The specification for each sub-function is defined

in the same way as that of any simple program (see Section 3.1); the specification for the main

body of a program contains all class names o f the sub-functions.

3) To start the program-cloning process, the algorithm initialization process firstly checks the main

problem’s specification. If sub-functions exist, the target o f the initialization/program-cloning

process changes to each sub-function one by one. After program cloning for every sub-function is

finished, the main function is initialized and cloned.

Through our sub-function method, we separate a big program into several independent simple

programs. Compared with traditional ADF method, our method turns the black box of the solution a

little transparent and at the same time, sacrifices a certain degree of automation in GP searching. By

defining more than one program specifications, we mechanically cut the big problem into pieces, and

introduce some problem-specific knowledge into the GP searching process. The operation of dividing

the whole problem’s specification into several sub-function specifications can be very simple by

employing friendly GUIs. But this method generally requires the users to possess a certain degree of

understanding to the target problem. However, as shown by the example’s results in Section 4.2, the

sub-function method improves the efficiency of the program-cloning process significantly.

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.8 Assigning suitable rates for crossover, mutation and reproduction

While reproduction and crossover operations are approaches to increase the converging tendency,

mutation operations introduce diversity to a population. Different from that in the genetic algorithm,

crossover operations in GP exert a counterbalancing pressure away from convergence; so it is

generally believed that mutation operations are not primary genetic operations and can be ignored in

GP [Koza92]. However, Banzhaf has proposed totally different idea [Bafn96], and it has also revealed

by our program-cloning trials that mutation operations lead an important role in GP searching

processes (see the example in Section 4.1), and with different mutation rate, the behaviors of GP

searching are quite different.

We have tried diverse proportion settings among the crossover, mutation and reproduction operations,

and Table 3.2.8.1 shows some of the settings in our trials:

Crossover percentage Mutation percentage Reproduction percentage

20% 1% 79%o

20% 20% 60%

20% 40% 40%

90% 1% 9%

90% 20% 0%

90% 40% 0%

Table 3.2.8.1 G enetic-operation proportion

During cloning Triangle.c (see Section 4.1), the trials on the first three proportions turned out with

poor results due to the low probability of crossover operations. With the crossover percentage 90%,

the successful rate o f GP searching got improvement; however, as shown in Section 4.1, under certain

settings, with the mutation rate 40%, 7 out 15 trials obtained perfect solutions (solutions which meet

all fitness cases). In the last two cases, reproduction is totally omitted, and furthermore, not all

individuals newly created from genetic operations have opportunities entering the next generation.

Instead, only individuals have higher fitness can enter the next evolving loop. For example, with the

crossover percentage 90%, the mutation percentage 20% and a population size o f 4000, 400 * 110%

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

individuals are created and 10% of them, whose fitness rank at the lowest 40 (we call them redundant

offspring), are discarded. In this way, we actually introduced elite strategy, which enhanced the

converging effects and thus balanced the diversity effects introduced by mutation operations.

3.2.9 Number of test cases

To measure how well an individual fits the target problem, an executing environment or evaluation

environment should be established. Generally, the executing environment can be constructed using test

cases of the target problem. These test cases are called fitness cases in GP algorithm and they are

adopted in our program-cloning experiments. However, as mentioned in Section 3.2.5, using fitness

cases to simulate a problem’s function behavior does not always work well, and the key is to choose

suitable fitness cases: not only the number o f them but also their distribution within the problem

solution space is crucial.

Too few fitness cases may miss some aspects o f the problem, guide the evolving to wrong

direction and lead the population to un-mature converging. On the other hand, too many fitness cases

cause a waste o f computer resource. Depending on different problems, the numbers o f fitness cases

should be different. In the program-cloning problem, different programs being cloned require different

number o f fitness cases, and a user should define the case number in the problem specification.

Possible approaches to determine the suitable case number have been studied and prompted [TeAn97]

[GiTo02]; however, considering the handleability, we did not adopt them in PCP.

A suitable distribution o f the fitness cases is important in order to clearly reflect a target problem’s

contour. Borrowing the method from software structure testing, we introduced the decision-table into

fitness cases determination. First, predications for each branch are deduced from the original code to

be cloned or from the problem specification; a true value table is then applied to those predications,

and according to the problem, unreasonable combinations o f the predications are omitted; finally, for

each combination, a test case is deduced, and all o f the test cases construct individuals’ executing

environment (see the example in Section 4.2).

In the same way as software testing, fitness cases deduced from a decision-tree might still miss

6 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

some characters o f the target problem; nevertheless, more advanced method in software testing for

manually creating test-data can be adopted for fitness cases determination.

3.2.10 Dynamic mutation probability and other implementation aspects

Besides the implementation characters described above, other settings/methods used in PCP are listed

as the following:

1) To restrain individual bloating, PCP adopts dynamic parsimony pressure algorithm, which is

experimented in APGP process with ECJ (see Section 2.4).

2) PCP always permits the best individual for each generation entering the next generation.

3) In PCP, individuals’ roots can be chosen as genetic operation nodes.

4) When selecting nodes for genetic operations, PCP assigns 90% opportunities to internal nodes

and 10% to leaf nodes.

5) Although bringing no obviously improvement on GP’s behavior, dynamic mutation probability

was still adopted in PCP. The following paragraphs will briefly introduce this method.

PCP’s applications suggested that mutation operation could lead an important role to GP’s success.

Since mutation introduces random changes to individuals’ structures and consequently weakens the

convergence, it is used to adjust the population’s diversity and regulate G P’s converging speed. During

GP’s un-linear evolution process, mutation contributes to population’s evolving differently in different

phases. Dynamic mutation rate is widely used in the genetic algorithm; self-adaptive mutation

operators are well-known within evolutionary computing [BuhtOO]; we assume dynamic mutation rate

can help also improve GP’s searching efficiency.

Our assumption is based on the results o f our trials. As shown in Figure 3.2.10.1, during the early

period o f evolution, periodically, the unduplicated individual number (simply reflecting the diversity

o f population) decreases after the population evolves a certain number o f generations. At the late

phase of the evolution, a set o f mature individuals seem to blocked there permanently missing only a

very few number o f problem conditions. Through dynamic mutation rate, we hope to maintain a high

diversity and provide mature populations more opportunities to mutate to the target solution.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Therefore, during evolution, instead of decreasing mutation rate little by little to speed the population

converging, we kept adjusting mutation rate according to the population’s diversity.

U nduplicated

A individual num bers

Figure 3.2.10.1. D iversity o f population

In PCP, the mutation rate is recalculated after each 10 generations by the following formula:

Pm = R1 — (diversity - R 1) * (R 1 - R2) / (l - R l),

where Pm represents mutation rate for the current generation, R l and R2 are the upper limit and lower

limit for mutation rate that are generally adopted, i.e., 20% and 0.5% respectively, and diversity is

calculated by: number o f un-duplicated individuals / population size.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Experiments with program cloning using program-cloning package

In this chapter, trials on five typical problems are described to display our program-cloning

experiments with PCP. These five problems have different levels of complexity, and they are typical

due to their particular usages, structures, interfaces or problem functions. A simple introduction of

them is as the following:

1) Triangle.c: Triangle.c is a representative program due to its complex branch structure, and many

literatures use it as a sample [Jorg02][Mims01]. We have experimented with cloning it using ECJ

package, and the result of cloning Triangle.c using PCP shows that PCP, implemented through a

series o f special methods as described in Chapter 3, is much more efficient for program cloning

than a general GP package like ECJ.

2) Extract.cpp: We choose it to illustrate the usage of sub-function. Previous attempting to clone

Extract, cpp using ECJ adopted ADF and failed to find a program for the main body of the

problem. In our new experiment, this deficiency is overcome by using the Sub-Function method

(see Section 3.2.7).

3) Journey.cpp: It is special for the loop structure. Our experiments involved in cloning Journey.cpp

using ECJ package indicate that the loop structure is especially hard to be manipulated in GP

algorithm. We attempted to clone the loop structure again with PCP, and although no much

improvement is achieved, our study reveals that the difficulty of using GP to clone loop structure

is due to the algorithm itself.

4) NextDate: This problem and the following Commission are cited from Jorgensen’s Software

Testing [Jorg02]. It is more complex than the above three problems. Two sources of complexity

exist in this function: the complexity due to the relationship between inputs and outputs, and the

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

internal logic complexity.

5) Commission: It is the most complex problem among these five samples. As a practical

commercial-computing problem, it contains a mix of computation and decision-making [Jorg02],

In the following sections, we will describe our experiments with the above programs one by one. Each

section contains four parts: a program introduction, detailed approaches for applying the

program-cloning method, results and analysis. For the problems which have been experimented using

ECJ, we will also compare the approaches and results in different GP implementations.

4.1 Triangle.c

Triangle.c is the code for the problem o f Triangle Classification. The purpose o f the problem is to

classify a random triangle into scalene, isosceles, equilateral and non-triangle according to three edges.

As shown in Figure 2.3.1, with only 30 lines of code, the Triangle.c has 10 branches. However most of

the decisions contain only a single condition, and the maximum depth of its branch nesting is two; and

with three independent inputs (no mutual computation among them), and one output with four

optional values, the problem’s internal logic is relatively simple. In addition, only a small number of

syntax components are used, and no complex manipulation o f intermediate variables is expected.

Before carrying out program cloning, we can set up an idea solution in mind for using program

cloning to solve the triangle problem, and one idea solution is as the parse tree in Figure 4.1.1.

Tri=4

i>0,
j> 0,'

k>0
Tri=3 Tri = 2 i=j Tri=2 Tri=lJ=i

Figure 4.1.1 A solution tree for triangle, where i, j and k represent three edges and Tri is the output with the

values 1,2,3, and 4 representing scalene, isosceles, equilateral and non-triangle respectively

The first major step in preparing to use genetic programming is to identify the set o f terminals

[Koza92], For the program-cloning problem, we have defined three basic terminal types, Input, Output

and Const in PCP. Generally, all of the basic terminal types are necessary for cloning a general

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

program. However, to clone different programs, these terminal types should be instanced into different

contents.

The Triangle.c has three integer input variables: i, j and k, thus we defined them in triangle’s

problem specification class, and during GP initialization, they are initialized as three optional Input

types. In the same way, Triangle.c’s only output, Tri, is defined in the specification class and then

initialized as an Output type during GP initialization. Corresponding to input/output pairs, a number of

fitness cases are designed and specified in the specification class.

Constants are necessary in this problem. Considering that the return o f Tri is within four values: 1,

2, 3 and 4, which represent four triangle classes and have no numerical meanings, we can include

these four numbers in the particular constant set — specials (see Section 3.2.4). Since these four

numbers are deducible from the problem specification, we can add this special knowledge into GP

searching automatically. The number 0 acts in triangle as a restriction o f triangles’ edges, thus it is also

included in specials. As shown by the parse tree in Figure 4.1.1, mathematic calculation is not a main

topic in this problem, thus the usage o f random value is very limited. Hence, specials plus the typical

values for programming (the second constant type described in Section 3.2.4) are enough to construct

the possible solutions. However, giving the GP searching more solution space for irregular solutions,

we also adopted random value generation providing integers, and without lose the generality, the range

of the random integers is defined from 0 to 10.

Besides, the terminal, nop, which means no operation and functions in branch control structure, is

included in the terminal set. In summary, the possible terminals for constructing clone program of

Triangle.c includes: i, j, k, Tri, 1, 2, 3, 4, 0, -1, true, false, random values within the range of [0,10]

and Nop.

The second major step in preparing to use GP algorithm is to identify the set of functions. From

triangle’s specification and code, we can see that Triangle.c is relatively simple and does not need

many primary elements to construct its target program. For example, in the original program, there is

only one arithmetic operation, addition. However, to make the searching process general and also

avoid excluding the diversity o f the solution programs, we adopted the primary function set defined in

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 4.1.1. Including arithmetic operations, logical operations, comparison operations and program

structure controllers, the function set for Triangle.c simulation has the following function types: +, -, *,

/, %, >, >=, =, <=, <, And, Or, Not, If, Seq, and Assignment (see Table 4.1.1 for detailed explanation).

Loop is a basic program-controlling structure in any computer language, however, as long as it is

not an absolutely necessary element to compose the solution program, we should always avoid

including it into GP’s function set. Loop operation is very time costing because the predications of

Loop, which are random created, may cause abundant meaningless iterations, and then, the evaluation

process has to spend many more times evaluating the loop body, and worst of all, many Loop can

never terminal themselves without external interruptions. As a heuristic algorithm, GP needs large

population and tries diverse opportunities in its searching process. But, when using loop to compose

potential solutions, GP will spend almost all o f its time manipulating Loop structures and hardly

maintain its normal searching process. Even using execution-time limits for Loop operations, the basic

problem described above cannot be solved, and the searching efficiency cannot get prominent

improvement. Although Koza has described using iteration to solve certain problems with GP

[Koza92], compared with the program -cloning problem, all his GP applications are too simple.

Accordingly, PCP’s applications generally do not include Loop in their function set.

The elements in PCP’s basic function set are described in Table 4.1.1, and triangle’s

program-cloning process used this basic function set.

Have two children, each o f which can be +, -, *, /, %, Constant, Input and Output,

children can be in any data type in arithmetic data types set, which includes Integer,

Float, Long and Double, (the data typing measure manipulate the compatibility

between them, see Section 3.2.1); and the return value is in the same type as (or

compatible with) the children.

/, % Include all constraints defined in the above column; and zero is allowed to be the

second child, however whenever zero is encounter as the second child, an exception is

automatically created by Java virtual machine and evaluation process on the current

individual is terminated by assigning a poor score to that individual.

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

>, >=, <, Have two children o f any mathematic data type; the return is a Boolean value; each of

the children can be in node-type of +, *, /, %, Constant, Input and Output, and two

constant values, or two same Input or Output variables are not allowed to appear on

each side o f a comparison express, e.g., “3>=3” and “tri<tri” are illegal (Note, it is

hard and not excluded o f the semantic insignificant conditions that two mathematic

expresses with constant values appear on each side of a comparison expression, e.g.,

“5+3-2*8>=3%10-9”).

And, Or Have two children with data type o f Boolean; each can be ==, >, <, >=, <=, And,

Or and Not; the return is a Boolean value; and must not be adopted by nodes in the

second last layer in a parse tree because their children types do not include terminal

type.

Not Have one child with data type of Boolean; the child can be ==, >, <, >=, <=, And,

Or and Not; the return is a Boolean value; and must not be adopted by nodes in the

second last layer in a parse tree because their children types do not include terminal

type.

I f Have three children; the first one has the data type of Boolean, and can be ==, >, <,

> = < = And, Or and Not; the second and the third ones has no significant data type,

and can be Assignment, If, Seq, and Nop; same as And, must not be adopted by nodes

in the second last layer in a parse tree; and the second and third children should not

be Nop simultaneously.

Seq Have at least 2 and at most 5 children, and the number o f children is determined

randomly during GP execution; each children can be Assignment, 7/" and Seq; Seq has

no return value, and same as its children.

Assignment Have two children o f any mathematic data type; the first one can be Input and Output;

and the second one can be Input, Output, Constant, +, * / and %; the return value is

in the same type as the children.

Table 4.1.1 Constraints o f basic function-types

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The third major step in preparing to use GP algorithm is to determine the fitness measurement. Fitness

measurement is based on individual evaluation, which generally put individuals into a certain

environment reflecting the characters o f the target problem. Evaluation process executes the individual

program within the environment and by comparing how close the execution result and the expectative

result are, deduces the raw fitness, which directly corresponds to the difference. In the

program-cloning problem, the evaluation environment is expressed by fitness cases, and in fact, the

fitness cases are a series of test cases for the program being cloned. A delicately designed test cases set

can well reveal the whole function contour o f a program and at the same time, keep the size o f itself to

be as small as possible in order to achieve evaluation efficiency.

For Triangle.c, our trials found that 60 is a suitable number of fitness cases. Note, although function

testing for Triangle.c needs much fewer test cases than 60, the redundant cases help the GP’s

searching trend to be smoother and more stable. Evaluations with too few test cases risk guiding the

If(i==j) If(i==k)

if(j>i+i)

If(i+k>j)

If(j>i+j) j Tri=4 (If(j>i+26+3Tri)

If(j<k+j)

If (i+j>k)

If G+k>i)

Tri=2 If(i==j)

If(k==i) Tri=4

Tri=2 Tri=l

Tri=2 T ri= l

1) Best program from GP trials with 60 cases 2) B est program from GP trials with 30 cases

Figure 4.1.2 C om paring best program s from GP trials with 60 and 30 cases

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

evolution develop toward premature directions. In our trials, with other approaches and parameters

fixed, the GP searching with 60 cases, although with a reasonable slowing down on evolution speed,

yields more functional results than that with 30 cases. Compared in Figure 4.1.2 are two simplified

programs which are selected randomly from perfect solutions (meet all fitness cases) of GP searching

with 60 cases and 30 cases. Watching Figure 4.1.2, we can see that the best program yielded by GP

searching with 60 cases contains no insignificant sub-tree and misses only the first branch in

Triangle.c, ” i f ((i<=0) || 0 <=O) || (k<=0)) ”. In contrast, the best program from GP searching with

30 cases not only misses the first branch in Triangle.c, but also contains four insignificant predications

(as circled) and misses at least the predications of (i+j<=k), Q+k <=i), and ((i+k) < =))■

We also tested to increase the number of test cases to 90. However, with the evolving speed

terribly getting down, the best adjust fitness for the 100th generation drops from 0.2 ~ 0.33 to around

0.067.

The individual evaluation process is described in Section 3.2.6. Based on the raw fitness, we carry

out a series o f measurements for the individual’s final fitness, which is expected to reflect how well

the individual fits the problem environment. As the basis o f individual selection, the fitness drives the

population to be more functional to solve the problem, as well, by adding diverse pressures into the

fitness measurement, the fitness can drive the population to different directions, for example, to drive

the individuals to have smaller size, or be more frugality [Koza92], In the contrary, poor designed

fitness measurement might misguide the population evolving to undesired directions. In our program

cloning experiments, individual bloating [Ange98] [Banz02] [Lapo97] [Sofd96] is always a big

problem due to the large number of primary elements. Aiming to individual bloating, we designed and

successfully used the dynamic parsimony pressure method for fitness calculation during applying ECJ

to program cloning (see Section 2.4). In PCP, we borrowed the fitness measurement of Koza’s

adjusted fitness [Koza92] and adopted the dynamic parsimony pressure method again. The concrete

measurement is illustrated by the following formulas:

Adjusted Fitness 1 + Standardized Fitness); when Individual Size < = Size Limit

0 otherwise 1)

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Standardized Fitness = Raw Fitness + Pressure; 2)

Pressure = Individual Size * Pressure Coefficient [Individual Size / GJ; 3)

Pressure Coefficient = {O.Of 0.0000I f O.OOOOlf, 0.000I f 0.000I f O.OOlf}; 4)

G = Length (Pressure Coefficient); 5)

Size Limit = Length (Pressure Coefficient) * 40; 6)

The element values in the array o f Pressure Coefficient in formula 4) and the number 40 in formula 6)

are experiment values.

As we described in Section 3.2.5, the local-optimization problem frequently occurs in our

program-cloning applications. To overcome this problem, we adopt the dynamic fitness calculation

method, which assigns higher score to individuals that satisfy fitness cases that have not been satisfied

before. The calculation o f the dynamic fitness is based on the adjusted fitness calculated through the

formula 1) to 6).

The fourth step to prepare GP evolution is to set the environment parameters to control the run. In

the problem o f cloning Triangle.c, diverse values for the parameters are tried until the final values of

parameters and settings are deemed mature and stable. They are listed as the following:

1) The population size is set around 3000 when all of the 16 primary elements in Table 4.1.1 are

used in GP; and if we drop the number of element to 9, the population size can set around 1500.

2) The reasonable maximum generation is 300: in our trials (approximate 250 to 300 trials), most of

the individuals that meet all fitness cases are produced within 200 generations with a very few

cases created beyond 200 and within 250 generations.

3) Crossover probability is 90%.

4) Mutation probability is 40%. Although the generally mutation range is from 20% to 0.5%, we

found 40% mutation probability works better than 20%, 10% and the even smaller ones. That is

because we adopt redundant offspring (see Section 3.2.8), which introduces a strong convergent

force in GP evolution, and higher mutation rate balances the too fast converging.

5) Number of fitness cases is 60;

6) Selection probability assigned to internal node within a parse trees is 90%;

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7) The maximum depth of a tree produced during population initialization is 6;

8) The minimum depth o f a tree produced during population initialization is 3;

9) The maximum depth of a tree produced by genetic operations is 9;

10) The range o f random values is from 1 to 10;

11) Tournament size is 7;

12) Keep the best individual in the next generation; and

13) Root node is selectable for genetic operations.

The GP searching for clone o f Triangle.c terminates after running 300 generations or when a perfect

solution, which meets all fitness cases, is found.

The program-cloning results using PCP are much better than that we obtained using ECJ. With the

population size being 3000, 7 out o f 15 trials achieved perfect solutions and all of the perfect

individuals were achieved within 200 generations. When fewer function types were adopted in GP

searching, which contains only +, * ==, >, <, If, Seq and Assignment, with population size being

1500, 9 out o f 30 trials got perfect solutions. Recall the experiments using ECJ to cloning Triangle.c, a

small number o f function types, +, * == >, < and I f were adopted, however only 3 out of 25 trials

achieved perfect solutions, and each o f them met only 31 fitness cases, which consequently are less

functional than current solutions that met 60 cases.

4.2 Extract.cpp

As shown in Figure 2.5.2.1, Extract.cpp has only 20 lines o f code. However, this program is actually

more complex than Triangle.c. First, the maximum depth o f branch embedding is 5. Second, more

variables are adopted in this program: there are 5 independent input variables, iDigitl, iDigit2, iDigit3,

iDigit4 and iDigit5, two definitely defined output variables, location and hour, (i.e.,

iExtractionLocation and iExtractionHour in the code), and one result indicator (the standard output

which displays the invalid code messages). Additionally, different from the condition in Triangle.c that

the only output can be directly deduced from input values, one o f extract’s outputs is not only deduced

from the five inputs but also affected by another output.

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Fortunately, although in logic, the operations and calculations on the tree outputs are tangled

together, from the point o f view o f implementation, we can separate the location’s operations and

hour’s operations from the main body of program. Through the sub-function method as introduced in

Secion 3.2.7, three GP searching processes were carried out consequently. In Extract.cpp, all of the

sub-problems are pretty simply, and when one or more sub-problems is more complex, for example,

replacing the “iExtractionHour = (iDigit3 * iDigit5) - iDigit4” with “iExtractionHour = iDigit3 1/

iD igitl + (iDigit3 * iDigit5) - iDigit4”, the advance of the sub-function method become more obvious.

Another character in applying GP searching to clone Extract.cpp is the usage o f exception

handling. In the original code o f extract.cp, in case invalid digitals are input (e.g., smaller than 0 or

causing unreasonable hour), a message is output to screen. For GP representation, we have to translate

the display operation with a more manipulable operation. Although an output variable may function

here, considering the purpose o f the displaying, we can use the Exp to represent an undesired status

and terminate the current execution immediately.

The first major step in preparing to use GP to clone the target program is to separate the whole

problem into three cloning processes for three subroutines respectively. In PCP, three problem

specification classes need to be set up: the first specification for hour and the second one for location

can be defined simply as normal program specifications; and the third one, which represents the main

body of the problem, must define a special variable, strSubProblems, to contain the class names of the

first two specification classes.

The following major step in preparing to use genetic programming is to identify the set of

terminals. All of the three specification classes specified the terminal node-types of Input, and

instanced it with the five integer parameters for the code. Besides, the specification class for hour

specified the Output and instanced it with the return variable of hour; the specification class for

location specified the Output also and instanced it with the return variable o f location. The

specification class for the main body specified the terminal node-types o f Exp and SubFunction, which

was then instanced by the two variables, hour and location. All o f the classes specified the terminal

node-type o f Nop.

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

All o f the problem specification classes specified the terminal node-type o f Constant. Not only

from the code o f Extract.cpp, but also from its specification, we could deduce the special constants: 0,

5 ,17 and 23 as hour limits. We included these four numbers into the particular value array, special, for

constant without introducing knowledge o f the ready code into GP searching context. Then, the type

typical values for programming (the second constant type described in Section 3.2.4) and random

value generator are also adopted here. Considering that the hour, location and two outputs have the

range from 0 to 23 and from 1 to 8 (see the specification in Section 2.5.2) respectively, we assign the

range of random value generator from 0 to 9 for specification class of location and from 0 to 23 for

classes o f hour and main body.

The following major step in preparing to use genetic programming is to identify the set of

functions. As shown by the original code, the operations on hour are limited to simple arithmetic

calculations. Since this information should also be definitely depicted in problem specification, we can

use it guiding us identify the corresponding function set. Without lose generality, its function set is {+,

* /, %, Assign}. The function set adopted in the other two classes is same as that used to clone the

Triangle.cpp, i.e., {+, * /, %, Equal, GThan, LThan, GThanE, LThanE, And, Or, Not, If, Nop, Seq,

Assign}.

The fourth major step in preparing to use GP to clone the target program is to determine the

fitness measurement. When cloning Extract.cpp, the fitness calculation formulas are same as that in

the previous example. To evaluate the individuals, 50 fitness cases are defined for each of the three

subroutine cloning. In our trials, the input values within the fitness cases are same for these three

sub-problems. During individual evaluation process for the hour subroutine, the raw fitness scores a

certain value corresponding to the absolute difference between the anticipating result and real result.

In contrast, when measuring the raw fitness for the location routine, one mark is obtained when each

cases is met by the current individual.

In the specification class for the main body, corresponding to the usage of Exp, an integer array

variable is defined to express the status o f execution. In this trial, there are only two execution statuses:

0 for success and 1 for fail. During evaluation, fail status is obtained when catching the exception and

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

otherwise success status is used. Since a general program generally provides several failing statuses, in

order to express many statuses, we expanded the Exp to a function type that has one parameter

representing the different failing conditions. Then, the elements in the integer array variable may have

several statuses: 0 for success and others for fail, and through the exception message, the error codes

are thrown from the individual calculation method and caught and used for fitness calculation by the

evaluation method (see Section 3.2.2).

The next step to prepare GP evolution is to set the environment parameters to control the run. The

GP searching process for each of the three subroutines adopts different parameters. The common

settings are listed as bellow:

1) Number o f fitness cases is 50;

2) Selection probability assigned to internal node within a parse trees is 90%;

3) The minimum depth of a tree produced during population initialization is 3;

4) Tournament size is 7;

5) Keep the best individual in the next generation; and

6) Root node is selectable for genetic operations.

The different parameters are listed in the Table 4.2.1

Parameter Main body Hour Location

Population Size 1500 500 1500

Maximum Generation 150 50 50

Crossover Rate 90% 85% 85%

Mutation Rate 20% 10% 2%

Maximum depth o f tree
allowed in population
initialization

7 6 6

Maximum depth o f tree
allowed during genetic
operations

5 4 6

Range o f random numbers [0, 23] [0, 9] [0,9]

Table 4.2.1 D ifferent param eters for trials with Extract.cpp

To carry out GP searching for the three sub-problems, the entrance is GP initialization for cloning the

main body subroutine. The special variable, strSubProblems, is then encountered, the sub-problems’

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

specification class names are obtained, and consequently, GP searching for the sub-problems is carried

out one by one. After the two independent sub-problems are solved, GP searching for the main body

cloning is carried out. Finally, best result from each o f the independent cloning process is selected and

fitted together to form the final solution for Extract.cpp.

When translating the problem from cloning the whole Extract.cpp to cloning three subroutines,

we adopted the problem-specific knowledge that the calculations on hour and location depend only on

the five parameters, which is obtained from the program specification but not the original code. By

using sub-function method, Extract.cpp’s cloning process was greatly simplified and all o f the three

GP searching can easily find perfect solution. Three typical solutions obtained by each of the GP

searching are listed as the following:

1) A solution for hour:

= (Hour,-(+(-(D5,+(D4,Hour)), *(D5,D3)),D5))”, where D3, D4 and D5 are the last three

parameters and for calculation the Hour has the constant value o f 0, thus the solution can be

simplified and expressed with “Hour = D3*D5-D4”, which is exactly identical with the target

formula.

2) A solution for location:

“if(>(Dl,D2),seq(seq(:=(Location,D2),:=(Location,D2),:=(Location,D2)),:=(Location,D2),:=(Loc

ation,DJ)),if(>=(Dl,D2),:=(Location,l),:=(Location,D2)))” where D1 and D2 are the first two

parameters. The simplified solution can be expressed as:

if(Dl>D2)

Location = D l;

else i f (D l >=D2)

Location = 1;

else

Location = D2;

Although including redundant expression in the second predication, this solution is logically 100%

correct.

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3) A solution for the main body:

“if(>-(Hour, 1 7),if(<(+(23, *(0,0)),Hour),Exp,if(<(*(D4,17),Hour),Exp==(D2,3))),if(<(Hour,0),Exp,

if(<=(Dl,0),Exp,if(>(Hour,5),Exp,Nop)))) ” The simplified solution ca be expressed by Figure 4.2.1:

if(Hour >=17)

if(Hour>23)

Exp

Else i f (Hour > D4+17)

Exp

Else

D2=3

Else i f (Hour <0)

Exp

Else if(D l <=0)

Exp

Else if(Hour > 5)

Exp

Figure 4.2.1 Sim plified solution in trials w ith Extract.cpp

As shown in Extract.cpp code, three invalid conditions are handled by the predications: “iDigitl *

iDigit2 * iDigit3 * iDigit4 * iDigit5 == 0 ”; “iExtractionHour<0 || (iExtractionHour>5 &&

iExtractionHour<17) || iExtractionHour>23” and “((iDigitl +iDigit2) % 2) != 0 ”. The above

solution found the second predication, part of the first condition and none o f the third one. The

improvement o f the result depends on the larger size o f more uniform distribution o f the fitness cases.

However, using sub-function method, the current cloning trials are much more successful than that in

our previously experiments with ECJ.

4.3 Journey.cpp

Same as the above two programs, the Journey.cpp cloning has also been experimented using ECJ. The

original code is shown in Section 2.5.3. Although programmed within only 10 lines of code,

Journey.cpp is difficult to be cloned not only because o f the loop structure but also because o f its

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

unusual solution space. As described in Section 4.1, even using very few primary elements and

adopting execution time limitation, evaluations on Loop with randomly created predications may cost

great computer time. However, when applying GP searching on program cloning, we generally

adopted 21 basic node-types for solution construction. Hence, when Loop is added into primary

element set and the GP searching is carried out on one normal personal computer: CPU speed 1.3GHz

and memory 512M, it is not strange that our trials cannot achieve any high-quality result.

Consequently, same as the approach used in cloning Extract.cpp, we divide the whole problem

into two sub-functions: one aims at searching the content inside the loop and the other one at

searching the loop itself. As described in Section 2.5.3, the simplified searching process for the loop

itself is easy to get a perfect result. However, when cloning the inside content, an interesting

phenomenon, which relates to fitness-cases selection, is encountered and the trials reveals that

fitness-cases used in GP seriously affect the success rate of GP searching. In addition, to determine the

suitable number of test cases, the principle is not the more the better. The following description will

focus on cloning the content inside loop.

The first major step in preparing to use genetic programming is to identify the set o f functions. All

o f the basic function types listed in Table 4.1.1 are adopted. Then, the set o f terminals should be

determined. Here, the terminal types include Output, Nop and Constant. Output is instanced by

variables: n and peak, and functions in this sample not only representing outputs but also representing

inputs. To do so, Output’s element inits is used to record the initial values for Output variables. For

Constant type, special numbers: 1, 2 and 3, which are deduced from problem specification, are

inserted into the particular value array. The fitness measurement is same as that in cloning

Triangle.cpp. During evaluation of individuals, one hit is gained when one output o f the individual

result for each case achieves the expected value.

The environment parameters are set as following:

1) The population size is 3000.

2) The reasonable maximum generation is 300.

3) Crossover probability is 80%.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4) Mutation probability is 15%.

5) Number o f fitness cases is 12, 15 and 40.

6) Selection probability assigned to internal node within a parse trees is 90%.

7) The maximum depth o f a tree produced during population initialization is 6.

8) The minimum depth of a tree produced during population initialization is 3.

9) The maximum depth o f a tree produced by genetic operations is 8.

10) The range o f random values is from 1 to 10.

11) Tournament size is 7.

12) Keep the best individual in the next generation.

13) Root node is selectable for genetic operations.

When cloning the body content o f Journey.cpp, the GP performance is not obviously sensitive to the

crossover rate and mutation rate. With the crossover rate shifting among 80%, 85% and 90%, and

mutation rate shifting among 10%, 15%, 20% and 30%, no improvement or deterioration is observed.

In contrast, the setting of fitness cases affected the success rate of GP searching significantly.

When determine the fitness cases, we borrowed from software testing the decision table method in

order to cover all conditions. As shown in Figure 2.5.3.1, the loop body o f Journey.cpp has two

branches, each o f which has one predication. Thus the decision table can be expressed by the first two

rows in Table 4.3.1.

n % 2 != 0 Ture Ture False False

n > peak Ture False Ture False

40 cases averagely 10 10 10 10

12 cases averagely 3 3 3 3

12 cases not averagely 6 1 4 1

15 cases not averagely 8 1 5 1

Table 4.3.1 D ecision table o f Journey.cpp

In our first experiment, 40 fitness cases are adopted for individuals’ evaluation and 10 cases for each

condition, as shown in the third row in Table 4.3.1. Unfortunately, for such a simple piece of code,

with the large population size of 3000, none o f the 6 trials achieve hits more than 64 out o f 80 cases

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and the average hits are around 60. We deem the reason is in that with a big number of fitness cases

but only four conditions, whenever a condition is satisfied by an individual, its fitness gets a big leap,

thus there is short o f consecutive improvement of the best individual and the evolution is easier to fall

into local optimization points. Our following trials proved this conjecture.

In the following experiments, we improved the fitness cases by reducing the number of fitness

cases to 12 and each condition has 3 cases. Then, in the three trials with the 12 fitness cases, the best

individuals achieve 15, 16 and 15 out 24 cases, and the average fitness jump from around 0.05 to 0.11.

Watching the solutions, we found that the simple expression, n = n / 2, is easy to be found, and in

contrast, n = 3 * n + 1 and peak = n are missed always. Then in the following trials, we redesign the

fitness cases distribution as shown in the fifth row in Table 4.3.1, which gives more chances to the

conditions with more complex operations. Then, in the three trials with the new fitness cases, the best

individuals achieve 17, 18 and 22 out 24 cases, which shows obvious improvement from the previous

experiment.

if(3n%2>=l,

seq(

n=3n+l,

)

seq(

n=n/2,

if(p<=n,p=n)

)

)

Figure 4.3.1 The B est solution 1 in pseudo code

However, as we mentioned in Section 3.2.5, the fewer the cases, the less accurate the final

solutions are. We then expand the number o f fitness cases to 15, 2 out of 25 trials achieve perfect

solutions, and the best one is shown as following:

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

if(> =(%(*(N,3),2),l),seq(: =(N, +(1, *(N,3))),if(<=(/(+(P,P), %(N} 7)),N), :=(P,N),#)).seq(: =(N,/(N,2)),i

f(<=(P,N),:=(P,N),#)))

Being simplified and expressed in pseudo code as shown in Figure 4.3.1, it obviously includes one

bypass instruction as circled by the ellipse, then although meets all 15 cases, it fails to reflect the target

problem. When we expand the number of fitness cases to 20, 1 out of 20 trials achieve perfect solution,

and the best one is shown as following:

if(<(+(n,-(-(n,p),p)),+(n,n)),seq(if(!(>(%(/(n,l),%(9,7)),/(/(8,7),-(p,9)))),seq(:=(n,/(n,2)),if(>(p,n),#,: =

(p,n))),:=(n,+(*(n,3),-(9,8)))),if(>(p,n),#,:=(p,n))),:=(n,-(p,l)))

Being simplified and expressed in the following pseudo program in Figure 4.3.2, it obviously

100% identical with the problem.

if(n%o2==0,

n=n/2

n=3n+l

)

if(P<=n)

p=n

)

Figure 4.3.2 The Best solution 2 in pseudo code

Based on the experiments involved in cloning Journey.cpp, we can draw three conclusions: 1) loop

structure is a very difficult point in program cloning, and direct cloning the whole loop structure is

very unsuccessful. 2) the fitness case set is one o f the key factors in program cloning, not only the

number but also distribution affects the GP searching significantly, and assigning equal number of

fitness cases to each conditions might not efficiently guide the GP searching, and 3) although for

programs with different structures and different solution spaces, different parameters and settings are

expected to use, there seems to be always a way for GP searching to work out the idea solution for that

type of problem. We believe that with the constant accumulation o f experiments with program cloning,

rules for GP environment setting can be summarize to make most o f the programs easy to be cloned.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.4 NextDate

NextDate is come from Paul C. Jorgensen’s [Jorg02], which is used to “illustrate a different kind of

complexity - logical relationships among the input variables”. NextDate a function o f three variables:

month, date, and year. It returns the date of the day after the input one, which is represented by the

variable, nextDate. The variables of month, date and year have integer values subject to these

conditions: l<=m<=12, l<=day<=31,1812<=year<=2012. Finally, leap year conditions are considered.

With the leap year conditions, this problem is a little more complex than all o f the previous problems,

and a basic structured implementation o f it includes about 50 lines of pseudo code [Jorg02].

Since program cloning need not and should not add any knowledge o f the original program into

GP searching environment, we omit the original program for this problem. Instead, assertions and

restrictions deduced from the problem specification should be listed clearly in order to generate a set

o f efficient fitness cases. Same as Extract.cpp, we divide the whole problem into two parts: the main

body checking the validation o f the inputs values and a sub function making calculation o f the next

date, which is proved achieving much better results than cloning the whole program. Since the cloning

process for the main body is similar to that in problems of Extract.cpp and Commission, we will focus

on cloning the second part in our following description.

The first major step in preparing to use genetic programming is to identify the set o f functions. All

o f the basic function types listed in Table 4.1.1 are adopted. Then, the set of terminals should be

determined. Here, the terminal types include Input, Output, Nop and Constant. Input is instanced by

the variables, year, month and day and Output is instanced by the variable, nextDate. For the Constant

type, special numbers: 1,2,4,28,29,30,31,100 and 400, which are deduced from problem specification,

are inserted into the special value array. The fitness measurement is same as that in cloning

Triangle, cpp. When calculating the raw fitness of individuals, one mark is scored in case that the result

for one o f the outputs achieves the expected value for one fitness case.

For the evaluation o f this problem, 100 fitness cases are designed. The designing of fitness cases

include 5 steps: 1) list all restrictions for the problem, which, as shown in Table 4.4.1, includes 4

restrictions for year, three restrictions for month and two for day, 2) work out all the possible

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

conditions, which has 4*3*2=24 conditions, 3) select typical values or value ranges for the variables:

year, month and day under each restrictions, 4) combine the typical values for 24 conditions, 5)

according to the complexity o f the calculation under each condition, assign different number o f fitness

cases to it, for example, the variable, year, is included by four restrictions, among which the

proportion of cases is 1:2:3:4, thus with the total number of fitness cases 100, 10, 20 , 30 and 40 cases

are assigned to the four conditions respectively.

Variable Condition 1 Condition2 Condition3 Condition4 Proportion o f

cases between

different

conditions

year Normal year:
1999, 2002

Leap year
exclude

centennial: 2004,
1996

Centennial but no
leap year: 2100,

1900

Centennial and
leap year:

2000, 1600

1:2:3:4

month February Month with 31
days

Months with 30

days

2:4:4

day Last day o f a
month

Other days 1:1

Table 4.4.1. D esigning fitness cases

The main parameters that are different from other trials are set as following:

1) The population size is 3000.

2) The reasonable maximum generation is 250.

3) Crossover probability is 80%.

4) Mutation probability is 15%.

5) The maximum depth o f a tree produced during population initialization is 7.

6) The minimum depth of a tree produced during population initialization is 2.

7) The maximum depth of a tree produced by genetic operations is 11.

8) The range o f random values is from 1 to 12.

One of the typical perfect results is shown as the following:

seq(:=(N,D),:=(N,l),if(!(>=(*(-(9,D),+(0,5)),-(%(-(3,9),M),+(/(10,N),*(12,7))))),if(||(>(M,D),>(D,+(2,

(-(/(+(Y,Y),%(6,M)),Y),(D,Y))))),if(||(>(D,D),>(D,+(*(2,9),M))),#,:=(N,+(N,D))),:=(N,+(N,D))),:=(

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

N,+(N,D))))

Obviously, not only far from idea, the above program by far cannot reflect the problem. Although,

for many cases that are outside the fitness cases set, like Feb. 28th, 2000, Feb. 29th, 2000 and Jan. 1st,

2000, the above program works well, but for some, like, Jan. 31st, 2000, it fails. The key is that for

such a solution, we don not know whether we can confide in it. And unfortunately, all o f the perfect

solutions, which are achieved with the parameters and settings described above, have the similar

structure to this one.

From the content o f the above solution, we can see that the un-success is greatly due to the

unnecessary calculation between the variables, year, month and day. Although with integer values,

mathematical calculation is not the main approach in this problem, and should be restricted between

the input variables. One possible method is to define special node types, which although adopt the

integer type, are available only for very simple calculations, for example, only calculations between a

variable and a constant but not between variables are allowed. However, we did not experiment with

this method, instead, we experience the definition for new data types in the following example.

4.5 Commission

Commission is also come from Paul C. Jorgensen’s [Jorg02], it is “more typical of commercial

computing and contains a mix o f computation and decision making”. This problem compute a rifle

salesperson's commission monthly according to sales orders, each of which records how many locks,

stocks and barrels he/she sales: locks cost $45, stocks cost $30, and barrels cost $25; 10% on sales up

to $1000, 15% on the next $800, and 20% on any sale in excess of $1800. The most the salesperson

could sell in a month is 70 locks, 80 stocks and 90 barrels [Jorg02]. Same as the previous example, no

original code is referenced in the searching process preparation for the target program and fitness

cases and other problem context are deduced directly from problem specification. However, in

Jorgensen’s, a typical structured implementation of it includes about 40 lines of pseudo-code.

As the most complex problem in our experiment, this problem can be divided into four

sub-problems: 1) adding up the total number of locks, stocks and barrels respectively; 2) calculating

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

total sales amount; 3) calculating the salesperson’s commission according to the total sales amount;

and 4) checking the inputs and outputs to make sure the validation of the sale record for a month. The

sub-problem 2) and 3) are obviously simple and are easy to achieve 100% correct programs. The

sub-problem 1) presents a new condition in the program-cloning problem and is the emphasis in this

section. The experiment with cloning sub-problem 4) will also be described here to explore the

dilemma o f efficiency and generality.

Firstly, let’s look at the sub-problem 1), cumulating the total number for each product sold in one

month. The inputs here are a series o f sales orders, which, in high level programming language, can be

represented with two dimension arrays. For example, {0, 2, 3} represents one sales order for two

stocks and three barrels and {{0, 2, 3}, {1, 3, 4}} represents that two orders are gained in a month.

The outputs for this problem are three total numbers for locks, stocks and barrels. For example, with

the above two orders, the salesperson's achievement for that month is one lock, five stocks and seven

barrels.

This problem exposes the problem of how to represent and carry out calculation on array. To solve

this problem and as well as provide a possible solution for other combined data types, we introduced

the approach o f defining complex data types as terminal node-type.

 :

FvaulationO

Terminal set Function set

Figure 4.5.1 A dopting Array

As illustrated by Figure 4.5.1, a class, Array, is defined to extend the class, Input, which inherits the

class of Function and represents all inputs variables as terminal node-types. Within Array, we can

include any method defining possible operations and calculation for array structure. Accordingly, a

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

series of function node-types corresponding to Array's methods are defined, their main children types

are restricted to Array and their evaluation methods can call their matching methods in Array. For

example, in this problem, we defined the methods, Sum, in Array to calculate the sum o f elements in a

one-dimension integer array or sum of elements at a specific position in a multi-dimension integer

array; and then, a class o f function node-type, Sum, is defined and from its evaluation method, calls

the previous Sum method in Array. In GP, the usage of Array is same as that o f Input and the usage of

Sum is same as Add.

Therefore, the set of functions for cloning this sub-program include Sum and all o f the basic

function types listed in Table 4.1.1; and the set of terminals include Array, Output, Nop and Constant.

Similar to Input, Array can represent all inputs of array type and needs to be instanced according to

the specific problem. Here, it is instanced by the two-dimension array, orders, and the Output is

instanced by the variable, L, S and B, to represent total numbers o f locks, socks and barrels

respectively. For the Constant type, special numbers: 0, 1,2, which serve for indexes o f locks, socks

and barrels in each order of orders, are inserted into the special value array. Then, in the problem

specification class, 20 fitness cases are designed with the inputs structure in two-dimension arrays.

When calculating the raw fitness o f individuals, same measurement as that in cloning Triangle.c is

adopted with one mark scored when the result of one o f the outputs achieves the expected value for

one case.

In the GP searching process, the main parameters adopted are listed as the following:

1) The population size is 500.

2) The reasonable maximum generation is 250.

3) Crossover probability is 80%.

4) Mutation probability is 15%.

5) The maximum depth of a tree produced during population initialization is 8.

6) The minimum depth o f a tree produced during population initialization is 3.

7) The maximum depth o f a tree produced by genetic operations is 5.

8) The range o f random values is from 0 to 3.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In our trials, perfect solutions can be achieved easily. A typical one is shown as the following:

seq(:=(S,Sum(orders, l)),:=(B,Sum(orders, 2)),:=(L,Sum(orders, 0)))

where Sum(orders, i) means the sum of elements at the second position in each array element of the

two-dimension array. Obviously, the above solution is 100% correct in logic. According to our

experiments, we believe that the approach for representing array and its operations is successful, and

besides, it is easily to be expanded for other complex data structures or objects.

Secondly, let’s look at the sub-problem 4), checking the inputs and outputs to ensure the validation

o f the sale record for a month. In our trials, similar parameter and setting values as that of cloning

Extract.cpp are used, the number o f fitness cases is 76 and special constant array includes the

particular values deduced from specification. The results o f our trials expose the problem o f how to

choose or make balance between efficiency and generality. Using the terminal set and function set

listed in Table 4.1.1, we got one of the typical perfect solution as the following:

seq(if(>=(L, *(*(*(B,L),5),S)),Exp,if(==(B,91),Exp,#)),if(==(B,91),Exp,if(==(S,81),Exp,if(==(L,71),

Exp,#))))

Although meets all o f the fitness cases and many conditions of the problem, this solution is far

from ideal. We believe that it is due to the unnecessary function set and terminal set for constructing

individuals in order to achieve generality of the program-cloning process with GP.

By taking off the arithmetic operations, +, -, * / and %, from function set, we get a typical solution as

the following:

if(&&(>(L,0),&&(>(S,0),&&(<=(L,70),<(S,81)))),if(&&(<(S,81),>=(B,l)),if(&&(<=(B,S),<(L,0)),#,

if(< =(B,90),:=(B,S),Exp)),Exp),Exp)

Although not very obviously, the above solution is 100% correct in logic, with the cost of

sacrificing the generality of cloning process. We believe that for different applications, the

program-cloning process focuses on different targets and has different limits, and how to balance

between efficiency and generality should be determined by the concrete application. We will further

discuss this point in the Chapter 5, Applying program cloning in software engineering.

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Applying program cloning in software engineering

Software development is in a state of crisis, and the industry as a whole is in a state o f denial. The

software industry has an abysmal record o f bringing software projects in success. Research from The

Standish Group* shows a staggering 31.1% of projects will be canceled before they ever get completed.

Further results indicate 52.7% of projects will cost 189% of their original estimates. According the

Standish Group, the United State spends more than $250 billion each year on IT application

development of approximately 175,000 projects. O f these 31% are cancelled, 53% are changed, 16%

successful. The average cost of a development project for a large company is $2,322,000; for a

medium company, it is $1,331,000; and for a small company, it is $434,000. These figures paint a

black picture and clearly our ideas on software production processes are failing to deliver the required

results. Hence, the topic requires a radical shift in its approaches! This chapter presents some initial

investigations into a new direction in supporting alternative production process - software cloning of

source code.

Although the generation and application o f software clones remains unexplored, it is believed that

this is a fundamental technology that can have many different applications within a software

engineering environment. Unfortunately, given that we are still at the “proof o f concept” stage, it is

impossible to exactly predict where the technology will succeed and where it will fail; equally it is

impossible to give detailed descriptions of the potential applications as these will require significant

research programs o f their own to establish their details and results. In fact, we believe that exploring

these areas and techniques will present significant challenges and that several decades o f effort may be

* The Standish Group. CHO AS C hronicles II, The Standish G roup International Inc., 2001

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

required to establish results that are applicable within an industrial context. Hence, the following

should be considered as brief initial thoughts on how to apply this technique rather than a polished

statement o f application; in additional, it provides some insight into the motivations for conducting

this work [Recm03].

While it is attractive to utilize the program-cloning techniques to automatically create programs

for general purposes in high-level languages, our trials show that it is a long way o f applying program

cloning to produce programs matching hand-written codes. However, we believe, the program-cloning

technique can practically benefit multiple topics in software engineering domain. Six of the possible

domains are studied and described in this chapter:

1) Complexity measurement,

2) Mutant software test,

3) N-Version software design,

4) Test first,

5) Test data evaluation, and

6) Automatic test data generation

In the following six sections, we will discuss how to utilize the program-cloning technique to solve

problems in these domains respectively. Each section includes an introduction of the target domain, its

current solutions and existing drawbacks or weaknesses and analysis o f how the program-cloning

technique manipulates the problem, overtake or bypass current solutions’ weaknesses.

5.1 Complexity measurement

Software Engineering has struggled for a long time to derive a comprehensive idea of complexity.

From the early work o f McCabe [Mcca76] and Halstead [Hals77] to the present time, researchers have

struggled to define the idea o f complexity. As with this early work, most theories of software

complexity seek to measure structural properties o f an arbitrary system and hence the measure of

complexity becomes highly correlated with the programming style of the production team. Hence, the

same problem (or specification) when implemented by different programming teams will in general

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

produce significantly different ideas (and values) of complexity. Therefore, we can think of these

complexity measures as attempting to encode the complexity o f the implemented solution rather than

that of the problem statement.

Following work in the “science o f complexity” [Gell95], believes that several different ideas of

complexity exist for software, including but not limited to ideas of structural complexity. What is

required are many different measures of complexity - capturing all o f our intuitive ideas of its entire

definition. Hence, our interest here is not with structural complexity but with system complexity. We

want to consider the system as a black-box, see only the function specification and ask: how complex

is this system (or box)? Clearly, as the system is a black-box, we can only see the external interactions

of the system and hence these will become the sole drivers of our complexity expression. In addition,

as we are dealing with a black-box, our expression will be independent of the implementation; and in

fact will be independent o f the implementation technology. Our viewpoint or model of this facet of

complexity is: how difficult is it to arrive at a complete understanding o f the system? Is system A more

difficult to understand than system B?

This orientation seems to be echoed by many recent directions and ideas from generic complexity

descriptions o f arbitrary artifacts [Pine88], where properties o f the entire system are expressed as an

expression with regard to the system’s boundary. Clearly, we could attempt to measure this concept by

an individual (or a group o f individuals) undertaking the task o f extracting the meaning of an arbitrary

system and measuring their performance or difficulty in achieving their objective. While this approach

is possible, it is in general extremely costing in terms and time and money. Hence, what is required is

a secondary measure or model of this activity, which alleviates these problems.

It is believed that program cloning represents such a secondary model; again we are trying to leam

or understand the behavior o f the system, but this time an automated process is undertaking the task

rather than a human being. As above, our measure o f complexity is the difficulty experienced in this

learning process; and in the cloning system this is represented in two dimensions:

1) The percentage o f the sampled input space correctly modelled. That is: is the clone able to derive

the same output as the original system given the same input? Hopefully, over time this will reach

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

one hundred percent, moving us into our second dimension.

2) The effort o f the learning process for perfectly cloning the target software. This can be simply

re-expressed as the number o f behavioral examples required by the cloning process to reach this

point, for example, in GP, the number of population, maximum generations allowed, the number

of fitness cases and of sub-processes.

Our trials have demonstrated this effects that programs with different complexity require different

effort to achieve a perfect solution. From the Triangle.c to Commission, it is obvious that the target

problems being cloned become more and more complex: from a single output to multiple outputs,

from pure branch structures with simple calculation to mixture of validation checking, branch

structure and mathematical calculation, and from basic data type to the array data structure.

Consequently, the GP searching process had to put on more efforts when finding the perfect solutions:

1) An obvious trend is that suitable fitness cases become more difficult to be determined. In order to

provide suitable evolving environment for GP searching, the fitness cases must not only reflect

every character o f the problem but also emphasize complex conditions or special usages by more

cases. In our cloning practice, we have tried using the decision-table method (see Section 4.3),

giving more cases to conditions under which complex operations are carried out (see Section 4.4),

and restricting the case number for each nonnal condition to avoid local optimization (see

Section 4.5). However, when applying the program-cloning method to automatically express the

entire system for complexity measurement, none o f the above approaches should be adopted for

cases determination. Instead, most o f the fitness cases should be created automatically, e.g.,

created randomly, hence, the more complex the problem, the harder to locate efficient fitness

cases and the more random cases should be created. Hence, it is reasonable to include the number

of fitness cases as one measurement parameter for problem complexity.

2) Further, in order to locate a reasonable solution with limited resources, the whole problem has to

be cut into more sub-problems to be cloned. For example, when cloning Triangle.c, no

sub-problem division is adopted and the cloning process for the whole problem achieves

reasonable results (see Figure 4.1.2); and when cloning Extract.cpp, we divided the entire

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problem into three parts and cloned them sequentially. This division greatly simplifies the cloning

process by avoiding coupling o f variables or operations from the sub-problems and reducing the

primary element set for each sub-problem. Therefore, in order to achieve perfect solutions with

identical resources, e.g., G P’s population number or running time, the more complex the target

problem, the more sub-routines should the problem be divided into during the program-cloning

process.

3) Under certain conditions, special data structures are necessary to be added into the primary

elements to construct solutions. Both program structures and data structures are analyzed in

previous complexity measurements. Although different problems require different primary

elements for solution construction, our trials, in order to achieve generality, adopted a series of

identical primary elements (see Table 4.1.1) for each program-cloning applications. Nevertheless,

for certain problems, shortage of certain elements, e.g., particular data structures or functions,

may result in practical impossibility o f program cloning’s success. Selection of data structures,

terminal nodes and functions can be carried out manually according to the problem specification

or the interface specification. Although the manual selection decreases the automation slightly, it

improves the cloning efficiency significantly. Accordingly, a complexity weight corresponding to

the particular data structure should be considered in the problem’s complexity measurement.

In fact, not only data structures, but also different terminal nodes and functions can express

different information and thus have different levels o f complexity. For example, the assignment

operation is obviously simpler than If-then-else structure; the Loop is generally more powerful

than If-then-else; and array data structure is more complex than basic data types. However, when

assigning different complexity weights to different primary elements, we should also consider the

evaluation time generally required by different elements. When measuring a problem’s

complexity, we consider the total resource (include time) consumed for cloning it, hence when

determine an element’s complex weight, the more time-consuming an element, the more

reduction the complex weight gets. For example, the Loop structure is a little more complex than

If-then-else structure, however the evaluation on it costs much more time than any other function,

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

thus it should has a relative low complex weight in order to avoid assigning too high complexity

to the loop using problems, according to the great amount of computer resource consumed on

them.

Having no practical results applying program cloning to calculate complexity, we do not intend to

provide a detailed measurement method in this thesis. However, the two dimensions of using our

cloning process to measure complexity are supported by and deduced from our trials, and can serve as

basis for further work in this direction.

5.2 Mutant software test

Software Mutants are simply new versions o f a system which possess a deviation from the original. To

date, applications or techniques using mutants have received limited attention. Traditionally, mutants

have been used in mutation testing [Dels79] and have recently begun to become integrated into

commercial testing tools and approaches [Corp96]. In addition, they are starting to find new roles

within Software Engineering; for example, Briand et al. [Brlw02] used them as an input mechanism to

drive exploratory simulations. Traditionally, mutation testing is based upon seeding the original

program with a fault by applying a mutation operator, such as changing an addition operator to a

subtraction operator. We then ask the question: can the test set differentiate the mutated program from

the original? Our basic premise is: given an appropriate set of mutation operators, if a test set

differentiates all the mutants generated by these operators, then since it can differentiate these planned

imperfections, it should also be good at differentiating other unplanned imperfections, i.e. faults.

The principal reason for their limited application is that although mutation is a powerful and very

general technique, a number o f problems are associated with its traditional implementation approach.

For example, the standard set o f mutant operators often leads to a vast number of mutants being

produced; while some progress has been made on this problem [Mrbo99][Oflr96], the issue remains

unresolved. In addition, this mutant operator approach can cause mutants which have infeasible

paths within their formulation making them difficult and sometimes impossible to explore [Ofpa97].

Finally, traditional generation approaches often produce mutants that are syntactically different but

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

semantically identical. Clearly, this causes problems in applications, such as mutation testing, as

these mutants will never be differentiated from the original system. Again, progress has been made in

detecting and removing these semantic equivalent mutants from the production process

[Hahd00][Hihd99] - but further advances are required to enable the technique to surpass this problem.

One o f the advantages o f using genetic programming as a mutant production mechanism is that

we are able to abandon the traditional generational approach. For example, Emer and Vergilio adopted

Chameleon, a generic genetic programming tool [Emve03][Spin01], to produce alternative programs

(mutants). Different from Chameleon (as described in Section 1.2), Program cloning focuses on

producing programs which are generic in function as well as in grammar. Hence, we believe that our

program-cloning method is adoptable to create mutants for general-purpose software. To apply

program-cloning method to mutation testing, we conceive three approaches:

Firstly, the programming-cloning method can be expanded to a program decomposition and

recomposition process. As revealed by our trials, the more correlative the primary components are to

the target problem, the more efficient the GP searching is and the higher quality the final solutions are.

By adding a little program analyzer, which simply abstracts primary elements from original programs

being mutated, into the pre-process of program cloning, we automatically force the cloning process to

become more problem specific. Consequently, the programming-cloning procedure turns into pure

program understanding or problem learning process, and this process learns the behavior of the

original program from its external interfaces, fitness cases, and gains its composing elements from the

program decomposition procedure. A perfect solution o f program cloning is the result of the learning

process. In the same way as human beings, mutant production is based on an understanding of the

problem — the perfect solutions. Mutants can be individuals achieved from mutation operations on

perfect solutions, parents of perfect solutions, or any other imperfect solution, as long as they omit

certain fitness cases. Mutants created this way are guaranteed to be different from the original program

because at least one external behavioral pattern functions differently in the mutants and the original

program.

Secondly, by choosing individuals with different evaluation values, we can produce a spectrum of

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

mutants which differ by varying amounts from the original.

Finally, the possibility also exists for applying genetic programming mechanisms with samples of

the original programs behavioral patterns which themselves have been mutated to introduce further

mechanisms to differentiate the original from its mutants.

5.3 N-Version software design

Today there exist many systems where failure or malfunction can lead to disastrous situations

potentially resulting in the loss o f human life. Computers and their associated software are

increasingly being used to control critical operations in many fields. Examples can be found in the

aerospace, energy, medical and defense industries. The software controlling these systems must be

reliable and safe. Unfortunately, current practices fail to guarantee such qualities. All current

approaches produce software which has a number o f faults contained within it. To counteract these

deficiencies practitioners employ software fault tolerance techniques. These techniques work by

providing additional copies of the functional components, these copies are functionally equivalent; but

are derived by a different process from the original. It is hoped that the copies will not contain the

same faults as the original and hence regardless o f the situation at least one copy should produce the

correct solution.

Traditional fault tolerance techniques fall into two categories: design and data diversity. Data

diversity techniques first appeared in an excellent paper by Amman and Knight [Amkn88],

Unfortunately these techniques have failed to progress from this starting point. On the other hand

design diversity techniques have received a great deal o f attention [Lyhe93][Torr00], Both fault

tolerance strategies can be subdivided into two sub areas: static and dynamic.

The most common manifestation of static fault tolerance is N-version programming. From an

initial specification, N functionally equivalent implementations are derived, usually by different

programming teams. These N versions are subsequently executed in parallel, with each version

receiving identical inputs. At various points during the execution, the outputs of the N versions are

compared and a decision mechanism decides by consensus what the correct output is given the N

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

opinions. The decision mechanism subsequently sends a status indicator to each version after

comparison o f the results. Typical indicators are continue, continue after altering output to the

consensus result or terminate.

Dynamic fault tolerance also works by supplying redundant components. The main difference is

that these components only come into action after an error has been found. Typically this technique

has four phases o f operation: error detection, damage confinement and assessment, error recovery and

fault treatment and continued service. Perhaps the best known and simplest dynamic fault tolerance

scheme is the recovery block. Recovery blocks are traditional blocks as seen in most programming

languages except that the entrance is an automatic recovery point and the exit an acceptance test. The

acceptance test estimates if the block's calculations have resulted in an acceptable output. If so, the

block finishes. If not, the block is retried with an alternative module (sometimes offering a degraded

service) attempting the computation. This is repeated until a suitable output is found or no more

alternative blocks remain. Each technique has its advantages and disadvantages and they can also be

considered as complementary. Both techniques have their analogues in the data diversity area.

All of these approaches suffer from a common issue - that of producing a clone (or functional

equivalent) or clones of the original system or sub systems. Clearly, if undertaken manually this has

massive cost implications. Also, the manual approach suffers from the fact that it is common for

programmers to produce the same solution to the problem, thus negating any advantage from the

approach [Rnle86]. (Commonly referred to as the “independence assumption”.) This problem is

further exacerbated - if the programmers involved in producing the alternative version are the

producer’s o f the original version. (The same type o f problem can be found in the production of other

pieces of software, such as exception handlers and unit testing code.) If these techniques are to

progress and become mainstream production approaches, these two issues need to be resolved.

Unfortunately, it is difficult to see that any possibility exists to resolve these problems via traditional

human-oriented production means and mechanisms. In order to resolve these problems, the alternative

version or versions need to be produced automatically, or at least semi-automatically, which, we

believe, can be implemented by our program-cloning method.

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

With the purpose of simulating the independent design process for additional versions o f a

problem, we assume that the precondition of program cloning is the detailed problem specification.

Problem knowledge is deduced from the specification, and according to it the functional set and

terminal set are determined. The fitness cases, which should reflect the full functional behaviors of the

target block being N-version designed, are also deduced from the problem specification. The same

functional set and terminal set, which directly echo the problem specific knowledge, can be adopted

when cloning different versions o f the program. However, the fitness cases, which are volatile, should

be independently deduced from the function specification for cloning each version o f the program. To

create additional versions for complex problems, dividing the whole problem into several

sub-functions is generally helpful in order to achieve high quality solutions. Although the problem

dividing operation is carried out manually, our trials revealed that the little sacrifice on automaticity

benefit the program-cloning process significantly, and moreover, computer aided tools can alleviate

the manual load. It is believed that to create a program’s different versions, different problem-dividing

processes are desired. The more formal the problem specification, the easier the program-cloning

process combines with the computer aided tools.

5.4 Test first

In recent years, an alternative approach to software production has emerged - agile (or lightweight)

methodologies. While several approaches exist under this banner, the movement has been dominated

by the Extreme Programming (XP) approach [FowlOO]. XP consists of about a dozen practices which

are integrated together to produce the new methodology. These practices place a strong emphasis on

testing and XP requires that testing becomes the foundation of the development process [Beck99] with

every programmer writing tests as a precursor to writing their production code [Beck02].

The approach to production again creates a possibility for interaction with the genetic

programming system. By producing tests for the system, the programmer is producing a mechanism to

allow us to view and interact with the external behavior o f the system. In XP the tests effectively act as

the specification o f the system and are clearly executable; hence the genetic programming system has

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the opportunity to automatically produce the system given the test code. Clearly, the code is unlikely

to possess the same “quality characteristics ” as code produced by a human programmer, but stylistic

issues have less importance in this initial version (of the system) within an XP environment. In XP, the

role of the initial version is simply to successfully pass the test case; subsequent to passing, the code

will be refactored by a programmer to produce a final (high quality) version (or at least an initial final

version - as further refactoring is likely) of the system. Alternatively, the code may not be used

directly, but could simply be supplied to the programmer as a mental assistance in solving the

production problem.

5.5 Test data evaluation

A question related to the testing activity, is to know whether a program has been tested enough or

when to stop testing [Rawe85] [Emve03], One direction is to adopt certain models to evaluate the

efficiency o f the current testing process. For example, Dalai and Mallows [Dama88], present a

strategy for successive determination, based on the distribution of the fault-finding rate deduced from

severity o f bugs and the time interval to find them. Another direction is test data evaluation. Related

techniques include statistical testing [Mill72] and mutation analysis [Demi78]. Statistical testing

estimates the remaining errors in the software under test (SUT) by seeding errors into it, applying test

data to it, and calculating estimate errors based on the number o f the seeded/unseeded errors

discovered. Mutant analysis is based on mutation testing and rests on two assumptions that the SUT is

almost correct and tests that uncover simple errors can also uncover deeper errors.

One problem with mutation analysis is the expensive cost on creating mutants for the SUT, and in

the second section o f this chapter, we have provided a solution o f using the program-cloning method

to automatically create mutants. However two other problems exist in the above statistical testing.

Firstly, suitable error seeds, each o f which focuses on the problem’s different aspects and aims to

different problems that may be exist in the testing process, are difficult to be located, and the

traditional manual approach is time costing. Secondly, as the direct product of human intelligence,

software may include complex behavior, in contrast, statistical methods are always inclined to

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

simplify the target problems, thus different models used to measure the testing efficiencies can make

dramatically different results.

As a way bypassing the above problems, the program-cloning method provides a new approach

for test-data evaluation and consequently provides conditions for making decisions to stop or continue

the current software testing process. Our method is illustrated by Figure 5.5.1.

Exam ine

R andom ly createi

. test cases .
under test

Software

M odulize
----------- ► Conclusion

Figure 5.5.1 Test data evaluation

As shown by the figure, we assume two preconditions: the software under test (SUT) and the test data

being evaluated. Through program cloning under the environment of the test data, a clone of the

original code is produced, and its quality, revealed by our trials, mainly depends on the fitness cases

(the test cases being evaluated). Thus the more mature and efficient the test data, the higher quality the

clone is. In the following step, a great number o f random test cases are created and evaluated by both

the original program and the clone; and by comparing their outputs, we measure the quality of the

clone, according to which the quality of the test data being evaluated is deduced.

For example, the SUT is Triangle.c (see Figure 2.3.1), and the test data being evaluated are:

i: {30,38,25, 49,47,82,18, 0,49,40,26,67,75,54,50,-80,75,88,59, 57,40,84,45, 96,26,69,46, 97,59,27,

50,5, 61,3,60,-39,14,72,95, 0,43,95,74, 39,75,52,17,176,93,72,13, 32,8, 47,40,90,52,47,15,4},

j: {72,67,25, 95,37,82,18,-34,56,40,26,28,19,28,50, 34,97,88,59,130,44,84,45,192,27,22,46,111,86,93,

50,96, 82,2,60,-29,67,66,95,94,76,36,74,108,83,52,17,86,67, 79,13,131,35,69,40,88,29,86,15, 0},

k: {49,67,25,161,38,30,18,-85,22,65,26,32,93,54,50, 44,49,47,59, 56,80,12,45, -19,22,69,46, 3,67,93,

50,111,63,3,60, 3, 61,72,95,75,58,95,74, 67,71,63,17,73,46, 72,13, -.2,41,69,40,181,65,86,15,99},

tri: {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2,

3, 4, 1,2,3, 4, 1,2, 3,4, 1,2, 3, 4,1, 2,3,4, 1,2, 3, 4, 1,2, 3,4, 1, 2 ,3 ,4}

99

evaluated

Program C lone o f the Com pare Statistic

'C lo n in g original code O utputs Result

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Note that one condition missed by the above test data is that when k equals 0, tri is 4; so, generally, an

ideal clone program created according to the defective test data set is an mutant o f the original one,

which can be expressed with the form:

triangle body 1 + “i f ((i<0) || (/<=6) | |(k<=-2)) ”+ triangle body 3, where the triangle body 1

includes Triangle.c's first 2 lines o f code, triangle body 3 includes Triangle.c\ lines o f code after the

third line, and “i f ((i<0) || (j<=0) | \(k<--2)) ” is a mutant of Triangle.c's third line, “i f ((i<0) ||

(j<=0) | | (k<=0)) In the following step, a series o f random test cases are created by Triangle.c, and

they are:

i: {-11, 0, 21, 21, 21, 91, 31, 11, 9, 31, 61, 31, 61, 51, 51, 31, 61, 51, 81, 31, 11, 31, 11, 72, 71, 31, 41,

31, 41, 91, 82},

j: {21, 91,-11, 0, 31, 81, 31, 11, 9, 31, 61, 51, 51, 31, 61, 41, 41, 31, 61, 41, 31, 72, 71, 31, 11, 31, 41,

91, 82, 31, 41},

k: {31, 21, 31,-11,-11, 0, 31, 11, 9, 51, 51, 31, 61, 31, 61, 51, 81, 41, 41, 72, 71, 41, 31, 41, 31, 91, 82,

31, 41, 31, 41},

tri; { 4, 4, 4, 4, 4,4, 3, 3, 3, 2, 2, 2, 2, 2, 2, I, 1, I, I, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4}

When we applying these test cases on the clone program, the sixth case creates an output 1, which is

different from the standard result 4. This different is detected by the comparing procedure, and the test

data under evaluation are proved to be inefficient.

5.6 Automatic test data generation

Another application for the program-cloning method is automatic test data generation. Test data

generation is the most important and difficult part in software testing domain [Ould91], In recent years,

automatically providing test data by genetic algorithms, such as GA, simulation annealing and taboo,

seems to be a hopeful direction, and many researches have got achievements in this domain

[Mims01][Trac00][Watk95], GP, as an efficient machine learning approach, has also been tried in

software testing [Emve03], yet to date, none has successfully applied GP to automatically generate test

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

data. The problem is: 1) when the genetic algorithms or other methods are adopted to automatically

create test data, the expected outputs of the algorithms are a set of test cases for the software under test;

and 2) the output solutions produced by GP algorithm are executable programs, which results in the

difficulty of representing and providing test data directly.

Using the program-cloning method, we can produce a solution that overcomes the above problems.

In our method, the output of GP’s automatic test data generator is not the test cases, but a program,

acting as a test-data generation. This test data generator works according to the logic in the problem

specification, or in other words, the created test data generator includes all function logic of the target

problem, according to which, the test data are produced. This idea comes from inspiration by the

manual process for test-data designing and the symbolic-execution method for software testing. In

both approaches, the software under test or the target problem are studied and understood in either

intelligent or mechanical way; and consequently, the test data are designed based on the understanding

of the problem or program. Correspondingly, in our method o f cloning the test data generator, the

software under test (SUT) is learned and understood by the GP algorithm, and then, a test data

generation mechanism, the created test data generator, is established based on the understanding of the

problem.

The main idea o f this method is described as the following: A test data generator (TDG) is a

program which produces test data for a particular SUT (software under test) according to its internal

logic. The internal logic, in order to work along with the TDG, is hard coded into TDG’s program.

Conventionally, people can create such a TDG program manually and include the SUT’s logic based

on personal understanding o f the target problem. A test data generator in this style is very efficient, but

also very costly and may have similar logic errors as that in the SUT. Fortunately, with program

cloning, a program, instead of human, can understand the target problem automatically and then create

TDGs.

In the concrete implementation of this method, each individual in GP can be wrapped in a

particular routine frame to form a TDG, or each individual can represent a series o f components

instancing the routine frame. For example, the test data generator for Triangle.c in Figure 5.6.1 is a

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

manually created program, its lines of code in plain text compose the framework to construct TDG and

the lines o f code in italic and bold are contents being searched with the program-cloning method. The

objective function for each individual is the statement/branch coverage, and this objective function can

be achieved by dynamically running the SUT using test cases generated by this TDG individual.

Suitable terminal/function types for constructing the TDG can be deduced by analyzing the SUT. The

whole method is illustrated by Figure 5.6.2.

package apgp;

im port apgp.util.*;

public class C reateTriangleTestC ases {

public static void m ain(String(] args){

if(args.ieng th< l) [

S ystem .out.p rin tln f'java C reateTriangleTestC ases n");

System. exit(O);

1
f

M ersenneTw isterFast random = new M eisenneTwisterFast((int)System .currentTim elVItllis());

int n = new lnteger(args[0]).intV alue();

int’QD inputs = new int[3][n];

intf] outputs ■■ new int[n];

float fr -- 0;

for(int i=0;i<n;i++){

outputs[i] = i% 4 + 1;

int a=0)b=0,c=0;

sw itch (outpu ts[i]){

case I:

do (

a = randoni.nex.tlnt(100)+l;

b ■■■■■■■■ random .nextInt(100)+1;

c = random .nextln t(100)+1;

}\vhilefia+6 <= c || a+c <= b || c+b <= a);

inputs[0][i] = a;

in p u ts[l][i] = b;

inputs[2][i] = c;

break;

case 2:

do{

a = random .nextint(100)+!;

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

b = random .nextlnt(100)-'-l;

} whiie^fl+fl <= b || b == a);

f r = random .nextF loatQ ;

if(fr<0.3333f){

inputs[0][i] = a;

in p u ts[l][i] = a;

inputs[2][i] = b;

je ls e if(fr<0.6667f){

inputs[0][i] = b;

in p u ts [l][i] = a;

inpu ts[2][i] = a;

}e ls e {

inputs[0][i] = a;

in p u ts [l][i] = b;

inpu ts[2][ij = a;

}

break;

case 3:

a = ran dom .n ex tln t(100)+ l;

inpu ts[0][i] = a;

in p u ts [l][i] = a ;

inputs[2][i] = a;

break;

case 4:

i f (i% 7 = 0) { / /< = ()

a = - random .nextlnt(lOO);

b = random. nextln t(200) - 100;

c = random .nextln t(200) - 100;

}

e lse{ / / a+b <= c

b = ran dom .nextIn t(l 0 0)+ l ;

c = ran dom .nextln t(100)+] ;

a = c+b+random .nextln t(20);

}
f r = random .nextFloatQ ;

if(fr<0.3333f){

inputs[0][i] = a;

in p u ts[l][i] = b;

inpu ts[2][i] = c;

}
else if(fr<0.6667f){

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

inpu ts[0][i] = c;

in p u ts[l][i] - b;
inputs[2][i] = a;

}else{

inputs[0][i] = b;

in p u ts[l][i] = a;

inputs[2][i] = c;
!
f

)
i

//present int[][] inputs, intf] outputs

StiingB ut'fer sb = new StringBuffer():

fbrfint i=0;i<inputs,iength;i++) (

sb.append("{");

for(int j=0;j<inputs[0] .length J + +) {

sb.append(inputs[i][j]);

if(j != inputs[OJ.length i)

sb .appendf,');

else

sb.append(')'):
!

if(i !■= inputs.length - 1)

sb.append(V);

else

sb.append(" j ;\n");

S
j

sb.append(’{'):

for(int i=0;i<outputs.length;i++) 1

sb,append(outputs[I]):

iffi !~ outputs.length - 1)

sb.append!

else

sb.append("};");

1
i

System , out. print In(sb):

F igure 5.6.1 H and-w ritten test data generator for Triangle.c

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A nalysis Wrap
Function/ Test Data

Term inal set

No

Statem ent Yes

Coverage

Is the coverage

high enough//.
TDG

Program

cloning individuals

TDG

Figure 5.6.2 A utom atic test data generation

While our trials focus on the program-cloning technique itself, all of the possible applications are only

conceived by theory. Nevertheless, we believe in that the program-cloning method may benefit these

domains as we described.

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusions and Future work

6.1 Conclusion

In this thesis, we have described our experiments with program cloning and analyzed its potential

applications in software engineering. From what has been discussed in the previous chapters, we can

conclude that program cloning, as an application o f GP, is a theoretically and practically sound

approach for solving software engineering problems.

From the point o f view o f GP’s application, the basic concept o f program cloning (defined in

Section 1.2) directly expands GP’s ability o f automatic creating solutions from restricted problems to

arbitrary problems as long as they can be solved using a program. Our samples have shown its

possibility and practicability by simulating programs for diverse problems. These sample problems,

which have different levels o f complexity and can be reflected by inputs/outputs profiles, are very

general. Different from the conventional problems created by GP, they can be expressed in any

high-level computer language and serve a wide variety of purposes, i.e., the programs that program

cloning create are more general and have greater similarity to those produced by programmers.

Besides the long-term purpose of using program cloning to replace part o f programmers’ work on

general-purpose coding, the program-cloning technique can also benefit a number o f domains in

software engineering. In Chapter 5, we have listed 6 possible applications: complexity measurement,

software mutant creation, N-version design, test first, test data evaluation and automatic test data

generation. However, we believe that along with the developing of the program-cloning technique,

more applications may be discovered. Thus, program cloning is not only a GP application but also an

extension o f GP and an approach for software engineering.

As an application o f GP, program cloning does not introduce a new algorithm to automatically

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

produce programs. However, one important contribution o f this work is the practical experiments in

translating the potential possibility that GP can be adopted to create general-purpose programs into

reality. As well, a trial version of a program-cloning specific GP package was implemented, and

during the implementation process, practical methods which fit GP into the program-cloning problem,

such as exception handling, sub-function division and constant handling, were devised, tested and

applied successfully in our trials. Simultaneously, a number of general approaches in G P’s application,

such as strongly typed restraining, fitness calculating and genetic-operation-rate configuring, all of

which focus on increasing G P’s efficiency, were improved, tested and successfully applied in our

trials.

6.2 Future work

In this thesis, the concept of program cloning is proposed not as a solution for a concrete problem, but

as a potential approach which might have wide applications in software engineering. This thesis has

just stated the reportable work o f program cloning; a number of future directions require to be

explored.

First, the program-cloning technique itself requires constant improvement. In our trials, only 24

basic programming elements are experimented with for constructing the target programs. Among these

24 programming elements, structure controlling operations include only 4 usages: If-Else-Then,

Sequence, Loop and Exception', data type manipulation considers basic data types, No-type and Array,

and other programming operations include 5 arithmetic operations, 3 logical operations, 5 numerical

comparisons 1 assignment operation, and constant and parameters and output facilities. In GP

searching process for a target program, many other basic elements for programming such as switch

and break can help construct an ideal program. The programs being cloned in our experiments were all

small and simplified in function. Complex and large programs, although they can be simplified by the

sub-function dividing method, may expose new challenges in program cloning. Furthermore, when

defining the Array structure for the commission problem, we found that by using objects, data

structures can easily be implemented and transformed into GP’s primary elements. We believe,

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

object-oriented programs can be understood and cloned as easy as structural programs.

In the trial version implementation of GP package, limited GP behavioral approaches such as

strong typing [Mont95] were adopted and customized for the program-cloning problem; in future

work, many other approaches, such as individuals-diversity monitoring, distributed GP searching,

individual editing [Koza92] and computational effort statistics, can be tailored and serve the

program-cloning problem, which will not only accelerate the program-cloning process but also

improve the solution-programs’ quality.

Second, practice is needed for applying program cloning to the software engineering domain. As

we described in Chapter 5, program cloning can be applied in a series o f domains in software

engineering as a general approach for program/problem understanding and representing. Through

theory discovery based on our trial results, we proposed six potential applications: complexity

measurement, software mutant creation, N-version design, test first, test data evaluation and automatic

test data generation. Among them, software mutant creation, N-version design, test first and test data

evaluation adopt the program-cloning process in a direct and simple way. Hence the research on them,

especially on the software mutant creation problem, is relatively easy. Similar work which applying

GP in mutation testing has been carried out by Vergilio’s group [Emve03]. Adopting program cloning

for complexity measurement (see Section 5.1) is well supported by our trials. However, its

actualization is a little more complex than that for other domains, and by now, we can only conjecture

two measurement guidelines for implement. Adopting program cloning to complexity measurement

requires a more mature program-cloning technique. Automatic test data generation, although complex

in itself, requires less from the program-cloning technique than complexity measurement. When

applying program cloning to automatic test data generation, we need to run the software under test

(SUT) as a source o f feedback instead o f design fitness cases to provide GP evolving environment;

and we also assume that distributed computing is definitely helpful in the implementation of this

problem.

Finally, as mentioned in Chapter 1, introduction, we have left the problem aside that a cloned

program should be expressed in arbitrary languages. A post processor, which translates the solution

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

programs into any language, is expected to function after the main program-cloning process. In GE

[OneiOl], because the solution programs are created according to the syntaxes defined by BNF, work

on such a post processor is straightforward. In our work on program cloning, individuals were created

strictly according to a series o f syntaxes as well, yet the syntaxes themselves were not defined and

expressed systematically. To compensate for this point, BNF can be borrowed into program cloning’s

syntax definition. BNF for many popular languages, including C, C++ and Java, are ready and pretty

mature, and the work o f combining it with program cloning will not only simplify the post processor

but also assist in program cloning’s syntax definition.

Through this thesis, we have proposed the program-cloning method as a promising program

understanding approach. Program cloning’s work principles and implementing issues which are based

on GP algorithm have been demonstrated. A series o f trials which adopt program cloning to

automatically create solution programs for their target problems have been described. Furthermore, we

discussed program cloning’s potential applications and proved that program cloning is a hopeful

research direction in software engineering.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[Amkn88]

[Ange98]

[Bafn96]

[Banz02]

[Beck02]

[Beck99]

[BlbrOl]

[Brlw02]

[Broo86]

[BuhtOO]

Ammann, P.E. and Knight, J.C., Data diversity: An approach to software fault tolerance,

IEEE Transactions on Computers, 37, pp. 418--425, 1988.

Peter J. Angeline. Subtree crossover causes bloat, n John R. Koza et. al., editors, Genetic

programming 1998: Proceedings of the Third Annual Conference, pp745-752, Wisconsin,

22-25 July 1998. Morgan Kaufmann.

W. Banzhaf, F. Francone, and P. Nordin, "The effect of extensive use o f the mutation

operator on generalization in genetic programming using sparse data sets," In Proc. 4th

Int. Conf. on Parallel Z. Problem Solving from Nature PPSN-96, W. Ebeling, I.

Rechenberg, H.-P. Schwefel, H. M. Voigt Z. eds. , Springer: Berlin, 1996, pp. 300-309.

Wolfgang Banzhaf, William B. Langdon: Some Considerations on the Reason for Bloat.

Genetic Programming and Evolvable Machines 3(1): 81-91 (2002).

K. Beck, Test Driven Development: By Example, Addison Wesley, 2002.

K. Beck, Extreme Programming Explained: Embrace Change, Addison Wesley, 1999.

S. Bleuler, M. Brack, L. Thiele, E. Zitzler. Multiobjective Genetic Programming:

Reducing Bloat Using SPEA2. Congress on Evolutionary Computation (CEC-2001), pp

536-543, May 2001.

L. Briand, Y. Labiche, Y. Wang, Using Simulation to Empirically Investigate Test

Coverage Criteria Based on Statecharts, Technical Report SCE-02-09, Carleton

University, October 2002.

Frederick P. Brooks, Jr. No Silver Bullet Essence and Accidents o f Software Engineering,

Information Processing 1986, ISBN No. 0444-7077-3, H. J. Kugler, Ed., Elsevia Science

Publishers B.V. (North-holland) IFIP 1986.

Bull, L., Hurst, J. & Tomlinson, A. (2000) Self-Adaptive Mutation in Classifier System

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[Chtz02]

[Coll03]

[Corp96]

[Dama88]

[Dels79]

[Demi78]

[Emve03]

[FowlOO]

[Gell95]

[Gibb94]

[Gito02]

[Gumn96]

Controllers. In J-A. Meyer, A. Berthoz, D.Floreano, H. Roitblatt & S.W. Wilson (eds)

From Animals to Animats 6 - The Sixth International Conference on the Simulation of

Adaptive Behaviour, MIT Press, pp 460-467, 2000

T.Y. Chen, T.H. Tse, Z. Zhou. Semi-Proving: an integrated method based on global

symbolic evaluation and metamorphic testing. ACM Press, New York, pp. 191-195, 2002.

Terry Colligan, There is No Silver Bullet for C Programming Problems,

http://www.tenberry.com/ic/nosilver.htm. October 2003.

Parasoft Corporation, Mutation Testing: A New Approach to Automatic Error-Detection.

http://www.parasoft.com/jsp/products/article.jsp7articlekN291, 1996

Dalai, S.R. and Mallows, C.L., When should one stop testing software, Journal of

American Statistical Association, 83:872-879, 1988.

R. Demillo, J Lipton, F Sayward, Program mutation: a new approach to program testing,

Infotech State o f the Art Report, Software Testing, Volume 2, pp. 107 - 126, 1979.

Demillo, R.A., Lipton, R.J. and Sayward, F.G, Hints on test data selection: Help for the

practicing programmer, Computer 11, 4, 34-43, 1978.

M.C. Emer and S.R. Vergilio, Selection and Evalutation o f Test Data Based on Genetic

Programming, Software Quality Journal, 11, 167-186, 2003.

M Fowler, The New Methodology,
http://www.martinfowler.com/articles/newMethodology.html, 2000.

Gell-Mann, M, What is complexity, Complexity, Vol. 1, No. 1, pp 16 -19, 1995.

W. W. Gibbs. Software's chronic crisis, Scientific American (International Edition), pages

72-81 , Sept. 1994.

Giacobini M. and Tomassini M. 'Limiting the Number o f Fitness Cases Using Statistics',

in 'Proceedings o f the 2002 Genetic and Evolutionary Computation Conference

Workshop Program’, Alwyn Barry Ed., New York City (New York, USA), 2002.

Carl Gunter, John Mitchell and David Notkin, Strategic Directions in Software

Engineering and Programming Languages, ACM Computing Surveys, Vol. 28, No. 4,

December 1996.

Ill

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.tenberry.com/ic/nosilver.htm
http://www.parasoft.com/jsp/products/article.jsp7articlekN291
http://www.martinfowler.com/articles/newMethodology.html

[HahdOO]

[Hals77]

[Hihd99]

[Jorg02]

[Knle86]

[Koza92]

[Kush02]

[Lapo97]

[Luke02]

[Lupa02]

[Lyhe93]

[Mcca76]

[Mill72]

[MimsOl]

M. Harman, R. M. Hierons and S. Danicic, 2000, the relationship between program

dependence and mutation testing, Mutation 2000, pp. 15-23, 2000.

Halstead, M.H., Elements of Software Science, New York, Elsevier North-Holland, 1977.

R.M. Hierons, M. Harman and S. Danicic, Using Program Slicing to Assist in the

Detection of Equivalent Mutants, The Journal o f Software Testing, Verification, and

Reliability, 9(4), pp. 233-262, 1999.

Paul C. Jorgensen, Software testing - A craftsman’s approach, 2nd edition, Chapter 2,

Examples: p 17 - p 26, CRC Press TLC, 2002.

Knight, J.C., Leveson, N.G., An experimental evaluation o f the assumption of

independence in multiversion programming, IEEE Transaction on Software Engineering,

Vol. 12, No. 1, pp. 96 - 019, 1986.

J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

Ibrahim Kush, Genetic Programming and Evolutionary Generalization, IEEE Trans.

Evolutionary Computation, Vol. 6, No. 5, October 2002.

W. B. Langdon and R. Poli, “Fitness causes bloat,” in Soft Computing in Engineering

Design and Manufacturing. P. K. Chawdhry, R. Roy, and R. K. Pant (eds.),

Springer-Verlag: London, 1997, pp. 13-22.

Sean Luke, http://www.cs.umd.edu/projects/plus/ec/ecj, Jan 2002.

S. Luke and L. Panait. Fighting bloat with nonparametric parsimony pressure, Parallel

Problem Solving from Nature, International Conference 7th: pp 411- 421, Jan 2002.

Lyu, M. R. and He, Y., Improving the N-Version Programming Process Through the

Evolution o f a Design Paradigm, IEEE Transactions on Reliability, Vol. R-42, 1993, pp.
179-189.

McCabe, T., A Complexity Measure, IEEE Transactions on Software Engineering, SE-2,

No. 4 (December): 308-20, 1976.

Mills, H.D., On satatistical validation o f computer programs, IBM Rep. FSC72-6015,

Federal Systems Devision, IBM, Gaithersburg, Md, 1972

Christoph C. Michael, Gary McGraw and Michael A. Schatz, Generating software test

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.umd.edu/projects/plus/ec/ecj

[Mirc04]

[Mont95]

[Mrbo99]

[Oflr96]

[Ofpa97]

[OneiOl]

[OnryOl]

[Ould91]

[Pine88]

[Rawe85]

[Recm03]

data by evolution, IEEE transactions on software engineering, vol. 27, NO. 12, December

2001 .

James Miller, Marek Reformat, Xinwei Chai, On the possibilities of (pseudo-) software

cloning from executable specifications or source code, Empirical Software Engineering,

Under Review

D.J. Montana. Strongly typed genetic programming. Evolutionary Computation, 3(2):

199-230, 1995.

Mresa E. S. and Bottaci L., Efficiency of Mutation Operators and Selective Mutation

Strategies: An Empirical Study, The Journal o f Software Testing, Verification, and

Reliability, 9(4), pp. 205-232, 1999.

Offut A. J., Lee A., Rothermel G., Untch R. H. and Zapf C., An experimental

determination of sufficient mutant operators, ACM Transactions on Software Engineering

and Methodology, 5(2), pp.99-118, 1996.

J. Offutt, J. Pan, Automatically Detecting Equivalent Mutants and Infeasible Paths, The

Journal o f Software Testing, Verification, and Reliability, 7(3), pp. 165 -- 192, 1997.

O ’Neill M. Automatic Programming in an Arbitrary language: Evolving Programs with

Grammatical Evolution. Ph. D. thesis, University o f Limerick, 2001.

O'Neill M., Ryan C. Grammatical Evolution. IEEE Trans. Evolutionary Computation, Vol.

5 No. 4, August 2001.

M. Ould, "Testing—a challenge to method and tool developers," Software Engineering

Journal, vol. 6, pp. 59-64, Mar. 1991.

Pines, D., Emerging synthesis in science, Addison-Wesley, 1988.

Rapps. S. and Weyuker, E.J., Selecting software test data using data flow information,

IEEE Transactions on Software Engineering SE-11(4): 367-375, 1985.

Marek Reformat, Xinwei Chai and James Miller, Experiments in automatic programming

for general purposes, Thel5th IEEE International Conference on Tools with AI, Nov.

2003

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[Sofd96]

[Soul98]

[SpinOl]

[Tean97]

[TorrOO]

[TracOO]

[Vard91]

[Watk95]

Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic

programming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,

editors, Genetic Programming 1996: Proceedings o f the First Annual Conference, pages

215-223, Stanford University, CA, USA, 28-31 July 1996. MIT Press.

T. Soule. Code growth in genetic programming. PhD thesis, University o f Idaho. 1998.

Spinoza, E. et al. Chameleon: A generic tool for genetic programming, In Proceedings of

the Brazilian Computer Society Conference, Forteleza, Brazil, August 2001.

Astro Teller, David Andre, Automatically Choosing the Number o f Fitness Cases: The

Rational Allocation of Trials, Genetic Programming 1997: Proceedings of the Second

Annual Conference, pp 321—328, 1997.

Torres-Pommales, W., Software Fault Tolerance: A Tutorial, NASA/TM-2000-210616,

2000 .

Nigel James Tracey, A search-based automated test-data generation framework for

safety-critical software. September 2000.

Vardi, I. "The 3x+l Problem." Ch. 7 in Computational Recreations in Mathematica.

Redwood City, CA: Addison-Wesley, pp. 129-137, 1991.

Alison Lachut Watkins., The automatic generation o f test data using genetic algorithms.,

Proceedings of the 4th Software Quality Conference, 2:300-309, 1995.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CURRICULUM VITAE

Xinwei Chai
E-mail: chaixv@ece.ualberta.ca

W5-040 9107-116 Street Edmonton, Alberta, Canada T6G 2V4

E ducation

Jan. 2002 - Dec. 2003 MSC Electrical & Computer Engineering
University o f Alberta, Canada

Aug. 1991 - Jul. 1995 BENG Computer Science and Technology
Xidian University, China

P rofessional experien ce

Nov. 1996-Jul.2001 Software Developer

Designed and developed E-Commerce-solution products focusing on middle tier
components and security mechanism, developed embedded software for consumptive
electronic products

Jul. 1995 - Oct. 1996 Assistant Project Engineer

Designed and configurated distributed control systems based on mature DCS products,
supervised projects and provided clients maintains

Research:

The research interests lay in the area of software Engineering such as Automatic Software
Testing, Automatic Programming, Software Quality Assurance, Software Process and
Modeling and Software Security, as well as Evolutionary Algorithms such as Genetic
Algorithm, Genetic Programming and Simulated Annealing

Publications:

♦ Marek Reformat, Xinwei Chai and James Miller, Experiments in automatic
programming for general purposes, The 15th IEEE International Conference on Tools
with AI, Nov. 2003

♦ James Miller, Marek Reformat, Xinwei Chai, On the possibilities of (pseudo-)
software cloning from executable specifications or source code, Empirical Software
Engineering, Under Review

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

mailto:chaixv@ece.ualberta.ca

