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ABSTRACT

The process of matrix diffusion plays an important role in controlling mass
transport in fractured media. However, discrete fracture models that address geometries
other than sets of paraliel fractures have not been extended to include matrix diffusion untl
very recently. The model developed in this thesis extends the present capabilities in
modelling mass transport in complex fracture networks subject to matrix diffusion. Based
on systems analysis, this model uses the concept of transfer functions to consider not only
physical and chemical transport in the network, but also diffusion and kinetic decay in the
matrix blocks, with considerable reduction in the fracture and matrix discretization. The
fracture network is seen as a large system constituted of, basically, two different types of
components: the fracture segments and the intersections. If the transfer function is known
for each component, the response of the system can be evaluated by considering the
interactions of all the components. In this work the fracture component is approximated by
the single fracture model, while the intersection component is approximated by either the
complete mixing or the streamline routing model. In essence, the model is a com-bination
of numerical and analytical approaches at the fracture scale, where mass is routed
successively through fracture segments and intersections. The model can handie efficiently
heterogeneous systems as well as compute exceedingly low concentrations accurately, what
is important for many organic compounds that have drinking water standards in the PPB

range.

Verification of the approach has come through a comparison of predicted
concentrations with analytical solut"ons for simple fracture networks. A series of

applications involved the analysis of the relative importance of the mixing models for the



fracture intersections, the role of diffusion in regional scale transport and the potential
impact of matrix diffusion on the interpretation of tracer tests. In general, the results have
shown that mass transport in discrete fracture networks is strongly dependent on the flow
field developed within the network. Estimated parameters from tracer tests may not
represent an average for the fracture system surrounding the wells, but a specific test
dependent situation. The results also suggest that even short tracer tests may be influenced

by diffusive effects, especially if instantaneous injection is considered.
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1. INTRODUCTION

The process of diffusion into the matrix plays an important role in controlling mass
transport in fractured rock systems (Neretnieks, 1980; Grisak and Pickens, 1980a; Tang et
al. 1981). Early studies have essentially considered the interactions between a single
fracture and its surrounding matrix, aiming to gain insight into the mass transport
behaviour. Grisak and Pickens (1980a) examined the problem from a numerical point of
view. Their model included advection and diffusion into the matrix and considered both
the fracture and the matrix as a single continuum. Tang et al. (1981) presented a more
complete analysis for the same problem. They derived an analytical solution tfor mass
transport in a single fracture that included the processes of radioactive decay, advection,
dispersion in the fracture, diffusion into the matrix and adsorption in both fracture and
matrix. Later works have contributed to the understanding of the transport phenomena by
treating the fractured media as double continuum media (e.g., Bibby, 1981; Rasmuson,
1984, 1985a; Neretnieks and Rasmuson,1984; Huyakorn, 1983a, 1983b; Hopkirk and
Gilby, 1984).

Modelling of matrix diffusion in fracture neiworks with geometries other than
parallel fractures have not being addressed until very recently. All previous works on
fracture networks were concerned with transport in the network itself and completely
neglected diffusion into the matrix (e.g., Schwartz et al., 1983; Smith and Schwartz, 1984,
Robinson, 1984). One of the first attempts to account for diffusion into the matrix in a
fracture network was carried out by Germain (1988). That work considered an orthogonal
system of fractures with variable aperture and used an analytical approach for dealing with
diffusion into the matrix, which was coupled to a numerical scheme for treating mass
transport in the fractures. More recently, Sudicky (1989b) presented a numerical scheme

based on the Laplace Transform Galerkin Technique (Sudicky, 1989a) which handles ma-

1



trix diffusion during mass transport through an orthogonal fracture network and also

allows for mass advecton in the matrix.

The model that is developed in this thesis is designed to extend the present
capabilities in modelling mass transport analytically in fracture networks subject to matrix
diffusion. Flow in the matrix is, however, neglected. One of the main motivations tor
undertaking this present study was the realization that in many cases (e.g., nuclear waste
repositories, geothermal reservoirs), fractures can be sparse and poorly connected
(Marsily, 1985a; Neretnieks, 1987) and the matrix permeability is often low. The models
currently available are not adequate to efficiently model such systems in an analytic tashion,

when matrix diffusion is an important process.

An important goal of this study is to apply the model to better understand mass
transport processes in fracture networks. Works on the single fracture modelling suggest
that diffusion into the matrix is an important process that may have to be considered in the
interpretation of tracer tests (Neretnieks, 1983; Jensen, 1983). Different mixing models
have been considered for mass distribution at fracture intersections (e.g., Castillo et al,,
1972; Hull and Koslow, 1986), but no definite guideline is available for their selection.
Another important issue, that is yet poorly understood, is the cffect of channeling on mass

transport in the fracture plane. The model that is developed in this thesis provides a useful

tool to resolve these issues.

With these overall goals in mind, the specific objectives of this thesis are: (1) 10
develop a discrete fracture model not only involving transport in the network, but also
diffusion into the matrix; (2) to consider different mixing models for the mass distribution
at the intersections; (3) to verify this model using analytical solutions; and (4) to apply this

model to study the relative importance of fracture intersection mixing models, the role of



diffusion in regional scale transport and the potential impact of matrix diffusion on the

interpretation of tracer tests.

The thesis is organized in five chapters. As part of the introduction, an overview of
the present techniques for modelling mass transport in fracture networks is presented.
Chapter 2 considers the theoretical background necessary for the development of ithe
model. Chapter 3 discusses the numerical implementation of the model and its verification
against known analytical solutions. Chapter 4 introduces the model applications and

Chapter 5 presents the conclusions and recommendations.

I.1  Background

For the last decade, there has been considerable interest in the problems of flow and
mass transport in fractured rocks. In countries around the world deep low permeability
rocks have been considered as potential sites for the disposal and isolation of high level
nuclear waste. In most instances, these rocks are fractured and an understanding of the
transport mechanisms is required in order to correctly evaluate the risks associated with a

possible failure of the repositories.

High level nuclear waste is generated mainly from the reprocessing of spent nuclear
fuel (Cohen, 1977). It contains many long-lived fission products that need to be isolated
for a very long period of time, 1000 to 10000 years (NRC, 1983), to allow the radionu-
clides to decay to safe levels. The burial of waste in deep underground repositories seems
to provide sufficient isolation. The Swedish (Neretnieks and Rasmuson, 1984) and Ameri-
can (Cohen, 1977) repository concepts, for instance, place the repository at depths of 500 -

600 m, which provides enough protection against the degradziion processes of the surface.



Potential sites are being located in geologically stable formations to minimize the possibility

of new fracture pathways to the biosphere.

The geosphere is, therefore, considered to be part of a succession of engineered and
natural barriers to confine the wastes to the vicinity of the repositories. Groundwater tlow
is the major natural agent in the geosphere that could transport the radionuclides trom the
repositories to some accessible point in the environment. The integrity of the engineered
barriers, however, may be compromised due to the presence of groundwater in the the rock
and the long period of isolation. The possible degradation of engineered barriers (e.g.,
break up of concrete liners and corrosion of metal canisters) would allow groundwater to
come in contact with the buried wastes, to leach them into solution and to carry them away.
Once the radionuclides enter the groundwater system, their mobility is controlled by the pH
and Eh of the water and they may experience a variety of geochemical processes during
transport from the repository. If the rocks are dense with very low permeability, the tlux
of groundwater will be extremely slow, allowing enough time for some of the contaminants

to decay 1o safe levels, before reaching the biosphere.

It happens, however, that rocks often are fractured, even at great depth (Neretnicks.
1985), or may become fractured in the future due to tectonic forces (Tewley, 1977, in
Moench,1984; Stein and Yeats,1989) and their presence may increase considerably the
overall permeability of the rock (Neretnieks, 1985). In addition, it may create preferential

pathways that decrease the residence time of the radionuclides, increasing the chances of

waste migration to the biosphere.

There are several factors that influence transport and residence time of the
radionuclides in fractured rocks. The basic factors are those related to the geometry and

structure of the fractures that ultimately control the velocity field of groundwater flow,



v

under a prescribed hydraulic gradient. They are fracture dimensions, aperture. orientation,
density and connectivity. There is some uncertainty about the geometrical form of actual
fractures. Some researchers consider them to be rectangular planes (e.g., Smith et al.,
1985a), while others (e.g., Long, 1985) consider them to be circular in shape. Although
fractures are usuaily modelled as parallel plates, the actual fracture surfaces are irregular,
with many contact points (or areas) and, therefore, the fracture aperture is not constant
throughout. Flow can take place only through those areas that are open and, consequently,
it is not uniformly distributed along the fracture plane, tending to concentrate in specific
paths and also forming some pockets and dead-end zones. This phenomenon is called
"channelling” and in some cases 5-20% of the fracture plane may carry more than 90% of
the flow (Rasmuson and Neretnieks, 1986). This kind of ransport behaviour can adverse-
ly affect the safety of nuclear repositories, because fast channels tend to shorten even more

the residence time of radionuclides in the geosphere.

Connectivity is an important parameter related to the fracture arrangement in the
three-dimensional space, because it defines how fluid flows through the fracture system.
The intersections of finite length fractures from different sets can produce a connected
senies of pathways through the rock that is referred 1o as a network. It is important to
realize that, although rocks are fractured, the network may not be percolating. A so-called
critical density of fractures must be achieved before the fracture network becomes conduc-

tive (Robinson, 1984).

Many different processes can influence mass transport in a fracture network. The
most important ones include advection, dispersion in the fracture. diffusion into the rock
matrix, sorption on the fracture surfaces and within the matrix and radioactive decay
(Neretnieks, 1980; Tang et al., 1981). One of the most important contributions to the

study of mass transport in fractured rock systems has been the recognition of the impor-
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tance nf diffusion into the matrix (Neretnieks, 1980; Tang et al., 1981, Grisak and Pickens,
1981). This process effectively makes the storage volume inside the rock matrix acceessible
to the radionuclides. Sorption on the internal surface of the porous matrix enhances even

more the storage capacity, contributing significantly to the retardation of the radionuclides.

Mass transport in fractured rocks has been modelled with either the continuum or
the discrete approach. In the first approach, the fractures are assumed to be so abundant
that they can be represented using equivalent continuum properties of the rock (e.g.,
permeability, porosity, dispersivities and so on). In the discrete approach, each fracture is
explicitly considered at a smaller scale, and the properties for the individual fractures and

intersections must be specified.

In the continuum approach, modelling is just an extension of the methods currently
available for porous media (e.g., Robertson, 1974; Mercer and Faust, 1979; Fryar and
Domenico, 1989). When the interactions with the porous matrix are important, the concept
of double porosity (or double continuum), as proposed by Barenblatt et al. (1960), is used
(Narasimham, 1982; Rasmuson et al., 1982; Huyakorn et al., 1983a, 1983b). For fluid
flow the continuum approach has worked extremely well for niany naturally fractured
reservoirs in the areas of oil fields, geothermal reservoirs and aquifers, but it may not work
as well for mass transport problems. One reason is that the continuum approach does not
fully represent the complexity of transport that can occur in fractured media (Schwartz and
Smith, 1988). A second v uson is that sparsely fractured media may not be describable
through a representative elementary volume (REV, Bear, 1972), an essential requirement

for tt.2 continuum approach to be valid.

The transport of mass is much more selective than the flow of the natural fluid. The

effects of channelling and poor connectivity of the fracture network can make the tlow



paths very tortuous and two adjacent streamlines in the repository may take the
radionuclides to very different places ( a porous medium example is given by Freeze and
Witherspoon, 1967). The immediate consequence is that mass being transported samples a
smaller area, thus requiring a larger volume of rock, perhaps as large as the study region,
before homogenization takes place. In this case the continuum approach may be totally

inappropriate (Endo et al., 1984; Robinson, 1984).

The discrete approach, in contraposition, does not require assumptions about
REV’s and overall provides a more realistic description of the transport process. As a
consequence, it can be applied to a much wider range of problems. Its main limitations,
however, are the larger number of parameters required to fully describe the network and

the computational effort that is required to model networks of even moderate size.

Two basic methodologies have been used in modelling transport through networks,
particle tracking and conventional finite elements and finite differences. Particle trackin g
models have been successful in simulating advection and dispersion in fractured networks
(e.g., Schwartz et al., 1983; Smith and Schwartz, 1984; Robinson, 1984; Smith et al.,
1985b; Rouleau, 1987), but they are incapable of incorporating diffusion into the matrix, a
process that cannot really be ignored in real systems. The finite element methcd (FEM) and
:iic integrated finite difference method (IFDM) are almost equivalent in terms of capability,
being different in the way they work with the governing equations (Narasimham, 1982).
Both methods usually require refined discretizations, especially in the matrix blocks due to
the high concentration gradients between fracture and matrix at early times. The fracture
discretization and the time step are also constrained due to the ill-behaviour of the advection
term. The finite elemznt models developed by Grisak and Pickens (1981) and Noorishad
and Mehran (1982) and the integrated finite difference model of Narasinham et al. (1982)

discretize both matrix and fractures. More recently, Germain (1988) developed a model



that does not require discretization of the matrix. Instead. it uses an analytical solution to
account for the mass diffusion into the blocks. It also employs a difterent approach, in
which the governing equations and corresponding boundary and initial conditions are
rewritten in the Laplace domain and solved using traditional FEM (Sudicky, 1989a4). The
advantage is that the usual problems related to the time discretizations are eliminated. A
numerical inversion gives the solution in the real domain. The drawbacks of this modetl are
that it is restricted to orthogonal fractures and that the numerical Laplace inversion methods

may not be sufficiently robust to converge to the correct solution (Robinson, 1984).

One of the requirements for all discrete representations of networks is a mixing
model that describes how mass reaching a fracture intersection is partitioned among the
fractures receiving flow. Work to 4ate has modelled mixing with what is known as the
complete mixing model, whicl: :. discussed in detail in Chapter 2. There is, however,
experimental evidence that this may not be always the case and, in fact, mass would be
transported along streamlines with very little interference between adjacent streamlines at
the intersections (e.g., Wilson and Witherspoon, 1976; Hull and Koslow, 1986; Robinson
and Gale, 1988). The choice of the mixing model, however, is dependent on the fluid

residence time at the intersection and also on the diffusive properties of the mass being

transported.

A few attempts have be je to incorporate streamline routing through
intersections into numerical models. Endo et al. (1984) simulated mechanical transport in a
fracture nerwork based on a detailed description of the movement of the fluid within the
fractures. They considered the two-dimensional character of the velocity profile within a
fracture and developed a model that tracked down streamtubes from inlets to outlets. By

calculating residence times for each streamtube it was possible to obtain the distribution of

residence times for the system.
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Hull et al.(1987) developed a more complete model that considered not only the
velocity distribution within individual fractures but also transverse molecular diffusion
within the fracture system (including intersections). Their model used the particle tracking
technique (Ahlstrom et al., 1978) with a deterministic motion (advection) added to a

random motion (diffusion) as the particles moved along the system.

Robinson and Gale (1988) used the finite element method to discretize the fracture
system. At the fourway intersections they had to uncouple and recouple the finite element
nodes in order to properly assign corcentrations to each fracture element (equivalent to
considering the intersection as an immaterial element with four nodes). Their model
considered advection and dispersion along the fractures and streamline routing at

intersections, but no diffusion between streamlines at intersections.



2. METHODOLOGY

2.1 Introduction

Of the possible approaches for modelling mass transport in a fractured rock system,
which can account for realistic geometries and matrix diffusion, only numerical incihods
are applicable. It is possible to represent the entire system (fractures and matrix) either as a
single continuum or as a double continuum. In the single continuum approach fractures are
assumed to represent a heterogeneity within the matrix domain with different flow and
transport characteristics. This procedure was implemented by Grisak and Pickens (1980a)

and Noorishad and Mehran (1982) for a system of parallel fractures.

In the double continuum approach the fracture and the porous matrix systems are
considered as two distinct and overlapping media that are related to each other through a
source/sink term. Huyakorn et al. (1983a) discusses the formulation of this approach and
describes how both systems can be discretized and the resultant equations solved simulta-
neously. One can potentially avoid the discretization of the matrix, however, by using an
analytical solution to express the mass transfer between the fracture and the matrix. Bibby
(1981) derived his source/sink term based on a simple solution for a system of parallel
fractures and expressed the mass flux as a function of the average concentration inside the
block matrix. Hopkirk and Gilby (1984) preferred to characterize the mass distribution
inside the porous matrix (idealized as slabs or spheres) through an analytical solution

whose coefficients had to be fitted at the end of each time interval.

Although the single continuum approach may rely on few simplifying assumptions,

it requires a refined discretization for the matrix because of high concentration gradients at

10
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the fracture/matrix interface. For large realistic three-dimensional systems, this approach
becomes impracticable. In the double continuum approach, the physical quantities (e.g.,
permeability, dispersivity and so on) represent an average over sufficiently large blocks of
rock that contain many fractures (the representative elementary volume, REV, as detined by
Bear, 1972). For nuclear waste repository sites, for instance, the fracture network may be
sparse and poorly connected and, consequentely, the size of the REV may become large,
perhaps as large as the study area, making the double continuum approach inappropriate on

theoretical grounds.

Another approach in modelling mass transport is to consider the system at the
fracture scale, with both fracture and matrix blocks treated separately. Germain (1988)
developed a model in which diffusion into the matrix is accounted for by using an analytical
solution. The matrix domain, however, is assumed to consist of rectangular blocks and the
mass flux is a function of the fracture concentration at the boundary of the blocks.
Although the fractures must still be individually discretized, the use of an analytical solution
may enable larger systems to be treated with the same computational effort. Similar
concepts have also been used for flow modelling in multilayered aquifers (e.g., Herrera

and Yates, 1977; Huyakorn, 1986).

in this work a somewhat diifferent procedure is considered. lt is also a combination
of numerical and analytical approaches at the fracture scale, but, unlike Germain's (1988),
1t does not involve a complete discretization of the fractures. The idea is to regard each
fracture segment between intersections and the intersections themselves as components of a
large system, for which the laws governing the mass transport are known. By appropriate
calculations, the interactions among all the components can be found, leading to the

evaluation of the breakthrough curves at specific outlets.



Ross and Koplick (1979) used a similar technique to model! transport in porous
media. The steady-state flow field is approximated by a network of streamtubes. within
which transport is assumed to be unidimensional. Knowing the impulse response (Green's
funiction) for a generic streamtube, it is possible to calculate sequentially the mass transport
along the streamtube network by using the convolution theorem. Following the same
technique, Gureghian and Jansen (1985) derived an analytical solution that can account tor
the transport of a three-member decay chain in a mul*ilayered medium. They assume the
radionuclides will be confined to a streamtube, which can be subdivided into several
segments, according to the geologic unit they belong to. Each streamtube segment can be
assigned different properties and the convolution theorem is used to sequentially calculate

the mass transport along each segment.

Although not explicitly mentioned, these techniques represent an application of a
quite general methodology, systems analysis, where the behavior of the system as a whole
can be characterized by an appropriate transfer function that relates the cutput functions to
the input functions. There are several advantages in using such an approach for modelling
mass transport in fractured media. First, it minimizes the fracture and matrix discretization
involved and, consequently, a greater number of fractures can be considered for the same
computational effort. Second, it can realistically account for the fracture distribution when
the REV becomes large. Third, it can efficiently handle heterogeneous systems. And
fourth, most important of all, the traditional problems involved with the solution of the

transport equation, such as numerical dispersion and oscillations, are completely

eliminated.

There are, however, some limitations. As with most other approaches, it assumes
steady-state flow of groundwater in the fractures and neglects flow in the matrix. [t also

assumes that the mass penetration depth into the matrix is small compared to the distance
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between fractures. By considering the fracture segment and surrouding matrix as a
component, one is implicitly assuming that the knowledge of mass distribution inside the
maltrix is not important for the overall mass transport through the fractures, where the
matrix acts as a buffer for the mass being transported. This model is primarily applied to
two-dimensional fracture networks, because of the nature of the ransfer functions em-
ployed. It is difficult to uxtended the model to three dimensions, by assuming a plane or
disc shaped fracture. The model is, however, readily extensible to three-dimensional
systems, when one considers a more realistic fracture representation that includes the

effects of channeling.

‘The wansfer function approach, unlike ail the other approaches, does not need to
explicitly solve a partial differential equation. It assumnes that a solution is already known
or that it can be found based on the knowledge of the input and output functions. Thz
convolution integral is then used to account for the relations of several components in a

system (Wylie, 1966; McGillem and Cooper, 1984).

In the next section, the concepts of system and transfer function will be discussed
and it will be shown how these concepts can be applied to the problem of raass transport in

fractured rocks.

2.2 The Concepts of System and Transfer Function

A system, represented as a black box model (Figure 2.1), in its most basic form
consizts of an input function (external stimulus or excitation), an output function (response)
and an operation function that relates the input to the output. This operation function,

which represents the fundamental behaviour of the system, is called the transfer function.
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The complexity of the transfer function depends on the nature of the components involved
with the system. It might accomplish a simple scaling, or a complicated non-linear

mapping of one functdon into anou >, McGillen and Cooper, 1984).

| OPERATION
INPUT ———»  yncTION 8 OUTPUT

(transfer furction)

Figure 2.1 System Representation

The system in Figure 2.1 could represent mass transport in a single fracture, with a
transfer function characterizing the transport processes. The input could be a variable-in-
time release of radionuclides and the output would be the breakthrough curve at the end of
the fracture. Generally, the transfer function is defined in the Laplace domain, as the ratio
of the transforms of the output and the input functions, when the initial conditions are zero.
If the input is i(z) and the output is o(t), then the transfer function H(s) is given by

Lio®) _ OG) 2.1
Liitn)  1(s) -

H(s) =

where L{} is the Laplace operator, defined as L{f{z)} = f Aitye-stdt, O(s)is the Laplace
c

transform of the output, /(s) is the Laplace transform of the input ands is the Laplace

variable.

In many situations, the internal processes operating in the s /ster are unknown and
the problem consists of just determining the system transfer function (e.g., Jury, 1982;
White et al., 1986). A simple way to obtain the transfer function is to set the input as the
unit impulse function and the output of the system, called the unit impulse response

function, will coincide with the transfer function (Himmelblau and Bischoff, 1968). If the
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input is given, instead, by the unit step function, the output is the integral of the transfer
function and is called the unit step response function or the indicial admittance function
(Wylie,1966). In concept, both functions are equivalent and it is simple to go from one
function to the other. In fact, it is easier to find the transfer function from the unit step
response function, because only a differentiation is involved. In this study, the unit step
response function is used to characterize the system response because it has certain

advantages in numerically implementing the method (as discussed in Chapter 3).

In the approach used here, the fracture system is a combination of many segments
and intersections that can be thought as individual components or subsystems within the
global system. If the unit step response function is known for each of these components,
then the response of the system can be found by means of the convolution integral. The
procedure that leads to the convolution integral can be exemplified by a simple system
consisting of m subsystems in series. Each subsystem is characterized by its own unit
step response function. Figure 2.2a depicts the first subsystem subjected to a step input of
magnitude c¢y. The output is shown as the S-shaped curve c,(z), which would coincide

with the unit step response function f;(1), except for the scaling factor co- Therefore
c1(2) = co f1(1) (2.2)

The output of the first subsystem becomes, now, the input for the second
subsystem. Because this input is a continuous function, it has to be discretized in a series
of steps to allow the use of the known unit step response function. Figure 2.2b shows the

input curve discretized in three steps Ac; , with the respective time 7; that each step occurs.
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Assuming that the behaviour for each subsystem is linear, the output for the second

subsystem is the summation of all the el. mentary step respornses. that in a general form is

given by

cf) =  Acy fLU-T1) + Acy fo(t- T2) + - - -

oo ¥ ACp1 2(2-Tn1) + ACn f2(1- Tn)

which can be put in the form,

c2t) = D, Aci fr(t-Ty)

i=1

where Ac; represents the discretized steps of the input. By substituting

AT;

=T

Ac; = a%:(cl(r))

into equation (2.4), one obtains

) = D, a—ca‘—(;—)! AT fo(t- T)
i=1 ™T;

Taking n — oo and At; — 0, equation (2.6) becomes
_ ’ acl(r)
C.’(t) - fo az_ ,fZ(t - T) dT
and finally, generalizing for any subsystem, one obtains

Cmlt) = f a—c”é';ﬁ fnlt - 7) dt

(2.5)

Q7

(2.8)

This equation, often referred to as Duhamel's formula, represents the convolution between

the derivative of the input function and the unit step response function, for the mth
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subsystem. In other words, it expresses the response of a system to a general driving force
¢n..1(2) in terms of the experimentally accessible response f,,(z) to a unit step function. In

the Laplace domain, equation (2.8) becomes:
Crfs) = 5 Cpals) Frls) (2.9)

where F(s) is known as the indicial admittance function (Wylie, 1966). It is important to
note that equation (2.9) contains only multiplications of the Laplace transforms, which
makes it very simple to derive the response of almost any system. The difficult part might
be finding the equivalent real solution. Fortunately, for transport in fracture networks the

solutions in the Laplace domain are given by simple expressions, making it possible to find

analytical solutions for simple fracture networks.

2.3 Application to a Fracture Network

The concept of transfer function provides a useful way of modelling mass transport
in a complex fracture system. Jury (1982) and Jury et al.(1986), for instance, developed a
transfer function model for mass transport in unsaturated soils. Their model did not
explicitly account for the details of mass transport within the soil. Instead, all the unknown
transport mechanisms were lumped together into the transfer function derived from

measurable parameters, the net amount of water entering the soil and the breakthrough

curve at a depth L.

The approach in this study is the opposite. It is assumed that the transfer function
or the unit step response function is known for each component of the system. The

obijective is, therefore, to evaluate the response of the system considering the interactions of
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all the components. For a complex fracture system, two different types of components are
considered: the fracture segment and the intersection (Figure 2.3). The first component,
responsible for ali the physical processes involved, can be approximated by the single
fracture model. The second component is just a connecting device with no physical size.
Its purpose is to properly distribute the incoming discharges into the exit segments. The
attractiveness of the transfer function method is that each type of component obeys the

same processes, while parameters for each component can vary.

Fracture system

~

intersection —m £33

&
83\83 =
4

Components

Fig. 2.3 Definiton of the components for a fracture systern.



2.3.1

Fracture component

The appropriate unit step response function for the fracture segment can be

developed from well-known analytical solutions for mass transport in single fractures. In

general, fractures are idealized as two smooth parallel plates. Fluid flow is assumed to be

laminar and transport is controlled by advection, dispersion along the fracture, diffusion

into the matrix, radioactive decay, and adsorption in the fracture and inside the matrix. The

following system of linear partial differential equations describe the phenomena for a single

fracture in a porous rock (Tang et al., 1981),

where,

2

9¢ yod _ 9 .. 4
faz2  Rro: ot bRy

2

Ocm _ OCm + Aen

ox? ot

_ eDmac,,,

ox lx=p

- concentration in the fracture,

- concentration in the matrix,

- groundwater velocity in the fracture,
- dispersion coefficient,

- decay cosfficient equal to (In2)/t;;,
- half-life,

- matrix porosity,

- fracture aperture,
- distance along the fracture axis, and
- tme.

effective diffusion coefficient for the matrix,
- retardation coefficient for the fracture,
- retardation coefficient for the matrix,

(2.10)
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Several solutions have been obtained for the system of equations (2.10).
considering different boundary and initial conditions. Table 2.1 presents a summary of the
available solutions with the respective boundary ronditions and simplifying assumptions.
The solution by Tang et al. (1981) is most a¢ppropriate for this study, because of its

simplicity. Their general analytical solution for the concentration in the fracture is given by

equation (2.11),

+ exp(+2. Y) erfc(——-+l T}dﬁ (2.11)

while equaton (2.12) presents the simplified solution for the case of no-dispersion.

% = —;—exp ——’15:—5-) [exp( 2% Y) erﬂ(———l T}
+ exp (+ A Y) erfc 5—7:4- )L Tn (2.12)
where,
0.5 0.5
n = 4_2;? y = aR:lL;Z;z z2 v o= e(Rmzv)g,) z

0.5
_ [Rez2\*?° 7 |, _Re22
=150 2
g aDé&




23

If ¢p=1.0and z =L isthe length of the se.inent between fracture intersections,

then the solutions presented by equations (2.11) and (2.12) are the unit step response

functions. In the Laplace domain these functions become (Tang et al., 1981), respectively,

B

0.57]
F=Lep )exp[_%{lﬁgé)(B(Rﬁm)o'S .(S+,1)°'5+(s+,1))} J (2.13)

0.5
F=Llep [ - (————“Rm?/;’ Eofs+al+ BL (s+ /1))] (2.14)

where F has been substituted for C to stress the fact that it represents the unit step response
function (in the Laplace domain), and L is the segment length. The transfer function in the
Laplace domain is obtained by simply multiplying equations (2.13) and (2.14) by the
Laplace variable s (Wylie, 1966).

There is an important difference between these two equations. Equation (2.12), for
the general case, has a square root in the argument of the exponential function. This non-
linearity makes it impossible to relate the convolution form in the Laplace domain with the
expression in the Real domain. This means that the inverse Laplace transform is necessary
in order to find an analytical solution for any complex system. In the simplified case,
equation (2.13), it is easy to find the relationship between the Laplace transform and the
expression in the Real domain, to avoid the inverse transform. To explain this point,
consider, for instance, two fracture segments in series. If the input for the first one is a
step function, the breakthrough curve at the end of the first segment is the step response
function as given by either equation (2.11) or (2.12). The response of the second segment

can be found by using equation (2.9). Thus the convolution process in the Laplace domain
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leads to the multiplication of two exponential terms and, consequently, to the addition of
the arguments. If equation (2.11) were used to represent the fracture segment, the addition
of arguments in the Laplace domain would lead to the addition of the corresponding
arguments in the Real domain. This procedure is illustrated in section 2.5, where un
analytical solution for a simple fracture network is derived. This rather simple procedure,
however, cannot be used for the general case (equation 2.10) and the convolution integral

has to be evaluated either analytically or numerically.

2.3.2 Intersection component — Complete mixing

Having found an appropriate response function for the fracture, it is necessary to
consider the second type of component, the intersection. Although the intersection is a
simple component, it may have several inputs and outputs. The description of the transfer
function becomes more complicated, because any output may depend on many inputs,
giving rise to a transfer function matrix. The derivation of the transfer function matrix

becomes simple if we derive first the response of the component based only on physical

considerations, i.e. continuity equation.

The intersection specifies how the incoming mass is distributed among the outgoing

fluxes. There are two basic models describing mass mixing at intersections: complete

mixing and streamline routing.

The complete mixing model assumes that the incoming mass is completely mixed at
the intersection and the concentration leaving the node is the same for any segment. This is

the equivalent of the completely stirred tank model in chemical engineering

(Stephanopoulos, 1984).
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Mathematically, a very simple mass balance equation can define the outgoing
concentration. If Q; and Q4 are the incoming volumerric discharges with respective
mass concentration c¢3; and ¢4, as shown in Figure 2.4, then the outgoing cencentration

¢, valid at any instant, is given by

¢ = 6303 +ca0as (2.15)

Q1+Q4

When there is more than two incoming segments, equation (2.15) can be generalized to

(zil CzQz)

—_— (2.16)

%)

where the subscript i represents any of the n incoming segments.

Fig. 2.4 Complete mixing model representation.



2.3.3 Intersection Component - Streamline Routing

In the streamline routing model, mass follows the soeamlines at the intersection and
no mixing occurs between different streamlines, while in the intersection (Hull and
Koslow, 1986). Unlike the complete mixing model, the concentration leaving the node
differs for each exiting segment, depending on the specific streamlines that converge to
each one. This partitioning makes the problem more complex and two mass balance
equaticns become necessary to define the outgoing concentration. Once the mass has
entered any of the exiting segments, it is assumed that the segment is long enough so that

diffusion in the fracture can homogenize the concentration over the cross section (Taylor,

1955).

In the streamline routing the relative position of the nodes at the intersection is of
fundamental importance. In this study it is assumed that only two fractures can intersect at
a point, leading to four basic flow patterns (Figure 2.5): (a) one incoming segment; (b)
one outgoing segment; (c¢) discontinuous intersection; and (d) continuous intersection.

The terms discontinuous and continuous intersections were suggested by Hull and Koslow

(1986).

3 3 3
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a) b) c) d)

Fig. 2.5 Possible flow patterns at a fourway intersection
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Case (a) has only one incoming segment and, therefore, the concentration will be

the same for any of the other three exiting segments,

case (a) C1=C2=C3=C4 .17

In case (b) there is only one exiting segment and, consequently, there will be a
forced mixing of the three incoming fluxes after they enter the exiting segment. Although
no mixing occurs at the intersection, case (b) is mathematically equivalent to the complete

mixing model and can be described by

case (b) ¢ = 202 + 303 + €404 (2.18)

02+ Q3 +04

Both cases (¢) and (d) were analyzed by Hull and Koslow (1986) and their routing
procedure has been termed proportional routing (Philip, 1988). Essentially, the outgoing
concentration is weighed in proportion to the concentration carried by the different

streamlines that arrive at one specific exiting segment.

In case (c), discontinuous intersection, proportional routing leads to the same
concentration for both outlets, although no mixing occurs in the intersection. The outgoing

COnCEntrations are given by:

case (c) ¢ = ¢ = £292+€i04 (2.19)

Q2+ 04
Philip (1988) pointed out that the use of proportional routing in case (c) introduces
significant errors when the following three conditions are met simultaneously: (1) there are
great differences between the incoming fluxes; (2) there are great differences between the
outgoing fluxes; and (3) the smaller incoming flux carries the majority of the tracer arriving

at the intersection. These restrictions, however, represent only a small number of all
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possible situations in a intersection and their overall effect in a network can be considered

negligible (in most cases).

O, =05 O, 205

Fig. 2.6 Possible streamline distributions for a continuous intersection.

In case (d), continuous intersection, the partition of the streamlines is a function of
the discharges QO and Q3. If, according to Figure 2.6, Q7 < Q3 , then the streamlines
arriving at segment 2 will all come from segment 3 and the concentration at 2 will equal the
concentration at 3. The concentration at 1 is then given by a weighted average of the mass
fluxes coming from segments 3 and 4. In the case @, 2 Q3 theconverse is true and the
concentration at 1 equals the concentration at 4, and the concentration at 2 is a weighted

average of the mass fluxes coming from 3 and 4. Mathematically, this condition 1s

translated as



~J
\O

ICz = C3
Q2 <03 (2.20a)
V.. _ c3Q1-Qs)+ caQ4
J\Cl B O
case (d)
101 = C4
02 203 (2.20b)
\c _ CaQ2-03)+ 305
2 (0))

The proportional routing in cases (a), (b) and (c) leads to the same type of equations
as the complete mixing model, but there is no actual mixing at the intersection. Another
important point concerns the distribution of concentration over a cross section just at the
beginning of the exit segments. In all cases but (a), the concentration is not uniform over
the cross section. If the segment is long enough, diffusion in the fracturs will homogenize
the concentration over the cross section (Taylor, 1954). For modelling purposes, it is

assumed, however, that homogenization takes place at the beginning of the segment.

2.3.4 Intersection Component -~ Transfer Function Matrix

Once the response functions for the intersection have been derived, the concept of
transfer function matrix becomes rather intuitive. Consider the system depicted in Figure
2.7, which corresponds to case (d). In the general case, each output may be dependent on

both inputs and one may write (capital letters indicate the Laplace transform),

Hy Iy + Hio I,

Oy
(2.21)
( O, = Hy I + Hy I
or, in matrix notation
Ol}z[Hll H12H’1> (2.223
) Hyy Hyp i1 -
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where O is the output Laplace transform matrix, I is the input Laplace transform matrix

and H is the wansfer function matrix. In the general case H isa m xn matrix, where m

is the number of outputs and n is the nnmber of inputs.

ll(t) - 01([)~
(1) PROCESS 0,(1)
(a)
+ 01(5)
~— H,,(s) - -~
11(5)
=~ Hy,(s)
= H,,(s) L/*
12(5)
£ O,(s)
Hoo(s)—3 =~

(®)

Fig. 2.7 (a) Two-input, two-output process.
(b) block diagram for the transfer function maitrix.
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The transfer function matrix is dependent on the flow pattern at the intersection and for the

cases illustrated in Figure 2.5 it can be written as:

(a) Only one inlet

l 1\ Hyy [CI\ 1
Oy, =| Hy [{Ih} = [Cp} = [ 1 ]{C4}
\03‘ H3y | (C3f L1d
(b) Only one outlet
B )
(O} = [Hy, Hyz His ] 12} = {C1}=é[Q2 Qs Qs ]1{Cs
\ 13 ! \cil

(c) discontinuous intersection

o=l melin) = 8 -5l 2 2 (@

(d1) continuous intersection - complete mixing model

G- [o e lie) = @) okl 8 &

0> Hyy Hyp | U, Cz O3 +041 O3 Qs

(d2) continuous intersection - streamline routing model

{01} _ [Hu
o)) Ho;

A

Hyy 11
w2 lin) =

:’ g;}=QL1'[Qlé1Q4 QO4 ]{gi} for 02<03
‘ g;}=—Ql—2[ QO3 Q2Q_2Q3] gi} for 02205

(2.24)

(2.25)

(2.26)

(2.27a)

(2.27b)
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The transfer function matrix provides a convenient way to represent the mass
distribution at the intersection. In this particular case, all the elements of the matrix are
constants. Consequently, the structure of the expressions in both Real and Laplace domain
are completely similar and the advantages gained by using the Laplace transform are
minimal. In the general case, however, equivalent expressions in the Real domain are more
complex, because the convolution integral is involved. Then, the Laplace transform is

much meore advantageous, because the convolution integral becomes a multiplication of two

functions (refer to equation (2.9))

2.3.5 Selection of Mixing Models

The advantage of the complete mixing model is its simplicity. The early studies of
Castillo et al. (1972) and Krizek et al. (1972) led to the conclusion that the complete mixing
mode! was valid for laminar flow through intersections. The experimental work of Krizek
et al. (1972), however, was not conclusive, because the intersection was limited to only
one inlet and all the outlets had nearly identical discharges. Later experimental work has
shown that in many situations mass followed the streamlines with very little mixing at the

intersections (Wilson and Witherspoon, 1976; Hull and Koslow, 1986).

The proper choice of a mixing model is strongly dependent on the flow char-
acteristics at the intersection and also on the diffusion properties of the mass being
transported. Hull et al. (1987) presented a simplified analysis regarding the applicability of
the two extreme mixing models. They considered the relation between the intersection

residen . time, 2b/V, and the diffusion characteristic time, (2b)2/D; . Based on simple

analytical solutions for the diffusion equation they concluded that the complete mixing

model is valid for
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(2b) (26 Dy
Vv > 0.5 —-DO or V <« 2 (—Zb)

and the streamline routing model for

(2b) (2b)? Dy
v < 0.003 Do or V > 333. 2b)

where 2b is the fracture aperture, V is the fluid velocity in the fracture and Dy is the

diffusion coefficient in pure fluid.

streamline
routing

V(mls)

2b (m)

Fig. 2.8 Limiting conditions for the mixing models (after Hull et al., 1987)

These limiting conditions are shown in Figure 2.8 for a diffucion coefficient Dy =
1.67x10-9 m?/s, which corresponds to the value for tritium in water. The two ranges of

representative fracture apertures used by Hull et al. (1987) are also included in Figure 2.8.

It is interesting to note that for crystalline repositories, characterized by small
fracture apertures and low velocities, the complete mixing model may be a reasonable

approximation, while for geothermal reservoirs, with large fracture apertures and relatively
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high velocities, the streamline routing may be more appropriate. Although these limits do
not consider the mechanics of transport within the intersections, they give a good indication

that both models are valid.

2.4 Analytical Solution for a Simple Fracture Network

This section presents an application of the analytical procedure for a simple fracture
network. Because of the simplicity of the transfer function matrix for the intersection, it is
preferable to use the physical approach, continuity equation, rather than the mathematical

approach to evaluate the mass distribution at the intersection.

¢y
Fl
e Gy Ca
Fy
Ciap 1+
C,
F,
(b)

Fig. 2.9 Simple fracture system consisting of three segments and four nodes (a),
and equivalent system representation (b).
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Although the transfer function approach can provide analytical solutions for many
fracture systems, the solutions for the simplified no-dispersion case can be easily obtained.
For the general case, however, it is nct possible to avoid the evaluation of the convolution

integral. This will be made clear through the following example.

Figure 2.9a shows a simple system, consisting of three segments and four nodes.
Assume that nodes 1 and 2 are the inlets and node 4 is the outlet. The problem is to find
the breakthrough curve at node 4, given the inlet breakthrough curves at nodes 1 and 2.
Figure 2.9b shows the equivalent system representation, with four subsystems. The

functions ¥, F, and Fj are the Laplace transforms of the unit step response function for

each segment. According to equation (2.9), the output for the segment one is:

Ciils) = Cis)Fys)s (2.28)

and similarly for segment two:

C3,2s) Cofs) Fofs) s (2.29)

The outputs C3; and C;, become the inputs for the intersection subsystem.

Using equation (2.24), the output Cj 4 is given by:
C34s) = -Q—]CS.I(S) + —Q—2C3.'2(S) (2.30)
O3 O3

If m3 = 04/Q3 and 13 = Q,/Q3 are introduced, then the input for segment three is

given by:

C3,4(s)

M3 Cils) Fil(s)s + 123 Cos) Fofs) s (2.31)

By using equation (2.9) again, the output for segment three is given by:



Cals) = [Mm3 Cils)Fils)s + n23 CoAs) FoAs)s ] Fils)s (2.32)

or,

Cals) = 113 Ci(s) Fi(s) Fa(s) sZ +

N2.3 Cos) Fo(s) Fa(s) s2 (2.3:

»J
—

Equation (2.33) is valid for any unit step response function. For the simplified no-

dispersion solution, its Laplace transform can be put into the form:

Fls) = % [ {A (s + ,‘{)0'5 +B(s+ A)}] (2.34)

where the constants A and B are defined as

6 (RnD,,)°> L

) ,
A Vb (2.35a)

B = EfVL— (2.35b)

Substituting equation (2.34) into equation (2.33) and simplifying, one obtains:

Cals) = s Cils)exp| —{(A1+As)(s+AP + (By+B3) (s+4)} ] +

72,3 CAs) exp[ - ((A2+A3) (s+2) + (Bz+33)(3+1)} ] (2.36)

The input functions ¢; and ¢, can be given, without loss of generality, by the unit step

function, whose Laplace transform is 1/s (Abramowitz and Stegun, 1967). Equation

(2.36) is then given by:

Cals) = 711.3%exp[—{(Aﬁ-As)(S*"A)O'S+ (31+B3)(S+/1)H +

N2.3 %exp [ - {(A2+A3) (s+l)0'5 + (Bz+33)(s+/1)} ] (2.37)
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Equation (2.37) has two components on the right hand side that have exactly the same form

as equation (2.34). Therefore, the solution for ¢, , in the Real domain, can be obtained
through a linear combination of solutions given by equation (2.11). The constants A and
B, as defined by equation (2.35), represent now a summation of the contributions of two

segments and must be replaced by their equivalents in equation (2.37).

If the general solution is now considered, its Laplace transform can be written as

F(S)=%xp[E E{1+ (s + )% E(s+2.)}05] (2.38)

where A and B are given by equation (2.35) and E = (VL)/D. Following the same

procedure, the output for segment three is given by

0 5
Cals) = mas %exp {(El + E3) — E; {1 + ‘2,—1(s+/1)0'5 s+l }
—Es {1 + ’2—2(54—1)0'5 B3 (s+/1 }0 5]

AP

e

0.5
2.3 % exp [(Ez + E3) - E; {1 + '2:—;(.5‘+).) +

B (s

E;
—E3‘1+A3( +A)0° + %3— (2.39)
Equation (2.39), however, does not lead to an equivalent form of equation (2.38), as in the
no-dispersion case, and there is no alternative but to perform the inverse Laplace transform,

either analytically or numerically.

In more complex fracture networks, the application of this procedure to successive
nodes allows the calculation of the breakthrough curve for every node (refer to Appendix
A, where a complete derivation for a simple fracture networ' is presented). The number of

components present in the solution for a node is directly related to the number of in-
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dependent paths the contaminant can follow from the source(s) to that particular node. This
number can be very large. As an example, assume that, on average, two segments arrive at
a node and two leave it. If the contaminant source is represented by only one node, then
the first downstream nodes connected to it will have only one component in their solution.
The second series of nodes may have a maximum of two components in each solution, the
third series may have a maximum of four, the fourth series may have a maximum of eight
and so on. For this particular source arrangement the maximum number of components in
a solution will be 21, where n represents the order of the node (n = 1 represents the first
nodes, n = 2, the second series and so on). In a particular series of nodes of order n, only
one or two may have the maximum number of components in their solution (regular mesh

with fractures of infinite length), but this is enough to show how difficult the task of

finding analytical solutions can be.

2.5 Behaviour and Limitations of the Response Functions

Once a unit step response function has been selected for the fracture segment, it is
important to understand how the different variables influence the behaviour of the response
function and what limitations are involved. The behaviour of the response function can be
analyzed by introducing appropriate dimensionless parameters that reduce the number of
variables and relate different transport processes. The limitations of the response functions
are mainly concerned with the assumption of infinite matrix used by Tang et al. (1981) in

their derivations of the analytical solutions.



2.5.1 Dimensionless analysis

Although tle analytical solutions derived by Tang et al. {1681) include all the
imponant transport processes and have a fairly simple form, the relative importance of the
processes is not clearly perceived. This situation is largely due to the number of variables
involved. A way to overcome this problem is to introduce dimensionless parameters that
group the variables together. In general, two processes are usually represented in one
parameter and its numerical value is a measure of the relative importance of one process 1o
the other. The analysis of these dimensionless parameters may help understand the

behaviour of the response functions.

Based on the Buckingham's 7-theorem (Streeter and Wylie, 1970) and following
Ogata and Banks (1961) and Rasmuson (1984), four dimensionless parameters may be

derived, considering advection as the basic process:

Time Pa. ..neter: T = R_‘; 2
35 0.5
Matrix Parameter: S = 6 (R Dr)° (RJL)
bR; v
(2.40)
Decay Parameter: A = &R%/LL
Dispersion Parameter: Pe = _LVD

The time parameter is a dimensionless time, whose reference is the time advection
takes to travel a length L in the fracture. The other three parameters can be thought as
being a relation between the characteristic time for the process involved (radioactive decay,
diffusion into the matrix or dispersion) and the advection time. For instance, in the matrix

parameter, if the advection time is greater than the diffusion time, then diffusion into matrix



becomes important. The dispersion parameter is usually referred in the literature as the
Peclet number. The use of these dimensionless parameters is convenient because it

simplifies the notation of the response functions and equations (2.11) and (2.12} become:

(a) General solution

£ = 9‘?";’4) ex _52_(”12 ~ APe).
o YT 454 46‘.
L |
] _ \54P82 ‘ o5
L +expl — AOSS—R% -erfc 5 55~ A®? r——P% +
457 | p " 4&
2\t ez
L\ 48 |
Pz_ W
[ 0.5 ] (64"2) 0.5 -
+exp|-+A ’ 5—11%’, -erfc ° 535 AT r——ﬁ'?z— d& (2.41)
45 | 4
2 r——’—’ﬁz—
48 |
(b) Simplified no-dispersion solution
c =1 —_Al-
& = % ew(-4)
f 0.5 1 S 0.5 0.5
+exp[— Ao -erfc[ - AT (Tt-1) 1 +
\ l P 2 gr-Ps ]

+exp[+A0'55} -erfc{——é—— + AO'S(T— 1)0'5‘”* (2.42)
J



Figures 2.10 to 2.14 show solutions of the above equations under different
conditions, in order to illustrate the relative importance of each process. In Figure 2.10
only the effect of the matrix parameter is considered. It shows three distinct regions: for &
< 0.1 matrix diffusion is negligible; for 0.1 <& < 10 there is a transition zone from
advection dominated to diffusion dominated transport; and for 6= 10 diffusion into the
matrix is fully dominant and the breakthrough curves become self-similar, meaning that a

variation in 6 implies only in a scaled variaton in T (shifting property).
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0.6
Oo
~_
o 0.5
0.4
0.3

0.2

0.1

10 o 10 1o 10
T

0.0

(2]

10

Fig.2.10 Breakthrough curves for the unit step response function as a function of the
matrix parameter & (no-dispersion and no-decay).



When dispersion is introduced, the breakthrough curve starts to happen earlier.
The smaller the Peclet number the earlier it happens. For Pe = 100, the effects of
dispersion are negligible. For Pe <0.1 dispersion becomes so important, that it would
apply only to the regions very close to the source, under very high concentration gradients.
Actually, in this case diffusion in the fracture, rather than dispersion, would be the
dominant process (recall that D = aV + D, , where o is the dispersivity and D, 1s the
diffusion coefficient in the fracture). Figure 2.11 shows the results for three different

values of the matrix parameter. From this Figure it is very clear that the simplified equation

for no-dispersion can be safely used for Pe = 100 .

When radioactive decay is introduced, care must be taken when choosing one of the
two solutions. Dispersion increases the amount of mass that arrives early, producing a
higher steady-siate value than the simplified no-dispersion solution would. Figures 2.12 to
2.14 suggest that the early arrival is not sensitive to variations in either the decay parameter
or the matrix parameter for Pe < 1.0 , reinforcing the point that Pe <0.1 applies only 10
the region close to the source. For A 2 5.0, the concentration falls to very small levels,

and its importance is a function of the current safety levels adopted.

The importance of the above analysis is to determine the range in which each
process is important. As a general rule it may be concluded that dispersion is important in
the range 1.0 < Pe < 100. For Pe = 100 the simplified solution for no-dispersion can
be used without introducing significant errors. The matrix parameter has an important effect
when §= 0.1. The importance of the decay parameter is related to the safety levels

required for a particular contaminant and a preliminary range could be 0.0<A<10.0.
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Fig. 2.11 Breakthrough curves for the unit step response function, considering the
influence of both the matrix parameter § and the dispersion parameter Pe,
for A =0.0.
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Fig. 2.12 Breakthrough curves for the unit step response function, considering the
influence of both the matrix parameter 6 and the dispersion parameter Pe,
for A = 0.1.
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2.5.2 Limitations of the response function

Tang et al. (1981) have considered an infinire matrix as boundary condition for the
diffusion into the matrix. For a fractured rock sysiem, this may impose some restrictions,
once the solution for both the fracture and the matrix will be valid while the concentration
tront does not reach the block centerline. For radionuclides the maximum depth of

penetration can be estimated from the steady state equation for the concentration in the

matrix (Tang et al., 1981),

0.5
Cm _ v _lve ARy 9(RmDm)°'5)] }
co exP{L[ZD (4D2 * D N bD
0.5
- exp -(Mﬂ -(x—b)} (2.43)
m

The maximum depth of penetraticn, for a constant strength source, occurs at the

origin and can be obtained by setting L=0 in equation (2.43),

0.5
(x = Dhnax = In{Z2) -[ﬁ;—)‘}!;%] (2.44)

The concentration front, however, is not well defined. There is nota "zero" concentration
front and some concentration level must be set arbitrarily in order to define the _ih of
penetration. Fortunately, the variation in the In(cy/c,,) is not very large for detection limits
¢m/cy between 0.01 and 0.001 ( 4.61 < In(cy/c,,) < 6.91 ) and meaningful estimates of the
penetration depth can be obtained. For a detection limit c,/c, = 0.005, equation (2.44)

becomes

(X = Blmax = 5.3 .[1%7‘%&}0'5 (2.45)



Since the maximum depth of penetration is proportional to the radionuclide half-life,
long lived radionuclides, of which neptunium ( 237Np ) is an example, will pose the
severest constraini. The neptunium half-life is 1, = 2.14x10¢ years and both the
diffusion and the retardation coefficients can be estimated from the Swedish KBS-3 su
for crystalline rocks (Rasmuson and Neretnieks, 1986) . Therefore, D,, = 1.0x10-11 m2/s
and R,, = 2.0x106 (strongly sorbing), for a rock porosity of 6 = 0.5% (Neretnicks,

1980). By substituting these values into equation (2.45), the maximum depth of

penetration for 2’Np can be estimated as,

11 . 6 . . 0.5
(- Bnax = 5.3 1.0x10 2.14x10° - (365-86400) - 012m (2.46)

In(2) - 2.0x10°

If the radionuclide is, instead, intermediately sorbing with R, = 2.0x104
(Neretnieks, 1980), then the maximum depth of penetration becomes (x-b),,,,=1.2 m. It
is seen, therefore, that the infinite matrix limitation is not severe at all. For intermediately
sorbing radionuclides this would imply a fracture spacing of 2.5 m, what is much less than

expected for nuclear repository sites [ 50 — 100m before reaching a major pathway

(Neretnieks and Rasmuson, 1984; Rasmuson and Neretnieks, 1986)].

If it happens that the maximum depth of penetration is greater than half the fracture
spacing, then a response function based on an analytical solution for finite blocks idealized

as slabs or spheres could be used (e.g., Sudicky and Frind, 1982; Rasmuson, 1984,
1985a).

For stable species the depth of penetration can be estimated from the simpliiied

solution for the concentration in the matrix, given by Tang et al. (1981) as,
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By setting L = O (greatest penetration occurs at the source and is independent of

dispersion), one obtains

soolinle] e
m-L

The depth of penetration is then given by

Dmt 0.5

R (2.49)

(x-b) = 2erfc‘1(%’)'—)-(

Using the same reasoning as before, it can be shown that the variation in erfc! (c,,/c;) is
relatively small for 0.001 < (c,/c,) < 0.01 (2.32 > erfc! (c,,/cp) = 1.82). Adopting for

the concentration front the level (¢c,/cp) = 0.005, one obtains for the penctration depth,

(-b) = 4. (Bmtf? (2.50)

Equation (2.50) is unbounded, what means that there is no maximum penetration depth.
The penetration depth is a function of time, and the response functions will only apply for a
limited time range, for non-sorbing or weakly sorbing, non-decaying solutes. This time
range is dependent on the fracture spacing and on the matrix diffusion coefficient. Accurate
estimates, however, can be obtained for the early part of the breakthrough curves, which
are not influenced by the finite matrix block size, because mass transport in the fracture is,
usually, much faster than mass transport in the matrix (Neretieks et al., 1980; Tang et al.,

1981; Rasmuson, 1984, 1985a, 1985b; Moreno and Rasmuson, 1986).



3. NUMERICAL IMPLEMENTATION

The simulation of contaminant transport in a fractur® network can be divided into
three parts: fracture network generation, flow modelling and iransport modelling. The first
two parts have been extensively treated in the literature (Long et al., 1982: Schwarntz et al.
1983; Robinson, 1984; among others) and only a brief description is presented here. The
transport modelling involves a completely new method and will be considered in detail.
The theoretical approach described in chapter 2 is implemented in two computer codes, the
first involved with fracture generation and flow modelling and the second involved with
solving the mass transport problem. These codes are verified against known analytical

solutions for a single fracture and simple fracture networks.

3.1 Fracture Network Generation

Fractures in the real systems have very complex surfaces, with variable shapes and
sizes. Their aperture can be variable due to the inherent roughness of the fracture surfaces.
Subsequent changes due to stress or mineral deposition can close original openings in the
fracture plane. Following conventional practice, fractures are idealized by representing
their surfaces as planes and their aperture as constant throughout. In this work, it is further
assumed that fractures can be modelled in a two-dimensional system, where only the traces
of the fracture planes on an intersecting plane are considered. Fractures are thus rep-
resented by straight lines with four characteristic parameters: the location in space of their
midpoints, their orientation with respect to the coordinate axis, their length and their

aperture.

50
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T.2se four parameters are a function of the type of rock and exhibit great variability
due to the different physical processes to which the rock mass has been subjected. They
are considered random variables and may be described by appropriate probability distri-
butions. The description of the fractures is simplified by grouping into sets, fractures that
have the same trend in the orientation. Generally, fractures within a given set are thought
to be formed by the same mechanisms and consequently the parameters associated with
fractures from a set are considered to be similar. Several sets may be present in the rock
mass, but in many situations four orientations often predominate and are usually consistent

over large areas (Price, 1974; Mollard, 1988).

The approach for generating the fractures is based on commonly used concep-
tualizations of real fracture systems. It has been assumed that: 1) the fracture orientation is
constant for a given set (Price, 1974; Bridges, 1975; Mollard, 1988); 2) the fracture
spacing is determined by the location of the fracture midpoints, which are selected from a
uniform distribution; 3) the fracture length obeys an exponential distribution (Cruden,
1977), where only the tail is sampled, in order to produce a reasonable degree of
connectivity (Schwartz er al., 1983); and 4) the fracture aperture is given by a log-normal

distribution (Snow. 1970).

Following Long et al. (1982) and Schwartz and Smith (1988), fractures are
generated in a rectangular region that is larger than the actual flow region, in order to
maintain appropriate fracture densities close to the  -yundaries. Both regions are concentric
and the generating region is double the size of the actual region. Each fracture set is
generated independently and the total number o, fractures in each set must be specified.
Individual fractures within a set are generated sequentially in three basic steps (Long et al.,
1982): 1) sampling of the fracture midpoint position; 2) sampling of the fracture length;

and 3) sampling of the fracture aperture. After the fracture has been defined, the code



checks its position in relation to the actual flow region and only the portion that falls into it

is saved.

When all sets have been generated, the intersections are calculated and numbered.
The resulting fracture segments are identified, numbered and associated with the inter-
sectior* at their ends. In this work intersections are also referred to as nodes and both are
used interchangeably throughout the text. A connectivity table is prepared for every node,
relating all the adjacent nodes and respective segments connected to it. This table is used

later in the mass transport program.

The generation of fractures is not restricted to orthogonal sets. Any orientation and
any number of sets can be accommodated. The only restriction, due to numerical
limitations, is that onlv two fractures can intersect at a point. In order to simplify the
solution for the head distribution, all dead end and isolated fractures are removed from the

network (Schwartz et al., 1983; Robinson, 1984).

3.2 Flow Modelling

The flow of a viscous, incompressible fluid through a fracture is often idealized
with the parallel plate model. For a laminar steady flow, velocity can be related to

hydraulic gradient b:y an equation very similar to Darcy's equation (Marsily, 1986):

=& AH _ g AH 1
1% 12v(zb)ZL K (3.1)

where AH/L is the hydraulic gradient (AH being the drop in hydraulic head over a distance

L), 2b is the fracture aperture, g is gravity, v is the kinematic viscosity, V is the fracture
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mean velocity and K is the fracture hydraulic conductivity. The discharge per unit width

is given by:

Q0 = 2 (wpAad (3.2)

The parallel plate model of a discrete fracture has formed the basis of several
different flow models (e.g., Long etal., 1982; Robinson, 1984; Rouleau, 1984; Schwiriz
and Smith, 1983; Hopkirk and Gilby, 1984; among others). Experimental work (e.u..
Witherspoon et al., 1980) has shown that equation (3.2) can be applied irrespective of the
rock type and is valid whether the fractures are fully open or partially closed due to stress.
Conditions, however, do exist when this model may not hold (Gale, 1982). Deviations
from the ideal parallel plate mod=!, due to the roughness of the adjoining fracture surfices.
tend to reduce the flow and they may be accounted for by introducing a correction factor
l/f into equations (3.1) and (3.2). In the investigations of Whiterspoon et al. (198G).
varied between 1.04 and 1.65, representing up to 15% decrease in the fracture aperture
(smaller effective aperture). In cases where fracture surfaces are in contact, this correction

alone may not be adequate to describe the flow properly.

Having developed a flow equation for an idealized fracture, the next step in
modelling is o suive the flow through a (racture network subjected to different poundary
conditions. The procedure adopted in this work uses the concepts of pipe network
analysis, as described by Jeppson (1976). A general framework for this class of problems
can be found in Strang (1988). First, continuity equations are written for each fracture
intersection (node). The discharges per unit width, as given by equation (3.2), are then
substituted by the unknown nodal heads. The resulting system of linear equations is

symmetric and can be solved simultaneously for the unknown head values.
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Consider, for instance, the simple fracture network depicted in Figure 3.1. The

continuity equation for node 5 is given by:

1)
Y]
~—

Iy + Qs = Qse + Osg (3.

where ;- represents the discharge from node i tonode ; and I5 is a possible well
recharge/discharge. Using equation (3.2) and substituting discharges for hydraulic heads.

one obtains

Iz + Bas{Hy - Hs) = PBseg(Hs - He) + Bso(Hs - Ho) (3.4

where [3;; represents the characteristics of the fracture segment between nodes [ and

and is given by

Rearranging equation (3.4), one obtains

- BasHy + (Bos + Bse + Bsoj.is ~ BseHe — BsogHy = I (3.6)

This equation has only the heads as unknowns. By writing similar continuity equations for
all the nodes, a system of linear equations is obtained which can be solved simultaneously

for the unknown head values.

In .+ -ocedure, becundary conditions can include both prescribed head and flow

values. 7 " »ed flow values are simply introduced into the I, term for the corresponding
boundary node. Prescribed head nodes are dealt with by a variant of the "penaity" method:
the continuity equation for the node with known head is not eliminated from the system of

cquations, instead, it is reformulated such that the diagonal coefficient is set to one and all
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others to zero; the RHS contains then the appropriate prescribed head value for that node.

The finai system of linear equations is solved by the Gauss elimination method. using

bandwith storage for a symmetrical matrix.

In the code developed, boundary conditions are defined in terms of prescribed head
values which are assigned to the node boundaries according to the procedure used by Long
et al. (1982) and Schwariz and Smith (1988). First, values of ! draulic head are speciiied
at all four corners of the rectangular area (Figure 3.2). By linear interpolation it is possible
to use these values at the corners to define the hydraulic head at nodes along the side
boundaries. This approach allows one to fix the regional hydraulic gradient at any desired
orientation, wiien the anisotropic behaviour of the fracture system is under consideration.

Internal wells and prescribed flux boundaries can also be specified.

@ NG

\n

4-7
...
/...
..

N

equipotentials

Fig. 3.2 Definition of boundary conditions for the flow modelling procedure.



3.3 Transport Modelling

For modelling mass transport in a fracture network, it is assumed that the network
consists of two basic components, the fracture segment and the fracture intersection. The
fracture segment is responsible for all the physical processes happening in a fracture, while
the intersection (or node) is responsible for the appropriate linking between the segments

by diswibuting the incoming mass into the outgoing segments.

In the fracture segment, there is no consideration of spatial variations and the inter-
vening mass transport processes are lumped together into a unit step response function that
is characteristic of each segment. By knowing the response function and the variation with
time of the concentration at the input end of the fracture segment, it is possible to calculate
the breakthrough curve at the output end of the segment through the convolution integral,

as given by equation (2.8).

Mass distribution at intersections can be treated by either the compiets mixing or the
streamline routing model. The complete mixing model, as pointed out in sectior: 2.3, is
very simple and requires only one equation to describe the mass balance at the node.
Concentration can be associated with the nodes, requiring less computer memory for
storage of the breakthrough curves, because there are, in general, fewer nodes than
segments. The streamline routing model, however, is more complex and requires that
concentration be associated with the segments leaving the node. In this case, the segments
have associated with them their input concentration. In the code developed, both mixing
models were implemented, but the description that follows considers only the streamline
routing model, because the complete mixing model can be regarded as a special case of the

streamline routing model (refer to section 2.3).
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The discrete form of the co volution integral (equation 2.5) is used to numerically
calculate the mass tansport through a fracture segment. The convolution equation. as
derived in section 2.2, assumes that the response of the system is due to a unit step
excitation and, therefore, any general input function has to be discretized into a series of
steps in order to apply the transfer function method. To numerically evaluate the
breakthrough curve at the end of the segment, three important factors must be considered:
(1) the unit step response function itself; (2) the discretization of the complex input

t
function; and (3) the time points for the evaluations of the output function.

The unit step response function has been treated at length in Chapter 2 and it is
assumed that an efficient code is available for it. The discretization of the input function
and the definition of the time points to evaluate the output function are discussed,
respectively, in sections 3.3.1 and 3.3.2. Once the basic procedure for calculating the
breakthrough curve at the end of a segment is known, it is then possible to describe the

implementation to a fracture network. This is done in section 3.3.3.

3.3.1 Discretization of the input function

In general, the input function is complex and has to be discreuzed in a series ot
steps to allow proper evaluation of the output function. Two parameters are necessary to
define the steps: their magnitude and their location in time. The concentration steps Ac; , as
shown in Figure 3.3, can have any magnitude, but it is preferable to make them equal to

simplify calculations. Equation (2.5) becomes then a summation of delayed values of the

unit step response function,

Cm(t) = Ac Y, fmlt-T) (3.7)
i=1
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where ¢, is the relative concentration (c/c,,,,), 4c = I/n, f, is the unit step response
function for the mth segment and 7; is the time associated with the i* concentration step
(vide Figure 3.3). Accuracy of the numerical procedure is primarily dependent on the
number of subdivisions n that discretizes the input function. The greater the number, the

better the accuracy.

Input function

s Succession of steps

Fig. 3.3 Discretization of the input function for a fracture segment.
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Once the magnitude of the concentration steps has been defined, it is possible 1o

define their location in time. Figure 3.4 presents the scheme adopted for the definition ot

the time 7; that is related to the concentration step Ac;. Any intermediate i## step should
increase the input concentration from the (i-/)Ac level to the iAc level. If the time values
for these two concentration levels are known ( ¢, and ¢; ), then the time t; will be given

b the average of these two time values.

For the first and last concentration step another procedure has to be devised,
beoause the intervals {0, Ac] and [(n-1)Ac, 1] are not closed: according to the analyvtical
solutions, the relative concentration is never zero or one. The solution is to associate the
time 7; with a certain concentration level within the discretized step. This is accomplished
by introducing two user defined parameters, €, and &, , such that 7, is the time corre-
sponding to the £;Ac concentration level and 7, is the ime corresponding to the (1 - & :¢)
concentration level (refer to Figure 3.4). The natural choice for these parameters is (.5, the
middle of the concentration interval. This value is used for the first interval, but & = 0.3
is used for the last interval. Initially, it was thought that & = 0.3 would give a better
approximation for the long tail, but preliminary tests showed no significant difference
between €, =0.3 and &, =0.5 The accuracy of the approximation is mostly controlled by
the number of discretization steps, as explained in section 3.5, and variations in either &,

or &, will have negligible effect on the accuracy, as n gets large.

3.3.2 Location in time of the output function

The calculation of the breakthrough curve at the end of the segment requires the
definition of discrete time points as basic data. There are, however, some difficulues in

defining these time points. Although the convolution equation can be evaluated at any
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point, the location in time of the breakthrough curve is not known a priori and many
function evaluations may be necessary to fully describe it. In addition. the breakthrough
curve has a characteristic mathematical behaviour: it is bounded in terms of concentration.
but it is not in terms of time. This means that although the concentration tends to zero at
small times or to a maximum value at large times, it will never, mathematically speaking.
reach these values. A natural solution to this problem would be to solve equation (3.7)
inversely for time values, given concentration values. But this is not feasible, because of
the many components present in the convolution equation. The only solution is then o

solve equation (3.7) directly for concentration, given the time values.

Therefore, it is necessary to properly estimate the time range within which the
breakthrough curve is contained. Here, it has been assumed that the time range cor-
responds to the time required for the relative concentration (c/c,,,,) at a point to increase

from 0.005 to 0.995. These time end points are denoted, respectively, f ggs and 7 gys.

If the input function were given by only one step, then the time range would be just
U.loos, 1_1995], where 1_1005 and 1}995 are obtained by inversely solving the unit step response
function for the particular segment. For a multi-step input function the time range is
estimated by [7; + thos, T, + t99s], where 7; and 7, are the times associated, respectively,
with the first and last discretized concentration steps. Naturally, the time range obtained in
this way is larger than the actual time range for the breakthrough curve and it is dependent
on the discretization of the input function, the finer the discretization, the larger the ume
range. Care must then be taken with the discrete distribution of points in this time range in

order to ensure that the breakthrough curve is well described.

This procedure for the estimation of the time range leads to the consideration of the

predictor-corrector method for evaluating the breakthrough curve. Initially, a rough esti-
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mate of the breakthrough curve is made based on a large time range and few discrete time
points. Then the time range is properly "accessed"” and a finer distribution of discrete time
points is used to obtain a better representation of the breakthrough curve. This procedure is

discussed in detail in the next section.

3.3.3 Description of the procedure for a fracture network

For a fracture network, the breakthrough curves are calculated sequentially, node
by node, from the source point to the outlets. For the breakthrough curves at a node to be
calculated, all upstream breakthrough curves must have already been calculated in order to
determine the mass transfer along the connecting segments. The objective of the
calculations at the node is to determine the breakthrough curves of the incoming segments
and the appropriate input function for each outgoing segment. The procedure is similar to
that described in sections 3.3.1 and 3.3.2. The difference now is that the time range
should be large enough to contain all the incoming breakthrough curves, and that an

appropriate routing procedure has to be incorporated into the calculations.

Figure 3.5 illustrates the flow chart for the mass transport code. Once the basic
input data are read, the program processes all the nodes present in the network, in order of
decreasing hydraulic head. This ensures that upstream nodes will have already being
calculated, when a specific node is under calculation. Due to the nature of the fracture
network, it is possible that mass may not be transported through major pieces of the
fracture network. Provisions have been taken to avoid calculations for the corresponding

nodes.
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At node level, a basic predictor-corrector scheme is used to evaluate the input
function for the outgoing segments. Initially, a rough estimate of the node output
breakthrough curves is made. In a second stage, this estimate is refined to ensure better

description of the curves.

a) first stage: prediction

The prediction stage provides an initial estimate of the node output breakthrough
curves. It has to consider the mass transfer through the node incoming segments and the
appropriate mass distribution to the output segments. For this initial estimate, the time
range may not be well defined and few time points are used to evaluate the breakthrough

curve. The prediction basically involves three steps.

First, the upstream segments connected to the node being evaluated are identiiied
and an estimate of the time range for each incoming breakthrough curves is made, as
explained in section 3.3.1. Because time ranges for each segment may overlap each other,
a global time range for the node, containing all the individual breakthrough curves that

arrive at the node, is defined.

The second step is to distribute time sampling points within the global time range.
From the behaviour of the unit step response function (Figure 2.7), the maximum time
range (for one segment) spans over five orders of magnitude. An educated guess
suggested that 5 points per log-cycle would give a reasonable density of points to represent
the estimated breakthrough curve. In this way, 25 points are logarithmically distributed
within the time range and four points are added to each side of the time range, in order to
include the extremes of the curve. Depending on the delay experienced by the different

paths that arrive at a particular node, the time range may, actually, span over more than five
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orders of magnitude. This fact, howcver, does not invalidate the procedure, because the

main concern, at this point, is ontv to define the time Spanec by the breakthrough curve

In the third step, the routing procedure is defined, according to the magnitude of the
discharges and tc the relative posiion of the seginents (Huil and Koslow, 1986). The
breakthrough curves i<aving the node are then evaluated for all time sampling points by

using equation (Z.7) and equations (2.13) to (2.19).

Because the time range is "large” enough to contain all the time ranges for each
arriving segment. the estimated breakthrough curve may not be very well defined, due to
the lack of points. T get a better description of the breakthrough curve, concentrations
should be recalculated, based on a corrected and possibly refined distribution of the time
sampling points. At the end of this stage, the relative position in time of the breaktirough
curves is known. The next section explains how a better description of the breaktiirough

curve can be obtairied, by refining and redistributing the time sampling points.

b) second stage: correction

For the second stage. the relative position of the breakthrough curves is already
known, although its description may be poor. The objective is then to improve the
description of the output breakthrough curves, by increasing the numbe: of iime points and

redistributing them in a bettcr defined timc range.

The redistribution of time points can be understood with reference to Figure 3.6,
which shows a completely developed breakthrough curve with a long tail. Eleven key
concentration points, taken as the nine deciles of the relative concentration plus the two

extreme concentration levels 0.005 and 0.995, are also piotted along the curve.
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It is importart to note that, although these key points are uniformly distributed
along the concentration range O - ¢, . they are not as well distributed along the t'me
range fggs - Logs - Therefore, to better represent the breakthrough curve, the time points
should be distributed in such a way that the resulting concentrations associated with them
are distributed as uniformly as possible within the range O - ¢4, - This 1s done in two

steps.

The first step is to calculate the time that corresponds to cach of the eleven key
concentration points. Because the esimated breakthrough curve is given in a discrete tonn,

these time values must be interpolated. The interpolation procedure assumes thata tunction

of the type,

t = )

where A and B are fitting parameters and erfc is the error function, could be fitted to uny

pair of consecutive points.

In the second step, a variable number of time poirits is logarithmically distributed
within each interval between the key concentration points, according to the sp 2
shown in Figure 3.6. This procedure requires a minimum of 23 time points .. tal
number of time points (NTP), that is user defined for the second stage, is automarticaliy
adjusted to be a multiple of 23. Beyond the time range, three and six extra points are,
respectively, added for r <1495 and 7 > 7 g95 . Their distribution follows a geometric
progression, based on the internal intervz! that is closest to the limits of the time range. If
the number of discretized steps for the input functions is greater than hundred, then the

limits for the time range are substituted for t4.,, and f; s> and the new time range wiil

contain the old one.



Now, concentrations can be reevaluated at these new time points, following the
same procedure that was used in the prediction stage. The last part in the correction stage is
to define the time each future discretized concentration step will happen, when this cunve
becomes the input function for the next segment. The times #,*, ;" and ¢,*, correspond-
ing, respectively, to the concentration levels £, 4c , iAc and (1 - g,Ac.), are interpolated
from the breakthrough curve with the aid of equation (3.8). The time associated with each
future discretized concentration step is then calculated (refer to Figure 3.3). For the first
und last stzp, the tmes are, respectively, given by 7, =1," and 1, =1,". For the
intermediate steps, the time is given by:

7= L+ 1) (3.9)
2
At a node level, calcuiations are finished and this procedure centinues for all the
nodes. The final part is reporting of the results. All the input functio=s for the segments

are store: «nd may be conveniently retrieved for the calculation of the spatial distribution of

concentration in the network.

3.4 Verification of the Transport Model

The modelling approach is verified using two different tests. In the first, the
numerical results are compared to the results of an analytical solution for the problem of
transport down a single fracture subject to diffusion into the matrix (Tang et al., 1981). In
the second test a simple fracture network was considered for which the analytical solution
could be calculated by hand in order to verify the mass distribution procedure at the inter-

sections.



3.4.1 Single Fracture Problem

The accuracv of the numerical solution is dependent on the number of concentration
steps (NC) that discretizes the input function. The finer this discretization, the beuer the
accuracy. Another parameter that influences the accuracy is the number of time points
(NTP) used 10 evaluate the breakthrough curve at the segment end. If few time points are
used, then the breakthrough curve may not be well described and the consecutive
iiscretization of this curve, as the input for the next segment, may CarTy exra cumulative

errors that degenerates the soiution.

This test considers the effects of both NC and NTP on the overall accuracy of the
numerical solution. The simplified case of no-dispersion is used for most of the

simulations, but a few examples also include dispersion in the fracture.

The single fracture problem is described by the following parameters: V = 1.0x10-?
m/s, 2b = 1.0:10* m, 8= 0.01, R,= 1.0, R,= 1.0, A=0.0and L =250.0 m. Two dit-
ferent values for k¢ effccrive matrix diffusivity, D,, = 1.0x10-0 and D,, = 1.0x10-!-
m2/s, are used so as to present a diversity of possible behaviours. The smaller diffusion
coefficient leads to advection dominated flow, while the other one leads to diffusion
dominated flow . Numerically, the single fracture is represented by twenty-five equal
fracture segments (L; = 10.0 m). This arrangement provides a test of the error involved

with the increasing number of discrete convolution integrals evaluated.

In the simulations, six different values were used for NC, 25, 50, 100, 200, 500,
700, and two for NTP, 25 and 50. In Figure 3.7 the general wend of the numerical
sclution for the simplified case of no-dispersion is analyzed for the lower discretization

level of the input function, NC = 25 and NTP = 25. Each curve represents the



Analytical
o5t Andlytical

Numerical

G- o

0.7

06 }

c/c,

NC =
3 , NTP = 25

06
384
Ln

"

O
\ig

i

(a)

i

O—¢
&
Qe

10

1 TPy Yo

10 F Andlytica

Numaericai
09 - [~ ERPIPPRY ¢ TP 1

07

0.6

¢/C,

0.3 F

0.2} b b F F PP
] . [ /o (b)
oat ‘ g

oo

10° 10° 10 10° 10’ 10° 10"

0.0

Fig. 3.7 Breakthrough curves obtained at the end of different segments, for a linear
succession of segments. (a) advection dominated. (b) diffusion dominated.



breakthrough curve for different numbcr of segments. At the end of the first segment
(NSEG = 1), the numerical solution is exact, because the input function is given by the unit
step functicn. As successive breakthrough curves are calculated, the accuracy of the
solution deteriorates. This behaviour is the same for both the advection and diffusion
dominated cases. It is interesting to note that, although the results are very poor for the tail
of the breakthrough curves, they are amazingly good for the early part of the curves.
L4

Figure 3.8 presenis a summary of the breakinrough curves obtained for the twenty-

fifth segment, considering different values for NC. Itis clear that as NC increases, so does

the accuracy of the numerical solution. Errors smaller than 2% are achieved for NC 2 500,

for both the advection and diffusion dominated cases.

The number of time points, howe- °r, is not as important as NC. If NC is small,
as in Figure 3.7, the increase in NTP may even degrade the accuracy, as shown in Figure
3.9. In this case NTP was doubled, but small plateaus ( two or more points close together
along the same horizontal line) appeared and the accuracy was no better. Th:s is a typical
indication that the number of discretization steps is small and must be incr~ased. For large
values of NC, the increase in NTP only slightly improves the accuracy, as shown in

Figures 3.10 and 3.11 for both the advection and diffusion dominated cases.

This behaviour can be explained by considering the nature of the errors involved in
the numerical approximations. These errors are due to the discretization of the input
function and the interpoiation of the discrete breakthrough curve. For the cases described
above, the discretization errors dominate over the interpolation errors, causing NC 10
substantially increase before NTP has to do so. The initial number of time points, 25, was

sufficient to give a good description of the breakthrough curves, but, as NC increases, the
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discretization errors may become comparable with the interpolation errors, making it

necessary to also increase NTP in order to improve accuracy.

Dispersion in the frac:ure can be considered without any difficulty. The inclusion
of dispersion does not alter the numerical procedure, but only changes the unit step
response function. In this case, the response function (eq. 2.11) is not closed and numeri-
cal integration has to be performed for the evaluation of concentration, introducing addi-
tional computing time. The simulations considered only the diffusion dominated case. A
vaiue of 1.0 m was assumed for the dispersivity, resulting in Pe = 10, for each individual
segment. Two values were considered for NC, 50 and 100, and only one for NTP, 25.
Figure 3.12 compares the numerical results with the analytical solution for the no-
dispersion case. This comparison shows that, as the overall Peclet number increases, the
general solution approaches the simplified no-dispersion solution. The numerical be-

haviour, however, is independent of the processes involved and the errors show the same

trends described for the no-dispersion case.

3.4.2. Fracture Network Problem

In the second test, a simple fracture network was considered, in order to verify that
the code adequately handled the mass distribution at the intersections. Both mixing models
are considered. Figure 3.13 shows the network along with the basic data and the major
features related to each mixing model. The derivation of the aralytical solution for this case

follows the procedure outlined in section 2.4 and is described in detail in Appendix A.
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Mass is assumed to be injected continuously at node 10. By analyzing Figure 3.13,
it is possible to see that mass will show up in all five exits, nodes 2, 5, 7, 8 and 9, for the

complete mixing model, but it will appear in only two exits, nodes 5 and 8, for the

streamline routing model.

The simulations considered two values for NC, 25 and 100, and one for NTP, 25.
Figure 3.14 and 3.15 show the results for both the complete mixing and the streamline
routing models. The agreement between the numerical results and the analytical solution is
very good, even for NC = 25. In this case, the farthest exit is only four segments away
from the source and the numerical errors are not significative to affect the solution. For NC
= 100, the agreement is excellent for both approaches. It is interesting to note that the

redistribution of time points, as previously described, gives a good representation of the

breakthrough curves.

From the numerical point of view, this method has advantages over other methods:
only two parameters are responsible for the overall accuracy of the model and the numerical
convergence seems to be independent of the physical parameters. It is dependent only upon

the number of segmeiiis, i.e., upon the number of the convolution integral evaluations.
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3.4.3 Discussion

The parameter NC is directly related to the discretization of the breakthrough curve.
Therefore, the overall accuracy imnproves with increasing NC. The parameter NTP, in
contrast, has a lesser degree of influence. In general, it is necessary to have a sufficient
and well distributed number of points to evaluate the output breakthrough curve. When
NC is increased, it may be also necessary to increase NTP, in order to make the

interpolation errcrs comparable with the discretization errors of the input function.

An interesting feature of this model conceins the high accuracy obtained for the
early part of the breakthrough curves. This is important for many situations, where low

levels of solutes can be extremely toxical (Rasmuson et al., 1932).



4. APPLICATIONS OF THE TRANSFER FUNCTION MODEL

The mass transport model that has been developed provides an efficient way to
examine mass transport processes in fractured rock systems. Discrete fracture networks
are characterized by the many possible paths that mass can follow withi~ the network. The
particle racking technique, for instance, takes this concept explicitly into account (Schwartz
et al., 1983; Smith and Schwartz, 1984). The response of the system is the result of a
series of mass contributions due to all different paths that convey mass to a particular
sampling point. In some cases, distinct steps may be present on the breakthrough curves,
as a clear indication of a path contribution. In other cases, a smooth curve may be
obtained. The important fact is that, in any case, the response of the system is strongly

dependent on the flow field developed in the network.

It is with this perspective that three issues are addressed here: (1) the influence of
intersection mixing models on the overall response of discrete fracture systems; (2) the
effects of diffusion into matrix on the overall response of discrete fracture networks; and

(3) the mass transport behaviour for a two well system in discrete fracture networks.

These applications consider only advection and diffusion into the matrix. If
necessary, adsorption on both fracture and matrix surfaces and radioactive decay can be
readily implemented by substituting the appropriate values into the simplified unit step
response function (Eq. 2-12). Dispersion in the fracture can also be considered, but the
general unit step response function (Eq. 2.11) has to be used. For large travel distances,
however, the effects of dispersion become less imnportant due to the counteraction of
diffusion into the matrix, as shown in section 3.4.1, and both response fuinctions give

equivalent results.

84
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4.1 The Influence of the Intersection Mixing Models on the Overall

Response of Discrete Fracture Systems

The complete mixing model and the streamline routing model represent two end-
member models to partition mass at intersections. Few attemgts have been made to
compare both models under realistic flow conditions. Krizek et at. {1%73) have compared
these models under two different flow caonditions: (a) regionally uniform radial flow and
(b) injection into a regionally uniform flow field. They concluded that both mixing models
give similar results and there was no advantage in using the more complex streamline
routing model. Hull et al. (1987) used a model similar to the one described by Krizek et al.
(1973), but also considered diffusion at the intersection. In their simulations, Hull et al.
(1987) considered a regionally uniform flow field with no disturbance due to the

introduction of the contaminant. Their results showed that different mixing models

produced different effects on the distribution of the contaminant in the fracture network.

A basic difference between the simulations of Krizek et al. (1973) and Hull et al.
(1987), besides diffusion at the intersection, is related to the simulated flow field
conditions. There are two basic types of mass injection: active and passive (Raven et al.
1988). In the first one, the mass is pumped into the system with a high radial flow
component, as in Krizek et al.'s experiments. In the second type of injection, mass is
introduced without disturbing the original flow field, as in Hull et al.'s experiment. The

question that arises is whether different flow fields could explain the apparently

contradictory results.

To investigate whether or not the consideration of the flow field is important for the
selection of the intersection mixing model, two sets of numerical experiments are carried

out. In the first set, a regional flow field is set up, while in the second a convergent-
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divergent flow field is defined by a system of two wells (one recharging and the other

pumping). These two flow field situations represent extremes of natural conditions.

4.1.1 Regionally uniform flow field.

Within a rectangular domain 300 x 600 m, a regionally unifoim flow field was
established by assigning constant head at all four boundaries, as ¢=scribed in section 3.2.

The hydraulic gradient is paraliel to the smaller side and has s value of 1/15.

Three fracture geometries were considered, as shown in Figure 4.1. For the first
two cases, infinite fractures from two orthogonal sets, oriented at +45° and —45° in relation
to the x-direction, are uniformly distributed within the domain. In case 1 the fracture
network is sparse, with a fracture spacing Al; = 127.3 m, while in case 2 the network is
dense with a spacing Al, = 23.1 m. The third case is derived from the second by
removing some fracture segments, in order to decrease the degree of connectivity. In all,
six trials were conducted, where variations in fracture aperture and direction of the
hydraulic gradient were also taken into account. The matrix porosity is @ = 0.01 and the
~ effective diffusion coefticient is D,, = 1.6x10-19m2/s. Table 4.1 summarizes the data for

each trial.

Continuous source(s) of mass was/(were) located at the nodes closer to the
midpoint of the left boundary. For this particular source arrangement the geometry of the
fracture network is such that the mass does not exit through the top or bottom boundaries,

thus, preventing undesirable boundary effects.
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Table 4.1 Data used for the regionally uniform flow field case

Fracture Trial Vh Aperture
geometry number angle mean (LLm) C,
sparse 1 0° 200 0.0
dense 2 0° 200 0.0
dense 3 34° 200 0.0
compiete a4 34° 200 1.0
dense 5 34° 200 0.0
incomplete 6 34° 200 1.0

The effects of the different intersection mixing models on the mass transport are
compared at the exit boundary through the analysis of both the breakthrough curves and th..
transverse distribution of the maximum concentration. Figure 4.2 presents the results for
trials 1 and 2, regarding the transverse distribution of the maximum concentration. In both
trials, the streamline routing model has allowed mass to exit through only two exits, while
the complete mixing model has led mass to several exits. It is interesting to note that, in
trial 2, the complete mixing model leads to a bell shaped distribution for the maximum

concentration.

Figure 4.3 compares the normalized (with respect to the maximum concentration)
breakthrough curves obtained at the centerline outlets for trial 2. Both mixing models give
equivalent results. In Figure 4.4 the normalized breakthrough curves for the complete
mixing model are compared for all the outlets. Again, all the breakthrough curves coincide
and the same is true for the streamline routing model. These results are consequence of the
regular fracture geometry that leads to the same velocity and residence time for every
fracture segment. In these particular trials, where the exit boundary is perpendicular to the

regional hydraulic gradient, all outlets have the same residence time distribution. The
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different mixing models affect the overall response of the system only in the maximum

concentration.

The particular flow field imposed over the network, in which velocities are the same
for both fracture sets, exaggerates the behaviour of the streamline routing model. The
contaminant is confined to only two paths along the centerline and there is absolutely no
lateral spreading. The maximum concentration at the outlet is exactly the same as the inlet.
The complete mixing model, on the other hand, spreads mass continually. Each
intersection represents a mixing opportunity that dilutes the mass. The overall degree of
mixing is controlled by the density of intersections: the higher the density, the higher the

spreading and the lower the maximum attainable concentration.

Trials 3 to 6 were designed to systematically introduce more realistic characteri-
zation of the fracture system. These include variation of the hydraulic gradient direction,

variation in the aperture distribution and variation on the degree of connectivity.

In trial 3, the orientation of the hydraulic gradient was changed to 34° in relation to
the x-direction. For a network with constant fracture aperture, the velocity in one fract:re
set is roughly five times greater than the other set. Figure 4.5a shows that the peak of
maximum concentration moved to the right. Both mixing models give similar results, but
the streamline routing model gives a higher peak and a smaller lateral dispersion [note that
concentrations in Figure 4.5a should be regarded as discrete points, as shown in Figure
4.2; the broken lines are just a visual aid for identification]. Figures 4.5b and 4.5¢ shows
the breakthrough curves for some outlets, while Figure 4.5d shows the equivalent nor-
malized breakthrough curves. Because the hydraulic gradient direction was changed, the
normalized breakthrough curves for the outlets no longer coincide. Both mixing models,

however, give identical results for the normalized breakthrough curves at the same outlet.
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Again, the effect of the different mixing models is manitested only on the maximum

concentration.

Trial 4 extended trial 3 to include variability in the fracture aperture. Apertures are
sampled from a log-normal distribution with mean equal to 200 pum and coefficient of
vaniation (C ) equal to 1.0. Figure 4.6a presents the distiibution of maximum concen-
tration at the exit boundary. These results show that the effects of the complete mixing
model are felt over the entire exit boundary, while the effects of the streamline routing are
restricted to one third of the outlets. In general, a detailed comparison of the breakthrough
curves for the mixing models (Figures 4.6b and 4.6¢c) shows a range in behaviour. At
outlet 122, for instance, both approaches yield almost identical breakthrough curves. The
concentration step that occurs at time 2x107 s is a clear indication of the <ontribution of a
slower flow path. At outlets 143 and 164 different breakthrough curves are obtained for
different mixing models. At outlet 143 both breakthrough curves sta:r at the same tiine, but
soon they take different directions: the streamline routing leads to a steeper curve than does
the complete mixing. This result implies that the streamline routing paths coincide with the
faster paths. At outlet 164 this is not the case, at leastin the very beginning: the streamline
routing produces later mass arrivals than the complete mixing. The complete mixing rmodel
introduced mass into higher velocity pathways, but the same procedure leads later to a
lower rate of concentration increase and, consequently, to a lower maximum concentration,

because the mass was inappropriately dispersed or mixed into other channels.

Trials 5 and 6 analyze a fracture network that is not fully connected (Figure 4.1c).
For equivalent conditions, the removal of fracture segments decre=<es the available flow
paths and increases the resistance of the network to the _uid flow. Under the same
hydraulic gradient, the discharge through the network decreases, increasing the residence

time.
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Trial 5 assumes constant fracture aperture and is comparable to trial 3. The
distributions of maximum concentration (Figure 4.7a) are similar for both mixing models,
though the streamline routing model produces a larger peak. The corresponding break-

through curves (Figure 4.7b and 4.7¢) show a smooth increase in concentration, without

any significant steps.

The lack of connectivity affects the breakthrough curves at the outlets in two ways.
First, because there are fewer paths that lead to a specific outlet, the residence time for the
contributing paths may not vary significantly, resulting in a smooth breakthrough curve.
Second, the fewer paths offer fewer mixing opportunities that restrict spreading and

promote a higher maximum concentration at the outlets, when compared to trial 3.

Trial 6 introduces variability in the fracture aperture and it is comparable to trial 4.
Figure 4.8a shows the distribution of maximum concentration at the exit boundary. The
streamline routing promotes larger maximum concentrations and reduces lateral spreading,
as compared to the complete mixing model. Curiously, the reduction in connectivity has
increased substantially the maximum concentration at the outlets, when compared to the
results of other trials. This behaviour is consistent for both mixing models, and is related
to the fact that the aperture distribution and the smaller degree of connectivity created a
system that is self contained for that particular source point and allows little interaction with
fluids from other inlets. As a consequence, the concentrations are higher and some outlets
even have a concentration comparable to the source concentration. Figure 4.8b and 4.8¢
show the corresponding breakthrough curves. Because few paths contribute to the break-
through curves, the effect of different mixing models is felt mainly on the maximum

concentration. Trial 6 is a good example of what could be expected when mass reaches

impervious bourdaries in a system.
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These results show that mass transport in discrete networks subject to uniform
regional flow field depends on the mixing model adopted for partitioning mass at
intersections. In general, the effect of the complete mixing model is to spread mass over a
large area, with consequent lower maximum concentrations. The effect of the streamline
routing model, in contrast, is to confine mass to a few paths resulting in higher concen-

trations.

4.1.2 Regionally divergent-convergent flow field

The second group of simulations is based on a regionally convergent-divergent
flow field created by a system of two wells. The domain is square with two orthogonal
fracture sets that are parallel to the sides. Infinite fractures are distributed within the
domain with a regular spacing of 20 m. Two well locations are defined at fracture

intersections close to the center of the domain (Figure 4.9).

The steady-state flow pattern generated by the two well system, one recharging and
the other pumping, is a function of the boundary conditions. Constant hydraulic heads are
prescribed along the boundaries with values corresponding to the no flow equilibrium
situation prevailing before the wells start working. For the flow pattern created by a well
doublet, care must be taken to assure that boundary effects do not intrude on the solution.
The key corisideration is the size of the region surrounding the wells. In general, it must be
expected that part of the injected fluid will leave through the boundaries and that an
ziuivalent proporiion of native fluid will be mixed in the pumped well. Ideally the
voundaries siould be far away to avoid flux crossing them. Numerical limitations,

however, require a finite boundary.
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a) Definition of a suitable region size

The influence of the region size on the flow pattern and consequently on the mass
transport can be assessed through the analysis of both the recovery parameter and the
breakthrough curves at the pumping well. The recovery represents the maximum
concentration at the pumping well, for a continuous injection of fluid with unit concen-
tration. Four different region sizes were considered: 100x100m, 180x180m, 380x380m
and 500x500m. The injected/pumped discharge was maintained at constant rate of

3.128x10-5 m3/s/m for all cases.

After the flow equaticn was solved and the flow field defined, the recovery was
calculated as the relaton between the boundary recharge and the total withdrawn discharge.
These vaiues are shown in Table 4.2. For areas iarger than 380x38C:.a the recovery start:
to increase very slowly and the possihle benefits gained by a better representation of the

flow field may be offset by the cost of obtaining them.

Table 4.2. - Recovery for different region sizes.

Region size Boundary recharge Recovery
(m) (m3/s/m) (%)
100x 100 1.872x10-3 0.401
180x180 1.118x10-5 0.643
380x380 0.545x10-5 0.825
500x3500 0.415x10-3 0.867

The corresponding breakthrough curves at the pumping well are compared in
Figure 4.10. As the region size increases, additional flow paths become available and the
maximum concentration, or the recovery, increases, but its increase has a naturai time delay

associated with it, producing a long tail for the breakthrough curve. In this example,
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advection dominates and the t:il is a result of the delays along slow flow paths and not of

diffusion into matrix. Diffusion into matrix, in fact, only smooths the steps (refer to sec-

tion 4.2.1).

The first tracer arrival also depends on the region size. As it increases, the first
arrival happens earlier and with higher concentration. This is due to the extr« resistance of
new fractures in the network that force an increase in the head difference between the two
wells to drive the same discharge through the network. Consequently, the velocities along
the shortest flow paths increase, increasing the mass flux and the @:.cer concentration at the

pumping well. These differences start to become negligible for areas larger than

380x380m.

For this particular example, the analysis of both the recovery parameter and the
breakthrough curves suggest that 380x380m can be considered as a workable region size.

Anything larger than this seems to add very little information, even for the tail of the

breakthrough curve.

It is important to note that the fracture system considered has open boundaries and
that the only hydraulic stresses imposed on the system are due to the two-well discuarge/
recharge pattern. As a consequence, the maximum concentration at the pumping well, or
the recovery, is independent of the intersection mixing model considered. It is a function

only of the region size, as a simple mass balance can show (vide Table 4.2).

b) Comparison of the mixing models

The effects of the two different approaches for dealing with mass distribution at

intersections can now be evaluated. Based on a region size of 380x380m, regularly spaced
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and randomly generated fracture geometries were considered (Figures 4.9b and 4.14, re-
spectivily). For both geometries, three different trials consider both uniform and .andom
aperture distribution. For all trials, the mean fracture aperture is 200 pm, the r.arrix
porosity is 0.01, the matrix effective diffusion coefficient is 1.6x10-1% m=/s and the we..
recharge/discharge is 3.128x10-5 m3/s/m. Table 4.3 lists for each trial the respeciive

coefficient of variation for the aperture distribution.

Table 4.3 Coefficients of variation for the aperture distribution.

Fracture Trial C, Realization
geometry # #
7 0.0
uniformly 8 0.5 1
distributed 0.5 2
9 1.0 1
1.0 2
10 0.0
randomly 11 0.5 1
distributed 0.5 2
12 1.0 1
1.0 2

The results obtaisied for trial 7 are shown in Figure 4.11. The two mixing models
produce very similar breakthrough curves. Basically, the effect of the streamline routing
model is to increase the concentration of the first arrival in relation to that of the complete
mixing model. The steps in the breakthrou gh curves represent contributions from different
flow paths. Many steps, however, have small magnitude and their contributions may not

be noticeable, except for a slight waviness in the tail of “Ye curves.
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The different paths explain the differences due to the two mixing models. The
streamline routing does not disperse mass at the intersections and the concentration that
enters the faster path is higher, giving a higher value for the first arrival. The complete
mixing, on the other hand, allows mass to enter slow paths and it takes longer for this mass
to reach the pumping well, resulting in a delay for the respective increase in concentration.
The same reasoning, however, can justify an inverse situation, where the complete mixing
could lead to a higher concentration than the streamline routing (vide Figure 4.19b). Itis
important to note that the maximum concentration at the pumping well is independz: of the
intersection mixing models considered. As pointed out previously, the maximum concen-
tration is a function of only the region size, which controls the relative difference between

the well and boundary recharges.

Trials 8 to 12 show the influence of aperture and networ: variability on the effects
of the mixing models. Trials 8 and 9 both involve a geometrically 1nifo.m fracture net-
work with two realizations per trial, in which the aperture varied. The coefficient of varia-
tion tor trial 8 is C, = 0.5, while for trial 9 itis C, = 1.0. The results are shown in Figures
4.12 and 4.13. In all four realizations the breakthrough curves show almost identical re-

sults for both mixing models.

Trials 10 to 12 have considered an example of a random fracture geometry (Figure
4.14). In trial 10 the fracture apertures are constant, while in trials 11 and 12 they are
random and follow the scheme discussed for trials 8 and 9. The results are presented in
Figures 4.15 to 4.17. The breakthrough curves, again, exhibit the same shape for both

mixing models.

The introductdon of randomness in both fracture aperture and geometry has the ten-

dency to offset the differences due to the different mixing models. However, the results
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analyzed indicate that both mixing models yield similar breakthrough curves for a conver-

gent-divergent flow field.

4.1.3 Discussion of results

The effects of the different intersection mixing models on the overall response of
the fracture system are strongly dependent on the flow field conditions. In the case of the
two well system, the two mixing models give essentially the same results. However, for

the regional uniform flow field the different mixing models lead to different results.

The explanation for this flow dependent behaviour is related to the possible flow
patterns at an intersection (Figure 4.18). In section 2.3.1 it was shown that only one, of
four possible flow patterns at a fourway intersection, would yield different equations for

the different mixing models: the continuous intersection (Figure 4.18d).

3 3 3 3

! ;

4 —we—p2 4 —poee—2 4 poe—2 4 —po—p?2

' ' ' '

a) b) c) d)

Figure 4.18 Possible flow patterns at a fourway intersection.

In a complex fracture system, all four intersection flow patterns are present. If

patterns a), b) or ¢, predominate, then both mixing models would yield similar
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breakthrough curves at the same location, but if pattern d) dominates, then the different
mixing models would, in general, yield different breakthrough curves. To establish
whether the response of the system is affected by the different mixing models, it is neces-
sary to estimate which intersection flow patterns are predominant for a given flow field and

also the pattern of mass partitioning at successive intersections.

The two experiments mentioned in the beginning of section 4.1 provide good

opportunity to verify these principles and explain why their results seemed to be contra-

dictory.

Consider, initially, the fracture systems analyzed by Krizek et al. (1973) and
reproduced in Figure 4.19. These systems consist of a rectangular region with two
impervious boundaries (opposite sides), two constant head boundaries and an injection
well at the center. The fractures, represented by the parallel plate model, have constant
aperture and constant spacing. In the first case, the two head boundaries have the same
value and the flow field generated by the injection well is symmetrical and only two types
of flow patterns develop at the intersections, either type (a) or type (d), as defined in Figure
4.18. For flow patterns type (a), one inlet - three outlets, both mixing models give the
same results. For flow pattern type (d), two inlets - two outlets, the different mixing
models should give different resuits. This, however, is not the case for this particular
situation. The regular fracture network, with constant aperture and spacing, leads to a
radial symmetry in the flow field. Consequently, the two incoming discharges at a type (d)
intersection are equal and, moreover, so are the concentrations. For this particular
arrangement, the concentration leaving an intersection would be the same for both mixing

models. The two different mixing models might give different results only if the flow fieid

were asymmetric.
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In the second case the two constant head boundaries have different values Figure
4.19b), creating a uniform flow field. If the head in the injecticn well coincides with that of
the uniform flow, there is no disturbance of the uniform flow field and the injection is
named passive. If, on the other hand, the head in the well is greater than the natural head,
the injection is named active and the resultant flow field is a superposition of a simple
uniform flow with a simple radial flow, that results in some backflow. Krizek et al.
analyzed in detail the active injection of contaminant that generates an expanding plume.
Inside the plume the flow pattern at the intersection was mainly type (a), while at the border

it was type (b). This situation led to equivalent overall results for both mixing models.

Krizek et al. (1973), based on the above results, concluded that the different mixing
models would not affect significantly the mass transport in discrete fracture network. Their

generalization, however, was precipitate and should not be extended to different flow field

configurations.

The experiments by Hull et al. (1987) considered only passive injection of contarmi-
nant. Their equally spaced, equal aperture fracture network is reproduced in Figure 4.20.
The hydraulic gradient is parallel to the x-axis and the velocities are the same for both
fracture sets. This type of problem is similar to the case analyzed in section 4.1.1, =xcept
for the source position. What controls the mass spreading is the type of mixing that occurs
at the plume border, as it develops. The intersection pattern at the border is type (d), with
only one inlet carrying mass. This pattern of flow accentuates the differences for the two
mixing models. Just as an example, consider that mass arrives at the intersection through
inlet number 3 (Figure 4.18d). Because flow is laminar and the discharges for both inlets
are equal, the streamline routing model will take mass only to outlet number 2 with no

dilution of concentration. The complete mixing model, in contrast, will take mass to both
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outlets with a 50% dilution in concentration, inducing, consequently, a larger spreading

than the streamline routing model.

The apparent contradiction between the results of Krizek et al. (1973) and Hull et
al. (1987) is, therefore, due to the different flow field configurations. For regular fracture
networks, the differences are evident for regionally uniform flow field, but they become

negligible for convergent/divergent flow fields.

These results have shown that different mixing models may lead to different system
responses. The choice of an appropriate mixing model, however, should not be based on
the response of the system, which is strongly dependent on the flow field, but rather on a

careful analysis of the physics of mass transport at intersections.



4.2 The Effects of Diffusion into Matrix on the Overall Response of

Discrete Fracture Networks

Diffusion into the matrix has already been shown to provide an important control on
mass transport in fractured rocks (e.g., Neretnieks, 1980; Grisak and Pickens, 1980; Tang
et al., 1981). Two examples are presented in this section to emphasize the influence of
matrix diffusion in a fracture network and also to highlight some of the capabilities of the
numerical model developed in this study. The first example considers a simple network
with regular geometry, but variable fracture aperture. The second example considers a

complex network with four fracture sets. Both analyses use the streamline routing model

for mass distribution at intersections.

4.2.1 Regular fracture network

This example presents a reevaluation of trial 4, analyzed in section 4.1.1, by
considering different diffusion coefficients. The fracture network, as shown in Figure
4.1b, consists of regularly spaced, infinite fractures with variable aperture, which derive
from a log-normal distribution with mean 200 pm and coefficient of variation 1.0. The
hydraulic gradient has a value of 1/15, with a direction of 34° in relation to the x-uxis. The

rock matrix porosity is 0.01 and two different diffusion coefficients have been considered:

1.6x10-10 and 1.6x10-12 m?/s.

The original results presented in Figure 4.16 and reproduced in Figure 4.21a were

based on a diffusion coefficient D,, = 1.6x10-19 m?/s, which corresponds to the diffusive

properties of tritium in a porous matrix with a tortuosity value of 0.1 (Tang et al., 1981).
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The breakthrough curves span over a large time period and there is no evidence of

concentration steps, in contrast to other situations analyzed in section 4.1.1.

When the diffusion coefficient decreases, there is a significant change in the shape
of the breakthrough curves (Figure 4.21b). They become steeper with a few noticeable
concentratior steps and maximum concentration is obtained earlier than before. The
preakthrough curve for outlet 143, for instance, presents a well defined contribution for a
slower path. The smooth transition between the two almost vertical limbs is due to
diffusion into the matrix. If advection were the only transport process, the breakthrough
curves would be a succession of steps. Diffusion into matrix smooths these steps, which

may disappear corpletely for high diffusion rates (vide section 4.3)

4.2.2 Complex fracture network

Following the procedure outlined in section 3.1, fractures from four different sets
are generated over a square region 500 m x 500 m. Two factors control the final network
geometry: the d- 1sity and length of the fractures. The fracture density varies from set to
set, but within a set the spacing between fractures is held constant. The fracture length is
assumed to be a random variable, with exponential distribution, in order to produce
variability in the geometry. The mean fracture length is constant for all sets, but the
wruncation factor, as defined by Schwartz et al. (1983), varied among sets. The fracture
apertures are constant for a given fracture set. A summary of the relevant data for fracture

generation is presented in Table 4.4. The resultant fracture network is shown in Figure

4.22.
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Table 4.4 Data used for fracture generation

Set Angle Truncation Spacing Aperture
factor (m) (Lm)
1 135° 0.40 67.34 250
2 45° 0.40 67.34 200
3 0° 0.25 23.82 100
4 90° 0.20 11.91 150

The flow conditions within the fracture network are defined by the combined effect
of a pumping well and a regionally uniform flow field. The well is located at the inter-
section of two fractures (Figure 4.22), with a pumping rate of 1.0x10-6 m3/s/m. The
regional hydraulic gradient has a value of 1/500 and is oriented at 22.5° in relation to the x-

direction. The resultant flow pattern is shown in Figure 4.23.

The mass transport through the fracture network is primarily dependent on the
distribution of velocities within the network. Different flow conditions imply in different
transport characteristics for a discrete network. The parameters related to the rock matrix,
porosity and effective diffusion coefficient, are assumed to be constant throughout the
rock. A value of 1% is assigned to porosity, while three different values are considered for

the effective diffusion coefficient, 1.6x10-10, 1.6x10-12, and 1.6x10-14 m?/s.

The accuracy of the mass transport simulations was verified by running a few tests
with different NC values. Since NTP does not significantly influence the solution, as
discussed earlier, its value has been set to 50. Figure 4.24 shows the breakthrough curves
for three NC values, 100, 200 and 400. The results show that the rumerical solution
converges as NC increases. The value NC = 200 gives results comparable to NC = 400

and it has been adopted for the calculations.
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The pumping well provides a convenient point of convergence for the mass released
into the system. By analyzing the breakthrough curves at the discharge well, the influence

of diffusion into matrix can be assessed.

The results for the three different diffusion coefficients are presented in Figure
4.25. The breakthrough curves are, again, very distinct, showing that the influence of
matrix diffusion is significant. As this coefficient decreasss, advective transport domi-
nates, becoming eventually piston-like. No concentration steps are evident in the

breakthrough curves, even for the smallest diffusion coefficient.

4.2.3 Discussion

Diffusion into matrix is essentially a slow, time dependent process that becomes
important when large times are involved (Neretnieks, 1980). The interesting point about
these examples is the relatively short period of time it takes for the first signs of mass to

show up at the sampling points.

For small diffusion coefficients, the first mass arrival is representative of mass
transport by advection only. For the regular network, the first arrivals are in the range 2 to
15 days (Figure 4.21), while it is about 58 days for the complex network (Figure 4.25). If
advection were considered the only mechanism for transport, the breakthrough curves, for
both examples, could be almost completely developed within 120 days. This time frame is
relatively short for groundwater movement. For example 1, with an average path length of
180 m, it implies in velocities in the range 15 - 90 m/day For example 2, the average length

would be 380 m, implying in velocities of the order of 6.5 m/day.
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The two examples show that, even in relatively active flow systems, diffusion into
matrix does play an important role in retarding the contaminant arrival. The controlling
parameters are well expressed in the dimensionless number &, developed in section 2.5.1,

which is defined as

5 = G(R,,,Dm)O'S (RfL)O'S

bR¢ \% (4.1)

Considering no adsorption, the only parameters independent of the flow field are
matrix porosity and diffusicn coefficient. The influence of the later on mass transport has
already been analyzed and attention is now focused on the matrix porosity. Its role is
related to mass storage in the porous matrix. If, for example, the porosity increases, the
storage increases, increasing the mass ransfer from fracture to matrix and, consequently,
reducing the concentration in the fracture. Rocks of low porosity and high confining
pressures have porosity in the range 0.1% to 1% (Neretnieks, 1980). The results

previously presented in this section were based on a value of 1%, which is the upper end of

the range.

If, for example, 6 = 0.001 and D, = 1.6x10-10 m2/s , the results would be

equivalent to the case where 6 =0.01 and D, = 1.6x10-12 m2/s (same & number for the

two pairs of values). Consequently, as it can be seen in Figure 4.25, diffusion into matrix

wouid still be important.
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4.3 Mass Transport Behaviour for a Two Well System in Discrete

Fracture Networks

In general, injection/withdrawal testing has been used to collect information about
mass transport ir fractured and porous media (Raven et al., 1988; Novakowski, 1988;
Jensen, 1983; Fossum, 1982) The interpretation of the resulting data is not a simple matter
and is dependent on the correct selection of a model that represents the physics of mass
transport. Because the mass transport in fracture networks is complex in nature, the
interpretation of field tests is difficult and often simplified models are used. In many
situations, a one-dirmensional model has been adopted, based on the assumption that the
fracture system could be represented either as a single fracture or as a system of parallel
fractures. The transport parameters have actually been estimated by fitting the chosen
model to the available data. Although this procedure allows one to obtain numerical values
for the parameters, these estimates are only as good as the assumptions involved in the

selection of the model.

It 1s in this context that the model developed in this study finds a useful application.
By analyzing mass transport at the fracture scale, this model provides a powerful tool that
can be used to verify many of the assumptions underlying the current models used in the
interpretation of field tests. Three major issues, concerned with the overall response of the
system, are addressed here: (1) the influence of different paths within the fracture network;
(2) the effects of different injection conditions; and (3) the effects of different fracture
densities. These three points are all interrelated and they have been separated only for
simplicity. The influence of matrix diffusion is implicitly considered as the analysis

progresses.
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In this section, mass transport is analyzed by means of the analytical procedure

described in section 2.4. It becomes feasible, because the fracture networks are relatively

simple.

4.3.1 Distinct paths within fracture networks

The mass transport in a fracture network is strongly dependent on the flow field
developed within the network. In a two well tracer test, the flow field is divergent near the
injection well and convergent near the withdrawal well. In between, there is a transition
zone where the flow might be close to uniform. It is common practice to have both the
injection and withdrawal rates the same. In the subsequent analysis, the streamline routing

model has been adopted as the mixing model for partitioning mass at fracture intersections.

Because of the discrete character of the network, mass moves through the fractures
and several paths may conduct the tracer from the injection well to the withdrawal well.
Each path is a combination of several fracture segments and each has a characteristic
residence time. The breakthrough curve at the withdrawal well represents the contributions
of all the paths that convey the tracer to the withdrawal well. In many instances, the
contributions of several paths are clearly defined in the breakthrough curve. Figure 426
shows a simple fracture network with variable fracture aperture, while Figure 4.27 shows

the corresponding breakthrough curve at the withdrawal well.

A simple inspection of the breakthrough curve shows that at least four different path
contributions can be identified. In fact, there are nine paths that convey the tracer from the
injection well to the withdrawal well, but many of them contribute very little. All possible

paths are listed in Table 4.5, arranged in the order of arrival, and the relative contribution of
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Fig. 4.26 Hypothetical regular fracture network, showing the different apertures for each
fracture and the position of the wells.
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each one to the breakthrough curve is shown in Figure 4.28. In the following paragraphs,
an analytical procedure is developed to evaluate the elementary breakthrough curves for

each path and it is shown how they can affect the breakthrough curve.

Table 4.5 Sequence of segments for each path.

Path sequence of segments

40 39 9 10

40 15 45 10

21 46 45 10

21 46 16 51

40 14 33 8 9 10

21 22 52 51

21 22 23 58 57 11

21 22 23 58 17 51

40 14 33 32 2 38 9 10

O 00 3 O WV b WN o~

0.3

0.2 bom

C/Co

0.1

00 IR B N
1 2 3 4 5 6 7 8 9
Path

Figure 4.28 Relative contribution of the the different paths.
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In this analysis only advection and matrix diffusion are considered, because of the
simplicity of the corresponding unit step response function that does not require the

evaluation of the convolution integral (as discussed in section 2.4).

The unit step response function (eq. 2.12) takes then the form,

c = erfc [ —A—-—] in the Real domain (4.2)
(r— BP-3
or
C = 1? expl ~(As95+B s)] in the Laplace domain (4.3)

where A and B are defined by equation (2.35), i.e.

O(RnDm)°> L
Vb

_ ReL
B %

The application of the convolution theorem to a fracture network, as shown in

section 2.4 and Appendix A, leads to a response function for each path of the form

= (e erfe| —2L 4.4)
¢j = (Cmax)jerfc (t_.BjT)O'S )

where
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n; is the number of segments in the path j, (cmax)j represents the percentage of the tracer
that follows path j, and the subscript i refers to individual segments along path j. The
breakthrough curve at the withdrawal well (the response of the system) is obtained by

adding the contributions of all paths that arrive at the well,

Tpachs
cT = 3 ¢ (4.5)
J=1

At steady state (t — =), ¢T is equivalent to the recovery at the withdrawal well. Table 4.6
lists the parameters (Cmax), 4 ,T , B jT, for each path given in Table 4.5 The relative
imp~riance of each path is given by the (Cmax)j factor, as shown in Figure 4.28. The pa-
rameter A jT conveys information related to matrix diffusion. while B,'T represents the

advective residence time for the path.

Table 4.6 Parameters for each path snown in Tabie 4.5

Path (Cmax)j AJ-T Bf
number [s172] [s]
1 0.20905 1.106 2661.1
2 0.07294 2.400 4331.3
3 0.02039 3.243 5522.2
4 0.03180 6.517 9768.8
S 0.05247 4.819 11206.
6 0.01121 12.38 14997.
7 0.00383 27.31 36826.
8 0.00211 63.03 96677.
9 0.00086 186.8 298476.
TOTAL 0.40467

The solution for each path can be thought as a solution of an equivalent single

fracture that contains, intrinsically, the contributions of several fracture segments. Dif-
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ferent paths, in general, are represented by different equivalent single fractures. But the
paths are not completely independent of each other: they share several fracture segments
among themselves. The final response of the system is therefore very site specific and it

depends on the relative magnitude of the path breakthrough curves.

As the number of fracture segments and intersections increase, the likelihood of
different paths having similar parameters increases. The tendency is to increase the number
of paths and reduce the relative 1importance of each one. The overall response of the system
becomes complex due to the combination of many individual breakthrough curves and a
single fracture model is not appropriate anymore, but a multi-fracture model is not feasible
to implement either, because thousands or millions of individual paths may be present in
the solution. The response of the system, therefore, represents the transport behaviour ina
region around the two wells. Its size is a function of the hydraulic stress being applied.
Most important of all, the transport behaviour cannot be dissociated from the velocity field
generated by the hydraulic boundaries. For instance, data obtained from a two well wracer
test with a discharge/recharge pattern will yield different parameters from data obtained
from a two well tracer test with a passive injection or passive withdraw, because the flow
field generated is different for gach of the three situations. The resulting paths followed by
the tracer are different for each situation and so will be the respective ransport parameters,

because different fractures are being sampled in each situation.

For the case shown in Figure 4.26, one path is responsible for 50% of the total
mass transport to the withdrawal well. From 9 paths that convey tracer to the withdrawal
well, 95% of the tracer is taken by five paths, while 5% is taken by four slow paths. In
fact, the bulk of the ransport is localized in the region between the two wells, what could
be called direct paths, and only a small percentage take a longer path. It should be recalled,

howewver, that the size of the region surrounding the wells plays an important role in
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defining the tail of the breakthrough curve, because longer paths take longer times to reach

the withdrawal well.

This results suggest that most of the transport in a two well tracer test is probabl;
restricted to the region between the two wells and care must be taken when extrapolating
the data beyond that region. If the fractures are sufficiently dense, such thata REV can be
contained within the two wells, then it is possible that variations in the positioning of the

wells do not significantly affect the breakthrough curves at the withdrawal well.

Parameters derived from the breakthrough curve depend on the model assumed for
mass transport. An important point is that fracture or fracture segment data are not possible
to obt~in. The data reflects the behaviour of individual paths and not of individual

segments or fractures.

4.3.2 Effects of different injection conditions

The interpretation of a two well tracer test may be also dependent on the way the
tracer is introduced into the fracture system. The example considered in Figure 4.26
assumes a continuous injection of tracer, but many tests are performed using an instan-
taneous injecdon. Theoretically, the response due to an instantaneous injection is just the
time derivative of the response due to a continuous injection and both types of injection

should yield the same estimate for the transport parameters, but this may not be the case.

Consider the same fracture system depicted in Figure 4.26, but now also subjected
to an instantaneous mass injection. The responses at the withdrawal well due to both types
of injection are illustrated in Figure 4.29. The flow field generated is relatively fast and the

contribution of each path is characterized by either a step, in the case of continuous



139

injections, or a spike, in the case of instantaneous injection. Both steps and spikes occur at
the same time. It is interesting to note that only four spikes can clearly be identified in the
Figure, from a .otal of 9 spikes. The breakthrough curves for the continuous injection,
however, allows more steps to be identified. The magnitude of the spikes decrease very
fast for the slower paths and they become negligible when compared to the first tracer
arrival. By considering a log-scale for the concentration, all spikes can be seen (Figure
4.30). It is, however, questionable whether field measurements could achieve the
necessary precision to identify all the steps. The identification of slower paths becomes
more difficult, when a slower, and more realistic, velocity field is considered. The

residence time of the injected mass increases and effects due to diffusion into the munx

becomes important.

In the second case analyzed, the velocities in the fractures have been reduced by a
factor of 100, by considering a corresponding reduction in the injection/withdrawal rates.
Although this reduction in rates alters the magnitude of the flow velocity in the fracture, it
does not alter its relative distribution in the fracture network and the flow paths are
maintained. The breakthrough curves obtained for both types of injection are shown in
Figure 4.31 For the continuous injection, the steps have been smeared out and the
breakthrough curve becomes an almost smooth curve. The contributions of slower paths
can still be identified by the presence of slight discontinuities in the breakthrough curves.
However, in a real field experiment, where observations are discrete in nature, the steps
could probably be associated with experimental errors and, most likely, a unique smooth
curve would be drawn for the interpretation of the data. For the instantaneous injection, a
similar behaviour is observed. Instead of spikes, a two peak, smooth curve is obtained.
Basically, only the two fastest paths can be identified in this curve. Diffusion into the
matrix has united all spikes into a single curve, making it hard to distinguish different

paths. With the previous knowledge of the position of the spikes (from Figure 4.30), itis
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possible to recognize the contribution of different paths that only produce a slight waviness
in the curve. Again, experimental data may show equivalent variations due to experimental
errors and contributions of different paths would go unnoticed. A further decrease in the

well discharges would allow more time for diffusion and the evidence of the second path

would disappear (Figure 4.32).

If the results for any of the above cases were obtained in the field for an
instantaneous injection, it is possible that only the first path contribution would be
considered for the estimation of transport parameters. The small magnitude of all other
path contributions could not be detected or could even be mistaken for background noise.
In this case, any parameter estimated from the test would be representative of only one

path. Broader-scale extrapolations under this circumstances would be misleading.

In general, the contribution of individual paths are better defined in the break-
through curve under conditions of continuous rather than instantaneous injection. The later
procedure would provide small values of concentration, which are likely to be
misinterpreted in actual tests. If the definition of paths is important, then a fast flow field

inducing primarily advective transport is recommended.

The important issue, however, is the realization that mass is transported along
different paths which may sample different fractures. In general, the fastest paths are the
ones that contribute most to the breakthrough curve. But they do notrepresent any average
for the rock in between the two wells, neither for a single fracture, but rather a definite

combination of several fracti're segments for a specific flow field condition.
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4.3.3 Effects of different fracture densities

The density of the fracture network plays an important role in defining mass
transport. Generally, a greater density of fractures increases the number of intersections
and fracture segments, increasing, consequently, the number of paths followed by mass

from a source point to a particular sampling point. As a result, the relative contribution of

each path to the breakthrough curve decreases.

To verify the influence of fracture density on mass transport between a pair of
wells, three fracture networks with different densities have been considered. The network
consists of two orthogonal sets of fractures, with the position, length and aperture of
individual fractures assumed to be random. The three fracture networks are successively
generated, such that a higher density network contains all the fractures from a previous
sparse network. This is achieved by considering additional fractures for each new stage in
generation. The parameters describing each successive group of fractures are shown in
Table 4.7, while Figures 4.33 to 4.35 show the generated networks. This procedure
ensures that any higher density network generated preserves the original fractures and the

position of the wells, allowing a fair comparison of breakthrough curves from the different

networks.

Table 4.7 Data used for generation of fracture networks with different densities.

Set Fract. Angle Mean Trunc. Aperture

per set Length (m) Factor Mean (um) Cy
1 25 0’ 550 0.4 200 1.0
2 25 90° 550 0.4 200 1.0
3 23 o° 550 0.1 200 1.0
4 23 90° 550 0.1 200 1.0
5 17 0 550 0.1 200 0.5
6 17 90° 550 0.1 200 0.5
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The relative small size of these networks, as already mentioned, is suitable for an
analytical treatment, instead of the numerical simulation. The advantage of the analytical
solution is to better represent the breakthrough curve for the instantaneous injection, that,
otherwise, would have to be obtained by numerical differentiation of the simulated break-
through curve for a continuous injection. As discussed in Chapter two, the number of time
points (NTP) used to evaluate the breakthrough curve for a continuous injection does not
have to be large to represent it well. Its time derivative, however, may be poorly represent-
ed in predominantly advective cases, because few points may not adequately define the
concentration steps present in the breakthrough curve. The resultant impulse response may

show an erroneous lower magnitude for the concentration.

The increase in fracture density shows an incredible increase in the total number of
distinct paths from the injection well to the withdrawal well. For the sparse network there
are only 37 paths, for the intermediate density network, 4527 paths and for the high density
network, 61344 paths. For higher fracture density networks the analytical solution be-

comes impractical, because of the large number of paths that would have to be evaluated.

Continuous Injection

The results for the continuous injection case are plotted in Figures 4.36 and 4.37.
Figure 4.36 shows the breakthrough curves for all three networks, considering only trans-
port by advection. The increase in fracture density increases the number of flow paths
within the network and the resistance to flow decreases. Consequently, the recovery in-

creases significantly and a long tail develops, as already discussed in section 4.1.2.
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The breakihrough curves show distinct concentration steps, due 1o the contribution
of different paths. For the sparse network, for example, two steep steps bring almost 80
of the total mass recovered by the withdrawal well. As the fracture density increases, the
nun-r .r of the concentration steps increase, but their magnitude decreases and the break-

through curve tends toward an S-shaped curve, reflecting some dispersion in the artival of

mass. The dispersion, however, cannot be said to be Gaussian, because of the long tail.

Figure 4.37 shows the equivalent set of breakthrough curves for a diffusion coef-

ficient D, = 1.6x10-10 m2/s . As already discussed, the influence of diffusion is signiti-

cant. There is a large _:ardation in the arrival of mass and the concentration steps have

been smeared out.

Instantaneous injection

Figure 4.38 presents the impulse responses for all three networks, considering
mainly advection ( D,, = 1.6x10-14 m2/s). The contribution of each path now becomes
evident. As the fracture density increases, the number of spikes increases, but their
magnitude decreases. It is possible to say that the density of spikes increases with

increasing fracture density, leading eventually to a smooth continuous peaked curve.

Diffusion into matrix has a very interesting effect on the behaviour of the break-
through curves. Because mass is stored in the porous matrix, as a consequence of
diffusion, the peak concentration of each spike is reduced and the equivalent mass is spread
in between spikes, in exactly the same way as a flood wave is attenuated through a

reservoir. The spikes become eventually united, forming a single curve, as shown in

Figures 4.39 t0 4.41.
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The increase in fracture density enhances the development of a single curve by
providing higher surface area for diffusion and, consequently, higher storage volume for
the mass transported that help regulate the mass flow. An additional effect is due to the
increase in density of the spikes, that offers the possibility of fitting an average curve to the

data points, when interpretation is due.

4.3.4 Discussion

It has been shown in this section that mass transport in discrete fractured networks
is strongly dependent on the flow paths developed within the network. The flow paths are
dependent on the network geometry and also on the flow stresses imposed over the net-
work. As a consequence, tracer tests are restricted to the region in between the source and
the particular sampling point and also on the flow conditions under which the test was per-
formed. Because of the discrete character of the flow paths, the breakthrough curves ob-
tained may be representative of only a few paths and extrapolations for other sampling

points or different flow field configurations should be avoided.

The instantaneous injection test, when comnpased to the continuous injection test,
may be more susceptible of not revealing most of ¢ information regarding different flow
paths. A reason for this is the inherent small magnitude of the spikes that may be mistaken
for background noise. Another reason is diffusion intt. matrix that may decrease even more
the magnitude of the spikes and, at the same time, spread mass in between them, leading

eventually to a single smooth curve.

A high fracture density may also lead to single smooth curves, because of the in-
crease in the number of flow paths that decreases the magnitude of the spikes. The resul-

tant response curve does not represent any particular flow path, but rather a combination of
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flow paths in a particular region. Each flow path may sarnple many fracture segments and
different paths may share many segments. As fracture densities increases, each paih sam-
ples more segments and also shares more segments with other paths. Consequently, the
likelihood of different paths yielding similar transport characteristics also increases. The
response curves, therefore, are the result of the complex interaction of many paths, being
characteristic of the region in between the two wells. If diffusion into matrix is important,

the breakthrough curve will show an additional smearing (Figure 4.42).

In these cases, it becomes very difficult to extract information for single paths from
the breakthrough curves. A possible approach for interpretation is to define a transfer func-
tion that characterizes mass transport between the two wells. The transfer function, how-
ever, is dependent on the sit~ F_ing tested and also on the flow field configuration. If the
fracture density is large enough such that it is possible to define a representative elementary
volume (REV), then the transfer function could be used for predictive purposes in adjacent
areas, provided that a similar region size and flow field configuration characterizes that
area. Fossum (1982), for instance, has applied these concepts to geothermal reservoirs.
He studied the influence of a re-injection well on a producer well, to verify how much
water from the injection well would reach the productior; well. The definition of a transfer

func-tion works well, because the parameters obtained are not used for other pairs of wells.

A two well test is, therefore, dependent on the position of the wells, on the type of
the test (continuous x instantaneous, passive x active) and on the flow field generated by
the test. The interpretation of the test results must take these factors into account. The pa-
rameters obtained do not represent an average for the fractured system surrounding the
wells, but a specific test dependent combination of parameters. The objectives of the test
should be very clear, because results from one test may differ completely from other tests

and the parameters obtained may not be used for different flow conditions.
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5. CONCLUSIONS

This work has analyzed the problem of mass transport in discrete fracture
networks. One of the main objectives of this work was to develop a numerical model that

could actually take the process of diffusion into matrix into account for complex fracture

networks.

The development of this model is based on systems analysis. The complex fracture
network is regarded as a single system with multi-input and multi-output points. Ata
smaller scale, the system is characterized by two components: the fracture segments and the
fracture intersections. In this model, it is assumed that the mass transport behavior for each
of these components is known and can be expressed by appropriate transfer functions or
indicial admittance functions. Given the organization of the components within the
network and the multi-input load or excitation, the response of the system at different
output points can be calculated by the orderly application of the convolution integral to each

component. The systems approach also enables one to derive analytical solutions for

simple fracture networks.

For the intersection component, the only process involved is the distribution of the
incoming mass among the outgoing outlets and the transfer functions are easily obtained.
For the fracture component, the transfer functions depend on the transport processes
considered and they become more complex. Tang et al.(1981) showed that solutions for
mass transport in a single fracture can be divided into two groups: with dispersion in the
fracture and without it. The resultant transfer function for the no-dispersion case is
relatively simple, being given in a closed form. The transfer function for the dispersion

case, in contrast, involves an infinite integration.

159
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One of the major numerical advantages of this model is that it does not require
discretization of either the matrix or the fracture. The discretization is done in a larger scale

by considering the fracture segments.

This model proved to be extremely valuable in analyzing the behavior of mass
transport in discrete fracture networks. Three applications have been conducted with this
model. The first one looked at the influence of two mixing models on the response of the
fracture system; the second showed how important diffusion into matrix is; and the third
analyzed a system of two wells, showing the importance of paths, injection types and

fracture densities on the overall response of a system.

The major conclusions of this work can be summarized as:

1. The systems approach provides a powerful tool for analyzing mass transport in
discrete fractured petworks. All transport processes can be incorporated into the model by
considering appropriate transfer functions for the fracture. In the same way, different

mixing models for the fracture intersection can be taken into account.

2. The model can efficiently handle heterogeneous systems, where rock-related
properties such as porosity, retardation coefficient, diffusion into the matrix and fracture

aperture vary spatially.

3. An important feature of this model is that it can compute exceedingly low
concentrations accurately, whereas other numerical models cannot, due to numerical
dispersion, etc. This is important for many organic compounds that have drinking water

standards in the PPB range ( c/cy = 10-5 ~ 10-$).
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4. 1n discrete fracture networks, mass is transported along different paths which
sample different fractures. Different observational points may show completely different
breakthrough curves as a result of different paths. The flow paths are dependent on the
network geometry and on the flow stresses imposed over it. As a consequence, the overall

response of the system is strongly dependent on the flow field developed in the network.

5. Another factor that influences the definition of the paths for mass transport is
how mass is partitioned at fracture intersections. The selection of the appropriate mixing
model, however, should be based on the physics underlining mass transport in the

intersection and not on the overall response of the system.

6. Breakthrough curves are the result of the contributions of many individual flow
paths that convey mass from a source to a particular sampling point. These paths can be

idealized as a system of parallel fractures, each with different parameters.

7. The increase in fracture density in the network provides additional paths for
mass transport. The magnitude of each path contribution decreases and the breakthrough

curves become smoother, presenting eventually no indication of path contributions.

8. The way mass is introduced into the fracture system, i.e. continuously or
instantaneously, may make it more difficult to identify the path contributions. For sparse
fracture networks, continuous injection provides breakthrough curves with distinct
concentration steps that clearly identify the path contributions. The instantaneous injection
yields several concentration spikes for each path contribution, but their relatve magnitude
is small and not cumulative, what makes them hard to identify, unless high sensitive
concentration measurements are possible. In dense fracture networks, the number of paths

may be large and the path contributions become difficult to identify.
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9. Tracer tests conducted in fractured rocks should be interpreted with care. The
test is site dependent, flow dependent, and, in general, does not represent any average for
the region surrounding the site. If the velocities in the fractures are high enough, the
identification of the major path contributions can be done. However, this will give no
information regarding the physical characteristics of individual fractures, because the
effects of several fractures have been combined into a single path. Different well
arrangements may yield significantly different transport parameters due to the different
paths that conduct mass to each well. Moreover, mass transport is strongly dependent on
the flow field and the parameters obtained from a tracer test with a certain fl.:w pattern may

not be applicable to field situations where the flow field is different.

10. The type of the mass injection may also affect the interpretation of the data.
Continuous injection provides, in general, a better record of the path contributions because
of the cumulative character of the breakthrough curves. Instantaneous injection, in
contrast, leads to a series of spikes which may not be all identified due to their small
magnitude. In many instances, the breakthrough curves obtained for an instantaneous
injection may show the contributions of only a few fast paths and the transport parameters

cbtained may not represent the actual transport in the site.

11. Diffusion into matrix has a definite influence on mass transport in regional
systems, as already shown by other researchers, and it may also affect significantly the
results of tracer tests, especially if instantaneous injection is considered. In general, the
effects of matrix diffusion are to retard the mass arrival and to smooth the breakthrough
curve, making it difficult to identify the path contributions. When instantaneous injection is
considered, the role of matrix diffusion is similar to the role of a reservoir in attenuating a
flood wave. In fact, matrix diffusion is the process that makes matrix storage available for

the mass being transported. Its effect is to reduce the magnitude of the spikes, by taking



163

mass into storage, 2nd to spread mass in between spikes, by releasing mass from storage.
The b: eak:“rough curves become zventually a continuous smooth curve, with no signs of
the discrets spikes. Interpreting such a curve could be misleading, if one is not aware of
the transpor: processes involved. The breakthrough curve represents the response of the
systern (o a series of processes that can no longer be uniquely identified. The choice of a
single or multiple fracture model to interpret the data may yield transport parameters that do
nnt chzracterize at all the physics of mass transport in the network. These models are, in
fas, weniasive transfer functions that poorly describe the mass transport between the two
wells. In being transfer functions, these models are restricted to the type of test performed
and cannos be dissociated from the flow field, making extrapolations con:pletely unrealistic.
Since the fracture network is, in fact, unknown, a better procedure would be to assume a
gencral transfer function, as given by the response at the sampling poiiits, and verify its
variability from poins to point and among diff rent flow field conditic.:s. if the fracture
density is high enough, it m:ay be possible to obtain a transfer function that incdepends on
the position of the sampling poinis and, less likely, on the type of flow field. One thing,
however, is certzin: standard tracer tests are unable to obtain parameters for a single

fracture.

12. The coding of the model developed is not optimized and there are several ways
to increase the efficiency and the accuracy of the model. Loss of accuracy is, basically,
caused by the poor representation of the calculated breakthrough curve, which, in turn,
affects its discretization. Future work may consider improving the accuracy of the model

by better distributing the time sampling points for the calculation of the brcakthrough

curves, especially at the tail.
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13. Studies on error propagaiion in the model could also be included in future
works. Once a good representation is obtained for the breakthrough curves, the . jor
source of errors is given by the discretization of the input function for each segment. By
feeding the model with the resultant error distribution due to the discretization of the input
breakthrough curve, it is possible to analyze how the errors are propagated. It may be
speculated, for instance, that the errors at the beginning of the breakthrough curve are
dissipated in the transfer process and that the errors at the tail are ainplified. Such an

analysis could lead to more efficient algorithms.
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APPENDIX A - ANALYTICAL SOLUTIONS FOR A SIMPLE FRACTURE
NETWORK

This section describes the derivation of analytical solutions for mass wansport
through simple fracture networks. Both mixing approaches for distributing mass at
intersections are considered. The solutions are derived in the Laplace domain, using the
convolution theorem, equation (2.9), for the segments and continuity for the intersections,
as explained in section 2.4. For the simplified case of no-dispersion analytical solutions

are also presented in the Real domain.

A.1 Analytical Solutions in the Laplace Domain

The fracture network layout, including all the basic data, is presented in Figure A.1.
At time r < 0 the concentration is zero everywhere. At t =0, the concentration is suddenly
raised to a level cg, at node 10. The Laplace transform of the step function is given by cg/s.

Capital letters identify the Laplace transforms.

a) Complete Mixing Approach

In the complete mixing approach the concentration is the sanie for every segment
leaving the intersection, or node. The breakthrough curves are then associated with the
nodes. In the following equations F;; represents the Laplace transform of the unit step
response function for the segment between nodes i and j, with flux in the directior j —i.
The mass partitioning coefficient at the node, 7);;, represents the percentage of the total

incoming discharge to node i that comes from riode j and it can be expressed as,
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Qij

- _ (A.1)
> Qi
j=1

Nij

where n is the total number of incoming segments.

At node 1, there are two incoming segments and the distribution coefficients are

calculated as
O1.10 0,4, = 1.6 108 m3/s/m
= : = 0.3846 L12
.10 Q110+ @112
=Gz _ge1ss =1.0108m%/
M2 = 9lo+ Oz Qrio=1- m/s/m

Since only one segment carries tracer to node 1, the breakthrough curve at node 1 is given

by

Ci = Mo %Q(F1.10'S) (A.1)

where co/s is the Laplace transform of the concentration step input cg and F j4 is the

Laplace transform of the unit step response function for the segment between nodes 1 and

10.

For node 2 the mass transfer is similar. The partitioning coefficients are given by

Q2.10 Q, 1o = 1.010°% m3/s/m

= 2 - 0.5 2.10

210 0210+ G211

Mo = =22 _ 05 Oy 11 = 1.0 108 m%/s/m
' Q210+ Q211
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and the breakthrough curve at node 2 is given by
C2 = M2,10 %0'(1’2.10'5) (A.2)
At node 3 there is only one incoming segment and the partitioning coefficient, 77, , ,
is equal to one. The breakthrough curve at node 3 is, then, given by,

C3 = ma1Ch (F3.1-s) = (M3.1 .10 co) - (F3.1 F110) s (A.3)

where C; is the breakthrough curve at node 1, which becomes the input function for the

segment between nodes 1 and 3.
At node 4, the mixing is similar to node 1 and the breakthrough curve is given by
Cs = M1 C1(Far-s) = (Ma1 M.10c0) -(Fa1 Fr,10) -5 (A.4)

At node 5, there are two incoming segments and both carry tracer. The partitioning

coefficients are given by

Qs = 0.6 108 m’/s/m
Ns2 = Os.2 = 0.625
Qs2+ 053
=23 _ 0375 8 3
2T Gsa+ 055 Q5 =1.0 10 m?/s/m

and the breakthrough curve is given by
Cs = N52 C2(Fs.2'5) + 53 Cs (Fs.35) (A.5a)

which represents the transferred incoming breakthrough curves from nodes 2 and 3,

weighed in relation to the incoming discharges. Expanding the previous calcuiated

breakthrough curves C, and Cs, one obtains
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Cs = (1152 N2,10 o) (Fs2 F2,10)°5 +
(153 73,1 M1.10 €o) (Fs.3 F31 F1,10) -5 2 (A.5b)

This procedure is then repeated for all nodes, yielding the following equations:

\

Ne.3 C3 (Fs.s-S) + N6.4 Ca (F6,4'5)
(16,3 M3.1 M.10 o) -(Fe3 F3,1 F1.10) -52 +
(n6.4 Ma,1 Mi10 €o) -(Fe4 Fay Fi,10) -5 2 (A.6)

Ce

7.4 Ca(F1.4-5)
(117.4 a1 M0 co) -(F7,4Fs1 Fy10) 52 (A.7)

C7

!

u

= ng5Cs (Fg.s-s)+ n8.6 Cs (FS‘G-S) |

(M85 M52 M2,10 co) -(Fss Fs2 Fp10) -s2 +

(n¢,5 5,3 3,1 M.10 co) - (Fs,s Fs3 £31 Fy 10) -3 +
(18,6 Tie.3 T3.1 Mi.10 o) - (Fs.6 Fe3 F3,1 Fi10) 53 +

(ns.6 e 4 4,3 M1.10 co) -(Fs.6 Fea Faa F110) 53 (A.8)

)
%
\

\

Mo Fses) + M7 C1(Fs.7-5)

= (9.6 153 73,1 M.10 €0) (Fo.6 Fe3 F3.1 F1,10) 53 +

(n9.6 M6.a N1 M,10 €0) - (Fo,6 Foa Fax Fy,i0j 53 +

(9.7 M7.4 %141 M10 €0) (Fo,7 F1,4 Fa1 Fy,10) 53 (A.9)

Co

b) Streamline Routing Approact:

In the streamline routing approaca, concentrations are associated with the segments,
rather than nodes. In this way, the irput breakthrough curve is associated with the
segment. In the following equations, F; represents the Laplace transform of the unit step
response function for the ith segment and 7);; represents the percentage of the total
incoming discharge to segment {, that romes from segment j. The solutdons derived are
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based on equation (2.14) for the segments and equations (2.17) to (2.20) for the
intersections.

At node 10, the tracer is introduced as a step function with magnitude cp. Due to

the routing process, the tracer is now restricted to fewer paths. At node 1 the partitioning
coefficients are given by

i

6.3 _QQ—Z- =0.625

N6s = Q-5 =0.375 /
Qs

O

13
ng3 = 1.0

ngs = 0.0 [j
5

The breakthrough curve entering segment 6 is given by

Cs = Ne3(C3F3s) + 7Me,s5(Cs Fs3) (A.11a)

Since Cs is identically null and Cj3 is the step function with magnitude cg/s, equation
(A.11a) becomes

Ce = 163 C3 F3 : (A.11b)
For node 2, the par - . coefficients are given by
My =006 E]
M2 = 1.0 j '
Mgy = 1.0 [ﬂ +
@

Mg2 = 0.0

[




and the breakthrough curve¢ entering >cgment 4 is given by
Ca = Ny c0F

Following the same procedure, the other breakthrough curves are given by

Cq7 = M1,6(Ce6 Fes)
= (n7.6 N6.3) (Fe F3) s

Co = MNg,6(Cs Fes)
= (N9.6 Ne.3) {Fs F3) s

Cig = Ni0.4(CsFas) + Nio7(C7F75)
= (10,4 Na2) FaFa)-s +
(0.7 7.6 Ne.3) (F7 Fs F3)-52

Ci9 = T19.4(Cs Fss)
= (119.4 74.2) (F4 F3) -s
Ciz = NMi3.9(Co Fys)
= (7113.9 M9.6 M6,3) "(Fo Fg F3)-s?2
C21 = N21.10(Cio F1o5) + 721.13(Ci3 F13 5)

(1121.10 M10.4 M2 €0) - (F10 F4 F2) -s2 +
(M21.10 10,7 M7.6 N6.3 Co) ~(Fr0 F7 Fs F3) -s3 +
(1121.13 M3.9 Mo.6 M6.3 Co) -{F13 Fg Fg F3) 53

All other segments present no *=riation in the concentration.

A.2 Analytical Solutions in the Real Domain
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A1)

(A.18)

The procedure described in the previous section is applicable to both the general and
the simplified no-dispersion case. For the simplified case, the multiplication of the Laplace
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transforms of the unit step response functions leads to a summation of the function
arguments, as shown in section 2.4. The solution in the Real domain is then obtained by a
linear combination of the unit step response functions, with appropriate substitution of the
parameters. However, for the general “ase this is not possible and the inversion of the
Laplace transform must be carried out ei.ser analytically or numerically.

Assuming no radioactive decay, the unit step response function in the Real domain,
for the simplified no-dispersion solution, may be written as:

c = erfc [ﬁ?] (A.19)

where the parameters 4 and B are defined as

V0.5
A = B(R"‘é)g' L (A.20a)

B = &VL (A.20b)

The final solution in the Real domain, for each node, can be obtained by the
appropriate summation of the parameters A and B and by the multiplication of the
equivalent partitioning coefficients, as explained in section 2.4.
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a) Complete Mixing Approach

The solutions for the complete mixing approach are summarized in Table A2,
based on the parameters listed in Table A.1.

Table A.1 Values of the parameters A, B and 7 for the network shown in
Figure A.1 (Complete mixing approach).

Node Partitioning Parareter Parameter
Coefficients A (sV2) B (s)
1 Mio= 0.3846 A; 0= 100.0 Biig= 200 000
2 M10= 0.5000 Ay 0= 200.0 B, 1o = 400 000
3 Ty = 1.0000 Ay, = 625 By, = 125000
4 May = 0.6250 Asy = 1500 By, = 300000
Ns2 = 0.6250 As; = 1000 | Bs, = 200000
3 53 = 0.3750 Asy = 1667 Bs; = 333333
Tes = 0.6250 Ags = 150.0 Bgs = 300000
6 Nes = 03750 Ags = 166.7 Bgs = 333333
7 e = 0.5550 A4 = 1000 By, = 200000
Ngs = 0.4545 Ags = 150.0 Bgs = 300000
8 Mg = 0.5455 Ags = 833 Bgs = 166667
os = 0.3333 Agg = 250.0 Bge = 500000
2 o7 = 0.6667 Agy = 125.0 By, = 250000




Table A.2 Solutions in the Real domain for the breakthrough curves at each node
(Complete mixing approach)
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€l L 038 o100 2 _ o cerfel 200
£l = 0.38 1 C[Fz—} £2 = 0.5000 eifc[W_}
3 _ ) 162.5 C4 _ : —250
8 = 0.3846 erfc[ :—325000J £ = 0.2404 erfc{ﬁ_T_J
€5 _ . + 6 _ . 12
S = 03125 erfc[:,_#m:J % - 0.2404 erfc[—t-_%‘s%} +
0.1442-erfc|—329.2 0.0901-erfc|—416.7
e [Vt— 658333} 7 [Yt—833333J
€1 ) 350
£ = 0.1336 erfc[{m__]
cg _ . i 4 ] Co _ . 562.5
S~ 0.1420 e'fc_t—_v;L + £ = 0.0801 etfc[ :-1125000} +
) .
0.0656-erfc|—2479.2 ] , 0.0300-¢ c[ 666.7 +
7 | Y7— 958333 | g Yz - 1333333
) :
0.1311-erfc|—2335.8 + 0.0890-¢ c[§475—]
7 Yi— 791667 | 7 Yz = 950000
0.0492-erfc[ iSOO J
Yi— 000000

Note: time in seconds
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b) Streamline Routing Approach

The solutions for the streamline routing approach are summarized in Table A.4,
based on the parameters listed in Table A.3.

Table A.3 Values of the parameters A, B and 77 for the network shown
in Figure A.1 (Streaml:ne wouting approach)

Segment Partitioning Parareter Parameter |
# Coefficient A [s12] B [s]
1 - 50.0 100 000
2 — 200.0 400 000
3 - 10C.0 200 000
=1.0
4 Ma2 100.0 200 000
Nay =0.0
5 - 3105 62 500
6 5.3 = 0625 62.5 125 000
Ne.s = 0.575 :
7 n76=1.0 166.7 333 333
=1.0
3 8.5 150.0 300 000
Ng3 =0.0
9 Ngg=1.0 150.0 300 000
= 0.6
10 N10.7 150.0 300 000
MN10.4 = 0-4
11 - 83.3 166 667
=1.0
12 Ma2s 166.7 333333
M2.q1 = 0.0
T30 = 0.833
: 3 166 667
13 7]13412 =0.167 83
14 Mag = 0.4 100.0 200 000
M14.11 = 0.6
= 1.
15 Msa2 = 1.0 250.0 500 000
Misg =0.0




16 - 62. 125 000
=1.0
17 M17.14 125.0 250 000
N1716 = 0.0
18 Mg = 1.0 B B
Mg =0.0
19 Mig.s = 1.0 3 N
7719L7 = OO
M2016 = 0.8
21 M21,10 = 0.4545
M1.13 = 0.5455
25 7722_15 = 0.3333 _ _
72217 = 0.6667
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Table A.4 Solutions in the Real domain for the breakthrough curves at selected nodes.

(Streamline routing approach)
€4 _ 1.0000-erfc | —200 ] ¢6 _ 0.6250-erfc|—100 |
co d [Vr-'4oooooj co d [fz—zoooooj
€1 = 0.6250-erfc [—162.5 ] €9 = 0.6250-erfc [—162.5 ]
co d | Y1 — 325000 | o g | Y¢— 325000 |
€13 = 0.5208-erfc |—312.5 ] €19, 1.0000-erfc —_300___ ]
Co 7 V7 - 625000 co g Yz — 600000 |
Clo _ . (300 ] €1 . 450 ]
10 = (.4000-erfc 0.1818 +
co d | Y= 600000 | co erfe | V7 — 900000 |
: _ ) .
0.3750-erfc | —329.2 0.1704-erfc |[—2419.2 | ,
d V71— 658333 | d V71— 958333
0.2841-erfc [—2325.8 ]
d Y1 — 791667 |
Notes: (1) time in seconds.

(2) all other breakthrough curves are identically null




