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Abstract 

A major side-effect of industrial activity is the associated linear-feature footprint and 

increase in recreational access. Alberta’s threatened grizzly bear (Ursus arctos) 

populations overlap with a multitude of different potential forms of human disturbance, 

including human recreational activity. Identifying the effects of recreation on grizzly bear 

behaviour and population recovery is challenging; both in terms of quantifying spatio-

temporal variation in multiple types of human recreation at scales relevant to grizzly 

bears, and in documenting population-level responses by such a behaviourally variable 

species as grizzly bears. My first objective was to develop a method to quantify motorised 

and non-motorised recreational activity across a linear-feature network using trail 

cameras. Using a generalized linear mixed-effects model to estimate temporal variation 

in sampling, and Ordinary Kriging to interpolate spatial variation across a linear-feature 

network, I was able to create spatio-temporally varying maps of recreation that can be 

incorporated into habitat selection studies.  I incorporated grizzly bear radiocollar data 

within an integrated step selection analysis (iSSA) to predict the importance, significance 

and directional effect of motorised and non-motorised recreation on grizzly bear habitat 

selection and movement. I concluded that grizzly bears select for trails when recreation is 

absent, however they display no response when recreational activity is high. Male grizzly 

bears also altered their movement behaviour in proximity of trails with high recreational 

activity; reducing movement speed when activity was absent and increasing speed when 

recreational activity was high. In general, males showed greater responses to recreation 

than females, and both male and female bears showed a stronger response to motorised 

versus non-motorised recreation. Using trail camera data on grizzly bears and black bears 

(U. americanus), I investigated the influence of recreational activity on bear habitat use 
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within a multi-species framework. Grizzly bears and black bears displayed spatial 

segregation, rarely co-occurring on the landscape. Species’ occurrence was not influenced 

significantly by the presence or absence of recreational activity, however, both species 

used sites where motorised activity was present less intensively, and this response was 

strongest in grizzly bears. As with the results from the iSSA, negative responses to 

motorised recreation were greater relative to non-motorised. Finally, I used the 

opportunity of having concurrent DNA capture-recapture, radiotelemetry and trail 

camera data to directly compare two methods of grizzly bear density estimation; 1) spatial 

capture-recapture and 2) spatial mark-resight.  Results for both methods were similar, in 

terms of both accuracy and precision, highlighting options for density estimation of large 

mammals without relying on complete individual identification for the entire sampled 

population. Overall, my results demonstrate the need to incorporate intensity and type of 

recreational activity within habitat selection studies of grizzly bears and interactions with 

sympatric species such as black bears. Access management is a challenge that needs to be 

addressing in large mammal conservation, and will require methods for monitoring 

human activity and changes in wildlife behaviour and population demography.  
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1 General Introduction 

The inability of US and Canadian governments to take climate change seriously and 

implement restrictions on resource extraction activities, has led to continued 

encroachment into wilderness areas by oil, gas and timber industries across North 

America (Naugle 2012). Environmental groups devote large amounts of time focusing on 

challenging resource extraction lobbies regarding their activities (Mahoney 2007), but 

little attention is placed on the negative consequences associated with increased outdoor 

recreation afforded by access created by industry that persists long after the oil and gas 

companies move out (Floyd and Johnson 2002). Resource extraction requires new roads 

(McLellan and Shackleton 1988), creation of cutlines (Latham et al. 2011) and 

deforestation (Nielsen et al. 2004a), all of which increase the ability of the general public 

to access previously untouched wilderness (Havlick 2002). Relative to the short-term 

effects of the extraction processes themselves, the effects of the long-term persistence of 

linear-features and the associated increases in recreational activity are less clear. 

Protected areas tend to exclude industrial activity, allowing them to control human access 

for recreation. Public lands in North America primarily have unregulated access, resulting 

in an abundance of motorised and non-motorised recreation, with little information on 

the intensity of use and potential consequences for wildlife. 

 The west-central Alberta Rocky Mountains and foothills, despite being home to the 

world-renowned Banff and Jasper National Parks, are also heavily exploited; extensive oil 

and gas exploration, timber harvest and open-pit mining for coal are prevalent across the 

landscape (Cristescu et al. 2015a, 2015b). Although the majority of resource extraction 

has long since taken place, it has left behind a matrix that now contains a dense and 

complex network of roads, trails and seismic lines. This region of the province is also host 
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to grizzly bears (Ursus arctos), which were designated as a threatened species in Alberta 

in 2010 (Alberta Sustainable Resource Development and Alberta Conservation 

Association 2010). Human access management is a central theme in grizzly bear science 

and management (Mattson et al. 1996) and has been identified as a key constraint to the 

success of recovering bear populations both in Alberta (Alberta Grizzly Bear Recovery 

Team 2008) and across their range (Proctor et al. 2012). Grizzly bear research has 

historically focused on roads, and their influence on movement (Roever et al. 2010, 

Northrup et al. 2012a), habitat selection (Mace et al. 1996), activity patterns (Graham et 

al. 2010), stress (Bourbonnais et al. 2013) and direct mortality (Boulanger and Stenhouse 

2014, Lamb et al. 2017). Knowledge of how bear behaviour is influenced by recreational 

activity is relatively poor (Gibeau et al. 2002, Fortin et al. 2016). The foothills region is 

primarily public lands and sees unregulated off-highway vehicle (OHV) access, taking 

advantage of the dense linear-feature network left behind primarily unreclaimed by 

industry. The intensity of use by recreationists varies spatially and temporally, resulting 

in a form of disturbance that can be highly unpredictable for wildlife, and therefore 

potentially detrimental (Knight and Gutzwiller 1995).  

 Obtaining baseline information that quantifies the magnitude of recreational 

activity in public lands is one of many challenges faced by wildlife managers. Recreational 

activity is a form of human disturbance commonly restricted to linear features, such as 

trail networks, that can be difficult to predict. Local knowledge, designated and advertised 

trails, and scenic routing add variation that can be difficult to quantify (Drake et al. 2015, 

Hammitt et al. 2015). Identifying variables to predict the magnitude of recreational 

activity can be challenging. For this reason, many studies ignore the magnitude of activity 

on linear features, instead solely relying on metrics such as distance to feature, or feature 
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density. As with many ecological variables sampled across a landscape, variables can be 

characterised in terms of spatial autocorrelation; the pattern that variables at locations 

closer together are more similar than variables at distant locations (Tobler 1970). 

Temporal variation in visitation rates to public and park lands adds an additional layer of 

complexity, requiring year-long monitoring of recreation, rather than snapshots that may 

give biased estimates. Trail counters are commonly deployed at trail heads in protected 

areas to obtain information on visitor frequency, however these data are lacking in terms 

of spatial coverage and details such as the type of recreation taking place (e.g. motorised 

versus non-motorised); both important variables when the focus is to model wildlife 

responses to recreation. Trail cameras give researchers the ability to identify types of 

recreation and can be set up easily across a trail network. In Chapter 2, using trail camera 

data on recreational activity spread across the linear feature network within my study 

area, I develop a method that combines mixed-effects generalised linear models with 

Ordinary Kriging (Tobler 1970) to estimate variation in the probability of motorised and 

non-motorised recreation in both time and space, which then can be applied to questions 

relating to wildlife responses to such a disturbance. Using model validation techniques, 

and an application to grizzly bear habitat selection, I evaluate the efficacy of the model 

and show that incorporating activity on top of the linear features themselves outperforms 

models that solely rely on linear feature data.  

 Human disturbance can influence wildlife populations through a number of 

mechanisms. Roads have direct mortality consequences for grizzly bears (McLellan and 

Shackleton 1988, Boulanger and Stenhouse 2014, Lamb et al. 2017), however such 

demographic consequences are unlikely to be the same for off-road access. In fact, there 

have been zero fatalities associated with recreational trail use in my study area during the 
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last 20 years (Stenhouse pers. comm.). Many carnivores, despite being apex predators, 

respond to human disturbance as prey responds to a predator (Frid and Dill 2002a). 

Behavioural responses to anthropogenic disturbances are often initial indicators of stress 

to wildlife (Odden et al. 2014). Changes in habitat selection and movement are two such 

indicators that can inform managers of the potential impact recreation is having on grizzly 

bear populations. In Chapter 3, I employ the recreational activity model from Chapter 2, 

to radiotelemetry data collected from radiocollared grizzly bears within an iSSA (Avgar et 

al. 2016) to investigate how individual grizzly bears respond to trails and associated 

probability of motorised and non-motorised recreation in terms of habitat selection and 

movement behaviour. I assessed grizzly bear response to recreation by incorporating data 

on topographic features, food quality, linear features and probability of activity within a 

model selection framework (Burnham and Anderson 2002). Once I had identified the top 

model, I estimated selection and movement responses to trails and their associated 

probabilities of recreational activity for males, females and for the population. 

 Single- species responses to habitat disturbance are prevalent within the literature, 

yet there has long been a call for multi-species research and monitoring (Simberloff 

1998). Multi-species analyses were historically rare due to logistical constraints on 

sampling; this has been changing in the past decade with advances in monitoring 

technology as well as multi-species models. A species’ niche is defined not only by its 

interactions with its surrounding environment, but also by interactions with sympatric 

species (Rosenzweig 1991, Wiens 2011). Grizzly bears and black bears (U. americanus) 

are sympatric throughout most of the grizzly bears North American distribution and share 

similar niches (Schwartz et al. 2010) which can lead to competition. In turn, competition 

could alter the ability for grizzly bear recovery (Mattson et al. 2005). In Chapter 4, I assess 
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the importance that recreational activity plays in influencing both grizzly bear and black 

bear spatial distribution and habitat use, as well as spatial and temporal interactions 

between the two species themselves. Using trail camera data collected between 2012 and 

2014, I apply a multi-species occurrence analysis (Rota et al. 2016) that allows for the 

inclusion of habitat covariates as well as the occurrence of sympatric species, or in this 

case, forms of human recreation, to define species occurrence on the landscape and 

intensity of use. 

 Managers dealing with animals where the objective is population recovery require 

monitoring of demographic changes brought about by specific management actions. 

Many Recovery plans specifically require a long-term monitoring strategy to be in place 

before such actions as delisting can take place (Doremus & Pagel 2008; U.S. ESA of 1973c 

[as in U.S. Code 2000]). However, data on abundance and distribution of animals, 

especially large, elusive mammals, can be expensive and time consuming to collect 

(Kendall et al. 2009). The Alberta Grizzly Bear Recovery Plan (Alberta Grizzly Bear 

Recovery Team 2008) recommended a complete census of the provincial population of 

grizzly bears every five years. However due to the high costs associated with DNA capture-

recapture methods, this commitment was not upheld.  The need for more cost-effective 

methods for estimating grizzly bear populations and distribution is required. In Chapter 

5, I estimate grizzly bear density for my study area using a spatial mark-resight technique 

that uses trail camera data and radiocollared bears as marked individuals (Sollmann et 

al. 2013a, 2013b, Royle et al. 2014). I compare the accuracy and precision of the estimates 

obtained from the method to estimates from spatial capture-recapture using hair DNA 

samples. Finally, in Chapter 6 I formulate conclusions based on my findings, and how 

they can be incorporated within future access management. 
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2 Predictive modeling of ecological patterns along linear-feature 

networks 

2.1  Introduction 

Linear-feature networks are prevalent within ecological landscapes and occur in 

numerous forms. Clearly defined examples of networks include rivers, streams, roads and 

trails, where ecological patterns and processes are restricted to the network by spatial 

barriers (Ganio et al. 2005).  Semi-permeable examples of linear-feature networks might 

include conservation corridors (Hobbs 1992), or topographical constraints to movement 

(e.g. ruggedness), which are not an ultimate barrier, yet have important implications in 

the spatial configuration of species, and chemical and physical elements (e.g. spread of 

water pollutants or variation in water temperature). The spatial configuration of variables 

across a landscape is commonly characterized using spatial autocorrelation: a universal 

pattern found in ecological systems, whereby locations closer together are more similar 

than distant locations (Tobler 1970). Geostatistical analyses such as kriging exploit the 

correlation between covariance and Euclidean distance to estimate variables at unknown 

locations (Cressie 2015). When variables are constrained to a linear-feature network, 

Euclidean distance does not efficiently capture the pattern of autocorrelation, and 

prediction precision is likely compromised (Zou et al. 2012). For example, the occurrence 

or relative abundance of freshwater species varies spatially, however traditional 

geostatistical methods may not be the best tool for estimating this variance because the 

patterns across space are constrained by the stream network (Ganio et al. 2005). 

Human movement through the landscape primarily takes place using roads and 

trails (Drake et al. 2015). Human activity along linear features is an ecological pattern that 



7 

 

has many implications for wildlife ecology, and for this reason is a fundamental 

component of integrated land-use planning and policy development. Human activity and 

linear feature density have been linked with habitat degradation for many North 

American wildlife species, including golden eagles (Aquila chrysaetos; Steenhof et al. 

2014), caribou (Rangifer tarandus; Seip et al. 2007), wolves (Canis lupus; Whittington 

et al. 2005), and grizzly bears (Ursus arctos; Boulanger and Stenhouse 2014). Access 

management aims to mitigate potential effects of linear features on habitat and wildlife; 

however identifying the directionality, let alone the magnitude, of these effects can be 

difficult due to challenges in the collection and application of access data (Hammitt et al. 

2015), particularly when dealing with networks that are often complex and consist of 

multiple linear-feature types. Trail use, both motorised and non-motorised, has been less 

documented than road (paved, highways) effects (Fahrig and Rytwinski 2009), but is a 

form of disturbance that is growing (Knight and Gutzwiller 1995, Taylor and Knight 

2003). For example, off-highway vehicle (OHV) registrations in North America have 

increased dramatically over the last few decades (Preisler et al. 2006).  

Readily accessible GIS layers have improved measures of human disturbance, such 

as mapping of linear features, and are commonly applied within ecological studies. 

Effective methods for extending this information to estimate human activity within a 

network structure are lacking, however, leaving an information gap for cumulative effects 

assessments. The recent surge in deployment of remote sensor equipment, such as trail 

cameras and acoustic detectors (Burton et al. 2015, Lucas et al. 2015), provides ecologists 

with detailed data on human activity that can be pinpointed in time and space, 

significantly improving on temporally static linear feature layers. When studying wildlife, 
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estimating the magnitude of human activity is a key, (Monz et al. 2013) and often 

challenging and therefore ignored, step in understanding its effects on animal 

distribution (Tigner et al. 2014), density (Thompson 2015), behaviour (Whittington et al. 

2005, Beyer et al. 2013) and survival (Boulanger and Stenhouse 2014). Similarly, different 

forms of human activity (motorised versus non-motorised) are often overlooked, but can 

play an important role in wildlife responses. A more comprehensive method of estimating 

human activity, that incorporates network structure and spatio-temporal variation in 

human-use of the landscape, is required.  

I evaluate an approach using a combination of mixed-effects generalised linear 

models (GLMMs) and Ordinary Kriging (OK) to estimate variation along an ecological 

linear-feature network, accounting for temporal variation in sampling intensity and 

timing. Specifically, this allowed me to estimate the probability of human activity in space 

and time across a landscape. I demonstrate that human activity is variable in both space 

and time, and argue this variability is adequately captured using the proposed method.  I 

illustrate our approach using three years of trail camera data from the eastern slopes and 

foothills of Alberta’s Rocky Mountains. This area is popular for many recreationists, and 

it sees large fluctuations in use between seasons, as well as variation in use across space. 

I predicted that activity would vary based on a number of covariates, including day of the 

year (a quadratic relationship with the peak at the height of summer), rainfall (decrease 

on rainy days), time of day (a decrease at night) and whether it was a weekday, weekend 

or long weekend (with activity increasing during the latter compared to the former).  I 

also predicted that spatial variation is important and that consequently the inclusion of a 

random effect relating to sample location would substantially improve model fit and 
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predictive capacity. I used our modelling procedure to estimate use for motorised and 

non-motorised activity separately, as I predicted that they would vary spatially due to 

access restrictions, and might be explained by different temporal covariates. Lastly, I 

assessed the accuracy of the model using cross-validation techniques. 

2.2 Methods 

Temporal model 

When quantifying patterns in activity, or relative abundance for example, observed 

count data at a location traditionally is divided by the sampling effort, such as the number 

of days surveyed, giving an average daily measure (Carbone et al. 2001, Wang and 

Kockelman 2009). This approach is likely misleading, because count data are not only 

influenced by sampling effort, but also by various temporal attributes.  

In general, detectors or observers are deployed and monitor activity at a number 

of sites (s) for a set period, which can be classified into discrete units, or observations (t). 

For example, any observation hour (one hour during which the detector was active) can 

be classified as ‘present’ (1) if recreational activity was detected, otherwise ‘absent’ (0). 

For a set of n predictor variables, 𝑥𝑘=1:𝑛, a mixed-effects logistic regression (Zuur et al. 

2009), in the following general form, is applied: 

𝑙𝑜𝑔𝑖𝑡[𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡 in 𝑠 at 𝑡)] = [𝛽0 + 𝜃0,𝑡,𝑠] + ∑ [𝛽𝑘 + 𝜃𝑘,𝑡,𝑠] ∙𝑛
𝑘=1 𝑥𝑘(𝑡, 𝑠) + 𝜀𝑡,𝑠  (1) 

where 𝜃0,𝑡,𝑠, 𝜃𝑘,𝑡,𝑠, and 𝜀𝑡,𝑠 are normally distributed random variables with mean = 0 and 

independent standard deviations. Note that, depending on the required temporal 

resolution, as well as on the intensity of activity, count data can be used and a Poisson 
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rather than a binomial formulation may be used. I focus here on the binomial case as I 

believe that it is more generally applicable.   

The response is the presence or absence of activity at site s at time t, and xk are 

temporal or spatial predictor covariates (Table 2.1). 𝜃𝑘,𝑡,𝑠 are random effects, which can 

be applied to both the intercept (𝛽0 + 𝜃0,𝑡,𝑠) and the slope of each covariate (𝛽𝑘 + 𝜃𝑘,𝑡,𝑠). 

Lastly, the Best Linear Unbiased Predictor (BLUP; Robinson 1991) method is used to 

calculate point estimates of a random effect (e.g., site for spatial random effects or year 

for temporal ones). The BLUPs are obtained post-hoc and represent the random deviation 

of this site/year from the fixed effect. BLUPs are conditional on the estimated random 

(i.e., standard deviations) and fixed (i.e., βs) effects within the model. It is important to 

note that BLUPs may be biased (underestimated) in relation to the true spatial or 

temporal variation (Hadfield et al. 2010) and should be taken as conservative estimates 

of site/year effects. 

Network – Based Ordinary Kriging 

In most imaginable scenarios (excluding surveys conducted over many years 

where year-level random effects should be considered), the random effects in equation 1 

are spatial, resulting in site-level BLUPs. Predicting activity in unobserved sites requires 

spatial interpolation of such BLUPs. A common geostatistical method of predicting a 

variable at unobserved sites is ordinary kriging (OK: Cressie 2015). OK estimates values 

based on the spatial autocorrelation between sampled sites. This autocorrelation 

relationship is summarised in an experimental variogram where semi-variance is a 

function of the Euclidean distance between sampling points (Fortin et al. 2002). A recent 

extension to OK involves the use of network distance rather than ‘straight-line’ Euclidean 



11 

 

distance to generate a variogram, and has been used with traffic data on road networks 

(Shiode and Shiode 2011, Selby and Kockelman 2013), fish data along stream networks 

(Ganio et al. 2005), and has many more applications that involve dealing with linear-

feature networks.  

Say we have an unobserved location (n0) at which we wish to interpolate an 

unknown value to (z0) using observed values at a set of sample location (z1, z2,.. zn). This 

value is interpolated as the weighted mean of the observed values 

𝑍0 =  ∑ 𝑤𝑖 ∙  𝑧𝑖
𝑛
𝑖=1  , where ∑ 𝑤𝑖 = 1𝑛

𝑖=1        (2) 

Each weight (wi) is calculated as a function of the shortest path along the network from 

the associated observed location (ni) and the unobserved location (n0), and the level of 

spatial correlation within the data. This spatial autocorrelation is represented in a 

variogram, which can take a number of different forms, based on the spatial pattern 

observed in the variable of interest (Cressie 2015). These are constructed and 

experimental variograms that best represent the spatial autocorrelation structure are fit 

to the data, parameters are estimated using nonlinear least squares (R Core Team 2014, 

Pinheiro et al. 2016) and AIC is used to select the appropriate model  (Burnham and 

Anderson 2002).  

Once an experimental variogram is identified this is then used to calculate the 

inverse Γ matrix, in the form: 

(

𝛾1,1 ⋯ 𝛾1,𝑗 1

⋮ ⋱ ⋮ ⋮
𝛾𝑖,1 ⋯ 𝛾𝑖,𝑗 1

1 ⋯ 1 0

)

−1

           (3) 
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Where γij denotes the variogram values based on the network distances between sampled 

points i and j.  

Weights are calculated as follows:  

(

𝛾1,1 ⋯ 𝛾1,𝑗 1

⋮ ⋱ ⋮ ⋮
𝛾𝑖,1 ⋯ 𝛾𝑖,𝑗 1

1 ⋯ 1 0

)

−1

  · g, where g =   (

𝛾0,1

⋮
𝛾0,𝑛 

1

)      (4) 

and n is the number of sample sites. Once the weights for n0 are calculated for each sample 

location, these are multiplied by the BLUPs and summed to give the estimated intercept 

z0. These would be calculated for each of the unobserved network segments to be 

interpolated. 

Application to recreational activity data 

Our data were obtained from a 2,824 km2 region of the eastern slopes and foothills 

of central Alberta’s Rocky Mountains (Fig. 1). Industrial activity in the area is prevalent 

and diverse, consisting of active open-pit coal mining, logging and oil and gas exploration, 

all of which have contributed to the high density of linear features (seismic lines, logging 

roads) on the landscape, with varying stages of regeneration. The area is predominantly 

Crown land (no recreational restrictions) and includes a portion of Jasper National Park 

(no motorised activity or hunting), Whitehorse Wildland Park (no motorised activity, 

hunting allowed) and private reclaimed mine land (designated access routes, no hunting). 

Between May 2012 and November 2014, I deployed Reconyx HC500 motion-

activated cameras (43 in 2012, 71 in 2013, 116 in 2014) on human-use trails (in this 

present context, defined as man-made linear features), collecting data at 238 different 
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sample sites (Fig. 1) that were evenly distributed over the landscape. During 2012, I 

designated a single camera to each 50-km2 hexagonal cell and rotated to one of three trail 

sites every 20 days. In 2013, I monitored three new sites using the same method as in 

2012, with an additional stationary camera set up at a randomly selected 2012 location. 

In 2014, I deployed 116 stationary cameras at three of the six sites from 2012 and 2013. I 

monitored trail camera sites for a minimum of 20 days each. Cameras were deployed at a 

distance > one kilometer from the nearest current or previously sampled location. I set 

cameras to take pictures 24 hours a day at high sensitivity, and took a set of three pictures 

in rapid succession when triggered with no delay in between consecutive triggers. I 

deployed cameras to maximise the detection zone and to minimise the probability of 

missing fast-moving objects such as OHV’s (angled and placed further from trail). 

Cameras were checked every 20-40 days to download images, replace depleted batteries, 

and rotate if required. I classified images by date, time, and direction of travel. Events 

were treated as independent if triggers were at least one minute apart. If human 

recreation was present, the type of recreation was identified (e.g. truck, OHV, hiker, horse 

rider) and categorised into motorised and non-motorised recreation. Images of project 

members were removed from the dataset. Total number of trap days varied among sites 

(128.6 days ± 118.9, range 21 – 535) due to equipment failure and different sampling 

protocols between 2012, 2013, and 2014.  

I applied a specific form of equation 1 to the data (with t equal to one hour), where 

I assigned temporal covariates only, and the intercept was assumed to vary by spatial 

location;  

𝑙𝑜𝑔𝑖𝑡[𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡 in 𝑠 at 𝑡)] = [𝛽0 + 𝜃0,𝑠] + ∑ 𝛽𝑖 ∙𝑛
𝑖=1 𝑥𝑖(𝑡) + 𝜀𝑡,𝑠     (5) 
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This formation implies independence between spatial and temporal variation in the data. 

I estimated a set of 16 a priori candidate models for motorised and non-motorised activity 

(Table 2.1 and 2-2 respectively). I contrasted two model sets that varied based on the 

inclusion of average daily temperature versus day of the year, to test whether it was daily 

temperature or time of year that influenced the probability of detecting activity. I did not 

include both in the same models as they are highly correlated. Day of the year was 

included in the model as a quadratic term, as I predicted a maximum level of activity in 

the summer, with lower levels in the spring and fall. By including site as a random effect 

I was able to incorporate the BLUPs within a spatial prediction model, such as OK. All 

analyses were done in R (R Core Team 2014), using the lme4 package (Bates et al. 2015). 

I identified the top model(s) using AIC and extracted the BLUPs for each camera location 

which were then used in the second step of the modeling procedure. A recent method for 

obtaining R2  from generalised linear mixed-effects models (Nakagawa and Schielzeth 

2013) was used to estimate the variance explained by the fixed effects (marginal: 

R2GLMM(m)) and entire model which includes the random effects (conditional: R2GLMM(c)). 

I assigned BLUPs to their corresponding camera location in space (Fig. 2.1), giving a 

value that represents relative probability of motorised and non-motorised activity, 

controlling for temporal variation in sampling intervals for different camera sites. The 

values correspond to a scaled flow of activity on a segment within the extensive linear-

feature network. To predict probability of activity for the remaining unobserved linear 

features, I used network-based OK. This involved incorporating the network distance 

between sample sites and accounting for spatial autocorrelation in the data (Cressie 

2015). I created evenly distributed points across the trail network, splitting it into 200m 
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trail segments. I then calculated network distance for each of these points from each of 

the sample sites. All network-distance matrices were constructed using ArcGIS Network 

Analyst (ESRI 2015) and network-based OK was done in R (R Core Team 2014). For our 

example, I confined my variograms to two forms: 1) Spherical and 2) Exponential (see 

Appendix R code for formula) as these two models best represented the spatial 

autocorrelation structure of our data. Nugget effect (microscale variation or measurement 

error; Matheron 1963) was also assumed to be absent, as I treated sampling error as 

absent and had no reason to believe that a spatial structure was present with a range 

shorter than our sampling interval (i.e. minimum 1km between camera locations). 

Each of the interpolated BLUPs was assigned to the corresponding 200m trail 

segment, resulting in a linear feature network where the probability of human activity 

varies in space. To estimate the probability of occurrence of motorised or non-motorised 

activity on a specific trail at a specific time, the BLUPs were incorporated into the 

predictions of the temporal GLMM described above.   

Model validation 

I validated the two stages of the model independently. First, the temporal data were split 

in half, stratified by sample site. One half was used as a training dataset, the other as a 

validation dataset. The top model was refitted using the training data. This model was 

then used to predict the probability of human activity in the validation set. I constructed 

a Receiver Operator Characteristic (ROC) curve, and calculated Area Under the Curve 

(AUC) for both motorised and non-motorised activity. Second, I tested network-based OK 

performance by removing a single camera BLUP, and then calculating the predicted value 
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for that site. This was done for every camera site and the predicted values were compared 

to the observed values using a correlation test.  

2.3 Results 

Between May 2012 and November 2014, cameras were active for a total of 1,036,307 

hours. During this period, I recorded a total of 18,542 human activity events. Of these, 

11,055 were motorised activity (truck, ATV, dirt-bike, or snowmobile), and the remaining 

7,487 were non-motorised recreation (hiking, horseback riding, biking, skiing, and 

snowshoeing).  

Temporal model 

The top-ranked models for temporal variation in motorised and non-motorised activity 

included all temporal covariates, with day of the year performing better than average daily 

temperature (Table 2.1, 2-2). There was a higher probability of motorised activity on the 

weekend, during the day and during the summer months, as shown by the concave day of 

the year relationship. As expected, motorised and non-motorised activity was less 

probable during days with high rainfall (Table 2.3). The inclusion of sites as a random 

effect significantly improved AIC, indicating that the intensity of activity varied spatially. 

Inclusion of sample sites as a random effect increased R2 values for both motorised 

(R2GLMM(m) = 0.28 to R2GLMM(c) = 0.75) and non-motorised (R2GLMM(m) = 0.31 to R2GLMM(c) 

= 0.78) models. 

Experimental variogram 

I estimated experimental variograms for both motorised and non-motorised BLUPs (Fig. 

2.2). Distance bins were created so that equal sample sizes contributed to each value 
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within the variograms. For both motorised and non-motorised, the best fitting variogram 

was the exponential model (equation 6): 

𝛾(𝒉: 𝜽) =  𝒄𝒆 (𝟏 − 𝒆
−

𝒉

𝒂𝒔)         (6) 

Where h is the network distance (metres). The sill (ce) and range (as), determine the shape 

of the variogram. ce represents the asymptote at which variance ceases to increase with 

added distance and as represents the distance at which this sill is reached. Parameter 

estimates for motorised and non-motorised variograms were, ce = 4.718 and 5.093, and 

as = 7620m and 14245m respectively. 

Network-based Ordinary Kriging 

In Fig. 3, I present kriged maps for motorised (left) and non-motorised (right) BLUPs. 

Variance maps can be viewed in Appendix S1 (Fig. S1). As expected, I estimated low 

motorised activity in the parks where motorised recreation is prohibited. Outside of the 

protected areas, motorised activity was estimated to be higher. The majority of non-

motorised activity was localised on trails with motorised restrictions (Jasper National 

Park, Whitehorse Wildland Park, reclaimed mine areas), the only area showing high 

overlap between types of recreation being the trails around Hinton and the Cheviot mine 

lease, which allowed motorised access. Standard error estimates were far higher for 

motorised activity BLUPs relative to the non-motorised BLUPs, likely due to the small 

range within the variogram (motorised = 7620 meters, non-motorised = 14245 meters). 

Combining the spatial and the temporal predictions, shows that probability of activity 

depended heavily on both temporal variables and spatial location (Fig. 4). 

Model performance 
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Our ROC results showed that both the motorised and non-motorised temporal activity 

models performed well (AUCmotorised = 0.93, AUCnon-motorised = 0.96). These values are 

classified as ‘high accuracy’ (Boyce et al. 2002). The second stage of the model: network-

based OK, was less accurate, however, estimated values still showed substantial positive 

correlation with actual values. Accuracy was higher for non-motorised than motorised 

activity (r = 0.639 for non-motorised, r = 0.472 for motorised).  

2.4 Discussion 

Using the outlined method, I was able to predict the probability of motorised and non-

motorised activity across a large trail network. By modeling variation in sampling 

intensity and timing, I created a probability surface across the linear feature network that 

was representative of the spatial variation in human activity. Ultimately, this approach 

yielded an evidence-based and accessible map of the area and can inform integrated-

landscape management. 

Temporal variation was accurately explained using a small number of covariates: 

time of day, day of the year, day of the week, holiday status, and average daily rainfall. 

The precision to which I was able to model the occurrence of both motorised and non-

motorised activity indicates that temporal fluctuations in the occurrence of recreation are 

predictable. This temporal pattern is likely to be present outside of our study area, and in 

fact across much of North America (Taylor and Knight 2003). I clearly demonstrated that 

recreationists are more likely to be found on trails during the day, during the summer 

months, on weekends relative to weekdays, and to an even greater extent on long 

weekends. Day of the year was a better predictor than daily temperature, however weather 

did affect recreationists through rainfall reducing probability of occurrence. Although 
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these results seem obvious, many ecological studies still continue to ignore temporal 

predictors of human activity, rather choosing to average across large timeframes, losing 

temporal resolution, making inferences without accurate human activity information.  

Using a GLMM, and incorporating the sampling location as a random effect, I was 

able to extract BLUPs that represented the magnitude of activity independent of temporal 

variation in sampling. A relatively novel approach, modelling the BLUPs offers a 

convenient method of estimating site effects when they cannot be effectively modelled as 

a function of covariates, a useful tool in ecological research (Avgar et al. 2013). I 

acknowledge there are limitations with this method, specifically linked with the use of 

BLUPs to estimate unexplained variance partitioned using random effects (Hadfield et al. 

2010). In this particular case, I believe that the estimation of spatial variation at camera 

sites using the BLUP method results in a more conservative estimation of this variation 

due to the tendency for the method to constrain values closer to the mean. In addition, 

the R2 values show the importance of accounting for both temporal and spatial variation, 

as both contributed significantly to explained variance. Previous efforts to interpolate 

count data across a surface using kriging methods had problems with sampling effort and 

timing (Monestiez et al. 2006). By modeling the temporal variation in the camera data, 

rather than kriging the raw count data, our model not only controls for variation in survey 

length, but also identified temporal components of variation in human activity.  

Despite improvement, Network-based OK results suggest that characterising 

spatial variation in human activity is more challenging. The fact that more deviance was 

explained for non-motorised activity stems from the pattern of spatial autocorrelation 

being better defined by our experimental variogram, therefore resulting in more accurate 
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estimates. Motorised recreationists showed less-predictable movement, and the spatial 

correlation between sites was less defined. This is intuitive because distance is less of a 

cost for motorised vehicles than it is for people on foot or on horseback. Increasing sample 

sizes in general (i.e. more trail cameras), and specifically increased observations at 

smaller distances, may help better estimate the experimental variogram, improving 

interpolation results. The remaining unexplained variation is likely made up of a number 

of factors: type of trail, accessibility of trail routes, barriers to movement, scenic routing 

(Drake et al. 2015), advertised trails and human communication. All will all play a role in 

explaining spatial variation in the intensity of use, and are in many cases variables that 

are difficult to quantify. Consequently, mechanistic models attempting to capture spatial 

patterns of trail-use based on spatial predictors may often fail. As I demonstrated, the 

more phenomenological approach of krig-based interpolation using network distance 

offers an effective alternative. However, when potential spatial predictors are available, I 

recommend incorporating them in the GLMM, and identifying whether their inclusion 

improves model performance.  

The relationship between wildlife and linear features is complex. Many animals 

show avoidance of roads and trails, whilst others use them to increase movement speed 

through their home ranges (Ehlers et al. 2014). Some animals are attracted to linear 

features due to increased vegetation growth (Roever et al. 2008). A number of ungulate 

species stay close to roads and trails, as there is a disproportionate response to human 

activity between prey and predators (Berger 2007, Muhly et al. 2011). Animal responses 

outlined above are not solely based on the presence of a linear feature, but also the 

intensity of use of that feature by humans.  Changes in the amount of human activity on 
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trails or vehicle traffic on roads is likely to influence how wildlife perceive and interact 

with linear features. Seasonal changes in animal behaviour and fluctuations in human 

activity further confound our understanding of how animals perceive linear features. 

These measures are key in understanding how wildlife alter not just their movement 

across the landscape, but also their activity patterns in response to encroaching human 

activity (Steenhof et al. 2014; Boyce et al. 2010; Martin et al. 2010). Estimating the 

probability of use of a linear feature can give a greater understanding of what wildlife are 

truly experiencing when it comes to human encroachment in wilderness areas (Monz et 

al. 2013). By ignoring measures of activity levels on linear features such as trails, 

researchers may be extracting incorrect inferences from our results, which could have 

strong implications for management. By using data collected with remote sensors, a form 

of data that is ever-increasing (Burton et al. 2015), and applying a combination of 

regression and geospatial statistics, this method creates a spatio-temporal map of human 

activity that can be applied to coordinate access management enforcement where most 

needed, as well as used in further ecological analyses of habitat suitability, degradation, 

mortality risk, and behavioural responses by wildlife. Future applications of this method 

will enhance our understanding of wildlife responses to recreation, and allow for more 

precise identification and resolution of conflicts through management, enhancing the 

efficacy of mitigative actions.  

Our method has applications outside of modelling human activity across a 

landscape. Studies that attempt to estimate activity on road networks might benefit from 

using this method, especially if monitoring effort varied, as would studies using remote 

sensors to identify relative abundance, for example, in streams or on wildlife corridors 
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(Ganio et al. 2005, Peterson and Hoef 2010). Extensions could include additional network 

information such as barriers to movement (Beyer et al. 2014). As GIS techniques continue 

to improve, predictor variables relating to linear-feature mapping can be easily 

incorporated using our method, either with mixed-effects logistic regression, or as an 

intermediate step that further explains BLUP variability. In our example, I had no a priori 

reasoning to treat spatial and temporal variation as non-independent. If this is not the 

case, a random effect could be included to allow variation in the slope, in addition to the 

intercept, for a specific covariate. Lastly, my method is not constrained to occurrence 

data: by choosing an appropriate GLM family and link-function, our approach could be 

applied to modelling the abundance of animals within a corridor network, the 

concentration of toxins found in river and stream networks, and the spread of invasive 

species by hikers and motorists. Many of these are likely to require controlling variance 

created through sampling schedules before tackling the spatial component. I believe the 

application of a network based geostatistical approach in conjunction with controlling for 

sampling noise, will result in improved modelling efforts that will increase our 

understanding of how linear networks influence their surrounding ecosystems. 
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Table 2.1. Candidate models and associated AIC results for temporal activity in motorised recreational activity. Descriptions 

of each model variable can be found in Table 2.3. 

 

 

 

 

 

 

 

Model (motorised) Number of parameters (k ) AIC ∆ AICAIC weight

Average daily rainfall (mm) + Day of the year + Day of the year^2 + Week day + Time of Day + (1|location) 6 65886 0 1

Day of the year + Day of the year^2 + Week day + Time of Day + (1|location) 5 66026 140 0

Average daily rainfall (mm) + Average daily temperature (*C) + Week day + Time of Day + (1|location) 5 66425 539 0

Average daily temperature (*C) + Week day + Time of Day + (1|location) 4 66535 649 0

Day of the year + Day of the year^2 + Time of Day + (1|location) 4 67779 1893 0

Average daily rainfall (mm) + Time of Day + (1|location) 3 68604 2718 0

Time of Day + (1|location) 2 68786 2900 0

Average daily rainfall (mm) + Day of the year + Day of the year^2 + Week day + (1|location) 5 71481 5595 0

Day of the year + Day of the year^2 + Week day + (1|location) 4 71614 5728 0

Average daily rainfall (mm) + Average daily temperature (*C) + Week day + (1|location) 4 71840 5954 0

Average daily temperature (*C) + Week day + (1|location) 3 71895 6009 0

Week day + (1|location) 2 72810 6924 0

Average daily rainfall (mm) + Average daily temperature (*C) + (1|location) 3 73550 7664 0

Average daily temperature (*C) + (1|location) 2 73603 7717 0

(1|location) 1 74549 8663 0

Day of the year + Day of the year^2 + Week day + Time of Day 4 82022 16136 0
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Table 2.2. Candidate models and associated AIC results for temporal activity in non-motorised recreational activity. 

Descriptions of each model variable can be found in Table 2.3. 

 

 

 

 

 

Model (non motorised) Number of parameters (k ) AIC ∆ AIC AIC weight

Average daily rainfall (mm) + Day of the year + Day of the year^2 + Week day + Time of day + (1|location) 6 44915 0 1

Day of the year + Day of the year^2 + Week day + Time of day + (1|location) 5 45009 94 0

Average daily rainfall (mm) + Average daily temperature (*C) + Week day + Time of day + (1|location) 5 46006 1091 0

Day of the year + Day of the year^2 + Time of day + (1|location) 4 46053 1138 0

Average daily temperature (*C) + Week day + Time of day + (1|location) 4 46115 1200 0

Average daily rainfall (mm) + Time of day + (1|location) 3 47349 2434 0

Time of day + (1|location) 2 47504 2589 0

Average daily rainfall (mm) + Day of the year + Day of the year^2 + Week day + (1|location) 5 49753 4838 0

Day of the year + Day of the year^2 + Week day + (1|location) 4 49842 4927 0

Average daily rainfall (mm) + Average daily temperature (*C) + Week day + (1|location) 4 50611 5696 0

Average daily temperature (*C) + Week day + (1|location) 3 50668 5753 0

Week day + (1|location) 2 51388 6473 0

Average daily rainfall (mm) + Average daily temperature (*C) + (1|location) 3 51608 6693 0

Average daily temperature (*C) + (1|location) 2 51664 6749 0

(1|location) 1 52411 7496 0

Day of the year + Day of the year^2 + Week day + Time of day 4 63556 18641 0
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Table 2.3. Estimated β coefficients and standard errors from a generalized linear mixed-effects model for both the motorised 

activity top model and the non-motorised activity top model, including a description of each model variable. 

Model variable Description Motorised SE Non-motorised SE

Intercept - -7.6130 0.1978 -11.0377 0.2640

Rainfall Daily rainfall (mm) -0.0310 0.0028 -0.0300 0.0033

Day_of_year Scaled day of the year 9.5310 0.3707 14.7900 0.4394

Day_of_year
2

- -8.2970 0.3364 -12.3500 0.3821

Time of day (Reference = Day) -

   Dawn +/- 1 hour civil dawn -2.7370 0.1339 -3.1130 0.1807

   Dusk +/- 1 hour civil dusk -1.0820 0.0605 -1.7421 0.0940

   Night - -3.9460 0.1220 -4.1950 0.1501

Day of week (Reference = Long Weekend) Includes Sat-Mon on holidays

   Weekday Mon-Fri -1.3080 0.0313 -1.0560 0.0401

   Weekend Sat, Sun -0.6120 0.0339 -0.2340 0.0424
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Fig. 2.1. Map of study area, located in west-central Alberta in the eastern slopes and 

foothills of the Rocky Mountains. Roads (black), trails (grey) and trail camera sites (red). 

Are included on the map. Protected areas are also shown in green shade. Trails are defined 

as any man-made linear feature excluding designated roads (e.g. seismic lines, 

designating hiking and ATV trails, discontinued logging roads). 
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Fig. 2.2. Experimental variograms on BLUPs (exponential model = red/jagged, spherical 

model = blue/full) for a) motorised and b) non-motorised activity. AIC values for the 

motorised models were: spherical = 68.19, exponential = 13.86 and for non-motorised 

were: spherical = 37.68, exponential = 27.71. Model parameters were estimated using 

least-squares. 
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Fig. 2.3. Map of interpolated BLUPs using network-based Ordinary Kriging for a) 

motorised and b) non-motorised activity. High BLUP values (red) represents a high 

spatial probability of motorised and non-motorised activity relative to low BLUP values 

(green). Roads (black) and protected areas (green) are included in the map. 
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Fig. 2.4. Maps of a subset of the study area showing a combination of spatial and temporal 

results: a) summer long weekend, and b) spring weekday. Values represent the probability 

of motorised activity for each 200m segment of the trail network. Roads (black) and mine 

sites (grey) are included in the map. 
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3 Movement ecology of a large carnivore responding to human 

recreational activity 

3.1 Introduction 

Advancement in GPS radiotelemetry technology has led to increasingly finer scales 

of animal relocation data (Cagnacci et al. 2010). This has subsequently improved our 

ability to approximate the true path taken by animals through the landscape (Thurfjell et 

al. 2014). Finer-scale relocation information has implications for movement ecology 

research, linking mechanisms that drive movement behaviour to the observed movement 

pattern (Kays et al. 2015), and in turn, animal distribution (Turchin 1998).  Specifically, 

greater temporal resolution in animal relocations results in better understanding of the 

interplay between fundamental characteristics of movement: (i) external factors that 

motivate and affect movement, (ii) constraints on how the animal can move, and (iii) the 

internal state of the animal that drives its reasons to move (Nathan et al. 2008).  

Animal movement is the mechanism that links space-use with habitat selection 

and avoidance of external factors (Avgar et al. 2015). Traditional uses of telemetry data to 

document animal distributions include modeling space-use with environmental variables 

to infer resource selection (Manly et al. 2002). Resource selection functions (RSFs) 

compare a set of used points (relocation data) to a set of available points randomly 

distributed across a landscape (Manly et al. 2002, Johnson et al. 2006). Applications of 

this method often ignore animal movement, due in part to low temporal resolution of 

telemetry relocation data. Advances in data collection have been mirrored by advances in 

analytical techniques, especially relating to incorporating animal movement in habitat 

selection studies (Fortin et al. 2005, Forester et al. 2009, Potts et al. 2014). Initial analysis 
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extensions involved constraining availability of selection for a single step (straight line 

connecting two sequential relocations) by the movement constraints of the animal (part 

ii; Nathan et al. 2008). Step selection functions (SSFs; Fortin et al. 2005), have the 

advantage of relocations being temporally defined, thus allowing inclusion of fine-scale, 

temporally dynamic variables. These methods are especially useful for monitoring large, 

free-roaming mammals, that allow the application of radiocollars with enough power to 

obtain frequent relocations over a long period (Cagnacci et al. 2010). However, this 

method still lacks the ability to explicitly test hypotheses relating to differences in 

movement as a function of internal state and external factors (part i and iii; Nathan et al. 

2008), because movement and selection are treated as independent processes.  

Grizzly bears (Ursus arctos) are large mammals for which movement and habitat 

selection is defined by both an internal state (e.g. sex, reproductive status, genotype) and 

external factors, such as topography (Mace et al. 1996), food distribution (Nielsen et al. 

2010) and human disturbance (Mace et al. 1996, Gibeau et al. 2002, Boulanger and 

Stenhouse 2014, McKay et al. 2014). There are significant knowledge gaps related to our 

understanding of grizzly bear movements. However, a common theme is that bears have 

high individual variability, making population-level inference challenging (Boyce et al. 

2010, Northrup et al. 2012a, Cristescu et al. 2016). Despite this, bears do respond 

consistently to certain landscape variables. For example, areas of high terrain ruggedness 

tend to be avoided, likely due to its constraints on animal movement (Roever et al. 2010), 

while areas of high food quality are selected (Nielsen et al. 2004a) which results in slower 

foraging-based movements in other species (e.g. in elk, Cervus canadensis, Frair et al. 

2005). Roads, and associated human activities negatively influence grizzly bear 
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persistence by reducing survival (Boulanger and Stenhouse 2014, Lamb et al. 2017), and 

indirectly by altering habitat availability and movement (Roever et al. 2010, Northrup et 

al. 2012a). Analysis of autocorrelation patterns in grizzly bear step lengths concluded that 

bears in areas of high road-density displayed higher movement rates at night and 

disrupted daily movement patterns (Boyce et al. 2010). Conversely, positive associations 

with linear features have also been found, such as increased foraging opportunities 

adjacent to roadsides (Roever et al. 2010, Kite et al. 2016) and areas associated with roads 

(Nielsen et al. 2004a).  Linear disturbances, such as seismic lines that are a product of 

industrial exploration, can lead to increases in carnivore movement rates, thus improving 

their search efficiency for prey (Latham et al. 2011, Dickie et al. 2016).  

Moreover, selection and movement responses to external factors such as linear 

disturbances may not be constant across time, because the magnitude of human activity 

on such features can be dynamic (Ladle et al. 2017). This may result in spatio-temporally 

varying ‘landscape of fear’ (Laundré et al. 2001, Ciuti et al. 2012a), whereby grizzly bears 

might perceive human activity as a form of risk (Frid and Dill 2002). Risk avoidance can 

have implications for habitat selection (L. Thomson et al. 2006, McGreer et al. 2015), and 

the implementation of risk avoidance behaviours reduce fitness through diminished 

survival and reproduction (Creel et al. 2007, Creel and Christianson 2008). Such changes 

in habitat selection have been documented in grizzly bears (Brown and Kotler 2004, 

Nielsen et al. 2006), and risky habitats also can lead to increased grizzly bear movement 

(Graham et al. 2010).  

To document how grizzly bears alter their movement and selection in relation to 

linear disturbance, I investigated grizzly bear response to human recreational activity, 
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and extend previous methods in modelling habitat selection using an integrated step 

selection analysis (iSSA; Avgar et al. 2016, Prokopenko et al. 2017). Outdoor recreation 

on trails can negatively impact wildlife (Seip et al. 2007, Reed and Merenlender 2008, 

Rogala et al. 2011, Hammitt et al. 2015, Thompson 2015, Fortin et al. 2016, Larson et al. 

2016), and may influence the perception of linear disturbances by grizzly bears, altering 

their movement and habitat selection in response to changes in perceived risk. To address 

this, I formulated the following set of questions; A) Do bears select trails and how does 

selection vary with different probabilities and forms of recreational activity? B) Do I 

observe changes in movement rates in relation to trail proximity? C) Is movement 

independent of recreational activity, or does it vary based on recreational activity 

(displacement as a response to recreation)?   

3.2 Methods 

Study area 

I conducted the study in a 2,824 km2 region of the eastern slopes and foothills of 

central Alberta’s Rocky Mountains (Fig. 3.1). The landscape consists of rugged, 

mountainous terrain to the west, with transition to the east into rolling, lower-elevation 

foothills.  Coniferous forest dominates, consisting of spruce (Picea spp.), fir (Abies spp.) 

and lodgepole pine (Pinus contorta), with an increase in mixed forest, including aspen 

(Populus tremuloides) and balsam poplar (P. balsamifera) farther east and at lower 

elevations. The study region contains multiple land-use types, with a variety of 

restrictions in recreational-use. The area is predominantly public land (few recreational 

restrictions), including portions of Jasper National Park (JNP; no motorised activity or 

hunting), Whitehorse Wildland Park (WWP; no motorised activity, hunting allowed) and 
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leased reclaimed mine land (designated access routes, no hunting). Natural resource 

extraction is prevalent and diverse on public lands in the region, consisting of active open-

pit coal mining, forest harvesting and oil and gas exploration, all of which have 

contributed to a high density of linear disturbance (cutlines, resource access roads, 

powerlines, pipelines) on the landscape, with varying stages of regeneration. 

Grizzly bear movements  

Between April 2011 and November 2015, Foothills Research Institute’s Grizzly 

Bear Program (FRIGBP; Hinton, Alberta, Canada) collected location data for 16 grizzly 

bears (6 males, 10 females; Table 1) residing in and around the study area using Global 

Positioning System (GPS) radio-telemetry collars (Followit, Lindesberg, Sweden). 

Capture and handling complied with the Canada Council of Animal Care handling 

guidelines and were approved annually by the University of Saskatchewan Animal Care 

Committee (#20010016), and University of Alberta Animal Care (AUP00000436). All 

captures were either using culvert trap or aerial helicopter methods (Cattet et al. 2003). 

Duration of monitoring varied across bears, with some individuals only collared for a 

single season, whilst others were collared for multiple years. All collars were programmed 

to record locations every hour. For this study, I included all locations between April 14 – 

September 30 (when information on bear foods was available) and inside the camera trap 

array. I identified consecutive locations (separated by 55-65 minutes) for each bear and 

created a total of 74,925 individual steps (range: 624 – 8493 steps per individual bear, 

median: 3090 steps; Table 1). I split data by bear and year and removed partitioned 

datasets with < one week of data (168 steps). I further categorized steps as either night or 

https://remo.ualberta.ca/REMO/Rooms/DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity%5bOID%5b4E995F787F83E54BBF7C9CD27E87B7AF%5d%5d
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day, based on sunrise/sunset data (http://www.nrc-cnrc.gc.ca/eng/services/sunrise/). 

This resulted in 54 individual datasets (27 day, 27 night), each analyzed independently. 

Recreational activity 

I recorded hourly presence of motorised and non-motorised recreational activity 

between May 2012 and November 2014, at 240 locations. I placed infrared remotely 

triggered trail cameras (Reconyx LLP, Holmen, Wisconsin, USA) on human-use trails (in 

this present context, defined as any man-made linear features). I selected trail locations 

using a stratified random sampling design based on land cover type, and I monitored each 

for >= 20 days. If human recreation was present, I identified the type of recreation (truck, 

OHV, hiker, horse rider) and categorized it into motorised and non-motorised recreation. 

I created models of motorised and non-motorised activity using the trail camera data (see 

Ladle et al. 2017 for full description). First, I fit a generalized linear mixed effects model 

with a binomial link function (Zuur et al. 2009) with hourly presence/absence 

information of recreational activity as the response variable, various temporal covariates 

as fixed effects and trail camera sampling location as a random effect. I extracted the best 

linear unbiased predictors (BLUPs) at each sampling location and spatially interpolated 

across the trail network using Network-based Ordinary Kriging (Shiode and Shiode 2011). 

Network distance between each sampled camera location was calculated using ArcGIS 

Network Analyst (ESRI, Redland, CA).  The final product consisted of spatiotemporal 

probability of motorised and non-motorised recreational activity across the entire trail 

network. I ran the model for each year of data independently, and applied a cross-

validation method by evaluating the yearly performance of each model in predicting the 

presence/absence of activity in alternate years. I identified no clear directional trend in 
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recreational activity across years, and single-year models were successful at predicting 

the probability of motorised and non-motorised occurrence in the other years monitored, 

I was thus confident in using the temporal model to extrapolate the probability of 

motorised and non-motorised occurrence for all bear-year combinations. Lastly, I logit-

transformed all probability of recreational activity variables (see Table 3.2). 

Habitat covariates 

In addition to recreational activity, I included a number of covariates known to 

influence grizzly bear habitat selection and movement (Nielsen et al. 2002, Northrup et 

al. 2012). I used a spatiotemporal food quality index following Nielsen et al. (2010). 

Briefly, I condensed nine grizzly bear food species distribution models (SDMs) into six 

categories representing the presence or absence of different grizzly bear food types. The 

ungulate model only contained moose. Next, I generated biweekly food quality maps by 

multiplying the species distribution maps by importance weight of that food for that 

biweekly period (Munro et al. 2006)and then summing these values. I attached seasonal 

importance weights to each SDM using previously collected data from within the study 

area on percent dry digestible matter from scats obtained during each biweekly period 

(Munro et al. 2006; Fig. S1). I also used landscape variables including distance to road, 

distance to trail, distance to forest edge (both inside edge and outside edge; Nielsen et al. 

2009, Stewart et al. 2013),  distance to stream and terrain ruggedness with natural 

logarithm transformations used for distance to road and streams. All variables were 

calculated using ArcMap (ESRI 2015). 

Integrated Step-Selection Analysis (iSSA) 
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An iSSA assumes that animal space use consists of two main components: a 

discrete-time movement kernel, and the habitat-selection function (Avgar et al. 2016).  

The movement kernel is the spatial probability density function of relocating from spatial 

location xt-1 to xt at time t and in the absence of habitat selection. The movement kernel 

thus includes explicit probability functions for the step length (the Euclidean distances 

between xt and xt-1, and possibly xt-1 and xt-2), the directional bias and the turning angle 

(the angular deviation between consecutive steps), each of which could include the effects 

of spatial and temporal covariates. The habitat-selection function takes the exponential 

form and yields the conditional probability of observing the animal at a specific location, 

given a set of location attributes and in the absence of movement constraints. See Avgar 

et al. (2016) for further background and Prokopenko et al. (2017) for a similar application. 

I first characterized a tentative population-level probability distribution of step 

lengths. This was done using a gamma probability density function where maximum 

likelihood estimates of the shape (b1) and scale (b2) parameters were obtained using non-

linear least squares from the MASS package in R (Venables and Ripley 2002), with all 

observed step lengths (across all bear years) as the input (b1 = 0.492, b2 = 588). Next, I 

sampled a set of 10 random steps and associated end points and coupled them with each 

animal use location. Random steps were generated by sampling a step length and turning 

angle: distance relative to the start location was sampled from the parameterized gamma 

distribution, turning angles were sampled from a uniform angular distribution, because 

mean cosine θ ≈ 0, which infers a random walk with no directional persistence 

(Benhamou 2006). I extracted covariates (Table 3.2) for both the start and end points for 

each step (both used and random), based on their spatial and temporal positions. I 
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modeled habitat selection and movement using conditional logistic regression  in R 

(clogit; Therneau 2015), with cluster ID (a group of one use step and its ten associated 

random steps) ID as strata.  

I included variables predicted to influence grizzly bear habitat selection and 

movement within a set of a priori candidate models for each individual bear. I included 

the natural logarithm of step length (hereafter lnSlength) as a covariate to estimate the 

basal movement kernel when habitat selection is accounted for; the associated statistical 

coefficient is a modifier of the tentative gamma shape parameter (b1; Avgar et al. 2016). 

The inclusion of lnSlength as a covariate also controls for individual variation in 

movement behaviour relative to the population level, and it can be used to evaluate 

alternative hypotheses relating changes in movement to habitat covariates, which I do 

here. I analyzed steps taken during night and day separately based on my expectation that 

I will see responses to recreational activity during the day, when both bears and 

recreationists are most active. 

Model Selection 

I constructed a set of candidate models representing a number of alternative 

hypotheses. The null model consisted of food quality and landscape covariates (Table 3.3, 

model 1) predicted to affect general patterns of grizzly bear habitat selection. Alternative 

models incorporated linear disturbances and human activity covariates, although these 

models did not consider interactions with movements (Table 3.3, models 2-5). Lastly, to 

model movement responses by grizzly bears, I also included interactions between 

lnSlength, natural logarithm of distance to trail (lnDtrail; see Table 3.2 for full description 

of transformations) at the start of the step and recreational activity (Table 3.3, models 6-
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8). The global model included lnDtrail, motorised and non-motorised activity at the 

nearest trail segment, the interaction between these two covariates, and interactions with 

lnSlength (Table 3.3, model 9). I based model selection (Burnham and Anderson 2002) 

on individual grizzly bear-years. I calculated AIC weights for each of the competing 

models to identify the importance of incorporating estimates of recreational activity and 

movement interactions. Lastly, I calculated mean AIC weight across bear-years for each 

model, and compared both day and night models to determine the most supported model 

at the level of the population.  

Population-level responses to recreation 

I used individual-based modeling, rather than mixed-effects conditional logistic 

regression (Duchesne et al. 2010), and then obtained values for the population-level 

response post-hoc (Fieberg et al. 2010). To obtain coefficient estimates at the population 

level, I bootstrapped coefficients. I subsampled β coefficients for each bear, irrespective 

of the number of years sampled, x times, where x = number of individual bears in each 

subset, and a mean coefficient was calculated. This was repeated 2,000 times for each β 

coefficient, to obtain population level averages and confidence intervals (based on the 

2.5th and 97.5th quantiles). I calculated bootstrapped βs at the population level, and also 

for males and females separately.  

I assessed the log-Relative Strength of Selection (ln-RSS; Avgar et al. in Review) 

to investigate how bears respond to our covariates of interest, specifically the interaction 

between lnDtrail and motorised and non-motorised activity on the trail. The ln-RSS was 

calculated:  
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{𝑙𝑛 (
ℎ𝑖 (𝑥1)− ∆ℎ𝑖

ℎ𝑖 (𝑥1)
)} ∗  [𝛽𝑖 + 𝛽𝑖𝑗 ∗ ℎ𝑗  (𝑥1)],      (1) 

where hi (𝑥1) was lnDtrail, ∆ℎ𝑖 was the ln average step length, which represents the 

difference in lnDtrail in one time-step, ℎ𝑗  was the logit-transformed probability of 

motorised or non-motorised activity and 𝛽𝑖 and 𝛽𝑖𝑗 were the population-level β 

coefficients for lnDtrail and the interaction term with recreational activity respectively. 

In this context, ln-RSS can be defined as the relative selection strength of moving one 

mean step length away from the trail relative to one mean step length towards the trail as 

a function of absolute lnDtrail and whether recreational activity was absent or at high 

levels. 

I corrected our original gamma distribution coefficients by adding the lnSlength 

estimate (change in shape parameter) and then multiplying this by our estimated scale to 

obtain an expected selection-free displacement rate (m/hr). I calculated population-level 

changes in movement rate as a function of lnDtrail and recreational activity by 

incorporating the bootstrapped β coefficients for the interactions between lnDtrail and 

lnSlength, and the further interactions with motorised and non-motorised activity. 

3.3 Results 

Model selection 

Daytime models that incorporated interactions with lnSlength performed 

significantly better in terms of AIC weight, and inclusion of an interaction between 

distance to trail and probability of motorised and non-motorised activity further 

improved daytime model performance. The same result did not hold for night-time 
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models (Fig. 3.2), where performance was not improved by adding recreational activity 

terms, however including lnDtrail did improve model selection for some bears. Although 

the daytime global model had the highest average AIC weight, this was highly variable 

across individual bear-years.  

Habitat selection and recreational activity 

Grizzly bears showed positive selection for food quality (mean β = 0.16, 0.025 : 

0.975 quantiles = 0.054 : 0.27), less-rugged terrain (mean β = -0.00093, 0.025 : 0.975 

quantiles = -0.0015 : -0.00032), areas close to streams (mean β =0.085, 0.025 : 0.975 

quantiles = 0.064 : 0.11), areas closer to the inside edge of forest cover (mean β =-0.0020, 

0.025 : 0.975 quantiles = -0.0027 : -0.0015), as well as areas close to outside edge (mean 

β =-0.00084, 0.025 : 0.975 quantiles = -0.00013 : -0.00048).  

At the population level, bears showed no significant selection response to 

proximity to roads (mean β =0.015, 0.025: 0.975 quantiles = -0.025: 0.051; Fig. 3a), 

however, I found that there was a positive selection for areas closer to trails (mean β 

=0.12, 0.025: 0.975 quantiles = 0.039: 0.21; Fig. 3.3a). Selection for areas closer to trails 

disappeared when probability of motorised or non-motorised recreational activity was 

high (Fig. 3.3a, 3-3b). The strength of this selection can be seen using a ln-RSS plot (Fig. 

3.3b). When close to trails, bears are less likely to move away from the trail than they are 

towards it, as shown by the negative log-RSS values. This diminishes farther from the 

trail, with indifference to trails at approximately 400 m from the trail (Fig. 3.3b). 

Selection was indistinguishable between males and females for variables associated with 

human recreational activity (Fig. 3.3a).   
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Movement and recreational activity 

Coefficients affiliated with lnSlength represent deviations from the gamma shape 

value used to sample random steps. Grizzly bear selection-free movement rates (i.e. after 

accounting for habitat selection) were significantly larger than the observed step length. 

When estimating coefficients at the population level, bears did not significantly alter their 

step length relative to trail proximity (mean β=-0.032, 0.025: 0.975 quantiles =-0.065: 

0.0048; Fig. 3.4), However, when split by sex, males moved significantly slower when 

close to trails (mean β =-0.081, 0.025: 0.975 quantiles =-0.10: -0.057; Fig. 3.4). Females 

did not display the same response (mean β =-0.032, 0.025: 0.975 quantiles =-0.065: 

0.0048; Fig. 3.4), although there was a large amount of variation across individual 

females. When the probability of motorised recreation was high, male bears significantly 

altered their movement behaviour, increasing their movement rates when close to trails 

(mean β =0.0056, 0.0028: 0.01; Fig. 3.5a). Male bears showed a similar switch in their 

movement response to trails with non-motorised recreation (mean β =0.0033, 0.025: 

0.975 quantiles =-0.00024: 0.0081; Fig. 3.5c). No change in female movement response 

to trail proximity as a function of the probability of recreation was found (Fig. 3.5b, d).  

3.4 Discussion 

Using integrated step selection analysis (iSSA), I modelled habitat selection by 

grizzly bears using a mechanistic movement-model framework (Avgar et al. 2016). Grizzly 

bears selected trails, except where recreational activity was high. Male grizzly bears 

changed movement patterns, switching from slower movements when recreation was 

absent, to faster movements when activity was high. Our results demonstrate how grizzly 

bears alter multiple behaviours in response to recreational activity (Abrahms et al. 2015).  
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Our approach has led to an unbiased look at how grizzly bears select habitat relative to 

human recreational activity, whilst simultaneously investigating responses in movement. 

Current plans to recover grizzly bear populations in North America focus on reducing 

linear disturbance density to minimize bear mortality, specifically keeping open-road 

densities below a threshold of 0.6 km/km2 (Mace et al. 1996, Alberta Grizzly Bear 

Recovery Team 2008). I found that, when examining changes in behaviour and habitat 

selection relative to linear disturbances, both feature density and the magnitude of 

activity need to be considered. The inclusion of motorised and/or non-motorised activity 

alongside distance to nearest trail improved our ability to explain habitat selection and 

movement in grizzly bears. Previous efforts to include measures of human activity have 

shown similar improvements in grizzly bear habitat selection models (Northrup et al. 

2012a), highlighting the importance of incorporating the magnitude of human-use of a 

linear feature, and not just its presence. Tantamount to these findings, our results showed 

that grizzly bears alter not only habitat selection in response to trails and recreational 

activity, but they also alter movement behaviour through complex relationships and 

interactions with other site factors. This emphasizes how habitat selection analysis that 

ignore movement behaviour can miss important behavioural changes relating to 

movement patterns (Ordiz et al. 2013, Abrahms et al. 2015). 

Human disturbance is known to have contrasting effects on different species in 

terms of habitat selection, with responses by grizzly bears being particularly complex  

(McLellan and Shackleton 1988, Rode et al. 2006, Boulanger and Stenhouse 2014, 

Elfström et al. 2014, Sahlén et al. 2015). Both male and female bears selected for areas 

closer to trails when recreational activity was absent, but showed no preference for trails 
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when and where recreational use was high. Traffic volume alters grizzly bear responses to 

roads (Roever et al. 2010, Northrup et al. 2012a), switching from selection of low-use to 

avoidance of medium and high-use roads (Northrup et al. 2012a). The lack of avoidance 

of trails could be due to the unpredictability of recreational trail-use relative to traffic 

volume. Male grizzly bears reduced their movement rates when close to trails. This 

implies that bears are not specifically using trails to move faster, as has been seen in 

wolves (Dickie et al. 2016). Instead, bears are likely using linear disturbances for foraging 

opportunities (Roever et al. 2010), which would decrease their average movement speed. 

Grizzly bears often are attracted to open areas, such as linear-features and forest 

cutblocks (Nielsen et al. 2004a), because the lack of canopy cover allows growth of 

nutrient-rich foods (Nielsen et al. 2004b, 2010, Lamb et al. 2017). Male movement 

behaviours change when motorised activity is high; bears increase their movement speed 

at times of high recreational activity, likely diminishing their ability to exploit the 

nutrient-rich foods close to or on trails due to increased displacement (Ciuti et al. 2012b). 

Further work quantifying food quality found on and close to trails will inform us of the 

potential nutritional effect this loss of foraging opportunities has for bears. Additionally, 

identifying physiological responses in terms of stress, as seen in wolf (Canis lupus) 

responses to winter recreation (Creel et al. 2002), coupled with altered movement 

behaviour would help infer whether recreational activity on trails is detrimental to 

survival and reproduction (French et al. 2011). Such evidence would help to inform 

wildlife managers of the importance that access management can play in grizzly bear 

recovery. 
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I emphasise the high level of individual variability, resulting in large confidence 

intervals surrounding a number of coefficient estimates. Variation among individuals 

may be a consequence of age, social dominance, reproductive status, genotype or 

habituation, which can result in different trade-offs between perceived risks (Gomes and 

Sarrazin 2016). For example, intra-species dynamics, such as male competition, or sexual 

segregation (Smulders et al. 2012, Steyaert et al. 2016), can influence how an individual 

perceives trails and recreation relative to other dangers on the landscape (Berger 2007). 

Studies have shown that male bears are more wary of human activity (Rode et al. 2006, 

Steyaert et al. 2016), and this might help to explain why I see a consistent movement 

response to motorised recreation by males, but not females. Females, particularly females 

with cubs, can select for areas with human activity as a refuge from males and the threat 

of sexually-selected infanticide (Rode et al. 2006, Steyaert et al. 2016). However, I would 

have expected selection for high-use trails, if this was the case, which I did not. 

Model uncertainly due to estimation or measurement error increases variability 

around coefficient estimates, and in more serious cases, can lead to biased results (Van 

Niel and Austin 2007, Frair et al. 2010). Error propagation associated with applying 

model outputs as data, as well as other sources of error such as GPS location error 

(Cagnacci et al. 2010) and error propagation in landscape variables (Hines et al. 2005, 

Van Niel and Austin 2007), are likely to increase the statistical power required to detect 

significant relationships. However, I did not believe that our estimates of recreational 

activity and food distribution bias our inference, as both approaches involved model 

validation methods quantifying prediction error (Nielsen et al. 2010, Ladle et al. 2017), 

which increased my confidence when applying the predicted values as covariates. 
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Conclusions 

High motorised and non-motorised recreational activity quashed male grizzly bear 

selection for trails. By incorporating movement within the analysis, I showed that bears 

change their movement behaviour surrounding trails when motorised activity was high. I 

found substantial variation in both habitat selection and movement responses among 

bears. Further analyses might examine functional responses relating to habitat selection, 

and how behavioural plasticity might play a role (Leclerc et al. 2015). Linking avoidance 

behaviour with changes in habitat quality, both through selection and movement, will give 

insights into more direct fitness consequences through changes in food availability. 

Further information is required to determine if recreational activity is reducing survival 

or reproduction. Incorporating details relating to movement behaviour show that, 

although bears are not avoiding high-activity trails, they no longer select trails when and 

where activity is high. Coupled with increased displacement, these responses could have 

a number of negative consequences to bears, including reduced foraging opportunities, 

higher energy expenditure and higher stress hormone levels.  

Our research shows the importance of including measures of recreational activity 

to better assess the effects of linear features on wildlife. Advances in remote-data-

collection technology, such as trail cameras allows for increased availability of such data 

(Burton et al. 2015), make it easier to produce spatiotemporal layers of human activity 

(Ladle et al. 2017). I show that solely relying on linear-feature mapping, and not including 

measures of human activity or bear movement can result in poor inferences when 

assessing effects of recreation on bear behaviour. Future approaches should aim to 
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incorporate both selection and movement in analyses, improving our understanding of 

grizzly bear responses to external stressors. 
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Table 3.1. Grizzly bears monitored between 2011 and 2015. Sample size represents the number of 

steps located within the study area and outside of the denning period (April 14 – September 30). 

Individual bear-years with less than 168 steps were not included in the analysis. 

ID Sex Sample size Year Sample size by year 

G004 F 5781 2011 2634 

    
 

2012 3055 

    
 

2013 92 

G016 F 8435 2011 2487 

    
 

2012 2592 

    
 

2013 3356 

G023 F 1278 2011 1278 

G037   5245 2011 2704 

    
 

2015 2541 

G111 F 8493 2011 785 

    
 

2012 3181 

    
 

2013 3360 

    
 

2014 1167 

G118 F 1772 2011 1772 

G119 F 6245 2011 2169 

    
 

2013 3443 

    
 

2014 633 

G120 M 5394 2012 33 

    
 

2013 2153 

    
 

2015 3208 

G126 F 1068 2013 1068 

G127 M 1496 2013 1496 

G129 M 841 2014 841 

G131 F 3380 2014 2370 

    
 

2015 1010 

G132 F 2059 2014 2059 

G156 M 624 2015 624 

G157 M 3132 2015 3132 

G160 M 3048 2015 3048 
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Table 3.2. Description of variables used in iSSA, including units, any transformation that 

was applied and the source of the original variable.  

Variable Units Transformation Source 

lnDroad Metres Natural log distance from nearest road Foothills 

lnDtrail Metres Max distance to trail – natural log (dtrail)  Foothills 

lnDstream Metres Natural log distance from nearest stream or 

river 

Foothills 

lnSlength Metres Natural log step length (based on one hour 

fix rate) 

NA 

Motorised NA Logit transformed probability of motorised 

activity – min value 

Ladle et al. (2016) 

Non_motorised NA Logit transformed probability of non-

motorised activity – min value 

Ladle et al. (2016) 

TRI NA Terrain Ruggedness Index  (Riley et al. 1999) (DEM 

from Foothills) 

Food quality NA Temporally weighted Food Quality index  (Munro et al. 2006, 

Nielsen et al. 2010) 

edge_in Metres Distance to forest edge from inside forest 

cover  

NA 

edge_out Metres Distance to forest edge from outside forest 

cover  

NA 
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Table 3.3. Set of candidate models that represent competing hypotheses relating to the effects of recreational activity on 

grizzly bear habitat selection and movement. See Table 3.2 for description of variables. Variables in bold represent variables 

included beyond the previous model.  

Model name Covariates 

food quality LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad 

dtrail LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad + lnDtrail 

complete LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad + lnDtrail + I (lnDtrail * 

motorised) + I (lnDtrail * non-motorised) 

dtrail + movement LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad + lnDtrail + I (LnSlength 

* lnDtrail) 

non-motorised + 

movement 

LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad + lnDtrail + I (lnDtrail * 

non-motorised) + I (LnSlength * lnDtrail) + I (LnSlength * lnDtrail * non-motorised)  

motorised + movement LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad + lnDtrail + I (lnDtrail * 

motorised) + I (LnSlength * lnDtrail) + I (LnSlength * lnDtrail * motorised) 

complete + movement LnSlength + food quality + TRI + edge_in + edge_out + lnDstream + lnDroad + lnDtrail + I (lnDtrail * 

Motorised) + I (lnDtrail * Non-motorised) + I (LnSlength * lnDtrail) + I (LnSlength * lnDtrail * 

Motorised) + I (LnSlength * lnDtrail * non-motorised) 
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Fig. 3.1. Map of study area in West-central Alberta’s Rocky Mountain slopes and foothills. 

including grizzly bear telemetry data collected between 2011 and 2015, road features 

(black) and trails (grey). Green shading represents protected areas. Yellow perimeter 

represents the study area, defined by the spatial extent of our trail camera locations (Ladle 

et al. 2016). Relocations outside of the perimeter were discarded from the analysis.
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Fig. 3.2. Boxplot showing the AIC weight distribution for 27 individual bear-year models. Model type represents the different 

competing models described in detail in Table 3.3. White boxes represent daytime models, black boxes represent night time 

models. The central mark represents the median, and the tails represent the 2.5th (lower) and 97.5th (upper) percentiles. 
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a) 

 

b) 

 

Fig. 3.3. Plots displaying habitat selection responses to trails and recreational activity. a) β coefficients and bootstrapped 

confidence intervals for grizzly bear habitat selection relating to human recreation, b) log- RSS and bootstrapped confidence 

intervals at the population level, where log – RSS represents the relative selection strength of moving away from the trail 

relative to towards as a function of absolute distance from trail. Colours represent this relationship at high (red) and low 

(blue) probabilities of motorised recreational activity. See Eq 1 for calculation.
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Fig. 3.4. Population level coefficient estimates and bootstrapped confidence intervals for 

movement behaviour by grizzly bears. The central mark represents the median, and the tails 

represent the 2.5th (lower) and 97.5th (upper) percentiles. Coefficients were treated as significant 

if the tails did not overlap zero (red line) 

 

 



 

55 

 

a) 

 

b) 

 

c) 

 

d) 

 
 

Fig. 3.5. a) the mean displacement rate for male grizzly bears in response to zero (blue) 

and high (red) motorised recreational activity, c) the mean displacement rate for female 

grizzly bears in response to zero (blue) and high (red) motorised recreational activity, d) 

the mean displacement rate for male grizzly bears in response to zero (blue) and high 

(red) non-motorised recreational activity and e) the mean displacement rate for female 

grizzly bears in response to zero (blue) and high (red) non-motorised recreational activity.
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4 Significance of human recreational activity in shaping patterns of 

grizzly bear-black bear co-occurrence. 

4.1 Introduction 

Interspecific interactions play a fundamental role in shaping species’ distributions 

and behaviour (Araújo and Luoto 2007), however incorporating such relationships into 

species distribution models can be logistically challenging and complex (MacKenzie et al. 

2004). Interspecific competition can lead to resource partitioning that allows multiple 

species that are ecologically similar to coexist on the same landscape (Hutchinson 1965, 

Amarasekare 2002), resulting in sympatry with niche divergence (Rosenzweig 1991). 

These interactions can be altered by anthropogenic factors such as human activity (Carter 

et al. 2012), which has the potential to affect individual behaviour and habitat use. To 

understand species distributions and abundance it is important to incorporate such 

relationships, and factors that influence them (McLoughlin et al. 2010). Ignoring biotic 

interactions, between prey, competitors and predators, can lead to biased or inaccurate 

inferences regarding an animal’s habitat selection or changes in behaviour (Rota et al. 

2016). 

Grizzly bears (Ursus arctos) and black bears (U. americanus) are sympatric across 

the majority of the grizzly bear range in North America, and inhabit similar niches in 

terms of food preference (Schwartz et al. 2010). Where these two species are sympatric, 

diet overlap is high; both are opportunistic omnivores (Mattson et al. 2005, Schwartz et 

al. 2014) that rely on berry crops to gain the necessary weight for denning (Holcroft and 

Herrero 1991, Munro et al. 2006). Reliance on the same food source leads to competition, 

and studies have shown that spatial displacement is common, such as black bears being 
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displaced  from salmon streams (Jacoby et al. 1999). Altered activity patterns also have 

been documented, with black bears switching daily activity patterns to reduce overlap 

with grizzly bears (Schwartz et al. 2010). Although displacement in these examples was 

due to competition for resources, there have been instances of intraguild predation, 

exacerbating black bear avoidance of grizzly bears (Schwartz et al. 2010). Conversely, 

there is little evidence that grizzly bears are negatively affected by black bear occurrence 

directly, however it is postulated that high black bear densities might result in reduced 

reproduction by grizzly bears through exploitation competition, despite grizzly bears 

being able to dominate high-quality foraging through resource defense competition and 

direct interference competition (Mattson et al. 2005, Apps et al. 2006).  

Human recreational activity is an increasing issue for wildlife (Hammitt et al. 

2015) and has the potential to affect ecological communities through redistribution and 

changes in activity patterns (Ordiz et al. 2014). Wildlife display differing responses to 

motorised and non-motorised activity (Gibeau et al. 2002, Whittington et al. 2005), 

which has in part led to restricted motorised recreation in many protected areas. The 

influence of recreational activity on bear habitat use and behaviour could be as important 

a factor as the interaction between grizzly and black bears, as shown in other species (Ciuti 

et al. 2012b). Many carnivore species that have few or no predators display negative 

responses to human disturbance (Frid and Dill 2002, Beale and Monaghan 2004). 

Perceived predation risk can have implications for individuals within a population, 

through spatial displacement (Rogala et al. 2011), temporal displacement (Carter et al. 

2012), changes in movement behaviour (Northrup et al. 2012a) and increased stress 

responses (Creel et al. 2002). Varying responses to human activity due to different fear 
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perceptions and costs associated with avoidance (Creel and Christianson 2008) has led 

to the ‘human shields’ hypothesis, by which animals use human activity to protect against 

predation (Berger 2007). Both grizzly bears and black bears are influenced by human 

activity, however this response varies between the two species. Black bears show 

increased activity near human developments (Schwartz et al. 2010). Grizzly bears in 

contrast avoid human infrastructure, such as high traffic-volume roads (Weaver et al. 

1996, Roever et al. 2010) and alter their activity patterns to minimise temporal overlap 

(Northrup et al. 2012a).  

Occupancy modelling is a statistical framework that allows researchers to 

investigate the relationship between the presence-absence of a species and associated 

habitat characteristics. Current methods for modelling occupancy were developed to 

account for imperfect detection (MacKenzie 2006). These models were originally 

designed for discrete, patch-based occupancy studies, such as territorial birds or 

amphibians in discrete ponds (MacKenzie et al. 2002). Although occupancy software also 

has been applied to free-ranging animals in continuous habitats (Burton et al. 2012, 

Carter et al. 2012), these applications are not dealing with strict “occupancy” at a site; 

rather instantaneous occurrence or habitat use of that site (Efford and Dawson 2012). 

Although occurrence informs us on species distribution across a landscape, and variables 

influencing this, we lose information by condensing count data to a binary response 

variable. However, these count data can be used as an informative measure of relative 

intensity of use, with a value of 1 as high use of a specific camera site. Thus, the “detection 

probability” in occupancy context is actually a metric of the intensity of use for 

applications to camera-trap data. In this context, intensity of use is a variable of interest, 
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rather than a nuisance parameter (Cusack et al. 2016). Occurrence (ψ) is influenced by a 

populations distribution across the landscape, representing areas that are used versus 

areas that are never used. Measures of intensity of use (p), for trail camera data is 

primarily a consequence of variation in population density and individual movement 

patterns (Rowcliffe et al. 2008, Efford and Dawson 2012, Burton et al. 2015, Latif et al. 

2016) rather than the ability to detect individuals at a given sample location as in 

occupancy studies (Burton et al. 2015). Both parameter estimates are effected by habitat 

variables and interspecific interactions with wildlife species and human activity, but infer 

different scales in terms of the response (Wiens et al. 1987). Further advances in 

occupancy modeling have included estimating the probabilities of co-occurrence between 

two or more species, and how the presence of a species might influence not just the 

probability of other species’ occurrence, but also the detectability, or intensity of use in 

the present context, of other species’ (MacKenzie et al. 2004). Such models have been 

applied to questions specific to community dynamics in sympatric owls (Bailey et al. 

2009), Madagascan carnivores (Farris et al. 2015), rails (Richmond et al. 2010) and 

treefrogs (Waddle et al. 2010). More recently, multispecies models have been developed 

that allow comparison of occurrence for two or more interacting species (Rota et al. 2016), 

which opens up the ability to test hypotheses relating to community level spatial 

distribution and habitat use, whilst accounting for habitat preferences.  

To evaluate the relative importance of interspecific interactions between two bear 

species; grizzly bear and black bear, and two types of human recreational activity; 

motorised and non-motorised, I placed camera traps on human-use trails within Jasper 

National Park and an adjoining area along the eastern Rocky Mountain foothills of 
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Alberta. I studied changes in occurrence and intensity of use using a suite of habitat 

variables, presence or absence of sympatric bear species, and presence or absence of 

recreational activities. In addition, I compared daily activity patterns between pairs of 

species’ and recreational activities to answer the following questions: 1) To what degree 

do grizzly bears and black bears occur in different habitats? 2) Do I observe co-occurrence 

of grizzly and black bears on trails, or are they spatially and temporally separated? 3) How 

does motorised and non-motorised recreation influence trail use by and activity patterns 

of grizzly and black bears? and 4) Do I see different patterns of activity in the presence or 

absence of recreational activity and competing bear species?  

4.2 Methods 

Study area 

The study was conducted in the central Alberta’s Rocky Mountains and foothills (Fig. 4.1). 

The landscape consists of higher elevation, mountainous terrain in the west, and foothills 

at lower elevations to the east. Forest cover is prominent, and consisting of spruce (Picea 

spp.), fir (Abies spp.) lodgepole pine (Pinus contorta), aspen (Populus tremuloides) and 

balsam poplar (P. balsamifera). The study region includes Jasper National Park and 

Whitehorse Wildland Park, where motorised recreation is not allowed, and public lands 

with limited restrictions of recreational activity, where motorised recreation is prevalent 

(Ladle et al. 2016). Industrial activity, including oil and gas extraction, open-pit coal 

mining and timber extraction, are present within the public lands to the east, and have 

contributed to the high density of linear features. 

Trail camera sampling 
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Trail camera data was used from a combination of two concurrent camera trap 

studies (see Ladle et al. 2016; Steenweg et al. 2016 for specific details on sampling 

design). In both studies, we placed cameras on anthropogenic trails using a systematic 

design, and deployed them more than one km from the nearest other camera locations. I 

used data collected between June 15 and August 25 2014, because these dates were 

outside of the black bear hunting season for the region (albertaregulations.ca). We set 

cameras (Reconyx Inc, Holmen, WI, USA) at 194 trail locations (Fig. 4.1) and monitored 

sites for > 20 days each. We set cameras to take pictures 24 hours a day at high sensitivity, 

and took a set of 3-5 pictures in rapid succession when triggered with no delay. At each 

location, we placed cameras at an angle from the trail approximately 1-3m from the trail 

to minimise the probability of missing fast-moving objects such as Off-Highway Vehicles’ 

(OHV’s). I classified images by date, time and species or recreation type. I classified bears 

as grizzly bears, black bears or unknown if I was unable to accurately identify species. If 

human recreation was present, I identified the type of recreation (truck, OHV, hiker, 

horse rider) and categorised the event as either motorised or non-motorised recreation.  

Modelling framework 

I adapted and applied a multispecies occupancy model (Rota et al. 2016) that 

expands MacKenzie et al.’s (2002) single-species model to two or more species by 

assuming a multivariate Bernoulli distribution (MVB). For example, when the number of 

species is 2 

𝒁 ~ MVB(ψ11, ψ10, ψ01, ψ00)          (1) 



 

62 

 

where Z is a vector of 1’s and 0’s representing presence - absence of having been detected 

for each species, and ψ𝑖𝑗 is a combination of co-occurrences between species i and j. The 

log odds a species occurs at a site can be obtained from a corresponding probability mass 

function. These can then be modelled within a logistic regression framework as a function 

of covariates. In a two-species model the natural parameters for species 1, 2 and a 

combination of the two are; 

 𝑓1 = log (
ψ10

ψ00
) = 𝒙′𝜶𝜶  

𝑓2 = log (
ψ01

ψ00
) = 𝒙′𝜷𝜷        (2 - 4) 

𝑓12 = log (
ψ11ψ00

ψ01ψ10
) = 𝒙′𝜸𝜸 

Where 𝒙𝜶, 𝒙𝜷, and 𝒙𝜸 are vectors of covariates that are predicted to explain species’ 

occurrence, and 𝜶, 𝜷, and 𝜸, are vectors of respective slope parameters.  The use of 

probability theory allows one to test a number of hypotheses on the relationship between 

interacting species. For example, one might hypothesise that two species occur 

independently, and their probability of occurrence is solely predicted by environmental 

variables. Here one would want to calculate the marginal probability of occurrence for 

each species; 

𝑃(𝑧1 = 1) =  𝜓11 + 𝜓10  

𝑃(𝑧2 = 1) =  𝜓11 + 𝜓01         (5 – 6) 
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where z1 and z2 are the presence of species 1 and species 2 respectively. In these cases, the 

parameter representing conditional probability based on the presence or absence of 

another species (f12) is set to zero, inferring independence between species’ occurrence. 

Alternatively, one could hypothesise that there is pairwise dependence between the 

two species i.e. their probability of occurrence is correlated. In this scenario, one would 

be interested in the probability of occurrence of species 1, conditional upon the presence 

or absence of species 2, and vice versa; 

𝑃(𝑧1 = 1 | 𝑧2 = 1) =
𝜓11

𝜓11+ 𝜓01
 = 𝑙𝑜𝑔𝑖𝑡−1 ((𝛼0 + 𝛾0) + 𝛼1𝑥)  

𝑃(𝑧1 = 1 | 𝑧2 = 0) =
𝜓10

𝜓10+ 𝜓00
 = 𝑙𝑜𝑔𝑖𝑡−1 (𝛼0 +  𝛼1𝑥)     (7 – 10) 

𝑃(𝑧1 = 0 | 𝑧2 = 1) =
𝜓01

𝜓01+ 𝜓00
 = 𝑙𝑜𝑔𝑖𝑡−1 (𝛽0 +  𝛽1𝑥)  

𝑃(𝑧2 = 1 | 𝑧1 = 1) =
𝜓11

𝜓11+ 𝜓10
 = 𝑙𝑜𝑔𝑖𝑡−1 ((𝛽0 +  𝛾0) +  𝛽1𝑥)  

where γ0 is an intercept modifier estimated as the effect of one species on the probability 

of occurrence of the other.  

Lastly, one might predict that although two species may occur independently, one 

species may influence the intensity of use at a specific site, of another species. This can be 

incorporated within the model by estimating two parameters, one is the intensity of use 

given the presence of the other species e.g. p (z2 = 1), and in the absence e.g. p (z2 = 0). 
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Covariates 

I first built a base model for both bear species that contained covariates known to 

influence bear habitat use. This inclusion allowed me to control for potential habitat and 

landscape variables outside of our species interactions which are the main interest and 

focus. Distance to road and distance to stream can both influence grizzly bear and black 

bear habitat use, and were included as natural log transformed variables (hereby lnDRoad 

and lnDStream). Elevation explains variation in bear distribution, with grizzly bears 

usually at higher elevations relative to black bears (Mowat et al. 2005, Apps et al. 2006). 

Lastly, I included Normalised Difference Vegetation Index (NDVI) for the buffered area 

around the camera location (500m) averaged across the sampling period. NDVI positively 

correlates with vegetation quality (Pettorelli et al. 2005) and forest cover and type 

(DeFries and Townshend 1994), and is therefore has been used as a predictor of bear 

habitat use (Baldwin and Bender 2010, Nielsen et al. 2010, Northrup et al. 2012a, 

Bourbonnais et al. 2013). I checked for collinearity between predictor covariates, and all 

correlation coefficients were below 0.7. As motorised recreation is not permitted in Jasper 

National Park, I included a protected-area variable influencing motorised and non-

motorised occurrence and intensity of use. All covariates were extracted using ArcMap 

(ESRI, Redlands, CA, USA).  

Interaction effects 

Grizzly bears, black bears, motorised recreationists and non-motorised 

recreationists were included as individual “species” within the multi-species co-

occurrence model. I collapsed our data into 4-day presence-absence sampling periods, to 

maintain moderate probabilities of detecting all species, improving model convergence 
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(Moreira-Arce et al. 2015, Steenweg et al. 2016b). Cameras with less than 4 surveys were 

removed, leaving 182 trail camera locations for analysis. I fit a set of candidate models to 

test a series of hypotheses. These models varied based on, a) co-occurrence of bears and 

recreation (independent versus conditional), b) co-occurrence between grizzly bear and 

black bear, c) the effect of recreation on bear intensity of use, and d) the effect of grizzly 

bear occurrence on black bear intensity of use.  

I fit 48 models in Stan v. 2.8.0 via the Rstan (Stan Development Team, 2016) 

package in R (R Core Team 2014). Logistic prior distributions were used for all 

parameters (Rota et al. 2016). I ran 3 chains each consisting of 2,000 iterations (1,000 

burn-in with 1,000 sampled) and ensured model convergence by calculating Brooks-

Gelman-Rubin convergence diagnostic and checking that Rhat was close to 1 (Gelman et 

al. 2014). Candidate models were ranked using Watanabe-Akaike Information Criterion 

(WAIC), which is the optimum method for contrasting fully Bayesian models (Gelman et 

al. 2014). 

Daily activity patterns 

To investigate activity pattern overlap between grizzly bears, black bears and recreational 

activity, the timestamps of all independent events were used to build probability density 

functions across the 24-hour period for each species. I then used these distributions to 

estimate the coefficient of overlapping (Δ; Ridout & Linkie 2009) for each pairwise 

relationship. To further assess the influence of interspecific interactions on daily activity 

patterns, I compared activity patterns for a species at a set of sites where the competing 

species was present versus sites where the competing species was absent. I used a non-

parametric calculation for Δ, due to small sample sizes in some circumstances (< 75; 
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Meredith & Ridout 2016). Confidence intervals were calculated using a bootstrap method 

following Meredith and Ridout, 2016. Analyses were done using the package ‘overlap’ 

(Ridout and Linkie 2009, Meredith and Ridout 2016). I predicted a high coefficient of 

overlapping between grizzly bears and black bears due to their similar behaviour patterns. 

However, I expected differences to coincide with times when recreational activity is high, 

with grizzly bears showing a lower amount of temporal overlap in activity than black 

bears. 

4.3 Results 

Between June 15 and August 25 2014, cameras were active for 10,514 days across 

182 sites. I captured 235 grizzly bear and 235 black bear black bear observations. Of the 

182 monitored sites included in the analysis, grizzly bears were photographed at 84 

locations (naïve occurrence: 0.46) and black bears were photographed at 74 locations 

(naïve occurrence: 0.40). Grizzly bears and black bears co-occurred at 34 sites. There 

were 2,893 motorised recreation observations, at 73 locations (naïve occurrence: 0.40) 

while non-motorised recreation was more than double that of motorised, with 6,213 

observations at 90 locations (naïve occurrence: 0.50). Motorised activity co-occurred 

more with black bears (37) than grizzly bears (27), however the inverse was true for non-

motorised activity (40 black to 48 grizzly).  

Model selection 

The top model had a WAIC weight of 0.88 (Table 4.1). This model extended upon the base 

model by incorporating pairwise dependence in occurrence between bear species. 

Intensity of use by grizzly bears was influenced by the presence of recreational activity 
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whereas the intensity of use by black was affected by grizzly bear presence and recreation. 

The global model was ranked second with a WAIC weight of 0.11 (Table 4.1). This model 

extended upon the top model by including co-occurrence between bear species’ and both 

forms of recreational activity. 

Covariates and occurrence 

I examined the direction and significance of all posterior occurrence probability 

distributions for landscape variables obtained from the top model (Table 4.1). Grizzly bear 

occurrence increased as distance to road increased, while black bears did not show a 

strong relationship (Fig. 4.2a). Both species occurred closer to streams, as expected (Fig. 

4.2b), with no significant difference between their responses. Black bears displayed high 

probabilities of occurrence in low elevation areas, however this probability of occurrence 

decreased as elevation increased beyond 1500m (Fig. 4.2c). Grizzly bears did not display 

a strong response to elevation, but had a much higher probability of occurrence at higher 

elevations (1500m – 2000m) than black bears. Grizzly bears and black bears showed 

inverse responses to NDVI, however the influence on probability of occurrence was small 

and not significantly different between the two species (Fig. 4.2d). Occurrence of 

motorised activity was far lower and non-motorised activity was significantly higher in 

protected areas. A similar pattern was observed in the intensity of use: intensity of trail 

use by non-motorised recreationists was much higher at sites inside protected areas.  

Co-occurrence between species and recreational activity 

Grizzly bears and black bears showed strong negative covariance in their occurrence, as 

predicted (f12= -0.53). Interestingly, at trail locations where they co-occurred, intensity of 
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use by black bears was significantly higher than at sites where grizzly bears were absent 

(p (z = 1) = 0.088, p (z = 0) = 0.001). I found evidence of pairwise interactions between 

bears and recreation, as shown by model selection results, however this evidence was 

weak as it did not significantly improve WAIC vales beyond a similar model with no 

recreational impacts on bear occurrence (Table 4.1). The effect of motorised activity on 

the intensity of use by bears was more prominent, with grizzly bears displaying reductions 

in intensity of use when at a site where motorised recreation was present. Conversely, the 

intensity of use of black bears increased in the presence of non-motorised recreation (Fig. 

4.3). 

Activity pattern responses 

Daily activity patterns of grizzly bears and black bears overlapped substantially (Δ1 = 0.8) 

Grizzly bears displayed a dip in activity on trails around mid-afternoon, whereas black 

bears had a constant level of activity throughout early to late afternoon. Black bears 

showed higher overlap with recreational activity than grizzly bears (Fig. 4.4), resulting 

from higher levels of activity during the afternoon. Although the point estimate inferred 

reduced activity overlap between black bears and grizzly bears at sites where grizzly bears 

were present relative to sites where they were not, confidence intervals overlapped (Table 

4.3). A similar pattern was observed between grizzly bears and recreation (Table 4.3), 

however this difference also was not significant. 

4.4 Discussion 

Species occurrence is determined by biotic interactions, through competition and 

predation, and abiotic interactions, through landscape characteristics and habitat 
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suitability. Novel statistical methods allow multi-species occurrence to be modelled as a 

function of both habitat variables and conditional upon other species’ presence (Rota et 

al. 2016). Results from our trail camera survey show that grizzly bears and black bears 

vary in their occurrence along trails based on landscape variables. Grizzly bears were less 

likely to occur close to roads; a similar response to road proximity was missing for black 

bears, they showed a slight increase in use of areas closer to roads. Such a result 

corroborates studies emphasising a disparate response to human activity between the two 

bear species (Kasworm and Manley 1990, Elfström et al. 2014). Bears also were shown to 

use different elevations, grizzly bears occurring at higher elevations than black bears. 

Grizzly bears are able to exploit vegetation growing at higher alpine and sub-alpine 

elevations such as roots of sweet vetch (Munro et al. 2006). Higher elevations also have 

lower levels of human activity relative to the foothills regions, which contain a higher 

density of linear features, industrial activity and motorised recreation (Ladle et al. 2016). 

Lastly, grizzly bears and black bears showed no significant difference in occurrence 

relative to NDVI, inferring an absence of competitive exclusion of black bears by grizzly 

bears from high quality habitat (Mattson 1990). The lack of a significant difference 

between the two species in their response to NDVI might be explained by the fact that 

NDVI is a poor metric for bear food quality, and is confounded by forest cover which has 

a high NDVI index, yet is not high food quality for bears. The use of presence-absence 

models (Munro et al. 2006, Nielsen et al. 2010) for bear foods may be a method for 

identifying grizzly and black bear use of habitats with different food quality. 

Inclusion of pairwise dependence between grizzly bear and black bear occurrence 

within our top model suggests that the presence of one species affects the presence of the 
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other. The model identified a strong negative correlation between grizzly bear and black 

bear co-occurrence, and this result supports research that suggests spatial segregation of 

the two species (Holm et al. 1999), at least within the scale of our study design. 

Interestingly, intensity of use by black bears was significantly higher at locations where 

they co-occurred with grizzly bears. Detection probability in the traditional sense 

(MacKenzie et al. 2002), when adapted for studies of free-moving animals in continuous 

habitats, can be influenced not only by nuisance “detection” variables, but also two 

metrics of interest: movement rates and abundance (Efford and Dawson 2012). Our result 

imply that black bears are found in higher abundance when co-occurring with grizzly 

bears, or that they are increasing their movement on trails when co-occurring with grizzly 

bears, which increases their probability of being detected. The latter explanation is more 

likely because increased rates of displacement are common responses to predators or 

perceived risks (Ciuti et al. 2012; Sahlén et al. 2015). For example, black bears increase 

their movement rates and home range size when sympatric with grizzly bears (Holm et al. 

1999). Our inability to identify individuals from trail camera photos made it difficult to 

distinguish bear abundance and individual movement behaviour. Alternate studies that 

use non-invasive genetic sampling (see Morehouse & Boyce 2016) might be able to inform 

us on whether this increase in intensity of use is due to a higher number of black bears, 

or increased movements on trails.  

Our main interest was whether grizzly bears and black bears avoid areas where 

recreational activity is present, the answer to which was not clear. Our results support 

work that stated grizzly bear avoidance of roads (Kasworm and Manley 1990), however I 

did not find a similar response for black bears. This differential response might benefit 
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black bears relative to grizzly bears, as black bears can exploit areas closer to roads due to 

their higher tolerance of human activity (Mattson 1990). Contrary to our predictions, 

model results showed that interspecific interactions had a greater impact on species 

occurrence than the effects of human recreational activity. Although there was no pattern 

in co-occurrence between either species and recreation, I did find reduced intensity of use 

by grizzly bears when motorised activity was present. This result implies that, instead of 

completely avoiding trails with motorised use, grizzly bears are either found in lower 

abundance, or they are less active on the trails. Avoidance of trails by wildlife has been 

documented previously (Kasworm and Manley 1990), especially for trails used by humans 

(Carter et al. 2012). The increase in intensity of use on trails with non-motorised activity 

was surprising, however likely due to a combination of reduced fear response to non-

motorised activity, as well as non-motorised recreation correlating with more rugged 

topography (i.e. in Jasper National Park), where trails are the most efficient means of 

navigating those areas for both people and wildlife (Rogala et al. 2011, Dickie et al. 2016).  

The small effect of recreation on the occurrence of both species of bear at camera 

locations does not mean that bears are not responding at all to recreation, because I saw 

significant changes in the intensity of use as a function of motorised and non-motorised 

activity. Another way in which wildlife are able to alter their behaviour in response to 

competition and disturbance is by changing their daily activity patterns. Our results 

indicate that black bear activity on trails overlapped to a greater extent with recreation 

than grizzly bears, that displayed more crepuscular behaviour and less activity on trails 

during the afternoon.  Small sample sizes likely influenced the ability to detect significant 

differences in activity patterns between sites that co-occurred with recreation and ones 
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that did not. Grizzly bears did appear to show altered activity patterns when recreation 

was present relative to absent, signaling a change in behaviour aimed at reducing overlap 

with peak times of recreational activity, as seen in other studies (Schwartz et al. 2010, 

Northrup et al. 2012a). 

Conclusions 

Many management-based decisions are made at the single-species level, without regard 

for competing species that share the same landscape. This approach, although analytically 

far more accessible through software such as Presence (Hines 2006) and the unmarked 

R package (Fiske and Chandler 2011), can result in decisions with less-than-optimal 

outcomes for the species being managed. Multi-species occurrence models are a step 

forward and a tool that can be used by managers to more fully understand the system they 

aim to manage. Grizzly bear-black bear interactions are not generally discussed when 

investigating bear conservation, yet I show here that the interactions between species 

have stronger influence on bear habitat use than human recreational activity. Our finding 

that both bear species show no significant relationship in occurrence with recreational 

activity, but instead alter the frequency of trail use, is important and can be used to inform 

management policy relating to recreational access. Avoidance of trails might affect grizzly 

bears’ ability to forage, especially if times of high recreational activity coincide with late 

summer and fall, when bears require high energy intake to prepare for denning. 

Differential response by grizzly bears and black bears to human disturbances could have 

implications for population demographics through risk effects (Creel and Christianson 

2008) Additionally, it may be beneficial to investigate how altering daily activity patterns 

affects bear fitness, as such a response is likely when disturbances are temporally 
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predictable but spatially less consistent. Lastly, future studies interested in animal habitat 

use should attempt to integrate spatial habitat segregation, species interactions, and the 

effects of human disturbance simultaneously when assessing habitat quality and making 

management decisions.  
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Table 4.1. Table displaying coefficient estimates and confidence limits for the top multi-species occurrence model. Psi 

represents grizzly bear and black bear occurrence (on the logit scale) and p represents the intensity of use (on the logit scale). 

Estimates where the confidence limits overlapped zero were defined as insignificant.  

 

 

 

 

 

 

Grizzly Black

parameter psi upper lower p upper lower psi upper lower p upper lower

intercept 0.61 2.64 -1.32 -2.09 -1.67 -2.50 2.40 5.01 0.02 -6.81 -5.39 -8.68

Habitat lndroad 0.29 0.50 0.09 - - - -0.14 0.13 -0.40 - - -

lndstream -0.14 0.16 -0.44 - - - 0.23 0.67 -0.19 - - -

elevation -0.27 0.27 -0.80 - - - -1.76 -0.97 -2.77 - - -

NDVI 0.11 0.55 -0.35 - - - -0.12 0.45 -0.71 - - -

Interaction grizzly - - - - - - -2.63 -1.30 -4.21 4.47 6.38 3.14

motorised - - - -0.67 -0.28 -1.08 -0.65 -0.06 -1.26

non-motorised - - - 0.49 0.94 0.05 0.82 1.45 0.22



 

75 

 

Table 4.2. Coefficient of overlap (Δ) with lower and upper confidence limits of grizzly bears and black bears with opposing 

bear species and recreational activity (motorised and non-motorised combined). Data were collected between June 15 and 

August 25 2014. Results were estimated using frequency of trail camera events per hour for each species and a combination 

of both recreation categories. Total number of events contributing to each Δ estimate are displayed in the n columns. 

 

 

 

 

 

 

 

 

Bear Recreation

Present lower upper n Absent lower upper n Present lower upper n Absent lower upper n

Grizzly 0.87 0.78 0.94 93 0.84 0.76 0.91 140 0.41 0.27 0.54 26 0.52 0.4 0.64 47

Black 0.81 0.72 0.89 97 0.88 0.84 0.94 144 0.68 0.58 0.78 74 0.6 0.48 0.71 47



 

76 

 

 

Fig. 4.1. Map of study area in West-central Alberta’s Rocky Mountains and foothills, displaying all 194 camera locations that 

were active between June 15 and August 25 2014. Red squares represent camera locations. Roads (black) and trails (blue) 

are displayed, and green shading represents protected areas, including Jasper National Park and Whitehorse Wildland Park.
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a) 

 

b) 

 

c)  

 

d)  

 

  

Fig. 4.2. Occurrence plots from West-central Alberta’s Rocky Mountains and foothills for 

grizzly bears (blue) and black bears (red) for a) lnDRoad, b) lnDStream, c) elevation and 

d) NDVI. Shaded areas represent the 95% credible intervals. Variables that are not 

included in the plot were set to their observed mean value. 
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Fig. 4.3. Boxplots displaying the change in intensity of use by grizzly bears and black bears 

due to the presence of motorised (black) and non-motorised (grey) recreation (on the logit 

scale). The central mark represents the median, and the tails represent the 95% 

confidence intervals. Results were treated as non-significant if confidence intervals 

overlapped zero (red line). 
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Fig. 4.4. Activity overlap plots for a) recreation (blue dash) and grizzly bears (black) and 

b) recreation (blue dash) and black bears (black) from West-central Alberta. Blue shading 

represents where bear species and recreational activity temporally overlapped in terms of 

activity. Activity patterns are kernel densities estimated using detection events on trail 

cameras (shown by dashed lines at base of each plot). 

a) 

b) 
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5 Using camera-based spatial mark-resight models to estimate density of 

a rare, unmarked large mammal. 

5.1 Introduction 

Explaining the abundance and distribution of animals defines the science of 

ecology (Andrewartha and Birch 1954). To understand how species are influenced by their 

environment, other species, and human disturbance, scientists require accurate methods 

for quantifying changes in the number and spatial distribution of animals over time. 

Population monitoring can be challenging for species the most in need; for example, large 

carnivores. These wide-ranging and elusive species are difficult to detect (Steenweg et al. 

2016b), and at the same time are seeing declines that outpace other species (Ripple et al. 

2014) due to historic and current persecution, brought about by human-wildlife conflict 

and exploitation. Problems with detection result in the need for huge survey effort to 

obtain accurate and precise estimates of population size, inflating costs. As a result, 

surveys tend to be infrequent which can be insufficient for making sound management 

decisions (Rout et al. 2009, Boyce et al. 2012). 

 The need for less expensive methods of collecting and analysing data on large 

carnivore populations is pressing. Reducing costs allows for either more continuous 

monitoring, giving wildlife managers the ability to respond to changes in species 

abundance and distribution in real time i.e. active adaptive management (Rout et al. 

2009), or more funds for direct management actions to increase population recovery. The 

ability to quantify the distribution and abundance of cryptic carnivores at a lower 

financial burden has been revolutionised with the introduction of remotely-triggered trail 

cameras (O’Connell et al. 2010). The application of camera data to traditional mark-
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recapture has been successful for a number of rare species that had previously little 

demographic information, such as tigers (Panthera tigris; Karanth and Nichols 1998), 

leopards (Panthera pardus; Grey et al. 2013), jaguars (Panthera onca; Silver et al. 2004), 

and bobcats (Lynx rufus; Heilbrun et al. 2003). One thing all these animals have in 

common is that they are felids with unique coat markings that allow them to be identified 

to the individual level. Unfortunately, many species of interest are lacking means of 

individual identification, and therefore identity is unknown. In other circumstances, 

problems occur when only a portion of the population can be classified as “marked”, and 

in these cases, we apply mark-resight models (Miller et al. 1997, McClintock and White 

2009). Models for a fully unmarked population use information within spatial 

autocorrelation of counts between sampling sites to estimate the density of home range 

centres (Chandler et al. 2013), as well as methods that incorporate detection count and 

movement metrics within a gas diffusion model (Rowcliffe et al. 2008). However these 

method are thought to be biased (Rovero and Marshall 2009, Chandler et al. 2013), and 

have not had extensive testing with actual data.  

The grizzly bear (Ursus arctos) is one such species where traditional capture-

recapture methods are not an option when using cameras. Individual identification of 

grizzly bears is near impossible  due to a lack of distinct marks and fluctuations in body 

size and hair colour across a single year (Sawaya et al. 2014). Current methods for density 

estimation rely on non-invasive genetic sampling (Woods et al. 1999).  These methods 

most commonly use either lured corrals surrounded by barbed wire (Kendall et al. 2009) 

or barbed wire attached to natural rub objects (Stetz et al. 2010, Morehouse and Boyce 

2016) to collect hair samples from which nuclear DNA is extracted and the individual bear 
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identified. These methods are expensive and require substantial man power; they do, 

however, produce reliable and precise estimates of density, especially when incorporated 

in a spatial framework (Borchers, David & Efford 2008, Royle et al. 2014). In Alberta, 

Canada, the grizzly bear shares much of its distribution with agriculture, resource 

extraction, and outdoor recreation (Nielsen et al. 2006, Northrup et al. 2012b, Ladle et 

al. 2016, Morehouse and Boyce 2016). A previous estimate of abundance for Alberta 

placed the number of bears at 691 individuals in 2008 (Alberta Sustainable Resource 

Development and Alberta Conservation Association, 2010), which led to a moratorium on 

hunting and listing as a threatened species provincially. Although the provincial grizzly 

bear recovery plan recommends that population units be reassessed every five years 

(Alberta Sustainable Resource Development 2008), high costs have prevented repeated 

surveys from occurring.  Only recently have population estimates in some bear 

management areas (BMAs) been updated (Stenhouse et al.2015, Morehouse and Boyce 

2016) and both of these estimates indicated local population increases.  

Low-cost, accurate, and precise methods that allow for more frequent sampling are 

desirable.  Abundance estimates derived from camera data from an unmarked or partially 

marked population could be promising if estimates were comparable to the current, more 

expensive, DNA capture-recapture methods. There have been few attempts at applying 

camera traps to estimate grizzly bear populations  (Higgs et al. 2013, Whittington et al. in 

review), and to date there has not been a concurrent comparison of density and 

abundance estimates between the two methods for the same population.  

In this paper, I compared two methods for estimating grizzly bear abundance: 1) 

spatial capture-recapture (Borchers, David & Efford 2008, Royle et al. 2014) using DNA 
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hair-snag data and 2) spatial mark-resight (Sollmann, Gardner, Chandler, et al. 2013; 

Royle et al. 2014; Whittington et al., in review) using a combination of camera data and 

radiotelemetry data. I compared the efficacy of spatial mark-resight methods using 

telemetry and cameras relative to DNA-based spatial mark-recapture using concurrent 

grizzly bear datasets collected in the same region of the west-central Alberta Rocky 

Mountain and foothills. 

5.2 Methods 

Study area 

My study was conducted in the eastern slopes and foothills of central Alberta’s 

Rocky Mountains (Fig. 5.1). Forests dominated the vegetation, and consisted of spruce 

(Picea spp.), fir (Abies spp.) and lodgepole pine (Pinus contorta), with an increase in 

mixed forest including aspen (Populus tremuloides) and balsam poplar (P. balsamifera) 

farther east and at lower elevations. The region hosts a number of large mammal species, 

including elk (Cervus canadensis), moose (Alces alces), mountain goat (Oreamnos 

americanus), bighorn sheep (Ovis canadensis), white-tailed deer (Odocoileus 

virginianus) and mule deer (Odocoileus hemionus). Members of the carnivore guild 

include grizzly bear (Ursus arctos), black bear (Ursus americanus), cougar (Puma 

concolor), wolf (Canis lupus), coyote (Canis latrans), red fox (Vulpes vulpes), wolverine 

(Gulo gulo) and lynx (Lynx canadensis). Previous estimates from 2004 put the grizzly 

bear density at approximately 4.79 bears per 1000km2  (CI = 4.10 – 6.28; Boulanger et al. 

2004), placing this population at  low density relative to the remaining provincial grizzly 

bear range (Alberta Sustainable Resource Development and Alberta Conservation 

Association, 2010). The 2014 estimate for the BMA 3 core region, of which my study area 
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is a small subset, estimated the density of bears to be 11.12 (CI: 8.28 – 14.92) bears per 

1000km2 (Stenhouse et al. 2015).  

DNA hair snag data collection 

DNA data were collected in 2014 for the study area using hair snag bait stations. 

Between June 9th and August 7th, hair stations were set up at 71 locations (8 rub trees, 63 

baited corral sites), spread over a 20-km2 grid (Fig. 5.1). Site location within cells was 

replicated from previous studies to improve comparison across monitoring events 

(Boulanger et al. 2004, Rovang et al. 2015). Each location was sampled for four sessions, 

each lasting 14 days. Hair samples were sent to Wildlife Genetics International, Nelson, 

B.C., for genetic analysis; species, sex, and individual identification were determined via 

the extraction of nuclear DNA from the hair follicle following established protocol 

(Paetkau 2003, 2004). Full methods can be found in Stenhouse et al. (2015).  

Telemetry data collection 

Between 2012 and 2014, grizzly bears were captured across the study area using a 

combination of aerial darting and culvert trapping. A total of 11 individual bears were 

captured (7 female, 4 male), and radiocollars were attached and treated as a ‘mark’. 

Although I aimed to conform to the assumption of random marking of individuals across 

the study area , an assumption implicit within spatial mark-resight models (Royle et al. 

2014), due to uneven success between aerial darting (confined to western portion of study 

area) and culvert trapping (eastern portion of study area), detection probability probably 

varies between marked and unmarked populations. Relocations were recorded every 

hour. Previously collared bears from 2010 and 2011 that still had attached, non-
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functioning collars, also were included as ‘marked’ individuals (N = 3, all female) for the 

first two years of the analysis. This led to a total of 14 marked individuals that were 

exposed to our camera trap grid. Telemetry relocations were rarified to one relocation per 

week to allow for temporal and spatial independence.  

Camera trap survey 

From 2012-2014, 239 trail cameras (Reconyx, Holmen, WI) were deployed on 

human-use trails across the study area. The number of locations sampled varied among 

years (2012 = 129 camera locations, 2013 = 178 camera locations, 2014 = 131 camera 

locations), as did sampling intensity (Ladle et al. 2016). Sampling locations were selected 

using a systematic sampling design where I aimed to maintain three cameras per 50 km2. 

Cameras were set a minimum of 1 km apart to avoid clustering. Camera sampling was 

conducted from April 15th to October 31st, and all images of grizzly bears were 

documented. Photographs of bears were treated as independent events if more than 5 

minutes apart. Dependent offspring were not included in the analysis; therefore, the 

estimate is of independent grizzly bears. Marked bears were identified by cross-

referencing time, date and location of the image with telemetry data. For photographs 

that could not be linked to a functioning collar, I used process of elimination based on 

bears with non-functioning collars that overlapped the camera location, type of collar 

(Telemetry Solutions, Concord, CA, USA; Followit, Lindesburg, Sweden) and known 

retrieved collars. Photos were classified as ‘unknown’ where individual identification was 

still ambiguous.  

Spatial Capture-Recapture model 
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I used the standard SCR model outlined in Royle et al. (2014) for analysis of the 

DNA data. Spatially-explicit capture-recapture models (Borchers et al. 2008, Royle et al. 

2014) estimate density of bears within a spatially-explicit context using encounter history 

data to estimate the abundance and geographic location of individual home-range centres 

across the area of interest. Encounter histories; the probability of individual i being 

detected at trap j during occasion k, were modelled using a binomial distribution and a 

half-normal detection function (Borchers, David & Efford 2008). The detection function 

consists of two estimated parameters; g0 is the probability of detecting an individual given 

the trap is located at its home range centre, and σ, which is a spatial scale parameter that 

correlates with home range size. The distribution and abundance of home range centres 

are estimated within a point process, where N home range centres are distributed across 

an area of state space (S) following a uniform distribution. The state space should be 

chosen so that it is large enough that an individual with a home-range centre on the 

boundary has a zero probability of being encountered (Borchers, David & Efford 2008). 

To estimate N, I use data augmentation (Royle et al. 2007) to augment the dataset with 

an additional set of hypothetical individuals with zero encounter histories i.e. unobserved 

individuals, and modeled as the sum of a latent state variable, zi, which is an identically 

and independently distributed (iid) Bernouilli variable. Individuals are included in the 

population (z = 1) or discarded (z = 0). The set of observed and unobserved individuals 

(M) should be set large enough to not truncate estimates of N (Sollmann et al. 2013a, 

Whittington and Sawaya 2015).  

Spatial Mark-Resight model 



 

87 

 

I used a spatial mark-resight model (SMR; Royle et al. 2014) with telemetry data 

for marked individuals (Sollmann et al. 2013a ; Sollmann et al. 2013b; Whittington et al. 

in review). Traditional mark-resight models involve an initial capture period (in this 

present context collaring of a random subset of grizzly bears), and then a concurrent 

number of resight occasions (camera trap surveys). SMR models consist of a similar 

hierarchical model structure as outlined above for SCR models. The fundamental 

difference is that N contains encounter histories for marked individuals (10-day sampling 

occasions), and also spatially correlated counts of unmarked individuals that are used to 

update latent encounter histories of unknown individuals in a Bayesian framework 

(Whittington et al.in review; Sollmann et al.2013) using data augmentation (Royle et al. 

2007). A key assumption of all mark-resight models is that marked and unmarked 

individuals have an equal probability of being resighted. Although this often holds when 

marks are natural marks randomly identified across the population, manual marking of 

animals tends to overlap with the resight trap grid, and this results in violation of this 

assumption (Royle et al. 2014). By applying an inhomogenous point process based on the 

distribution of marked individuals, it is possible to relax this assumption (Whittington et 

al.in review). If marked individuals have relocation information (e.g. if the mark is a 

radiocollar), this can be used to alter the intensity of the point process for marked and 

unmarked individuals, where thinning rate at location s is: λ(𝑠) =  1 − ∏ (1 −𝐽
𝑗=1

𝜆𝑀(𝐬, 𝒙𝒋
𝑴), where 𝜆𝑀 is the encounter probability given the home range centre is at location 

s and 𝒔, 𝒙𝒋
𝑴 is the distance between location s and the home-range centre of marked 

individual j. The inhomogenous point process is then estimated for marked as µ(s) λ(𝑠) 

and unmarked as µ(s) (1 -  λ(𝑠)). Home range centres were estimated using the centroid 
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of the home-range minimum convex polygon (MCP). Telemetry data from marked 

individuals is also incorporated within the data model to estimate values for σ. Due to the 

number of telemetry relocations, these data offered more insights regarding animal 

movements than solely resightings of marked individuals at camera sites (Sollmann et al. 

2013a).  

Application to grizzly bear data 

For both models, I allowed the detection model to vary by sex. Due to the length of 

the session period for the SMR method, I included two parameters that allowed g0 to vary 

based on occasion (quadratic function), as I predicted detection would be highest in the 

summer months when the bears are most active (Whittington et al. in review). Telemetry 

data were combined with the SMR data to estimate joint-likelihoods. All analyses were 

run in R (R core team, 2014). The SCR model was run using Rjags (Plummer 2013)  and 

the SMR model was run using Metropolis-within-Gibbs MCMC from Whittington et al., 

in review. I ran three chains, each consisting of 50,000 iterations with a 5,000 burn-in. 

Coefficient of Variation (CV) was used to compare precision of the two methods.  

5.3 Results 

Spatial Capture-Recapture 

In 2014, 92 detections of 48 grizzly bears were collected over the 72 trap locations. 

Grizzly bears were detected at 40.9% of trap locations. Number of individual bears 

detected at each site varied from one to ten bears (mean = 2.66, SE = 0.43). Male bears 

were detected more frequently than females (males = 57, females = 35). Encounter 

probability varied between males and females (Fig. 5.2a); males had a lower encounter 
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probability at their home range centre (g0: mean = 0.084, CI = 0.049 – 0.130; Table 5.1), 

and had the larger detection zones (σ = 7.15, 5.86 – 8.91). Females had smaller detection 

zones (σ = 4,21, 3.30 – 5.51) and likely due to this fact, had a higher encounter probability 

at their home range centre (g0 = 0.16, 0.067 – 0.30).  

Spatial Mark-Resight model 

Over the period of the camera surveys, I documented 619 detections of grizzly 

bears. Grizzly bears were detected at least once at 60.3% of all trail locations across all 

years. Of the 619 events, 47 photographic events were resight events of collared 

individuals (2012 = 8, 2013 = 25, 2014 = 14) of 14 bears, which ranged from 1 to 12 

resightings per bear. I was able to identify 25 events using relocation information from 

functioning collars. However, the remaining 22 events were of bears with non-functioning 

collars, of which I was able to identify 16 events to the individual level by process of 

elimination. There were six images where individual identification of the bear was not 

possible, due to multiple bears having overlapping home ranges and still wearing non-

functioning collars. Encounter probability also varied in our SMR model (Fig. 5.2b) in a 

similar manner to the SCR model; males had a lower encounter probability at their home 

range centre (g0 = 0.019, 0.014 – 0.028), and had the larger detection zones (σ = 11.72, 

10,78 – 12.77). Sigma estimates representing detection zones of females were (σ = 5.35, 

5.12 – 5.59) and females also had a higher encounter probability at their home range 

centre (g0 = 0.034, 0.023 – 0.045). Encounter probability also varied across sampling 

occasion (Fig. 5.2c). Male bears had lower baseline encounter probabilities later in the 

year, while female encounter probability gradually increased, but with a high degree of 

error.  
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Accuracy and precision 

Because DNA mark-recapture is currently considered to be the most reliable 

method for estimating abundance of grizzly bears, I took the SCR results as “truth” and 

compared the SMR results to the SCR results to evaluate performance in terms of 

accuracy and precision. The SCR method using DNA estimated the density of bears for 

the state space (Fig. 5.1) to be 14.89 (CI: 11.22 – 20.35; Fig. 5.3) grizzly bears per 1000 

km2. The SMR result was slightly higher at 16.03 (CI: 11.59 – 21.87; Fig. 5.3), however 

confidence bounds overlapped with the SCR result. In addition, I was able to obtain, using 

the SMR method, estimates for years 2012 and 2013, of 13.22 (CI: 9.07 – 18.34; Fig. 5.3) 

and 14.46 (CI: 10.38 – 19.35; Fig. 5.3) bears per 1000 km2, respectively. Coefficients of 

variation (CV) were similar for both models (CVSCR = 6.45%, CVSMR = 5.55%).  

5.4 Discussion 

In this study, I had opportunity to compare two methods for estimating abundance 

and density of elusive large carnivores; 1) spatial capture-recapture using hair DNA 

samples, and 2) spatial mark-resight using a combination of radiocollaring and trail 

camera resightings. Estimates of grizzly bear density in the study region using the two 

methods were similar. Recent advances allow the relaxation of the assumption of random 

distribution of marked individuals across the state space (Whittington et al., in review); 

a problem that leads to biased estimates using SMR. When physical capture-recapture 

data are available for the marked individuals, the capture-recapture information aids in 

identifying the distribution of marked individuals within the state-space, thereby allowing 

varying spatial distributions for marked and unmarked individuals to be incorporated 

with the point process (Whittington et al., in review). The key advantage of SMR using 
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camera data is that it requires a small subset of marked individuals with the majority of 

information coming from the camera trap information. Requiring detailed capture-

recapture information to parameterise the point process increases the invasiveness of the 

method as well as financial costs. Regular checking of traps also is difficult when dealing 

with more rugged and inaccessible terrain, where aerial darting is the only feasible option 

for radiocollaring/marking animals. Additionally, these methods do not apply when bears 

are captured using non-trap methods such as aerial darting, as in this study. By 

incorporating location data for the marked individuals to modify the point process, I 

managed to reduce negative bias commonly associated with SMR methods when animals 

are physically marked (Royle et al. 2014). I show that it is possible to use telemetry data 

rather than capture-recapture information to inform this process, however further 

simulation testing should be done to check Confidence Interval Coverage (CIC) and 

potential presence of other biases. 

 Both methods yielded estimates with levels of precision in line with other grizzly 

bear density estimates (Whittington and Sawaya 2015, Morehouse and Boyce 2016), as 

shown by their respective CVs of 6.45% (SCR) and 5.55% (SMR). Both models estimated 

higher baseline encounter probabilities for females relative to males, and the inverse was 

true for estimates of sigma. These results align with previous estimates of detection and 

home-range sizes for male and females bears (Whittington and Sawaya 2015, Morehouse 

and Boyce 2016). Increased accuracy and precision of density estimates is directly linked 

with higher probability of detecting the species (Lukacs and Burnham 2005). Encounter 

probabilities were considerably lower for the SMR model than for SCR, likely inflating 

error around the estimates of abundance and density (Boulanger et al. 2002). Cameras 
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placed on trails, have higher probability of detecting most large carnivores than cameras 

placed at random within forest vegetation (Burton et al. 2015). Cameras placed at rub 

trees and other natural attractants, or the addition of bait, will increase detection 

probability further. These are ways in which one can improve precision of our estimates 

without the need for necessarily inflating cost and effort. However, the use of any feature 

or attractant beyond random sampling brings with it potential biases (Harmsen et al. 

2010, Morehouse and Boyce 2016). Trails may inflate our number of detections through 

repeated movement patterns of animals within their home ranges (Rowcliffe et al. 2008, 

Cusack et al. 2015) Rub tree use by bears is a social behaviour, and sex and social 

dominance influence the probability of an individual rubbing (Morehouse and Boyce 

2016). The use of scent lure may be beneficial for detecting specific species, however lure 

use may result in biases attributable to drawing additional individuals into the study area. 

Such potential biases should always be acknowledged, and taken into consideration when 

stating conclusions. 

I obtained our estimate with a relatively low proportion of the population marked 

(< 10%). Increasing the number of initial marked animals is another way of increasing the 

precision of estimates, however grizzly bear capture is not only invasive, but increases 

financial costs. Quantifying the relationship between the number of marked animals and 

the accuracy and precision of estimates will help reduce unnecessary costs associated with 

animal captures. Ear tags rather than radiocollaring may offer a more cost-efficient 

alternative, but would require supplementary capture-recapture information to inform 

the marking process (Whittington et al.in review) and still requires physical capture of 

the animal. For this reason, SCR methods that use non-invasive techniques for identifying 
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individuals should still be prioritized when the only metric of interest is density. 

Movement (Kays et al. 2015) and habitat selection analyses (Cagnacci et al. 2010) often 

require animal relocation data; similarly, studies quantifying survival also can benefit 

from radiocollar data (Pollock et al. 1989). In such circumstances, deploying trail cameras 

allows for efficient estimation of additional population-level information such as density. 

 Our finding that current SMR methods result in similar density estimates to 

concurrent SCR estimates is encouraging, however, the availability of a feasible solution 

to long-term grizzly bear monitoring is still in question. Precision and accuracy are clearly 

strongly desired attributes to any monitoring scheme. However, limited resources 

demand that we consider more cost-efficient alternatives that may require sacrificing 

rigor, in exchange for more frequent monitoring. Increasing temporal resolution of 

monitoring is important for vulnerable species such as grizzly bears because it improves 

managers ability to engage in active adaptive management (Walters and Hilborn 1978, 

Whittington and Sawaya 2015). In addition, at such a financial cost, it raises the question 

of whether it is worthwhile to invest so heavily in monitoring (McDonald-Madden et al. 

2010), relative to investing those funds in direct management and conservation actions 

instead (Nichols and Williams 2006, Possingham et al. 2012). Despite this delisting of 

threatened species require the implementation of post-delisting regulatory mechanisms, 

which includes monitoring (e.g. in the United States; U.S. Senate Committee on 

Environment & Public Works 1973).  

Alternative solutions to the two methods discussed above are available and should 

be considered when discussing long-term monitoring options. Use of indices or proxies 

offers alternative, less expensive options, but come with their own assumptions e.g. 
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constant and direct relationship between the index and abundance (Pollock et al. 2002). 

Initial investment in monitoring also is required for calibration (Stephens et al. 2015). 

Alternative methods of obtaining DNA samples, e.g. using natural rub objects rather than 

artificial bait sites, is a more cost efficient approach that has had wide success with grizzly 

bears (Kendall et al. 2009, Morehouse and Boyce 2016), and refining sample protocols 

using resource selection functions can lead to more effective use of limited resources 

(Allen et al. 2008).  
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Table 5.1. Results for SCR model. Density (D) is in individuals per 1000km2. N is for the 

total number of individuals estimated with their home range centres within the state 

space (10,074 km2). I used a bivariate half-normal detection function, and the encounter 

model (both g0 and sigma) were allowed to vary by sex. Confidence intervals were treated 

as the 2.5% and 97.5% quantiles.  

Parameter Mean SD 2.50% 97.50% 

D 15.02 2.35 10.91 20.02 

N 283.43 44.3 206 378 

g0.male 0.08 0.02 0.05 0.13 

g0.female 0.16 0.06 0.07 0.3 

sigma.male 7.13 0.76 5.84 8.8 

sigma.female 4.17 0.56 3.28 5.44 
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Table 5.2. Results from SMR model with telemetry data for 2014. Density (D) is in 

individuals per 1000km2. N is for the total number of individuals estimated with their 

home range centres within the state space (9,922 km2). I used a bivariate half-normal 

detection function, and g0 was allowed to vary by survey and sex, and sigma was allowed 

to vary by sex. Confidence intervals were treated as the 2.5% and 97.5% quantiles. 

Parameter Mean SD 2.50% 97.50% 

D 16.32 2.62 11.69 21.87 

N 162 26 116 217 

g0.male 0.019 0.0038 0.014 0.028 

g0.female 0.034 0.0059 0.023 0.045 

survey.male -0.056 0.025 -0.11 -0.014 

survey2.male -0.013 0.0037 -0.021 -0.0065 

survey.female 0.058 0.046 -0.023 0.15 

survey2.female -0.002 0.0048 -0.012 0.0069 

sigma.male 11.72 0.52 10.78 12.77 

sigma.female 5.35 0.12 5.12 5.59 
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Fig. 5.1. Locations of camera locations (blue square) and hair snag locations (red stars). 

Buffers represent the state space (S) for SCR analysis (red) and SMR analysis (blue). S 

was defined as 25km buffers around outer perimeter of both traps and cameras. GPS 

locations are weekly relocations for each of the ‘marked’ bears with radiocollar data (N = 

14). 
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a) b) 

  

 c) 

Fig. 5.2. Detection probability curves for a) 

SCR model as a function of distance, b) SMR 

model as a function of distance and c) SMR 

model for baseline detection probability as a 

function of survey (14-day intervals from April 

15 – October 31st). 
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Fig. 5.3. Density estimates for West-central Alberta’s Rocky Mountains and foothills 

grizzly bear population, (bears per 1000km2) using spatial capture-recapture (SCR) and 

spatial mark-resight (SMR) methods. The central mark represents the median, and the 

tails represent the 95% confidence intervals. SCR result for 2014 is shown in black, and 

SMR results for 2012-2014 are shown in white. 
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6 General conclusions 

Outdoor recreation is an activity enjoyed by people from all backgrounds. Clear 

benefits are associated with outdoor recreation: non-consumptive recreation benefits 

wildlife conservation through direct financial contributions (Green and Higginbottom 

2000) and changing attitudes to wildlife (Duffus and Dearden 1990). Access management 

is therefore a controversial area of wildlife management (Knight and Gutzwiller 1995). 

Coupled with human population growth, unrestricted recreation should be taken 

seriously as a threat to habitat security (Knight and Gutzwiller 1995). Identifying the 

repercussions of increasing outdoor recreation on our surrounding ecosystems can help 

inform decisions relating to habitat conservation and management (Hammitt et al. 2015).  

Motorised and non-motorised recreation are forms of human activity that have 

received relatively little attention regarding effects on wildlife (Taylor and Knight 2003). 

Formulating access management decisions is difficult due to the high variation in 

responses to recreation across species (Monz et al. 2013). The lack of a consensus on the 

effects of recreational activity on wildlife dilutes the argument for access restrictions 

further. Identifying the effect that recreation has on flagship species such as grizzly bears, 

may therefore prove useful. The main objectives of my thesis included developing 

techniques to quantify recreational activity across a landscape, and incorporating this 

information into novel methods for investigating behavioural responses at the single 

species and multispecies level. Lastly, I evaluate alternative methods for monitoring 

grizzly bear population density, in terms of accuracy and precision. 

In Chapter 2, I proposed a model that improves our ability to quantify intensity of 

recreational use across a complex trail network. Camera traps are a useful tool for 
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obtaining data on the intensity of recreational activity at different locations across a trail 

network. The number of cameras available defines the amount of data that can be 

collected, and a trade-off exists between maximizing spatial and temporal coverage 

(O’Connell et al. 2010). Rotating cameras between multiple sample locations is a common 

practice (Burton et al. 2012), but introduces temporal bias in sampling. By taking the 

initial step to model temporal variation in the intensity of use, and including location as 

a mixed-effect, I was able to estimate relative spatial variation at sites in the absence of 

temporal variation in sampling. Using Ordinary Kriging to interpolate to non-sampled 

locations across the trail network, I produced maps of the probability of non-motorised 

and motorised recreation that varied in both time and space. Application to grizzly bear 

habitat selection revealed that the model incorporating recreational activity 

outperformed models relying solely on distance to linear feature. 

The increase over the past decade in the use of trail cameras in ecological research 

gives opportunity to accurately quantify human activity across scales relevant to large 

mammal conservation (Burton et al. 2015). Parks Canada has been implementing camera 

trap surveys for a number of years as part of their ongoing wildlife management research 

and to maintain information on visitor frequency and  spatial distribution (Steenweg et 

al. 2016b). Application of my model will improve their ability to test hypotheses relating 

to the effect of hikers and other forms of non-consumptive recreation on wildlife. In 

addition, further monitoring is required outside of protected areas, as grizzly bear 

distributions are not constrained by park boundaries. Understanding the effects of access 

management actions of grizzly bear population recovery will require data encompassing 

grizzly bears located within all land use types. 
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 Quantifying spatio-temporal variation in the intensity of use of the landscape by 

recreationists was an essential first step to understanding grizzly bear responses to 

recreation. In Chapter 3, I incorporated probability of motorised and non-motorised 

recreation to test alternative hypotheses focusing on how grizzly bears alter their habitat 

selection and movement in response to proximity to trails and associated recreational 

activity. Firstly, I revealed that habitat selection models were improved by including 

information on movement and recreational activity. When available, such as in 

radiotelementry studies, models should include movement metrics in conjunction with 

habitat covariates, and effort should be made to distinguish linear-features based on the 

associated intensity of human activity (Northrup et al. 2012a).  

The direction of responses to trails and recreation varied between sexes. Trails with 

no recreational activity were selected for by both male and female grizzly bears. This 

significant selection disappeared however when probability of recreation was high. 

Contrary to expectations, grizzly bears reduced their movement speed as a function of 

trail proximity, implying they were using trails more for foraging (Stewart et al. 2013) 

than to facilitate faster movement, e.g., in wolves (Latham et al. 2011, Dickie et al. 2016). 

The switch to faster movement rates by males when and where motorised recreation was 

high is indicative of a fear response (Frid and Dill 2002), increasing movement as a 

potential avoidance strategy (Ciuti et al. 2012b). I emphasise the variation in individual 

bear responses to trails and recreation (Nielsen et al. 2002). This result emphasises the 

challenges facing wildlife managers who are required to manage areas at the ecosystem 

level (Simberloff 1998), because variation in responses to disturbance are not restricted 

to between species, but individual-based modeling highlights the amount of variation 
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within a single species. Future directions of research should aim to investigate why such 

variation across individuals exists (Dingemanse et al. 2010, Grimm and Railsback 2013). 

I predict variation among individual behaviours is tied with cumulative exposure to 

motorised and non-motorised recreation across an animals’ lifetime, as well as the more 

long-term consequences of natural selection on genotypes associated with avoidance 

behaviour. Identifying whether animals display a physiological response, e.g., increased 

stress (Creel et al. 2002) alongside behavioural changes, will aid in determining the 

potential fitness consequences for grizzly bears.  

 The multispecies model framework applied in Chapter 4 gave me the ability to test 

hypotheses at the community level. As predicted, grizzly bears and black bears displayed 

different responses to motorised and non-motorised recreation, suggesting contrasting 

perceptions of recreational activity as risk (Frid and Dill 2002, Schwartz et al. 2010). 

Black bears used areas where recreation was present more so than grizzly bears, and 

overlapped more with recreation relative to temporal activity patterns. Interestingly, both 

species responded to the presence of recreation by reducing their intensity of use of those 

areas, rather than avoiding the areas altogether (Northrup et al. 2012a). In addition, we 

documented this response only when motorised activity was present, revealing 

contrasting responses by bears to the type of recreational activity. Treating detection 

probability as a nuisance parameter rather than redefining it as a measure of intensity of 

use and instead focusing solely on changes in occurrence can result in misleading 

inference.  

 Chapters 3 and 4 give insight into how grizzly bears alter movement, habitat 

selection and use relative to human recreational activity. The ability for grizzly bears to 
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change their behaviour in response to stressors, and the associated consequences of such 

changes can have a fundamental influence on population dynamics (Gomes and Sarrazin 

2016). In Chapter 5, I address challenges faced by wildlife managers in monitoring 

changes in population density of grizzly bears. I estimated grizzly bear density for my 

study area using a combination of radiotelemetry data and trail camera data in a Spatial 

Mark-Resight model (Sollmann et al. 2013a, 2013b, Royle et al. 2014), and compared this 

result to concurrent estimates obtained using DNA data and a Spatial Capture-Recapture 

model (Royle et al. 2014, Whittington and Sawaya 2015). I demonstrate an alternative 

method of estimating density that can be applied with little additional cost in regions 

where animals are naturally marked, or where artificial marks such as radiotelemetry 

collars and ear tags are present.  My results suggest reliable estimates also can be obtained 

using SMR as long as differences in detecting marked and unmarked individuals is 

accounted for, through incorporating location information for marked animals 

(Whittington et al.in review). Simulating distributions of marked versus unmarked 

animals and incorporating varying magnitudes of location information will increase 

understanding of model sensitivity in terms of accuracy and precision. In the present 

example, we treated our estimates using SCR models as truth: however, this method is 

susceptible to its own biases. Testing such methods in animal populations where census 

data means true density is known, is the best way forward (Rowcliffe et al. 2008). 

Management applications 

A method to estimate spatio-temporal variation in recreational activity is an 

important tool for wildlife managers. My first chapter offers a powerful approach to 

analyzing trail camera data on recreational activity, and the prospective map products can 
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be used directly to coordinate access enforcement where it is effective and needed. When 

coupled with information on animal distribution, it is possible to identify times and areas 

where the potential for conflict is exacerbated, and if required, introduce access 

restrictions to mitigate negative effects for both wildlife and recreationists. Responses by 

grizzly bears to recreational activity suggest that access restrictions could benefit the 

species. Reduced movement rates by grizzly bears when close to trails infers use of trails 

for foraging, and lack of selection for and reducing intensity of use of trails with 

recreational activity may result in reduced foraging opportunities and exploitation by the 

more-tolerant black bears. Controlling access in areas with high-quality bear foods would 

be an important step in dampening potential negative consequences of human recreation. 

Lastly, I showed that spatial mark-resight models can be a useful method for 

estimating grizzly bear densities, and should be added to the toolkit available to wildlife 

managers. Trail cameras are a useful, widely applied data collection tool (Burton et al. 

2015, Steenweg et al. 2016a), with data currently being collected across a large amount of 

the Canadian Rocky Mountains. My analysis shows that even with just a small proportion 

of the grizzly bear population radiocollared, it is possible to estimate grizzly bear density 

to a similar degree of precision as traditional capture-recapture methods. Given the 

additional, multi-species information that comes with trail cameras, and the movement 

data that can be used to ask questions relating to movement behaviour and fine-scale 

habitat selection, I believe spatial mark-resight methods should be incorporated into 

population monitoring of grizzly bears in Alberta. 

 My dissertation research has revealed how grizzly bears alter their movement and 

habitat selection behaviour as a function of trails and recreational activity.  Future 
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management objectives should focus on continued, directed, hypothesis-driven 

monitoring of both behavioural and demographic responses to experimentally 

manipulated recreational disturbance in an adaptive management framework (Walters 

and Hilborn 1978, Nichols and Williams 2006). Consolidating monitoring actions 

alongside active adaptive management is the most efficient path forward, and will inform 

researchers to a greater extent than the sum of two parts (Nichols and Williams 2006, 

McDonald-Madden et al. 2010). As human population growth continues, and we see 

continued resistance to change from a political perspective; we will require sound, 

experimental research and monitoring on restricted budgets to ensure a solid science 

basis for management decision making. 
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