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Abstract

A great deal of statistical research has been done in high- and ultrahigh-dimensional

settings in recent years. Regularized approaches have been extensively used in dealing

with high-dimensional datasets. It is widely acknowledged that robust procedures are

important to deal with the influence of outliers in high- and ultrahigh-dimensional regres-

sion problems. The methods based on the least squares regression produce satisfactory

performance only when data have symmetric and light-tailed distributions. Quantile re-

gression and least absolute deviation regression methods have been widely used to address

data with heavy-tailed errors. However, quantile regression and least absolute deviation

regression are less efficient. To this end, in this thesis, we aim to solve two problems: (i)

Estimating the regression vector when both outliers and leverage points are present; (ii)

Identifying the locations of outliers when the observations are contaminated and perform-

ing robust parameter estimation.

To handle the first problem, we propose two different procedures: the generalized

adaptive robust regression (GAR) and lq robust regression. To achieve this goal, a two-

step procedure with adaptive weights in the l1-penalty function is developed. We exhibit

that both GAR regression and lq robust regression estimators possess the oracle properties.

To address the second problem, we develop a new procedure that can perform outlier

detection and robust estimation simultaneously. We demonstrate that the new method-

ology under the multivariate regression model enjoys robust estimation.

Extensive simulation results and real data examples are used to illustrate that the

proposed new methods can handle the situation where outliers occur in the response and

covariates with success.
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Nomenclature

Notation

lim
n→∞

an = a a is the limit of the sequence an

‖x‖1 the l1 norm of vector x defined as ‖x‖1 =
∑n

i=1 |xi|

‖x‖2 the l2 norm of vector x defined as ‖x‖2 =
√∑n

i=1 x
2
i

‖x‖∞ the infinity norm of vector x defined as ‖x‖∞ = maxi |xi|

‖x‖0 the number of nonzero components of vector x

log a the natural logarithm (base e) of a

R the set of real numbers

R+ the set of positive real numbers

N(µ, σ2) normal distribution with mean µ and variance σ2

N(0, 1) standard normal distribution in R

N(0, In×n) standard normal distribution in Rn

U(a, b) uniform distribution on the interval (a, b)

◦ the Hadamard product (i.e., the componentwise product of two vectors)

C1 the continuously differentiable functions
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φ(·) pdf of the standard normal distribution

Φ(·) cdf of the standard normal distribution

I(A) the indicator function of set A

Ac the complement of set A

{a, b} the set consisting of the elements a and b

f(x) = O(g(x)) for x→ a “big O” means: f(x)/g(x)→ C as x→ a, constant C 6= 0

f(x) = o(g(x)) for x→ a “small o” means: f(x)/g(x)→ 0 as x→ a
P
−→ convergence in probability

D
−→ convergence in distribution

X(k) the kth order statistic

|x| the absolute value of x

f (1) the first derivative of function f

f (2) the second derivative of function f

z+ the positive part of z

bxc the largest integer no larger than x
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Chapter 1

Background

Many widely known parametric statistical models, including certain linear multivari-

ate regression models, generalized linear models, single-index models, and the mean-shift

model, are models carrying with covariates. Often many covariates are included in stud-

ies, but only a part of these observed variables is believed to be truly relevant to the

response due to sparsity. For instance, in medical experiments particular models relating

covariates to treatment effects are often adopted more for convenience and simplicity of

interpretation than for validity. Variable selection methods are useful for identifying a

subset of covariate variables associated with a response variable and for parameter esti-

mation simultaneously. Effective variable selection can also lead to parsimonious models

with better prediction accuracy and clearer interpretation. In recent years, a considerable

amount of research has been devoted to this area, and many methods have since been de-

veloped. These methods have had varying degrees of success in dealing with contaminated

data, however.

A common problem in applied statistics is the presence of outliers in the data. Outliers

often occur in high-dimensional datasets. Furthermore, statistical models are just approx-

imations to reality and real data never come from the specified model exactly. Therefore,

the need for robust procedures in statistical inference has been widely recognized now.

(Here the word ‘robust’ refers to the ability of a procedure to retain its validity under

a model misspecification and/or when outliers are present.) The importance of robust
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procedures has also been stressed for the variable selection methods, also known as the

regularization (penalized) methods. Most well-known regularization methods are based

on solving an optimization problem formed by the sum of a ‘loss function’ and a ‘penalty

function’ - the resulting estimators are referred to as regularized M-estimators (Negahban

et al. 2012). For instance, in application to linear models, the least absolute shrinkage

and selection operator (LASSO) is based on a combination of the squared error loss with

an l1-penalty function, and so involves solving a quadratic program. Similar approaches

have been applied to generalized linear models, resulting in more general (nonquadratic)

convex programs with l1-constraints.

A penalty function generally encourages variable selection in regression models, and

various penalized regression methods have been proposed in the literature. Among them,

bridge regression (Frank and Friedman 1993), Lasso (Tibshirani 1996), SCAD (Fan and

Li 2001), adaptive Lasso (Zou 2006), elastic-net (Zou and Hastie 2005), adaptive elastic-

net (Zou and Zhang 2009), and MCP (Zhang 2010) are well-known. Efron et al. (2004)

proposed the LARS algorithm for computing the entire LASSO solution path. Knight

and Fu (2000) studied the asymptotic properties of the Lasso. Fan and Li (2001) showed

that the SCAD enjoys the oracle property; that is, the SCAD estimator can perform

as well as the oracle if the penalization parameter is appropriately chosen. The oracle

property is also satisfied by the adaptive Lasso estimator (Zou 2006) and the adaptive

elastic net estimator (Zou and Zhang 2009). Nonetheless, most well-known regularized

methods such as penalized least squares and penalized likelihood are not designed for

heavy-tailed distributions and are not robust in the presence of the outliers and model

misspecification, thus prompting for methods that are more robust against outliers, in

particular.
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1.1 Multivariate linear regression model

The multivariate linear regression model is given by

Yi = XT
i βββ + ei, i = 1, ..., n, (1.1)

where Xi ∈ Rp is a vector of p predictor (design) variables, Yi is the univariate response

variable, βββ ∈ Rp is the unknown regression parameter, and the error terms ei’s are in-

dependent of the Xi’s. The lack of robustness of regularization estimators based on the

squared error loss or the l2-loss is widely known. Specifically, the outlying values of Xi

(leverage points) or extreme values of (Xi, Yi) (influence points) jointly can have an ar-

bitrarily large influence on the l2-loss based estimators. For model (1.1), a number of

robust regularized methods have been proposed in the literature. They include, among

others, the following notable works. Fan and Li (2001) established a general class of pe-

nalized robust regression estimators based on the Huber function (Huber 1981). Wang

et al. (2007) proposed the LAD-LASSO with l1-loss and pλnj(|βj|) = λnj |βj| , and Arslan

(2012) provided a weighted version of the LAD-LASSO estimator that is more robust

to leverage points. Johnson and Peng (2008) studied rank-based variable selection, and

Wang and Li (2009) proposed a weighted Wilcoxon-type SCAD method for robust vari-

able selection. Wu and Liu (2009) and Wang et al. (2012) investigated penalized quantile

regression where pλnj(|βj|) is either the SCAD or the adaptive Lasso penalty. Leng (2010)

investigated variable selection via regularized rank regression, and Chen et al. (2010) pro-

posed weighted l2- and l1-loss functions. Kai et al. (2011) examined variable selection in

the semiparametric varying-coefficient partially linear model via a penalized composite

quantile loss (Zou and Yuan 2008). Lambert-Lacroix and Zwald (2011) proposed to use

the Huber loss together with the adaptive lasso penalty for robust estimation. Wang et

al. (2013) implemented a bounded loss function of the form φγ(t) = 1−exp(−t2/γ) with γ

a tuning parameter that controls the degree of robustness and efficiency of the estimator

for the fixed-dimensional case. Alfons et al. (2013) and Öllerer et al. (2015) introduced
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a sparse least trimmed squares estimator. Smucler and Yohai (2017) developed a robust

l1-penalized MM-estimator (Yohai 1987) with an adaptive l1-penalty. Karunamuni et al.

(2019) proposed an adaptive efficient robust regularized procedure.

Most of the above mentioned articles on robust estimation are for the fixed-dimensional

case (i.e., p is fixed). On the other hand, regularized robust procedures for high- or

ultrahigh-dimensional cases (i.e., p grows as a function of n) are rather sparse. Notable

works include the following contributions. Belloni and Chernozhukov (2011) considered

l1-penalized quantile regression procedure in a high-dimensional setting. Li et al. (2011)

examined a nonconcave penalized robust M-estimator, again in a high-dimensional set-

ting. Bradic et al. (2011) studied a penalized composite likelihood method for ultrahigh-

dimensional robust variable selection. van de Geer and Müller (2012) obtained bounds

on the prediction error of a large class of l1-penalized estimators that includes quantile

regression. Wang et al. (2012) considered the nonconvex penalized quantile regression

in an ultrahigh-dimensional setting. Wang (2013) studied an l1-penalized LAD estimator

for high-dimensional regression. In an ultrahigh-dimensional setting, Fan et al. (2014) in-

vestigated a penalized quantile regression procedure with a weighted l1-penalty for robust

regularization, as in Bradic et al. (2011). Fan et al. (2017) proposed an l1-penalized pro-

cedure based on the Huber loss ρα with diverging parameter α in an ultrahigh-dimensional

setting. Loh (2017) studied a class of generalized robust M-estimators with an “amenable

(nonconvex) regularizer” for high-dimensional data. Loh (2018) explored an adaptive

scale estimation using the Huber function. All these estimators differ greatly in terms of

outlier resistance and efficiency under the model. For instance, Loh (2017)’s regularized

estimators are stable against both the influence and leverage points, whereas the quantile

regression based methods are robust only with respect to outliers in the response variable.

Other notable works include She and Owen (2011), where a novel procedure called

IPOD procedure was established for outlier detection upon a class of penalty functions.

They found that the version based on hard thresholding excels in correctly identifying

outliers on some hard test problems. Nguyen and Trac (2012) developed a procedure
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named Extended-LASSO via using two l1-penalty functions on the linear regression vector

β and the mean-shift vector γ, respectively. They provided error bounds and signed

support recovery results for both the regression and corrupt vectors. Lee et al. (2012)

studied a general loss function where they introduced a case-specific parameter vector

e ∈ Rp for the observation vectors and took e into account while minimizing the objective

function. Alain et al. (2017) developed a new procedure for simultaneous estimation of

the linear regression and mean-shift vectors via using two dedicated sorted l1-penalty

functions, called SLOPE. Kong et al. (2018) used an adaptive penalty on γ depending

on the residuals from some robust initial fit and the l1-penalty on β to achieve variable

selection. Differing from She and Owen (2011), their procedure can attain high breakdown

point by judiciously choosing the penalty functions.

1.2 Outline of the thesis

Despite considerable progress on variable selection in various models in high-dimensional

problems, robustness issues of regularization methods have not been thoroughly studied

and well understood. Efficiency and robustness are extremely important in the practice of

statistics. Most well-known existing variable selection methods aforementioned, however,

fail to achieve both of these goals simultaneously. To address this problem, we study

and propose new methods in high-dimensional settings that attain desirable properties

such as full oracle efficiency, maximum robustness, and computational feasibility. Our

contributions are listed below:

1. In Chapter 2, we provide a generalized robust regression method with a weighted

penalty function. The model consistency and related oracle properties of this new

method are thoroughly studied. The proposed method when compared with other

existing methods excels in (1) highly robust with respect to outliers in both the

responses and covariates and (2) robust against heavy-tailed error distributions. In

addition, the asymptotic results of the new method under a high-dimensional setting
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are explored in this chapter. We believe that the proposed procedure can also be

extended to address ultrahigh-dimensional data.

2. In Chapter 3, we investigate robust regression estimation using lq-loss functions.

Again in a high-dimensional setting, we study the asymptotic properties of the

new estimator, including model consistency and oracle properties with only sub-

Gaussian assumption on the model error distribution. In addition, to circumvent

the non-smoothness of lq-loss function, we utilize a half-quadratic approximation of

convex functions to facilitate computation.

3. In Chapter 4, we consider a setting in which the observations are contaminated.

Specifically, we develop a new method to tackle the situations where errors have

either sub-Gaussian or sub-exponential distributions. We show that, under these

two circumstances, the proposed procedure enjoys robust estimation and simulta-

neously performs outlier detection. We obtain bounds on the error of estimation.

These bounds are non-asymptotic. Extensive simulation experiments are used to

demonstrate the theoretical properties of the proposed procedure.

The proofs of the main results presented in Chapters 2, 3 and 4 are given in Appendices

A, B and C, respectively.
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Chapter 2

High-dimensional generalized robust
regression

2.1 Introduction

Consider the linear regression model

Yi = XT
i βββ + ei, i = 1, ..., n, (2.1)

where Yi ∈ R is a response variable, Xi ∈ Rpn is a covariate vector, βββ ∈ Rpn is a regression

coefficient vector, and ei ∈ R is an error term. We assume that {ei}ni=1 are independent

and identically distributed (i.i.d.) with the unknown distribution F. We also assume that

{Xi}ni=1 are i.i.d. random vectors and that the ei’s are independent of the Xi’s. We are

interested in robust estimation of the pn-dimensional coefficient vector βββ where pn may

increase with n and βββ is sparse in the sense that many of the elements are zero. We

assume that the data are centered, so the intercept term is zero.

Robust procedures are important because outliers are often present in data coming

from the model (2.1). Regularization methods based on the squared error loss lack ro-

bustness. Specifically, the outlying values of Xi (leverage points) or the extreme values

of (Xi, Yi) (influence points) can have an arbitrarily large influence on l2-loss based esti-

mators. A number of robust regularized methods have therefore been proposed. Fan and
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Li (2001) examined a general class of penalized robust regression estimators of the form

β̃ββ = arg min
βββ

n∑
i=1

ρα(Yi −XT
i βββ) + n

p∑
j=1

pλnj(|βj|), (2.2)

where pλnj(|βj|) is a penalty function (regularizer) on βj, and ρα is the Huber function

with tuning parameter α [Huber (1964)]: ρα(t) = 1
2
t2I[|t| ≤ α] + α(|t| − 1

2
α)I[|t| > α]

for α > 0. Since then, many penalized robust regression estimators have been proposed

based on various loss and penalty functions for the fixed-dimensional case. For example,

Wang et al. (2007) proposed the LAD-LASSO with l1-loss and pλnj(|βj|) = λnj |βj| .

A weighted version of the LAD-LASSO estimator was introduced by Arslan (2012). In

comparison with LAD-LASSO, weighted LAD-LASSO is more robust to leverage points.

In addition, Johnson and Peng (2008) studied rank-based variable selection, and Wang

and Li (2009) proposed a weighted Wilcoxon-type SCAD method for robust variable

selection. Wu and Liu (2009) and Wang et al. (2012) investigated penalized quantile

regression with pλnj(|βj|) either the SCAD or the adaptive LASSO penalty. Leng (2010)

investigated variable selection via regularized rank regression, and Chen et al. (2010)

proposed weighted l2- and l1-loss functions. Kai et al. (2011) examined variable selection

in the semiparametric varying-coefficient partially linear model via a penalized composite

quantile loss proposed by Zou and Yuan (2008). A combination of the Huber loss and the

adaptive LASSO penalty was established by Lambert-Lacroix and Zwald (2011). With

fixed dimensions, Wang et al. (2013) considered a bounded loss function of the form

φγ(t) = 1−exp(−t2/γ) with γ a tuning parameter used to control the degree of robustness

and efficiency of the estimator. Other noted contributions include Yohai (1987), Alfons

et al. (2013), Öllerer et al. (2015), Smucler and Yohai (2017), and Karunamuni et al.

(2019).

Robust regularized procedures for high- and ultrahigh-dimensional cases are rela-

tively scarce. Notable contributions include the following. Fan and Lv (2008) inves-

tigated the sure independence screening method in the setting of light-tailed distribu-

tions. Belloni and Chernozhukov (2011) considered an l1-penalized quantile regression
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in a high-dimensional setting. Li et al. (2011) examined a nonconcave penalized ro-

bust M-estimator, again in a high-dimensional setting. Bradic et al. (2011) studied a

penalized composite quasi-likelihood method for ultrahigh-dimensional robust variable

selection. van de Geer and Müller (2012) obtained bounds on the prediction error of a

large class of l1-penalized estimators that includes quantile regression. Wang et al. (2012)

considered a nonconvex penalized quantile regression in an ultrahigh-dimensional setting.

Wang (2013) studied an l1-penalized LAD estimator for high-dimensional regression. In

an ultrahigh-dimensional setting, Fan et al. (2014) investigated a penalized quantile re-

gression procedure with a weighted l1-penalty for robust regularization, as in Bradic et

al. (2011). She and Chen (2017) proposed a robust reduced-rank regression approach

for joint modeling and outlier detection. Fan et al. (2017) proposed an l1-penalized pro-

cedure based on the Huber loss ρα with diverging parameter α (or converging to zero if

its reciprocal is used) in an ultrahigh-dimensional setting and obtained nonasymptotic

bounds on the l2-error. In a recent article, Sun et al. (2020) also dealt with the Huber

loss and obtained nonasymptotic bounds on the l2-error in high-dimensional settings. Loh

(2017) studied a generalized robust M-estimator with an “amenable (nonconvex) regular-

izer” for high-dimensional data. This estimator excels quantile-regression-based methods

in that it is stable against both the influence and leverage points. On the other hand,

quantile-based oracle estimators attain “semiparametric efficiency” (Fan et al. 2014).

Most robust regularized regression methods usually focus on getting a handle on the

outliers as one wants it – the price for that being a loss in efficiency. It has gradually gotten

through to researchers that this efficiency deflation is important and that high-dimensional

robust methods possessing high efficiency are worth investigating. On the other hand, the

downweighting of outliers is often used to achieve robustness in a robust M-estimation

context and many authors mentioned above have successfully implemented this technique

for regularized regression. However, the approaches involving only downweighting of

outliers without regard to model fit are always associated with a larger variance and

hence less efficient. Specifically, these methods usually suffer from a loss of efficiency if
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there are no outliers, since the observations with large covariate values are downweighted

even if they are well-fitted. To achieve high efficiency and high robustness simultaneously,

it is necessary to downweight the outliers adaptively (e.g., Gervini and Yohai 2002, Wang

et al. 2013, Karunamuni et al. 2019). Our present work can be viewed as an improvement

of a particularly sensible class of methods that can attain high efficiency while keeping the

robustness in check for various types of outliers. To this end, we investigate generalized

adaptive robust regularized estimators of the form

β̂̂β̂β = arg min
βββ

n∑
i=1

φ((Yi −XT
i βββ)/γ)W (Xi/γ) + npλn(βββ), (2.3)

where φ is a loss function, W is a non-negative weight function on large values of Xi,

pλn(βββ) is a coordinate-separable regularizer (penalty function) on βββ with regularization

parameter λn ≥ 0, and γ > 0 is a tuning parameter. The parameter γ controls the degree

of efficiency/robustness of the estimator. We assume that φ is convex, nondecreasing on

[0,∞) and has a bounded gradient or subgradient. This includes well-known loss functions

such as the Huber loss, the quantile loss functions, and the l1-loss, among others. It is well-

known that loss functions with a bounded gradient lead to bounded influence functions in

the fixed-covariate setting. For the weight function W (x), we use a nonnegative function

so that for large values of Xi, W (Xi) would place a small weight on Xi and therefore have

a small impact on β̂ββ. The role of tuning parameter γ is to increase the efficiency of β̂ββ while

holding on to high robustness. In general, for small values of γ, β̂ββ can be expected to

be robust against both the influence and leverage data points, whereas β̂ββ would be more

efficient for large values of γ. The proposed estimators are also robust against heavy-tailed

error distributions. For a given pair of loss and penalty functions, γ may be chosen by

minimizing the asymptotic variance or as a measure reflecting the goodness-of-fit of the

model. In practice, the parameter γ is generally determined by a data-driven method.

We study the asymptotic properties of β̂ββ under two forms of the penalty function

pλn(βββ). First, we consider a weighted l1-penalty of the form pλn(βββ) = λn ‖d ◦ βββ‖1 , where

‖x‖1 denotes the l1-norm of any vector x = (x1, ..., xpn)T , d = (d1, ..., dpn)T is a vector
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of nonnegative weights, and ◦ denotes the Hadamard product (i.e., the componentwise

product of two vectors). Next, we consider an adaptive weighted l1-penalty function

of the form pλn(βββ) = λn‖d̂ ◦ βββ‖1, where d̂ = (d̂1, ..., d̂pn)T is a vector of non-negative

stochastic weights constructed using a folded-concave penalty function and an initial

estimator. The stochastic weights are introduced to reduce the bias induced by the l1-

penalty. In each case, we prove the model selection oracle property and establish the

asymptotic normality of β̂ββ. Furthermore, we show that β̂ββ is consistent at a near-oracle

rate under mild conditions on the error distribution and the design matrix. We impose

no conditions on the heaviness of the tail probability of the error terms ei. We establish

asymptotic results in a high-dimensional setting, and they are similar to those in Fan

et al. (2014) for quantile regression estimation obtained in an ultrahigh-dimensional

setting. We carry out extensive simulation studies to compare the proposed method with

other regularized robust estimators, including some quantile regression and least-absolute-

deviation regression estimators. Our numerical studies demonstrate the favorable finite-

sample performance of the proposed procedure for various shapes and tails of the error

distribution. This advantage is most pronounced in the presence of high leverage points.

The rest of this chapter is organized as: in Section 2.2, we study the estimator β̂ββ using

a weighted l1-penalty function and investigate its asymptotic properties, including the

estimation consistency and oracle properties. In Section 2.3, we investigate asymptotic

properties using an adaptive penalty function. In Section 2.4, we present numerical studies

and compare our method with other existing methods, and in Section 2.5, we illustrate

the performance of our method using a real dataset. Section 2.6 provides concluding

remarks. The proofs of the main results and lemmas are given in Appendix A.

2.2 Robust estimation with weighted penalty

In this section, we develop the asymptotic properties of the estimator β̂ββ defined by (2.3)

with a weighted l1-penalty of the form pλn(βββ) = λn ‖d ◦ βββ‖1. The weights are designed

11



to reduce the bias induced by the l1-penalty. Such penalty functions have also been

recommended for computational expediency in high-dimensional settings (e.g., Bradic et

al. (2011), Fan et al. (2014)), motivated by the fact that any penalty function can be

approximated as pλn(|βi|) ≈ pλn(|β̃i|)+p
(1)
λn

(|β̃i|)(|βi|− |β̃i|), where β̃i is an initial estimate

of βi and p
(1)
λn

is the first derivative of pλn . The choice d = (1, ..., 1)T corresponds to the

Lasso penalty.

We begin by introducing some notations. We let βββ∗ =
(
βββ∗T1 , βββ∗T2

)T
denote the true

parameter vector of β,β,β, where each element in βββ∗1 ∈ Rkn is nonzero and βββ∗2 = 0 ∈ Rpn−kn .

For any weight vector d, let d0 denote the first kn elements of d, and d1 denote the

remaining part of d, i.e., d = (dT0 , dT1 )T . For any vector x = (x1, ..., xp)
T ∈ Rp, let ‖x‖2

denote the l2-norm and ‖x‖∞ = max(|x1| , ..., |xp|). We allow both pn and kn to diverge

with the sample size n and assume kn to be o(n); that is, only a small number of true

coefficients are nonzero. Let X = (Xij; 1 ≤ i ≤ n, 1 ≤ j ≤ pn) denote the design matrix.

We write X = (S, Q) with the submatrices S and Q corresponding to the covariates

whose coefficients are nonvanishing and vanishing, respectively. Thus, S and Q are n×kn

and n × (pn − kn), respectively. We will refer to the set of columns in S as the signal

covariates, while those in Q will be called noise covariates. Further, for i = 1, ..., n,

let Xi= (XT
1i, XT

2i)
T , where X1i and X2i denote the covariates corresponding to βββ∗1 and

βββ∗2, respectively. We assume without loss of generality that the Xij’s are normalized, so

E(X2
ij) = 1 for all i and j.

For our proofs, we require the following regularity conditions:

(C1) φ : R → [0,∞) is a symmetric convex function on R satisfying φ(0) = 0. Let φ(1)

denote a gradient or subgradient of φ. Assume φ(1) is bounded and satisfies the

“local δ-Lipschitz condition” for δ ∈ [0, 1], i.e., there exist positive constants ξ and

M such that
∣∣φ(1)(x+ t)− φ(1)(x)

∣∣ ≤M |t|δ for all x ∈ R and |t| ≤ ξ.

(C2) The common distribution function F of the errors is sufficiently smooth and sat-

isfies F(D) = 0, where D denotes the set of discontinuity points of φ(1). The
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function φ(1) satisfies E
(
φ(1)(ei/γ)

)
= 0, E

(
φ(1)(ei/γ)

)2
= σ2

γ < ∞, and as t →

0, E(φ(1) ((e1 + t)/γ)− φ(1)(e1/γ))2 → 0,

E
(
φ(1) ((e1 + t)/γ)

)
≡ g(γ)t+ o(|t|q(γ))

for some positive functions g and q of γ.

(C3) W : Rpn→ (0, 1] is a weight function on x ∈ Rpn such that |xi|2+εW (x) is bounded

for all xi ∈ x, i = 1, ..., pn, where 0 < ε < 1 is some constant.

(C4) The eigenvalues of 1
n
E
(∑n

i=1 X1iX
T
1iW (Xi/γ)

)
are bounded from below and above

by some positive constants.

In addition, we introduce the following three notations:

Vn =

(
E

(
g(γ)

2γ

n∑
i=1

X1iX
T
1iW (Xi/γ)

))−1/2

,

Zn = SVn, and

Z∗n =

(
1

γ
X11W (X1/γ) , . . . ,

1

γ
X1nW (Xn/γ)

)T
Vn,

where function g(·) is defined in condition (C2) above.

It is appropriate to make a few comments here about conditions (C1)–(C4). Conditions

(C1) and (C2) are similar to standard assumptions imposed in the classical M-estimation

theory of linear regression models; see, e.g., Bai et al. (1992) and Wu (2007). It can be

shown that the Lipschitz condition holds for all δ if it is satisfied for some δ. When (C1)

holds for δ = 0, then the loss function φ is said to have a “locally uniformly bounded

increment.” This covers the important case of the l1-loss function. The Huber loss satisfies

condition (C2) for symmetric error distributions, for example. Weight functions satisfying

condition (C3) can be easily constructed: e.g., W (x) = min{1, (‖x‖∞)−b} for some b ≥ 3.

Condition (C4) warrants the inverse of eigenvalues of 1
n
E
(∑n

i=1 X1iX
T
1iW (Xi/γ)

)
exists.
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We consider the following objective function:

Qn(βββ) =
n∑
i=1

φ
(
(Yi −XT

i βββ)/γ
)
W (Xi/γ) + nλn‖d ◦ βββ‖1. (2.4)

Note that Qn(βββ) is a convex function of βββ under condition (C1) on the loss function φ

and for a given weight vector d. Thus, we define the regularized estimator of βββ∗, again

denoted as β̂ββ for notational convenience, by the (global) minimizer of (2.4):

β̂ββ = arg min
βββ
Qn(βββ). (2.5)

The next theorem establishes the consistency of β̂ββ defined by (2.5), given the oracle

information on the location of the signal covariates, i.e., βββ2 = 0, with 0 being the vector

of all zeros. For this purpose, let β̂ββ =
(
β̂ββ
T

1 , 0T
)T

with β̂ββ1 ∈ Rkn denoting the oracle-

regularized estimator minimizing Qn(βββ) over the space Ξ = {βββ =
(
βT1 , βββ

T
2

)T ∈ Rpn :

βββ2 = 0 ∈ Rpn−kn}. Thus, β̂ββ1 represents the estimator of signal covariates. The next

theorem gives the consistency of β̂ββ1. All limits are taken as n → ∞ unless otherwise

stated.

Theorem 2.1. Assume that conditions (C1) to (C4) hold. Let β̂ββ =
(
β̂ββ
T

1 , 0T
)T

be

defined by (2.5) over βββ ∈ Ξ. In addition, assume that λn‖d0‖2

√
kn/n → 0 and sn =

c
(√

kn(log n)/n+ λn‖d0‖2

)
for some constant c > 0. Then, with probability tending to

one, we have

‖β̂ββ1 − βββ
∗
1‖2 ≤ sn and ‖β̂ββ1 − βββ

∗
1‖1 ≤ sn

√
kn.

Further, if s−1
n min1≤j≤kn |β∗j | → ∞, then with probability tending to one, we have

sgn(β̂ββ1) = sgn(βββ∗1),

where the above equation should be understood componentwise.

Theorem 2.1 shows that β̂ββ1 is a consistent estimator of βββ∗1 with an upper bound sn

for the rate of consistency. This result does not depend on pn as Qn(βββ) is minimized
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over the space Ξ to obtain β̂ββ. We also observe that β̂ββ1 estimates the correct sign of

the true coefficient vector βββ∗1 with probability tending to one. The first term in sn,√
kn(log n)/n, is the oracle rate within a factor of log n, and the second term, λn‖d0‖2,

is the extra bias term due to regularization. The weights d0 = (1, 1, ..., 1)T are assumed

if no prior information is available for the weights. Then we obtain an upper bound rate

of c
(√

kn(log n)/n+ λn
√
kn

)
. If λn = O(

√
log n/n) then the preceding rate reduces to

c
√
kn(log n)/n, a near-oracle rate of consistency. The rate result obtained in Theorem

2.1 is in line with, for example, a similar result obtained in notable work by Fan et al.

(2014) on ultrahigh-dimensional regularized regression estimation for a quantile regression

estimator. They assumed that Xij’s are fixed, however.

The next theorem establishes the model selection oracle property of the proposed

regularized robust estimator β̂ββ defined by (2.5) without the oracle information.

Theorem 2.2. Assume that conditions (C1) to (C4) hold and minj≥kn+1 dj is strictly

positive. In addition, assume that λn‖d0‖2

√
kn/n → 0, λn > 2

√
(1 + c)(log pn)/n, λn >

c0sn
√
kn, and

√
(1 + k

1+δ/2
n sn)(log2 n) = o(

√
nλn), where c and c0 are some positive con-

stants, δ is defined in condition (C1) , and sn is defined in Theorem 2.1. Then, there exists

a global minimizer β̂ββ =
(
β̂ββ
T

1 , β̂ββ
T

2

)T
defined by (2.5) such that β̂ββ2 = 0, ‖β̂ββ1−βββ

∗
1‖2 ≤ sn, and

‖β̂ββ1 − βββ
∗
1‖1 ≤ sn

√
kn with probability tending to one.

Theorem 2.2 is in some sense an extension of Theorem 2.1 in which the asymptotic

property of Theorem 2.1 is established without the oracle information. However, it im-

poses each coordinate of the noise covariates to be constrained by a condition that the

corresponding weights have minj≥kn+1 dj strictly positive, as in Fan et al. (2014). We

also put some conditions on the signal covariates using ‖d0‖2. Theorem 2.2 holds with

heavy-tailed errors provided condition (C2) is satisfied and the regularization parameter

λn is selected larger than
√

log pn/n, the order of optimal choice of λn for Gaussian errors

(Bickel et al. 2009). Other model selection oracle results have been established in this

context for a variety of robust high- and ultrahigh-dimensional regularized M-estimators.
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Notably, Loh (2017) investigated a generalized robust M-estimator and established a

stronger consistency result. Loh’s main result, which gives bounds on both the l1- and

l2-errors under some assumptions on the regularizer and loss function, is entirely determin-

istic and guarantees the statistical consistency of stationary points within a local region

of restricted strong convexity. Whereas, Theorem 2.2 concerns with the model selection

oracle property of a global minimizer in an ultrahigh-dimensional setting.

Theorem 2.2 shows that β̂ββ2 = 0 and β̂ββ1 is consistent for βββ∗1 with probability tending

to one. The next theorem presents the asymptotic normality of β̂ββ1.

Theorem 2.3. Assume that the conditions of Theorem 2.2 hold. In addition, assume

that
√
n/kn min1≤j≤kn

∣∣β∗j ∣∣ → ∞, kn = o(nδ/(3+2δ)), λn
√
n‖d0‖2 = O(

√
kn), and kn =

o(nε/(4+2ε)), where δ and ε are as defined in (C1) and (C3), respectively. Then there

exists a global minimizer β̂ββ =
(
β̂ββ
T

1 , β̂ββ
T

2

)T
defined by (2.5) such that β̂ββ2 = 0 with probability

tending to 1 and

cT
(

(Z∗n)T Z∗n

)−1/2 (
2V−1

n

(
β̂ββ1 − βββ

∗
1

)
+ nλnVnd̃0

)
D→ N

(
0, σ2

γ

)
,

where c is an arbitrary kn-dimensional vector satisfying cTc = 1, and d̃0 is a kn-

dimensional vector with the jth element as dj sgn(β∗j ), 1 ≤ j ≤ kn.

Note that moment assumptions such as sub-Gaussian or sub-exponential on the co-

variates {Xi}ni=1 are not required in Theorems 2.1–2.3. This is an extra advantage of

implementing a weight function W (·); it lessens the effect of large leverage points as well

as reduces the assumptions on the covariates simultaneously. The theorems stated above

are proved in Appendix A. The basic ideas of the proofs adopt the techniques developed in

Fan et al. (2014) for regularized quantile regression estimation. However, we extended the

arguments of Fan et al. (2014) here to cover a broader class of convex loss functions when

combined with adaptive weight functions on the covariates. The present project in this

sense complements Fan et al. (2014)’s paper by showing the wider applicability of their

techniques. They investigated their estimator in a very challenging ultrahigh-dimensional
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setting where log(pn) = o(nb) for some constant b > 0. The results in Theorems 2.1–2.3

are similar to those in Theorems 2.1–2.3, respectively, of Fan et al. (2014). But the

regularity conditions employed in Theorems 2.1–2.3 above are different from those used

in Fan et al. (2014). For instance, their condition (C2) is not necessary here due to the

presence of weight function W (·).

Other authors have obtained asymptotic normality results of similar nature for var-

ious high-dimensional regularized robust regression M-estimators, e.g., Fan and Peng

(2004), Li et al. (2011), Bradic et al. (2011), Fan et al. (2017), and Loh (2017), among

others. We make the following observations. First, Theorem 2.3 studies an ultrahigh-

dimensional setting, whereas Li et al. (2011) assumed p2
n/n → 0 and fixed-covariates.

Second, the estimator in Theorem 2.3 is robust against outliers in both the response and

covariates, whereas the high-dimensional regularized robust estimators studied in Fan and

Peng (2004), Li et al. (2011), Bradic et al. (2011), Wagener and Dette (2013), and Fan

et al. (2017) are affected by the outliers of the covariates. The latter outliers are known

to severely influence the performance of estimators (Huber 1981). It has been observed

that the Huber loss function cannot handle even moderate leverage points well (Huber

1981, p. 182), and the breakdown point of estimators based on the Huber loss in such

cases is 0 (She and Owen 2011). In addition, we have introduced a new tuning parameter

for efficiency improvement. It can considerably improve the efficiency of estimators in the

presence of outliers, particularly the outliers of the covariates.

In practice, the tuning parameter γ is determined by a data-driven method. From a

nonasymptotic viewpoint, γ can be chosen to balance the bias and robustness; see, e.g.,

Fan et al. (2017) and Sun et al. (2020). From an asymptotic standpoint on the other

hand, γ may be chosen to minimize a sample estimate of the asymptotic variance of β̂ββ1,

see Proposal 3 of Huber (1964, p. 98). For instance, in light of Theorem 2.3, a data-driven

value for γ may be obtained as follows:

γ̂ = arg min
γ

cT V̂nV̂
T
n

(
n∑
i=1

(
X1iX

T
1i/γ

2
)
W 2 (Xi/γ)

)
V̂nV̂

T
ncσ̂2

γ,
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where c is a vector satisfying cTc = 1, and V̂n and σ̂2
γ denote consistent estimators of Vn

and σ2
γ, respectively. We employed this method in our numerical studies, see Section 2.4.

One may also select γ so that
∑n

i=1[φ(1)((Yi−XT
1iβ̂ββ1)/γ)]2 has a predetermined value, see

Proposal 2 of Huber (1964, p. 97). Huber favored the latter approach because it “fits best

into the framework of conventional least squares techniques.”

2.3 Robust estimation with adaptive penalty

For the high-dimensional oracle properties established in Theorems 2.2 and 2.3, the

weight vector d plays a pivotal role. A good choice of d will enable the estimator β̂

to possess the oracle properties. However, restrictive constraints must be imposed on

d. Specifically, for the model selection result we require the components in d satisfy

minj≥kn+1 dj > 0, and the norm ‖d0‖2 must not diverge too quickly. The extra bias term,

nλnVnd̃0, is in fact caused by the penalty function. Although these types of conditions

are standard for high-dimensional oracle results, they are somewhat restrictive, as Fan

et al. (2014) have pointed out in the context of quantile regression estimation. In this

section, we examine a procedure to deal with overestimation.

To deal with overestimation in high-dimensional settings, two-step procedures have

been implemented; see, for instance, Bradic et al. (2011), Fan et al. (2014), and Wang

et al. (2012). These authors proposed two-step procedures in the context of quantile

regression estimation, while keeping the convex optimization problem intact. The idea is

to first obtain an initial robust estimate of βββ∗ and then to compute the weight vector d of

the weighted l1-penalty using a concave penalty function. In the second step, the penalized

quantile regression is implemented with the computed weighted l1-penalty. Another novel

two-step procedure is proposed in Loh (2017) for symmetric loss functions.

Following their ideas, we propose the following two-step procedure for the bias reduc-

tion of our regularized robust estimator defined in the previous section. We first obtain

an initial robust estimator of βββ∗ and label it β̂ββ
∗
. Next we let d̂ = (d̂1, d̂2, . . . , d̂pn)T with
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d̂j = p
(1)
λn

(|β̂∗j |), where pλn(·) is a folded-concave penalty function. Then we replace the

weight vector d in (2.4) with d̂ and solve the regularization problem by minimizing the

resulting objective function:

Q̂n(βββ) =
n∑
i=1

φ
(
(Yi −XT

i βββ)/γ
)
W (Xi/γ) + nλn‖d̂ ◦ βββ‖1. (2.6)

We refer to the estimator obtained by minimizing (2.6) as the generalized adaptive robust

Lasso (GAR-Lasso) estimator.

Let vector d∗=
(
d∗1, . . . , d

∗
pn

)T
, where d∗j = p

(1)
λn

(
|β∗j |
)
. We impose the following condi-

tion on the penalty function so that d̂0 = (d̂1, d̂2, . . . , d̂kn)T is close to d∗0 =
(
d∗1, . . . , d

∗
kn

)T
under the l2-norm:

(C5) p
(1)
λn

(·) is nonincreasing on (0,∞) satisfying p
(1)
λn

(c∗1
√
kn log(pn)/n) > 1

2
p

(1)
λn

(0+) for

sufficiently large n and some c∗1 > 0, and the Lipschitz condition holds, i.e., there

exists some constant M > 0 such that∣∣∣p(1)
λn

(t1)− p(1)
λn

(t2)
∣∣∣ ≤M |t1 − t2|,

for any t1, t2 ∈ R.

A well-known folded-concave penalty function is the SCAD penalty (Fan and Li 2001),

and its first derivative p
(1)
λn

is

p
(1)
λn

(t) = λn{I (t ≤ λn) +
(aλn − t)+

(a− 1)λn
I (t > λn) }

for some a > 2 and t > 0, where z+ stands for the positive part of z. It can be shown

that condition (C5) is satisfied by the SCAD penalty function provided λn > 2(a +

1)−1c
√
kn(log pn)/n for some constant c > 0. When the stochastic weights d̂j are defined

using the SCAD penalty function, the resulting d̂j will be close, or even equal, to zero for

1 ≤ j ≤ kn, and hence the magnitude of the weight vector ‖d̂0‖2 will be close to zero.

Theorem 2.4. Assume that condition (C5) holds. In addition, minj≥kn+1 d
∗
j is strictly

positive. Suppose that the initial estimate β̂ββ
∗

satisfies ‖β̂ββ
∗
−βββ∗‖2 ≤ c∗1

√
kn log pn/n where
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c∗1 > 0 is defined in (C5). In addition, assume that conditions of Theorem 2.2 hold with

d = d∗ and sn = bn where bn is defined as

bn = c∗2

(√
kn log n/n+ λn

(
‖d∗0‖2 + c∗3c

∗
1

√
kn log pn/n

))
with some positive constants c∗2 and c∗3. Then, with probability tending to one, there exists

a global minimizer β̂ββ =
(
β̂ββ
T

1 , β̂ββ
T

2

)T
of Q̂n(βββ) defined by (2.6) such that β̂ββ2 = 0 and

‖β̂ββ1 − βββ
∗
1‖2 ≤ bn.

The results in Theorem 2.4 are similar to those in Theorem 2.2. Theorem 2.4 shows

that the regularized robust estimator β̂ββ possesses the model selection oracle property, and

β̂ββ1 converges to βββ∗1 with a rate of convergence of bn. In comparison with the results in Theo-

rem 2.2, the rate of consistency bn contains an extra term of the order of λn
√
kn(log pn)/n.

This is in fact caused by the bias of the initial estimate β̂ββ
∗
, and it seems to be the price

to pay for using adaptive penalty weights (Fan et al. 2014). However, since λn → 0

as n → ∞, the second term in bn will be negligible. An initial robust estimator β̂ββ
∗

can

easily be constructed using the objective function (2.4) with the loss function φ as the

Huber function, the weight function W (x) = 1, the penalty weight vector d0 = (1, ..., 1)T ,

and the tuning parameter γ = 1. Then, it can be shown that the condition on the initial

estimator is satisfied, i.e., ‖β̂ββ
∗
− βββ∗‖2 = O

(√
kn(log pn)/n

)
. Other possible choices for

β̂ββ
∗

having the preceding consistency property are high-dimensional quantile regression

(Belloni and Chernozhukov 2011) and LAD regression (Wang 2013) estimators.

2.4 Simulation studies

In this section, we evaluate the finite-sample performance of our method and compare

it with some popular existing methods. We used the high-dimensional linear regression

model studied in Bradic et al. (2011) for our simulation. That is, we simulated data from

the regression model Yi = XT
i βββ + ei with sample size n = 100 and pn = 400. The true
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regression coefficient vector was set as

βββ = (2, 0, 1.5, 0, 0.80, 0, 0, 1, 0, 1.75, 0, 0, 0.75, 0, 0, 0.3, 0, . . . , 0) .

We considered six symmetric and asymmetric error distributions for ei:

(a) A normal error with mean 0 and variance 4, N(0, 4);

(b) Twice the t-distribution with 3 degrees of freedom, denoted 2t3;

(c) A mixture of normal distributions, MN, 0.6N(1, 1) + 0.4N(3, 25);

(d) A Laplace distribution with location parameter 1 and scale parameter 3;

(e) A log-normal distribution, LogNormal, defined as e = exp(1 + 1.2Z) with Z having

the standard normal distribution;

(f) A Weibull distribution with shape parameter 0.3 and scale parameter 1.

Table 2.1 summarizes the six error scenarios according to the shapes and tails of the

error distributions. For each distribution listed above, we generated the predictor variables

Xi from two settings:

(I) Xi’s follow a multivariate normal distribution N(0,Ω1) with covariance matrix Ω1 =

0.5|i−j| for i = 1, . . . , n and j = 1, . . . , pn, where n = 100 and pn = 400;

(II) Xi’s follow a mixture normal distribution 0.8N(0,Ω2) + 0.2N(µ,Ω1), where Ω2 =

Ipn×pn , µ = 31pn , Ω1 is as in setting I, and pn = 400. This setting produces covariates

with some influential points.

We assessed the finite-sample performance of our GAR-Lasso estimator with the fol-

lowing specifications. We minimized (2.6) by setting φ as the Huber function ρα with

α = 1.345, and the weight function W (x) = min{1, 1/(‖x‖∞)3}, which satisfies condition

(C3). The loss function tuning parameter γ in (2.6) was adaptively chosen to minimize
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the asymptotic variance. Further, to obtain an optimal value for λn, we implemented a

five-fold cross-validation. Adaptive weights on the penalty function were computed based

on the SCAD penalty. Finally, we iteratively applied the gradient descent algorithm to

obtain our estimator.

To evaluate the performance of our estimator and others, we used the following six

performance measures:

(1) l2 loss, defined as ‖β̂ββ − βββ∗‖2;

(2) l1 loss, defined as ‖β̂ββ − βββ∗‖1;

(3) FP: the number of false positives, i.e., the number of noises included in the model;

(4) FN: the number of false negatives, i.e., the number of signal covariates that are not

included;

(5) SE1: the standard error of l1 loss;

(6) SE2: the standard error of l2 loss.

In our simulation, we compared our estimator with the following four methods:

(i) Lasso, the penalized least squares estimator with the l1-penalty;

(ii) R-Lasso, the regularized LAD estimator with the l1-penalty as in Wang (2013),

which is the same as the R-Lasso estimator in Fan et al. (2014);

(iii) Huber-Lasso, the Huber function with α = IQR(y)/10 plus the l1-penalty, where

IQR stands for the inter-quartile range;

(iv) Adaptive Robust Lasso (AR-Lasso), the AR-Lasso estimator of Fan et al. (2014).

Tables 2.2 and 2.3 summarize our simulation results quantified by measures (1) to (6)

according to the shapes and tails of the error distributions (a) to (f), under settings I
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and II, respectively. The results are the average of each performance measure over 200

repetitions.

From the results in Tables 2.2 and 2.3, we make the following observations. First,

the quantile and Huber-loss-based estimators were more robust in dealing with outliers.

When the errors were asymmetric and heavy-tailed, the performance of Lasso deteriorated.

For instance, with the Weibull distribution, which is asymmetric and heavy-tailed, the

performance of Lasso was extremely unstable: the average l1 and l2 losses were significantly

larger than those of the other methods. GAR-Lasso had a clear advantage over Lasso,

R-Lasso, and Huber-Lasso: it performed better for all the cases considered, particularly

heavy-tailed distributions.

We now compare GAR-Lasso with AR-Lasso. In Table 2.2, we observe that GAR-

Lasso and AR-Lasso performed similarly when the errors followed distributions with light

and symmetric tails. However, GAR-Lasso generally performed better than AR-Lasso

in terms of l2 loss under almost all settings. It is worth noting that GAR-Lasso began

to excel AR-Lasso when the tails of errors became heavier. A similar phenomenon is

observed in Table 2.3. It is evident that under setting II, where outliers are more likely

to occur in the covariates, GAR-Lasso performed better than AR-Lasso in terms of l1

and l2 losses when the errors were distributed with heavy and asymmetric tails. This

demonstrates the superiority of GAR-Lasso when dealing with errors having heavy-tailed

distributions.

Then we compare the estimators in terms of the false positives (FP) and false negatives

(FN). The AR-Lasso and GAR-Lasso estimators consistently selected fewer false positives

and false negatives than other estimators in both settings I and II. For example, in setting

I with N(0, 4) errors, Lasso, R-Lasso, and Huber-Lasso had 18.34, 25.6, and 22.95 false

positives, respectively, while AR-Lasso and GAR-Lasso only had 20.52 and 18.83, accord-

ingly. In general, GAR-Lasso selected fewer false positives than other estimators under

setting I and setting II. In addition, we observe that for the errors having logNormal or

Weibull distributions, GAR-Lasso performed uniformly better than AR-Lasso under both
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settings.

For the errors having heavy-tailed distributions, GAR-Lasso tended to yield larger

values for the tuning parameter γ in setting II than in setting I. This indicates that γ

automatically adapts to errors with different shapes and provides greater flexibility for

the handling of high leverage points.

To further examine the performance of these estimators, we also ran a simulation

study based on a heteroscedastic model given by

Yi = XT
i βββ +

(√
3‖βββ‖2

2

)−1 (
XT
i βββ
)
ei, i = 1, . . . , n, (2.7)

with n = 100 and pn = 400. In model (2.7), Xi’s were generated from the same setups as

in the original model Yi = XT
i βββ+ei. For model (2.7), the performance of each estimator

is reported in Tables 2.4 and 2.5. The results are again based on 200 repetitions.

The results in Tables 2.4 and 2.5 show that methods using adaptive weights outper-

formed other estimating procedures under all the scenarios considered. The two adap-

tive procedures, namely AR-Lasso and GAR-Lasso, again exhibited superior performance

overall when compared with others in terms of all six measures studied in this simula-

tion study. In particular, we observe that two adaptive procedures consistently selected

a smaller set of variables than other non-adaptive procedures. In addition, two adaptive

procedures produced estimators with smaller standard errors when compared with other

procedures. The values in Tables 2.4 and 2.5 indicate that GAR-Lasso attained the lowest

values of l1 and l2 losses in most cases of error distributions. Indeed, GAR-Lasso had the

best performance in Table 2.5 in terms of l1 and l2 losses. Furthermore, GAR-Lasso and

AR-Lasso had comparable standard errors. However, GAR-Lasso outperformed AR-Lasso

in terms of all six measures when error distributions were heavy-tailed. By comparing

Tables 2.2 and 2.3 with Tables 2.4 and 2.5, we find that the advantage of GAR-Lasso

procedure over others was more pronounced in the heteroscedastic model than in the

homoscedastic model. Furthermore, GAR-Lasso seemed to have the biggest advantage

overall when errors were asymmetric and heavy-tailed (LogNormal and Weibull).
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In summary, GAR-Lasso is more flexible and efficient than Lasso, R-Lasso, and Huber-

Lasso when dealing with errors with different shapes and tails. It is competitive with

AR-Lasso for errors with light tails and has a clear advantage over others for heavy-tailed

error distributions. It has good efficiency for clean-data situations and exhibits excellent

robustness to outliers in a range of situations where outliers are likely to be present in

either the response or covariates or both. In addition, GAR-Lasso selects fewer false

positives and false negatives in most cases.

Table 2.1: Summary of the shapes and tails of error distributions.

Light tails Heavy tails

Symmetric
N(0,4) 2t3

Laplace

Asymmetric
MN LogNormal

Weibull

2.5 Real data application

Atherosclerosis is a disease of inflammation characterized by interactions among platelets,

leukocytes, and endothelial cells; see, e.g., Libby (2002). Atherosclerosis is the leading

cause of cardiovascular disease (CVD). By narrowing the coronary arteries responsible

for bringing oxygenated blood to the heart, it can result in symptoms such as sweating,

nausea, dizziness, or breathlessness and possibly lead to a cardiac arrest.

There have been various studies of atherosclerosis at the genetic level. Huang et

al. (2011) studied the role of the innate immune system on the development of atheroscle-

rosis by examining gene profiles from the peripheral blood of 119 patients. There were

119 subjects and 494 variables. The data were collected using an Illumina HumanRef8

V2.0 Bead Chip and are available from the gene expression omnibus. To test the influence

of gene expression profiles on atherosclerosis, Huang et al. (2011) conducted a microarray
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Table 2.2: Simulation results of the estimators under setting I.

Scenario Simulation results

Lasso R-Lasso Huber-Lasso AR-Lasso GAR-Lasso

N(0,4) L2 loss 1.326 1.589 1.407 1.279 1.284
L1 loss 5.409 5.646 5.448 4.518 4.776
FP,FN 18.34, 0.76 25.60, 0.92 22.95, 0.90 20.52, 0.92 18.83, 0.93
SE1,SE2 0.423, 0.071 0.477, 0.108 0.411, 0.072 0.144, 0.027 0.144, 0.025

γ - - - - 0.544

2t3 l2 loss 1.286 1.269 1.299 1.205 1.201
l1 loss 5.523 4.373 4.582 3.645 3.802
FP,FN 28.79, 0.76 32.36, 0.69 23.57, 0.71 20.66, 0.60 18.75, 0.87
SE1,SE2 0.723, 0.238 0.701, 0.231 0.683, 0.271 0.155, 0.061 0.187, 0.058

γ - - - - 0.263

MN l2 loss 2.050 1.689 1.762 1.349 1.333
l1 loss 7.869 7.214 7.286 4.139 4.818
FP,FN 19.57, 1.47 27.70, 1.23 26.74, 1.40 15.22, 1.01 16.50, 1.55
SE1,SE2 0.722, 0.210 0.668, 0.177 0.574, 0.180 0.192, 0.051 0.184, 0.048

γ - - - - 0.586

Laplace l2 loss 2.425 2.237 2.222 2.092 2.078
l1 loss 9.774 6.482 6.757 5.427 5.371
FP,FN 23.82, 2.28 17.52, 2.13 17.59, 2.37 13.86, 1.35 15.11, 1.58
SE1,SE2 0.616, 0.278 0.871, 0.291 0.799, 0.284 0.179, 0.088 0.162, 0.076

γ - - - - 0.710

LogNormal l2 loss 2.955 2.312 2.319 2.185 2.012
l1 loss 7.979 7.227 7.111 6.167 5.812
FP,FN 25.21, 3.46 17.52, 2.42 15.13, 2.14 10.93, 1.67 10.11, 1.25
SE1,SE2 1.105, 0.988 0.986, 0.572 1.072, 0.471 0.174, 0.050 0.168, 0.048

γ - - - - 1.171

Weibull l2 loss 13.547 1.926 1.633 1.610 1.515
l1 loss 81.281 8.929 6.430 4.895 4.221
FP,FN 26.7, 4.66 17.46, 1.30 16.79, 1.24 9.59, 1.83 8.54, 1.38
SE1,SE2 1.201, 0.890 0.538, 0.341 0.414, 0.266 0.207, 0.101 0.196, 0.071

γ - - - - 0.474

gene expression profiling of whole blood from a population of healthy women with low

to intermediate Framingham risk scores (FRSs). In addition, they identified genes and

pathways that are closely connected with a significant burden of atherosclerosis among

the women predicted to be at a lower risk of CVD events. They demonstrated that the

toll-like receptor (TLR) signaling that pathway plays a crucial role in triggering the in-

nate immune system when atherosclerosis invades. Furthermore, they found that the gene
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Table 2.3: Simulation results of the estimators under setting II.

Scenario Simulation results

Lasso R-Lasso Huber-Lasso AR-Lasso GAR-Lasso

N(0,4) l2 loss 1.425 1.415 1.369 1.281 1.267
l1 loss 4.649 5.370 5.357 4.519 4.485
FP,FN 18.93, 0.71 29.10, 0.76 27.10, 0.50 14.13, 0.52 16.67, 0.62
SE1,SE2 0.372, 0.051 0.311, 0.048 0.324, 0.041 0.168, 0.019 0.142, 0.023

γ - - - - 0.569

2t3 l2 loss 1.493 1.171 1.095 1.042 1.041
l1 loss 4.776 4.309 4.290 3.683 3.743
FP,FN 19.42, 0.78 32.90, 0.68 23.54, 0.62 21.71, 0.59 19.09, 0.65
SE1,SE2 0.217, 0.192 0.200, 0.102 0.203, 0.086 0.177, 0.056 0.154, 0.046

γ - - - - 0.548

MN l2 loss 1.984 1.803 1.566 1.246 1.254
l1 loss 6.490 5.747 5.300 4.842 4.851
FP,FN 12.93, 1.73 16.20, 2.04 15.43, 1.73 15.02, 0.80 14.75, 1.04
SE1,SE2 1.107, 0.412 1.109, 0.399 0.781, 0.377 0.133, 0.031 0.137, 0.032

γ - - - - 0.705

Laplace l2 loss 2.028 2.041 2.131 1.892 1.900
l1 loss 8.181 8.716 8.416 7.321 7.035
FP,FN 23.30, 1.39 22.09, 2.10 21.95, 1.85 19.48, 1.29 19.50, 1.20
SE1,SE2 0.511, 0.168 0.446, 0.176 0.478, 0.154 0.134, 0.043 0.126, 0.048

γ - - - - 0.859

LogNormal l2 loss 3.430 2.114 2.140 2.087 2.066
l1 loss 17.132 8.511 8.127 6.498 6.266
FP,FN 22.8, 5.38 30.48, 1.92 18.14, 2.16 13.70, 2.60 11.29, 3.35
SE1,SE2 1.728, 0.776, 1.288, 0.480 1.310, 0.482 0.139, 0.093 0.138, 0.069

γ - - - - 1.514

Weibull l2 loss 16.816 2.217 2.209 1.948 1.770
l1 loss 91.095 8.332 8.488 6.764 6.014
FP,FN 25.53, 4.49 37.46, 4.96 21.12, 1.18 15.75, 1.82 14.75, 1.70
SE1,SE2 3.199, 2.922 0.306, 0.135 0.322, 0.117 0.201, 0.066 0.167, 0.064

γ - - - - 1.135

TLR8 is closely associated with atherosclerosis.

Fan et al. (2017) carried out a data analysis of this microarray dataset. To fur-

ther examine the relationship between the crucial gene TLR8 and the other genes, they

regressed it on 464 genes from 12 pathways (TLR, CCC, CIR, IFNG, MAPK, RAPO,

EXAPO, INAPO, DRS, NOD, EPO, and CTR) that are related to the TLR pathway.

Their RA-Lasso method found that 34 genes are associated with TLR8. They also noted
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Table 2.4: Simulation results of estimators under setting I for heteroscedastic model.

Scenario Simulation results

Lasso R-Lasso Huber-Lasso AR-Lasso GAR-Lasso

N(0,4) l2 loss 0.510 0.504 0.506 0.266 0.266
l1 loss 1.425 1.516 1.403 0.812 0.769
FP,FN 24.56, 1.13 21.25, 1.05 24.36, 0.95 12.67, 0.09 8.68, 0.07
SE1,SE2 0.048, 0.021 0.040, 0.019 0.045, 0.019 0.019, 0.007 0.018, 0.007

γ - - - - 0.863

2t3 l2 loss 0.624 0.606 0.617 0.325 0.295
l1 loss 1.580 1.859 1.688 1.023 0.946
FP,FN 26.72, 1.33 25.23, 1.05 27.43, 0.85 12.63, 0.61 10.45, 0.60
SE1,SE2 0.058, 0.015 0.067, 0.028 0.073, 0.015 0.027, 0.008 0.024, 0.007

γ - - - - 1.163

MN l2 loss 1.305 0.434 0.397 0.184 0.204
l1 loss 5.348 1.148 1.207 0.513 0.531
FP,FN 33.40, 1.70 28.52, 1.73 28.92, 1.62 11.85, 0.47 10.54, 0.26
SE1,SE2 0.174, 0.042 0.101, 0.041 0.087, 0.031 0.019, 0.007 0.019, 0.006

γ - - - - 1.042

Laplace l2 loss 0.614 0.934 0.665 0.346 0.342
l1 loss 1.928 2.333 1.629 1.057 0.996
FP,FN 25.39, 1.45 22.17, 1.38 22.02, 1.28 11.63, 0.70 8.68, 0.62
SE1,SE2 0.076, 0.057 0.167, 0.081 0.102, 0.061 0.041, 0.014 0.038, 0.012

γ - - - - 1.278

LogNormal l2 loss 2.209 0.680 0.665 0.302 0.288
l1 loss 4.221 1.877 1.983 0.718 0.642
FP,FN 35.48, 2.76 26.03, 1.78 26.52, 1.64 14.14, 0.97 11.52, 0.75
SE1,SE2 0.172, 0.135 0.079, 0.032 0.089, 0.035 0.022, 0.009 0.021, 0.008

γ - - - - 1.543

Weibull l2 loss 1.254 0.495 0.506 0.189 0.176
l1 loss 3.027 1.642 1.511 0.484 0.459
FP,FN 21.16, 1.53 18.54, 1.26 19.11, 1.27 8.18, 0.40 6.67, 0.42
SE1,SE2 0.082, 0.026 0.064, 0.014 0.092, 0.029 0.017, 0.006 0.015, 0.006

γ - - - - 0.688

that Lasso and R-Lasso found 1 and 17 associated genes, respectively.

We employ the same microarray dataset to illustrate the performance of three estima-

tors: Huber-Lasso, AR-Lasso, and GAR-Lasso. Our aim is also to find genes connected

with TLR8, which is believed to play a significant role in the development of atheroscle-

rosis. We used five-fold cross-validation to choose the tuning parameters for the three

methods. We then applied the three methods to select significant genes from the 464
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Table 2.5: Simulation results of estimators under setting II for heteroscedastic model.

Scenario Simulation results

Lasso R-Lasso Huber-Lasso AR-Lasso GAR-Lasso

N(0,4) l2 loss 0.814 0.872 0.816 0.421 0.408
l1 loss 2.975 2.224 2.414 1.292 1.189
FP,FN 25.41, 1.23 26.26, 1.34 25.31, 1.09 11.32, 0.87 9.85, 0.85
SE1,SE2 0.097, 0.059 0.099, 0.072 0.063, 0.053 0.037, 0.011 0.038, 0.013

γ - - - - 1.765

2t3 l2 loss 1.114 1.291 1.208 0.490 0.478
l1 loss 4.417 3.579 3.928 1.573 1.435
FP,FN 26.56, 1.61 26.67, 1.47 28.96, 2.08 15.03, 1.03 11.55, 0.92
SE1,SE2 0.163, 0.052 0.196, 0.102 0.173, 0.063 0.054, 0.017 0.049, 0.016

γ - - - - 1.462

MN l2 loss 1.014 0.859 0.686 0.325 0.314
l1 loss 4.272 1.909 2.080 1.008 0.894
FP,FN 19.64, 1.47 14.17, 1.05 15.05, 1.12 11.43, 0.75 10.14, 0.68
SE1,SE2 0.164, 0.054 0.189, 0.074 0.099, 0.056 0.051, 0.014 0.042, 0.013

γ - - - - 1.676

Laplace l2 loss 1.313 1.385 1.025 0.553 0.516
l1 loss 5.295 3.178 2.606 1.817 1.548
FP,FN 18.97, 1.95 15.19, 1.56 13.45, 1.85 8.12, 0.80 6.36, 0.98
SE1,SE2 0.175, 0.053 0.171, 0.054 0.154, 0.058 0.079, 0.022 0.062, 0.019

γ - - - - 1.116

LogNormal l2 loss 3.262 0.938 0.976 0.321 0.315
l1 loss 5.354 1.867 2.850 0.843 0.779
FP,FN 37.16, 3.17 22.23, 1.65 19.60, 1.81 12.95, 1.07 9.533, 0.82
SE1,SE2 0.219, 0.146 0.079, 0.043 0.082, 0.036 0.037, 0.011 0.029, 0.009

γ - - - - 2.764

Weibull l2 loss 1.935 0.519 0.712 0.271 0.228
l1 loss 5.185 1.5718 1.690 0.760 0.615
FP,FN 43.13, 3.93 20.44, 2.02 19.60, 2.30 8.30, 1.19 5.68, 1.05
SE1,SE2 0.202, 0.076 0.065, 0.020 0.062, 0.025 0.037, 0.012 0.028, 0.010

γ - - - - 1.368

samples. Table 2.6 reports the results: it displays the genes selected by the three meth-

ods. We observe that Huber-Lasso, AR-Lasso, and GAR-Lasso selected 33, 65, and 75

genes, respectively. Therefore, the adaptive methods (AR-Lasso and GAR-Lasso) selected

more genes than the non-adaptive method.

As in the preceding article, we further compared the methods as follows. We randomly

selected 24 patients as the test set, and then we applied Huber-Lasso, AR-Lasso, and
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GAR-Lasso to the remaining data to obtain estimates of the coefficients. We then used

them to predict the responses of the test set. We repeated this process 100 times and

then obtained the average of the mean squared errors and mean absolute errors. Table

2.7 summarizes our results. GAR-Lasso performed the best, obtaining the lowest values

for the mean squared and mean absolute errors.

Table 2.6: Genes selected by Huber-Lasso, AR-Lasso and GAR-Lasso.

Summary of three methods

Huber Lasso AR-Lasso GAR-Lasso

CR2: 0.1005 SERPINF2: 0.0263 RIPK1: -0.0392 PLG: 0.0416 CD86: -0.0677
IL2: 0.0364 PLAUR: -0.0005 TLR1: 0.0692 PLAU: -0.0216 ARHGAP10: -0.0312

IFNG: 0.0028 KNG1: -0.0061 RELA: 0.0326 KLKB1: -0.0101 DAPK2: -0.0194
CSF3: 0.0079 CR2: 0.0720 PIK3R1: -0.1332 F7: 0.0185 PSMD6: 0.0109
SPI1: 0.0498 CPB2: 0.0064 PIK3CG: -0.0563 CR1: 0.0496 PSME1: -0.0022
IRF4: -0.0585 C8G: -0.0307 IL12A: 0.0007 C9: 0.0132 PSMD3: -0.0157
IFI6: 0.01065 C5AR1: 0.0539 CD40: -0.0588 C7: -0.0274 PSMD2: -0.0908

MAP2K7: -0.0109 BDKRB1: 0.0158 CASP8: -0.0030 C3AR1: 0.0803 PSMC2: 0.0270
PRKCH: -0.0318 TNF: -0.0031 PSME3: 0.0187 SERPING1: -0.0131 PSMC1: 0.0844
PPP3CB: -0.0452 IL2: 0.0598 PSMD6: -0.0011 SERPINC1: 0.0005 PSMB3: -0.0161

NF1: -0.0538 SPI1: 0.0336 PSMD4: -0.0026 IL1B: 0.0218 ACIN1: 0.0607
MAP3K4: -0.0606 REG1A: 0.0356 PSMD3: -0.0639 REG1A: 0.0239 STK24: -0.0045
DUSP6: -0.0161 CXCL9: -0.0455 PSMC3: 0.0516 PTPN11: 0.0521 VIM: 0.0943
AKT1: 0.0110 IRF4: -0.0636 PSMC2: 0.0880 CIITA: -0.0629 ROCK1: -0.0078

RIPK1: -0.0797 IRF8: -0.0566 PSMB4: -0.0025 IRF2: -0.0536 HMGB2: 0.0404
TLR1: 0.1135 IFI6: 0.0201 CLSPN: 0.0618 ICAM1: -0.1116 HIST1H1C: -0.0226
RELA: 0.0156 AKT3: 0.0165 STK24: 0.0742 CYBB: 0.0271 GAS2: -0.0114

PIK3R1: -0.0349 TRAF2: -0.0093 KPNB1: 0.0254 MAP4K4: 0.0152 DSG1: -0.0261
CD40: -0.0001 SRF: -0.0044 HIST1H1D: -0.0106 TRAF2: -0.0156 DFFA: -0.0359

PSMD6: -0.0059 RASA1: -0.0119 DSG2: -0.0232 TP53: -0.0145 CASP7: -0.0429
PSMD3: -0.0125 MAP2K7: -0.1027 DFFB: -0.0175 RASA1: 0.0003 YWHAB: -0.2035
PSMC2: 0.0256 PRKCH: -0.0831 DFFA: 0.0042 RAP1A: -0.0635 TFDP1: -0.0170
DCC: -0.0220 PPP5C: -0.0265 MAP2K6: -0.1062 BAD: 0.0711

CLSPN: 0.0570 PPP3CB: -0.0696 PRKCH: 0.0044 APAF1: -0.0010
CDH1: -0.0247 PPP3CA: -0.0103 PRKCG: -0.1099 RIPK2: 0.0200
CASP6: -0.0279 NF1: -0.0213 PPP3CC: -0.0386 EPO: 0.0128

BCL2L11: -0.1683 MAP3K4: -0.1208 PPP3CA: -0.0575 ICOS: 0.0062
BAX: 0.0369 MEF2C: 0.0085 PPM1B: -0.0106 WAS: -0.0346

BAK1: 0.0365 GCK: -0.0691 MYC: -0.0236 CREB1: -0.0143
AIM2: 0.0309 DUSP6: -0.0212 MEF2C: -0.1256 CDC42: -0.0692
LHB: -0.01852 DUSP4: -0.0546 MAX: 0.0134 CD3E: -0.0007

CREB1: -0.0337 AKT1: 0.0714 HSPA5: 0.0002 CD3D: 0.0063
CD3E: 0.0318 FADD: 0.0665 FOS: -0.0798

CD3E: 0.0092 DUSP5: -0.0264
CREB1: -0.0761 DUSP1: -0.0922
ZAP70: -0.0494 ACVR1B: 0.0752
EPOR: 0.0164 RIPK1: 0.0781
AIM2: 0.0027 PIK3R3: -0.0072
BAK1: 0.0698 SPP1: 0.0447

YWHAB: -0.0278 MAP2K3: 0.0155
BCL2L11: -0.2199 PIK3CG: -0.1612
CASP6: -0.0051 PIK3CD: -0.0703
CDH1: -0.0382 IL8: 0.0172

30



Table 2.7: Prediction errors of Huber-Lasso, AR-Lasso and GAR-Lasso.

Summary of three methods

Huber Lasso AR-Lasso GAR-Lasso

Mean Squared Error Mean 6.286 4.207 4.071
Median 2.273 2.008 2.137

Mean Absolute Error Mean 0.774 0.682 0.652
Median 0.702 0.601 0.560

2.6 Conclusions

In this chapter, we investigate the regularized high-dimensional robust estimation for

sparse linear regression. Specifically, we develop regularized estimators that are highly

robust with respect to outliers in both the responses and covariates under two forms of

the penalty function. The proposed estimators are also robust against heavy-tailed er-

ror distributions. Our estimators are generalized and adaptive in the sense that they

downweight both the influence and leverage observations adaptively using a data-driven

method in practical applications. The proposed estimators satisfy the oracle properties

with a near-optimal rate of consistency under mild assumptions on the error distribution

and covariates. We establish the asymptotic results in a high-dimensional setting. Our

numerical studies and data analysis show that the finite-sample performance of our doubly

adaptive two-step procedure, GAR-Lasso, is very promising. The numerical results also

demonstrate that the performance of GAR-Lasso is satisfactory even for heteroscedastic

linear models with asymmetric noise distributions. It appears that GAR-Lasso is fairly

adaptive to various shapes and tails of the error distribution. Further, the simulations

show that the leverage points can make a significant impact on the performance of regu-

larized estimators. Thus, protection against such outliers is highly recommended.
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Chapter 3

High-dimensional robust regression
estimation with lq-loss function

3.1 Introduction

High-dimensional data are now common in studies in many areas, including medicine,

biomedical, machine learning, bioinformatics, astronomy, etc. The analysis of high-

dimensional data is extremely challenging. In particular, separating the useful infor-

mation from the noise is generally difficult in high-dimensional settings. There has been

a considerable development of statistical methods for analyzing high-dimensional data,

and regularization methods are among the most widely used tools for analyzing such

data. Variable selection is fundamentally important for knowledge discovery with fixed-

and high-dimensional data and it could greatly enhance the prediction performance of

the fitted model. Regularization techniques play an important role in identifying covari-

ates that truly affect the outcome of a response in models containing covariates and a

response variable. A vast amount of research has been done in this area, and some robust

procedures have also been developed. In this chapter, we still consider the following the

situation where we have a random sample {(Xi, Yi)}ni=1 from the linear model

Yi = XT
i β + ei, i = 1, ..., n, (3.1)

where Yi ∈ R is a response variable, Xi ∈ Rpn is a covariate vector, β ∈ Rpn is a regression

coefficient vector, and ei ∈ R is an error term. We assume that {ei}ni=1 are independent
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and identically distributed (i.i.d.) with some unknown distribution F. We also assume

that {Xi}ni=1 are i.i.d. random vectors and that the ei’s are independent of the Xi’s. We

assume that the distributions of Xi and ei both have mean zero. We are interested in

high-dimensional robust estimation of the pn-dimensional coefficient vector β where pn

may increase with n and β is sparse in the sense that many of the elements are zero.

Robustness has been a core issue in the statistical learning of high-dimensional prob-

lems now. Heavy-tailed errors are stylized features of high-dimensional data and er-

rors with heavy tails result in outliers. These heavy-tailed errors impair the consis-

tency of many high-dimensional regression methods. For robust estimation of β in high-

dimensional settings, a number of robust regularization methods have been proposed in the

literature to deal with the outliers in (Xi, Yi)’s as well as heavy-tailed errors. Belloni and

Chernozhukov (2011) considered l1-penalized quantile regression in a high-dimensional

setting. Li et al. (2011) examined a nonconcave penalized robust M-estimator, again in

a high-dimensional setting. Bradic et al. (2011) studied a penalized composite quasi-

likelihood method for ultrahigh-dimensional robust variable selection. van de Geer and

Müller (2012) obtained bounds on the prediction error of a large class of l1-penalized

estimators that includes quantile regression. Wang et al. (2012) considered nonconvex

penalized quantile regression in an ultrahigh-dimensional setting. Wang (2013) studied an

l1-penalized LAD estimator for high-dimensional regression. In an ultrahigh-dimensional

setting, Fan et al. (2014) investigated a penalized quantile regression procedure with a

weighted l1-penalty for robust regularization, as in Bradic et al. (2011). She and Chen

(2017) proposed a robust reduced-rank regression approach for joint modeling and outlier

detection. Fan et al. (2017) proposed an l1-penalized procedure based on the Huber loss

(Huber 1964) with diverging parameter α (or converging to zero if its reciprocal is used)

in an ultrahigh-dimensional setting and obtained nonasymptotic bounds on the l2-error.

Sun et al. (2020) also dealt with the Huber loss and obtained nonasymptotic bounds

on the l2-error in high-dimensional settings. Loh (2017) studied a generalized robust

M-estimator with an “amenable (nonconvex) regularizer” for high-dimensional data.

33



These methods essentially fall into one group: they all consider a loss function having

a bounded gradient or subgradient in order to develop robust estimators. In the classical

robust statistics, a loss function with a bounded derivative leads to a bounded influence

function and, hence, the corresponding estimator would be stable locally to outliers in the

response variable (Huber 1981). This phenomenon, however, is not a necessary condition

for an estimator to be robust, as noted in Yohai and Zamar (1993) and Gervini and

Yohai (2002), among others, for robust regression estimation and in Karunamuni et al.

(2019) for the regularized robust regression for the fixed-dimensional case. Some classes of

estimators, such as GM-estimators, have bounded influence but their breakdown points

go to zero when the dimension of β increases. Hence, bounded influence is neither a

necessary nor a sufficient condition for robust regression estimation (Gervini and Yohai

2002).

In this chapter our main interest is investigating high-dimensional robust sparse es-

timation under lq-loss functions, 1 ≤ q < 2. For 1 < q < 2, the lq-loss functions have

unbounded subgradients. However, the lq-loss functions produce robust estimators when

q is close to 1, while the estimators are more efficient when q is close to 2. In other words,

q is a tuning parameter that controls the degree of robustness and efficiency. To the best

of our knowledge, high-dimensional regularized estimation in model (3.1) under lq-loss

functions (1 < q < 2) has not been fully studied in the literature. An interesting aspect

of lq-loss functions (1 ≤ q < 2) is that they do not satisfy restricted strong convexity

conditions near the origin. The preceding conditions have been shown to play a critical

role in the study of statistical consistency of high-dimensional M-estimators with smooth

loss functions (Negahban et al. 2012). This makes high-dimensional estimation under

lq-loss functions (1 ≤ q < 2) a challenging problem.

Due to non-smoothness of lq-loss functions (1 ≤ q < 2) near the origin, the correspond-

ing regularized optimization problems are computationally challenging and expensive. To

circumvent this issue, we utilize a half-quadratic approximation of convex functions (Ge-

man and Reynolds 1992, Geman and Yang 1995) in order to accelerate computation.
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The alternate optimization problem of the resultant (augmented) objective function has

a simple explicit form and is easy to implement in practice.

We investigate high-dimensional robust sparse estimation under a class of convex loss

functions, including the lq-loss functions (1 ≤ q < 2) and the Huber loss function, among

others. For the regularization, we employ a weighted l1-penalty function of the form

λn ‖d ◦ β‖1 , where λn > 0 is a regularization parameter, ‖x‖1 denotes the l1-norm of any

vector x = (x1, ..., xp)
T , d = (d1, ..., dpn)T is a vector of nonnegative weights, and ◦ denotes

the Hadamard product (i.e., the componentwise product of two vectors). We establish

the model selection oracle property, rate of consistency, and the asymptotic normality of

our estimator in a high-dimensional setting. Our method of proofs relies on a variation

of techniques developed in Fan et al. (2014) for ultrahigh-dimensional quantile regression

estimation. To facilitate the proofs, we prove a new concentration type inequality similar

in spirit to those in Bühlmann and van de Geer (2011) but carefully tailored for our

purposes. We carry out extensive simulation studies to compare the proposed method

with other regularized robust estimators, including some quantile regression and least-

absolute-deviation regression estimators. Our numerical studies demonstrate the favorable

finite-sample performance of the proposed procedure for various shapes and tails of the

error distribution. This advantage is most pronounced in the presence of high leverage

points.

The rest of this chapter is structured as: in Section 3.2 and 3.3, we study the proposed

estimator using a weighted l1-penalty function and investigate its asymptotic properties,

including the model consistency and oracle properties. Section 3.4 provides the computa-

tional algorithm. In Section 3.5, we present numerical studies and compare our method

with other existing methods, and in Section 3.6, we illustrate the performance of our

method using a real dataset. Section 3.7 provides concluding remarks. The proofs of our

main results and important lemmas are provided in Appendix B.
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3.2 Robust estimation with lq-loss

We start by introducing some useful notations. First, we let β∗ =
(
β∗T1 , β∗T2

)T
denote the true coefficient vector of β, where each element in β∗1 ∈ Rkn is nonzero and

β∗2 = 0 ∈ Rpn−kn . Then, for i = 1, ..., n, let Xi= (XT
1i, XT

2i)
T , where X1i and X2i are

the covariates corresponding to βββ∗1 and βββ∗2 = 0, respectively. For any weight vector d,

let d0 denote the first kn elements of d, and d1 denote the remaining part of d, i.e.,

d =
(
dT0 , dT1

)T
. For any vector x = (x1, ..., xp)

T ∈ Rp, let ‖x‖2 denote the l2-norm and

‖x‖∞ = max(|x1| , ..., |xp|). We allow both pn and kn to diverge with the sample size n and

assume kn to be o(n); that is, only a small number of true coefficients are nonzero. Let

X = (Xij; 1 ≤ i ≤ n, 1 ≤ j ≤ pn) denote the design matrix. We write X= (S, Q) with the

submatrices S and Q corresponding to the covariates whose coefficients are nonvanishing

and vanishing, respectively. Thus, S and Q are n×kn and n× (pn−kn), respectively. We

will refer to the set of columns in S as the signal covariates, while those in Q will be called

noise covariates. We assume without loss of generality that the Xij’s are normalized, so

E(X2
ij) = 1 for all i and j.

We consider regularized estimators of the form

β̂ = arg min
β

n∑
i=1

φ
(
(Yi −XT

i βββ)/γ
)
W (Xi/γ) + npλn(β), (3.2)

where φ is a symmetric convex loss function on R satisfying φ(0) = 0, W is a non-negative

weight function on large values of Xi, pλn(β) is a regularizer (penalty function) on β with

regularization parameter λn > 0, and γ > 0 is a tuning parameter. The parameter γ

controls the degree of efficiency/robustness of the estimator. For the weight function

W (x), we use a non-negative function such that xiW (x) is bounded for all xi ∈ x. Then

for large values of Xi, W (Xi) would place a small weight on Xi and hence would have a

small impact on β̂. The outliers of the covariates Xi are known to severely influence the

performance of estimators (Huber 1981). For the penalty function pλn(β), we consider a

weighted l1-penalty function. But the results can be obtained for the adaptively weighted
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l1-penalty function case as well. We will prove the model selection oracle property and

establish the asymptotic normality of β̂.

We require the following conditions for our asymptotic results.

D1. The loss function φ satisfies the “local δ-Lipschitz condition.” That is, if φ(1) denotes

a subgradient of φ then for some δ ∈ [0, 1] there exist positive constants ξq and Cq

such that
∣∣φ(1)(x+ t)− φ(1)(x)

∣∣ ≤ Cq |t|δ for all x ∈ R and |t| ≤ ξq. Let D denote

the set of discontinuity points of φ(1), which is the same for all choices of φ(1). The

common distribution function F of the errors satisfies F(D) = 0, E
(
φ(1)(ei/γ)

)
= 0,

E
(
φ(1)(ei/γ)

)2
= σ2

γ <∞, and as t→ 0, E(φ(1) ((e1 + t)/γ)− φ(1)(e1/γ))2 → 0,

E
(
φ(1) ((e1 + t)/γ)

)
≡ g(γ)t+ o(|t|q(γ))

for some positive functions g and q of γ.

D2. W : Rpn→ (0, 1] is a weight function on x ∈ Rpn such that |xi|2+εW (x) is bounded

for all xi ∈ x, i = 1, ..., pn, where 0 < ε < 1 is some constant.

D3. The eigenvalues of 1
n
E
(∑n

i=1 X1iX
T
1iW (Xi/γ)

)
are bounded from below and above

by some positive constants.

D4. Random variables φ(1) (ei/γ) , i = 1, ..., n, are sub-Gaussian; i.e., for some constants

K0 and σ0, K
2
0

(
E exp(|φ(1)(ei/γ)|2/K2

0)− 1
)
≤ σ2

0 for all i, where φ(1) is defined in

condition (D1).

D5. p
(1)
λn

(·) is non-increasing on (0,∞) satisfying p
(1)
λn

(
√
kn log(pn)/n) > 1

2
p

(1)
λn

(0+) for

sufficiently large n and the Lipschitz condition holds, i.e., there exists some constant

M > 0 such that ∣∣∣p(1)
λn

(t1)− p(1)
λn

(t2)
∣∣∣ ≤M |t1 − t2|,

for any t1, t2 ∈ R.

In addition, we define matrices Vn =
(
E
(
g(γ)
2γ

∑n
i=1 X1iX

T
1iW (Xi/γ)

))−1/2

, Zn =
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SVn, and Z∗n =
(

1
γ
X11W (X1/γ) , . . . , 1

γ
X1nW (Xn/γ)

)T
Vn, where W (·) is a weight func-

tion on the covariates Xi, i ≥ 1, and function g is defined in condition (D1).

Condition (D1) is similar to standard assumptions imposed in the classical M-estimation

theory of linear regression models; see, e.g., Bai et al. (1992) and Wu (2007). Weight func-

tions satisfying condition (D2) can be easily constructed, e.g. W (x) = min{1, (‖x‖∞)−3}.

Condition (D3) warrants the inverse of eigenvalues of 1
n
E
(∑n

i=1 X1iX
T
1iW (Xi/γ)

)
exists.

A condition like (D4) is generally placed directly on the errors; see, e.g., Fan et al. (2017).

Condition (D5) is a standard assumption imposed on penalty functions, e.g., Fan et al.

(2014). The SCAD penalty function satisfies (D5) under some conditions on λn (Fan and

Li 2001).

3.3 Estimator with weighted penalty

In this section, we assume that the penalty function pλn(β) is a weighted l1-penalty

of the form pλn(β) = λn ‖d ◦ β‖1, where d = (d1, ..., dpn)T is a vector of nonnegative

weights, and ◦ denotes the Hadamard product (i.e., the componentwise product of two

vectors). Thus, our estimator β̂ is obtained by minimizing the objective function

Qn(βββ) =
n∑
i=1

φ((Yi −XT
i βββ)/γ)W (Xi/γ) + nλn‖d ◦ βββ‖1 (3.3)

with the pair (φ, W ) as in (3.2).

Let β̂ =
(
β̂T1 , 0T

)T
with β̂1 ∈ Rkn denoting the oracle-regularized estimator minimiz-

ingQn(β) defined by (3.3) over the space A = {β =
(
βT1 , β

T
2

)T ∈ Rpn : β2 = 0 ∈ Rpn−kn}.

That is, β̂1 represents the estimator of signal covariates. The next theorem establishes the

consistency of β̂1. All limits in the theorems below are taken as n→∞ unless otherwise

stated.

Theorem 3.1. Assume that conditions (D1) to (D4) hold. Suppose β̂ =
(
β̂T1 , 0T

)T
is obtained by minimizing function (3.3) over the space A. Additionally, suppose that

λn‖d0‖2

√
kn/n → 0, λn ≥

√
(log n)/n, and let αn = c

(√
kn(log n)/n+ λn‖d0‖2

)
for
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some constant c > 0. Then, with probability tending to one,

‖β̂ββ1 − βββ
∗
1‖2 ≤ αn and ‖β̂ββ1 − βββ

∗
1‖1 ≤ αn

√
kn.

Further, if α−1
n min1≤j≤kn |β∗j | → ∞, then with probability tending to one, we have

sgn(β̂ββ1) = sgn(βββ∗1),

where the above equation should be understood componentwise.

Theorem 3.1 shows the rate of consistency for estimator β̂ in terms of l2- and l1-norms.

Note that αn is not a function of pn as Qn(βββ) is minimized over the space A to obtain

β̂1. Also note that β̂1 estimates the correct sign of the true coefficient vector βββ∗1 with

probability tending to one. The first component of αn,
√
kn(log n)/n, is the oracle rate

within a factor of log n, and the second term, λn‖d0‖2, represents the extra bias caused by

regularization. If no prior information is available then one can set d0 = (1, 1, ..., 1)T , in

which case the l2 rate of consistency of β̂1 satisfies ‖β̂ββ1−βββ
∗
1‖2 ≤ c(

√
kn log n/n+λn

√
kn)

with probability tending to one.

Theorem 3.2. Assume that conditions (D1) to (D4) hold and minj≥kn+1 dj > 0. Let

αn be as in Theorem 3.1. Further, assume that λn‖d0‖2

√
kn/n → 0, λn > C∗αn

√
kn,

λn > 2
√

(1 + c) log pn/n, and k
1/2
n αδn

√
(1 + k

3/2
n αn) log2 n = o(

√
nλn), where c > 0 and

C∗ are some constants. Then there exists a global minimizer β̂ =
(
β̂T1 , β̂

T
2

)T
of Qn(β)

defined by (3.3) satisfying ‖β̂1 − β∗1‖2 ≤ αn, ‖β̂1 − β∗1‖1 ≤ αn
√
kn, and β̂2 = 0 with

probability tending to one.

Theorem 3.2 presents the rate of consistency and the model selection oracle property

of the proposed regularized estimator β̂ when the oracle information is not available.

Theorem 3.2, however, requires that the weights in the weight vector d corresponding

to the noise covariates to be strictly positive, i.e., minj≥kn+1 dj > 0, such that each

coordinate is penalized. The results in Theorem 3.2 also hold for heavy-tailed errors
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provided that conditions (D1) and (D4) are satisfied and that the regularization parameter

λn ≥
√

log pn/n, which is the optimal choice for Gaussian errors (Bickel et al. 2009).

If subgradient φ(1) is bounded, such as for the l1-loss and the Huber loss functions,

then Theorem 3.2 holds with the condition

√
(1 + k

1+δ/2
n αn) log2 n = o (

√
nλn) replaced

by
√

(1 + knαn) log2 n = o(
√
nλn). For d0 = (1, 1, ..., 1)T and λn = c

′
1

√
log pn/n, αn

reduces to αn = c
′
2

(√
kn(log n)/n+

√
kn(log pn)/n

)
, and hence the upper bound on

‖β̂1−β∗1‖2 becomes ‖β̂1−β∗1‖2 ≤ 2c
′
2

√
kn(log pn)/n, provided kn = o(n2/3(log n)1/3) and

kn = o(n(log n)−1/2), where c
′
1 and c

′
2 are positive constants. The preceding upper bound

convergence rate is the same as the rate for the LAD estimator in Wang (2013) and the

Huber loss estimator in Loh (2017, 2018).

The proofs of Theorems 3.1–3.2 are based on Lemmas 3.2–3.3 given in Appendix B.

Lemma 3.2 is a novel concentration type inequality, established using the symmetrization

theorem (see, e.g., Theorem 14.3 in Bühlmann and van de Geer 2011), Massart’s con-

centration theorem (see, e.g., Theorem 14.2 in Bühlmann and van de Geer 2011), and

Theorem 2.7.11 of van der Vaart and Wellner (1996) on the bracketing/covering numbers.

A key condition used in the proofs is condition (D4), which enables us to establish an

important large deviation type result using concentration inequalities for sub-Gaussian

random variables (see, e.g., Corollary 14.6 in Bühlmann and van de Geer 2011).

Theorem 3.3. Suppose the conditions of Theorem 3.2 , λn
√
n‖d0‖2 = O(

√
kn), and√

n/kn min1≤j≤kn |β∗j | → ∞ hold. In addition, assume kn satisfies kn = o(nδ/(3+2δ)) and

kn = o(nε/(4+2ε)) simultaneously where δ and ε are defined in conditions (D1) and (D2).

Then with probability tending to one, there exists a global minimizer β̂ =
(
β̂T1 , β̂

T
2

)T
of

(3.3) such that β̂2 = 0 and

cT
(

(Z∗n)T Z∗n

)−1/2 (
2V−1

n

(
β̂1 − β∗1

)
+ nλnVnd̃0

)
D→ N

(
0, σ2

γ

)
,

where c is an arbitrary kn-dimensional vector satisfying cTc = 1 and d̃0 is a kn-dimensional

vector with the jth element dj sgn(β∗j ).
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The framework of proving Theorem 3.3 is similar to that of the proof on the asymptotic

normality theorem for the quantile regression estimator in Fan et al. (2014), in which their

theorem is proved under a very challenging ultrahigh-dimensional setting where log(pn) =

o(nb) for some constant b > 0. Many authors have obtained results of similar nature

as in Theorems 3.2–3.3 on consistency, model selection oracle property, and asymptotic

normality for various high- and ultrahigh-dimensional regularized robust regression M-

estimators, e.g., Fan and Peng (2004), Li et al. (2011), Bradic et al. (2011), Fan et al.

(2017), Loh (2017), and Sun et al. (2020), among others. Notwithstanding these advances,

only Li et al. (2011) have investigated such results for lq-loss functions (1 ≤ q < 2), as far

as we are aware. They considered the fixed-covariates case and assumed that p2
n/n → 0.

Thus, our results are rather interesting and original.

It is easy to verify that the lq-loss functions with 1 ≤ q < 2 satisfy the local δ-Lipschitz

condition. Several loss functions with bounded gradients/subgradients, including the

Huber loss, also satisfy this condition. If φ(1) is bounded then condition (D4) easily

follows, so it is not necessary.

The outliers of covariates are known to severely influence the performance of estimators

(Huber 1981). We note that our estimator is not affected by the outliers of covariates

due to the weight W (·) placed on the covariates. This feature, however, results in some

loss in efficiency, as the observations with large covariate values are downweighted even

if they are well-fitted. To mitigate this problem, we have introduced a tuning parameter

γ for efficiency improvement. It can considerably improve the efficiency of estimators in

the presence of outliers, particularly the outliers of the covariates.

In practice, the tuning parameter γ is determined by a data-driven method. From a

nonasymptotic viewpoint, γ can be chosen to balance the bias and robustness; see, e.g.,

Fan et al. (2017) and Sun et al. (2020). From an asymptotic standpoint on the other

hand, γ may be chosen to minimize a sample estimate of the asymptotic variance of β̂ββ1,

see Proposal 3 of Huber (1964, p. 98). For instance, in light of Theorem 3.3, a data-driven
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value for γ may be obtained as follows:

γ̂ = arg min
γ

cT V̂nV̂
T
n

(
n∑
i=1

(
X1iX

T
1i/γ

2
)
W 2 (Xi/γ)

)
V̂nV̂

T
ncσ̂2

γ,

where c is a vector satisfying cTc = 1, and V̂n and σ̂2
γ denote consistent estimators of Vn

and σ2
γ, respectively. We employed this method in our numerical studies, see Section 3.5.

One may also select γ so that
∑n

i=1[φ(1)((Yi−XT
1iβ̂ββ1)/γ)]2 has a predetermined value, see

Proposal 2 of Huber (1964, p. 97). Huber favored the latter approach because it “fits best

into the framework of conventional least squares techniques.”

3.4 Computational algorithm

For some loss functions, such as the lq-loss functions with 1 < q < 2, the objective

function (3.3) is not very smooth and, hence, the corresponding regularized optimization

problem of (3.3) is computationally challenging and costly. In order to accelerate the

computation of β̂ defined based on (3.3), here we implement a half-quadratic (HQ) refor-

mulation of the original objective function pioneered by Geman and Reynolds (1992) and

Geman and Yang (1995). A real-valued function K(·, ·) of two variables u and v is said

to be HQ if K is the quadratic function of u, where u and v may be vectors.

To motivate, let φ be a symmetric loss function satisfying the following conditions:

(i) φ is convex and even;

(ii) φ(
√
·) is concave on R+ = {x ∈ R : x ≥ 0};

(iii) φ is continuous near zero and C1 on R�{0}, where C1 denotes continuously dif-

ferentiable functions;

(iv) limx→∞ φ(x)/x2 = 0.

That is, φ grows slowly compared to the squared error loss function, and hence we

expect φ to be more robust against outliers. Most loss functions used in the robust

estimation literature satisfy the above conditions (i) to (iv), including the lq-loss functions

(0 < q < 2) and the Huber loss function.
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The dual function of φ is given by ψ(t) = supx∈R(φ(x) − tx2). Reciprocally, we have

φ(x) = inft∈R(tx2 + ψ(t)) using the theory of convex conjugate functions; see, e.g., Boyd

and Vandenberger (2004). That is, φ is the infimum of a family of quadratic func-

tions. This is known as a half-quadratic approximation of a convex function (Geman

and Reynolds 1992). The relationship between φ and ψ under different assumptions

on φ is analyzed in Geman and Reynolds (1992), Charbonnier et al. (1997), and Idier

(2001), among others. Using a one-to-one transformation φ(x) can be reformulated as

φ(x) = infs≥0(ψ−1(s)x2 + s). Then the function ψ−1(s)x2 + s is convex in (x, s) (see Idier

2001). Furthermore, ψ−1(s) is a decreasing function on [0,∞).

Based on the above construction we now consider the objective function

Qn(βββ, s) =
1

n

n∑
i=1

[ψ−1(si)(Yi −XT
i βββ)2 + si] + λn‖d ◦ βββ‖1 (3.4)

where si ∈ Iφ, i = 1, ..., n; s = (s1, ..., sn)T ∈ Inφ = Iφ× ...×Iφ (n terms); and Iφ = [0,∞).

Then Qn(βββ, s) is a convex function in (βββ, s), as the first term in (3.4) is a sum of convex

functions. Then we define an estimator of βββ as

β̂ = argβββ min
(βββ,s)∈Rpn×Inφ

Qn(βββ, s). (3.5)

Observe that β̂ is robust against outlying observations, as ψ−1(·) assigns a small value

for outliers. The objective function (3.4) can also be used for outlier detection: a small

value for ψ−1(si0) indicates that (Yi0 ,Xi0) is a potential outlier. The objective function

(3.4) also exhibits how a robust loss function φ operates in the presence of outliers.

The optimization problem (3.5) can be solved iteratively. That is, at each iteration one

minimizes Qn(βββ, s) w.r.t. βββ for fixed s and then minimizes w.r.t. s for fixed βββ. More

specifically, if βββ(i) and s(i) denote the values after ith iteration, then (i + 1)st step of the
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algorithm is given by

βββ(i+1) = arg min
βββ
Qn(βββ, s(i))

s(i+1) = arg min
s∈Inφ

Qn(βββ(i+1), s).

For the lq-loss functions φq(t) = |t|q with 1 ≤ q < 2, we have ψ−1
q (d) = q

2
( 2d

2−q )
(q−2)/q for

d > 0 (Idier 2001).

3.5 Simulation studies

A simulation study was conducted to evaluate the performance of the estimator β̂

along with other well-known estimators. As seen in the previous section, we can compute

our estimator β̂ by minimizing an objective function of the form

n∑
i=1

(
q

2

(
2di

2− q

)(q−2)/q (
(Yi −XT

i β)/γ
)2

+ di

)
W (Xi/γ) + nλn‖d̂ ◦ β‖, (3.6)

with an adaptive penalty function as in Chapter 2 simulation.

We now state the setups used in this simulation study. We set q = 1.5 in (3.6)

throughout this experiment. In addition, we fixed the sample size n to be 100 and the

dimension pn to be 400. In addition, the true regression vector was set to be

β = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, . . . , 0) ,

where the number of signals was fixed to be 10.

Moreover, we generated the covariates from two scenarios. That is, we generated the

covariates Xi from the following two settings:

(I) Xi’s follow a multivariate normal distribution N(0,Ω1) with covariance matrix Ω1 =

0.5|i−j| for i = 1, . . . , n and j = 1, . . . , pn, where n = 100 and pn = 400;

(II) Xi’s follow a mixture normal distribution 0.8N(0,Ω2) + 0.2N(µ,Ω1), where Ω2 =

Ipn×pn , µ = 31pn , Ω1 is as in setting I, and pn = 400. This setup produces covariates
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with some influential points.

Scenario I is widely used in simulation studies, and scenario II is used to generate

covariates with very large values, i.e., high leverage points. Also, we assessed the perfor-

mance of our estimator with different errors. Five different distributions of the noise were

investigated in this simulation study:

1 Normal distribution with mean 0 and standard deviation 2.5, denoted as N(0, 2.5);

2 Cauchy distribution with location 0 and scale 0.2;

3 MN1: A scale mixture of normal distributions for which σ = 0.1 with probability

of 0.9 and σ = 10 with probability of 0.1;

4 MN2: Normal distribution N(0, σ) where the standard deviation σ is sampled from

a uniform distribution Unif(1, 6);

5 t2: Student’s t distribution with degrees of freedom 2, denoted as t2.

Then we implemented two regression models to obtain the response variable Yi:

1. A high-dimensional linear regression model given by Yi = XT
i β+ei with i = 1, . . . , n.

This model is denoted as model 1;

2. A high-dimensional heteroscedastic model given by

Yi = XT
i βββ +

(
‖βββ‖2

2

)−1 (
XT
i βββ
)
ei, i = 1, . . . , n.

This model is denoted as model 2.

To demonstrate the advantages of the proposed procedure in the presence of the out-

liers and leverage points, we implemented other three methods for comparison:

(i) Lasso, the penalized least squares estimator with the l1-penalty;

(ii) R-Lasso, the regularized LAD estimator with the l1-penalty as in Wang (2013),

which is the same as the R-Lasso estimator in Fan et al. (2014);
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(iii) Huber-Lasso, the Huber function with α = IQR(y)/10 plus the l1-penalty, where

IQR stands for the inter-quartile range.

The performance of the estimators of interest was assessed using the following mea-

sures:

(1) l2 loss, defined as ‖β̂ββ − βββ∗‖2;

(2) l1 loss, defined as ‖β̂ββ − βββ∗‖1;

(3) FP: the number of false positives, i.e., the number of noises included in the model;

(4) FN: the number of false negatives, i.e., the number of signal covariates that are not

included;

(5) SD1: the standard deviation of l2 loss;

(6) SD2: the standard deviation of l1 loss.

For l2 and l1, we report both mean and median values in the tables presented below.

The minimization problem of function (3.6) was solved by using the block coordinate

gradient descent (BCGD) algorithm. To simplify the simulations, in this simulation study,

we set the regularization parameter λn to be 0.3
√

log pn/n. Our simulation demonstrates

that this choice of the regularization parameter could produce satisfactory results without

complicated computation that is demanded by applying cross-validation to select the

optimal λn. The weight vector d̂ in (3.6) was calculated based on the SCAD penalty

using R-Lasso as the initial estimator, and the tuning parameter γ in (3.6) was chosen

as described in Section 3.3. The results were obtained from 100 randomly generated

datasets. The results of the simulation study are summarized in Tables 3.1–3.4.

We now comment on the simulation results. Tables 3.1 and 3.3 present the simula-

tion results under model 1 with covariates from settings I and II, accordingly. It can be

seen from Tables 3.1 and 3.3 that the new method, lq Adaptive-Lasso, performed over-

whelmingly better than other procedures under almost all the scenarios. For example,
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when errors followed normal distributions, the l2 losses of Lasso, R-Lasso and Huber-Lasso

were 2.329, 1.875, and 1.914, respectively, while the lq Adaptive-Lasso gave only 1.553

for the l2 loss. A bigger advantage of using the new estimator is evident with the l1 loss

and FN. For example, again when errors followed normal distributions, our estimator’s l1

loss was only 4.792, which was far less than the l1 losses of other estimators. A similar

phenomenon is also revealed under other setups of error distributions. However, we shall

note that our estimator yielded larger l2 losses than R-Lasso when the errors followed

Cauchy distributions. Next, we comment on the simulation results in Tables 3.2 and 3.4,

where the simulation results are based on model 2 with settings I and II, respectively.

Overall, a similar trend as in Tables 3.1 and 3.3 is observed; however, model 2 tended

to produce smaller estimation errors when compared to those of model 1. For example,

Table 3.2 reveals that if the noise ei followed the MN2 distribution, the l2 losses of Lasso,

R-Lasso, and Huber-Lasso were 0.440, 0.306, and 0.384, respectively, whereas the l2 loss

of lq Adaptive-Lasso was 0.268, which again demonstrates that our estimator can well

handle large values of the covariates, i.e., high leverage points.

Under most scenarios studied in this simulation study, we observe that R-Lasso out-

performed the other two methods without adaptive weights in the penalties in terms of l1

and l2 losses. In addition, the simulation results reveal that as tails got heavier, Lasso’s

performance began to deteriorate quickly. This observation affirms again that R-Lasso

and Huber-Lasso are more capable of handling errors with heavy tails than Lasso method.

On the other hand, in the presence of outliers and high leverage points, the effectiveness

of our estimator is self-evident.

3.6 Real data application

In this example, we used the ovarian dataset 8-7-02 provided by the National Cancer

Institute (NCI) to evaluate the performance of our estimator. The dataset has also been
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Table 3.1: Simulation results under model 1 with covariates from setting I.

Scenario Method l2 l1 SD1, SD2 FN, PN

Normal Lasso 2.329, 2.293 15.454, 15.359 0.332, 1.916 75.13, 0

R-Lasso 1.875, 1.835 8.268, 8.191 0.358, 1.481 33.99, 0

Huber-Lasso 1.914, 1.879 10.564, 10.483 0.289, 1.682 49.71, 0

lq Adaptive-Lasso 1.553, 1.540 4.792, 4.569 0.302, 1.037 13.75, 0

Cauchy Lasso 6.994, 2.214 55.937, 14.089 15.836, 150.252 75.91, 0.54

R-Lasso 0.295, 0.280 1.281, 1.219 0.081, 0.337 33.65, 0

Huber-Lasso 0.523, 0.496 1.832, 1.690 0.174, 0.773 14.11, 0

lq Adaptive-Lasso 0.344, 0.269 1.081, 0.723 0.353, 0.998 13.50, 0

MN1 Lasso 3.044, 2.986 20.919, 20.949 1.000, 7.389 78.46, 0

R-Lasso 0.930, 0.917 4.053, 3.924 0.210, 0.863 33.95, 0

Huber-Lasso 1.134, 1.074 5.429, 5.092 0.349, 2.013 34.27, 0

lq Adaptive-Lasso 0.820, 0.839 2.331, 2.381 0.216, 0.700 7.45, 0

MN2 Lasso 3.669, 3.634 25.495, 25.410 0.474, 3.140 79.93, 0

R-Lasso 2.554, 2.432 11.051, 10.714 0.561, 2.232 33.45, 0

Huber-Lasso 2.951, 2.902 17.271, 17.024 0.476, 2.839 56.55, 0

lq Adaptive-Lasso 2.332, 2.304 8.863, 8.879 0.411, 1.783 13.63, 0

t2 Lasso 3.096, 2.154 21.851, 14.147 3.861, 32.849 73.62, 0.17

R-Lasso 1.056, 1.087 4.611, 4.678 0.249, 0.991 34.72, 0

Huber-Lasso 1.133, 1.104 5.671, 5.592 0.265, 1.395 37.72, 0

lq Adaptive-Lasso 0.916, 0.891 2.709, 2.529 0.242, 0.871 10.42, 0
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Table 3.2: Simulation results under model 2 with covariates from setting I.

Scenario Method l2 l1 SD1, SD2 FN, PN

Normal Lasso 0.258, 0.254 0.928, 0.899 0.057, 0.251 16.20, 0

R-Lasso 0.234, 0.226 0.989, 0.971 0.054, 0.220 33.03, 0

Huber-Lasso 0.303, 0.302 0.822, 0.807 0.062, 0.173 1.23, 0

lq Adaptive-Lasso 0.197, 0.198 0.511, 0.509 0.046, 0.122 2.41, 0

Cauchy Lasso 0.705, 0.190 4.461, 0.548 2.985, 24.099 19.03, 0.05

R-Lasso 0.035, 0.032 0.145, 0.135 0.012, 0.043 30.96, 0

Huber-Lasso 0.275, 0.266 0.741, 0.717 0.054, 0.146 0.28, 0

lq Adaptive-Lasso 0.052, 0.029 0.134, 0.077 0.068, 0.174 5.80, 0

MN1 Lasso 0.300, 0.275 1.230, 0.994 0.148, 0.867 18.96, 0

R-Lasso 0.110, 0.109 0.470, 0.463 0.114, 0.076 31.10, 0

Huber-Lasso 0.298, 0.284 0.805, 0.767 0.076, 0.224 1.02, 0

lq Adaptive-Lasso 0.099, 0.094 0.257, 0.237 0.029, 0.076 3.46, 0

MN2 Lasso 0.440, 0.434 2.033, 1.958 0.107, 0.638 33.10, 0

R-Lasso 0.306, 0.303 1.301, 1.274 0.078, 0.303 34.00, 0

Huber-Lasso 0.384, 0.365 1.129, 1.075 0.089, 0.292 5.71, 0

lq Adaptive-Lasso 0.268, 0.256 0.714, 0.698 0.079, 0.220 3.40, 0

t2 Lasso 0.246, 0.213 0.923, 0.672 0.117, 0.754 13.46, 0

R-Lasso 0.134, 0.124 0.559, 0.555 0.037, 0.155 32.26, 0

Huber-Lasso 0.294, 0.279 0.802, 0.753 0.075, 0.212 0.82, 0

lq Adaptive-Lasso 0.126, 0.109 0.334, 0.281 0.066, 0.182 3.55, 0
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Table 3.3: Simulation results under model 1 with covariates from setting II.

Scenario Method l2 l1 SD1, SD2 FN, PN

Normal Lasso 2.699, 2.649 17.579, 17.376 0.456, 2.805 78.31, 0

R-Lasso 2.211, 2.177 9.505, 9.218 0.446, 2.215 31.60, 0

Huber-Lasso 2.077, 2.036 8.801, 8.663 0.360, 2.078 33.62, 0

lq Adaptive-Lasso 2.001, 2.006 7.365, 6.978 0.438, 2.275 12.50, 0

Cauchy Lasso 6.447, 2.595 50.975, 18.200 13.744, 130.232 79.66, 0.46

R-Lasso 0.393, 0.369 1.702, 1.589 0.160, 0.780 31.53, 0

Huber-Lasso 0.678, 0.623 2.829, 2.628 0.240, 1.050 24.24, 0

lq Adaptive-Lasso 0.392, 0.357 1.156, 1.442 0.177, 0.636 19.50, 0

MN1 Lasso 3.170, 3.082 21.208, 20.793 1.050, 7.541 81.01, 0.01

R-Lasso 1.093, 1.041 4.772, 4.492 0.314, 1.581 32.41, 0

Huber-Lasso 1.167, 1.153 5.110, 5.066 0.348, 1.635 25.08, 0

lq Adaptive-Lasso 1.001, 0.940 3.182, 2.940 0.338, 1.401 11.42, 0

MN2 Lasso 3.900, 3.803 26.798, 26.356 0.654, 4.289 87.05, 0

R-Lasso 3.066, 3.015 13.320, 12.746 0.667, 3.417 32.58, 0

Huber-Lasso 2.935, 2.866 14.056, 13.942 0.626, 3.588 39.69, 0

lq Adaptive-Lasso 2.837, 2.877 11.291, 11.413 0.558, 2.455 17.70, 0

t2 Lasso 3.017, 2.575 20.353, 16.408 2.313, 18.823 76.12, 0.24

R-Lasso 1.279, 1.244 5.314, 5.329 0.252, 1.232 31.74, 0

Huber-Lasso 1.304, 1.342 5.766, 5.963 0.316, 1.581 30.06, 0

lq Adaptive-Lasso 1.160, 1.113 3.671, 3.460 0.247, 0.982 9.88, 0
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Table 3.4: Simulation results under model 2 with covariates from setting II.

Scenario Method l2 l1 SD1, SD2 FN, PN

Normal Lasso 0.954, 0.827 5.220, 4.356 0.465, 2.968 49.09, 0

R-Lasso 0.357, 0.324 1.567, 1.453 0.126, 0.606 35.81, 0

Huber-Lasso 0.666, 0.631 2.826, 2.654 0.224, 1.052 25.10, 0

lq Adaptive-Lasso 0.313, 0.284 0.904, 0.826 0.105, 0.323 9.85, 0

Cauchy Lasso 1.410, 0.332 9.453, 1.387 2.813, 21.861 38.96, 0.08

R-Lasso 0.073, 0.063 0.327, 0.291 0.034, 0.155 35.78, 0

Huber-Lasso 0.349, 0.300 1.451, 1.263 0.181, 0.787 23.11, 0

lq Adaptive-Lasso 0.096, 0.052 0.230, 0.145 0.144, 0.444 12.80, 0

MN1 Lasso 1.238, 0.972 7.421, 5.365 1.008, 6.708 49.67, 0

R-Lasso 0.193, 0.175 0.868, 0.775 0.091, 0.437 35.55, 0

Huber-Lasso 0.387, 0.318 1.609, 1.301 0.238, 1.041 22.97, 0

lq Adaptive-Lasso 0.221, 0.177 0.636, 0.508 0.148, 0.447 12.65, 0

MN2 Lasso 1.845, 1.826 11.421, 11.458 0.683, 4.547 67.11, 0

R-Lasso 0.469, 0.436 2.097, 1.954 0.203, 0.907 36.36, 0

Huber-Lasso 0.849, 0.811 3.685, 3.600 0.276, 1.330 26.48, 0

lq Adaptive-Lasso 0.416, 0.405 1.291, 1.149 0.178, 0.556 18.17, 0

t2 Lasso 0.918, 0.682 4.878, 3.254 0.706, 4.588 40.62, 0

R-Lasso 0.219, 0.204 0.937, 0.854 0.086, 0.421 35.80, 0

Huber-Lasso 0.481, 0.431 2.050, 1.826 0.196, 0.890 24.58, 0

lq Adaptive-Lasso 0.209, 0.193 0.610, 0.528 0.098, 0.299 10.76, 0
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investigated by Wu et al. (2003) where they compared the performance of several classes of

statistical methods for the classification of cancer based MS spectra that have been widely

used for biomarker identification and genome-wide protein profiling. Yu et al. (2005)

proposed a novel method for dimensionality reduction for ovarian cancer identification

based on mass spectrometry data. Li et al. (2011) examined the performance of the

nonconcave penalized M-estimation method in an ultrahigh-dimensional setup with using

the ovarian dataset. We compared our method with Lasso, R-Lasso and Huber Lasso

using this dataset.

The data is written as (xi, Yi) where xi ∈ Rpn represents the intensity vector and

Yi = 0/1 denotes the sample cancer status (0 for control, 1 for cancer). This dataset

consists of 15154 features and 253 spectra samples: 162 ovarian cancer samples and 91

control samples. The tuning parameter λn was determined by five-fold cross-validation.

We randomly selected 113 cases (73 ovarian cancer samples and 40 control samples)

and applied Lasso, R-Lasso, Huber-Lasso and lq Adaptive-Lasso respectively to select

the significant genes with the above tuning parameter. For further investigation, we

selected 24 samples as the training data to fit the regression and predicted the responses

of the test set. We repeated this process 100 times and then obtained the average of the

mean squared errors of the four methods. Table 3.5 summarizes our numerical findings.

According to Table 3.5, we observe that the new method tended to select more variables

when compared with the other three methods. Moreover, similar to what we have observed

from the simulation experiment, the new method produced a small mean squared error,

thus providing an accurate estimate.

Table 3.5: The summary of real data analysis.

Lasso R-Lasso Huber-Lasso lq Adaptive-Lasso

Number of selected variables 21 42 47 63

Mean squared error 0.0395 0.0238 0.2086 0.1773
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3.7 Conclusions

In this chapter, we study the high-dimensional lq-loss robust estimator for sparse linear

regression. We construct an lq-loss regularized estimator that is highly robust with respect

to the outliers in both the responses and covariates. We introduce a novel computational

algorithm to deal with computationally challenging lq-loss estimation problems. We prove

that the new estimator possesses the parameter consistency and oracle properties provided

certain conditions are satisfied.

Compared with the estimators proposed in Chapter 2, lq-loss regularized estimator

based on a data-driven penalty function also excels other well-known methods in reducing

the effect of outlying observations. Specifically, the proposed estimator enjoys advantages

in lessening the influence of outlying values of the response and predictors. The data

analysis part also demonstrates the practical use of the proposed method.

Future research along with this path may include choosing q by a data-driven method.

It is expected that for errors with heavy-tailed distributions, q can be chosen in a way

close to 1, while for errors with light-tailed and symmetric distributions, q can be chosen

close to 2.
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Chapter 4

Outlier detection and robust
estimation via penalized regression

4.1 Introduction

One of the most challenging tasks in statistics is to accurately estimate the regression

parameter β ∈ Rpn from some corrupted data. Recent progresses have largely centered

around investigating large-scale datasets in which the number of variables greatly exceeds

the number of observations. Datasets with a large number of variables but a relatively

small sample size, i.e. high-dimensional datasets, pose unprecedented difficulties in sta-

tistical research. There have been various lines of research on high-dimensional statistical

inference. One of the fundamental work is Lasso that uses an l1-penalty (Tibshirani 1996)

to enforce sparsity:

min
β
‖Y −Xβ‖2

2 + λn‖β‖1.

Another pioneering work is Fan and Li (2001), where they examined a general class of

penalized robust regression estimators of the form

β̃ = arg min
β

n∑
i=1

ρα(Yi −XT
i β) + n

p∑
j=1

pλnj(|βj|).

Other noted works include Wright et al. (2009), Wainwright (2009), Lv and Fan (2009),

Zhang (2010), Meinshausen and Bühlmann (2010), and Loh (2018).

In practical applications, outliers are bound to occur and without proper methods to
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handle them, those outliers may cause severe statistical problems in parameter estimation,

inference, and model selection. Hampel et al. (1986) noted that a real dataset usually

contains 1 to 10 percent outliers. Most of the existing techniques for parameter estimation,

however, are highly fragile in the presence of outliers and high leverage points. Lasso, for

example, is sensitive to outliers - even a single unusual observation may make it impossible

to faithfully recover the regression vector β. Quantile regression is robust to outliers, yet

sensitive to the leverage points. Weighted LAD (WLAD) regression was then proposed

by Giloni et al. (2006) to overcome the weakness of LAD regression thus improving the

robustness. However, the performance of the WLAD estimator deteriorates when the

percentage of outliers increases. Researchers have since managed to develop a variety of

methods to identify the outliers so that robust estimation can be guaranteed; the leave-

one-out approach (Weisberg 1985) is among them. However, these methods are restricted

to tackle the situation where only one outlier occurs.

Thus, developing an estimator that is able to resolve outlier detection and robust

estimation simultaneously has attracted increasing attention from statistical researchers.

Gannaz (2006), McCann and Welsch (2007), and She and Owen (2011) investigated the

mean-shift model : Yi = XT
i β+γi + ei, where γ = (γ1, . . . , γn)T acts as a vector indicating

the locations of outliers. Andrea (2010) developed multivariate outlier tests based on

the high-breakdown minimum covariance determinant estimator. She and Owen (2011)

introduced an estimator by solving the squared loss of the mean-shift model with an l1-

penalty on the mean-shift vector γ. This method enjoys good performance on identifying

outliers. However, it fails to perform variable selection and also has small breakdown

points. Alfons et al. (2013) developed a procedure that is called the sparse least trimmed

squares method. This procedure is designed to solve minhi=1 r
2
(i) where r2

(i)’s are the order

statistics of r2
i = (Yi−XT

i β)2 and h is a truncation number. Kong et al. (2018) proposed

a method based on the squared loss of the mean-shift model with two penalty functions

on the mean-shift vector and the parameter vector. Their estimator can achieve both high

breakdown points and high efficiency. Gao and Feng (2018) proposed the PWLAD method
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in which the weights quantifying the outlying effects for each observation are introduced

to the objective function. Jiang et al. (2020) inherited the idea of Gao and Feng (2018)

proposing the penalized weighted LAD-LASSO (PWLAD-LASSO) estimator such that

the new estimator possesses both robust estimation and outlier detection properties. She

et al. (2021) established a general resistant learning framework to robustify an arbitrarily

given loss. In their paper, they introduced an l0 + l2 form of regularization to address the

situation in which gross outliers occur in the high-dimensional data.

In this chapter, our goal is also to develop a procedure that can perform outliers de-

tection and robust parameter estimation simultaneously. Again we consider the following

linear regression model

Yi = XT
i βββ + ei, i = 1, ..., n,

where β ∈ Rpn is a pn-dimensional coefficient vector, Xi ∈ Rpn is a random covariate

vector and ei ∈ R is a random error. We denote β∗ as the true regression vector of β.

To tackle the minimization of regularized functions, Geman and Reynolds (1992)

and Geman and Yang (1995) developed the multiplicative and additive half-quadratic

reformulation of the original functions. For the Huber loss (Huber 1964) defined as

φα(t) = 1
2
t2I[|t| ≤ α] + α(|t| − 1

2
α)I[|t| > α], where α > 0, the dual function of

φα(t) satisfying ψα(s) = supx∈R (φα(x) − 1
2
(x
√
c − s√

c
)2) is given by ψα(s) = s2

2c(c−1)
if

|s| ≤ (c− 1)α, otherwise ψα(s) = α|s|
c
− α2(c−1)

2c
, for c > 1. For c = 1, ψα(s) = α|s|. Then

we have φα(x) = infs∈R (1
2
(x
√
c − s√

c
)2 + ψα(s)), see Nikolova and Ng (2005). Based on

this construction, we obtain the estimator of β∗ by minimizing the following objective

function

Qn(βββ, s) =
1

n

n∑
i=1

(
c

2

(
Yi −XT

i βββ−
si
c

)2

+ ψα(si)

)
W (Xi) + pλn(βββ), (4.1)

where c ≥ 1, s = (s1, ..., sn)T and pλn(βββ) = λn
∑pn

j=1 |βj|. See Section 3.4 for motivation.

For a vector x ∈ Rpn and an arbitrary set T ⊆ {1, . . . , pn}, we let xT ∈ RT denote the

vector x restricted to T. In this chapter, we denote T := supp(β∗), the support of β∗. As
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in the classical framework of regularization problems, pλn(βββ) encourages the sparsity of

β. We aim at minimizing Qn(βββ, s) w.r.t. (β, s) :

(
β̂, ŝ

)
= arg min

(βββ, s)
Qn(βββ, s). (4.2)

The optimization problem (4.2) can be solved iteratively. That is, at each iteration one

minimizes Qn(βββ, s) w.r.t. βββ for fixed s and then minimizes w.r.t. s for fixed βββ. In (4.1),

the auxiliary vector s can be viewed as the error vector, similar to γ in the mean-shift

model. Therefore, the new procedure can be used for parameter estimation and outlier

detection simultaneously.

To establish the desired theoretical results, we need a restricted strong convexity (RSC)

condition (see Negahban et al. 2012), which has been shown to be critical in the study of

high-dimensional frameworks. The loss function Ln(θ) satisfies the RSC condition over

some set A if

Ln(θ∗ + ∆)− Ln(θ∗)− 〈∇Ln(θ∗),∆〉 ≥ κL‖∆‖2
2 − τ 2

L

holds with some curvature κL > 0 and tolerance τL for all ∆ ∈ A where θ∗ is the vector

containing the true values of θ.

The organization of this chapter is as follows. In Section 4.2, we provide non-asymptotic

bounds for the l2 error: ‖β̂−β∗‖2, where β̂ is the estimate of β∗. Section 4.2 also details

the specific choices of the regularization parameter λn under two types of error distri-

butions: sub-Gaussian and sub-exponential distributions. Sections 4.3 and 4.4 present

the simulation and real data analysis results, respectively. The proofs related to our

theoretical results are present in Appendix C.

4.2 Parameter estimation of β

Theorem 4.1. Suppose that X1, . . . ,Xn are i.i.d random variables satisfying ‖Xi‖2
2W (Xi) ≤

1 and λmin

(
E
(
c
2
X1X

T
1W (X1)

))
> 0 for all i = 1, . . . , n. Further, assume that λn ≥
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2‖∇βL∗n (β∗, s) ‖∞ for any s, where

L∗n(β, s) =
1

n

n∑
i=1

(
c

2

(
Yi −XT

i βββ−
si
c

)2

+ ψα (si)

)
W (Xi).

Then with high probability, there exists some constant ζ > 0 such that the estimate β̂ from

(4.2) satisfies

‖β̂ − β∗‖2 ≤ 3ζ−1λn
√
kn,

where kn is the number of the signals of β∗.

In Theorems 4.2 and 4.3 exhibited below, we give the mechanisms for selecting the

regularization parameter λn such that the constraint λn ≥ 2‖∇βL∗n (β∗, s) ‖∞ holds. For

this purpose, we assume the following condition on s which gives an upper bound on the

number of contaminated observations.

Condition 1: s satisfies ‖s‖1 ≤ c1an, where an ≤
√
n log(pn) and c1 is some positive

constant.

Theorem 4.2. Suppose that condition 1 holds and X1, . . . ,Xn are i.i.d random vari-

ables satisfying ‖Xi‖2
2W (Xi) ≤ 1. Moreover, assume that the ei’s are independent of the

Xi’s and follow a sub-Gaussian distribution with E(ei) = 0. In addition, if the regulariza-

tion parameter λn satisfies

λn = 2

(
c

√
2σ2ε log pn

n
+ c1

√
log pn
n

)

for some constants ε > 1 and c1 > 0, then with high probability, λn ≥ 2‖∇βL∗n (β∗, s) ‖∞.

Theorem 4.3. Suppose that condition 1 holds and X1, . . . ,Xn are i.i.d random vari-

ables satisfying ‖Xi‖2
2W (Xi) ≤ 1. Moreover, assume that the ei’s are independent of the

Xi’s and follow a distribution that satisfies E(ei) = 0 and

1

n

n∑
i=1

E|ei|m ≤
m!

2
Km−2
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for any i = 1, . . . , n, m = 2, 3, . . . , and some constant K > 0. In addition, if the regular-

ization parameter λn satisfies

λn = 2

(
c2

√
log(2pn)

n
+ c1

√
log(pn)

n

)

where c1 and c2 are some positive constants, then with high probability, λn ≥ 2‖∇βL∗n (β∗, s) ‖∞.

The proofs of above theorems are provided in Appendix C.

4.3 Simulation study

In this section, we demonstrate the theoretical properties of our new method via a

simulation study. First, let us introduce the mean-shift model defined by

Yi = XT
i β + ui + εi

for i = 1, . . . , n, where n is the sample size. Note that Yi ∈ R is a response variable,

βββ ∈ Rpn is a pn-dimensional regression coefficient vector, Xi ∈ Rpn is a covariate vector,

and εi ∈ R represents an error term that is generated from a standard normal distribution

N(0, 1). The mean-shift vector u = (u1, . . . , un)T artificially injects outliers when ui is

nonzero. In other words, when ui = 0 the ith observation is not an outlier, otherwise

the ith observation is an outlier. It is expected that most of the components in u are

zero as in general only a few outliers are present in applications. More details about the

formulation of the mean-shift model can be found in Gannaz (2006) and McCann and

Welsch (2007).

In our simulation study, we plan to verify that the new procedure is capable of de-

tecting outliers and has good robustness properties. That is, it could effectively reduce

masking and swamping, thus improving the efficiency and accuracy of the estimators.

When multiple outliers mask each other and go undetected is known as masking, whereas

swamping essentially means labeling good observations as outliers. These two effects are
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more common in large datasets with multiple outliers.

To evaluate the performance of the new method, two different settings were investi-

gated:

1. Setting I: We generated the design matrix X from N (0,Σ) where Σij = ρ|i−j| with

ρ = 0.5. Then we modified the first O rows of X to be L× [1, . . . , 1]. Two different

values of L were studied: 5/10. We set the shift vector u to be
(
{5}O, {0}n−O

)T
. We

investigated different O in this simulation experiment. The true coefficient vector

was defined as

β∗1 = (1, 0.3, 0.2, 0, 0,−0.2,−0.3,−1, 0, . . . , 0),

where pn = 500 and n = 200.

2. Setting II: We considered a setup where sample size n = 200 and pn was set to be

1000 with the true vector being fixed as

β∗2 = (1, 0.5, 0, 0,−0.5,−1, 0, . . . , 0).

Note that the number of signals was fixed as 4. The design matrix X was generated

from the same scheme employed in setting I.

Note again that we are interested in minimizing the objective function given below:

Qn(βββ, s) =
1

n

n∑
i=1

( c
2

(Yi −XT
i βββ−

si
c

)2 + ψα(si)
)
W (Xi) + λn

pn∑
j=1

|βi|,

where si ∈ Iφ, i = 1, ..., n, s is sparse defined as s = (s1, ..., sn)T ∈ Inφ = Iφ × ... × Iφ

(n terms) and W (x) is a weight function given as W (x) = min{1, b
(‖Bx‖2)2

} with b ∈ R

and B ∈ Rpn×pn fixed constants. Without loss of generality, we set b = 1 and B to be an

identity matrix. We also set c = 1, thus resulting in ψα(s) = α|s|. The tuning parameter

α was fixed to be 1.34 throughout the experiment. The tuning parameter λn was fixed as

4
√
σ2 log(pn)/n.

The performance of the proposed estimator was assessed using the following measures:
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1. M: the fraction of undetected true outliers (masking);

2. S: the fraction of good points perceived as outliers (swamping);

3. JD: the number of simulations without masking;

4. The mean squared error defined as

Err = (β̂ − β∗)T (β̂ − β∗),

where β̂ is the estimate of the parameter vector β∗;

5. The false zero rate (FZR), that is the fraction of nonzero coefficients that are esti-

mated as zero;

6. The false positive rate (FPR), that is the fraction of zero coefficients that are esti-

mated as nonzero;

7. The correct selection rate (SR), the fraction of identifying both nonzeros and zeros

of β∗;

8. The correct coverage rate (CR), the fraction of identifying nonzeros of β∗.

In addition, we compared our method with the sparse least trimmed squares method

(S-LTS), PM method (Kong et al. 2018), and PIQ (She et al. 2021). They were served

as benchmarks for the evaluation of our procedure’s performance. To reduce the com-

putational complexity, we fixed the regularization parameter as 0.1
√

log(pn)/n for both

setting I and setting II. A similar approach can be seen in Loh (2017). For the S-LTS

method, the truncation number was set to be the largest integer less than 0.75n, b0.75nc.

Alfrons et al. (2013) suggested that taking a value of h equal to 75% of the sample size

could guarantee a sufficiently high statistical efficiency. For PM method, we took an ap-

proach by using the sparse least trimmed squares method to obtain the initial estimator.

Again the truncation parameter was fixed as the floor of 0.75n throughout the simulation

experiment to warrant a consistent comparison. For each setting, we present the average
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values of the performance measures considered in this simulations by 100 repetitions. The

simulation results are summarized in Tables 4.1–4.4:

Table 4.1: The Summary of the simulation study with n = 200, pn = 500 and L = 5
under setting I.

O Method M S JD Err FZR FPR SR CR

10 New 0.008 0.197 92 0.218 0.183 0.016 0 0.26

PM 1 0.0003 0 0.654 0.480 0.004 0 0

S-LTS 0 0.211 100 0.204 0.130 0.043 0 0.40

PIQ 0.148 0.034 64 0.239 0.243 0.009 0 0.06

20 New 0.010 0.191 89 0.201 0.160 0.021 0 0.30

PM 1 0 0 0.723 0.470 0.006 0 0

S-LTS 0.001 0.167 98 0.195 0.086 0.067 0.02 0.48

PIQ 0.239 0.082 52 0.297 0.267 0.009 0 0.06

30 New 0.057 0.187 76 0.256 0.160 0.021 0 0.36

PM 1 0 0 0.753 0.490 0.005 0 0

S-LTS 0.057 0.131 90 0.249 0.120 0.054 0 0.46

PIQ 0.213 0.120 48 0.385 0.317 0.010 0 0.02

40 New 0.301 0.251 46 0.625 0.323 0.018 0 0.14

PM 1 0.0003 0 0.765 0.477 0.007 0 0

S-LTS 0.465 0.179 48 0.603 0.283 0.039 0.02 0.20

PIQ 0.179 0.170 54 0.529 0.343 0.010 0 0

Now let us remark on the numerical results. From Tables 4.1 and 4.2, we find that

our method had its best performance when L was relatively small and O was relatively

large. For example when L = 5 and O = 30, the M values of both the new estimator and

the S-LTS estimator were 0.057, while the M value of PIQ was 0.213. In addition, when

O increased to 40, our estimator began to outperform the S-LTS estimator in terms of

masking. However, when compared with the S-LTS estimator, our estimator tended to

produce larger values of swamping and errors. We also notice that PM method, though

had the smallest swamping values, heavily suffered from masking.

Additionally, Tables 4.1 to 4.4 reveal that the performance of methods investigated

was also significantly affected by the values of L. To be specific, as the values of L

increased, PM, PIQ, S-LTS along with our estimator began to yield larger M and Err
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Table 4.2: The Summary of the simulation study with n = 200, pn = 500 and L = 10
under setting I.

O Method M S JD Err FZR FPR SR CR

10 New 0.028 0.194 90 0.209 0.143 0.015 0 0.34

PM 1 0 0 0.319 0.313 0.003 0 0.02

S-LTS 0.002 0.211 98 0.193 0.100 0.039 0 0.48

PIQ 0.356 0.045 46 0.222 0.233 0.009 0 0.12

20 New 0.070 0.186 76 0.207 0.143 0.017 0 0.38

PM 1 0 0 0.332 0.323 0.003 0 0.02

S-LTS 0.002 0.167 96 0.196 0.107 0.041 0 0.50

PIQ 0.427 0.103 40 0.329 0.280 0.009 0 0.04

30 New 0.103 0.186 60 0.228 0.187 0.018 0 0.32

PM 1 0 0 0.409 0.407 0.002 0 0

S-LTS 0.004 0.118 93 0.218 0.130 0.041 0 0.48

PIQ 0.514 0.173 30 0.496 0.347 0.010 0 0

40 New 0.108 0.202 64 0.379 0.243 0.021 0 0.26

PM 1 0.0003 0 0.407 0.423 0.003 0 0

S-LTS 0.096 0.087 86 0.375 0.190 0.046 0 0.36

PIQ 0.395 0.224 40 0.663 0.377 0.010 0 0

Table 4.3: The Summary of the simulation study with n = 200 and pn = 1000 with
L=5 under setting II.

O method M S JD Err FZR FPR SR CR

10 New 0.002 0.197 98 0.241 0 0.011 0 1

PM 1 0 0 0.936 0.295 0.002 0.02 0.12

S-LTS 0 0.211 100 0.225 0 0.028 0 1

PIQ 0.088 0.031 75 0.151 0.060 0.002 0 0.78

20 New 0.011 0.182 85 0.272 0 0.013 0 1

PM 1 0 0 1.124 0.390 0.002 0 0.08

S-LTS 0 0.167 100 0.263 0 0.032 0 1

PIQ 0.140 0.071 70 0.241 0.105 0.002 0 0.63

30 New 0.055 0.187 80 0.323 0.031 0.014 0 0.90

PM 1 0 0 1.001 0.330 0.003 0 0.06

S-LTS 0.067 0.129 93 0.315 0.013 0.031 0 0.95

PIQ 0.128 0.105 67 0.423 0.185 0.003 0 0.41

40 New 0.223 0.255 42 0.756 0.175 0.011 0 0.58

PM 1 0 0 1.163 0.405 0.003 0 0.08

S-LTS 0.402 0.163 55 0.732 0.120 0.023 0 0.66

PIQ 0.110 0.152 54 0.772 0.308 0.003 0 0.17
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Table 4.4: The Summary of the simulation study with n = 200 and pn = 1000 with
L=10 under setting II.

O method M S JD Err FZR FPR SR CR

10 New 0.082 0.207 80 0.265 0 0.009 0.04 1

PM 0.998 0.0001 0 0.450 0.125 0.002 0.18 0.58

S-LTS 0.004 0.211 95 0.243 0 0.025 0.02 1

PIQ 0.208 0.041 63 0.172 0.078 0.002 0 0.70

20 New 0.058 0.186 78 0.255 0.010 0.010 0.02 0.96

PM 1 0 0 0.641 0.150 0.001 0.08 0.46

S-LTS 0.002 0.167 94 0.240 0.010 0.027 0 0.96

PIQ 0.231 0.090 61 0.344 0.168 0.003 0 0.42

30 New 0.068 0.199 74 0.305 0.031 0.011 0 0.95

PM 1 0 0 0.519 0.140 0.002 0.14 0.48

S-LTS 0.025 0.122 90 0.294 0.025 0.027 0 0.95

PIQ 0.178 0.135 57 0.489 0.258 0.003 0 0.23

40 New 0.133 0.195 65 0.430 0.087 0.014 0 0.88

PM 1 0 0 0.527 0.140 0.002 0.12 0.56

S-LTS 0.118 0.092 87 0.431 0.075 0.030 0 0.88

PIQ 0.167 0.167 42 0.878 0.365 0.003 0 0.11

values. Furthermore, it is also revealed that the number of outliers cast a huge influence

on the performance of these methods under investigation. For instance, when the number

of outliers increased, the values of both masking and swamping increased accordingly. We

also find that under both settings of interest, L = 5 and L = 10, PM recorded the worst

performance.

Another finding is that the dimensions of the regression vector also affected the es-

timators’ performance. For example, when L = 5 and pn increased from 500 to 1000,

we observe an improvement of PIQ, PM and the new estimator in terms of M , S and

JD. On the other hand, the S-LTS estimator and the new estimator enjoyed very small

masking when O was relatively small.

4.4 Real data application

In this section, we investigated the colon tumor dataset. Colon cancer is a substantial

public health problem. Throughout the years, we have witnessed a quick population
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growth of this cancer on a global level. The colon tumor dataset contains 62 samples of

colon epithelial cells from colon cancer patients. This dataset consists of tumor bipsies

collected from tumors, and normal biopsies collected from the healthy part of the colons

of the same patient, which results in 40 tumors samples and 22 normal colon tissues

samples, respectively. The gene expressions in the colon tumor dataset were analyzed

with an Affymetrix oligonucleotide array complementary to more than 6,500 human genes

by Alon et al. (1999). They reduced the dimension to 2000.

Since no outliers were specified in this colon tumor dataset, we artificially injected out-

liers into the dataset. We began by creating the following two sets O = {10, 15, 20} and

L = {2000, 20000, 25000}, where set O contains the number of rows we planned to modify

and L contains the values of the leverage points. We investigated different combinations

of O and L, thus rendering in 9 different scenarios. Considering the computational com-

plexity given the large dimension, the tuning parameter was set as 4
√

log pn/n. Empirical

results of the colon tumor dataset are presented in Table 4.5. Note that when presenting

the results, we use a three-dimensional vector to represent the values of masking, swamp-

ing, and the number of nonzero components identified respectively. The ∗ denotes the

values that are not applicable.

Table 4.5: The summary of real data application.

Scenarios New S-LTS PM

(0, 0) (∗, ∗, 0) (∗, ∗, 15) (∗, ∗, 0)

(10, 2000) (0.5, 0, 5) ( 0.5, 0.192, 15) (1, 0, 0)

(15, 2000) (0.467, 0, 8) (0.467, 0.149, 15) ( 0.467, 0, 8)

(20, 2000) (0.5, 0, 10) (0.5, 0.119, 15) (0.5, 0, 10)

(10, 20000) (0.5, 0, 5) (0, 0.096, 15) (1, 0, 0)

(15, 20000) (0.467, 0, 8) (0, 0, 15) ( 0.533, 0, 7)

(20, 20000) (0.5, 0, 10) (0.5, 0.119, 15) (1, 0, 0)

(10, 25000) (0.5, 0, 5) (0, 0.096, 15) (1, 0, 0)

(15, 25000) (0.467, 0, 8) (0, 0, 15) (1, 0, 0)

(20, 25000) (0.5, 0, 10) (0.85, 0.286, 15) (0.5, 0, 10)
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According to Table 4.5, we find that when the leverage value was relatively small,

for example 2000, all the methods under investigation suffered from either masking or

swamping. Although, the new method suffered from masking, yet enjoyed good perfor-

mance with regard to swamping. We also observe that the new method tended to select

fewer observations as outliers when compared with the S-LTS method.

4.5 Conclusions

This chapter studies the parameter estimation and outlier detection for the linear

regression model in a high-dimensional setting. We investigate the multivariate linear

regression model. In the multivariate linear regression model, outliers are mainly intro-

duced by errors with heavy-tailed distributions. To tackle this problem, we propose a

new method that can detect the presence of outliers and perform parameter estimation.

The theoretical results show that our new method can accurately estimate the regression

vector under certain conditions. To illustrate our methodology, we carried out exten-

sive simulations and real data analysis. From the empirical results, we are able to show

that our method is robust against outliers and estimates the parameter accurately by

producing small l2 errors.
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Chapter 5

Conclusions

In this thesis, two important high- and ultrahigh-dimensional statistical topics are

studied:

� Parameter estimation and model selection under the high-dimensional linear regres-

sion model;

� Outlier detection and parameter estimation under the high-dimensional linear re-

gression model.

The following is an outline of the main results, the limitations that the proposed meth-

ods have, and the possible future directions in high- and ultrahigh-dimensional statistics.

In Chapters 2 and 3, a two-step procedure is proposed on a class of loss functions. Two

estimators are derived based on this two-step procedure. First: the generalized adaptive

robust regression estimator. We prove that the proposed estimator can handle the outliers

and leverage points with high-dimensional data under certain conditions. Also, this pro-

cedure is applicable for ultrahigh-dimensional datasets. The second estimator proposed

is lq robust regression estimator. It is shown that this new estimator still possesses the

estimation consistency and oracle properties. Simulation results demonstrate that meth-

ods using adaptive weights in the penalty functions can lead to more accurate estimation.

However, the empirical results also reveal the limitations of our methods. The problems

may be resolved by either applying our methods to datasets with different sample sizes

and dimensions or choosing a different initial estimator.
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In Chapter 4, we investigate the problem of robust estimation and outlier detection si-

multaneously in the linear regression model under a high-dimensional setting. We present

the estimation consistency of the proposed method. Our simulation results show that our

estimator enjoys good performance with regard to masking, swamping, and parameter es-

timation; however, it has limitations when compared with the S-LTS method. We believe

that the new method is not sufficient in dealing with situations where outliers are present

in certain high-dimensional settings and further research is needed in this area.

Due to the novelty of the topics investigated in this thesis, we hope that further

research will follow from this thesis.
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Appendix A:

Supplementary material for

Chapter 2

A.1: Proofs of theorems in Chapter 2

Proof of Theorem 2.1.

For a given µ > 0, define the set

B(µ) = {β =(βT1 ,β
T
2 )T ∈ Rpn : ‖β − β∗‖2 ≤ µ, supp(β) ⊆ supp(β∗)},

where supp(β∗) = {1, ..., kn}. Denote

I =
n∑
i=1

φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ)−

n∑
i=1

φ
(
(Yi −XT

i β
∗)/γ

)
W (Xi/γ).

We first show that for any β = (βT1 ,0
T )T ∈ B(µ),

E(I) ≥ cn ‖β1 − β∗1‖
2
2 , (A.1)

for sufficiently large n and when µ is properly chosen, where c > 0 is some constant.
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Write β1 = β∗1 + κ, where ‖κ‖2 = µ. Then note that

I =
n∑
i=1

φ
((
Yi −XT

1i(β
∗
1 + κ)

)
/γ
)
W (Xi/γ)−

n∑
i=1

φ
((
Yi −XT

1iβ
∗
1

)
/γ
)
W (Xi/γ)

=
n∑
i=1

∫ −XT
1iκ

0

1

γ
W (Xi/γ)

(
φ(1) ((ei + t) /γ)− φ(1) (ei/γ)

)
dt

− 1

γ

n∑
i=1

W (Xi/γ)φ(1) (ei/γ) XT
1iκ.

As the errors ei’s are independent of the covariates Xi’s and from condition (C2), we

obtain

E(I) = E

(
n∑
i=1

∫ −XT
1iκ

0

1

γ
W (Xi/γ)

(
φ(1) ((ei + t) /γ)− φ(1) (ei/γ)

)
dt

)
.

Again using (C2), we have

E (I) =
n∑
i=1

E

(
1

γ
W (Xi/γ)

∫ −XT
1iκ

0

E
(
φ(1) ((ei + t)/γ)

)
dt

)

=
n∑
i=1

E

(
1

γ
W (Xi/γ)

∫ −XT
1iκ

0

(g(γ)t+ o (|t|q(γ))) dt

)

=
g(γ)

2γ
κTE

(
n∑
i=1

X1iX
T
1iW (Xi/γ)

)
κ+ o(1)

q(γ)

2γ
n‖κ‖2

2.

(A.2)

By condition (C4), we have κTE
(∑n

i=1 X1iX
T
1iW (Xi/γ)

)
κ ≥ cn‖κ‖2

2 for some constant

c > 0. Further ‖κ‖2 = µ. Therefore, (A.1) now follows from (A.2).

Although (A.1) holds for any vector β =
(
βT1 ,0

T
)T ∈ B(µ), it is possible that

β̂ =
(
β̂T1 ,0

T
)T

may not be in the set B(µ). Therefore, consider a new vector β̃∗ =(
(β̃∗1)T ,0T

)T
, with

β̃∗1 = M β̂1 + (1−M)β∗1,

where M = µ/(µ + ‖β̂1 − β∗1‖2). It is easy to verify that β̃∗ ∈ B(µ). Then using the

convexity of the objective function Qn(β) defined by (2.4) and the definition of β̂1, we

have

Qn(β̃∗) ≤MQn(β̂1,0) + (1−M)Qn(β∗1,0) ≤ Qn(β∗).
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Denote υn(β) =
∑n

i=1 φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ). Using the preceding inequality and

the triangle inequality, we obtain

E
(
υn(β̃∗)− υn(β∗)

)
= (υn(β∗)− Eυn(β∗))−

(
υn(β̃∗)− Eυn(β̃∗)

)
+Qn(β̃∗)−Qn(β∗) + nλn‖d0 ◦ β∗1‖1 − nλn‖d0 ◦ β̃∗1‖1

≤ nZn(µ) + nλn‖d0 ◦ (β∗1 − β̃∗1)‖1,

where Zn(µ) = supβ∈B(µ)
1
n
|υn(β)− υn(β∗)− E(υn(β)− υn(β∗))| . By the Cauchy-Schwarz

inequality, the second term is bounded by nλn‖d0‖2µ, and hence we obtain

E
(
υn(β̃∗)− υn(β∗)

)
≤ nZn(µ) + nλn‖d0‖2µ. (A.3)

Define An = {Zn(µ) ≤ 2µ
√
kn(log n)/n}. By Lemma 2.2, it follows that P(An) → 1

as n→∞. Now combining (A.1) and (A.3), on An we have

cn‖β̃∗1 − β∗1‖2
2 ≤ 2µ

√
knn log n+ nλn‖d0‖2µ.

Take µ = O(
√
kn/n + λn‖d0‖2). Then by conditions in Theorem 2.1, µ → 0. The above

inequality then yields that

‖β̃∗1 − β∗1‖2
2 ≤ O

((√
kn(log n)/n+ λn‖d0‖2

)(√
kn/n+ λn‖d0‖2

))
,

≤ O
(√

kn(log n)/n+ λn‖d0‖2

)2

. (A.4)

Since ‖β∗1 − β̃∗1‖2 ≤ O(µ) implies ‖β̂1 − β∗1‖2 ≤ O(µ), from (A.4) it follows that on the

event An,

‖β̂1 − β∗1‖2 ≤ O
(√

kn(log n)/n+ λn‖d0‖2

)
.

A bound for the l1-loss follows from the inequality ‖β̂1 − β∗1‖1 ≤
√
kn‖β̂1 − β∗1‖2. This

completes the proof of the first part of Theorem 2.1. The second part follows trivially.

Proof of Theorem 2.2.

From Theorem 2.1, β̂1 is a minimizer of Qn(β1,0), so it satisfies the Karush-Kuhn-

Tuker (KKT) conditions in optimization theory. Thus, in order to prove that β̂ =
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(
β̂T1 ,0

T
)T

is a global minimizer of Qn(β) in the space Rpn , we only need to show that

the following condition is satisfied:∥∥∥d−1
1 ◦QTΨ(1)

(
Y − Xβ̂

)∥∥∥
∞
< nλn, (A.5)

where Ψ(Y−Xβ̂) = (φ((Y1−XT
1 β̂)/γ)W (X1/γ), ..., φ((Yn−XT

n β̂)/γ)W (Xn/γ))T , d−1
1 =(

d−1
kn+1, . . . , d

−1
pn

)T
, and Q is the submatrix containing the noise covariates. Note that

Yi −XT
i β = Yi −XT

1iβ1 when β2 = 0 for all i. Then the KKT conditions together with

the convexity of Qn(β) verify that β̂ is a global minimizer of

Qn(β) =
n∑
i=1

φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ) + nλn‖d ◦ β‖1.

Consider the events

N1 = {‖β̂1 − β∗1‖2 ≤ sn},

and

N2 = {sup
β∈N
‖d−1

1 ◦QTΨ(1) (Y − Xβ) ‖∞ < nλn},

where Ψ(Y − Xβ) = (φ((Y1 − XT
1 β)/γ)W (X1/γ), ..., φ((Yn − XT

nβ)/γ)W (Xn/γ))T and

Ψ(1) is the first derivative of Ψ. Also define the set

N = {β =
(
βT1 , β

T
2

)T ∈ Rpn : β2 = 0, ‖β1 − β∗1‖2 ≤ sn},

where sn is as defined in Theorem 2.1. Then from Theorem 2.1 and Lemma 2.3, it follows

that P (N1 ∩N2) → 1. Since β̂ ∈ N on the event N1, (A.5) holds on N1 ∩ N2. Again,

a bound for the l1-loss follows from the inequality ‖β̂1 − β∗1‖1 ≤
√
kn‖β̂1 − β∗1‖2. This

completes the proof.

Proof of Theorem 2.3.

Define Gn(θ) = Qn(β1,0) − Qn(β∗1,0), where Qn(β) is defined by (2.4) and θ =

V−1
n (β1 − β∗1) with Vn =

(
E
(
g(γ)
2γ

∑n
i=1 X1iX

T
1iW (Xi/γ)

))−1/2

. Then Gn(θ) can be
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written as

Gn(θ) =
n∑
i=1

φ
((
Yi −XT

1iβ1

)
/γ
)
W (Xi/γ)

−
n∑
i=1

φ
((
Yi −XT

1iβ
∗
1

)
/γ
)
W (Xi/γ)

+ nλn (‖d0 ◦ (β∗1 + Vnθ) ‖1 − ‖d0 ◦ β∗1‖1) .

We have shown in Theorem 2.1 that Qn(β,0) is minimized at β1 = β̂1 and, therefore,

Gn(θ) is minimized at θ̂ = V−1
n

(
β̂1 − β∗1

)
. Define a convex open set

An = {θ ∈ Rkn : ‖θ‖2 < c4

√
kn},

where c4 > 0 is some constant independent of kn. We divide Gn(θ) into two components

as follows:

Gn(θ) = Ln(θ) + Tn(θ), (A.6)

where Ln(θ) = E[Gn(θ)] and Tn(θ) is the centralized stochastic process defined by

Tn (θ) = Sn (β1)− Sn (β∗1)− E (Sn (β1)− Sn (β∗1)) ,

where Sn(β1) =
∑n

i=1 φ
((
Yi −XT

1iβ1

)
/γ
)
W (Xi/γ) .

We first examine the mean component Ln(θ). Using the method as in (A.2), we obtain

E (Sn(β1)− Sn(β∗1))

=
n∑
i=1

(β1 − β∗1)T E

(
g(γ)

2γ
X1iX

T
1iW (Xi/γ)

)
(β1 − β∗1)

+O(1)

(
n∑
i=1

E

(
g(γ)

2γ
W (Xi/γ)

) ∣∣XT
1i(β1 − β∗1)

∣∣2+ε

)
, (A.7)

for some constant 0 < ε < 1. The first term on the RHS of (A.7) is equal to ‖θ‖2
2. By

condition (C4), for any θ ∈ An we have ‖Vnθ‖2 ≤ c1n
−1/2‖θ‖2 ≤ c2n

−1/2k
1/2
n for some
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constants c1 > 0 and c2 > 0. Then by the Cauchy-Schwarz inequality, for any θ ∈ An,

∣∣XT
1i(β1 − β∗1)

∣∣ ≤ ‖X1i‖2‖(β1 − β∗1)‖2

= ‖X1i‖2‖Vnθ‖2

≤ ‖X1i‖2Cn
−1/2k1/2

n .

By condition (C3), it follows that W (Xi/γ)‖X1i‖2+ε
2 ≤ c3k

(2+ε)/2
n for some constant c3 > 0.

By combining above facts, for any θ ∈ An we obtain

n∑
i=1

E
(
W (Xi/γ)

∣∣XT
1i(β1 − β∗1)

∣∣2+ε
)

= O(nk(2+ε)/2
n n−(2+ε)/2k(2+ε)/2

n )

= O(n−ε/2k2+ε
n )

= o(1), (A.8)

provided kn = o(nε/(4+2ε)). Therefore, from (A.7) and (A.8) it follows that

E (Sn(β1)− Sn(β∗1)) = ‖θ‖2
2 + o(1). (A.9)

By condition (C4), Vn has bounded eigenvalues. Thus, for any θ ∈ An we have

‖d0 ◦ (β∗1 + Vnθ) ‖1 − ‖d0 ◦ β∗1 ‖1 = d̃T0 Vnθ, (A.10)

where d̃0 is a kn-dimensional vector with i-th component as di sgn(β∗j ) and sgn (β∗1 + Vnθ) =

sgn (β∗1). Now combining (A.9) and (A.10) we obtain

Ln(θ) = ‖θ‖2
2 + nλnd̃

T
0 Vnθ + o(1), (A.11)

uniformly over all θ ∈An.

Now let us consider the stochastic component Tn(θ) defined in (A.6). In addition, we

define D = −
(
φ(1)(e1/γ), . . . , φ(1)(en/γ)

)T
and Un = (Z∗n)T D, where Z∗n is defined in the

beginning of Section 2.2. Let

Ωn(θ) =
n∑
i=1

φ
((
ei −XT

1i (β1 − β∗1)
)
/γ
)
W (Xi/γ)−

n∑
i=1

φ (ei/γ)W (Xi/γ)−UT
nθ.
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It is easy to check that E
(
UT
nθ
)

= 0. Therefore, we can write Tn(θ) as

Tn(θ) = UT
nθ + hn(θ), (A.12)

where hn(θ) = Ωn(θ)− E (Ωn(θ)). By Lemma 2.1, we know that for any ε > 0,

P (|hn(θ)| > ε) ≤ exp (−Cεankn) ,

for some positive constant C and a sequence an → ∞. Define Hn(θ) = Gn(θ) −

nλnd̃
T
0 Vnθ − UT

nθ. By the definition of Gn(θ), Hn(θ) and ‖θ‖2
2 are convex functions

in θ. In addition, hn(θ) can be written as

hn(θ) = Hn(θ)− ‖θ‖2
2 − o(1).

It is easy to show that for any θ1 and θ2 in An,

∣∣‖θ1‖2
2 − ‖θ2‖2

2

∣∣ =
∣∣∣(θ1 + θ2)T (θ1 − θ2)

∣∣∣ ≤ O (kn‖θ1 − θ2‖∞) .

Therefore, all the conditions needed for Lemma 4 in Fan et al. (2014) are satisfied. Now

applying their lemma, for any compact set Akn = {‖θ‖2 ≤ c5

√
kn} ⊂ An with c5 < c4, we

have

sup
θ∈Akn

|hn(θ)| = op(1). (A.13)

Now combining (A.6), (A.11) and (A.12), we obtain

Gn(θ) = ‖θ‖2
2 + nλnd̃

T
0 Vnθ + UT

nθ + hn(θ) + o(1)

= ‖θ − ζn‖2
2 − ‖ζn‖2

2 + hn(θ) + o(1), (A.14)

where

ζn = −1

2

(
nλnVnd̃0 + Un

)
.

By condition (C2), Var
(
φ(1)(ei/γ)

)
= σ2

γ. Then using a classical weak convergence

argument we have

cT
(

(Z∗n)T Z∗n

)−1/2

Un
D→ N

(
0, σ2

γ

)
,
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for any vector c ∈ Rkn such that cTc = 1. It then follows that

cT
(

(Z∗n)T Z∗n

)−1/2 (
2ζn + nλnVnd̃0

)
D→ N

(
0, σ2

γ

)
. (A.15)

It remains to show that for any ι > 0,

P
(
‖θ̂ − ζn‖2 > ι

)
→ 0,

i.e., the minimizer θ̂ of Gn(θ) is close to ζn. Theorem 2.3 will then follow from (A.15)

and Slutsky’s Theorem.

Let B∗(n) denote a ball with center ζn and radius ι > 0. It can be shown that UT
nUn√
kn

is uniformly tight, i.e., UT
nUn = OP (

√
kn). In addition, nVnV

T
n has bounded eigenvalues.

Then using the assumption imposed in the theorem, we obtain

‖ζn‖2 =

∥∥∥∥1

2

(
nλnVnd̃0 + Un

)∥∥∥∥
2

≤ 1

2

(
‖Un‖2 + ‖nλnVnd̃0‖2

)
=
c6

√
kn

2
(1 +Op(1)),

for some constant c6 > 0. Now choose the constant c4 in An large enough so that c4 > c6/2.

Then the constant c5 in Akn can be chosen large enough to contain B∗(n). Then, by (A.13)

we have

∆n
.
= sup
θ∈B∗(n)

|hn(θ)| ≤ sup
θ∈Akn

|hn(θ)| = op(1). (A.16)

Let us now consider the behavior of Gn(θ) outside of B∗(n). Let θ = ζn + bu ∈ Rkn ,

where u ∈ Rkn is a unit vector and b > ι > 0 are some constants. Let θ∗ be the boundary

point of B∗(n) that lies on the line segment from ζn to θ. Then θ∗ can be written as

θ∗ = ζn + ιu =
(
1− ι

b

)
ζn + ι

b
θ. Now using the convexity of Gn, definition of ∆n, (A.14)

and (A.16), we obtain

ι

b
Gn(θ) +

(
1− ι

b

)
Gn (ζn) ≥ Gn (θ∗) ≥ ι2 − ‖ζn‖2

2 −∆n ≥ ι2 +Gn (ζn)− 2∆n.
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Since b > ι, for large n it follows that

inf
‖θ−ζn‖2>ι

Gn(θ) ≥ Gn (ζn) +
b

ι

(
ι2 − op(1)

)
> Gn (ζn) .

The preceding result suggests that the minimum of Gn(θ) cannot occur at any θ with

‖θ − ζn‖2 > ι. Hence, with probability tending to one, we have ‖θ − ζn‖2 ≤ ι. This

completes the proof.

Proof of Theorem 2.4.

We begin by considering the minimizer of Q̂n(β) in the subspace which contains

β =
(
βT1 , β

T
2

)T
, with β2 = 0. Let β = (βT1 ,0

T )T , where β1 = β∗1 + b̃nν1 with b̃n =√
kn log n/n+λn

(
‖d∗0‖2 + c∗3c

∗
1

√
kn log pn/n

)
, and ‖ν1‖2 = C for some large enough con-

stant C > 0. Note that each element of β∗1 is the true coefficient corresponding to the

important covariates. First note that

Q̂n

(
β∗1 + b̃nν1,0

)
− Q̂n (β∗1,0) = L1(ν1) + L2(ν1), (A.17)

where

L1(ν1) =
n∑
i=1

φ

Yi −XT
1i

(
β∗1 + b̃nν1

)
γ

W (Xi/γ)−
n∑
i=1

φ

(
Yi −XT

1iβ
∗
1

γ

)
W (Xi/γ),

and

L2(ν1) = nλn

(
‖d̂0 ◦ (β∗1 + b̃nν1)‖ − ‖d̂0 ◦ β∗1‖

)
.

Now again consider

Zn(µ) = sup
β∈B(µ)

1

n
|υn(β)− υn(β∗)− E (υn(β)− υn(β∗))| , (A.18)

where υn(β) =
∑
φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ). By Lemma 2.2, the probability of the event

An = {Zn(µ) ≤ 2µ
√
kn(log n)/n} goes to one as n → ∞. Therefore, with probability

tending to one, it follows that |L1(ν1)− E (L1(ν1))| ≤ nZn(b̃n) ≤ 2b̃n
√
knn log(n)‖ν1‖2
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holds true for sufficiently large ν1. Furthermore, it is easy to show that

E (L1(ν1)) = b̃2
nν

T
1 E

(
g(γ)

2γ

n∑
i=1

X1iX
T
1iW (Xi/γ)

)
ν1 +

q(γ)

2γ
nb̃2

n‖ν1‖2
2o(1).

Then by the triangle inequality, we have

L1(ν1) ≥ b̃2
nν

T
1 E

(
g(γ)

2γ

n∑
i=1

X1iX
T
1iW (Xi/γ)

)
ν1 +

q(γ)

2γ
nb̃2

n‖ν1‖2
2o(1)

− 2b̃n
√
knn log(n)‖ν1‖2. (A.19)

Using the Cauchy-Schwarz inequality, the second term in (A.17) can be bounded as

|L2(ν1)| ≤ nλn‖d̂0 ◦ (b̃nν1)‖1 ≤ nλn‖d̂0‖2‖b̃nν1‖2. (A.20)

Also, by the triangle inequality, it follows that

‖d̂0‖2 ≤ ‖d̂0 − d∗0‖2 + ‖d∗0‖2 ≤ O
(
‖β̂∗1 − β∗1‖2 + ‖d∗0‖2

)
≤ O

(√
kn(log pn)/n+ ‖d∗0‖2

)
.

Now combining (A.17), (A.19), (A.20) and the preceding bound, we obtain

Q̂n

(
β∗1 + b̃nν1,0

)
− Q̂n (β∗1,0) ≥ b̃2

nν
T
1 E

(
g(γ)

2γ

n∑
i=1

X1iX
T
1iW (Xi/γ)

)
ν1

+
q(γ)

2γ
o(1)nb̃2

n‖ν1‖2
2 − 2b̃n

√
knn log(n)‖ν1‖2−

nb̃nλn

(
‖d∗0‖2 +O

(√
kn(log pn)/n

))
‖ν1‖2.

By condition (C4), the right-hand side of the preceding inequality is larger than

Cb̃2
nn‖ν1‖2

2 +
q(γ)

2γ
o(1)nb̃2

n‖ν1‖2
2 − 2b̃n

√
kn(log n)n‖ν1‖2

− nb̃nλn
(
‖d∗0‖2 +O

(√
kn(log pn)/n

))
‖ν1‖2 = b̃nn‖ν1‖2

(
Cb̃n‖ν1‖2 +

q(γ)

2γ
o(1)b̃n‖ν1‖2

−2
√
kn(log n)/n− λn

(
‖d∗0‖2 +O

(√
kn(log pn)/n

)))
,

where C > 0 is some constant. By making the radius ‖ν1‖2 sufficiently large, it then

follows that with probability tending to one, Q̂n

(
β∗1 + b̃nν1,0

)
− Q̂n (β∗1,0) > 0. Then,
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with asymptotic probability one, there exists a minimizer β̂1 of Q̂n(β1,0) such that ‖β̂1−

β∗1‖2 ≤ O(b̃n). In other words, there exists a positive constant c∗2 such that ‖β̂1−β∗1‖2 ≤

c∗2b̃n = bn.

The next step is to show that the estimator β̂ =
(
β̂T1 ,0

T
)T

is a global minimizer of

Q̂n(β). For this purpose, we show that

‖(d̂1)−1 ◦QTΨ(1)(Y − Xβ̂)‖∞ ≤ cnλn, (A.21)

with probability tending to 1, where Ψ(·) is defined in (A.5), (d̂1)−1 =
(
d̂−1
kn+1, . . . , d̂

−1
pn

)T
,

and c > 0 is some constant. Then by KKT conditions and (A.21), it can be easily verified

that β̂ =
(
β̂T1 ,0

T
)T

is a global minimizer of Q̂n(β).

For j = kn+1, . . . , pn, each entry in β∗ has β∗j = 0, and hence d∗j = p
(1)
λn

(0+). Moreover,

by assumptions in Theorem 2.4, the initial estimate β̂∗j satisfies
∣∣∣β̂∗j ∣∣∣ ≤ c∗1

√
kn(log pn)/n.

Thus minj>kn p
(1)
λn

(∣∣∣β̂∗j ∣∣∣) ≥ p
(1)
λn

(
c∗1
√
kn(log pn)/n

)
. Then by condition (C5), we have

‖(d̂1)−1‖∞ =

(
min
j>kn

p
(1)
λn

(∣∣∣β̂∗j ∣∣∣))−1

< 2/p
(1)
λn

(0+) = 2‖(d∗1)−1‖∞ <∞, (A.22)

since minj≥kn+1 d
∗
j is strictly positive. In the proof of Lemma 2.3 below, we show that for

any β ∈ N = {β =
(
βT1 , β

T
2

)T ∈ Rpn : β2 = 0, ‖β1 − β∗1‖2 ≤ vn} with some sequence

vn → 0 ,

sup
‖β1−β∗1‖2≤vn

‖QTΨ(1)(Y − Xβ)‖∞ < nλn(O(1) + o(1))

holds with asymptotic probability one. Now let vn =bn, then we have

sup
‖β1−β∗1‖2≤bn

‖QTΨ(1) (Y − Xβ) ‖∞ < nλn(O(1) + o(1)) (A.23)

holds with asymptotic probability one. Then from (A.22) and (A.23), we conclude that

sup
‖β1−β∗1‖2≤bn

‖(d̂1)−1 ◦QTΨ(1)(Y − Xβ)‖∞ < cnλn, (A.24)

with asymptotic probability one, where c > 0 is some constant. From (A.24), it now

follows that (A.21) holds with probability tending to one because ‖β̂1 − β∗1‖2 ≤ bn holds
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with probability tending to one. This completes the proof.

A.2: Proofs of lemmas in Chapter 2

Lemma 2.1. Assume that conditions of Theorem 2.3 hold. Let Ωn(θ) =
∑n

i=1 Ωni(θ),

where Ωni(θ) = φ
(
(ei − ZT

niθ)/γ
)
W (Xi/γ)−φ(ei/γ)W (Xi/γ)+φ(1)(ei/γ)(Z∗ni)

Tθ. Then

for any ε > 0,

P (|Ωn(θ)− E (Ωn(θ))| > ε) ≤ exp (−Canknε) ,

where an > 0 is some sequence tending to infinity such that ank
2δ+3
n n−δ → 0, and C > 0

is some constant.

Proof of Lemma 2.1.

Define ξi = Ωni(θ)−E (Ωni(θ)). Then we have
∑n

i=1 ξi = Ωn(θ)−E (Ωn(θ)). Applying

Markov’s inequality yields that for any ε > 0 and t > 0,

P (Ωn(θ)− E (Ωn(θ)) ≥ ε) ≤ exp(−tε)E

(
exp

(
t

n∑
i=1

ξi

))

= exp

(
−tε− t

n∑
i=1

E (Ωni(θ))

)
n∏
i=1

E (exp (tΩni(θ))) .

(A.25)

Using a similar argument as in the proof of (A.9), we obtain

t
n∑
i=1

E (Ωni(θ)) = t‖θ‖2
2 + o(1).

Then, from (A.25) it follows that

P (Ωn(θ)− E (Ωn(θ) ≥ ε)) ≤ exp(−tε)E

(
exp

(
t

n∑
i=1

ξi

))

∝ exp
(
−tε− t‖θ‖2

2

) n∏
i=1

E (exp (tΩni(θ))) .

(A.26)
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By Taylor expansion, we have

E (exp (tΩni(θ))) = E
(
1 + tΩni(θ) +O

(
t2Ω2

ni(θ)
))

= 1 + tE (Ωni(θ)) +O
(
E
(
t2Ω2

ni(θ)
))

= 1 +
t‖θ‖2

2

n
+O

(
E
(
t2Ω2

ni(θ)
))
.

For xi > 0, we have
∏n

i=1 (1 + xi) ≤ exp (
∑n

i=1 xi). Using this type of bound, we obtain

n∏
i=1

E (exp (tΩni(θ))) ≤ exp

(
n∑
i=1

E (exp (tΩni(θ)− 1))

)

= exp

(
t‖θ‖2

2 +O

(
E

(
n∑
i=1

t2Ω2
ni(θ)

)))
.

Therefore, from (A.26) we obtain

P ((Ωn(θ)− E (Ωn(θ))) > ε) ≤ exp

(
−tε+O

(
E

(
n∑
i=1

t2Ω2
ni(θ)

)))
.

Now let t = ankn with an being some diverging sequence such that tE (
∑n

i=1 Ω2
ni(θ)) =

o(1). Then, it follows that

P ((Ωn(θ)− E (Ωn(θ))) > ε) ≤ exp (−Cεknan) .

It now remains to show that tE (
∑n

i=1 Ω2
ni(θ)) = o(1). Using the definition of Ωni(θ),

Ω2
ni(θ) =(
φ
((
Yi −XT

1i (β1 − β∗1)
)
/γ
)
W (Xi/γ)− φ (ei/γ)W (Xi/γ) + φ(1)(ei/γ) (Z∗ni)

T θ
)2

,

and then using the mean value theorem, we obtain

E
(
Ω2
ni(θ)

)
=

1

γ2
E
(
φ(1)(ei/γ)XT

1i(β1 − β∗1)W (Xi/γ)− φ(1)(e∗i /γ)XT
1i(β1 − β∗1)W (Xi/γ)

)2
,

(A.27)

where e∗i is a value between ei and ei − ZT
niθ = Yi − XT

1i (β1 − β∗1) . Then using the

δ-Lipschitz condition of φ(1) (see condition (C1)), we have
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E
(
φ(1)(ei/γ)XT

1i(β1 − β∗1)− φ(1)(e∗i /γ)XT
1i(β1 − β∗1)

)2

≤ cE
(∣∣XT

1i (β1 − β∗1)
∣∣δ XT

1i (β1 − β∗1)
)2

≤ cE
(∣∣XT

1i (β1 − β∗1)
∣∣2(δ+1)

)
,

where c > 0 is some constant. Therefore, we now have from (A.27) for t > 0,

tE

(
n∑
i=1

Ω2
ni(θ)

)
≤ tc

n∑
i=1

E
(
W 2(Xi/γ)

∣∣XT
1i(β1 − β∗1)

∣∣2(δ+1)
)
.

Using an argument similar to derive (A.8), we obtain

n∑
i=1

E
(
W 2(Xi/γ)

∣∣XT
1i(β1 − β∗1)

∣∣2(δ+1)
)

= O(n−δk2(δ+1)
n ).

Then we have tE (
∑n

i=1 Ω2
ni(θ)) = o(1) since t = ankn and by the assumptions on kn in

Theorem 2.3. Using a similar argument for P (Ωn(θ)− E (Ωn(θ)) ≤ −ε) completes the

proof.

Lemma 2.2. Assume that conditions (C1)–(C3) hold. Let Zn(µ) be defined by (A.18).

Then, for any t > 0 we have

P
(
Zn(µ) > C3µ

√
kn/n+ t

)
≤ exp

(
− nt2

8C2
1µ

2kn

)
,

where C1 and C3 are some positive constants.

Proof of Lemma 2.2.

First we write Zn(µ) = supβ∈B(µ)
1
n
|
∑n

i=1 (Zi(β)− E(Zi(β)))|, where

Zi(β) = φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ)− φ

(
(Yi −XT

i β
∗)/γ

)
W (Xi/γ).

By condition (C1), φ satisfies the Lipschitz condition. By (C3), xiW (x) is bounded for
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xi ∈ x ∈ Rpn . Therefore, for any β ∈B(µ) we have

|Zi(β)| ≤ C0

∣∣W (Xi/γ)XT
i (β∗ − β)/γ

∣∣
≤ C1µ

√
kn, (A.28)

where C0 and C1 are some positive constants. Then for any β =
(
βT1 ,0

T
)T ∈B(µ), it

follows that

1

n

n∑
i=1

(Zi(β))2 ≤
(
C1µ

√
kn

)2

. (A.29)

Let D1, D2, . . . , Dn be a Rademacher sequence, independent of Z1, Z2, . . . , Zn. Then

using (A.28) together with the symmetrization and the contraction inequality (see, e.g.,

Theorems 14.3 and 14.4 in Bühlmann and van de Geer (2011)), we obtain

E

(
1

n
sup
β∈B(µ)

∣∣∣∑Zi(β)− E (Zi(β))
∣∣∣) ≤ 2E

(
sup
β∈B(µ)

∣∣∣∣ 1n∑Di (Zi(β))

∣∣∣∣
)

≤ 4C0E

(
sup
β∈B(µ)

∣∣∣∣ 1n∑Di

(
W (Xi/γ)XT

i (β − β∗) /γ
)∣∣∣∣
)
. (A.30)

Again using (C3) and the moment inequality, it follows that

RHS (A.30) ≤ 4C2

√
kn sup

β∈B(µ)

‖β1 − β∗1‖2E

∣∣∣∣ 1n∑Di

∣∣∣∣
≤ 4C2µ

√
kn

(
E

(
1

n

∑
Di

)2
)1/2

≤ 4C2µ
√
kn/n, (A.31)

where C2 > 0 is some constant. Then from (A.30) and (A.31), we obtain

E[Zn(µ)] ≤ C3µ
√
kn/n, (A.32)

where C3 = 4C2. Now combining (A.29)–(A.32) and applying Massart’s concentration

theorem (see, e.g., Theorem 14.2 in Bühlmann and van de Geer (2011)), for any t > 0 we

obtain

P
(
Zn(µ) > C3µ

√
kn/n+ t

)
≤ exp

(
− nt2

8C2
1µ

2kn

)
.
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This completes the proof.

Lemma 2.3. Assume that conditions (C1)–(C4) hold. Suppose N = {β =
(
βT1 , β

T
2

)T ∈
Rpn : β2 = 0, ‖β1 − β∗1‖2 ≤ vn} denotes a neighborhood around β∗ for some se-

quence vn → 0. Assume that minj>kn dj is strictly positive,

√
(1 + vnk

(2+δ)/2
n ) log2 n =

o(
√
nλn), λn > 2

√
(1 + c)(log pn)/n, and λn > c0vn

√
kn for some constant c0 > 0. Then

P

(
sup
β∈N
‖d−1

1 ◦QTΨ(1) (Y − Xβ) ‖∞ ≥ nλn

)
→ 0,

where Ψ(Y − Xβ) = (φ((Y1 −XT
1 β)/γ)W (X1/γ), ..., φ((Yn −XT

nβ)/γ)W (Xn/γ))T .

Proof of Lemma 2.3.

Consider the following decomposition:

sup
β∈N

∥∥∥∥ 1

n
QTΨ(1) (Y − Xβ)

∥∥∥∥
∞
≤

sup
β∈N

∥∥∥∥ 1

n
E
(
QT
(
Ψ(1) (Y − Xβ)−Ψ(1)(e)

))∥∥∥∥
∞

+

∥∥∥∥ 1

n
QTΨ(1)(e)

∥∥∥∥
∞

+ max
j>kn

sup
β∈N

1

n

∑
|rβ,j(Xi, Yi)| = I1 + I2 + I3,

where e = (e1, . . . , en)T and

rβ,j(Xi, Yi) = Xij

(
φ(1)

(
(Yi −XT

1iβ1)/γ
)
− φ(1) (ei/γ)

)
W (Xi/γ)

− E
(
Xij

(
φ(1)

(
(Yi −XT

1iβ1)/γ
)
− φ(1)(ei/γ)

)
W (Xi/γ)

)
(A.33)

for fixed j satisfying kn + 1 ≤ j ≤ pn. We first study I1. It is easy to see that

sup
β∈N

∥∥E (QT
(
Ψ(1) (Y − Xβ)−Ψ(1)(e)

))∥∥
∞

= max
j>kn

sup
β∈N

∣∣∣∣∣E
(

n∑
i=1

Xij

(
φ(1)

(
(Yi −XT

1iβ1)/γ
)
− φ(1)(ei/γ)

)
W (Xi/γ)

)∣∣∣∣∣ . (A.34)
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Since the ei’s are independent of the Xi’s, from (A.34) we obtain

sup
β∈N

∥∥E (QT
(
Ψ(1) (Y − Xβ)−Ψ(1)(e)

))∥∥
∞

= max
j>kn

sup
β∈N

∣∣∣∣∣E
(

n∑
i=1

XijW (Xi/γ)φ(1)
(
(Yi −XT

1iβ1)/γ
))∣∣∣∣∣ . (A.35)

By condition (C2) together with the independence of the ei’s and the Xi’s, we obtain

E

(
n∑
i=1

XijW (Xi/γ)φ(1)
(
(Yi −XT

1iβ1)/γ
))

=
n∑
i=1

E
(
XijW (Xi/γ)

(
g(γ)XT

1i(β1 − β∗1) + o(|XT
1i(β1 − β∗1)|)

))
. (A.36)

Now by combining (A.34)–(A.36), from the assumptions in Lemma 2.3, we obtain that

I1 ≤ λn(O(1) + o(1)). (A.37)

We now study I2. It is easy show that E
(
Xijφ

(1) (ei/γ)W (Xi/γ)
)

= 0 for all i and

kn+1 ≤ j ≤ pn. By condition (C3), |(Xij/γ)W (Xi/γ)| is bounded for all (i, j). Therefore,

there exists a constant M∗ > 0 such that
∣∣Xijφ

(1) (ei/γ)W (Xi/γ)
∣∣ ≤ M∗ for all i and

kn + 1 ≤ j ≤ pn. By applying Hoeffding’s Inequality, if λn > 2
√

(1 + c)(log pn)/n with

some positive constant c, then we have

P
(
‖QTΨ(1)(e)‖∞ ≥ nλn

)
≤

pn∑
kn+1

2 exp

(
−2n2λ2

n

nγ2(M∗)2

)
= O(p−c9n ),

where c9 > 0 is some constant. Therefore, we conclude that ‖ 1
n
QTΨ(1)(e)‖∞ ≤ λn holds

with probability tending to one, since pn →∞ as n→∞. Thus, with probability tending

to one we have

I2 =

∥∥∥∥ 1

n
QTΨ(1)(e)

∥∥∥∥
∞

= op(λn). (A.38)

It now remains to study I3 = maxj>kn supβ∈N
1
n

∑n
i=1 |rβ,j(Xi, Yi)| . We will show that

I3 = op(λn). First, for each i, define the functional space Γj = {rβ,j(Xi, Yi) : β ∈ N}.
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Endow Γj with the (random) norm

‖rβ,j‖n =

√√√√ 1

n

n∑
i=1

r2
β,j(Xi, Yi).

For ε > 0, let N (ε,Γj, ‖ · ‖n) denote the covering number of space (Γj, ‖ · ‖n) for each j.

Using condition (C3), it is easy to show that ‖rβ,j‖n ≤ C∗ for each j, where C∗ is some

positive constant. Using conditions (C1) and (C3), for any β ∈ N and β′ ∈ N we have

|rβ,j(Xi, Yi)− rβ′,j(Xi, Yi)| ≤ W (Xi/γ)
∣∣XT

i (β − β′)
∣∣δ + E

(
W (Xi/γ)

∣∣XT
i (β − β′)

∣∣δ)
≤ ckδ/2n ‖β − β′‖δ2,

where c > 0 is a constant. Note that ‖ · ‖δ2 is a metric for 0 < δ < 1. Then by Theorem

2.7.11 of van der Vaart and Wellner (1996), the covering numbers of the spaces Γj and N

satisfy

N
(
22−s,Γj, ‖ · ‖n

)
≤ N

(
22−s

c8k
δ/2
n

,N, ‖ · ‖δ2
)

≤ N

(
22−s

c8k
δ/2
n

,N, ‖ · ‖2

)
,

where the last inequality follows from the fact that the neighborhood {β ∈ Rpn : ‖β1 −

β∗1‖δ2 ≤ vn} is a subset of the neighborhood {β ∈ Rpn : ‖β1 − β∗1‖2 ≤ vn}. By Lemma

14.27 in Bühlmann and van de Geer (2011), the ball N can be covered by
(
1 + 2vn

ε

)kn
balls

with radius ε > 0. Then it follows that

N

(
22−s

c8k
δ/2
n

,Γj, ‖ · ‖n
)
≤

(
1 +

2c8vnk
δ/2
n

22−s

)kn

,

and hence we have

log

(
1 +N

(
22−s

c8k
δ/2
n

,Γj, ‖ · ‖n
))
≤ log 6 + kn log

(
1 + 2s−1c8k

δ/2
n vn

)
≤ 2c7

(
1 + vnk

(2+δ)/2
n

)
22s

for some constant c7 > 0. Thus, we have shown that all the conditions in Corollary 14.4

in Bühlmann and van de Geer (2011) are satisfied for 1
n

∑n
i=1 rβ,j(Xi, Yi). Now applying
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this corollary we obtain for any t > 0,

P

(
sup
β∈N

∣∣∣∣∣ 1n
n∑
i=1

rβ,j(Xi, Yi)

∣∣∣∣∣ ≥ C∗√
n

(
3

√
(1 + vnk

(2+δ)/2
n ) log2 n+ 4 + 4t

))
≤ exp

(
−nt

2

8

)
.

Taking t = C
√

log pn/n with C > 0 a large enough constant, it then follows from the

union bound that

P

(
max

pn≥j>kn
sup
β∈N

∣∣∣∣∣ 1n
n∑
i=1

rβ,j(Xi, Yi)

∣∣∣∣∣ ≥ 4C∗√
n

(
3

√
(1 + vnk

(2+δ)/2
n ) log2 n

))

≤ (pn − kn) exp

(
−C log pn

8

)
,

which goes to zero as n→∞. Therefore, if

√
(1 + vnk

(2+δ)/2
n ) log2 n = o(

√
nλn), then we

have

I3 = op(λn). (A.39)

Now combining (A.37), (A.38) and (A.39) finishes the proof.
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Appendix B:

Supplementary material for

Chapter 3

B.1: Proofs of theorems in Chapter 3

We begin by defining the following: for some constant µ > 0, we define the set

B(µ) = {β =(βT1 ,β
T
2 )T ∈ Rpn : ‖β − β∗‖2 ≤ µ, supp(β) ⊆ supp(βββ∗)}, (B.1)

where supp(β∗) = {1, ..., kn}. Also define the function

Zn(µ) = sup
β∈B(µ)

1

n

∣∣∣∣∣
n∑
i=1

(Zi(β)− E(Zi(β)))

∣∣∣∣∣ , (B.2)

where Zi(β) = φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ)− φ

(
(Yi −XT

i β
∗)/γ

)
W (Xi/γ).

Proof of Theorem 3.1.

Note that B(µ) is defined in (B.1). Let

I =
n∑
i=1

φ
(
(Yi −XT

i β)/γ
)
W (Xi/γ)−

n∑
i=1

φ
(
(Yi −XT

i β
∗)/γ

)
W (Xi/γ).

We first show that for any β = (βT1 ,0
T )T ∈ B(µ),

E(I) ≥ cn ‖β1 − β∗1‖
2
2 , (B.3)

for sufficiently large n and when µ is properly chosen, where c > 0 is some constant. Let
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β1 = β∗1 + κ, where ‖κ‖2 = µ. We rewrite I as

I =
n∑
i=1

φ
((
Yi −XT

1i(β
∗
1 + κ)

)
/γ
)
W (Xi/γ)−

n∑
i=1

φ
((
Yi −XT

1iβ
∗
1

)
/γ
)
W (Xi/γ)

=
n∑
i=1

∫ −XT
1iκ

0

1

γ
W (Xi/γ)

(
φ(1) ((ei + t) /γ)− φ(1) (ei/γ)

)
dt

− 1

γ

n∑
i=1

W (Xi/γ)φ(1) (ei/γ) XT
1iκ. (B.4)

Since ei is independent of Xi, using condition (D1) and Taylor expansion we obtain from

(B.4) that

E(I) = E

(
n∑
i=1

∫ −XT
1iκ

0

1

γ
W (Xi/γ)

(
φ(1) ((ei + t) /γ)− φ(1) (ei/γ)

)
dt

)

=
n∑
i=1

E

(
1

γ
W (Xi/γ)

∫ −XT
1iκ

0

(g(γ)t+ o(|t| q(γ)) dt

)

=
g(γ)

2γ
κTE

(
n∑
i=1

X1iX
T
1iW (Xi/γ)

)
κ+ o(1)

q(γ)

2γ
n ‖κ‖2

2 . (B.5)

Then by condition (D3), we have κTE
(∑n

i=1 X1iX
T
1iW (Xi/γ)

)
κ ≥ cn ‖κ‖2

2 for some con-

stant c > 0. Further, ‖κ‖2 = µ. Therefore, (B.3) now follows from (B.5).

Now consider a new vector β̃∗ defined by β̃∗ =
(

(β̃∗1)T ,0T
)T

, where

β̃∗1 = M β̂1 + (1−M)β∗1,

with M = µ/(µ + ‖β̂1 − β∗1‖2). Then β̃∗ ∈ B(µ). Using the convexity of the objective

function Qn(β) defined by (3.3) and the definition of β̂1, we have

Qn(β̃∗) ≤MQn(β̂1,0) + (1−M)Qn(β∗1,0) ≤ Qn(βββ∗).

For β = (βT1 ,0
T )T ∈ B(µ), define function υn(β) =

∑n
i=1 φ

(
(Yi −XT

i β)/γ
)
W (Xi/γ).
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By the triangle inequality, we have

E
(
υn(β̃∗)− υn(β∗)

)
= (υn(β∗)− Eυn(βββ∗))−

(
υn(β̃∗)− Eυn(β̃∗)

)
+Qn(β̃∗)−Qn(β∗) + nλn‖d0 ◦ β∗1‖1 − nλn‖d0 ◦ β̃∗1‖1

≤ nZn(µ) + nλn‖d0 ◦ (β∗1 − β̃∗1)‖1,

(B.6)

where Zn(µ) is defined by (B.2). Using the Cauchy-Schwarz inequality again, it follows

that nλn‖d0 ◦ (β∗1 − β̃∗1)‖1 ≤ nλn‖d0‖2µ. Hence from (B.6),

E
(
υn(β̃∗)− υn(β∗)

)
≤ nZn(µ) + nλn‖d0‖2µ. (B.7)

Define the event An = {Zn(µ) ≤ 2µ
√
kn(log n)/n}. By Lemmas 3.2 and 3.3, P(An)→

1 as n→∞. Then from (B.3) and (B.7), on the event An we have

cn‖β̃∗1 − β∗1‖2
2 ≤ 2µ

√
knn log n+ nλn‖d0‖2µ. (B.8)

Now take µ = O(
√
kn/n + λn‖d0‖2). Then by assumptions in Theorem 3.1, µ → 0.

Hence from (B.8), we obtain

‖β̃∗1 − β∗1‖2
2 ≤ O

((√
kn(log n)/n+ λn‖d0‖2

)(√
kn/n+ λn‖d0‖2

))
,

≤ O
(√

kn(log n)/n+ λn‖d0‖2

)2

. (B.9)

Note that ‖β∗1 − β̃∗1‖2 ≤ O(µ) implies ‖β̂1 − β∗1‖2 ≤ O(µ). So, from (B.9) it follows

that on the event An,

‖β̂1 − β∗1‖2 ≤ O
(√

kn(log n)/n+ λn‖d0‖2

)
.

A bound for the l1-loss follows from the inequality ‖β̂1−β∗1‖1 ≤
√
kn‖β̂1−β∗1‖2. This

completes the proof of Theorem 3.1.

Proof of Theorem 3.2.

Theorem 3.1 shows that β̂1 is a minimizer of Qn(β1,0). We now that β̂ =
(
β̂T1 ,0

T
)T

is a global minimizer of Qn(β) in the space Rpn . For this purpose, it is enough to show
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that the following condition holds with probability tending to 1:

‖d−1
1 ◦QTψ(1) ((Y − Xβ) /γ) ‖∞ < Cnλn, (B.10)

where

ψ((Y − Xβ)/γ) = (φ((Y1 −XT
1 β)/γ)W (X1/γ), ..., φ((Yn −XT

nβ)/γ)W (Xn/γ))T ,

d−1
1 =

(
d−1
kn+1, . . . , d

−1
pn

)T
, C > 0 is some constant and β ∈N with neighborhood N defined

in Lemma 3.4. Then the result follows from Karush-Kuhn-Tuker (KKT) conditions in

optimization theory.

Define events

N1 = {‖β̂1 − β∗1‖2 ≤ αn},

and

N2 = {sup
β∈N
‖d−1

1 ◦QTψ(1) ((Y − Xβ) /γ) ‖∞ < C1nλn},

where αn is defined in Theorem 3.1. Then from Theorem 3.1 and Lemma 3.4, it follows

that P (N1 ∩N2) → 1. Therefore, (B.10) holds on the event N1 ∩ N2, since β̂ ∈ N on

the event N1. Again, a bound for the l1-loss follows from the inequality ‖β̂1 − β∗1‖1 ≤
√
kn‖β̂1 − β∗1‖2. This completes the proof.

Proof of Theorem 3.3.

Let θ = V−1
n (β1 − β∗1) with Vn =

(
E
(
g(γ)
2γ

∑n
i=1 X1iX

T
1iW (Xi/γ)

))−1/2

. Next, de-

note Gn(θ) = Qn(β1,0) − Qn(β∗1,0), where Qn(β) is defined by (3.3). Then it follows

that

Gn(θ) =
n∑
i=1

φ
((
Yi −XT

1iβ1

)
/γ
)
W (Xi/γ)

−
n∑
i=1

φ
((
Yi −XT

1iβ
∗
1

)
/γ
)
W (Xi/γ)

+ nλn (‖d0 ◦ (β∗1 + Vnθ) ‖1 − ‖d0 ◦ β∗1‖1) .

(B.11)

Note that Theorem 3.1 shows that Qn(β,0) is minimized at β1 = β̂1 and hence Gn(θ)
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is minimized at θ̂ = V−1
n

(
β̂1 − β∗1

)
. Now we study terms in Gn(θ) in details. First write

Gn(θ) as follows:

Gn(θ) = Ln(θ) + Tn(θ), (B.12)

where Ln(θ) = E[Gn(θ)] and

Tn (θ) = Sn (β1)− Sn (β∗1)− E (Sn (β1)− Sn (β∗1)) ,

with Sn(β1) =
∑n

i=1 φ
((
Yi −XT

1iβ1

)
/γ
)
W (Xi/γ) . A technique similar to (B.5) gives

E (Sn(β1)− Sn(β∗1))

=
n∑
i=1

(β1 − β∗1)T E

(
g(γ)

2γ
X1iX

T
1iW (Xi/γ)

)
(β1 − β∗1)

+O(1)

(
n∑
i=1

E

(
g(γ)

2γ
W (Xi/γ)

) ∣∣XT
1i(β1 − β∗1)

∣∣2+ε

)
, (B.13)

for some constant 0 < ε < 1. Now define a set

An = {θ ∈ Rkn : ‖θ‖2 < c0

√
kn},

where c0 > 0 is some constant independent of kn. The first term on the RHS of (B.13) is

equal to ‖θ‖2
2. By condition (D3), we have ‖Vnθ‖2 ≤ c1n

−1/2‖θ‖2 ≤ c2n
−1/2k

1/2
n for any

θ ∈ An, where some constants c1 > 0 and c2 > 0. Then by the Cauchy-Schwarz inequality,

for any θ ∈ An we obtain

∣∣XT
1i(β1 − β∗1)

∣∣ ≤ ‖X1i‖2‖(β1 − β∗1)‖2

= ‖X1i‖2‖Vnθ‖2

≤ ‖X1i‖2Cn
−1/2k1/2

n .

By condition (D2), we have W (Xi/γ)‖X1i‖2+ε
2 ≤ c3k

(2+ε)/2
n for some constant c3 > 0.
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Then for any θ ∈ An and kn = o(nε/(4+2ε)), it follows that

n∑
i=1

E
(
W (Xi/γ)

∣∣XT
1i(β1 − β∗1)

∣∣2+ε
)

= O(nk(2+ε)/2
n n−(2+ε)/2k(2+ε)/2

n )

= O(n−ε/2k2+ε
n )

= o(1). (B.14)

From (B.13) and (B.14) we now have

E (Sn(β1)− Sn(β∗1)) = ‖θ‖2
2 + o(1). (B.15)

The matrix Vn has bounded eigenvalues from condition (D3). Hence, for any θ ∈ An we

obtain

‖d0 ◦ (β∗1 + Vnθ) ‖1 − ‖d0 ◦ β∗1 ‖1 = d̃T0 Vnθ, (B.16)

where d̃0 is a kn-dimensional vector with i-th component as di sgn(β∗j ) and sgn (β∗1 + Vnθ) =

sgn (β∗1). Then from (B.15) and (B.16), one obtains

Ln(θ) = ‖θ‖2
2 + nλnd̃

T
0 Vnθ + o(1), (B.17)

uniformly over all θ ∈An.

Next we deal with the stochastic component Tn(θ) in (B.12). Let us define M =

−
(
φ(1)(e1/γ), . . . , φ(1)(en/γ)

)T
and Un = (Z∗n)T M. Then E

(
UT
nθ
)

= 0. Define

Ωn(θ) =
n∑
i=1

φ
((
ei −XT

1i (β1 − β∗1)
)
/γ
)
W (Xi/γ)−

n∑
i=1

φ (ei/γ)W (Xi/γ)−UT
nθ.

We write Tn(θ) as follows:

Tn(θ) = UT
nθ + hn(θ), (B.18)

where hn(θ) = Ωn(θ)− E (Ωn(θ)). From Lemma 3.1, for any ε > 0 it follows that

P (|hn(θ)| > ε) ≤ exp (−c4εankn) ,

for some constant c4 > 0 and a sequence an →∞. Define Jn(θ) = Gn(θ)− nλnd̃T0 Vnθ−
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UT
nθ. Note that Gn(θ), Jn(θ) and ‖θ‖2

2 are convex functions in θ. Furthermore, hn(θ)

can be written as

hn(θ) = Jn(θ)− ‖θ‖2
2 − o(1).

In addition, for any θ1 and θ2 in An we have

∣∣‖θ1‖2
2 − ‖θ2‖2

2

∣∣ =
∣∣∣(θ1 + θ2)T (θ1 − θ2)

∣∣∣ ≤ O (kn‖θ1 − θ2‖∞) .

Therefore, we have now verified that all the conditions in Lemma 4 in Fan et al. (2014)

are satisfied for hn(θ). Now applying this lemma, for any compact set Akn = {‖θ‖2 ≤

c5

√
kn} ⊂ An with c5 < c0, we obtain

sup
θ∈Akn

|hn(θ)| = op(1). (B.19)

Then from (B.12), (B.17) and (B.18), we now have

Gn(θ) = ‖θ‖2
2 + nλnd̃

T
0 Vnθ + UT

nθ + hn(θ) + o(1)

= ‖θ − ζn‖2
2 − ‖ζn‖2

2 + o(1), (B.20)

where

ζn = −1

2

(
nλnVnd̃0 + Un

)
. (B.21)

Then using a weak convergence argument it follows that

cT
(

(Z∗n)T Z∗n

)−1/2

Un
D→ N

(
0, σ2

γ

)
, (B.22)

for any vector c ∈ Rkn such that cTc = 1, where σ2
γ = Var

(
φ(1)(ei/γ)

)
. From (B.21)

and (B.22), we have

cT
(

(Z∗n)T Z∗n

)−1/2 (
2ζn + nλnVnd̃0

)
D→ N

(
0, σ2

γ

)
. (B.23)

It is now enough to show that for any ι > 0,

P
(
‖θ̂ − ζn‖2 > ι

)
→ 0, (B.24)
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and hence the minimizer θ̂ of Gn(θ) is close to ζn. Then the proof of Theorem 3.3 is

completed by using Slutsky’s Theorem along with (B.23) and (B.24).

Let B∗(n) denote a ball with center ζn and radius ι > 0. Using Lemma 3.5 and the

assumption that λn
√
n‖d0‖2 = O(

√
kn), we have

‖ζn‖2 =

∥∥∥∥1

2

(
nλnVnd̃0 + Un

)∥∥∥∥
2

≤ 1

2

(
‖nλnVnd̃0‖2 + ‖Un‖2

)
=
c6

√
kn

2
(1 +Op(1)) ,

for some constant c6 > 0. Now choose the constant c0 in An large enough so that c0 > c6/2.

Then the constant c5 in Akn can be chosen large enough to contain B∗(n). Then, by (B.19)

we have

∆n
.
= sup
θ∈B∗(n)

|hn(θ)| ≤ sup
θ∈Akn

|hn(θ)| = op(1). (B.25)

Let us now consider the behavior of Gn(θ) outside of B∗(n). Let θ = ζn + bu ∈ Rkn ,

where u ∈ Rkn is a unit vector and b > ι > 0 are some constants. Let θ∗ be the boundary

point of B∗(n) that lies on the line segment from ζn to θ. Then θ∗ can be written as

θ∗ = ζn + ιu =
(
1− ι

b

)
ζn + ι

b
θ. Using the convexity of Gn(θ), definition of ∆n, (B.20)

and (B.25), we then obtain

ι

b
Gn(θ) +

(
1− ι

b

)
Gn (ζn) ≥ Gn (θ∗) ≥ ι2 − ‖ζn‖2

2 −∆n ≥ ι2 +Gn (ζn)− 2∆n.

Since b > ι, for large n we have

inf
‖θ−ζn‖2>ι

Gn(θ) ≥ Gn (ζn) +
b

ι

(
ι2 − op(1)

)
> Gn (ζn) . (B.26)

Following from (B.26), we show that the minimum of Gn(θ) cannot occur at any θ with

‖θ − ζn‖2 > ι. Hence, with probability tending to 1, we have ‖θ − ζn‖2 ≤ ι. This

completes the proof.
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B.2: Proofs of lemmas in Chapter 3

Lemma 3.1. Let Ωn(θ) =
∑n

i=1 Ωni(θ), where Ωni(θ) = φ
(
(ei − ZT

niθ)/γ
)
W (Xi/γ)−

φ(ei/γ)W (Xi/γ) + φ(1)(ei/γ)(Z∗ni)
Tθ. Suppose that the conditions of Theorem 3.3 are

satisfied, then for any ε > 0,

P (|Ωn(θ)− E (Ωn(θ))| > ε) ≤ exp (−Canknε) ,

where an > 0 is some sequence tending to infinity such that ank
2δ+3
n n−δ → 0, and C > 0

is some constant.

Proof of Lemma 3.1.

Define ξi = Ωni(θ) − E (Ωni(θ)). Then we have
∑n

i=1 ξi = Ωn(θ) − E (Ωn(θ)). By

Markov’s inequality, we have that for any ε > 0 and t > 0,

P (Ωn(θ)− E (Ωn(θ)) ≥ ε) ≤ exp(−tε)E

(
exp

(
t

n∑
i=1

ξi

))

= exp

(
−tε− t

n∑
i=1

E (Ωni(θ))

)
n∏
i=1

E (exp (tΩni(θ))) .

(B.27)

Then we show that

t
n∑
i=1

E (Ωni(θ)) = t‖θ‖2
2 + o(1).

Then, from (B.27) we have

P (Ωn(θ)− E (Ωn(θ)) ≥ ε) ≤ exp(−tε)E

(
exp

(
t

n∑
i=1

ξi

))

∝ exp
(
−tε− t‖θ‖2

2

) n∏
i=1

E (exp (tΩni(θ))) .

(B.28)
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From (B.28), applying Taylor expansion gives

E (exp (tΩni(θ))) = E
(
1 + tΩni(θ) +O

(
t2Ω2

ni(θ)
))

= 1 + tE (Ωni(θ)) +O
(
E
(
t2Ω2

ni(θ)
))

= 1 +
t‖θ‖2

2

n
+O

(
E
(
t2Ω2

ni(θ)
))
.

For xi > 0, we have
∏n

i=1 (1 + xi) ≤ exp (
∑n

i=1 xi). Using this type of bound, we obtain

n∏
i=1

E (exp (tΩni(θ))) ≤ exp

(
n∑
i=1

E (exp (tΩni(θ)− 1))

)

= exp

(
t‖θ‖2

2 +O

(
E

(
n∑
i=1

t2Ω2
ni(θ)

)))
.

Therefore, (B.28) is followed by

P ((Ωn(θ)− E (Ωn(θ))) > ε) ≤ exp

(
−tε+O

(
E

(
n∑
i=1

t2Ω2
ni(θ)

)))
.

Now let t = ankn with an being some diverging sequence such that tE (
∑n

i=1 Ω2
ni(θ)) =

o(1). Then, it follows that

P ((Ωn(θ)− E (Ωn(θ))) > ε) ≤ exp (−Cεknan) .

It now remains to show that tE (
∑n

i=1 Ω2
ni(θ)) = o(1). Using the definition of Ωni(θ),

Ω2
ni(θ) =(
φ
((
Yi −XT

1i (β1 − β∗1)
)
/γ
)
W (Xi/γ)− φ (ei/γ)W (Xi/γ) + φ(1)(ei/γ) (Z∗ni)

T θ
)2

,

and then by the mean value theorem, we obtain

E
(
Ω2
ni(θ)

)
=

1

γ2
E
(
φ(1)(ei/γ)XT

1i(β1 − β∗1)W (Xi/γ)− φ(1)(e∗i /γ)XT
1i(β1 − β∗1)W (Xi/γ)

)2
,

(B.29)
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where e∗i ∈
(
ei, ei − ZT

niθ = Yi −XT
1i (β1 − β∗1)

)
. Then by condition (D1), we have

E
(
φ(1)(ei/γ)XT

1i(β1 − β∗1)− φ(1)(e∗i /γ)XT
1i(β1 − β∗1)

)2

≤ C4E
(∣∣XT

1i(β1 − β∗1)
∣∣δ XT

1i(β1 − β∗1)
)2

≤ C4E
(∣∣XT

1i(β1 − β∗1)
∣∣2(δ+1)

)
,

where C4 > 0 is some finite constant. Therefore, we now have from (B.29) for t > 0,

tE

(
n∑
i=1

Ω2
ni(θ)

)
≤ tC4

n∑
i=1

E
(
W 2(Xi/γ)

∣∣XT
1i(β1 − β∗1)

∣∣2(δ+1)
)
.

In addition, we obtain
∑n

i=1 E
(
W 2(Xi/γ)

∣∣XT
1i(β1 − β∗1)

∣∣2(δ+1)
)

= O(n−δk
2(δ+1)
n ). Then

we have tE (
∑n

i=1 Ω2
ni(θ)) = o(1) since t = ankn and by the assumptions on kn in Theorem

3.3. Using a similar argument for P (Ωn(θ)− E (Ωn(θ)) ≤ −ε) completes the proof.

Lemma 3.2. Let Zn(µ) be defined by (B.2). Assume that conditions (D1) to (D2)

hold. Then for any t > 0 we have

P

(
Zn(µ) >

2Rn√
n

(3
√

(1 + C0µ2kn) log2 n+ 4) + t

)
≤ exp

(
− nt2

8R2
n

)
+ P

(
Tn(µ) >

t

2

)
,

where Rn = Ck
(δ+1)/2
n µδ+1, Tn(µ) = supβ∈B(µ)

1
n

∣∣∣∑n
i=1

1
γ
W (Xi/γ) XT

i (β − β∗)φ(1) (ei/γ)
∣∣∣ , and

C0 > 0, C > 0 are some finite constants.

Proof of Lemma 3.2.

By an application of Taylor expansion,

Zi(β)=

∫ −XT
i θ

0

1

γ
W (Xi/γ)

(
φ(1) ((ei + t) /γ)− φ(1) (ei/γ)

)
dt− 1

γ
W (Xi/γ) XT

i θφ
(1) (ei/γ)

= Z̃i(θ)− 1

γ
W (Xi/γ) XT

i θφ
(1) (ei/γ) .

Note that E(Z̃i(θ)) = E(Zi(β)) for all i from condition (D1). Using the δ-Lipschitz prop-
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erty of φ(1) and condition (D2), for any β ∈B(µ) we have∣∣∣Z̃i(θ)
∣∣∣ ≤ W (Xi/γ)

γ

∫ −XT
i θ

0

∣∣(φ(1) ((ei + t) /γ)− φ(1) (ei/γ)
)∣∣ dt

≤ W (Xi/γ)

γ

∫ −XT
i θ

0

1

γδ
|t|δ dt

≤ 1

γδ+1
W (Xi/γ)

∣∣XT
i θ
∣∣δ+1

≤ ck(δ+1)/2
n µδ+1,

where c > 0 is some constant. Then for any β =
(
βT1 ,0

T
)T ∈B(µ), it follows that

√√√√ 1

n

n∑
i=1

(Z̃i(θ))2 ≤ Rn, (B.30)

where Rn = Ck
(δ+1)/2
n µδ+1.

Now define a functional space Γ∗ = {Z̃i(θ) : θ = β − β∗ with β ∈B(µ)}. Endow Γ∗

with the (random) norm ∥∥∥Z̃(θ)
∥∥∥
n

=

√√√√ 1

n

n∑
i=1

(Z̃i(θ))2.

For ε > 0, let N (ε,Γ∗, ‖ · ‖n) denote the covering number of space (Γ∗, ‖ · ‖n), that is the

minimum number of balls with radius ε necessary to cover the class Γ∗. Then from (B.30),∥∥∥Z̃(θ)
∥∥∥
n
≤ Rn. Using conditions (D1) and (D2), for any θ = β − β∗ and θ′ = β′−β∗

with β ∈ B(µ) and β′ ∈ B(µ) we have

∣∣∣Z̃i(θ)−Z̃i(θ′)
∣∣∣ ≤ ∣∣∣∣∣W (Xi/γ)

γ

∫ −XT
i θ

−XT
i θ
′

∣∣(φ(1) ((ei + t) /γ)− φ(1) (ei/γ)
)∣∣ dt∣∣∣∣∣

≤ W (Xi/γ)

γ

∫ −XT
i θ

−XT
i θ
′

1

γδ
|t|δ dt

≤ ck(δ+1)/2
n ‖β − β′‖δ+1

2

≤ Cµδk(δ+1)/2
n ‖β − β′‖2

where C > 0 is some constant. Then by Theorem 2.7.11 of van der Vaart and Wellner
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(1996), the covering numbers of the spaces Γ∗ and B(µ) satisfy

N
(
2−sRn,Γ

∗, ‖ · ‖n
)
≤ N

(
2−sRn

c′µδk
(δ+1)/2
n

,B(µ), ‖ · ‖2

)
.

= N

(
2−sC

c′µ
,B(µ), ‖ · ‖2

)
for any s ≥ 1. By Lemma 14.27 in Bühlmann and van de Geer (2011), the ball B(µ) can

be covered by
(
1 + 2µ

ε

)kn
balls with radius ε > 0. Then it follows that

N

(
2−sC

c′µ
,Γ∗, ‖ · ‖n

)
≤
(

1 +
2c
′
µ2

2−sC

)kn
,

and hence we have

log
(
1 +N

(
2−sRn,Γ

∗, ‖ · ‖n
))
≤ log 2 + kn log

(
1 + 2s+1c

′
C−1µ2

)
≤ log 2 + kn2s+1c

′
C−1µ2 ≤ (1 + C0µ

2kn)22s,

where C0 = c
′
C−1. Thus, we have shown that all the conditions in Corollary 14.4 in

Bühlmann and van de Geer (2011) are satisfied for 1
n

∑n
i=1 Z̃i(θ). Now applying this

corollary we obtain for any t > 0,

E

(
1

n
sup
β∈B(µ)

∣∣∣∣∣
n∑
i=1

ξi

(
Z̃i(θ)

)∣∣∣∣∣
)
≤ Rn√

n

(
3
√

(1 + C0µ2kn) log2 n+ 4
)
,

where ξ1, ..., ξn is a Rademacher sequence, independent of Z̃1(θ), ...,Z̃n(θ). Then using

the preceding inequality and the symmetrization theorem (see, e.g., Theorem 14.3 in

Bühlmann and van de Geer (2011)), we obtain

E

(
1

n
sup
β∈B(µ)

∣∣∣∣∣
n∑
i=1

Z̃i(θ)− E
(
Z̃i(θ)

)∣∣∣∣∣
)
≤ 2E

(
1

n
sup
β∈B(µ)

∣∣∣∣∣
n∑
i=1

Di

(
Z̃i(θ)

)∣∣∣∣∣
)

≤ 2Rn√
n

(
3
√

(1 + C0µ2kn) log2 n+ 4
)
. (B.31)

Denote Z̃n(µ) = supβ∈B(µ)
1
n

∣∣∣∑n
i=1 (Z̃i(θ)− E(Z̃i(θ)))

∣∣∣ . Then from (B.31) we have

E
(
Z̃n(µ)

)
≤ 2Rn√

n

(
3
√

(1 + C0µ2kn) log2 n+ 4
)
. (A.32)

Now combining (B.31), (B.32) and applying Massart’s concentration theorem (see, e.g.,
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Theorem 14.2 in Bühlmann and van de Geer (2011)), for any t > 0 we obtain

P

(
Z̃n(µ) >

2Rn√
n

(3
√

(1 + C0µkn) log2 n+ 4) + t

)
≤ exp

(
− nt2

8R2
n

)
. (B.33)

Write an = 2Rn√
n

(3
√

(1 + C0µ2kn) log2 n+ 4). Then, from (B.33) for any t > 0 we have

P (Zn(µ) > an + t) ≤ P
(
Z̃n(µ) + Tn(µ) > an + t

)
≤ P

(
Z̃n(µ) > an +

t

2

)
+ P

(
Tn(µ) >

t

2

)
≤ exp

(
− nt2

32R2
n

)
+ P

(
Tn(µ) >

t

2

)
.

This completes the proof.

Lemma 3.3. Assume that conditions (D1)–(D4) hold. Let Tn(µ) be as defined in

Lemma 3.2. Then limn→∞ P(Tn(µ) > t
2
) = 0 for any t > 0.

Proof of Lemma 3.3.

Let

T̃n(µ) = sup
β∈B(µ)

∣∣∣∣∣ 1n
n∑
i=1

εifθ(Xi)

∣∣∣∣∣
with θ = β − β∗, fθ(Xi) = 1

µc∗
√
kn
W (Xi/γ) XT

i θ, and εi = φ(1) (ei/γ) for i = 1, ..., n,

where c∗ > 0 is a constant such that |XijW (Xi/γ)| ≤ c∗ for all Xij. From condition (D2),

|fθ(Xi)| ≤ 1 for all β ∈ B(µ) and all Xi. From condition (D4), ε1, ..., εn are sub-Gaussian,

and hence, ε1fθ(X1), ...,εnfθ(Xn) are also sub-Gaussian for all β ∈ B(µ).

Define a class of functions F = {fθ(·) : θ = β − β∗ with β ∈ B(µ)}. Endow F with

the norm ‖fθ‖n =
√

1
n

∑n
i=1(fθ(xi))2. Then ‖fθ‖n ≤ 1 for all fθ ∈ F . For 0 < δ < 1, let

N(δ,F , ‖ · ‖n) denote the covering number of space (F , ‖ · ‖n). Using condition (D2) and

the Cauchy-Schwarz inequality, for any θ = β − β∗ and θ′ = β′−β∗ with β ∈ B(µ) and
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β′ ∈ B(µ) we have

|fθ(Xi)− fθ′(Xi)| =
1

µc∗
√
kn

∣∣W (Xi/γ) XT
i θ−W (Xi/γ) XT

i θ
′∣∣

≤ 1

µc∗
√
kn
W (Xi/γ)

∣∣XT
i (θ− θ′)

∣∣
≤ 1

µc∗
√
kn
W (Xi/γ) ‖Xi‖2‖β − β′‖2

≤ 1

µ
‖β − β′‖2.

Then by Theorem 2.7.11 of van der Vaart and Wellner (1996), the covering numbers of

the spaces F and B(µ) satisfy

N (δ,F , ‖ · ‖n) ≤ N
(
2−1µδ,B(µ), ‖ · ‖2

)
.

By Lemma 14.27 in Bühlmann and van de Geer (2011), the ball B(µ) can be covered by(
1 + 2µ

ε

)kn
balls with radius ε > 0. Then from the preceding display it follows that

N (δ,F , ‖ · ‖n) ≤
(

1 +
4

δ

)kn
,

and hence, we have

log (1 + 2N (δ,F , ‖ · ‖n)) ≤ log 4 + kn log

(
1 +

4

δ

)
≤ log 4 + kn

(
4

δ

)
≤ 8kn

δ
=

(
Aν
δ

)2(ν)

,

where Aν = 8kn and ν = 1/2. Thus, conditions of Corollary 14.6 in Bühlmann and van

de Geer (2011) are satisfied for F and N (δ,F , ‖ · ‖n) with Aν = 8kn and ν = 1/2. Then

applying this corollary, for any t > 0 we have

P

(
∃ fθ ∈ F :

√
n

∣∣∣∣∣ 1n
n∑
i=1

εifθ(Xi)

∣∣∣∣∣ ≥ K0A
ν
ν ‖fθ‖

1−ν
n (21−ν − 1)−1 +K0 ‖fθ‖1−ν

n t

)

≤ exp

[
− t2

K2
0

]
(1 + 2Bν), (B.34)
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where K0 and Bν are positive constants. Since Aν = 8kn and ν = 1/2, and ‖fθ‖n ≤ 1 for

all fθ ∈ F , thus from (B.34) we obtain

P

(
sup
β∈B(µ)

∣∣∣∣∣ 1n
n∑
i=1

εifθ(Xi)

∣∣∣∣∣ ≥ 1√
n
K02
√

2
√
kn(21/2 − 1)−1 +

1√
n
K0t

)

≤ exp

[
− t2

K2
0

]
(1 + 2B1/2), (5.1)

and hence

P

(
T̃n(µ) ≥ 1√

n
K02
√

2
√
kn(21/2 − 1)−1 +

1√
n
K0t

)
≤ exp

[
− t2

K2
0

]
(1 + 2B1/2).

Note that T̃n(µ) = 1
µc∗
√
kn
Tn(µ), where Tn(µ) is defined in Lemma 3.2. Then we have for

any t > 0

P

(
Tn(µ) ≥ µc∗

√
kn√
n

K02
√

2
√
kn(21/2 − 1)−1 +

µc∗
√
kn√
n

K0t

)
≤ exp

[
− t2

K2
0

]
(1 + 2B1/2),

that is, for any t > 0

P

(
Tn(µ) ≥ kn√

n
K02
√

2(21/2 − 1)−1 +
t

2

)
≤ exp

[
− nt2

4kn(µc∗)2K0
4

]
(1 + 2B1/2). (B.35)

From (B.35), it follows that limn→∞ P(Tn(µ) > t
2
) = 0 for any t > 0 when kn = o(

√
n).

This completes the proof.

Lemma 3.4. Assume that conditions (D1) to (D4) hold. Suppose that N = {β =(
βT1 , β

T
2

)T ∈ Rpn : β2 = 0, ‖β1−β∗1‖2 ≤ vn} denotes a neighborhood around β∗ for some

sequence vn → 0. If minj>kn dj > c for some constant c > 0, k
1/2
n vδn

√
(1 + vnk

3/2
n ) log2 n =

o(
√
nλn), λn > 2

√
(1 + c)(log pn)/n, and λn > C∗

√
knvn for some constant C∗ > 0 are

satisfied, then

P

(
sup
β∈N
‖d−1

1 ◦QTψ(1) ((Y − Xβ)/γ) ‖∞ ≥ nλn

)
→ 0,

where ψ((Y − Xβ)/γ) = (φ((Y1 −XT
1 β)/γ)W (X1/γ), ..., φ((Yn −XT

nβ)/γ)W (Xn/γ))T .

Proof of Lemma 3.4.
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Consider the following decomposition:

sup
β∈N

∥∥∥∥ 1

n
QTψ(1) ((Y − Xβ)/γ)

∥∥∥∥
∞
≤

sup
β∈N

∥∥∥∥ 1

n
E
(
QT
(
ψ(1)((Y − Xβ)/γ)− ψ(1)(e/γ)

))∥∥∥∥
∞

+

∥∥∥∥ 1

n
QTψ(1)(e/γ)

∥∥∥∥
∞

+ max
j>kn

sup
β∈N

1

n

n∑
i=1

|rβ,j(Xi, Yi)|
.
= I1 + I2 + I3,

where e = (e1, . . . , en)T and

rβ,j(Xi, Yi) = Xij

(
φ(1)

(
(Yi −XT

i β)/γ
)
− φ(1) (ei/γ)

)
W (Xi/γ)

− E
(
Xij

(
φ(1)

(
(Yi −XT

i β)/γ
)
− φ(1)(ei/γ)

)
W (Xi/γ)

)
(B.36)

for fixed j satisfying kn + 1 ≤ j ≤ pn.

We first study I1. Since the ei’s are independent of the Xi’s, from (B.36) we obtain

sup
βββ∈N

∥∥E (QT
(
ψ(1) ((Y − Xβββ)/γ)− ψ(1)(e/γ)

))∥∥
∞

= max
j>kn

sup
βββ∈N

∣∣∣∣∣E
(

n∑
i=1

XijW (Xi/γ)
(
φ(1)

(
(Yi −XT

i βββ)/γ
)))∣∣∣∣∣ . (B.37)

For β ∈ N, φ((Yi −XT
i β)/γ) = φ((Yi −XT

1iβ1)/γ). Then by condition (D1), we have

E

(
n∑
i=1

XijW (Xi/γ)
(
φ(1)

(
(Yi −XT

i βββ)/γ
)))

=
n∑
i=1

E
(
XijW (Xi/γ)

(
g(γ)XT

1i (β1 − β∗1) + o(|XT
1i (β1 − β∗1) |)

))
. (B.38)

By the Cauchy-Schwarz inequality,
∣∣XT

1i (β1 − β∗1)
∣∣ ≤ ‖X1i‖2 ‖β1 − β∗1‖2 ≤ vn ‖X1i‖2 for

all β ∈ N. By condition (D2), |XijW (Xi/γ)| ‖X1i‖2 ≤ ck
1/2
n for all (i, j), where c > 0 is

some constant. Then by combining (B.37), (B.38) and using λn > C∗
√
knvn, we obtain

I1 ≤ λn(O(1) + o(1)).

Next we proceed to I2. By definition, I2 = ‖ 1
n

∑n
i=1Xijψ

(1)(ei/γ)‖∞. By condition

(D1), E
(
Xijφ

(1)(ei/γ)W (Xi/γ)
)

= 0 for all (i, j). By condition (D2), XijW (Xi/γ)) is
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bounded for all (i, j), i.e., |XijW (Xi/γ))| ≤ c∗0 for some constant c∗0 > 0 independent of

(i, j). Then by condition (D4), it follows that (K1)2(E exp[|Xijφ
(1)(ei/γ)W (Xi/γ)|2/K2

1 ]−

1) ≤ σ2
1 for all (i, j), where K1 = c∗0K0 and σ1 = c∗0σ0. Define R2 = K2

1 + σ2
1. Then by

Lemma 14.16 in Bühlmann and van de Geer (2011), we have

P

(∥∥∥∥∥
n∑
i=1

1

n
Xijψ

(1)(ei/γ)

∥∥∥∥∥
∞

≥ R

√
8(t2 +

log(2pn)

n
)

)
≤ exp(−nt2).

Then by taking t = O(
√
λ2
n − log(2pn)/n), we obtain I2 = n−1‖QTψ(1)(e/γ)‖∞ = o(λn)

with asymptotic probability one.

Next we consider I3. We will show that I3 = maxj>kn supβββ∈N
1
n

∑n
i=1 |rβ,j(Xi, Yi)| =

o(λn) with probability tending to zero. First, for each i, define the functional space

Γj = {rβ,j(Xi, Yi) : β ∈ N}. Endow Γj with the (random) norm

‖rβ,j‖n =

√√√√ 1

n

n∑
i=1

r2
β,j(Xi, Yi). (B.39)

For ε > 0, let N (ε,Γj, ‖ · ‖n) denote the covering number of space (Γj, ‖ · ‖n) for each

j. Using the local δ-Lipschitz condition on φ(1) and the Cauchy-Schwarz inequality, we

obtain

∣∣φ(1)
(
(Yi −XT

i β)/γ
)
− φ(1) (ei/γ)

∣∣ ≤ ∣∣XT
i (β − β∗)

∣∣δ
≤ ‖Xi‖δ2 ‖β − β

∗‖δ2 . (B.40)

Using condition (D2), for 0 < δ < 1 we have

|XijW (Xi/γ)| ‖Xi‖δ2 ≤ c∗1k
1/2
n (B.41)

for some constant c∗1 > 0. Then using (B.39), (B.40) and (B.41) leads to

‖rβ,j‖n ≤ c∗2k
1/2
n vδn (B.42)

for some constant c∗2 > 0 and kn+1 ≤ j ≤ pn. Again using the Cauchy-Schwarz inequality,
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conditions (D1) and (D2), for any β ∈ N and β′ ∈ N we have

|rβ,j(Xi, Yi)− rβ′,j(Xi, Yi)| ≤
∣∣XijW (Xi/γ)XT

i (β − β′)
∣∣δ + E

(∣∣XijW (Xi/γ)XT
i (β − β′)

∣∣δ)
≤ c∗3k

1/2
n ‖β − β′‖δ2

for some constant c∗3 > 0. Note that ‖ · ‖δ2 is a metric for 0 < δ < 1. Then by Theorem

2.7.11 of van der Vaart and Wellner (1996), the covering numbers of the spaces Γj and N

satisfy

N
(
22−s,Γj, ‖ · ‖n

)
≤ N

(
22−s

c7k
1/2
n

,N, ‖ · ‖δ2
)

≤ N

(
22−s

c7k
1/2
n

,N, ‖ · ‖2

)
,

where the last inequality follows from the fact that the neighborhood {β ∈ Rpn : ‖β1 −

β∗1‖δ2 ≤ vn} is a subset of the neighborhood {β ∈ Rpn : ‖β1 − β∗1‖2 ≤ vn}. By Lemma

14.27 in Bühlmann and Van de Geer (2011), the ball N can be covered by
(
1 + 2vn

ε

)kn
balls with radius ε > 0. Therefore, we have

N

(
22−s

c7k
1/2
n

,Γj, ‖ · ‖n
)
≤

(
1 +

2c7vnk
1/2
n

22−s

)kn

,

and hence we obtain

log

(
1 +N

(
22−s

c7k
1/2
n

,Γj, ‖ · ‖n
))
≤ log 6 + kn log

(
1 + 2s−1c7k

1/2
n vn

)
≤ 2c8

(
1 + vnk

3/2
n

)
22s

for some constant c8 > 0. Thus, we have shown that all the conditions in Corollary 14.4

in Bühlmann and van de Geer (2011) are satisfied for 1
n

∑n
i=1 rβ,j(Xi, Yi). Now applying

this corollary and using (B.42) we obtain for any t > 0,

P

(
sup
β∈N

∣∣∣∣∣ 1n
n∑
i=1

rβ,j(Xi, Yi)

∣∣∣∣∣ ≥ c∗2k
1/2
n vδn√
n

(
3

√
(1 + vnk

3/2
n ) log2 n+ 4 + 4t

))
≤ exp

(
−nt

2

8

)
.

Taking t = C
√

log pn/n with C > 0 large enough, it then follows from the union bound
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that

P

(
max

pn≥j>kn
sup
β∈N

∣∣∣∣∣ 1n
n∑
i=1

rβ,j(Xi, Yi)

∣∣∣∣∣ ≥ 4c∗2k
1/2
n vδn√
n

(
3

√
(1 + vnk

3/2
n ) log2 n

))

≤ (pn − kn) exp

(
−C log pn

8

)
,

which goes to zero as n → ∞. Therefore, if k
1/2
n vδn

√
(1 + vnk

3/2
n ) log2 n = o(

√
nλn), then

we have I3 = op(λn). This completes the proof of Lemma 3.4.

Lemma 3.5. Assume that conditions (D2) and (D3) hold. In addition, define

M = −
(
φ(1)(e1/γ), . . . , φ(1)(en/γ)

)T
and

Un = (Z∗n)T M,

where

Z∗n =

(
1

γ
X11W (X1/γ) , . . . ,

1

γ
X1nW (Xn/γ)

)T
Vn

with

Vn =

(
E

(
g(γ)

2γ

n∑
i=1

X1iX
T
1iW (Xi/γ)

))−1/2

.

Then ‖Un‖2 = OP (
√
kn).

Proof of Lemma 3.5.

Observe that

UT
nUn = MTZ∗n (Z∗n)T M

=

(
1√
n

n∑
i=1

X1iX
T
1iW (Xi/γ)φ(1)(e1/γ)

)T (
nVnV

T
n

)( 1√
n

n∑
i=1

X1iX
T
1iW (Xi/γ)φ(1)(e1/γ)

)

≤ C3

∥∥∥∥∥ 1√
n

n∑
i=1

X1iX
T
1iW (Xi/γ)φ(1)(ei/γ)

∥∥∥∥∥
2

, (B.43)

the last equality follows from the fact that nVnV
T
n has bounded eigenvalues, see condition
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(D3), where C3 > 0 is some constant. By repeated application of the triangle inequality

and using condition (D2) we also have∥∥∥∥∥ 1√
n

n∑
i=1

X1iX
T
1iW (Xi/γ)φ(1)(ei/γ)

∥∥∥∥∥
2

≤ 1√
n

n∑
i=1

∥∥X1iX
T
1iW (Xi/γ)

∥∥
2

∣∣φ(1)(ei/γ)
∣∣

≤ C2

√
kn√
n

n∑
i=1

∣∣φ(1)(ei/γ)
∣∣ . (B.44)

From an application of the central limit theorem, it follows that Λn = 1√
n

∑n
i=1

∣∣φ(1)(ei/γ)
∣∣

D→ N
(
µγ, σ

2
γ

)
, where µγ = E(|φ(1)(ei/γ)|) and σ2

γ = Var(|φ(1)(ei/γ)|). Then by Prohorov’s

Theorem, {Λn} is uniformly tight (or bounded in probability). Then from (B.43) and

(B.44), UT
nUn√
kn

is uniformly tight. That is, UT
nUn = OP (

√
kn). This completes the proof.
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Appendix C:

Supplementary material for

Chapter 4

C.1: Proofs of theorems in Chapter 4

Proof of Theorem 4.1.

We will derive an error bound on β̂ − β∗ assuming that

λn ≥ 2‖∇βL∗n (β∗, s) ‖∞. (C.1)

holds for any s. The results in Theorems 4.2 and 4.3 show that (C.1) holds when ei follows

either a sub-Gaussian or a sub-exponential distribution.

Now let θ̂ =
(
β̂T , ŝT

)T
denote the minimizer of (4.1). Then we have

1

n

n∑
i=1

(
c

2

(
Yi −XT

i β̂ − ŝi/c
)2

+ ψα (ŝi)

)
W (Xi) + λn‖β̂‖1

≤ 1

n

n∑
i=1

( c
2

(
Yi −XT

i β
∗ − ŝi/c

)2
+ ψα (ŝi)

)
W (Xi) + λn‖β∗‖1.

Then

L∗n

(
β̂, ŝ

)
− L∗n (β∗, ŝ) ≤ λn‖β∗‖1 − λn‖β̂‖1 ≤ λn‖β∗ − β̂‖1, (C.2)

where

L∗n (β, s) =
1

n

n∑
i=1

( c
2

(
Yi −XT

i β − si/c
)2

+ ψα (si)
)
W (Xi).
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Applying a Taylor expansion on L∗n with respect to β, we have

L∗n

(
β̂, ŝ

)
− L∗n (β∗, ŝ)−

〈
∇βL∗n (β∗, ŝ) ,

(
β̂ − β∗

)〉
=

c

2n

(
β̂ − β∗

)T n∑
i=1

XiX
T
i W (Xi)

(
β̂ − β∗

)
≥ 0. (C.3)

From (C.2) and (C.3), we have

λn‖β∗ − β̂‖1 + ‖∇βL∗n (β∗, ŝ) ‖∞
∥∥∥β̂ − β∗∥∥∥

1
≥

λn‖β∗‖1 − λn‖β̂‖1 + ‖∇βL∗n (β∗, ŝ) ‖∞
∥∥∥β̂ − β∗∥∥∥

1
≥ 0. (C.4)

Using assumption (C.1), from (C.4) we obtain

λn‖β∗ − β̂‖1 + ‖∇βL∗n (β∗, ŝ) ‖∞‖(β̂ − β∗)‖1 ≤
3

2
λn
√
kn‖β∗ − β̂‖2.

From Lemma 4.2, it follows that

ζ

2
‖β∗ − β̂‖2

2 ≤ L∗n

(
β̂, ŝ

)
− L∗n (β∗, ŝ)−

〈
∇βL∗n (β∗, ŝ) ,

(
β̂ − β∗

)〉
≤ 3

2
λn
√
kn‖β∗ − β̂‖2.

Hence we obtain the upper bound as claimed:

‖β∗ − β̂‖2 ≤ 3ζ−1λn
√
kn.

Next we show that the error ∆̂ = β̂ − β∗ ∈ C1 defined in Lemma 4.2. Using (C.1)

again, from (C.4) we obtain

λn‖β∗‖1 − λn‖β̂‖1 +
1

2
λn‖β̂ − β∗‖1 ≥ 0.

Note that we have the following relationship:

‖β∗‖1 − ‖β̂‖1 = ‖β∗T‖1 − ‖β̂T‖1 − ‖β̂T c‖1 ≤ ‖(β̂ − β∗)T‖1 − ‖(β̂ − β∗)T c‖1. (C.5)
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Then combining (C.2) and (C.5) leads to

0 ≤ λn‖∆̂T‖1 − λn‖∆̂T c‖1 +
1

2
λn‖∆̂T‖1 +

1

2
λn‖∆̂T c‖1 =

3

2
λn‖∆̂T‖1 −

1

2
λn‖∆̂T c‖1,

which is the cone condition. This completes the proof.

Proof of Theorem 4.2.

It is easy to show that

|∇βL∗n (β∗, s)| =

∣∣∣∣∣ cn
n∑
i=1

(
Yi −XT

i β
∗ − si

c

)
XiW (Xi)

∣∣∣∣∣ .
Then

‖∇βL∗n (β∗, s)‖∞ =

∥∥∥∥∥ cn
n∑
i=1

(
Yi −XT

i β
∗ − si

c

)
XiW (Xi)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ cn
n∑
i=1

eiXiW (Xi)

∥∥∥∥∥
∞

+

∥∥∥∥∥ cn
n∑
i=1

(si
c

)
XiW (Xi)

∥∥∥∥∥
∞

.
= I1 + I2,

where ei = Yi −XT
i β
∗, i ≥ 1.

We begin with the easy term I2 =
∥∥ 1
n

∑n
i=1 siXiW (Xi)

∥∥
∞ . For each j = 1, . . . , pn, by

the assumption on W (·) , we have∣∣∣∣∣ 1n
n∑
i=1

siXijW (Xi)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|si| .

Then using condition 1, it follows that

I2 ≤ c1

√
log(pn)

n
.

Now we consider I1. Note that XiW (Xi) is bounded by the assumption on W (·).

Therefeore, eiXiW (Xi)’s are mean zero sub-Gaussian random variables, as the ei’s are

mean zero sub-Gaussian random variables. Then applying Hoeffding’s inequality for sub-

Gaussian random variables together with the union bound, we obtain for any t > 0

P

(∥∥∥∥∥ cn
n∑
i=1

eiXiW (Xi)

∥∥∥∥∥
∞

≥ ct

)
≤ 2pn exp(−nt2/2σ2),
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where σ2 is the variance proxy of eiXiW (Xi). Then taking t =
√

2σ2ε(log pn)/n with

ε > 1 yields that ∥∥∥∥∥ cn
n∑
i=1

eiXiW (Xi)

∥∥∥∥∥
∞

≤ c

√
2σ2ε log(pn)

n

with probability at least 1− 2pn exp(−ε log pn). Then combining above results gives

‖∇βL∗n (β∗, s)‖∞ ≤ c

√
2σ2ε log pn

n
+ c1

√
log pn
n

with probability at least 1− 1− 2pn exp(−ε log pn). Note that the above bound holds for

any s satisfying condition 1. Then for the choice

λn = 2

(
c

√
2σ2ε log pn

n
+ c1

√
log pn
n

)
,

(C.1) holds with probability at least 1− 2pn exp(−ε log pn) for any s satisfying condition

1.

Proof of Theorem 4.3.

Again recall the partition present in the proof of Theorem 4.2:

‖∇βL∗n (β∗, s)‖∞ =

∥∥∥∥∥ cn
n∑
i=1

(
Yi −XT

i β
∗ − si

c

)
XiW (Xi)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ cn
n∑
i=1

eiXiW (Xi)

∥∥∥∥∥
∞

+

∥∥∥∥∥ cn
n∑
i=1

si
c

XiW (Xi)

∥∥∥∥∥
∞

.
= I3 + I4.

Using the same technique used in the proof of Theorem 4.2 again gives I4 ≤ c1

√
log(pn)
n

holds. Now the remaining work is to derive an upper bound of I3 =
∥∥ c
n

∑n
i=1 eiXiW (Xi)

∥∥
∞ .

Based on the assumption on W (·), for each j = 1, . . . , pn, we have

1

n

n∑
i=1

E |eiXijW (Xi)|m ≤
1

n

n∑
i=1

E|ei|m.

Then applying Lemma 14.13 in Bühlmann and van de Geer (2011) gives for any t > 0,

P

(∥∥∥∥∥ cn
n∑
i=1

eiXiW (Xi)

∥∥∥∥∥
∞

≥ cKt+ c
√

2t+ c

√
2 log 2pn

n
+
cK log 2pn

n

)
≤ exp(−nt).

Note that when n is large and K is not too large, the square root terms are the lead-
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ing terms. By letting t = log(2pn)/n, we obtain that with probability at least 1 −

exp(−log(2pn)) ∥∥∥∥∥ cn
n∑
i=1

eiXiW (Xi)

∥∥∥∥∥
∞

≤ c2

√
(log 2pn)/n

provided that n ≥ log(2pn), where c2 > 0 is some constant. Then for the choice

λn = 2

(
c2

√
log 2pn
n

+ c1

√
log pn
n

)
,

we have

λn ≥ 2‖∇βL∗n (β∗, s) ‖∞

holds with probability at least 1− exp(−log(2pn)) for any s satisfying condition 1.

C.2: Proofs of lemmas in Chapter 4

Lemma 4.1. (Lemma 12 in Loh and Wainwright 2012) For a fixed matrix T ∈ Rpn×pn ,

parameter s > 0 and tolerance δ > 0, suppose that we have the deviation condition

∣∣vTTv
∣∣ ≤ δ, ∀ v ∈ Rpn , s.t ‖v‖0 ≤ 2s and ‖v‖2 ≤ 1.

Then ∣∣vTTv
∣∣ ≤ 27δ

(
‖v‖2

2 +
‖v‖2

1

s

)
, ∀ v ∈ Rpn .

Lemma 4.2. Suppose that X1, . . . ,Xn are i.i.d random variables satisfying ‖Xi‖2
2W (Xi) ≤

1 for some weight function W (·). In addition, let H̄ββ = c
2
X1X

T
1W (X1). Assume ζ =

λmin

(
E
(
H̄ββ

))
> 0, then for any s

L∗n(β, s)− L∗n (β∗, s)− 〈∇βL∗n (β∗, s) , (β − β∗)〉 ≥ ζ

2
‖β − β∗‖2

2
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holds with probability at least 1− 2 exp(−nc4) over the set

C1 = {∆ ∈ Rpn : ‖∆T c‖1 ≤ 3‖∆T‖1}

where ∆ = (β − β∗) , ζ and c4 are some positive constants.

Proof of Lemma 4.2.

Recall the Taylor expansion obtained at (C.3):

L∗n(β, s)− L∗n (β∗, s)− 〈∇βL∗n (β∗, s) , (β − β∗)〉

=
c

2n
(β − β∗)T

n∑
i=1

XiX
T
i W (Xi)(β − β∗)

for any fixed s. Denote a matrix Γ1 = 1
n

∑n
i=1

c
2
XiX

T
i W (Xi)− E

(
c
2
XiX

T
i W (Xi)

)
. Then

applying Lemma 4.1 together with the assumptions on the weight function W (·) and the

design matrix X, we have

c

2n
(β − β∗)T

n∑
i=1

XiX
T
i W (Xi) (β − β∗) ≥

(β − β∗)T E
( c

2
XiX

T
i W (Xi)

)
(β − β∗)− 27η1

(
‖β − β∗‖2

2 +
‖β − β∗‖2

1

kn

)
,

where η1 > 0 is a constant. Again, over the set C1 we have

‖β − β∗‖1 = ‖ (β − β∗)T c ‖1 + ‖ (β − β∗)T ‖1 ≤ 3‖ (β − β∗)T ‖1 + ‖ (β − β∗)T ‖1

= 4‖ (β − β∗)T ‖1 ≤ 4
√
kn‖ (β − β∗)T ‖2 ≤ 4

√
kn‖β − β∗‖2.

Then by letting η1 = 1
918
ζ with ζ = λmin

(
E
(
H̄ββ

))
, we obtain

c

2n
(β − β∗)T

n∑
i=1

XiX
T
i W (Xi) (β − β∗) ≥ ζ

2
‖β − β∗‖2

2

for any s.

Now it remains to check the assumption of Lemma 4.1. Note that for ‖∆‖2 ≤ 1,
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∆TΓ1∆ is the average of i.i.d bounded random variables where∣∣∣ c
2

(β − β∗)T XiX
T
i W (Xi) (β − β∗)

∣∣∣ ≤ c2.

For any ∆ with ‖∆‖0 ≤ 2kn, applying Hoeffding’s inequality, together with a discretiza-

tion argument and union bound over the
(
pn
2kn

)
choices, gives

P
(∣∣∆TΓ1∆

∣∣ ≤ η1, ∀∆ ∈ Rpn s.t. ‖∆‖0 ≤ 2kn and ‖∆‖2 ≤ 1
)

≥ 1− 2 exp
(
−c3nη1/c

2 + 2kn log(pn)
)
.

Then for n & c2kn log(pn)

λmin(E(H̄ββ))
, we have with probability at least 1−2 exp(−nc4),

∣∣∆TΓ1∆
∣∣ ≤

η1 holds. This completes the proof.
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