
Accessible Game Development Via Symbolic Learning
Program Synthesis

by

Megan Johanna Sumner

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Megan Johanna Sumner, 2024

Abstract

Video game development is a highly technical practice that traditionally re-

quires programming skills. This serves as a barrier to entry for would-be

developers or those hoping to use games as part of their creative expression.

While there have been prior game development tools focused on accessibility,

they generally still require programming knowledge, or have major limitations

in terms of the kinds of games they can make.

In this thesis we introduce Mechanic Maker, a tool for creating a wide-range

of game mechanics without programming. Game mechanics are defined as the

basic activities in the game and the rules that govern them, for example,

a character moving on screen due to input given on the keyboard. Instead

of requiring programming to create game mechanics, Mechanic Maker relies

on a backend symbolic learning system to synthesize game mechanics from

examples. We conducted a user study to evaluate the benefits of the tool for

participants with a variety of programming and game development experience.

Our results suggested that participants’ ability to use the tool was unrelated

to their level of programming ability.

We also explore how we can leverage data from the user study to create

a database of learned rules. This database allowed us to create a Gaussian

Mixture Model, which we use in a case-based reasoning system to attempt to

speed up mechanic creation.

We conclude that tools like ours could help democratize game development

by making the practice accessible regardless of programming skills. Addition-

ii

ally, the usability assessment of Mechanic Maker showed that users could ef-

fectively use the tool. Finally, we determine that the case-based reasoning

approach has the potential to speed up mechanic creation, but further work

needs to be done to reduce user friction in Mechanic Maker.

iii

Preface

This thesis is original work done by Megan Sumner. It was completed under

the supervision of Dr. Matthew Guzdial at the University of Alberta.

The user study in Chapter 5 of the thesis received research ethics approval

from the University of Alberta Research Ethics Board, Pro00102469.

Chapters 4 and 5 of this thesis will be published with Vardan Saini and Dr.

Matthew Guzdial as co-authors. The work has not yet been published, but

will be part of the Artificial Intelligence and Interactive Digital Entertainment

conference (AIIDE-24) in November 2024. V. Saini contributed to the creation

of the tool used in this research and M. Guzdial was the supervisory author

and contributed to the tool creation and writing and editing the published

work.

iv

To everyone who believed in me and showed me how to believe in myself.

Thank you to my family, my friends and especially my partner, Nick, for

supporting me through everything.

v

Imagination will often carry us to worlds that never were, but without it we

go nowhere.

– Carl Sagan

vi

Acknowledgements

Thank you to my supervisor, Dr. Matthew Guzdial, for guiding me through

my Master’s degree and being supportive throughout the whole process. He

taught me so much about research and reinvigorated my passion for computer

science.

I would also like to extend a thank you to Dr. Carrie Demmans Epp and

Dr. Nathan Sturtevant for being committee members to my thesis work. Their

feedback improved the research in this thesis immensely.

Lastly, a large thank you to my parents, my brother and his wife, my

partner and all my friends for supporting me through everything. They helped

get me through the toughest times and kept my spirits up.

vii

Contents

1 Introduction 1

2 Background 4
2.1 Game Terminology . 4
2.2 Procedural Content Generation 6

2.2.1 PCG Via Machine Learning 6
2.2.2 Co-creativity . 8
2.2.3 Autonomous Generation 8
2.2.4 Search-based PCG . 9

2.3 A* . 10
2.4 Program Synthesis . 11
2.5 Clustering . 11

2.5.1 Gaussian Mixture Models 12
2.6 Case-Based Reasoning . 12

3 Related Work 16
3.1 Co-Creative Tools . 16
3.2 Autonomous Rule Generation 17
3.3 Program Synthesis . 18

4 Mechanic Maker 19
4.1 What is Mechanic Maker? . 19
4.2 Tool Walkthrough . 19

4.2.1 Symbolic Learning Program Synthesis 20
4.2.2 Game Mechanic Editor 24

5 Human Subject Study 27
5.1 Hypotheses . 27
5.2 Procedure . 28
5.3 Survey Design . 29
5.4 Results . 30

5.4.1 Participants . 30
5.4.2 Frame Error . 30
5.4.3 Free Play Analysis . 34
5.4.4 Survey Results . 35

5.5 Discussion . 38

6 Gaussian Mixture Model Analysis 39
6.1 Case-Based Reasoning . 40

6.1.1 Limitations . 42

viii

7 Conclusion 45
7.0.1 Ethical Statement . 45
7.0.2 Future Work . 46

7.1 Takeaways . 46

References 49

Appendix A Additional Information 54
A.1 Survey Questions from the User Study 54

ix

List of Tables

5.1 Experience of participants in programming and game develop-
ment. 31

x

List of Figures

2.1 A rule is the basic code that affords game actions. Multiple
rules form a mechanic and multiple mechanics form a gameplay
system. 5

2.2 A comparison between level 1-1 of Super Mario Bros., shown in
subfigure a, and a level generated through PCGML, shown in
subfigure b. The generated level used the original Super Mario
Bros. levels as training data to create it. 7

2.3 Co-creativity between a user and an AI. The two take turns
modifying an artifact to achieve a goal. 8

2.4 A co-creation framework between a user and an AI. The two
take turns modifying an artifact to achieve a goal. 9

2.5 A visualization of a search-based PCG approach. This partic-
ular search-based PCG process uses a population of content to
generate new content. 9

2.6 The cost function of A*. g(n) is the cost from the start to the
current node. h(n) is the predicted cost of the current node to
the goal state. 10

2.7 Subfigure a. shows unlabeled data plotted on a graph. Sub-
figure b. shows the results of applying the k-means clustering
algorithm to group this same data into three clusters around a
centroid point marked as a red x. This provides us with some
understanding of the similarities between the data. This data is
artificial and was created for the purpose of visualizing clustering. 14

2.8 Gaussian Mixture Model distribution broken up into clusters. 15
2.9 A representation of how Case-Based Reasoning works. 15

4.1 High-level overview of the hierarchy of terminology for Mechanic
Maker. 20

4.2 An example of a rule generated by the backend SMPS approach
for the Flappy Bird game to make the bird jump. 21

4.3 The rule generation process showing how a rule gets modified
to be more generalized using the SLPS backend. Note that the
rule would only be modified if the system observed additional
examples of the same effect. 22

4.4 The Mechanic Maker editor. (a) The user defines frames of
their game by placing objects on a grid, (b) the SLPS backend
attempts to learn the underlying rules suggested by the changes
across the frames, and (c) the user can test the learned rules in
real-time via the Play Mode. 26

xi

5.1 Frame error grouped by programming experience for the (a)
Sokoban and (b) Flappy Bird activities. From the survey re-
sults None and Limited programming were merged into the
non-programmer category and Moderate and Expert program-
ming experience were merged into programmer. The All box
plot shows all programming experience combined. The red line
marks the performance of our baseline. 33

5.2 Example game outputs from the Free Play portion of the user
study. 35

5.3 Survey results for the tool in general. 36
5.4 Survey results for the tool when doing the Sokoban activity. . 37
5.5 Survey results for the tool when doing the Flappy Bird activity. 37
5.6 Survey results for the tool when doing the Free Play activity. . 38

6.1 T-distributed Stochastic Neighbor Embedding (TSNE) to re-
duce the 20 dimensions to 2 from the GMM. This is a visual-
ization of 7 clusters from our GMM. 40

6.2 An example of the rules generated by the case-based reasoning
approach for frames one and two of the Flappy Bird example
game. 41

6.3 An example of the rule generated by the SLPS backend for
frames one and two of the Flappy Bird example game. 44

xii

Glossary

A*

A search algorithm that can guarantee a shortest path between a start
and a goal state.

Autonomous Generation

A system generates content with little or no human interaction outside
of starting the process and reviewing the outputted content.

Case-based Reasoning

An Artificial Intelligence framework that tries to solve newly inputted
cases by looking at similar past cases. For every new case that is in-
putted, the system will look in its database of current cases. It will find
the case that is most similar and either reuse it outright, or modify it,
test it is successful at solving the problem and then add it back to the
database.

Clustering

An unsupervised learning technique in Machine Learning. Unsupervised
learning involves analyzing unlabeled data and focuses on pattern recog-
nition without human guidance. Clustering is a specific application of
unsupervised learning that can be used to visually divide data into re-
lated groups.

Co-creativity

A user works with a computational system to iterate on a task. It re-
quires both the user and the computer to make contributions towards a
task together.

Game Engine

An environment that is used to develop a video game. It generally in-
cludes software to create all parts of a video game. When we discuss a
game engine throughout this paper we are narrowing the focus to me-
chanic creation through a visual editor

Game Mechanic

The basic activities of a game and the rules that govern them.

Gameplay System

A collection of content that creates a fully playable portion of a game.

xiii

Gaussian Mixture Model (GMM)

A probabilistic clustering model that generates clusters assuming that
the data is generated from multiple Gaussian distributions. Unlike other
clustering methods, it generates the clusters over probability fields, in-
stead of on the data itself.

Machine Learning (ML)

A type of algorithm that allows the system to learn and adapt to the
problem through training related to the application.

Mechanic Maker

The game mechanic generator tool being worked on in this research. It
allows users to place objects frame-by-frame through a user interface
and the backend SLPS system predicts the user’s intended mechanics in
terms of a domain specific language. They can then test out the game
to see if the backend predicted correctly and iterate on the results.

Procedural Content Generation via Machine Learning (PCGML)

The algorithmic process used to generate content procedurally using Ma-
chine Learning

Procedural Content Generation (PCG)

A group of methods that allow users to create content through computer
algorithms without having to define the content outright.

Program Synthesis

The field of computer science related to generating domain specific code.
It allows a user to specify an outcome or goal for the system and the
program synthesis algorithm will generate code that works within the
constraints of the domain.

Rule

An activity represented by code in a game.

Search-based PCG

A user defines a space of possible content to search through for a given
domain. A search algorithm will run on this search space to find the
best configurations of the desired content. It will execute the search pro-
cedure through these possibilities and use a human-authored evaluation
function, called a fitness function, to grade the generated content.

Symbolic Learning Program Synthesis (SLPS)

The program synthesis algorithm that runs the backend engine of Me-
chanic Maker.

User Interface (UI)

The part of the tool that the user interacts with.

xiv

Chapter 1

Introduction

Video game development involves a variety of disciplines to create a game due

to its multifaceted nature [13]. It requires many different skill sets, over many

years to come together to create a game [34]. These skills range from anima-

tion, art, audio, design, production, programming, quality assurance, writing

and more. We anticipate that all these different facets of game development

can appeal to different audiences. This could potentially, in turn, account for

the popularity of game development among non-game developers, by providing

multiple avenues of artistic expression and creativity while creating a game.

Despite significant interest, it is difficult for novices to make games. Games

can take multiple years to create and much of this time is sunk into technical

challenges that exist in each section of game development [34]. This limits

who can engage with games as an artistic medium, as a tool for procedural

rhetoric [46], or as an education aide [12]. If the time and technical barrier of

entry into game development could be reduced, game development would be

more approachable, allowing access to game creation for those who have been

historically excluded. However, this requires more accessible game develop-

ment tools, particularly focused on reducing the requirements of programming

skills. Specifically, we anticipate that a tool for creating game mechanics, as

a crucial component to video games, would be a useful first step towards this

broader goal.

To provide clarity of our meaning when we discuss a game mechanic (often

shortened to mechanic), we use the definition from Zubek [51]. Zubek defines

1

a Game Mechanic as “the basic activities of a game and the rules that govern

them”. We also seek to define “Rule” in this quote. When we discuss rules, we

refer to rules as they are represented by code in a game. Rules are implemented

in a specific programming language and are executable by a Game Engine. A

game engine is a software environment that can be used to develop a video

game. When we discuss a game engine throughout this thesis we are narrowing

the focus to mechanic creation through the User Interface (UI) of our tool.

There are existing tools that can help to create mechanics without the

typical programming requirement, but they have limitations. Tools for game

mechanic creation without typical programming take one of two forms: (i) vi-

sual programming, or (ii) pre-authored components with user-defined param-

eters. Visual programming allows users to create mechanics through visual

elements instead of writing code in text. Visual programming tools include

Scratch [36] and Unreal Engine Blueprints [10]. While helpful, visual program-

ming languages do not fully remove the technical barrier as they still require

programming knowledge, just with a different interface. Pre-authored compo-

nents have proven popular in commercial game development tools like Kodu

Game Lab [41] and Dreams [30]. Recombining pre-authored components to

produce new mechanics removes the need for programming, but pre-authored

components are limiting in the types of mechanics that the user can create.

For example, a tool might offer users the ability to add a “ground” object to

their games, with built-in collision rules so others objects do not move through

it. However, if a user wanted to make a game about burrowing into the ground,

this may not be supported.

In this thesis, we present Mechanic Maker, a game mechanic creation tool

which requires no programming knowledge. Instead, it works through a back-

end symbolic Machine Learning (ML) approach that creates code (as discussed

in Section 2.4 of Chapter 2 on Program Synthesis), based on a user visually

demonstrating mechanics they want to exist. In this way, a user can define

a variety of mechanics. For example, a user could create a character mov-

ing through keyboard input, an object spawning when another object gets

to a certain position, a character jumping when a player presses space bar

2

on the keyboard, and so on. We do not have pre-authored rule templates or

otherwise limit users, and our backend Symbolic Learning Program Synthesis

(SLPS) approach can learn any deterministic sequence of rules from Markovian

states [16]. In effect, this example-based mechanic development paradigm al-

lows users to describe the end design goal they want for their mechanics, with

Mechanic Maker doing the “programming” for them.

The goal of this thesis is to investigate three research questions:

R1 Can we build a co-creative tool (Mechanic Maker) that can help a user

create a variety of game mechanics?

R2 When tasked with recreating a given set of mechanics with Mechanic

Maker, will programming ability significantly impact the result?

R3 Can we use a Gaussian Mixture Model (GMM) to improve the backend

SLPS engine results to create generalized game rules more quickly?

The answers to our research questions are discussed throughout the re-

mainder of this thesis. To evaluate Mechanic Maker, and answer [R1] and

[R2], we conducted a human subject study with users with a range of prior

programming experience. Our results suggest that users find Mechanic Maker

valuable for creating game mechanics, and that it is equally useful for program-

mers and non-programmers. This demonstrates the potential for expanding

this methodology through intelligent tools to democratize game creation. We

also conducted an experiment with a GMM to answer [R3] using the dataset

from our user study as a starting point.

3

Chapter 2

Background

In this chapter we cover topics necessary for understanding the work in this

thesis. It is important to first understand what a Game Mechanic is as this

thesis covers work related to the creation of mechanics. Procedural Content

Generation (PCG) is discussed due to it being the field researching how game

content can be created automatically. We cover the topic of Program Synthesis

because it provides an understanding for the backend of Mechanic Maker.

Clustering is discussed as we conducted a clustering experiment on our data

from the user study. Lastly, we describe Case-based Reasoning as it is an

alternative approach we propose for Mechanic Maker’s backend.

2.1 Game Terminology

There are a few terms common in game development that are useful to our

work. A Game Mechanic as defined by [26] is ”the basic activities of a game

and the rules that govern them”. We use this definition going forward in

this thesis. When we discuss a Rule, we are describing activities as they are

represented by code in a game. Game mechanics and the rules that produce

them are what makes a game playable. Game mechanics start to build upon

each other to make full Gameplay Systems, but they can start quite granular.

Game mechanics include player movement, collision between a player and an

object, interaction with an object, scores increasing, the health of the player

changing and much more. A gameplay system as defined by [26] is a collection

of content that creates a fully playable portion of a game. A visualization of

4

2.2 Procedural Content Generation

Procedural Content Generation (PCG) is the field of research focused on au-

tomated generation. Breaking down the definition into its components, pro-

cedural means that something is being done using an algorithm. Content in

video games refers to anything that is created for the video game. Examples of

content in a video game include sound effects, art assets, game mechanics, and

levels. Generation is the process of creating something. Putting these words

together we get PCG, which is a group of methods that allows developers to

create content through computer algorithms without having to define the con-

tent outright. For instance, if we were generating trees for a game, we would

want each tree to be visually different from each other. A tool called SpeedTree

[43] allows developers to use PCG to generate new tree automatically. There

are many tools that generate a variety of different types of content procedu-

rally. In this thesis, we focus on a specific application of PCG to generate

game mechanics.

2.2.1 PCG Via Machine Learning

A subset of PCG, known as Procedural Content Generation via Machine

Learning (PCGML), generates game content using machine learning tech-

niques. ML refers to a group of algorithms that allows a system to learn

and adapt to a problem by training on data or through experience. We refer

to ML applied to PCG as PCGML. It provides different methods for game

content generation using a variety of ML techniques [19].

An example of how computer science methods can be used within PCGML

is with Markov chains. Markov chains predict the next state based on the

probabilities of actions from the current state [38]. Using Markov chains, new

video game levels can be generated, as shown in Figure 2.2 for the game Super

Mario Bros. The game has many levels that serve as training data, and new

levels are generated that resemble the original content. Subfigure 2.2.a shows

a level from Super Mario Bros. created by the original developers whereas

2.2.b shows an instance of a level generated through a Markov chain trained

6

Search-based rule generation for game mechanics dates back to the early

1990s [33]. The most common approach requires authoring possible rules,

effects and facts, which can then be selected using a search-based optimization

[39], [44]. Cook et al. [6], [14] in their Mechanic Miner framework employed

code reflection to identify possible public variables which could then appear

in different rule effects. Cook et al.’s work, similarly to our own, did not

rely on pre-authored rule effects, though we instead learn the rules from user

examples.

2.3 A*

The backend of Mechanic Maker employs a search-based PCG method to de-

termine the best possible engine for the provided input from the user. It uses

an algorithm similar to the A* algorithm to do this. A* is a search algorithm

that can guarantee a shortest path between a start and a goal. It is used

in video games to efficiently navigate characters throughout a world [7]. For

instance, a character in a game could start at a specific location, (0,0), which

would be the start state. From this start state, the A* algorithm expands

all possible directions that can be moved to as children states of the initial

location. If we require the character to move on a grid, these children states

would be (0,1), (1,0), (0, -1) and (-1, 0). A* finds the state with the lowest

cost and sets that state to the current state and repeats until the goal state

is found. The cost is determined by the function shown in Figure 2.6. Using

this formula to determine cost and having a heuristic distance function that

is admissible and consistent allows A* to find the shortest path from the start

state to the goal state [11].

f(n) = g(n) + h(n)

Figure 2.6: The cost function of A*. g(n) is the cost from the start to the
current node. h(n) is the predicted cost of the current node to the goal state.

Mechanic Maker uses an algorithm similar to A* to determine possible

10

predictions to provide the user. A state in Mechanic Maker is considered an

engine, which contains a sequence rules. For our heuristic, we use Hellman’s

distance. This distance determines how different two states are. For exam-

ple, if between two states, no objects are moved on the level editor screen,

the Hellman’s distance would return 0. However, if an object is at position

(0,0) and moves to position (0,1) the Hellman’s distance would return a higher

heuristic cost. There are multiple rules that we could learn to approximate

some observed change and we generate all of them. For instance, if we ob-

serve an object changing position, the object could have disappeared at (0, 0)

and reappeared at (1, 0) or the object could have changed velocity in the x

direction from 0 to 1. We use this to determine which set of rules account for

the observations most accurately. We discuss this algorithm in depth in the

Symbolic Learning Program Synthesis section of the Mechanic Maker chapter

of this thesis.

2.4 Program Synthesis

Program Synthesis is the field of computer science related to generating domain-

specific code [15]. Domain-specific code, also known as a domain-specific pro-

gramming language, targets a particular problem and creates code that can

only be used to solve that problem. This contrasts general programming lan-

guages which can be used to solve many problems across a variety of domains.

Program synthesis allows a developer to specify an outcome or goal for the sys-

tem and program synthesis algorithms will generate code that works within the

constraints of the domain. Program Synthesis tends to use a search algorithm

to generate the domain-specific code. Mechanic Maker can be understood as a

search-based program synthesis to find the best code for the given observation.

2.5 Clustering

Clustering is an unsupervised learning technique in ML. Unsupervised learning

involves analyzing unlabeled data and focuses on pattern recognition without

human guidance. Clustering is a specific application of unsupervised learning

11

that can be used to divide data into related groups. It is a useful way to

organize data based on similarities without having to have more information

on the data. An example of this is shown in Figure 2.7. We can see on the left

a selection of unlabeled data. This data can then be ran through a clustering

algorithm, in this case K-means clustering, to group the data into k clusters

(three clusters in this example).

2.5.1 Gaussian Mixture Models

A GMM is a probabilistic clustering model that generates clusters assuming

that the data is generated from multiple Gaussian distributions. Unlike other

clustering methods, it generates the clusters over probability fields, instead

of on the data itself. This allows for more complex models and datasets, as

the data doesn’t need to have as much understandable information. Figure

2.8 shows how these clusters can be determined from a probability field. The

probability distribution is shown as the dotted line and a GMM will cluster

Gaussian distributions to best fit the data.

We used a GMM to analyze the data that we gathered from the user study

we ran on Mechanic Maker. We clustered learned rules and found similari-

ties between these rules. This was done as a potential way to visualize rule

relationships and determine if we could find commonalities between different

user games. Our hypothesis was that many users would end up with similar

rules. For example, many mechanics require the player to be able to move the

character with keyboard input.

2.6 Case-Based Reasoning

Case-based Reasoning is an AI framework that tries to solve newly inputted

cases by looking at similar past cases. For every new case that is inputted,

the system will look in its database of current cases. It will find the one that

is most similar and either reuse it outright, or modify it, test it is successful

at solving the problem and then add it back to the database.

Figure 2.9 shows how the system works. If we input a new case to find a

12

solution for the given problem, it will try to retrieve a similar case from our

database. If it does find a similar example in the database, it will reuse the

retrieved case as the output, if not it will modify the retrieved case with infor-

mation from the inputted case and store this modified case into the database

of cases.

This case-based reasoning system is used within our work as an alternative

approach to approximating rules. Without this approach, rules have to be

learned from scratch each time a user wants to create a new game. Instead,

using the case-based reasoning approach, we could pull from a database of

rules to potentially learn rules more quickly. This would be done by using the

GMM we created as a database to pull from. The idea with our case-based

reasoning approach was to input a new case (an approximated rule in our

instance) into the GMM. We would then retrieve a cluster that fits the new

case best and modify the new case with information from the retrieved cluster.

We would then use this modified rule as the outputted solution and store the

modified rule in the GMM.

13

Chapter 3

Related Work

Mechanic Maker builds on a few different areas of games research including

Co-creativity, Autonomous Generation and Program Synthesis.

3.1 Co-Creative Tools

Human-computer co-creativity involves a human and computer working to-

gether in the artistic creative process [8]. Specifically related to game devel-

opment there are many co-creative tools for developing levels for games [2],

[49]. Most approaches to co-creativity use Search-based PCG or another non-

learning PCG approach [32]. Previous works have investigated ML approaches

with explainable AI [50]. However, such approaches don’t create Game Me-

chanics in the same way as Mechanic Maker. Machado et al. [27] have a

co-creative tool for game creation that uses an AI-driven game development

assistant to suggest existing mechanics from other games based on what the

user has developed so far. This tool does not learn and adjust based on input

and uses existing rules instead of creating new ones like Mechanic Maker.

There are two prior examples of co-creative tools that learn and adjust their

actions based on user feedback [17], [21]. Guzdial et al. [17] developed a tool

called Morai Maker which takes turns with users to create levels and attempts

to learn the style of the human user. Halina and Guzdial [21] developed

a rhythm game generator called KiaiTime that similarly attempts to learn

the design style of a human user. Our proposed tool, Mechanic Maker, does

not involve a turn-taking interaction like these two tools, instead continually

16

updating learned rules based on user demonstrations. Mechanic Maker also

focuses on game rules instead of game levels.

Kruse et al. [24] presented a human-in-the-loop game design study to

determine the use of PCG tools for professional game designers. Their results

showed that there is still work to be done to get game developers interested

in AI assisted tools. They conclude that this is due to the technical difficulty

in using existing PCG tools in games and the unreliable results that the tools

can provide. We aim for our tool to address the problem of technical difficulty

as it removes the need for coding or parameter tuning.

3.2 Autonomous Rule Generation

We can split autonomous rule generation work into two groups, (i) search-

based PCG and (ii) world models.

Guzdial et al. [16] employed their Engine Learning algorithm for au-

tonomous rule generation. They learn rules from three existing games from

gameplay video and then attempted to combine rules from these existing games

to generate new rules [18]. While we based our SLPS approach on their Engine

Learning algorithm, which we discuss further below, we extend this algorithm

in order to make it appropriate for real time interaction.

Simplified game engines can be used to reduce the technical barrier of

game development [5]. The Gemini game generator [42] creates games using

a predefined set of rules. Gemini synthesizes these rules based on a provided

meaning by a user in a domain-specific language (DSL). While this tool doesn’t

require directly programming a game, it does require specialized technical

knowledge in terms of authoring intended meanings in its DSL.

With world models, a machine learning model is fed with examples of rules

from a real game, and then attempts to approximate them either explicitly

or implicitly [4], [20], [22]. They train on a massive amount of data to ap-

proximate a particular game environment. Unlike our approach, world models

do not generally learn explicit code, instead relying on fuzzy neural predictive

models. Guzdial and Riedl [18] represents the only example, to the best of our

17

knowledge, of combining world models and autonomous rule generation.

3.3 Program Synthesis

Program synthesis represents the task of automatically generating programs

to accomplish some task [15]. It is not typically applied to game develop-

ment, though some prior work exists within the domain of games [23]. Similar

to Mechanic Maker, Medeiros et al. [29] synthesize programs that represent

strategies based on player behaviors. But they do not apply program synthesis

to generate game content.

Yang et al. [48] apply program synthesis for approximating unseen parts

of partially observed environments. While Mittelmann et al. [31] design game

theoretic environments based on optimal strategies using program synthesis.

Both of these prior approaches apply program synthesis to produce dynamic

information about game-like environments. In comparison, our program syn-

thesis approach relies on human input and feedback to design playable video

games.

18

Chapter 4

Mechanic Maker

4.1 What is Mechanic Maker?

Mechanic Maker is a game development tool initially developed by Saini and

Guzdial [37]. Mechanic Maker was created as a co-creative way for an AI and

a user to work together to create Game Mechanics. The goal with Mechanic

Maker is to remove the need for programming in game mechanic development.

It works by users creating a mechanic frame-by-frame and having the backend

learn the game from the user’s example.

4.2 Tool Walkthrough

Our Mechanic Maker tool is split into two different components:

1. The SLPS backend. This backend interfaces with the game mechanic

editor to learn from the user inputs.

2. The game mechanic editor frontend. This frontend allows users to create

game frames to demonstrate their desired mechanics and receive predic-

tions from the SLPS backend.

19

gameplay video, and was able to approximate actual game rules with a high

degree of accuracy.

Figure 4.2 shows an example of a learned rule. The top line shows the pre-

effect of the bird’s velocity moving down at a speed of -1, and then changing

in the post effect to a y velocity of +1. The first number in the values is the

id of the object moving, in this case 0. All the lines below the pre-effect and

post-effects are the conditions that must be true in order for the rule to fire.

In this case the space bar has to be pressed, the longblock has to be moving

left and the bird has to be falling. Multiple of these rules create a learned

mechanic, as shown in Figure 4.1.

RULE: 2 VelocityYFact: [0, -1.0]->VelocityYFact: [0, 1.0]

VariableFact: [’space’, True]

VariableFact: [’up’, False]

VariableFact: [’down’, False]

VariableFact: [’left’, False]

VariableFact: [’right’, False]

VariableFact: [’upPrev’, False]

VariableFact: [’downPrev’, False]

VariableFact: [’leftPrev’, False]

VariableFact: [’rightPrev’, False]

VelocityYFact: [1, 0]

VelocityXFact: [1, -1.0]

AnimationFact: [1, ’longblock’, 1.0, 4.0]

PositionYFact: [1, 0.0]

VelocityXFact: [0, 0]

VelocityYFact: [0, -1.0]

AnimationFact: [0, ’bird’, 1.0, 1.0]

Figure 4.2: An example of a rule generated by the backend SMPS approach
for the Flappy Bird game to make the bird jump.

Our SLPS algorithm adapted from Guzdial et al. [16] is shown in Algorithm

1. We made the following changes. First, the original algorithm assumes an

unchanging sequence of game frames from a gameplay video. We instead

changed the algorithm to run iteratively every time it observes a new frame,

inheriting the last learned engine instead of an initial empty engine. Second, we

altered the types of Facts, breaking their “Spatial” Fact type into a PositionX

and PositionY Fact type, and removing the CameraX Fact type. We did this

to learn more nuanced rules for the former and as there is no camera movement

for the latter.

Third, we also set the Engine Learning loop to a maximum number of ten

21

that is more generalized. In the Figure, initially the ground is necessary for

the bird to move the crate one square to the left, but after it runs the Engine

Learning algorithm, it learns that the chick and the crate are the only objects

necessary for the rule to fire. The type of facts that Mechanic Maker uses to

represent each frame and create rules are:

• VariableFact — determines if any input was pressed.

• VelocityXFact — the velocity of an object in the x directions. Contains

information for how fast the object is going in the x direction and the

ID of the object affected.

• VelocityYFact — the velocity of an object in the y directions. Contains

information for how fast the object is going in the y direction and the

ID of the object affected.

• PositionXFact — the position of an object in the x directions. Contains

information for the location of the object in the x position and the ID

of the object affected.

• PositionYFact — the position of an object in the y directions. Contains

information for the location of the object in the y position and the ID

of the object affected.

• RelationshipXFact — associates the position of an object compared to

another object in the x direction. Contains information about the ID of

the object and the distance away from another object in the x position.

• RelationshipYFact — associates the position of an object compared to

another object in the y direction. Contains information about the ID of

the object and the distance away from another object in the y position.

• AnimationFact — provides an ID of an object and its location on screen.

This fact allows us to distinguish between multiple instances of the same

object.

• EmptyFact — Tracks when objects appear or disappear on the screen.

23

Algorithm 1 SLPS Engine Learning Algorithm

input: A sequence of continuous and valid frames of size f and threshold θ

output: Engine engine;
while True (Until runtime stopped) do
e← newEngine();
cF ← frames[0]
MaxIterations← 10
while i← 1 to len(frames) do
Attempt to learn an engine within the given MaxIterations
while iterations ≤MaxIterations do
Check if this engine predicts within the threshold.
frameDist← Distance(e, cF, i+ 1);
if frameDist ≤ θ then
cF ← Predict(e, cF, i+ 1)
break;

end if
Update engine and start parse over;
e← EngineSearch(e, cF, i+ 1)
if UpdatedSuccessfully(e, cf, i+1) then
Reset frames and start again
i← 0;
cF ← frames[0];
iterations← 0;
break;

end if
iterations← iterations+ 1;

end while
i← i+ 1;

end while
end while

4.2.2 Game Mechanic Editor

There are three main components to our game mechanic editor frontend:

1. The frame editor shown in Figure 4.4.a.

2. Predictions from the SLPS backend, with an example shown in Figure

4.4.b.

3. The Play Mode shown in Figure 4.4.c.

The frame editor in Figure 4.4.a is the main point of interaction in our tool.

We present the controls of our game mechanic editor at the bottom of each

24

sub-figure in Figure 4.4. The user specifies the intended behaviours for their

game mechanics by demonstrating them across these frames. For example,

if a user wants to have an object moving to the right, they would add it to

the grid for frame 0 then place the same object one position to the right in

the next frame. The SLPS backend, discussed above, will then learn that the

object should move to the right when the game is played. The frames allow

the user to specify the desired effects of the game mechanics and represents

the training data for the SLPS backend to learn what mechanics the player

wants in the game.

As demonstrated in Figure 4.4.b, when the user moves to a new frame

they see a semi-transparent “ghosting” of the SLPS backend’s current predic-

tions based on its current learned mechanics. At first, when nothing has been

learned, this will simply predict the prior frame (assuming nothing changes).

However, as mechanics are learned, the tool will reflect them in its prediction.

The user can choose to accept the prediction or ignore it, and edit the new

frame as they see fit.

At any time, the player can test the current learned rules in real-time

by pressing the play button in Figure 4.4.c. This allows them to verify that

the game is working as intended, as shown in Figure 4.4.c. If not, they can

keep iterating and adding more frames to correct the SLPS backend’s learned

mechanics.

25

Chapter 5

Human Subject Study

In this section we cover the setup of our human subject study. We ran our

human subject study to evaluate our Mechanic Maker tool and investigate the

hypotheses listed below. We obtained ethics approval via the University of

Alberta Research Ethics Board (REB), Pro00102469.

5.1 Hypotheses

We focused on testing two hypotheses in our user study. The first hypothesis

is that programming experience is not required to use our tool ef-

fectively. This hypothesis would help us determine if our tool is capable of

lowering the technical barrier for creating game mechanics, which is the pri-

mary focus of this research. Our second hypothesis is that Mechanic Maker

has value as a game development tool. Testing the value of the tool for

game development is more difficult to measure objectively due to a lack of ex-

isting measures for game development quality. Thus we identify two different

factors related to game development value and measure them separately. The

first factor is the usability of this tool. We define usability in this work as the

extent to which the tool was able to help each participant create the game

mechanics they desired. The second factor is participant enjoyment when us-

ing the tool. We want to know if the tool was enjoyable for the participants

to use, which will help us determine the overall user experience for creating

game mechanics.

Support for these hypotheses would provide us some validation towards

27

our research questions. In particular, it would provide us answers toward [R1]

because the second hypothesis directly measures the use of Mechanic Maker

as a tool. It would also provide answers for [R2] because hypothesis one

is determining whether programming experience is required to use Mechanic

Maker.

5.2 Procedure

Our study consisted of an hour long process broken into four parts. Each

part had a time limit. If the user did not complete a part within the time

limit, a facilitator asked them to move on to the next part. We did this for

consistency, to respect participants’ time, and as we found longer periods with

the tool did not improve outcomes. This is because Mechanic Maker requires

perfect information to work correctly, so the longer a user works with the tool,

the more likely they are to make a mistake that worsens their results.

The first part of the study was a step-by-step, interactive tutorial to provide

users with an understanding of Mechanic Maker. It involved recreating the

game mechanics for a game called Sokoban where the objective is for the player

to move a crate onto a goal to beat the level. Our tutorial was a simplified

version of this that introduced the participant to player movement and pushing

the crate to the right. Participants were given a reference video of one of the

study personnel walking through how to create the Sokoban mechanics with

our tool, which we iterated on based on a pilot study of four individuals. We

allocated 25 minutes to this portion of the study as the participants were still

learning how the tool worked and how to interact with the user interface.

The second part of the study involved asking the participants to replicate a

simplified version of the game mechanics from Flappy Bird. Flappy Bird con-

sists of pipes moving to the left with the player controlling a bird, attempting

to dodge the pipes for as long as possible. We again gave participants access

to a reference video. However, in this case, we only gave them video of the

final game mechanics running, not of the steps needed to recreate them with

Mechanic Maker. The video showed a simplified version of Flappy Bird in-

28

volving only one pipe that would go to the end of the screen and then teleport

to the other side to keep moving to the left, and a bird that would continually

fall, and jump upwards when the space bar was pressed. A screenshot of the

Flappy Bird example is shown in Figure 4.4.c. There were no Game Over

elements or scoring involved in this process. The participants had 15 min-

utes for this part of the study. If participants could successfully recreate the

simplified Flappy Bird regardless of programming ability that would support

our hypothesis that Mechanic Maker did not rely on programming ability. It

would also support our hypotheses around the usability of the tool.

The third part of the study gave participants the opportunity to create

game mechanics of their choice. They were given 15 minutes to come up with

game mechanics and implement them in Mechanic Maker. They were asked

to take what they had learned from the previous exercises to “create a simple

game”. We included this part to test our second hypothesis. If participants

were able to successfully create a wide variety of games, that would support

our hypothesis of the value of Mechanic Maker for game development in terms

of usability. Further, if they enjoyed this process, this would provide support

for the participant enjoyment factor.

The final part of our study was a survey that took 5 minutes to complete.

We cover the survey in the next section. We included the survey in order to

collect self-reported and demographic information related to our hypotheses.

5.3 Survey Design

The survey was composed of 19 Likert scale questions, three short answer

questions, and ten demographic questions. While we only gave participants

five minutes for the survey, we found this to be ample time during our pilot

studies. The first section of the survey used a four point Likert scale with 1

being not at all true, 2 being not true, 3 being true and 4 being very true.

The reason for this was to attempt to minimize the neutrality bias [28]. We

adapted the first nineteen questions from the Intrinsic Motivation Inventory

(IMI) [35] due to the lack of a validated survey for co-creative tools.

29

These questions were centered around our second and third hypotheses,

asking users about their usability and enjoyment of the tool in each part

of the study. We acknowledge that there are other surveys more related to

usability and that IMI is not used as a complete measure, but we felt adapting

these questions from IMI was sufficient for our initial Mechanic Maker study.

The second section included short answer questions for feedback around what

users would change and thoughts around the tool. The final section asked

demographic questions, including the users programming experience and game

development experience, shown in Table 5.1, which we used to evaluate our first

hypothesis. We include all original survey questions in the Survey Questions

from the User Study of the Appendix.

5.4 Results

In our study we collected two types of information. First, from the survey we

collected self-reported Likert questions related to the tool, self-reported short

answer questions related to the tool and demographic information. Second, we

logged all major Mechanic Maker events, all final games, and all of the frames

produced by users. In the below subsections we report our results related to

our two hypotheses.

5.4.1 Participants

We had 16 participants with varying programming and game development

backgrounds take part in our study, as shown in Table 5.1. We had 8 partic-

ipants between the ages of 18-25, 7 between the ages of 25-35 and 1 between

the ages of 35-45. We had 11 male, 3 female and 2 non-binary or other par-

ticipants. This is not an equitable distribution, but shows similar gender bias

to what is seen in the games industry and the tech industry broadly [40].

5.4.2 Frame Error

To measure the success of users at replicating the reference games, we introduce

a metric called Frame Error. As a reference point, we drew on the frames that

30

Participant ID Programming Game Development

1 Limited Limited
2 Expert Moderate
3 Limited Limited
4 Expert Expert
5 Expert Moderate
6 Expert Limited
7 Moderate Moderate
8 None None
9 Moderate Limited
10 Expert Moderate
11 Expert Moderate
12 Expert Moderate
13 Limited None
14 Limited Limited
15 None None
16 Limited Limited

Table 5.1: Experience of participants in programming and game development.

were used to create the example games in the tutorial videos for both Sokoban

and Flappy Bird. These examples frames were authored by study personnel.

For each participant, we measured how well the learned mechanics from that

participant could predict each example frame given the prior example frame.

We defined Frame Error using the Hellman’s Metric to determine how close a

predicted frame was to the true next frame. The Hellman’s metric calculates

error by matching each object between frames and determining per object, the

differences between facts. The more different the facts between the object in

the first frame compared to the second frame, the higher the Hellman’s metric

error will be.

This metric is useful for determining success at replicating the reference

games as it gives us an error equivalent to the dissimilarity of the participant’s

learned mechanics from the intended mechanics.

Baseline

For our baseline, we used the previous example frame with no changes as the

prediction, measuring the difference with Hellman’s metric as above. This is

31

equivalent to the prediction of an empty engine, and was found to significantly

outperform specialized frame prediction models with low training data in prior

work [16].

Frame Error Results

The results are shown in Figure 5.1. For both of these plots, we reduced

the programming experience groups from our survey participants shown in

Table 5.1 from four groups (None, Limited, Moderate, Expert) to two (Non-

programmers and Programmers). This was done to simplify the box plots

as we are only looking at whether lower programming experience led to any

difference in the results compared to higher levels of programming experience.

As shown in Figure 5.1.a, for the Sokoban part, programming experience

did not appear to impact the frame error at all, and both values were below the

baseline value (the red line). In the Flappy Bird example in Figure 5.1.b, the

same is true. The median values of frame errors are lower than the baseline,

indicating that the majority of participants were able to create useful rules.

The non-programmer distribution is actually moderately lower than the pro-

grammer distribution, however there is no significant difference between the

distributions according to the Wilcoxon Mann Whitney U-test. These results

support both hypotheses and provide us some useful answers towards [R1] and

[R2].

32

(a) Sokoban Activity

(b) Flappy Bird Activity

Figure 5.1: Frame error grouped by programming experience for the (a)
Sokoban and (b) Flappy Bird activities. From the survey results None and
Limited programming were merged into the non-programmer category and
Moderate and Expert programming experience were merged into program-
mer. The All box plot shows all programming experience combined. The red
line marks the performance of our baseline.

We also ran a Pearson correlation test for the frame error for both the

Sokoban and Flappy Bird sections using the four choice options for program-

ming experience. We found that in both parts there was no correlation between

frame error and programming experience. Sokoban had a correlation value of

0.11 and Flappy Bird a correlation value of 0.21, with neither being significant.

33

To ensure that programming experience wasn’t significant to frame error, we

also ran a Mann Whitney test for the Sokoban and Flappy Bird sections. Do-

ing this we were able to determine there is no significant difference between

programmer ability when it comes to frame error. For Sokoban we had a

p-value of 0.6336 and for Flappy Bird we had a p-value of 0.204.

5.4.3 Free Play Analysis

Given that there was no ground truth for the Free Play part of the study,

we cannot calculate frame error. Instead, we determine whether participants

were able to make a variety of game mechanics, or if participants were limited

in terms of making game mechanics like those in Sokoban and Flappy Bird.

Ideally we would have some measure of how different the games are from one

another to demonstrate that Mechanic Maker can create a variety of games.

Since this is difficult to quantify, we use standard deviation metrics as a proxy

for the variation. Using this metric we found the standard deviation to be

67.06 ± 48.28 and 10.13 ± 5.74 for the number of frames and number of me-

chanics created, respectively. Given the large standard deviation values, in the

number of frames in particular, this provides some support for there being a

large variety of games, which can also be seen in the six selected games shown

in Figure 5.2. This provides some evidence to support our second hypothesis

and [R1], that Mechanic Maker can create a variety of different game mechan-

ics. We provide further analysis on the variety of games that can be created

in the next chapter.

34

Chapter 6

Gaussian Mixture Model
Analysis

In an attempt to better understand the variability of the free play results we

created a GMM from the user study data. This was inspired by previous

attempts to better understand design tasks through clustering [1]. We for-

matted each rule using a one-hot encoding of the fact type (velocity, position,

animation) and the relevant value information of the fact for both the pre-

effect and post-effect. We also included a count of how many of each type of

condition (by fact type) was used in each rule. From there, we used a GMM to

identify rule clusters. We used the elbow method to determine the number of

optimal Gaussians for our data and found that seven clusters created a good

representation.

A visualization of the distribution of Gaussians is shown in Figure 6.1. This

visualization demonstrates a wide variety of rules learned during the free play

portion, with a bias towards velocity rules. The variety of the GMM results

provides us some evidence to [R1]. Each point represents a learned rule, and

each colour represents the Gaussian that each rule largely falls within. With

this information we can describe the means of each cluster to get a better

understanding of the groupings. In the top right of Figure 6.1 there are two

clusters — clusters 2 and 4. These two clusters are associated with pre-effects

and post-effects with velocities in the y direction, while all the other clusters

are related to velocities moving in the x direction. The isolated cluster 3 is

related to no movement in either the velocity x or y, encompassing rules that

39

We then used our GMM as the basis for a Case-based Reasoning approach.

We passed our newly created potential rule to our GMM and retrieved the

cluster that was closest to this new rule. We modified the rule by reducing

the number of conditions by removing them one at a time and seeing if it

increased the probability of that rule falling within the chosen cluster. If it

did, we removed the condition to simplify the rule because simplifying the rules

allowed them to be applied to more generic use cases. We used this simplified

rule as our proposed solution.

Figure 6.2 shows the rules that we generated with our case-based reason-

ing approach for frames one and two of the Flappy Bird example game from

the user study. If we compare these results to the rules generated for the

same frames from the SLPS approach in Figure 6.3, we can see they are quite

different. Our new approach using the GMM dataset does provide less facts

overall, which allows for more generic rules quicker, but it also tends to elim-

inate facts that it should not. We discuss the reasons why this is the case in

the limitations section. This new approach does pull a relevant case from the

database and modify the case to create a new solution. These results provide

some answers to [R3], but as discussed in the limitations section, more work

needs to be done towards this question.

RULE: 0 VelocityXFact: [0, 0]->VelocityXFact: [0, -1.0]

Predicted Cluster for rule 0 is: Cluster 3

VelocityXFact: [0, 0]

PositionYFact: [1, 0.0]

VelocityYFact: [1, 0]

VariableFact: [’up’, False]

VariableFact: [’left’, False]

VariableFact: [’spacePrev’, False]

VariableFact: [’downPrev’, False]

VariableFact: [’rightPrev’, False]

RULE: 1 VelocityYFact: [1, 0]->VelocityYFact: [1, -1.0]

Predicted Cluster for rule 1 is: Cluster 2

VelocityXFact: [0, 0]

PositionYFact: [1, 0.0]

VariableFact: [’up’, False]

VariableFact: [’right’, False]

VariableFact: [’upPrev’, False]

VariableFact: [’leftPrev’, False]"]

Figure 6.2: An example of the rules generated by the case-based reasoning
approach for frames one and two of the Flappy Bird example game.

41

6.1.1 Limitations

Our case-based reasoning approach did not perform as well as desired. We ran

into issues with the selection process of the clusters. Most of the time, the

new rule would predict a cluster that matched the conditions rather than the

pre-effect or post-effect. For example, if the new rule being predicted was a

velocity x rule moving from left to right, it might select a cluster in the velocity

y direction and not put as much weight on the coordinates moving from left

to right. One of the issues with this was that we only had a small amount

of clusters that couldn’t explain every variation of fact types, fact values and

conditions. We attempted to add weightings to different parts of the input to

mitigate this. To do this, we added the highest weighting towards the type

of the fact, the second highest weighting for the values of the fact and the

lowest weighting towards the number of each condition type involved in the

rule. This helped the GMM predict based on the fact type, but it still ran

into issues with values changing by incorrect amounts.

Our case-based reasoning approach currently finds the most likely cluster

and modifies the cluster rule with the information from the frames. It does not

currently know which sprite is associated with the rules. Work would need to

be done to determine which animation fact is associated with which movement

when adjusting the cluster rule. We could then use this or a similar approach

to quickly learn rules for new users without needing to start from scratch each

time.

The last issue that we ran into was that when we modified the rules to re-

move conditions from the rules, it would end up removing too many conditions,

or focusing on conditions that shouldn’t be removed. It ended up causing is-

sues with the output rule not being useful for future occurrences of the same

effect. Future work for this research is to focus on semantically-relevant con-

dition removal. This could potentially be done by using a threshold before

determining when to remove a condition, or adding weighting to particular

condition types to be removed over others.

In addressing our research question, [R3], we conclude that our current

42

case-based reasoning approach isn’t quite at the point that it is a viable method

for generating game rules. Either more work needs to be done to get this to be

an effective approach, or a more complex model needs to be created to handle

the rule data provided by Mechanic Maker.

43

RULE: 0 VelocityYFact: [0, 0]->VelocityYFact: [0, -1.0]

VelocityXFact: [0, 0]

VelocityYFact: [0, 0]

AnimationFact: [0, ’chick’, 1.0, 1.0]

PositionXFact: [0, 3.0]

PositionYFact: [0, 4.0]

VelocityXFact: [1, 0]

VelocityYFact: [1, 0]

AnimationFact: [1, ’longblock’, 1.0, 4.0]

PositionXFact: [1, 8.0]

PositionYFact: [1, 0.0]

VariableFact: [’space’, False]

VariableFact: [’up’, False]

VariableFact: [’down’, False]

VariableFact: [’left’, False]

VariableFact: [’right’, False]

VariableFact: [’spacePrev’, False]

VariableFact: [’upPrev’, False]

VariableFact: [’downPrev’, False]

VariableFact: [’leftPrev’, False]

VariableFact: [’rightPrev’, False]

RelationshipFactX: [0, 1, ’East’, ’West’, -4.0]

RelationshipFactY: [0, 1, ’North’, ’South’, 0.0]

RelationshipFactX: [1, 0, ’West’, ’East’, 4.0]

RelationshipFactY: [1, 0, ’South’, ’North’, 0.0]

RULE: 1 VelocityXFact: [1, 0]->VelocityXFact: [1, -1.0]

VelocityXFact: [0, 0]

VelocityYFact: [0, -1.0]

AnimationFact: [0, ’chick’, 1.0, 1.0]

PositionXFact: [0, 3.0]

PositionYFact: [0, 4.0]

VelocityXFact: [1, 0]

VelocityYFact: [1, 0]

AnimationFact: [1, ’longblock’, 1.0, 4.0]

PositionXFact: [1, 8.0]

PositionYFact: [1, 0.0]

VariableFact: [’space’, False]

VariableFact: [’up’, False]

VariableFact: [’down’, False]

VariableFact: [’left’, False]

VariableFact: [’right’, False]

VariableFact: [’spacePrev’, False]

VariableFact: [’upPrev’, False]

VariableFact: [’downPrev’, False]

VariableFact: [’leftPrev’, False]

VariableFact: [’rightPrev’, False]

RelationshipFactX: [0, 1, ’East’, ’West’, -4.0]

RelationshipFactY: [0, 1, ’North’, ’South’, 0.0]

RelationshipFactX: [1, 0, ’West’, ’East’, 4.0]

RelationshipFactY: [1, 0, ’South’, ’North’, 0.0]

Figure 6.3: An example of the rule generated by the SLPS backend for frames
one and two of the Flappy Bird example game.

44

Chapter 7

Conclusion

Making game development more accessible to those who might be novices at

programming is an important step to democratizing game development. Our

research has shown that there is potential for PCGML tools to work with users

to reduce these barriers of entry. Mechanic Maker is an example of how co-

creative tools can work with users in a beneficial way to create desired games.

We believe tools like this are a useful way for AI and users to work together

on a common task, while still providing the user all the agency. There are

many PCGML approaches that do this, but Mechanic Maker is a tool that

allows for users to provide demonstrations and rules to be output that work

with the game engine. This process, along with the user working with the AI

frame-by-frame in a co-creative way, is novel to PCGML.

7.0.1 Ethical Statement

Using AI tools to automate different areas of game development can cause

concern in the games industry for a variety of different reasons. Generative

AI tools, including ChatGPT and Dall-E, have recently sparked debate due

to copyright issues. These tools are based around models that require massive

amounts of training data, which can lead to datasets including works without

a creator’s consent [3]. Our tool instead only uses data provided by the user.

Another major area of ethical concern with AI is the loss of creative jobs in-

cluding game art, voice overs, writing and other areas of a game [47]. Mechanic

Maker does reduce the programming requirement for game development, which

45

could lead to potential job losses in technical positions. This tool, however, is

focused on newcomers to game development. The emphasis is on reducing the

technical barrier to allow more people to create games. Even though the focus

is not on industrial applications, there is always a risk for new tools like this to

lead to potential job losses. Regardless, since our tool is a collaborative effort

between the AI and the user, there will always be the need to have people

work with Mechanic Maker co-creatively.

7.0.2 Future Work

We identify that Mechanic Maker tended to perform best with fewer frames

and objects due to the tendency for mistakes to occur the longer the tool is

used. In future iterations, we hope to improve the performance of the tool.

In the survey from our user study, we also asked participants for feedback on

the tool itself, which outlined issues with usability. Future iterations of the

tool will take this feedback into consideration to help improve the usability of

Mechanic Maker.

Currently, we start every game creation session with a blank engine. How-

ever, we now have our GMM with the results from the participants of this

study, and so we hope to develop approaches to adapt knowledge from earlier

learned engines to help better approximate a current game more quickly. Our

current plan to improve the frame prediction is to use our case-based reasoning

approach to approximate new rules by querying the GMM. More work needs

to be done to determine if this is effective at speeding up the rule learning

process.

7.1 Takeaways

We now reflect on our three research questions from the introduction.

Firstly, can we build a co-creative tool (Mechanic Maker) that can

help a user create a variety of game mechanics? From the results of

our user study, we have determined that Mechanic Maker is effective for this

as users were able to replicate the mechanics in the Sokoban and Flappy Bird

46

sections of the user study. It was also shown that there was a high degree of

variability in the games created in the free play section, which gives us some

evidence that users can create many types of games with Mechanic Maker.

Our mixture model also provides evidence towards this question as it was

shown that a variety of clusters are created from the user study database.

That being said, the survey results provide some evidence that usability with

the tool suffers. We expect this is most likely due to the tool needing perfect

information in order to work properly. Future iterations of the tool would

need to focus on minimizing mistakes made using Mechanic Maker by either

changing the user experience of the frontend, or allowing randomness in the

backend.

Secondly, when tasked with recreating a given set of mechanics

with Mechanic Maker, will programming ability significantly impact

the result? It was shown that our tool is equally usable for both program-

mers and non-programmers through the user study we ran. This gives us some

reassurance that Mechanic Maker can be useful for reducing the programming

barrier for game development. More studies would have to be done to verify

that this is the case because the amount of participants involved in the study

was small, the amount of non-programmers was lower than the number of pro-

grammers and also it is unclear if these results generalize outside of University

of Alberta students.

Lastly, can we use a GMM to improve the backend SLPS en-

gine results to create generalized game rules more quickly? There

is promise for this being true, but requires future work to implement a full

case-based reasoning approach. Preliminary results have shown potential for

case-based reasoning to be used as a way to learn rules more quickly, though

future work must be done to get past the issues we encountered. With either

more data to train or more work done to create a more complex case-based

reasoning model, there is promise that this method could create generalized

game rules more quickly than the SLPS approach.

Game development is a complicated, technical field that traditionally re-

quires significant programming skills. We propose Mechanic Maker, a new tool

47

for game development that has the potential to eliminate, or at least mitigate,

the necessity of programming to create game mechanics. Our user study shows

that Mechanic Maker can be used to create intended games equally well be-

tween programmers and non-programmers. The study also provided an overall

positive response to the tool. We believe Mechanic Maker has the potential to

make game development more accessible and to democratize the field.

48

References

[1] A. Alvarez, J. Font, and J. Togelius, “Toward designer modeling through
design style clustering,” IEEE Transactions on Games, vol. 14, no. 4,
pp. 676–686, 2022.

[2] D. Bhaumik, A. Khalifa, and J. Togelius, “Lode encoder: Ai-constrained
co-creativity,” in 2021 IEEE Conference on Games (CoG), 2021, pp. 01–
08. doi: 10.1109/CoG52621.2021.9619009.

[3] M. A. Boden and E. A. Edmonds, “What is generative art?” Digital Cre-
ativity, vol. 20, no. 1-2, pp. 21–46, 2009. doi: 10.1080/14626260902867915.
eprint: https : / / doi . org / 10 . 1080 / 14626260902867915. [Online].
Available: https://doi.org/10.1080/14626260902867915.

[4] J. Bruce, M. Dennis, A. Edwards, et al., Genie: Generative interactive
environments, 2024. arXiv: 2402.15391 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/2402.15391.

[5] M. Chover, C. Maŕın, C. Rebollo, and I. Remolar, “A game engine de-
signed to simplify 2d video game development,” Multimedia Tools and
Applications, vol. 79, May 2020. doi: 10.1007/s11042-019-08433-z.

[6] M. Cook, S. Colton, A. Raad, and J. Gow, “Mechanic miner: Reflection-
driven game mechanic discovery and level design,” in Applications of
Evolutionary Computation: 16th European Conference, EvoApplications
2013, Vienna, Austria, April 3-5, 2013. Proceedings 16, Springer, 2013,
pp. 284–293.

[7] X. Cui and H. Shi, “A*-based pathfinding in modern computer games,”
vol. 11, Nov. 2010.

[8] N. Davis, “Human-computer co-creativity: Blending human and compu-
tational creativity,” Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 9, no. 6, pp. 9–
12, Jun. 2021. doi: 10.1609/aiide.v9i6.12603. [Online]. Available:
https://ojs.aaai.org/index.php/AIIDE/article/view/12603.

[9] S. Deterding, J. Hook, R. Fiebrink, et al., “Mixed-initiative creative in-
terfaces,” in Proceedings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, 2017, pp. 628–635.

[10] Epic Games, Unreal engine, 2004. [Online]. Available: https://www.
unrealengine.com/ (visited on 02/04/2024).

49

[11] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the
ACM, vol. 5, no. 6, pp. 345–345, 1962.

[12] S. Freitas, “Are games effective learning tools? a review of educational
games,” Educational Technology and Society, vol. 21, pp. 74–84, Jan.
2018.

[13] Gitnux, Diversity in the video game industry: Striking disparities re-
vealed, 2024. [Online]. Available: https://gitnux.org/diversity-in-
the-video-game-industry-statistics/r (visited on 07/17/2024).

[14] J. J. Gonzalez, S. Cooper, and M. Guzdial, “Mechanic maker 2.0: Re-
inforcement learning for evaluating generated rules,” in Proceedings of
the Nineteenth AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, ser. AIIDE ’23, Salt Lake City: AAAI Press,
2023, isbn: 1-57735-883-X. doi: 10.1609/aiide.v19i1.27522. [Online].
Available: https://doi.org/10.1609/aiide.v19i1.27522.

[15] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations
and Trends® in Programming Languages, vol. 4, no. 1-2, pp. 1–119,
2017, issn: 2325-1107. doi: 10.1561/2500000010. [Online]. Available:
http://dx.doi.org/10.1561/2500000010.

[16] M. Guzdial, B. Li, and M. O. Riedl, “Game engine learning from video.,”
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI-17), 2017, pp. 3707–3713.

[17] M. Guzdial, N. Liao, J. Chen, et al., “Friend, collaborator, student, man-
ager,” in Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, ACM, May 2019. doi: 10.1145/3290605.3300854.
[Online]. Available: https://doi.org/10.1145%2F3290605.3300854.

[18] M. Guzdial and M. O. Riedl, “Conceptual game expansion,” IEEE Trans-
actions on Games, vol. 14, no. 1, pp. 93–106, 2021.

[19] M. Guzdial, S. Snodgrass, and A. J. Summerville, “Classical pcg,” in
Procedural Content Generation via Machine Learning: An Overview.
Cham: Springer International Publishing, 2022, pp. 7–22, isbn: 978-3-
031-16719-5. doi: 10.1007/978-3-031-16719-5_2. [Online]. Available:
https://doi.org/10.1007/978-3-031-16719-5_2.

[20] D. Ha and J. Schmidhuber, “World models,” 2018. doi: 10 . 5281 /

ZENODO.1207631. [Online]. Available: https://zenodo.org/record/
1207631.

[21] E. Halina and M. Guzdial, Threshold designer adaptation: Improved
adaptation for designers in co-creative systems, 2022. arXiv: 2205.09269
[cs.LG].

[22] S. W. Kim, Y. Zhou, J. Philion, A. Torralba, and S. Fidler, “Learning
to simulate dynamic environments with gamegan,” Jun. 2020, pp. 1228–
1237. doi: 10.1109/CVPR42600.2020.00131.

50

[23] M. Kreminski and M. Mateas, “Opportunities for approachable game
development via program synthesis.,” in AIIDE Workshops, 2021.

[24] J. Kruse, A. M. Connor, and S. Marks, “Evaluation of a multi-agent
“human-in-the-loop” game design system,” ACM Trans. Interact. Intell.
Syst., vol. 12, no. 3, Jul. 2022, issn: 2160-6455. doi: 10.1145/3531009.
[Online]. Available: https://doi.org/10.1145/3531009.

[25] G. Lai, F. F. Leymarie, and W. Latham, “On mixed-initiative content
creation for video games,” IEEE Transactions on Games, vol. 14, no. 4,
pp. 543–557, 2022. doi: 10.1109/TG.2022.3176215.

[26] P. Lo, D. Thue, and E. Carstensdottir, “What is a game mechanic?” In
Entertainment Computing – ICEC 2021, J. Baalsrud Hauge, J. C. S. Car-
doso, L. Roque, and P. A. Gonzalez-Calero, Eds., Cham: Springer Inter-
national Publishing, 2021, pp. 336–347, isbn: 978-3-030-89394-1.

[27] T. Machado, D. Gopstein, O. Nov, A. Wang, A. Nealen, and J. Togelius,
Evaluation of a recommender system for assisting novice game designers,
2019. arXiv: 1908.04629 [cs.AI].

[28] R. McGrath, M. Mitchell, B. Kim, and L. Hough, “Evidence for response
bias as a source of error variance in applied assessment,” Psychological
bulletin, vol. 136, pp. 450–70, May 2010. doi: 10.1037/a0019216.

[29] L. Medeiros, D. Aleixo, and L. Lelis, “What can we learn even from the
weakest? learning sketches for programmatic strategies,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, pp. 7761–7769,
Jun. 2022. doi: 10.1609/aaai.v36i7.20744.

[30] Media Molecule, Dreams, 2020. [Online]. Available: https://indreams.
me (visited on 02/04/2024).

[31] M. Mittelmann, B. Maubert, A. Murano, and L. Perrussel, “Automated
synthesis of mechanisms,” in Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt,
Ed., Main Track, International Joint Conferences on Artificial Intelli-
gence Organization, Jul. 2022, pp. 426–432. doi: 10.24963/ijcai.
2022/61. [Online]. Available: https://doi.org/10.24963/ijcai.
2022/61.

[32] N. Partlan, E. Kleinman, J. Howe, S. Ahmad, S. Marsella, and M. Seif El-
Nasr, “Design-driven requirements for computationally co-creative game
ai design tools,” in Proceedings of the 16th International Conference on
the Foundations of Digital Games, ser. FDG ’21, Montreal, QC, Canada:
Association for Computing Machinery, 2021, isbn: 9781450384223. doi:
10.1145/3472538.3472573. [Online]. Available: https://doi.org/10.
1145/3472538.3472573.

[33] B. Pell, “Metagame in symmetric chess-like games,” 1992.

51

[34] F. Petrillo, M. Pimenta, F. Trindade, and C. Dietrich, “What went
wrong? a survey of problems in game development,” Comput. Enter-
tain., vol. 7, no. 1, Feb. 2009. doi: 10.1145/1486508.1486521. [Online].
Available: https://doi.org/10.1145/1486508.1486521.

[35] V. M. R. M. Ryan and R. Koestner, “Relation of reward contingency
and interpersonal context to intrinsic motivation: A review and test
using cognitive evaluation theory.,” Journal of Personality and Social
Psychology, 1983.

[36] M. Resnick, J. Maloney, A. Monroy-Hernández, et al., “Scratch: Pro-
gramming for all,” Commun. ACM, vol. 52, no. 11, pp. 60–67, Nov. 2009,
issn: 0001-0782. doi: 10.1145/1592761.1592779. [Online]. Available:
https://doi.org/10.1145/1592761.1592779.

[37] V. Saini and M. Guzdial, “A demonstration of mechanic maker: An ai
for mechanics co-creation,” Proceedings of the AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment, vol. 16, no. 1,
pp. 325–327, Oct. 2020. doi: 10.1609/aiide.v16i1.7450. [Online].
Available: https://ojs.aaai.org/index.php/AIIDE/article/view/
7450.

[38] S. Snodgrass and S. Ontañón, “Learning to generate video game maps
using markov models,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 9, no. 4, pp. 410–422, 2017. doi: 10.1109/
TCIAIG.2016.2623560.

[39] K. Sorochan and M. Guzdial, “Generating real-time strategy game units
using search-based procedural content generation and monte carlo tree
search,” arXiv preprint arXiv:2212.03387, 2022.

[40] Statista, Distribution of game developers worldwide from 2014 to 2021,
by gender, 2023. [Online]. Available: https://www.statista.com/
statistics/453634/game-developer-gender-distribution-worldwide/

#statisticContainer (visited on 08/28/2023).

[41] K. T. Stolee and T. Fristoe, “Expressing computer science concepts
through kodu game lab,” in Proceedings of the 42nd ACM technical sym-
posium on Computer science education, 2011, pp. 99–104.

[42] A. Summerville, C. Martens, B. Samuel, J. Osborn, N. Wardrip-Fruin,
and M. Mateas, “Gemini: Bidirectional generation and analysis of games
via asp,” Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 14, no. 1, pp. 123–129, Sep.
2018. doi: 10.1609/aiide.v14i1.13013. [Online]. Available: https:
//ojs.aaai.org/index.php/AIIDE/article/view/13013.

[43] U. TECHNOLOGIES, Speed tree, 2024. [Online]. Available: https://
store.speedtree.com.

52

[44] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in 2008 IEEE Symposium On Computational Intelligence and
Games, IEEE, 2008, pp. 111–118.

[45] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011. doi: 10.1109/TCIAIG.2011.2148116.

[46] M. Treanor and M. Mateas, “An account of proceduralist meaning.,” in
DiGRA Conference, 2013.

[47] V. Vimpari, A. Kultima, P. Hämäläinen, and C. Guckelsberger, ““an
adapt-or-die type of situation”: Perception, adoption, and use of text-to-
image-generation AI by game industry professionals,” Proceedings of the
ACM on Human-Computer Interaction, vol. 7, no. CHI PLAY, pp. 131–
164, Sep. 2023. doi: 10.1145/3611025. [Online]. Available: https:
//doi.org/10.1145%2F3611025.

[48] Y. Yang, J. P. Inala, O. Bastani, Y. Pu, A. Solar-Lezama, and M. Rinard,
“Program synthesis guided reinforcement learning for partially observed
environments,” in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34, Curran Associates, Inc., 2021, pp. 29 669–29 683. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/
2021/file/f7e2b2b75b04175610e5a00c1e221ebb-Paper.pdf.

[49] Z. Zhou and M. Guzdial, “Toward co-creative dungeon generation via
transfer learning,” in Proceedings of the 16th International Conference on
the Foundations of Digital Games, ser. FDG ’21, Montreal, QC, Canada:
Association for Computing Machinery, 2021, isbn: 9781450384223. doi:
10.1145/3472538.3472601. [Online]. Available: https://doi.org/10.
1145/3472538.3472601.

[50] J. Zhu, A. Liapis, S. Risi, R. Bidarra, and G. M. Youngblood, “Explain-
able ai for designers: A human-centered perspective on mixed-initiative
co-creation,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), Maastricht, Netherlands: IEEE Press, 2018, pp. 1–8.
doi: 10.1109/CIG.2018.8490433. [Online]. Available: https://doi.
org/10.1109/CIG.2018.8490433.

[51] R. Zubek, Elements of game design. The MIT Press, 2020.

53

Appendix A

Additional Information

A.1 Survey Questions from the User Study

All the Likert questions throughout the survey were rated on a scale of 1 to 4

to remove the neutrality bias. They were pulled from the Intrinsic Motivation

Inventory [35] and adapted for our use case. We asked similar questions in

both a positive and negative framing.

We started with 7 general questions related to the tool as a whole. These

questions related to the usability, enjoyment and value of the tool. The ques-

tions were:

1. I was able to use the tool to do what I wanted.

2. I did not find the tool beneficial for making games.

3. I liked the tool.

4. I had a largely negative experience using the tool.

5. The tool did not let me get the results I wanted.

6. I believe that using this tool could be of some value for me.

7. This tool was fun to use.

The final twelve Likert questions were broken into three groups of four

questions, each group referencing one of the three game creation parts from

the study. The questions were:

54

1. I found the Sokoban tutorial engaging.

2. Following the tutorial helped me learn how to use the tool.

3. I thought following the Sokoban tutorial was a very boring activity.

4. I did not understand how the tool worked from the tutorial.

5. I found it difficult to replicate the Flappy Bird example.

6. I was able to learn to use the tool through this activity.

7. I enjoyed doing this activity very much.

8. I did not have fun doing this activity.

9. I was able to create what I wanted with the tool in Free Play

10. Using the tool in Free Play was frustrating.

11. I would be willing to do this activity again because it has some value for

me.

12. I found the tool too complicated to make what I wanted.

Following these Likert questions we asked three short answer questions in

order to identify additional qualitative information related to our hypotheses

and to guide future development:

1. How would you change the tool? Assume there’s no limit to the possible

changes.

2. What would you want us to keep the same about the tool?

3. What aspects of the tool stood out and why?

We ended with ten mixed demographic questions. We ended with the

demographic questions in order to minimize the possibility of earlier results

being impacted by stereotype threat. These questions were:

55

1. “What is your gender? (Short answer)”

2. “How old are you?” With the options: 18-24, 25-35, 35-45, 45-55, and

55+

3. “Please pick the category of game design experience that best fits you:”

With the options: “No experience (Never designed a game before)”,

“Limited game design experience (I’ve tried game development before)”,

“Regular game design experience (I’ve worked on multiple game projects

before on my own or as a team)”, and “I am a game design expert

(Currently or in the past as part of daily life)”

4. “How would you describe your game design experience?” (Short answer)

5. “How often do you play games?” With the options: Daily, A few times

a week, Weekly, Monthly, an Less than monthly

6. “Pick the category of programming experience that best fits you:” With

the options: “No experience (Never programmed)”, “Limited program-

ming experience (Have programmed before)”, “Regular programming

experience (Currently or in the past program weekly or monthly)”, and

“Programming expert (Currently or in the past program as part of daily

life)”

7. “How would you describe your programming experience?” (Short an-

swer)

8. “Have you ever used a game design tool that did not require program-

ming before? Ex) Scratch, Sony’s Dreams, Project Spark, Game Builder

Garage for Nintendo Switch, etc.” With the options Yes and No.

9. “If yes to the above, what was the tool?” (Short answer)

10. “Would you optionally want to provide an email address to be invited

to a future study with an updated version of the tool?” (Short answer)

All but the last two questions were non-optional in order to ensure we

collected the required results.

56

	Introduction
	Background
	Game Terminology
	Procedural Content Generation
	PCG Via Machine Learning
	Co-creativity
	Autonomous Generation
	Search-based PCG

	A*
	Program Synthesis
	Clustering
	Gaussian Mixture Models

	Case-Based Reasoning

	Related Work
	Co-Creative Tools
	Autonomous Rule Generation
	Program Synthesis

	Mechanic Maker
	What is Mechanic Maker?
	Tool Walkthrough
	Symbolic Learning Program Synthesis
	Game Mechanic Editor

	Human Subject Study
	Hypotheses
	Procedure
	Survey Design
	Results
	Participants
	Frame Error
	Free Play Analysis
	Survey Results

	Discussion

	Gaussian Mixture Model Analysis
	Case-Based Reasoning
	Limitations

	Conclusion
	Ethical Statement
	Future Work

	Takeaways

	References
	Appendix Additional Information
	Survey Questions from the User Study

