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Abstract

The boundary integral equation method is used to solve the boundary value problem
corresponding to anti-plane shear deformation of a homogeneous and anisotropic linearly
elastic solid whose cross-section is bounded by an arbitrary (smooth) closed curve.
Although both direct and indirect versions of this method are introduced, due to
mathematical convenience, the indirect method is used predominantly to solve the
problem. The solution is found in the form of a single layer potential based on the
principal fundamental solution of anti-plane shear. Uniqueness and existence results are
established in the appropriate function spaces. An example of an elastic solid with elliptic

cross-section is used to illustrate the theory.
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Introduction

Within the context of solid mechanics, anti-plane shear deformations are considered as
one of the simplest classes of deformations that solids can undergo. With just a single
scalar axial displacement, anti-plane shear can be modeled by a single second-order linear
or quasi-linear partial differential equation, and is thus viewed as complementary to the

plane strain deformation, with its two in-plane displacements.

Surprisingly, despite the fact that the model of anti-plane shear deformations has the
virtue of relative mathematical simplicity without loss of essential physical relevance, anti-
plane shear deformations have received comparatively little attention in the linear elasticity
literature. Undoubtedly, the reason for this is that, in the case of a homogeneous and
isotropic, linearly elastic solid, the goveming traction boundary value problem describing
anti-plane shear deformations is simply the interior Neumann problem for Laplace’s
equation. In the case of linear anisotropic elastostatics, however, the governing boundary
value problem [1] is one of oblique-derivative type involving a second-order linear elliptic
partial differential equation. The solution of this boundary value problem is of interest
since it can be used to demonstrate the influence of anisotropy on the anti-plane

deformation .

The boundary integral equation method is a very powerful tool for solving linear
boundary value problems in solid mechanics. There are several known versions of this
technique, but all of them can ultimately be placed into two essential classes: direct and
indirect methods. The direct method is based on the so-called Somigliana representation
formula, where the displacement at any point in the domain is expressed in terms of its
value and the value of the stress vector on the boundary. The indirect method provides a
particular clear and simple physical illustration of the basic solution procedure by
postulating a certain form of the soltion in terms of an unknown abstract function that is

chosen purely on the grounds of mathematical convenience. Therefore, the indirect

1



method was widely used for solving the fundamental boundary value problems of elasticity
( see, for example, Kupradze [2] and Constanda [3,4]). A similar treatment of the
corresponding problems of anti-plane shear deformations, in the case of an anisotropic
linearly elastic solid, remains absent from the literature. This can be attributed to the
difficulties involved in finding the necessary fundamental solution on which the integral
equation method is based.

The purpose of this thesis is to provide a complete theory for the homogeneous and
anisotropic linear anti-plane shear problem. In chapter 1, we first introduce some basic
kinematics related to the linearly elastic solid and subsequently formulate the mathematical
model in terms of a boundary value problem for the anti-plane shear deformation. In
chapter 2, we apply the indirect integral equation method to the boundary value problem,
including the construction of a suitable fundamental solution for the governing partial
differential equation. In doing so, we seek the solution of the boundary value problem in
the form of a single layer potential and establish uniqueness and existence results by
reducing the problem to a boundary integral equation. In chapter 3, we introduce the
direct boundary integral equation method. Finally, an example with elliptic boundary
curve is used to illustrate the theory. Numerical results obtained by both indirect and direct

methods are compared.



Chapter 1: Foundations of the problem

1.1. Kinematics
We consider the equilibrium of a deformable solid, which, in its unstressed

undeformed state, occupies a cylindrical region whose generators are parallel to the X;-
axis of a rectangular Cartesian coordinate system [Figure 1] . The lateral boundary of the

cylinder is subjected to a prescribed surface traction ¢*, whose only nonzero component is

axial and does not vary in the axial direction. Thus we have
t"=0, &, =0, t, =4,(X,X;), (1.1)

on the lateral surface. The cylinder is assumed to be sufficiently long so that end effects in
the axial direction are negligiblee We use X, (i=123) for material coordinates

and x; (i=1,23) for spatial coordinates. The surface tractions(1.1) would be expected

to give rise to a deformation of the form

=X, =X, x =X +tu,(X,X,), (1.2)
so that the displacement field is given by

=0, u, =0, u; =u;(X,,X,), (1.3)

where the out-of-plane displacement is a function on the cross-section of the cylinder.
Such a deformation is called an anti-plane shear. This displacement field may be regarded

as a natural complement to that of plane strain, where

u, =u, (X, X,), (a=12)

u; =0
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Figure 1 A linearly elastic cylinder in anti-plane shear

1.2. Anti-plane shear deformation of a homogeneous anisotropic

linearly elastic cylindrical body

In this section, we assume that the cylinder is composed of a homogeneous anisotropic
linearly elastic solid and consider infinitesimal deformations. Thus, we need not distinguish

between the material and spatial coordinates [10]. In what follows, x =(x;, x,) and
x =(x,, X,, X;) are generic points referred to orthogonal Cartesian coordinates in R’ and

R’ respectively.

The Generalized Hooke’s law for an arbitrary homogeneous anisotropic linearly

elastic solid in three dimensions is given by

T, =CpEy (1.4)
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where I, denote the components of the second-rank stress tensor, E,, = (4, , +y;,)/2

are the components of the second rank infinitesimal strain tensor, represented,
respectively, as T and E ; C,, denote the components of the fourth-rank elastic constant

tensor, represented as C. The system (1.4) consists of 9 equations. Thus, there are 81
components in C. Taking the usual symmetry conditions of C into consideration [9]:

CGiu =Cup» Gy =Cpo Gy = G, (1.5)

the 9 equations in (1.4) are reduced to 6 independent equations and the number of
independent components of C is reduced to 21. On using the second relation of (1.5) and

the strain-displacement relations we write (1.4) as
T = Gy, (1.6)
which, in view of (1.3), reduces to

I = CiiBuu‘J,u (1'7)

1]

where Greek subscripts range over the values 1, 2. The equilibrium equations, in the

absence of body forces, are

T..=0 (1.8)
By virtue of (1.7) and (1.3) we see that T, = T;(x;,x,), so that (1.8) reduce to
Tpe=0 (1.9)
On substitution of (1.7) into (1.9), we find that the axial displacement u, must satisfy

Cotalsgg =0 inS (1.10)



where § denotes the plane cross-section of the cylinder. The system (1.10) consists of

three differential equations for the single unknown u,;, and is thus overdetermined in

general. Hence an arbitrary homogeneous anisotropic linearly elastic solid will not, in
general, sustain a nontrivial anti-plane shear deformation [1].

We now turn to the boundary conditions (1.1). On employing the relation ¢, = T;n;
where n;(j=1,2,3) are the components of the unit outward normal n on the lateral

boundary, we find that (1.1) holds provided
Copsytlsyng =0 ondS (1.11)
Cipyts, g =1 ondS (1.12)

whered S is a simple closed curve of length [0 5] denoting the boundary of S. Its

equation in terms of its arc coordinate is
x=y(s), se[0f0S], wO)=y(os),
with the inverse relationship written as s = s(x), x €8 S.

Here and throughout what follows we assume that 8 S isa C?2- curve, that is, y is

twice continuously differentiable on [0,[0 S]] and

WY 0y =Y 55—
00 =ZLdost,

d’y d’y
——(0+) = d S|-).
dsZ ( ) dsZ (l 51 )
A necessary and sufficient condition for a nontrivial (i.e. grad u+ constant) state of
anti-plane shear to be possible subject to the boundary conditions (1.1) now follows from

(1.10)-(1.12). Thus if C is such that



Copn =0 (a,By =12) (1.13)

the first two differential equations in (1.10) are satisfied identically, as are the two
boundary conditions (1.11). The axial displacement u,, henceforth denoted by «, must

then satisfy the third of (1.10) and the boundary condition (1.12), so that

Cpiallog =0 inS (1.14)
Cigsaldsy Ny =t;7  0ndS (1.15)

where #;" =4"(x,,x,) is a prescribed function on 8 S. The boundary value problem

(1.14), (1.15) for u is one of oblique-derivative type for a second-order linear partial
differential equation with constant coefficients. On employing the divergence theorem and

(1.14), it is readily shown that the prescribed traction ¢," must be such that
J’w t;°ds =0 (1.16)

for a solution of (i.14), (1.15) to exist. Of course, (1.16) would also follow from the
restriction on the data (1.1) necessary for overall force equilibrium. Thus, as shown in [7],

the condition (1.13) is sufficient to ensure that any solution u, = u of (1.14), (1.15) (with
gradu, =constant on S) automatically satisfies (1.10)-(1.12) [1]. Conversely, suppose
that u, is a solution of (1.10)-(1.12) such that gradu = constant on S. It was shown [7]
that the boundary condition (1.12), with ¢, # 0, cannot be satisfied unless condition(1.13)

holds. Thus the condition (1.13) is also necessary for a nontrivial state of anti-plane shear
to be possible subject to the boundary condition (1.1).



1.3 Boundary value problem of anti-plane shear elasticity

In order to facilitate further investigation of elastic symmetries of C,, it is

convenient to adopt the contracted notation of linear anisotropic elasticity with single

index notation for stress and strain [9], so that (1.4) can be written as
T=c,E, (pg=12..6) (1.17)

where ¢, are the components of a 6x6 symmetric matrix ¢ representing the

components of C,.

In homogeneous and anisotropic elasticity where c,, are constants, condition (1.13)

can be written in terms of the c,, as
s =0, ¢c5=0, €4=0, c5=0, c=0, ¢c4=0 (1.18)
so that there are at most 15 independent nonzero constants in ¢
Therefore, (1.14) can be written as
L@ x)u(x)=0 (1.19)
in which L(9 x) is the partial differential operator defined by

2 2 aZ
+2C,s +c,,
dx, 0 x,0 x, dx,’

(1.20)

Here the elastic constants c,,, c;; relate a shear strain to a shear stress in the same plane

and c,; relates a shear strain to a shear stress in a perpendicular plane(see Appendix).



Let C(S),C'(S)and C*(S) represent, respectively, the spaces of (real) continuous,
continuously differentiable and twice continuously differentiable functions in S. We
consider all functions in C(S) (C'(S)and C?*(S)) that are continuously extendible
(continuously extendible together with their first and second order derivatives) to
S§=8uUdsS, and denote by C(S)(C'(S)and C*(5)) the space of the corresponding

extensions.

Hence, the resulting boundary value problem describing the anti-plane shear
deformation of a homogeneous and anisotropic linearly elastic solid occupying a

cylindrical region whose generators are parallel to the x, - axis is defined as follows:
Find u e C*(S)n C'(S) satisfying (1.19) in S and
T(0 x)u(x) = t;"(x), xedsS (N7)

Here, S represents the plane cross-section of the cylinder,d S its boundary and #," is a
prescribed function on 9 S characterizing (axial) stress on the lateral surface of the solid.

T represents the boundary stress operator defined by

T cen e mlin D yren 2
dx, dx, ”"‘axl o x nlax2 “"zaxz

where n=(n;,n,) is the unit outward normal to 9 S .
Clearly, (1.19) is an elliptic second-order partial differential equation whenever:
Cs >0,  CssCes —Cos = A2 >0 (1.21)
Henceforth, (1.21) will be assumed always to be true.

The stresses arising due to the anti-plane shear in a homogeneous, anisotropic elastic

solid follow from (1.7), (1.13) as
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T, =¢,—+c , 1.22

32 4Sax1 “axz ( )
ou ou

T, = Cyg——+ Cpg — 1.23

31 SSaxl 4Sax2 ( )
Ou ou

I =Gy % My - (1.24)

respectively. It is of interest to note that the shear stress components T, (o =1,2)
depend only on the three constants c,,, ¢;,¢,; (and thus the boundary value problem
(N") involves only these three constants), while the axial normal stress component T,
depends also on two additional different constants, namely c,, and c;;. Thus, of the 15

constants present in ¢, only 5 of these play a role in the anti-plane shear problem.

It is convenient to express ¢, with (1.18) taken into account, in matrix form as

(Cll G2 63 0 0 ¢
Ca Gy G3 0 0 ¢
e=|% 2 G G G G (1.25)
0 0 €Iéa <5 0
0 0 @EESA_-‘:‘SS.: 0
\C61 C2 C3 0 O c“)

The three constants arising in (1.20) appear in the 2 x 2 submatrix indicated by the dashed
rectangle in (1.25), while the other two constants arising in the normal stress (1.24) appear
in ovals in (1.25). The normmal stress componentT;, arising here is clearly due to
anisotropy, in contrast to the situation in finite anti-plane shear for an isotropic material
where such a stress arises as a result of nonlinearity. Alternatively, one could interpret the

T;, as playing a role somewhat analogous to that of axial normal stress arising in plane

10



strain for linear isotropic materials. Thus, from (1.22)-(1.24), T,, may be expressed

directly in terms of the shear stresses as
T3 = A7 (€150 ~€34Cus) Ty + (€655 = €1545) T ], (1.26)

where 4 > 0is defined in (1.21).

1.4 Other related boundary value problems

Previously, we noted that for the anti-plane shear deformation of a homogeneous and
anisotropic linearly elastic solid, the corresponding boundary value problem turns out to
be an interior Neumann problem (N*) with the boundary subjected to the prescribed
traction. It is not difficult to deduce that if the lateral boundary of the elastic cylindrical
body is subjected to prescribed displacements whose only nonzero component is axial and

which does not vary in the axial direction , i.e.,
u=0 u,=0 u=f(x,x,)

(where f'is a prescribed function on 8 § ), then the corresponding boundary value problem
will be the interior Dirichlet problem which is defined as follows:

Find u e C*(5)n C'(S) satisfying (1.19)in S and
u(x)= f(x) xedS (D7)

In what follows, it will be necessary to consider the open unbounded complement
domain of S, which is denoted by S~ = R*\ (S§w4S), and the corresponding boundary
value problems posed in this domain i.e. the exterior Neumann and Dirichlet problems,
defined below.

Let A be the class of functions u satisfying the far-field conditions

11
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4 o, a=12 (1.27)
ox

a

u = O(x|™),

The above far-field conditions restrict the asymptotic behavior of the function » and are
shown in Chapter 2 to be sufficient conditions for the uniqueness of solution in the

exterior problems.
The exterior Neumann problem (N ™) is defined as follows:
Find u € C*(S7)N C'(57)n A satisfying (1.19) in S~ and
T(0 x)u(x) = g(x) xedS (N7)
Here, g is a prescribed tractionon 8 S.
The exterior Dirichlet problem (D7) is defined as follows:
Find u € C*(S )N C'(57)N A satisfying (1.19) in S~ and
u(x)=h(x) xedS (D7)
Here, 4 is a prescribed displacementon & S.

According to the Fredholm Alternative, when we consider the problem (N*), it will

be necessary to consider also the *adjoint’ Dirichlet problem( D).

12
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Chapter 2 Indirect boundary integral equation method
applied to the solution of the anti-plane shear

problem

The indirect integral equation method is a very powerful tool for solving boundary
value problems in solid mechanics , particularly in establishing results on the existence of
solutions. In this chapter, we use this method to establish an existence theorem by seeking
the solution of the corresponding boundary value problem in the form of a single layer
potential, and then reducing the problem to the Fredholm integral equation on the

boundary.
2.1 Uniqueness of solution

Theorem 2.1 . If u e C*(S) N C'(5) is a solution of (1.19) in S, then
LE(u,u)dc = j'&_ uTuds (2.1)

where E(u, u) is the internal energy density defined on S.
Proof Let v, w € C*(S)nC'(S) be two arbitrary functions. According to the 2-D

Green’s formula

L.(st aP)dde I (PCOS(nx,xl)+Qcos(nx’x2))ds(x)

we let
Q= V(Cssa—w""cas'a—w) ) P=—v(c,s— w+c44 aw)
dx x, 0x, x,
and obtain

js viwdo + L E(w,v)do = Ls vTwds (2.1A)

13
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where

E(wv) = (e 2% 40 28V 4 (0, 0¥ 1, W) OV
ox 0x, 0x 0x, dx, 0x,

If vand w are two solutions of the anti-plane shear problem (N "), letting w = v=u, we
then have

LE(u,u)dc = Ls_ uTuds

where E(u, u) is the internal energy density defined on the cross-section S by

Ju ou. Ou Ju
E(u,u) = c..(—) +2¢ + 2
(u,u0) 55(6x1) 45(axl)(axz) C«(axz)
du ¢, 0u., A* Bu._
= cgs[—+—E () +—(=—)’
0x, ¢ Ox, Css 0x,

which is a positive quadratic form under the assumption (1.21).

Let C(S7),C'(S")and C*(S™)be respectively the spaces of (real) continuous,
continuously differentiable and twice continuously differentiable functions inS~ . Let

C(S™),C'(S)and C*(S")be the space of the corresponding extensions.
Theorem 2.2. If u e CX(S)NC'(S7)N A is a solution of (1.19) in S~ , then

L_ E(u,u)do = — Ls uTuds (2.2)
where, again, E(u, «) represents the internal energy density in S~.

14



Proof. Consider a circle K, with the center at x and radius R sufficiently large so that

0§ liesinside K, . Then for the bounded region K, NS, (2.1) can be written as

Ix - E(u,u)do = I uTuds

as+dk, R

Let outward normals of both interior and exterior boundaries of bounded region be

positive, we have
I uTuds’=—I uTuds+f uTuds
&S‘*—BK, a5 aK‘

Since u € A, (2.2) is obtained by the fact that

j uTuds -0 asR—

R

Theorem 2.3. (i) Any two solutions of (N ") differ by an arbitrary constant.
(i) (D7) has at most one solution.

(iif) (N 7)has at most one solution.

Proof. (i) Let u™,u® be any 2 solutions of the problem (N*) , then the difference
u=u"-u? satisfies the governing equation of problem (N*) and the corresponding
boundary condition with ¢,” = 0 . Therefore, by Theorem 2.1 and the fact that E(x, u) is a
positive quadratic form, we have

E(u,u)=0 in S.
Using the method presented in [4], we can prove that E(u, ¥) =0 if and only if u = c,
where c is an arbitrary constant.

Hence, ¥ =c inS as required.

15



(if) & (iii) are proved similarly using Theorem 2.2, except that the asymptotic
conditions imposed on u, in each case, require thatc = 0, so thatu =0in S for (D7)
and (N7).

2.2 Fundamental solution

The fundamental solution plays a very important role in the boundary integral equation
method since the method is possible only when an appropriate fundamental solution can
be constructed.

We usually define the fundamental solution of a two-dimensional boundary value
problem as a function u(x, y) which, without any consideration of boundary conditions,

satisfies the governing differential equation at x = v, i.e.,
L@ x)u(x,y)=8(x-y).

where x(x,, x,) and ¥(y,y,) represent generic points in R’; & denotes the Dirac

distribution, which tends to infinity at the point x = y, and is equal to zero anywhere else.
The integral of &(x —y)however is equal to one. Physically, the fundamental solution

represents a point-load solution in elasticity [8].

Using the methods presented in[5], we can show that the fundamental solution for the

operator L is given by

D(x,y) = D(y,x) =

1 1
2TflA| {lﬂlAl ‘Eln[cu (x, -»n)’ = 2¢,5(x; = ¥, )%, ~y,) +c5(x, ~ 3,)’ 1}

16



Along with D(x, y), we consider thz singular solution
P(x,y) = P(x,y,n) = T(8 y,n)D(y,x) = T(3 y,n) D(x,y)
It is easily verified that D(x, y) and P(x, y) satisfy (1.19) atall x e R?, x # y.

Proceeding as in [4], we can prove that ifu € C2(S)C"(S) is a solution of (1.19) in
S, then
x(x)u(x) = _[K[D(x,y)T (@ Y)u(y) = P(x,y)u(»)lds(y) (2.3)
where

I, xes,
x(x) = %, x €08,

0, xe§

2.3 Elastic potentials
We introduce the generalized single layer potential
Vo)(x) = [ _D(x.y)p(y)ds(y)
and the generalized double layer potential

(Fo)(x) = [ _P(x,y)0(»)ds(v)

17



Definition: A function f defined on 8§ is said to be Hélder continuous (with index
ae@))ondsif

[fx)- fO)<cx-)* forall x,yeds,

where ¢ = constant > 0 is independent of x and y.

We denote by C°**(8S) the vector space of (real) Holder continuous (with index
a €(0,1)) functions on 85, and by C*(8 S) the subspace of C'(6S) of functions whose
first order derivatives belong to C** (3 S).

We have the following properties of ¥ and W :

Theorem 2.4. If p € C(3 S), then

1)V (@) and W(p) are analytic and satisfy (1.19)in S* U S~;

Proof: Clearly, V(p) and W(p)are twice continuously differentiable at any x ¢3S and.
by the fact that D(x, y) and P(x, y) satisfy (1.19) at all x € R?, x # y, are also solutions of
(1.19). Their analyticity follows in the usual way (see, for example [17].)

(i) W(p) € A;
Proof: The double layer potential (Wo)(x) can be written as

éD oD oD oD
W = + FCoe———N. +C,, — ds
(Wop)(x) Ls.(css e n +Cys a9 n, +Cy 3y ny +Cyy oy n, o (y)ds(y)

2

N L Yo (7)ds()

21 Y5 r "¢, €08’ 0 — 2c,4 5in cos — ¢4 sin’ O
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where r =[x — )| is the distance between x and y. As |x| - «, since y €8S, we have
|x| =[x . Therefore, we can replace r by |x| in the above equation and take it out of
the integral , and it is not difficult to conclude that (Wo)(x) belongs to A.

(iii) V() € C**(R?) for any index a &(0,1), where C®*(R?) denotes the vector space

of (real) Holder continuous (with index o €(0,1)) functionsin R®.
Proof. This property can be proved using classical procedures (see, for example [4]).

Theorem 2.5. If ¢ € C** (8 S),a (0,1), then

(i) W(p)has C°* -extensions W~ and W~ to § and S, respectively. These extensions

are given by
W(x) xe§
W (x)= 2.4
(x) —%(D(x)+ Wy(x), xedS 24)
W(x) xe$§”
W (x)=11 (2.5)
E(p(x)+Wo(x), xeds§
where

W(x) = [ Px.y)o()ds(),  x €ds,

the integral being understood as principal value;

(ii) The first order derivatives of V(@) in S*and S~ have C°*-extensions to S *and

5 -, respectively. In addition, we have
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(IV)(x) xe§”

(V) (x) = +%<p(x)+(TV)o(x), xeds (2:6)
(TV)x) xeS
YO Lo+ an,w, xeas &7
where
(TV)o(x) = [ T@x)D(x, )0 ()ds(y),  x €S,

the integral being understood as principal value.

Theorem 2.6. If ¢ € C'*(85), a (0,1), then the first order derivatives of W (p) in S~

and S~ have C'*- extensions to §* and S, respectively. In addition, these extensions
satisfy
(TW)" =(TW)~ on 0S8 (2.8)

Theorem 2.5, Theorem 2.6 can also be proved using classical procedures (see, for

example, [4]).

2.4 Complex variable treatment

In the analysis of two-dimensional boundary value problems by boundary integral
equation methods, it is often convenient to express certain properties of functions in terms

of complex variables . For an arbitrary function f givenon 6 § we write
f(@) = f(x)

where z = x, + ix, .

20



Suppose now that C(d S)and C'(8S) are complex spaces, and construct the
complex spaces C**(8S)and C'* (8 S)by defining Holder continuity in terms of the
inequality

lf@- Gl < dz-¢[* forall z,£ €8S

and the derivative as

fQ=1@ ., css.

d .
@ =5 @) = fm

if this limit exists.
Since |z~&| =[x )|, where § =y, +iv,, it is obvious that Holder continuity with

respect to z and Holder continuity with respect to x (or s ) are equivalent . The same can

also be said about Holder continuous differentiability on 0 S [4].

For mathematical convenience, the fundamental solution of (N ™) can also be

written in the complex form

D(x,y) = %R{ﬁbg@}

1 1
= c{mlog(c )J

Here, 6 = (x, - y) +o(x, - y,)

a=a+ib
c A
wots 1Al
Cus Cas

and log(...) denotes the complex logarithm.
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2.5 Existence Theorem

2.5.1 Boundary integral equation from a single layer potential

In order to apply the Fredholm Alternative to establish the existence theorem, we seek

the solution of the anti-plane shear problem (N ) in the form of a single layer potential
Vo)(x) = [ D(x, y)0(»)ds(») 2.9)

Where the unknown density ¢ € C**(8S5), a €(0,1). In view of Theorem 2.4(i), (iii)
and Theorem 2.5 (ii), the boundary value problem ( N*) reduces to the boundary integral

equation
§<p(x>+(mo(x) —1(x) xedS

Here,
(TV)(x) = [ T@ x) D(x,)p(0)ds ().

the integral being understood as principal value.

Lemma 2.1. The boundary integral equation
1 . .
FOE) +(TV)o(x) = 4 (x) xedS§ (n")

is a Cauchy singular integral equation.

Proof: For convenience, we investigate the boundary integral equation in terms of

complex variables. Therefore, we seek the solution of the anti-plane shear problem (N™7)
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in the complex form of single layer potential:

u(x) = (Vo)(x) = [ _ D(x,»)o(»)ds()

1 1
=-= Ia,[Re(mlogc)]w(y)(b(y)

The integral equation now becomes

(1) +—[ [Re(=T(@ x)logolp()dsr) = 24"(x), ¥ €BS 2.10)
RN |

A straightforward calculation shows that

Re(—l— I3 %) logc) _R ({L[(css +C4s0) COS(n(X), X, ) +(Cy5 + Coaet) cOS(n(x), xz)] )
4] |4] c

=[_m( (I_IB)I: COS("(X),xz)—caws(n(x),xl) ] )

. 0
= [m((l —iB) 350 logc]

Cc —C
where B =345

||

Hence, (2.10) becomes

—<p(x)+l1m( a-B)f_ ( lnc ).(p(y)ds(y) ):-2:,'(x) xedS  (211)
T

0
05(x)
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The kernel

logo can be written as
os(x

logo + logo) - logo

d (5}
3 s(x) os(y) os(y)

d
r(x)logc = (

and

logo = ——a—logr +

0 0
as(y) os(y) ds(y)

logE
r

where r = ‘J(xl -») +(x-»)

It is easy to show [2] that

d _ dE .
550) logrds(y) = - ido

Here, & and z are the arc-coordinates of the points y and x on the boundary.

Therefore, the integral equation becomes

1 B 9@) 1 ; 0 =t
SO0+~ Lgadg ~Kg +>—Im(1- i) [ logo + logo )p(¥)ds(y) = ;" (x)

ds(x) ds(y)

(2.12)
where

Ke =>—In [ @()d[(1-iB)logZ - 0)]

and K is a completely continuous operator [2] . The expression
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logo + logo

ds(x) ds(y)

is also continuous as the point x moves along the contour 6 S [2] . Thus, the integral

equation

%q»(x) F@AV() =t (x)  xedS

can be rewritten as

1 B ¢ 9€) .
E—(p(z) +Ej.as§—_z_d§ +(TV)1(Z) =4 (2) ze€dS

where (TV), is a completely continuous operator. Therefore the equation is a singular

integral equation with Cauchy kernel [6].

2.5.2 Boundary integral equation from a double layer potential

If the solution of the boundary value problem (D7) is sought in the form of a double
layer potential

#o)(x) = [ _P(x,y)0(y)ds() (2.13)

where the unknown density @ eC'*(8S), a €(0,1), in view of Theorem 2.4(i), (i),

Theorem 2.5(i) and Theorem 2.6, the boundary value problem (D~ ) reduces to the
singular integral equation
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%m(x)+%(x)=h(x) xeds (@)
where,
Wo(x) = [ _P(x.y)o(»)ds(),

the integral being understood as principal value.

The corresponding homogeneous equations are denoted by (ne*) and (o)

respectively as follows:

%(p(x)+(TV)o(x) =0 xedS (no")

%(p(x)+W;(x)=O xedS (057)

The following result can be proved as in [3].

Theorem 2.7 If a €(0,1), any C°*- solution ¢ , of the iutegral equation (®," ) is of the
classC'*(8 S).

Theorem 2.8 The equation (wo~) has only the constant solutionin C°*(3 S),.

Proof. In view of Theorem 2.7, it suffices to prove the resultin C'*(8 S),a €(0,1). It

is clear that the constant function u(x) = ¢ is a solution of the homogeneous boundary

value problem (No" ). Further, since Tu = 0, replacing u by c in (2.3), we have
1
Ec + LS P(x,y)cds(y)=0 xe€ds
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This means that u = c is a solution of (w,) for arbitrary c.
Let @° be an arbitrary solution of (®]), then
f=0%—c (2.14)
is also a C'*- solution of (®;) for any constantc. Consequently, we have
W (f)=0 onds,
and from Theorem 2.4-2.6, W (f) is a solution of homogeneous boundary value

problem (D, ). From Theorem 2.3(ii), we have

W(f)=0 mS .
This means

(TW)y (f/)=0 onds,
which, in turn, by Theorem 2.8, implies that

(WY (f/)=0 ondSs.

Hence , W*(f) is a solution of the homogeneous boundary value problem (N,") and, by
Theorem 2.3(1),
W(H=W©©)-W()=K inS (2.15)

where K is an arbitrary constant.

Without loss of generality, suppose that the origin of the coordinates lies in S .

we choose the c, so that K = 0, by, for example, requiring that
(W (SIXO) = (W™ (@°INO0) - (W* (c)X0) = 0

7 (©*)(0)
_ 2.16
= D)0 @16

or

The fact that such c exists is proved as follows. Let c=c* be a solution of the
homogeneous equation
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c*(W MO =W (c*NO) =0 (2.17)

We shall show that the only solution of (2.17) is c* =0 , so that

(W (1)(0)) # 0.

Taking @° =0 and c=c* in (2.14), we have, as above, that W'(c*) solves the
homogeneous problem(¥,"). Hence, from Theorem 2.3(i), W' (c*) is an arbitrary

constant in S. In view of (2.17), we conclude that

W'(c*)=0 inS
so that
(TW) ' (c*)=0 ondsS.
From (2.8), we have

(TW™ )(c*)=0 ondS.

Thus W (c*) solves the homogeneous exterior Neumann problem (N, ) which, by
Theorem 2.3(iii) implies that

W(c*)=0 inS§S .
Since

W (c*)=0 inS,

from Theorem 2.5(i), it follows that

c*=W(c*)-W"(c*)=0 ondS.
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Hence (2.17) has only the trivial solution ¢* = 0 and ¢ given by (2.16) exists uniquely.
With this ¢, we have, from(2.15),
W({(f)=0 inS.
But, from above,
W (f)=0 inS".
Applying Theorem 2.5(i) once more, we obtain
=W ()-W (f)=0 ondS

Finally, from (2.14), the only C'*- solution of (@) is the constant solution.

Theorem 2.9 The Fredholm Alternative holds for (n*) and (@) in the real dual system
(C** (8S),C%*(8S)) a (0,1), with the bilinear from

@) =[ owds

Proof: Denoting by n and ® and the integral operators occurring in (n"), (@7),

respectively, it is clear that for any @,y € C**(3S)

(Me.y) =(p.0vy) and (0o,y)=(p.,nV)
which means that n andw are mutually adjoint in the given dual system. Proceeding as in

[4], it remains to show that the index [6] of each of the corresponding singular integral

operators is zero. In fact, from (2.12), the index of the operator
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1
n _(TV)0+3

N:—l- a.rg(l—Bi)
2 1+Bi /|,

where [...],; denotes the change in [...] as z traverses 8 S once anti-clockwise.

is given by the formula

Since B=5"C°% and 1+Bi=0, the expression in (...) is a constant and

|4

therefore there is no change in [] along closed curve 6 S, i.e.,index X=0.

The same is true for the operator

m=WO+l.
2

Theorem 2.10.  The condition

[ nds=0
is necessary and sufficient for the solvability of the anti-plane shear problem for any
' eC**(@S), a (0,1). The solution is unique up to a constant and can be represented
as a single layer potential V(@) with density ¢ € C** (8 S) obtained from the singular

integral equation (n*)

Proof: (1) Necessity:
Let u be a solution of the anti-plane shear problem (N*). According to (2.1A ),

let v=1, we have

L_ Ludo = LS Tuds ,
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therefore

[tds =] Tuds=| Luds =0

(2) Sufficiency
We see that u solves the interior Neumann problem (N*) if @ solves the integral

equation

~0(x) + [ T@ID(x, YR ()S0) = '(2)

In the proof of Theorem 2.8, we saw that the only solutions of the adjoint homogeneous

equation

1
ZY @)+ [ POyl (0)ds(7) = 0
are the constant functions y =constant, therefore

I t;’ds =0
as
coincides with the condition

'[as t;'yds =0

which by Fredholm’s alternative guarantees the existence of a density ¢ € C**(8S),

a €(0,1), for which ¥V(¢) solves the anti-plane shear problem (N*).
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Chapter 3 Direct boundary integral equation method

The direct boundary integral equation method is also an efficient method for solving
boundary value problems. In this method, the direct boundary integral equation can be
derived using “integral identities” [e.g., Green’s second identity, Betti’s reciprocal
theorem, equation ( 2.1A )]. Nevertheless, both indirect and direct methods utilize the
same infinite region unit solutions (e.g., fundamental solutions) to generate the
components of the kernels in the final boundary integral equations.

In this chapter, the direct boundary integral equation is obtained from the equation
( 2.1A ) through the weighted residual technique. To do this, we have to establish the

weak statement for the residuals of anti-plane shear problem (N *). The residual functions
in the field and on the boundary are:

R=_Lu in§S @a3.1)
Ri=Tu—-t onoS§ 3.2)

respectively. Then the weak statement of problem (N ™) is

[wiRdo + [ wRyds=0 (3.3)
Herew; is a weighted function. From (3.1) and (3.2), we have

Isw,.Rdo' = Iasw,T uds — st,.t,'ds (3.4)

From equation (2.1A), we obtain the relations
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jsw,.Ludc = J’asw,.ruds—js E(u,w,)do (3.5)

L ulwdc = Ias uTwds - L E(u,w,)doc (3.6)
By applying (3.5) and (3.6) in turn to (3.4), we obtain
LuLw,do' = LsuT wds — Lg(w,. )¢, ds (3.7

This is an important equation as it is usually the starting point for the application of
numerical techniques, such as the boundary element method. Our aim is now to reduce
formula (3.7) to a boundary integral equation. This is done by using a special type of
weighting function w,, i.e. the fundamental solution. We choose the same fundamental
solution used in the indirect method - D(x,y) as the weighting function, so that, as m

Chapter 2, it satisfies the equation
L(0x)D(x,y) =8&*

Where &° represents a Dirac Delta function which tend to infinity at the point at a point
‘i’, i.e., y=x' and is equal to zero anywhere else. The integral of §° however is equal

to one.

The integral of a Dirac delta function multiplied by any other function is equal to the

value of the latter at the point x' [20]. Hence,

Isu(LD)dc = jsu(—a")dc = —uf
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Therefore, we obtain
u' + [ u(TDCx,y))ds = [ DCx.y)eyds (38)

We have now deduced an equation (3.8) which is valid for any point within the domain S .
We apply (3.8) on the boundary to find out what happens when the point x‘ ison 8 S. A
simple way to do this is to consider the point i that is on the boundary but the domain
itself is augmented by semicircle of radius € as shown in Figure 2. The point x° is

considered to be at the center and the radius € 1is taken to zero.

Boundary curve 9 Se

Boundary curve 8 §

Boundary point ; r=eg

Figure 2 Boundary point for cross-section of the cylinder in

anti-plane shear, augmented by a small semicircle

Using the similar procedure in [20], we can obtain the direct boundary integral

equation for anti-plane problem (N ") as:
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%u‘ + J‘wu(TD(x, V)ds = LgD(x, )t ds, (3.9)

the integrals are understood as principal values. In this boundary integral equation, the
only unknown is the displacement of the anti-plane shear, rather than the ‘fictitious’
density in the indirect boundary integral equation.

Usually, equation (3.9) is used as a starting point for boundary element method by
discretizing the equation.
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Chapter 4. Examples

4.1 Explicit solution of anisotropic anti-plane shear problem

In chapter 2, we obtained the boundary integral equation by seeking the solution n
the form of single layer potential. If we can find the explicit solution of density ¢ in the
integral equation, and substitute it into the single layer potential , we can obtain the
analytical solution of the anti-plane shear deformation in terms of displacement. However,
only those boundary integral equations with some regular boundary contours may be
solved explicitly due to their special geometric properties.

In this chapter, we find the explicit solution for the anti-plane shear problem (N ") in

the case when the curve 9 S represents an ellipse. To this end, suppose that the

parametric equations of the ellipse are

Y, =a,cos8,
y, =a, sin@
where aq,2a,, 050<2n
+ 5

Figure 2 Elliptic contour of the cylinder
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For mathematical convenience, the fundamental solution of anti-plane shear problem

(N™) can be written in the complex form as in (2.4.1)

D(x.) =—-11- z{l%llog(c)J

and the boundary integral equation can be written as (2.11).

On the ellipse 0 S , if 0, is the value of the parameter 6 corresponding to x €8S , we
have

P logo =
_ 2[a cos(n(x),x,) — cos(n(x),x,)] ( Ae™ g% )
(al —ia ) )(el'go _ A’e-lﬂo) 18., M—xe, el'G _ eien
A.e"‘“
and _ kn ~in(8+8,)
e® ke"“" Z
e I ¢ 6-6,
- =—+—cot
e” —e 2 2 2
Here,
y = tiae
a, —ia,a .
Next, as in [2], define
1 2=
X, =>—|,9(0)d0
LA P
X, ‘ﬁfaq’(e)" do n21

- l P23 —in@
X_,_E;joqa(e)e d8  n21
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Substitute the above into (2.11) to obtain

Kw)®,) =
B 2= e—eo . - n_ -ind
=—w(6°)+5;focot( > (B)d8 + X, +2Re(1-iB))_A'e™™X,

o=l

=f@,) 4.1)

where,

v (0) =9(0)y/a’sin’ 6 +a,’ cos’0
f(8) =2t,"(0)y/a> sin’ 0 +a,? cos*

4.2)
Equation (4.1) is a singular integral equation. In order to find its explicit solution, we
should simplify the equation further by applying the regularizing operator{6].

We choose the regularizing operator as

6 -

8,
5 )x0)dR

ML®) =100~ = (o

and applying the well known formulas

r'::otﬂde =0
0 2

1
(2n)’

® p2n 0 -0 -0
Joz J: cot( 2 O)COt(wz S0 (w)dwdd =y @,) - X,

L g cot(e —e°)d9 =ie™ (n=1%l,+2,..)
2r o 2

In fact, we obtain,
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(ME)W)@,) = (1 + B ©y) - X, ]~ 201 - iB1*Y" A'e™ X, = (M)®,) (4.3)

a=]

Finally, defining

1 p o
fo=o-| SO0 n=0,12-

multiplying equation (4.3) in turn, by zLe"“-de , and ZLe"""-deo , and integrating over
T T

the interval (0,2n) we obtain

1+ B)(X, - X)) = — [“r@)de -1 [ £ 0ds) 4.4)
o o ag do K& 3

~(1+iB)X, +(1~iB\" X, = f, 4.5)

—(1-iB)X, +(1+iBW'X, = f. (4.6)

( A denotes the complex conjugate of A ).

In (4.4), the condition(1.16) (vanishing of the net external force) imply that X, = C,

where C is an arbitrary constant .

To find X_,, multiply equation (4.5) on the left by X—", and add the resulting
equation to (4.6) , we obtain

x, =Ml
(1-iB)(A"A" - 1)

Using these expressions for X, X_, in (4.3), we obtain y(w,) on the boundaryd S:
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(l lB) n_-ind f ;\'" t .f- (Adf)(e 0)
Y (w, =2Re——— E Ate™™e " +C 4.7
( ) 1+ Bz =1 (l—iB)()")"—l) l-l-Bz ( )

Once y(0,)is found for 6, €6 S from (4.7), ¢ on 6 S can be found from (4.2) and
the displacement

u(x) = (Vo)) = [, D(x.»)o(»)ds(») (4.8)

4.2. Numerical examples

Using the above method, the density ¢ in the boundary integral equation of

homogeneous anisotropic anti-plane shear problem can be solved explicitly and the

displacement can be obtained easily.
In this section, we first give a numerical example for the anti-plane shear problem
( N") of elastic cylindrical body composed of homogeneous and anisotropic material with
elliptic contour.
Secondly, we reduce the problem (N ") to an interior Neumann problem of Laplace’s
equation by choosing appropriate values of elastic constants c,,, c;; and c,;.

4.2.1 Example 1

Choose the three elastic constants in the (N*) as following values:

s = 2.56 10" dynes / cm?
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c =413x10"  dynes/cm?

s =158 x10"  dynes / cm?

(Conversion factors to other units are:

10"°dynes / cm* = 0.145x10%Ib / in.> = .02 x 10*kg / cm?).
We let the two axes of ellipse be

a, =2cm

a, =lcm
andlet ¢ =sin20.

For convenience, choose the arbitrary constant C in (4.3) be zero.

Since it is difficult (if not impossible) to determine the integral (4.8) in closed form, we
apply a numerical integration technique to solve this problem. A computer code was
written using FORTRAN based on the well-known Simpson Rule. The results and the
related data are given in Table 1.

4.2.2 Example 2

In this example, we reduce the homogeneous and anisotropic problem to the
homogeneous and isotropic problem by letting c,; =c,, ¢ =0. The problem then
becomes the interior Neumann problem of Laplace’s equation. The two methods are
applied to obtained the results for this example. The first method applied is the analytical
method, i.e., the method used in Example 1; The second method is a numerical method -
boundary element method. For mathematical convenience , we can further simplify the
problem by letting the two axes of the ellipse be a, =a, = lcm, so that the boundary

curve of the elastic cylindrical body becomes a circle.
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Since this example is a special case of Example 1, it is still sufficient to illustrate the
theory developed in this thesis .

Method 1
Choose the values of the elastic constants as follow:

Cos =Cqp =413 x 10" dynes / cm?
Cis =0 .
Using the same method and code in Example 1, we can obtain the displacements of

internal points for the homogeneous isotropic elastic circular bar. The results and related
data are given in the Table 2

Method 2
The boundary element method is applied to this example to compare the results
obtained by Method 1. The boundary integral equation used in boundary element method

in this example is derived according to the formulations in Chapter 3.

By discretizing the boundary curve into ten constant elements, a BEM code was
written to solve the problem. The results obtained by BEM are given in the Table 3

Although the surface traction £ =sin20 is symmetric with respect to the x;-axis in

both Example 1 and Example 2, we note that the displacements indicated in Table 1 are
not symmetric with respect to the x,-axis. However, the displacements indicated in Table

2 are symmetric with respect to the x,-axis. Obviously, the asymmetry of displacements in

Example 1 is caused by anisotropy of the material. We also note that the results obtained
by Method 2 are very close to the results obtained by Method 1. Any difference is
attributed to the insufficient number of discretized elements in Method 2.

42



internal X Y Displacement

point (cm) (cm) (102 cm)
1 .100E+01 .000E+00  .182E+00
2 809E+00 .294E+00  .384E+00
3 309E+00 476E+00  .378E+00
4 -309E+00 .476EH00  .160E+00
5 -.809E+00 .294E+00  .461E-01
6 -.100E+01 .000E+00  .182E+00
7 -809E+00 -294E+00  .384E+00
8 -309E+00 476E+00  .378E+00
9 309E+00 -476E+00  .160E+00
10 809E+00 -294E+00  .461E-0l
11 .160E+01 .000E+00  -.332E-02
12 J129E+01 .470E+00  .471E+00
13 A494E+01 .762E+00  .465E+00
14 | -494E+00 .762E+00  -917E-01
15 |-.129E+00 .470E+00  -.334E+00
16 |-.160E+01 .000E+00  -.332E-02
17 | -.129E+01 -470E+00  .471E+00
18 [ -494E+01 -762E+00  .465E+00
19 A494E+00 -762E+00  -917E-01
20 J129E+00 -.470E+00  -.334E+00

Table 1 Results of Example 1
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internal X Y Displacement
point (cm) (cm) (107'%) cm)
1 .500E+00 .000E+00 .146E-00
2 405E+00 .293E+00  -.146E-00
3 .155EH00 .476E+00  -.239E-00
4 -.155E+00 .476E+00  -222E-05
5 -405E+00 .293E+00 239E-00
6 -.500E+00 .000E+00 .146E-00
7 -405E+00 -293E+00  -.146E-00
8 -.155E+00 -476E+00  -239E-00
9 .I55E+00 -476E+00  -222E-05
10 A405E+00 -293E+00  .239E-00
11 .800E+00 .000E+00 .378E-00
12 .6A8E+00 .469E+00  -378E-00
13 248E+00 .762E+00  -.608E-00
14 -248E+00 .762E+00 .386E-00
15 -.648E+00 .469E+00 .608E-00
16 .800E+00 .000E+00 .378E-00
17 .G48E+00 469E+00  -.378E-00
18 .248E+00 .762E+00  -.608E-00
19 -248E+00 .762E+00 .386E-05
20 -.648E+00 .469E+00 .608E-00

Table 2 Results of Example 2 (Method 1)



internal X Y Displacement
point (cm) (cm) (102 cm)
1 .500E+00 .000E+00  .169E-00
2 405E+00 .293E+00  -.170E-00
3 155E+00 .476E+00  -.278E-00
4 - 155E+00 .476E+00  -.821E-03
5 -405E+00 .293E+00  .275E-00
6 -500E+00 .000E+H00  .169E-00
7 -405E+00 -293E+00  -.170E-00
8 - 155E+00 -476E+00  -278E-00
9 SS5E+00 -476E+00  -821E-03
10 A405E+00 -293E+00  .275E-00
11 800E+00 .000E+00  .436E-00
12 G48E+00 .469E+00  -.435E-00
13 248E+00 .762E+00  -.711E-00
14 | -248E+H00 .762E+00  -.676E-03
15 |-.648E+00 .469E+00  .707E-00
16 .800E+00 .000E+00  .436E-00
17 648E+00 .469E+00  -.435E-00
18 248EH00 .762E+00  -.711E-00
19 |-248E+00 .762E+00  -.676E-03
20 |-.648E+00 .469E+00  .707E-00

Table 3 Results of Example 2 (Method 2)
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Chapter S Conclusion

The displacement relating to anti-plane shear of a homogeneous and anisotropic
linearly elastic solid with surface traction (1.1) was obtained using the indirect boundary
integral equation method in the form of single layer potential. The corresponding stresses
can be obtained from (1.22)-(1.24). Although the most iregular boundary geometries
preclude any analytical solution of the problem, the example presented in chapter 4
indicate that the explicit solution can be obtained when the boundary curve is an ellipse. It
is reasonable to expect that the problem with the Pascal limacon, the epitrochoid, the
hypotrochoid and other boundary curves can also be solved explicitly.

Regarding the comresponding boundary value problems relating to the
inhomogeneous anti-plane shear deformations, we can apply exactly the same theory and
basic procedures developed in Chapter 24 if the fundamental solutions of these problems
can be constructed. Unfortunately, the fundamental solutions of second-order linear
elliptic partial differential equations with variable coefficients are very difficult to obtain
in spite of the availability of general forms given by Miranda in [17]. However, some
investigations on the fundamental solutions have been done so far by the author, which
were largely motivated by the fact that there are various applications in inhomogeneous

linear elasticity (see, for example [23 ], [24] ).

Reasonably, we should also extend our theory to the other two types of basic
problems in classical elasticity - oscillaion and dynamic problems. The goveming
boundary value problems relating to the steady oscillation problems of anti-plane shear
deformations may be proved to be still elliptic [8]. These problems can be treated similarly
by the same theory used in the static problem without any consideration of initial
conditions. In studying dynamic problems of anti-plane shear deformations, however,
both boundary and initial conditions have to be considered. In addition, loss of ellipticity

of the govemning equation can occur. In the homogeneous anisotropic case, the
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governing equation is hyperbolic under the condition (1.21) [1]. Thus, new mathematical
difficulties arise, reflecting the more complicated nature of the dynamic state as compared
to the static or oscillation case. However, it can be readily verified that (1.13) is still
sufficient to ensure that a dynamic nontrivial state of anti-plane shear can exist [1]. This
gives us the possibility to apply our theory to the dynamic problems with some
modifications.
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Appendix : Physical significance of the elastic

constants in anisotropic materials

In 1678 Robert Hooke proposed the law for the stress-strain relation in arbitrary
anisotropic linear elastic solid, which is now named after him. The law was actually
discovered in 1660 and was first published in 1676 as an anagram. It was proposed
independently by Mariotte in 1680.

In more specific terms, Hooke’s law can be expressed as follows : Each stress

component is directly proportional to each strain component; or, in symbols:

T, = by (A.1)
E; = 5Ty (A2)

where i, j, k, [ = 1,2 or 3; the c;,, are termed the elastic stiffnesses, and the s;,, the elastic

compliances. As the equations stand , there are 81 stiffnesses and compliances, but owning

to the usual symmetry relations,

Ciu = Cjis Cju = Cyu Ciu = Cugy (A.3)

(A.4)

Sir = Sjiy St = Syu Sir = Suy
the number of independent stiffnesses and compliances is 21 in the most general case.

For convenience, the full tensor suffixes of the stresses and strains are frequently

contracted with single index notation:
i=1, T,=0, Ty=T T;=T, T;=1, T,=1 (A.5)
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Ey=E, En=E, Ey=E 2E,=E, 2E,=E, 2E,=E, (A-6)

The occurrence of the factor 2 in the equations relating to the shear strains in (A.6) should
be particularly noted and the ‘tensor’ shear strains E; (4,j=12,3, i =) carefully

distinguished from the ‘engineering ‘ shear strains E, (¢ =4,5,6)[9]. The contracted
notation (AS) and (A6) is almost invariably used in experimental work on elasticity. The

generalized Hooke’s law then becomes:

T, =c,k, (A7)
E,=s,T. (¢gr=123450r6) (A.8)
If we expand (A.1) fori =j =1, we get

I, = ¢k +onnby +onsEy + 0By 00y + Gy + CuniEsy sy + s Eyy

=By +20Ey + 2036 + Cuaa Eay + 26453 E53 +€133E

Introducing the contracted stresses and strains from (A.5) and (A.6), we have
I =c B+ 2cmz—;-E6 +2¢413 %-ES +enk; 205 -;—E} +Cy133E5

and comparing with the expanded form of (A.7),
T =B +c,E, +C3Ey + ¢ E, +¢E + 6B

wefind ¢, =€y Cuzp = Cias oo Q2 = Ci6

and by similar expansion and comparison for other values of 7, j, it can be shown that
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Cou = Cyr (A.9)

On the other hand, expanding (A.2) for i = = 1 and contracting by (A.5) and (A.6),
we get

E =50l + 28515 T + 25131 + 510 T + 28531 + 515375

Comparing this with the expanded form of (A.8), we find

S = Sis Suz = Si2s e 285112 = Si6

and by similar expansion and comparison for other values of 7, j, it can be shown that:

w Jor gqr=123
zsl'jkl =S fbr q= 1,2,3,r =4,5,6 (A.10)
4sgy =5, for q,r=456

The use of the symbols s for compliance and ¢ for stiffness is now almost invariably

followed.

If we expand equation (A.8) we get

E = 5,1 +5,T, + 5,33 + 5., T, + 5515 + 5161 (A.11)

E, = sy + 50T, + 5T + ST, + 54T + 5461 (A.12)

Now if the only stress acting is 7; then all six strains E ..., E, ,... exist. In the particular
case of E, (A.11) gives
E =s,1
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and therefore
sy =1/K, (A.13)

where K is the Young’s modules.

If the only stress is T, then
E =s,T,
But we have
E[E, =-v,,

where v,, is the Poisson’s ratio and E, = s,,T; [9]. Therefore

Sip =V !/ K
and since s,, = 5,, [9]

S =Vl K, =-v, /K (A.14)

Similarly, if 7, is the only stress different from zero, we find that s,, relates a shear
stress in the x,x; plane to an extensional strain in the x, direction. From equation (A.12)
and the reciprocal relations we find that s,,(=s,,) also connects an extensional stress m

the x, direction to shear strain in the x,x, plane [9].

In the same way, s,, relates a tensile stress in the x, direction to a shear stain in the
x,x, plane, or alternatively, a tensile strain in the x, direction to a shear stress in the

x,x, plane; and s,, relates a shear stress to shear strain, both in the same plane. We thus

have
S =1/Gy

where G, is the shear modules in the x,x; plane.
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The last typical compliance to consider is s,;, and we find that this relates a shear

stress in the x,x; plane to a shear strain in the x,x, plane and vice versa.

The above findings can be generalized as follows:
()5, (= 5:4)(q = 1,2,3) relates an extensional stress to an extensional strain both in the
same direction, and 5., =1/ K ;
(ii) s, (=54 )g # 1, q,r = 1,2,3) relates an extensional strain to a perpendicular extensional
stress,and s, =—v, /K =~V /K

(i) (a) s, (= 255 ) g = 1,2,3 or r = 4,5,6) relates an extensional strain to a shear stress

and vice versa, both in the same plane;
(ii)) (b) s, (= 2545 )(q = 1,23 or r = 4,5,6)relates an extensional strain to a shear stress

in a perpendicular plane , and vice versa;

(iv)s, (= 4s;; X(g = 4,5,6) relates a shear strain to a shear stress both in the same plane,
and 5., =1/G,.
) 5.(= 45y Xq #r,q,r =4,5,6) relates a shear strain to a shear stress in a

perpendicular plane.

The physical significance of the stiffnesses ¢ can be investigated similarly.
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