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Abstract 

Linear filter theory has proven useful in many seismic data analysis applications. 

However, the general development of linear filter theory is limited by the implicit 

approximations typically found in seismic processing; one reason for this is to avoid 

effects of nonlinearity. This thesis concentrates on the implementation of nonlinear 

time series modeling based on an autoregressive method. The developed algorithm 

utilizes third-order Volterra kernels to improve predictability of events that cannot 

be predicted using linear prediction theory. 

Volterra series are analyzed. The application and implementation of a nonlinear 

autoregressive algorithm to the problem of modeling complex waveforms in the f — x 

domain is studied. Problems of random noise attenuation and adaptive subtraction 

of multiples are reexamined by the new Volterra autoregressive algorithm. Synthetic 

and field data examples are used to illustrate the theory and methods presented in 

this thesis. 
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Chapter 1 

Introduction 

Linear prediction theory has an important role in many signal processing and imag­

ing applications. Linear prediction algorithms recursively model future/past sam­

ples of a signal using a linear combination of its past/future samples. Linear pre­

diction is not restricted to time and can be used to model the spatial variability 

of signals. The latter is particularly important in exploration seismology where we 

record seismic wave field that are a function of time and space and one desires to 

predict in both space and/or time the evolution of a signal. The mismatch between 

the original signal and the predicted one is often used as an estimator of additive 

noise. 

The problem of linear prediction of time series can be tracked back to the work of 

Yule (1927) who described a method to model sun spots numbers using a particular 

type of linear prediction model called the auto-regressive model. The idea is to 

find a parametric representation that allows to model the temporal variability of a 

physical process and, to use the parametric model to estimate the power spectral 

density of the time series (Marple, 1987). 

1 
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In applied seismology predictive deconvolution (another form of linear predic­

tion) was introduced by Robinson (1954) to solve the source deconvolution problem 

when the seismic source function is unknown. Predictive deconvolution is at the 

heart of seismic exploration seismology and used on a daily basis to enhance the res­

olution of seismic records and produce estimates of the earth's reflectivity sequence 

from seismic probes (Robinson and Treitel, 1980). 

Canales (1984) proposed to use linear prediction methods to predict 2D wave 

fields in the f — x domain (frequency-space). The technique proposed by Canales 

is the cornerstone of methods to increase the signal to noise ratio (SNR) of seismic 

records. In this case, the signal at a given channel for a monochromatic frequency / 

can be predicted via a linear combination of waveforms measured at adjacent chan­

nels. If a signal can be predicted, the mismatch that exists between the predicted 

signal and the observed signal is considered an estimate of the noise in the data. 

The latter is a summarized description of / — x deconvolution for the attenuation of 

spatially random noise. Linear prediction is also the basis of algorithms for seismic 

record interpolation (Spitz, 1991; Naghizadeh and Sacchi, 2007). 

Nonlinear prediction, on the other hand, is the prediction of a signal from non­

linear combinations of its past or future values (Wiener, 1958). Nonlinear prediction 

arose in the study of nonlinear systems for the treatment of weak nonlinearities 

arising in system theory (Cherry, 1994). In addition, nonlinear prediction has been 

used to predict the behavior of geophysical signals in the context of hydrological 

studies (Bracalari and Salusti, 1994), ocean waves interactions with platforms (Koh 

and Powers, 1985; Powers et al., 1990). 



1.1. APPLICATIONS 3 

1.1 Applications 

I will give some examples of previous applications of nonlinear prediction problems 

that use the truncated Volterra series. 

Adaptive Noise Cancellation 

The electrocardiograph (ECG) is a signal generated by the hearth and this sig­

nal should be eliminated to obtain other generated biological signals (Coker and 

Simkins, 1980). Adaptive filter cancellation of ECG from biological signals can be 

achieved via conventional linear estimation processes. In this application Coker and 

Simkins (1980) proposed a nonlinear adaptive ECG cancellation. 

Equalization 

Benedetto and Biglieri (1983) focused on a nonlinear equalization of digital satellite 

channels via a Volterra filter using only first- (linear) and third-order (cubic) com­

ponents of Volterra series. Nonlinear coefficients are needed to remove distortions 

in a digital signal channel (Benedetto and Biglieri, 1983). 

In another study multi-input multi-output (MIMO) Volterra filter equalization 

of wireless communication systems using pth—order inverse technique is proposed 

by Fang et al. (2000). 

Image analysis 

Collis et al. (1997) studied image de-interlacing problems using Volterra filters and 

applied their algorithm to reconstruct television images. Their nonlinear filter pro­

vided more smoother edges and curves than a linear filter. Similar technique was 
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applied to video de-interlacing problem with a Volterra model by Giani et al. (2000). 

Ocean waves and platforms 

Tension leg platform (TLP) is a floating platform chained to the ocean floor via 

tendons which are under a tension; that is why it is named as tension leg platform. 

Koh and Powers (1985) modeled the irregular wave oscillations in time domain with 

a second- order Volterra series. Particularly, the second-order (quadratic) compo­

nent of a Volterra series models the relationship between a wave excitation and 

surge response of big waves producing by TLP. Their filter also allows dividing 

into the observed surge response into its linear and nonlinear parts. Powers et al. 

(1990) improved this study to a low- frequency drift oscillation of a TLP due to 

irregular sea waves by correlating nonlinear forces with a TLP data at low fre­

quencies. They demonstrated that the nonlinear transfer function may successfully 

model quadratic nonlinear mechanisms and measured a TLP response. Further­

more, Kim et al. (1994) studied a deconvolution technique based on an impulse 

invariance standard Z— transform to derive linear and nonlinear coefficients of a 

surge response. 

Biomedical 

Zhang et al. (1998) studied how memory length, noise, order of nonlinearity, type 

of data can affect Volterra kernel estimation; they explored this in the context of 

nonlinear lung tissue mechanics around ventilatory breathing frequencies. Other 

applications of Volterra modeling are found in Kellman et al. (2003) and Zhong 

et al. (2006) 
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Applications of higher- order spectra (HOS) and Volterra series 

The connection between HOS and Volterra series were investigated by researchers 

under different topics namely; nonlinear ocean waves and HOS (Powers et al., 1997); 

non-normal random processes (Gurley et al., 1996); nonlinearity detection (LeCail-

lec and Garello, 2004). 

1.2 Motivation and Goals of the Thesis 

The motivation of this thesis is to introduce nonlinear prediction to the seismic data 

processing community and study the feasibility of nonlinear prediction algorithms 

for problems of waveform modeling for SNR enhancement and adaptive modeling 

and subtraction for the general problem of coherent noise attenuation. 

The goal of this thesis is to study nonlinear prediction algorithms and their 

applicability to model seismic waveforms in the f — x domain. In particular, I would 

like to model signals that are not correctly represented by the linear prediction 

theory. Those signals often involve seismic waveforms with hyperbolic moveout 

(seismic reflections or diffractions) that are often immersed in noise and one would 

like to enhance prior to imaging. 

1.3 Thesis Outline 

• Chapter 2 presents an introduction to linear modeling of time series. 

• Chapter 3 reviews the concept of nonlinear prediction and its realization via 

Volterra series. 
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• Chapter 4 provides a detailed study of linear and nonlinear prediction applied 

to SNR enhancement of seismic records. 

• Chapter 5 studies the feasibility of using nonlinear prediction for adaptive 

subtraction of coherent noise from seismic records. 

• Chapter 6 contains a summary. In addition, I provide conclusions including 

the limitations of nonlinear prediction theory in seismic signal processing. 

Finally, I provide a discussion of future research directions. 



Chapter 2 

Linear Systems and Prediction 

2.1 Introduction 

Much research has been done in the area of linear prediction techniques, resulting 

in applications ranging from communications to physics (Makhoul, 1975; Gulunay, 

1986; Collis et a l , 1997). The majority of research in time series analysis has been 

in the analysis of power spectrum estimation (Akaike, 1969; Box and Jenkins, 1970; 

Marple, 1987). 

As I mentioned in the introductory Chapter, linear prediction in geophysics has 

been mainly used for deconvolution (Robinson, 1954), SNR enhancement (Canales, 

1984) and interpolation (Spitz, 1991). 

The first part of this chapter provides a background of linear prediction theory 

from both a seismic processing viewpoint and from a more general signal processing 

point of view. Different linear prediction techniques are described with associated 

examples. In particular, I discuss three methods to estimate linear prediction co­

efficients: the Yule-Walker method, Burg's algorithm and least squares approach. 

7 
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Finally, I provide examples using geophysical series. 

2.2 Linear Process 

It should be stressed that any wide sense stationary random process can be rep­

resented via the superposition of a deterministic part sn plus a non deterministic 

part xn (random or stochastic part), 

-2-n = ^n ~r %n- V / 

Wold decomposition theorem (Wold, 1965; Ulrych and Sacchi, 2005), in addition 

states that the non deterministic part can be represented as a filtered sequence of 

white noise 

oo 

= T/9iSn-i (2.2) 

1=1 

where g0 = 1, 2i=i \9i\2 < °° (finite length impulse response) and en represents the 

white noise which is uncorrelated with sn. I can change the equation above by a 

finite length discrete general linear model 

N 
xn — / j Oi^n—i \^""1 

i=l 

where en is the innovations process and xn depends on its past input values (there­

fore it is casual). 
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In the z-domain the model becomes 

X{z) = G{z)E(z) (2.4) 

where G(z) is the transfer function, and E(z) is the ^-transform of the white noise 

process (innovations). 

The transfer function G{z) can be approximated by rational function in the 

z—transform domain: 

C M - | g • (2.5) 

I can rewrite the equation (2.4) as follows 

The latter, when mapped back to time, is represented as follows: 

x. 
v ? 

n < / , C^i^n—i = ^n "T / ^ "i^n—i • \"- ' ) 
i=l i=l 

When all the coefficients 6j = 0 the last expression is often called an autoregressive 

model of order p, AR(p) (Box and Jenkins, 1970; Makhoul, 1975; Chatfield, 1989). 

Otherwise, when all Oj = 0 then the model called a Moving Average (MA) model. 

The developed algorithm is written in MATLAB. 

Linear prediction models for time series modeling use linear autoregressive mod­

els. Figure 2.1 represents the infinite impulse response (IIR) of an AR model. 



2.3. LINEAR PREDICTION 10 

E(z) 1 

A(z) 

X(z) _ 

^> 

Figure 2.1: AR IIR filter representation. After Makhoul (1975) and Ulrych and 
Sacchi (2005). 

2.3 Linear Prediction 

The relationship between input/output for a linear time -invariant system is given 

by the classical convolution integral (Rugh, 1981; Oppenheim and Schafer, 1989; 

Schetzen, 2006), 

/

oo 
h(a)x(n - a)da . (2.8) 

-oo 

In the last expression h(a) is the impulse response of the system or kernel function 

that defines the input x(n) /output y(n) of the system. 

Equation 2.8 is often used in the discrete form. The convolution integral is 

replaced by a convolution sum and signals are replaced by a finite length discrete 

time series: 

N 

i = l 

The latter is the discrete convolution sum that arises very frequently in geophysics 

and other sciences. It basically relates the output of a system that is excited with 

an input signal xn via the convolution of the signal with the impulse response of 

the system, in this case called an. 

In linear prediction theory, one attempts to predict a signal by its past values 

(or future values) by replacing the output signal yn by a future (one step ahead) 
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prediction of the input signal. Mathematically this is equivalent to the following 

model for the signal xn: 

p 

•^n = / j ̂ v^n—% i &ni 
i=l 

= axXn_i + a2Xn_2 + • • • CLpXn^p + £n (2.10) 

where p is the order of the prediction filter an, n — 1 , . . . ,p. I have also introduced 

a prediction error en to account for the part of the signal that cannot be properly 

predicted. 

These models are of importance for the analysis of time series in both time and 

frequency domain. This model is also called an Autoregressive model of order p 

(AR(p)). One can immediately see that the latter entails a regression model but 

rather that being a regression on arbitrary basis functions, the regression uses past 

values of the data one is trying to predict. The latter is the reason behind the name 

Auto-regressive model. 

The coefficients of the system (AR coefficients) can be estimated using various 

methods. Marple (1987) provides a review of methods for solving the prediction 

problem. In particular, one can adopt a minimum error formulation (least squares 

approach) to find the coefficients that minimize the error function J given by: 

p 

J = ^2(xn-YlaiXn^)2. (2.11) 
n i = l 

The filter â , i — 1.. .p that minimizes the cost function J can be used to predict 

the signal and to compute the so called AR-spectral estimator (Marple, 1987). 
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In my thesis I have adopted the least squares approach to estimate the coef­

ficients of linear and non-linear prediction systems but bear in mind that other 

method (at least for the linear prediction problem) are also plausible. In the follow­

ing section I will discuss three methods to estimate the coefficients a(i),i — 1.. .p 

from the data x(n): the Yule-Walker method, Burg's algorithm, and the least 

squares approach. 

2.3.1 Forward and backward prediction 

Off-line processing allows computation of forward and backward prediction oper­

ators. In other words, I can use past samples of data to predict future samples 

and/or I can use future samples of data to predict past samples. This allows us to 

formulate a problem with two systems of equations. One for forward prediction, 

v 
{ = ^2a{xn^+en, (2.12) 

and, the other for backward prediction, 

p 
h x * = £ a?*** + en . (2.13) 

2.3.2 Estimating AR coefficients via Yule-Walker Equations 

I can write equation (2.6) as follows 

X(,) - f g , (2.14) 

and the autocorrelation in the z domain (Ulrych and Sacchi, 2005) is 
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R(z)=X(z)X(-), (2.15) 
z 

rewriting to 

then the white noise E(z)E(l/z) must be equal to variance (a£) as follows 

A(z)R(z) = A-1(l/z)a2
£. (2.17) 

Transforming to the time domain 

{l + aiz + • • • + apz
p)(- • • +r2z-2 + r1z~1 +r0 + - • • + r2z

2 + • • •) = a2(- • • + x1z~1 +1). 

(2.18) 

and finally, after rearranging the latter as a system of equations I obtain: 

£ r0 + axr^x + a2r^2 + ••• + apr-p = o\ 

n + axro + a2r_i + • • • + apr_p+i = 0 
(2.19) 

rp + airp_i + a2rp_2 + • • • + apr0 = 0 
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which can be written in matrix form as: 

r0 r_i ••• r_p 

n r0 

'"p "̂p—l 

-p+i 

^o 

1 

Ol 

ftp 

= 

V 
0 

0 

(2.20) 

R a e 

where the matrix is the data autocorrelation matrix and o\ is the innovation vari­

ance . 

The system above is written as 

Ra = ofex, (2.21) 

where ef = [1, 0, • • •, 0] is the zero-delay spike vector. The AR Yule-Walker equa­

tions are formed with an autocorrelation matrix (Marple, 1987). Since i?_j = R* 

the autocorrelation matrix, which is almost always invertible in equation (2.21) is 

both Toeplitz and Hermitian. The Levinson recursion solves the resulting system 

in (p + l )2 operations. 

2.3.3 Estimating AR coefficients via Burg's algorithm 

Burg (1975) developed an AR algorithm to estimate AR prediction coefficients when 

the autocorrelation sequence of the system is unknown. The primary advantage of 

Burg's method is to estimate prediction coefficients directly form the data, in con­

trast to the least squares solution and the Yule-Walker method. In addition, the 

method provides a stable AR model in a time series with low noise levels, and is 
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useful in predicting short data records (Robinson and Treitel, 1980). Burg's method 

first estimates the reflection coefficients by minimizing the forward and backward 

prediction errors. The accuracy of the method decreases for higher-order AR predic­

tion models, and time series with longer data samples. Similarly to the Yule-Walker 

equations, the Levinson recursion determines prediction coefficients defined as the 

last autoregressive parameter estimates for each model order p (Marple, 1987). I 

follow Marple's (1987) way to obtain the equations of Burg's algorithm. 

The forward and backward prediction errors are, respectively, given by: 

e£ = 4 + I>(zn-i> (2-22) 
i=l 

and 
p 

^n = Xn-p i ^^aixn+i- \A.l6j 
i=l 

Burg's method estimates prediction coefficients via a least squares solution. Mini­

mizing the arithmetic mean of forward and backward prediction error power subject 

to recursion similar to equations (2.22) and (2.23) as follows: 

$-\\jj t H\' + Ji t 1411- (2-M) 
^ JV n=p+l i v n=p+l 

where N denotes the length of recorded data. Note that only data that has been 

recorded is used in the summation. Therefore, pfb is assumed as a single parameter, 

so that the prediction coefficient kp is a prediction coefficient. Prediction errors from 

order p — 1 are found and by setting the complex derivative of the equation (2.24) 

to zero 

file:///A.l6j
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ddb dplb , , 
+ i-^T = 0 (2.25) dRekp dlmkp 

where Re and Im are real and imaginary parts, respectively, of the complex deriva­

tive. A least squares solution ensures a solution for prediction coefficients, kp as 

follows: 

2 En=p+i gp-i( n ) £p-i( n ~ 1) 

Sn=p+l Pp-lWl + J2n=p+1 l£p-l(n ~~ l ) r 
KP - ^N \J /„M2 , v-iV ~ 7~ 77T7 ^ ^ O j 

where * is the complex conjugation. 

2.3.4 Computing the AR coefficients without limiting the 

aperture 

The Yule-Walker and Burg algorithms are often used in signal processing algorithms 

for their computational efficiency at the time of computing prediction error coeffi­

cients. In what follows I will provide a method that I have introduced in order to 

solve for the coefficients of the linear prediction problem using only the data that 

are available. In other words, I will avoid creation of the correlation matrix and 

directly posed the problem as a least-squares problem. 

Consider a filter length p = 3 and a time series of length N = 7. Using equations 

(2.12) and (2.13) I can write the following equations: 



2.3. LINEAR PREDICTION 17 

(2.27) 

x\ = axx2 + a2x3 + 03X4 + £1 

x2 = axx3 + a2xA + a3x5 + s2 

x3 = axxA + a2x5 + a3xe + £3 

£4 = aix5 + a2x6 + a3x7 + £4 

£4 = axx3 + a2x2 + a3x1 + e5 

x5 = axxA + a2x3 + a3x2 + £5 

XQ = aix5 + a2x<± + a3x3 + £6 

X7 = a,\Xe + a2Xs + 03X4 + £7. 

Notice that only data that has been recorded is used to compute the prediction 

coefficients ap. In other words, no assumption about samples of non-recorded data 

is made. In addition, I are conveniently using forward and backward prediction to 

avoid any type of truncation or aperture artifact. Data that cannot be predicted 

with equation (2.12) is predicted via equation (2.13) and and vice versa (Marple, 

1987). 

The equations in (2.27) can be written in matrix form as follows: 

xi 

JLT. 

< d ^ 

iVx 1 

Xl+l %l+2 

XY 

%n— 1 %n—2 

I A ^ 

N x P 

%l+p 

X n—p 

X 

<2i 

a2 

ap 

+ 

" 
£1 

£1+1 

£n 

m 
P x 1 

^ t s ^ 

N x 1 

(2.28) 
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I have an overdetermined system (where the number of observations is larger than 

the number of unknowns (Menke, 1989)) of equations which I will solve using the 

method of least squares with zero-order quadratic regularization (damped least 

squares method) (Lines and Treitel, 1984). In this case, I form the following cost 

function by using the l2 norm: 

J = | | A m - d | | ^ + /i||m||^. (2.29) 

The first term of J indicates the modeling error or misfit. This term defines how 

well the prediction filter can reproduce the data. The second term is a stability or 

regularization term. The parameter /i is the trade-off parameter that accounts for 

the amount of weight given to each one of the terms in the cost function (Figure 2.2). 

The minimum of the cost function is found by taking derivatives with respect to 

the unknown parameters and setting them to zero. The solution, the damped least 

squares solution (or the minimum quadratic norm solution), is given by: 

m = (A r A + / i I ) - 1 A r d (2.30) 

where I denotes the identity matrix. 

The main goal in linear prediction is to model the data with a small set of 

coefficients. These coefficients can be used to reconstruct (model) a clean version 

of the data (Canales, 1984) (see Chapter 4) , to compute the AR spectral estimator 

(Marple, 1980) and to design data compression algorithms (Makhoul, 1975). I are 

interested in the predictability of seismic events in the spatial domain, not only to 
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§ 

Model norm 

Figure 2.2: The trade-off parameter \i estimates the optimum solution. A large /i 
will underfit the data, otherwise a small amount of /u. will overfit the data. 

propose new noise attenuation strategies but also to design methods for optimal 

reconstruction (interpolation) of seismic waveforms. I will come to this point when 

focusing on / — x processing. 

2.4 1-D Synthetic and Real Data Examples 

I have developed an algorithm to invert the coefficients of a first-order Volterra 

series. I focus on a 1-D synthetic time series which is generated with real AR data. 

Linear prediction methods provide predictions similar to Yule-Walker equations, 

Burg's algorithm, and a first-order Volterra series. Figure 2.3 (a) shows linear 1-D 

input data containing 100 samples. 

Figures 2.3 (b) and 2.3 (c) represent the predicted series modeled via Yule-

Underfitting 

Overfitting 
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Walker equations and Burg's method with parameter p — 4. Figures 2.3 (d) and 2.3 

(e) portray predicted data using linear prediction theory (p = 4) and the associated 

modeling error (which is equivalent to the difference between the original data and 

the predicted data), respectively. It is clear that the three different prediction 

algorithms provide similar results. I did not plot differences between original data 

and these methods (Yule-Walker and Burg's) because the results were quite similar 

to those obtained in Figure 2.3 (e). 

I also attempt to model data corresponding to the so called Arctic oscillation 

(AO)-a time series from 1950 to 1999 of sea level pressures. These data are used to 

characterize the long term variability of nonseasonal sea level oscillations (Thomson, 

2004). 

Figure 2.4 (a) shows nonlinear AO-a data for a period from 1950 to 1999. The 

data consist of 104 samples (3 observations per year-January, February, March). 

Figures 2.4 (b) and 2.4 (c) illustrate predicted AO values using Yule-Walker equa­

tions and Burg's algorithm with linear terms (p = 14). Figures 2.4 (d) and 2.4 (e) 

represent our attempt to model the data with a linear prediction filter (p — 14) and 

the modeling error, respectively. Again, it is clear that the dynamics of the time 

series cannot be captured by linear prediction methods. 
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(e) 

Amplitude 

-5 0 5 

Figure 2.3: 1-D synthetic data for comparison of prediction between linear pre­
diction theories, (a) Original data, (b) Prediction using Yule-Walker equations 
(p = 4). (c) Prediction using Burg's algorithm (p = 4). (d) Prediction using the 
first-order Volterra series which is equivalent to a linear prediction (p = 4). (e) The 
error be tween the original d a t a a n d a linear predict ion. 
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(a) 

Amplitude 

-2 0 2 
u 

20 

S3 40 

f 
« 60 

80 

100 

; ~33F~ 
j ^5r^ 
j ^ g j j ^ 
• ^ ! ~ 

*^-=-

20 

40 

60 

100 

(b) 
Amplitude 

-2 0 2 
0 

20 

g 40 

"5. 
I 60 

80 

100 

(C) 

Amplitude 

-2 0 2 

0 

20 

40 

60 

80 

100 

(d) 
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Figure 2.4: Arctic Oscillation data for standardized nonlinear sea-level pressures 
for comparison of prediction between linear prediction theories, (a) Original data, 
(b) Prediction using Yule-Walker equations (p = 14). (c) Prediction using Burg's 
algorithm (p — 14). (d) Prediction using the first order Volterra series which is 
equivalent to a linear prediction (p = 14). (e) The error between the original data 
and the linear prediction in (d). 
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2.5 Power Spectrum 

The power spectrum density (PSD) estimation C2(tj) (or Pxx(u>)) is defined as: 

oo 

C2{u)= Y, c2(r)exp(-i(u;T)) (2.31) 
T\= — 00 

where C2(r) is the autocorrelation. Equation 2.31 is also known as the Wiener-

Khintchine theorem (Nikias and Mendel, 1993). 

At this point it is important to clarify that a non parametric estimator of the 

power spectrum can be computed using the Discrete Fourier Transform (DFT). In 

this case, the autocorrelation is estimated from the data and the DFT is used to 

evaluate an estimator of PXX{LO) from equation 2.31 . 

Parametric methods for Power spectrum estimation, on the other hand, operate 

by defining the power spectrum of the parametric model. In the case of AR process 

the power spectrum is given by 

PAR(Z) ~ n-(swi- (2-32) 

where o\ variance of the innovation sequence of the AR model. If z = exp(—iu>) 

then PAR(Z) becomes PAP(u>). In general, I first compute the AR coefficients using 

one of the methods described in the preceding sections, then the coefficients are 

plugged in the formula for the power spectrum. The latter is the so called AR-

spectrum, one form of parametric spectral analysis, often used because of its ability 

to produce smooth spectra from short time series. Figures 2.4(a)-(d) I compare the 

classical spectral density for the AO-a data computed with nonparametric analysis 

and AR analysis using Yule-Walker, Burg and the LS methods. 
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Figure 2.5: PSD Estimation of Arctic Oscillation data for standardized nonlinear 
sea-level pressures, (a) Nonparametric DFT based PSD estimation, (b) PSD AR 
estimation using Yule-Walker equations . (c) PSD AR estimation using Burg's 
algorithm, (d) PSD AR estimation using the first order Volterra series which is 
equivalent to a linear prediction . 

2.6 Summary 

In this chapter, I have covered some of the theoretical and practical aspects of linear 

prediction. Computation of AR coefficients with different AR models has been ex­

plored using Yule-Walker equations based on autocorrelation sequences solved with 

the Levinson algorithm which ensures a fast inversion of the Toeplitz matrix. In 

addition, Burg's method was used to directly estimate AR coefficients with back-
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ward and forward predictions by minimizing the error between the predicted data 

and original data. Finally, I presented a least squares method that uses only the 

available data and avoid truncation effects by properly using all the available in­

formation at the time of setting the system of linear prediction equations. Because 

of practical considerations, I will use the least squares approach presented in sec­

tion 2.3.4 to solve for the coefficients of the nonlinear model that I will present in 

Chapter 3. 



Chapter 3 

Nonlinear Prediction 

3.1 Nonlinear Processes via the Volterra Series: 

Background 

The failure of linear systems (prediction techniques) to accurately model all phys­

ical systems leads to the creation of nonlinear prediction methods (Wiener, 1942; 

Bracalari and Salusti, 1994). Examples of nonlinear systems in which nonlinear 

modeling techniques have been applied range from communication to nonlinear in­

teractions of waves (Coker and Simkins, 1980; Benedetto and Biglieri, 1983; Koh 

and Powers, 1985; Kim et al., 1994; Flioriani et al., 2000). The potential of nonlinear 

systems in seismic data processing, however, is relatively underutilized. 

In this section the Volterra series will be introduced by extending a classical 

linear prediction technique to nonlinear prediction technique. The goal is to ad­

dress the modeling waveforms with variable curvature in the t — x domain with 

nonlinear prediction theory implemented via a Volterra series and provide a set of 

26 
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AR techniques to address the modeling of complex waveforms in the f — x domain. 

The approach here will be an extension of the linear AR concept to higher order 

dimensions for the applications of second and third-order Volterra kernels. 

3.1.1 Time domain representation 

I now consider a time series that arises from a nonlinear process and that requires 

a nonlinear modeling method to synthesize its input/output behavior. In addition, 

I assume a time-invariant system. 

I can analyze the Volterra series as an expansion of the linear convolution in­

tegral. There is similarity between a Volterra series and a Taylor series. A Taylor 

series expands a nonlinear function as a superposition of simple polynomial func­

tions. A Volterra series, on the other hand, can expand a system in terms of 

convolution-like integrals which are linear in the system impulse responses but non­

linear in the input signal (Schetzen, 1980; Cherry, 1994). The general expression 

for a continuous time-invariant Volterra system is given by: 

1 f°° 
y(t) = — daihi{ai)x{t - <7X) 

1! J —oo 
][ roo roo 

+ oT / d,°\ \ da2h2(cri,(72)x(t-a1)x(t-a2) 
Zl J—OO J — OO 
^ /"00 /•OO POO 

+ T\ d(Tl d°2 / da3h3(ai,a2,a3)x(t - ai)x(t - a2)x(t - <r3) 
o ! J—oo J—oo J—oo 

+ ••• (3.1) 

where the first line is the first-order (linear), second line is the second-order (quadratic), 

and the third line is the third-order (cubic), etc. Notice that first-order Volterra se-
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ries is equivalent to the convolution representation of a system. The last expression 

can be represented in a more general form as follows: 

0 0 ^ roo poo fe 

v(t) = YlT\\ dai"- dakhk(ai,a2...,ak)Y[x{t-ap) (3.2) 
fc=iK- J-°° J-°° p=i 

where, again, x(t) is the input, y(t) is the output of the system. This functional 

form was first studied by the Italian mathematician Vito Volterra, so is known as 

the Volterra series, and the functions hk(ai,..., ak) are known as Volterra kernels 

of the system. Norbert Wiener (1942) first applied these series to the study of 

nonlinear systems. As seen in equation (3.2) the Volterra series can be regarded as 

a nonlinear extension of the classical linear convolution. 

x(t) 

H, 

H, 

H, 

J 
*\ + y(t) 

Figure 3.1: Schematic representation of a system characterized by a third-order 
Volterra series. Modified from Schetzen (1980). Hi, H2 and H3 represent the 
impulse responses of the first, second and third-order Volterra kernels, respectively. 

Figure 3.1 illustrates a schematic representation of a system is characterized by 

a third-order Volterra series. 

3.1.2 Frequency domain representation of Volterra kernels 

The representation of a Volterra kernel in the Fourier domain is given by 
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/

00 /-00 

• • • / hk(au ..., ak)e-<u^+^n+-+u"^da1,..., dak. 
-00 J — 00 

(3.3) 

The inverse Fourier transform of kth-ordev Volterra kernels is as follows (Rugh, 

1981) 

1 /-CO fOO 

hk(ax, cx2,..., ak) = ?—- k J ••• J Hk(uir--, ojk)e-^^+^+-+^^dco1, ...,<L,, 
(2TTY 

k-

(3.4) 

M 

Nonlinear Syst em 

H,(i) 

H2G« 

j + k = i 

H, (l,m,s) 

Uft 

y/ft 

Y (ft 

' C~r) 

y<r,) 

h-
A 
Y(ft) 

ttfj 

1 + m + s - i 

Figure 3.2: Frequency domain Volterra model of a cubic nonlinear system. After 
Nam and Powers (1994) and Schetzen (2006). 

Diagram shown in Figure 3.2 represents a discrete frequency domain third- order 

Volterra model which is expressed as 
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y(/,) = H^ftxUi) 
v ' 

YL(fi) 

+ E Wjjjxwxih) 
fj+fk=fi 
s y ' 

YQUi) 

+ £ Hz{fhfn,fa)X{fl)X{fm)XU.) 
fl+fm+fa=fi 

Ycih) 

= Y{fi) + e(ft) (3-5) 

where X(-) and Y(-) are discrete FT's of input and output data, Y(-) — YL(-) + 

YQ(-) + Vb(-) is the model output (prediction). Efi denotes the difference between 

original and model output at a given frequency. H\(-), H2(-, •), and H3(-, •, •) are 

linear, quadratic, and cubic transfer functions of a Volterra series (Nam and Powers, 

1994). 

3.1.3 Symmetry property of Volterra kernels 

Second-order and higher orders of Volterra kernels have symmetries properties that 

are provided in this section. If I rearrange equation (3.2) and interchange cr's, I 

have the following symmetry of kernels: 

0 0 \ r-oo roo k 

y(t) = YlTi dat--- d(Tkh*k(a2,(Ti...,(jk)
1[[x(t-(Tp). (3.6) 

where in this example ax and a2 are switched because all integrations of the system 

are from - c o to +oo and x(t — a\)x(t — a2) = x(t — a2)x(t — o\) so that equations 

(3.2) and (3.6) have the same value. 
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k\ is the total number of all possible integrations of k and this can be generalized 

for Volterra kernels: 

hk(cri,a2,...,(7k) = -r]J2fl*k(aii>IJi2>--->(Jik) (3-7) 
K- i=l 

where ix,... ,ik shows the ith permutation of 1,2,... ,n (Schetzen, 2006). For in­

stance, the second-order kernel for k = 2 is given by 

h2((7u o"2) = 2(^2(^1^2) + h*2{<r2, o-i))- (3.8) 

The symmetrized kernel h2(<Ji,<T2) and the asymmetric kernel h^{a\,(72) are 

shown in the example above. Any asymmetric kernel also can be symmetrized via 

the procedure outlined above. It can be seen from the equations above that the 

order of cr's is not important. The asymmetric form of the Volterra kernels is not 

unique, but the symmetric form is unique. I can demonstrate why the uniqueness 

is significant with an example of a second-order Volterra kernel as follows: 

^2(^1,0-2) = ha(cri)hb(a2), (3.9) 

and the other kernel is 

hl((Tl,<T2) = ha(<T2)hb((Tl). (3.10) 

There are two asymmetric kernels, ha(ai)hb(a2) and /ia(cr2)/xb(cr1)there is only 

one symmetric kernel, \{ha(ai)hb{(J2) + ha((T2)hb(ai)). 

If the kernel is unique the determination will be simplified for a given nonlin­

ear system, and the uniqueness can be gained by demanding the kernel to be not 
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asymmetric. 

Equation (3.7) can be extended to the frequency domain kernels like 

^ fc! 

Hk(ui,U)2,...,Uk) = T-.^H^Ui^Ui^ . . . ,Uik). (3.11) 

Using symmetry arguments for the reduction of the nonlinear prediction coeffi­

cients in the AR model will be discussed in the next section. 

3.2 Nonlinear Modeling of Time Series via Volterra 

Kernels 

I propose to replace the linear prediction problem by a nonlinear prediction problem. 

Our nonlinear problem is a Volterra system with an expansion in terms of three 

kernels obtained by truncating the third-order of the series: a linear or first-order 

kernel, a nonlinear quadratic kernel, and a nonlinear cubic kernel 

1 r°° 
y® = 77 / d<7ihi(cri)x{t - ai) 

1! J—oo 
^ poo poo 

+ oT / d(Jl / do2h2(aua2)x(t-ax)x{t-o2) 
1 /•oo poo poo 

+ ^7 / dox / da2 / da3h3(au a2, a3)x(t - ai)x(t - a2)x(t - CT3). 
o! J—oo J—oo J—oo 

(3.12) 

I call this system a third-order Volterra system. A first-order Volterra system is the 

classical convolution integral used to described a linear time-invariant system. 
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Equation (2.9) (linear prediction model) is a time-invariant linear system where 

I have replaced the output by the one-step ahead prediction of the input. Similarly, 

I can consider equation (3.12) and construct a time-variant nonlinear prediction 

operator with a nonlinear Volterra model of the form (order of p, q, r): 

v 
%n ~ / j % -En—i 

i = l 
1 Q 

~r / J / j Ojk %n—j-En—k 

i = l fc=l 
r r r 

"i / j / j / j ^Ims^n—l^n—m^'n—s "i &n j [o.lo) 
(=1 m=\ s = l 

where a*, bjk, and Cims are the linear, the nonlinear quadratic, and the nonlinear 

cubic impulse responses of the nonlinear system, respectively, also known as Volterra 

kernels. The first term on the right hand side of equation (3.13) represents the 

classical linear prediction problem with a prediction operator of order p. The second 

and third terms of equation (3.13) represent the expansion of the signal in terms 

of quadratic and cubic nonlinearities. The modeling error is given by en. Note 

that equation (3.13) is the nonlinear AR formulation as an extension of linear AR 

modeling. 

The last expression can also be written in prediction error form 

p 

£n ^ n / j " i •En—i 

<? <? 

/ j / y Ojk %n—j%n—k 
j = l / c = l 

r r r 

/ j / j / j C-lms%n—l%n—m%n—s • V1^ / 
1=1 m = l s = l 
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Figure 3.3: Volterra AR diagram. Modified from Marple (1987) and Ulrych and 
Sacchi (2005). The coefficients of the linear term of the Volterra series are given by 
a\, • • •, ap, the coefficients of the quadratic term of the Volterra series are given by 
bxi, • • • j bqq, and the coefficients of the cubic term of the Volterra series are given by 
'-'111) i Crrr. 

Equation (3.14) clearly states that I have more flexibility to model the deterministic 

part of the complex signal when the nonlinear terms are incorporated in the model. 

The third-order Volterra representation of the data requires the estimation of 

p + q2 + r3 coefficients: a^i = 1, . . . ,p, bjk, j,k = 1 , . . . , q, and cjms, l,m,s = 

1 , . . . , r. I will use symmetry properties of the Volterra series to reduce the number 

of coefficients of the quadratic contribution from q2 to (q (q + 3)/2 — q) and the 

number of coefficients of the cubic contribution from r3 to (r2 + r\/(r — 3)!3!). 

Table 3.1 shows various filter lengths and the number of prediction coefficients 

using symmetry arguments of a Volterra series. It can be seen that the number of 

parameters increases dramatically with a small increment in the filter order. 

Again, I can use forward and backward prediction 

4 = ±"f 
i = i 

ai xn—i~i / j / , V-jk •En—j%n—ki / _, / j / j ^ims^"n—l^n—m^n—s'T Bn , \6.i.o) 
j=l k=l 1=1 m=l s=l 
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Operator length 

1 

2 

3 

4 

5 

10 

20 

V 

1 

2 

3 

4 

5 

10 

20 

9(9+3) 
2 y 

l 

3 

6 

10 

15 

55 

210 

r2 1 r-
' ' (r-3)!3! 

1 

4 

10 

20 

35 

220 

1540 

Total 

3 

9 

19 

34 

55 

285 

1770 

q2 

1 

4 

9 

16 

25 

100 

400 

r3 

1 

8 

27 

64 

125 

1000 

8000 

p+q2+r3 

3 

14 

39 

84 

155 

1110 

8420 

Table 3.1: Filter length and the number of prediction coefficients. Various operator 
lengths versus linear, quadratic nonlinear, and cubic nonlinear prediction coeffi­
cients of a Volterra system using symmetry arguments and the original number of 
parameters in the system. 

and 

Q Q r r r 
Xn ~ Z_j ai xn+i + 7 , 7 y Ojfc xn+jxn+k + / , / „ / , Clms Xn+iXn+mXn+s + £n . ( 3 . 1 6 ) 

i = l j=l fc=l (=1 m—1 s = l 

By expanding the previous equation I notice that: 

Xn ~~ a l x n - l + a2xn-2 + " ' " + a
p

xn-p 

lXn—lXn-l -\~ 02'2
xn-'2xn—2 + "T" 0nnXn_ 

/ 3 / 2 
+ c m x n - l + c112Xn-lXn-2 + + c 1 2 3 2 ' T i - l ^ n — 2 x n - 3 + 

III 

+ E-n j (3.17) 
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and 

= a1xn+i + a2xn+2 • • • + apxn+p 

+ 0nXn+1 + 012Xn+iXn+2 + 02iXn+2Xn+l + b22Xn+2Xn+2 + ' - • + °qqXn+q 

+ C m : E n + 1 + C112Xn_)_iXn_|_2 + • " • + Ci23Xn+lXn-\-2Xn+3 ~r " - " + CrrrXn_^r 

+ e„, (3.18) 

where I, II, and III are the linear, quadratic nonlinear, and cubic nonlinear contri­

butions, respectively. I can see from equations (3.17) and (3.18) that the quadratic 

(Powers et a l , 1990) and cubic coefficients of the Volterra series must obey sym­

metry properties as mentioned in the subsection 3.1.3. For instance, 

bi2xn-lxn-2 = &21xn-2^Ti—1 • (3.19) 

It is clear that the number of coefficients to be computed is reduced from q2 to (q (q+ 

3)/2 — q). The cubic part of the Volterra series has also similar symmetry properties, 

however, the symmetry relations are more complicated than the quadratic part. For 

example, 

cll2xn— lXn-\Xn-2 — Ci2\Xn-iXn_2Xn-l = C2\\Xn~ 2Xn— \Xn—1 > [6.10) 

f _ / _ / _ 
c123xn—lxn-2xn-3 — C-\32xn-\xn-3x

n-2 — c2\3xn-2xn-lxn—3 _ 

c231xn-2xn-3xn-l — c312xn-3xn-lxn-2 = c321xn-3xn-2xn~l • W-^l) 
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Symmetry arguments in equations (3.19, 3.20 and 3.21) are also valid for the back­

ward prediction. The number of coefficients for the cubic part is reduced from r3 

to r2 + r\/(r — 3)!3! and the total number of prediction coefficients is reduced form 

p + q2 + r3 to p + (q (q + 3)/2 - q) + r2 + rl/(r - 3)!3!. 

The form of the forward and backward prediction equations is now given by: 

Xn ^l-En—l "T Q>2^"n—2 i &p%n—p 

+ bnxl-i + 2b{2xn-1xn-2 + 2b{3xn^1xn_3 -\ 1- b{qx
2
n_q 

~f C l l l ' Z ' n - l ~^~ ^cl\2xn—\Xn-2 + ' ' ' + Vcl23xn-lxn-2xn-3 + * ' " + CrrrXn 

+ £„, (3.22) 

and 

r-3 

°n—r 

xn — a\xn+l "T a2*^"+2 ' ' " "f" Q.p3?n+p 

+ ^ n ^ n + 1 + 2& 1 2 ^n+l^n+2 + 2 6 3 1 X n + i X n + 3 + • • • + bqqXn+q 

+ clllxn-\-l ~f ^ c112 a : 'n+l a 'n+2 + ' ' ' + 6 c 1 2 3 : r n + i £ n + 2 2 ; n + 3 + • • • + C r 7 . r2; n + r 

+ e„. (3.23) 

As in the linear prediction problem, I will assume that the Volterra coefficients 

(linear, quadratic, and cubic) are obtained using actual observations. For example, 

a s s u m e p = l , g = 2, c = 3 , a n d a t i m e s e r i e s of N = 7 p o i n t s : 
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xx = axx2 + bxxx\ + 26 i 2 x 2 x 3 + ^22^1 + cxnx\ + 

X<2 — aXX3 + 611X3 + 2612X3X4 + 622X4 + C111X3 + 

x 3 = a i x 4 + bxxx\ + 26 i 2 x 4 x 5 + 622Xg + cxxxx\ + 

x 4 = a i x 5 + 611X5 + 2612X5X6 + 622X6 + C111X5 + 

x 4 = axx3 + bnx\ + 2612X3X2 4- 6 2 2 x | + cxxxx\ + 

x 5 = a x x 4 + bxxx\ + 2612X4X3 + 622X3 + cxxxx\ + 

x 6 = axx6 + bnx\ + 2612X5X4 + 622X4 + C111X5 + 

x 7 = a i x 6 + 611X5 + 26 i 2 x 6 x 5 + 622X5 + c m x g + 

+ 3C112X2X3 + 

+ 3C112X3X4 + 

+ 3cu2xlx5 + 

+ 3C112X5X6 + 

+ 3 c n 2 x ^ x 2 + 

+ 3 c u 2 x ^ x 3 + 

+ 3 c n 2 x ^ x 4 + 

+ 30112X5X5 + 

+ 6c i 2 3 x 2 x 3 x 4 + £1 

+ 60^3X3X4X5 + e2 

+ 6Ci23X4X5X6 + £3 

+ 6C123X5X6X7 + £4 

+ 6Ci23X3X2Xi + £4 

+ 60123X4X3X2 + £5 

+ 6Ci23X5X4X3 + £6 

+ 6ci23X6X5X4 + £ 7 

Linear Quadratic Cubic 

or in matrix form: 

(3.24) 

xi 

•JjT Linear | Quadratic | Cubic 

Q(Q+3) 
\Nx {P+^f^-Q + R2 

(R 
R\ M ^ 

X 

" 
ax 

ap 

611 

K 
C m 

l~"r"T'r' 

L J 

+ 

£1 

£1+1 

£n 

/ s ^ 

y N X 1 J 

(3.25) 
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where Linear, Quadratic, and Cubic denote the matrices of linear, quadratic, 

and cubic filter coefficients respectively: 

and 

Linear = 

xl+l xl+2 ' " • %l+p 

xm xm Jbr 

Quadratic = 

xn— 1 xn—2 ' ' ' xn—p 

x2
l+l 2xl+iXi+2 2xi+iXi+3 ••• xf+q 

X~~, nXm.Xrn. ^XrytXr. bm^m "•Xjm-*jm 

Xn_-^ AXn—iXn—2 £Xn—\X n - 3 

Jbv 

"n-~q 

(3.26) 

(3.27) 

Cubic = 

xi+i 

Jj ry 

Jn-l 

3x2
+1xl+2 3xf+lxi+3 ••• 6^+1^+2X^+3 ••• xf+r 

<5XmXm 6XmXm OXrnXrnXrn 

•->x
n—\xn—2 •Jx

n-l
xn—3 ' ' ' ^>xn-l xn-2xn—3 

XI 

(3.28) 

The unknown vector m contains linear and nonlinear prediction coefficients orga­

nized in lexicographic form in the dimension of P + ^(-T,+3') — Q + R2 + m^y_3,) x 1-
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It is clear that the problem is linear in the coefficients. One possible solution vector 

is given by the regularized least squares solution (damped least squares). Adopt­

ing the least squares method with zero-order quadratic regularization leads to the 

solution of the filter coefficients: 

m = (ATA) + fil)-1ATd . (3.29) 

For small systems (small order of parameters p, q, and r) one can use direct in­

version methods to solve equation (3.29). For systems that involve long operators, 

I suggest the use of semi-iterative solvers like the method of conjugate gradients 

(Wang and Treitel, 1973). In our examples, however, I have adopted direct inver­

sion methods. In general, f — x algorithms do not require the inversion of large 

systems of equations. In many cases this is a consequence of working with small 

spatial windows. 

3.3 1-D Synthetic and Real Data Examples 

I have developed an algorithm to invert the coefficients of a third-order Volterra 

series. I focus on a 1-D synthetic time series which is generated with a real second-

order Volterra system. Figures 3.4(a) and 3.5(a) show a 1-D input data for 100 

samples. 

Figures 3.4(b) and 3.4(c) represent the predicted series modeled via the third-

order Volterra series (with parameters p — 8, q = 8, and r = 8) and the associated 

modeling error, respectively. Figures 3.4(d) and 3.4(e) portray the predicted data 

using linear prediction theory and modeling error (p = 8, q — 0, and r = 0). It is 
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clear that quadratic and cubic terms are needed to capture the strong variability 

observed in the time series. 

In Figure 3.5(c) I portray the contribution due to the linear terms of a third-

order Volterra series to predicted the data in Figure 3.5(b) due to the linear terms of 

third order Volterra series. Note that this contribution is negligible and shows that 

linear terms can not model the highly nonstationary part of signal. Figures 3.5(d) 

and 3.5(e) illustrate the parts of the prediction associated with quadratic (q = 8) 

and cubic (r = 8) terms in the third-order Volterra series. Figure 3.5(f) shows the 

contribution of nonlinear terms associated with quadratic and cubic terms (q = 8 

and r = 8). It is clear that nonlinear quadratic and cubic terms are required to 

properly model the full aperture. 

A real data example corresponding to the so called Arctic oscillation time series 

(AO)-a time series from 1950 to 1999 of sea level pressures-is used to characterize 

the long term variability of nonseasonal sea level oscillations (Thomson, 2004). 

Figures 3.6(a) and 3.7(a) show the nonlinear AO data for the period from 1950 

to 1999. The data consist of 104 samples (3 observations per year-January, February 

- March). Figures 3.6(b) and 3.6(c) illustrate predicted AO values for a Volterra 

system consisting of linear and nonlinear terms (p — 10, q = 10, and r = 10) and 

associated error, respectively. Figures 3.6(d) and 3.6(e) represent our attempt to 

model the data with a linear prediction filter (p — 10) and corresponding error. 

Again, it is clear that the dynamics of the time series is better captured by the 

third-order Volterra system. 

Figure 3.7(b) is the prediction using a third-order Volterra series with p = 10, 

q = 10, and r = 10. In Figure 3.7(c) I portray the part of the prediction attributed 
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Figure 3.4: 1-D synthetic data for comparison of prediction between linear predic­
tion theory and third order Volterra series, (a) Original data, (b) Prediction using 
a third-order Volterra series (p = 8, q = 8, and r = 8). (c) The error between the 
original data and the third-order Volterra prediction, (d) Prediction using the first 
order Volterra series, which is equivalent to linear prediction (p — 8). (e) The error 
between the original data and linear prediction. 

to the linear kernel (p = 10). Figures 3.7(d) and 3.7(e) show the parts of the 

prediction associated with quadratic (q = 10) and cubic (r = 10) terms in the 

third-order Volterra series. In addition, Figure 3.7(f) illustrates the part of the 
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Figure 3.5: 1-D synthetic data, (a) Original data, (b) Prediction using a third-
order Volterra series with parameters p = 8, q = 8, and r = 8. (c) Contribution 
from the linear part, (d) Contribution from the quadratic part, (e) Contribution 
from the cubic part, (f) Contribution from both quadratic and cubic parts (q = 8, 
and r — 8). 

predict ion associa ted t o b o t h quadra t i c and cubic t e r m s (q = 10 a n d r = 10). 
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Figure 3.6: Arctic Oscillation data for standardized nonlinear sea-level pressures for 
comparison of prediction between linear prediction theory and third order Volterra 
series, (a) Original data, (b) Prediction using a third-order Volterra series (p — 10, 
q = 10, and r = 10). (c) The error between the original data and the third-order 
Volterra prediction, (d) Prediction using the first-order Volterra series, which is 
equivalent to linear prediction (p = 10). (e) The error between the original data 
and a linear prediction. 
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Figure 3.7: Arctic Oscillation data for standardized nonlinear sea-level pressures, 
(a) Original data, (b) Prediction using a third-order Volterra series with parameters 
p — 10, q = 10, and r = 10. (c) Contribution from the linear part, (d) Contribution 
from the quadratic part, (e) Contribution from the cubic part, (f) Contribution 
from both quadratic and cubic parts (q = 10, and r = 10). 
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3.4 Summary 

In this chapter, I have covered theoretical and practical aspects of linear and nonlin­

ear systems; particularly, Volterra series and the nonlinear prediction model based 

on a third-order Volterra series was presented. Linear and nonlinear autoregressive 

models have been explored. Volterra kernel parameters are obtained via a least 

squares inversion method. Real and synthetic data examples illustrate these meth­

ods. Linear and nonlinear time series modeling of 1-D data has been presented. 



Chapter 4 

Nonlinear Modeling of Complex 

Waveforms in the f — x Domain 

4.1 Linear Predict ion in the f — x Domain 

F - X deconvolution is a popular noise attenuation tool first introduced by Canales 

(1984). Seismic traces are represented in the time-space domain. When one trans­

forms each trace into a Fourier domain, the complex waveforms are represented in 

the frequency-space domain (/ — x). Linear events are predicted for each frequency 

in the spatial direction of a given frequency. Therefore, if a signal can be predicted, 

the difference between the observed and predicted signals can be considered an 

estimation of the noise in the data. 

Linear prediction filters that map to monochromatic complex sinusoids in the / — 

x domain can accurately predict linear events in the t — x domain. A superposition 

of complex harmonics immersed in white noise can be predicted using an ARMA 

(autoregressive-moving average) model as suggested by Sacchi and Kuehl (2001). 

47 
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An ARMA model can be approximated by a long autoregressive model (AR), which 

turns out to be a representation of the linear prediction problem. In summary, linear 

events in t — x space transform into complex sinusoids in the f — x domain and linear 

prediction filtering can properly model the spatial variability of the waveforms at 

any given monochromatic temporal frequency / . 

The seismic signal is considered to be an AR model; let us assume a single 

waveform in time domain. In addition, let's assume that the signal has linear 

moveout 

s(x,t) = a(t-xd) (4.1) 

where x is offset of the trace, t is the time and 6 is the slowness of the event. In 

the frequency domain this signal becomes 

S(x,f) = A(f)e-i2^ex (4.2) 

where A(f) denotes the source spectrum and / is the temporal frequency for x. By 

discretizing x = (j — l)5x, f = fi 

Sji = Aie-
i27rmj-1)Sx (4.3) 

I can develop this model as a function of wave number by fixing ki — 2irfi6 equation 

(4.3) becomes 

Sjt = Aie-
iklij-1)Sx (4.4) 

I can define the problem by predicting data along the each trace to fix temporal 



4.1. LINEAR PREDICTION IN THE F-X DOMAIN 49 

frequency: 

Sj = Ae~lk(j-VSx j = 1,...,N . (4.5) 

One can write a linear event in the / — x domain as a one-step-ahead prediction 

given by: 

£,•_! = Ae-ik{J-i)5x 

= 8je
ik5x (4.6) 

I can write a recursive form for the prediction of the signal recorded at receiver j 

as a function of the signal at receiver j — 1 (along the spatial variable x) as follows: 

j - <3j- i e 

= a Sj (4.7) 

The equation above is the basis for the / — x prediction/deconvolution and SNR 

enhancement (Canales, 1984; Gulunay, 1986; Sacchi and Kuehl, 2001). Similarly, 

it can be proved that the superposition of p linear events (jp complex harmonics) is 

in a recursive form: 
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8- — Y^ ^e-ifcnO'-1)^ 
n = l 

= aiSj-i + a2Sj-2 H h apSj-p (4.8) 

Recursion of order p 

The coefficients of the recursion are also called prediction error coefficients when 

related to the wave number of each linear event. These coefficients can be found 

using a least squares solution as presented in Chapters 2 and 3. 

The f — x domain noise prediction algorithm can simply be summarized to 

predict both data and noise as follows: 

• Original data int — x, 

• Transform data to the f — x domain, 

• For each frequency / , 

• Find m that solves d=Am+ e, 

• Use m to predict data and noise, 

d = Am 

e = d-d 

• Transform back to the t — x domain. 

4.2 Analysis of Optimum Filter Length 

In a AR model of order (p), the best filter length p is not usually known. To 

continue our analysis I will define two measures of goodness of fit. For that purpose 
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I first define the observed data as (D), the noise free data or clean data (Dc) and 

the predicted data (Dp) . I now define the following two measures of goodness of 

fit: 

RMSEx D-D p | l 2 

nx x nt 
(4.9) 

RMSE2 = 
D c - D p 

(4.10) 
nx x nt 

where nx x nt denotes the dimensions of the data: length of time series (nx) by 

number of traces (nt), respectively. RMSE2 is not computable for real cases but 

it can be used gain understanding about the problem of order selection. The best 

(optimum) operator length is given for the operator that minimizes RMSE2 (Fig­

ure 4.1(a)). On the other hand, RMSEi shows that increasing the filter length leads 

to a decrease of error that is only accounted by for fitting the noise (Figure 4.1(b)). 

In Figure 4.2(a), 2-D synthetic data consisting of three linear events yields pre­

dictions for different filter lengths. The signal D c is contaminated with additive 

noise (Figure 4.2(b)) and the signal-to-noise ratio (SNR) has been taken as 4. Figure 

4.3(a) corresponds to the prediction of data presented in Figure 4.2(b) with param­

eter p — 3. Noise is rejected but the data are also poorly modeled (Figure 4.3(a)). 

The prediction of linear events in the prediction panel is not satisfactory because 

a large amount of energy leaks to the noise panel (Figure 4.3(b)). The prediction 

with a filter length p — 6 provides good noise rejection and the data is properly 

modeled (Figure 4.4(a)). The noise panel contains a small amount of coherent en-
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Figure 4.1: Optimum filter length for the data in Figure 4.2. (a) RMSE2 • (b) 
RMS Ei. 

ergy (Figure 4.4(b)). Note that this figure shows the prediction of the optimum 

filter length determined with RMSE2 in Figure 4.1(a). The minimum value for the 

RMSE in that example is 6. The prediction for filter length p = 15 is good but the 

result is not as good as in the optimum case with p = 6 (Figure 4.5(a)). Noise is 

also modeled and incorporated in the predicted data (Figure 4.5(b)). At this point 

some inferences are in order. First, it is clear that the filter length is very important 

both to model the data and to reject the noise. However, it is not possible to com­

pute RMSE2 for real situations; it can be used to estimate optimum filter length 

when working with synthetic examples where one has accessed to data free of noise. 

Practical experience in seismic data processing shows that one can easily compute 

the optimum filter length by trying different lengths and observe the amount of 

coherent energy left in the error panel. At some point one can find a filter length 
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that models the data and produce an error panel containing an important amount 

of incoherent energy. 

Traces Traces 

Figure 4.2: Synthetic data example for different filter lengths, (a) Original noise 
free data, (b) Data contaminated with additive noise (SNR = 4). 

4.3 Nonlinear Predict ion of Complex Waveforms 

in the f — x Domain 

Analysis of the linear events presented above is not valid for events that exhibit 

curvature in the t — x domain. These events map to the / — x domain as chirp-like 
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Traces Traces 

Figure 4.3: (a) Prediction of Figure 4.2(b) (p = 3). (b) The error between original 
data and predicted data. 

signals. It is clear that linear prediction will fail in modeling such events. A solution 

to the problem is to use linear prediction techniques in small windows or to resort 

to nonstationary linear prediction operators (Sacchi and Kuehl, 2001). 

I chose a 2-D synthetic data example consisting of 5 different hyperbolic events. 

The example does not satisfy the f — x assumption of constant ray parameter 

waveforms in the t — x domain. In this case I do not have a superposition of 

complex exponentials in the f — x domain. Therefore the minimum value for the 

filter length (p = 5) in Figure 4.7(a) will be an approximated value for the hyperbolic 

event presented in Figure 4.6(b). Again, the data in Figure 4.6(a) is contaminated 
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Traces Traces 

(a) (b) 

Figure 4.4: (a) Prediction of Figure 4.2(b) (p — 6). (b) The error between original 
data and predicted data. 

with additive noise. The prediction for different filter lengths cannot model the 

data (p = 3, 5, and 15) in Figures 4.8, 4.9, and 4.10; p = 5 rejects noise but cannot 

model the data; p — 15 models the data better than the optimum filter length 

but it is also not a perfect solution because it overfits noise in the prediction panel 

(Figure 4.10(b)). 

Events with nonlinear moveout can be modeled with a Volterra series. I begin 

by considering equation (4.8) as a Volterra series expansion by appending nonlinear 

coefficients. Remember that although the data vector m in equation (3.25) contains 

linear and nonlinear prediction coefficients, the problem is linear in the coefficients. 
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Figure 4.5: (a) Prediction of Figure 4.2(b) (p — 15). (b) The error between original 
data and predicted data. 

Equation (4.8) will be changed for the f — x nonlinear predictions as an expression 

with terms of the following form as an illustration: 

Sj = aSj-i + bSj-iSj-2 + cSj-iSj-2Sj-3- (4.11) 

I explored the feasibility of using linear plus nonlinear quadratic and nonlinear 

cubic prediction filters to model waveforms that exhibit moveout curves that are 

not linear with synthetic and real data examples in the next section. The idea is, 

again, to operate in the f — x domain with one temporal frequency at a time and 



4.3. NONLINEAR PREDICTION OF COMPLEX WAVEFORMS 57 

*o.^ 

Traces 
20 40 

Traces 

(a) 

Figure 4.6: Synthetic data example for different filter lengths, (a) Original noise 
free data, (b) Data contaminated with additive noise (SNR = 4). 

perform linear and nonlinear predictions in the spatial domain. 
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Figure 4.7: Optimality of filter length for the data in Figure 4.6. (a) RMSE2 • (b) 
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Figure 4.8: (a) Prediction of Figure 4.6(b) (p = 3). (b) Error between original data 
and predicted data. 
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Traces Traces 

Figure 4.9: (a) Prediction of Figure 4.6(b) (p = 5). (b) Error between original data 
and predicted data. 
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Figure 4.10: (a) Prediction of Figure 4.6(b) (p = 15). (b) Error between original 
data and predicted data. 
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4.4 Is Noise Removal Possible wi th a Volterra Se­

ries? 

I have presented a third- order Volterra model for the prediction of seismic signals. 

The usual trade-off between noise reduction and signal preservation is controlled 

by the length of the linear and the nonlinear prediction operators (p, q, and r). It 

is important to stress that waveforms that exhibit linear moveout can be predicted 

with a linear system. Conversely, when waveforms exhibit nonlinear moveout, which 

translates in the f — x domain as chirps, the nonlinear part of the Volterra system 

helps in modeling the signal. 

When I started this project, the idea was to design a new noise reduction system. 

The premise was to use nonlinear prediction to reconstruct signals in such a way that 

the reconstruction misfit could be attributed to noise. The latter is the basis of f — x 

deconvolution for signal-to-noise ratio enhancement. However, nonlinear filtering 

requires too many coefficients for the quadratic and cubic parts of the operator, 

therefore, signal and noise are simultaneously modeled (overfitting) (Figure 4.11). 

The data in the Figure 4.6(a) ) and the prediction of this data via a third-order 

Volterra series predicts the signal as well as the original data but noise is also 

fitted with the prediction. A small amount of coherent energy leaks to the noise 

panel. The third-order Volterra series can perfectly model the data, but for / — x 

noise attenuation it is not useful as it produces many coefficients and therefore 

models both signal and noise. The next step is to study how one can introduce 

regularization (smoothing) to the estimation of Volterra kernels and avoid fitting 

the noise. 
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Figure 4.11: Same as the data in Figure 4.6. (a) Original data, (b) Prediction using 
the third order Volterra series with parameters p = 5, q = 5, and r = 5. (c) Error 
between original data and predicted data. 

4.5 Synthetic and Real Data Examples 

I examined the performance of the Volterra expansion with 2-D synthetic and real 

data examples consisting of linear and hyperbolic events. The examples are used to 

show that curved events can be predicted using nonlinear filtering techniques. The 

problem of random noise attenuation is not considered and I use these examples 

solely to validate our discussion about nonlinear predictions in the / — x domain. 

Therefore, all examples presented in this section are chosen from noise free data 

(Dc). 

In Figures 4.12(a), 4.13(a), and 4.14(a) I portray synthetic data that consists 

of two linear events. I use these data to compare predictions from the Volterra 

series with linear prediction theory. Figures 4.12(b) and 4.14(b) correspond to the 
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prediction of data using a third-order Volterra series with parameters p = 3, q = 3, 

and r = 3. Figure 4.12(c) shows the error between the observed data and predicted 

data via a third-order Volterra series. Figures 4.12(d) and 4.13(b) depict predictions 

of the data using linear prediction theory with parameter p = 3. In Figures 4.12(e) 

and 4.13(c) I portray the difference between original data and predicted data using 

the linear prediction method. Figure 4.13(d) illustrates the prediction of data using 

the cubic part of a Volterra series with parameter r = 3. Figure 4.13(e) shows 

the error between original data and predicted data using only the cubic part of a 

Volterra series. The cubic part of a Volterra series yields a prediction similar to the 

linear prediction theory. In Figure 4.14 I portray the individual contributions of a 

Volterra series to the prediction of data. The contribution due to the linear terms of 

the Volterra series to the predicted data in Figure 4.14(b) is shown in Figure 4.14(c). 

It can be seen that the data are predicted mostly with linear terms. Figures 4.14(d) 

and 4.14(e) show the parts of the prediction associated with the quadratic (q = 3) 

and cubic (r = 3) terms in a third-order Volterra series. The contribution of the 

quadratic part is negligible to the prediction of the data; the contribution of the 

cubic part is relatively better than the quadratic part. Figure 4.14(f) shows the 

contribution of nonlinear terms associated with quadratic and cubic terms (q = 3 

and r = 3). These examples confirm that waveforms with linear moveouts can be 

predicted using linear prediction theory and cubic Volterra prediction. 

Figures 4.15(a) and 4.16(a) show a 2-D synthetic data example with hyperbolic 

events. These events have been synthesized using a forward apex-shifted hyperbolic 

Radon transform (Hargreaves et al., 2003; Trad, 2003). In Figure 4.15 a comparison 

between linear prediction theory and the third-order Volterra series is illustrated. 
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Figure 4.12: 2-D synthetic data for comparison of prediction between linear pre­
diction theory and third order Volterra series, (a) Original data, (b) Prediction 
using the third-order Volterra series with parameters p = 3, q = 3, and r = 3. (c) 
Error between original data and predicted via the third-order Volterra series, (d) 
Prediction using linear prediction theory with parameter p = 3. (e) Error between 
original data and predicted data via linear prediction theory. 

In Figure 4.16 I portray the predictions associated with linear, quadratic, and cubic 

terms. 

Figures 4.15(b) and 4.15(d) show data prediction using a third-order Volterra 

series with parameters p = 6, q = 6, and r = 6 and using linear prediction theory 
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Figure 4.13: 2-D synthetic data for comparison of prediction between linear predic­
tion theory and the cubic part of a Volterra series, (a) Original data, (b) Prediction 
using linear prediction theory with parameter p = 3. (c) Error between original data 
and predicted data via linear prediction theory, (d) Prediction using the cubic part 
of a Volterra series with parameter r = 3. (e) Error between original data and 
predicted data via the cubic part of a Volterra series. 

with parameter p = 6, respectively. The prediction is good and the data are properly 

modeled but there is a small amount of coherent energy in the noise panel (Figure 

4.15(c)). The prediction of the linear prediction method is very poor, the signals 

are leaking into the error panel (Figure 4.15(e)). 
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Figure 4.14: 2-D synthetic data, (a) Original data, (b) Prediction using a third-
order Volterra series with parameters p = 3, q = 3, and r = 3. (c) Contribution 
from the linear part, (d) Contribution from the quadratic part, (e) Contribution 
from the cubic part, (f) Contribution from both quadratic and cubic parts (q = 3, 
and r — 3). 

In Figure 4.16(c) I portray the contribution due to the linear terms of a third-

order Volterra series to predicted data in Figure 4.16(b) due to the linear terms of 

third order Volterra series. Note that this contribution is negligible. Figures 4.16(d) 

and 4.16(e) illustrate the parts of the prediction associated with quadratic (q = 6) 

and cubic (r = 6) terms in the third-order Volterra series. Figure 4.16(f) shows the 
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contribution of nonlinear terms associated with quadratic and cubic terms (q = 6 

and r = 6). It is clear that nonlinear quadratic and cubic terms are required to 

properly model the full aperture. . In summary, I are able to model the data by 

adding quadratic and cubic terms to improve the predictability of the model. 
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Figure 4.15: 2-D synthetic data for comparison of prediction between linear pre­
diction theory and a third-order Volterra series, (a) Original data, (b) Prediction 
using a third order Volterra series with parameters p = 6, q = 6, and r — 6. (c) 
Error between original data and predicted data via a third-order Volterra series, (d) 
Prediction using linear prediction theory with parameter p = 6. (e) Error between 
original data and predicted data via linear prediction theory. 
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(a) (b) (c) 

Figure 4.16: 2-D synthetic data, (a) Original data, (b) Prediction using a third-
order Volterra series with parameters p — 6, q = 6, and r — 6. (c) Contribution 
from the linear part, (d) Contribution from the quadratic part, (e) Contribution 
from the cubic part, (f) Contribution from both quadratic and cubic parts (q = 6, 
and r = 6). 

Figure 4.17(a) shows a 2-D synthetic example with hyperbolic events and a linear 

event. These events have been synthesized using a forward apex-shifted hyperbolic 

Radon transform (Trad, 2003). 

I present this example to demonstrate that linear moveouts can be mostly pre­

dicted with linear terms in the Volterra series and nonlinear moveouts can be mostly 
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predicted with quadratic and cubic nonlinear terms. Figure 4.17(b) is the prediction 

using a third-order Volterra series with p = 7, q = 7, and r = 7. In Figure 4.17(c) 

I portray the part of the prediction attributed to the linear kernel (p — 7). Figures 

4.17(d) and 4.17(e) show the parts of the prediction associated with quadratic 

(q = 7) and cubic (r = 7) terms in the third-order Volterra series. In addition, 

Figure 4.17(f) illustrates the part of the prediction associated to both quadratic 

and cubic terms (q — 7 and r = 7). These terms give good predictions, especially 

for the apexes of events where linear terms cannot predict the data. 

Finally, I test the performance of the Volterra series with a marine data set. The 

data consist of 60 traces extracted from a marine common offset section acquired 

over a salt body in the Gulf of Mexico (Figures 4.18(a) and 4.19(a)). The real data 

set has a combination of diffractions, roughly linear events, and hyperbolic events. 

I used niters with order p — 9, q = 9, and r = 9 for a third-order Volterra prediction 

(Figures 4.18(b) and 4.19(b)). In this case the data is properly modeled. I also 

compute the linear prediction filter with parameter p = 9 and attempt to model 

the data (Figure 4.18(d)). The prediction error between the original data and the 

prediction with a third-order Volterra series is small (Figure 4.18(c)), whereas the 

difference between the original data and the predicted data via a linear prediction 

method is large. In particular, the diffractions are leaking to the error panel as 

a consequence of improper modeling (Figure 4.18(e)). It is clear that the linear 

prediction was not able to properly model the data. 

In Figures 4.19(c), 4.19(d) and 4.19(c) I examine the individual contributions 

of the linear and nonlinear parts of the Volterra series to the prediction. Linear 

terms mostly predict linear moveouts with parameter p = 9; nonlinear terms model 
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Figure 4.17: 2-D synthetic data, (a) Original data, (b) Prediction using a third-
order Volterra series with parameters p = 7, q = 7, and r = 7. (c) Contribution 
from the linear part, (d) Contribution from the quadratic part, (e) Contribution 
from the cubic part, (f) Contribution from both quadratic and cubic parts (q = 7, 
and r = 7). 

diffractions and apexes of events properly with parameters q = 9 and r = 9 (Figure 

4.19(f)). It is clear that this particular data set requires both linear and nonlinear 

components to properly model the complex waveforms. 
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Figure 4.18: 2-D real data for comparison of prediction between linear prediction 
theory and a third-order Volterra series, (a) Original data, (b) Prediction using 
a third order Volterra series with parameters p — 9, q = 9, and r = 9. (c) Error 
between the original data and predicted data via a third-order Volterra series, (d) 
Prediction using linear prediction theory with parameter p — 9. (e) Error between 
original data and predicted data via linear prediction theory. 
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Figure 4.19: 2-D real data, (a) Original data, (b) Prediction using a third-order 
Volterra series with parameters p = 9, q = 9, and r = 9. (c) Contribution from 
the linear part, (d) Contribution from the quadratic part, (e) Contribution form 
the cubic part, (f) Contribution from both quadratic and cubic parts.(q — 9, and 
r = 9) 
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4.6 Summary 

In this chapter, I surveyed modeling methods in the. / — x domain. Canales (1984) 

method was reviewed and extensions of this method to nonlinear problems were 

explored. 

Events with nonlinear moveouts can be modeled using nonlinear terms of a 

Volterra series. Events with complex waveforms need additional prediction coeffi­

cients in order to properly model the data. 

It is clear that linear prediction fails to model data sets with curvature; nonlinear 

predictions can accurately model these data. I cannot claim, however, that the 

linear part of a Volterra series models the linear events and that the nonlinear 

kernels are modeling the hyperbolic events. 



Chapter 5 

Adaptive Subtraction of Multiples 

5.1 Introduction 

Noise is an inevitable problem in seismic data processing. All unwanted events that 

distort the signal are considered noise. I mentioned that random noise could be 

removed via Canales' method in Chapter 4. 

Multiples in seismic data are examples of coherent noise. Multiples can be 

sorted according to their arrival times (Figure 5.1): short-path multiples that turn 

back soon after primaries and long- path multiples that turn back as distinct event 

(Sheriff, 2006). 

The reflected data contains both the primaries and the multiples. Energy of 

primaries have been reflected from source to receiver, while multiples have been 

reflected two or more times. Also multiples tend to obscure the primaries. The 

removal of multiples is a complicated problem and partially solved in seismic explo­

ration. There are many methods for elimination of multiples and they are successful 

when their conditions are fulfilled (Weglein, 1999). Therefore, elimination of multi-
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pies remains as a problem in exploration seismology. In this Chapter, I present the 

adaptive subtraction methods based on Volterra series that can be used to attenuate 

the multiples. 

In the adaptive multiple subtraction problem, one has access to a distorted 

version of the multiples and the goal is to find an operator that eliminates the 

distortion before subtracting them from the data. There are many methods to 

annihilate multiple reflections such as inverse scattering and surface-related multiple 

attenuation (SRME) (autoconvolution in space) (Weglein et al., 1992; Verschuur 

et al., 1992; Berkhout and Verschuur, 1997; Spitz, 1999; Abma et al , 2005). I am 

not going to explain here how a multiple model can be produced; this subject is well 

understood and published in many studies (Verschuur et al., 1992; Weglein et al., 

1992; Berkhout and Verschuur, 1997; Verschuur and Berkhout, 1997; Verschuur and 

Prein, 1999; Weglein, 1999). These methods are used to construct multiple models, 

which are subsequently utilized by adaptive subtraction algorithms. 

In this thesis I introduce a method for adaptive subtraction of multiples, using 

a / — x linear prediction filter. A nonlinear prediction filter based on a Volterra 

series for the removal of multiples from recorded data sets. The problem can also 

be tackled using linear prediction error filters in the f — x domain as suggested 

by Spitz (1999). The idea is to compute a / — x prediction error operator from 

the estimate of the multiples. Then, the estimated prediction error filter is applied 

to the data containing both primaries and multiples to annihilate the multiples. 

The procedure is equivalent to finding a notch filter with the notch positioned at 

the wave number representing the multiple. The procedure of Spitz (1999) can fail 

when the multiple events in the window of analysis cannot be modeled as linear 
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Figure 5.1: Multiple types. After Sheriff (2006) . 

events. In this case, the assumption of predictability of waveforms in the f — x 

domain is not valid and consequently the algorithm fails to attenuate the multiples 

(Abma et al., 2005). Our extension of Spitz (1999) method to use the Volterra 

series aims to solve this problem. I assume that the predicted multiples differ from 

the true multiples mainly in the wavelet and a possible time shift with respect to 

the multiples in the data panel. 

5.2 Prediction Error Operator 

From the multiple panel one can compute prediction error niters of the form 

(6.1) 

—m 
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Notice that the new operator corresponds to the filter that predicts the noise or 

error and not to the signal (equation (3.14)). In addition, equation (6.1) is valid 

for both linear prediction and nonlinear prediction. The operator f is then applied 

to the data (primaries plus multiples). The concept is illustrated with examples. 

5.3 Synthetic Data Examples 

Figure 5.2(a) represents three linear events with one primary (horizontal event) and 

two multiples (dipping events). The data are similar to the examples provided in 

Abma et al. (2005). Figure 5.2(b) is an estimation of the multiples and Figure 5.2(c) 

is the primary estimation via the / — x linear prediction filter (Spitz, 1999). The 

removal of multiples and the preservation of the primary reflection is fairly good. 

In Figure 5.3(a) I portray one primary (horizontal event) and two multiples 

that cannot be approximated by linear events. Figure 5.3(b) shows the distorted 

estimation of multiples. Figures 5.3(c) and 5.3(d) are the solution via the classical 

linear prediction and the solution with the third- order Volterra series, respectively. 

Linear prediction algorithm can not removed any multiples, the nonlinear prediction 

error filter, on the other hand, was able to model the curved multiples and attenuate 

multiples. Both methods were able to preserve the primary event without affecting 

its amplitude response. 

In Figure 5.4(a) I portray a similar synthetic data example with one primary and 

two multiples. Figure 5.4(d) shows the distorted estimation of multiples. Figures 

5.4(b) and 5.4(c) are the solution via classical linear prediction and the solution 

with the third- order Volterra series, respectively. Nonlinear prediction error filter 

subtracts more multiples than linear one. In this example, I illustrate the removed 
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multiples from linear and nonlinear prediction error filters in Figures 5.4(e) and 

5.4(f), respectively. Linear prediction error filter eliminated less multiples than the 

nonlinear prediction error filter. However, the nonlinear prediction filter removes 

more multiples, but it also affects the amplitude response of the primaries. 

In Figure 5.5(a) I present three primaries (linear events) and two multiples (two 

multiples with sharp apexes) that cannot be properly modeled by linear events. 

Figure 5.5(b) shows the distorted estimation of the multiples and Figure 5.5(c) is 

the solution via classical linear prediction. Again, the method can not separate 

multiples from primary and also distorts primaries. Figure 5.5(d) is the solution 

with the third order Volterra series. However, the prediction error filter was able to 

model the curved multiples and produce an acceptable result when applied to the 

data panel. 

Traces Traces Traces 
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Figure 5.2: Synthetic data example, (a) Original data, (b) Multiples, (c) Adaptive 
multiple attenuation using / — x linear prediction error operators computed from 
(b). 
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Figure 5.3: Synthetic data example with two multiples and one primary, (a) Orig­
inal data, (b) Prediction of multiples, (c) Adaptive multiple attenuation via / — x 
linear prediction error filtering, (d) Adaptive multiple attenuation obtained with a 
f — x nonlinear prediction error operator (third order Volterra series). 
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Figure 5.4: Synthetic data example with two multiples and one primary, (a) Origi­
nal data, (b) Adaptive multiple attenuation via f—x linear prediction error filtering, 
(c) Adaptive multiple attenuation obtained with a / — x nonlinear prediction error 
operator (third order Volterra series), (d) Prediction of multiples, (e) Removed 
multiples via f — x linear PEF. (f) Removed multiples with a third- order Volterra 
PEF. 
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Figure 5.5: Synthetic data example with two multiples and three primaries, (a) 
Original data, (b) Prediction of multiples, (c) Adaptive multiple attenuation via 
f — x linear prediction error filtering, (d) Adaptive multiple attenuation obtained 
with a / — x nonlinear prediction error operator (third order Volterra series). 
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5.4 Real Data Examples 

In this section I will present a real data set from Gulf of Mexico subsalt data set. 

These data was made publically available to several research groups in order to test 

methods for multiple attenuation (Verschuur and Prein, 1999). The major problem 

in this data set is that the primaries are weaker than the multiples. The common 

offset and shot gather data sets are recorded with 4 ms time sampling interval in 7 

seconds; the number of samples per traces are 1751 samples. I extracted 35 traces 

from a common offset data set and 38 traces for shot gather data set to test our 

algorithm. 

In Figure 5.6(a) I portray a common offset data set that contains multiples 

and primaries. Figure 5.6(b) shows the estimation of a multiple model via SRME 

method (Verschuur et al., 1992). Figure 5.6(c) is the solution obtained via classical 

linear prediction method. Linear prediction filter attenuates all multiples from 

the original data. Figure 5.6(d) is the solution with a third order Volterra series. 

Nonlinear prediction error filter provides a similar result to the linear one. Both 

methods were able to remove the multiples; particularly after 6 seconds in travel 

time, the primaries can be seen in Figures 5.6(c) and (d). 

Figure 5.6(a) portrays the data. I can focus on an analysis interval between 

3.5 and 4.5 seconds for a better representation (in Figure 5.7(a)). Figure 5.7(c) 

shows that the linear prediction error filter works quite well, but it also distorts 

some events that are not present in the multiple model. Red solid arrow indicates 

a roughly linear event (Figure 5.7)(c), and blue dashed arrow and green dotted-

dashed arrows (Figure 5.7(d)) could be obtained via a nonlinear prediction error 

filter. These same events are not recoverable via a linear prediction error filter. 
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Figure 5.6: Real Data example common shot offset, (a) Original data, (b) Pre­
diction of multiples, (c) Adaptive multiple attenuation via f — x linear prediction 
error filtering, (d) Adaptive multiple attenuation obtained with a / — x nonlinear 
prediction error operator (third order Volterra series). 

I illustrate Figure 5.8 to compare amount of removed multiples with linear and 

nonlinear prediction filters. Figures 5.8(c) and 5.8(d) shows that similar amount of 

multiples has been removed. 

Figure 5.9(a) illustrates a shot gather data set that contains slightly curved 

events. Figure 5.9(b) shows estimation of multiple model reconstructed with FSME. 

Figure 5.9(c) is the solution via linear prediction error filtering model. Figure 5.9(d) 

is the solution with a third order Volterra series. Linear and nonlinear prediction 

error filters works similar and there are more residuals than the common offset data 

set. A possible primary can be seen after 6 seconds in Figures 5.9(c) and (d). 

Shot gather data can be examined by focusing on time interval between 3.75 
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Figure 5.7: Real Data example common offset gather (closer look), (a) Original 
data, (b) Prediction of multiples, (c) Adaptive multiple attenuation via f — x 
linear prediction error filtering, (d) Adaptive multiple attenuation obtained with a 
f — x nonlinear prediction error operator (third order Volterra series). 

and 5 seconds (in Figure 5.10(a)). Figures 5.10(c) and (d) provides similar results. 

I can see removed multiples in Figures 5.11(c) and (d); both methods remove some 

portion of multiples. 
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Figure 5.8: Real Data example common shot offset (closer look removed multiples), 
(a) Original data, (b) Prediction of multiples, (c) Removed multiples via f — x 
linear prediction error filtering, (d) Removed multiples with a / — x nonlinear 
prediction error operator (third order Volterra series). 
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Figure 5.9: Real Data example shot gather, (a) Original data, (b) Prediction of 
multiples, (c) Adaptive multiple attenuation via / — x linear prediction error filter­
ing, (d) Adaptive multiple attenuation obtained with a / — x nonlinear prediction 
error operator (third order Volterra series). 
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Figure 5.10: Real Data example shot gather (a closer look), (a) Original data, 
(b) Prediction of multiples, (c) Adaptive multiple attenuation via f — x linear 
prediction error filtering, (d) Adaptive multiple attenuation obtained with a / — x 
nonlinear prediction error operator (third order Volterra series). 
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Figure 5.11: Real Data example shot gather (closer look of removed multiples), (a) 
Original data, (b) Prediction of multiples, (c) Removed multiples via / — x linear 
prediction error filtering, (d) Removed multiples with a / — x nonlinear prediction 
error operator (third order Volterra series). 
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5.5 Summary 

In this Chapter I have investigated the possibility of using nonlinear prediction 

for adaptive attenuation of multiples, so far with encouraging results. Adaptive 

subtraction of curved events with synthetic data examples has showed that Volterra 

series contributes removal of curved events. On the other hand, real data examples 

indicates that this method is not better than usual adaptive subtraction models 

based on linear prediction error filtering methods when modeling with small data 

windows in the f - x domain. More research, however, is needed to understand the 

role played by the nonlinear kernels of the Volterra expansion. In other words, the 

linear part has a very well understood action when written in prediction error form. 

It represents a notch filter that attenuates one or more linear events. The second 

and third-order kernels must contribute as some sort of special "notch" operators 

that can model a continuous distribution of wave numbers (variable dip in the t — x 

domain). 



Chapter 6 

Conclusions and Future Directions 

This thesis presented a method of signal modeling based on Volterra series. Specif­

ically, I have developed an autoregressive method based on a nonlinear prediction 

algorithm. The prediction coefficients of the first-, second-, and third-order Volterra 

model are obtained with a least squares solution. I also bring a new approach to 

solving two fundamental problems in seismic exploration: modeling of complex 

waveforms in the / — x domain and adaptive subtraction of multiples. 

Primary issues and available methods in modeling time series are examined 

in Chapters 1 and 2. First, the nonlinear system is introduced as a higher-order 

extension of the usual linear convolution method. Former linear prediction methods 

are also investigated to obtain prediction coefficients. Comparisons between a first-

order Volterra series and Yule-Walker equations and Burg's algorithm have shown 

that linear prediction methods model the data quite similarly. On the contrary, 

all linear methods can not properly model complex data sets (waveforms) unless a 

large number of coefficients is used. 

In Chapter 3 a Volterra series and its properties are analyzed. The Volterra 

91 



92 

series in this thesis has been truncated to a third-order Volterra series. Prediction 

coefficients are found via least squares solutions. The real and synthetic data ex­

amples showed that Volterra series modeling modeling is more versatile than linear 

prediction at the time of representing signals such as those arising in the context of 

exploration seismology. 

Events that exhibit strong curvature cannot be modeled via linear / — x predic­

tion filters. I can model these events by implementing the Volterra algorithm. The 

optimum filter length of a linear model of order (p) or a nonlinear Volterra model 

of order (p, q, r) can be computed via inspection of the residuals. A more practical 

method is desirable but at this stage looking for evidence of under-over fitting using 

sophisticated statistical analysis method was beyond the scope of this study. 

Different synthetic and real data examples showed that the modeling of events 

with linear moveout can be predicted mainly via linear prediction coefficients and 

cubic prediction coefficients. The contribution of quadratic parts to events with 

linear moveouts is negligible. In addition to this, events that exhibit curvature 

can be modeled properly with nonlinear terms of a Volterra series. Finally, it is 

important to stress that waveforms that exhibit linear moveout can be predicted 

with a linear system. Conversely, when waveforms exhibit nonlinear moveout, which 

translates in the f — x domain as non stationary signals, the nonlinear part of the 

Volterra system helps in predicting the signal. 

Another application of the nonlinear Volterra model in this thesis is adaptive 

subtraction of multiples. Elimination of multiples is a common problem in explo­

ration seismology. In this case the prediction coefficients have been designed as 

prediction error filters (PEF). I used this algorithm to annihilate multiples from 
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seismic sections. I have satisfactory results for adaptive subtraction. 

Limitations 

All methods have limitations. Volterra series produces many coefficients and cal­

culation of these coefficients is computationally expensive. Also, a large number of 

coefficients causes overfitting of the signal and this leads to modeling both signal 

and noise. 

6.1 Future Directions 

Volterra series have been implemented in nonlinear systems in a range of problems 

from biomedical research to communication applications. Adaptations of these 

methods to seismic exploration problems are presented in Chapter 4 and Chapter 

5 of this thesis. The Volterra filter I developed is time-invariant; the signal is sta­

tionary. However, in the future the Volterra filter presented here could be designed 

as a time-variant filter. 

The reconstruction of monochromatic complex sinusoids is a well studied prob­

lem in seismic exploration in the case of regularly spaced traces in seismic sections. 

However, there are various interpolation methods in / — x and f — k domains; 

these methods can not reconstruct missing traces with events that exhibit curva­

ture. There are examples of Volterra series implementation in the reconstruction 

of nonlinear image interpolation. For instance, Collis et al. (1997) presented an 

application of pixel interpolation in television images based on a nonlinear Volterra 

filter. Particularly, a third-order Volterra filter will be useful to interpolate missing 

data in seismic traces. 
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Noise reduction is not possible with the Volterra method because nonlinear 

filtering requires many coefficients for the quadratic and cubic parts of the operator 

resulting in signal and noise being simultaneously modeled (overfitting). The next 

step is to study a new inversion scheme to estimate Volterra kernels and to smooth 

the data to prevent overfitting the noise. 
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