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Abstract 

Analysis of uncertainty in ore reserves impacts investment decisions, mine planning and 

sampling. Uncertainty is evaluated by geostatistical simulation and is affected by the 

amount of data and the modeling parameters. Incomplete uncertainty is given because the 

parameter uncertainty is ignored. Also, greater spatial continuity leads to more 

uncertainty. This increase is unreasonable in earth science. To address these problems, 

two approaches are proposed. The first approach is based on multiGaussian simulation 

where many realizations are performed at translated and/or rotated configurations and 

conditioned to the data. Variable configurations give different mean values that define 

uncertainty. The second approach is based on a stochastic trend; this approach 

randomizes the trend coefficients accounting for the fitted coefficients correlation. 

Variable set of coefficients provide different mean values.   Furthermore, a methodology 

to account for parameter uncertainty is proposed. The uncertainty in the mean is 

transferred through simulation to deliver a more complete uncertainty.…………
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   Area or domain of interest 
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Chapter 1                                                 

Introduction 

Mineral deposits, petroleum reservoirs and environmental sites are uncertain because data 

scarcity makes local estimation a challenge. Geostatistical simulation constructs a set of 

realizations that provide an assessment of uncertainty. Input parameters are required in 

addition to the local data; however, the mean of the input distribution is perhaps the most 

important because the mean has a direct influence on resources and reserves: quantity of 

metal, hydrocarbon and contaminant. Uncertainty in the input mean could be transferred 

though the simulation to provide a more complete measure of uncertainty.  

A realistic evaluation of uncertainty is important for mine planning. The priority of 

mining is given to zones of ore with low uncertainty and building access in zones of 

waste with low uncertainty. An improved evaluation of uncertainty could avoid some 

mistakes in mine planning, reduce problems and potentially increase profit during 

production. 

The assessment of uncertainty is also used to identify zones of interest for sampling. 

Sampling areas unnecessarily or leaving areas unsampled would be suboptimal. A 

realistic evaluation of uncertainty permits the risk to be understood more accurately and 

improved decisions on sampling will be made.  

1.1 Problem Setting 

Analysis of uncertainty in resources and reserves impacts investment decisions. 

Consequently, the assessment of uncertainty is important for making the correct decision. 

Global evaluations are used in the early stages of a project, where there are too few data 

to perform reliable local evaluations. In the later stages, geostatistical simulation is used 
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to evaluate local and global uncertainty. The simulation often considers fixed input 

parameters, that is, parameter uncertainty is often ignored in simulation. Then, the global 

uncertainty may be underestimated.  

Parameter uncertainty could be evaluated by bootstrap techniques. A shortcoming of 

these techniques is that conditioning data are not considered; the locations and the 

outcomes are randomized. Also, the bootstrap relies on the assumption that the data are 

representative. 

Evaluations in large deposits with few drill holes show that local fluctuations cancel out 

because the range of correlation become small respect to the domain size. As this relation 

is increased, more locations in the domain obtain an expected value equal to the 

stationary mean m(u). As a result, the fluctuations in the global mean from simulation are 

unrealistically small. 

1.2 Objectives of the Thesis 

The principal objective is to improve the evaluation of uncertainty in resources and 

reserves. Both the local and the global uncertainty would be improved with the 

transference of the uncertainty in the mean through the process of simulation. There are 

techniques to evaluate parameter uncertainty; however they have limitations. The thesis 

reviews the available bootstrap techniques. New approaches are devised that overcome 

some of the pitfalls of traditional bootstrap techniques. The new approaches evaluate the 

uncertainty in the mean accounting for the domain limits and the conditioning data. The 

assumption of stationarity is relaxed by the use of trend equation. To accomplish the 

principal objective, a methodology is developed to transfer the uncertainty in the mean 

through simulation; a more complete evaluation of uncertainty is provided. 

1.3 Proposed Approach 

The bootstrap and spatial bootstrap are traditional tools to evaluate the uncertainty in 

statistical parameters; however, those techniques do not consider the domain limits and 

are not conditional to the available data. Two new approaches to evaluate the uncertainty 

in the mean of the input univariate distribution are proposed. The first one, the 
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implementation of conditional finite domain based on LU simulation, where the 

simulation is performed only at the points to be sampled conditioned to the data, the 

configuration of those sampled points follows the original strategy of sampling; the 

sampling of many simulated configurations gives different mean values that define 

uncertainty. The second approach is based on a stochastic trend. The use of a trend 

equation relaxes the assumption of stationarity and defines the mean dependent on the 

sample location within the domain. The stochastic trend approach randomizes the trend 

coefficients accounting for the correlation of the original fitted coefficients. Different 

coefficients provide different mean values that are combined to a distribution of 

uncertainty in the mean.  

The uncertainty in the mean is transferred through simulation and the thesis demonstrates 

the use of a simple methodology to account for parameter uncertainty. Multiple 

distributions are constructed and used in simulation as reference distributions. Original 

values are transformed into Gaussian units according to a specified reference distribution. 

The uncertainty in the mean of the univariate distribution is accounted for by changing 

the reference distribution for transformation.  

1.4 Dissertation Online 

Chapter Two presents some introductory notations, introduces the current analytical 

approach of uncertainty in the mean and reviews the theory of the bootstrap. 

Chapter Three proposes the conditional finite domain technique that is based on LU 

conditional simulation that is performed only at sampled locations. Those locations are 

defined by the set of configurations that honour the original strategy of sampling and are 

inherent in the domain of interest. A sensitivity analysis demonstrates the robustness and 

reasonableness of this approach in scenarios where other techniques struggle with 

unrealistic uncertainty. 

Chapter Four proposes a methodology to evaluate the uncertainty in the input parameter 

relaxing the assumption of stationarity. The mean of the random function is not taken to 

be a constant and is calculated as a function of location in the domain. The methodology 
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is implemented in a simple scenario to explain the methodology and a sensitivity analysis 

demonstrates the robustness of this approach in real scenarios. 

Chapter Five presents a simple process to transfer of the uncertainty of the mean through 

the simulation. An example illustrates the methodology of the process, discusses and 

compares the results of simulation with parameter uncertainty. 

Chapter Six gives the conclusions; summarizes the contributions of the thesis and 

presents future works. 

An Appendix presents equations that quantify the fluctuations due to a finite domain size 

in presence of conditioning data; the analytical model is validated by the numerical 

uncertainty of many realizations. Many programs were developed through the thesis, the 

parameter code of those program are explained. 
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Chapter 2                                          

Literature Review 

The use of geostatistics is still growing since G. Matheron first introduced the 

methodology in 1962. Since then, many researchers have contributed to the developed of 

this science, such as (Journel & Huijbregts, 1978) and (David, 1977). The interest in 

geostatistics is high because crucial decisions are taken based on estimates of the 

resources and reserves. The resources and reserves evaluation process follows the stages 

of a drilling, quality assurance and quality control (QA/QC) of the data, a deterministic 

geological model, an evaluation of the grade and density, and considerations of economic 

and engineering factors. Relatively few data lead to inevitable uncertainty at every stage 

in the project evaluation. 

The evaluation differs for various phases in the project, such as a scoping/conceptual 

study, a pre-feasibility/preliminary study and a feasibility/definitive study. Global 

evaluations are often used to make decisions in the first two studies. Afterwards, local 

evaluations are also required to make decisions. The difference of requirements is due to 

the nature of the decisions and a change in the data density, starting with sparse sampling 

in early studies and finishing with closer data to define local evaluations (Dominy, 

Noppé, & Annels, 2002). 

Although a global mean is required in all the stages of resource and reserve evaluation, 

the objective of this thesis is to improve the evaluation of uncertainty in the grade 

evaluation stage of the process. Locations in the geologic block model are classified in 

decreasing order of confidence such as, measured, indicated, and inferred for the 

resource. The criteria of classification depend on the type of deposit and the expertise of 

the competent person. Classification may be based on the kriging variance or the local 



6 

 

variance of the weighted average (Arik, 1999). Another way to evaluate uncertainty is 

with conditional simulation (Journel & Huijbregts, 1978), this procedure provides 

realizations of the possible grades at unsampled locations. 

This uncertainty obtained from geostatistical simulation depends on many input 

parameters, such us the variogram and input distribution of the data. Variability of the 

input parameters is usually ignored and a prediction error could be wrongly estimated 

(Wang & Wall, 2003). All input parameters have uncertainty; however, the distribution of 

the data is considered the most important in the simulation because this is the target 

distribution that simulation tries to reproduce (Babak & Deutsch, 2008). The simulation 

process assumes that the input univariate distribution is representative of the orebody. 

Preferential sampling is handled by declustering techniques, but the uncertainty in the 

distribution must also be considered.  

The conventional bootstrap (CB) procedure assesses uncertainty in statistical parameters, 

but considers the data to be independent. The bootstrap is an application of Monte Carlo 

simulation where the samples are drawn with replacement (Efron, 1979). A set of 

simulated realizations are generated to define the model of uncertainty. The bootstrap 

approach assumes an arbitrary randomization and data independence that is not suitable 

to geological data. The independence assumption of the CB technique is relaxed with the 

use of spatial correlation in the sampling. This leads to a technique called the spatial 

bootstrap (SB) and another technique called the conditional finite domain (CFD) 

technique.  These will be described after some notation is presented. 

2.1 Some Introductory Notation 

Scarce data is a usual feature of reservoir data and uncertainty arises because sampling is 

not complete until actual mining takes place. Even at the time of mining, production 

drilling does not completely define complex deposits. Another feature that increases 

uncertainty is preferential sampling in zones with greater economic value. Data are often 

expensive to collect and it is neither optimal nor feasible to collect data uniformly over 

the entire site being characterized (Leuangthong, Khan, & Deutsch, 2008). Set of 

unsampled locations is evaluated given original sparse data. 
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The set of unsampled locations in a deposit are defined as a set of spatially dependent 

random variables where the local uncertainty at any particular location u is modeled by 

the random variable at that location. A location is defined by the vector u that defines the 

East, North and Elevation coordinates. The available data are viewed as particular 

outcomes z of the random variables Z at the locations that have been sampled. We are 

mainly concerned with metal concentrations that are continuous random variables, Z(u). 

These variables are characterized by their cumulative distribution fuction (cdf). This 

function specifies the probability that the variable Z at location u is no greater than any 

given threshold z and the cfd is a non-decreasing function of z (Goovaerts, 1997): 

   ( ; ) Prob ( )   0,1F z Z z  u u           (2.1) 

The probability density function (pdf) is the derivative of the cumulative distribution 

function if it exists: 

( ; ) '( ; )f z F zu u  (2.2) 

The probability density function f(u;z) and the histogram have a similar shape, but the 

frequency of samples in a discrete histogram class is not the same as the continuous pdf 

curve.  

2.1.1 Random Function 

A random function (RF) is defined as a set of random variables at many spatial locations 

u in an study area A, {Z(u), ∀ u   A }. A characteristic of mineral deposits is their spatial 

correlation between the random variables. A set of n locations could be defined by their 

respective vectors ui where i = 1,…,n. Thus, n random variables {Z(u1),…,Z(un)} are 

characterized by an n point cdf or multivariate cdf (2.3). This defines the joint uncertainty 

about the n actual values z(u1),…,z(un). This is also sometimes referred to as the spatial 

law of the random function Z(u).  

1 1 1 1( ,..., ; ,..., ) Prob{Z( ) ,...,Z( ) }n n n nF z z z z  u u u u                     (2.3) 

In practical geostatistics application, it is impossible to use the complete spatial law 

because of incomplete sampling. Often, the first two moments provide reasonable 
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solutions (Journel & Huijbregts, 1978). The first order moment is the expected value of 

the distribution function of Z(u) that is, in general, a function of location u. 

    Z m u u  (2.4) 

The variance, covariance and variogram are known as second order moments. The second 

order moment about the expectation of the random variable is defined as follows. It may 

also be a function of location u. 

     2

Var ( )Z Z m    u u u       (2.5) 

The covariance is defined between two random variables Z(u1) and Z(u2) of two different 

locations u1 and u2. 

    1 2 1 1 2 2( , ) ( ) ( )C Z m Z m          u u u u u u                    (2.6) 

The variogram function is defined as the variance of the increments or difference between 

two random variables at locations u1 and u2. In practice, the semivariogram is identified 

with the function γ(u1,u2) 

    1 2 1 22 ( , ) Var Z Z  u u u u  (2.7) 

The multivariate distribution of n locations or the summary first and second order 

moments can only be calculated in practice by combing a sufficient number of data 

together. 

2.1.2 Stationarity 

The decision of stationarity permits the use of samples at different locations to infer a 

model of the probability distribution. The decision to put together some samples is based 

on the idea that they belong to a zone of homogeneous mineralization. Where, the 

correlation of two data values z(u1) and z(u2) does not depend on their locations within 

the study area but rather on the h vector between these data (Journel & Huijbregts, 1978). 

The stationarity of first order (2.8) declares that the mean of the random function is 

constant over the domain and the stationarity of second order (2.9) declares that the 
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covariance is constant under translation over the area of interest A. The covariance 

depends of the h vector between two random functions Z(u) and Z(u+h). Where h 

represent a vector in the three dimensional space. 

 ( ) ,   Z m A   u u  (2.8) 

Cov( ( ), ( )) ( ),   Z Z C A   u u h h u                 (2.9) 

A decision of stationarity is required in practice; otherwise, no inference beyond the data 

values is possible. Although the data belong to a homogeneous geological domain, they 

are also related together in important ways. 

2.1.3 Dependence of the Random Variables 

Two random variables Z(u) and Z(u’) are dependent if the probability distribution of 

either one is affected by the knowledge about the other one, then, a conditional 

cumulative distribution function (ccdf) is the cumulative distribution function of Z(u) 

given knowledge about Z(u’) (Goovaerts, 1997): 

   
 

 

 

 

Prob ( ) , ( ') '
; ( ') ' Prob ( ) ( ') '

Prob ( ') '

, '; , '
                            

'; '

Z z Z z
F z Z z Z z Z z

Z z

F z z

F z

 
    





u u
u u u u

u

u u

u

(2.10) 

The independence of random variables is when the ccdf of one random variable given 

other random variable is equal to the cumulative distribution of the first random variable: 

   

   

; ( ') ' ;     '

'; ' ( ) '; '   

F z Z z F z z

F z Z z F z z

  

  

u u u

u u u
                                  (2.11) 

From the last expression of (2.10) and first expression of (2.11) it is seen that the 

bivariate distribution between two independent random variables is simply the product of 

the lower order distributions. 

     , '; , ' ;  '; '  , 'F z z F z F z z z u u u u
                               

(2.12) 
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As mentioned, in practice, grades at different locations within a mineral deposit are often 

dependent on each other. 

2.1.4 Uncertainty in the Mean of the Univariate Distribution 

Many realizations z(u
(1)

),…,z(u
(L)

) of Z(u) are required to infer their probability law. 

Similarly, many realizations of the univariate distribution are required to evaluate the 

uncertainty in the mean of the univariate distribution. There are different approaches to 

evaluate uncertainty in the mean that involve assumptions such as (1) the data are 

independent or spatially correlated, (2) the realizations are limited to some domain or not, 

(3) the realizations are conditioned to the original data or not, and (4) the mean could be 

calculated based on a trend equation. A process of sampling is often used to assemble set 

of histograms. Some approaches sample from the original data and others sample from 

the map of estimations using the original spatial strategic of sampling. 

2.2 Traditional Techniques to Evaluate Uncertainty in 

the Input Parameter 

Geological models are uncertain because relatively sparse data are used to evaluate grade 

and tonnes. Geostatistical simulation is used to build multiple realizations that will help 

assess uncertainty. Input parameters are required in addition to the local data; input 

parameters include the histogram, variogram, search distances and other implementation 

decisions. The mean of the histogram is perhaps the most important because it has a 

direct influence on the evaluations. Following is a review of techniques to calculate 

uncertainty in the mean. 

2.2.1 Analytical 

Consider n random variables {Zi, i = 1,...,n} that are taken as samples from a stationary 

statistical population. Stationary entails that the mean and variance are the same under 

translation: 

 

   2 2

   1,...,

( ) =   1,...,

i

i i

Z m i n

Var Z Z m i n

   

    
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Consider that the multiple random variables are equally weighted to obtain the arithmetic 

mean. 

1

1 n

i

i

Z Z
n 

    (2.13) 

Consider the mean itself to be a random variable, then, the expected value and the 

variance of these arithmetic means are given by: 

   

   
1

2

1

Var

n

i

i

Z Z
n

Z Z m



  

   
 


 (2.14) 

The variance of these means require knowledge of the covariance between the Zi RVs. As 

mentioned above, the covariance of two random variables is given by the expected value 

of the product of the difference of both variables and their respective means.  

    Cov ,i j i jZ Z Z m Z m                         (2.15) 

The previous covariance expression is expanded and simplified: 

   

     

 

2

2

2

Cov ,

                   

                   

i j i j i j

i j i j

i j

Z Z Z Z Z m Z m m

Z Z Z m Z m m

Z Z m

    

    

  
               

(2.16) 

The variance of the mean is similarly expanded and simplified: 

   
 
   

 

2

2
2

2
2

2
2

Var

            2

            2    

            

Z Z m

Z Zm m

Z m Z m

Z m

   
 

   

    

  

               (2.17) 

Equation (2.13) is replaced in the previous equation to obtain the variance of the mean. 
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 

 

2

2

1

2

1 1

2

2
1 1

1
 Var

1 1
             

1
             

n

i

i

n n

i j

i j

n n

i j

i j

Z Z m
n

Z Z m
n n

Z Z m
n



 

 

   
    

   

    
     

    

  



 



                (2.18) 

The expected value of the product of random variables is replaced by the derived term of 

Equation (2.16), then, the equation of the variance of the means is simplified to the 

average of the covariances between n multiple random variables. The stationarity 

assumption of first order and second order are inherent to infer the next expression. 
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 

 

 

   
 

  






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                       (2.19) 

The expression of the average of the covariance between multiple random variables 

involves n × n covariance values. The equation of the variance may be rewritten by 

separating out the covariance of each value with itself, that is, the covariances Cov(Zi , Zi) 

= Var(Zi). 

   

   

2

2 2
1 1 1

2

2
1 1

1 1
Var Cov ,

1
Var Cov ,

                     

i

n n n

i j Z

i j i

n n
Z

i j

i j

Z Z Z
n n

Z Z Z
nn

where i j





  

 

 

 



 

             (2.20) 

From the previous equation, a lack of correlation between random variables causes the 

first term to be equal to zero, then, the variance of the mean is equal to the variance of 

samples inversely proportional to the number of samples. The variance of the mean 

assumming independence obtains less variance that using spatial correlation because the 

term of correlation between no equal samples become zero.  

 
2

Var ZZ
n


                                                    (2.21) 
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The previous equation is used to derive Equation (2.22) of the effective number of data. 

This is a relation between the variance of the samples and the uncertainty of the mean.  

 

2

Var

Z

effn
Z


  (2.22) 

The effective number of independent data is equal to the number of input data (n) when 

the evaluation of uncertainty in the input parameter is based on independent data. neff 

defines how many independent data are really available (Kitanidis, 1997).The effective 

number of independent data is less than n. 

Complex statistics such as uncertainty in the mean of the fraction of material above a 

cutoff are not necessarily amenable to such simple analytical calculations showed before 

and simulation procedures are required. 

2.2.2 Conventional Bootstrap 

The conventional bootstrap is an application of Monte Carlo simulation and is a statistical 

re-sampling technique that permits the quantification of uncertainty in statistics by 

drawing from the original data (Efron, 1979). The assumption of independence is the 

main feature of the conventional bootstrap technique. The samples could be drawn 

multiple times since the process of sampling is executed with replacement from the input 

distribution. This bootstrap may be useful to measure the uncertainty in the mean in the 

early stage of a project, where the data are widely spaced (Deutsch, 2002). The 

methodology is as follows: 

o Assemble the representative histogram of the n available data and the cumulative 

distribution function F(z) of this data. Declustering methods could be used for 

irregular preferential sampling and debiasing if required. 

 

o Draw n uniformly distributed random numbers between 0 and 1. Those values 

characterize the cdf values on the vertical axes of Figure 2.1. Therefore, pi, i = 

1,…,n. 
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Figure 2.1: Illustration of the cumulative distribution function of the input available data, the 

sampling is drawn from this function to obtain L realizations of the input univariate distribution. 

o Read the equivalent quantile values F
 -1

( pi ), i = 1,…,n.  

o The drawn samples zi, i = 1,...,n represent a realization of the original univariate 

distribution. The statistics of interest (the mean) is calculated from the 

realization.  

o The previous three steps are repeated many times for L realizations. 

o The distribution of the L possible statistics (mean values) provides a model of 

uncertainty in the statistic. 

The uncertainty does not consider correlation between the samples and could be 

considered in the early stages of a project, when the data are widely spaced. 

2.2.3 Spatial Bootstrap 

The limitation of the conventional bootstrap is the assumption of independence, then, 

spatial correlation could be incorporated in the technique. The Spatial Bootstrap (SB) is a 

generalization of the bootstrap concept (Deutsch, 2004). The SB uses unconditional 

simulation and the covariance function. An unconditional simulation of the random 

function is a realization of Z(u). Its construction requires knowledge of the spatial 

distribution of the random function Z(u) (Chilès & Delfinier, 1999). 

The spatial distribution of the random functions is described by the variogram also called 

structural analysis of a regional phenomenon (Journel & Huijbregts, 1978). The structural 

Z

Cumulative Distribution Function (cdf)

0.0

1.0

F(z)
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analysis consists of three steps, the construction of experimental variogram, 

understanding of the results, and fitting an acceptable model. 

The variogram is defined again in Expression (2.23). This equation shows the variability 

between Z(u) and Z(u+h) separated by the distance vector h. 

  2
2 ( ) ( ) ( )Z Z    h u u h  (2.23) 

The h vector distance is used plus and minus some distance tolerance to get more samples 

in the evaluation of variability. As more pairs are used in every lag distance evaluation, 

there is more chance of having a robust description of the structure. Different lag 

distances are evaluated; the plot of the experimental variogram shows the variability at 

different lag distances simultaneously.  

The variability of the grade is investigated by direction. Many directions are evaluated to 

find the ones with the greatest and least continuity. The experimental variograms must 

honour the conceptual geological model of the deposit.  

The last step is to fit the experimental variograms with valid functions such as the 

spherical, exponential, or Gaussian function. The variogram function must have the 

mathematical property of positive definiteness for the respective covariance model and, 

thus, the covariance model necessarily has a strictly positive determinant. This ensures 

that the kriging equations can be solved and obtain a positive kriging variance (Journel & 

Huijbregts, 1978). The variogram could be modeled as a positive sum of variogram 

functions to fit better the experimental variogram (2.24). The variogram model converges 

to a value that is called the sill and the distance at which the variogram reaches this 

plateau is called the range. 

0

( ) ( )
nst

i i

i

C


 h h  (2.24) 

The values at adjacent locations are expected to have low variability; however, 

unexpected variability is given because some mistakes are present during the taking of 

samples or the deposit shows complex geological features at small scale. This variability 

is modeled by an independent structure called the nugget effect (Co). 
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Many directions are evaluated to capture the behaviour of the continuity in three 

dimensional space and to identify the anisotropy of the phenomena under study. In 

mining, geometric anisotropy is common, where more continuity is observed in one 

direction and less continuity is seen in the perpendicular or vertical direction. The 

variability of these directions often converges to the same sill. The sills could change in 

each direction (Isaaks & Srivastava, 1989). 

The spatial bootstrap considers the spatial correlation of the samples. The basic approach 

is explained by the following steps: 

o Assemble the representative distribution of the Z random variable FZ (z); consider 

the use of declustering method for irregular grid and debiasing method if 

appropriate. 

o Transform the FZ (z) to normal score G(y) and compute their 3D variogram model 

γ(h). 

o Using γ(h), calculate the covariance matrix n × n among input location samples. 

Then, calculate its Cholesky decomposition. C = L U, where L is the lower 

matrix and U the upper matrix. 

o Draw n values from uniformly distribution between 0 and 1. These independent 

values are transformed to Gaussian values wi, i = 1,…,n 

o Correlate wi independent values by multiplying with the lower matrix n × n of the 

Cholesky decomposition, y = L w 

o y is the result n × 1 vector of values with correlation. These Gaussian values are 

transformed to probability values to locate in the representative distribution. pi = 

G(yi), i = 1,…,n  

o The z-values are calculated as: zi = FZ
-1

(pi), i = 1,…,n. The mean of zi values is 

stored for further global evaluation of the mean.  

o The last four steps are repeated L realizations. In summary, the generation of L 

realizations can be calculated simply as: z
(l)

 = FZ
-1

(G(L w
(l)

)), l = 1,…,L. 

Assemble the distribution of L possible means to provide a model of uncertainty in the 

mean of the input parameter.  
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2.2.4 Comments on the Current Methodologies 

Considering spatial correlation generates more uncertainty than assuming independence 

of the data. The analytical solution illustrates this when the covariance between two 

different data is non-zero. 

A shortcoming of these techniques is that conditioning data are not considered; the 

locations and the outcomes are randomized. Also, the representativeness of the data may 

be questionable because preferential sampling is a common feature of geological data. An 

alternative technique uses a different pattern of randomization to define the error of the 

distribution. The pattern consists on sampling from multiple conditional simulations 

using the original sampling strategy (Journel A. G., 1994). This concept is the general 

idea of conditional finite domain (CFD). Where the sampling is done from multiple 

translate and/or rotated configurations after being simulated conditioned to the original 

data. The sampling is limited to the domain of interest. (Babak & Deutsch, 2008). 
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Chapter 3                                          

Conditional Finite Domain 

The Conditional Finite Domain (CFD) technique quantifies the uncertainty in the mean. 

This technique samples from translate and/or rotated configurations of the data to obtain 

different mean values and assembles a distribution of them. The CFD technique may be 

considered as an extension of the conventional bootstrap and spatial bootstrap techniques. 

CFD starts by creating new configurations by random translation and/or random rotation 

of the data locations throughout the domain. An order ki, i = 1,..,K of the CFD approach 

represents sets of realizations or configurations that use reference distributions from the 

previous order (ki-1). The configurations are simulated with different reference 

distributions and the realizations are conditioned to the original data. The sampling of 

many simulated configurations gives different mean values that define a mean and 

uncertainty for each order. The uncertainty is stabilized after many configurations and 

orders are performed. 

The total number of realizations is equal to the number of orders required multiplied by 

the number of configurations. Each realization has n conditioning data and n locations to 

simulate. The original CFD technique was implemented using sequential Gaussian 

simulation (sgsim) by (Babak & Deutsch, 2008). The use of sgsim is relatively inefficient 

because the search strategy and covariance lookup table do not allow simulation only at 

some locations because it uses the full grid; otherwise, the LU algorithm permits 

simulation only at the n locations to be sampled which is more efficient than sgsim. 

Simulation is done in Gaussian units, then, a back transformation is performed. The 

normal scores transformation of the data becomes sensitive to the extrapolation options in 
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the lower and upper tail as the order of simulation increases. Reasonable values must be 

chosen in the implementation. 

3.1 LU Simulation in CFD 

Simulation through LU decomposition of the covariance matrix is a well established 

multiGaussian simulation technique (Goovaerts, 1997). The LU decomposition provides 

a fast solution provided there are not too many locations. The CFD technique simulates 

only at the locations to be sampled, therefore, the CFD technique based on LU 

decomposition is reasonable. The simulation of a continuous attribute z at N nodes u
(j)

 

conditioned to the data set {z(ui), i = 1,…,n}. The LU simulation approach is strictly 

made in Gaussian space. The original z values must be transformed to normal scores and 

the variogram must be calculated with these normal score values.  

The covariance matrix between n input data values and N nodes to simulate is as follow: 
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The covariance C is symmetric since C21 = C12
T
. Also C is positive definite. A symmetric 

positive definite matrix has a Cholesky LU decomposition C = L U = L L
T
. Where the 

lower triangular matrix has all the elements above the diagonal as null and the upper 

triangular matrix has all the elements below the diagonal as null. Then, the decomposition 

of the large covariance matrix C is defined as follow: 

11 12 11 11 12

21 22 21 22 22

0

0

     
     
     

C C L U B
C = =

C C A L U
 

Both L11 and L22 are lower matrices; while, the upper triangular matrices are U11 and U22; 

otherwise, the matrices A21 and B12 are not triangular matrices. From the previous 

expression, the covariance matrix between the data locations is determined by LU 

decomposition. 
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11 11 11C L U  

Both matrices B12 and A21 are expressed in function of their covariances. 

11

1

12 11 12 12 12

  C L B B L C  

One may notice that (U
-1

)
T 

= (L
-1

 ) or (L
-1

)
T 

= (U
-1

 ) because they are symmetric matrices. 

Then, the transpose of A21 matrix is equal to the B12 matrix. These matrices are equal to 

the product of triangular matrices L11
-1

 and C12. 

 
11 21 11 11

21 11

1 1 1

21 21 11 21 21 12 12

1

12 12

T
T

T

  



     
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C A U A C U A U C L C

A B L C
 

The covariance matrix between estimated node locations C22 is equal to the LU 

decomposition L22U22 only if the covariance matrix between nodes and data C21 is equal 

to zero. Otherwise, the covariance C22 is derived from the following: 

22 21 12 22 22 C A B L U  

The product of A21 and B12 is replaced by their equivalent equations derived from the 

large covariance matrix C. Then, the product of the lower triangular matrix L22 and the 

upper triangular matrix U22 is expressed as follow: 

1 1 1

21 12 21 11 11 12 21 11 12

1

22 22 22 21 11 12

 if   



 
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A B C U L C C C C

L U C C C C
 

The equations for simple kriging and the kriging variance are used to demonstrate that 

L22U22 corresponds to matrix of error covariances K22 (Deutsch, 2000). Simple kriging is 

written as a function of covariances as: 

* 1

21 11

1 1

12 11 21 11

*

 

   = =T

T

Z Z

if sk system

Z Z





 





 





 

C C

C C C C  

The matrix of error covariances K22 is deduced as follow: 
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The simple kriging system Z
* 
= λ

T
Zα is replaced in the previous extended expression. 
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 

u u u u  

The extended equation of the covariance is split in four terms resulting in the covariance 

between estimated node locations minus the transpose of the weights matrix times the 

covariance between data locations and estimated node locations. This result corresponds 

to L22U22 and is the decomposition of the K22 matrix of error covariances. The lower 

triangular matrix L22 is used in algorithms of conditional or non conditional simulation. 
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Then, a conditional simulation is performed by the product of the L matrix by w matrix 

of normal deviates. Also, Y1 is the column matrix of n normal score conditioning data and 

Y2 represents the column matrix of the N conditional simulated values (Deutsch & 

Journel, 1998).  

1 11 1

2 21 22 2

0Y

Y

     
      

     

L w
Lw

A L w
 

11

1

1 11 1 1 1Y Y  L w w L  

The vector of the conditional simulation Y2 is shown as follow. Where, w1 is replaced by 

its equivalent expression. The L22w2 term symbolizes the error vector and represents an 

unconditional simulation. Otherwise, the first term is linked with the expression of 

kriging. 
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11

1

2 21 1 22 2 21 1 22 2Y Y   A w L w A L L w  

Conditional simulations are generated by drawing set of error vectors L22w2, that is, by 

drawing different random number vectors w2 (Deutsch, 2000). These vectors w2 are 

independent normal (0,1) random values that are correlated through the product with L22. 

As explained before, L22 is the lower triangular matrix of the decomposition of K22 = 

L22U22 = C22 - A21B12, that is, K22 matrix is positive definite and symmetric and their LU 

decomposition is always possible. 

3.2 Methodology 

The uncertainty in the mean converges to a constant value after many orders of 

simulation are performed. Uncertainty in the mean relies on the series of simulations and 

stochastic algorithms. Thus, similar to the Markov Chain Monte Carlo approach, a period 

of “burn-in” is followed by a period of stabilization where similar fluctuations of the 

uncertainty around some constant value are observed. The algorithm of CFD is 

summarized as follows: 

o Assemble the representative histogram of the input data; one must use 

declustering method for irregular grid and debiasing method if the scenario 

requires. 

o Set L number of configurations through translation and rotation of the data 

locations.  

o ki, i = 0, apply LU conditional simulation with the distribution of the original data 

as reference. Simulation of lj, j = 1,...,L equiprobable realizations of the variable 

of interest in L new configurations.  

o Sample simulated values of each lj configuration. New reference distributions are 

assembled for the next step. 

o ki, i = 1, apply LU conditional simulation with reference distributions established 

in ki-1 to create lj, j = 1,...,L equiprobable realizations of the variable of interest in 

L configurations and conditioned to the original data.  

o Sample simulated values of each lj configuration, calculate and store the mean of 

the configuration, the mean of the order and standard deviation of the means. 
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o Assemble new lj, j = 1,...,L reference distributions with sampled values of the 

configurations. 

o The last three steps are repeated as a loop until the desired number of K orders is 

reached. 

Through the whole process, the mean and variance are stored for every lj realization and 

ki order. The uncertainty in the mean is evaluated from the distribution of the possible 

means in L configurations and K orders. Also, the uncertainty of K orders could be 

illustrated in a plot of the standard deviation against the order number to verify 

convergence. The process of sampling is done from L configurations within the study 

area; hence the Finite Domain part of the name. 

Figure 3.1 shows a small example that illustrates the methodology, where the original 

distribution in blue is used like reference distributions only in the order zero. Four 

samples z(ui) for i = 1,...,4 are located in a domain of four by four units. The reference 

distributions that are updated after every order are illustrated in orange. 
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Figure 3.1: Sketch of the conditional finite domain process, blue points are locations of the 

conditioning data, orange points are set of new configurations and reference distribution is 

illustrated by each realization. 

The simulations are done at lj, j = 1,...,L configurations locations conditioned to the 

original data. The L configurations are the same for every order and CFD technique 

sample and evaluate uncertainty of the mean in base on the global means of L × K 

conditional simulations. 
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3.3 Implementation 

The data are not equally spaced and preferential sampling is often observed, that is, the 

histogram should use declustering weights. The discretization of the domain during 

evaluation ensures a representative global mean; however, the simulation in CFD is 

performed only at the points to be sampled and conditioned to the original data. Then, the 

declustering weights are relevant in the process. The theory about declustering methods is 

found in (Isaaks & Srivastava, 1989, pp. 235-248) among others. 

Normal transformation of the original values is performed yi = G
-1

(pi), i = 1,...,n. 

Specification of the distribution tails are important to obtain a reasonable uncertainty in 

the input parameter. 

The rotated and translated configurations of the original data should sample the whole 

domain. A representative sampling of the domain is relevant in the process to obtain 

realistic uncertainty in the mean. Then, this result is transferred to the simulation to 

improve a posterior evaluation of the global uncertainty and the decision making. The 

configuration of the data versus the shape of the domain must be checked before 

implementing CFD. The shape of the domain should permit representative re-sampling. 

Specific strategies of re-sampling should be done in some scenarios. For instance, 

sometimes irregular domain shape is observed in some complex deposits. Then, the 

translation and rotation of the sampling configurations could be restricted to a narrow 

space between sample locations and the boundary of the domain. Figure 3.2 shows a 

graphic of an irregular domain, where the samples z(ui), i = 1,...,6 are located close to the 

boundary of the domain. 

 

Figure 3.2: Example of domain that could truncate rotated and translated configurations. 

z(u1)

A

z(uk)
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The new configurations are truncated to the domain A. Then, all the new strategies of 

sampling will be close to one another. The uncertainty of the mean would be very small 

and not realistic. 

The uncertainty in the mean using CFD often is greater than conventional bootstrap and 

spatial bootstrap; however, sometimes conditioning leads to less uncertainty than the SB. 

The CFD results are more reasonable because of the conditioning to original samples. An 

example of low uncertainty is observed in a domain that shows low variability or the 

values do not show strong anisotropy. Also, the size of the domain influences on the 

uncertainty in the mean. Applications of the methodology show that the uncertainty in the 

mean increases as the size of the domain is expanded with the same available data. 

3.4 Application and Challenges  

The methodology is applied and comparison with traditional techniques is evaluated. The 

influence of the size of domain on the uncertainty in the mean is verified. The data set 

that we use for this evaluation is red data; this file is available in the CCG network. The 

data have 68 samples of gold, silver, copper and zinc and are illustrated in Figure 3.3. 

 

Figure 3.3: The spatial location of the Red data on the left side and the distribution of the data on 

the right side. 

The thickness of the samples is between 0.13 meter and 18.86 meters. Eight samples with 

no metal no thickness values were removed. The spatial distance between samples are 

about 30 meters, this value is used to define the cell size of the declustering process. A 

variogram model of gold values in normal score units is required because the spatial 
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bootstrap and conditional finite domain work in Gaussian space. Figure 3.4 shows the 

experimental and variogram model. 

      1 100 1 250
2 90 2 95

0.44 0.56ah ah
ah ah

Exp Exp  
 

 h h h

 

 

Figure 3.4: The left exponential variogram model corresponds to the major axis and the right one 

corresponds to the minor axis. 

Two structures were required to model the experimental variogram, ah1 is the major 

range in the 15° azimuth and ah2 is the minor range in perpendicular direction to ah1. 

The program cfdlu was developed to apply the methodology. One hundred L new 

configurations are used to sampling the domain. The domain could be defined by 

polygons in each plane or by specified the space where the centroid of the data spatial 

location could be displaced, more information about that space or window is written in 

the Appendix of the thesis.  

One hundred orders are performed for this application. For each ki order lj, j = 1,...,100 

realizations are performed at 60 points conditioned to original data. One thousand 

realizations are performed, each one provides a global mean and the deviation of these 

means is the uncertainty in the mean of the univariate input distribution. Conventional 

Bootstrap and Spatial Bootstrap are set with 10000 realizations as well. Figure 3.5 shows 

the shape of the uncertainty in the mean generated by traditional techniques and CFD 

against the univariate input distribution shape. 
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Figure 3.5: The Histogram of the original Red data is overlapped with three distributions of 10000 

means that define the uncertainty in its mean. Distribution in red line is the results of CB, 

distribution in green line is the results of SB and distribution in black line is the results of CFD. 

The weighted mean of the input distribution is 1.45 g/t and the standard deviation is 1.29, 

conventional bootstrap (1.29/√60)  obtain a uncertainty in this mean 0.16 equivalent to 

10% of the standard deviation of the data, the spatial bootstrap that consider the spatial 

correlation between the 60 values obtain an uncertainty in the mean 0.32 equivalent to 

20% of the standard deviation of the data and finally the methodology of the chapter 

obtain 0.36 equivalent to the 30% of the standard deviation of the data. The means of 

10000 realizations of both CB and SB are almost the same to the mean of the univariate 

input distribution; however, the mean of 10000 realizations in CFD is a little less because 

the domain contain almost 30% of the data between the range 0 g/t - 0.25 g/t and those 

values are located in the limits of the configuration of the data. Extrapolations of these 

values are made until the limit of the domain is reached. 

For the example, we assume the domain A of the Red data as a bounded polygon around 

the data. This domain is expanded 10 times, that is, the 100 configurations will have more 

area to sampling simulated points conditioned to the original data. Since the sampling 

configuration is more distant from the conditioning data, an increase of uncertainty is 
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expected because the sampled points are less correlated. Figure 3.6 shows the impact of 

change the size of the domain A on the evaluation of uncertainty in the mean. 

 

Figure 3.6: Sensitivity analysis of the uncertainty (evaluated by different techniques) with respect 

to the change of domain size. The standard deviation of the data is illustrated to compare to the 

uncertainty of the means by CB, SB and CFD techniques. 

The uncertainty in the mean (calculated by CFD methodology) increases from 0.36 to 

0.47 when the domain is expanded three times. As expected, the CB and SB do not 

change as the size of the domain is increased. The sampling assuming independence or 

accounting for the spatial correlation among samples are not enough when the domain is 

expanded without support of new data. All the scenarios require a realistic evaluation of 

uncertainty and the CFD technique is more robust in domains where the data support only 

a small percentage of the domain. In practice, zones without support of data are known 

like potential resources. 

CFD techniques looks more robust to the sensitivity analysis of size of domain and range 

of correlation, the range of correlation should impact the uncertainty in the mean, more 

correlated samples should give less uncertainty; however, the SB shows opposite results 

because as the range of correlation become similar to and bigger than the size of the 

domain, ergodic fluctuations take place. The relation between size of the domain and 

range of correlation should be at least more than 10 times to avoid ergodic fluctuations. 
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More details about ergodic fluctuations are explained in Appendix A of the thesis. Figure 

3.7 shows the influence of the range of correlation on the uncertainty in the mean. 

 

Figure 3.7: Sensitivity analysis of the uncertainty with respect to the change of the correlation 

range. The evaluation of uncertainty (std) in the mean of the input univariate distribution is made 

by different techniques.  

The conventional bootstrap does not change because only the data locations are used to 

sampling without taking account the spatial correlation among data, their value of 

uncertainty in the mean 0.16 is the same for all the evaluation of sensitivity analysis 

showed before. By the other hand, the SB execute 10000 realizations, sample 60 values 

from the cdf of the input distribution and use the covariance matrix between data to 

correlated the sampled values. The increase of range of correlation in SB leads to increase 

in uncertainty from 0.32 to 0.41 because ergodic fluctuations make the results no 

representatives. The uncertainty with CFD is almost the same from 0.36 to 0.37 when the 

range of correlation increase until it reaches 3 times the original range.  

Sometimes, the variogram will not tend to zero as h does. It means that in small distance 

h the result of sampling could be different. Poor analytical precision, poor sample 

preparation or highly erratic mineralization at low scale could lead to nugget effect Co 

(David, 1977). This Co component of the variogram measure the independence of the 
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with normal score units, the spatial bootstrap results 0.16 equal to conventional bootstrap 

because the data become independent. The increase of nugget effect indicates less 

correlation between samples, and then an increase of uncertainty in the mean is expected. 

The conditional finite domain gives an uncertainty that rises as the samples become less 

correlated. Figure 3.8 shows the sensitivity analysis of the uncertainty in the mean with 

respect to the change of nugget effect. 

 

Figure 3.8: Sensitivity analysis of the uncertainty with respect to the change of the nugget effect. 

The evaluation of uncertainty (std) in the mean of the input univariate distribution is made by 

different techniques. 

The CFD shows more robustness in many scenarios; however, many parameters are 

required to set the methodology. Also, many realizations at different configurations and 

orders could be computationally intensive with big set of data even if CFD simulate only 

in the points to be sampled. An evaluation of uncertainty in the mean should be simple as 

CB and SB and robust as CFD. Another technique is proposed in the next chapter where 

the uncertainty in the mean is acquired by the use of a stochastic trend. The use of a trend 

equation relaxes the assumption of stationarity and defines the mean dependent on the 

sample location at the domain. 
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Chapter 4                                          

Stochastic Trend Approach 

Estimates are made under uncertainty because few data are present in the evaluations and 

many input parameters are required in the estimates. The uncertainty in the input 

parameters must be transferred into the estimates to provide a more realistic assessment 

of uncertainty. Decision making often considers the uncertainty. The chance of 

success/failure, potential gain and potential loss are some considerations in risk analyses. 

These considerations rely on the estimates and their uncertainty (Rose, 2001). We are 

motivated to accurately evaluate the uncertainty of our estimates.  

The conditional finite domain requires the setting of many parameters that affect the 

distribution of uncertainty in a non-intuitive and non-transparent manner. Relatively 

minor changes in geostatistical parameters could have a large effect on probabilistic 

estimates (Deutsch, Leuangthong, & Ortiz C., 2006). Sensitivity analysis shows that an 

increase in the nugget effect, a reduction of the range of correlation or an increase in the 

size of the domain leads to less uncertainty in large scale averages. This makes statistical 

sense because random variations in the variable average out. 

A domain is an area or volume where samples follow a known distribution (e.g., normal 

or lognormal distribution). The domain includes samples that are not often uniformly 

spaced; preferential sampling is common in places of high grade. Geostatistics techniques 

often lead to less uncertainty for larger domains even if the number of data stays the 

same. An alternative to evaluate uncertainty in these domains could be to relax the 

assumption of stationarity. Stationarity permits calculation of the mean, covariance and 

semi variogram by pooling the data within the chosen domain (Goovaerts, 1997). The use 

of a trend equation relaxes this assumption of stationarity and defines the mean dependent 
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on the sample location within the domain, see Equation (4.1). L symbolizes the number of 

drift or trend terms, al represents the unknown coefficients and the fl (u) terms are 

functionals that represent the shape of the trend. The functional may be linear, quadratic, 

sine/cosine, drawn by hand or specified arbitrarily. 

0

( ) ( )
L

l l

l

m a f


u u  (4.1) 

Although the linear and the quadratic equations are considered in the implementation 

here, different equations could be used if required. A FORTRAN code called 

uncregcoef.for, which is a modification of the correlate program, was developed to 

implement the stochastic trend technique. The trend model could be used to predict the 

value at unsampled locations, that is, nodes or locations in the domain are evaluated with 

a polynomial with coefficients computed by least square method. A global mean is then 

evaluated with the set of coefficients evaluated at all locations within the domain. The 

stochastic trend (ST) approach developed below proposes to randomize these coefficients 

taking account the correlation of the original fitted coefficients. Many sets of coefficients 

provide different mean values. Then, the uncertainty in the input parameter is calculated 

from the distribution of these means. 

4.1 Methodology 

The coefficients of the trend are calculated based on the well-known linear regression 

theory. The sum of the squared difference between the estimates and the available data 

are as small as possible. This difference is not zero because the estimated value fluctuates 

about its expected value, that is, the method of least square selects the regression 

coefficients with the criteria of minimizing the sum square of these fluctuations (Carl 

Friedrich Gauss, 1794), (Johnson & Wichern, 2007) 

The coefficients of the trend and their individual variances are calculated by the theory of 

multiple regression models. The linear regression model is defined by the equation matrix 

(4.2). The dependent variable is denoted as Z and the independent variables X. The 

dependent variable in ST is the data values and the independent variables are the 

coordinates of the data. The model could be written in matrix notation as: 
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= +Z Xa ε  (4.2) 

The dependent variable Z represents the (n × 1) vector of the data, where n is the number 

of data available. X is the (n × L) matrix of the levels of the independent variables, where 

L is the number of parameters, explanatory variables or regressor predictor that define the 

fitted equation of the model equation. For instance, if the data have coordinates at East, 

North and Elevation, the (n , 2), (n , 3) and (n , 4) of matrix X may correspond to the 

coordinate data. Then, (n , 5 - L) columns are interaction of the coordinates to better 

define the shape of the trend with more parameters. a corresponds to the (L × 1) vector of 

the coefficients or vector of regression parameters. The last element ε regards to an error 

(n × 1) vector, this error vector is assumed as a random part of the model equation that 

has a distribution of mean zero and unknown variance s
2
. The next equation shows the 

explained variables: 

1 11 12 1 10

2 21 22 2 21

1 2

1

1

1

     =                                            

L

L

n n n nL nL

z x x x a

z x x x a

z x x x a

ε
ε

ε

      
      
      = +
      
      

      
Z Χ a ε

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮⋮

…

                     

(4.3) 

The location of the available data is translated to the X matrix based on the specified 

functional polynomials or trend model. The method of least squares is commonly used to 

estimate the regression coefficients in a multiple linear regression models, the term linear 

because the model is a linear function of the unknown parameters a0, a1,...,aL. The model 

describes a hyper-plane in L-dimensional space of the regressor variables {xl} 

(Montgomery, 2000). The coefficients selected by the least square are called least squared 

estimates of the regression parameter a. They are denoted by â because they are estimates 

of a.  

1ˆ ( )T T−=a X X X Z  (4.4) 

Then, the fitted regression equation is given in matrix notation. This fitted model predicts 

the value at unsampled locations as a function of its coordinates: 

1ˆ ˆ ( )T T−= =Z Xa X X X X Z  (4.5) 
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The residual describes the error in the fitting of the trend model to the n samples zi, i = 

1,...,n. The vector of residuals is the difference between the original value samples and 

the ones calculated by the fitted equation at known sample locations. The variance of the 

residuals (4.7) is the sum of the squared residuals divided by the (n - (L+1)) degree of 

freedom, where (L+1) is the number of parameters or coefficients. Notice that the number 

of data must be greater than number of coefficients. 

ˆˆ = −ε Z Z  (4.6) 

( )
2 ˆ ˆ

1

T

s
n L

=
− +

ε ε
 (4.7) 

{ }2 2E s σ=  (4.8) 

The method of least squares produces an unbiased estimator of the parameters a in the 

multivariate linear regression model. Properties of the â estimators are defined below: 

{ }ˆE =a a  (4.9) 

2 1ˆ( ) ( )TCov σ −=a X X  (4.10) 

The next matrix shows the covariance between the regression coefficients. Then, the 

variances of the coefficients are acquired from the diagonal of the symmetric matrix 

because C(al, al) = σ
2
al 

00 01 0 00 01 0

10 11 1 10 11 1

0 1 0 1

2

2

2

ˆ( )

L L

L L

L L LL L L LL

a a a a a a

a a a a a a

a a a a a a

c c c c c

c c c c c
Cov

c c c c c

σ

σ

σ

  
  
  = =   
  
     

a

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 

Now each term of the covariance is divided by their respective combined standard 

deviations to obtain the correlation matrix between the coefficients. 
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(4.11) 

Many sets of coefficients could be generated by Monte Carlo simulation to evaluate 

uncertainty in the fitted trend. The correlation between the regression coefficients will be 

preserved. Each coefficient âl, l = 0, 1,...,L has a distribution defined by its mean and its 

variance. Then, many sets of coefficients are drawn from their distributions. Those sets 

take account the correlation of the original regression coefficients. Otherwise, different 

techniques like spatial bootstrap use the covariance matrix of the sample locations (C11) 

to conditional the sampling and evaluate uncertainty. Both matrices are symmetric and 

positive definite. The steps of the proposed stochastic trend (ST) approach are as follows:  

o Define the number of parameters or terms L for the trend equation, the model 

could be linear or quadratic. 

o Compute the regression coefficients of the trend by least square method âl, l = 0, 

1,...,L where the best fit minimizes the sum of squared residuals. 

o Define the covariance matrix and deduce the variance of the coefficients σal, l = 

0, 1,...,L. 

o Define the correlation matrix for the regression coefficients. 

o Perform Cholesky decomposition of the correlation matrix ρ = LU 

o Sample independent normal Gaussian score values w = G
-1
(p) and correlate them 

by the use of the lower decomposed correlation matrix L, Y = L w.  

o Non-standardize these Y values by the use of their respective fitted regression 

coefficient al and their respective standard deviation σal.  

ˆ ,   0,  1,...,
l

k k

l l a la a y l Lσ= + × =
                           

(4.12) 
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o Use the set of coefficients in the polynomial to evaluate the fitted mean Z(u) at 

all locations within the domain. The mean of the values at these locations is the 

mean of the first realization mk, k = 1,...,K (where K is the number of times the 

workflow is repeated) 

The distribution of mk means can be assembled to model the uncertainty in the mean. 

4.2 Criteria in the Implementation 

All techniques to calculate the uncertainty in the mean require implementation choices. 

The stochastic trend approach does not require as many input parameters as most 

techniques. This approach only requires the form of the trend model. One should choose 

the polynomial representation that appears reasonable given the data. The uncertainty in 

the mean will be sensitive to the number of terms. 

The uncertainty in the mean using the stochastic trend approach does not require a 

variogram; the variogram is required for other techniques like the spatial bootstrap and 

the conditional finite domain.  

The fitted regression equation or trend model is used to predict the mean at all locations. 

The linear relationship may not be necessarily valid for extrapolation purposes 

(Montgomery & Runger, 2006). Uncertainty in the regression model is used specifically 

to calculate the uncertainty in the mean. The generation of the stochastic trends is 

explained with a simple example. A synthetic data set of 11 values is located in one 

dimension. The mean of the values is 2.409 and the variance 0.695.  
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The trend of the data is model with a linear trend that considers only two coefficients a0 

and a1. The location of the data is transferred to matrix X(11 × 2) according the linear 

trend model, where the East coordinate of the data correspond to the column two. The 

vector Z with dimension (11 , 1) represent the values of the data set. The least squares 

method gives the estimates â0 and â1 of the parameters a0 and a1 through the simplified 

operations of matrices. Then, the first coefficient is 1.2403 and second coefficient is 

0.0247.  

1ˆ ( )

1.2403
  

0.0247

T T

 
  
 

a X X X Z

 

The trend model is defined by the equation that evaluates Z(u) as a function of location in 

one dimension. 

( ) 1.2403 0.0247Z x u  

The data location is replaced in the regression line to calculate the ε residual or deviation 

of the data from the estimated regression model. Then, the variance of the residuals σ
2
 is 

as follow: 

2 ˆ ˆ 1.21
0.134

11 2

T

n p
   

 

ε ε
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The covariance of the coefficients is defined and the variance of the regression 

coefficients are extracted from the diagonal of this Cov(â). 

2 1
4.19 02 6.22 04

ˆ( ) ( )
6.22 04 1.32 05

T
E E

Cov
E E

 
   

   
   

a XX  

Then, each term of the covariance matrix is divided by their respective standard 

deviations to obtain the correlation matrix. 
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The correlation matrix is symmetric and is positive-definite, then, the Cholesky 

decomposition is possible. The lower triangular matrix helps to correlate the independent 

normal values w0 and w1. 

00
0

1 10 10

0

2 2
1

0 1 0 0.772

0.2791 0.837 1 ( 0.837)

k
a

k

a a

y w

wy



 

       
        
               

 

 

The k realization of   
  and   

 coefficients are in Gaussian units. These are non-

standardized to get   
 

  and   
  in original units. 

0 0 0

1 1

0

1 1

1.2403 0.2048 0.772

0.0247 0.0036 ( 0.493) 

k k

a

k k

a

a a y

a a y





    

     
 

The values of the first realization k = 1 correspond to the set of coefficients   
 

 = 1.398 

and   
 

 = 0.023. Then, one hundred times k = 1,...,100 are sampled from the distribution 

of regression coefficients with mean â0 and â1 and standard deviation σa0 and σa1. The 

original correlation of the coefficients is -0.837, and then the correlation between the two 

coefficients after one hundred realizations is preserved. The scatter plot of the first 

stochastic trend coefficients is illustrated in a red dot and the next ones are illustrated in 

black small dots see Figure 4.1. 

Lower matrix 
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Figure 4.1: Verification whether the correlation of the 100 realizations of â0 and â1 reproduce the 

input correlation -0.837 between the regression coefficients, the red dot correspond to the first 

realization developed before. 

One hundred sets of coefficients are used in the trend model. Then, one hundred 

stochastic trends are defined. A trend model is used to evaluate the value at all locations 

and the corresponding global mean. The fluctuations of the trend provide one hundred 

means. The fluctuations of the trend are illustrated in Figure 4.2. 

 

Figure 4.2: Stochastic trend model, where the black points are the data; the solid black line is the 

linear trend model with two parameters; and the grey lines are the realizations. 

One hundred stochastic trend models provide an uncertainty of 0.114. This value 

represent 45 % of the uncertainty assuming independence of the data σ/√n = 0.251. 
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4.3 Application and Challenges 

The stochastic trend is applied to a 3-D data set. Also, the influence of variable domains 

on the uncertainty and the complexity of the model in the uncertainty are evaluated. The 

gold values are located in a domain of 200 meters by 200 meters in the horizontal 

direction and 20 meters in the vertical direction. The mean of the gold values is 1.10 g/t 

and the standard deviation is 1.4. The evaluations consider three different domains: 

o Pessimistic criteria, the domain which limits are less than half distance between 

samples. 

o Normal criteria, the reasonable domain which limits are around the half of the 

median distance between samples. 

o Optimistic criteria, the domain which limits are excessively far from the sample, 

it means almost twice or more than the median distance between samples.  

The uncertainty of the gold values is calculated by a quadratic trend of 10 coefficients 

and a linear trend of 4 coefficients. 

2 2 2
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u
 

The variables x, y and z are the coordinates East, North and Elevation of the vector 

location u. These values are transferred to the matrix X to obtain the regression 

coefficients, â = (X
T
X)

-1
X

T
Z. The vector Z contains the 49 gold values. The regression 

coefficients are computed for both trend models. 

2

2 2
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           0.0003 0.0092 0.0008 0.0024 0.0017
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Z x y z x

y z xy xz yz

Z x y z

     

   

   

u

u

 

Each trend model requires a covariance matrix and a correlation matrix of the regression 

coefficients. One hundred realizations of the coefficients are simulated with the LU 

methodology described above. Sets of the coefficients â are replaced in their trend models 

to estimate the gold value at each node of the domain. The uncertainty with the quadratic 

trend results greater than the linear trend for the three domains. 
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 (a) 

 (b) 

 (c) 

 

Figure 4.3: The data are illustrated with points, the first graphic (a) shows the pessimistic criteria 

used to model the domain, the second graphic (b) shows the reasonable criteria and the third 

graphic (c) shows the optimistic criteria. 

Forty-nine data of gold values located in a pessimistic domain give an uncertainty of 

0.227 (std) using a linear trend and 0.515 (std) using a quadratic trend. Those values are 

greater than 1.4/√49 = 0.20 (std) with CB that assumes independence. As expected, the 

uncertainty increases as the domain increases. The optimistic (large) domain provides an 

uncertainty of 0.234 using linear trend and 0.721 using quadratic trend. The sudden 

increase of uncertainty as the domain increases without support of data is an advantage of 

< 0.5 g/t 0.50 g/t - 0.8 g/t 0.8 g/t - 1 g/t  > 1.0 g/t  



43 

 

the ST approach because traditional geostatistics techniques struggle with less uncertainty 

in this scenario. Table 4.1 shows the increase of uncertainty in the mean. 

 

Lineal Model Quadratic Model 

Pessimistic 0.227 0.515 

Reasonable 0.229 0.531 

Optimistic 0.234 0.721 

Table 4.1: Uncertainty of the mean of the input distribution using different trend models. 

The technique is simple to apply because it does not require a covariance model of the 

data and does not need to be set many parameters during the implementation. This 

technique considers the size of the domain and assume that the mean dependent of the 

location data; however, the specific form of the trend is an important choice. Moreover, 

the model parameters are assumed to be multivariate Gaussian. 
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Chapter 5                                        

Transference of Uncertainty 

Geostatistical simulation is usually performed with a fixed input distribution; this fixed 

univariate distribution comes from the input data and assumes a mean without 

uncertainty. An important aspect of this thesis is that uncertainty in the mean of the input 

distribution (UMID) must be transferred through simulation for a more complete 

understanding of uncertainty. Uncertainty in the mean (UMID) is evaluated with 

techniques introduced in Chapters 3 and 4. The techniques of conditional finite domain 

(CFD) and stochastic trend (ST) provide the UMID. Multiple distributions could be 

constructed and used in geostatistical simulation as reference distributions. 

Simulation is performed in Gaussian space because a consistent multivariate distribution 

is required and the multivariate Gaussian is the only known practical multivariate 

distribution. Original values are transformed into Gaussian units according to a specified 

reference distribution. The uncertainty in the mean of the univariate distribution is 

accounted by changing the reference distribution for transformation. A sequential 

Gaussian simulation (SGS) algorithm is adopted in this thesis; however, any Gaussian 

algorithm for simulation could be used. SGS is used because it is simple, flexible, and 

reasonably efficient (Deutsch, 2002).  

A change in local and global uncertainty is expected when UMID is transferred through 

the simulation process. A measure of local uncertainty is available at every location by 

generating a set of L realizations: 

 ( ) , 1, ,lz l Lu  

    ; ProbF z n Z z n       u u  (5.1) 
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Local uncertainty could be used for planning and decision making; however, some 

applications require the uncertainty of more than one location simultaneously, a measure 

of the joint uncertainty about attribute values at several locations taken together. This 

spatial uncertainty is modeled by generating multiple realizations of the joint distribution 

of the attribute value (Goovaerts, 1997). Those realizations should reasonably reproduce 

the sample histogram and the semivariogram model. The set of simulated maps is 

generated by sampling the N-variate ccdf that models the joint uncertainty at the N 

locations u'j: 

( ) ( ){ }' , 1, , , 1, ,
l

jz j N l L= =u … …  

( )( ) ( ) ( ) ( ){ }1 1 1 1' , , ' ; , , Prob ' , , 'N N N NF z z n Z z Z z n| = ≤ ≤ |u u u u… … … (5.2) 

Spatial uncertainty is a result of our incomplete knowledge of the spatial distribution of 

the variable of interest.  

5.1 Methodology 

The probability distributions of continuous data are often summarized by a central value 

such as the mean (Deutsch, 2000). The mean of the distribution is a fixed parameter in the 

simulation process. Where there are n data values z(ui), i = 1,...,n with different weights 

w(ui), i = 1,...,n: 

( ) ( )
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The uncertainty in the mean of the original distribution (σm) comes from one of the 

techniques developed earlier such as the CFD or ST. The calculated fluctuations of the 

mean are summarized by distributions that have different mean values. The number of 

distributions or reference distributions in the simulation could be defined by L equally 

spaced quantiles: 
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The specific mean values corresponding to these quantiles are computed from a non 

standard Gaussian distribution computed to represent the UMID like standard deviation.  

 
 1

l l

l l m r

y G p

m y m



  
 

Figure 5.1 shows correspondence sketch of a quantile and the respective mean. 

 

Figure 5.1: Sketch of the cumulative distribution function of distribution (mr , σm ), where σm  = Sm. 

Once the ml values are calculated, the relation of these values and the mean of the original 

distribution (mr) provide factors that are multiplied by each value of the original 

distribution. The factors (ml / mr) are ordered values because ml corresponds to each 

quantile in the cdf. Then, the variable distributions have values that have the lower mean 

when l = 1 and the biggest mean when l = L.  

    ,    1,...,l l

i i

r

m
z z i n

m
  u u  

This factor is applied to strictly positive variables. Almost all data in the earth science are 

positive values including mineral grades, porosity and contaminant concentrations. The 

variance is not preserved in this transformation, but the most important statistic is the 

mean. The declustered weights of the variable distributions are the same as the original 

data because their spatial locations are the same.  

ml

pl

CDF, (mr ,s m)

0.0
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5.2 Implementation 

Simulation requires the original z-data to be transformed into y-values with a standard 

normal histogram, the normal score transform function can be derived through a 

graphical correspondence between the cumulative distribution of the original and 

standard normal variables (Goovaerts, 1997). The transformation process often uses the 

fixed ccdf of the original data; however, a different reference ccdf could be used. A 

simple way to transfer uncertainty in the mean through simulation is to use different 

reference distributions. An increase in global and local uncertainty is expected. A simple 

scenario explains the methodology, where a spherical semivariogram model is assumed, 

the distance between the �⌑ location to be simulated and the sample z(u1) corresponds to 

half of the range of the semivariogram (a/2). Since there is only one conditioning data, 

the conditional mean and variance is simplified to:  

( ) ( )

( )
1

2
1

c

c

m yρ

σ ρ

= ⋅

= −

h u

h

□

□

 

Two scenarios are evaluated; the first scenario considers a fixed global distribution. The 

simulation uses the parameters of the original fixed global distribution to standardize its 

datum of 2.5 original units into normal scores. Then, the conditional mean kriging (0.313) 

and conditional variance kriging (0.902) are predicted for the unsampled location. An 

independent residual that follows a normal distribution with mean of zero and the 

conditional variance is drawn with classical Monte Carlo simulation. The simulated value 

is the addition of the conditional mean kriging and the residual for that location (Deutsch, 

2002). Figure 5.2 shows the result of this simulation, where the output distribution for the 

unsampled location is illustrated. 

The second scenario account for the simulation that uses a different reference distribution 

for the transformation of original values into normal scores and vice versa. The 

uncertainty in the mean of the input univariate distribution (UMID) has a standard 

deviation of 0.2. The sampled location z(u1) will have different ccdfs (parameters) to 

transform to normal scores, the means of these ccdfs fluctuate equal to the UMID ; y(u1) 

in normal score unit takes values from 0.66 to 1.34. The product of those values and the 

weight kriging (0.313) gives different mean values and a constant variance kriging 
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(0.902). Those values are sampled many times and back transformed into original units. 

The back transformation should use their respective transformation table matching the 

forward transform. Figure 5.3 shows the result of this simulation, where the output 

distribution for the �⌑unsampled location is wider than the previous simulation with fixed 

distribution. 

 

Figure 5.2: Sketch of simulation at one node using fixed ccdf (1,1.5
2
) like input parameter. 

 

Figure 5.3: Sketch of simulation at one node using variable ccdf to transfer the uncertainty in the 

original distribution 0.2 to the simulation process. 

The number of reference distributions is denoted with the letter L and the number of 

realizations of every reference distribution is denoted with the letter K. The resulting 

mean and variance: 

( )
2

2

1 1 1 1

1 1
( ) 1.47    ( )

unc

L K L K
l l

z k z k z

l k l k

m Z Z m
LK LK

σ
= = = =

= = = −∑∑ ∑∑u u
□ □

 

Y

East
Distance

y(u1) unsampled

location

T
ra
n
s
fo
rm

a
ti
o
n
 i
n
to
 N
o
rm

a
l

S
c
o
re
 u
n
it
s
 w

it
h
 f
ix
e
d
 c
c
d
f

a/2-1.0

  0

 1.0

u

Y

East
Distance

T
ra
n
s
fo
rm

a
ti
o
n
 i
n
to
 N
o
rm

a
l

S
c
o
re
 u
n
it
s
 w
it
h
 v
a
ri
a
b
le
 c
c
d
f

a/2

-1.0

  0

 1.0
y(u1) unsampled

location

u



49 

 

As expected, the distribution of the output mean using uncertainty in the input parameter 

is wider than using a fixed input parameter. Uncertainty in the sampled location with 

fixed reference distribution is 1.41 and with variable reference distributions is 1.55. 

5.3 Sensitivity Analysis 

One thousand simulations are performed with parameter uncertainty. Each simulation 

considers variable transforms into normal scores. One thousand quantiles are used to 

draw the residuals. The change of the correlation between the conditioning data and the 

unsampled location are evaluated. As expected, the results show that the uncertainty goes 

down when the correlation increases. Figure 5.4 shows the less increase in uncertainty as 

the spatial correlation increases. 

 

Data mean   1.00 

Data STD   1.50 

Uncertainty in mean of Input Distribution (STD.) 0.20 

Conditioning value   1.00 

   Figure 5.4: Sensitivity analysis of the uncertainty with respect to the change of correlation, 1000 

realizations are generated with fixed ccdf and with 100 variable ccdfs, the table shows the 

parameter used in the simulation where global mean and conditioning value are in original units.  

The simulation with variable ccdfs and zero range of correlation show uncertainty of the 

node equal to 1.512; the simulation with fixed mean gives an uncertainty of 1.499. 
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Moreover the change of the conditioning sample value does not change the uncertainty 

when the simulation uses a fixed distribution. This is expected because, under a Gaussian 

model, errors are independent of the data values and dependent only on the data 

configuration (Goovaerts, 1997); however, a change of uncertainty in the node is 

observed when a lognormal distribution is used. 

As expected, the uncertainty at the unsampled location increases as the uncertainty in the 

input parameter increases. Figure 5.5 shows the increase in uncertainty at the unsampled 

location as the input parameter uncertainty increases. 

 

Data mean   1.00 

Data STD   1.50 

Conditioning value   1.00 

Correlation    0.68 

 

 

  Figure 5.5: Sensitivity analysis of the uncertainty with respect to the change of UMID, 1000 

realizations are generated with fixed cdf and with 100 variable cdfs, the table shows the 

parameters used in the simulation where global mean and conditioning value are in original units. 

The same scenario of one conditioning sample is expanded to a grid of five nodes in the 

east direction and five nodes in the north direction. The size of the nodes is one unit. The 

change of the local uncertainty and global uncertainty is evaluated for this scenario. The 

uncertainty in the mean of the univariate distribution is accounted for in the generation of 
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1000 variables means. The sequential Gaussian simulation approach is applied. The 

conditioning data is located in the center of the domain; an exponential variogram model 

is used with range of 7.779 units because the covariance between the conditioning data 

and the closest node was set to 0.68. Figure 5.6 shows the change of the distribution of 

the global means when uncertainty in the mean of the distribution is incorporated to the 

process of simulation. 

 

 

 

 

Figure 5.6: Spatial location of the conditioning sample z(u) in the domain, where the covariance 

z(u) to the nearest node is 0.688. The distribution of global means from SGSIM that use parameter 

uncertainty is compared with the one without parameter uncertainty. 

Twenty five nodes are evaluated in a 2D map. Just as in the case of one node, two 

scenarios are evaluated; both of them run with the same random number seed. The 

increase of global uncertainty (std.) is from 0.60 to 0.61. Also, the increase in uncertainty 
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at all the nodes is observed when the distribution of the residuals is drawn with quantiles 

instead of random numbers. Conversely, the sampling of the residuals with random 

numbers shows two nodes with a very small reduction of local uncertainty. 

5.4 Practical Considerations 

Many techniques to evaluate uncertainty in the input parameters were presented in 

Chapters 2, 3 and 4. All of them give reasonable output; however, it is important to keep 

in mind that some scenarios or phases of a project development require more parameters 

than other. Parameters like spatial correlation and finite domain must be taken account 

when the project has enough data to define the domain. 

The input distribution should be representative of the domain or volume to be evaluated. 

The limits in the tails of the distribution should be carefully defined. A wrong definition 

of the tails value could generate some artifact in the transformation of the values into 

Gaussian units. The tail values may need to be chosen separately for each variable ccdf. 

The red data file is available in the CCG network and has 68 samples through a vein. 

There are samples of gold, silver, copper and zinc. The thickness of the samples is 

between 0.13 and 18.86 meters. The spatial distance between the samples is about 30 

meters. The gold value is evaluated. A semivariogram model of the gold values in normal 

score units is required for the simulation-based approaches. 

     1 100 1 250
2 90 2 95

0.44 0.56ah ah
ah ah

Exp Exp  
 

 h h h  

Two structures were required to model the experimental variogram, which ah1 is the 

mayor range in the 15° azimuth and ah2 is the minor range in perpendicular direction to 

ah1. The evaluations are done on a domain of size 500 meters × 600 meters using a 

discretization of 5 meters × 5 meters blocks. The mean of the input distribution is 1.415 

ppm with a standard deviation of 1.288.  

Uncertainty in the mean of the input distribution is evaluated for the Red data. The 

stochastic trend methodology uses a polynomial equation of second order to describe the 

shape of the trend. This polynomial fit reasonably the Red data to ensure the reproduction 

of the input parameter distribution. 10000 stochastic trends are used to evaluate the gold 
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value at the locations within the domain. The deviation standard of 10000 global means is 

0.23.  

2( ) 113.60 5.62 03 0.64 3.70 03 3.11 05Z x y y xy        u  

The same as stochastic trend, 10000 realizations are run with conventional bootstrap, 

spatial bootstrap and conditional finite domain techniques.  The fluctuations of the mean 

using these techniques are illustrated in Figure 5. 7. The theories about parameter 

uncertainty techniques were developed in the previous Chapters. 

 

Figure 5. 7: Distribution of the uncertainty in the mean by the different techniques, CB, SB, CFD 

and ST are overlapped with the original distribution. 

The uncertainty in the mean of the input distribution is the standard deviation of 0.360 

using conditional finite domain. This uncertainty is transferred through the simulation, a 

non standard Gaussian distribution is defined with the mean similar to the original input 

distribution and the standard deviation from CFD. One hundred means are drawn from 

this non standard distribution, the relation of those means and the mean of the original 

distribution provide 100 factors. These factors are multiplied to the original distribution 

to generate 100 variable cdfs.  

One hundred variable cdfs are created with a genrefdist.for program that was developed 

for this approach. One hundred sets of simulations are performed with their respective 

variable ccdf. Those ccdfs are used as reference ditribution in the program sgsim.for. The 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Fr
e

q
u

e
n

cy
 

Au(g/t) 

Histogram 

Data CB SB CFD ST



54 

 

output files are gathered with a program mixsim.for. The same number of simulations is 

executed for the fixed ccdf. The two sets of simulations are compared and the increase in 

uncertainty is illustrated in a 2D map. The increase of the local uncertainty is visible in 

zones where the samples show high spatial variability. For instance, from the Figure 5.8 

the samples that have 0.001 ppm the lower quantity of gold are neighbours with samples 

with thousand times more high values.  

 

 

Figure 5.8: Location of the red data and map of the increase in local uncertainty because the 

simulation consider parameter uncertainty. The map contains red dots that represent data location. 

Besides those zones, the other zones that present a considerable increase in uncertainty is 

in zones that are located far from the conditioning data. 

The local uncertainty at the nodes using a fixed reference distribution is compared to the 

one using different reference distributions by scatter graphic. Positive correlation is 

observed in Figure 5.9. 
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Figure 5.9: Increase in uncertainty at each node after being simulated with different reference 

distributions. 

Every realization or map gives a unique mean that change through the realizations. The 

standard deviation of these means is defined as a global uncertainty. The global 

uncertainty with fixed ccdf is 0.12 and a narrow shape of the global means is given 

between 1.03 ppm and 1.64 ppm. The second scenario when the simulation take account 

the uncertainty in the mean of the input univariate distribution, the deviation of the global 

means increase to 0.24, that is, the tails of the distributions of the global means is 

expanded from 0.77 ppm to 2.30 ppm. Figure 5.10 shows the increase in uncertainty 

when is transferred the uncertainty of the input parameter to the simulation. 

 

Figure 5.10: Change of global uncertainty, fixed ccdf right histogram and variable ccdfs left 

histogram. Histograms is with results in original units. 

The example shows that an increase in uncertainty is observed in local scale or zones 

close to the data and in long scale or zones that are far from the data. Also, the 
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uncertainty at the locations of the data is zero with fixed and variable ccdf. The narrow 

uncertainty of the global mean is the optimal scenario provided that this uncertainty is 

accurate; however, uncertainty in the input parameter should not be ignored in the 

simulation process. 
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Chapter 6                                        

Conclusions 

Uncertainty in ore reserves is often evaluated by geostatistical simulation of multiple 

realizations. The uncertainty is affected by the amount of local data and uncertainty in the 

modeling parameters such as mean, univariate distribution and variogram. Parameter 

uncertainty is often ignored in geostatistical simulation. Then, the global uncertainty is 

underestimated. Evaluations in large deposits with few drill holes show that local 

fluctuations cancel out. As a result, the fluctuations in the global mean are very small. 

Accounting for uncertainty in the modeling parameters, especially the mean, is 

considered important for a realistic assessment of uncertainty. 

Many data are required to evaluate the mean of a univariate distribution with negligible 

uncertainty. There are different approaches to evaluate uncertainty in the mean that 

involve assumptions such as (1) the data are independent or spatially correlated, (2) the 

realizations are limited within the domain limits or not, (3) the realizations are 

conditioned to the original data or not, and (4) the mean could be calculated based on a 

trend equation. 

Traditional techniques, such as the conventional bootstrap and spatial bootstrap, sample 

from the distribution of the data without considering other possible values. A 

shortcoming of these techniques is that conditioning data are not considered; the locations 

and the outcomes are randomized. Also, the representativeness of the data may be 

questionable because preferential sampling is a common feature of geological data. The 

conditional finite domain technique uses a different pattern of randomization to define 

uncertainty in the distribution. The pattern consists on sampling from multiple 

conditional simulations using the original sampling strategy. 
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The Conditional Finite Domain (CFD) technique samples from rotated and translated 

configurations of the data to obtain different mean values. The configurations are 

simulated with different reference distributions, but are conditioned to the same original 

data. The sampling of many simulated configurations gives different mean values that 

define uncertainty for every iteration level or order. The uncertainty is stabilized after 

many configurations and orders are performed. A sensitivity analysis demonstrated 

robustness and reasonableness of this approach in scenarios where other techniques 

struggle with unrealistic uncertainty. An increase in the nugget effect, a reduction of the 

range of correlation or an increase in the size of the domain leads to more uncertainty, 

which is reasonable. 

Geostatistics techniques often lead to less uncertainty for larger domains even if the 

number of data stays the same. An alternative to evaluate uncertainty in these domains 

could be to use a trend equation and define the mean dependent on the location within the 

domain. The trend model could be used to predict the value at unsampled locations. A 

global mean is evaluated with the set of coefficients evaluated at all locations within the 

domain. The stochastic trend approach proposes to randomize these coefficients 

considering the correlation of the original fitted coefficients. Different coefficients 

provide different mean values that are combined to a distribution of uncertainty in the 

mean. 

This thesis demonstrates how uncertainty in the mean of the input distribution is 

transferred clearly through geostatistical simulation for a more complete understanding of 

uncertainty. Geostatistical simulation is usually performed with a fixed input distribution; 

this fixed univariate distribution comes from the input data and assumes a mean without 

uncertainty Multiple distributions could be constructed and used in geostatistical 

simulation as reference distributions. Original values are transformed into Gaussian units 

according to a specified reference distribution. The uncertainty in the mean of the 

univariate distribution is accounted by changing the reference distribution for 

transformation. Any Gaussian algorithm for simulation could be used. A change in local 

and global uncertainty is expected when the uncertainty is transferred through the 

simulation process. 
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6.1 Summary of Contributions 

The original conditional finite domain technique was implemented using sequential 

gaussian simulation (sgsim) by (Babak & Deutsch, 2008). The use of sgsim is relatively 

inefficient because the search and covariance lookup table use a full grid. This thesis 

proposes the use of LU simulation. The LU algorithm simulates only at the n locations to 

be sampled which is more efficient than sgsim. The n locations correspond to 

configurations that are created by random translation and rotation of the data locations 

limited to some domain The order in CFD is defined as the series of simulation for each 

of the configurations. LU simulation is executed for each configuration and the reference 

distribution is conditioned to the original data. The reference distribution is taken from 

the previous order for each configuration. The uncertainty in the mean is taken from the 

final realizations. A program cfdlu.for was developed to implement this technique and 

incorporate the conventional and spatial bootstrap algorithms.  A summary table 

report.out is provided to compare the uncertainty in the mean of the input distribution by 

these techniques. 

Another contribution of the thesis is the stochastic trend methodology to evaluate 

uncertainty in the mean. The use of a trend equation relaxes the assumption of stationarity 

and defines the mean dependent on the sample location within the domain. The stochastic 

trend approach randomizes the trend coefficients taking account the correlation of the 

original fitted coefficients. The uncertainty in the input parameter is calculated from the 

distribution of the mean values. A program uncrefcorr.for was developed to implement 

this technique. 

A simple methodology to transfer the uncertainty in the mean of the input distribution 

through simulation is another contribution of the thesis. Geostatistical simulation is often 

performed with a fixed reference distribution. The uncertainty in the mean of the 

univariate distribution is accounted for by changing the reference distribution for 

transformation. Any Gaussian algorithm for simulation could be used. The local and 

global uncertainty is improved. A program genrefdis.for was developed to generate 

multiple distributions.  
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Greater spatial continuity (larger range and/or smaller nugget effect) leads to more 

uncertainty with some geostatistical evaluations. This unrealistic increase in uncertainty 

makes statistical sense. The developed algorithms in this thesis generate more realistic 

results. 

An Appendix to this thesis presents equations that quantify the fluctuations due to a finite 

domain size in presence of conditioning data. These statistical fluctuations are part of the 

uncertainty in the mean. These variations depend of the size of the domain and the range 

of correlation. When the size of the domain becomes in the order of 10 times the range of 

correlation the fluctuations converge to zero. The fluctuations are less when there are 

more conditioning data. The decrease of expected fluctuations as the size of the domain 

increase is reproduced analytically. The analytical model is validated by the numerical 

uncertainty of many realizations. A program ulusim.for was developed, which is a 

modification of the program lusim Alabert (1986), Deutsch (1999) to evaluate the 

uncertainty with the analytical model.  

6.2 Future Work 

During the implementation of the stochastic trend technique, the adequacy of the 

regression model should be verified. The examples presented in Chapter 4 were 

restrained to first or second order model with interaction between coordinates, this model 

is capable to account for a wide variety of shapes; however more orders could be 

considered. There are different approaches for selecting the regressors xi, i = 1,...,L in a 

multiple linear regression model and the purpose of them is to identify which regressors 

contribute significantly to the model. It is recommended to validate the regression model 

before implementing the stochastic trend technique. 

A more complete understanding of uncertainty was the main goal of the thesis. The 

uncertainty in the mean is transferred through the geostatistical simulation to improve the 

characterization of the uncertainty. These results constitute an essential input in mine 

planning. Many tasks are carried out in mine planning; another future work is the 

incorporation of the uncertainty into the cutoff optimization task. The definition of ore 

and waste is a function of many variables. The objective of the optimization could be to 

find the best net present value related to variable cutoffs. Some variables such as metal 
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price cannot be controlled directly; however, there are others that can be handled and 

their uncertainty analysis is relevant. The transference of uncertainty in the cutoff may 

help to improve mine plans. 
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Chapter 7                                                                   

Bibliography 

Arik, A. (1999). An Alternative Approach to resource Classification. APCOM 

Proceeding, Computer Applications in the Mineral Industries , 45-33. 

Babak, O., & Deutsch, C. V. (2008). Reserves Uncertainty Calculation Accounting for 

Parameter Uncertainty. Canadian Petroleum Technology , 8, 41-49. 

Chilès, J.-P., & Delfinier, P. (1999). Geostatistics: Modeling Spatial Uncertainty. New 

York: John Wiley & Sons. 

David, M. (1977). Geostatistical Ore Reserve Estimation. Netherland: Elsevier Scientific 

Publishing Company. 

Deutsch, C. V. (2004). A statistical Resampling Program for Correlated Data, Spatial 

Boostrap. Six Annual Report of the Centre for Computational Geostatistics. Edmonton: 

Department of Civil & Environmental Engineering University of Alberta. 

Deutsch, C. V. (2002). Geostatistical Reservoir Modeling. New York: Oxford University 

Press, Inc. 

Deutsch, C. V. (2000). Special Topics in Geostatistics. Alberta: University of Alberta. 

Deutsch, C. V., & Begg, S. H. (2001). How Many realizations Do We Need? Alberta: 

Department of Civil & Environmental Engineering University of Alberta. 

Deutsch, C. V., & Journel, A. (1998). GSLIB: Geostatistical Softare Library and User's 

Guide (2nd Edition ed.). New York: Oxford University Press. 



63 

 

Deutsch, C. V., Leuangthong, O., & Ortiz C., J. (2006). A Case for Geometric Criteria in 

Resources and Reserves Classification. Eight Annual Report of the Centre for 

Computational Geostatistics (p. 21). Edmonton: Department of Civil & Environmental 

Engineering-University of Alberta; Department of Mining Engineering-University of 

Chile. 

Deutsch, C. V., Leuangthong, O., & Ortiz, J. M. (December 2007). A Case for Geometric 

Criteria in Resources and Reserves Classifications. SME , 322, 11 pages. 

Dominy, S. C., Noppé, M. A., & Annels, A. E. (2002). Errors and Uncertainty in Mineral 

Resource and Ore Reserve Estimation: The Importance of Getting it Right. Exploration 

and Mining Geology , 11, 77-98. 

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of 

Statistics , 7, 1-26. 

Emery, X. (2008). Uncertainty modeling and spatial prediction by multi-Gaussian 

kriging: accounting for an unknown mean value. Computer & Geosciences 34 , 1431-

1442. 

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. New York: Oxford 

University Press. 

Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to Applied Geostatistics. New 

York: Oxford University Press. 

Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statisticsl Analysis. 

Toronto: Pearson Education, Inc. 

Journel, A. G. (1994). Resampling from Stochastic Simulation. Environmental and 

Ecological Statistics , 1, 63-91. 

Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics. New Jersey: The 

Blakburn Press. 

Journel, A. (2004). Roadblocks to the Evaluation of Ore Reserve, The simulation 

Overpass and Putting More Geology into Numerical Model of Deposits. In R. 



64 

 

Dimitrakopoulos (Ed.), Ore Modeling and Strategic Mine Planning - Uncertainty and 

Risk Management Models (pp. 17-20). Perth: AusIMM. 

Kitanidis, P. (1997). Introduction to Geostatistics, Applications in Hidrogeology. New 

York: Cambridge University Press. 

Lane, K. F. (1991). The Economic Definition of Ore: Cut Off Grades in Theory and 

Practice. London: Mining Journal Books. 

Leuangthong, O., Khan, K. D., & Deutsch, C. V. (2008). Solved Problem in Geostatistics. 

Hoboken, New Jersey.: John Wiley & Sons, Inc. 

Leuangthong, O., McLennan, J., & Deutsch, C. V. (2005). Acceptable Ergodic 

Fluctuations and Simulation of Skewed Distributions. Seventh Annual Report of the 

Centre for Computational Geostatistics. Edmonton: Department of Civil&Environmental 

Engineering-University of Alberta. 

Montgomery, D. C. (2000). Design and Analysis of Experiments Fifth Edition. New 

York: John Wiley & Sons, Inc. 

Montgomery, D. C., & Runger, G. C. (2006). Applied Statistics and Probability for 

Engineers. Arizona: John Wiley & Sons, Inc. 

Neufeld, C. T., Ortiz, J. M., & Deutsch, C. V. (2005). A Non Stationary Correction of the 

Probability Field Covariance Bias. Seventh Annual Report of the Centre for 

Computational Geostatistics. Edmonton: Department of Civil & Environmental 

Engineering-University of Alberta; Department of Mining Engineering-University of 

Chile. 

Pyrcz, M., & Deutsch, C. (2002). Two artifacts of probability field simulation. 

Mathematical Geology , 33, 775-800. 

Ren, W., & Deutsch, C. V. (2006). Bayesian Unpdating with Local Varying Correlation. 

Eight Annual Report of the Centre for Computational Geostatistics. Edmonton: 

Department of Civil & Environmental Engineering University of Alberta. 

Rose, P. R. (2001). Risk Analysis and Management of Petroleum Exploration Ventures. 

Tulsa, Oklahoma: The American Association of Petroleum Geologist. 



65 

 

Strunk Jr., W., & White, E. (2009). The Elements of Style (Fiftieth Anniversary ed.). New 

York, United States: Pearson Education, Inc. 

Wang, F., & Wall, M. M. (2003). Incorporating Parameter Uncertainty into Prediction 

Intervals for Spatial Data Modeled via Parametric Variogram. Agricultural, Biological 

and Environmental Statistics. , 296-309. 

 

 

 



66 

 

Appendix A  

A.1 Ergodicity  

Geostatistical techniques for resource evaluation, such as Kriging and Simulation, require 

two assumptions. The first assumption of stationarity states that all multivariate 

distributions are invariant by translation over the study domain. Multivariate distributions 

are summarized by the mean vector and covariance matrix for all locations. The second 

assumption of ergodicity states that the spatial average (A.1) of a random stationary 

function (RF) Z(u) over a domain A converges to the expected value m=E{Z(u)} when A 

tends to infinity (A.2) (Chilès & Delfinier, 1999).  

1
( )      A

A

Z Z du
A

  u   (A.1) 

lim  A
A

Z m


  (A.2) 

When the domain tends to infinity, the variance of the spatial average is expected to be 

zero. In practice A is finite and the spatial average ZA will be variable when A is finite. 

Figure A.1 shows the change of the spatial average variance as a function of the size of A. 

 

Figure A.1: The variance of spatial average versus A. When this variance is significantly greater 

than zero, the domain is called non ergodic. 

Non Ergodic Ergodic

|A|

Var{ZA}
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Simulation algorithms are often based on the multivariate Gaussian RF model. This 

parametric model is the most widely used with extremely congenial properties 

(Goovaerts, 1997). The simulation of standard normal values should reproduce the 

Gaussian distribution with mean zero and variance one; however, ergodic fluctuations 

make the results different from zero and one.  

A study on acceptable ergodic fluctuations (Leuangthong, McLennan, & Deutsch, 2005) 

shows significant statistical fluctuations for three examples with variogram range of 20%, 

50%, and 100% of the domain. Even when the domain becomes relatively large 

compared to the range of correlation, these statistical fluctuations are considerable and 

are a part of the global uncertainty. The magnitude of the statistical fluctuations can be 

quantified by performing non conditional simulation. The expected fluctuations in the 

mean are derived below in presence of conditioning and verified by numerical examples. 

A.2 Expected Fluctuations in the Mean  

The variance of the spatial average in the domain A is a measure of the expected 

statistical fluctuations. The domain could be discretized by N nodes, these are defined by 

the variable function Z(u
(i)

), where the location of every node is u
(i)

, i=1,…,N. The 

available data are defined by z(uk), where the location of each data value is uk, k = 1,..,n. 

These n available data values and N nodes define the domain A. Values at every node are 

estimated conditioned to the available n values. 

The covariance of the RF Z(u) should be constant over the domain; however, a non 

stationary covariance is observed in the presence of conditioning data. The covariance 

near the conditioning data is a function of the input “ergodic” covariance model and the 

location of the conditioning data. Figure A.2 shows a domain A that has z(uk), k = 1,...,6 

conditioning data. The discretization of the domain is with 100 nodes. As expected, the 

covariance between adjacent node location u
39

 and u
40

 will be different than the 

covariance between the node locations u
71 

and u
72

. This difference is
 
because C(u

71
,u

72
) 

has node locations that are near the conditioning data; C(u
39

,u
40

) has node locations that 

are far from the conditioning data. That is, the distance to the conditioning data matters in 

the evaluation of covariances. 
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Figure A.2: The covariance C(u
39

,u
40

) that is far from the conditioning data is different to the 

covariance C(u
71

,u
72

) that is near from the conditioning data. 

This non stationary covariance is correctly reproduced in sequential Gaussian simulation 

because the previous simulated nodes are used in the estimation of subsequent nodes 

(Neufeld, Ortiz, & Deutsch, 2005). These conditional covariances are required to 

compute the variance of the spatial average, which is given by: 

        
2

2

1
i

N N
j

A A

i j

Var Z E Z Z E Z
N

  
  u u                         (A.3) 

The variance of the spatial average is expanded below. The first term is equivalent to the 

expected value of the conditional covariance between nodes plus the quadratic of the 

expected value of the spatial average, and the second term is the quadratic of the expected 

value of the spatial average. 

          
2 2

2

1
i

N N
j

A A A

i j

Var Z Cov Z Z E Z E Z
N

 
         

 
 u u  

The previous equation is simplified and the quadratic of the expected value of the spatial 

averages are canceled out. Where, Cov{Z(u
i
)Z(u

j
)} corresponds to the covariance 

between two random variables conditioned to the available data. 
 

u1

A

Non Stationary Covariance

u6

u2

u3

u5u4

C(u   ,u   )
      (39)     (40)

C(u   ,u   )
      (71)     (72)

uk

C(u  ,u  )
      (i)       (j)

Discretization of domain A in N nodes

Location of data, n locations

Covariance between nodes
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{ } ( ) ( ){ }2

1
i

N N
j

A

i j

Var Z Cov Z Z
N

= ∑∑ u u

          

 (A.4) 

The conditional covariance could be developed by the following steps: Define an n × n 

covariance matrix between available n data as C11. 

1 1 1

11

1

( ) ( )

                          

( ) ( )

n

n n n

C C

C

C C

− − 
 =  
 − − 

u u u u

u u u u

…

⋮ ⋱ ⋮

…

 

Define the covariance matrix between n data and N locations of the discretized domain as 

C12. Also the notation Z(u) will be simplified in the expressions by just vector u. 

( ) ( )

( ) ( )

1

1

1 1

12

( ) ( )

                                

( ) ( )

N

N

n n

C C

C

C C

 − −
 

=  
 − − 

u u u u

u u u u

…

⋮ ⋱ ⋮

…

 

Define the covariance matrix between N locations of the discretized domain in nodes as 

C22. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1

22

( ) ( )

                                     

( ) ( )

N

N N N

C C

C

C C

 − −
 

=  
 − − 

u u u u

u u u u

…

⋮ ⋱ ⋮

…

 

The expression for the conditional covariance matrix of N node locations given n 

conditioning values is given after combining covariances matrices C11, C12 and C22. The 

calculations of all the covariances use an input model covariance. 

( )1
1

1

22 12 11 12,..., | ,...,N
n

T

u u u u
C C C C C−= −  (A.5) 

The kriging system is given in Equation (A.6). This term is observed in the conditional 

covariance equation. 

1

11 12[ ] C Cλ −=  (A.6) 

The covariance matrix between the n data and the N nodes is transposed and multiplied 

by the kriging weights. 
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( ) ( )

( ) ( )

1 1(1) ( )

1 1

12

(1) ( )

1 1

( ) ( )

[ ]                                                  

( ) ( )

n n
N

k k k k

k k

T

n n
N NN

k k k k

k k

C C

C

C C

λ λ

λ

λ λ

= =
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 
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∑ ∑

∑ ∑
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u u u u

…
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…

                         

(A.7) 

The previous matrix is substituted by the outcome of minimizing the kriging variance 

Equation (A.8). The covariance between random variables in the presence of conditioning 

data is deduced (A.9) (Neufeld, Ortiz, & Deutsch, 2005). 

' ' 0

' 1

  1,...,
n

k k k k

k

C C where k nλ
=

= =∑  (A.8) 
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1
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1 ' 1 1 ' 1
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(1) ( ) ( ) ( )
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n n n n
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k k k k k k k k

k k k k
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N N N

k k k k k k

k k k

C C
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λ λ λ λ

λ λ λ λ
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u u u u

u u
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n

k k
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C
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 
 
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 
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 −
  

∑ u u

(A.9) 

The simplified equation of the previous matrix is a function of the covariances between 

node locations, the set of weights and the covariances between conditioning data. Where 

no conditioning data are present, the covariances are identical to the input covariance 

model. 

( ) ( )
1

( ) ( )

' '
, | ,...,

1 ' 1
i j

n

n n
j i

ij k k kk

k k

C C Cλ λ
 
  = = 

= −∑∑
u u u u

 (A.10) 

The equation for the conditional covariance between random variables is replaced in 

Equation (A.4) to obtain the conditional variance of the spatial average.  

{ } ( ) ( )

' '2
1 1 1 ' 1

1 N N n n
j i

A ij k k kk

i j k k

Var Z C C
N

λ λ
= = = =

 
= − 

 
∑∑ ∑∑  

The variance of the spatial average is expanded. The two terms show their influence on 

the total Var{�̅A}. That equation accounts for the covariances of all the nodes that are 

inside the domain A. The non stationary covariance is reproduced in the presence of 

conditioning data. The first term is the average of the N × N 
 
covariances between nodes 
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that belong to domain A, and the second term is the average of N × N nodes combinations 

of
 
redundancy measures of the available data regard to the nodes.  

    ( ) ( )

' '2 2
1 1 1 1 1 ' 1

1 1N N N N n n
j i

A ij k k kk

i j i j k k

Var Z C C
N N

 
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 
   

 
     

The expected value of the spatial average is represented by: 

   
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* * ( )

1 1 1 1

( )

1 1

1 1 1

1
  

N N N n
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N n
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Ak k k k

i k

E Z E z E z E z
N N N

assume E z z E Z z
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


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 

   
     

   

 

   

 

 

The previous two equations permit the evaluation of fluctuations due to a lack of 

ergodicity in presence of conditioning. These statistical fluctuations are part of the 

uncertainty in the mean for the domain A. These variations depend of the size of the 

domain and the range of correlation. When the size of the domain becomes in the order of 

10 times the range of correlation the fluctuations converge to zero. The fluctuations are 

less when there are more conditioning data. These results are verified numerically. 

A.3 Application 

A.3.1  Verification of Non Stationary Covariance 

A simple scenario is used to show the influence of the conditioning data on the evaluation 

of the covariance. Three samples are located in an area of 150 meters × 150 meters. 

These samples are standard normal Gaussian. The variogram model is spherical and 

isotropic.  

150( ) 0.2 0.8 ( )asph   h h  

The area of study is discretized by nine nodes u
(i)

, i = 1,...,9. The covariance between 

node u
(2) 

and node u
(3) 

given three conditioning data uk, k = 1,...,3 requires the kriging 

weights for every node σk, k=1,...,3, the covariance between samples locations Ckk’ and 

the covariance between u
(2)

 and u
(3)

. For the node u
(2) 

 the kriging weights result -0.063, 

0.109 and 0.508 and for the node u
(3)

 the kriging weights result -0.094, 0.208 and 0.192. 
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As expected, the kriging weights are proportional to the distance between nodes and 

samples. Furthermore, the covariance matrix between the sample locations is as follow: 

'

1 0.373 0.250

0.373 1 0.276

0.250 0.276 1

kkC

 
 


 
  

 

From Figure A.3, the size of every node is 50 meters × 50 meters, then, the covariance 

C(u
(2)

 u
(3)

)  between adjacent evaluated nodes has the lag distance h equal to 50 meters. 

The covariance between u
(2)

 and u
(3)

 given three conditioning samples is solved in the 

next equation: 

   2 3
1 2 3

3 3
(3) (2)

23 ' '
, | , ,

1 ' 1

                      0.41 ( 0.094 0.063 1 0.094 0.109 0.373 0.094 0.508 0.250;

                          0.208 0.063 0.373 0.208 0.109 1 0.20

k k kk

k k

C C C 
 
    

 

            

      


u u u u u

8 0.508 0.276;

                          0.192 0.063 0.250 0.192 0.109 0.276 0.192 0.508 1)

                      0.41 0.138 0.272

 

        

  

 

To verify the non stationary covariance in the presence of conditioning data, two other 

nodes with the same vector lag distance h are evaluated, namely the covariance between 

u
(4)

 and u
(5)

 that are near to the conditioning data. Where, the kriging weights for the node 

u
(4)

 result 0.258, 0.004 and  0.457; for the node u
(5)

 result 0.141, 0.363 and 0.387. Like 

the previous evaluation, the equation of the covariance conditioned to the data is as 

follows: 

   4 5
1 2 3

3 3
(5) (4)

45 ' '
, | , ,

1 ' 1

                      0.41 (0.141 0.258 1 0.141 0.004 0.373 0.141 0.457 0.250;

                          0.363 0.258 0.373 0.363 0.004 1 0.363 0.4

k k kk

k k

C C C 
 
    

 

         

       


u u u u u

57 0.276;

                          0.387 0.258 0.250 0.387 0.004 0.276 0.387 0.457 1)

                      0.41 0.337 0.073



        

  

 

The data of the example are illustrated in Figure A.3. The covariance C23 and C45 without 

conditioning data are equal to 0.41 because the vector distances in both cases are the 

same; however, in the presence of conditioning data, the conditional covariances over the 

domain become non stationary and depend on the distance to the conditioning data.  
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The conditional covariance C23|1,2,3 is farther from the conditioning data than the other 

conditioning covariance C45|1,2,3, then, the example shows that C23|1,2,3 is greater than 

C45|1,2,3 because the second term depends on kriging weights and is subtracted from the 

constant value 0.41 to get the conditional covariance of these nodes distant in 50 meters. 

For instance, the nodes u
(4)

 and u
(5)

 obtain greater kriging weights than nodes u
(2)

 and u
(3)

 

because they are located close to the conditioning data. As a result, the second term is 

0.337 for nodes u
(4)

 and u
(5)

 greater than 0.138 for nodes 
 
u

(2)
 and u

(3)
 

 

Figure A.3: Graphic of the non stationary covariance in the presence of conditioning data. 

The example shows that conditional covariance C45|1,2,3 near the data results in 18 % of 

the covariance model. Otherwise, the conditional covariance C23|1,2,3  located a little far 

from the data results in 66 % of the covariance model (0.41). Those results are verified by 

simulating 1000 realizations; the C45|1,2,3 gives 0.081 and  C23|1,2,3 gives 0.337. That is, the 

covariance given n conditioning data increases and becomes close to covariance model as 

the evaluated nodes are far from the conditioning data. 

C(u   ,u    |  u 1 ,u 2 ,u 3 )        (4)        (5) 

u k Discretization of domain  A  in nodes u
(1)

,...,u
(9) Location of data,  k = 1,...,3 

u 1 

u 3 

u 2 

 = 0.41 - 0.138 

= 0.41 - 0.337 

C(u   ,u    |  u 1 ,u 2 ,u 3 )        (2)        (3) σ 1  = -0.094 

σ 2  =  0.208 
σ 3  =  0.192 

σ 1  =  0.141 

σ 2  =  0.363 
σ 3  =  0.387 

σ 1  = -0.063 

σ 2  =  0.109 
σ 3  =  0.508 

σ 1  =  0.258 

σ 2  =  0.004 
σ 3  =  0.457 

2050 2100 

2050 

2100 
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A.3.2 Verification of Analytical Variance of the Spatial Average 

The data and covariance model from the previous example is used to demonstrate the 

reduction in variance as the domain A increases. The variance of the spatial average of the 

domain that is discretized by nine nodes with three conditioning data is computed below. 

The first term corresponds to the covariance average between nodes equal to 0.3204, this 

value does not depend on the conditioning data; the second term equal to 0.2022 

corresponds to the term that accounts the location of the conditioning data. The expected 

value of the spatial average 0.0964 accounts the values of the input data. 

   
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9 9 9 9 3 3
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1 1 1 1 1 ' 1
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

 

These values are shown in Table A., where the parameters of the input covariance model 

are kept constant as the size of the domain A is increased from 150 meters to 1550 meters. 

The first term becomes smaller as the size of the domain increases because the 

covariances between distant nodes are less; the second term becomes smaller because the 

conditioning data are located farther from the nodes as the size of the domain increases. 

A(Xd×Yd) First term Second term Analytical Model 

150×150 0.3204 0.2022 0.1182 

350×350 0.0802 0.0158 0.0644 

550×550 0.0351 0.0026 0.0325 

750×750 0.0195 0.0008 0.0187 

950×950 0.0124 0.0003 0.0121 

1150×1150 0.0086 0.0001 0.0085 

1350×1350 0.0063 0.0001 0.0062 

1550×1550 0.0048 0 0.0048 

Table A.1: Change of the variance of the spatial average with different size of domains. 
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As expected, the variance becomes smaller as the size of the domain is increased, the 

variance approaches zero asymptotically, but it is practically zero when the ratio of the 

domain size and range of correlation is around 10. These analytical values are compared 

to the numerical model in Figure A.4. 

 

Figure A.4: Synthetic data, non-ergodic variance of spatial average with different domains size. 

As expected, both the analytical model and the numerical results show the decrease of the 

variance of the spatial average as the domain increases; however, slight differences are 

observed due to the limited number of samples. The ratio of the domain size and the 

range of correlation in the domain 150 × 150 is 1 and in the domain 350 × 350 is 2.3. 

Those ratios correspond to significantly non ergodic domains because the ratios are less 

than 10. The numerical approach shows slight variations of the variance of the spatial 

average. For instance 200 realizations of the domain 150 × 150 show variance 0.13 and 

2000 realizations show variance 0.12. 

A second example is used to compare values of variance from 200 simulations 

(numerical) and analytical model. The “red” data contain 60 values of gold grade from a 

planar gold vein that are located in an area of 500 meters by 600 meters. These values are 

transformed to normal Gaussian score and their anisotropic variogram is defined by: 
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The size of nodes is 50 meters × 50 meters, the domain size (Xd×Yd) 500 meters × 600 

meters is increased eight times proportionally until the domain size reach (Xd×Yd) 2250 

meters × 2700 meters. The largest domain is equivalent to 10 times the range of 

correlation. The previous example used synthetic data that contained 3 sample locations. 

Meanwhile, the current example shows a real scenario of 60 values. More samples and 

real scenario evaluate fairly the analytical model against the result of many simulations. 

 

Figure A.5: Variance of the spatial average with different domain sizes for the Red data. 

The variance of the analytical model and numerical results are similar, the slight 

difference is due to the numerical model being sensitive to the random generator of 

realizations. The decrease of expected fluctuations as the size of the domain increase is 

reproduced as in the previous example. The examples validate the analytical model. 

The concept of ergodicity states that the spatial average of a random stationary function 

(RF) Z(u) over a domain A converges to the expected value m=E{Z(u)} when A tends to 

infinity. Statistical fluctuations of realizations are reduced as the ratio between domain 

size and range of correlation increase. The examples show that fluctuations practically 

reach zero at a ratio of 10. 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

450 750 1050 1350 1650 1950 2250 2550 2850

V
ar

ia
n

ce
 

Lenght of the domain, A, in Y direction, Yd 

Variance_Domain Size Sensitivity Analysis 

Analytical Model Numerical



77 

 

Appendix B  

B.1 Conditional Finite Domain Program (cfdlu.for) 

The Conditional Finite Domain(CFD) technique permits quantification of uncertainty in 

the mean of a univariate distribution. The technique samples from rotated and translated 

configurations of simulated data. Many configurations are created by random translation 

and rotation of the data locations relative to the centroid of the original data configuration 

or limited to some domain. The order in CFD is defined as the series of simulation for 

each of the configurations. The reference distribution is updated for every order of 

simulation. LU simulation is executed for every configuration and the realization is 

conditioned to the original data. The reference distribution is taken from the previous 

order. The simulated configurations will give different means that define the uncertainty 

in the mean. The uncertainty is estabilized with many configurations and orders. 

Simulation is done in Gaussian units. The normal scores transformation of the data 

becomes sensitive to the tail extrapolation options as the order of simulation increases. 

Reasonable values must be chosen by the user. The parameter file of the program follows 

the conventions of GSLIB, the name of the data file is asked in the first line. The 

locations of coordinates X, Y, Z, value and declustered weight are required in the next 

line. 

data.dat  - input file with data 

1  2  3  4  5  - columns for X, Y, Z, variable and weight 

 

The trimming limits on the next line removes missing values. 

-0.1E+04 0.1E+04 - trimming limits LTGT 

 

The program will calculate the minimum and maximum tail values as small deviations 

from the minimum and maximum data values.  

1   - itail, permit calculate tails?(1=yes  0=no ) 
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The next three parameters are considered only when itail is set equal to 0. Otherwise, the 

tail options should be specified according the conventions of GSLIB. 

0  15.0  - data limits(tails) 

1   0.0  - lower tail option, parameter 

1  15.0  - upper tail option, parameter 

 

The number of configurations to be simulated and sampled is set in the next line. The 

code offers the alternative to run with only translation (0) or translation and rotations (1). 

100   - nconf (number of new configuration) 

1   - permit rotation?(1=yes  0=no ) 

 

Translation is set with respect to the centroid of the configuration data. A window around 

this location will limit the random translation distance; the dimension of the window 

could be reference to the median space between data (0), longest distance between 

samples or apparently domain size (1) or arbitrary value (2). The product of the factor 

(trfrac) and the reference distance give the size of the window. Sensitivity analysis shows 

robust CFD uncertainty in the trfrac interval [0.1-0.3] regard to the domain size and trfrac 

interval [0.2-0.6] regard to the spacing data.  The second line is used when the translation 

is relative to some arbitrary dimension of the window respect to the centroid of the data. 

0 0.50  - itrans refer(space data=0,domain=1,value=2)& trfrac 

0.0  - if itrans = 2 dimension window value 

 

The ASCCI file of the domain is required, those values should be flagged. The number 

used to flag the area inside the domain should be specified in the next line. 

1  - consider domain? iflag(1=yes  0=no ) 

block.clp - only if iflag=1,input file with binary values 

1  - column of flag, only if iflag=1 

 

The code generates an output file of configurations, uncertainty of the mean by order and 

the means for all configurations and orders. The file cfdlu.out is used to graphic the 

uncertainty in the mean by every order, this graphic let find the point of convergence of 

the uncertainty in the mean.  A summary table report.out is provided to compare CFD 

with other techniques that evaluate the uncertainty in the mean of the input distribution. 

cfdlu_conf.out - output file with new configuration 

cfdlu_sum.out  - output file with uncertainty(conf x order) 

cfdlu.out  - output file with uncertainty versus order 

report.out  - output file_summary table of uncertainty 

 



79 

 

The number or orders is set in the next line and this value corresponds to the number of 

simulation of every configuration with the respective previous assembled reference 

distribution. The option of seed number is similar to traditional GSLIB simulation code. 

100   - uncertainty order(number simulation of nconf) 

112063   - random number seed 

 

The variogram model, number of structure, nugget effect, sill, ranges and angles of 

anisotropy follow the GSLIB traditional code of simulation or interpolation. 

1  0.2   - nst, nugget effect 

1 0.8 0.0 0.0 0.0 - it,cc,ang1,ang2,ang3 

50 50 50  - a_hmax, a_hmin, a_vert 

 

The code added routines of conventional bootstrap and spatial bootstrap. Therefore an 

additional output files without any specification in the parameter file of the code is 

generated. Boot_avg.out - the mean and standard deviation of the realizations using CB 

technique, Spatial_bootstrap.out - the mean and standard deviation of the realizations 

using  SB technique, and space_data.out - information of the size domain and median 

space between data 

B.2 Stochastic Trend Program (uncregcorr.for) 

The parameter file of the stochastic trend program calculates the uncertainty in the mean 

of the input distribution. This program is a modification of the correlate program (Ren & 

Deutsch, 2006) and is implemented to develop stochastic trend technique. This code 

considers linear or quadratic polynomials. The geological model is defined by an 

equation that contains coefficients, then, the thesis proposes to randomize the regression 

coefficients to obtain uncertainty in the global mean. The first, second and third lines are 

the same as available routines of GSLIB programs. 

s_data.dat  - file with data input 

1 2 3 4  - columns X Y Z and variable 

-1.0e21   1.0e21 - trimming limits  

 

The trend equation defines the mean dependent on the sample location at the domain, the 

number of drifts or terms that represents the unknown regression coefficients are set in 

the next line the function of the trend fl (u) is an equation based in an understanding of 

the trend. 
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1 1 1 0 0 0 0 0 0 - 1=use parameter in:ix,iy,iz,ixx,iyy,izz,ixy,ixz,iyz 

 

The next line specifies a file for the coefficients of the trend and their variance that are 

calculated by using the theory of multiple regression models. 

regres_coef.out - file of regression coef output 

 

The number of realizations of the coefficients of the trend should be given in the next line 

and the number of seed is similar to traditional GSLIB simulation code. 

100   - simulation number of reg.coef 

69069   - random number seed 

 

Realizations of the coefficients are correlated and the output file of them is specified. 

correlated.out - file of correlated Gaussian output 

 

The program gives a stochastic trend, which could be used to evaluate the values at the 

location of the original data or at nodes of the whole domain. 

1   - Result on data location(0) or on the grid(1) 

 

Specification of the limit of the simulation 

40 2.5 5.0  - nx,xmn,xsiz 

40 2.5 5.0  - ny,ymn,ysiz 

15 11 2  - nz,zmn,zsiz 

 

The code could use a three dimensional domain or two dimensional domain and the 

number used to flag the area inside the domain is specified. 

1   - consider domain? iflag(1=yes  0=no ) 

flagn.clp  - only if iflag=1,input file with binary values 

1   - column of flag, only if iflag=1 

 

All the nodes that are calculated with the stochastic trend are reported in the next file and 

the means for every stochastic trend is written in unc_sim.out.  

regcoef_sim.out - output, simulation of fit regression coefficient 

unc_sim.out  - uncertainty of fit regression coef. Simulation 

 

The ASCII file of the domain should have the same dimension as the limit of the 

simulation, the program works only in the flagged nodes.  
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