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Abstract

We study linear estimation based on perturbed data when performance is mea-

sured by a matrix norm of the expected residual error, in particular, the case in

which there are many unknowns, but the “best” estimator is sparse, or has small

`1-norm. We propose a Lasso-like procedure that finds the minimizer of an `1-

penalized squared norm of the residual. For linear regression we show O
(√

1
n

)
uniform bounds for the difference between the residual error norm of our estimator

and that of the “best” estimator. These also hold for on-policy value function ap-

proximation in reinforcement learning. In the off-policy case, we show O

(√
lnn
n

)
bounds for the expected difference. Our analysis has a unique feature: it is the

same for both regression and reinforcement learning. We took care to separate the

deterministic and probabilistic arguments, so as to analyze a range of seemingly

different linear estimation problems in a unified way.
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Chapter 1

Introduction

First of all, we state our problem in Section 1.1. After we do this, we will be able to
properly present the goals and contributions of our work (Section 1.2), and a brief
discussion about the choices we made to delimit the scope of our work, in Section
1.3. Section 1.4 briefly summarizes the content of the remaining chapters.

1.1 Problem statement

Suppose that there exist a matrix A ∈ Rq×d and a vector b ∈ Rq, and that we have a
random matrix Â ∈ Rq×d and a random vector b̂ ∈ Rq that are estimates of A and
b, respectively. Consider the problem of minimizing the following loss 1

L(θ) = ‖Aθ − b‖M ,

with respect to (w.r.t.) θ ∈ Rd, where M ∈ Rq×q is a fixed (symmetric) positive-
definite matrix. Of course, we do not have access to A or b, but only to Â and b̂. We
will call this problem a linear estimation problem.

The study of certain types of linear estimation problems is not unprecedented.
For example, much has been done in perturbation analysis (Bonnans and Shapiro
(2000)), but there are certain intrinsic aspects of our problem, in particular the
stochastic components of Â and b̂, that prevent us from easily applying results
from perturbation analysis.

We are interested in boundingL(θ̂λ)−infθ L(θ), where θ̂λ is a solution candidate
defined as

θ̂λ
.
= arg min

θ
‖Âθ − b̂‖2M + λ‖θ‖1,

and is based on the Lasso estimator of Tibshirani (1996) (in Section 1.3 we will
discuss why we chose to study a Lasso-like estimator). We call this gap L(θ̂λ) −
infθ L(θ) the excess loss.

1.2 Goals and contributions

This work is a theoretical study of a particular family of solution candidates θ̂λ
(indexed by λ ≥ 0) in three scenarios: under a generic linear estimation problem

1Recall that for v ∈ Rq ,‖v‖2M = v>Mv.
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formulation as above, and in two specific applications, linear regression and value
prediction in reinforcement learning (RL) Sutton and Barto (1998). The study of the
(generic) linear estimation problem is further divided into three parts: a determin-
istic analysis, a stochastic analysis, and an investigation of the problem in a specific
stochastic setting, which is meant to illustrate the applicability of our results.

In Section 1.2.1, we describe what the ideal form of our results would be, and
summarize our theoretical findings. Of course, these findings will be properly de-
tailed and explained in the coming chapters; in the following section we will only
outline the results, so as to emphasize their important characteristics.

We believe that the analysis we have employed to obtain the results is also a
contribution of this work. In Section 1.2.2 we discuss the novelty and the advan-
tages of our “two-step” analysis.

1.2.1 Bounds

Recall the we wish to bound the excess loss L(θ̂λ) − infθ L(θ). The quality of our
results will depend on how we choose λ, so we will try to pick λ = λ̂ to obtain a
bound that holds with probability at least 1− δ for 0 < δ < 1 and has the form

L(θ̂λ̂) ≤ cδ(θ∗) + L(θ∗), (1.1)

where θ∗ is a vector with minimum loss 2:

θ∗
.
= arg min

θ
L(θ),

and cδ(θ
∗) is an excess loss term that goes to zero as Â − A and b̂ − b concentrate

around zero. We expect the “complexity” of θ∗, i.e., its size in some norm, to affect
cδ(θ

∗), because we believe a θ∗ with large norm can “amplify” the the error Â− A.
Note that in (1.1) the multiplier of L(θ∗) is exactly one.

We would like cδ to have a logarithmic relationship with δ, so that the bounds
are high-probability bounds, and we want λ̂ not to be a function of δ. We will refer
to a bound in which λ̂ does not depend on δ as a uniform bound (in δ). In other
words, a bound for L(θ̂λ̂) will be uniform if, given θ̂λ̂, there will be a bound of the
form of (1.1) that will hold with probability at least 1− δ for any 0 < δ < 1.

WhenAθ∗ = b, which holds iff L(θ∗) = 0, we will say that the system is consistent,
otherwise, we will say the system is inconsistent. When the system is consistent, the
requirement of a 1·L(θ∗) term in the bound is vacuous, so, for this case, proving the
results we are after is easier, in the sense that there are less requirements to meet.
In fact, we managed to prove a uniform bound with the desired aspects for the
consistent case. In the more general case, i.e., when we do not know whether or not
Aθ∗ = b, we showed a high-probability bound with all the desired requirements,
except for uniformity, because λ̂ is selected based on a choice of δ.

As an illustration of the form our results take under different stochastic as-
sumptions, we present results for the case in which Â and b̂ are averages of n i.i.d.
bounded random variables. For this particular scenario, it is well known that the

excess loss is Ω
(√

1
n

)
, so we aimed for tight bounds (w.r.t. to n), i.e., for an excess

2If the minimizer is not unique, we will pick one with minimum `1-norm, for convenience.
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loss that is also O
(√

1
n

)
. So, for this specific case, we also established that a fast

rate is required, i.e., we wish to have an O
(√

1
n

)
rate.

We show that

L(θ̂λ̂) = O

(
(‖θ∗‖1 + 1)4

√
1

n

)
(1.2)

holds with high-probability (and uniformly in δ) when Aθ∗ = b. In this case we
propose a choice of θ̂λ̂ based on universal constants, but the results for the case in
which we do not make assumptions about the consistency of the system require λ̂
to be chosen in a peculiar way. In general, what one does is to obtain observations
Â′ and b̂′ of A and b that are independent of Â and b̂, then choose

λ̂ = arg min
λ
‖Â′θ̂λ − b̂′‖M .

We make our choice of λ̂ based on Â, b̂ and δ, in a way that will be explained
in Chapter 2. What is important to say is that this manner of choosing λ̂ is new,
and that we also show how to, in computational terms, perform it efficiently, by
modifying the procedure that computes θ̂λ.

Under no assumption about the consistency of the system, we can show that

L(θ̂λ̂) = O

(
(‖θ∗‖1 + 1)2

√
1

n

)
+ L(θ∗) (1.3)

holds with high-probability, but non-uniformly in δ (because of the way λ̂ is cho-
sen).

These results have an interesting impact in the two applications we study in our
work, linear regression and value prediction in reinforcement learning (RL). We
study these applications because we wish to illustrate the simplicity of applying
our general linear estimation analysis, and because we are interested in seeing the
nature of the results we can prove with our analysis.

Our main contribution to linear regression comes from using (1.2) to show a
fast, uniform rate for the excess risk Bartlett et al. (2009) of θ̂λ̂:

O

(
(‖θ∗‖1 + 1)2 1

nλmin(C)

)
, (1.4)

where λmin(C) is the minimum eigenvalue of the covariance matrix of the input
r.v..

There are three main contributions for value prediction RL. The first two are
rates for the (unsquared) projected Bellman error (Antos et al. (2008)). In the on-
policy case (Sutton and Barto (1998)), this rate is given by

O

(
(‖θ∗‖1 + 1)

√
1

nλmin(C)

)
, (1.5)

and the bound for off-policy value prediction is has the form of

O

(
(‖θ∗‖1 + 1)

√
1

n

)
+

√
λmax(C)

λmin(C)
‖Aθ∗ − b‖C−1 ,

3



and is based on (1.3). The third contribution for value prediction in RL is that we
can easily show that the least-squares temporal difference learning (LSTD, Bradtke
and Barto (1996)) is solving a linear estimation problem, and therefore we can de-
rive performance results for estimators computed by LSTD-like methods.

We would like to eliminate the above dependence on λmin(C). Possible ways of
doing so are discussed in 3.2, Remark 3.2.3.

1.2.2 Analysis

In order to show bounds for L(θ̂λ̂), we used a two-step analysis: first, we obtained
bounds for the excess loss as a function of the errors Â − A and b̂ − b, which we
call a deterministic analysis, and which has similarities to perturbation analysis
(Bonnans and Shapiro (2000)). Second, we applied stochastic assumptions (in the
form of concentration inequalities) to obtain stochastic results. The main goal of
doing the analysis this way is to decouple the stochastic arguments and properly
delimit their role in the bounds. This way, the effect of the stochastic assumptions
on the bound can be better understood, as well as the effect of the proof techniques
employed in the deterministic step.

Moreover, the stochastic assumptions are used in a generic form that allows one
to quickly derive results using different concentration inequalities. For example,
we show results for when Â and b̂ are averages of i.i.d. bounded r.v.’s, but, e.g., if
one wants to obtain corresponding results for when these r.v.’s constitute a mixing
process Doukhan (1994), it suffices to define a basic quantities according to the
appropriate concentration inequalities to obtain the corresponding result.

We are also interested in the two-step analysis because it helps us choose λ̂ to
get uniform bounds. Normally, one first derives high-probability bounds in terms
of λ̂ and after applying the stochastic assumptions, chooses λ̂ so as to minimize
the right-hand side of the inequality. This will often lead to non-uniform bounds,
because the “bound-optimal” choice of λ̂ will be a function of δ.

The fact that we can easily modify our results by changing some of the un-
derlying stochastic assumptions is a significant simplification of the commonplace
method for deriving similar bounds, which is to perform the whole analysis from
scratch for each different scenario, even if the only difference between them lies
in the concentration inequalities used. This is why we consider our analysis to be
another contribution of our work 3.

1.3 Motivation

In this section we briefly state some of the reasons for the important choices made
to delimit the scope of our work. Though interesting, a thorough discussion of
pros and cons of these decisions is orthogonal to our work, so we limit ourselves
to elaborate on why we chose to address `1-regularized linear estimation the way
we did.

3A similar two-step analysis has been studied by Rosasco (2006), but our analysis was developed
independently.
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1.3.1 Loss

Using ‖ · ‖M , with M � 0, as our loss is convenient for developing results: in
our case, for example, we have heavily relied upon triangle inequalities for this
norm. The fact that we are using ‖ · ‖2M in the definition of θ̂λ has computational
advantages (we will discuss advantages of using other losses in Section 2.4).

Furthermore, this loss also works well with concentration inequalities and as-
sumptions available in many scenarios 4.

All in all, although by no means the only one or the best one, the least squares
loss is a convenient choice.

1.3.2 `1-norm penalization

Regularization is often a principled way of biasing estimators5, and it is generally
regarded as a useful way of mitigating overfitting.

Moreover, minimizing sample error with an `1-norm penalty λ‖θ‖1 is known
to yield sparse estimators in certain cases (Tibshirani (1996); Hastie et al. (2009)).
Sparsity may reduce the computational cost of estimation, and `1-norm regular-
ization is suitable when a small number of covariates can be used to attain small
excess loss.

Appropriate `1-norm regularization can often increase performance even in
overcomplete spaces, i.e., even when d is sensibly larger than q, but “appropriate
regularization”, in our case, choosing λ̂ well, may not be simple at a first glance. In
Section 2.4 we discuss the use of penalty functions different from λ‖θ‖1

Still, it is possible to make it so that λ̂ is chosen automatically, and that is done
using model selection.

1.4 Organization

This dissertation is meant to do more than just present our theoretical findings and
some of their implications. We are also interested in guiding the reader through the
process of building these results, a process which is valuable on its own. That is to
say that not only do the main lemmas and corollaries give us insight about certain
problems, but also does the analysis itself teach us how to develop theory with a
good number of extensions to different scenarios.

This dissertation is divided into this introductory chapter, three main chapters,
a conclusion, and two appendix chapters.

In Chapter 2 we state our core results, which are of two types, deterministic and
stochastic. We also present extensions for the particular case in which Â and b̂ are
averages of bounded i.i.d. r.v.’s . At the end of the chapter we summarize how to
extend the stochastic results to other sampling models and other i.i.d. scenarios,
and discuss a few generalizations.

We have chosen to present only the lemmas and corollaries in Chapter 2, and
to append the proofs at the end of this dissertation, in appendix B.

4Its often criticized sensitivity to outliers is not a problem for when the quantities are bounded
with probability one, but dealing with outliers is out of the scope of our work.

5Recall the James-Stein estimator James and Stein (1961) as an example of the advantages of using
biased estimators to reduce the mean squared estimation error.
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The two following chapters, 3 and 4, cover consequences of the i.i.d. results to
regression and value prediction in RL. Each chapter is introduced by a formulation
of the respective problem as a linear estimation problem. Then, the consequences
of our results and relevant related works are discussed.

In the conclusion chapter we summarize our findings, and pose the questions
that could be studied as a continuation of this work. We also include a few less
related, but interesting, questions that arose during our work.

The first appendix chapter, A, discusses computing θ̂λ and θ̂λ̂ for our specific
model selection scheme. There are some simple observations as well as previous
works in the literature that considerably improve performance over naive imple-
mentations.

Appendix B, as said, contains proofs for the results in Chapter 2.

6



Chapter 2

Core Results

This chapter has the most essential contributions of our work. The results in chap-
ters 3 and 4 are built upon those results of this chapter, especially those of Section
2.3, which are the corollaries for scenarios with i.i.d. sampling and sub-gaussian
noise.

Section 2.1 encompasses the basic lemmas, which are stated in terms of key
deterministic quantities. In Section 2.2 we adapt these results under generic con-
centration assumptions about the key quantities.

We have structured the analysis in such a way that the role of stochastic as-
sumptions becomes clearer in our results. The evidence of where these assump-
tions affect our bounds allows us to bound estimation errors using different con-
centration inequalities and to choose λ uniformly w.r.t. to the confidence parameter
of the bounds, δ.

In Section 2.3, we illustrate the application of our results to a scenario in which
Â and b̂ are averages of n i.i.d. random variables. The study of this kind of pro-
cess is quite common, and so the instantiation of the results from Section 2.2 will
emphasize the simplicity of our results and help provide a better understanding of
the meaning and the behavior of the stochastic results.

Let us state beforehand the definitions that will allow us to decouple the deter-
ministic and the stochastic results (recall thatA, Â ∈ Rq×d, b, b̂ ∈ Rq andM ∈ Rq×q).

Definition 2.0.1. Given a matrix M � 0, let

∆A
.
= ‖M

1
2 (A− Â)‖F ,

∆b
.
= ‖M

1
2 (b− b̂)‖2.

In Chapter 1, we used the notation L(θ) to denote ‖Aθ− b‖M . We will use these
two terms interchangeably, because while in some places it is more convenient to
useL(θ), some of the lemmas and corollaries are easier to interpret if we write them
explicitly in terms of ‖Aθ − b‖M .

2.1 Deterministic analysis

In the first part of this section, Section 2.1.1, we derive results and properties of θ̂λ
that hold for any fixed λ, and then in the second part (Section 2.1.2), we bound the
behavior of L(θ̂λ̂), and explain how we choose λ̂ from a set Λ.

7



2.1.1 Fixed choice of λ

The following lemma displays a very useful technique to relate different kinds of
losses in a way that the quantities in Definition 2.0.1, as well as an `1-norm term,
emerge. This association will be needed because we know how to control ‖Âθ̂λ −
b̂‖M , and we want to use this in order to bound ‖Aθ̂λ − b‖M .

Lemma 2.1.1. For any θ ∈ Rd,∣∣∣‖Aθ − b‖M − ‖Âθ − b̂‖M ∣∣∣ ≤ ∆A‖θ‖1 + ∆b.

To see that this holds, observe that that ‖(A − Â)θ‖M ≤ ‖M−
1
2 (A − Â)‖F ‖θ‖2

and ‖θ‖2 ≤ ‖θ‖1, then use triangle inequalities w.r.t. to ‖ · ‖M .
The next lemma shows how we control ‖Âθ̂λ − b̂‖M : we use the definition of

θ̂λ to relate its empirical loss to that of θ∗. This “optimality” property will allow us
upper-bound ‖θ̂λ‖1 (provided that λ > 0) as well as ‖Âθ̂λ − b̂‖2M by functions of θ∗

(e.g., we can apply Lemma 2.1.1 to θ∗ and ‖Aθ∗ − b‖M will emerge).

Lemma 2.1.2. We have

‖Âθ̂λ − b̂‖2M ≤ ‖Âθ∗ − b̂‖2M + λ(‖θ∗‖1 − ‖θ̂λ‖1).

Our first result is a bound on L(θ̂λ) with a specific λ chosen as a function of A,
b, ‖θ∗‖1 and L(θ∗), which are in practice unknown to us. We these choices that are
functions of unknown quantities as oracle choices. This kind of result is important
to us because it may provide insight about the hardness of the problem and the
effectiveness of our proof techniques. Moreover, this oracle choice is useful for
proving Lemma 2.1.6. The result for the oracle choice of λ is stated in Corollary
2.1.4, which follows from Lemma 2.1.3. This lemma itself is the common starting
point for the proof of the remaining deterministic results, as well as of the stochastic
ones.

Lemma 2.1.3. For any ζ, ζ ′ ≥ ‖Âθ∗ − b̂‖M and C1, C2 > 0, it holds that

‖Âθ̂λ − b̂‖M + C1‖θ̂λ‖1 + C2 ≤ max

{(
C1 −

λ

2ζ

)(
ζ ′2

λ
+ ‖θ∗‖1

)
, 0

}
+

λ

2ζ
‖θ∗‖1 + C2 + ζ.

Corollary 2.1.4. If

λ̂ = 2∆A(∆A‖θ∗‖1 + ∆b + ‖Aθ∗ − b‖M ),

then

‖Aθ̂λ̂ − b‖M ≤ 2∆A‖θ∗‖1 + 2∆b + ‖Aθ∗ − b‖M .

This corollary says that there appropriate regularization can be used so that
L(θ̂λ) is not much larger thanL(θ∗). Unfortunately, we cannot choose λ̂ as in Corol-
lary 2.1.4, because it depends on the knowledge of A, ‖θ∗‖1 and L(θ∗). Still, this
oracle choice is a key quantity in the proofs of our model selection bounds.
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2.1.2 Model selection

Model selection is a general term for a process of choosing the best model – an
estimator, a classifier, a predictor – among different options. In this work, we will
abuse nomenclature so that whenever we say model selection we will specifically
refer to processes that choose λ̂ from a set of candidate values Λ, such that θ̂λ̂ has
certain properties. In other words, given some measure of performance U , the
model selection will find the maximizer in Λ of U(θ̂λ), and we hope that knowing
about U(θ̂λ̂) we will be able to prove bounds for L(θ̂λ̂).

Our model selection is done by picking

λ̂ = arg min
λ∈Λ(a,b)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

where λ′ ≥ 0 is to be appropriately chosen by us, and Λ(a, b) is an exponential grid
of points on the interval [a,B] (0 < a ≤ B)

Λ(a,B)
.
=

{
a2k : k ∈ N, 0 ≤ k ≤

⌊
log2

B

a

⌋}
∪ {B} ,

for suitable a,B.
We will derive bounds as functions of a, and then, during the stochastic anal-

ysis, make convenient choices of a and λ′. The choice of B is made based on As-
sumption 2.1.5.

Assumption 2.1.5. There exists aB > 0 such that, with probability one (w.p. 1), θ̂B = 0.

The KKT optimality conditions for the Lasso estimator (exercise 3.26 of Hastie
et al. (2009)), imply that this is the case when, w.p. 1, c = ‖Â>Mb̂‖∞ <∞, because
θ̂λ = 0 for any λ ≥ c.

Under Assumption 2.1.5, θ̂λ = 0 for every λ ≥ B, so we will restrict ourselves
to analyzing the model selection for candidates with λ ∈ [a,B], and this allows us
to prove the following lemma:

Lemma 2.1.6. Under Assumption 2.1.5, if

λ̂
.
= arg min

λ∈Λ(a,B)
‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1

and λ′ ≥ ∆A, then, for any ζ ≥ ‖Âθ∗ − b̂‖M ,

‖Aθ̂λ̂ − b‖M ≤ max

{
2λ′,

a

2ζ

}
‖θ∗‖1 + ∆b + ζ.

Note that we do not need to split our sample into a training and a testing set.
Instead, we use Lemma 2.1.1 to express ‖Aθ̂λ̂ − b‖M in terms of ‖Âθ̂λ̂ − b‖M , and
then we use λ′ to eliminate the term ∆A‖θ̂λ̂‖1 which is not as easy to control as the
other terms in the bound.

It is possible to see that we can already make a meaningful choice of a, based
on a choice of ζ. We can take, for example, ζ = ∆A‖θ∗‖1 +∆b+c and a = 2cλ′, with
c being of the same scale of ∆b and s.t. 2cλ′ ≤ B. Then, provided that λ′ dominates
∆A but also concentrates around zero, we have a bound in the form we would like
to have, with the exception of the uniformity in δ. We will instantiate a in the next
section, when we start to use concentration inequalities that will allow us to choose
c in a suitable fashion.
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2.2 Stochastic analysis

In this section we provide extensions of the deterministic lemmas by assuming
quantities such as ∆A, ∆b concentrate around zero. In this section as in the previous
one, we first work on specific choices λ, and provide results for the model selection
scheme afterwards.

2.2.1 Fixed choice of λ

In this section we provide a high-probability bound for ‖Aθ̂λ− b‖M when Aθ∗ = b,
which we refer to as the realizable case, and a bound for E

[
‖Aθ̂λ − b‖M

]
when

Aθ∗ 6= b, which we call the unrealizable case. The following lemma presents the
first bound.

Lemma 2.2.1 (Uniform convergence bound for a fixed choice of λ, when Aθ∗ = b).
Assume that Aθ∗ = b and that there exist a positive constant c1 and a decreasing function
S : (0, 1) → (0,∞) such that, for any 0 < δ < 1, with probability at least 1 − δ, the
following hold simultaneously:

∆A ≤ c1S

(
δ

2

)
, (2.1)

∆b ≤ c1S

(
δ

2

)
. (2.2)

If

λ̂ = c2
1,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ c1 ·max

{
(‖θ∗‖1 + 1)2S

(
δ

2

)3

+
1

2
S

(
δ

2

)
(‖θ∗‖1 + 1),

1

2S
(
δ
2

) ‖θ∗‖1
‖θ∗‖1 + 1

+ S

(
δ

2

)}
+ c1S

(
δ

2

)
‖θ∗‖1 + c1S

(
δ

2

)
.

Lemma 2.2.1 implies that for any 0 < δ < 1
2e ,

‖Aθ̂λ − b‖M ≤ c12(‖θ∗‖+ 2)2S

(
δ

2

)3

holds with probability at least 1 − δ. This is a crude upper-bound that allows us
to see how we exploited that L(θ∗) = 0 in order to choose λ and control the term
∆A
λ (∆A‖θ∗‖1 + ∆b)

2, which is the upper-bound we use for the term ∆A‖θ̂λ‖1.

The next lemma provides an upper-bound for E
[
‖Âθ̂λ − b̂‖M

]
with a fixed

choice of λ.

Lemma 2.2.2 (Expectation bound for a fixed choice of λ). Assume that there exist a
positive constant c1 < 1 and a decreasing function S : (0, 1) → (0,∞) such that, for any
0 < δ < 1, with probability at least 1− δ,

∆A ≤ c1S (δ) .

10



Moreover, assume that w.p. 1

‖Âθ∗ − b̂‖M ≤ L,
∆A ≤ Amax,

and that there exists c2 such that

Var(‖Âθ∗ − b̂‖M ) ≤ c2
2.

Then, choosing

λ̂ = 2(L+ c2)c1S
(
c2

1

)
implies that

E
[
‖Aθ̂λ − b‖M

]
≤ Amax

(
L

2S
(
c2

1

) + c1‖θ∗‖1

)
c1 + E

[
‖Âθ∗ − b̂‖M

]
+ c2

+ 2
L+ c2

E
[
‖Âθ∗ − b̂‖M

]
+ c2

‖θ∗‖1c1S
(
c2

1

)
+ E [∆b] .

The bound in Lemma 2.2.2 is important because its proof technique – tail in-
tegration – can be used to extend high-probability bounds, e.g., that of Lemma
2.2.1, into expectation bounds. The strategy is simple: state the concentration as-
sumption of the high-probability bound in the same form as in lemma 2.2.2, take
the expectations on both sides, and finally choose δ – the size of the events where
quantities do not concentrate – for a suitable rate.

In Section 2.3 we will see why it is harder to go in the opposite direction, i.e., de-
rive high-probability bounds based on expectation bounds such as that of Lemma
2.2.2. Still, it is possible to prove high-probability error bounds for the case in which
Aθ∗ 6= b, and this is done by using model selection.

Now, choosing λ as in Lemma 2.2.2 may not be possible in practice because even
if we can assume that ‖Âθ∗ − b̂‖M ≤ L, often the values of L that are “available”
depend on unknown quantities such as ‖θ∗‖1. Fortunately, we can avoid having to
select a good λ by using model selection, which we cover next.

2.2.2 Model Selection

In this section we will state the results of performing model selection using an
exponential grid. The upper-bound of the grid interval will beB (from Assumption
2.1.5), and the value of a is chosen in order to optimize the bound. This upper-
bounding strategy is based in the general approach to model selection adopted by
Farahmand and Szepesvári (2011), as expressed in their Theorem 1.

The following two results are a high-probability bound on the error of the se-
lected model, and an expectation bound on that error. Both are non-uniform in δ
because λ′ is a function of it.

Corollary 2.2.3 (Non-uniform high-probability performance bound for estimators
obtained through model selection). Assume that there exist positive constants c1, c2 <

11



1, and decreasing functions S1, S2 : (0, 1) → (0,∞) such that, for any 0 < δ < 1, with
probability at least 1− δ, the following hold simultaneously:

∆A ≤ c1S1

(
δ

2

)
,

∆b ≤ c2S2

(
δ

2

)
.

Then, under Assumption 2.1.5, for any 0 < δ < 1, if

λ′ = c1S1

(
δ

2

)
,

λ̂ = arg min
λ∈Λ(2c3λ′,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

where c3 is a constant s.t. 0 < 2c3λ
′ ≤ B, then, with probability at least 1 − δ, it holds

that

‖Aθ̂λ̂ − b‖M ≤ 3c1S1

(
δ

2

)
‖θ∗‖1 + 2c2S2

(
δ

2

)
+ ‖Aθ∗ − b‖M + c3.

Corollary 2.2.4 (Expectation performance bound for estimators obtained through
model selection). Assume that there exist positive constants c1, c2 < 1, and a decreasing
function S : (0, 1)→ (0,∞) such that, for any 0 < δ < 1, with probability at least 1− δ,
the following holds:

∆A ≤ c1S (δ) .

Also, assume that there exist constants Amax and bmax s.t.

∆A ≤ Amax,

∆b ≤ bmax,

w.p. 1. Under Assumption 2.1.5, if, for any 0 < δ < 1,

λ′ = c1S

(
c3c

2
1

2

)
,

λ̂ = arg min
λ∈Λ(2c3λ′,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

where c3 is a constant s.t. 0 < 2c3λ
′ ≤ B, then it holds that

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

 b2max

2S
(
c3c21

2

)
 c1 + 2c1S

(
c3c

2
1

2

)
‖θ∗‖1

+ E [∆A] ‖θ∗‖1 + 2E [∆b] + ‖Aθ∗ − b‖M + c3.

This concludes the generic stochastic analysis, and we will now proceed to a
more specific study of our results.
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2.3 Independent, identically-distributed sampling analysis

In this section, we extend our results to cases where Â and b̂ are averages of i.i.d.
random variables.

Assumption 2.3.1. Assume we have a sample (At, bt) for observations t = 1, . . . , n
drawn i.i.d. w.r.t. to a probability measure ρ, and let

Â =
1

n

n∑
t=1

At,

b̂ =
1

n

n∑
t=1

bt.

Hoeffding’s inequality will provide the necessary concentration inequalities. In
particular, Corollary 6.15 in Steinwart and Christmann (2008):

Theorem 2.3.2 (Hoeffding’s inequality in Hilbert Spaces). LetH be a separable Hilbert
space and B > 0. Furthermore, let ξ1, . . . , ξn be independent H-valued random variables
satisfying ‖ξi‖ ≤ B almost surely for all i = 1, . . . , n. Then, for all 0 < δ < 1,

P

(∥∥∥∥∥ 1

n

n∑
i=1

(ξi − E [ξi])

∥∥∥∥∥
H

≥ B
√

2

n
ln

1

δ
+B

√
1

n
+

4B

3n
ln

1

δ

)
≤ δ.

We make the following definition to be concise and to match the general form
of the concentration assumptions in the lemmas of Section 2.2.

Definition 2.3.3. Let

T (n, δ)
.
=

√
ln

1

δ
+

√
1

2
+

√
2

n
· 2

3
ln

1

δ
.

It only remains to make some boundedness assumptions, which will guarantee
the necessary conditions to apply Hoeffding’s inequality.

Assumption 2.3.4. Assume that there exist constants F2,∞, F ′2,∞, R∞ such that, w.p. 1,

‖M
1
2At‖F ≤ F2,∞F

′
2,∞,

‖M
1
2 bt‖2 ≤ F2,∞R∞.

Corollary 2.3.5. Assumption 2.3.4 implies that the following hold w.p. 1:

∆A ≤ 2F2,∞F
′
2,∞,

∆b ≤ 2F2,∞R∞,

‖Âθ̂λ − b̂‖M ≤ F2,∞R∞.

We are now ready to state the concentration inequalities we will use.
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Corollary 2.3.6. Consider Assumptions 2.3.4. From theorem 2.3.2 it follows that

P

(
∆A > 2F2,∞F

′
2,∞T (n, δ)

√
2

n

)
≤ δ,

P

(
∆b > 2F2,∞R∞T (n, δ)

√
2

n

)
≤ δ,

where T is as in Definition 2.3.3.

These concentration inequalities allow us to apply Lemmas 2.2.1 and 2.2.2, and
Corollary 2.1.4.

2.3.1 Fixed choice of λ

Corollary 2.3.7 shows us what rate we can get for an oracle choice of λ.

Corollary 2.3.7. Under Assumptions 2.3.1 and 2.3.4, if

λ = 2∆A(∆A‖θ∗‖1 + ∆b + ‖Aθ∗ − b‖M ),

then, for any 0 < δ < 1, with probability at least 1− δ,

‖Aθ̂λ − b‖M ≤ 4F2,∞F
′
2,∞

√
2

n
T (n, δ) ‖θ∗‖1 + 4F2,∞R∞

√
2

n
T (n, δ) + ‖Aθ∗ − b‖M .

The choice of λ in this case is a (random) function of Â, b̂ and some unknown
quantities (e.g., ‖θ∗‖1), not a function of the range constants and δ1. The choice of
λ that optimizes the bound in Corollary 2.3.7 behaves as O

(
1
n

)
when Aθ∗ = b,

and otherwise as O
(√

1
n

)
. This is not to say that these rates indicate appropriate

choices of λ, because to claim that we would need lower bounds, but it does show
what performance ensues from certain choices of λ.

The next two results are the extensions for fixed choices of λ that are based on
quantities assumed to be known a priori. The first result follows from Lemma 2.2.1.

Corollary 2.3.8. Under Assumptions 2.3.1 and 2.3.4, if Aθ∗ = b and

λ̂ =
2

n
F 2

2,∞max{R∞, F ′2,∞}2,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ F2,∞max{R∞, F ′2,∞}
√

2

n
·max

{
(‖θ∗‖1 + 1)2T

(
n,
δ

2

)3

+

1

2
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

1

2T
(
n, δ2

) ‖θ∗‖1
‖θ∗‖1 + 1

+ T

(
n,
δ

2

)}

+ F2,∞max{R∞, F ′2,∞}
√

2

n
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

where T is as in Definition 2.3.3.
1As discussed before, a choice of λ depending on δ would lead to non-uniformity of the bound,

and require us to provide a confidence parameter prior to the computation of θ̂λ.
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This corollary shows that when Aθ∗ = b, ‖Aθ̂λ̂ − b‖M = O
(√

1
n

)
, and that

the chosen regularizer λ = O
(

1
n

)
. In terms of n, both the rate of convergence and

the order of λ display the same behavior as the respective quantities for the oracle
choice of the regularizer.

Corollary 2.3.8 suggests that the case in whichAθ∗ = b is easy enough so that we
can perform as well as an oracle, modulo some constants, with a fixed choice of λ.
We were unable to prove the same type of result for the non-realizable case 2, there-
fore we present a bound based on Lemma 2.2.2, showing that E

[
‖Aθ̂λ̂ − b‖M

]
=

O

(√
lnn
n + E

[
‖Âθ∗ − b̂‖M

])
.

Corollary 2.3.9. Assume that there exists L > 0 s.t., w.p. 1,

‖Âθ∗ − b̂‖M < L,

and let

c
.
=

√
2

n
F2,∞(F ′2,∞‖θ∗‖1 +R∞)

(
T

(
n,

1

n

)
+ 2

)
,

where T is as in Definition 2.3.3. Under Assumptions 2.3.1 and 2.3.4, if n > 2 and

λ̂ = 2(L+ c)

√
2

n
F2,∞F

′
2,∞T

(
n,

2

n

)
,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

(
L+ c

2F2,∞F ′2,∞T
(
n, 2

n

) +

√
2

n
‖θ∗‖1

)√
2

n
+ E

[
‖Âθ∗ − b̂‖M

]
+ c+ 2

L+ c

E
[
‖Âθ∗ − b̂‖M

]
+ c
‖θ∗‖1

√
2

n
F2,∞F

′
2,∞T

(
n,

2

n

)
+ E [∆b] .

where T is as in Definition 2.3.3.

The two previous corollaries would combine nicely if they used the same choice
of λ. Unfortunately, this is not the case, and a priori we may not know whether or
not Aθ∗ = b, but, this can be worked around using model selection. As it is shown
in the next section, we can make a suitable choice of λ whose associated model has
some performance guarantees without us needing to know whether Aθ∗ = 0.

2.3.2 Model selection

In order to be able to apply the model selection lemma (Lemma 2.1.6), we must
first show that Assumption 2.1.5 is satisfied under Assumptions 2.3.4. Letting

B′ = inf
λ≥0:θ̂λ=0

λ,

2By starting from Lemma 2.1.3, it is possible to see that choosing a fixed λ when Aθ∗ 6= b forces
terms such as ‖Aθ∗ − b‖2M or 2‖Aθ∗ − b‖M to appear in the right-hand side.
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from the Lasso optimality conditions (Hastie et al. (2009), exercise 3.26) it must hold
that ‖Â>Mb̂‖∞ = B′, and so

B′ = ‖Â>Mb̂‖∞
≤ ‖Â>Mb̂‖2
≤ ‖M

1
2 Â‖F ‖M

1
2 b̂‖2

≤ F 2
2,∞F

′
2,∞R∞

with probability one. Therefore, with B = F 2
2,∞F

′
2,∞R∞ ≥ B′, Assumption 2.1.5 is

satisfied, because θ̂λ = 0 for any λ ≥ B, and so Lemma 2.1.6 can be applied.

The next corollary shows that by using model selection we can obtain anO
(√

1
n

)
rate of convergence for ‖Aθ̂λ̂ − b‖M − ‖Aθ

∗ − b‖M , that is non-uniform in δ, with

high probability (w.h.p.). We also obtain an O

(√
lnn
n

)
rate in expectation. The

rate is not as fast as that of Corollary 2.3.8, and lacks uniformity in δ, but it applies
more generally.

Corollary 2.3.10. Under Assumptions 2.3.1 and 2.3.4, for any 0 < δ < 1, if

λ′ = F2,∞F
′
2,∞

√
2

n
T

(
n,
δ

2

)
,

a = 4

√
1

n
λ′,

B = F 2
2,∞F

′
2,∞R∞,

λ̂ = arg min
λ∈Λ(a,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

then, for n large enough so that a ≤ B, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ 3F2,∞F
′
2,∞

√
2

n
T

(
n,
δ

2

)
‖θ∗‖1 + 2F2,∞R∞

√
2

n
T

(
n,
δ

2

)
+ ‖Aθ∗ − b‖M +

√
1

n
.

Corollary 2.3.11. Under Assumptions 2.3.1 and 2.3.4, for any 0 < δ < 1, if

λ′ = F2,∞F
′
2,∞

√
2

n
T

(
n,

1

2n
3
2

)
,

a = 4

√
1

n
λ′,

B = F 2
2,∞F

′
2,∞R∞,

λ̂ = arg min
λ∈Λ(a,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,
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then it holds that

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

 b2max

2F2,∞F ′2,∞
√

2T
(
n, 1

2n
3
2

)
√ 1

n

+ 2

√
1

n
F2,∞F

′
2,∞
√

2T

(
n,

1

2n
3
2

)
‖θ∗‖1

+ E [∆A] ‖θ∗‖1 + 2E [∆b] + ‖Aθ∗ − b‖M +

√
1

n
.

Note also that for this model selection scheme we only need to evaluate ‖Âθ −
b̂‖M for

⌈
ln B

a

⌉
= O (lnn) models. This has convenient consequences to computa-

tion, which will be detailed in Appendix A.

2.4 Extensions and generalizations

Our results allow simple and useful extensions, and we believe they can also be
generalized in interesting ways for different losses and penalties. This section is
meant to provide summaries of how to make such extensions, and a discussion on
the generalizations.

2.4.1 Extensions

The following list shows the steps needed to apply our results for specific scenarios.

• Define M , A, b, Â, b̂. These are the key quantities upon which the determin-
istic results are based;

• State the concentration inequalities. They are related to how the sample is
obtained, and they are necessary to apply the stochastic results.

• Establish the correspondence between quantities of the concentration in-
equalities. Map the constants in the chosen inequalities into those required
by the lemmas in Section 2.2.

• Ensure that Assumption 2.1.5 holds. This is only necessary to extend the
model selection results.

For scenarios with i.i.d. observations, most of the previous steps have been
taken care of in Section 2.3, so that only two steps are necessary:

• define At and bt;

• ensure that Assumptions 2.3.4 hold.
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2.4.2 Generalizations to other solution candidates

It is important to point out that if we assume that with probability at least 1 − δ,
for 0 < δ < 1, ∆A ≤ c1§ δ2 and ∆b ≤ c2S

′ ( δ
2

)
hold simultaneously (as assumed in

Corollary 2.2.3), and if we define

θ̂ ∈ arg min
θ
‖Âθ − b̂‖M + c1§

δ

2
‖θ‖1,

then it is easy to see that, without the need to make assumptions about the con-
sistency of the system Aθ = b (i.e., it may be the case that Aθ∗ 6= b), the following
holds

‖Aθ̂ − b‖M ≤ 2c1§
δ

2
‖θ∗‖1 + 2c2S

′
(
δ

2

)
+ ‖Aθ∗ − b‖M .

This is a non-uniform result with the same form as the result we would get by
applying concentration assumptions to Corollary 2.1.4 would be.

Therefore, studying the excess loss of θ̂ is easier, and computing it is easy, be-
cause ‖Âθ − b̂‖M + c1§ δ2‖θ‖1 is a convex function of θ. Still, it remains to be seen
whether the gap in computational complexity between computing θ̂λ̂ and θ̂ is small
enough that it is worth using θ̂ in practice, rather than θ̂λ̂ chosen by model selec-
tion.

2.4.3 Generalizations to other penalties

It is not hard to see that similar results should also hold for Ridge regression Hastie
et al. (2009) and the elastic net Zou and Hastie (2005). For the Ridge regression
estimator,

θ̂β ∈ arg min
θ
‖Âθ − b̂‖2M + β‖θ‖22,

a result corresponding to Corollary 2.1.4 would be

‖Aθ̂β‖M ≤ ∆A max
{

1 + ‖θ∗‖22, 2‖θ∗‖22
}

+ 2∆b + ‖Aθ∗ − b‖M ,

with β = 2∆A‖Aθ∗ − b‖M . The max term occurs because we decompose ‖(A −
Â)θ̂β‖M ≤ ∆A‖θ̂β‖2, and the upper-bound ‖θ̂β‖2.

Likewise, for the Elastic net estimator with 0 ≤ α ≤ 1,

θ̂α,β,λ ∈ arg min
θ
‖Âθ − b̂‖2M + αλ‖θ‖1 + (1− α)β‖θ‖22,

the correspondent of Corollary 2.1.4 would be an α-convex combination of the re-
sults for Lasso and Ridge regression:

‖Aθ̂β‖M ≤ α2∆A‖θ∗‖1 + (1− α)∆A max
{

1 + ‖θ∗‖22, 2‖θ∗‖22
}

+ 2∆b + ‖Aθ∗ − b‖M ,

with β = λ = 2∆A‖Aθ∗ − b‖M .
The modification of the results to other types of penalties p(·) requires three

considerations. First, if the penalty is a random function, then these dependencies
need to be taken into account during the stochastic analysis. Second, the ∆ quan-
tities will need to be properly redefined: for example, ∆A must be changed so that
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‖(Â− A)θ‖M ≤ ∆Ap(θ). This is needed because the proofs are constructed so that
we can cancel out factors of p(θ̂λ) or p(θ̂λ̂) using some function of p(θ∗). In fact,
this is the third consideration: to make sure that p(θ̂λ) is either bounded (w.p. 1, or
w.h.p.), or that we can somehow replace it in the bound for a factor of p(θ∗). The
errors ‖Aθ̂λ − b‖M and ‖Aθ̂λ̂ − b‖M will ultimately be given in terms of p(θ∗).

2.4.4 Generalizations to other losses

We believe that extending the results to other losses is also possible. Our sugges-
tions in this case are speculative, but we believe they can provide insight about our
proof techniques and the potential generalizations.

The general form of the loss we are evaluating is h(Âθ − b̂) and the loss we are
minimizing is h′(Âθ− b̂), with h, h′ : R → R. In our case we have used h(·) = ‖ · ‖M
and h′(·) = ‖ · ‖2M .

We have heavily relied on the fact that triangle inequalities are defined for the
`2-norm, and on the ease of relating it to its square, through linear lower-bounds,
or, more explicitly, linear upper-bounds on the square-root function.

A super-additive h should be enough to reproduce the triangle-inequality steps,
and h′ would have to be chosen taking into consideration its relationship to h,
as well as algorithmic aspects, e.g., ease to minimize. A suitable replacement for
Lemma 2.1.3 to associate h and h′ would be necessary, and this would likely impact
the form and proof of all subsequent results.

As in generalizations to other penalty functions p(·), the ∆ quantities must be
properly redefined so that they can be split into ∆p(θ), e.g., h((Â−A)θ) ≤ ∆Ap(θ)

Of course, considering that the ultimate purpose of studying ‖Aθ − b‖M is its
relationship to other error metrics on specific scenarios, reworking the lemmas for
other h and h′ would only make sense if h(Aθ − b) was itself meaningful.

2.4.5 Oracle inequalities

It would be interesting to have oracle inequalities, e.g., a bound of the form

‖Aθ̂λ − b‖M ≤ 2∆b + inf
θ∈Rd

(2∆A‖θ‖1 + ‖Aθ − b‖M ) .

These are interesting generalizations of our bounds, and we believe they might not
be hard to derive because the techniques we use to relate ‖Aθ̂λ − b‖M to quantities
pertaining to θ∗may also, in principle, be used to do the same for quantities relating
to any other θ ∈ Rd. We have exploited that ‖Aθ∗ − b‖M = 0 under the assumption
thatAθ∗ = b, so in this case there might be some trouble to obtain bounds that have
the form we are after (with 1 · L(θ), w.r.t. to the θ that minimizes the term whose
infimum is taken).
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Chapter 3

Applications to regression

The theme of this chapter is linear regression. After formulating the problem as a
linear estimation problem and stating our results in Section 3.1, we see, in Section
3.2, the consequences of our results derived in Section 2.3, under the light of related
work in the literature.

3.1 Formulation

In linear regression, we assume there exist a measurable input space X , a proba-
bility measure ρ and a measurable function g : X → R such that g(X) = E [Y |X],
where X and Y are jointly distributed according to ρ.

We will limit ourselves to linear approximation, so we are given a feature ex-
tractor φ : X → Rd and we wish to find an element of

arg min
f∈F

E
[
(f(X)− Y )2

]
,

where

F .
=
{
fθ|θ ∈ Rd

}
,

fθ(·)
.
= φ(·)>θ.

That is, we want to find the orthogonal projection of g, with respect to the euclidean
norm weighted according to ρ, onto F , the linear space induced by φ. Let us call
this orthogonal projection gF .

Let

θ∗
.
= arg min

θ∈Θ∗
‖θ‖1,

where

Θ∗
.
= {θ : fθ = gF} .

Even though gF is unique, Θ∗ may not be a singleton, so we choose θ∗ as its most
convenient element for our analysis.

We evaluate the performance of an estimator θ by

E
[
(fθ(X)− Y )2

]
= θ>E

[
φ(X)φ(X)>

]
θ − 2θ>E [φ(X)Y ] + E

[
Y >Y

]
.
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Letting

A
.
= C

.
= E

[
φ(X)φ(X)>

]
,

b
.
= E [φ(X)Y ] ,

and provided that C � 0, we have that

E
[
(fθ(X)− Y )2

]
= θ>Cθ − 2θ>b+ E

[
Y >Y

]
,

and by the definition of θ∗, it holds that

E
[
φ(X)φ(X)>

]
θ∗ = E [φ(X)Y ] ,

Aθ∗ = Cθ∗ = b.

Therefore,

E
[
(fθ(X)− Y )2

]
= θ>Cθ − 2θ>b+ bC−1b+ E

[
Y >Y

]
− bC−1b

= ‖Aθ − b‖2C−1 + E
[
Y >Y

]
− 2bC−1b+ bC−1b

= ‖Aθ − b‖2C−1 + E
[
Y >Y

]
− 2bθ∗ + θ∗>Cθ∗

= ‖Aθ − b‖2C−1 + E
[
(gF (X)− Y )2

]
.

The second term is an approximation error that can only be reduced by changing
F appropriately, which is out of the scope of this work.

So, finding θ that minimizes ‖Aθ − b‖2C−1 is a sensible way of approximating
g, however, we are only provided with a sample (xt, yt), for t = 1, . . . , n drawn
w.r.t. the measure ρ. We we will assume that these observations are drawn i.i.d.,
and, with a few definitions, we will see that this regression problem can be cast as
a linear estimation problem to which our results apply, and for this we need to do
as indicated in Section 2.4.1: define At and bt, and ensure that Assumption 2.3.4
holds. We will also define corresponding quantities related to C, because they are
of interest to our analysis.

For conciseness, let ϕt = φ(xt) for t = 1, . . . , n. Based on ϕt and yt, for t =
1, . . . , n, we can construct At, bt and Ct for t = 1, . . . , n such that

At
.
= Ct

.
= ϕtϕ

>
t ,

bt
.
= ϕtyt.

Also, let

Ĉ
.
=

1

n

n∑
t=1

Ct.

With this, our definitions for regression are in accordance with Assumptions 2.3.1
and the problem statement in Section 1.1. Even though we would like to use M =
C−1, C is not known to us, so we will work with M � 0, and in Section 3.2 we
will investigate the consequences of different choices of M . Now it only remains to
ensure that Assumption 2.3.4 is satisfied.
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Assumption 3.1.1. Assume that there exist positive constants F2,∞, F
′
2,∞, F∞,∞, R∞

such that, with probability one,

‖M
1
2ϕt‖2 ≤ F2,∞,

‖ϕt‖2 ≤ F ′2,∞
‖M

1
2ϕt‖∞ ≤ F∞,∞

|yt| ≤ R∞

These, along with the definition of At and bt, imply that

‖M
1
2At‖F = ‖M

1
2ϕtϕ

>
t ‖F ≤ F2,∞F

′
2,∞

almost surely.
The statement above can be proved using the formulation of the Frobenius

norm as a trace, and then the rotation property of the trace operator. By the Cauchy-
Schwartz inequality,

‖M
1
2 bt‖F = sup

ϕt,yt
‖M

1
2ϕtyt‖2 ≤ F2,∞R∞

almost surely. These constructions allow the results of Section 2.3 to be applied to
our regression scenario. Because we have that Aθ∗ = b, we can use Corollary 2.3.8:

Corollary 2.3.8. Under Assumptions 2.3.1 and 2.3.4, if Aθ∗ = b and

λ̂ =
2

n
F 2

2,∞max{R∞, F ′2,∞}2,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ F2,∞max{R∞, F ′2,∞}
√

2

n
·max

{
(‖θ∗‖1 + 1)2T

(
n,
δ

2

)3

+

1

2
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

1

2T
(
n, δ2

) ‖θ∗‖1
‖θ∗‖1 + 1

+ T

(
n,
δ

2

)}

+ F2,∞max{R∞, F ′2,∞}
√

2

n
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

where T is as in Definition 2.3.3.

This bound is uniform, and has the structure we were aiming for:

‖Aθ̂λ̂ − b‖M ≤ O

(
(‖θ∗‖1 + 1)2

√
1

n

)
.

In the next section we interpret this result, and study its implications to regression,
for different choices of M .
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3.2 Consequences and related work

The first evident consequence of Corollary 2.3.8 is that if we choose M = C−1,
Corollary 2.3.8 and Aθ∗ = b imply that, in any regression problem satisfying our
conditions,

‖Aθ̂λ − b‖2M = O

(
1

n

)
with high probability. Since θ̂λ is random, in order to analyze E

[
(fθ̂λ(X)− g(X))2

]
we need to take an expectation bound of ‖Aθ̂λ − b‖2M . By tail integration of the
bound in Corollary 2.3.8, we can see that

E
[
(fθ̂λ(X)− g(X))2

]
= E

[
(g(X)− gF (X))2

]
+O

(
lnn

n

)
.

The result of Corollary 2.3.8 with M = C−1 is similar to Theorem 11.3 of Györfi
et al. (2002), which reads:

Theorem 3.2.1 (Theorem 11.3 of Györfi et al. (2002)). Assume

σ2 = sup
x∈X

Var(Y |X = x) <∞

and

‖g‖∞ = sup
x∈X
|g(x)| ≤ L

for some L ≥ 0. Let Fn be a linear vector space of functions f : Rd → R. Let Kn be the
vector space dimension of Fn. Define the estimate mn by

mn(·) = max {−L,min {m̃n(·), L}} ,

m̃n = arg min
f∈F

1

n

n∑
t=1

(f(φ(xt))− yt)2.

Then

E
[
(mn(φ(X))− g(X))2

]
≤ cmax

{
L2, σ2

} Kn lnn

n
+ 8 inf

f∈Fn
E
[
(f(φ(X))− g(X))2

]
.

The assumptions in Theorem 3.2.1 are more general than ours, because the re-
sponses Y can be unbounded, provided that they have a bounded second moment,
and the input X can also be unbounded as long as g(X) is bounded almost surely.
There is an explicit dependence on the dimension Kn of Fn, whereas in our case
this dependence is implicit in the range constants.

Now, truncation is an important concept used in the theorem to dismiss bound-
edness assumptions on X , and it would be convenient for us to use it as well.
Unfortunately, it is not clear how to define a suitable notion of truncation for our
problem, and one that is compatible with the concentration inequalities we use.
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Of course, only an oracle can choose M = C−1. For any θ, loose bounds for
‖Aθ − b‖C−1 can be obtained by taking M = Id and then using the fact that

‖Aθ − b‖C−1 ≤
√
λmax(C−1)‖Aθ − b‖2

=

√
1

λmin(C)
‖Aθ − b‖2.

Remark 3.2.2 (about the looseness of bounds that use minimum eigenvalues). We
know that λmin(C), the minimum eigenvalue of C, is strictly positive, but it can be
arbitrarily close to zero. The resulting bounds are loose in the sense that there may
be a large, though constant, gap between

√
1

λmin(C) supϕt ‖ϕt‖2 and supϕt ‖ϕt‖M .

We believe there are other approaches that are worth investigating, with a po-
tential to better relate ‖Aθ − b‖C−1 and ‖Aθ − b‖M . We would need to estimate
C−1; it is not as straightforward as inverting an estimate or a shifted estimate of C,
because doing so yields a biased estimator of C−1.

Remark 3.2.3 (about using estimates of C−1 and other random matrices as M ). We
may simplify 1 our problem by using an estimate Ĉ ′′ of C that is independent of Â,
b̂, Â′ and b̂′, and then show, for some D � 0, that E

[
(Ĉ ′′ +D)−1

]
≈ C−1.

Alternatively, one might demonstrate that for fixed v ∈ Rd ‖v‖Ĉ′′+ concentrates
around its expectation, by working on the subspace where the Moore-penrose
pseudo-inverse function (+) is convex, and use Jensen’s inequality to see that

E
[
‖v‖Ĉ′′+

]
≤ ‖v‖C−1 .

This approach is particularly suitable for semi-supervised learning scenarios, where
we can obtain many observations of the covariance matrix C. In supervised learn-
ing, on the other hand, this would mean separating part of the sample for estima-
tion of C and discarding the corresponding responses.

In fact, using a random M requires many details to be dealt with, e.g., depen-
dencies, concentration inequalities and the range assumptions. These, in particu-
lar, must hold w.p. 1, so one may need to re-express them in terms of non-random
quantities, or use appropriate conditioning throughout the derivations.

Section 6.12 of Bühlmann and Geer (2011) discusses compatibility conditions
that may be used to relate Ĉ+, or, more generally, some random M̂ , to C−1. A
compatibility condition (with parameter c) holds when ‖M̂ − C−1‖∞,∞ ≤ c′, so

that, with a few other assumptions on the sparsity of θ̂λ̂,
∣∣∣∣ ‖Aθ̂λ̂−b‖M̂‖Aθ̂λ̂−b‖C−1

− 1

∣∣∣∣ = O
(
c′

c2

)
.

Note that we can recover a compatibility condition by having a bound based on
λmin(C), as we did before to have performance bounds for M = Id.

Hsu et al. (2011) analyze E
[
fθ̂(X)− gF (X))2

]
where θ̂ is a least-squares estima-

tor. In Lemma 3, they exploit the structure of θ̂ to bound

‖θ̂ − θ∗‖2C ≤ ‖C
1
2 Ĉ−1C

1
2 ‖FE

[
g(X)− gF (X))2

]
,

1We chose to simplify the problem by using an independent estimate of C because using Ĉ or Ĉ′

introduces the necessity of dealing with dependencies.
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assuming that Ĉ � 0. It may be possible to devise a similar bound for θ̂λ̂, or to
use a similar type of separation to obtain a more suitable definition of A and b for
regression, that dismisses our need to choose M close to C−1.

Finally, it is important to mention the work of Bartlett et al. (2009). They study
the performance of a Lasso (`1-regularizer least-squares) estimator, and how to
choose λ so as to bound E

[
fθ̂(X)− gF (X))2

]
. In fact, they provide oracle inequal-

ities, but they choose λ based on a choice of δ, and require n to be large enough
for the bounds to hold, i.e., the smaller the confidence parameter δ, the larger the
smallest n to which the respective bound applies. Our results for regression are not
oracle inequalities, but they are uniform in δ.

As for the dependence on dimensionality, the bounds by Bartlett et al. (2009)
have a factor of

√
ln d, the impact of dimensionality on our results is more indirect,

as discussed ahead.

Remark 3.2.4 (about the impact of d on the bounds). All the corollaries derived in
this section do not have an explicit dependence on the number of features d. Evi-
dently, the dimensionality will have its impact on F2,∞ and F ′2,∞, so the behavior
of these quantities will ultimately dictate how large d can be. For example, gener-
ating d Haar wavelet (Wasserman (2006); Sweldens and Schröder (1996)) features
would maintain F2,∞, F

′
2,∞ = O (ln d). For certain combinations of input spaces

and feature extractors, however, F2,∞ and F ′2,∞ can be as large as Θ(
√
d) 2, so the

choice of d is also dependent on the choice.

2Regret lower bounds in online learning, such as those in Gerchinovitz and Yu (2011), can be used
to help devise such combination.
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Chapter 4

Applications to reinforcement
learning

In this chapter we extend our lemmas into results for on- and off-policy value pre-
diction in reinforcement learning (RL). First, in Section 4.1, we present the neces-
sary RL context to pose the value prediction problem, which we cast it as a lin-
ear estimation problem to which our results apply. Section 4.2 is about the conse-
quences of the results in Section 2.3 for the value prediction problem in RL. Finally,
in Section 4.3, we state the related results existing in the literature.

4.1 Formulation

The formulation in this section is derived from Chapter 1 in the book of Szepesvári
(2010), our notation being slightly different at parts.

A Markov decision process (MDP) M is a quintuple (X ,A,P,R, γ). X is a
(non-empty) state space and A is a (non-empty) action space. P is a transition
probability kernel assigning a probability measure P (·|X,E) : X → R to each
element of the state-action space X × A such that the next state X ′ w.r.t. to a state
action pair (x, a) is distributed according to P (·|X = x,E = a). The immediate
reward kernel R induces an immediate reward function r : X × A → R such
that E [r(X,E)|X = x,E = a] is the expected immediate reward received when in
action a is taken in state x. 0 ≤ γ < 1 is a discount factor.

When γ = 0, we recover a regression scenario with the notion of states, which
is more general than the linear regression covered in Chapter 3.

A deterministic policy π : X → A maps states into actions, and induces a value
function Qπ : X ×A → R such that, for every x ∈ X , a ∈ A,

Qπ(x, a) = T πQπ(x, a),

where the Bellman operator T π is such that

T πf(x, a) = E
[
r(X,E) + γf(X ′, π(X ′))|X = x,E = a

]
holds for any f : X × A → R, for all x ∈ X , a ∈ A. In the above definition
and in the remainder of this chapter, X ′ denotes a next-state random variable with
distribution P (·|X,E).
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We will tackle the (potentially) uncountably large size of the state-action space
by representing the state-action pairs through finite d-dimensional feature vectors,
obtained through a feature extractor φ : X ×A → Rd.

One goal in value prediction is to compute a good approximation of Qπ that is
a linear function of the features. We wish to find ΠF ,ρQ

π, where

ΠF ,ρf
′ .= arg inf

f∈F
E
[
(f(X,E)− f ′(X,E))2

]
,

F .
=
{
Qθ : θ ∈ Rd

}
,

Qθ(x, a)
.
= φ(x, a)>θ.

This corresponds to finding Qθ for (any) θ ∈ Θ∗, where

Θ∗
.
= {θ : Qθ = ΠF ,ρQ

π} .

For convenience, let

θ∗
.
= arg min

θ∈Θ∗
‖θ‖1.

Caveat lector: The function Qθ∗ is not to be mistaken for Q∗, which is such that

Q∗(x, a) = E
[
r(X,E) + γ sup

a′
Q∗(X ′, a′))|X = x,E = a

]
,

and induces at least one deterministic policy π∗ such that Qπ∗ = Q∗ (Sutton and Barto
(1998); Szepesvári (2010)). Rather, Qθ∗ is simply the orthogonal projection of Qπ upon F .
For any two functions f, f ′ : X ×A → R, let

‖f − f ′‖2ρ
.
= E

[
(f(X,E)− f ′(X,E))2

]
,

where (X,E) ∼ ρ. For any θ ∈ Rd, we can write

E
[
(Qπ(X,E)−Qθ(X,E))2

]
= ‖Qπ −Qθ‖2ρ
= ‖Qπ −ΠF ,ρQ

π‖2ρ + ‖ΠF ,ρQπ −Qθ‖2ρ.

The only way to reduce ‖Qπ − ΠF ,ρQ
π‖2ρ is to redefine F . This is a problem on its

own, which we will not address, so we will restrict ourselves to finding a θ that
minimizes ‖ΠF ,ρQπ −Qθ‖2ρ. We have that

‖ΠF ,ρQπ −Qθ‖ρ = ‖ΠF ,ρ(T πQπ −Qθ)‖ρ
≤ ‖ΠF ,ρ(T πQπ − T πQθ)‖ρ + ‖ΠF ,ρ(T πQθ −Qθ)‖ρ.

The term ‖ΠF ,ρ(T πQθ − Qθ)‖ρ is called the projected Bellman error (PBE, Antos
et al. (2008)). By applying the definitions of ΠF ,ρ and T π, it is easy to show that

‖ΠF ,ρ(T πQθ −Qθ)‖2ρ = ‖Aθ − b‖2C−1 ,

where

A
.
= E

[
φ(X,E)(φ(X,E)− γφ(X ′, π(X ′)))>

]
,

b
.
= E [φ(X,E)r(X,E)] ,

C
.
= E

[
φ(X,E)φ(X,E)>

]
,
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provided that C � 0, which we assume to be the case.
It is possible to approximate Qθ∗ through the least-squares temporal difference

learning (LSTD) Bradtke and Barto (1996); Szepesvári (2010). In particular, when
Aθ∗ = b it yields the same set of minimizers as the PBE, because

Aθ∗ = b ⇐⇒ ‖Aθ∗ − b‖22 = 0 ⇐⇒ ‖Aθ∗ − b‖2C−1 = 0.

In our case, we have very little knowledge about ρ, or we want to make only
a few assumptions about it. That is to say that we do not have access to A, b
and C directly, but we are given transition observations ((Xt, Et), rt, Xt+1), for
t = 1, . . . , n + m, where (Xt, Et) are drawn from ρ, and rt and Xt+1 are drawn
from the reward and next-state distributions associated to (Xt, Et). We then con-
struct a sample (ϕt, rt, ϕ

′
t+1) for t = 1, . . . , n + m where ϕt = φ(Xt, Et) and ϕt =

φ(Xt+1, π(Xt+1)). The distribution ρ could be, for example, induced by running a
policy π′ in the MDP. π′, often referred to as the behavior policy, may be different
from the evaluation policy π (Sutton and Barto (1998)). When π = π′, the policy
evaluation is called on-policy, otherwise it is called off-policy.

In order to formulate the value prediction problem as a linear estimation prob-
lem, we need to define Et and bt, and ensure that Assumptions 2.3.4 hold, as de-
scribed in Section 2.4.1, so that the results in Section 2.3 apply. First of all, assume
that the observations are drawn i.i.d. from ρ, and let

At
.
= ϕt(ϕt − γϕ′t+1)>,

bt
.
= ϕtrt.

Because we will need to make considerations about C, let

Ct
.
= ϕtϕ

>
t ,

Ĉ
.
=

1

n

n∑
t=1

Ct.

Furthermore,

Assumption 4.1.1. Assume that there exist positive constants F2,∞, F
′
2,∞, F

′
∞,∞, R∞

such that, with probability one,

‖M
1
2ϕt‖2 ≤ F2,∞,

‖ϕt − γϕ′t+1‖2
.
= F ′2,∞,

‖ϕt − γϕ′t+1‖∞
.
= F ′∞,∞,

|rt|
.
= R∞.

As observed in Chapter 3 after Assumption 3.1.1, Assumption 4.1.1 implies
that, with probability one,

‖M
1
2At‖F = ‖M

1
2ϕt(ϕt − γϕ′t+1)>‖F ≤ F2,∞F

′
2,∞.

and likewise,

‖M
1
2 bt‖F = ‖M

1
2ϕtrt‖2 ≤ F2,∞R∞.
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All corollaries in Section 2.3 apply to this scenario, but we will only restate
Corollaries 2.3.8, 2.2.3 and 2.2.4, which are of particular interest. The result of
Corollary 2.3.9 can be safely replaced by that of Corollary 2.2.4.

The first result applies to the on-policy case, in which ‖Aθ∗ − b‖C−1 = 0:

Corollary 2.3.8. Under Assumptions 2.3.1 and 2.3.4, if Aθ∗ = b and

λ̂ =
2

n
F 2

2,∞max{R∞, F ′2,∞}2,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ F2,∞max{R∞, F ′2,∞}
√

2

n
·max

{
(‖θ∗‖1 + 1)2T

(
n,
δ

2

)3

+

1

2
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

1

2T
(
n, δ2

) ‖θ∗‖1
‖θ∗‖1 + 1

+ T

(
n,
δ

2

)}

+ F2,∞max{R∞, F ′2,∞}
√

2

n
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

where T is as in Definition 2.3.3.

Corollary 2.3.8 allows us to provide a bound for the projected Bellman error
in on-policy scenarios. In this case, with the (unrealistic) choice of M = C−1, we
obtain, for any 0 < δ < 1,

‖Aθ̂λ̂ − b‖
2
C−1 = O

(
(‖θ∗‖1 + 1)4

n

)
holds with probability at least 1 − δ. If we choose M = I and use the technique
illustrated in Section 3.2, we can show that for any 0 < δ < 1,

‖Aθ̂λ̂ − b‖
2
C−1 = O

(
(‖θ∗‖1 + 1)4

nλmin(C)

)
holds with probability at least 1 − δ. Note that the effect of the dimensionality is
embedded in F2,∞, R∞ and F ′2,∞ (as discussed in Remark 3.2.4, which also applies
to this case).

The next two results hold for both on- and off-policy scenarios:

Corollary 2.3.10. Under Assumptions 2.3.1 and 2.3.4, for any 0 < δ < 1, if

λ′ = F2,∞F
′
2,∞

√
2

n
T

(
n,
δ

2

)
,

a = 4

√
1

n
λ′,

B = F 2
2,∞F

′
2,∞R∞,

λ̂ = arg min
λ∈Λ(a,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,
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then, for n large enough so that a ≤ B, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ 3F2,∞F
′
2,∞

√
2

n
T

(
n,
δ

2

)
‖θ∗‖1 + 2F2,∞R∞

√
2

n
T

(
n,
δ

2

)
+ ‖Aθ∗ − b‖M +

√
1

n
.

Corollary 2.3.11. Under Assumptions 2.3.1 and 2.3.4, for any 0 < δ < 1, if

λ′ = F2,∞F
′
2,∞

√
2

n
T

(
n,

1

2n
3
2

)
,

a = 4

√
1

n
λ′,

B = F 2
2,∞F

′
2,∞R∞,

λ̂ = arg min
λ∈Λ(a,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

then it holds that

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

 b2max

2F2,∞F ′2,∞
√

2T
(
n, 1

2n
3
2

)
√ 1

n

+ 2

√
1

n
F2,∞F

′
2,∞
√

2T

(
n,

1

2n
3
2

)
‖θ∗‖1

+ E [∆A] ‖θ∗‖1 + 2E [∆b] + ‖Aθ∗ − b‖M +

√
1

n
.

We can see that choosing M = C−1, we obtain, for 0 < δ < 1 used to choose λ′,

‖Aθ̂λ̂ − b‖
2
C−1 = O

(
(‖θ∗‖1 + 1)

n

)
+

(
1 +O

(√
1

n

))
‖Aθ∗ − b‖2C−1

holds with probability at least 1 − δ. If we choose M = I and use the technique
illustrated in Section 3.2, we can show that for 0 < δ < 1 used to choose λ′,

‖Aθ̂λ̂ − b‖
2
C−1 = O

(
(‖θ∗‖1 + 1)

nλmin(C)

)
+

(
λmax(C)

λmin(C)
+O

(√
λmax(C)

nλmin(C)

))
‖Aθ∗ − b‖2C−1

holds with probability at least 1 − δ. These bounds have a “slow” term and the
conditioning number of C multiplying the projected Bellman error of θ∗, which
is not a desirable form for the result. However, the unsquared projected Bellman
error has the form we would like, i.e.,

O

(√
1

n

)
+ ‖Aθ∗ − b‖C−1

with the exception of the inverse smallest eigenvalue of C multiplying the excess
loss, and the conditioning number of C multiplying ‖Aθ∗ − b‖C−1 if we use the
eigenvalue upper-bounding.
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The remarks about the expectation bound of Corollary 2.3.11 are analogous to
those about the results of Corollary 2.3.10.

Now, we are ready to discuss the implications of these corollaries to reinforce-
ment learning.

4.2 Consequences

In the previous section, we have argued why minimizing the PBE is important, and
that we wish to minimize it as a means of minimizing ‖Qπ −Qθ‖ρ. In this section,
we will see what our results can tell us about the PBE of certain estimators. The
discussion will be limited to θ̂λ̂, as the observations follow similarly for the other
estimators we have studied.

As in the regression scenario, takingM asC−1 yields bounds for the PBE. How-
ever, this is an oracle choice that cannot be made in practice. One alternative is to
do as prescribed in Section 3.2: choose M = Id, which corresponds to performing
`1-regularized LSTD, and then use that

‖Aθ − b‖C−1 ≤

√
1

λmin(C)
‖Aθ − b‖2.

Since it may be the case that ‖Aθ∗ − b‖2 > 0, we will also need to use that

‖Aθ − b‖2 ≤
√
λmax(C)‖Aθ − b‖C−1 ,

but the resulting bounds may be loose, for the reason expressed in Remark 3.2.2.
It is natural to ask whether θ minimizing ‖Aθ−b‖M for otherM will enjoy better

estimation error than those computed through LSTD. This question is motivated by
the only other rates of convergence for LSTD, given by Lazaric et al. (2010), and the
claim in Antos et al. (2008) that there are more suitable losses to minimize than
‖Âθ − b̂‖22.

In our analysis, the choice M = C−1, though impractical, yields better estima-
tors than M = Id. This hints at a positive answer for the question stated before, but
it is not definite because our results apply to `1-regularized LSTD, and in principle
we have not proved that bounding ‖Aθ−b‖2C−1 for LSTD estimators will necessarily
require a factor of 1

λmin(C) to appear in the bound. Two alternatives to performing

LSTD are to use M = Ĉ−1 or to have M = Ĉ ′−1 (where Ĉ ′ is independent of all the
other random variables).

Remark 3.2.3 is also valid for this RL case, but there is an additional issue: we
may need to upper-bound ‖Aθ∗ − b‖M by ‖Aθ∗ − b‖C−1 and some other vanishing
terms. This is not a problem in regression because in that case ‖Aθ∗ − b‖C−1 = 0,
but in off-policy value prediction it may be the case that ‖Aθ∗ − b‖C−1 > 0.

One possibility is to introduce the factor of
√
λmax(C), which is cannot be much

larger than the other quantities we are using. Another possibility is to generalize
the results of Pittenger (1990) to matrices; the important result is stated in this text
as Lemma B.2.1 and applies to scalars. The idea would be to have some bound of
‖Aθ∗ − b‖(Ĉ′+D)−1 , where D � 0, in terms of ‖Aθ∗ − b‖C−1 plus some vanishing
term.

The role of dimensionality in this scenario is the same as in regression, as ex-
pressed in Remark 3.2.4, with the exception that F ′2,∞ may be different in RL.
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4.3 Related work

In this section, we delve into related studies about value function approximation in
RL. The existing finite-time performance bounds are recent, and they also pertain
to minimizing ‖Qπ −Qθ‖ρ, but as we will see our approach is somewhat different
from the the other existing ones.

The goal of this section is to show the bounds proved and the types of estima-
tors studied elsewhere. This exposition will be enough to contrast our results and
our approach with those in this subfield of RL.

The works of Lazaric et al. (2010); Ghavamzadeh et al. (2010, 2011) provide risk-
like bounds for variations of LSTD. It is important to emphasize that the primary
quantities they investigate are different from the ones we do, but there is a common
ground where comparison of results is possible, where techniques they use may
help us expand our results, and vice-versa. In particular, they are also interested in
bounding ‖Qπ −Qθ̂‖

2
ρ and

‖Qπ −Qθ̂‖
2
n
.
=

1

n

n∑
t=1

(Qπ(Xt, Et)−Qθ̂(Xt, Et))
2,

with θ̂ being computed differently for each study, by the respective variations of
LSTD. The data used to compute the estimators is a Markov chain

Sn = (X1, r1, X2), . . . , (Xn, rn, Xn+1),

where rt is the reward at time-step t, and ρ is a stationary distribution given by
a β-mixing process. Ghavamzadeh et al. (2011), sparsity oracle inequalities are
provided, but not the generalization bounds. We will refrain from discussing the
sparsity oracle inequalities because parameter identification is out of the scope of
this work; see, for example, Candes and Tao (2007) for interesting results and ad-
ditional references. We will also omit the discussion of the generalization bounds,
but, next, we will present in detail the other results.

Lazaric et al. (2010) use the empirical projection operator

Π̂F ,nf
′ .= arg min

f∈F
‖f ′ − f‖n,

and define the pathwise Bellman T̂ π operator

T̂ πf(Xt)
.
=

{
rt + γf(Xt+1) , if 1 ≤ t < n,

rt , if t = n,

in order to compute the pathwise LSTD

f̂ = arg min
f∈F
‖f − Π̂F ,nT̂ πf‖22.

They prove that Π̂F ,nT̂ π is a γ-contraction w.r.t. to ‖ · ‖n, so Banach’s fixed-point
theorem implies that f = Π̂F ,nT̂ πf for some f . By the definition of pathwise LSTD,
f̂ is that fixed-point.
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They use these results to show that

‖Qπ −Qθ̂‖n ≤
1

1− γ

(
‖Qπ − Π̂F ,nQ

π‖n + ‖Π̂F ,n(Qπ − T̂ πQπ)‖n
)
,

and relate this bound to ‖Qπ−Qθ̂‖ρ by applying concentration inequalities for their
β-mixing process.

In addition, they show that, with probability at least 1− δ,

‖Π̂F ,n(Qπ − T̂ πQπ)‖n = O

√d ln d
δ

νnn

 ,

where νn is the minimum strictly positive eigenvalue of Ĉ. We must point out that
‖Π̂F ,n(Qπ − T̂ πQπ)‖n is very much different from ‖Aθ∗ − b‖C−1 . While the latter
quantity can be larger than zero,

lim
n→∞

‖Π̂F ,n(Qπ − T̂ πQπ)‖n = ‖ΠF ,ρ(Qπ − T πQπ)‖ρ

= 0,

because Qπ = T πQπ.
Even though νn is strictly positive, it can be arbitrarily close to zero, so the au-

thors assume n is large enough so that νn is larger than some quantity with proba-
bility at least 1 − δ. However, there is a caveat in doing this: for any fixed n there
exists a minimum strictly positive confidence with which the inequalities hold, and
in this sense they are not uniform in δ. We believe it is possible to use regulariza-
tion to guarantee that νn is large enough for any δ > 0. For example, performing
the projection with `2 regularization weighed by β

2 would increase νn by β.
Pathwise LSTD is only defined for on-policy scenarios. Although extending

the results to state-action pairs is straightforward, it is not clear how T̂ π can be
redefined to accommodate multiple chains, or an off-policy sample (which would
be the case of multiple length-1 chains), in a way that it is still a contraction, in
particular because they exploit that the observations are chained together in their
original proof.

Ghavamzadeh et al. (2010) study pathwise LSTD combined with random pro-
jections (Dasgupta (2000)) to perform dimensionality reduction. They show that,
with probability at least 1− δ,

‖Qπ − Π̂G,nQ
π‖n ≤

1√
1− γ2

(
‖v − Π̂F ,nQ

π‖n +O

(√
ln n

δ

d
m
(

Π̂F ,nQ
π
)))

+O

√ d

νn

√ ln d
δ

n
+

1

n

 ,

where G is the low-dimensional space, of dimension d ≥ 15 ln 8n
δ , andF is the high-

dimensional space, with dimension D. νn is defined w.r.t. the covariance matrix in
the smaller space, and its appearance is a consequence of the result in Lazaric et al.
(2010). The need to have νn > c > 0, for some constant c, and d ≥ 15 ln 8n

δ imply
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that the bound is non-uniform in δ, because d has to be chosen based on δ, and if δ
is sufficiently small then 15 ln 8n

δ > D.
The term m(Qθ), defined as 1

m(Qθ) = ‖θ‖2 sup
ϕt
‖ϕt‖2,

is influenced by D and by the way the features are constructed (cf. Remark 3.2.4).
It may be O (logD) for some feature extractors, but O

(√
D
)

for others.
The authors show that with

d = O
(
m
(

Π̂F ,nQ
π
)√

nνn

)
,

we have

‖Qπ − Π̂G,nQ
π‖n = O

(
√

lnn

(
1

nνn

) 1
4

)
,

where the we have hidden the confidence parameter δ of the bound, range con-
stants, γ, and m

(
Π̂F ,nQ

π
)

. We point out that by choosing

d = Θ
(
m
(

Π̂F ,nQ
π
)
νn
√
n
)
,

we can eliminate the effect of
(

1
νn

) 1
4 , which can be arbitrarily large if δ is small

enough. There will be a factor of
√
νn multiplying one of the terms, but this factor

cannot be arbitrarily large.
The real caveat is that we must ensure that d ≥ 15 ln 8n

δ , but either of the choices
may not respect that, if νn is too small. Moreover, computing this eigenvalue will
affect the cost of the whole procedure, as will computing m

(
Π̂F ,nQ

π
)

, because of
D.

This error rate is slower than that of pathwise LSTD in terms of n, but if D is
large enough, even D =

√
n, the random projections still allow good performance

to be proved, whereas the bounds for plain pathwise LSTD become vacuous.
In Ghavamzadeh et al. (2011), pathwise LSTD is combined with `1-norm regu-

larization, which called Lasso-TD. They define

Π̂F ,ρ,λf = fθ̂ : θ̂ ∈ arg min
θ∈Rd
‖fθ − f‖2n + λ‖θ‖1,

where fθ(·) = φ(·)>θ. This operator is shown to be a non-expansion, so Π̂F ,ρ,λT̂ π is
a γ-contraction w.r.t. to ‖ · ‖n, and the authors claim that finding its fixed point is
equivalent to computing the fixed point of

θ̂ = arg min
θ
‖Π̂F ,ρ,λT̂ πfθ̂ − fθ‖

2
n.

They also claim that this is equivalent to what LARS-TD Kolter and Ng (2009) and
LC-TD Johns et al. (2010) compute. That is to say that these two methods and

1If there is more than one θ yielding Qθ , choose the one with smallest `2-norm for m(Qθ).
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Lasso-TD first enforce the KKT optimality conditions of Lasso Hastie et al. (2009),
and then apply the fixed-point equality for the optimizer. This approach is ill-
defined for off-policy scenarios, because in those cases the fixed point of ΠF ,ρ,λT π
may not exist.

Their results imply 2 that, with probability at least 1− δ,

‖Qπ −Qθ̂‖n ≤
1

1− γ
‖Qπ −Qθ∗‖n +O

√‖θ‖1
( ln d

δ

n

) 1
4

+

√
1

n

 .

As the authors state, this rate is an improvement over the previous results for path-
wise LSTD, because the dependence on νn was eliminated. The rate is slower in
terms of n only in some cases, because in the Lasso-TD bounds the dependence on
the dimensionality is O (ln d), whereas for pathwise LSTD it is O

(√
d ln d

)
. Thus,

their bounds convey that regularization is appropriate for d = Ω
((

1
n

) 1
4

)
The choice of λ for these bounds is also dependent on δ, but also for this case it

should not be hard to provide bounds that are uniform on the confidence parame-
ter.

As in the three works discussed before, we are also interested finding estimators
with small ‖Qπ − Qθ‖ρ. Our approach is different because we chose to minimize
the projected Bellman error and then relate this quantity to ‖Qπ −Qθ‖ρ.

There is an important point, however: the Lasso-TD results have no depen-
dency on νn, whereas our result with the choice M = Id depends on λmin(C).
Therefore their estimator has better (though non-uniform) guarantees for smaller
n, but for large enough n LSTD with `1 penalty, i.e., our procedure with M = Id,
has tighter error bounds than Lasso-TD.

2The original result takes the infimum over all θ of the right-hand side.
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Chapter 5

Conclusion

In this dissertation we showed results for `1-regularized linear estimation. The
special cases of regression and reinforcement learning have been studied by Bartlett
et al. (2009) and Ghavamzadeh et al. (2011), respectively. We took a more general
approach to obtain results for both cases, and we showed that the quantities we
bound are in fact related to important error measures in those scenarios. For our
regression formulation, which is different from the one used by Bartlett et al. (2009),
we have obtained performance bounds that are uniform in δ.

Furthermore, we separated the deterministic analysis from the stochastic one.
This separation allows other extensions to be made, e.g., performance bounds when
different sampling processes are used.

5.1 Future work

We would like to test the potential of our analysis and results, by investigating
how they can be further generalized and what other special cases deserve special
attention. We can state the future work in terms of questions we wish to investigate,
in order of priority:

1. How can we choose M to improve our results? Can we extend our results to
apply for random M?

2. Is there a suitable notion of estimate truncation for our linear estimation prob-
lem?

3. What kinds of penalties can our results be extended for?

4. What types of losses can our results be extended for?

5. Can we provide meaningful bounds for M = Ĉ+?

6. Should we use other estimators of C−1 as M , rather than Ĉ+?

7. Are there other problems we can shed light upon by extending our results?

8. How far can we go with proving performance lower-bounds?

There are, as well, some other questions of secondary importance to this work
that are nonetheless interesting:
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• What is the maximum number of steps performed by LARS Efron et al. (2004)
(as a function of n and d)?

• How can we generalize the results of Pittenger (1990) for matrices?
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Appendix A

Algorithmic considerations

It is useful to discuss algorithmic aspects of our linear estimation problem, because
the underlying minimization can be done efficiently and model selection can be
incorporated into the procedure at marginal cost.

A.1 Computing the Lasso

There are at least three different ways of computing the Lasso, that is, finding

arg min
θ

1

2
‖Âθ − b̂‖M + λ‖θ‖1.

We have included the factor 1
2 multiplying the loss for convenience when dealing

with its gradient. In this chapter, we will abuse the notation to denote a minimizer
of this Lasso problem by θ̂λ, whereas θ̂2λ would be the correct notation. Also, recall
that Â ∈ Rq×r, b̂ ∈ Rr, and M ∈ Rq×r.

One can use Nesterov’s fast gradient method Nesterov (2007), which is easy to
implement and only requires careful and analytical derivations of some quantities
described in the paper. An alternative is to use a coordinate descent method, since
there is a closed-form solution for the Lasso if one is optimizing w.r.t. to a single
coordinate of θ (Hastie et al. (2009)).

Both of these methods require provision of stopping conditions in terms of ap-
proximation quality, for instance, estimating rates of convergence or computing
duality gaps. These conditions, some of which are described in Boyd and Vanden-
berghe (2004), may not be good enough, or may be too expensive to be computed
at every iteration.

A third option, the least-angle regression shrinkage (LARS) algorithm (Hastie
et al. (2009), Efron et al. (2004)), does not require a stopping condition of such na-
ture, and allows us to compute θ̂λ for various λ with the cost of computing θ̂λ for
the smallest such λ. The variation of LARS used to compute the Lasso is presented
in Table A.1, and is based mostly on the presentation by Hastie et al. (2009). We
must introduce some necessary terminology and notation before discussing LARS.

First, our notation for sub-vectors and sub-matrices: for a given vector v ∈ Rr,
vi denotes the value of its i-th coordinate, and for a matrixD ∈ Rq×r, Di denotes its
i-th column. Likewise, for a set I whose elements are integers in [1, r], vI is given
by the coordinates of v indexed by the elements in I (sorted by index), and DI is
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Procedure LARS
Input: Â,b̂,M ,λ
Output: θ̂λ
θ̂η ← 0

λ′ ← ‖∇L(θ̂η)‖∞
j ← an arbitrary i s.t. |∇L(θ̂η)i| = λ′

J ← {j}
while η > λ do

θ̂ ← LS(Â, b̂,M,J )
c(α)← ∇L(θ̂η) + α∇L(θ̂ − θ̂η), for 0 ≤ α ≤ 1
α1 ← min {α : α ∈ (0, 1], ∃i /∈ J , j ∈ J s.t. |c(α)i| = |c(α)j |} ∪ {∞}
α2 ← min

{
α : α ∈ (0, 1], ∃j ∈ J s.t. ((1− α)θ̂η + αθ̂)j = 0

}
∪ {∞}

α3 ← min {α : α ∈ (0, 1], |c(α)j | = λ ∀j ∈ J } ∪ {∞}
α′ ← min {α1, α2, α3}
θ̂η ← (1− α′)θ̂η + α′θ̂

λ′ ← ‖∇L(θ̂η)‖∞
if α1 < α2, α3 then

j ← an arbitrary i /∈ J s.t. |∇L(θ̂η)i| = λ′

J ← J ∪ {j}
else if α2 < α3 then
J ←

{
j : θ̂η 6= 0

}
endif

end
θ̂λ ← θ̂η

Table A.1: The LARS algorithm for computing the Lasso, Efron et al. (2004).

the matrix given by the columns of D indexed by the elements in I (also sorted by
index). This indexing precedes transposition, i.e., D>I = (DI)

>.
Let L(θ)

.
= 1

2‖Âθ − b̂‖
2
M , and LS be such that if θ̂ = LS(X, y,D, I) then

θ̂I = (X>I DXI)
+DX>I y,

θ̂Ī = 0,

where + denotes the Moore-Penrose pseudoinverse.
The algorithm works by computing θ̂η for decreasing η until the desired esti-

mator is obtained, i.e., until η = λ. The computation is done by ensuring that the
KKT conditions of the Lasso for θ̂η are respected.

The way θ̂η is modified from one iteration to the other is simple: it is a linear
interpolation of θ̂η and θ̂, with parameter α′. This ensures that |∇L(θ̂η)j | = λ for all
j ∈ J . At every iteration, the value of c(α′) before θ̂η is updated is the correlation
vector of the “new estimator”, and it is equivalent to ∇L(θ̂η) after θ̂η is updated.
α′ is chosen as the smallest value in (0, 1] that will yield a new estimator satisfying
one of the following:

1. some coordinate not in the current active set will have the same correlation
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as the coordinates in that set,

2. the value of some coordinate in the current active set will become zero,

3. the correlation of the new estimator will be λ.

In the first case we include one of the satisfying coordinates in the active set, in
the second case we remove from the active set all coordinates that reach zero, and
in the third case we stop the algorithm and return θ̂η, which is θ̂λ. Also, note at
least one of the cases will happen at every iteration, and case one happens when
α′ = α1, and so on. Ties are broken by having case 3 be the most preceding, then
case 2.

As for the complexity of LARS, if we are givenM
1
2 beforehand, the per-iteration

cost is dominated by O
(
qr + ‖θ̂λ‖30

)
– at every iteration a matrix of dimension at

most ‖θ̂λ‖0 × ‖θ̂λ‖0 has to be computed for us to have θ̂. If M is not diagonal,
there is also an initial Θ(qr2) cost of computing M

1
2 Â and M

1
2 b̂. The per-iteration

cost of using M explicitly at every iteration instead of using M
1
2 Â and M

1
2 b̂ is

O
(
q2r + ‖θ̂λ‖30

)
if M is not diagonal. Note that the cost for diagonal M is sim-

ply O
(
qr + ‖θ̂λ‖30

)
, and that providing M

1
2 might require performing an SVD be-

forehand. Finally, LARS will perform at least ‖θ̂λ‖0 iterations, but, to the best of
our knowledge, the effective number of iterations, or even whether this number is
polynomial on q and r, has never been shown.

A.2 Performing model selection

Lemma A.2.1, which is based on exercise 3.27(d) of Hastie et al. (2009), shows that
θ̂λ is a piecewise linear function of λ.

Lemma A.2.1. For any λ ∈ [λ0, λ1) for which the active set J = {j : θ̂λ(j) 6= 0} does
not change, it holds that

(θ̂λ)J = (θ̂λ0)J − (λ− λ0)
(
Â>JMÂJ

)+
sign(θ̂λ0)J

(θ̂λ)J̄ = 0.

Proof. The second equality is true by definition of the active set, so we are left with
proving the first one. Since the active set does not change, we can consider the
Lasso problem with ÂJ , b̂, M , and λ ∈ [λ0, λ1) as inputs:

min
θ

1

2
‖ÂJ θJ − b̂‖2M + λ‖θJ ‖1.

We know that at least at least one optimizer θ̂λ has (θ̂λ)J 6= 0, so

Â>JM(ÂJ (θ̂λ)J − b̂) + λsign((θ̂λ)J ) = 0

(Â>JMÂJ )(θ̂λ)J = Â>JMb̂− λsign((θ̂λ)J )

(θ̂λ)J =
(
Â>JMÂJ

)+ (
Â>JMb̂− λsign((θ̂λ)J )

)
,
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This reasoning holds for any λ ∈ [λ0, λ1), and sign(θ̂λ) is the same for every λ in that
interval, because J is fixed. Therefore, the lemma follows by using the equation
above to factor (θ̂λ0)J out in the same equation applied to (θ̂λ)J .

So, combining model selection and LARS is simple: as we compute θ̂a, we also
compute ‖Âθ̂λ − b̂‖2M + λ′‖θ̂λ‖1 for all λ ∈ Λ(a,B). We first calculate it for θ̂B , i.e.,
‖b̂′‖2M . Then, at each iteration, immediately after we compute α′ and whenever
there are α ∈ (0, α′] such that θ̂λ = (1 − α)θ̂η + αθ̂ for λ ∈ Λ(a,B), we evaluate
‖Âθ̂λ− b̂‖M + λ′‖θ̂λ‖1 for all such θ̂λ (there may be more than one). Finally, instead
of returning θ̂a, we return the model with the minimum validation error, θ̂λ̂.

The overall cost incurred by the model selection is that of evaluating the λ′-
penalized losses for each model (plus a marginal cost of a few extra comparisons).
Given that Λ(a,B) has O (lnn) elements, and that computing ‖Âθ̂λ − b̂‖2M is dom-
inated by computing θ̂ at the iteration in which this error is evaluated, the model
selection will not, asymptotically, affect the complexity of computing θ̂a1.

1Except when LARS executes o(lnn) iterations, but even in this case the extra cost is small.
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Appendix B

Proofs

In this chapter we present the proofs for the results in Chapter 2, and some dis-
cussion on issues pertaining to these proofs, such as remarks on the techniques
used.

B.1 Deterministic analysis

B.1.1 Fixed choice of λ

To prove our first lemma, Lemma 2.1.1, we need the following result:

Lemma B.1.1. For Q ∈ Rk,l and w ∈ Rl, we have

‖Qw‖2 ≤ ‖Q‖F ‖w‖2 ≤ ‖Q‖F ‖w‖1.

Proof of Lemma B.1.1. Denoting the i-th row of Q by Qi, we can use the Cauchy-
Schwarz inequality to show that

‖Qw‖22 =
k∑
i=1

〈Qi, w〉2

≤
k∑
i=1

‖Qi‖22‖w‖22

= ‖Q‖2F ‖w‖22.

The lemma follows by taking the square root of both sides, and by using the fact
that ‖w‖1 ≥ ‖w‖2.

Lemma 2.1.1. For any θ ∈ Rd,∣∣∣‖Aθ − b‖M − ‖Âθ − b̂‖M ∣∣∣ ≤ ∆A‖θ‖1 + ∆b.

Proof of Lemma 2.1.1. The lemma is a consequence of triangle inequality, remark
B.1.1 and the definition of ∆A and ∆b. The two statements follow by chaining

‖(Â−A)θ − (b̂− b)‖M ≤ ‖(Â−A)θ‖M + ‖(b̂− b)‖M
≤ ‖M

1
2 (Â−A)‖F ‖θ‖1 + ‖(b̂− b)‖M (Lemma B.1.1)

= ∆A‖θ‖1 + ∆b,
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with

‖(Â−A)θ − (b̂− b)‖M ≥ |‖Âθ − b̂‖M − ‖Aθ − b‖M |,

and then taking, respectively, either the positive or the negative of the term inside
the absolute value.

Lemma 2.1.2. We have

‖Âθ̂λ − b̂‖2M ≤ ‖Âθ∗ − b̂‖2M + λ(‖θ∗‖1 − ‖θ̂λ‖1).

Proof of Lemma 2.1.2. The lemma follows from the definition of θ̂λ, which implies
that

‖Âθ̂λ − b̂‖2M + λ‖θ̂λ‖1 ≤ ‖Âθ − b̂‖2M + λ‖θ‖1,

for any θ, particularly for θ∗.

Lemma 2.1.3. For any ζ, ζ ′ ≥ ‖Âθ∗ − b̂‖M and C1, C2 > 0, it holds that

‖Âθ̂λ − b̂‖M + C1‖θ̂λ‖1 + C2 ≤ max

{(
C1 −

λ

2ζ

)(
ζ ′2

λ
+ ‖θ∗‖1

)
, 0

}
+

λ

2ζ
‖θ∗‖1 + C2 + ζ.

Proof of Lemma 2.1.3. Lemma 2.1.2 and a linear upper-bound on the square-root
function, imply that for any ζ ≥ ‖Âθ∗ − b̂‖M

‖Âθ̂λ − b̂‖M ≤
(
‖Âθ∗ − b̂‖2M + λ(‖θ∗‖1 − ‖θ̂λ‖1)

) 1
2

≤
(
ζ2 + λ(‖θ∗‖1 − ‖θ̂λ‖1)

) 1
2

≤ ζ +
λ

2ζ
(‖θ∗‖1 − ‖θ̂λ‖1).

Therefore,

‖Âθ̂λ − b̂‖M + C1‖θ̂λ‖1 + C2 ≤ ζ +
λ

2ζ
(‖θ∗‖1 − ‖θ̂λ‖1) + C1‖θ̂λ‖1 + C2.

If we group the terms multiplying ‖θ̂λ‖1, we obtain
(
C1 − λ

2ζ

)
‖θ̂λ‖1. Then we use

Lemma 2.1.2 to see that for any ζ ′ ≥ ‖Âθ∗ − b̂‖M , ‖θ̂λ‖1 ≤ ζ′2

λ + ‖θ∗‖1. Chaining
these inequalities together, we get(

C1 −
λ

2ζ

)
‖θ̂λ‖1 ≤ max

{(
C1 −

λ

2ζ

)(
ζ ′2

λ
+ ‖θ∗‖1

)
, 0

}
.

Hence, the statement follows.
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Corollary 2.1.4. If

λ̂ = 2∆A(∆A‖θ∗‖1 + ∆b + ‖Aθ∗ − b‖M ),

then

‖Aθ̂λ̂ − b‖M ≤ 2∆A‖θ∗‖1 + 2∆b + ‖Aθ∗ − b‖M .

Proof of Corollary 2.1.4. We will use Lemma 2.1.3 by applying a specific choice of λ̂.
From Lemma 2.1.1, we see that the condition of Lemma 2.1.3 is met with C1 =

∆A andC2 = ∆b. We apply this lemma with ζ = ζ ′ = ∆A‖θ∗‖1+∆b+‖Aθ∗−b‖M ≥
‖Âθ∗ − b̂‖M to obtain

‖Aθ̂λ − b‖M ≤ max

{
C1ζ

2

λ
− ζ

2
+ C1‖θ∗‖1 −

λ

2ζ
‖θ∗‖1, 0

}
+

λ

2ζ
‖θ∗‖1 + C2 + ζ

= max

{
∆Aζ

2

λ
+
ζ

2
+ ∆A‖θ∗‖1,

λ

2ζ
‖θ∗‖1 + ζ

}
+ ∆b.

The two terms in the max are equal when λ = 2∆Aζ, and with λ̂ = 2∆Aζ

‖Aθ̂λ̂ − b‖M ≤ ∆A‖θ∗‖1 + ∆b + ζ,

and the result follows.

B.1.2 Model selection

Lemma 2.1.6. Under Assumption 2.1.5, if

λ̂
.
= arg min

λ∈Λ(a,B)
‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1

and λ′ ≥ ∆A, then, for any ζ ≥ ‖Âθ∗ − b̂‖M ,

‖Aθ̂λ̂ − b‖M ≤ max

{
2λ′,

a

2ζ

}
‖θ∗‖1 + ∆b + ζ.

Proof of Lemma 2.1.6. Let λo ≥ 0 be a particular, but not yet specified, real number.
The proof is divided in three cases: λo ∈ [a,B], λo ∈ (0, a) and λo ∈ (B,∞). The
case in which λo = 0 will be seen to be absolutely trivial. First, we will show how
to relate ‖Aθ̂λ̂ − b‖M and ‖Aθ̂λ − b‖M for any λ ∈ Λ(a,B).

Lemma 2.1.1, the definition of θ̂λ̂ and λ ≥ ∆A imply that, for any λ ∈ Λ(a,B),

‖Aθ̂λ̂ − b‖M ≤ ∆A‖θ̂λ̂‖1 + ∆b + ‖Âθ̂λ̂ − b̂‖M
≤ ∆A‖θ̂λ̂‖1 + ∆b + ‖Âθ̂λ − b̂‖M + λ′(‖θ̂λ‖1 − ‖θ̂λ̂‖1)

≤ λ′‖θ̂λ‖1 + ∆b + ‖Âθ̂λ − b̂‖M .

Now we will cover the proofs for the three cases. First, suppose λo ∈ [a,B]. Because
of the grid scheme, there exists λp ∈ Λ(a,B) s.t. 1

2λo ≤ λp ≤ λo, so if we apply
Lemma 2.1.3 with C1 = λ′, C2 = ∆b, and

ζ = ζ ′ ≥ ‖Âθ∗ − b̂‖M ,
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we obtain

‖Aθ̂λ̂ − b‖M ≤ λ
′‖θ̂λp‖1 + ∆b + ‖Âθ̂λp − b̂‖M

≤ max

{
λ′
(
ζ2

λp
+ ‖θ∗‖1

)
− ζ

2
− λp

2ζ
‖θ∗‖1, 0

}
+
λp
2ζ
‖θ∗‖1 + ∆b + ζ

≤ max

{
λ′
(
ζ2

λp
+ ‖θ∗‖1

)
− ζ

2
,
λp
2ζ
‖θ∗‖1

}
+ ∆b + ζ.

We want the factor of ‖Aθ∗ − b‖M to be at most one in the bound. Thus we will
use that λp ∈

[
1
2λo, λo

]
and choose λo = 4λ′ζ to ensure this. To conclude the proof

for the first case,

‖Aθ̂λ̂ − b‖M ≤ max

{
λ′
(

2ζ2

λo
+ ‖θ∗‖1

)
− ζ

2
,
λo
2ζ
‖θ∗‖1

}
+ ∆b + ζ

≤ max
{
λ′‖θ∗‖1, 2λ′‖θ∗‖1

}
+ ∆b + ζ

= 2λ′‖θ∗‖1 + ∆b + ζ.

Now suppose that λo ∈ (0, a), i.e., a ≥ 4λ′ζ. Then we have that

‖Aθ̂λ̂ − b‖M ≤ λ
′‖θ̂a‖1 + ∆b + ‖Âθ̂a − b̂‖M

≤ max

{
λ′
(

2ζ2

a
+ ‖θ∗‖1

)
− ζ

2
,
a

2ζ
‖θ∗‖1

}
+ ∆b + ζ

≤ max

{
λ′
(

2ζ2

λo
+ ‖θ∗‖1

)
− ζ

2
,
a

2ζ
‖θ∗‖1

}
+ ∆b + ζ

≤ max

{
λ′‖θ∗‖1,

a

2ζ
‖θ∗‖1

}
+ ∆b + ζ.

For the third case, when λo > B, we have that ‖θ̂B‖1 = ‖θ̂λo‖1 = 0, and

‖Aθ̂λ̂ − b‖M ≤ ∆b + ‖Âθ̂B − b̂‖M +
B

2ζ
‖θ∗‖1

≤ ∆b + ‖Âθ̂B − b̂‖M +
λo
2ζ
‖θ∗‖1

≤ ∆b + ζ + 2λ′‖θ∗‖,

where we have used Lemma 2.1.2 a linear upper-bound in the square-root function,
as in the proof of Lemma 2.1.3.

The lemma follows by taking the maximum over the bounds for each case.

B.2 Stochastic analysis

B.2.1 Fixed choice of λ

Lemma 2.2.1 (Uniform convergence bound for a fixed choice of λ, when Aθ∗ = b).
Assume that Aθ∗ = b and that there exist a positive constant c1 and a decreasing function
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S : (0, 1) → (0,∞) such that, for any 0 < δ < 1, with probability at least 1 − δ, the
following hold simultaneously:

∆A ≤ c1S

(
δ

2

)
, (2.1)

∆b ≤ c1S

(
δ

2

)
. (2.2)

If

λ̂ = c2
1,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ c1 ·max

{
(‖θ∗‖1 + 1)2S

(
δ

2

)3

+
1

2
S

(
δ

2

)
(‖θ∗‖1 + 1),

1

2S
(
δ
2

) ‖θ∗‖1
‖θ∗‖1 + 1

+ S

(
δ

2

)}
+ c1S

(
δ

2

)
‖θ∗‖1 + c1S

(
δ

2

)
.

Proof of Lemma 2.2.1. Consider the proof of Lemma 2.1.3 with

ζ = ζ ′ = c1S

(
δ

2

)
(‖θ∗‖1 + 1),

C1 = ∆A and C2 = ∆b
1. Then

‖Âθ̂λ − b̂‖M ≤ max

{
∆A

λ
(‖θ∗‖1 + 1)2c2

1S

(
δ

2

)2

+ ∆A‖θ∗‖1

+
1

2
c1S

(
δ

2

)
(‖θ∗‖1 + 1),

λ

2c1S
(
δ
2

) ‖θ∗‖1
‖θ∗‖1 + 1

+c1S

(
δ

2

)
(‖θ∗‖1 + 1)

}
+ ∆b

holds with probability at least 1− δ. For the particular value λ̂ = c2
1,

‖Âθ̂λ̂ − b̂‖M ≤ max

{
∆A(‖θ∗‖1 + 1)2S

(
δ

2

)2

+ ∆A‖θ∗‖1

+
1

2
c1S

(
δ

2

)
(‖θ∗‖1 + 1),

c1

2S
(
δ
2

) ‖θ∗‖1
‖θ∗‖1 + 1

+c1S

(
δ

2

)
(‖θ∗‖1 + 1)

}
+ ∆b,

and the lemma follows by upper-bounding ∆A and ∆b with c1S
(
δ
2

)
.

1There is no particular relationship among C1,C2 and c1, other than the relationships given by
what they are defined as, i.e., the similarity in the names C1 and c1 does not imply anything.
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To prove Lemma 2.2.2, a result by Pittenger (1990) will be used to control E
[

1
ζ

]
,

where ζ ≥ ‖Âθ∗ − b̂‖M . More generally, the result can be used to bound inverse
(shifted) moments of non-negative random variable in terms of its mean and vari-
ance. Lemma B.2.1 extends theorem 1 and example 3.3 in Pittenger (1990) for the
case of a positive random variable, and provides a bound for the inverse shifted
moment in terms of an upper-bound on the variable’s variance (instead of the vari-
ance itself, as originally in Pittenger (1990)).

Lemma B.2.1. Let X ∈ [0;∞) be a random variable such that E [X] = µ and Var(X) ≤
σ2. Also, let c > 0 be some constant. Then

E
[

1

c+X

]
≤ 1

c
· cµ+ σ2

cµ+ µ2 + σ2
.

Moreover, if c = σ, then

E
[

1

c+X

]
≤ 2

c+ µ
.

Proof. To prove the first statement, we use a change of measure and Jensen’s in-
equality. First, note that

E
[(

1

X + c
− 1

c

)
1

µ

]
= E

[(
1

X + c
− 1

c

)
1

µ
I{X>0}

]
= E

[(
1

X + c
− 1

c

)
1

X

X

µ
I{X>0}

]
.

Assume ν is a measure s.t.

Eν [X] = E
[
X2

µ
I{X>0}

]
= E

[
X2

µ

]
=

Var(X)

µ
+ µ

≤ σ2

µ
+ µ,

where we have used that E
[
X2

µ I{X=0}

]
= 0. Then

E
[(

1

X + c
− 1

c

)
1

X

X

µ
I{X>0}

]
= Eν

[(
1

X + c
− 1

c

)
1

X

]
= Eν

[
− 1

c(X + c)

]
,

and Jensen’s inequality tells us that

Eν
[
− 1

c(X + c)

]
≤ − 1

c (Eν [X] + c)

≤ − 1

c
(
σ2

µ + µ+ c
) .
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Hence,

E
[

1

X + c

]
≤ 1

c
− µ

c
(
σ2

µ + µ+ c
)

=
1

c

(
1− µ2

σ2 + µ2 + cµ

)
=

1

c

(
σ2 + cµ

σ2 + µ2 + cµ

)
.

The second statement follows from simple algebra, after we use that c = σ:

1

c

(
σ2 + cµ

σ2 + µ2 + cµ

)
=

1

c

(
c2 + cµ

c2 + µ2 + cµ

)
=

c+ µ
1
2(c+ µ)2 + 1

2 (c2 + µ2)

≤ 2

c+ µ
.

Lemma 2.2.2 (Expectation bound for a fixed choice of λ). Assume that there exist a
positive constant c1 < 1 and a decreasing function S : (0, 1) → (0,∞) such that, for any
0 < δ < 1, with probability at least 1− δ,

∆A ≤ c1S (δ) .

Moreover, assume that w.p. 1

‖Âθ∗ − b̂‖M ≤ L,
∆A ≤ Amax,

and that there exists c2 such that

Var(‖Âθ∗ − b̂‖M ) ≤ c2
2.

Then, choosing

λ̂ = 2(L+ c2)c1S
(
c2

1

)
implies that

E
[
‖Aθ̂λ − b‖M

]
≤ Amax

(
L

2S
(
c2

1

) + c1‖θ∗‖1

)
c1 + E

[
‖Âθ∗ − b̂‖M

]
+ c2

+ 2
L+ c2

E
[
‖Âθ∗ − b̂‖M

]
+ c2

‖θ∗‖1c1S
(
c2

1

)
+ E [∆b] .
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Proof of Lemma 2.2.2. We know from Lemmas 2.1.1 and 2.1.3 that for any L ≥ ζ ≥
‖Âθ∗ − b̂‖M

‖Aθ̂λ − b‖M ≤ max

{(
∆A −

λ

2ζ

)(
ζ2

λ
+ ‖θ∗‖1

)
, 0

}
+ ζ +

λ

2ζ
‖θ∗‖1 + ∆b

=

(
∆A −

λ

2ζ

)(
ζ2

λ
+ ‖θ∗‖1

)
I{λ<2ζ∆A} + ζ +

λ

2ζ
‖θ∗‖1 + ∆b

≤ Amax

(
(L+ c2)2

λ
+ ‖θ∗‖1

)
I{λ<2ζ∆A} + ζ +

λ

2ζ
‖θ∗‖1 + ∆b.

We will choose ζ = ‖Âθ∗ − b̂‖M + c2 and take the expectation of both sides of the
bound, which results in

E
[
‖Aθ̂λ − b‖M

]
≤ Amax

(
(L+ c2)2

λ
+ ‖θ∗‖1

)
P (λ < 2ζ∆A)

+ E [ζ] + E
[
λ

2ζ

]
‖θ∗‖1 + E [∆b] .

The concentration assumption and ‖Âθ∗ − b̂‖M ≤ L imply that

P (2∆Aζ > 2(L+ c2)c1S (δ)) ≤ P (∆A > c1S (δ)) ,

≤ δ

thus if we pick λ̂ = 2(L+ c2)c1S
(
c2

1

)
, we get

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

(
(L+ c2)2

2(L+ c2)c1S
(
c2

1

) + ‖θ∗‖1

)
c2

1

+ E [ζ] + E
[

1

ζ

]
(L+ c2)‖θ∗‖1c1S

(
c2

1

)
+ E [∆b]

≤ Amax

(
L+ c2

2S
(
c2

1

) + c1‖θ∗‖1

)
c1

+ E [ζ] + E
[

1

ζ

]
(L+ c2)‖θ∗‖1c1S

(
c2

1

)
+ E [∆b] .

To bound E
[

1
ζ

]
, we use theorem B.2.1. The assumptions that Var(‖Âθ∗−b̂‖M ) ≤

c2
2 and that ζ > 0 come into play, so that we can apply Lemma B.2.1 with c = c2

and X = ζ − c2:

E
[

1

ζ

]
≤ 2

E [ζ]
.

Therefore,

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

(
L+ c2

2S
(
c2

1

) + c1‖θ∗‖1

)
c1 + E

[
‖Âθ∗ − b̂‖M

]
+ c2

+ 2
L+ c2

E
[
‖Âθ∗ − b̂‖M

]
+ c2

‖θ∗‖1c1S
(
c2

1

)
+ E [∆b] .
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B.2.2 Model selection

Corollary 2.2.3 (Non-uniform high-probability performance bound for estimators
obtained through model selection). Assume that there exist positive constants c1, c2 <
1, and decreasing functions S1, S2 : (0, 1) → (0,∞) such that, for any 0 < δ < 1, with
probability at least 1− δ, the following hold simultaneously:

∆A ≤ c1S1

(
δ

2

)
,

∆b ≤ c2S2

(
δ

2

)
.

Then, under Assumption 2.1.5, for any 0 < δ < 1, if

λ′ = c1S1

(
δ

2

)
,

λ̂ = arg min
λ∈Λ(2c3λ′,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

where c3 is a constant s.t. 0 < 2c3λ
′ ≤ B, then, with probability at least 1 − δ, it holds

that

‖Aθ̂λ̂ − b‖M ≤ 3c1S1

(
δ

2

)
‖θ∗‖1 + 2c2S2

(
δ

2

)
+ ‖Aθ∗ − b‖M + c3.

Proof of Corollary 2.2.3. We use Lemma 2.1.6 with

λ′ = c1S

(
δ

2

)
,

ζ = ∆A‖θ∗‖1 + ∆b + ‖Aθ∗ − b‖M + c3,

a = 4c3λ
′.

The concentration assumptions imply that the following hold (jointly) with proba-
bility at least 1− δ:

∆A ≤ λ′ = c1S

(
δ

2

)
,

∆b ≤ c2S

(
δ

2

)
.

Therefore, because

a

2ζ
≤ 4c3λ

′

2c3

= 2λ′,

if follows that, with probability at least 1− δ,

‖Aθ̂λ̂ − b‖M ≤ 2λ′‖θ∗‖1 + ∆A‖θ∗‖1 + 2∆b + ‖Aθ∗ − b‖M + c3

≤ 3c1S

(
δ

2

)
‖θ∗‖1 + 2c2S

(
δ

2

)
+ ‖Aθ∗ − b‖M + c3.
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Proof of Corollary 2.2.4. The statement can be proved by using tail integration, Lemma
2.1.6 and Corollary 2.2.3. First, taking

ζ = ∆A‖θ∗‖1 + ∆b + ‖Aθ∗ − b‖M + c3,

notice that having ‖Aθ∗ − b‖M ≤ ‖b‖M , ‖M
1
2 Â‖F ≤ Amax and ‖M

1
2 b̂‖2 ≤ bmax w.p.

1 implies that

ζ ≤ Amax‖θ∗‖1 + 2bmax + c3

w.p. 1. In Lemma 2.1.6, if λ′ < ∆A, then the term (∆A − λ′)‖θ̂λ̂‖1 is positive, but
otherwise the result is the same:

‖Aθ̂λ̂ − b‖M ≤ I{λ′<∆A}(∆A − λ′)‖θ̂λ̂‖1 + 2λ′‖θ∗‖1
+ ∆A‖θ∗‖1 + 2∆b + ‖Aθ∗ − b‖M + c3. (B.1)

Now, the optimality conditions of θ̂λ̂ allow us to bound ‖θ̂λ̂‖1 in terms of the loss
of the zero-vector:

I{λ′<∆A}(∆A − λ′)‖θ̂λ̂‖1 ≤ I{λ′<∆A}(∆A − λ′)

(
‖b̂‖2M
λ̂

)

≤ I{λ′<∆A}Amax

(
b2max

a

)
,

which holds w.p. 1. So, if we consider the bound above and take the expectation
on both sides of (B.1) we obtain

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

(
b2max

a

)
P
(
λ′ < ∆A

)
+ 2λ′‖θ∗‖1

+ E [∆A] ‖θ∗‖1 + 2E [∆b] + ‖Aθ∗ − b‖M + c3.

Choosing

λ′ = c1S

(
δ

2

)
,

a = 4c3λ
′

implies, by the concentration assumption, that P (λ′ < ∆A) ≤ δ, and therefore

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

(
b2max

2c3c1S
(
δ
2

)) δ + 2c1S

(
δ

2

)
‖θ∗‖1

+ E [∆A] ‖θ∗‖1 + 2E [∆b] + ‖Aθ∗ − b‖M + c3.

The result follows by taking δ = c3c
2
1.
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B.2.3 Independent, identically-distributed sampling analysis

Corollary 2.3.5. Assumption 2.3.4 implies that the following hold w.p. 1:

∆A ≤ 2F2,∞F
′
2,∞,

∆b ≤ 2F2,∞R∞,

‖Âθ̂λ − b̂‖M ≤ F2,∞R∞.

Proof of Corollary 2.3.5. For the first statement,

sup
Â

∆A = sup
Â

‖M
1
2 (Â−A)‖F

≤ 2 sup
Â

‖M
1
2 Â‖F

≤ 2 sup
Â

1

n

n∑
t=1

‖M
1
2At‖F

≤ 2F2,∞F
′
2,∞,

and the statement on the range of ∆′A follows analogously, because Â and Â′ are
assumed to be sampled from the same distribution. For the second and fourth
statements, since b̂ and b̂′ are sampled from the same distribution,

sup
b̂

∆′b = sup
b̂

∆b

= sup
b̂

‖M
1
2 (b̂− b)‖2

≤ 2 sup
b̂

‖M
1
2 b̂‖2

≤ 2 sup
b̂

1

n

n∑
t=1

‖M
1
2 bt‖2

≤ 2F2,∞R∞.

Corollary 2.3.6. Consider Assumptions 2.3.4. From theorem 2.3.2 it follows that

P

(
∆A > 2F2,∞F

′
2,∞T (n, δ)

√
2

n

)
≤ δ,

P

(
∆b > 2F2,∞R∞T (n, δ)

√
2

n

)
≤ δ,

where T is as in Definition 2.3.3.

Proof of Corollary 2.3.6. The statements are a sheer application of Hoeffding’s in-
equality with the ranges as established by Corollary 2.3.5
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Corollary 2.3.8. Under Assumptions 2.3.1 and 2.3.4, if Aθ∗ = b and

λ̂ =
2

n
F 2

2,∞max{R∞, F ′2,∞}2,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ F2,∞max{R∞, F ′2,∞}
√

2

n
·max

{
(‖θ∗‖1 + 1)2T

(
n,
δ

2

)3

+

1

2
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

1

2T
(
n, δ2

) ‖θ∗‖1
‖θ∗‖1 + 1

+ T

(
n,
δ

2

)}

+ F2,∞max{R∞, F ′2,∞}
√

2

n
T

(
n,
δ

2

)
(‖θ∗‖1 + 1),

where T is as in Definition 2.3.3.

Proof of Corollary 2.3.8. The result follows from applying Lemma 2.2.1 with

c1
.
= F2,∞max{R∞, F ′2,∞}

√
2

n
,

c2
.
= n.

To prove Corollary 2.3.9, we will need a bound on Var(‖Âθ∗ − b̂‖M ), which is
provided by the following Lemma.

Lemma B.2.2. Under Assumptions 2.3.1 and 2.3.4, we have that

Var(‖Âθ∗ − b̂‖M ) ≤ 2

n
F 2

2,∞(F ′2,∞‖θ∗‖1 +R∞)2

(
T

(
n,

1

n

)
+ 2

)2

,

where T is as in Definition 2.3.3.

Proof of lemma B.2.2. First, observe that

Var(‖Âθ∗ − b̂‖M ) = E
[
‖Âθ∗ − b̂‖2M

]
− E

[
‖Âθ∗ − b̂‖M

]2

≤ E
[
‖Âθ∗ − b̂‖2M

]
− ‖E

[
Âθ∗ − b̂

]
‖2M

≤ E
[
‖Âθ∗ − b̂− (Aθ∗ − b)‖2M

]
.

We will proceed to bound the term above. Assumption 2.3.4 establishes bounded-
ness conditions on At and bt, so

E
[
‖Atθ∗ − bt‖2M

]
≤ F 2

2,∞(F ′2,∞‖θ∗‖1 +R∞)2

.
= L2,

moreover, Hoeffding’s inequality implies that, for any 0 < δ < 1,

P
(
‖Âθ∗ − b̂− (Aθ∗ − b)‖2M ≤ L2 2

n
T (n, δ)2

)
≥ 1− δ.
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Therefore, by tail integration

E
[
‖Âθ∗ − b̂− (Aθ∗ − b)‖2M

]
≤ (1− δ)L2 2

n
T (n, δ)2 + δ · 4L2,

and if we pick δ = 1
n , we get

E
[
‖Âθ∗ − b̂− (Aθ∗ − b)‖2M

]
≤ L2 2

n
T

(
n,

1

n

)2

+ L2 4

n
.

Corollary 2.3.9. Assume that there exists L > 0 s.t., w.p. 1,

‖Âθ∗ − b̂‖M < L,

and let

c
.
=

√
2

n
F2,∞(F ′2,∞‖θ∗‖1 +R∞)

(
T

(
n,

1

n

)
+ 2

)
,

where T is as in Definition 2.3.3. Under Assumptions 2.3.1 and 2.3.4, if n > 2 and

λ̂ = 2(L+ c)

√
2

n
F2,∞F

′
2,∞T

(
n,

2

n

)
,

then, for any 0 < δ < 1, with probability at least 1− δ, it holds that

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

(
L+ c

2F2,∞F ′2,∞T
(
n, 2

n

) +

√
2

n
‖θ∗‖1

)√
2

n
+ E

[
‖Âθ∗ − b̂‖M

]
+ c+ 2

L+ c

E
[
‖Âθ∗ − b̂‖M

]
+ c
‖θ∗‖1

√
2

n
F2,∞F

′
2,∞T

(
n,

2

n

)
+ E [∆b] .

where T is as in Definition 2.3.3.

Proof of Corollary 2.3.9. This corollary follows from lemma 2.2.2 under Assumptions
2.3.1 and 2.3.4, if we take

L
.
= F2,∞(F ′2,∞‖θ∗‖1 +R∞),

c1
.
=

√
2

n
,

c2
.
= F2,∞F

′
2,∞,

c3
.
= n,

c4
.
=

2

n
F 2

2,∞(F ′2,∞‖θ∗‖1 +R∞)2

(
T

(
n,

1

n

)
+ 2

)
,

where T is as defined in Equation 2.3.3, Section 2.3, and Lemma B.2.2 is used to
ensure that Var(‖Âθ∗ − b̂‖M ) ≤ c4.
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Corollary 2.3.10. Under Assumptions 2.3.1 and 2.3.4, for any 0 < δ < 1, if

λ′ = F2,∞F
′
2,∞

√
2

n
T

(
n,
δ

2

)
,

a = 4

√
1

n
λ′,

B = F 2
2,∞F

′
2,∞R∞,

λ̂ = arg min
λ∈Λ(a,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

then, for n large enough so that a ≤ B, with probability at least 1− δ, it holds that

‖Aθ̂λ̂ − b‖M ≤ 3F2,∞F
′
2,∞

√
2

n
T

(
n,
δ

2

)
‖θ∗‖1 + 2F2,∞R∞

√
2

n
T

(
n,
δ

2

)
+ ‖Aθ∗ − b‖M +

√
1

n
.

Proof of Corollary 2.3.10. The result follows from Corollary 2.2.3 with

c1 = c2 = c3
.
=

√
1

n
,

S1 (δ) = F2,∞F
′
2,∞
√

2T (n, δ) ,

S2 (δ) = F2,∞R∞
√

2T (n, δ) .

Corollary 2.3.11. Under Assumptions 2.3.1 and 2.3.4, for any 0 < δ < 1, if

λ′ = F2,∞F
′
2,∞

√
2

n
T

(
n,

1

2n
3
2

)
,

a = 4

√
1

n
λ′,

B = F 2
2,∞F

′
2,∞R∞,

λ̂ = arg min
λ∈Λ(a,B)

‖Âθ̂λ − b̂‖M + λ′‖θ̂λ‖1,

then it holds that

E
[
‖Aθ̂λ̂ − b‖M

]
≤ Amax

 b2max

2F2,∞F ′2,∞
√

2T
(
n, 1

2n
3
2

)
√ 1

n

+ 2

√
1

n
F2,∞F

′
2,∞
√

2T

(
n,

1

2n
3
2

)
‖θ∗‖1

+ E [∆A] ‖θ∗‖1 + 2E [∆b] + ‖Aθ∗ − b‖M +

√
1

n
.
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Proof of Corollary 2.3.11. The result follows from Corollary 2.2.4 with

c1 = c2 = c3
.
=

√
1

n
,

S1 (δ) = F2,∞F
′
2,∞
√

2T (n, δ) ,

S2 (δ) = F2,∞R∞
√

2T (n, δ) .

Note the simple correspondence between non-uniform high-probability bounds
and expectation bounds. In our results, we use the non-uniform parameter choices
to ensure that the term ∆A‖θ̂λ̂‖1 (or ∆A‖θ̂λ‖1 in Lemma 2.2.2) is eliminated. We do
not want this term to appear in the bound because the upper-bounds we use for
the `1 norm of the θ̂λ estimators grow with the inverse of λ. In the high-probability
bounds, this term is effectively eliminated, and in the expectation bounds it is not a
problem for this term to grow with the inverse of λ, because we can choose δ small
enough so that it is dominated by the other terms. In both cases, we use a suitable
choice of λ′ to obtain the desired result.

59


