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A comparison of four vowel overlap measures

Matthew C. Kelleya) and Benjamin V. Tuckerb)

Department of Linguistics, University of Alberta, Edmonton, Alberta T6G 2E7, Canada

ABSTRACT:
Multiple measures of vowel overlap have been proposed that use F1, F2, and duration to calculate the degree of

overlap between vowel categories. The present study assesses four of these measures: the spectral overlap

assessment metric [SOAM; Wassink (2006). J. Acoust. Soc. Am. 119(4), 2334–2350], the a posteriori probability

(APP)-based metric [Morrison (2008). J. Acoust. Soc. Am. 123(1), 37–40], the vowel overlap analysis with convex

hulls method [VOACH; Haynes and Taylor, (2014). J. Acoust. Soc. Am. 136(2), 883–891], and the Pillai score as

first used for vowel overlap by Hay, Warren, and Drager [(2006). J. Phonetics 34(4), 458–484]. Summaries of the

measures are presented, and theoretical critiques of them are performed, concluding that the APP-based metric and

Pillai score are theoretically preferable to SOAM and VOACH. The measures are empirically assessed using accu-

racy and precision criteria with Monte Carlo simulations. The Pillai score demonstrates the best overall performance

in these tests. The potential applications of vowel overlap measures to research scenarios are discussed, including

comparisons of vowel productions between different social groups, as well as acoustic investigations into vowel for-

mant trajectories. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0000494

(Received 16 September 2019; revised 26 November 2019; accepted 2 December 2019; published online 17 January
2020)

[Editor: Ewa Jacewicz] Pages: 137–145

I. INTRODUCTION

Vowel category overlap is a phenomenon where vowel

categories have some degree of acoustic similarity.

Measuring vowel category overlap has applications across a

wide variety of research that deals with speech acoustics. In

dialectology, for example, measures of vowel overlap have

been used to assess vowel mergers, such as by Nycz and

Hall-Lew (2015), Freeman (2014), and Wong and Hall-Lew

(2014). A prominent historical example in certain dialects of

North American English is the cot–caught merger, where the

historic /A/ and /O/ phonemes are produced as one phoneme

/A/. A high measured degree of overlap between two putative

vowel categories would suggest to a researcher that a merger

is in progress or has been completed. In language documen-

tation scenarios, vowel overlap measures have been used to

help determine the overall contribution of duration to vowel

category distinctiveness (Haynes and Taylor, 2014). The

underlying idea is to measure how much two vowel catego-

ries overlap in terms of F1 and F2, and then see how much

they overlap in terms of F1, F2, and duration. If the latter

measure of overlap is substantially smaller, duration could

be said to be contributing to the distinction of the two vowel

categories. Having such knowledge could be especially use-

ful if a researcher is attempting to determine whether there is

a phonemic length contrast in a language.

In second language acquisition, measuring vowel over-

lap could be used to quantify how far apart a learner’s pro-

ductions of different vowel categories are. Perry and Tucker

(2019) perform this kind of analysis, examining the extent

to which different vowel categories in function words over-

lap in L2 and L1 speakers of English. Similarly, Mairano

et al. (2019) investigate how much overlap is observed in

L2 English speakers’ productions of vowel categories that

are acoustically distinct for L1 speakers but may not be for

L2 speakers. And in clinical settings, such measures have

the potential to be used to quantify how acoustically separa-

ble a patient’s vowel categories are, as suggested by Kain

et al. (2017). Similar to the aforementioned L2 speech stud-

ies, a researcher or clinician could examine a patient’s pro-

ductions of vowels across separate phonemic categories and

quantify the extent to which the categories are being sepa-

rated acoustically. In the present paper, we test and critique

a selection of vowel category overlap measures for their

performance on accuracy and precision.

Measuring vowel category overlap requires that two

decisions be made. The first decision is how the concept of

overlap should be defined. The second decision is how to

operationalize the definition of overlap. Researchers have

made a variety of decisions on each point, resulting in a

number of potential approaches for measuring overlap. For

example, some researchers use Euclidean distance from

centroids to quantify degree of overlap or merger. Treating

overlap in this way is not particularly satisfying, as it does

not account for the distributional properties in the data,

such as variability of the data or how densely populated a

region of the vowel space is. However, some measures of

vowel overlap do take advantage of the fact that vowel

tokens have underlying distributions. The measures that are

assessed in the present paper are the spectral overlap assess-

ment metric (SOAM; Wassink, 2006), the a posteriori prob-

ability (APP)-based metric (Morrison, 2008), the vowel

a)Electronic mail: mckelley@ualberta.ca. ORCID: 0000-0002-7218-5599.
b)ORCID: 0000-0001-8965-7890.
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overlap analysis with convex hulls (VOACH, Haynes and

Taylor, 2014) method, and the application of Pillai scores to

vowel overlap (Hay et al., 2006).

We employ two criteria to assess the measures: (1)

accuracy and (2) precision. We take accuracy to mean that

the result of running a vowel overlap measure deviates as

little as possible from true overlap values. For a measure to

be precise, its outputs on a series of random samples taken

from known vowel distributions must have little spread.

To our knowledge, Nycz and Hall-Lew (2015) is the

only other study to compare measures of vowel overlap.

Nycz and Hall-Lew compared Euclidean distance, linear

mixed-effects regression modeling, SOAM, and the Pillai

score. Their qualitative comparisons were based on their

stated criteria of how well the measures capture distance,

how well the measures capture overlap, how well they deal

with unbalanced data, and whether they allow speaker com-

parisons. These criteria are important for assessments of

which measure to use in practice, although they do not

address theoretical questions regarding the measures’

approaches, in general, nor do they address the issue of dis-

tributional properties as raised by Morrison (2008). Not all

of the criteria lend themselves easily to rigorous testing

either. As well, there are other proposed measures that have

not yet been assessed in great detail. As such, the present

study expands on Nycz and Hall-Lew’s work by examining

additional measures that have not yet been analyzed with

more rigorously defined comparison criteria.

In the remainder of the present paper, we summarize

and comment on the measures being compared. Next, we

present theoretical critiques of the measures. We then per-

form two tests using simulated data. The tests are designed

to compare the performance of the different metrics with

respect to the criteria stated above. Using simulated data

permits the calculation of true values against which to

compare the measures. The first test uses Monte Carlo

simulations to assess the measures’ performance on two-

dimensional (2D) data using F1 and F2. The second is sim-

ilar to the first, but it assesses the measures’ performance

on three-dimensional (3D) data using F1, F2, and duration.

(In theory, it is also possible to use other acoustic variables

as input to these measures, such as F3 in place of duration.)

In both tests, the simulated data are sampled from distribu-

tions based on steady-state formant values from all 139

speakers—men, women, and children—in the vowel data

of Hillenbrand et al. (1995). We make use of the Lobanov

(1971) normalization method to transform the formant data

to reduce the effects of anatomical and physiological dif-

ferences. Finally, we discuss the overall results from the

simulations and make recommendations on which mea-

sures are applicable for general use.

As a terminological note, we employ the term

“measure” to refer to each assessed method for evaluating

overlap, similar to measures used in other fields, such as the

Kullback-Leibler divergence or Jenson-Shannon diver-

gence. Many researchers reserve the term “metric” for a

specific class of dissimilarity measures that meet certain

mathematical properties. Not all of the methods assessed in

the present paper satisfy these properties. So, to maintain com-

patibility with terminology for similar concepts across differ-

ent fields of research, we do not use metric to refer to the

assessed methods as a group.

A. SOAM

The SOAM of Wassink (2006) uses elliptical represen-

tations of vowel categories to calculate its overlap measure.

Three different normalization routines are described that

can be used with SOAM: Nearey vowel-extrinsic normali-

zation (Nearey, 1978), known-extremes vowel-extrinsic

normalization (Shirai, 2005), and Lobanov vowel-extrinsic

normalization (Lobanov, 1971). Within the analysis itself,

Wassink appears to use Nearey vowel-extrinsic normaliza-

tion routines. The ellipses/ellipsoids are calculated as

centered at the origin in a rotated and translated space derived

from the data. The process to fit an ellipse is as follows. Note

that it does not use a standard least-squares ellipse fitting

process.

(1) The data are centered around the origin by subtracting

the mean F1 value from the F1 values and the mean F2 value

from the F2 values. (2) The angle of rotation of the ellipse

from the x axis is determined by fitting a linear regression to

the data. The angle of rotation is taken as the angle between

the line of best fit and the x axis. (3) The data are rotated by

that angle toward the x axis, and the lengths of the ellipse’s

radii are determined by the standard deviations of F1 and F2

in the rotated space. The ellipse is then defined in the rotated

and translated space as centered at the origin with principal

axes extending along the x and y axes corresponding to the

previously calculated standard deviations. Fitting an ellipsoid

is analogous, except that there is an additional angle of rota-

tion between the x and z axes.

Once the ellipses/ellipsoids have been calculated, their

areas/volumes are approximated by means of a uniform grid

of points in the 2D or 3D space. Each point is projected into

the rotated and translated space and determined to be in one

ellipse/ellipsoid, both, or neither. The area/volume of each

ellipse/ellipsoid is taken to be represented by the number of

points contained within it, and the overlap is then taken to

be the larger of the ratios between the number of points in

both figures and the number of points in one of the catego-

ries. The resulting number gives the shared area or volume

between the base of a slice of normal distributions contain-

ing 87% of the probability density in the 2D case or 74% of

the density in the 3D case (Wang et al., 2015).

Figure 1(a) is a visualization of SOAM in two dimen-

sions. The measure was run using the vowel data of

Hillenbrand et al. (1995) for /u/ (orange triangles) and /U/

(blue circles). Values presented are Lobanov normalized.

All 139 speakers are used in the analysis. In the plot, the

original data from all speakers are visualized and sur-

rounded by the ellipses determined during SOAM’s calcula-

tion. For SOAM and all other measures tested, the /u/ and /

U/ pairing was selected as an example of two vowels that
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should present some degree of acoustic overlap based on

the similarity of their associated formant values.

B. APP-based metric

The APP-based metric by Morrison (2008) uses maxi-

mum likelihood estimates of the underlying probability dis-

tributions for the vowel categories. In its original

presentation, the APP-based metric used a log-interval nor-

malization routine (Nearey and Assmann, 2007) on the

vowel formants.

When calculating the measure on two vowels A and B,

the procedure is as follows: (1) The sample mean vectors

and covariance matrices for both vowels A and B are deter-

mined. (2) A large number of points (specified by the

researcher) for each vowel are sampled from a multivariate

normal distribution using the sample mean vectors and

covariance matrices as parameters. (3) A quadratic discrimi-

nant analysis is applied to the generated data. The quadratic

discriminant analysis is then used to calculate the posterior

probability distribution over vowels A and B for each token.

(4) Calculate the mean of the posterior probabilities of the

tokens in vowel category A being in vowel category B. (5)

Calculate the mean of the posterior probabilities of the

tokens from vowel B being from vowel A. (6) Add the two

means to yield the overall overlap measure, resulting in an

overall mean probability that a token from one vowel could

also be a token of the other vowel.

Figure 1(b) is a visualization of the APP-based metric

in two dimensions. It also uses the vowel data of

Hillenbrand et al. (1995) for /u/ (orange triangles) and /U/

(blue circles). Formant values were Lobanov normalized

before calculating the APP-based metric. All 139 speakers

are used in the analysis. For the plot, the random number

generation seed was set to a value of 9 before calculating

the metric with 1000 generated tokens for each vowel cate-

gory. The plot visualizes the generated data used in the qua-

dratic discriminant analysis. These data points indicate the

degree to which the two vowel distributions overlap, which

should be relatively high when the two point clouds overlap

with one another.

FIG. 1. (Color online) Visualizations for each measure for the vowel data of Hillenbrand et al. (1995) for /u/ (uw) and /U/ (uh). The /u/ and /U/ pairing was

selected as an example of two vowels that should present some degree of acoustic overlap based on the similarity of their associated formant values. Formant

values have been Lobanov normalized, and all 139 speakers in the data set were used in the calculation. Some speakers had missing formant values, which

were denoted with a “0” in the data set. We included these speakers and the 0 values to help visualize how outliers affect the measures. Note that the scale dif-

fers between some of the plots, notably the plot for the Pillai score.
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C. VOACH

The VOACH method by Haynes and Taylor (2014) is

similar to SOAM, but it represents the vowels with convex

hulls instead of ellipses/ellipsoids. In its original presentation,

VOACH used a Nearey vowel-extrinsic routine (Nearey,

1978) on the analyzed vowel tokens. For a given set of points,

a convex hull is the smallest geometric shape that will contain

or cross through all of the points, like fitting a rubber band

around all the points in two dimensions. In effect, it connects

the points in the set along the perimeter.

Unlike the previous two measures, Haynes and Taylor

(2014) claim that this procedure is designed to be more

robust in researching under-documented languages or ana-

lyzing data sets with few data points. However, it is unclear

what the motivation for their claims are, and as we will see

later in the present study, these claims appear to be

unfounded. Convex hulls have previously been used for ana-

lyzing vowel spaces, such as for speaker intelligibility esti-

mates (Luan et al., 2014), quantifying and visualizing how

much a speaker uses different regions of the vowel space

(Story and Bunton, 2017), and determining vowel space area

(Sandoval et al., 2013). An important distinction between

these latter uses of convex hulls is that there is some kind of

thresholding to exclude outlying data (Sandoval et al., 2013;

Story and Bunton, 2017) and look at the entire vowel space

(Luan et al., 2014; Sandoval et al., 2013; Story and Bunton,

2017). As defined, VOACH maximizes the area for only a

particular vowel category, which may not give the best repre-

sentation of the category.

Haynes and Taylor (2014) describe the following steps

for calculating the measure: (1) Fit convex hulls around the

data points representing each vowel being assessed. (2) For

each vowel token in the data set, determine whether it is

contained in one or both hulls. (3) Fit a third convex hull

around the points contained in both initial hulls. (4) The

overlap is taken as the larger of the ratios of the area/vol-

ume between the hull containing the points in the overlap-

ping region and hulls for each vowel category.

Figure 1(c) is a 2D example of VOACH. Again, we use

the vowel data of Hillenbrand et al. (1995) for /u/ (orange

triangles) and /U/ (blue circles). Formant data were

Lobanov normalized prior to calculation. All 139 speakers

are used in the analysis. The plot displays a scatter of the

original data as well as the convex hulls that the data are

bounded by. Within the hulls, there is the black convex

hull, which contains the overlapping data. Note that the hull

for /u/ is oversized due to outlying data. In this case, the

overlap value is not affected by this poor representation of

the /u/ distribution because the hull for /U/ is not distorted

by outlying data and has a smaller area than the hull for /u/.

As such, the hull for /U/ will be the hull used in the final

overlap calculation.

D. Pillai score

Hay et al. (2006) introduced the use of the Pillai trace

statistic from the multivariate analysis of variance (also

known as a MANOVA) technique to quantify vowel over-

lap. They refer to this statistic as the “Pillai score,” which is

a convention that has been adopted by other researchers

such as Hall-Lew (2010) and Nycz and Hall-Lew (2015).

They do not appear to have used any particular normaliza-

tion routine on the vowel formants prior to calculating the

Pillai score, but the raw formant values seem to have been

converted to a Bark scale before analysis.

The Pillai score is calculated using the eigenvalues of

the matrix formed by multiplying the hypothesis cross-

product sum of squares matrix and the inverted error matrix

together. The exact mathematical definition of the Pillai

score can be found in Pillai (1954) and Bray and Maxwell

(1985).

At a higher level, the Pillai score is a multivariate ana-

log of the F-ratio test statistic from an analysis of variance

(ANOVA). For a two vowel scenario, when a large amount

of the variation in the data is due to vowel categories differ-

ing from each other, the Pillai score will be near one, corre-

sponding to a small amount of vowel overlap. When the

variation is more likely to be due to random variation in the

data, the Pillai score will be near zero, indicating high

vowel overlap.

Because the other three measures considered in the pre-

sent study define values around one as indicating high over-

lap and values around zero as indicating low overlap, we

use the inverse of the Pillai score, which is one minus the

Pillai score. This modification will allow the same tests that

are used for the other three measures to be used for the

Pillai score as well.

Figure 1(d) visualizes the MANOVA behind the Pillai

score for a 2D comparison, using what is known as an HE

plot—or hypothesis-error plot—from the HEPLOTS package

in R (Fox et al., 2018; Friendly, 2007). In this plot, both the

hypothesis and error terms of the MANOVA analysis are

displayed, comparing the effect of the between-group varia-

tion to the within-group variation. Linear models like

MANOVA have a hypothesis term and an error term, where

the hypothesis term represents the variation explained by

the model, and the error term represents the residual varia-

tion left unexplained. The size of the hypothesis and error

ellipses in Fig. 1(d) represent how much variation the

hypothesis term and error term explain in the model. The

larger the error ellipse is in comparison to the vowel ellipse

or line, the greater the degree of overlap indicated by the

Pillai score. Note that before creating the plot, the formant

values were Lobanov normalized, and all 139 speakers are

used in the analysis.

II. THEORETICAL ANALYSIS

Among the four approaches being analyzed, there are

three conceptions of overlap and four different procedures

for calculating overlap. The four procedures have a variety

of strengths and weaknesses.

The first conception of overlap is shared by SOAM and

VOACH. Overlap is taken as the common space shared
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between two probability distributions. Inman (1984) pro-

vides the analytical solution to this concept of overlap

through integration. Procedurally, though, neither measure

makes use of the analytical solution, opting instead to

resolve a simpler but related problem. They flatten the prob-

ability density function to be uniform over a given region

delimited by ellipses/ellipsoids or convex hulls. They then

approximate, rather than solve for, the amount of space

shared between the two regions. This simplification is pecu-

liar because it removes the influence of probability density

on the output, even though probability density is central to

the concept of the shared space between two probability

density functions. There are thus two sources for potential

deviation from the analytical solution: (1) the simplification

of the overlap problem and (2) the approximation of the

space shared between the ellipses/ellipsoids or convex hulls.

The first source of deviation implies that these procedures

will never converge on the theoretical overlap value.

The APP-based metric takes overlap as a sum of mean

probabilities that a vowel in one category belongs to the

other category. The analytical solution for this conception

of overlap is the sum of the mean probability values for

each analyzed population. The procedure provides an esti-

mate that will converge on the theoretical value as (1) the

sample mean and covariance approach the population val-

ues with larger samples and (2) the number of generated

samples increases.

The Pillai score represents overlap as the amount of

variation in the data that is explained by group differences

as opposed to random variation in the data. The theoretical

value would be the Pillai score as calculated on the popula-

tion distributions, and its estimate is simply the Pillai score

as calculated on a random sample. As the size of the sam-

ples grows, the estimated Pillai score will converge on the

true value.

There are two theoretical advantages to using the APP-

based measure or the Pillai score as opposed to SOAM or

VOACH. The first is that the APP-based metric and the

Pillai score as calculated on samples will converge on their

population values in appropriate conditions. SOAM and

VOACH will not converge on the correct answer, rendering

them categorically more biased estimators of overlap. The

second advantage is that the sources of additional variation

in SOAM and the VOACH method will drive up their sam-

pling variability. On these grounds, SOAM and VOACH

are theoretically both less accurate and less precise than the

Pillai score and the APP-based metric.

In the remainder of this paper, we empirically demon-

strate that SOAM and VOACH have lower accuracy and pre-

cision than the APP-based metric and Pillai score. We use

Monte Carlo simulations to test the measures’ performance

in three different potential vowel overlap conditions: little

overlap, partial overlap, and full overlap. We test both the

2D and 3D versions of these measures. In line with our theo-

retical analysis, we expect the Pillai score and the APP-

based metric to be both more accurate and more precise than

SOAM and VOACH.

III. TEST 1: 2D OVERLAP CALCULATIONS

The first aspect tested is the accuracy and precision of

the measures in the 2D condition. In this case, the two

dimensions are the F1 and F2 of the vowels being analyzed.

A. Assesing the measures

The measures are assessed using two statistics. The first

statistic is the mean absolute error from the desired output.

The mean absolute error represents, on average, how far

away the measure’s output is from the target. Small values

indicate that the output is close to the target, indicating high

accuracy. Larger values indicate that the output is further

from the target, indicating lower accuracy. Thus, an accu-

rate measure of vowel overlap has low mean absolute error.

The second statistic used is the standard deviation of

each measure’s outputs. It is a measure of spread, which

represents the measures’ precision.

B. Methods

The measures were assessed using Monte Carlo simula-

tions with steady-state F1 and F2 values from all 139 speakers

in the data set. The little overlap condition compares /i/ and /A/

because the acoustic distance between them is high, so there

should be little overlap between them. The partial overlap con-

dition compares /u/ and /U/ as an example of a vowel pair that

has some degree of acoustic overlap. The full overlap condition

compares two separate random samples of /i/ data. Before

beginning any of the simulations, the vowel data set of

Hillenbrand et al. (1995) was normalized using the Lobanov

normalization procedure (Lobanov, 1971) in the PHONTOOLS

(Barreda, 2015) package in R (R Core Team, 2017). Other nor-

malization procedures could have been selected at this stage,

but the Lobanov method was chosen to reflect current trends

and advice in the sociophonetic literature (e.g., Adank et al.,
2004; Fridland and Kendall, 2017; Hall-Lew et al., 2017).

However, see Barreda and Nearey (2018) for a discussion of

why the Lobanov normalization routine may not reflect listener

vowel perception as well as log-mean normalization routines.

The use of the Lobanov normalization routine only

matches up with the description of SOAM, where the

Lobanov normalization routine was described as a possible

option. However, insofar as the goal of vowel formant nor-

malization is to reduce variation in the data due to anatomi-

cal and physiological differences among speakers while

also retaining variation due to sociolinguistic differences

(Adank et al., 2004), any such normalization routine that is

appropriately applied and reduces undesired variation

should function equally well as a preprocessing step for

each of the measures being analyzed.

A simulation scenario was run 1000 times on the nor-

malized data, and the results of each run were recorded. For

each run of a simulation, the data were sampled from a

bivariate normal distribution using the mvrnorm function

from the MASS (Venables and Ripley, 2002) R package.

Thirty data points were generated for both vowel categories

being analyzed for a total of 60 data points in each trial of a
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simulation. The sample size of 30 per category was chosen

as a stress test to assess how the measures perform with rel-

atively small samples.

Bivariate normal distributions were chosen because

SOAM, the APP-based metric, and the Pillai score assume

normally distributed data, and VOACH makes no assumptions

about the statistical distribution of the data. It stands to reason

that if the measures perform poorly on data that match their

ideal assumptions, they would not perform any better in con-

ditions where those assumptions are violated. As for VOACH,

its results are designed to be invariant to the way that the data

are distributed. Furthermore, Whalen and Chen (2019) found

preliminary evidence that F1 and F2 follow normal distribu-

tions. Thus, drawing simulated data from a bivariate normal

distribution has some degree of ecological validity.

In the little and partial overlap tests, the ground truth val-

ues were determined in three different ways to reflect the three

different conceptions of overlap that the measures employ and

not favor one conception of overlap over another. These differ-

ent procedures result in different target values for each mea-

sure. For each category, 100,000 points were generated from a

bivariate random number generator to simulate a large popula-

tion based on the mean and covariance statistics of each tested

vowel category. The overlapping coefficient in Inman (1984)

is used as the theoretical target for SOAM and VOACH. For

the APP-based metric, the classification rule from quadratic

discriminant analysis was applied to each class to get the pos-

terior probabilities, and the probabilities were averaged and

summed as in the procedure definition. The Pillai score target

is calculated on the 100 000 point simulated populations.

In each little and partial overlap simulation run, the

mean and covariance statistics from the population sets are

used as the seeds for the random samples of each vowel. In

the full overlap test, the mean and covariance statistics for

/i/ directly from the Hillenbrand et al. (1995) data are used

as the seed for generating all random samples in each

Monte Carlo simulation round. Because the underlying dis-

tribution is the same in the full overlap test, the target value

for all the vowel overlap measures is one.

C. Results

The results of the 2D simulations may be found in

Table I.

In the no overlap scenario, only the APP-based metric and

Pillai score produce usable results with the APP-based metric

performing the best in terms of both accuracy and precision.

The value of exactly zero that SOAM and VOACH output is

due to them assigning a probability density of zero to any for-

mant configuration that falls outside the perimeter of the region

bounded by their shapes. The overall magnitude of the errors

for all of the measures is not large, however.

As for the partial overlap condition, the Pillai score had

the lowest error and the lowest spread, followed by the APP-

based metric. The Pillai score also performed the best in the

full overlap case. Notably, VOACH had a substantially higher

mean absolute error than the other measures, showing that it is

far less accurate than the other measures.

D. Discussion

These results confirm our theoretical argument that the

Pillai score and the APP-based metric are more accurate

and precise than SOAM and VOACH. The Pillai score

shows the best overall performance. The APP-based metric

is better in the little overlap condition, but the Pillai score’s

average output of 0.02 is still readily interpretable as an

indicator of little to no overlap. For the 2D case of compar-

ing F1 and F2, the Pillai score generally provides the closest

fit to the tested target scores.

It should be noted that SOAM did outperform the APP-

based metric in the full overlap condition. This pattern is

not expected to be the case with larger samples and larger

numbers of points generated in the APP-based metric.

IV. TEST 2: 3D OVERLAP CALCULATIONS

This test set of simulations was analogous to the 2D

simulations except that the 3D versions of the measures

were used with F1, F2, and duration.

A. Methodology

Each of these simulation conditions was analogous to

the 2D simulations. We use the Lobanov normalization rou-

tine from the PHONTOOLS package on the duration values to

place the duration values on the same relative scale as the

formant values. In doing so, we minimize errors induced

from the variables being on different scales.

TABLE I. Summary results for the 2 D versions of SOAM, the APP-based metric, VOACH, and the Pillai score. Presented for each condition are the target

value, each measure’s mean output, the standard deviation (SD) of each measure’s output, and the mean absolute error (MAE) of each measure’s output

from the target. The target and mean are merely presented to help contextualize the results; only the SD and the MAE are used when analyzing the measures’

relative performance. The MAE is used to assess accuracy, and the standard deviation is used to assess precision. The best results are in boldface, and results

that stem from errors induced by a particular measure’s implementation are in italics.

Measure

No overlap: /i/ vs /A/ Partial overlap: /u/ vs /U/ Full overlap: Two samples of /i/

Target Mean MAE SD Target Mean MAE SD Target Mean MAE SD

SOAM 4.9e-14 0 4.9e-14 0 0.22 0.32 0.13 0.12 1 0.93 0.067 0.06

APP 9.2e-17 1.5E-16 1.9E-16 3.2e-15 0.32 0.30 0.07 0.08 1 0.93 0.075 0.04

VOACH 4.9e-14 0 4.9e-14 0 0.22 0.24 0.11 0.14 1 0.72 0.28 0.10

Pillai 0.02 0.02 0.003 0.003 0.42 0.41 0.06 0.07 1 0.97 0.03 0.03
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B. Results

The results of the 3D simulations can be seen in Table II.

These results mirror those of the 2D simulations. SOAM and

VOACH consistently output values of zero in the little overlap

condition. And, the APP-based metric performs better than the

Pillai score in the little overlap condition with the Pillai score

showing practically competitive performance regardless.

In the partial and full overlap simulations, the Pillai

score again shows greater accuracy and precision with the

APP-based metric coming in as the second-best performer.

Particular to the full overlap simulations, only the Pillai

score was reasonably close to the true value of one. The

APP-based metric and SOAM are still high enough that a

researcher could reasonably interpret the values as indicat-

ing a high degree of overlap. On the other hand, VOACH is

so far away from the target value in the full overlap condi-

tion that it could not be reasonably interpreted as indicating

a high degree of overlap. However, its spread is the second

lowest, meaning that it is consistent, but it consistently

shows high degrees of error.

C. Discussion

In the 3D tests, the same pattern as seen in the 2D tests

is present. In the little overlap scenario, the APP-based met-

ric and Pillai score perform the best and output small posi-

tive values. Otherwise, in both the partial and full overlap

scenarios, the Pillai score performs the best. Overall, these

results further confirm the theoretical analysis that the Pillai

score and the APP-based metric are the most accurate and

precise measures.

V. GENERAL DISCUSSION

Both the 2D and 3D results serve as empirical evidence

for our theoretical analysis that the Pillai score and APP-

based metric are more accurate and precise. And, between

the two, the Pillai score provided the highest level of overall

accuracy and precision in our tests.

The estimate of the Pillai score on a small sample is

already performing well. For that reason, we argue that it is

the preferred measure of vowel overlap to use when sam-

ples are small. As the sample size grows, all the measures

will benefit from better estimates of the population

parameters. However, as discussed in the theoretical analy-

sis, only the Pillai score and the APP-based metric will con-

verge on their population values. As such, the Pillai score or

the APP-based metric are the most appropriate measures for

calculating vowel overlap on larger samples. When the

covariance is believed to be different between the two

groups, the APP-based metric is theoretically preferred

because the Pillai score assumes the covariance is the same

between all tested groups.

Note that the conception of vowel overlap as the shared

space between two probability density functions has not yet

been represented in our findings. We believe that either a

modified version of SOAM should be developed for this use

that will converge on the correct value, or else the sample-

based estimate of the overlapping coefficient (Inman, 1984)

should be used to assess vowel overlap. A modified version of

SOAM would need to account for density to converge on the

theoretical value it estimates because density is intrinsic to

SOAM’s concept of overlap.

As for VOACH, there does not seem to be a compelling

reason for its use. It performed poorly overall in our tests.

And, even if its performance was due solely to a small sample

size, it would not converge on the correct value with larger

sample sizes. When it is unreasonable to assume that the

vowel data are normally distributed, a nonparametric estimate

of the overlapping coefficient, as Schmid and Schmidt (2006)

describe, would be theoretically preferable.

Future work should also endeavor to find empirically

grounded definitions of little overlap, partial overlap, and

full overlap so as to contextualize the calculations of these

vowel overlap measures. This process may also involve find-

ing confidence intervals for the measures based on the sam-

ple size being analyzed. Additionally, it would be insightful

to see how the measures perform in more real-world scenar-

ios to assess their utility in situations that are closer to what a

researcher may encounter, including data that are not nor-

mally distributed. Other potential measures of vowel overlap

should be considered, such as the overlapping coefficient cal-

culated on sampled data rather than populations (Inman,

1984), or the cross-entropy of the two distributions as used

by Ghorshi et al. (2008), neither of which have yet been

applied to the investigation of vowel overlap.

Having found the Pillai score and APP-based metric to

be appropriate for measuring vowel overlap, we would like

TABLE II. Summary results for the 3 D versions of SOAM, the APP-based metric, VOACH, and the Pillai score. Presented for each condition are the target

value, each measure’s mean output, the standard deviation (SD) of each measure’s output, and the mean absolute error (MAE) of each measure’s output

from the target. The target and mean are merely presented to help contextualize the results; only the SD and the MAE are used when analyzing the measures’

relative performance. The MAE is used to assess accuracy, and the SD is used to assess precision. The best results are in boldface, and results that stem from

errors induced by a particular measure’s implementation are in italics.

Measure

No overlap: /i/ vs /A/ Partial overlap: /u/ vs /U/ Full overlap: Two samples of /i/

Target Mean MAE SD Target Mean MAE SD Target Mean MAE SD

SOAM 4.4e-14 0 4.4E-14 0 0.14 0.10 0.06 0.05 1 0.83 0.17 0.10

APP 1.9e-24 2.7e-15 2.7E-15 8.5e-14 0.21 0.20 0.04 0.05 1 0.87 0.13 0.05

VOACH 4.4e-14 0 4.4E-14 0 0.14 0.07 0.09 0.05 1 0.36 0.64 0.09

Pillai 0.02 0.02 0.003 0.003 0.34 0.33 0.03 0.04 1 0.95 0.05 0.04
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to suggest some lines of research that may benefit from

using quantitative measures of overlap. As mentioned in the

Introduction, examining the contrastiveness of two different

vowel categories could benefit from using vowel overlap

measures. One relevant question could be whether duration,

for example, is contributing much to the acoustic separation

of two vowel categories. Measuring how much the catego-

ries overlap when using only F1 and F2 and, then, compar-

ing how much that overlap level does or does not change

when duration is added into the mix can quantify just how

much duration is actually contributing to the separation.

Wassink (2006) and Haynes and Taylor (2014) perform

such an analysis, and Morrison (2008) and Wassink (2006)

provide some guidelines about how best to interpret the dif-

ferences between the F1-by-F2 and F1-by-F2-by-duration

overlap values, such as how it is appropriate to directly

compare those overlap values for the APP-based metric but

not for SOAM. Similarly, studies that examine vowel pro-

duction across different social variables may gain additional

insight into group differences in production by measuring

the degree of vowel category overlap. A simple research

question may be whether certain dialect groups front /u/

more than others, which could be addressed by comparing /

u/ productions across dialect groups, as well as perhaps how

close each group’s /u/ is to /i/.

Some aspects of vowel inherent spectral change

(Nearey and Assmann, 1986) could also be studied using a

measure of vowel overlap. For example, Nearey and

Assmann (1986) find that /E/ in Canadian English is backed

and lowered during the process of articulation. Taking for-

mant measurements at the beginning and end of multiple

productions of a particular vowel category and, then, mea-

suring the overlap between the initial and final sections of

the vowel productions would yield a quantification of how

much the formant configurations change over time. Such an

analysis could be made more fine-grained by taking mea-

surements at more incremental steps through the vowel and

comparing those incremental measurements to each other.

The time-course of the distributional change in the formants

could then be observed. And to that end, any study that is

comparing vowel productions across time points, linguistic

categories, and/or social groups could benefit from a mea-

sure of vowel overlap because acoustic parameters are

treated distributionally (or as bundles) instead of in isolation

from each other. There is also evidence that distributions of

acoustic features are relevant to infant speech learning

(Wanrooij et al., 2014), so studies may be more ecological

to cognitive reality when treating vowels as distributions.

A limitation of the current analysis is that the simula-

tions were run on idealized data, whereas samples of real

data have more noise in the measurements and are less

likely to be balanced. It could be the case that certain mea-

sures of vowel overlap are more robust to noise or imbal-

ance in the data, which our simulations do not address.

Future research building on the work in the present paper

should examine how measures of overlap fare in more real-

istic scenarios, as well as how to make informed choices

about the methods with regard to statistical properties like

the bias-variance trade-off.

Readers may view a bundle containing the R implemen-

tation of these measures, the script used to run the simula-

tions, and the markup for this document online (Kelley and

Tucker, 2019).

VI. CONCLUSION

In this study, four different measures of vowel overlap

were examined: SOAM (Wassink, 2006), the APP-based

metric (Morrison, 2008), VOACH (Haynes and Taylor,

2014), and a modified version of the Pillai score (Hay et al.,
2006). They were tested using a Monte Carlo simulation

technique to examine their performance in terms of accu-

racy and precision for 2D (F1 and F2) and 3D (F1, F2, and

duration) cases.

Overall, the Pillai score performed best in the Monte

Carlo simulations. The APP-based metric performed the

second best, and its performance should increase with larger

samples and greater numbers of generated points. For the

present moment, the Pillai score and APP-based metric are

the theoretically preferred options. Thus, researchers have

more options for calculating vowel overlap than Euclidean

distance, which better account for the distributional proper-

ties of their data.
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