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Abstract

In this study, we explore how the functional response framework can be imple-

mented in pest management. Here, managers take the role of predators foraging

on pests and facing monetary costs for survey and control in a spatial domain

where the pest distribution and control strategy do not have to be random.

To investigate this framework quantitatively, we simulated various manage-

ment processes on different pest spatial distributions using a spatially-explicit

individual-based model and Monte-Carlo simulations, and also confirmed some

of the results analytically. By graphing the number of pests controlled versus

pest density, we obtained management functional response curves. Whether

the management functional response was shaped like a type I, type II or type

III functional response depended on the management costs and the search area.

However, the management spatial strategy and the pest spatial distribution had

little effect on the functional response. We applied our model to the manage-

ment of mountain pine beetle epidemic in Cypress Hills, Saskatchewan, Canada,

with simulations matching the real number of attacked trees controlled by man-

agers. We showed how to make an analogy between functional responses in

predator-prey interactions and in human-pest interactions and thereby, apply

insights from the functional response framework to pest management.
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1. Introduction

The functional response framework characterizes predator-prey interactions

by the relationship between prey density and the number of prey captured by3

a predator (Holling 1959a). In this well-defined framework, time acts as a

limitation: authors typically consider temporal costs, such as handling time,

which, when large, decreases the number of occasions for prey capture. In the6

functional response literature, researchers usually study pest management in

two ways. First, in the context of biological control, a predator is a means of

management (e.g. Mills and Getz 1996; Van Den Berg et al. 1997). Functional9

responses are then used in the usual way to describe a biocontrol response to

the pest level. Second, management is added to a predator-prey system by re-

moving either predator or prey at a given rate. When management is added to12

models in this way, the functional response usually does not vary except if the

control method affects predators or prey behaviour or if the ratio between prey

and predator abundance affects the number of prey captured (e.g. Liu et al.15

2006; He et al. 2012).

An alternate way to model the direct influence of management on pests using

functional responses would be to consider managers physically removing or con-18

trolling a pest as predators. Although they deal with a resource and not a pest,

fisheries models, using harvesting effort or harvest rate, are a first step into

describing the effect of management on a resource using a linear relationship21

(Sutherland 2001). However, to our knowledge, the theory of manager func-

tional responses displaying various shapes has not been previously proposed or

tested. Applying functional response literature to human-pest systems would24

be powerful as there is an extensive functional response theoretical background.

Could human-pest interactions be treated as predator-prey interactions in a

functional response framework? Managers and predators tend to have similar27
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behaviours in this context: both wish to remove the maximum possible number

of prey/pests; both have limitations, whether temporal or monetary, preventing

them from maximizing the number of prey/pests they capture (Hassell 1978);30

both face complex spatial distribution of prey/pest population; and both may

employ a variety of search strategies. In this study, we will explore the functional

response types obtained under the assumption that managers take the role of33

predators, pests take the role of prey, and monetary costs constrain managers

in a similar way that temporal costs constrain predators. For example, the pest

handling cost for a manager can be shown to be equivalent to the prey han-36

dling time for a predator in the functional response formulation. Although time

plays a major role in management, we argue that, at the scale of a management

season, monetary costs are the most important limiters of management success;39

mostly because the time alloted to management directly depends on budget.

Although functional response theory usually concerns a random search in an

homogeneous domain, spatial heterogeneity is usually considered as a norm in42

the environment (Levin 1992; Gustafson 1998) and should be studied for re-

alism. Spatial patterns are usually classified as regular, random or clustered

(Hopkins and Skellam 1954). A regular spatial pattern would look like points45

on a grid whereas a clustered, or aggregated, spatial pattern would feature iso-

lated groups of points in space. In each case, the observed pattern depends on

the scale of the study. Indeed, a population could appear randomly distributed48

when viewed on a small scale, but clustered on a large scale. Depending on

the spatial distribution of resources the species depends on, observed patterns

could also change from one area to another. Not taking into account realistic51

pest spatial distribution in functional response studies may include bias and

lead to inaccurate determination of the functional response shape (Ives et al.

1999; Hochberg and Holt 1999). In this study, we examine the impact of ran-54

dom, clustered and regular pest spatial patterns.

The predator/manager searching strategy could also have an impact on the type

of functional response observed. Functional response studies usually assume a57
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random search but other strategies are possible. The adaptive cluster sampling

strategy is an established alternative to random searching (Thompson 1990).

In this case, after the random sample of a first set of locations, if the vari-60

able of interest in any location is bigger than zero, additional nearby locations

are added to the survey. When the pest population is clustered, the adaptive

cluster sampling will efficiently find most of the individuals in a given cluster.63

Maxwell et al. (2012) compared adaptive cluster sampling to traditional tran-

sect designs and found out that the former was more efficient than the latter

when the purpose is to survey as many individuals as possible in well-established66

populations away from roads in the shortest amount of time. This was found

to be especially true for clustered populations. The adaptive cluster sampling

strategy is thus an efficient survey strategy that can be easily simulated in our69

theoretical study. Therefore, we employed two simple contrasting search strate-

gies: random sampling and adaptive cluster sampling.

The objectives of this theoretical work are: 1) to create simulation models of pest72

management using a spatially-explicit individual-based model and spatially-

implicit Monte-Carlo simulations, 2) to derive simple functions describing the

number of pest that managers control as a function of pest density and cor-75

roborate the simulation models, 3) to characterize the impact of the different

components on the functional response shape and compare with predator func-

tional response components and shapes, and 4) to validate this new framework78

by applying it to data using the example of mountain pine beetle in Cypress

Hills, Saskatchewan. Using monetary cost for the manager as an equivalent of

temporal cost for a predator, we are able to make the analogy between functional81

responses in predator-prey interactions and human-pest management systems.

This opens the door to applying functional response to manager-pest relation-

ships.84
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2. Methods

We simulated management strategies of pest removal using two approaches:

a spatially-explicit individual-based model and spatially-implicit Monte-Carlo87

simulations, and confirmed the results in the simplest cases by deriving ana-

lytical solutions to mathematical models representing the simulation scenarios.

First, we presented the computational (§2.1 and §2.2) and mathematical (§2.3)90

models corresponding to the first two objectives. Second, we explained how the

different parameters defined in the models help in connecting our ideas to the

functional response framework (§2.4). Finally, we applied our models to the93

mountain pine beetle example (§2.5).

In this study, we explored various scenarios so as to capture different functional

response behaviours. Each scenario has two elements: 1) a pest spatial pattern96

in a 2-dimensional domain, and 2) a management strategy.

We divided the domain into cells of varying size on a 16×16 grid. Depending on

the scenario, the cell size was 1×1, 2×2 or 8×8. Each cell was characterized by99

its spatial position in the domain and by the number of pest items it contained.

Fig. 1 represents the process for each simulation run and sections 2.1 and 2.2

provide details on each component. The symbols used in this study are described102

in Table 1.

2.1. Simulating Pest Distributions

We examined four types of spatial patterns: random, clustered within-cells,105

clustered between-cells and regular point patterns.

2.1.1. Random point process

The random point process employed a homogeneous Poisson process us-108

ing the rpoispp function of the R package spatstat (Baddeley et al. 2015;

R Core Team 2016). A grid with rectangular cells of constant area (A) was

then superimposed over the whole spatial domain. Each cell had the same111

probability of having a pest, thus, they were independent of each other.
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Figure 1: Conceptual diagram representing the process determining each simulation run. Start

at the top left of the diagram.

2.1.2. Within-cell cluster point process

The within-cell cluster point process sampled a Negative binomial distribu-114

tion for the number of pests in each grid cell using the rnbinom function of the

R package stats (R Core Team 2016). We used the overdispersion parameter

k fixed to 1 to describe the amount of clustering in the distribution. With this117

method, clusters happened within a cell and thus, grid cells were independent of

each other. This spatial distribution led to no spatial correlation in the density

of pests between cells but greater variability in the density of pests from one120

cell to another than for between-cell clustering. The spatial resolution of the
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Table 1: Description of the symbols used in the text.

Symbol Description

λ Pest intensity or Average number of individuals in a size-1 grid cell

δ Cost of surveying a size-1 cell

γ Cost of removing a pest individual

A Cell size/area or Number of contiguous size-1 cells

S Nb. of empty cells to survey in a row before stopping the search process

search area Search area refers indistinctively to A or S

M Domain area where management takes place

φ Probability of finding at least one individual in a grid cell of area A

D Expected area explored by managers

E Expected number of individuals that are surveyed and controlled

B Management budget

k Amount of clustering in the negative binomial distribution

ψA Probability of finding zero individuals in a cell of area A

simulated pest data depended on the size of the square cells in the grid that we

overlaid on top of the spatial domain.123

2.1.3. Between-cell cluster point process

The between-cell cluster point process employed a Neyman-Scott process

using the rNeymanScott function of the R package spatstat. This method126

distributed “parent” points in the domain according to a Poisson point process.

Then, it drew the actual points from a Gaussian distribution around each parent.

The final step consisted of removing the parents. A grid with rectangular cells of129

constant area (A) was then superimposed over the whole spatial domain. Thus,

there was a spatial correlation of the density of pests between cells.

2.1.4. Regular point process132

The regular point process distributed individuals regularly on a square grid

of size equal to the square root of the total number of individuals in the domain

rounded down to the nearest integer. We positioned remaining individuals using135

the same process. We added some noise proportional to the distance between

individuals so as to reproduce a more biologically relevant spatial pattern. In
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order to be distributed uniformly in the domain, each point depended on the138

location of its neighbours. Thus, the number of individuals in each cell was

dependent on each other.

Fig. 2 shows an example of each spatial distribution of points for an average141

intensity of 0.2 individuals per grid cell.

A. Poisson B. Negative binomial

C. Neyman-Scott D. Regular

Figure 2: Spatial distributions of pests on a 16×16 lattice with an intensity of 0.2 individual

per grid cell: A. Poisson spatial distribution, B. Negative binomial (within-cell cluster) spatial

distribution with an overdispersion parameter k = 1, C. Neyman-Scott (between-cell cluster)

spatial distribution and D. Regular spatial distribution. The black dots represent the actual

point patterns from which the lattice spatial distributions are derived. The shades of grey

represent the number of pests per grid cell: white (zero individuals) to the darkest grey (four

individuals).

8



2.2. Simulating Manager Search Strategies

We simulated three different management strategies. The first two were144

both random searches that differed in the implementation of the search area

parameter: a random search strategy (a) in which management stops after the

manager discovers one empty cell of variable size and a random search strategy147

(b) in which the manager stops searching after a specified number of consecutive

empty cells of size 1. The third strategy was the adaptive cluster sampling

strategy.150

2.2.1. Random Strategy (a): stop after single empty cell of area A

Using a spatially-implicit Monte-Carlo approach, we simulated the random

strategy (a) (stop after single empty cell of area A) for the spatially uncorrelated153

pest spatial distribution (Poisson and negative binomial) with intensity λ on a

bounded rectangular spatial domain of areaM . This approach could only work

with spatially uncorrelated distribution given the spatially-implicit nature of156

the process. The management then proceeded as follows. 1) One cell in the

grid was randomly selected. The number of pest in the cell was drawn from a

Poisson or a negative binomial distribution using, respectively, the R functions159

rpois and rnbinom. If the initial cell contained no individuals, the survey

stopped. If it contained at least one individual, all individuals inside it were

surveyed/controlled/eradicated and another cell was chosen at random. 2) This162

same process was repeated for the next cell and the procedure was repeated until

either no individuals were found in a quadrat, all the cells in the management

area were surveyed, or the budget was reached. Note that the random selection165

of a new cell was from the cells that had not already been surveyed. Since the

survey area A could be considerably large, when a step would put managers over

the budget, only the fraction of the area allowed by the budget was managed.168

2.2.2. Random Strategy (b): stop after S empty cells

For the random search strategy (b), we used a spatially-explicit individual-

based model that we simulated on all four pest spatial distributions. This171
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model was computationally intensive compared to the Monte-Carlo approach so

we did not use it for strategy (a). The random search strategy (b) consisted of

randomly choosing cells without replacement and removing any pest contained174

in it. The process stopped when it reached the budget or the maximum number

of empty cells surveyed in a row (S), whose value depended on the scenario.

We depleted the budget in two ways depending on the scenario: by deducting177

the cost of surveying a cell (δ) ∗ the number of cells surveyed at this step, and

by deducting the cost of removing a pest item (γ) ∗ the number of pest items

removed at this step. We did not take any action/step that would put managers180

over the budget.

2.2.3. Adaptive cluster sampling strategy

In the adaptive cluster sampling strategy, we chose an initial cell to survey.183

If at least one pest was present in the cell, we added the 4 adjacent neighbouring

cells to the survey (Von Neumann neighbourhood). We repeated this around

the new cells that contained pests. At each step, we removed pests found in the186

surveyed cells. If we found no pest in the initial cell or in all of the neighbouring

cell at some step, we chose a new initial cell randomly and the process resumed.

The process stopped when it reached the budget or the maximum number of189

empty cells surveyed in a row (S). See Fig. 3 for an illustration of this process.

Again, we depleted the budget allowance by an amount defined by the cost of

surveying a cell (δ) ∗ the number of cells surveyed at this step, and the cost of192

removing a pest item (γ) ∗ the number of pest items removed at this step. Since

the added neighbourhood could be of considerable size, when a step would put

managers over the budget, only the fraction of the area allowed by the budget195

was managed.

The random strategy (b) (stop after S empty cells) and the adaptive cluster

sampling strategy were deployed on all four pest distributions and the grid198

applied on the domain had cells of constant size 1× 1.

For the strategies simulated with a spatially-explicit model (random strategy

(b) and adaptive cluster sampling), we defined, for simplicity, the domain as a201
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Figure 3: Step by step images of the adaptive cluster sampling strategy inspecting a clustered

(Neyman-Scott process) spatial distributions of pests (in shades of grey: from white, zero

individual, to the darkest grey, four individuals) on a 20×20 lattice with an intensity of 0.2

individual per grid cell. The colors represent the steps taken by the algorithm. The first step

(in red) hit an empty cell so another cell is chosen at random (in yellow). The yellow cell

contains one individual so it is removed and the 4 cells of the Von Neumann neighbourhood

are surveyed. One of them contains individuals (in green). Individuals are removed and

the neighbourhood of the green cell is surveyed. In this neighbourhood, two cells contain

individuals (in turquoise) so they are removed and the Von Neumann neighbourhood of both

cells is surveyed. In this new neighbourhood, three cells contains individuals (in blue). The

process goes on.

torus, which means that when a manager traversed the border of the domain,

the manager reappeared on the other side of the domain.

2.3. Mathematical Models204

We derived mathematical models of the random sampling in which man-

agement stops after the manager discovers one empty cell of area A (random

strategy (a) described in §2.2.1) and the manager random sampling in which the207
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manager stops searching after S consecutive empty size-1 cells (random strat-

egy (b) described in §2.2.2) for pest distributions that are spatially uncorrelated

from one cell to another (Poisson and Negative binomial spatial distributions).210

2.3.1. Random Strategy (a): stop after single empty cell of area A

The probability of finding at least one individual in a grid cell of area A

(A < M) with a Poisson spatial distribution of individuals is213

Pr(X > 0;λ,A) = 1− exp(−λA) = φ. (1)

Note that φ < 1. We can then write an expression for the expected area explored

by managers (D) using a strategy like the one described in the previous section.

We can call this the ’area of discovery’ to connect it to the functional response216

ideas.

D(λ,A,M) = A(1 + φ+ φ2 + ...+ φM/A−1), (2)

= A

(M/A−1
∑

i=0

φi
)

,

= A

(

1− φM/A

1− φ

)

.

Note that in equation (2) managers are unable to explore more area than there

is in the management areaM and so the maximum number of quadrats isM/A.219

The number of pests that are eradicated/controlled/surveyed (E) is proportional

to the area explored

E(λ,A,M) = D(λ,A,M)λ, (3)

Therefore, the number of pests that are eradicated/controlled/surveyed is222

E(λ,A,M) = Aλ

(

1− φM/A

1− φ

)

. (4)

If there is a limited management budget B, each quadrat costs δ, and the cost

γ is associated with eradicating each pest in addition to treating an infested
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cell, then the maximum number of quadrats of area A that can be explored is225

B
A(λγ+δ) ≤ M

A . We assume that the budget restricts exploration such that an

area less than the full area of the management zone can be explored. The idea of

adding a budget, a cost per quadrat, and a cost per individual is similar to divid-228

ing the total foraging time into searching time and handling time in the Holling’s

disc equation. The number of pests that are eradicated/controlled/surveyed be-

comes231

E(λ,A,B, δ, γ) = Aλ

(

1− φ
B

A(λγ+δ)

1− φ

)

. (5)

If instead we assume that individuals are distributed according to the Negative

binomial distribution and that the number of pests in any cell is independent

of the number in any other cell, we write for a cell of area 1234

Pr(X > 0;λ, k) = 1−

(

1 +
λ

k

)

−k

= φ. (6)

In equation (6), k represents the amount of clustering from one cell to another

with small k corresponding a high degree of clustering.

For cells of area A > 1, the Negative binomial distributed pest data would have237

a different spatial resolution as we sample on cells of area A. Equation (6)

becomes then:

Pr(X > 0;λ,A, k) = 1−

(

1 +
λA

k

)

−k

= φ. (7)

As k → ∞, equation (7) converges to the Poisson case given by equation (1).240

The derivations for the numbers of individuals eradicated (Eqs. (4)–(5)) are

still valid for this case.

Table 2: Expected number of pests controlled (E) for random strategy (a).

Spatial distribution E φ

Poisson Eq.(5): Aλ

(

1−φ
B

A(λγ+δ)

1−φ

)

Eq.(1): 1− exp(−λA)

Negative binomial Eq.(5): Aλ

(

1−φ
B

A(λγ+δ)

1−φ

)

Eq.(7): 1−

(

1 + λA
k

)

−k

13



Table 2 summarizes the equations used for the expected number of pests con-243

trolled depending on the pest spatial distribution for random strategy (a).

2.3.2. Random Strategy (b): stop after S empty cells

In strategy (a), A represents the cell area or the survey of A contiguous size-246

1 cells and the process stops after one empty step. In strategy (b), however,

the manager surveys an integer number S of empty cells before stopping. The

main difference between random strategy (a) and random strategy (b) is that249

the expected number of individuals removed by exploring A contiguous size-1

cells would, in theory, be affected by the spatial distribution of individuals while

exploring S randomly picked size-1 cells would not. Below we compare math-252

ematical models of the management functional response for random manager

searches when pests are distributed according to a Poisson point process and

when pests are distributed according to a negative binomial point process. Our255

derivations illustrate that the expected number of individuals removed can de-

pend on the pest distribution when multiple empty cells are required before the

manager stops looking for additional pests.258

In the case of a Poisson distributed resource, from equation (1), we get the

probability that a cell i of area A has zero individuals:

Pr(Xi = 0;λ,A) = exp(−λA) = ψA. (8)

The probability that S different cells of area A have zero individuals in each cell261

is:

Pr(X1,...,S = 0;λ,A, S) = (ψA)
S (9)

= (exp(−λA))S

= exp(−λAS).

A and S being multiplied, the probability that a cell (S = 1) of area A = x has

zero individuals (ψ1
A) is the same as the probability that x different size-1 cells264

(S = x, A = 1) have zero individuals in each cell (ψS
1 ). So in this context, ψ1

A =

ψS
1 . For this reason, the mean number of individuals managed obtained from
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the simulation process described above should match the analytical solution267

provided in equation (5) using equation (1).

In the case of a resource distributed with a negative binomial distribution, from

equation (7), we get the probability that a cell i of area A has zero individuals:270

Pr(Xi = 0;λ,A, k) =

(

1 +
λA

k

)

−k

= ψA. (10)

The probability that S different cells of area A have zero individuals in each cell

is:

Pr(X1,...,S = 0;λ,A, S, k) = (ψA)
S (11)

=

((

1 +
λA

k

)

−k)S

=

(

1 +
λA

k

)

−kS

.

In this case, A and S are not multiplied, so the probability that a cell (S = 1)273

of area A = x has zero individuals (ψ1
A) is generally not equal to the probability

that x different size-1 cells (S = x, A = 1) have zero individuals in each cell (ψS
1 ).

So in this context, ψ1
A 6= ψS

1 . The mean number of individuals managed obtained276

from the simulation process described above should generally not match the

analytical solution provided in equation (5) using equation (7). In this case,

instead of equation (7), we can use279

Pr(XS > 0;λ,A, S, k) = 1−

(

1 +
λA

k

)

−kS

= φ. (12)

Table 3 summarizes the equations used for the expected number of pests con-

trolled using the random strategy (b) depending on the pest spatial distribution.

Table 3: Expected number of pests controlled (E) for random strategy (b).

Spatial distribution E φ

Poisson Eq.(5): Aλ

(

1−φ
B

A(λγ+δ)

1−φ

)

1− Eq.(9): 1− exp(−λAS)

Negative binomial Eq.(5): Aλ

(

1−φ
B

A(λγ+δ)

1−φ

)

Eq.(12): 1−

(

1 + λA
k

)

−kS
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2.4. Correspondence with functional responses types282

To compare human-pest management to functional response in predator-

prey interactions, we considered that pests to managers were like prey to preda-

tors in the functional response framework. We then assumed that the budget285

allocated to a manager corresponded to the foraging time for a predator. Keep-

ing the comparison between monetary and temporal costs in mind and with

the assumption that the behaviour “processing food/pest” is independent from288

the behaviour “searching for food/pest”, we could make the correspondence be-

tween the time needed to search for a prey and the monetary cost requested

to search for a pest (survey), and between the time needed to consume a prey291

and the monetary cost requested to remove a pest. In a Type I functional re-

sponse scenario, the predator is not affected by its capacity to consume a prey

so the number of prey consumed increases linearly with the intensity of prey294

in the domain. Thus, by setting the cost of removing a pest item (γ) to 0, we

expected to obtain a linear relationship (Holling Type I) between the number of

pest removed and the intensity of pests in the domain. In a Type II functional297

response scenario, the predator is limited by its capacity to consume a prey so

as the intensity of prey in the domain increases, the predator cannot consume

more than a certain number of prey and the curve saturates. Thus, by setting300

the cost of removing a pest item (γ) to be larger than 0 while maintaining a

large search area (A and S both impact the search area), we expected to ob-

tain a hyperbolic relationship (Holling Type II) between the number of pest303

removed for a fixed cost and the intensity of pests in the domain. In a Type III

functional response scenario, at low intensities of prey, some mechanisms make

it more difficult for the predator to find and consume a prey than at higher306

intensities. Some researchers explain this concept using predators’ behaviour

(Turchin 2013). A generalist predator might switch to another prey when the

focus prey density is too low leading to a Type III whereas a specialist would309

have no choice but to continue searching for the focus prey leading to a Type II.

In a pest management context, a manager might act like a specialist by wanting

to remove all pest or like a generalist by being satisfied with a low pest number312
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and switching to another management activity. Thus, by setting the maximum

number of empty cells surveyed in a row before stopping (S) (or its equivalent

A: number of contiguous size-1 cells, see previous section) to a low number and315

by setting γ > 0, we would expect that equation (5) takes the sigmoid shape of

a Type III functional response. We thereby simulate a manager estimating that

the probability of encountering a pest is too low to be worth the search effort318

at a low pest density.

2.5. Application

We applied our modelling framework to the mountain pine beetle (Dendroc-321

tonus ponderosae, Hopkins 1902) management in Cypress Hills, Saskatchewan,

Canada. The mountain pine beetle is a bark beetle that infests and kills pine

trees in western North-America. Mountain pine beetles have two main popu-324

lation stages: an endemic stage in which there are not enough individuals to

overcome healthy trees, so populations persist by attacking damaged trees in

association with other bark beetles, and an epidemic stage in which mountain327

pine beetles are a threat to vast stands of healthy pines. There are currently

several epidemic populations, including one in the Cypress Hills park. Mountain

pine beetle populations exhibit a type of Allee effect (Allee 1931; Stephens et al.330

1999): below a certain number of individuals, a local epidemic population can-

not persist and will either go extinct or turn to an endemic population stage.

2.5.1. Pest spatial distribution333

During an epidemic, the attacked trees are usually spatially aggregated due

to beetle offspring emerging from one previously attacked tree and attacking

susceptible trees within several hundred meters (Safranyik and Carroll 2006;336

Robertson et al. 2007). This pattern resembles the Neyman-Scott process de-

scribed in section 2.1.3. Therefore, we fitted a Neyman-Scott process to attacked

trees locations in 2011 and 2012 from several portions of the park with different339

pest densities using the vargamma.estpcf function of the R package spatstat.

This function uses the pair correlation function to fit the point process to a
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point pattern by the method of minimum contrast.342

In addition to the parameter values, we modified the Neyman-Scott process in

our simulations to draw points around parents from a fat-tail distribution (here

an exponential distribution) which corresponds better to the mountain pine345

beetle behaviour than a Gaussian distribution due to the occurrence of long-

distance dispersal events (Safranyik and Carroll 2006; Robertson et al. 2007;

Goodsman et al. 2016).348

2.5.2. Management strategy

The management strategy implemented in Cypress Hills consists of locating

previously attacked trees (red-top trees easily detectable during aerial surveys)351

and surveying the surrounding neighbourhood for new attacks. We simulated

this process by adapting the adaptive cluster sampling strategy. The strategy is

deployed at the location of previously attacked trees instead of random locations.354

The process continues until all cells containing previously attacked trees are

surveyed. We set the managers ability to detect newly attacked trees within

the survey area to 89% (value obtained for Cypress Hills from M. Kunegel-Lion,357

unpublished data).

2.5.3. Simulations

Using the fitted pest spatial distribution and the modified adaptive clus-360

ter sampling strategy, we simulated the management process 10 000 times for

each pest density on a 6.5×9.9km rectangular domain with grid cells of size

100×100m. Thus, the grain and extent of the domain is the same order of mag-363

nitude as the grain and extent of the management area in Cypress Hills. The

management costs (δ and γ), and the total budget (B) values were chosen as

proportional to the actual costs and budget in the park for 2011 and 2012. We366

then compared the curve obtained to actual numbers of attacked trees controlled

in several areas of the park presenting different densities of attacked trees during

2011 and 2012.369
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2.5.4. Management goal feasibility

Knowing about management functional responses shape can help us assess

the feasibility of a management goal. We chose two ways of expressing a man-372

agement goal: 1) managers would like to remove at least x% of all the pests,

and 2) managers would like to leave no more than x individuals per unit of

area. This second management goal makes sense for populations exhibiting an375

Allee effect, as the mountain pine beetle does. Indeed, it is not necessary to

put more effort into control when the pest population will not persist below a

certain number. We simulated the management process described above 1000378

times for increasing budget values and compared the management functional

response curves obtained to the two management goals. To place the functional

response curves and the management goals on the same scale, we divided the381

number of individuals removed by the domain area, thereby graphing the den-

sity of pest controlled by the total pest density. Note that this only changed

the y-axis scale and therefore the interpretation of the curve did not change.384

3. Results

For each combination of pest distribution, management strategy, and pa-

rameter values, we compared the means of 2000 simulations to the analytical387

solutions, when calculated. The budget value used in the simulations and an-

alytical solutions was 300, limiting the number of cells managers can explore.

The values of δ and γ were either 10 or 0 and the values of A and S either390

64 (one 8×8-cell or 64 1×1-cells), 4 (one 2×2-cell or four 1×1-cells) or 1 (one

1×1-cell) depending on the scenario. We generated all negative binomial point

processes using the parameter k = 1 in both the simulations and the analytical393

solution.

3.1. Varying the management costs

When the cost of surveying a cell δ increases, the functional response slope396

decreases and when the cost of removing a pest item γ increases, the functional
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Figure 4: Functional response curves when varying the management costs (δ the cost of

surveying a cell and γ the cost of removing a pest) for fixed values of A = 64 and S = 1 for

the random strategy (a) and A = 1 and S = 64 for the random strategy (b) and the adaptive

cluster campling strategy, and for a Poisson pest spatial distribution. Circles represent the

means of 2000 simulations of the adaptive cluster sampling strategy, pluses of the random

strategy (a), and crosses of the random strategy (b). Solid lines represent the values for the

analytical solution of random strategy (a) and (b).

response curve saturates as seen on Fig. 4 for the Poisson distribution. This

is true for all the management strategies and their analytical solutions on all399

pest distributions. Note that the curve on Fig. 4a) continues to increase linearly

above 50 individuals removed. See appendix A for the non-truncated graph.

3.2. Varying the management strategy and the pest spatial distribution402

For a Poisson pest spatial distribution, the functional response curves for

the simulations of the random strategies (a) and (b) are the same as predicted
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by the derivations of analytical solutions. For a negative binomial pest spatial405

distribution, the functional response curves for the simulations of the random

strategies (a) and (b) are extremely similar even though the expected means

differ due to a different pest spatial resolution. This can be seen on Fig. 5.408

Unexpectedly, the pest spatial distribution does little to change the functional

response curves. The adaptive cluster sampling and the random strategies

present the same pattern with little variation from one strategy to another411

except for Neyman-Scott and regular pest spatial distribution. Indeed for a

Neyman-Scott distribution, the adaptive cluster sampling strategy does often

better than the random strategy (b) especially for the parameters values δ = 10,414

γ = 0 (Fig. 5). For a regular distribution, the adaptive cluster sampling strat-

egy results in oscillations around the random strategy mean especially for the

parameters values δ = 10, γ = 0 (Fig. 5).417

3.3. Varying the search area

As expected, decreasing the search area, as represented by A or S (see Meth-

ods section), decreases the number of pests found and controlled at low pest in-420

tensity levels for both random strategies and leads to a curve resembling a Type

III when γ = 10 (Fig. 6). In the Negative binomial case, there are differences

between random strategies which might be due to the difference between A and423

S as shown in equation (12) or to the difference in the pest spatial resolution

when A = 1 and when A > 1. Those two cases cannot be distinguished given

our parameter values.426

3.4. Theoretical results summary

Additional simulations (see Appendix B) show that when A or S are large,

the cost per cell to survey δ > 0 and the cost per pest to remove γ → 0, the429

functional response tended to a Type I. When A or S are large, γ > 0 and δ → 0,

the functional response tends to a Type I/II which is linear like a Type I at first

with a progressive saturation like a Type II (Jeschke et al., 2004). When γ and432

δ > 0, the functional response tends to a Type II. To summarize, to obtain a
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Figure 5: Functional response curves when varying the management strategy and the pest

spatial distribution for fixed values of A = 64 and S = 1 for the random strategy (a) and

A = 1 and S = 64 for the random strategy (b) and the Adaptive Cluster Sampling strategy.

Circles represent the means of 2000 simulations of the Adaptive Cluster Sampling strategy,

pluses of the random strategy (a), and crosses of the random strategy (b). Solid lines represent

the values for the analytical solution of random strategy (a) and (b) in the Poisson case and

for the analytical solution of random strategy (a) in the negative binomial case. Dotted lines

represent the values for the analytical solution of random strategy (b) in the negative binomial

case.
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Figure 6: Functional response analytical solutions when varying the cell area A or the number

of empty steps to survey in a row S for the random strategy (a) and (b). Black lines represent

A = 64, S = 1 or A = 1, S = 64 while grey lines represent A = 4, S = 1 or A = 1, S = 4. Solid

lines represent the values for the analytical solution of random strategy (a) and (b) in the

Poisson case and for the analytical solution of random strategy (a) in the negative binomial

case. Dotted lines represent the values for the analytical solution of random strategy (b) in

the negative binomial case.
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Type I, we set δ > 0 and γ = 0. To obtain a Type I/II, we set δ = 0 and γ > 0.

To obtain a Type II, we set δ > 0 and γ > 0. To obtain a Type III, we set A or435

S small, δ small and γ > 0 (Fig. 6).

In addition, variations in budget did not change the qualitative shapes of func-

tional responses.438

In conclusion, the pest spatial distribution did not have a large impact on the

functional response shape and neither did the search strategy. However, the

costs associated with the management strategy as well as the search area had441

a great impact on the functional response type, as expected. The analytical

solutions generally corroborated the simulations although a slight mismatch is

apparent, especially for the negative binomial case: the mean values from the444

simulations of random strategies (a) and (b) are below their respective expected

means.

3.5. Correspondence with predator functional response447

Using Holling’s disk equation (Holling 1959b; Table 4):

Na =
a′TN

1 + a′ThN
, (13)

we can compare the parameters from predator and manager functional re-

sponses. Table 4 summarize the parameter equivalences.450

Table 4: Correspondence between predator and manager functional response components.

Predator-prey Manager-pest

Nb. of prey items attacked Na Nb. of pest items removed E

Prey density N Pest density λ

Total foraging time T Budget B

Encounter rate a′

Detection rate 1/δ

Handling time Th Cost of pest removal γ

Slope a′T Slope B/δ

Asymptote T/Th Asymptote B/γ
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As stated before, the cost of pest removal (γ) is the manager equivalent of the

handling time (Th). This is corroborated by the similar effect of γ and Th on

functional responses. Indeed, as seen on Fig 4, introducing this cost causes453

the apparition of an asymptote in the curve. Likewise, the survey cost (δ) is

the manager equivalent of the searching time. At low densities of prey/pest,

the predator/manager spends more of its time/budget on searching rather than456

handling/removing. This is presented in equation 13 by the encounter rate a′,

which represents the searching efficiency or the number of prey items attacked

per unit of time at low prey densities. The manager equivalent to a′ would then459

be 1/δ. Additionally, the total foraging time (T ) in predator functional response

would be the manager’s budget (B). Therefore, the slope of the response,

corresponding to a′T , will be B/δ and the asymptote, corresponding to T/Th,462

B/γ (Table 4). For δ = 10 and B = 300 (Fig. 4b) and d)), the slope at low

densities is 30 which corresponds to B/δ = 300/10. For γ = 10 and B = 300

(Fig. 4c) and d)), the asymptote is 30 which corresponds to B/γ = 300/10.465

These comparisons hold for different values of δ > 0 and γ > 0 (Appendix B).

These equivalences allow us to use equation 13 as an approximation for equation

5 as long as A is large, δ > 0, the management strategy random, and the pest468

spatial distribution Poisson. See Appendix C for the comparison between the

results of equations 5 and 13.

3.6. Application471

The fitted pest spatial distribution of the mountain pine beetle infested trees

has the mean number of points per cluster 67 ± 55 (standard deviation) and the

mean cluster size 266 ± 131. The management strategy has costs of surveying474

a cell δ = 231 units and cost of removing a pest γ = 181 units for a budget set

to 144 000 units.

All actual numbers of attacked trees controlled but one are within 95% of the477

simulations’ distribution as seen on Fig. 7. The remaining number is within

99% of the simulations’ distribution. The simulations’ mean shows a Type II

functional response.480
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Figure 7: Functional response of the mountain pine beetle management in Cypress Hills,

Saskatchewan. The black line represents the mean of 10 000 simulations of the management

process. The grey areas represent 90%, 95% and 99% of the simulations’ distribution. The

points represent the actual values obtained by managers in Cypress Hills in 2011 and 2012.
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According to Table 4, we expected that an increase in budget would lead to

an increase in slope and asymptote. However, our simulations show that the

asymptote increases with an increasing budget but the slope does not (Fig. 8).483

Applying the adaptive cluster sampling search to Cypress Hills instead of the

search described in section 2.5 shows that it is the type of search strategy and not

the parameter values that is responsible for the constant slope at low pest inten-486

sity (see Appendix D). Indeed, the adaptive cluster sampling process searches

cells until the budget is reached whereas the process described in section 2.5

only searches cells around a fixed number of previously infested trees which lim-489

its the number of individuals managers could control with a certain budget.

Fig. 8 also shows the management goals. If the functional response curve is

on or above the management line, the goal is reached, otherwise not enough492

individuals are controlled to meet the management goal. If the desired man-

agement efficiency is above 20% removal, the goal is unattainable regardless of

the budget (Fig. 8). If, however, the goal is the removal of all individuals above495

a certain threshold, it is possible to have an effective management at low pest

intensity depending on the budget and the threshold value.

4. Discussion498

Considering that pests to managers were like prey to predators, we were able

to draw an analogy between functional responses in predator-prey interactions

and human-pest management. The searching and handling time were replaced501

by the surveying and removal costs. The costs associated with the management

strategy as well as the search area were the main factors influencing the func-

tional response type as expected. The point process and the search strategy504

impacted the manager efficacy to a lesser extent. Our framework was applied

to the mountain pine beetle epidemic in Cypress Hills, Saskatchewan, Canada.

There is a slight mismatch between the analytical solutions of the two ran-507

dom strategies and their simulations. Indeed, the mean values from the simu-

lations are below their respective expected means. In the simulations, if a step
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would put managers over the budget, only a fraction of the area would be ac-510

tually surveyed and controlled (random strategy (a)) or the step would not be

taken (random strategy (b)). Therefore, the whole budget might not be used

due to rounding in the calculations and the number of pest controlled would513

then be slightly lower than what it could have been without this process. This

could explain the differences between simulation means and analytical solutions

of the random strategies (a) and (b). However, the functional response shape516

does not change between the simulations and the analytical solutions. Accord-

ingly, we can assume that the functional response shapes in the case of the

adaptive cluster sampling and in the case of the Neyman-Scott and regular pest519

distributions are not biased by the budget handling process of the simulations

although the values might be slightly underestimated.

The pest spatial resolution was chosen at the scale of an area-A grid cell. This522

resolution does not impact the Poisson results when the area changes as the

sum of Poisson-distributed variables is also Poisson-distributed. However, this

is not the case for negative binomially distributed pests. Changing the cell area525

changes the distribution grain. Therefore, random strategies (a) and (b) con-

sider a different distribution grain for the negative binomial distribution and

the results cannot be compared. For management simulations involving the528

Neyman-Scott and regular distributions, we only consider random strategy (b)

and the adaptive cluster sampling strategy which have the same cell size A = 1

and, therefore, can be readily compared.531

In the functional response theory, the predator distribution is assumed homo-

geneous. The impact of a clumped predator population on the kill rate lead

to the establishment of the aggregative response theory (Cosner et al. 1999).534

However, the functional response theory originally assumes also a homogeneous

distribution of prey in the domain. This could weaken the application of this

framework to real systems where the prey distribution is often heterogeneous537

as well as dynamic in time (Arditi and Ginzburg 1989; Ives et al. 1999). Sev-

eral studies mention this issue. Nachman (2006) found that switching the prey

spatial distribution from random to aggregated changed the functional response540
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type from a Type II to a Type III as predators adopt a non-random searching

behaviour and aggregate in prey clusters. Hossie and Murray (2016) found that

for ratio-dependent functional responses, i.e. functional responses depending543

on the density of predators, the pest spatial distribution changed the functional

response shape. Rincon et al. (2017) found that the functional response shape

differs with the difference between the predator and the prey distributions and546

with the predator foraging strategy. Those studies differ from ours by the fact

that several predators interact and the interaction between predator and prey

aggregation patterns lead to a change in the functional response shape. How-549

ever, in our case of a single predator/manager, we highlight the minimal impact

of the point process on the functional response shape. Thus, for prey-dependent

functional responses, in opposition to ratio-dependent functional responses, the552

prey spatial distribution seems to have little significance.

Similarly, our results show the minimal impact of the management strategy on

the functional response shape. This agrees with Berec et al. (2015) who found555

that survey spatial arrangements (random or regularly spaced) have little im-

pact on the pest detection probability. This is an important information for

pest managers who can then minimize costs by choosing a cheaper strategy.558

However, we should keep in mind that when the pest is spatially clustered, a

method resembling the adaptive cluster sampling provide slightly better results.

Unlike other studies focused on predator functional responses when the preda-561

tor uses a random search strategy (e.g. Avgar et al. 2011), our results show

that the mean number of individuals controlled varies, to some degree, with the

spatial distribution of pests. Avgar et al. (2011) found that when employing564

a random search strategy, the expected number of individuals managed should

be the same regardless of the individual spatial distribution because the prob-

ability to have at least one individual in a random cell becomes independent567

of the adjacent cells. If we take into account the specifics of our study, we can

explain the difference. Considering random search strategy (a): multiple con-

tiguous size-1 cells are randomly selected so the number of individuals controlled570

is spatially correlated for the Neyman-Scott and regular processes. Therefore,
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the expected number of individuals managed in those cases will be different

than the expected number of individuals managed from a Poisson process or a573

negative binomial distribution. The Poisson and negative binomial cases should

have the same means since the cells are not spatially correlated. Considering

random search strategy (b): with a Neyman-Scott spatial pattern it is more576

likely to get multiple consecutive empty cells before stopping than for a Poisson

spatial pattern. For a regular pattern, it is less likely. The expected number of

individuals managed for a Neyman-Scott and regular processes would be differ-579

ent than for a Poisson process or a negative binomial distribution. Again, the

Poisson and negative binomial cases should have the same means since the cells

are not spatially correlated.582

We show that non-random search (adaptive cluster sampling) on an aggregated

pest spatial distribution such as the one produced by a Neyman-Scott process

leads to higher numbers of pest controlled than on a random pest distribution.585

However, this is not the case on a Negative binomial distribution. This differ-

ence is due to the details of the adaptive cluster sampling process. Indeed, in

this strategy, the managers make decisions on which cells to survey. Considering588

that the Neyman-Scott process produces aggregation among cells whereas the

Negative binomial process produces aggregation within cells with the among-

cell pattern resembling a random pattern, it makes sense for the random and591

adaptive cluster sampling strategies to be similar on a Negative binomial pest

spatial distribution but different on a Neyman-Scott distribution. Managers

following a non-random search strategy on a Neyman-Scott pest spatial distri-594

bution are more efficient than managers following a random search since they

explore the neighbouring cells when they find pests in a cell. This result agrees

with Nachman (2006) who found in the analysis of their predator-prey model597

that predators searching non-randomly on an aggregated prey distribution have

higher predation rates than random search.

Functional response theory is widely used to assess the impact of a predator on600

a prey population (e.g. Messier 1994; Finke and Denno 2002). This framework

provides a well-studied and reliable method to assess the impact of management
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on a pest population. Furthermore, knowing aspects of the functional response603

can inform pest management in several different ways. Human management

could be efficiently and quantitatively compared to other control methods such

as biological control. This idea would be extended to give comparisons across606

different methods and different locations. For instance, different methods could

be compared at the same location or the same method could be compared at

different locations by contrasting functional response curves obtained analyti-609

cally or by simulation.

To give further insight, manager functional responses could be included in dy-

namical systems to represent human impact on a pest population. For example,612

in the Cypress Hills case, future steps could include using this functional re-

sponse in a population dynamics model to study the evolution of the beetle

population over the years with a realistic incorporation of the management ef-615

fect on the population. In the same way functional response curves inform

about stability of predator-prey interactions (Dick et al. 2013), in our study,

they could tell managers whether control would leave a refuge for the pest or618

lead to the pest extinction. Indeed, in a Type III functional response scenario,

management is less efficient at low pest densities and, thus, small pest popula-

tions could persist (Murdoch and Oaten 1975). However in a Type II functional621

response scenario most pest would be eradicated, even if they occur at low den-

sity (Hassell 1978). With respect to control of mountain pine beetle in Cypress

Hills, the Type II functional response suggests a high efficiency of managers624

at low pest densities. This is consistent with the strict management policy in

Cypress Hills to try to control all infested trees. The fact that true values for

the number of individuals controlled lie above those simulated in Fig. 7 suggests627

that managers in Cypress Hills are likely finding the means to make the process

even more efficient than our model would predict.

From a practical perspective, managers are typically interested in controlling630

a certain proportion of pests, given an environmental context and a particu-

lar strategy. For example, in some areas of the province of Alberta, Canada,

infested by the mountain pine beetle, the management goal is to reduce pop-633
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ulations by 80% (Alberta Sustainable Resource Development 2007) using indi-

vidual tree removal. Our model results, as shown in Fig. 7 and 8, allow for

such a calculation to be made. By comparing this goal to the detection and636

control rate (= slope of the functional response curve; equivalent to the attack

rate), the management functional response can give direct insights on the goal

feasibility. We illustrated this point using the Cypress Hills case study. The639

results showed that an 80% control efficiency, such as the target used in some

areas in Alberta, would not be feasible in Cypress Hills given the current man-

agement strategy and parameters values. If the functional response resembled642

a type III instead of a type II, there could be cases where management would

be efficient only at intermediate pest intensity. However, decreasing the pest

population below a certain threshold would be more appropriate than a removal645

percentage in the Cypress Hills case. Goodsman and Lewis (2016) found Allee

threshold values of 3.789×10−4 and 5.311×10−5 infested stems per m2 for two

times series of mountain pine beetle infestation in central Idaho. Therefore, a648

management threshold of 0.5 individuals per 100×100m cell such as the one used

in the Cypress Hills example would be below such Allee threshold. Moreover,

we showed that the pest intensity in Cypress Hills is always below 0.5 individ-651

ual per cell which means that managers are probably efficiently reducing local

mountain pine beetle populations below the Allee threshold. However, a non-

spatial Allee threshold could be an issue as the within-tree productivity of the654

beetle varies in time and space (Goodsman and Lewis 2016). As an alternative,

varying the management strategy, such as adding search locations beyond the

neighbourhood of previously infested trees until the budget is reached, would657

allow managers to meet a certain removal percentage depending on the budget

amount.

In summary, functional response is a tool to help pest management, for example660

by providing a means to assess current strategies, to compare with alternative

strategies, to test various strategies in silico before implementation, to provide

a realistic control component in a population dynamics model, and to assess the663

feasibility of a management goal.
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One constraint to the application of this method, as in regular functional

response studies, is the need for several levels of pest density to be able to draw666

a functional response curve. In our application to mountain pine beetle, we

got around this issue by dividing the infested area in portions of different pest

densities. This might not be sufficient to draw an entire functional response669

curve but simple simulations could help complete the curve in this case.

Researchers often complement the functional response with a numerical response

in predator numbers and sometimes an aggregative response describing the dis-672

tribution of predators (Turchin 2013). We could argue that in a human-pest

management scenario, the numerical and aggregative responses are negligible or

even non-existent. Indeed, the number or aggregation level of managers might675

not be relevant for two reasons: 1) managers usually group as a team/unit, in

our study, this unit represent “the manager” and 2) there is no competition

between managers or teams, when enough persons are present to make sev-678

eral teams they often do not survey the same area but rather divide the entire

management domain between themselves in order to be efficient. However, one

could study the social impact of pest management and thus be interested in681

new hires in response to an increasing pest abundance. This could be modelled

by a growing manager population and be analogous to predator numerical re-

sponses. Finally, the cost of moving from one location to another was not taken684

into account in our study for simplicity but it could be added easily.

To conclude, the functional response framework can be adapted to model

human-pest interactions and provide insights on management. Furthermore,687

this framework could be generalized to any interaction involving humans “pre-

dating” on their environment. Indeed, instead of managing pest species, the

goal could simply be the study of human impact on a resource or species at690

risk. The shape of the functional response curve would then inform us about

the quantitative influence humans have on certain populations and could be

included in harvest models.693
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Appendices

Appendix A
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Figure A.1: Functional response curves for fixed values of δ = 0, γ = 0, A = 64 and S = 1 for

the random strategy (a) and A = 1 and S = 64 for the random strategy (b) and the Adaptive

Cluster Sampling strategy, and for a Poisson pest spatial distribution. Circles represent the

means of 2000 simulations of the Adaptive Cluster Sampling strategy, pluses of the random

strategy (a), and crosses of the random strategy (b). Solid lines represent the values for the

analytical solution of random strategy (a) and (b).
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Appendix B696
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Figure B.1: Functional response curves showing the impact of one of the cost parameters (the

survey cost δ or the removal cost γ) when the other is fixed for the random strategies (a) and

(b) on a Poisson pest spatial distribution. The shades of grey represent the values for the

varying cost parameter from black (cost = 0) to light grey (cost = 10). The search area is set

to 64 and the budget to 300.
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Figure B.2: Functional response curves for fixed values of survey cost δ = 10, removal cost

γ = 10 and for the random strategies (a) and (b) on a Poisson pest spatial distribution. The

shades of grey represent the values of the search area A: light grey A = 1 to black A = 64.
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Appendix C
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Figure C.1: Functional response curves for fixed values of survey cost δ = 10, removal cost

γ = 10 and for a random strategy on a Poisson pest spatial distribution. The search area is

set to 64 and the budget to 300. The black solid line represents the result of equation 5 and

the grey dotted line represents the result of equation 13.
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Appendix D
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Figure D.1: Functional response of the mountain pine beetle management in Cypress Hills,

Saskatchewan using the adaptive cluster sampling process. Solid lines represent the mean of

1000 simulations of the management process for different budget values: 1×105, 3×105, 5×105,

and 7×105. Dotted lines represent the management goal 1): removing 80% and 20% of all

the individuals. The dashed line represent the management goal 2): removing all individuals

above the threshold 0.5 individual per cell
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