
 

 

 

 

 

Deciphering the Biological Basis of Acute Myeloid Leukemia 

Relapse Using a Novel In-Vitro Study Model 

 
by 

 

Justine Lai 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

Department of Medicine 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Justine Lai, 2024 



 

 

ii 

Abstract 

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy associated with 

a poor clinical outcome that is largely attributed to disease relapses. Treatment options for relapsed 

AML patients are limited; after relapse, the median survival is only ~6 months. The biology 

underlying relapse is not well understood, and mechanistic studies of AML relapse are scarce, 

largely because appropriate study models are lacking. Nonetheless, there are several interrelated 

hypothetical models linked to the concept of cancer stem cells (CSCs). CSCs, which represent a 

very small subset of the leukemic cell population, survive the induction/consolidation 

chemotherapy, and they emerge and re-populate the entire leukemic population (i.e. relapse) after 

a period of dormancy (i.e. remission). This concept is difficult to prove as the definition of CSCs 

remains to be elusive and study models are lacking.  

The key aim of this study was to examine the validity of the CSC model to explain AML 

relapse. To identify cancer stem-like (CSL) cells, the SORE6 reporter was employed, which has 

shown to be useful in detecting/purifying CSL cells; however, this study is the first to use SORE6 

to investigate AML. In two FLT3-mutated AML cell lines, MOLM-13 and MV4-11, the SORE6-

/SORE6+ dichotomy existed, with SORE6+ cells being significantly more CSL than SORE6- cells. 

These two subsets were employed to develop an in-vitro model mimicking clinical features of 

AML relapse. Specifically, after the Ara-C induction of ‘zero viability’ in which viable cells were 

undetectable by direct microscopic examination, cells regenerated on day 18±2 of the experiment. 

These phenomena mimic clinical remission and relapse and are thus labeled in-vitro remission and 

in-vitro relapse, respectively. By molecularly barcoding SORE6- and SORE6+ cells, the relative 

contributions of original SORE6- and SORE6+ cells could be determined at in-vitro relapse, even 

if they lose/gain SORE6 activity. Barcode analysis revealed that most in-vitro relapse cells were 
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derived from the original SORE6+ cells and exhibited higher CSL features compared to original 

SORE6+ cells, even though a proportion of them lost SORE6 activity. Using Myc as the surrogate 

marker for SORE6+ cells, relapsed patient samples showed an expansion of CSL cells.  

Next, different therapeutic agents were tested in the in-vitro relapse model to determine if 

SORE6+ cells are important to all relapses. 5-azacitidine (AZA) or the combination of AZA and 

Venetoclax (Ven) (i.e. AZA+Ven) were used since these two regimens were recently tested in a 

large clinical trial, with AZA+Ven being significantly superior to AZA in prolonging disease-free 

survival. Correlating with the clinical data, in-vitro relapse occurred on day 13±1 with AZA, 

whereas in-vitro relapse did not occur at the endpoint (day 30) with AZA+Ven. In contrast to Ara-

C, molecular barcoding and flow cytometry analysis of in-vitro relapse cells after AZA and 

AZA+Ven treatment did not show the expansion of SORE6+ cells. Using metabolomic analysis, 

ornithine decarboxylase (ODC) was identified as a marker for CSL expansion. ODC was 

upregulated in the Ara-C condition, but not in the AZA and AZA+Ven conditions, correlating with 

barcoding analysis. Additionally, ODC expression was heterogeneous in a cohort of 12 relapsed 

AML patient samples; however relapsed samples had a significantly higher level of ODC 

compared to initial diagnostic specimens. 

The utility of the in-vitro study model was further examined by investigating the 

mechanisms underlying the high chemoresistance in SORE6+ cells. The autophagic capacity of 

SORE6+ cells was examined, as autophagy has been shown to confer chemoresistance. Using 

standard autophagy assays, SORE6+ cells carried significantly higher autophagic flux after Ara-C 

treatment, and inhibition of autophagy significantly sensitized SORE6+ cells to Ara-C. Using an 

autophagy PCR array, ULK2 was identified as an important mediator for the high autophagy 

capacity in SORE6+ cells. Pharmacologic inhibition of ULK2 significantly sensitized SORE6+, 
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but not SORE6-, cells to Ara-C. Using the in-vitro model for relapse, higher ULK2 expression was 

found in regenerated AML cells compared to untreated cells, and pharmacological inhibition of 

ULK2 prevented in-vitro relapse. Finally, ULK2 expression was higher in relapsed compared to 

initial diagnostic AML specimens.  

In conclusion, while CSL cells appear to be the major contributors to AML relapse in 

certain settings, CSL cells may not be uniformly important. While further validation studies are 

required, the generated in-vitro relapse model is useful in developing concepts and hypothetical 

models to study AML relapse.  
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Introduction  
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1.1. Acute Myeloid Leukemia (AML)  

 

1.1.1. Definition, incidence and clinical characteristics of AML 

 

Acute myeloid leukemia (AML) is a hematologic malignancy characterized by an accumulation 

of undifferentiated cells (i.e. blasts) in the bone marrow and/or peripheral blood. A diagnosis of 

AML is made when the blast count is ≥20%; however, ≥10% blasts are required if an AML-

defining genetic alteration is present (e.g. NPM1 mutation, t(8;21)(q22;q22.1)/RUNX1 

::RUNX1T1) (1, 2). In AML, the blast population shows maturation arrest at the level of 

myeloblasts, the precursors of granulocytes, red cells, and platelets. Although the pathogenesis of 

AML is incompletely understood, it is widely accepted that AML leukemogenesis is a multi-step 

process involving sequential gain-of-function of oncogenes and/or loss-of-function of tumor 

suppressors. Evidence to support this concept has come from studies using transgenic mouse 

models as well as various clinical observations. In the transgenic mouse models, it was found that 

animals expressing specific recurrent genetic mutations identified in AML clinical samples 

typically do not promptly trigger the development of AML unless a second mutation was 

introduced (3, 4). The clinical observation that patients diagnosed with myelodysplastic syndromes 

or myeloproliferative neoplasms can rapidly develop into AML also supports this concept (1). 

Attention has been focused on two groups of gene mutations: those involved in the deregulations 

of cell proliferation (Class I mutations, such as FLT3) and mutations involved in the inhibition of 

cell differentiation (Class II, such as NPM1 (5). Mutations of the so-called Class 3 genes, such as 

those regulating epigenetics (e.g. DNMT3A and IDH1/2) are frequently found in AML but their 

roles in leukemogenesis are yet to be defined. The combined biologic effect of Class I and II 

mutations leads to the uncontrollable proliferation of blasts in the bone marrow which, if untreated, 

results in bone marrow failure (6). Patients frequently present with the clinical manifestations of 

anemia (weakness and shortness of breath), leukopenia (frequent infections) and 

thrombocytopenia (bleeding) (7). AML also can result in hyperleukocytosis (i.e. white blood cell 

count >100,000/L) which may acutely occlude the vasculatures in the lungs and the central 

nervous system, a highly dangerous scenario (8). Leukemic infiltration of hematologic organs 

including the spleen, liver and lymph nodes may produce organomegaly and/or lymphadenopathy, 
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which may be a prominent clinical manifestation at presentation (9, 10). Disseminated 

intravascular coagulation (commonly called DIC), a well-recognized medical emergency, is most 

often associated with promyelocytic leukemia characterized by the t(15;17) cytogenetic 

abnormality, a subtype of AML (11).  

 

AML accounts for 80-90% of all adult cases of acute leukemia (12). In the United States, over 

20,000 individuals are diagnosed with AML per year, and AML accounts for 1.9% of all cancer 

deaths that year (5, 13). The overall 5-year relative survival for AML between 2013-2019 was 

31.7% (13). For patients that are ≥65 years, prognosis is especially poor; the median survival for 

these patients is a dismal 6 months (14). 

 

1.1.2. Grouping and risk factors of AML  

 

Given the biological heterogeneity of AML, several classification systems have been generated to 

provide a unified concept. Historically, AML was classified using the French American British 

(FAB) system, established in 1976, which is based on blast maturation and differentiation. In this 

classification system, AML was divided into subtypes, from M0-M7 (15). More recently, a new 

classification system published by the Who Health Organization (WHO) has been developed based 

on the existence of pre-existing conditions and associated risk factors (2). This classification 

system, which was most recently updated in 2022, recognizes several major groups of AML. The 

first group includes those who have received prior cytotoxic therapy for cancers or other non-

neoplastic medical conditions. It is well recognized that patients who have received alkylating 

agents, nucleoside analogs, topoisomerase II inhibitors, anti-tubulins as well as ionizing radiation 

are at risk of developing AML, typically with a latency period of 3-7 years (16). The prognosis for 

therapy-related AML is extremely poor, and the median survival of these patient is approximately 

10 months (17).  

 

The second well-recognized group of AML patients are those who have been previously diagnosed 

with myelodysplastic syndrome or chronic myeloproliferative disorders (such as chronic myeloid 

leukemia or myelofibrosis). At presentation, the blast count of these patients is typically normal 

and only slightly elevated. With disease progression, a subset of these patients develops increasing 
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percentages of blasts in the bone marrow and/or peripheral blood, often associated with the 

acquisition of additional cytogenetic abnormalities. A diagnosis of AML is made when ≥20% 

blasts showing features of myeloid differentiation are identified in the bone marrow or blood (18). 

 

The third group include those who carry certain germline mutations that are known to be associated 

with AML. Perhaps the best-known association in this regard is that of Down syndrome and AML 

(19).  

 

The fourth group, which is by far the largest group, are cases in which there is no prior exposure 

to cytotoxic drugs, history of myelodysplasia/chronic myeloproliferative disorder or specific 

germline mutations. These cases are often referred to as ‘de novo AML’. Notably, many of these 

cases carry recurrent genetic abnormalities such as those involving the NPM1 and FLT3 genes (1). 

The identification of NPM1 and FLT3 mutations carries significant prognostic and therapeutic 

implications such that these genes are routinely tested in virtually all newly diagnosed AML cases. 

This group will be further discussed in Section 1.1.3. 

 

The other two groups that are also recognized are 5) myeloid sarcoma (i.e. cases presenting 

primarily as soft tissue masses) and 6) AML not otherwise specified.  

 

A number of occupational risk factors also have been identified. Workers who have exposure to 

rubber, paint, pesticides, ethylene oxide, petroleum and ionizing radiation have been found to have 

a high risk of developing AML (20). Benzene exposure, smoking and obesity also have been found 

to be associated with a higher risk of AML (20-22).  

 

1.1.3. Common genetic abnormalities in AML 

 

Based on the WHO classification of hematologic neoplasms, a minimum of 20% myeloblasts 

present in the bone marrow and/or peripheral blood is required for the diagnosis of AML unless 

an AML-defining genetic alteration is present (2). As mentioned above, within the group of AML 

with recurrent genetic abnormalities, certain molecular markers or signatures have been found to 

be prognostically important and thus, they are recognized as distinct entities under this group. 
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These distinct entities are further grouped as favorable, intermediate, and adverse. As an example, 

two of the most common AML mutations, NPM1 and FLT3-ITD mutations, are associated with a 

favorable and intermediate risk, respectively (1). Molecular abnormalities associated with the 

adverse risk include mutated TP53, ASLX1 and RUNX1 (1, 23).  

 

Mutations of the two most common genes, NPM1 and FLT3, will be further elaborated below. A 

few relatively common recurrent genetic abnormalities are briefly described below: 

 

a. AML with DNMT3A mutations  

DNMT3A mutations occur in approximately 20% of AML cases (6). The prognostic significance 

remains to be controversial, as some studies have associated this mutation with a poor prognosis, 

while other studies have shown there is no correlation between DNMT3A mutations and prognostic 

classification (24). DNMT3A mutations result in aberrant DNA methylation, affecting normal 

hematopoiesis (25).  

 

b. AML with IDH1/2 mutations  

IDH mutations are found in 20% of all AML cases and can occur in either IDH1 or IDH2, both of 

which encode dehydrogenases (6). These mutations are gain-of-function mutations, resulting in 

the production of 2-hydroxyglutate, an oncometabolite that interrupts normal hematopoiesis (26). 

The prognostic significance of IDH1/2 mutations is not well understood, as some studies have 

associated these mutations with unfavourable outcomes, while other studies did not show any 

effect on clinical outcome (27). 

 

c. AML with RUNX1 mutations 

RUNX1, a transcription factor regulating HSC differentiation, is mutated in 10-15% of AML 

patients (28). This mutation, typically appearing as a missense or frameshift mutation, causes 

impairments in differentiation and ribosome biogenesis (29). AML cases with this mutation are 

classified as adverse risk by the European LeukemiaNet (1).   

 

d. AML with TP53 mutations 
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TP53, a well-known tumor suppressor gene involved in apoptosis, senescence, and DNA repair 

pathways, is mutated in approximately 10% of AML cases or myelodysplastic syndrome (30). This 

mutation has been shown to act in a dominant-negative effect, inhibiting the activity of wild-type 

p53 (31). TP53 mutations in AML are associated with an adverse risk (1).   

 

1.1.4. The biology of leukemogenesis 

 

In addition to their prognostic value, these genetic abnormalities have provided opportunities to 

further our understanding of the biologic/molecular basis of leukemogenesis. The biology of some 

of the most common genetic abnormalities in AML, including mutations of NPM1 and FLT3, has 

been extensively studied. A brief summary of these studies is provided in this section. The biology 

of FLT3 and its mutations will be detailed in this thesis, in view of the fact that I chose FLT3-

mutated AML as my study model.  

 

a. FLT3 mutations in AML 

FLT3 is a proto-oncogene that encodes a membrane-bound tyrosine kinase, and it is known to play 

crucial roles in normal hematopoiesis, specifically in the development of B-lymphocytes and 

hematopoietic stem cells. Accordingly, FLT3 proteins are highly expressed in undifferentiated 

myeloid and lymphoid cells (32). Homozygous deletion of FLT3 in mice is not lethal, but these 

animals were found to have a reduced number of B cell progenitors (33). Gene transcription of 

FLT3 is regulated by several proteins including MEIS1, PBX1/3 and MYB (34). Activation of 

FLT3 is initiated by the binding of FLT3 ligand, a member of the interleukin family, to the 

extracellular domain of FLT3, which triggers homodimerization of the FLT3 molecules at the cell 

surface. Consequently, the FLT3 homodimers undergo autophosphorylation, producing a signal 

cascade that will activate various proliferation and survival pathways including those of 

PI3K/AKT, MAPK/ERK, RAS and STAT5 (32, 35). 

 

The FLT3 protein consists of 5 functional segments, illustrated in Figure 1.1 (34-37): 

a) An extracellular domain that is involved in ligand binding (amino acids 1-541). 

b) A transmembrane domain that anchors the protein to the cell membrane (amino acids 

542-564). 
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c) A juxtamembrane domain which interacts with the tyrosine kinase domain in the absence 

of the FLT3 ligand to block the ATP binding site, which prevents constitutive activation 

of FLT3 (amino acids 565-609).  

d) A tyrosine kinase domain and kinase insertion which interacts with the juxtamembrane 

domain to prevent activation of FLT3 when FLT3 ligand is absent. This domain contains 

the activation loop, which shifts FLT3 between the active and inactive conformation 

(amino acids 610-944). 

e) An intracellular domain which is located at the C-terminus of the protein. It contains 

phosphorylation sites that are associated with intracellular proteins involved in propagating 

the signaling cascade (amino acids 945-993). 

 

 

Figure 1.1. Structure of FLT3. FLT3 protein consists of an extracellular domain, 

transmembrane domain, juxtamembrane domain, a tyrosine kinase domain with a tyrosine 

kinase insert and an intracellular domain.  

 

Mutations of FLT3, occurring in approximately 30% of all AML cases, are one of the most 

common mutations in AML (32). There are two main types of FLT3-mutations found in AML: 

FLT3-ITD (internal tandem duplication) which occurs in ~25% of all AML cases and FLT3-TKD 

(tyrosine kinase domain) which occurs in ~7% of AML cases (32). Detection of FLT3 mutations 

is routinely performed in virtually all newly diagnosed AML cases because of the well-

documented correlation between these genetic abnormalities and clinical outcome; multiple 
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clinical studies have shown that patients with FLT3-ITD have a significantly lower overall survival 

and higher rate of relapse compared to those with wild-type FLT3 (38-40). While the presence of 

FLT3-ITD has a well-documented correlation with clinical outcome, the clinical significance of 

the less common FLT3-TKD is unknown (41). 

 

FLT3-ITD, which results in the generation of a constitutively active tyrosine kinase, is believed to 

promote leukemogenesis by constitutively activating a host of cellular signaling pathways (42). 

FLT3-ITD is generated as a result of a duplication of the juxtamembrane domain, and these genetic 

alterations deregulate the function of the juxtamembrane domain, which normally prevents the 

activation of FLT3 in the absence of FLT3 ligand. Thus, the duplications result in the constitutive 

activation of FLT3 and its downstream signaling pathways. FLT3-ITD is considered to be a driver 

mutation and a Class I mutation (i.e. promote cell proliferation) (32). In keeping with the concept 

of multiple hits in leukemogenesis, FLT3-ITD transgenic mice were found to develop a form of 

myeloproliferative disorder, but they did not develop AML (43). However, with the addition of 

another mutation, DNMT3A, AML promptly developed in approximately half of the FLT3-ITD 

transgenic mice (44).   

 

To further support the oncogenic properties of FLT3-ITD, the IL-3 dependent murine myeloblast-

like cell line, 32D, and the murine pro-B cell line, BA/F3, transfected with FLT3-ITD were found 

to have increased cell proliferation, even without the addition of IL-3, when compared to those 

transfected with wild-type FLT3. Interestingly, transfection of wild-type FLT3 into these cell lines 

also can promote the activation of MAPK and AKT but not that of STAT5 (45-47). STAT5 is 

believed to be a highly important signaling protein in the FLT3-ITD-mediated leukemogenesis, as 

this pathway represents the biggest difference in the activation patterns between BA/F3 cells 

transfected with wild-type FLT3 and those transfected with FLT3-ITD. Constitutive activation of 

STAT5 is believed to promote AML leukemogenesis by activating a host of pro-survival and 

growth pathways and by increasing Myc expression (48, 49). 

 

How FLT3-ITD mediates leukemogenesis remains to be incompletely understood. In addition to 

the constitutive activation of various proliferation pathways, one study suggests that FLT3-ITD 

may promote the survival of AML cells by deregulating autophagy (50). Specifically, 
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pharmacological and shRNA inhibition of FLT3 in two FLT3-ITD-carrying AML cell lines, 

MOLM-14 and MV4-11, and FLT3-ITD AML patient samples, decreased basal autophagy, and 

inhibition of autophagy in these cells impeded their survival in a xenograft mouse model. Lastly, 

FLT3 was found to be highly expressed in CD34+CD38- cancer stem cells in FLT3-ITD-positive 

AML. FLT3-ITD appears to promote the survival of these cells by activating the STAT5/MCL-1, 

a pro-survival pathway (51).  

 

b. NPM1 mutations 

NPM1 mutations are observed in about one-third of all AML cases, making it one of the most 

common mutations found in AML (52). It is well-documented that NPM1 mutations confer a 

favourable clinical outcome (1).   

                                                                                                                         

NPM1 is biologically important, as homozygous deletion of this gene is embryonically lethal (53). 

NPM1, which is highly expressed in normal cells, shuttles between the nucleus and cytoplasm but 

it is localized most abundantly in the nucleoli (54). It can regulate a wide range of cellular 

processes. Its key known functions fall into the following categories: DNA repair, chaperoning of 

histones, stress response, regulation of apoptosis, ribosome synthesis  and centrosome duplication 

(55).  

  

Correlating with its multi-functionality, NPM1 is structurally divided into 4 segments: 

  

a) N-terminal domain is responsible for self-oligomerization, and it functions as a histone 

chaperone. It mediates the interactions between NPM1 and many other proteins including Fbw7-

gamma, a promoter of Myc degradation (56).  This domain contains two nuclear export signal 

(NES) domains (orange boxes - amino acids, 42-49; 94-102). 

b) Central domain carries two acidic regions that are responsible for histone and ribosomal binding, 

as well as two bipartite nuclear localization signal (NLS) regions (green boxes – amino acids 152-

157; 190-197). 

c) Heterodimerization region carries a basic region (amino acids 189-243) that can bind to DNA 

and mediate protein-protein interactions. Proteins that bind to this region include p53 and FOXM1. 
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d) C-terminal region - carries a nucleolar localization domain (NoLS, purple box) that is formed 

by tryptophan-288 and tryptophan-290.  

  

NPM1 mutations are of great interest in AML, as there is mounting evidence that NPM1 mutations 

promote leukemogenesis. Over 55 NPM1 mutations have been identified (57), and the most 

common consequence of these mutations is the generation of 4 additional amino acids in the C-

terminal, resulting in the loss of the NoLS and the creation of a new NES domain (52). This new 

NES motif binds more efficiently to the nuclear export protein, exportin 1, compared to the NES 

motifs normally present in the N-terminal segment (55). As a result, the nucleus and nucleolus are 

relatively depleted of NPM1, and this nuclear exclusion of NPM1 is believed to be leukemogenic, 

although the exact underlying mechanism is incompletely understood. 

  

In support of the concept that NPM1 mutations contribute to leukemogenesis, transgenic mice 

carrying these mutations were found to develop myeloproliferative disorders, although frank AML 

was not found (53). In another study using an inducible transgenic mouse model, the animals did 

develop AML, but only after a relatively long latency time, suggesting that additional gene 

mutations are necessary (58). In keeping with this concept, development of AML in a transgenic 

mouse model occurred relatively early when NPM1 mutations coexist with other mutations such 

as FLT3 mutations (4). Taken together, NPM1 mutations contribute to leukemogenesis, but 

additional factors are needed. 

 

Several studies have demonstrated that NPM1 mutations may contribute to leukemogenesis by 

virtue of eliminating its normal stabilization of Arf, a known tumor suppressor (59). After forming 

a complex with NPM1, Arf is transported to the nucleolus where it suppresses cell growth and 

promotes apoptosis (60). When a NPM1 mutation is generated, the NPM1 mutant along with Arf 

is mislocalized to the cytoplasm, where Arf is destabilized and is degraded (57). Mutated NPM1 

may also contribute to leukemogenesis by inhibiting c-Myc degradation, although there is 

currently only one study examining the interaction between mutated NPM1 and Myc. This study 

showed that mutated NPM1 can sequester Fbw7-gamma, which is involved in Myc degradation, 

in the cytoplasm, resulting in an overall increase in Myc (61). 
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It is well-documented that NPM1 mutations correlate with a significantly better clinical outcome, 

and detection of these genetic abnormalities is routinely done in clinical laboratories to stratify 

patients in different prognostic categories. Based on the European Leukemia Net guideline, the 

presence of NPM1 mutations co-existing with FLT3 mutations is a key factor for placing patients 

into a prognostic category. In FLT3-ITD AML, the co-existence of NPM1 mutations down-grades 

the risk from intermediate to favorable (1). It is unknown why NPM1 mutations, which are 

believed to be leukemogenic, confers a better clinical outcome. 

 

1.1.5. Treatment of AML 

 

a. Standard Treatment Regimen  

Currently, multi-drug chemotherapy is the standard frontline treatment for AML patients (62). 

Conventionally, the most common regimen consists of a 7-day course of cytarabine (Ara-C) 

combined with 3 days of an anthracycline (daunorubicin or idarubicin) (63). Ara-C is regarded to 

be the most effective and universally used chemotherapeutic agent in the treatment of AML. It can 

become incorporated into DNA, competing with cytidine (64). Once incorporated, Ara-C hinders 

DNA replication by preventing cytidylate transformation into 2′-deoxycytidylate, inducing 

miscoding of DNA, and inhibiting the action of DNA polymerase, which can promote apoptosis 

(65). Thus, Ara-C is only effective against cells that are in S-phase of the cell cycle. Anthracyclines 

exert anti-mitotic and cytotoxic activity that is independent of the cell cycle. They function by 

complexing with DNA, inhibiting DNA polymerase and topoisomerase II and generating free 

radicals that can damage DNA (66, 67). The success of the treatment can be assessed by rates of 

complete remission (CR), defined primarily as <5% blasts present in the bone marrow or presence 

of blasts in the blood, and also absolute neutrophil count >1,000/uL and platelet count of 

100,000/L (68). The Ara-C+anthracycline regimen successfully induces CR in 80% of patients 

classified as favorable risk, 50-60% of patients with intermediate risk, and 40% for adverse risk 

(69, 70). Patients that achieve remission after frontline treatment (~65-70% overall) receive 

consolidation therapy after remission to eliminate any residual leukemic cells, which includes 

intensive chemotherapy and/or allogeneic stem-cell transplantation (71). Consolidation 

chemotherapy typically consists of 2-4 cycles of Ara-C (62). Allogeneic hematopoietic cell 

transplantation can reduce the risk of relapse when administered to patients in remission (70). The 
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high efficacy of this treatment is believed to be related to the graft-versus-leukemia effect, which 

is the phenomenon in which newly grafted immune cells can recognize and kill leukemic cells 

(72). However, the transplantation procedure is associated with a very high mortality rate (73). As 

such, this treatment modality is typically given to patients in the intermediate/adverse risk 

category. This treatment decision highlights the importance of risk stratification of AML.  

 

b. Targeted therapeutics 

Unlike Ara-C and anthracyclines, targeted therapeutics are generally less harsh to the patient, 

especially elderly patients. 

 

i. FLT3-inhibitors (FLT3i) 

Given that FLT3-ITD contributes to the leukemogenesis and is associated with a poor prognosis, 

FLT3i were developed and used to treat patients with FLT3-ITD. There are two classes of FLT3i: 

Type 1 and Type 2 (32). Both classes of FLT3i inhibit the FLT3 receptor by binding to the ATP-

binding site of FLT3, preventing autophosphorylation of the FLT3 receptor. Additionally, Type 2 

FLT3i also binds adjacent to the ATP-binding site (38). Type 1 FLT3i can bind to both the active 

and inactive conformation of the FLT3 receptor and can bind to both FLT3-ITD and FLT3-TKD, 

but it is not specific and can also target kinases other than FLT3. Type 2 FLT3i can only bind to 

the inactive conformation, rendering it more specific than Type 1 FLT3i (42). However, Type 2 

FLT3i can only bind to FLT3-ITD and not FLT3-TKD (36). Type 1 FLT3i include gilteritinib and 

midostaurin; Type 2 FLT3i includes sorafenib and quizartinib (32).  

 

FLT3i have been shown to significantly improve the patient outcome and are typically used to 

treat relapsed or refractory AML carrying FLT3-ITD AML (36). Two FLT3i, midostaurin and 

gilteritinib, have been approved for treating AML in the United States, and several more FLT3i 

are in clinical trials (36). There have been a number of studies showing the efficacy of FLT3i. In 

one study, patients with relapsed or refractory FLT3-ITD AML were treated with gilteritinib, and 

these patient had higher CR and overall survival (OS) compared to patients that were treated with 

salvage chemotherapy, with patients in the gilteritinib treatment group having a CR of 34% and a 

median OS of 9.3 months compared to a CR of 15.3% and a median OS of 5.6 months in the 

salvage chemotherapy group (74). In a large-scale study involving 727 AML patients, midostaurin 
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was administered to a group of patients in addition to standard chemotherapy treatment (Ara-C + 

anthracycline), and midostaurin was continued to be given for an additional 12 months after 

chemotherapy. Compared to the patients given a placebo, midostaurin treatment resulted in a 

significant improvement in OS, with an OS of 74.7 months in the midostaurin group compared to 

25.6 months in the placebo group. However, midostaurin did not significantly improve CR rate 

compared to the placebo group, and 50% of patients who achieved CR initially, eventually relapsed 

(75). This finding highlights a major limitation to the current use of FLT3i: the development of 

resistance to FLT3i.  

 

In practice, two main classifications of resistance to FLT3i have been found: primary and 

secondary resistance (38). In the case of primary resistance, the leukemic cells are resistant to 

FLT3i treatment at initial diagnosis. Primary resistance has been found to exist in ~30% of AML 

patients carrying FLT3 mutations (38). Several mechanisms contributing to the development of 

primary resistance have been proposed. Primary resistance can occur when FLT3-ITD target 

pathways have become independent of FLT3-ITD signalling prior to FLT3i treatment. To 

demonstrate this mechanisms, a study found that downstream target pathways of FLT3-ITD, 

including MAPK, PI3K and STAT5, remained to be activated during treatment of FLT3-mutated 

AML patient samples with FLT3i, suggesting these pathways have become independent of FLT3-

ITD signalling (76). FLT3-ITD leukemic cells may also be protected from FLT3i by the bone 

marrow microenvironment. The bone marrow has a high concentration of the enzyme CYP3A4, 

which has been shown to degrade FLT3i (36). Additionally, the bone marrow contains the growth 

factor FGF2, which has been shown to contribute to the resistance against the FLT3i quizartinib. 

FGF2 can promote activation of the MAPK pathway, thus providing a potential mechanism 

whereby leukemic cells can bypass FLT3 to activate FLT3 downstream pathways (36, 42). 

 

Secondary or adaptive resistance occurs when patients respond initially to a treatment, but 

resistance develops over time. One potential mechanism whereby secondary resistance develops 

is through the generation of additional FLT3 mutations, preventing the binding of FLT3i. A study 

examining AML patients carrying FLT3-ITD that developed resistance to a FLT3i (AC220) 

contained point mutations in the activation loop of FLT3 that were not present before FLT3i 

treatment (77). These point mutations can alter the conformation of the activation loop, decreasing 
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the binding efficacy of FLT3i. Secondary resistance may also develop from mutations in FLT3 

downstream targets, making the activation of these pathways independent of FLT3. In support of 

this proposed mechanism, a study found that when the FLT3 downstream pathways, including 

AKT and MAPK pathway, were inhibited in FLT3i resistant cells, these cells were partially re-

sensitized to FLT3i, demonstrating the vital role FLT3 downstream pathways have in FLT3i 

resistance (78). In another study, all FLT3-mutated AML patients who developed resistance to 

gilteritinib but did not develop additional FLT3 mutations were found to have instead developed 

mutations in the RAS/MAPK pathway (79). Additionally, treatment with chemotherapy has been 

shown to increase plasma FLT3 ligand concentration (80). The increased FLT3 ligand competes 

with the FLT3i, resulting in a lower efficacy of FLT3i, and contributing to secondary resistance 

(42). 

 

While there are very few studies detailing methods to overcome resistance to FLT3i, it has been 

found that combining FLT3i with treatments that target downstream targets of FLT3 can result in 

a more effective treatment compared to FLT3i monotherapy. This study combined FLT3i with a 

treatment that increases PP2A activation, both of which decreases Myc protein expression levels. 

Co-treatment with these two drugs was found to induce more cell death in FLT3-ITD-positive 

AML cell lines compared to treatment with FLT3i alone (81).  

 

ii. IDH inhibitors 

Given that IDH1/2 mutations occur in 20% of AML patients, IDH inhibitors have been used 

clinically. Success of IDH inhibitors for the treatment of relapsed/refractory (R/R) AML carrying 

IDH mutations has been shown in a clinical trial, where 7 newly diagnosed patients aged ≥60 years 

and 19 R/R patients carrying IDH2 mutations were treated with an IDH inhibitor (Enasidenib) in 

combination with AZA (82). In this study, CR was achieved in all newly diagnosed patients and 

in 53% of R/R patients. Currently, there are two IDH inhibitors that have been approved for the 

treatment of AML patients carrying IDH mutations, including Enasidenib for R/R patients with 

IDH2 mutations and Ivosidenib for R/R and newly diagnosed patients unfit for intensive 

chemotherapy with IDH1 mutations (83, 84).  
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iii. CD33 monoclonal antibody (Gemtuzumab ozogamicin) 

Since CD33 is found on myeloid cells, this CD33 antibody conjugated with calicheamicin, a 

cytotoxic agent, specifically targets myeloid cells, where it can induce DNA cleavage (85). This 

agent was originally approved by the FDA for treating relapsed AML in patients >60 years of age, 

but this approval was rescinded after a later clinical trial that showed that this agent did not 

significantly improve the clinical outcome compared to other therapies, and instead, found GO had 

fatal toxicity (86). Later meta-analysis suggested that GO may improve outcomes for patients also 

receiving chemotherapy (87). 

 

iv. Venetoclax 

Venetoclax, a highly selective Bcl-2 inhibitor, is a better tolerated AML treatment compared to 

chemotherapy, and thus has been primarily used to treat elderly patients (88). Bcl-2, which is often 

overexpressed in AML, is an anti-apoptotic protein that sequesters the pro-apoptotic proteins BIM, 

BID and BAX, promoting the survival of AML cells (89). Venetoclax was tested in a clinical trial 

as a monotherapy for patients with relapse/refractory AML or who are unfit for intensive 

chemotherapy; however, the response rate was only 19% (90). This suggests that venetoclax can 

induce a response in AML, but it may not be the most effective treatment as a monotherapy.  

  

c. Non-targeted biological agents 

i. Hypomethylating agents (HMA) 

Decitabine and Azacitidine (AZA) are HMAs that have been used to treat AML (91). HMAs 

demethylate DNA, and in doing so, remove the silencing of tumor suppressor genes which are 

often hypermethylated in cancer cells. The initial clinical trials using these agents showed some 

promise in treating AML patients; however, effects were modest. For instance, a clinical trial for 

AZA in patients aged ≥65 showed an improved median OS for AML patients compared to the 

conventional regimens (10.4 vs 6.5 months), but this improvement was not significant. AZA did 

not significantly improve CR rates compared to the conventional regimen group (92). Based on 

these studies, the use of HMA appears to induce some response for AML, but they are not very 

effective as a monotherapy.  
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ii. Venetoclax with HMA (Azacitidine and decitabine) 

Given that both Venetoclax and HMAs showed a modest response, it was tested if these treatments 

could be used in combination to produce a more effective regimen. The use of this regimen for 

AML treatment has been supported by a large-scale clinical trial that showed improved clinical 

outcomes in treatment-naïve AML patients that were treated with a combination of Azacitidine 

with Venetoclax (AZA+Ven) compared to AZA alone (93). Specifically, patients treated with 

AZA+Ven had an OS of 14.7 months and a CR rate of 66.4% compared to an OS of 9.6 months 

and a CR rate of 28.3% when treated with AZA alone. Additionally, the median event free survival 

was 9.8 months in the AZA+Ven group compared to 7.0 months in the AZA group. The success 

of this regimen led to approval by the FDA to be used as first-line treatment for AML patients 

unfit for intensive chemotherapy (94). 

 

Interestingly, this treatment has been shown to preferentially target cancer stem-like (CSL) cells 

(95), a rare subset of cells that are characterized as being drug resistant, which will be further 

discussed in Section 1.4.  

 

1.1.6. Refractory and relapsed AML 

 

Refractory disease is a situation in which patients never achieve CR following frontline treatment, 

which occurs in approximately 30% of AML patients (96). Clinically, this is often defined as a 

failure of lowering the blast count in the bone marrow to below 5% after induction chemotherapy 

(97).  The mechanisms underlying refractory disease are likely due to those causing drug 

resistance, such as mutations of the therapeutic targets, increased drug metabolism or decreased 

drug transport into cancer cells (98). In the event that the disease is refractory, treatment is 

intensified by escalating drug doses and using alternative regimens in order to induce CR. The 

dose escalation is primarily done with Ara-C, ranging from 1000 to 3000 mg/m2 administered for 

3-6 days (71, 99). This regimen can be used in combination with alternative treatments, including 

chemotherapy agents such as anthracyclines, etoposide, and fludarabine (63). 

 

In contrast to refractory disease, disease relapse is a situation in which patients develop recurrent 

disease, defined as the presence of ≥5% blasts in the bone marrow or the presence of blasts in the 
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peripheral blood, after achieving CR (i.e. <5% blasts in the marrow) (1). Approximately two thirds 

of patients will achieve remission, and of those patients, around 60% of patients will relapse 

typically within 18 months after remission (62, 100, 101). Figure 1.2 demonstrates an example of 

the timeline of an AML patient from initial diagnosis to relapse. Relapsed diseases are typically 

resistant to treatments that were used to treat the newly diagnosed disease, and therapeutic options 

for patients are limited. Currently, the median survival is only ~6 months after relapse, and the 

overall survival rate for patients who relapse is 10% (101, 102).   

 

 

Figure 1.2. Timeline and blast count of an AML patient from initial diagnosis to 

relapse. Standard frontline treatment was administered, and CR was achieved within one 

month after diagnosis, with <5% blasts in the bone marrow. Remission lasted for 

approximately 11 months, at which time relapse occurred.  

 

 

Although refractory and relapsed AML are likely pathogenetically different, they have been treated 

the same way. For instance, the DNA methyltransferase inhibitors such as decitabine and AZA 

have been used as monotherapy or in combination with other chemotherapeutic agents to treat 

relapsed/refractory AML (103). Allogeneic hematopoietic stem cell transplantation may be an 

effective treatment for patients with R/R disease, but many patients are not candidates for 

transplant owing to old age, comorbid conditions and a lack of donors (104). Overall, second 

remissions can be achieved in 30% to 70% of patients who had relapsed AML, and they are 
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substantially shorter than that of the first remissions (105). The European prognostic index allows 

prognostic stratification of relapsed AML into 3 groups. The best group has 70% survival 1 year 

after relapse and 46% at 5 years, whereas the worst group has 16% and 4%, respectively (106). 

This scoring system for patients with R/R acute leukemia considers the following factors: 1) 

duration of the first clinical remission; 2) cytogenetics at initial diagnosis; 3) age at first relapse; 

4) whether stem cell transplantation was used before the first relapse. 

 

1.2. Proposed mechanisms for AML relapses 

 

Given the clinical importance of relapses in AML, there have been several studies attempting to 

uncover the biology underlying relapses. Despite these studies, the molecular basis of how AML 

relapses is not well understood. However, there have been several models for disease relapses that 

have been proposed. These models are not mutually exclusive; rather, they focus on different 

aspects or stages of relapse.  

 

1.2.1. Clonal evolution 

 

The clonal evolution model proposes that leukemic clones present at diagnosis can acquire 

mutations that provide them a survival advantage, and these clones will persist after treatment, and 

eventually become the dominant clone at relapse (107). Support from this model comes from 

studies performing genome sequencing in initially diagnosed and relapsed patient samples. These 

studies have found that the majority of paired samples at initial diagnosis and relapse within the 

same patient have a common mutation, suggesting relapsed AML is derived from an initial AML 

clone (108, 109). Additionally, these studies showed that mutations were typically acquired and 

lost at relapse compared to initially diagnostic specimens, supporting the acquisition of 

advantageous mutations proposed in the clonal evolution model. 

 

Clonal evolution has been classified into different patterns, with one common classification 

categorizing clonal evolution into branching or linear patterns. The branching pattern occurs when 

the major clone at initial diagnosis is taken over by a new clone at relapse. This pattern is 
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characterized by the loss of the dominant clone mutations from initial diagnosis at relapse (107). 

In the linear pattern, the major clone at initial diagnosis acquires new mutations sequentially and 

the clone with the most advantageous mutations becomes the dominant clone at relapse. In 

practice, the linear pattern can be identified when the mutations at initial diagnosis, along with 

new mutations, are present at relapse (107). Evidence for these two patterns have been identified 

in several AML studies performing whole exome sequencing on paired initial diagnosis and 

relapse samples (109-111).   

 

The high biological heterogeneity between AML patients at initial diagnosis is also found at 

relapse, and thus, there are no mutations that are consistently gained at relapse. However, several 

mutations are more commonly gained, including FLT3-ITD, WT1 mutations, and KDM6 mutations 

(111, 112). Additionally, certain mutations are more commonly lost at relapse, including NRAS, 

KIT, and PTPN11 (111, 113). Mutations that remained stable from initial diagnosis to relapse 

included NPM1, DNMT3A and IDH1/2 (111, 113).   

 

1.2.2. Senescence-like resilient cell model 

 

In contrast to the clonal evolution model, which compares cancer cells at initial diagnosis and 

relapse, the senescence-like resilient cell model focuses on the biology of cancer cells during CR. 

This model proposes that when challenged with chemotherapy treatment, select cancer cells can 

acquire a senescence-like state, which is defined as a cell that ceases cell division but remains to 

be metabolically active (114). This state of quiescence makes senescence cells resistant to standard 

cancer treatments that target actively proliferating cells. During the CR phase, these cells remain 

viable in a dormant state. Eventually, their state of senescence is reversed, and they regain their 

ability to proliferate, forming the basis of disease relapse. 

 

The major assumption underlying this theory is that cancer cells have the ability to acquire and 

lose the senescence phenotype. Senescence was initially believed to be an irreversible state that a 

cell enters when it reaches its replicative limit (115). However, emerging evidence shows that 

senescence can be induced under conditions of sublethal stress, including chemotherapy treatment 

(116). A small subset of these senescent cells can reverse the senescence phenotype after a period 
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of dormancy and return to a state of proliferation (117). These findings support the plausibility of 

this model.  

 

While this model for disease relapse is plausible, there are few studies supporting it. In one of these 

studies, patient bone marrow samples collected at nadir (i.e. residual cancer cells after 

chemotherapy treatment), had an upregulated senescence program compared with initial diagnosis 

(116). However, it is unclear whether this is a mechanism for disease relapse or refractory disease 

because the authors did not indicate whether the patients achieved complete remission.  

 

1.2.3. Cancer stem cell model 

 

The cancer stem cell (CSC) model proposes that a tumor is composed of various types of cancer 

cells that are functionally and phenotypically heterogeneous, existing in a hierarchical model. At 

the apex of the model are the CSCs, which represent a small percentage of the heterogeneous 

tumor. CSCs are functionally defined as being able to efficiently xenograft into animals, due to 

their high tumor initiating capacity (118). CSCs are believed to be pluripotent, carrying both self-

renewal properties, while being able to give rise to more differentiated, non-tumorigenic progeny, 

which make up the bulk of the tumor (119). Thus, CSCs can generate a heterogeneous tumor 

containing both tumorigenic and non-tumorigenic cells.  

Besides their tumorigenic and self-renewal properties, a key characteristic of CSCs is being highly 

chemoresistant (120-122). Because of their chemoresistance, self-renewal and tumorigenic 

properties, it is predicted that CSCs can contribute to AML relapses. Specifically, it has been 

proposed that CSCs can evade chemotherapy, resulting in a small number of undetected CSCs 

persisting during complete remission. Subsequently, they can leverage their tumorigenic properties 

to generate a new, more resistant clone of AML. This concept is illustrated in Figure 1.3. 
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Figure 1.3. Cancer stem cell model for AML relapse. The theory postulates that cancer 

stem-like cells, which make up a small proportion of all cancer cells, persist after induction 

chemotherapy due to their high drug resistance. Using their ability to self-renew and 

differentiate into progeny, they can regenerate the tumor, forming the basis of disease 

relapse. 

 

One important aspect of the cancer stem cell model is based on the observation that cancer cells 

are plastic and have the ability to acquire or lose stemness. One of the best examples to demonstrate 

the concept of cancer cell plasticity is the epithelial-mesenchymal transition (EMT) (123). EMT is 

a process where epithelial cells acquire morphological changes to become mesenchymal cells. This 

transition is often accompanied by the acquisition of stem-like properties, including an increased 

chemoresistance, repressed differentiation, and an aberrant expression of embryonic stem cell 

proteins (124, 125). Another example of cancer cell plasticity is the ability of non-CSL cells to 

convert into CSL cells under various stresses, including oxidative stress, and standard cancer 

treatments, such as ionizing radiation and chemotherapy (126-130). These converted cells had 

more CSL features, including being significantly more tumorigenic, carrying superior spheroid 

formation abilities, or upregulating stem cell factors, including Oct4, Sox2, Nanog, Myc and Klf4 

(126-130). Taken together, these studies provide strong support that cancer cells can shift between 

different levels of stemness. This finding is highly relevant to the CSC model for relapse, as it 

poses another potential mechanism for enrichment of CSL cells during induction chemotherapy. 

Not only do CSL cells have enhanced chemoresistance properties, but non-CSL cells may also 

convert to CSL cells when exposed to chemotherapy to further enrich the CSL population.  
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If the CSC model is shown to be true, it would suggest that eliminating CSCs is critical in 

preventing patient relapses. There is currently very little evidence showing that CSCs directly 

contribute to AML relapse; however, some recent, but mainly correlational, evidence is emerging 

supporting this theory. For instance, AML bone marrow samples that had a high score of CSC-

based genes were more likely to relapse than samples with lower expression of the CSC genes, 

suggesting that a higher number of CSCs is related to a higher chance of relapse (131). Another 

study compared the proportion of CSCs present in initially diagnostic and relapsed bone marrow 

specimens and found that the percentage of CSCs, assessed by an in-vivo limiting dilution assay, 

was increased by 9- to 90- fold at relapse (132). Furthermore, another study used paired initially 

diagnostic and relapse AML bone marrow samples to demonstrate the emergence of two dominant 

patterns of relapse, both of which highlight the importance of cancer stemness (133). In this study, 

CSCs were isolated by xenografting in immunodeficient mice. Patient samples and xenografts 

were genotyped using whole genome sequencing and digital droplet PCR. The genetic profile of 

relapsed cells was compared to CSCs and bulk cells at diagnosis. In one pattern, relapsed samples 

predominantly consisted of CSCs, where the clone capable of forming a xenograft at diagnosis 

was the dominant clone at relapse. In the other pattern, relapsed samples stemmed from bulk cells 

at initial diagnosis; however, the relapsed cells had acquired a similar gene expression of the 

relapsed cells from the first pattern, suggesting that despite these cells not originating from the 

CSC subset, they had acquired stemness. Despite the emergence of two distinct patterns of relapse, 

both patterns highlight the importance of cancer stemness in the process of relapse. Overall, these 

studies support that CSCs are associated with relapses, they do not provide direct evidence. The 

role of cancer stemness in relapse remains to be incompletely understood.   
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1.3. Cancer stemness 

 

1.3.1. Hematopoietic stem cells 

 

The principles of cancer stemness in leukemia have been guided by the concepts of hematopoiesis 

and normal hematopoietic stem cells. Hematopoiesis involves a clear hierarchy of cells to generate 

all lineages of blood cells. At the apex of the hierarchy is the hematopoietic stem cell (HSC), a 

rare subset of cells that make up only 0.01-0.2% of all bone marrow mononuclear cells, which is 

the precursor of all blood cells (134). With the ability to self-renew and differentiate, HSCs are 

capable of maintaining the entire hematopoietic system. The self-renewal ability is unique to 

HSCs, as more mature cells are not capable of this property. HSCs divide asymmetrically, allowing 

them to give rise to new HSCs to maintain the stem cell pool, while also generating more 

differentiated lymphoid and myeloid progenitor cells (135).  

 

The presence of HSCs can be identified using several assays that are based on their enhanced self-

renewal capabilities. Using an in-vitro model, the colony forming cell assay involves culturing 

hematopoietic cells in semi-solid mediums. The use of semi-solid mediums allows for a single cell 

suspension to be formed, which means that every colony formed originated from a single cell 

(136). Using their abilities to self-renew and differentiate, HSCs are capable of forming colonies. 

Using in-vivo models, the presence of HSCs can be detected by the ability to transplant and 

maintain the human hematopoietic system in mice (137). In addition to identifying HSCs based on 

the described assays, cell surface lineage markers have also been used to identify HSCs, with 

CD34+CD38- being used most frequently as an HSC marker (138). However, these markers are 

used for enrichment but do not define HSCs, as HSCs have also been found in CD34- fractions 

(138). 

 

Given that a limited reserve of HSCs give rise to all blood cells throughout the lifespan, these cells 

require protective mechanisms to promote genomic stability, preventing passing down mutations 

to their progeny. To this end, HSCs have enhanced DNA repair pathways compared to 

differentiated cells. A study found that after treatment with a DNA damage inducer, N-

ethylnitrosourea, HSCs, identified as CD34+CD38low, had more efficient DNA repair as assessed 
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by a comet assay, compared to progenitor (CD34+CD38+) and mature (CD34-) cells isolated from 

umbilical cord blood (139).   

 

Many of these properties, including self-renewal, pluripotency, and enhanced DNA repair, are 

shared with other types of adult stem cells and embryonic stem cells (140). Given that normal 

tissue is organized in a hierarchical fashion, it is not unexpected that tumors may also carry this 

same organization, with CSCs residing at the top of the hierarchy, maintaining the tumor.  

 

1.3.2. Definition and characteristics of CSCs and CSL cells 

 

Similar to normal stem cells, the key properties of CSCs include their ability to self-renew and 

differentiate into more specialized cells, allowing them to produce new bulk cells and new CSCs. 

CSCs are functionally defined by their ability to engraft cancer when transplanted into mice (118). 

Studies in AML typically find ≤0.01% of cells that are classified as CSCs, which is based on the 

number of leukemic cells required to form engraftment in mice (132). However, defining CSCs 

based on their ability to xenograft may underestimate the frequency of CSCs, due to interspecies 

differences in microenvironment that may impair the survival of human cells.  

 

Throughout the studies conducted in this thesis, the term cancer stem-like (CSL) cells, rather than 

CSCs, is used to describe cell subsets carrying high levels of cancer stemness. While the principles 

underlying CSCs/CSL cells are the same, the definition of CSL cells is less restrictive than that of 

CSCs. CSL cells are defined as carrying more stem-like features, including tumorigenicity, 

pluripotency, chemoresistance and spheroid forming ability (141). While CSL cells tend to have 

enhanced tumorigenic abilities, the ability to engraft is not an absolute requirement for every CSL 

cell, in contrast to CSCs. Studies typically find ~2-15% of cells are classified as CSLs (122, 142, 

143). The reason for using the term CSL cells, instead of CSCs, is related to the fact that there is 

currently no marker for cancer stemness that only identifies CSCs; rather, the current markers for 

cancer stemness enrich CSCs. In other words, for all current CSC markers, there are cells within 

the identified CSC population that are not capable of generating tumor xenografts. As such, 

throughout my studies, I believe the term CSL cells more accurately represents the cell subset I 

identified as being more stem-like.  
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A number of assays have been developed to evaluate CSL characteristics. Tumorigenicity, the 

ability of a cell to form a heterogeneous tumor, is a characteristic of CSL cells due to their 

differentiation and self-renewal abilities and can be assessed using xenograft transplantation in 

mice (141). Additionally, CSCs have been observed to proliferate in a spheroid form, and assays 

to assess sphere formation typically involve seeding cells at a low density, to further enrich CSCs 

by selecting cells with high self-renewal properties (141). One of the methods to assess spheroid 

forming abilities is using the hanging drop assay, where a small number of cells are cultured in 

drops, allowing for cells to grow in 3D spheres (144). Using this method, a study found that spheres 

formed using colorectal cell lines were enriched with CSL cells, with higher stemness genes, 

including Oct4, Sox2, Nanog and Myc, and cell surface markers compared to cells not subjected 

to the hanging drop assay (145). Resistance to chemotherapy is a well-established characteristic of 

CSL cells, with this characteristic being a key factor in the CSC theory of relapse. In a number of 

studies that have isolated CSL cell from bulk cells, the CSL subsets have consistently been more 

resistant against a number of drugs, including paclitaxel, temozolomide, etoposide, doxorubicin 

and Ara-C in breast cancer, ovarian cancer, glioblastoma, anaplastic large cell lymphoma, and 

acute myeloid leukemia (122, 146-150). Moreover, the chemoresistance characteristic in CSL cells 

has been validated clinically, as the number of CSL cells in pre-treatment patient samples have 

been found to correlate with chemoresistance in triple negative breast cancer (151). The 

mechanisms underlying therapy resistance of CSL cells will be discussed in Section 1.3.6.  

 

1.3.3. Origin of CSL cells 

 

The origin of CSCs is currently unknown; however, two main theories have been proposed (152). 

One theory postulates that CSCs originate from normal stem cells that have acquired the hallmarks 

of cancers through mutations/epigenetic alteration. In support of this theory, some CSCs have been 

shown to have immunophenotypic markers and properties similar to normal stem cells. For 

instance, HSCs have the cell surface marker CD34+/CD38-, and this marker has been shown to 

enrich leukemic stem cells in some settings (153). Many properties are shared by CSCs and adult 

stem cells, including the ability to self-renew and differentiate. Evidence to support the HSC origin 

of CSCs comes from a study that traced the clone of origin of AML blast cells to mutated HSCs. 
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In this study, AML blasts were found to carry both DNMT3A and NPM1 mutations, which are 

considered to be AML driver mutations. Pre-leukemic HSCs were identified as carrying DNMT3A 

mutations, but NPM1 mutations were absent, suggesting these mutated HSCs are precursors of all 

AML cells within this patient (133).  

 

Alternatively, CSCs have been speculated to arise from more differentiated cancer cells or mutated 

progenitor cells, which de-differentiate, acquiring more CSC characteristics, in order to become 

CSCs. The feasibility of this theory has been shown by the fact that more mature bulk cells can 

acquire stemness when exposed to certain stressful environments, such as under oxidative stress 

or chemotherapy (126, 128-130).  

 

1.3.4. Molecular profile of CSL cells 

 

CSL cells between and within cancer types are heterogeneous, and there is no universal molecular 

profile of CSL cells. However, there are a number of proteins and signaling pathways that have 

been associated with cancer stemness. 

 

Several signaling pathways tend to be upregulated in CSL cells, including NF-κB, Wnt-β-catenin, 

Notch and Hedgehog pathways (154). These pathways promote CSL properties, including self-

renewal ability (155). The Notch pathway can regulate CSL phenotype, as supported by a study 

showing that pharmacological inhibition of this pathway reduced CSL phenotype in glioblastoma 

neurospheres, which are enriched in CSL cells, and decreased the number of CSL cells in-vivo 

(156).  

 

Another type of key molecule associated with CSL cells is a group of transcription factors that 

maintain the pluripotency phenotype of embryonic stem cells. These proteins, also known as 

embryonic stem cell proteins, include Myc, Oct4, Sox2 and Nanog. To highlight the critical role 

of these proteins to stemness, Takahashi et al. showed that the enforced expression of these four 

transcription factors could reprogram somatic cells into pluripotent stem cells (157). These 

proteins have also been shown to regulate and maintain stemness of CSL cells. Specifically, Myc, 

Oct4, Sox2 and Nanog have all been observed to be more highly expressed in various cancer stem 
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cells compared to bulk cells (122, 158-167). Additionally, knockdown of Sox2, Oct4, or Myc has 

been shown to decrease characteristics of cancer stemness, including tumorigenicity and 

chemoresistance, while enforcing the expression of these proteins increased these characteristics 

(122, 158, 168).  

 

1.3.5. Markers to identify CSL cells  

 

a. Cell surface markers 

In order to study the role of CSL cells in relapse, a reliable method to identify CSL cells is required. 

The first studies of cancer stemness used cell surface markers as a method to enrich CSCs, and 

since then, there have been a number of studies attempting to identify other cell surface markers. 

Specifically in AML, these immunophenotypic markers have included CD34+/CD38-, CD96, 

CD123 and CD200 (153, 169-171). In these studies, the markers for CSCs have been found to 

identify cells that have a superior ability to form engraftments in mice. However, these markers 

have several major limitations. First of all, there is no known biological link between these markers 

and cancer stemness. Furthermore, several of these markers have been inconsistent in identifying 

CSCs. For instance, the first CSC marker identified in AML was CD34+/CD38-, which was shown 

to enrich leukemic cells capable of engraftment in immunodeficient mice (153). However, the 

inconsistency of this marker in identifying CSCs has been shown in later studies, with colony 

forming cells found in CD34- and CD38+ fractions (172, 173). In another study, CD200 was 

identified as a marker for CSCs in AML; however, 6/16 AML patient samples showed a low 

expression of CD200 on blasts, and in these subsets, the CSCs were detected in the CD200- fraction 

(170). Additionally, the validity of these markers may be questioned by the absence of evidence 

showing that knocking down of these proteins decreases stemness, despite the fact that the first of 

these markers were first discovered several decades ago.  

 

b. Aldehyde dehydrogenase (ALDH) 

ALDH, an enzyme that metabolizes aldehydes into carboxylic acids and has a role in cellular 

detoxification, has been used as a marker for cancer stemness (174). This marker was first found 

to be elevated in normal stem cells. For instance, using human umbilical cord blood, cells with 

high ALDH activity were found to be enriched with HSCs (175). ALDH may have a role in 
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regulating the differentiation of stem cells, promoting the generation of more mature progeny, as 

pharmacological inhibition of ALDH in HSCs prevented their differentiation (176). Later, ALDH 

was found to also enrich CSL cells in a number of cancers, including colon cancer, non-small cell 

lung cancer and AML (177-179). In these studies, cells with high ALDH activity, as measured 

using a fluorescent based Aldefluor staining assay, were found to have a superior ability in 

engrafting the cancer in NOD/SCID mice. Since ALDHs are involved in cellular detoxification, 

their higher expression in CSCs may contribute to the chemoresistance of CSCs. ALDHs can 

neutralize the toxic effects of aldehydes, which are often intermediates of chemotherapy treatment 

(180).  

 

There are several limitations of using ALDH as a marker for cancer stemness. Similar to the cell 

surface markers, the link between ALDH activity and cancer stemness is not completely 

understood. Additionally, certain tissues express high levels of ALDH, including pancreatic and 

liver tissue, and because all cells in these tissues express high levels of ALDH, this marker cannot 

be used to distinguish stem cells and non-stem cells (181). 

 

c. Molecular reporters: SRR2 and SORE6 reporter 

Given the limitations of cell surface markers, alternative markers for cancer stemness have been 

developed. Several reporter systems have recently been developed to detect cells with high levels 

of cancer stemness. These reporters detect the transcriptional activity of embryonic stem cell 

proteins, including Sox2, Oct4 and Myc. The basic assumption of using these reporters is that the 

stemness of cancer cells is proportional to the amount of biologically active embryonic stem cell 

proteins, including Sox2, Oct4 and Myc. As detailed in Section 1.3.4, this assumption has largely 

been supported in the literature.  

 

The first of these molecular reporters developed, called the Sox2 regulatory region-2 (SRR2), 

detects the transcriptional activity of Sox2 (158). The activity of this reporter can easily be 

detected, as it emits a green fluorescent protein (GFP) or luciferase when it is activated. The use 

of this reporter in measuring cancer stemness was validated in several study models including 

breast cancer, anaplastic large cell lymphoma, and esophageal squamous cell carcinoma, where 

cells that were labelled as CSL cells by the reporter were found to have significantly more stem-
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like features, including chemoresistance, tumorigenicity, spheroid forming ability and expression 

of embryonic stem cell proteins (158, 182, 183). Even though the SRR2 reporter was designed to 

detect the activity of Sox2, it has been found that Sox2 is not the only transcription factor that is 

able to drive SRR2 activity. Specifically, a study found that in triple negative breast cancer, both 

the CSL and non-CSL subsets had no Sox2 expression. To explain why cells with SRR2 activity 

lacked Sox2 expression, a follow up study found that there were 16 different transcription factors 

that could bind to the Sox2 binding domain within the SRR2 reporter, many of which were 

embryonic stem cell proteins, including Myc (158). This finding suggests that multiple embryonic 

stem cell proteins are involved in driving SRR2 activity and cancer stemness.  

 

A more recently developed reporter for cancer stemness, called the Sox2/Oct4 response element 

(SORE6) reporter, detects the activity of both Sox2 and Oct4 (121). Similar to the SRR2 reporter, 

the SORE6 reporter emits a GFP when it is activated. While this reporter has not been used to 

study AML, there are currently eight publications that have employed the SORE6 reporter in 

different cancer models, which are summarized in Table 1.1. These studies have several factors in 

common: 1) a minority of cells (~2-20%) from cancer cell lines were SORE6+ at the steady state 

and 2) SORE6+ cells carry more CSL features, including drug resistance and tumorigenicity (121, 

122, 143). 

 

It is important to note that while the SORE6 reporter detects the transcriptional activity of Sox2 

and Oct4, there may be other proteins that are able to drive SORE6 activity by binding to the 

consensus sequence of SORE6, as was found in the case of the SRR2 reporter described above.   

 

A major advantage of these reporter systems as a marker for cancer stemness compared to the cell 

surface markers discussed above is that these reporters have a molecular basis for stemness, 

providing a pathway underlying the CSL phenotype that can serve as a starting point to study the 

biology of cancer stemness. Given this advantage, the SORE6 reporter was used in this study.  
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Study Cancer type Sample 

type 

% 

SORE6+ 

at steady 

state 

Characteristics of 

SORE6+ cells 

Additional 

information 

Bano et al. 

2023 (184) 

Triple negative 

breast cancer 

2 cell lines Not 

tested 

Not tested SORE6 

activity 

correlated 

with ALDH+ 

cells 

Rosas-

Cruz et al. 

2022 (185) 

Breast cancer 2 cell lines 4-9% Higher expression 

of DRD1, lower 

expression of 

DRD4 

 

Li et al. 

2021 (122) 

Anaplastic large 

cell lymphoma 

2 cell lines ~20% Tumorigenic 

(colony forming 

assay), 

chemoresistant 

 

Menendez 

et al. 2020 

(186) 

Undifferentiated 

pleomorphic 

sarcoma 

3 cell lines 20-40% Tumorigenic 

(xenograft, 

tumorsphere) 

 

Padua et 

al. 2020 

(143) 

Gastric 

carcinoma 

2 cell lines 8-16% Tumorigenic 

(xenograft), drug 

resistant 

No correlation 

between 

SORE6+ and 

current cell 

membrane 

markers for 

gastric CSL 

cells 

Vaddi et 

al. 2019 

(142) 

Prostate cancer 3 cell lines 2-20% Tumorigenic 

(xenograft, 

tumorsphere), 

chemoresistant 

 

Gao et al. 

2018 (187) 

Prostate cancer Cell lines 

and patient 

samples 

N/A SORE6+ cells 

enriched in 

tumorspheres 

compared to 2D 

Used the 

SORE6 

reporter as a 

tool to 

identify 

presence of 

CSL in tumor 

spheres 
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Tang et al. 

2015 (121) 

Breast cancer 2 cell lines 

and Patient 

Derived 

Xenograft 

models 

7-15% in 

cell lines, 

7-14% in 

PDX 

Tumorigenic (in 

vivo limiting 

dilution, 

tumorsphere), 

metastatic (Matrigel 

invasion assay), 

chemoresistant 

 

Table 1.1. Summary of published studies using the SORE6 reporter.  

 

1.3.6 Drug resistance mechanisms of CSL 

 

Given that a key characteristic of CSL cells is their enhanced drug resistance, a number of studies 

have been done examining the mechanisms underlying their drug resistance, which are outlined 

below. 

 

a. High expression of drug transporter pumps  

CSL cells have been reported to have higher levels of the ATP-binding cassette (ABC) transporter 

family, which can transport drugs out of the cell. In several cancer types, including retinoblastoma, 

breast cancer, lung cancer, and neuroblastoma, CSL cells expressed higher levels of ABC 

transporter family genes and showed higher drug efflux compared to non-CSL cells (188, 189). In 

AML, several of these drug transporters, including MDR1 and BCRP, were upregulated in AML 

CSL cells (190-192). The expression levels of MDR1 and BCRP have been correlated with poor 

response to chemotherapy in AML patients (193-195). To date, attempts to treat AML using ABC 

inhibitors have been unsuccessful (196). This may be due to the upregulation of other transporters 

or mechanisms of drug resistance to compensate for the inhibition of ABC transporters.  

 

b. Increased resistance to apoptosis 

CSL cells have an enhanced ability to resist apoptosis caused by treatments through several 

mechanisms. First of all, CSL cells have been shown to upregulate anti-apoptotic proteins and 

pathways, including Bcl-2, PI3K/Akt pathway, and Wnt-β-catenin pathway (152, 197). Moreover, 

CSL cells can reduce reactive oxygen species (ROS), avoiding DNA damage caused by ROS, and 

decreasing the likelihood of apoptosis occurring. CSL cells can protect themselves from ROS 

through a superior ability to synthesize glutathione, an antioxidant (152).  
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c. Quiescence 

CSL cells are believed to be able to enter a quiescent state, where cells are not actively 

proliferating, but retain the ability to reverse this condition by re-entering the cell cycle. The 

quiescence of CSL cells has been supported by a study that observed a small subset of cells from 

a pancreatic adenocarcinoma cell line that were characterized as slow cycling (198). These cells 

showed higher CSL characteristics, including chemoresistance and tumorigenicity. Similar 

findings were observed in human ovarian tumor cells, adenocarcinoma cell lines and liver cancer 

(199-201). Given that conventional cancer treatments target actively proliferating cells, CSL cells 

in a quiescent state are believed to evade elimination by these treatments. Additionally, the arrested 

quiescent state allows CSL cells to repair any DNA damage induced by treatments, reducing the 

likelihood of cell death by apoptosis (202). In fact, CSL cells have been shown to have increased 

levels of DNA repair proteins, including ATM protein kinase and methyl guanine methyl 

transferase, further enhancing their ability to repair damage caused by therapeutics (149, 203).  

 

d. Cytoprotective autophagy  

Recent evidence has shown that CSL cells upregulate their autophagy when treated with 

chemotherapeutics, which appears to protect them from treatment (204). The autophagic process 

and its role as a protective mechanism for CSL cells will be discussed in detail in Section 1.5.  

 

 

1.4. Metabolomics in cancer 

 

1.4.1. Metabolomics background  

 

Metabolomic reprogramming has been identified as one of the hallmarks of cancer (205). In order 

to compensate for the increase in energy demand from rapidly proliferating neoplastic cells, these 

cells need to alter their metabolic pathways. As such, metabolomics, the profiling of small 

molecules, has emerged as an important technology that can detect the alterations in metabolism 

of cancer cells. It may be used for biomarker identification as well as to identify potential 
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therapeutic targets. This analysis can identify cellular pathway by-products, including amino acids, 

enzymes, organic acids, fatty acids and lipids, and sugars and sugars alcohols (206). The analysis 

is often performed using mass spectrometry, which can analyze a wide range of metabolites. There 

are two major types of analysis: untargeted and targeted (207). Untargeted is a comprehensive 

analysis of all metabolites, but due to this wide range of analysis, it tends to be less sensitive for 

metabolites in low abundance. Targeted requires a selection of specific pathways but has higher 

sensitivity than untargeted.  

 

In AML, it has been established that leukemic cells have altered metabolism. The initial 

metabolomic studies in AML examined the differences in the metabolites between AML patients 

and healthy controls (208, 209). Serum from AML patients carried increased serum glucose levels 

and decreased glucogenic amino acids, indicators of high levels of gluconeogenesis (208). 

Additionally, the AML samples generally carried lower levels of fatty acids and lipids, suggesting 

that these essential metabolites are being consumed at faster rates compared to healthy controls 

(206, 208, 209). Moreover, by-products of the tricarboxylic acid (TCA) cycle were often 

dysregulated in AML samples compared to controls, including higher expression of pyruvate and 

2-oxoglutarate, and decreased expression of glycerol-3 phosphate, lactate and citrate, suggesting 

altered energy production in AML (210).  

 

Several studies have shown the potential of using metabolomics clinically in AML. The expression 

of some metabolites has been shown to correlate with AML prognosis. For instance, one study 

identified a panel of six glucose metabolism molecules, where the expression level of these 

metabolites correlated with prognosis (210). Additionally, high plasma levels of arachidonic acid 

and its precursors were associated with poor clinical outcome (211).  

 

1.4.2. Metabolomic profile of CSL cells 

 

In a number of cancer types, including AML, glioblastoma, and pancreatic cancer, it has been 

shown that CSL cells have altered metabolic pathways compared to bulk cancer cells (197, 212, 

213). These studies have shown that in contrast to bulk cancer cells, which favor glycolysis for 
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their energy and nutrient demands (214), CSL cells favor oxidative phosphorylation (197, 212, 

213).  

 

In keeping with the altered metabolism of CSL cells, metabolic analysis of CSL cells and bulk 

cells show that each cell subset has a unique metabolic profile. For instance, a study comparing 

CSL cells in AML, defined by low reactive-oxygen species levels, and AML blasts derived from 

primary AML patient samples found 39 of the approximately 100 analyzed metabolites were 

significantly higher in CSCs compared to blasts (95). These 39 metabolites were involved in the 

glutathione homeostasis, TCA cycle, and amino acid metabolism. The importance of amino acids 

to CSL cells was emphasized, as depletion of amino acids decreased CSC viability and colony 

forming ability, whereas this same treatment had no substantial effect in blasts. 

 

The altered metabolism of CSL cells can provide a potential target for selectively eradicating CSL 

cells. The AZA+Ven treatment regimen, which was previously introduced in Section 1.1.5., is one 

of these treatments that can preferentially target CSL cells by disrupting the metabolism of these 

cells. Specifically, AZA+Ven can target the oxidative phosphorylation pathway and can deplete 

amino acid levels in CSL cells, and as described above, these pathways are critical for CSL cell 

survival, but less so for bulk cells (95, 215). However, relapsed CSL cells did not show this 

decrease in oxidative phosphorylation and amino acids, suggesting these cells may have the ability 

to reprogram their metabolism (95). As such, this treatment may not be effective for relapsed 

patients. 

 

1.4.3. Metabolomic profiling in relapsed AML  

 

Currently, there is very little known about how the metabolomic profile evolves in relapsed AML. 

However, evidence from a small number of studies suggest that metabolic profiles differ between 

initial diagnosis and relapse AML. In one study, paired initially diagnosed and relapsed bone 

marrow derived serum samples were collected from 10 patients (206). Metabolomic analysis using 

gas chromatograph-mass spectrometry showed in general a higher level of metabolite expression 

in relapsed compared to initially diagnosed samples. Specifically, a number of amino acids 

(alanine, valine, leucine, glycine, and ornithine), organic acids (succinic acid, malic acid, citric 
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acid) and fatty acids (palmitic acid, myristic acid) were higher in relapsed samples. In support of 

this finding, another study performing metabolomic analysis in CSL cells, defined as low reactive 

oxygen species, found CSL cells from relapsed AML specimens had increased fatty acids, 

especially arachidonic and eicosapentaenoic acid, compared to CSL cells derived from initially 

diagnosed specimens (216).  

 

1.5. Autophagy  

 

1.5.1 Autophagy definition and function 

 

Autophagy is a homeostatic mechanism within the cell whereby damaged organelles, protein 

aggregates and pathogens are digested and recycled (217). Basal levels of autophagy maintain 

cellular homeostasis, and this process is induced by environmental stress, including hypoxia, 

oxidative stress, and starvation (218).  

 

There are several autophagy pathways. Macroautophagy, which will hereafter be referred to as 

autophagy, is the primary and most extensively studied pathway, in which the cell recycles 

organelles and protein aggregates through the formation of a double membrane vesicle called the 

autophagosome (217). The autophagosome is built around the molecule to be recycled, and then 

fuses to a lysosome, resulting in the release of digestion enzymes and the subsequent degradation 

of the molecules. This thesis will focus on this pathway. Briefly, other autophagy pathways include 

microautophagy, mitophagy, lipophagy, and chaperone-mediated autophagy. Microautophagy 

involves a more direct digestion of intracellular components, where lysosomes engulf the molecule 

(219). There are several specific autophagy pathways, including mitophagy, which is the 

degradation of mitochondria, lipophagy, which is the selective degradation of lipids, and 

chaperone-mediated autophagy, which involves the specific degradation of proteins directed by 

chaperones (220). 

 

The importance of the autophagy pathway is highlighted by the fact that its dysregulation has been 

associated with a number of pathological conditions, including neurological disorders, 
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myodegenerative diseases, and cancer (221, 222). In cancer, autophagy has a paradoxical effect as 

both a tumor suppressor and promoter. The current understanding is that autophagy acts as a tumor 

suppressor during early stages of tumorigenesis. As the cancer progresses, autophagy becomes a 

tumor promoting mechanism (223).  

 

1.5.2 Autophagy process 

 

The autophagic process begins with the formation of a double membrane vesicle in the cytoplasm, 

initially called a phagophore and eventually called an autophagosome once formed, which 

surrounds the intracellular components for degradation (224). This process is regulated by a 

number of autophagy-related genes (ATG). To date, 36 ATGs with a role in autophagy have been 

identified (218). The process of autophagosome formation involves three main steps outlined 

below and is illustrated in Figure 1.4 (223, 225, 226). 

 

1. Pre-initiation: The autophagic process begins with the activation of the ULK complex, 

composed of ULK1/2, ATG13, FIP200 and ATG101. This step is regulated by two 

proteins, mTOR and AMPK, both of which monitor nutrient levels within the cell (227). 

mTOR inhibits the activation of the ULK complex through the phosphorylation of ULK1/2 

(223). In contrast, AMPK activates the ULK complex, either directly by phosphorylating 

ULK1/2, or indirectly, through the inhibition of mTOR (218, 223). When ULK1/2 is 

activated, it will phosphorylate other members of the ULK complex, including ATG13 and 

FIP200 (218).  

2. Initiation: In this stage, the sequestering vesicle, called the phagophore begins to form, 

which will eventually become an autophagosome once completed. Additionally, 

autophagic machinery is recruited to the site of the phagophore. The now activated ULK 

complex triggers a cascade of events, starting with the phosphorylation and activation of 

the VPS34-Beclin-1 complex. This complex then recruits WIPI-1/2 and DFCP1, which 

then recruits the autophagic machinery necessary in building the phagophore, including 

LC3 and the ATG5-ATG12-ATG16 complex. It is unknown exactly where the phagophore 

originates from, but the lengthening of the phagophore’s lipid membrane involves Atg9, 

which recruits the required lipids that build the membrane. 
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3. Elongation: The budding membrane of the phagophore is lengthened. This process 

requires the conversion of LC3 to the active LC3-I, catalyzed by the protease ATG4. 

Phosphatidylethanolamine (PE), a membrane lipid, is then added to LC3-I, mediated by 

ATG7 and the ATG5-ATG12-ATG16 complex, producing LC3-II (228). LC3-II is 

integrated into the lengthening phagophore membrane, where it is responsible for directly 

or indirectly binding with cargo that will be degraded. The ATG5-ATG12-ATG16 

complex is also localized to the budding autophagosome membrane, forming the outer leaf 

of the autophagosome to help generate the concave shape, but once the autophagosome is 

fully formed, this complex dissociates from the membrane. The closure of the membrane 

is mediated by VPS4 and CHMP2A (223).  

 

After the autophagosome is formed, it fuses with a lysosome, producing the autolysosome. This 

step is mediated by LAMP2 and Rab-7a (218). The hydrolytic enzymes from the lysosome degrade 

the cargo contained by the autophagosome into fatty acids, amino acids, and nucleotides. The 

degraded materials are then returned to the cytoplasm to be reused.   

 

 

Figure 1.4. The process of autophagy formation. The autophagic process is regulated by 

AMPK, an autophagy promoter, and mTOR, an autophagy inhibitor. ULK complex, 

VPS34-Beclin-1 complex and Atg9 recruit components to form the budding phagophore. 

LC3 is converted into LC3-I and then LC3-II, which is then integrated into the phagophore. 
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The phagophore becomes an autophagosome upon the closing of the membrane. A 

lysosome fuses with the autophagosome and degrades the components contained within 

the autophagosome.   

1.5.3 Regulators of autophagy 

 

a. PI3K-Akt-mTOR pathway 

This pathway leads to mTOR activation, which as mentioned above, inhibits autophagy. PI3K is 

activated by a number of molecules, including growth factors, oncogenes, and tumor suppressors. 

Once activated, PI3K, a catalyst, promotes the production of phosphatidylinosital-3 phosphate, 

which is necessary for Akt activation (218). Akt indirectly activates mTOR through inhibitory 

phosphorylation of TSC1/2, an mTOR inhibitor, resulting in decreased autophagy (229). 

 

b. AMPK pathway 

AMPK, like mTOR, is a nutrient sensor that is activated based on AMP/ATP levels. When nutrient 

levels are low, the AMP:ATP ratio increases, resulting in activation of LKB1 and subsequent 

activation of AMPK. Activated AMPK promotes autophagy both directly and indirectly. AMPK 

can directly phosphorylate and activate ULK1/2 (230). Additionally, AMPK can phosphorylate 

TSC2 which inactivates it, which in turn, decreases mTOR, and ultimately promotes autophagy 

(218). 

 

c. p53  

The well-known tumor suppressor p53 has paradoxically been observed to be both an inducer and 

repressor of autophagy based on its localization. Specifically, when p53 is located in the nucleus, 

autophagy related genes are transcribed (231). Conversely, p53 localization to the cytoplasm 

inhibits autophagy by decreasing AMPK activity, which in turn, activates mTOR (232).  

 

d. Bcl-2 

Bcl-2, an anti-apoptotic protein, is associated with drug resistance in AML (233). While Bcl-2 is 

best known for its role in the apoptotic pathway, it has also been implicated in the autophagy 

pathway, creating a crosstalk between the two pathways. Bcl-2 can directly bind and sequester 

Beclin-1, preventing the pro-autophagy role of Beclin-1 (234). It has been shown that when 
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autophagy is induced through cell starvation, this sequestration is inhibited through the 

phosphorylation of Bcl-2 (235). 

 

e. ULK1/2  

ULK1 and ULK2, which are mammalian homologues of ATG1 in yeast, are serine/threonine 

kinases that have a critical role in autophagy induction (236). In addition to their prominent roles 

in autophagy, both ULK1 and ULK2 have known functions related to axon formation in neurons 

(237). These ULK proteins form an autophagy initiation complex with ATG13 and FIP200 (236, 

238). Once the complex is formed, ULK proteins are capable of phosphorylating ATG13 and 

FIP200; however, the significance of this phosphorylation is unknown (239, 240). The activity of 

the ULK complex is inhibited by mTOR, while conversely, AMPK promotes ULK complex 

activity, both of which regulate the ULK complex through phosphorylation at different sites (225, 

241). ULK1/2 can in turn regulate both mTOR and AMPK through phosphorylation, as well as 

self-activating through autophosphorylation. Once the ULK complex is activated, it is localized to 

the pre-autophagosomal structure, where it recruits and phosphorylates several members of the 

next complex in the cascade, the VPS34 complex, including Beclin-1 and ATG14-L (225, 241).   

It is widely believed that the ULK proteins, ULK1 and ULK2, are redundant, as they have high 

overlap in their structure and function. In humans, ULK1 is located on chromosome 12 and encodes 

a protein consisting of 1050 amino acids, whereas ULK2, which is located on chromosome 17, 

encodes a protein consisting of 1036 amino acids (242, 243). Structurally, both proteins contain a 

N-terminal kinase domain and a C-terminal interacting domain, which interacts with ATG13 and 

FIP200 (238). The functional overlap between ULK1 and ULK2 have been highlighted by several 

studies. For instance, in mouse embryonic fibroblasts, knockout of either ULK1 or ULK2 was 

insufficient to disrupt autophagy, while knockout of both proteins successfully inhibited autophagy 

(244). Similarly, while mouse knockout of key autophagy genes, such as ATG3, ATG5 and ATG7, 

caused embryonic lethality, mice could survive knockout of ULK1 or ULK2 separately without 

significant deficiency in autophagy further suggesting that the overlap of function between 

ULK1/ULK2 is sufficient to compensate for the loss of its counterpart (238, 245, 246). Indeed, a 

double mouse knockout of ULK1 and ULK2 caused mice to die within one day after birth (247). 

Based on these studies, it appears that the overlap in function between ULK1/ULK2 is sufficient 

to compensate for the loss of its counterpart. However, one recent bioinformatics study suggests 
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that ULK1 and ULK2 are not completely redundant. This study found that ULK1 and ULK2 differ 

in several of their interactors. For instance, ULK2, but not ULK1, interacted with p62 and WIPI2, 

whereas ULK1 interact with ATG4B, ATG14, and MAP1LC3C (236). Additionally, ULK1 and 

ULK2 had different transcriptional regulators. Despite this finding, there remains to be very little 

known about the distinction between ULK1 and ULK2.  

 

1.5.4 Dual role of autophagy in cancer 

 

Autophagy has been shown to play a paradoxical role in cancer progression, as there is evidence 

suggesting that autophagy suppresses and promotes tumorigenesis. The current understanding is 

that in the initial stages of tumorigenesis, autophagy acts as a tumor suppressor by reducing cancer 

promoting stressors on cells. However, in later stages of tumorigenesis, autophagy acts as a tumor 

promoter by increasing survival of cancer cells (248).   

 

a. Tumor suppression effects of autophagy 

The autophagic process has been shown to inhibit tumorigenesis, which has been supported by the 

finding that defective autophagy can promote cancer development. A number of autophagy related 

genes are frequently mutated in cancer, including frameshift mutations of ATG2B, ATG5 and 

ATG12 in colorectal and gastric cancers (249), and monoallelic deletion of Beclin-1 in ovarian and 

breast cancers (250), suggesting a tumor suppressor role of these genes and the autophagy 

pathway. Additionally, the generation of heterozygous Beclin-1 mutant mice resulted in mice that 

were more susceptible to tumor formation (250). Furthermore, autophagy induction by 

overexpressing Beclin-1 in a breast cancer cell line decreased tumorigenicity (251). 

 

There have been several mechanisms that have been studied to explain how autophagy has a tumor 

suppressor role.  

 

Autophagy protects cells against genomic instability by reducing stresses on cells (252). It is 

speculated that if there are defects in the autophagy pathway, then reactive oxygen species and 

damaged organelles, which would normally be consumed through autophagy, accumulate and 

promote DNA damage. In support of this mechanism, the impairment of autophagy via the 
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generation of heterozygous Beclin-1 mutated mouse kidney epithelial cells increased DNA damage 

and genomic instability, as measured by levels of γ-H2AX staining and GRP-78 (253). 

 

Additionally, autophagy has a tumor suppression role by decreasing necrosis at tumor sites (254). 

Necrosis frequently occurs in tumor sites from nutrient and oxygen deprivation. Autophagy can 

protect cells against these deprivations, suppressing the tumor promoting inflammation that is 

associated with necrosis (255). 

 

Moreover, autophagy can exert anti-tumor effects by inducing autophagic cell death in cancer 

cells. Autophagic cell death occurs when excessive autophagy results in the degradation of more 

organelles than are possible for the cell to survive. Autophagic cell death is caspase independent, 

and thus, distinct from apoptosis (256). To provide evidence for autophagy cell death, a number 

of studies have shown that drug-induced autophagy leads to cell death. For example, Hep3B, a 

hepatoma cell line, treated with the chemotherapeutic etoposide was shown to induce autophagy. 

Inhibition of autophagy with 3-methyladenine reduced etoposide cell killing (257). Similarly, 

treatment of the mammary carcinoma cell line MCF-7 with tamoxifen, an estrogen antagonist used 

to treat breast cancer, resulted in the production of autophagic vacuoles, while inhibition of 

autophagy using 3-methyladenine decreased cell death by tamoxifen (258). 

 

b. Tumor promoting effects of autophagy 

Support for the tumor promoting effects of autophagy has been demonstrated in several studies 

that have found autophagy inhibition suppresses cancer cell growth. For instance, knockout of 

FIP200 in murine models resulted in the inhibition of mammary tumor growth (259). A similar 

finding was observed in pancreatic and lung cancer animal models (255, 260).  

 

Autophagy can promote survival of cancer cells by supplying proliferating cancer cells that have 

high energy demands with nutrients. Autophagy protects these cells from necrosis that would have 

been caused by metabolic stress (254).  

 

Autophagy has also been shown to be a tumor promoter by protecting cancer cells against 

treatment, which may be a mechanism of chemoresistance. In several studies and cancer types, 
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including AML, cervical cancer, and breast cancer, chemotherapy treatment of cell lines has been 

shown to induce autophagy. This autophagy was shown to be cytoprotective, as inhibition of 

autophagy sensitized cancer cells to the treatment (261-263). Similar findings were made in a study 

using murine models, where chemotherapy combined with autophagy inhibition was more 

effective in shrinking the tumor than treatment with single agents (264). 

 

These studies have shown that autophagy has tumor promoting effects when examining the entire 

cancer cell population. However, some recent studies have shown that CSL cells in particular 

depend on autophagy for their survival, and in fact, autophagy may maintain cancer stemness in 

CSL cells.  

 

1.5.5. Autophagy may promote cancer stemness 

 

Given the role of autophagy in therapy resistance and the fact that CSL cells are more drug resistant 

than bulk cells, it has been hypothesized that autophagy may promote stem-like features and 

survival of CSL cells.  

 

Autophagy has been shown to protect CSL cells from standard cancer therapies. Treatment with 

these therapies induces more autophagy in CSL cells compared to bulk cells, while inhibition of 

autophagy sensitizes CSL cells to these treatments. For example, glioma CSL cells, defined as 

being CD133+, had a higher level of autophagy induction compared to CD133- cells after being 

treated with radiation (265). Inhibition of autophagy in CD133+ cells sensitized them to radiation, 

while inhibition of autophagy did not substantially change the sensitivity of CD133- cells to 

radiation. Similarly, a study examining anaplastic large cell lymphoma found that CSL cells have 

higher autophagic flux in response to Crizotinib, a tyrosine kinase inhibitor being tested in clinical 

trials for this type of cancer (204). Inhibiting autophagy sensitized these CSL cells to Crizotinib 

treatment, supporting that autophagy confers cytoprotection against treatment in CSL cells.  

 

Autophagy inhibition has also been found to decrease CSL features. Specifically, CSL cells in 

ovarian cancer, as defined by the cell surface markers CD188+CD44+, had decreased spheroid 

formation, tumorigenicity, and expression of embryonic stem cell proteins after autophagy 
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inhibition (266). Moreover, in pancreatic cancer cell lines, blocking autophagy via shRNA 

targeting ATG5, ATG7 and Beclin-1 or chloroquine treatment decreased sphere forming ability, 

chemoresistance and ALDH1 activity in CSL cells (267). Similarly, in osteosarcoma cell lines, 

inhibition of autophagy via ATG5/7 shRNA decreased chemoresistance and tumorigenicity in 

CD271+ CSL cells compared to bulk cancer cells (159). 

 

It is not well understood how autophagy maintains cancer stemness; however, it has been 

suggested that autophagy allows CSL cells to maintain a dormant state, making them resistant to 

therapeutics that target proliferating cells (268). 

 

1.5.6. Autophagy as a therapeutic target 

 

Based on the in-vitro and in-vivo evidence that autophagy has been shown, at least in some cases, 

to promote cancer cell survival, autophagy inhibition may be used as a cancer treatment.  

 

Autophagy inhibitors can be classified into one of two categories: early-stage and late-stage 

inhibitors. Early-stage autophagy inhibitors, such as 3-methyladenine, prevent the formation of 

autophagosomes (269). Late-stage inhibitors, such as chloroquine (CQ) and bafilomycin A1, 

interfere with the fusion of autophagosomes with lysosomes and subsequent degradation of 

intracellular components (270). CQ increases the pH of lysosomes, preventing the ability of 

lysosomal enzymes to degrade intracellular components (271). Bafilomycin A1 prevents 

lysosomal fusion with autophagosomes through the inhibition of vacuolar-ATPase, an enzyme that 

is needed for fusion (270).  

 

Currently, autophagy inhibitors have not received FDA approval for cancer treatment. However, 

CQ and its derivative hydroxychloroquine (HCQ), which have been approved by the FDA to treat 

malaria, are currently being tested in cancer clinical trials. Phase I/II clinical trials have been 

conducted in various cancers, including pancreatic cancer, myeloma, breast cancer, prostate 

cancer, colorectal cancer, lung cancer and AML, either as a monotherapy or in combination with 

chemotherapy or immunotherapy (272). Studies in breast cancer and pancreatic cancer that used 

CQ/HCQ as a monotherapy typically did not observe any clinical effects or improvement in 
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clinical outcomes (273, 274). Using CQ in combination with another drug showed some promising 

results. For instance, the combination of chloroquine with chemotherapy administered to refractory 

breast cancer patients showed a response rate of 45% (275). Similarly, the use of chloroquine in 

combination with the chemotherapeutic gemcitabine to treat pancreatic cancer resulted in a partial 

response in 33.3% of patients and stable disease in 22.2% of patients, which is superior to the 

response rate of 10% in patients treated with gemcitabine alone in a previous study (276). Since 

these studies had small sample sizes, further clinical trial studies need to be done in order to better 

evaluate the efficacy of chloroquine.  

 

1.6. Hypothesis and Aim of the Study 

 

In this section, I have presented evidence from the literature that cancer stemness is a major 

contributor to AML relapse. Nonetheless, most of the evidence is relatively indirect, and this 

difficulty can be largely attributed to a lack of in-vitro/in-vivo study models. The central 

hypothesis of my PhD studies focused on collecting more direct evidence in support of the 

role of CSL cells in AML relapse.  

 

The first objective, which is covered in Chapter 2, was to develop an in-vitro model for AML 

relapse and to use this model to examine the contribution of CSL cells to relapse. To achieve this 

aim, I first confirmed that the SORE6-/SORE6+ dichotomy exists in two FLT3-mutated AML cell 

lines, MOLM-13 and MV4-11, and provided evidence that SORE6+ cells are significantly more 

stem-like than SORE6- cells. Using the SORE6- and SORE6+ subclones, I successfully developed 

an in-vitro model which shows certain similarities with AML relapse. After the Ara-C induction 

of ‘zero viability’ in which viable cells were not detectable by direct microscopic examination 

using a trypan blue assay, I found regeneration of the cell culture after approximately 2 weeks. 

These phenomena mimic clinical remission and relapse and are thus labeled in-vitro remission and 

in-vitro relapse, respectively. By molecularly barcoding SORE6- and SORE6+ cells, I was able to 

track the fate of these cells and determine their relative contributions to the in-vitro relapse, even 

if they lose/gain SORE6 activity. Using flow cytometry to monitor the expression of the GFP (i.e. 

readout of the SORE6 reporter), I was able to quantify the relative proportion of cells showing 
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SORE6 reporter activity. By comparing the molecular barcoding results and those of flow 

cytometry, I was able to assess the degree of conversion between SORE6+ to SORE6- cells, a 

phenomenon CSL cells might be expected to do. Using Myc as the surrogate marker for SORE6+ 

cells, I validated my findings clinically with patient samples.  

 

In Chapter 3, I aimed to address the question of whether CSL cells remained to be the key 

contributor to relapse when different therapeutic agents were used. 5-azacitidine (AZA) or the 

combination of AZA and Venetoclax (Ven) (i.e. AZA+Ven) were used since these two regimens 

were recently tested in a large clinical trial, with AZA+Ven being significantly superior to AZA 

in prolonging the disease-free survival. Ara-C was included for comparison. The in-vitro relapse 

model could be replicated with both AZA and AZA+Ven treatments. Molecular barcoding and 

flow cytometry analysis were employed to determine the contribution of CSL cells in these 

treatment conditions. Metabolomic and glycomic analyses were used to further substantiate the 

differences between pre-treatment cells and in-vitro relapse cells in all treatment conditions. 

Patient samples were used to validate these findings.   

 

In Chapter 4, I aimed to use my in-vitro study model to investigate the mechanisms that might 

underlie the high chemoresistance in SORE6+ CSL cells. I hypothesized that SORE6+ cells 

leverage their capability of high autophagic capacity, which has been shown to confer 

chemoresistance in other cell types. In accordance with the literature, I found evidence of 

autophagy-mediated chemoresistance in SORE6+ cells. To decipher the mechanisms, I performed 

an autophagy pathway gene expression array study, to identify an important mediator for the high 

autophagy capacity in SORE6+ cells. To confirm the role of this target in stemness and relapse, I 

used my in-vitro model to determine if expression of this target was elevated in in-vitro relapse 

cells, and if inhibition of this target could prevent in-vitro relapse.  
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2.1. Introduction 

 

Acute myeloid leukemia (AML), defined by an accumulation of myeloblasts in the bone marrow 

and/or peripheral blood, is a type of highly aggressive hematologic cancer associated with a poor 

clinical outcome. Despite recent therapeutic advance, the 5-year survival rate for AML patients 

receiving treatment with a curative intent is approximately 30% (1). Refractory disease, defined 

as a failure to achieve complete remission, occurs in approximately 30% of all treated AML 

patients (2). In patients who achieve complete remission after the initial treatment, disease relapses 

develop in 40-50% of those who are aged <65 years and in the vast majority of patients who are 

aged ≥65 years (3, 4). Treatment options for patients who develop relapses are limited; only ~10% 

of these patients survive >3 years after the diagnosis of relapse is made (5). To improve the overall 

outlook of AML patients, new treatments for AML relapse are needed.  

 

The molecular basis of AML relapse has not been extensively studied, partly due to the relative 

paucity of in-vitro study models that can be readily established in conventional research 

laboratories. Several hypothetical models have been postulated. In the clonal evolution model, it 

is believed that small subclones of AML cells present at diagnosis acquire gene mutations that 

allow them to survive the initial chemotherapy (6). In another model, it has been proposed that the 

initial chemotherapy sends a subset of AML cells to a senescence-like state, which protects these 

cells during a period of dormancy that precedes relapse (7). The cancer stem cell model postulates 

the existence of a very small subset of cancer cells carrying stem-like features, such as a high level 

of chemoresistance, tumorigenicity and self-renewal capacity. These few cells survive the initial 

treatment and eventually contribute to disease relapses after a period of dormancy. A modified 

version of the cancer stem cell model is related to the concept of cancer cell plasticity, in which a 

subset of bulk cancer cells acquires cancer stemness. Regardless of which model is important, 

relapse AML cells exhibit a higher level of chemoresistance to the initial treatments compared to 

the original cell population, thereby explaining why the initial treatments are typically ineffective 

for relapse. Overall, evidence supporting any of these models is relatively scarce. In support of the 

cancer stem cell model, it was found that relapse AML cells from patient samples contained higher 

proportions of cancer stem cells that were quantified by using an in-vivo limiting dilution assay 

(8). In another study, the expression of the cancer stem cell gene signature in AML blasts was 
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found to correlate with a relatively high risk of disease relapse (9). Nonetheless, these evidence 

are relatively indirect.  

 

Aberrant expression of embryonic stem cell proteins such as Sox2, Oct4 and Myc has been shown 

in many cancer types, and the expression of these proteins in various cancer models has been found 

to significantly correlate with cancer stem-like (CSL) features and a poor clinical outcome (10-

14). The Sox2/Oct4 response element (SORE6) reporter system, designed to detect the 

transcriptional activity of these two proteins, has been successfully employed to identify/purify 

CSL cells in a few solid and hematologic cancer models (11, 15, 16). Our group has recently 

reported that a small cell subset of ALK-positive anaplastic large cell lymphoma express SORE6 

reporter activity, which can be readily quantified based on the expression of green fluorescent 

protein (GFP) detectable by using flow cytometry (11). Importantly, purified SORE6+ cells showed 

significantly more CSL features, including spheroid forming ability and chemoresistance, 

compared to their SORE6- counterparts. The SORE6 reporter has never been used in AML studies.   

 

In this study, we aimed to test the importance of CSL cells in the context of AML relapse. We first 

asked if the SORE6 reporter can be used to identify/purify CSL cells in AML cell lines. After the 

SORE6 reporter was confirmed to be useful in identifying/purifying CSL cells in AML cell lines, 

we leveraged the SORE6-/SORE6+ dichotomy to generate an in-vitro study model that mimics key 

features of AML relapse. In view of the molecular diversity of AML, we focused our studies on 

AML cells with a specific molecular aberrancy, namely FLT3 mutations. 

  

2.2. Materials and Methods 

 

2.2.1. Cell culture  

 

Two FLT3-mutated AML cell lines, MV4-11 and MOLM-13 (17), were cultured in Roswell Park 

Memorial Institute (RPMI) 1640 (Invitrogen, Waltham, MA, USA) supplemented with 10% fetal 

bovine serum (Gibco, Waltham, MA, USA) and 1% penicillin/streptomycin (Gibco). Cells 
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transduced with the SORE6 reporter, carrying a puromycin selection marker, were cultured in the 

presence of 0.25 µg/mL puromycin (Gibco).  

  

2.2.2. Generation of SORE6- and SORE6+ subsets 

 

The SORE6-mCMVo-dsCop-GFP-PURO (SORE6) reporter and mCMVp-dsCopGFP-PURO 

(mCMV) plasmids were kind gifts from Dr. Lalage Wakefield (National Cancer Institute, 

Bethesda, MD, USA) (15). Short hairpin RNA (shRNA) plasmid for Myc was purchased from 

MilliporeSigma (Burlington, MA, USA). AML cell lines underwent lentiviral transduction with 

these plasmids as described previously (18). 

 

SORE6 activity was quantified by measuring the level of GFP expression using flow cytometry. 

Cells transduced with mCMV were used to establish the cut-off. SORE6- and SORE6+ cell subsets 

were generated using flow cytometric cell sorting (Sony MA900, New York, NY, USA). Cells 

expressing relatively high GFP (i.e. top ~4-8%) were purified and cultured into the SORE6+ subset, 

and cells expressing no detectable GFP (i.e. the bottom ~4-8%) were purified and cultured into the 

SORE6- subset. All experiments performed in this study employed SORE6+ cells showing ≥75% 

GFP positivity and SORE6- cells showing <5% GFP detectable by flow cytometry. 

  

2.2.3. Antibodies and drug treatments  

 

Primary antibodies used in western blot studies included anti-MYC (Y69, #ab32072), anti-Sox2 

(EPR3131; #ab92494) and anti-Oct4 (#ab19857), which were purchased from Abcam (Cambridge, 

MA, USA), anti-β-actin (#sc-47778) from Santa Cruz Biotechnology (Santa Cruz, CA, USA), anti-

FLT3 (8F2, #3462) from Cell Signaling (Danvers, MA, USA), and anti-p-STAT5 (Tyr694, #9359) 

from Cell Signaling. Additionally, anti-myeloperoxidase (A1F4; #MA5-42397) from Invitrogen 

(Waltham, MA, USA) and anti-MYC mentioned above were used in immunostaining experiments. 

Gilteritinib (ASP2215, #S7754) was purchased from Selleckchem (Houston, TX, USA) and Ara-

C (PHR1787) was purchased from Sigma-Aldrich (St Louis, MO, USA). Venetoclax was gifted 

by Abbvie. 
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2.2.4. Polymerase chain reaction 

 

Genomic DNA extraction was performed using PureLink® Genomic DNA mini kit (Invitrogen) 

based on the manufacturer’s protocol. PCR reactions to detect cell barcoding were performed using 

the CloneTracker 4-barcode-plus cell labeling kit (Cellecta) following the manufacturer’s protocol. 

PCR reactions to detect SORE6 were done using SYBR Green Real-Time PCR Master Mixes, as 

indicated by the manufacturer (ThermoFisher Scientific, Waltham, MA, USA). Bands were 

visualized by gel electrophoresis with a 3% agarose gel. Primer sequences were as followed:  

SORE6: F-5’-ACAATGGCCTTGGTGCAG-3′ & R-5′-TGCACCAAGGCCATTGTAA-3′ ; 

GAPDH: F-5-GGTCTCCTCTGACTTCAACAGCG-3 & R-5-

ACCACCCTGTTGCTGTAGCCAA-3. 

  

2.2.5. Hanging drop assay 

 

100,000 cells were seeded in 1 mL of culture media. 10 µL drops were pipetted onto the lid of a 

cell culture dish. Spheroid formation was assessed after 48 hours using a light microscope. The 

criteria for spheroid formation were that viable cells were clustered together in a sphere. Every 

well will contain one of these two types of cell clumps - 1) true spheroid - Well-defined, tightly 

packed, spherical cell mass (Figure 2.1a) irregularly shaped, loosely bound cell clumps (Figure 

2.1b). On high magnification, the true spheroids consist of viable-appearing cells as shown by 

their refractile appearance as opposed to cell debris in the non-viable cell clumps. 15 drops were 

randomly selected for analysis per plate.  
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Figure 2.1. Image of a spheroid and non-spheroid in the hanging drop assay. (a) Example of 

a true spheroid with a well-defined, tightly packed spherical cell mass. (b) Example of a non-

spheroid, with loosely bound cell clumps. Imaged with a bright-field microscope (40x).  

 

2.2.6. Cell viability assay 

 

Cells were plated with a concentration of 250,000 cells/mL using media with 5% fetal bovine 

serum in 24-well plates. Cell viability was assessed using trypan blue exclusion. IC50 was 

calculated by GraphPad Prism software (GraphPad Software, San Diego, CA, USA).  

  

2.2.7. Western blot 

 

Cell pellets were lysed with RIPA buffer (MilliporeSigma, Burlington, MA, USA), with protease 

and phosphatase inhibitors (MilliporeSigma). Proteins were separated on a 10-15% 

polyacrylamide SDS-PAGE gel, transferred to a nitrocellulose membrane (GE Healthcare, Velizy-

Villacoublay, France), and then incubated with primary antibodies. The membrane was then 

incubated with horseradish peroxidase-conjugated secondary antibodies. Bands were visualized 

with an OdysseyⓇ Infrared Imaging System (LI-COR, Lincoln, NE, USA). 

 

2.2.8. DNA pull-down assay 

 
DNA pull-down was performed as described previously (11). The sequence of the SORE6 probe 

was:  
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5′-BiosgCCCTTTTGCATTACAATGTCTTTTGCATTACAATGTCTTTTGCATTACAATG-

3′. A mutant DNA probe was used as the negative control.  

 

2.2.9. Barcode labeling of SORE6 Sorted Cells 

 

The CloneTracker 4-barcode-plus cell labeling kit (Cellecta, Mountain View, CA, USA) was 

employed to track cell fate. Barcodes were transduced into purified SORE6+ and SORE6- cells by 

following the manufacturer’s protocol. For the remainder of this manuscript, the barcode used for 

SORE6- cells was labeled barcode #1, while that for SORE6+ cells was labeled barcode #2. The 

unique sequence in each barcode was detectable by polymerase chain reaction and a set of primers 

supplied by Cellecta. Both barcodes also carried red fluorescence protein to allow the identification 

of cells with successful transduction of the barcodes. The barcodes were stably expressed in both 

cell populations over the course of 4 weeks of our experiments, with >95% of cells expressing 

RFP that was detectable by flow cytometry.  

  

2.2.10. In-vitro AML relapse model 

 

MOLM-13 and MV4-11 cells were plated to a concentration of 150,000 cells/mL in T25 flasks. 

Cells were treated with Ara-C for two days, at which point media without Ara-C was added to the 

culture. The lowest doses that induced ‘in-vitro remission’, defined by the absence of trypan blue-

negative cells after three observations, were found to be 100 nM for MOLM-13 and 250 nM for 

MV4-11. Immediately after the induction of ‘in-vitro remission’, we performed flow cytometry 

and quantified the number of viable cells. Using the forward scatter/size scatter gating strategy, 

we found a median of ~300 cells/mL (i.e., ~0.2% viability). To detect regeneration, 200 µL of the 

cell culture was removed for trypan blue cell counting every two days, and the cell culture was 

replenished with 200 µL of fresh culture media. Once the cell density reached the same level as 

the original density (labeled as ‘IR’), cell culture was split in half and topped up with fresh culture 

media every two days. 
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2.2.11. Patient samples    

 

Nine initially diagnostic and nine relapsed AML bone marrow aspirates stored in liquid nitrogen 

were retrieved retrospectively from the University of Alberta Hospital. Formalin-fixed/paraffin-

embedded bone marrow clot sections representing the initially diagnostic sample as well as the 

relapse samples from one FLT3-mutated AML patient was also retrieved retrospectively from the 

University of Alberta Hospital. The use of these patient samples was approved by the Health 

Research Ethics Board of Alberta (HREBA.CC-21-0253). 

  

2.2.12. Immunohistochemistry 

 

After deparaffinization and rehydration of the tissue, antigen retrieval was performed using an 

EDTA buffer (Sigma-Aldrich). Slides were incubated overnight at 4°C with an anti-Myc antibody 

(abcam). Sections were blocked with 3% hydrogen peroxide and were then incubated with Dako 

EnVision+ System HRP Labelled Polymer secondary antibody (Agilent, Santa Clara, CA, USA) 

at room temperature for one hour. Dako DAB+ Chromagen (Agilent) was used to develop the 

sections. Antigen retrieval was then repeated using citrate buffer (Sigma-Aldrich). Sections were 

incubated with anti-myeloperoxidase antibody (Invitrogen) overnight at 4°C. After secondary 

antibody incubation with Dako EnVision+ System HRP Labelled Polymer, slides were developed 

with AEC peroxidase (Enzo Life Sciences, ENZ-43825, Farmingdale, NY, US). Slides were 

coverslipped with an aqueous mounting medium. To score slides, blasts were identified as being 

myeloperoxidase weak/negative and by their morphology. Areas with predominantly immature 

cells relatively devoid of erythroid cells were chosen for evaluation. Megakaryocytes were 

similarly excluded based on their morphology.  

  

2.2.13. Statistical analysis 

 

Statistical analyses were performed using GraphPad Prism 8 (Graphpad Software Inc. LaJolla, Ca, 

USA). P-values were calculated using two-tailed Student’s t-test. 
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2.3. Results 

 

2.3.1. SORE6 activity is expressed in a small subset of cells in two FLT3-mutated AML cell 

lines  

 

We first examined if MOLM-13 and MV4-11 carry any detectable SORE6 reporter activity. 

Following lentiviral transduction of the reporter into these two cell lines, we found that they both 

contained a small proportion of SORE6+ cells, with the expression of GFP being detectable by 

flow cytometry in 7% and 11% of cells, respectively (Figure 2.2a). Using a lentiviral vector 

carrying the red fluorescence protein gene, we found that the efficiency of lentiviral gene 

transduction for both cell lines was approximately 80% (results not shown). 

 

We then purified SORE6- and SORE6+ from both cell lines stably transduced with the SORE6 

reporter, as illustrated in Figure 2.2b. To confirm that the GFP-negativity in SORE6- cells was 

not due to insufficient SORE6 integration into the genome, we performed PCR using a SORE6 

primer set. As shown in Figure 2.2c, the SORE6 amplicons were readily detectable in both cell 

subsets. By performing flow cytometry every 2 weeks for a total of 8 weeks, we assessed the 

stability of SORE6 activity in both SORE6- and SORE6+ cells. We found that GFP expression was 

consistently negative in SORE6- cells from both cell lines, whereas SORE6+ cells derived from 

MOLM-13 and MV4-11 showed GFP expression in 80-95% and 75-85% of the cell population, 

respectively (Figure 2.2d). 
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Figure 2.2. SORE6 activity is expressed in a small subset of FLT3-mutated AML cell 

lines. (a) The SORE6 reporter was transduced into two FLT3-mutated AML cell lines 

(MOLM-13 and MV4-11). The percentage of cells positive for GFP was assessed by flow 

cytometry seven days after the transduction. Cells transduced with mCMV were used to 

establish the cut-off. (b) MOLM-13 cells transduced with SORE6 were sorted using flow 

cytometry to generate a SORE6- cell subset with 0.2% GFP and a SORE6+ cell subset with 

99.0% GFP. (c) PCR was performed to detect the level of SORE6 integration in 

untransduced MOLM-13 cells, MOLM-13 SORE6- cell subset and MOLM-13 SORE6+ 

cell subset. GAPDH was used as a loading control. Approximately equal levels of SORE6 

amplicons were detectable in SORE6- and SORE6+ cell subsets, but not in untransduced 

cells. (d) Percentage of SORE6+ cells measured by flow cytometry analysis of GFP in 

SORE6- and SORE6+ subsets in MOLM-13 and MV4-11 cells. GFP was analyzed over a 

period of 8 weeks, starting at one week post transfection. Cells transfected with mCMV 

were used as a control. 

 

2.3.2. SORE6+ cells have more CSL characteristics than SORE6- cells 

 

To compare SORE6- and SORE6+ cells phenotypically, these cell subsets were subjected to the 

hanging drop assay (19). As shown in Figure 2.3a, SORE6+ cells derived from MV4-11 formed a 

significantly higher number of spheroids compared to their SORE6- counterparts (80.3% versus 

37.3%, p<.001). Similar findings were observed for these two cell subsets derived from MOLM-

13 (71.7% versus 31.7%, p=.006).  

 

We next examined whether the SORE6-positivity in these two AML cell lines correlates with other 

CSL features such as chemoresistance. As illustrated in Figure 2.3b, when cells were exposed to 

increasing dosages of Ara-C in the presence of only 5% growth-supporting serum, SORE6+ cells 

showed significantly higher IC50 (i.e. inhibitory concentration at 50%) than SORE6- cells. 

Specifically, the IC50 of SORE6- cells derived from MV4-11 cells was 27.9 nM, as compared to 

119.7 nM for SORE6+ cells (p<.001). The IC50 of SORE6- cells derived from MOLM-13 was 

32.0 nM, as compared to 87.3 nM for SORE6+ cells (p<.0001).  

 



 

 

82 

 

Figure 2.3. SORE6+ cells have more cancer stem-like features. (a) Percentage of 

spheroids formed from the hanging drop assay in MV4-11 SORE6- and SORE6+ cell 

subsets. Drops were counted as a spheroid (well-defined, tightly packed, spherical cell 

mass) or a non-spheroid (irregularly shaped, loosely bound cell clumps). Results shown 

are based on three independent experiments; 15 drops were imaged in each experiment. (b) 

Cell viabilities of SORE6- and SORE6+ cell subsets derived from MV4-11 cell line treated 

with increasing doses of Ara-C for 24 hours. Cell viability assays were performed in 

triplicates (Trypan Blue). Results shown as mean ± standard deviation. * p < 0.05, ** p < 

0.01, *** p < 0.001, Student’s t test.  

 

2.3.3. SORE6+ cells are more resistant to low-dose Ara-C and Venetoclax (LDAC+Ven) 

compared to SORE6- cells 

 

LDAC+Ven has recently been adopted to be a front-line therapy for elderly patients diagnosed 

with AML, including those with FLT3-mutated AML (20). As shown in Figure 2.4a, in the 

presence of a relatively low-dose of Ara-C, which was arbitrarily set as 50% below the IC50 dose 

level of the parental cell line stably transduced with SORE6 (i.e. 10 nM), SORE6+ were found to 

be significantly more resistant to Venetoclax than SORE6- cells (10.9 nM versus 3.7 nM, p=.006). 

To further explore this phenomenon, we employed western blots to examine the protein expression 

of Bcl-2, the target of Venetoclax, in the two cell subsets. As shown in Figure 2.4b, treatment of 

10 nM of Ara-C induced a dramatic decrease in the Bcl-2 protein level in SORE6+ but not SORE6- 



 

 

83 

cells. These findings suggest that the resistance of SORE6+ cells to LDAC+Ven may be related to 

the preferential downregulation of the Bcl-2 proteins by low-dose Ara-C in this cell subset.  

 

 

 Figure 2.4. SORE6+ cells are more resistant to Venetoclax + Low-Dose Ara-C. (a) Cell 

viabilities of MOLM-13 SORE6+ and SORE6- cells after treatment of different doses of 

Venetoclax (0, 5, 10 and 25 nM) in combination with low dose (10 nM) Ara-C for 24 hours. 

(b) Western blot of MOLM-13 SORE6+ and SORE6- cells after treatment with low dose 

(10 nM) Ara-C compared to DMSO for 24 hours. Data from three independent experiments 

are shown in the bar graph. 

 

2.3.4. SORE6 activity is Myc-dependent   

 

Since SORE6 was designed to detect the transcriptional activity of Sox2 and Oct4, we assessed 

their protein expression using western blots. In both AML cell lines, there was no/minimal Sox2 

and Oct4 detected compared to SupM2, a lymphoma cell line (Figure 2.5a). Myc, another 

embryonic stem cell protein, was readily detectable in both SORE6- as well as SORE6+ cells 

(Figure 2.5a). However, the Myc level was substantially higher in SORE6+ cells (Figure 2.5b). 

To test if Myc directly contributes to the relatively high SORE6 activity in SORE6+ cells, we 

inhibited Myc using shRNA. As shown in Figure 2.5c-d, shRNA inhibition of Myc in SORE6+ 

cells derived from MOLM-13 resulted in a dramatic reduction in the mean % of GFP+ cells from 
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72.1 to 18.7% (triplicate experiments, p<.0001). Likewise, pharmacological inhibition of Myc 

using 50 µM of 10058-F4 reduced the mean % of GFP+ cells after 24 hours from 95.4% to 58.6% 

(p=0.002) (Figure 2.5e-f). To directly show that Myc is capable of binding to the Sox2/Oct4 

promoter region of the SORE6 reporter, we performed a pull-down assay using the DNA-binding 

consensus sequence of SORE6 as the probe. As shown in Figure 2.5g, SORE6 binding by Myc 

was observed.  

 

We then asked if the phenotypic differences between the SORE6- and SORE6+ cells may also be 

attributed to differences in key cellular signaling pathways. Using western blots, we assessed the 

expression of phospho-ERK (Thr202/Tyr204), phospho-Akt (Ser473), and phospho-STAT5 

(pSTAT5) (Tyr694). Except for pSTAT5, we found no appreciable differences. The level of 

pSTAT5 was substantially higher in SORE6+ cells (Figure 2.5b). Since previous publications have 

shown that FLT3 can upregulate pSTAT5 when FLT3 is mutated (21), we compared the FLT3 

protein expression between the cell subsets, and we found that the FLT3 level was appreciably 

higher in SORE6+ cells. We then asked if FLT3 contributes to the SORE6 activity in SORE6+ 

cells. As shown in Figure 2.6a, pharmacological inhibition of FLT3 using 50 nM of Gilteritinib 

for 24 hours significantly decreased the % of SORE6+ cells (80.6% versus 17.9%, p<.0001). 

Interestingly, Gilteritinib treatment also substantially decreased the Myc protein level (Figure 

2.6b). The finding Gilteritinib decreased the Myc protein level suggests that FLT3 may contribute 

to SORE6 activity and cancer stemness by upregulating Myc. 
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Figure 2.5. Myc is a regulator of SORE6 activity. (a) Protein expression level of Sox2, 

Oct4 and Myc in SORE6- and SORE6+ subsets derived from MOLM-13 and MV4-11 at 

steady state, assessed by western blots. SupM2 cells were used as a positive control for 

Sox2 and Oct4. Myc/β-actin ratio was normalized to SORE6- subsets. (b) Western blot 

analysis of p-STAT5, FLT3 and Myc in MOLM-13 SORE6- and SORE6+ subsets. (c) Flow 

cytometry analysis of GFP after shMyc (red) in MOLM-13 SORE6- and SORE6+ cells, 

with empty vector (EV) (black) used as a negative control. (d) Western blot to confirm the 

efficacy of the inhibition of Myc by shRNA. (e) Flow cytometry analysis of GFP in 

SORE6- and SORE6+ cells after Myc pharmacological inhibitor (10058-F4) treatment for 

24 hours. Treatment with 10058-F4 (red) was compared to treatment with DMSO (black). 

(f) Western blot to confirm the efficacy of the inhibition of Myc by pharmacological 

inhibition with 10058-F4. (g) DNA pull-down of Myc using a biotin-labeled SORE6 probe. 

A mutant DNA probe was used as the negative control. 
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Figure 2.6. FLT3 may regulate SORE6 activity via Myc. (a) Flow cytometry analysis of 

GFP in MOLM-13 SORE6- and SORE6+ cells after treatment with 50 nM of Gilteritinib 

(in blue) for 24 hours compared to a DMSO control (in black). (b) Western blot analysis 

after increasing doses of Gilteritinib in MOLM-13 cells for 24 hours. Downregulation of 

pSTAT5 confirmed the efficacy of inhibition of FLT3. 

 

2.3.5. Generation of an in-vitro model to study AML relapses using SORE6-/SORE6+ cells 

 

In view of the hypothesis that CSL cells contribute to AML relapse and our finding that SORE6+ 

cells have CSL properties, we attempted to establish an in-vitro model to study AML relapse by 

using a mixture of SORE6-/SORE6+cells derived from the two FLT3-mutated AML cell lines. 

Purified SORE6- and SORE6+ cells derived from MOLM-13 or MV4-11 were pooled in a 9:1 ratio 

to approximate the ratio of these two cell subsets at the steady state. The SORE6-/SORE6+ cell 

mixture was treated with Ara-C to achieve the ‘in-vitro remission’ state, defined by the absence of 

trypan blue-negative cells after three observations. The minimal dose of Ara-C required to induce 

in-vitro remission in MOLM-13 and MV4-11 was 100 nM and 250 nM, respectively. Based on 

triplicate experiments using MV4-11 cells, in-vitro remission was achieved on day 2±1 of the 

experiment, and on day 12±2, viable cells (i.e. trypan blue-negative) were first detectable (Figure 

2.7a). On day 16±3 of the experiment, the number of cells reached the original number at the 

initiation of the experiments (labeled as in-vitro relapse (IR)). The endpoint of this experiment was 

arbitrarily set as 10 days after IR. 

 

If the hypothesis that CSL cells contribute to AML relapse is correct, we expect that SORE6+ cells 

are the predominant cell type in the regenerated cell population. Since there is a possibility that 

SORE6+ cells in the regeneration may originate from SORE6- cells (i.e. conversion due to cancer 

plasticity), we repeated the experiments using SORE6- and SORE6+ cells that had been separately 

molecularly barcoded. Triplicate experiments were performed using both AML cell lines and 

representative results from MV4-11 are demonstrated. As shown in Figure 2.7b, at IR, the mean 

SORE6+ cells measured by flow cytometry was 54.1±10.1%, compared to 13.0±4.7% before Ara-

C treatment. At the endpoint, the mean %SORE6+ was 68.0±3.0%. Then, using PCR to detect the 
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molecular barcodes, we assessed the ratio of the original SORE6-/SORE6+ cells present in the 

resurrected cell population. As shown in Figure 2.7c, band 2 (top band), which was used to label 

the original SORE6+ cells, was relatively weak compared to that of band 1 (lower band, original 

SORE6- cells) at the beginning of the experiment. In contrast, the band 2 was slightly stronger than 

band 1 at IR. Using densitometry, the mean band2:total band intensity (band1+band2) ratio at the 

beginning of the experiment was 0.19±0.02, compared to 0.72±0.08 at IR and 0.92±0.02 at the 

endpoint. As shown in Figure 2.7d, using flow cytometry, the SORE6+:total cell ratios at IR and 

endpoint were significantly lower than the band2:total band intensity ratios at these two time 

points, suggesting that a small subset of SORE6+ cells had converted/differentiated during this 

course of the experiment. Similar experiments were repeated using MOLM-13 cells, and similar 

results were obtained. 

 

We next asked if the resurrected cells at the endpoint possessed higher CSL features. Specifically, 

they are significantly more resistant to Ara-C compared to untreated SORE6+ cells (IC50 140.2 

versus 98.9 nM, p=.007). Regenerated cells at the endpoint also formed a significantly higher 

number of spheroids in the hanging drop assays compared to SORE6+ cells (88.3 versus 68.0%, 

p<.001). These results suggest that the regenerated cells had acquired a significantly higher CSL 

phenotype, despite the occurrence of conversion into SORE6- cells in a proportion of cells.  

  

2.3.6. A small number of viable cells is detectable during in-vitro remission 

 

In order to explain how cells could recover from a state of no detectable viable cells, we analyzed 

the number of viable cells during the ‘in-vitro remission stage’ using flow cytometry, a more 

sensitive quantification method compared to the trypan blue assay. Using a forward scatter/side 

scatter gating strategy to quantify viable cells, we counted the cell number two days after ‘zero-

viability’ was induced (day 4 of the experiment) and continued to perform flow cytometry every 

four days until viable cells were detectable by trypan blue. Two days after ‘zero-viability’ stage, 

showed a median of 206 viable cells/mL (i.e. 0.2% viability). Between day 4-12 of the experiment, 

the number of viable cells changed minimally, with a median of 206 to 521 cells/mL detected 

during this time frame, suggesting a period of limited cell proliferation (Figure 2.7e). However, 
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between day 12-16 of the experiment, the cell count increased from a median of 521 to 2092, 

which is more consistent with the doubling time of this cell line (i.e. 32-48 hours) (22, 23).   

 

 

 

Figure 2.7. Cells regenerated after Ara-C treatment are enriched with SORE6+ cells. 

(a) MV4-11 SORE6- and SORE6+ cells pooled to a ratio of 9:1 were treated with 250 nM 

of Ara-C for two days. Viable cells were detected 10 days after ‘in-vitro remission’ was 

achieved. After an additional four days, the number of viable cells returned to the original 
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number at the initiation of the experiments (i.e. in-vitro relapse (IR)). Cells were then split 

every 2 days, until being harvested 10 days after IR (i.e. endpoint). Cell viability assays 

were performed in triplicates and assessed by Trypan Blue. (b) Flow cytometry analysis of 

GFP assessing SORE6 activity in MV4-11 cells at pre-treatment, IR, and endpoint. (c) 

Relative proportion of PCR amplicons of band 1 (original SORE6-) and band 2 (original 

SORE6+) in MV4-11 cells at pre-treatment, IR, and endpoint. (d) Comparison of 

SORE6+:total cell ratio assessed by flow cytometry analysis and band2:total band intensity 

ratio by densitometry of PCR amplicons in cells at pre-treatment, IR, and endpoint. 

Triplicate experiments were performed. Results shown as mean±standard deviation. * p < 

0.05; Student’s t test. (e) Number of viable cells during in-vitro remission, quantified by 

a forward scatter/side scatter gating strategy. 

 

2.3.7. Relapsed patient samples have more stem-like cells than initially diagnosed samples 

 

Lastly, we aimed to collect evidence to support the importance of SORE6+ cells in clinical samples. 

Since Myc is a key driver of SORE6 activity, we used immunodetection of Myc as a surrogate 

marker for SORE6 activity. We examined Myc protein level by western blot in a panel of nine 

initially diagnosed and nine relapsed bone marrow specimens. We quantified the Myc expression 

with densitometry analysis and normalized the values to blast count. Overall, relapsed samples had 

a significantly higher level of Myc expression, with a 23-fold upregulation in mean Myc 

expression level in the relapsed panel compared to the initial diagnostic panel (p=.02). 

Additionally, immunostaining of Myc was performed on bone marrow clot sections from a patient 

with both initially diagnosed and relapsed samples. In order to minimize the inclusion of early 

myeloid precursors in the evaluation, we performed double immunostaining using Myc and 

myeloperoxidase, and strongly myeloperoxidase-positive cells were excluded from being counted 

as blasts. As illustrated in Figure 2.8, we found that Myc-positive blasts were significantly higher 

in the relapsed bone marrow sample.  

  



 

 

91 

 

Figure 2.8. Relapsed bone marrow samples have a higher percentage of Myc-positive 

cells compared to initially diagnosed bone marrow samples. Double immunostaining 

of Myc (brown) and myeloperoxidase (pink) was performed in paired initially diagnosed 

and relapsed AML bone marrow clot sections from the same patient. Blasts were identified 

by their morphology and as having weak/negative myeloperoxidase expression. Blasts 

were counted as either being Myc-positive (example circled in green) or Myc-negative 

(example circled in red). Examples of non-blast cells are circled in blue. For this patient, 

the mean % of Myc-positive blasts was 87.7% in the relapsed samples, as compared to 

49.2% Myc-positive blasts in the initially diagnosed sample (p<0.0001). 

 

2.4. Discussion 

 

Disease relapse poses one of the most important clinical challenges for treating AML patients. 

Concepts related to clonal evolution, senescence, and cancer stem cells/CSL cells have been 

postulated to be potentially important. Nonetheless, due to the paucity of study models, evidence 

supporting the relevance of these concepts is relatively scarce and circumstantial. Thus, one of our 

main research goals was to establish an in-vitro experimental model that mimics key characteristics 

of AML relapse. We have described our in-vitro model that is primarily based on the use of the 

SORE6 reporter to identify/purify CSL cells. The substantial duration and limited cell proliferation 

of the Ara-C-induced ‘in-vitro remission’ and the subsequent regeneration mimic disease 

remission and relapse of AML, respectively. The relatively high chemoresistance in the resurrected 
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cell population also mirrors the clinical observation that relapsed diseases are highly resistant to 

frontline chemotherapeutic agents such as Ara-C. This study model can be readily established in a 

conventional research laboratory, so long as SORE6-/SORE6+ cell subsets can be 

obtained/generated.  

 

The concept that the reporter activity of SORE6 correlates with cancer stemness has been 

demonstrated in a number of solid tumors and hematologic cancers (11, 15, 16, 24). Common 

themes of all published SORE6 studies are as follows: 1) only a minority of cells (~2-20%) in 

various cancer cell lines were identified as SORE6+ at the steady state and 2) SORE6+ cells carried 

more CSL features, including tumorigenicity and chemoresistance, compared to SORE6-cells. The 

design of SORE6 was built on the assumption that cancer stemness is associated with the 

transcriptional activity of two embryonic stem cell proteins, Sox2 and Oct4. This approach is in 

contrast with that used in most of the previously published studies on cancer stemness, which are 

based on the expression of specific cell-surface proteins carrying no known functional link to 

cancer stemness. Experimental inhibition of Sox2, Oct4 or Myc can lead to significant decreases 

to the CSL phenotypes in cancer cells (10, 11, 25, 26). To our knowledge, this current study 

represents the first to use the SORE6 reporter to study AML. Our finding that SORE6 activity 

significantly correlated with cancer stemness are in line with those of other SORE6 studies. In 

contrast with a few other SORE6 studies, we found that Myc, rather than Sox2 or Oct4, is the key 

regulator of the SORE6 reporter activity in FLT3-mutated AML cells. Similar findings were 

observed in a study examining triple negative breast cancer using a molecular reporter similar to 

SORE6, called the SRR2 reporter, which detects the transcriptional activity of Sox2. In this study, 

16 different transcription factors, including Myc, were found to bind to the SRR2 consensus 

sequence (10). Thus, the redundancy of these consensus sequences may explain how SORE6 

activity is observed despite the lack of detectable Sox2/Oct4 expression in AML cells.  

 

Leveraging molecular barcoding, we directly addressed the question of whether CSL cells are 

major contributors of AML relapses. Analysis of the barcoded SORE6- and SORE6+ cells after 

resurrection led us to conclude that CSL cells are the major contributors to AML relapses. Firstly, 

while SORE6+ cells accounted for approximately 10% of the cell population at the beginning of 

the experiments, the proportion of original SORE6+ cells increased to approximately 70% and 90% 
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at IR and the endpoint, respectively. The progressive increase in the proportion of SORE6+ cells 

during the in-vitro relapse suggests that most SORE6- cells that emerged after the resurrection did 

not survive at the endpoint. Based on this observation, it is tempting to hypothesize that AML 

relapse may involve two distinct phases: 1) the initial emergence from the ‘in-vitro remission’ 

condition, and 2) a subsequent clonal expansion of cell clones that are primarily derivatives of 

SORE6+ cells. 

 

The term ‘cancer plasticity’ has been used to describe the ability of cancer cells to acquire stemness 

(27). One example is epithelial-mesenchymal transition (EMT), in which exposure of various 

insults to epithelial cells can change their morphology to that of mesenchymal cells, which is 

accompanied by an increase in chemoresistance and the aberrant expression of various embryonic 

stem cell proteins (28-30). Using a Sox2 reporter (i.e. SRR2), our group has previously 

demonstrated the acquisition of stemness in breast cancer and lymphoma cells exposed to oxidative 

stress (10, 31). We asked if cancer plasticity occurs in our AML model. If a substantial degree of 

cancer plasticity occurred, the %SORE6+cells (by flow cytometry) in the resurrected cell 

population should be appreciably higher than the % of cells derived from the original SORE6+ 

cells (by barcoding). Our finding that the derivatives of the original SORE6+ cells account for 

>90% at the endpoint (by barcoding) argues against the importance of cancer plasticity in this 

model. However, based on the observation that the %SORE6+ cells (GFP by flow cytometry) was 

less than the % of original SORE6+ cells (by barcoding), a small proportion of SORE6+ cells (15-

20%) may have differentiated.  

 

In conclusion, we described the establishment of an in-vitro model for AML relapse based on the 

SORE6-/SORE6+ dichotomy. This model has characteristics that mimic the clinical features of 

AML relapse. Using this model, we have provided evidence to support the importance of CSL 

cells in AML relapse. Further research using this model may facilitate the identification of cellular 

pathways and therapeutic targets for AML relapse. 
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Chapter 3  

The role of SORE6-positive cancer stem-like cells in 

acute myeloid leukemia relapse is dependent on the 

type of therapeutic agent 
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3.1. Introduction 

 

Despite recent therapeutic advances, acute myeloid leukemia (AML) remains to carry a very poor 

clinical outcome. One of the major factors contributing to this poor outcome is disease relapse, 

which affects approximately two thirds of AML patients who achieve complete remission (1). 

Treatment options for patients who experience relapse are limited; the median survival time after 

relapse is only ~6 months (2). In order to develop more effective treatments for AML relapse, an 

improved understanding of its biological basis is of paramount importance.  

 

While the mechanisms underlying AML relapse are not well understood, several theories have 

been postulated and described in the literature. The clonal evolution model based on the Darwinian 

concept of ‘survival-of-the-fittest’ is one of the first models proposed. In this model, subclones of 

cancer cells are believed to acquire additional mutations which provide them with advantages in 

surviving the harsh environment imposed by the induction/consolidation chemotherapy; these 

subclones will then expand and eventually contribute to clinically evident disease relapse (3). 

Another model is based on the assumption that subsets of cancer cells are equipped with the ability 

to enter a reversible senescence-like state during the induction/consolidation chemotherapy, which 

typically targets the rapidly proliferating cells; after a period of dormancy, these cells escape from 

this senescence-like state, enter a proliferative phase which forms the basis of disease relapse (4). 

The cancer stem cell (CSC) model hypothesizes that CSCs, a rare subset of the tumor population 

carrying higher chemoresistance and tumor initiating capabilities, are the major contributors to 

AML relapse. Leveraging their superior chemoresistance, these cells are believed to survive the 

initial chemotherapy, and subsequently remain undetectable at complete remission due to their 

rarity. Eventually, these cells use their tumorigenic abilities to expand and result in relapse.  

 

There is accumulating evidence supporting the CSC model in AML. In one study, CSCs, defined 

by their high tumorigenicity detectable in an in-vivo limiting dilution assay, were found to be 

significantly higher in frequency in relapsed bone marrow patient samples as compared to the pre-

treatment bone marrow patient samples (5). In another study, AML with higher expressions of 

CSC-associated genes in the pre-treatment bone marrow specimens had a significantly higher 

likelihood to experience disease relapse (6). Nonetheless, there is also evidence AML relapse may 
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result from expansion of bulk cells rather than CSC. Specifically, in a study where paired initially 

diagnostic and relapsed bone marrow samples were examined by using whole genome sequencing 

and digital droplet PCR, the authors found cases in which relapsed samples stemmed from bulk 

cells which had acquired a gene expression pattern similar to that of CSCs (7).  

 

One possible explanation for the conflicting evidence of both bulk and CSC cells expansion at 

relapse is related to the use of different treatment regimens. While multi-drug chemotherapy is the 

standard frontline treatment for AML, consisting of a 7-day course of Ara-C with 3 days of an 

anthracycline (8), a number of alternative treatments have been developed. These treatments are 

generally less harsh to the patient and have been designed to target specific molecular 

abnormalities or used to treat patients that are unfit for intensive chemotherapy. While CSCs are 

generally shown to be more drug resistant, some of these therapies have been found to 

preferentially target CSCs. For example, treatment with the hypomethylating agent, azacitidine 

(AZA) in combination with a Bcl-2 inhibitor, Venetoclax (Ven), which is currently being used to 

treat AML patients unfit for intensive chemotherapy, has been found to more effectively eradicate 

CSCs over bulk cells by targeting metabolic pathways, such as the oxidative phosphorylation 

pathway, that are preferentially used by CSCs (9-11). This evidence supports the concept that 

relapse patterns may be affected by the type of treatment. However, this concept could not be 

directly tested, in part due to the lack of experimental models for AML relapse.      

 

To further study the biology of AML relapse, I have recently generated an in-vitro model in which 

expansion of the cancer stem-like (CSL) cells characterized by SORE6 reporter activity was found 

to be the primary contributor to the in-vitro relapse (IR) in AML cell lines treated with cytarabine 

(Ara-C). Using this in-vitro model, I tested if the expansion of CSL cells is a universal phenomenon 

when different doses and types of chemotherapeutic agent are used. 
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3.2. Materials and Methods 

 

3.2.1. Generation of SORE6- and SORE6+ cell subsets and cell culture  

 

SORE6- and SORE6+ cell subsets were generated for two FLT3-mutated cell lines, MOLM-13 and 

MV4-11. Cell lines underwent lentiviral transduction with the SORE6-mCMVo-dsCop-GFP-

PURO (SORE6) reporter (National Cancer Institute, NIH, Bethesda, MD, USA) (12). SORE6 

activity, detectable by green fluorescent protein (GFP) expression, was assessed using flow 

cytometry. SORE6- and SORE6+ subsets were purified using a flow cytometric cell sorter (Sony 

MA900) based on their GFP expression. All cells transduced with the SORE6 reporter were 

cultured in RPMI media supplemented with 10% fetal bovine serum in the presence of 0.25 µg/mL 

puromycin. 

   

3.2.2. Antibodies and drug treatments  

 

Primary antibodies used in western blot studies included anti-MYC (Y69, #ab32072), purchased 

from Abcam (Cambridge, MA, USA), anti-β-actin (#sc-47778) from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA), anti-FLT3 (8F2, #3462), anti-p-STAT5 (Tyr694, #9359) and anti-ODC1 

(485, #ab193338) were purchased from Cell Signaling (Danvers, MA, USA). Venetoclax was 

gifted by Abbvie, and Azacitidine, Ara-C, and 10058-F4 were purchased from Selleckchem.  

 

3.2.3. In-vitro AML relapse model 

 

MOLM-13 and MV4-11 cells were plated to a concentration of 150,000 cells/mL in T25 flasks. 

Cells were treated with Ara-C for two days, at which point fresh medium without Ara-C was added 

to the culture in a 1:1 ratio. The lowest doses that induced ‘in-vitro remission’, defined by the 

absence of trypan blue-negative cells after three observations, were found to be 500 nM for 

MOLM-13 and 750 nM for MV4-11. To detect cell regeneration, 200 µL of the cell culture was 

removed for trypan blue cell counting every two days, and the cell culture was replenished with 
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200 µL of fresh culture media. The point at which viable cells were first detected was labelled as 

‘first viability (FV).’ Once the cell density reached the same level as the original density (labeled 

as ‘in-vitro relapse’ or ‘IR’), cells were harvested for analysis.  

  

3.2.4. Barcode labeling of SORE6 Sorted Cells 

 

The CloneTracker 4-barcode-plus cell labeling kit (Cellecta, Mountain View, CA, USA) was 

employed to track cell fate. Barcodes were transduced into purified SORE6+ and SORE6- cells by 

following the manufacturer’s protocol. For the remainder of this manuscript, the barcode used for 

SORE6- cells was named barcode #1, while that for SORE6+cells was labeled barcode #2. The 

unique sequence in each barcode was detectable by polymerase chain reaction and a set of primers 

supplied by Cellecta. Both barcodes also carried a red fluorescence protein gene to allow the 

identification of cells with successful transduction of the barcodes. The barcodes were stably 

expressed in both cell populations over the course of 4 weeks of our experiments, with >95% of 

cells expressing RFP that was detectable by flow cytometry.  

 

3.2.5. Polymerase chain reaction 

 

Genomic DNA extraction was performed using PureLink® Genomic DNA mini kit (Invitrogen, 

Waltham, MA, USA) based on the manufacturer’s protocol. PCR reactions to detect cell barcoding 

were performed using the CloneTracker 4-barcode-plus cell labeling kit (Cellecta) following the 

manufacturer’s protocol. Bands were visualized by gel electrophoresis with a 3% agarose gel.  

  

3.2.6. Western blot studies 

 

Cell pellets were lysed with RIPA buffer (MilliporeSigma, Burlington, MA, USA), with protease 

and phosphatase inhibitors (MilliporeSigma). Proteins were separated on a 10% polyacrylamide 

SDS-PAGE gel, transferred to a nitrocellulose membrane (GE Healthcare, Velizy-Villacoublay, 

France), and then incubated with primary antibodies. The membrane was then incubated with 
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horseradish peroxidase-conjugated secondary antibodies. Bands were visualized with an 

OdysseyⓇ Infrared Imaging System (LI-COR, Lincoln, NE, USA). 

 

3.2.7. Metabolomic analysis 

 

Metabolomic analysis was performed at the Metabolomics Innovation Centre, U of Alberta. Cells 

were pelleted and flash frozen using liquid nitrogen. Metabolites were extracted using ceramic 

beads and methanol to homogenize samples. Samples were then centrifuged, and the solvent was 

isolated and dried to yield sample extracts. Samples were split into two aliquots, with one aliquot 

from each sample being pooled, and this pooled sample was used as the reference. Chemical 

isotope labelling was then performed, with the individual samples labelled with 12C2 and the pooled 

sample labelled with 13C2, using a Dansyl-labeling kit (Nova Medical Testing Inc., Edmonton, AB, 

Canada), as indicated by the manufacturer’s protocol. The 12C2 sample was mixed with the 13C2 

pooled sample and were then analyzed with LC-MS. Untargeted 1-channel (amine/phenol) 

analysis was performed using an Agilent 1290 LC and an Agilent 6546 Q-TOF mass spectrometer. 

The relative quantification of each metabolite was detected by comparing the 12C-peak from the 

individual samples with the 13C-peak from the reference. Metabolites were identified by comparing 

retention time and mass indicated by the peaks with two labelled metabolite libraries (CIL Library 

and LI Library).  

 

3.2.8. Glycomic analysis 

 

Barcoded phage plasmids ligated with lectins were generated by the Derda research group at the 

University of Alberta. 1 million phages were incubated with 1 million cells in order for lectins to 

bind to sialic acids on cell surfaces. Three separate lectin-phage conjugates were generated: 

carbohydrate-binding molecule (CBM), Siglec-7 and maltose-binding protein (MBP). MBP, a 

protein found on bacteria but not mammalian cells (13), was used as a negative control. Following 

binding, cell-phage mix was washed, and then RNase A and Proteinase K were added to the 

mixture. The mixture was centrifuged, and the supernatant containing the DNA product was 
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collected. The DNA product was amplified using qPCR, with the primers targeting the DNA 

barcode on the phage. Deep sequencing of the PCR product was performed at the Molecular 

Biology Service Unit, University of Alberta, using an Illumina NextSeq500 system.  

 

3.2.9. Patient samples 

 

22 initially diagnosed and 12 relapsed AML bone marrow aspirates that were stored in liquid 

nitrogen were collected retrospectively from the University of Alberta Hospital. The use of these 

patient samples was approved by the Health Research Ethics Board of Alberta (HREBA.CC-21-

0253_REN1; date of approval July 7, 2022). 

 

3.2.10. Statistical analysis 

 

Statistical analyses were performed using GraphPad Prism 8 (Graphpad Software Inc. LaJolla, Ca, 

USA). P-values were calculated using two-tailed Student’s t-test. 

 

 

3.3. Results 

 

3.3.1. Zero viability and in-vitro relapse induced by Ara-C, AZA and AZA+Ven 

 

Firstly, I established whether in-vitro remission followed by in-vitro relapse could be achieved 

using different therapeutic agents. Ara-C was the only therapeutic agent tested during my initial 

characterization of the in-vitro model (Chapter 2). For simplicity, the lowest dose of drugs needed 

to induce in-vitro remission, where no viable cells were detected, was labeled the ‘optimal dose’. 

As shown in Figure 3.1, 750 nM of Ara-C was found to be the optimal dose for MV4-11, which 

occurred on day 2. With this dosage, the first detectable viable cells, labelled as ‘first viability 

(FV)’, occurred on day 12±1 and the in-vitro relapse (IR) (i.e. when the number of relapsed cells 
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was equal to that at the beginning of experiments) was detected on day 18±2. This pattern is similar 

to that described in Chapter 2.  

 

The experiments were then repeated using AZA or AZA+Ven, two frontline regimens used 

primarily for AML patients who cannot tolerate Ara-C-based regimens due to old age or comorbid 

conditions. These regimens were compared in a recent large clinical trial, and AZA+Ven was 

found to be superior to AZA, with the overall survival being longer with the combination treatment 

(14.7 versus 9.6 months, p<0.001) (14). Using the in-vitro model, the optimal dose for AZA was 

found to be 10 µM, and that of Ven was 25 nM. Using the same dosing strategy used in the clinical 

trial (14), the AZA+Ven treatment consists of the optimal dose of AZA and that of Ven (i.e. 10 

µM of AZA and 25 nM of Ven). As shown in Figure 3.1, MV4-11 cells treated with 10 µM of 

AZA or 25 nM of Ven, in-vitro remission was consistently achieved on day 2; FV was detectable 

on day 7±1 for both drugs, and IR was reached on day 13±1 and day 20±2, respectively. No FV 

was observed in cells treated with the optimal dose of AZA+Ven on day 30, the experimental 

endpoint. These findings correlate with the conclusion from the clinical trial that AZA+Ven 

showed significantly higher clinical efficacy (14).  

 

Given that FLT3-inhibitors are used to treat FLT3-mutated AML, I also tested one of the FLT3 

inhibitors (i.e. Gilteritinib) in the in-vitro model. MV4-11 cells were treated with 20, 40 and 60 

nM of Gilteritinib. As shown in Figure 3.2, 20 nM of Gilteritinib was insufficient in inducing in-

vitro remission. While 40 and 60 nM of Gilteritinib did induce in-vitro remission, FV was not 

observed on day 30. Gilteritinib treatment was not further studied since in-vitro relapse did not 

occur.  
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Figure 3.1. In-vitro relapse model using four different treatments. MV4-11 SORE6- 

and SORE6+ cells pooled to a ratio of 9:1 were treated with 10 M AZA, 25 nM 

Venetoclax, 10 M AZA with 25 nM Venetoclax, or 750 nM of Ara-C, for two days. All 

4 treatments induced “in-vitro remission” on day 2 of the experiment, where no viable cells 

were detected. Viable cells were counted every two days using Trypan Blue. The red arrow 

shows the point where viable cells were first detected after treatment, labelled as ‘FV’, for 

the Ara-C condition. The first measurement that reaches or exceeds the original cell 

number at the initiation of the experiments was labelled as ‘IR’ (blue arrow), at which point 

cells were no longer counted. Cell viability assays were performed in triplicates and 

assessed by trypan blue.  
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Figure 3.2. In-vitro relapse model with Gilteritinib. MV4-11 SORE6- and SORE6+ cells were 

mixed to a proportion of 9:1 and treated with 20 nM, 40 nM, and 60 nM Gilteritinib for 2 days. 20 

nM was not sufficient to induce zero viability. 40 nM and 60 nM of Gilteritinib resulted in zero 

viability after two days, but no viable cells were detected at the end of the experiment. 

 

3.3.2. Characteristics of IR when suboptimal drug doses are used 

 

In addition to examining whether the use of different therapeutic agents would affect the 

contribution of SORE6+ cells to in-vitro relapse, I also examined whether exposing cells to 

suboptimal doses would affect the role of SORE6+ cells to in-vitro relapse. A range of suboptimal 

doses were tested for each of the four treatment regimens used in section 3.3.1. The in-vitro relapse 

patterns for suboptimal doses are summarized as followed:   

 

a) Ara-C (Figure 3.3a), five suboptimal doses (675, 563, 375, 188 and 94 nM, representing 10%, 

25%, 50%, 75% and 82.5% reduction, respectively) of Ara-C were used, in addition to the optimal 

dose of 750 nM). IR was reached earlier in a dose-dependent manner (i.e. day 11±1 at 94 nM of 

Ara-C, day 13±1 at 188 nM of Ara-C, day 17±2 at 375 and 563 nM of Ara-C). Both 750 and 675 

nM doses reached the IR on day 18±2.  
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b) AZA (Figure 3.3b): three doses (9, 7.5 and 5 µM, representing 10%, 25% and 50% reduction 

of the optimal dose) of AZA were tested, in addition to the optimal dose of 10 µM. In contrast 

with Ara-C, the days IR was reached were not appreciably different among these suboptimal doses 

(i.e. day 13±1 for 10 µM, day 13±2 for 9 µM, and day 11±1 for both 7.5 and 5 µM).  

 

c) AZA+Ven (Figure 3.3c): Mild reduction of the dosage (i.e. 9 µM of AZA + 23 nM of Ven, 

10% reduction) did not result in any appreciable degree of expansion; no viable cells were detected 

at the end of the experiment (day 30). Moderate reduction of the dosage (8 µM AZA + 19 nM Ven, 

25% reduction) resulted in FV on day 19±3 and IR was reached relatively late (i.e. day 24±3). 

Reduction of dosages at 50% (5 µM of AZA and 12.5 nM of Ven) led to FV on day 14±2 and IR 

was reached on day 19±3.  

 

d) Ven alone (Figure 3.3d): The results of Ven alone are included for completeness. Similar to 

Ara-C, IR was reached earlier in a dose-dependent manner, with IR being reached on day 20±2 

with 25 nM Ven (optimal dose), day 17±1 with 23 and 19 nM Ven (10% and 25% dose reduction), 

and day 15±1 with 13 nM Ven (50% dose reduction).  

 

In summary, graded dose reductions of the four treatments led to different patterns of the in-vitro 

relapse model. In the following section, these patterns are correlated with the presence/absence of 

CSL expansion.    
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Figure 3.3. In-vitro relapse with suboptimal doses of the four treatments. Barcoded 

MV4-11 SORE6- and SORE6+ cells mixed to a ratio of 9:1 were treated with (a) 750, 675, 

563, 375, 188 and 94 nM Ara-C, (b) 10, 9, 8, 5 µM AZA, (c) 25+10, 23+9, 19+8 and 13+5 

nM Ven+M AZA, and (d) 25, 23, 19, 13 nM Ven for two days. Viable cells were counted 

every two days using trypan blue. Gray dotted lines depict number of viable cells required 

for IR to be attained. Optimal doses are boxed.  

 

3.3.3. The importance of CSL cell expansion varies with different chemotherapeutic agents  

 

In Chapter 2, I tracked the relative contribution of SORE6- and SORE6+ cells during IR using 

molecular barcoding. To assess if there was a SORE6-/SORE6+ conversion, flow cytometry to 

assess GFP expression (i.e. the readout of the SORE6 reporter) was employed. Using this 

experimental approach, the relative contribution of the SORE6⁺ CSL cells in IR and whether 

SORE6-/SORE6+ conversion occurred was assessed for the graded doses of different treatments. 

At the beginning of the experiments, purified SORE6- and purified SORE6+ cells were mixed in a 

9:1 ratio, in order to mimic the ratio identified in unsorted cells. Results are summarized in Figure 

3.4a-d.  
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a) Ara-C (Figure 3.4a): IR cells treated with 750 nM of Ara-C were highly enriched in SORE6⁺ 

CSL cells at the expense of the SORE6⁻ bulk cells; this finding was consistent with the results 

illustrated in Chapter 2. Interestingly, IR cells treated with low doses of Ara-C were also enriched 

in SORE6⁺ CSL cells. By flow cytometry, most of the IR cells were GFP+. With the exception of 

the 675 nM dose, there was no significant difference in SORE6+ cells by flow cytometry and 

molecular barcoding, suggesting that in general, no substantial SORE6-/SORE6+ conversion or 

differentiation occurred.  

 

b) AZA (Figure 3.4b): By molecular barcoding, IR cells treated with 10 µM (optimal dose) of 

AZA were enriched in SORE6- bulk cells at the expense of the SORE6+ CSL cells. Specifically, 

compared to the pre-treatment sample, SORE6+ cells appeared to be preferentially suppressed at 

the optimal dose. IR cells treated with lower doses showed lesser degree of SORE6+ suppression 

compared to that of the optimal dose. In keeping with these findings, flow cytometry studies 

showed a mild but appreciable reduction of GFP+ cells compared to the pre-treatment sample. 

Comparing flow cytometry and molecular barcoding results also suggest that there was no 

significant SORE6-/SORE6+ phenotypic conversion. 

 

c) AZA+Ven (Figure 3.4c): IR cells treated with varying degrees of dose reduction showed the 

distinct loss of SORE6+ cells. Accordingly, most of the IR cells at IR were GFP- cells detectable 

by flow cytometry.  

 

d) Ven alone (Figure 3.4d): For completeness, the results of Ven alone are included. By flow 

cytometry, IR cells treated with varying degrees of dose reductions showed slightly higher 

proportions of GFP+ cells compared to that in the pre-treatment cell population. However, by 

molecular barcoding, the percentage of SORE6+ cells was significantly higher than the GFP+ cells, 

suggesting some degree of differentiation from SORE6+ to SORE6- cells. 
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Figure 3.4. The importance of CSL cell expansion variers with different 

chemotherapeutic agents. Barcoded MV4-11 SORE6- and SORE6+ cells mixed in a ratio 

of 9:1 were treated for two days with (a) 750, 675, 563, 375, 188 and 94 nM Ara-C, (b) 10, 

9, 8, 5 µM AZA, (c) 25+10, 23+9, 19+8 and 13+5 nM Ven+M AZA, and (d) 25, 23, 19, 

13 nM Ven. Cells that reached IR were subjected to barcoding and flow cytometry analysis. 

Relative proportion of PCR amplicons of barcode 1 (SORE6-) and barcode 2 (SORE6+) 

and flow cytometry analysis of GFP assessing SORE6 activity are shown. GFP and barcode 

2 percentages are summarized in the bar charts. Error bars show standard deviation; p-

value calculated using a student’s t-test, where *p<.05. 

 

3.3.4. Myc inhibition correlates with the contribution of SORE6+ CSL cells in IR 

 

As mentioned above, AZA+Ven is the most efficient in suppressing SORE6+ CSL cells. While 

AZA showed evidence of CSL suppression, this effect was not as complete as that of AZA+Ven 

(evidenced by both molecular barcoding and flow cytometry data). Ara-C and Ven showed less 

efficacy against CSL cells. 

 

Based on the results presented, I expected AZA+Ven (followed by AZA) to suppress the 

expression of Myc, which as shown in Chapter 2, is a driver of the SORE6 reporter activity and 

cancer stemness in these FLT3-mutated AML cells. As shown in Figure 3.5, treatment with 

AZA+Ven for 4 hours dramatically decreased the expression of Myc. In addition, the 

FLT3/pSTAT5 axis, which was found to upregulate Myc (15, 16), was also substantially 

downregulated. AZA partially downregulated Myc but exerted no appreciable effects on the 

FLT3/pSTAT5 axis. Ara-C and Ven showed no appreciable decrease in Myc or FLT3/pSTAT5.  
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Figure 3.5. Myc inhibition correlates with the contribution of SORE6+ CSL cells in 

IR. Protein expression level of FLT3, p-STAT5, Myc in MV4-11 SORE6+ cells treated 

with 10 M AZA, 25 nM Ven, 10 M AZA with 25 nM Ven, or 750 nM Ara-C for 4 hours. 

Densitometry analysis for each protein was normalized to -actin.  
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3.3.5. IR cells rich in SORE6+ cells have distinct biological signatures 

 

Using the in-vitro model, I have demonstrated that the cell regeneration during IR may involve the 

expansion of SORE6+ cells (as in the case of Ara-C) or the expansion of SORE6- cells (as in the 

case of AZA or suboptimal doses of AZA+Ven). To substantiate this dichotomy based on whether 

the expansion of SORE6+ cells is a dominant factor during IR, I sought additional correlations. 

 

 

a. Metabolomics data 

 

I hypothesize that the two different patterns of IR (i.e. with or without the expansion of SORE6+ 

cells) may correlate with distinct metabolic signatures. Since SORE6+ cells were most ‘preserved’ 

with the Ara-C treatment, I focused on initial large scale metabolomics profiling studies comparing 

IR cells and the pre-treatment cells in the Ara-C treatment group. Samples extracted from cells 

treated with the optimal dose for MOLM-13 (i.e. 500 nM of Ara-C) and for MV4-11 (i.e. 750 nM 

of Ara-C) were included, with the pre-treatment cells serving as the comparison. Four runs were 

carried out for each sample. A total of 21 statistically significant targets common to both cell lines 

were identified (Table 3.1). Among the targets showing the most significant differences, targets 

in the ornithine/spermine pathway (illustrated in Figure 3.6) stood out. Since ornithine 

decarboxylase (ODC) is the rate-limiting enzyme in this pathway (17), I then tested if a high ODC 

level is a surrogate marker for the expansion of SORE6+ CSL cells.  

 

As shown in Figure 3.7a, western blot studies to measure ODC showed that the levels of ODC 

generally correlated with whether the expansion of SORE6+ CSL cells was involved. Specifically, 

in cells treated with Ara-C, ODC was found to be highly expressed at IR at all tested doses. In 

contrast, in all other situations where the expansion of SORE6+ cells was not as prominent as Ara-

C, such as AZA, Ven and AZA+Ven (suboptimal dose), there was either a downregulation of ODC 

or no appreciable change compared to the pre-treatment condition. These findings are in support 

of the concept that AML relapses are biologically heterogeneous. My results suggest that the 

upregulation of ODC and the ODC/spermidine/spermine pathway may be a signature for IR 

involving the expansion of SORE6+ CSL cells. 
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 MOLM-13 MV4-11 

Compound 
Fold Change (IR/pre-

treatment) 

p-

value 

Fold Change (IR/pre-

treatment) 

p-

value 

Kynurenine 1.230 0.003 1.211 0.001 

Ornithine 2.916 0.000 2.507 0.000 

N(gamma)-

Acetyldiaminobutyric acid 
1.437 0.000 1.598 0.000 

Isomer 1 of DL-2-

Aminooctanoic acid 
1.851 0.002 1.294 0.000 

Isomer 1 of N(6)-Methyllysine 2.099 0.014 1.313 0.037 

Glutamyl-Valine 1.442 0.003 1.215 0.002 

Gamma-glutamyl-ornithine 1.338 0.009 1.548 0.009 

Xanthine 3.395 0.002 2.427 0.002 

Choline 1.323 0.000 1.734 0.000 

(R)-1-Aminopropan-2-ol 2.098 0.003 1.280 0.019 

5,10-Methylenetetrahydrofolic 

acid 
1.264 0.000 1.535 0.000 

4-Aminobutyraldehyde 2.458 0.001 2.412 0.000 

Spermine 3.516 0.023 1.521 0.007 

N-Formimino-L-glutamic acid 1.887 0.002 1.348 0.036 

Kynurenine 1.230 0.003 1.211 0.001 

Isomer 1 of 4,6-

Dihydroxyquinoline 
2.901 0.022 3.800 0.008 

3-Aminopropanal 1.205 0.040 1.219 0.027 
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5-Aminopentanal 1.947 0.001 1.341 0.000 

4-Chloro-L-lysine 5.471 0.001 2.256 0.000 

2-Amino-2-methyl-1,3-

propanediol 
2.418 0.002 2.366 0.000 

5-Hydroxydopamine 2.814 0.001 1.598 0.000 

 

Table 3.1. Metabolites upregulated in in-vitro relapse compared to pre-treatment 

cells. From a metabolomic analysis, these 21 targets were significantly higher in in-vitro 

relapse compared to pre-treatment samples in both MOLM-13 and MV4-11 cell lines. 

Metabolites highlighted in orange are part of the ornithine/putrescine/spermidine/spermine 

pathway.  

 

 

Figure 3.6. Diagram of the ornithine/putrescine/spermidine/spermine pathway.  

 

 

b) Glycomics data 

 

In addition to the metabolic studies, I examined the expression configurations of cell-surface sialic 

acids, as recognized by a panel of lectins, courtesy of Dr. Ratmir Derda’s laboratory (Department 

of Chemistry, U of Alberta). AML cells from pre-treatment and IR cells were tested. Details of the 
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method have been previously published (18). Briefly, engineered bacterial phages were ligated 

with various lectins, each of which recognizes specific configuration of sialic acids. The identity 

of each lectin can be detected by using DNA sequencing since each bacterial phage is engineered 

to carry a DNA barcode. Once lectins were bound by the sialic acids on the cell surface, cells were 

harvested, processed, and sent for DNA sequencing, and the abundance of various lectins bound 

on the cell surface can be accurately determined. A few recent publications have demonstrated the 

biological significance of alterations to sialic acid configurations. For instance, aberrant sialylation 

has been associated with cancer (19), and a recent paper has shown different sialic acid 

configurations in cancer stem cells compared to bulk cancer cells in breast cancer (20). 

 

IR MV4-11 cells treated with 750 nM of Ara-C, 10 µM of AZA and 25 nM of Ven were examined. 

As IR did not occur with cells treated with AZA+Ven, this arm was not included in this study. 

Two lectin-phage conjugates, CBM and Siglec-7, were employed in the analysis. Both lectins were 

normalized against MBP, a lectin serving as the internal control. 

 

Levels of CBM and Siglec-7 for each treatment condition are summarized in the heat map shown 

in Figure 3.7b. Compared to untreated cells, IR cells treated with Ara-C showed the most 

substantial reduction in binding in both CBM and Siglec-7, those treated with Ven showed 

moderate reduction in Siglec-7 and no change in CBM, and those treated with AZA showed slight 

reduction in both CBM and Siglec-7. This result provides further evidence that the characteristics 

of cells at IR differ based on treatment type. IR cells in the Ara-C condition showed the most 

reduction in binding, correlating with the highest proportion of SORE6+ cells at IR in this 

condition.  



 

 

118 
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Figure 3.7. IR cells after different treatments have distinct biological signatures. (a) 

Protein expression of ODC levels assessed by western blots in MV4-11 IR cells treated 

with Ara-C, AZA, Ven and AZA+Ven. (b) Heat map showing binding levels of CBM and 

Siglec-7 with sialic acids on cells treated with 25 nM Ven, 10 M AZA and 750 nM Ara-

C. All lectins are normalized to MBP, which serves as the internal control. 

 

3.3.6. A panel of relapsed patient samples had significantly higher levels of ODC compared 

to initially diagnosed specimens 

 

To provide clinical validation, we examined the expression level of ODC by western blot in a 

panel of 22 initially diagnosed and 12 relapsed AML bone marrow specimens. After normalizing 

the densitometry analysis to the blast count in the bone marrow, we categorized the samples as 

either ODC-high or ODC-low, where the cut-off was chosen as a natural separation between all 

samples. As shown in Figure 3.8, ODC expression was heterogenous in both groups, with 9/12 

(75.0%) relapsed samples and 7/22 (31.8%) initially diagnosed samples categorized as ODC-high; 

however, the panel of relapsed samples showed a significantly higher proportion of ODC-high 

samples compared to the initially diagnosed group (p=.03; Fisher’s exact test).  
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Figure 3.8. Relapsed AML bone marrow specimens showed higher ODC expression 

compared to initially diagnosed bone marrow specimens. Results from western blot 

studies and densitometry analysis of a panel of 22 initially diagnosed (11 shown above) 

and 12 relapsed specimens. The densitometry data of the ODC bands was normalized to 

the blast count.  

 

3.4. Discussion 

 

In this chapter, I addressed the question of whether expansion of the SORE6+ CSL cells is a 

consistent finding for AML relapse. Using my in-vitro relapse model, IR cells treated with the 

optimal and suboptimal doses of four therapeutic agents/regimens were correlated with the 

expansion of the SORE6+ CSL cell subset, traceable by molecular barcoding. The results generated 

are rather unexpected, since the expansion of SORE6+ cells is highly dependent on the type of 

therapeutic agents employed; dosages did not appear to be key factor in this regard. The results 

are summarized in Table 3.1. Of the four treatments tested, expansion of SORE6+ CSL cells was 

most pronounced with Ara-C. In contrast, the expansion of SORE6+ CSL cells during IR was less 

pronounced with Ven and was not observed with the other 2 treatments (AZA and AZA+Ven). 

Thus, IR appears to be biologically heterogeneous. In one scenario, IR is characterized by an 

expansion of SORE6+ CSL cells; in another scenario, IR is characterized by SORE6- cells. The 

former group also can be subdivided into two subgroups: the expansion of SORE6+ cells with (i.e. 

Ven) or without (i.e. Ara-C) the persistence of SORE6- cells.  

 

 

 

 

 

 

 

 



 

 

121 

 CSL 

expansion 

during IR 

IR pattern Suppression 

of Myc 

ODC 

expression  

COMMENT 

Ara-C Yes 

 

In-vitro remission 

reached when the 

optimal dose was 

used. 

 

IR reached earlier 

with suboptimal doses 

No  Increased SORE6- but not SORE6+ 

cells killed effectively, and 

this correlates with a lack of 

Myc inhibition by Ara-C.  

Ven Partial 

expansion 

of 

SORE6+ 

cells.  

In-vitro remission 

reached when the 

optimal dose was 

used. 

 

IR reached earlier 

with suboptimal doses 

No  Decreased Partial effects on both 

SORE6- and SORE6+ cells. 

There is evidence of SORE6- 

→ SORE6+ conversion 

during IR. 

 

AZA No 

 

In-vitro remission 

reached when the 

optimal dose was 

used. 

 

IR reached relatively 

early with all doses 

Weakly Decreased IR cells are mostly SORE6- 

cells. No evidence of 

expansion of SORE6+ cells 

during IR, suggesting that 

AZA inhibits SORE6+ better 

than SORE6- cells. 

AZA 

+Ven 

No 

 

 

In-vitro remission 

reached when the 

optimal and 

suboptimal doses 

were used. 

 

IR reached only when 

at least 25% reduction 

of the dose  

Strong 

suppression.  

FLT3 and 

STAT5 are 

also 

suppressed 

No change Excellent in suppressing 

SORE6+ CSL cells.  

 

 

 

Table 3.2 Summary of the inhibitory effect on SORE6- and SORE6+ by the four treatments     

 

 

The observation that CSL cell expansion is a prominent event during IR in the Ara-C group 

strongly suggests that Ara-C preferentially kills and/or severely damages the regenerative ability 

of the SORE6- bulk cells, whereas at least a subset of the SORE6+ CSL cells is relatively 

untouched. To explain this possibility, the mode of action of Ara-C was reviewed. Cytarabine is a 

pyrimidine analog. Specifically, once it is converted into the triphosphate form within the cell, it 
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competes with cytidine to be incorporated into DNA (21). Once incorporated into DNA, the sugar 

moiety of Ara-C hinders DNA replication. Thus, this drug targets cells in S phase the most. Based 

on the cancer stem cell model, CSL cells are a contributing factor to relapse by virtue of their 

ability to reduce proliferation and achieve quiescence, enhance their DNA repair, and increase 

removal of drugs and toxic chemicals such as reactive oxygen species (22). Thus, it is perceivable 

that CSL cells in my in-vitro study model go into a quiescence state during the time of in-vitro 

remission, which typically last for over 10 days after the elimination of detectable viable cells 

(assessed by trypan blue). Indeed, as shown in Chapter 2, using flow cytometry, the number of 

viable cells was assessed during the approximately 10 days of zero viability, where 200-500 viable 

cells/mL were found, and this cell number remained relatively stable throughout this time period. 

This observation is in keeping with the quiescence concept. 

 

Venetoclax, a Bcl-2 inhibitor, was proposed to treat AML partly because the anti-apoptotic protein 

Bcl-2 has been reported to be elevated in CSL cells in a few studies (23, 24). Nonetheless, in my 

in-vitro model, Venetoclax appears to have inhibitory effects on both SORE6- bulk cells and 

SORE6+ CSL cells, but it is not sufficiently potent in eradicating either of them, as both cell subsets 

were represented in the IR cell population. In view of the observation that SORE6+ cells were 

proportionally higher in IR than in the pre-treatment samples, a ‘partial’ SORE6+ cell expansion 

must have occurred. Another interesting observation is that there was evidence of SORE6+ to 

SORE6- conversion, since the % of GFP-positive cells remained to be approximately 30% while 

the proportions of SORE6+ cells were approximately 70% by barcoding (Figure 3.4d).  

 

AZA is designed to reverse epigenetic silencing of genes that otherwise can produce suppressors 

of leukemogenesis. It functions by being incorporated into RNA, hindering mRNA synthesis, and 

ultimately resulting in apoptosis (25). Since AZA targets an enzyme, the actual biochemical effects 

in individual cancer cells are variable, depending on the pre-treatment epigenetic landscape. 

Nonetheless, in one recent study using the multi-omics approach, the authors found that the cellular 

pathways most prominently impacted by AZA are shared by all 4 AML cell lines they examined, 

despite the observations that AZA induced diverse effects at the individual gene and protein level 

in these cell lines (26); these common effects are most common related to downregulation of 

metabolism and upregulation of immune defense. Since CSL cells have been shown to have 
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heightened metabolism, AZA may have inhibited SORE6+ CSL cells in my study model via 

downregulation of the metabolism.  

 

Based on the discussion thus far, it is perceivable that AZA+Ven carries better therapeutic efficacy 

than Ven or AZA alone, since the combination likely can kill or severely injure CSL cell in my 

model by attacking both the Bcl-2 and the metabolic pathway. This combination of targeting may 

have explained the effective eradication of SORE6+ CSL cells. The combination of these drugs 

also may have exerted additive or synergistic effects on the inhibition of SORE6- cells, and this 

may have explained the relatively long delay of the IR even at 25% reduction of the dosages.  

 

Probably one of the most interesting questions that evolves from this study is related to the nature 

of SORE6- cells responsible for IR in the AZA and AZA+Ven groups. I believe that there are at 

least two possibilities. In the first scenario, a very small subset of SORE6- cells carry stem-like 

features, which are driven by proteins that escape the detection of the SORE6 reporter. I suspect 

that the implicated proteins may be other proteins involved in the maintenance of stemness, which 

can be detected if appropriate reporters are introduced into these cells. To test this possibility, 

future studies may involve transduction of additional reporters into SORE6- cells, such as reporters 

for the Wnt canonical pathway. In another scenario, a very small subset of SORE6- cells quickly 

acquire stemness which provide them with the ability to withstand the high level of 

chemoresistance and enter/exit a state of dormancy, two key features of disease relapse. 

Comparative studies of SORE6- cells harvested at pre-treatment, immediately post-treatment, in-

vitro remission, and IR will shed light into this question.  

 

Lastly, I am rather surprised by the overall alignment among the pattern of IR, whether the 

expansion of SORE6+ CSL is involved, the efficiency of Myc inhibition, and the 

metabolomics/glycomics patterns in the 4 treatment groups. I believe that results from this study 

support the concepts that AML relapse is not a homogeneous disease, and it involves a number of 

relatively distinct molecular pathways. With further characterization, it might be possible that 

AML relapse is defined by the predominant metabolic pathways utilized for clonal expansion. 

These very metabolic pathways also might be directly or indirectly responsible for the other 
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distinctive phenotype displayed by the IR cells, such as their glycosylation patterns, which may in 

turn regulate their immune evasion. 
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ULK2 is a key pro-autophagy protein that contributes 

to the high chemoresistance and disease relapse in 

FLT3-mutated AML 
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4.1. Introduction 

 

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy carrying a 5-year 

overall survival rate of only 30% (1). Chemoresistance, which contributes to the development of 

refractory and relapsed diseases, remains to be a significant challenge in the treatment of AML 

patients. Refractory disease, typically defined by a failure to induce complete remission, occurs in 

approximately 30% of patients who are treated with a curative intent (2). Relapsed disease, 

typically defined by disease recurrence after a period of complete remission, occurs in 

approximately 50% of patients treated with a curative intent (3). The mechanisms underlying AML 

relapse remain to be elusive, partly due to a lack of appropriate in-vitro study models. Nonetheless, 

one of the hypotheses is that a very small proportion of treatment-resistant cells survive the initial 

chemotherapy, and after a period of remission, these cells provide the seeds for the return of full-

blown disease. Accumulating evidence has suggested that this small cell subset is enriched with 

cancer stem cells or cancer stem-like (CSL) cells. In this regard, a few prior studies have shown 

that CSL cells have significantly higher drug resistance compared to bulk cancer cells (4, 5). Our 

group has recently studied the role of CSL cells in AML relapse using the SORE6 reporter. We 

detected/purified a small subset of SORE6+ cells in two FLT3-mutated AML cell lines and found 

that SORE6+ cells have significantly higher CSL phenotype than the bulk SORE6- cells. 

Leveraging this SORE6-/SORE6+ dichotomy, we developed an in-vitro AML relapse model, in 

which Ara-C treatment could induce a stage of ‘in-vitro remission, where no viable cells could be 

identified using trypan blue, and this stage was eventually followed by regeneration of AML cells. 

Importantly, the regenerated cells were found to be enriched in SORE6+ cells, a finding that is 

supportive of the role of CSL cells in AML relapse (6).  

 

The mechanisms underlying the high chemoresistance in CSL cells are incompletely understood, 

although there have been several possibilities suggested, including the upregulation of transporters 

(e.g. MDR1) to export cytotoxic drugs (7) and that of anti-apoptotic proteins such as Bcl-2 (8). 

More recently, much attention was given to heightened macro-autophagy (hereafter referred to as 

“autophagy”) in CSL cells as a key mechanism of chemoresistance. Autophagy, a process whereby 

intracellular components are degraded and recycled, has been shown to be cytoprotective in cancer 

cells. There is also accumulating evidence that autophagy is closely linked to cancer stemness. 
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Specifically, a study using ovarian cancer cells showed that inhibition of autophagy using 

chloroquine or ATG5 knockout effectively decreased the CSL features, including spheroid 

formation, tumorigenicity, and the expression of stem cell markers Sox2, Nanog, and Oct4, in a 

small cell subset characterized by the CD188+CD44+ immunophenotype (9). Additionally, AML 

CSL cells, defined as CD34+/ROSlow, have been shown to have elevated autophagy compared to 

CD34+/ROShigh cells, and inhibition of autophagy in AML CSL cells resulted in decreased 

engraftment in mice (10). In another AML study, CSL cells, defined as CD34+CD38-, were shown 

to have heightened autophagy and increased chemoresistance upon treatment with JQ1, an 

epigenetic modifying agent proposed to treat AML (11). In view of the new evidence supporting 

a link between autophagy and AML CSL cells, we asked if autophagy contributes to the high 

chemoresistance in SORE6+ cells and the in-vitro relapse in our AML study model. If so, it might 

be possible to utilize our in-vitro model to decipher the molecular events underlying the heightened 

autophagic response in the SORE6+ CSL cells. 

 

In this study, we aimed to decipher the role of autophagy in the chemoresistance of CSL cells and 

‘in vitro relapse’, and to use our study model to explore the mechanisms underlying the autophagy-

mediated chemoresistance and ‘in vitro relapse’ of SORE6+ cells. We first determined that there 

is a significantly higher chemotherapy-induced autophagic response in SORE6+ cells, as compared 

to SORE6- cells. Using chloroquine, an autophagy inhibitor, we found evidence that the heightened 

autophagic response in SORE6+ cells directly contributes to their higher chemoresistance and their 

relatively efficient regeneration in our in-vitro model. Using an autophagy pathway-specific array, 

we then identified ULK2 as the key molecule underlying the enhanced autophagy response in 

SORE6+ cells. 

  

4.2. Materials and Methods 

4.2.1. Generation of SORE6- and SORE6+ cell subsets 

 

SORE6- and SORE6+ cell subsets were generated for two FLT3-mutated cell lines, MOLM-13 

(CVCL_2119; DSMZ, Braunschweig, Germany) and MV4-11 (CVCL_0064; ATCC, Manassas, 

VA, USA). Cell lines underwent lentiviral transduction with the SORE6-mCMVo-dsCop-GFP-
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PURO (SORE6) reporter (National Cancer Institute, NIH, Bethesda, MD, USA) [45]. SORE6 

activity, detectable by green fluorescent protein (GFP) expression, was assessed using flow 

cytometry. SORE6- and SORE6+ subsets were purified using a flow cytometric cell sorter (Sony 

MA900, Sony Biotechnology, San Jose, CA, USA) based on their GFP expression. All cells 

transduced with the SORE6 reporter were cultured in RPMI 1640 media supplemented with 10% 

fetal bovine serum in the presence of 0.25 µg/mL puromycin. 

  

4.2.2. Antibodies and drug treatments  

 

Primary antibodies used in western blot studies included anti-LC3B antibody (#L7543) from 

Sigma-Aldrich (Burlington, MA, USA), anti-MYC (Y69, #ab32072) from Abcam (Cambridge, 

MA, USA), anti-ULK1 (D8H5, #8054) from Cell Signaling Technology (Danvers, MA, USA), 

anti-ULK2 (#PA5-22173) from ThermoFisher Scientific (Waltham, MA, USA), and anti-β-actin 

(#sc-47778) from Santa Cruz Biotechnology (Santa Cruz, CA, USA). MRT68921 (#S7949), 

chloroquine (#S6999), and Ara-C (U-19920A, #S1648) were purchased from Selleckchem 

(Houston, TX, USA). IRDye 800CW goat anti-rabbit IgG (#926-32213, 1:40000) and anti-mouse 

IgG (#926-32212, 1:40000) were used as the secondary antibody (LI-COR Biosciences, Lincoln, 

NE, USA). 

  

4.2.3. Western blot 

 

Cell pellets were lysed with RIPA buffer (MilliporeSigma, Burlington, MA, USA), with protease 

and phosphatase inhibitors (MilliporeSigma). Proteins were separated on a 10-15% 

polyacrylamide SDS-PAGE gel, transferred to a nitrocellulose membrane (GE Healthcare, Velizy-

Villacoublay, France), and then incubated with primary antibodies. The membrane was then 

incubated with horseradish peroxidase-conjugated secondary antibodies. Bands were visualized 

with an OdysseyⓇ Infrared Imaging System (LI-COR, Lincoln, NE, USA). 
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4.2.4. Autophagy assay red detection kit  

 

Cells were incubated with autophagy probe dye (BioRad, Hercules, CA, USA) for 30 minutes at 

room temperature. The fluorescence from the dye was detected by flow cytometry using BD 

LSRFortessa X-20 (BD, Franklin Lakes, NJ, USA) as indicated by the manufacturer. 

  

4.2.5. Cell viability assay 

 

Cells were plated with a concentration of 250,000 cells/mL using media with 5% fetal bovine 

serum in 24-well plates. Cell viability was assessed using trypan blue exclusion. Viable cells, 

defined as trypan blue-negative cells, were counted by direct microscopic examination. IC50 was 

calculated by GraphPad Prism software (GraphPad Software, San Diego, CA, USA).  

  

4.2.6. RNA extraction and quantitative real-time polymerase chain reaction 

 

RNA was extracted from cell lines using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA, USA) 

as indicated by the manufacturer’s protocol. cDNA conversion of RNA was performed with the 

High Capacity cDNA Reverse Transcription Kit (Invitrogen, Waltham, MA, USA). Quantitative 

real-time polymerase chain reaction (qRT-PCR) was done using the Power SYBR™ Green Master 

Mix (ThermoFisher Scientific, Waltham, MA, USA) with the following primers: ULK1 F-5-

CCTCGCCAAGTCTCAGACGC-3 & R-5-CCCCACCGTTGCAGTACTCC-3; ULK2 F-5-

CTCCTCAGGTTCTCCAGTGC-3 & R-5-TTGGTGGGAGAAGTTCCAAG-3; GAPDH F-5-

GGAGCGAGATCCCTCCAAAAT-3 & R-5-GGCTGTTGTCATACTTCTCATGG-3. The PCR 

reactions were quantified using the QuantStudio™ 5 (ThermoFisher Scientific). Gene expression 

was normalized to GAPDH expression.  

  

4.2.7. Autophagy PCR array 

 

cDNA used for the autophagy array was generated as described above (Section 4.2.6). The RT2 

Profiler™ PCR Human Autophagy Array (PAHS-084Z, Qiagen, Germantown, MD, USA) was 
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employed as indicated by the manufacturer to analyze gene expression in 84 autophagy related 

genes.  

  

4.2.8. In-vitro AML relapse model  

 

We have generated an in-vitro model for disease relapses previously (6). Cells were plated to a 

concentration of 150,000 cells/mL and were treated with 500 nM Ara-C for two days, which 

induced ‘in-vitro remission,’ defined by the absence of trypan blue-negative cells. After two days 

of treatment, media without Ara-C was added to the culture. To detect regeneration, 200 µL of the 

cell culture was removed for trypan blue cell counting every two days, and the cell culture was 

replenished with 200 µL of fresh culture media. The end of the experiment was arbitrarily set as 

day 32, and if no viable cells were detected at this point, the cells were considered to be unable to 

regenerate.   

  

4.2.9. Patient samples 

 

Two bone marrow aspirates representing the initial diagnostic sample as well as the relapse 

samples from two FLT3-mutated AML patients were retrieved retrospectively from the University 

of Alberta Hospital. The use of these patient samples was approved by the Health Research Ethics 

Board of Alberta (HREBA.CC-21-0253_REN1; date of approval July 7, 2022). 

  

4.2.10. Statistical analysis 

 

Statistical analyses were performed using GraphPad Prism 8 (Graphpad Software Inc. La Jolla, 

Ca, USA). P-values were calculated using two-tailed Student’s t-test. 
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4.3. Results 

 
4.3.1. SORE6+ cells exhibited higher autophagy flux than SORE6- cells 

 

We recently found that purified SORE6+ cells derived from MOLM-13 and MV4-11, two AML 

cell lines carrying FLT3-ITD, displayed significantly higher CSL phenotype (such as resistance to 

Ara-C) compared to SORE6- cells (Chapter 2). Using SORE6-/SORE6+ cells derived from 

MOLM-13, the Ara-C inhibitory concentration at 50% (IC50) for SORE6+ cells was 172.9 nM, 

which is significantly higher than that of their SORE6- counterparts (61.0 nM, p<.0001) (Figure 

4.1a). Similar results were obtained when SORE6+/SORE6- cells derived from MV4-11 were used 

(61.8 versus 29.0 nM, p<.001).  

 

Since autophagy has been shown to contribute to chemoresistance in cancer cells, we asked 

whether the autophagic flux in SORE6+ cells is higher than that in SORE6- cells. To assess the 

autophagy response, we employed western blots to quantify the LC3-II:LC3:I protein ratio before 

and after Ara-C treatment. SORE6-/SORE6+ cells derived from MOLM-13 were used initially. In 

the presence of chloroquine, SORE6+ cells derived from MOLM-13 showed substantially higher 

accumulation of LC3-II than SORE6- cells. In a triplicate experiment, densitometric quantification 

of the LC3-II and LC3-I bands revealed that SORE6+ cells exhibited a mean of 2.1-fold increase 

in the LC3-II:LC3-I ratio upon treatment of 5 nM of Ara-C for 24 hours (p=.02), whereas the same 

treatment did not induce any significant change in SORE6- cells (Figure 4.1b). Similar results 

were obtained when 10 nM of Ara-C was used. To substantiate these observations, we also 

measured the autophagic response using a fluorescence signal-based assay. As shown in Figure 

4.1c, treatment with Ara-C at 5 or 10 nM induced significantly higher autophagy in SORE6+ cells 

compared to SORE6- cells. These experiments were then repeated by using SORE6-/SORE6+ cells 

derived from MV4-11, and similar results were obtained.  

 

4.3.2. Inhibition of autophagy sensitizes SORE6+ cells to Ara-C 

 

We then asked if autophagy directly contributes to the higher chemoresistance in SORE6+ cells. 

As shown in Figure 4.2a, addition of chloroquine significantly decreased the IC50 from 179.3 to 
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57.5 nM (p=.009). In contrast, chloroquine treatment did not significantly change the IC50 in 

SORE6- cells. Similar results were observed with SORE6-/SORE6+cells derived from MV4-11, 

with the Ara-C IC50 in SORE6+ cells decreasing from 65.1 to 14.6 nM when chloroquine was 

added (p<.0001), while no significant decrease in the IC50 of SORE6- cells was observed with the 

addition of chloroquine.  

 

 



 

 

135 

Figure 4.1. SORE6+ cells exhibited higher autophagic flux in response to Ara-C. (a) 

Cell viability of MOLM-13 SORE6- and SORE6+ cells after treatment with increasing 

doses of Ara-C for 24 hours. Cell viability was assessed using trypan blue and was 

performed in triplicates. (b) Western blots of LC3 in MOLM-13 SORE6- and SORE6+ cells 

after treatment with 0, 5, or 10 nM of Ara-C, with 10 µM of chloroquine for 24 hours. LC3-

II and LC3-I bands were quantified by densitometry analysis using ImageJ. Data from three 

independent experiments are shown in the bar graph. (c) Flow cytometric analysis of 

MOLM-13 SORE6- and SORE6+ cells subjected to the Autophagy Assay Red Detection 

Kit after treatment with 0, 5, or 10 nM of Ara-C for 24 hours. Data shown as mean ± 

standard deviation. P-value calculated using a student’s t-test, where *p<.05, **p<.01, 

***p< .001. 

 

4.3.3. Inhibition of autophagy prolongs time to in-vitro relapse 

 

We have recently generated an in-vitro model with features mimicking AML relapse (Chapter 2). 

Specifically, an ‘in-vitro remission’ state, defined by the absence of trypan blue-negative cells 

induced by the lowest dose of Ara-C on three independent observations, is followed by 

regeneration of AML cells (i.e. in-vitro relapse) after a period of time. In this model, the 

regenerated cells are highly enriched with SORE6+ cells, suggesting these CSL cells are the major 

contributors to the ‘in-vitro relapse’. Given our findings that autophagy protects SORE6+ cells 

from Ara-C treatment, we asked if autophagy contributes to the ‘in-vitro relapse’. As illustrated in 

Figure 4.2b, inhibition of autophagy using chloroquine significantly increased the duration of ‘in-

vitro remission’. Specifically, treatment with chloroquine in combination with Ara-C increased the 

time for cells to regenerate in a dose-dependent manner, i.e. reach pre-treatment levels of viability, 

from 14 days when treated with Ara-C alone to 18 days when treated with Ara-C combined with 

20 µM chloroquine and 28 days when treated with Ara-C combined with 50 µM chloroquine.  
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Figure 4.2. Inhibiting autophagy sensitizes SORE6+ cells to Ara-C treatment. (a) Cell 

viability of MOLM-13 SORE6- and SORE6+ cells subjected to increasing doses of Ara-C, 

with or without 10 µM of chloroquine, for 24 hours. Cell viability, assessed by trypan blue, 

was normalized to cells treated with DMSO, and three independent experiments were 

performed. Data reported as mean ± standard deviation. * denotes p<.05, ** p<.01, 

student’s t test. (b) Cell viability assessed by trypan blue in MV4-11 cells subjected to the 

in-vitro relapse model treated with 500 nM Ara-C alone, 20 or 50 µM CQ alone, or 

combination of Ara-C + 20 or 50 µM CQ. 

  

4.3.4. ULK2 is a key regulator of the autophagy flux in SORE6+ cells  

 

To decipher the molecular basis underlying the relatively high autophagy capacity of SORE6+ 

cells, we employed a commercially available oligonucleotide array that includes 84 autophagy-

related genes. We first identified the differential gene expression in both SORE6- and SORE6+ 
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cells before and after they were treated with 10 nM of Ara-C, a level with which we observed a 

substantial difference in the autophagy response between these two cell subsets. We then compared 

the gene lists from the two cell subsets. We found that ULK2 was the most differentially expressed 

gene between SORE6+ and SORE6- cells after Ara-C treatment, with 13.4-fold higher expression 

in Ara-C treated SORE6+compared to SORE6- cells. The full list of analyzed genes and fold up- 

and down-regulation between untreated and Ara-C treated subsets is shown in Table 4.1. 

 

In view of the known importance of ULK1, a homologue of ULK2, in the autophagy pathway (12), 

and our finding that ULK2 is the most differentially expressed gene between the two cell subsets 

treated with Ara-C, we focused the remainder of this study on ULK2. Firstly, we validated the 

upregulation of ULK2 induced by Ara-C using quantitative RT-PCR. Since ULK1 and ULK2 have 

been shown to have substantial structural similarities and functional redundancy, we included 

ULK1 for comparison. As shown in Figure 4.3a, after subjecting SORE6-/SORE6+ cells derived 

from MOLM-13 to 10 nM of Ara-C for 24 hours, ULK2 expression was found to be significantly 

higher in SORE6+ cells (mean = 5.3 fold, p=.02). In comparison, no significant change in ULK2 

expression was observed in SORE6- cells. The expression of ULK1 was also found to be 

significantly increased in SORE6+ cells, although the increment was relatively small (i.e. 2.1-fold) 

compared to that of ULK2 (i.e. 5.3-fold).  

 

We then performed western blot to analyze ULK1/2 protein expression in SORE6-/SORE6+ cells 

at steady state and after treatment with Ara-C. As shown in Figure 4.3b, ULK2 was substantially 

higher in SORE6+ cells at steady state, whereas no substantial differences were observed in ULK1. 

As illustrated in Figure 4.3c, we found that ULK2 was substantially upregulated in SORE6+ cells 

treated with 10 nM Ara-C. In contrast, ULK2 was not appreciably changed in SORE6- cells treated 

with Ara-C. Changes in ULK1 induced by Ara-C in both cell subsets were relatively minimal. 

Taken together, these findings have highlighted the Ara-C-induced upregulation of ULK2, but not 

ULK1, suggesting that ULK2 might be a key contributor to the preferentially robust autophagy 

response in SORE6+ cells. Similar experiments were performed in MV4-11 cells, and similar 

findings were made.  
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SORE6+/SORE6-  
No Ara-C 

SORE6+/SORE6-  
With 10 nM Ara-C 

Gene 
Fold Up- or Down-

Regulation Gene 
Fold Up- or Down-

Regulation 

ESR1 10.90 ULK2 13.90 

FAS 9.19 INS 9.03 

PTEN 9.08 SNCA 8.37 

SNCA 8.55 IFNG 7.89 

MAPK14 8.47 APP 7.61 

APP 8.07 TMEM74 7.20 

IFNG 7.26 DAPK1 5.03 

CTSS 6.83 TGM2 4.37 

ATG10 6.79 IGF1 3.42 

BNIP3 6.76 ESR1 3.41 

MAP1LC3B 6.73 ATG9B 3.15 

TMEM74 6.65 BNIP3 2.51 

AKT1 6.62 CTSS 2.44 

DAPK1 6.26 MAP1LC3A 2.25 

ULK2 5.67 ATG10 2.15 

INS 5.09 RAB24 2.14 

TGM2 5.04 PIK3R4 1.99 

CDKN2A 4.60 BAK1 1.87 

RAB24 4.19 HTT 1.76 

ATG9B 4.01 ATG16L2 1.69 

CTSB 3.90 CTSD 1.68 

MTOR 3.76 SQSTM1 1.67 

GABARAPL2 3.51 NFKB1 1.60 

MAP1LC3A 3.28 HSPA8 1.56 

BAK1 3.26 EIF4G1 1.55 

PIK3R4 3.10 GABARAPL1 1.51 

MAPK8 3.02 DRAM1 1.48 

ATG7 2.89 AMBRA1 1.46 

HSP90AA1 2.35 UVRAG 1.46 

BID 2.32 MAPK14 1.46 

ATG4B 2.25 CTSB 1.45 

HSPA8 2.09 GAA 1.44 

IGF1 2.06 BCL2L1 1.43 

EIF4G1 2.04 RPS6KB1 1.42 

ATG12 1.99 TGFB1 1.42 

CASP8 1.98 NPC1 1.41 

ATG5 1.94 CASP8 1.41 
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EIF2AK3 1.87 IRGM 1.41 

AMBRA1 1.87 LAMP1 1.40 

BCL2L1 1.79 PIK3C3 1.40 

DRAM1 1.70 ATG4C 1.37 

RPS6KB1 1.65 PRKAA1 1.37 

GABARAPL1 1.63 HSP90AA1 1.36 

WIPI1 1.62 HDAC1 1.36 

PRKAA1 1.51 BECN1 1.35 

ATG16L1 1.51 ATG4B 1.34 

ATG16L2 1.50 ATG7 1.34 

PIK3C3 1.49 MAP1LC3B 1.34 

CASP3 1.49 PIK3CG 1.33 

PIK3CG 1.41 PTEN 1.33 

FADD 1.38 MTOR 1.32 

IRGM 1.37 ATG16L1 1.30 

NPC1 1.35 TP53 1.29 

ATG4D 1.33 ATG9A 1.29 

HTT 1.30 CLN3 1.28 

SQSTM1 1.30 EIF2AK3 1.26 

ATG3 1.28 FADD 1.25 

NFKB1 1.22 ATG5 1.25 

ATG4C 1.20 TNFSF10 1.24 

BECN1 1.17 HGS 1.22 

DRAM2 1.14 WIPI1 1.21 

GAA 1.14 GABARAPL2 1.20 

ATG4A 1.14 CASP3 1.20 

BAD 1.10 ATG12 1.19 

CXCR4 1.09 ATG4A 1.18 

TP53 1.08 ULK1 1.16 

UVRAG 1.08 HDAC6 1.14 

HDAC1 1.07 BID 1.13 

RB1 1.06 RB1 1.12 

HDAC6 1.01 MAPK8 1.07 

BAX -1.02 BCL2 1.07 

LAMP1 -1.03 AKT1 1.06 

ULK1 -1.08 CXCR4 1.06 

CLN3 -1.08 BAX 1.05 

CTSD -1.14 DRAM2 1.05 

ATG9A -1.15 ATG3 1.05 

TNFSF10 -1.21 BAD 1.02 

GABARAP -1.26 RGS19 1.01 
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CDKN1B -1.33 ATG4D -1.02 

BCL2 -1.35 CDKN1B -1.02 

TGFB1 -1.35 GABARAP -1.03 

HGS -1.36 TNF -1.42 

RGS19 -1.38 CDKN2A -1.46 

TNF -1.42 FAS -3.32 

 

Table 4.1. List of differential gene expression for all genes analyzed by the 

oligonucleotide array. The fold up- and down- regulation is indicated for MOLM-13 

SORE6+ compared to SORE6- cells, with and without Ara-C treatment.    
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Figure 4.3. ULK2 is significantly upregulated after Ara-C treatment in SORE6+ cells. 

(a) Gene expression level of ULK2 or ULK1 in MOLM-13 SORE6- and SORE6+ cells after 

Ara-C treatment for 24 hours, normalized to cells treated with DMSO. Data reported as 

mean ± standard deviation (triplicate experiments). * denotes p< 0.05, ** denotes p<.01, 

student’s t test. (b) Western blot analysis of ULK2 and ULK1 in MOLM-13 parental cells 

and SORE6- and SORE6+ cell subsets at steady state. (c) Western blot analysis of ULK2 

and ULK1 in MOLM-13 SORE6- and SORE6+ subsets after treatment with 10 nM Ara-C 

for 24 hours, as compared to DMSO treatment. Data from three independent experiments 

are shown in graph.  

 

4.3.5. ULK2 inhibition sensitizes SORE6+ cells to Ara-C treatment  

 

We further evaluated whether ULK2 plays a direct role in conferring the higher Ara-C resistance 

and autophagy flux in SORE6+ cells. ULK1/2 activity was inhibited by using the pharmacologic 

agent MRT68921 (13). As shown in Figure 4.4a, the expression of ULK2 was dramatically 

decreased by MRT68921 in a dose-dependent manner. As shown in Figure 4.4b, pharmacological 

inhibition of ULK2 in SORE6+ cells derived from MOLM-13 led to a significant reduction in their 

IC50 to Ara-C (194.0 to 88.0 nM, p=.003). In contrast, the same treatment did not significantly 

change the IC50 in SORE6- cells. 
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Figure 4.4. ULK1/2 inhibition sensitizes SORE6+ cells to Ara-C treatment. (a) Western 

blot analysis of ULK2, ULK1 and Myc in SORE6- and SORE6+ cells derived from 

MOLM-13 after treatment with 50-500 nM MRT68921 for 24 hours. (b) Cell viability of 

SORE6- and SORE6+ subsets derived from MOLM-13 after treatment with 0, 50, 100, 250 

or 500 nM Ara-C, either in the presence of 250 nM MRT68921 or DMSO, for 24 hours. 

Cell viability was normalized to the DMSO treatment group. Data is reported as mean ± 

standard deviation (triplicate experiments). *p<0.05, **p<0.01, student’s t test.  
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4.3.6. ULK2 and Myc form a positive feedback loop 

 

Since we recently found that the differential protein expression of Myc is a regulator of the 

phenotype of SORE6+ cells (Chapter 2) we asked if the expression level of ULK2 is regulated by 

Myc. As shown in Figure 4.5a, pharmacological inhibition of Myc with 10058-F4 resulted in an 

appreciable decrease in the protein expression of ULK2. These results may explain the preferential 

high expression of ULK2 in SORE6+ cells, since the high Myc protein level in these cells may 

directly contribute to the upregulation of ULK2. Similarly, knockdown of Myc using shRNA 

showed a dramatic decrease in ULK2 expression in SORE6+ cells (Figure 4.5b). 

 

As shown in Figure 4.4a, inhibition of ULK2 using MRT68921 substantially decreased Myc 

protein expression. In keeping with the concept that Myc is a key driver of the SORE6 activity in 

SORE6+ cells, inhibition of ULK2 activity using MRT68921 in SORE6+ cells showed a significant 

decrease in %SORE6+ cells in a dose-dependent manner, from 94.0±4.2 to 78.5±2.5% when 

treated with 100 nM, 55.2±2.8% when treated with 250 nM, 46.6±5.1% when treated with 500 

nM, and 41.3±1.8% when treated with 1000 nM (Figure 4.5c). Taken together, these results 

suggest that ULK2 and Myc form a positive feedback loop in FLT3-mutated AML cells. 
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Figure 4.5. ULK2 and Myc form a positive feedback loop. (a) Western blot analysis of 

Myc, ULK2 and ULK1 in MOLM-13 SORE6- and SORE6+ subsets after treatment with 

10-100 µM of 10058-F4 for 24 hours. (b) Western blot analysis of ULK2 and Myc in 

MOLM-13 SORE6+ cells transduced with shMyc or an empty vector (EV). (c) GFP levels, 

assessed by flow cytometry, of MOLM-13 SORE6+ cells treated with increasing doses of 

MRT68921 for 24 hours. 

 

4.3.7. ULK2 is critical for the regeneration of Ara-C treated cells   

 

In light of our evidence that ULK2 is a key regulator of autophagic-induced chemoresistance of 

SORE6+ cells, we asked if ULK2 plays an important role in the in-vitro relapse model. Firstly, we 
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examined the protein expression of ULK2 in MV4-11 regenerated cells. Cells pooled in a 9:1 ratio 

of SORE6-:SORE6+ subsets were subjected to Ara-C treatment. The cells achieved in-vitro relapse 

(IR) (i.e. achieved the same number of viable cells present at the start of the experiment) 14 days 

after reaching the ‘in-vitro remission’. As shown in Figure 4.6a, there was a substantial increase 

in ULK2 protein level in IR cells compared to cells collected pre-treatment, while no change was 

observed in ULK1.  

 

Since ULK2 was elevated in IR cells, we asked whether inhibition of ULK2 would impede IR. We 

repeated our in-vitro relapse model with the ULK1/2 inhibitor MRT68921 in addition to Ara-C 

treatment. This combination treatment prevented IR, and no viable cells were detected at the end 

of the experiment, which was arbitrarily set at 32 days after the start of the experiment. In 

comparison, cells treated with Ara-C alone or MRT68921 alone both reached a pre-treatment level 

of viability 16-20 days after the start of the experiment (Figure 4.6b). Similar results were 

observed in MOLM-13 cells.  

 

Given that ULK2 appears to be important in maintaining SORE6+ cells, but not SORE6- cells, we 

asked whether IR cells regenerated from MRT68921 treatment alone were enriched with SORE6- 

cells. As shown in Figure 4.6c, IR cells after MRT68921 treatment were composed entirely of 

SORE6- cells. In contrast, IR cells after Ara-C treatment were enriched with SORE6+ cells, 

consistent with our previous results. This finding may explain why IR was inhibited by combining 

MRT68921, as it targets the SORE6+ cell subset, which is the major culprit of relapse in our in-

vitro relapse model.  

  

4.3.8. Relapsed bone marrow samples express higher ULK2 compared with initially 

diagnosed specimens 

 

Given that a high expression of ULK2 was found to be important in the in-vitro relapse, we 

compared the expression of ULK2 in AML patient samples before treatment and at relapse. By 

western blot studies of bone marrow samples from the initially diagnosed and relapsed specimens 

from the same patient (n=2), we found that ULK2 was higher in the relapsed samples, after the 

normalization for the blast count was performed (Figure 4.7).  
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Figure 4.6. ULK2 contributes to the in-vitro relapse after Ara-C treatment. (a) 

Western blots of ULK1 and ULK2 in MV4-11 cells at in-vitro relapse (IR) after Ara-C 

treatment compared to cells at pre-treatment. Data from three independent experiments are 

shown in the bar graph. ULK2 and ULK1 expression were normalized to β-actin. * denotes 

p<.05, ** denotes p<.01, student’s t test. (b) Cell viability assessed by trypan blue in MV4-

11 cells subjected to the in-vitro relapse model treated with Ara-C alone, MRT68921 alone 

or combination of Ara-C + MRT68921. Three independent experiments were performed. 

(c) Flow cytometry analysis of GFP levels in IR cells from Ara-C treatment or MRT68921 

treatment, compared to cells at pre-treatment. 

 



 

 

147 

 

Figure 4.7. Relapsed AML bone marrow specimens showed higher ULK2 expression 

compared to initially diagnosed bone marrow specimens. Results from Western blot 

studies and densitometry analysis of two paired patient samples with both initially 

diagnosed and relapsed specimens. The densitometry data of the ULK2 bands were 

normalized to the blast count, and the fold-upregulation was calculated for each patient. 

 

4.4. Discussion 

 

Cancer stem cells and CSL cells are believed to be the major contributors to cancer relapse (14). 

Thus, it is highly important and relevant to understand how cancer stemness is regulated. In recent 

years, there is accumulating evidence that autophagy is one of the important mechanisms in 

promoting cancer stemness. In support of this concept, several published studies have shown that 

inhibition of autophagy in cancer stem/CSL cells can effectively attenuate their stemness. For 

instance, inhibition of autophagy in primary ovarian cancer cells using chloroquine or ATG5 

knockdown was shown to significantly decrease CSL features including spheroid formation, 

tumorigenicity and the expression of embryonic stem cell proteins (Sox2, Oct4 and Nanog) (9). 

Attenuation of CSL features resulting from autophagy blockade was also reported in pancreatic 

cancer and osteosarcoma model (15, 16). Results from our current study are also consistent with 



 

 

148 

the concept that autophagy is a key contributor to cancer stemness. Thus, inhibition of autophagy 

using chloroquine or the ULK1/2 inhibitor MRT68921 significantly decreased the 

chemoresistance to Ara-C in SORE6+ cells. The lack of a significant response in the SORE6- cell 

population to chloroquine and MRT68921 increases the specificity of our findings. 

 

Studies of cancer relapse have been highly challenging due to the relative paucity of in-vitro 

models and the difficulty in obtaining a sufficient number of cancer cells from patients during their 

remission. However, there has been evidence emerging from studies of AML that support the role 

of cancer stemness in relapse. For instance, one study showed a correlation between the cancer 

stem cell (CSC)-gene signature score of AML bone marrow specimens and relapse rate (17). 

Furthermore, several studies comparing initially diagnostic and relapsed bone marrow specimens 

have provided evidence that cancer stemness increases at relapse. Specifically, one study found 

that the percentage of CSCs, which were defined using an in-vivo limiting dilution assay, increased 

at relapse by 9- to 90- fold compared to diagnosis (18). Additionally, a study by Shlush et al. used 

whole genome sequencing of paired diagnosis and relapse blasts to track the origin of clones at 

relapse (19). Two major patterns of relapse were identified: one where the dominant relapse clone 

emerged from the CSC subset, and the other where relapse originated from bulk leukemic cells 

that carried a strong CSC-gene signature score. Although two different patterns of relapse 

emerged, both patterns highlighted the importance of stemness in this process. While these studies 

provide evidence that cancer stemness contributes to AML relapse, very little is known about the 

role of autophagy in AML relapse. However, there are a handful of studies on solid tumors 

providing correlational evidence to support the link between autophagy and cancer relapse. For 

instance, a high ULK1 protein expression detectable by immunohistochemistry in gastric 

carcinomas was found to significantly correlate with a high rate of disease relapse (20). Similarly, 

in a cohort of breast cancer patients, those with tumors carrying high ULK1 mRNA expression 

were found to have a significantly shorter relapse-free survival (21). Leveraging the SORE6-

/SORE6+ dichotomy, we have recently generated an in-vitro AML relapse model which mimics 

the disease clinically. As mentioned in the introduction, regeneration of AML cells (i.e. in-vitro 

relapse) was identified under certain circumstances after a period of chemotherapy-induced in-

vitro remission. Using molecular barcoding, we found that regenerated cells are enriched in 

SORE6+ cells at the expense of SORE6- cells. In this current study, by employing this in-vitro 
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model, we have provided evidence that pharmacologic inhibition of autophagy using chloroquine 

or ULK1/2 inhibitor can effectively inhibit in-vitro relapse. This finding also correlates well with 

our finding that the ULK2 inhibitor MRT68921 can potently inhibit the expression of Myc, shown 

to be the key driver of the SORE6 reporter and the associated CSL phenotype. Taken together, it 

appears that autophagy maintains the stemness in the cancer stem/CSL cells, which are the 

contributors of cancer relapse. Accordingly, inhibition of autophagy, which attenuates cancer 

stemness, inhibits cancer relapse.  

 

In our model, ULK2 but not ULK1 appears to contribute to the high autophagic flux in SORE6+ 

cells. In the literature, ULK2 has been ‘overshadowed’ by its homologue ULK1, as the former has 

not been extensively studied. Nonetheless, it is known that the structures of both ULK1 and ULK2 

are very similar, with a 98% query cover (22). Furthermore, both ULK1 and ULK2 contain a N-

terminal serine/threonine kinase domain and a C-terminal interacting domain. ULK1 and ULK2 

proteins also are known to have similar functions, as they are both capable of inducing autophagy 

by binding to Atg13 and FIP200 (22, 23), a process that can be inhibited by mTOR and increased 

by AMPK (24, 25). Accordingly, ULK1 and ULK2 are generally regarded as being functionally 

redundant, and evidence to support this redundancy has been shown in several studies. For 

instance, in mouse embryonic fibroblasts, disruption of autophagy occurred when both ULK1 and 

ULK2 were suppressed, but not when only either ULK1 or ULK2 was knocked out (26). Similarly, 

while ULK1/ULK2 double knockout mice die within one day after birth, single ULK1 or ULK2 

knockout mice had normal survival (27-29). However, results from a few studies suggests that 

ULK1 and ULK2 may have non-redundant functions. For example, ULK2, but not ULK1, interacts 

with p62 and WIPI2, and transcriptional regulators (23). Another study found distinct function of 

ULK1 and ULK2 in lipid metabolism, as knockdown of ULK1 inhibited fatty acid oxidation, while 

knockdown of ULK2 increased it (30). Results from our current study have provided additional 

evidence that ULK2 carries functions distinct from ULK1. Based on the structural differences in 

the C-terminal interacting domain between the two ULK1/2 proteins (i.e. 55.1% shared sequence) 

(22), one may speculate that the non-redundant functions are related to the differences in their 

binding partners. Since ULK2 expression was not increased in SORE6− cells in our study, we 

would not have observed the importance of ULK2 without using the SORE6−/SORE6+ dichotomy, 

highlighting the importance of incorporating the concept of intra-tumoral heterogeneity into our 
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study model. One of the limitations of our study is that we did not specifically inhibit ULK2, as 

MRT68921 inhibited both ULK1 and ULK2 expression. Specific inhibition of ULK2 and ULK1 

separately would produce more conclusive results that these two proteins act distinctly, and that 

the promotion of chemoresistance and in-vitro relapse is attributed to ULK2, rather than ULK1. 

However, since we found that the increase in expression after Ara-C treatment was exclusive to 

ULK2, and was not observed with ULK1, we believe this strongly supports that ULK1 and ULK2 

are distinct. 

 

In contrast with the ‘general’ autophagy inhibitors such as chloroquine and bafilomycin A1, 

MRT68921 was developed in 2015 as a more specific autophagy inhibitor which functions by 

targeting/suppressing the kinase activity of ULK1/2 proteins (13). Since MRT68921 was only 

developed relatively recently, clinical data about its therapeutic efficacy is not available. However, 

its potential therapeutic effects against cancers have been tested using in-vivo animal models. 

Specifically, mice xenografted with a gastric cancer cell line treated with MRT68921 had 

significantly lower tumor volume compared to DMSO treatment group (31). In view of the efficacy 

of chloroquine demonstrated in several clinical trials (32), we believe that MRT68921 holds 

promise as a useful anti-cancer agent, especially knowing that it can target CSL cells.  

 

To conclude, our findings support that enhanced autophagy contributes to chemoresistance in 

SORE6+ cells, which is not observed in SORE6- cells. This enhanced autophagy may contribute 

to AML relapse. ULK2 appears to be a key player in enhancing autophagy-mediated 

chemoresistance in SORE6+ cells and may contribute to cancer stemness and relapse. Given our 

findings, targeting autophagy may be useful in the treatment of AML patients and may hinder 

relapses.  
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This Discussion is divided into three sections. In Section 5.1, I put forward a hypothetical model 

of AML relapse by incorporating several key observations from my studies with relevant concepts 

found in the literature. I will present arguments in support of the validity and usefulness of my in-

vitro AML study model, with the acknowledgment that further validation is certainly warranted 

due to its intrinsic limitations. In Section 5.2, I will summarize my considerations regarding some 

of my experimental design and data interpretation, and by doing so, highlighting the potential 

pitfalls and weaknesses of my studies. Section 5.3 will include my suggestion of future studies.  

 

5.1. My postulated hypothetical model for AML relapse 

 

Despite the recent therapeutic advances for AML, disease relapse remains a significant clinical 

challenge and a major contributor of deaths in these patients. The main objective of my PhD studies 

is to extend our understanding of the biology of AML relapse, in the hope that this new knowledge 

can help design more effective therapeutic approaches for AML patients.   

 

I believe that any valid conceptual model for AML relapse needs to include plausible explanations 

for two key phenomena. The first phenomenon is related to the extremely low number of AML 

cells that survive the high intensity of induction/consolidation chemotherapy. The persistence of 

such a small cell population during clinical remission strongly suggests that these leukemic cells 

possess highly unique biological characteristics. The second phenomenon that needs to be 

addressed is related to the relatively long latency before relapse (i.e. clinical remission), a 

phenomenon that cannot be easily explained by mechanisms commonly used for refractory 

disease, such as the lack of drug receptors, the use of alternative cellular pathways to bypass the 

site of pharmacologic blockade, or an increase in the drug export out of the cells. The concept of 

CSC/CSL cells has provided reasonable explanations to both of these two phenomena. Perhaps 

this is the reason why the concept of CSC/CSL cells is one of most frequently cited mechanisms 

in the literature to explain cancer relapse (including AML relapse). Thus, my research focus is 

related to the role and biology of CSC/CSL cells in the context of AML relapse.  

 



 

 

156 

In the remainder of this section, I will state my 5 key observations described in Chapters 2-4. In 

the last paragraph of this section, I postulate a hypothetical model for AML relapse (illustrated in 

Figure 5.1) based on these key observations, with reference to the relevant concepts found in the 

literature. My new perspective of the definition of CSC/CSL cells also will be discussed. 

 

 

Observation #1 - the existence of two phenotypically and molecularly distinct cell subsets, 

SORE6- and SORE6+ cells 

 

It is logical to assume that the extremely low number of AML cells which survive 

induction/consolidation chemotherapy carry highly unique biological characteristics. As detailed 

in the Introduction, normal stem cells, including HSCs and embryonic stem cells (ESCs), possess 

many of these characteristics that are instrumental for survival and self-preservation in a highly 

hostile environment. In this regard, many published studies and reviews have highlighted these 

characteristics used by both normal stem cells and CSC/CSL cells, such as a superior ability of 

DNA repair as well as high levels of chemoresistance, tumorigenicity and autophagy (1-4). A 

handful of ‘master’ ESC proteins have been shown to maintain these stemness phenotypes in 

ESCs, and it is logical to assume that the same ESC proteins may play similar roles in CSC/CSL 

cells. This is the rationale behind the development of various reporters designed to detect the 

expression/transcriptional activity of these ‘master’ ESC proteins which include Myc, Sox2 and 

Oct4. Prior studies using these reporters applied to a variety of cancer cell types and experimental 

models have supported that this assumption is correct. Subsets of cancer cells, from both cell lines 

and primary patient samples, have been found to exhibit reporter activity, which correlates with 

high levels of stem-like features (5, 6). 

 

At the beginning of my PhD studies, these ESC reporters had not been used in leukemia research. 

Shortly into my studies, I was able to identify and purify small subsets of cells in two AML cell 

lines using the SORE6 reporter. The dichotomy of the SORE6-/SORE6+ cell subsets in the two 

AML cell lines represents one of the basic elements of my experiments. Since these cell subsets 

represent subclones of cells derived from the same cell lines, their phenotypic differences 

exemplify a distinct level of intra-tumoral heterogeneity.  
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I then collected evidence to support that SORE6- and SORE6+ cells are phenotypically and 

molecularly distinct based on several experimental approaches. As described in Chapter 2, these 

two subsets were found to display significant differences in chemoresistance and colony formation 

in the hanging drop assay. The expressions of Myc (an ESC protein), FLT3 and pSTAT5 were 

substantially higher in SORE6+ cells. I also found that these two cell subsets behave differently in 

response to Ara-C, as the anti-apoptotic protein Bcl-2 was effectively downregulated in SORE6+ 

but not SORE6- cells. As described in Chapter 4, SORE6- and SORE6+ cells are different in their 

autophagic flux in response to Ara-C, and this difference correlates with an upregulation of ULK2 

in SORE6+ but not SORE6- cells. Lastly, I have provided evidence that autophagy provides 

cytoprotective effects against Ara-C in SORE6+ but not SORE6- cells.  

 

My review of the literature shows that intra-tumoral heterogeneity has not been a consideration in 

most published studies of AML. Incorporating the concept of intra-tumoral heterogeneity in any 

study will undoubtedly create further complexity in the experimental design and data 

interpretation, and this may explain why this factor has not been widely incorporated in most 

studies. Nonetheless, I believe that intra-tumoral heterogeneity cannot be ignored, since it is highly 

likely that different therapeutic strategies are needed to kill subclones of AML cells carrying 

different biochemical and phenotypic characteristics.  

 

Observation #2 - both SORE6- and SORE6+ cells can contribute to AML relapse 

 

One of the most challenging aspects of my PhD studies is related to the definition of CSC/CSL 

cells. The use of the SORE6 reporter, and the pros and cons of this experimental strategy, will be 

further discussed in Section 5.2. Admittedly, there is no definitive proof that CSC/CSL cells have 

to be SORE6+ cells and not SORE6- cells. Nonetheless, I believe that the use of the SORE6-

/SORE6+ system did serve as a good starting point for my research.  

 

Leveraging molecular barcoding, I was able to track SORE6- and SORE6+ cells and determine 

their cell fate. Using the in-vitro relapse model, I found evidence that SORE6+ cells are the major 

contributor of in-vitro relapse when AML cells were treated with Ara-C (Chapter 2). These 
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findings are in alignment with my initial hypothesis that SORE6 reporter activity is a marker of 

CSC/CSL cells, which are believed to be the contributors of AML relapse. However, results 

described in Chapter 3 have prompted me to re-evaluate this hypothesis, because of the observation 

that SORE6- but not SORE6+ cells are the major contributors to the in-vitro relapse in AML cells 

treated with AZA and AZA+Ven. These findings suggest that subsets of SORE6- cells can behave 

like SORE6+ cells treated with Ara-C. Thus, if one views CSC/CSL cells as the very small subset 

of cancer cells that can enter/exit a state of dormancy followed by clonal expansion (representing 

remission and relapse, respectively), perhaps these SORE6- cells are also CSC/CSL cells.  

 

In most published studies of AML, CSC/CSL cells are defined by the expression of specific cell 

surface markers or occasionally cytoplasmic markers (7, 8). Less commonly, CSC/CSL cells are 

defined by the expression of a set of genes that are known to be highly expressed by relapsed 

tumors (9). Based on my experience with the in-vitro relapse model, I believe that the one of most 

defining features of CSC/CSL cells is related to their functional versatility. In view of their highly 

dynamic nature, defining these cells based on limited scopes of protein or gene expression may be 

rather counter-intuitive. My postulation regarding the definition of CSC/CSL cells in the context 

of AML relapse will be further discussed in the last paragraph of this section. 

 

Observation #3 - Dormancy 

 

Conceptually, AML relapse occurs after a period of dormancy, during which the very few 

surviving AML cells keep their metabolism at a minimum level. The nature of this dormancy has 

never been studied or understood. Not only do suitable in-vitro/in-vivo study models not exist, but 

it is also highly difficult to isolate a sufficient number of AML cells from patients in clinical 

remission for studies.  

 

Using the in-vitro relapse model I generated, I attempted to explore the nature of this dormancy. 

As described in Chapter 2, I performed flow cytometry to analyze the cell culture during the ‘in-

vitro remission’ induced by Ara-C. Being a more sensitive method than the trypan blue assay, flow 

cytometry is expected to allow the quantification of the very small number of viable cells in cell 

culture with ‘zero viability’. Indeed, I was able to consistently detect 200-500 cells/mL in these 
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samples, as compared to 150,000 cells/mL at the beginning of the experiments (i.e. 0.1-0.3% 

viability). Importantly, regular monitoring of the number of viable cells during the mean of 10 

days of in-vitro remission showed no appreciable changes. Although these findings are rather 

preliminary and clinical validation has not been performed, I believe that these observations 

support the concept that Ara-C-induced dormancy is characterized by a state of quiescence (i.e. no 

cell proliferation), and that the transition between dormancy and relapse is likely a relatively abrupt 

event, possibly in response to specific signal(s) (i.e. a wake-up call).  

 

Observation #4 - Dramatic changes in the metabolic profile during in-vitro relapse  

 

It is perceivable that this transition into and out of dormancy requires a swift and dramatic 

biochemical program switch. For instance, autophagy, a process designed to recycle/scavenge 

internal organelles, is useful during the state of dormancy but probably not in alignment with the 

high cell proliferative state during disease relapse (10). In Chapter 3, I have presented data 

generated from large-scale metabolomic profiling to compare the pre-treatment AML cells and in-

vitro relapse cells regenerated from Ara-C treatment. The pathway of 

ornithine/spermidine/spermine was highlighted. Interestingly, while I have found many significant 

differences between the two groups, there were relatively few differences in the metabolic profile 

between SORE6- and SORE6+ cells at the steady state (i.e. no treatment).  This finding suggests 

that the differences between SORE6- and SORE6+ cells are less pronounced at steady state 

compared to with stimulation, and that SORE6+ cells appear to have the ability to swiftly change 

their metabolic machinery in response to treatment. Taken together, AML relapse involves at least 

two dramatic but swift biochemical program switches, with the first being responsible for entering 

the state of dormancy and the second being responsible for exiting dormancy and entering a new 

phase of cell proliferation and clonal expansion. This superior ability of swiftly and massively 

switching the biochemical programs may well represent the most defining feature of CSC/CSL 

cells responsible for AML relapse. 

 

My literature search revealed only two AML studies performing metabolomic analysis of relapsed 

patient samples and the paired pre-treatment samples (11, 12). While a list of metabolites and their 

associated metabolic pathways that are significantly different between the two groups are listed, 
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validation studies were not included in these studies. Nonetheless, the upregulation of ornithine 

identified in my study was also detected in the study by Kim et al. (13). Using western blots, I 

went on to confirm the upregulation of ODC proteins in the in-vitro relapse AML cells regenerated 

from Ara-C (Chapter 3).  

 

Observation #5 - In-vitro relapsed SORE6+ cells are biologically different from pre-treated 

SORE6+ cells 

 

Most of my experimental results are derived from the use of the in-vitro model in which AML 

cells were treated with Ara-C. In this experimental system, I consistently observed evidence that 

in-vitro relapse cells, which are predominantly SORE6+ cells, are substantially different from the 

pre-treatment SORE6+ cells. As discussed above (i.e. Observation #1), SORE6+ cells at the steady 

state are more stem-like, with higher level of chemoresistance, autophagy and expressions of 

several key proteins such as Myc/FLT3/pSTAT5. These properties likely contribute to the survival 

of a subset of these cells during the first 2 days of Ara-C treatment, giving them time and 

opportunity to enter the dormancy state by executing the first biochemical program switch. After 

their exit of the dormancy state followed by clonal expansion, the in-vitro relapse cells retain their 

SORE6 activity, but these relapse SORE6+ cells show several key differences. Firstly, they display 

even higher levels of chemoresistance than the pre-treatment SORE6+ cells (Chapter 2). Secondly, 

their metabolite profile has been dramatically altered, as evidenced by our metabolomics studies 

described in Chapter 3. Lastly, our glycomics scan has revealed a dramatic downregulation of 

lectin binding, indicating that there are profound alterations in the sialic acid 

composition/configuration on their cell surface.  

 

These findings from my in-vitro studies are consistent with results of published studies comparing 

relapsed AML with pre-treatment AML. They are also in alignment with the clinical observation 

that relapsed AML tumors do not typically respond to the initial treatment. These changes may 

result from the second biochemical switch that is responsible for the onset of relapse from 

dormancy. These changes need to be further characterized and their significance should be 

determined.  
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A hypothetical model of AML relapse and a re-evaluation of the definition of CSC/CSL cells 

 

Although the CSC/CSL concept has been frequently used to explain the mechanistic basis of AML 

relapse, the picture is incomplete. Based on the 5 key observations described above, I attempt to 

add more details to the model. Since most of my research data were derived from Ara-C treatment, 

my comments on how AML cells respond to other therapeutic agents are more speculative. This 

hypothetical model is explained as follows and is illustrated in Figure 5.1.  

 

Intra-tumoral heterogeneity exists in AML. A small cell subset expresses an aberrantly high level 

of ESC proteins such as Myc, which is a key driver of a host of stem-like features (such as 

chemoresistance) in these cells. At least some of these cells are identified as SORE6+ cells in my 

in-vitro model. In view of the known functional interplays among ESC proteins during normal 

development, it is likely that the degrees of cancer stemness vary within the SORE6+ cell 

population, and it is possible that a small subset of SORE6- cells possess cancer stemness that is 

not detectable by using the SORE6 reporter. Nonetheless, SORE6+ cells as a whole are more stem-

like (Observation #1). 

 

Upon Ara-C treatment, those carrying the highest level of cancer stemness within the SORE6+ cell 

population, which represent 0.1-0.3% of the initial cell population, survive and they execute the 

first biochemical program switch that results in dormancy. The picture is slightly different when 

treatments, such as AZA+Ven, are used. In this scenario, the SORE6+ cell population is effectively 

eliminated. The surviving cells come from a small subset of SORE6- cells, which may carry a high 

level of cancer stemness driven by ESC proteins not detectable by the SORE6 reporter or by 

entirely different mechanisms. These SORE6- cells are also able to enter the state of dormancy and 

are responsible for the subsequent relapse. It is perceivable that dormancy involves the selective 

use of metabolic pathways, heightened autophagy and a general metabolic slow-down. There is 

essentially no cell proliferation, and the number of viable cells is largely unchanged during this 

time period (Observations #2 and 3). 

 

When appropriate signal(s) become available, there is a second biochemical program switch which 

gears up cell proliferation and clonal expansion. This second wave brings about dramatic changes 
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in the metabolism, which likely produce ‘global’ effects that have impacts on cell surface 

glycosylations. Certain stem-like features such as chemoresistance are elevated. This second 

biochemical program switch may also modulate various DNA repair mechanisms, such that the 

genome is more prone to errors and mutations. Consequently, additional gene mutations, 

commonly found in relapsed AML, are acquired during relapse (14).  

 

With the background of this hypothetical model, I have re-evaluated my perspective of what 

CSC/CSL cells may represent in the context of AML relapse. Based on the hypothetical model 

illustrated in Figure 5.1, I am inclined to view CSC/CSL cells in at least three possible ways, 

dependent on the answers to certain unknowns:  

 

1) AML relapse is entirely dependent on the existence of a small subset of cells that share many 

key biochemical programs with normal stem cells, and thus, they bear many phenotypic 

similarities with stem cells. While most of these cells can be identified as SORE6+ cells, a small 

subset of SORE6- cells also carry the same characteristics, although they do not express SORE6 

reporter activity for unknown reasons. In this scenario, CSC/CSL cells can be simply defined by 

their stem cell biochemical and phenotypic characteristics. If this scenario is true, one would expect 

that co-transfection of multiple reporters sensing the expression/activity of different ESC proteins 

should increase the sensitivity and probably specificity of these CSC/CSL cells. 

 

2) Although CSC/CSL cells as defined in scenario #1 exist and play a key role in AML relapse, 

there are other small cell subsets, identified as SORE6- cells, that can also survive the initial 

chemotherapy (e.g. AZA), and enter and exit the state of dormancy by executing two dramatic 

biochemical program switches. Unlike CSC/CSL cells defined in scenario #1, these SORE6- cells 

are equipped with these abilities via mechanisms unrelated to ESC proteins. In this scenario, 

perhaps these highly unique SORE6- cells should not be labeled CSC/CSL cells, as their 

uniqueness has nothing to do with the ESC programming. These cells need to be defined based on 

our understanding of the alternative mechanism(s) that enable them to enter/exit dormancy.  
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3) Regardless of the underlying mechanisms, cells that are responsible for AML relapse share their 

superior ability of swiftly modulating their biochemical programs. Perhaps this functionality can 

serve as the marker, and the concept of CSC/CSL cells needs to be de-emphasized.  
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Figure 5.1. Hypothetical model of AML relapse. (a) At diagnosis, a small subset of stem-

like cells exist that share phenotypic similarities with embryonic stem cells. These cells are 

mainly SORE6+ (in green), but a subset exist in the SORE6- subset (in red), however, it is 

unknown why they do not express SORE6 reporter activity and their molecular differences 

from SORE6+ cells. Bulk cells, which make up the largest proportion of the cancer cell 

population, are shown in yellow. During Ara-C treatment, SORE6+ cells survive because 

of their stem-like features and ability to undergo a metabolic switch allowing them to 

achieve a state of dormancy. An unknown stimulus induces a metabolic switch out of 

dormancy, allowing the cells to proliferate once again. (b) After AZA or AZA+Ven 

treatment, the subset of SORE6- cells carrying stem-like cells. After a metabolic switch, 

they experience a state of dormancy. A following metabolic switch reverses the dormancy, 

and they start proliferating again.  

 

 

b. 
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5.2. Experimental considerations and potential pitfalls 

 

In this section, I will discuss the pros and cons of the in-vitro study model and SORE6 reporter 

system, both of which are key elements of my experimental studies.  

 

The in-vitro study model for AML relapse 

 

The first challenge of my PhD project was to develop a workable study model for AML relapse. 

This is probably the most pivotal point in my PhD studies because a failure of developing such a 

model would have necessitated a dramatic change in the direction (and probably the topics) of my 

research. Features that are important in the model include the following: 1) the use of AML cell 

lines rather than patient samples, such that my research would not be limited by the relative scarcity 

of these samples; 2) the induction of a period of chemotherapy-induced zero viability, where no 

viable cells could be detected based on a simple microscopic assessment, mimicking the clinical 

remission as defined by the identification of <5% blasts in the bone marrow biopsy by routine 

microscopic examination; 3) the occurrence of AML cell regeneration following the period of in-

vitro remission, mimicking clinical relapse.  

 

As detailed in Chapter 2, I was able to establish an experimental model which embodies these 

features. In addition to being simple and workable, this model was found to be highly consistent. 

Throughout my studies, the dosages of therapeutic agents required to induce the state of ‘zero 

viability’, the duration of the in-vitro remission and the time taken to achieve the IR were found 

to be highly consistent and reproducible for each of the combinations of AML cell lines/drugs I 

had tested. The importance of this consistency and reproducibility cannot be overstated; without 

this property, I would not have been able to use various parameters in this in-vitro model as my 

experimental readouts. For instance, in Chapter 3, I used the duration of in-vitro remission and 

time taken to reach IR as the key readouts when I compared the therapeutic efficacy of different 

therapeutic agents. In Chapter 4, the observation that pharmacologic inhibition of ULK2 

significantly delayed in-vitro relapse has provided evidence in support of the role of ULK2 in 

AML relapse. The other advantage of this in-vitro model is related to its technical simplicity; it 
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can be easily adopted into any standard medical research laboratories, potentially allowing 

researchers from different parts of the world to compare their results. As both AML cell lines I 

tested were successfully incorporated into this model, it is likely that other AML cell lines and 

other cancer cell lines of different lineages can be used.  

 

Similar to almost all of the other experimental models for cancer, this in-vitro model is not 

expected to be fully representative of the real disease. Perhaps the first obvious limitation of my 

model is that only FLT3-ITD AML cell lines were used. In fact, to avoid the molecular and 

biological diversity of AML as potential confounding factors, I intentionally chose to use the two 

FLT3-ITD AML cell lines (MOLM-13 and MV4-11) to be my key research tools. 

 

Secondly, how much of the information generated through studies of this model is truly reflective 

of the diseases occurring in human bodies will always be an uncertainty. Whenever possible, 

generated findings and concepts need to be validated using patient samples. Recent advances in 

single cell studies will be highly relevant, especially in studies related to the state of dormancy 

when the number of cells studied is highly limited. That being said, I am cautiously optimistic 

about the degree of mimicry of this study model based on a number of observations. In my 

comparison between AZA versus AZA+Ven, I found a general agreement between the in-vitro 

efficacies of these agents and those of a clinical trial (15). Specifically, the AZA+Ven group had 

no in-vitro relapse at the optimal dose whereas the AZA group showed a relatively short period of 

in-vitro remission. Another support came from the metabolomics studies in which the upregulation 

of ODC after Ara-C treatment was validated in my in-vitro experiments. My preliminary validation 

studies using patient samples also showed some promising results; specifically, the group of 

relapsed AML samples showed significantly higher ODC protein expression than that of initial 

diagnostic samples.  

 

Beyond doubt, the validity of this in-vitro model will become more apparent with more studies. 

Without this model, I would not have been able to generate a conceptual framework regarding the 

biology of AML relapse, as described in Section 5.1 and illustrated in Figure 5.1. Many aspects 

of this hypothetical model are testable. It is my hope that the undertaking of testing these aspects 
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of the hypothetical model will further advance our understanding of AML relapse, so that we are 

a step closer to finding a cure.  

 

The use of the SORE6 reporter 

 

One of the key questions at the beginning of my study was related to how CSC/CSL cells are to 

be defined, selected, and purified. This is a challenging question since the definition of CSCs has 

been largely operational. Specifically, cell populations enriched in CSCs, most commonly 

generated by sorting out subsets of cells based on their high expression of specific 

immunophenotypes (e.g. CD133 or CD34+CD38-), exhibit a significantly higher efficiency of 

forming tumors in SCID mice compared to the cell subset without these markers. As discussed in 

the Introduction, these cell surface antigens (e.g. CD133) typically do not bear any direct apparent 

biological link with cancer stemness. In the field of AML, a number of CSC markers have been 

reported but contradictory results have been reported. For instance, CD96 and CD200, both CSC 

markers in AML, have been found to enrich CSCs in several publications (8, 16). However, even 

these initial studies validating these markers have found these markers did not reliably identify 

CSCs in all cases. In my own experience, I found these immunophenotypic markers are not 

detectable in my two AML cell lines. Thus, the usefulness of these markers is highly dependent 

on cell type.  

 

As mentioned in Section 5.1, specific gene expression patterns have also been used in some studies 

to define CSC/CSL cells. In this regard, I believe that this approach may not be optimal because 

CSC/CSL cells may dramatically change their biochemical properties as they enter/exit the state 

of dormancy and initiate clonal expansion. In one recent study, the authors generated a panel of 

CSC-related genes using RNA-sequencing of functionally defined CSCs (9). Many of these genes 

have no apparent relatedness to cancer stemness. This experimental approach also may suffer from 

the limitation that it is not clear if the gene signals are derived from a small subset of cells carrying 

high levels of expression of these genes or from a substantial proportion of the cell population. 

 

Given the limitations of the mentioned markers, I decided to use a different approach to detect and 

identify CSL cells. Details of the SORE6 reporter have been described in the Introduction. I believe 
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that the use of SORE6 has several advantages over the use of cell surface markers such as 

CD34+/CD38-, CD96 or CD200. Firstly, in view of the important functions of ESC proteins, and 

the fact that expression of these proteins result in the dedifferentiation of somatic cells (17, 18), 

cells aberrantly expressing these ESC proteins are likely to be more ‘stem-like’. Secondly, since 

the mechanisms underlying the SORE6 reporter are at least partially known, it becomes possible 

to design experiments that manipulate the reporter activity. In my studies, I have shown that 

inhibitors of Myc, FLT3, and ULK2 can downregulate the SORE6 reporter activity. Lastly, the 

use of the SORE6 reporter has been tested and reported in eight previous studies, both in solid 

cancer models and hematologic cancer models (5, 6, 19-24). Thus, the use of SORE6 is justified.  

 

In view of the relative lack of Sox2 and Oct4 in the two AML cell lines used in this study, a Myc 

reporter might have been a better choice in retrospect. Nonetheless, in view of the high redundancy 

of the DNA binding sequences recognizable by embryonic stem cell proteins, it is highly likely 

that reporter systems designed to detect specific ESC transcriptional factors are intrinsically ‘non-

specific’. For instance, one previous study has shown that the promoter region of a Sox2 reporter 

can be recognized by 15 other transcriptional factors, most of which are known to play important 

roles in embryogenesis (25). I believe that this ‘pitfall’ is outweighed by the benefit of the SORE6 

reporter, since SORE6 reporter activity as a marker of CSC/CSL cells has been documented in 

both solid tumor and hematologic cancers (5, 19, 20). 

 

 

The use of flow cytometry/barcoding to assess SORE6-/SORE6+ conversion 

 

Coupled with the molecular barcoding and flow cytometry to detect GFP expression (i.e. readout 

for the SORE6 reporter), I was able to accurately monitor the relative contribution of CSL cells to 

the regeneration during IR as well as the degree of SORE6-/SORE6+ phenotypic conversion (if 

any). Regarding the latter point, previous research using other cancer cell types and experimental 

models have shown that the SORE6-/SORE6+ conversion can occur. Karpas 299, a T-cell 

lymphoma cell line, has been reported to have two phenotypically distinct cell subsets separated 

by their Sox2 transcriptional activity (26). In this system, purifier Sox2-active cells with high stem-

like features gradually and spontaneously lose Sox2 activity over a few weeks, reminiscent of 
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differentiation. In other cancer cell systems, it has been shown that Sox2-inactive cells can acquire 

Sox2 reporter activity upon oxidative or hypoxic stimulation (27). In my experimental system, the 

relative proportions of SORE6-/SORE6+ cells detectable by molecular barcoding and flow 

cytometry were generally concordant across all combinations of drugs/dosages, with the exception 

of Venetoclax-treated cells, suggesting that SORE6-/SORE6+ conversion does not play a 

substantial role in the in-vitro relapse. Nonetheless, I cannot exclude the possibility that the 

SORE6-/SORE6+ conversion may occur if there are additional signals, such as cytokines. If these 

additional signals are required, models based on cell lines will not show any conversion, and an 

in-vivo model may be required. Thus, further studies using xenograft mouse models may be helpful 

in addressing this question.  

 

5.3. Future Studies 

 

Similar to other research, I believe that results from my studies have generated more questions 

than answers, and these questions form the basis of future research and studies. Some of these 

questions are summarized and discussed as follows. Most of my suggested future studies are 

related to further clarifications and/testing of the hypothetical model illustrated in Figure 5.1. 

 

1) The biological characteristic of SORE6- cells expanded in IR 

 

The nature of in-vitro relapse due to the expansion of SORE6- cells in the AZA and AZA+Ven 

groups is highly interesting. Depending on whether their uniqueness is driven by other ESC 

proteins or a completely different mechanism, the concept and definition of CSC/CSL cells may 

have to be modified. In order to evaluate the CSL characteristics of these SORE6- IR cells after 

AZA treatment, functional tests, including hanging drop and chemoresistance assays, can be 

performed. The presence of higher CSL features in these cells suggests that CSL cells can be found 

in the SORE6- fraction. Another possibility is that the SORE6- expansion at in-vitro relapse is 

through a completely different mechanism unrelated to cancer stemness. Large scale RNA 

sequencing and metabolomic analysis can be performed using pre-treatment and in-vitro relapse 

cells to determine pathways necessary for in-vitro relapse that are dependent on treatment type. 
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2) The nature and regulation of two biochemical program switches 

 

As discussed above, my metabolomics studies did not reveal any substantial difference between 

SORE6- and SORE6+ cells; however, in-vitro relapse compared to pre-treatment cells had 

substantial differences in their metabolic profiles. These finding strongly suggest that a 

biochemical program switch in CSL cells occurs after the initiation of the treatment.  

 

Additionally, my preliminary data suggests that there may be two distinct biochemical switches, 

with the first occurring after treatment that maintains dormancy during remission, and the second 

occurring at the end of remission, providing a the ‘wake-up’ call that triggers the onset of relapse. 

Thus, understanding when these metabolic switches occur and the regulators involved can provide 

important insights into the biology of AML relapse. If this hypothetical model is correct, targeting 

the regulators responsible for the metabolic switches in Ara-C-treated cells should be expected to 

inhibit the expansion of CSL cells and AML relapse.  

 

As mentioned previously, 200-500 viable cells/mL are present during the in-vitro remission stage 

of the model. Using these in-vitro remission cells, as well as cells at in-vitro relapse and at steady 

state/pre-treatment, large scale sequencing or metabolomic analysis in the in-vitro remission cells 

can be done to determine whether biochemical and metabolic differences exist between these three 

stages. Based on these analyses, the importance of identified pathways to the initiation of the in-

vitro remission/dormancy stage and the in-vitro relapse/wake-up stage can be validated using 

pharmacologic inhibitors. If two distinct biochemical switches occur that use different biological 

pathways, then blocking specific pathways at different stages in the model should have different 

abilities to suppress IR. For instance, pathways that are important in providing the ‘wake-up’ call 

should prevent IR if the treatment is maintained throughout the experiment but should not prevent 

IR if the treatment is only administered at the beginning of the experiment before the ‘wake-up’ 

call is necessary.  
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3) The prognostic value of ODC and ULK2 

 

Using the in-vitro relapse model, ODC and ULK2 have been identified as markers that may 

contribute to relapse. In this study, ODC and ULK2 were upregulated in a small cohort of relapsed 

patient samples. Future studies can correlate ODC and ULK2 expression with clinical 

characteristics to determine whether they predict likelihood of relapse, length of clinical remission, 

and survival.   
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