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Abstract

We study robust sampling designs for model-based stratification, when the assumed

distribution F0 (·) of an auxiliary variable x, and the variance function g0 (·) in the

associated regression model, are only approximately specified. We first maximize the

scaled prediction mean squared error (SPMSE) for the empirical best predictor over

the neighbourhoods of F0 and g0. Then we obtain robust sampling designs which

minimize this maximum SPMSE through a modified genetic algorithm with ‘artificial

implantation’. The techniques are illustrated in two case studies of Australian sugar

farms and MU281 population.
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Chapter 1

Introduction

1.1 Robustness of design

In an experiment, the experimenter obtains information on a response variable Y and

an independent variable x, which might be a vector, and studies the effect of x on

Y. Usually, the experimenter believes that an assumed model Yi = f(xi|θ) + εi is

true. Here θ is the vector of unknown parameters and εi are random errors. Usually,

the experimenter might be able to choose the values of x from the design space

χ = {xi}Ni=1. In an optimal design problem, the experimenter searches for the levels

of x and wants to allocate observations at those levels of x so that the unknown

parameters in the assumed model are estimated in an optimal manner. But, in

most applications, the assumed model is only a reasonable approximation to the true

model. Thus, we need the concept of robust design for model misspecifications. Box

and Draper (1959) considered the problem of designing for a polynomial response

when the true models are such functions of a given higher degree. For example,
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suppose that the experimenter is to fit a straight line

yi = θ0 + θ1xi + εi, −1 ≤ x ≤ 1,

but in fact the true model is

yi = θ0 + θ1xi + θ2x
2
i + εi, −1 ≤ x ≤ 1.

Assume uncorrelated errors with common variance σ2ε. Then, the least squares esti-

mate of θ = (θ0, θ1)0 is

θ̂ = (X0X)−1X0y,

with X denoting the model matrix with ith row f 0(xi) = (1, xi). Define the k−th

sample moment τk =
Pn

i=1 x
k
i /n. Let τ 1 = τ 3 = 0 which is true for symmetric designs.

Then, under the true quadratic model, the mean vector and covariance matrix of θ̂

are

E(θ̂) = (X0X)−1X0E(y)

= (X0X)−1X0

⎛⎜⎜⎜⎜⎜⎜⎝X
⎛⎜⎜⎝ θ0

θ1

⎞⎟⎟⎠+ θ2

⎛⎜⎜⎜⎜⎜⎜⎝
x21

...

x2n

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎝ θ0 + θ2τ 2

θ1

⎞⎟⎟⎠ ,
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Cov(θ̂) = σ2ε(X
0X)−1 = (σ2ε)diag(1, τ

−1
2 ).

Then, the predictions Ŷ (x) = (1, x)θ̂ have

E(Ŷ (x)) = (1, x)E(θ̂)

= (1, x)

⎛⎜⎜⎝ θ0 + θ2τ 2

θ1

⎞⎟⎟⎠
= θ0 + θ1x+ θ2x

2 + θ2τ 2 − θ2x
2

= E(Y (x)) + θ2(τ 2 − x2).

Thus, the predictions Ŷ (x) = (1, x)θ̂ have mean squared error

MSE(Ŷ (x)) = (σ2ε)(1 + x2τ−12 ) + (θ2(τ 2 − x2))2.

A common design criterion is the integrated mean squared error (IMSE) of the fitted

response. So, here, it is

IMSE =

Z 1

−1
MSE(Ŷ (x))dx =

½
2σ2ε
n

µ
1 +

1

3τ 2

¶¾
+

(
2θ22

Ãµ
τ 2 −

1

3

¶2
+
4

45

!)
.

The first term in the IMSE, that is the integrated variance, is minimized by the

classically optimal design. The second term in the IMSE, that is the integrated

squared bias dominate the first term when n is sufficiently large. The integrated

squared bias is minimized when τ 2 = 1
3
, which is the second moment of the continuous
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uniform distribution on [−1, 1]. A design approximating the uniform is the equally

spaced design

xi = −1 + 2
i− 1
n− 1 , i = 1, 2, · · · , n

with τ 2 =
1
3
+ 2

3(n−1) =
1
3
+O(1/n).

Generally, the experimenter assumes the model is

E(Y (x)) = f 0(x)θ,

but the true model is

E(Y (x)) = f 0(x)θ + ψ(x)

for some function ψ. To make the parameter θ identifiable, we define the target

parameter by

θ = argmin
η

Z
χ

(E(Y (x))− f 0(x)η)2dx.

Then define

ψ(x) = E(Y (x))− f 0(x)θ

which leads to the orthogonality requirement

Z
χ

f(x)ψ(x)dx = 0.

Thus, under the assumption that A =
R
χ
f(x)f 0(x)dx is invertible, the parameter is
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unique

θ = A−1
Z
χ

f(x)E(Y (x))dx.

In the following, we identify a design, denoted by ξ, with its design measure-a

probability measure ξ(dx) on χ. Denote

Mξ =

Z
χ

f(x)f 0(x)ξ(dx),

bψ,ξ =

Z
χ

f(x)ψ(x)ξ(dx).

Under the assumption thatMξ is invertible, the least squares estimate (lse) θ̂ is

θ̂ =Mξ
−1
Z
χ

f(x)Y (x)ξ(dx).

So, it has expectation

E(θ̂) = Mξ
−1
Z
χ

f(x)E(Y (x))ξ(dx)

= Mξ
−1
Z
χ

f(x)(f 0(x)θ + ψ(x))ξ(dx)

= Mξ
−1
Z
χ

f(x)f 0(x)θξ(dx) +Mξ
−1
Z
χ

f(x)ψ(x)ξ(dx)

= θ +M−1
ξ bψ,ξ

and biasM−1
ξ bψ,ξ. The covariance matrix of the lse θ̂ is (σ

2
ε/n)M

−1
ξ . Thus the IMSE
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of the prediction Ŷ (x) is

IMSE =

Z
χ

MSE(Ŷ (x))dx =
σ2ε
n
trace(AM−1

ξ ) + b
0
ψ,ξM

−1
ξ AM−1

ξ bψ,ξ +

Z
χ

ψ2(x)dx.

(1.1)

Huber (1975) studied approximate straight line regression. But the true model

was

E(Y (x)) = f 0(x)θ + ψ(x)

with f(x) = (1, x)0, x ∈ χ = [−1/2, 1/2], ψ in the class

Ψ =

½
ψ :

Z
χ

ψ2(x)dx ≤ τ 2/n,

Z
χ

f(x)ψ(x)dx = 0

¾
(1.2)

for a given constant τ . Huber used the IMSE as the design criterion and found

optimal ‘minimax’ designs (maximize over ψ, then minimize over ξ). The class Ψ was

criticized (Marcus and Sacks (1976), Li and Notz (1982)) as being too wide. It was

claimed in these papers, and proved in Wiens (1992), that any implementable and

non-randomized, hence discrete, design has infinite maximum loss in the Ψ.

Marcus and Sacks (1976), Sacks and Ylvisaker (1978), Pesotchinsky (1982), Li

and Notz (1982) and Li (1984) considered ψ from the class

Ψ = {ψ : |ψ(x)| ≤ φ(x), x ∈ χ}

with various assumptions being made about φ. The optimal designs constructed in

these papers appear to be quite sensitive to the assumed form of φ. Their class Ψ
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seems to be rather thin. The designs mass tends to concentrate at some extreme

points of the design space. So the resulting designs are not ‘robust’ because there is

no way to explore the interior of the design space.

Usually, to obtain a robust design with respect to the classΨ in (1.2), we maximize

the IMSE in (1.1) over the class Ψ and then minimize the maximum in the first step

over the class of designs. Generally, as explained by Wiens (2014), the maximum over

the class Ψ of IMSE has the form

max
Ψ
IMSE =

σ2ε + τ 2

n
Lν(ξ)

with ν = τ 2/(σ2ε + τ 2) and

Lν(ξ) = [(1− ν)trace(AM−1
ξ ) + νchmax(KξH

−1
ξ )].

Here chmax denotes the maximum eigenvalue,

Hξ =MξA
−1Mξ

and

Kξ =

Z
χ

f(x)f 0(x)m2(x)dx

with m(x) the density of ξ. Then, the next step is minimizing Lν(ξ) for a given

ν which is the weight for errors due to bias. In some cases, this step can be done

analytically, see Huber (1981) andWiens (1990). But in other cases, such as examples
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given by Wiens (1990,1992), it is difficult to determine which one of the eigenvalues

e1(ξ), . . . , ep(ξ) of KξH
−1
ξ is the maximum one. Usually, one chooses an eigenvalue

to be optimized and then to verify it is the maximum eigenvalue. But, there are

cases in which this approach does not work. Daemi and Wiens (2013) introduced an

alternative method for construction of robust regression design. Shi, Ye and Zhou

(2003) applied Lagrange multiplier rule from nonsmooth optimization to minimize

the non-differentiable functional Lν(ξ). Heo et al. (2001) considered smaller class of

designs with densities of the form mβ = max(0,
P

j βjfj(x
2
1, · · · , x2q)), where in the

true model f(x) = (f1(x), · · · , fp(x))0. Then, they minimized Lν(ξ) numerically over

β subject to the condition that the arguments of m be exchangeable.

1.2 Robust model-based sampling designs

Consider a finite population of N units in which a survey variable Y has population

values Y1, · · · , YN and a q−dimensional auxiliary variable x has known population

values x1, · · · ,xN . In a sample s with sample size n ≤ N, we assume that all n units

of Y in s are known. The estimation/prediction problem is to use Yi, i ∈ s and

x1, · · · ,xN to estimate or predict the unknown finite population total T =
PN

i=1 Yi

based on a linear relationship-possibly transformed- between Y and given functions

of x. The design problem is to determine which values of x will be selected in the

sample so that the estimation or prediction has optimal properties. When studying

the model-based design, the estimation/prediction problem and the design problem

can not be considered separately because the choice of estimator or predictor and
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the choice of design depend on each other. Thus, the model-based design depends

strongly on the assumed relationship. Welsh and Wiens (2013) developed robust

model-based designs for a general class of models.

Welsh and Wiens (2013) assumed the working model is

γ−1(Yi) = z
0(xi)θ + σεg0(xi)

1/2εi. (1.3)

Here γ is a known, nonlinear, monotonic transformation, z(xi) is a p−dimensional

vector of regressors, θ is an unknown p−dimensional regression parameter, σε is an

unknown non-negative scale parameter, g0 : Rq −→ R+ is a known, positive variance

function and {ε1, · · · , εN} are independent and identically distributed random vari-

ables with mean zero and variance one. Welsh and Wiens (2013) assumed that model

(1.3) is only an approximation to the following model

γ−1(Yi) = z
0(xi)θ + f(xi) + σεg(xi)

1/2εi + η(xi). (1.4)

Here f : Rq −→ R is a function representing departures from the linear mean func-

tion, g : Rq −→ R+ is known, positive function representing departures from the

variance function when g 6= g0, and η(x) is a random process with mean zero and

covariance function COV{η(x, η(x0)} = h(x,x0) representing departures from inde-
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pendence. Denote

ZN =

⎛⎜⎜⎜⎜⎜⎜⎝
z0(x1)

...

z0(xN)

⎞⎟⎟⎟⎟⎟⎟⎠ , fN =

⎛⎜⎜⎜⎜⎜⎜⎝
f(x1)

...

f(xN)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

εN =

⎛⎜⎜⎜⎜⎜⎜⎝
ε1

...

εN

⎞⎟⎟⎟⎟⎟⎟⎠ , ηN =

⎛⎜⎜⎜⎜⎜⎜⎝
η(x1)

...

η(xN)

⎞⎟⎟⎟⎟⎟⎟⎠ .

DenoteG0,N = diag{g0(x1), · · · , g0(xN)} andGN = diag{g(x1), · · · , g(xN)}. LetHN

be theN×N matrix with (k, l)th element h(xk,xl).Denote δ = (γ−1(Y1), · · · , γ−1(YN))0.

Then δ has the first two moments

E(δ) = ZNθ + fN and Cov(δ) = σ2εGN +HN .

To make the parameter θ identifiable, we define the target parameter by

θ = argmin
φ

NX
i=1

[Eε,η{γ−1(Yi − z0(xi))φ}]2.

Assume
PN

i=1 z(xi))z
0(xi)) is invertible. Then, the definition of θ leads to the orthog-

onality condition

Z0N fN =
NX
i=1

z(xi)f(xi) = 0.

Welsh and Wiens (2013) studied model (1.4) in the following neighbourhoods of

11



f, g, h, respectively,

F = {f : Rq −→ R : Z0N fN = 0 and f 0N fN ≤ τ 2f},

G = {g : Rq −→ R+ : 0 ≤ g(x) ≤ (1 + τ2g)g0(x)},

H = {H : H positive semi-definite andkHk ≤ τ 2H/N}.

Here k · k is any induced matrix norm. For the scaled prediction mean squared error

E(T − (̂T ))2
N{τ 2f + σ2ε(1 + τ 2g) + τ 2h}

,

Welsh and Wiens (2013) derived an upper bound

LN(f, g, h) =
(nN)−1

P
i/∈s g0(xi)

P
j∈sE[g

−1/2
0 (xi)ri − g

−1/2
0 (xj)rj]

2

τ 2f + σ2ε(1 + τ 2g) + τ 2h
.

Here ri = γ−1(Yi)−z0(xi)θ̂ with the weighted least squares estimator θ̂ of the regres-

sion parameter θ in model (1.3):

θ̂ =

"X
j∈s
z(xj)z

0(xj)/g0(xj)

#−1X
j∈s
z(xj)γ

−1(Yj)/g0(xj).

Then, they adopted a minimax approach to choose the design to minimize the maxi-

mum of LN(f, g, h) over the neighbourhoods F ,G,H.
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1.3 Model-based stratification

Due to their nonhomogeneity, populations such as are targeted in social or economic

surveys are often divided into strata — distinct and non-overlapping subgroups. Gen-

erally desirable properties of strata are that they be large in size, differ considerably

from one another, be internally homogeneous and be such that the means of the tar-

get variable Y vary significantly across strata. In some cases, strata are ‘naturally

defined’, for example, in household surveys strata may be states or provinces, income

groups, occupations, age groups, etc. In business surveys, strata may be industries.

In other cases, there may be information on the population frame that allows us to

stratify the population. Typically, this information consists of the known values of a

q-dimensional auxiliary variable x with population values x1, . . . ,xN . From each of

L strata a sample sh, of pre-specified size nh ≤ Nh (= the population size in the hth

stratum), is drawn independently. Then the collection of these samples constitutes

a stratified sample s = ∪Lh=1sh with sample size n =
PL

h=1 nh. If a simple random

sample selection scheme is used in each stratum then the corresponding sample is

called a stratified random sample.

Since strata are made up of population elements that are homogeneous within the

stratum and heterogeneous with respect to elements of other strata, we may assume

the following model in the hth stratum:

E(yi|i ∈ h) = μh, var(yi|i ∈ h) = σ2h,

yi and yj are independent when i 6= j.

13



Here i ∈ h indicates that population unit i is in the hth stratum. The sample mean of

Y within each of the strata is an empirical best predictor of the corresponding stratum

population mean; hence the empirical best predictor TEB of the overall population

total T=
PN

i=1 Yi is given by TEB =
P

hNhynh. Here ynh is the sample mean of

Y in the hth stratum. The prediction variance of TEB is given by
P

h(N
2
h/nh)(1 −

nh/Nh)σ̂
2
nh
where σ̂2nh =

1
nh

P
i∈sh(yi− ynh)

2 is the unbiased estimator of the variance

σ2h of Y -values in the h
th strata.

In the sample that motivates this article the auxiliary variable x is univariate,

i.e. q = 1. The crucial question for stratification is the construction of the stratum

boundaries b1, b2, . . . bL−1 of the target variable Y based on an auxiliary variable x so

that the mean square error of an estimator is minimized. Dalenius (1950) established

equations based on a single continuous auxiliary variable x with density function f(·)

when estimating the mean of x. The solution of the equations would be the optimum

boundaries when the equations are solvable. The method of Dalenius (1950) can be

thought to form L strata as follows: assuming that x is distributed as F0(·), and

choosing L− 1 points between 0 and 1:

0 = a1 < a2 < . . . < ah < . . . < aL−1 < aL = 1,

then

yi lies in the hth strata provided the corresponding xi ∈ (F−10 (ah−1), F
−1
0 (ah)).

(1.5)
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Such points a1, . . . , aL will be chosen to minimize the prediction mean square error of

an estimator for a population parameter, such as the population total Ty. Since the

equations derived by Dalenius are generally unsolvable, Dalenius and Hodges (1959)

derived method to find approximately optimum boundaries. See Horgan (2006) for

more methods of constructing stratum boundaries, and Ghosh (1963) for optimum

stratification with bivariate predictors.

Another way to model heterogeneity in a population is to use separate versions of

linear regression models linking the target variable Y and the auxiliary variable x in

different strata. For example, assume the following model is valid for all the units in

the population:

Yi = αh + βhxi + g
1/2
0 (xi)εi, i ∈ h, h = 1, · · · , L. (1.6)

Here g0(x) > 0, and ε1, . . . , εN (N =
PL

h=1Nh) are independent and identically

distributed random variables with mean zero and variance σ2. Model (1.6) is more

general than model (5.14) studied in Chambers and Clark (2012). Special cases of

model (1.6) have been studied by many researchers. Bethel (1989) used model (1.6)

with parameters independent on strata to study some estimators in model-based

stratification. Based on a similar model, Kott (1985) improved the results in Godfrey

et at. (1984).

Assume that the method of sampling is non-informative. Then the regression

model in the population also applies in the sample s with sample size n. Assume

also that there is a complete response, so that once the sample has been selected and
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the in-sample units observed, the values of Yi, i ∈ s are known. Then we can use

the values of Yi, i ∈ s and x1, . . . , xN to estimate or predict the finite population

total T=
PN

i=1 Yi. The design problem is to specify a rule using x1, . . . , xN to select

a sample s so that the estimator/predictor T̂ is a member of class of ‘acceptable’

estimators/predictors of T , and T̂ is optimal in that it minimizes a loss function such

as the mean squared error (mse) E(T − T̂ )2.

1.4 Purpose of this research

In these methods of modelling heterogeneity, the distribution F0(·) and the assumed

variance function g0(·) will typically only approximate reality, at best. It is perhaps

more realistic to assume only that F0(·) and g0(·) are good approximations — we shall

refer to them as a working distribution and a working variance function respectively —

without necessarily being exact; we then construct robust sampling designs which give

good results both at and ‘near’ this working distribution and this working variance

function.

Welsh and Wiens (2013) developed robust, model-based designs for a general class

of models which includes the ratio model as a special case. Here we extend their work

to the case of stratified sampling. Specifically, for any distribution function F (·)

and variance function g(·) near the working distribution F0(·) and variance function

g0(·), we fist find the mse of the estimator/predictor T̂ with respect to F (·) and g(·).

Roughly speaking, for fixed F (·), the mse will linearly depend on the values of g(·)

at in-sample units and the values of g(·) at non-sample units. For fixed g(·), the mse
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is a quadratic form of the probabilities of strata under the distribution function F (·).

Then, the maximum of the mse over the neighbourhood consisting of g(·) controlled

by g0(·) will be attained at the boundary of the neighbourhood. The maximum

problem of the mse over the neighbourhood of the working distribution F0(·) turns

out to be a constrained quadratic optimization problem. To solve this problem, we

will present a method which is convenient for numerical work. We will use a modified

genetic algorithm to find the robust design which minimize the maximum of the mse

over the neighbourhoods of the working distribution and variance function.

1.5 Chapter structure

The rest of this thesis is organized as follows. In Chapter 2, we will define neigh-

bourhoods of the working distribution and variance function. In Chapter 3, we will

maximize the scaled mean squared error over the neighbourhoods of working variance

function and distribution. In Chapter 4, for sugar farm population and MU281 popu-

lation, applying a modified genetic algorithm, we will find robust designs in different

cases.
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Chapter 2

Neighbourhoods of the working

distribution and variance function

Assume that the population is divided into L strata by applying (1.5). Denote

by Idh = (Idh1, . . . , IdhN)
0 the indicator vector of the hth strata. Here Idhi = 1

when i ∈ h and zero otherwise. Define xN = (x1, . . . , xN)
0 and ZN = (Id1, Id1 ∗

xN . . . , IdL, IdL ∗ xN), where ∗ denotes the pointwise product of two vectors, and

θ = (α1, β1 . . . αL, βL)
T . Then, we can rewrite the working model (1.6) as

yN = ZNθ +G
1/2
0,NεN . (2.1)

Here yN = (y1, . . . , yN)0, εN = (ε1, . . . , εN)0 and G0,N = diag{g0(x1), . . . , g0(xN)}.

Suppose that the true distribution of x is F (·), but that the experimenter mistak-

enly adopts the working distribution F0(·). Then Idh,j is Bernoulli distributed with

parameter pF,h = PF [(F
−1
0 (ah−1), F

−1
0 (ah))]. With pF := (pF,1, . . . , pF,L)

0 we define

18



the neighbourhood of the working distribution F0(·) to be

F = {all distributions F (·) such that kpF − pF0k ≤ δ},

for a specified δ > 0. Here k·k is the Euclidean norm. An equivalent definition, which

we find somewhat more convenient, is obtained by defining p0 = pF0 ,

P = {p |
°°p− p0°° ≤ δ;p % 0,10Lp = 1}, (2.2)

and then defining F to consist of those distributions with pF ∈ P. (We use p % 0

to denote elementwise non-negativity.)

Suppose that, instead of the working variance function g0(·), the true variance

function is g(·) > 0 ‘close to’ g0(·), in that it belongs to the class

G = {g : R −→ R+ : 0 < g(x)g−10 (x) ≤ 1 + τ 2g},

for a specified τ g. Then, instead of the working model (2.1), the true model is now

yN = ZNθ +G
1/2
N εN , (2.3)

where GN = diag{g(x1), . . . , g(xN)}.

Suppose that a stratified random sample s = ∪Lh=1sh, with sample size n =

19



PL
h=1 nh, is chosen. The empirical best predictor of the population total T is

T̂ =
X
i∈s

Yi +
X
i/∈s

Ŷi,

where for i /∈ s, Ŷi is an estimator of E(Yi|Yj, j ∈ s, x1, . . . , xN). Under the working

model (2.1), we can get Ŷi, i /∈ s as follows. Corresponding to the n in-sample units

and theN−n non-sample units, define Zn and ZN−n to be the n×2L and (N−n)×2L

submatrices of ZN , and defineG0,n andGn,N−n to be the n×n and (N−n)×(N−n)

submatrices of GN . Similarly, let yn be the n-element subvector of yN corresponding

to the n in-sample units. Then, under the working model (2.1), and using the in-

sample units, we compute the weighted least squares estimate θ̂ of the regression

parameter θ :

θ̂ = (Z0nG
−1
0,nZn)

−1Z0nG
−1
0,nyn,

and then predict the unsampled units by ŷN−n = ZN−nθ̂.

Under the true distribution F (·) and the true variance function g(·), the mse

of T̂ is Eg,F (T̂ − T )2. Here, the expectation with respect to true model (2.3) with

variance function g(·) is denoted by Eg(·) and the expectation with respect to the

true distribution F (·) is denoted by EF (·). We adopt a ‘minimax’ approach in which

we choose the sampling design to minimize the mse, scaled in such a way as to

eliminate the dependence on the unknown parameters σ2 and τ 2g, and maximized

over the neighbourhoods of the working distribution and working variance function.

In the next chapter we concentrate on obtaining this maximum scaled mean squared

20



error

Lmax = max
F∈F

max
g∈G

Eg,F (T̂ − T )2

Nσ2(1 + τ 2g)
. (2.4)
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Chapter 3

Maximizing the scaled mean

squared error

We will study the optimization problem of obtaining Lmax, given by (2.4). We begin

with the first stage maximization over the neighbourhood of the working variance

function. Then, we maximize this first stage maximum over the neighbourhood of

the working distribution. We first require the mean squared error Eg,F (T̂ − T )2.

3.1 The scaled mean squared error with respect to

the true distribution and variance function

In the following we employ the definitions, for h = 1, ..., L and i, k, l = 1, ..., N ,

Dk,l
h,i = U1hi + (xk + xl)U2hi + xkxlU3hi,

Dh = B1hB3h −B2
2h,
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where

U1hi =
(B2hxi −B3h)

2

g20(xi)D
2
h

,

U2hi =
−(B1hxi −B2h)(B2hxi −B3h)

g20(xi)D
2
h

,

U3hi =
(B1hxi −B2h)

2

g20(xi)D
2
h

,

and

B1h =
X
i∈sh

1

g0(xi)
, B2h =

X
i∈sh

xi
g0(xi)

, B3h =
X
i∈sh

x2i
g0(xi)

.

Lemma 1 The mse of T̂ with respect to the true variance function g(·) and true

distribution F (·) is given by

Eg,F (T̂ − T )2

σ2
= 10N−nQr

LX
h=1

¡
p2hCh,g + ph(1− ph)Rh,g

¢
Q0

r1N−n + 1
0
N−nGN−n1N−n.

(3.1)

Here Qr is an (N − n)×N incidence matrix, with entries 1 or 0 defined by ZN−n =

QrZN , Ch,g is an N ×N matrix with (k, l)th entry

Ck,l
h,g =

X
i∈sh

g(xi)D
k,l
h,i, (3.2)

and Rh,g = ⊕N
k=1C

k,k
h,g .

Proof. It follows from T̂ =
P

i∈s Yi +
P

i/∈s Ŷi that

T̂ − T =
X
i/∈s

(Ŷi − Y ) = 10N−n(ŶN−n − YN−n).
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Under the true model (2.3), yN−n = ZN−nθ+G
1/2
N−nεN−n and ŷN−n = ZN−nθ̂ , hence

ŷN−n − yN−n =Mεn −G1/2
N−nεN−n,

whereM = ZN−n(Z
0
nG

−1
0,nZn)

−1Z0nG
−1
0,nG

1/2
n . Then

(ŷN−n − yN−n)(ŷN−n − yN−n)0

=Mεnε
0
nM

0 +G
1/2
N−nεN−nε

0
N−nG

1/2
N−n −Mεnε

0
N−nG

1/2
N−n −G

1/2
N−nεN−nεnM

0,

and we find that

Eg(T̂ − T )2

= Eg(1
0
N−n(ŶN−n −YN−n)(ŶN−n −YN−n)

01N−n)

= σ210N−n[MM
0 +GN−n]1N−n

= σ210N−n[(ZN−n(Z
0
nG

−1
0,nZn)

−1Z0nG
−1
0,nGnG

−1
0,nZn(Z

0
nG

−1
0,nZn)

−1Z−1N−n +GN−n]1N−n.

With Qr as defined in the statement of the Lemma,

Eg(T̂ − T )2

σ2
= 10N−n

⎡⎢⎢⎣ (QrZN(Z
0
nG

−1
0,nZn)

−1Z0nG
−1
0,nGn·

G−1
0,nZn(Z

0
nG

−1
0,nZn)

−1Z0NQ
0
r

⎤⎥⎥⎦1N−n + 10N−nGN−n1N−n.

(3.3)
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Note that Zn = (Ids1, Ids1 ∗ xn . . . , IdsL, IdsL ∗ xn), with Idsh = (Idsh1, . . . , Idshn)
0

for Idshi = 1 if i ∈ sh and zero otherwise, h = 1, . . . , L. Using this we find that

Z0nG
−1
0,nZn = ⊕L

h=1

⎛⎜⎜⎝ B1h B2h

B2h B3h

⎞⎟⎟⎠ ,

hence

(Z0nG
−1
0,nZn)

−1 = ⊕L
h=1

⎧⎪⎪⎨⎪⎪⎩
1

Dh

⎛⎜⎜⎝ B3h −B2h

−B2h B1h

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Since, in each stratum, we take at least two different values of xi to do regression

analysis, the Hölder inequality implies Dh > 0. Similarly, with

K1h =
X
i∈sh

g(xi)

g20(xi)
, K2h =

X
i∈sh

xig(xi)

g20(xi)
, K3h =

X
i∈sh

x2i g(xi)

g20(xi)
,

we have

Z0nG
−1
0,nGnG

−1
0,nZn = ⊕L

h=1

⎛⎜⎜⎝ K1h K2h

K2h K3h

⎞⎟⎟⎠ .

After some simplification we obtain

(Z0nG
−1
0,nZn)

−1Z0nG
−1
0,nGnG

−1
0,nZn(Z

0
nG

−1
0,nZn)

−1 = ⊕L
h=1

⎛⎜⎜⎝ W1h W2h

W2h W3h

⎞⎟⎟⎠ ,

for

W1h =
X
i∈sh

g(xi)U1hi, W2h =
X
i∈sh

g(xi)U2hi, W3h =
X
i∈sh

g(xi)U3hi.
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It follows from ZN = (Id1, Id1 ∗ xN , . . . , IdL, IdL ∗ xN) that

ZN(Z
0
nG

−1
0,nZn)

−1Z0nG
−1
0,nGnG

−1
0,nZn(Z

0
nG

−1
0,nZn)

−1Z0N

= (Id1, Id1 ∗ xN , . . . , IdL, IdL ∗ xN)

⎡⎢⎢⎣⊕L
h=1

⎛⎜⎜⎝ W1h W2h

W2h W3h

⎞⎟⎟⎠
⎤⎥⎥⎦Z0N

= (akl)

with

akl =
LX

h=1

IdhlIdhk (W1h + (xk + xl)W2h + xlxkW3h) , for k, l = 1, . . . , N.

The expectation of akl with respect to F (·) is

EF (akl) =

⎧⎪⎪⎨⎪⎪⎩
PL

h=1 ph(W1h + 2xkW2h + x2kW3h), k = l,PL
h=1 p

2
h(W1h + (xk + xl)W2h + xlxkW3h), k 6= l.

Thus, with

Ck,l
h,g =W1h + (xk + xl)W2h + xkxlW3h,

we obtain

EF [ZN(Z
0
nG

−1
0,nZn)

−1Z0nG
−1
0,nGnG

−1
0,nZn(Z

0
nG

−1
0,nZn)

−1Z0N ] =
LX

h=1

¡
p2hCh,g + ph(1− ph)Rh,g

¢
;

this in (3.3) give us the desired mse (3.1). Finally, we express Ck,l
h,g in the simpler and

more convenient form (3.2).
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3.2 Maximizing the scaled mean squared error over

the neighbourhood of the working variance func-

tion

We now maximize (3.1) over g ∈ G.

Theorem 2 The mse Eg,F (T̂ − T )2satisfies

max
g∈G

Eg,F (T̂ − T )2

Nσ2(1 + τ 2g)
=
p0FBpF + c

0pF + 1
0
N−nG0,N−n1N−n

N
. (3.4)

Here B = diag{bh : h = 1, . . . , L} and c = (c1, .., cL)0, with

bh =

B1h

µP
k/∈s

xk

¶2
− 2B2h(N − n)

P
k/∈s

xk +B3h(N − n)2

Dh
− ch,

and

ch =

B1h
P
k/∈s

x2k − 2B2h
P
k/∈s

xk +B3h(N − n)

Dh
.
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Proof. From (3.1) and (3.2) we obtain

Eg,F (T̂ − T )2

σ2

=
LX

h=1

¡
p2h1

0
N−nQrCh,gQ

0
r1N−n + ph(1− ph)1

0
N−nQrRh,gQ

0
r1N−n

¢
+ 10N−nQrGNQ

0
r1N−n

=
LX

h=1

Ã
p2h
X
k/∈s

X
l /∈s

Ck,l
h,g + ph(1− ph)

X
k/∈s

Ck,k
h,g

!
+

LX
h=1

X
i/∈sh

g(xi)

=
LX

h=1

X
i∈sh

g(xi)

Ã
p2h
X
k/∈s

X
l /∈s

Dk,l
h,i + ph(1− ph)

X
k/∈s

Dk,k
h,i

!
+

LX
h=1

X
i/∈sh

g(xi)

:= Sg|s + Sg|sc.

Since Sg|s depends only on the value of g(x) in s and Sg|sc depends only on the value

of g(x) out of sample s,

max
g∈G

Eg,F (T̂ − T )2

σ2
= max

g∈G
Sg|s +max

g∈G
Sg|sc.

For the maximum problem out of sample s, we have

max
g∈G

Sg|sc = max
g∈G

LX
h=1

X
i/∈sh

g(xi) = (1 + τ 2g)
X
i/∈s

g0(xi), (3.5)

attained with g(xi) = (1 + τ 2g)g0(xi) for all i /∈ s.

It remains to solve the maximization problem in sample s. Note that U2hi =

−
√
U1hiU3hi, so that

Dk,k
h,i = U3hix

2
k + 2U2hixk + U1hi =

³
xk
p
U3hi −

p
U1hi

´2
≥ 0,
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hence X
k/∈s

Dk,k
h,i ≥ 0. (3.6)

Similarly,

X
k/∈s

X
l/∈s

Dk,l
h,i = U3hi

ÃX
k/∈s

xk

!2
+ 2(N − n)U2hi

ÃX
k/∈s

xk

!
+ (N − n)2U1hi ≥ 0. (3.7)

Note also that ph(1− ph) ≥ 0 for all h. Then using (3.6) and (3.7), we have

max
g∈G

Sg|s = max
g∈G

Ã
LX

h=1

X
i∈sh

g(xi)

Ã
p2h
X
k/∈s

X
l/∈s

Dk,j
h,i + ph(1− ph)

X
k/∈s

Dk,k
h,i

!!
.

= (1 + τ 2g)
LX

h=1

X
i∈sh

g0(xi)

Ã
p2h
X
k/∈s

X
l /∈s

Dk,j
h,i + ph(1− ph)

X
k/∈s

Dk,k
h,i

!
(3.8)

by taking g(xi) = (1 + τ 2g)g0(xi) for all i ∈ s.

Combining (3.5) and (3.8) we obtain, after a rearrangement,

max
g∈G

Eg,F (T̂ − T )2

σ2

= (1 + τ 2g)

"
LX

h=1

Ã
p2h

ÃX
k/∈s

X
l/∈s

Ck,l
h,g0
−
X
k/∈s

Ck,k
h,g0

!
+ ph

X
k/∈s

Ck,k
h,g0

!
+
X
i/∈s

g0(xi)

#
.

Finally, upon inserting Ck,l
h,g0

= (B3h − (xk + xl)B2h + xkxlB1h) /Dh,

max
g∈G

Eg,F (T̂ − T )2

σ2(1 + τ 2g)
= p0FBpF + c

0pF + 1
0
N−nG0,N−n1N−n,

with B and c as in the statement of the Theorem.
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3.3 Maximizing the scaled mean squared error over

the neighbourhood of the working distribution

Following Theorem 2 we continue the development by maximizing (3.4) over the

neighbourhood F of F0(·). For this it suffices to find the maximum value

L0,δ = max
P

p0Bp+ c0p

N
, (3.9)

since then

Lmax = L0,δ + Lv

with Lv =
P
k/∈s

g0 (xk) /N .

For simple population, when L = 2, we can find the maximum of (3.9) and Lmax

easily.

Example 3 Consider x = {0.1, 0.2, 0.3, 0.6, 0.8, 0.9} with N = 6. Take N1 = N2 = 3,

L = 2, n1 = n2 = 2 and n = 4. We assume that g0(x) = x, P0 = (0.5, 0.5)0

and δ =
√
0.5. We can find Lmax as follows. When sample s = {0.1, 0.3, 0.6, 0.9},

B = diag{0.8,−0.6667} and c = (4.4, 5.3333)0. So,

L0,δ = max
0≤p2≤1

0.1333p22 − 0.6667p2 + 5.2
6

= 5.2/6

and Lv =
1
6
. Thus, Lmax = 1.0333.

We list Lmax for different chooses of samples in table 3.1.
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Table 3.1 Calculation of Lmax for 9 possible samples in Example 3
Sample (b1, b2) (c1, c2) Lmax
{0.1, 0.2, 0.6, 0.8} (7.8,−5.1) (18.6, 7.5) 4.6
{0.1, 0.2, 0.6, 0.9} (6.8,−0.4, ) (14.3, 3.7667) 3.7
{0.1, 0.2, 0.8, 0.9} (4.8, 46.8) (7.5, 62.1) 16.7
{0.1, 0.3, 0.6, 0.8} (0.9,−6.6) (5.8, 10.55) 1.3636
{0.1, 0.3, 0.6, 0.9} (0.8,−0.6667) (4.4, 5.3333) 1.0333
{0.1, 0.3, 0.8, 0.9} (0.6, 51.2) (2.2,−82.4) 22.4
{0.2, 0.3, 0.6, 0.8} (−9,−8.1) (23, 14.3) 2.7107
{0.2, 0.3, 0.6, 0.9} (−7.6,−1.6) (16.9, 15.55) 2.5688
{0.2, 0.3, 0.8, 0.9} (−4.8, 63.6) (7.7, 106.1) 28.4

In the following, we want to solve (3.9) analytically.

Theorem 4 There exists a solution p0 to the problem

maximize p0Bp+c0p, subject to (i) 10p = 1, (ii)
°°p− p0°° ≤ δ, (iii) p % 0. (3.10)

This maximizer has elements

p0,h (λ, μ) =

µ
μp0h + ch/2− λ

μ− bh

¶+
,

where μ and λ are to maximize

p0Bp+ c0p =
X
h

p0,h (λ, μ) (bhp0,h (λ, μ) + ch) ,

subject to (i) and (ii).

Proof. Write the constraint (ii) as

(ii)0: δ2 − β2 −
°°p− p0°°2 = 0, for a slack variable β2.
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Denote by p0 the maximizer, which is guaranteed to exist since the objective function

is continuous on its compact domain. Let p1 ∈ P be arbitrary, define

pt = (1− t)p0 + tp1, 0 ≤ t ≤ 1,

and consider the function

Φ (t;μ, λ) = p0tBpt + c
0pt − 2λ (10pt − 1) + μ

³
δ2 − β2 −

°°pt − p0°°2´.
In order that p0 be the maximizer, it is necessary and sufficient that Φ (t, μ, λ) be

maximized at t = 0 for all p1, for multipliers λ and μ chosen to satisfy the side

conditions (i) and (ii)0. This condition is that, for all p1,

0 ≥ Φ0 (0;μ, λ) =
¡
−2 (μI−B)p0 + c− 2λ1+ 2μp0

¢0
(p1 − p0). (3.11)

Condition (3.11) entails

¡
−2 (μI−B)p0 + c− 2λ1+ 2μp0

¢
h
= 0 if p0,h > 0,¡

−2 (μI−B)p0 + c− 2λ1+ 2μp0
¢
h
≤ 0 if p0,h = 0;

i.e.

p0,h (λ, μ) =

µ
μp0h + ch/2− λ

μ− bh

¶+
,

with λ and μ determined by (i) and (ii)0, and with β2 then chosen to maximize the
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objective function. Equivalently, λ and μ are determined by the requirement that

they maximize the objective function, subject to (i) and (ii).

If δ is sufficiently small, then Theorem 4 can be made much more explicit.

Theorem 5 If δ ≤ minh p
0
h, the maximum value L0,δ at (3.9) can be obtained as

follows. Define

λ = λ (μ) =
X
h

(bhp
0
h + ch/2)αh (μ) , (3.12)

for coefficients αh (μ) = (μ− bh)
−1 /

P
h (μ− bh)

−1. Then the maximizing p0 of

Lemma 4 has elements

p0,h (λ, μ) =
μp0h + ch/2− λ (μ)

μ− bh
, (3.13)

and

L0,δ = max
μ

P
h p0,h (λ (μ) , μ) (bhp0,h (λ (μ) , μ) + ch)

N
, (3.14)

with this maximization carried out subject to minh p0,h (λ, μ) ≥ 0 and kp0 − p0k2 =P
h (p0,h (λ (μ) , μ)− p0h)

2 ≤ δ2.

Proof. If δ ≤ minh p0h then p % 0 for all p for which kp− p0k ≤ δ; in particular

the solution given by Theorem 4 satisfies (3.13), with λ determined by (3.12) in order

to satisfy constraint (i).

Even when δ ≤ minh p0h, Theorems 4 and 5 are inconvenient for numerical work,
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since they requires auxiliary optimizations to be carried out each time a sampling

design is assessed. Since our numerical algorithm calls for a huge number of such as-

sessments, we give another approach. We will solve (3.10) without the non-negativity

requirement (iii), obtaining an explicit maximizer p0 in the larger class defined by (i)

and (ii). If this p0 also satisfies (iii), then it is a fortiori a maximizer in the smaller

class P.

The solution to this problem relies in turn on results for the problem

max
kwk=δ

(w0Ew+ 2d0w) , (3.15)

with matrices E(L−1)×(L−1). The following Lemma summarizes Lemmas 1 and 2 of

Hager (2001).

Lemma 6 (Hager 2001) The vector w is a solution vector for (3.15) if and only if

kwk = δ and there exists μ such that μI−E is positive semidefinite and (μI−E)w = d.

In terms of the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL−1 and corresponding orthogonal

eigenvectors w1, · · · ,wL−1 of E, the vector w =
PL−1

i=1 ciwi is a solution of (3.15) if

and only if c is chosen in the following way. Define Γ1 = {i : λi = λ1}, Γ2 = {i :

λi < λ1} and νi = d0wi. Then:

(i) If νi = 0 for all i ∈ Γ1 and

X
i∈Γ2

ν2i
(λi − λ1)2

≤ δ2,

then μ = λ1 and ci =
νi

λ1−λi for i ∈ Γ2. The ci for i ∈ Γ1 can be arbitrarily chosen
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subject to the condition X
i∈Γ1

c2i = δ2 −
X
i∈Γ2

ν2i
(λ1 − λi)2

.

(ii) If (i) does not apply, then ci =
νi

μ−λi , 1 ≤ i ≤ L− 1, for any μ > λ1 subject to the

condition
L−1X
i=1

ν2i
(λi − μ)2

= δ2.

We can now state the main result, giving the maximized loss L0,δ at (3.9).

Theorem 7 Denote by P0 the class P defined at (2.2), without the non-negativity

requirement p % 0. Then:

(i) The maximizer

p0 = argmax
P0

p0Bp+ c0p

is given by p0 = p0 +Dw∗, where w∗ is one of (a) −E−1d, or (b)
PL−1

i=1 ciwi as in

Lemma 6, whichever results in the larger value of w0
∗Ew∗+2d

0w∗. Here E = D0BD :

(L− 1)× (L− 1) and d = D0(Bp0+ c/2) ∈ RL−1 for an L× (L− 1) matrix D whose

columns form an orthogonal basis of the orthogonal complement to the column space

of 1L.

(ii) If p0 % 0 then p0 is also the maximizer in P, and

L0,δ =
p00Bp0 + c

0p0
N

.
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Proof. (i) Set v = p− p0. Then

max
P0

p0Bp+ c0p = L0 + L0δ, (3.16)

where

L0 =
¡
p0
¢0
Bp0 + c0p0, and

L0δ = max
v:10Lv=0,kvk≤δ

v0Bv + (2Bp0 + c)0v.

Thus it suffices to find L0δ. The orthogonality condition 10Lv = 0 holds if and only

if v lies in the orthogonal complement to the column space of 1L. Denote by D

the L× (L− 1) matrix whose columns form an orthogonal basis for this orthogonal

complement. Then v = Dw for some w ∈ RL−1 with kwk = kvk ≤ δ, and

L0δ = max
kwk≤δ

w0Ew+ 2d0w, (3.17)

with E = D0BD : (L − 1) × (L − 1) and d = D0(Bp0 + c/2) ∈ RL−1. If w∗ is a

solution to Problem (3.17) then

p0 = p
0 +Dw∗

is a solution to Problem (3.16).

Problem (3.17) is a quadratic optimization problem over a closed ball. The op-

timizer is either in the interior or on the boundary of the ball. We claim that the
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maximizer in (3.17) is either w∗ = −E−1d or the solution to (3.15). For this, we

consider the following three possibilities:

Case 1: E is positive semidefinite. In this case (3.17) is a problem of maximizing

a convex function over a convex set. According to Corollary 32.3.2 of Rockafellar

(1970), the solution of (3.17) must be a boundary point of kwk ≤ δ. Thus it suffices

to solve (3.15).

Case 2: E is negative semidefinite. If the maximizer w of (3.17) is obtained in the

interior of kwk ≤ δ, then the problem

min
kwk≤δ

w0(−E)w− 2d0w

has a solution in the interior of kwk ≤ δ. It must be the global minimizer since −E

is positive semidefinite. So, the minimizer is w = −E−1d.

Case 3: E is neither positive semidefinite nor negative semidefinite. According to

Lemma 2.4 of Sorensen (1982), the maximizerw of (3.17) is a solution to the equation

(λI−E)w = d

with λ ≥ 0, λ(kwk2 − δ2) = 0 and λI − E positive semidefinite. Since E is not

positive semidefinite or negative semidefinite, the largest eigenvalue λ1 of E must be

positive. Thus, choose λ ≥ λ1 > 0 so that λI − E is positive semidefinite. Then

λ(kwk2 − δ2) = 0 implies that the maximizer w must satisfy kwk = δ.

This establishes our claim, and completes the proof of (i). Assertion (ii) is imme-
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diate.
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Chapter 4

Minimizing the loss function by

using a modified genetic algorithm

with artificial implantation

4.1 The genetic algorithm

We will use a modified genetic algorithm with artificial implantation to find the

optimal robust design which minimizes the loss. For more details for the genetic

algorithm, see Mandal et al. (2007) and Welsh and Wiens (2013). We first recall the

genetic algorithm as follows.

1. Start by randomly generating the first generation of ng = 40 designs.

2. For the current generation of designs, compute the loss L = LN,δ,k for each
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design, k = 1, . . . , ng, and the corresponding ‘fitness levels’

fitnessk =
1

(LN,δ,k − .999LN,δ,min)2
, k = 1, . . . , ng,

where LN,δ,min is the minimum value of the loss in the current generation. Then,

scale the fitness levels {fitnessk}ngk=1 to form a probability distribution

ψk =
fitnesskPg
j=1 fitnessj

, k = 1, . . . , ng.

3. Form a new generation of ng designs to replace the current generation in the

following way.

(a) Include the fittest Nelite = ng×Pelite of the current generation; they are the

elite group which survives through to the next generation. The remaining

ng − Nelite members are formed by ‘crossover’ and ‘mutation’. (We used

Pelite = .05, so that Nelite = 2 and ng −Nelite = 38.)

(b) Crossover proceeds as follows:

• Choose two members of the current generation to be parents with

probability proportional to their fitness level: If ζ1, ζ2 ∼ independent

Uniform(0,1), then choose to be parents the current generation mem-

bers i∗1 and i∗2, where

i∗1 = min

(
i :

iX
j=1

ψj ≥ ζ1

)
and i∗2 = min

(
i :

iX
j=1

ψj ≥ ζ2

)
.
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• With probability 1−Pcrossover, the child is identical to the fittest par-

ent. (We used 1− Pcrossover = 0.1.)

• With probability Pcrossover, the parents both contribute towards the

child, in the following manner. Each member of the current generation

can be represented by a vector of N − n zeros and n ones, with a

one indicating that the corresponding unit is included in the sample.

The two vectors arising from the parents are summed, resulting in

a vector with elements in {0, 1, 2}. The sum vector is adjusted to

have exactly n non-zero elements by randomly (uniformly) choosing

an appropriate number of the ones and replacing them by zeros. Any

twos are changed to ones (which means that any points common to

both parents are retained). The child formed in this way is added to

the new generation.

• Mutation is applied independently n times to each child - regardless

of how the child is formed - as follows. For each mutation, randomly

choose a one and a zero. Then, with probability Pmutation, swap the

zero and the one and with probability 1 − Pmutation do nothing. (We

used Pmutation = 0.05.)

The procedure is repeated until ng members of the new generation are

formed.

4. Step 3 is carried out until the next generation has been formed. Then its

fitness levels are computed and the process is repeated from Step 2. The loss is
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guaranteed to decrease (weakly) in each generation, because of the inclusion of

the elite members. We run the algorithm until the best design has not changed

in 200 consecutive generations.

4.2 The modified genetic algorithm with/without

artificial implantation

Recall that a stratified random sample is obtained as follows: we take independently

one sample in each stratum of pre-specified size nh ≤ Nh and then form a stratified

sample s = ∪hsh with sample size n =
P

h nh. To apply the genetic algorithm to

stratified random samples, we need to modify the crossover and mutation procedures

in the genetic algorithm to guarantee that in the sample size in hth stratum is nh.

Moreover, we could add a step called artificial implantation (AI) to the genetic al-

gorithm. To do AI in each generation, we identify the best design (i.e. the design

with largest fitness level) and its largest stratum. Then we replace the corresponding

stratum of each design by the largest stratum in the best design. We present the

modified genetic algorithm as follows.

1. Start by randomly generating the first generation of ng = 40 designs.

2. For the current generation of designs, compute the loss L = LN,δ,k for each

design, k = 1, . . . , ng, and the corresponding original ‘fitness levels’

fitnessk =
1

(LN,δ,k − .999LN,δ,min)2
, k = 1, . . . , ng,
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where LN,δ,min is the minimum value of the loss in the current generation. Then,

scale the fitness levels {fitnessk}ngk=1 to form a probability distribution

ψk =
fitnesskPg
j=1 fitnessj

, k = 1, . . . , ng.

3. Form a new generation of ng designs to replace the current generation in the

following way.

(a) Include the fittest Nelite = ng×Pelite of the current generation; they are the

elite group which survives through to the next generation. The remaining

ng − Nelite members are formed by ‘crossover’ and ‘mutation’. (We used

Pelite = .05, so that Nelite = 2 and ng −Nelite = 38.)

(b) Artificial Implantation (AI) Find the largest stratum Str of the fittest

design in the current generation. Replace the corresponding strata in all

ng − 1 designs by Str in the current generation. The resulted designs

together with the fittest design form the current generation with artificial

implantation.

(c) Crossover proceeds as follows:

• Choose two members of the current generation with artificial implan-

tation to be parents with probability proportional to their original

fitness level: If ζ1, ζ2 ∼ independent Uniform(0,1), then choose to be
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parents the current generation members i∗1 and i∗2, where

i∗1 = min

(
i :

iX
j=1

ψj ≥ ζ1

)
and i∗2 = min

(
i :

iX
j=1

ψj ≥ ζ2

)
.

• With probability 1 − Pcrossover, the child is identical to the modified

parent if it has the larger original fitness level. (We used 1−Pcrossover =

0.1.)

• With probability Pcrossover, the parents with artificial implantation

both contribute towards the child, in the following manner. Each

member of the current generation can be represented by a vector of

N − n zeros and n ones, with a one indicating that the corresponding

unit is included in the sample. The two vectors arising from the parents

are summed, resulting in a vector with elements in {0, 1, 2}. The sum

vector is adjusted to have exactly nh non-zero elements in each hth

strata by randomly (uniformly) choosing an appropriate number of

the ones and replacing them by zeros. Any twos are changed to ones

(which means that any points common to both parents are retained).

The child formed in this way is added to the new generation.

• Mutation is applied independently n times to each child - regardless

of how the child is formed - as follows. For each mutation, randomly

choose a one and a zero in the same stratum. Then, with probability

Pmutation, swap the zero and the one and with probability 1−Pmutation

do nothing. (We used Pmutation = 0.05.)
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The procedure is repeated until ng members of the new generation are

formed.

4. Step 3 is carried out until the next generation has been formed. Then its

fitness levels are computed and the process is repeated from Step 2. The loss is

guaranteed to decrease (weakly) in each generation, because of the inclusion of

the elite members. We run the algorithm until the best design has not changed

in 200 consecutive generations.

In the following, with Step 3 (b) AI, the algorithm is called the modified genetic

algorithm with AI. Otherwise, it is called the modified genetic algorithm without

AI. We will use the modified genetic algorithm with AI to find the optimal robust

design for the sugar farm population and the MU281 population in the following

two sections. In the last section, we will use the sugar farm population to compare

the modified genetic algorithms with/without AI. We will see that the modified

genetic algorithmwithAI does run faster than the modified genetic algorithmwithout

AI. This means that the modified genetic algorithm with AI will converge to the

corresponding minimum loss in fewer generations than the modified genetic algorithm

without AI.

4.3 The sugar farm population

We consider the sugar farm population (Chambers and Dunstan 1986) to apply our

design methodology in a small but realistic population. This population consists of
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Figure 4.1: Minimum loss vs. generation Case 1 of sugar farm when g0(x) = x, δ =
0.15

Table 4.1. Components of minimum loss for Case 1 of sugar farm when g0 (x) = x.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 10.299 12.816 16.336 20.851 26.394 32.890 40.403 49.131 59.050
Lv 0.186 0.186 0.188 0.188 0.188 0.190 0.190 0.190 0.190
Lmax 10.485 13.002 16.524 21.039 26.582 33.080 40.593 49.321 59.240

N = 338 sugar cane farms in Queensland, Australia. The population has a single

auxiliary variable x which is the area on each farm assigned to cane planting. Assume

that, based on the auxiliary variable x, the population is divided into six strata

(L = 6) with sizes Nh, h = 1, . . . , L. Then, we form a sample s = ∪Lh=1sh with sample

size n (= 40) by independently choosing a simple random sample sh in the hth stratum

without replacement. We use proportional allocation to determine the strata sample

size nh. We use the relative frequencies {Nh/N}Lh=1 of the six strata as the p0h of the

strata under the working distribution F0(x).

We ran the genetic algorithm described above in the following two cases.

Case 1. N1 = 79, N2 = 54, N3 = 88, N4 = 59, N5 = 31, N6 = 27.
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Figure 4.2: Robust designs for Case 1 of sugar farm when g0(x) = x3 and δ =
0, 0.1, 0.2, 0.3
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Figure 4.3: Robust designs for Case 1 of sugar farm when δ = 0.15 and g0(x) =
1, x, x2, x3

Table 4.2. Components of minimum loss for Case 1 of sugar farm when g0 (x) = x2.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 2.118 2.939 4.100 5.619 7.489 9.665 12.178 15.024 18.258
Lv 0.051 0.053 0.054 0.054 0.054 0.055 0.056 0.056 0.056
Lmax 2.169 2.992 4.154 5.673 7.543 9.720 12.234 15.080 18.314
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Table 4.3. Components of minimum loss for Case 1 of sugar farm when g0 (x) = x3.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 0.577 0.873 1.275 1.785 2.400 3.121 3.924 4.845 5.896
Lv 0.018 0.018 0.018 0.018 0.020 0.021 0.021 0.022 0.021
Lmax 0.595 0.891 1.293 1.803 2.421 3.142 3.945 4.866 5.917

Here, the strata sample sizes are n1 = 9, n2 = 6, n3 = 10, n4 = 7, n5 = 4, n6 = 4

and p0 = (79/338, 54/338, 88/338, 59/338, 31/338, 27/338)0. We ran the algorithm to

find optimal robust designs for the working distribution and variance function in (2.1)

with g0(x) = x and δ = 0.15. We found a minimum loss of 21.039. For the robust

design, the sampled covariates are

x =

⎧⎪⎪⎨⎪⎪⎩
18, 19, 20, 34(2), 35(6), 44(3), 45(4), 61(2), 62, 63(3),

64(2), 65, 66(3), 84(3), 85, 103, 106(3), 110, 280.

⎫⎪⎪⎬⎪⎪⎭
The corresponding design is represented as a histogram in Figure 4.3 (b). From Figure

4.1, we can see that the loss decreases for roughly the first 100 generations and then

is fairly stable; the algorithm terminated in fewer than 400 generations.

In Fig 4.2, the designs for different values of δ are represented as histograms. To

see the effect of g0(x) on the design, in Fig 4.3, we draw the histograms corresponding

to the robust designs in Case 1 for different g0(x). The components of the loss for the

optimal design for different values of δ are shown in Table 4.1 for g0(x) = x, Table

4.2 for g0(x) = x2 and Table 4.3 for g0(x) = x3.

To see the effect of the initial distribution F0(x), we take differentNh, h = 1, . . . , L,

in Case 2 and then compare the results with corresponding results in Case 1.

Case 2. N1 = 70, N2 = 63, N3 = 98, N4 = 49, N5 = 28, N6 = 30.
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Figure 4.4: Robust designs for Cases 1 and 2 of sugar farm when g0(x) = x3, δ = 0.15

Here, the strata sample sizes are n1 = 8, n2 = 7, n3 = 12, n4 = 6, n5 = 3, n6 = 4

and p0 = (70/338, 63/338, 98/338, 49/338, 28/338, 30/338)0. We reran the algorithm,

with these strata but the remaining inputs as in Case 1, and found a minimum loss

of 27.15 — substantially larger than that in Case 1. The sampled covariates are

x =

⎧⎪⎪⎨⎪⎪⎩
18, 19, 20, 33(2), 34(6), 44(3), 45(8), 66(2), 67(3),

68(2), 69, 82, 84(3), 85, 102(2), 103, 106, 213,

⎫⎪⎪⎬⎪⎪⎭
which are somewhat different than those in Case 1.

To see the effect of initial p0, the robust designs in Case 1 and Cases 2 are

represented as histograms in Fig 4.4.

The components of the loss for the optimal design for different values of δ are shown

in Table 4.4 for g0(x) = x, Table 4.5 for g0(x) = x2 and Table 4.6 for g0(x) = x3.

Comparing Table 4.1 with Table 4.4, Table 4.2 with Table 4.5, and Table 4.3 with

Table 4.6, we observe that the minimum loss depends heavily on the initial distribution
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Table 4.4. Components of minimum loss for Case 2 of sugar farm when g0 (x) = x.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 11.533 15.057 20.208 26.960 35.233 45.053 56.425 69.384 84.221
Lv 0.188 0.189 0.189 0.190 0.190 0.191 0.191 0.192 0.191
Lmax 11.721 15.246 20.397 27.150 35.423 45.244 56.62 69.576 84.22

Table 4.5. Components of minimum loss for Case 2 of sugar farm when g0 (x) = x2.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 2.478 3.700 5.480 7.798 10.616 13.942 17.770 22.100 26.921
Lv 0.054 0.054 0.054 0.055 0.056 0.056 0.056 0.057 0.056
Lmax 2.532 3.754 5.534 7.853 10.672 13.998 17.826 22.157 26.977

F0(x).

Now, we compare robust designs with non-robust designs. For the Case 1 of Sugar

farm population when g0(x) = x and δ = 0, applying the algorithm, we obtain the

design, denoted by ξ0, with sampled covariates

x =

⎧⎪⎪⎨⎪⎪⎩
18, 19, 34(3), 35(6), 44(3), 45(3), 61(3), 62, 63(3),

64(2), 65, 66(3), 84(3), 85, 103, 106(3), 263, 280.

⎫⎪⎪⎬⎪⎪⎭
Then we calculate the maximum loss corresponding to ξ0 for different values of δ,

denoted by Lmax,ξ0 in the third row of Table 4.7. In the second row of Table 4.7, we

list the minimum loss corresponding to robust designs. We can observe that robust

designs give us smaller loss than non-robust designs.
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Table 4.6. Components of minimum loss for Case 2 of sugar farm when g0 (x) = x3.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 0.699 1.134 1.747 2.517 3.451 4.539 5.811 7.248 8.837
Lv 0.018 0.018 0.020 0.021 0.022 0.022 0.023 0.023 0.023
Lmax 0.717 1.152 1.767 2.538 3.473 4.571 5.834 7.271 8.860

Table 4.7. Comparison of robust/non-robust designs for sugar farm when g0(x) = x.
δ

.05 .10 .15 .20 .25 .30 .35 .40
Lmax 13.002 16.524 21.039 26.582 33.080 40.593 49.321 59.240
Lmax,ξ0 13.003 16.538 21.20 27.033 34.056 42.278 51.706 62.341

4.4 MU281 population

We consider the MU281 population (Särndal, Swensson and Wretman 1992) to apply

our optimal design methodology in a small but realistic population. This population

consists of N = 281 all municipalities but Stockholm, Göteborg and Malmö in Swe-

den. The population has an auxiliary variable REV 84 which is the real estate value

(in millions of kronor) according to 1984 assessment on each municipality. Assume

that, based on the auxiliary variable REV 84, the population is divided into L = 4

strata with sizes Nh, h = 1, · · · , L. Then, we form a sample s = ∪Lh=1sh with sample

size n (= 40) by independently choosing a simple random sample sh in the hth stratum

without replacement. We use proportional allocation to determine the strata sample

size nh. We use the relative frequencies (N1/N,N2/N,N3/N,N4/N) of four strata

as the p0 of the strata under the working distribution F0(x). We run the modified

genetic algorithm with AI in the following two cases:

Case 1. N1 = 127, N2 = 79, N3 = 46, N4 = 29.

So, the strata sample sizes are n1 = 18, n2 = 11, n3 = 7, n4 = 4 and p0 =
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Table 4.8. Components of minimum loss for Case 1 of MU281 when g0 (x) = x.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 4.02 5.346 7.194 9.564 12.454 15.859 19.782 24.215 29.146
Lv 0.173 0.173 0.173 0.174 0.174 0.175 0.175 0.175 0.176
L 4.193 5.519 7.367 9.738 12.628 16.034 19.957 24.39 29.322

(127/281, 79/281, 46/281, 29/281)0. We ran the modified genetic algorithm with AI

to find optimal robust designs for the working distribution and variance function in

(2.1) with g0(x) = x and δ = 0.15. We find that the minimum loss is 9.738. For the

robust design, the sampled covariates, in the original scale, are

{347, 359, 422, 1457, 1462, 1470, 1491, 1500, 1508, 1509, 1515, 1544, 1592, 1606,

1610, 1622, 1626, 1630, 1645, 1652, 1670, 2898, 2903(2), 2914, 2955, 3053, 3065,

3073, 3096, 3252, 3264, 3281, 3298, 3307, 6087, 6317, 6382, 6389, 13205} .

The corresponding design is represented as a histogram in Fig 4.5 (b). From Fig

4.5 (a), we can see that the loss decreases for roughly the first 100 generations and

then is fairly stable; the algorithm terminated in fewer than 500 generations.

The components of the loss for the optimal design for different values of δ are shown

in Table 4.8 for g0(x) = x, Table 4.9 for g0(x) = x2 and Table 4.10 for g0(x) = x3.

From Tables 4.8, 4.9 and 4.10, we can observe that Lδ is increasing in δ. Moreover,

each component of the minimum loss depends on g0(x).

Case 2. N1 = 120, N2 = 86, N3 = 44, N4 = 31.
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Table 4.9. Components of minimum loss for Case 1 of MU281 when g0 (x) = x2.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 1.384 2.368 3.699 5.37 7.3.71 9.704 12.365 15.354 18.671
Lv 0.061 0.061 0.061 0.062 0.062 0.062 0.063 0.063 0.063
L 1.445 2.429 3.76 5.432 7.433 9.766 12.428 15.417 18.734

Table 4.10. Components of minimum loss for Case 1 of MU281 when g0 (x) = x3.
δ

Loss 0 .05 .10 .15 .20 .25 .30 .35 .40
L0,δ 0.735 1.379 2.238 3.307 4.591 6.087 7.796 9.718 11.853
Lv 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032
L 0.766 1.410 2.269 3.339 4.623 6.119 7.828 9.750 11.885
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Figure 4.5: Minimum loss vs. generation and best design for Case 1 of MU281 when
g(x)=x and δ = 0.15
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Figure 4.6: Minimum loss vs. generation and best design for Case 2 of MU281 when
g(x)=x and δ = 0.15

To see the effect of the initial distribution F0(x), we take N1 = 120, N2 = 86,

N3 = 44, N4 = 31. Then with g0(x) = x and δ = 0.15, we find that the minimum loss

is 8.279. In Case 1 and Case 2, the distance between the corresponding P 0 is 0.036639

but the change of minimum loss is 1.459 which is relatively large.

For the robust design, the sampled covariates, in the original scale, are

x =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
347, 359, 422, 1387, 1416, 1438, 1444, 1447, 1457, 1460, 1462, 1470, 1491, 1500

1508, 1509, 1515, 1544, 1592, 1606, 2836, 2898, 2903, 2903, 2914, 2955, 3053, 3065,

3073, 3096, 3252, 3264, 3281, 3298, 6050, 6067, 6087, 6317, 12112, 13205,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
which are significant differ from the sampled covariates obtained in Case 1:

x =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
347, 359, 422, 1457, 1462, 1470, 1491, 1500, 1508, 1509, 1515, 1544, 1592, 1606,

1610, 1622, 1626, 1630, 1645, 1652, 1670, 2898, 2903(2), 2914, 2955, 3053, 3065,

3073, 3096, 3252, 3264, 3281, 3298, 3307, 6087, 6317, 6382, 6389, 13205.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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The corresponding design is represented as a histogram in Fig 4.6 (b). From Fig

4.6 (a), we can see that the loss decreases for roughly the first 100 generations and

then is fairly stable; the algorithm terminated in fewer than 400 generations.

4.5 Comparison of the modified genetic algorithm

with/without artificial implantation

In this section, we use the sugar farm population to compare the modified genetic

algorithm with AI and the modified genetic algorithm without AI. For the sugar

farm population in Case 1, when g(x) = x and δ = 0.25, we ran each of these two

algorithms 100 times. We obtain the minimum losses and the numbers of generation

required to converge to the corresponding minimum loss. In the following figures and

graphs, AI=0 denotes the modified genetic algorithm without AI, AI=1 denotes the

modified genetic algorithm with AI.

To compare the minimum losses for these two algorithms, we get the summary

statistics of the minimum losses in Table 4.11, percentiles of the minimum losses in

Table 4.12 and the boxplot of the minimum losses in Fig 4.7. We find that two

algorithms would give us roughly the same minimum loss. According to the result of

two sample t-test in Table 4.13, we do not have strong confidence to conclude that

two algorithms give us different minimum losses.

To compare the convergence speed of these two algorithms, we obtain summary

statistics of generations in Table 4.14, percentiles of generations in Table 4.15, the
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Table 4.11. Summary statistics for minimum losses
AI Min Q1 Median Q3 Max Mean Std
1 33.0796 33.0796 33.0820 33.0850 33.1404 33.0842 0.0098
0 33.0796 33.0796 33.0820 33.0837 33.1410 33.0835 0.0091

Table 4.12. Percentiles of minimum losss
AI 10 20 30 40 50 60 70 80 90
1 33.0796 33.0796 33.0796 33.0796 33.082 33.082 33.0825 33.085 33.0915
0 33.0796 33.0796 33.0796 33.0796 33.082 33.082 33.0829 33.085 33.0877

boxplot of generations in Fig 4.8 and the separate histograms of generations in 4.9

and 4.10. It follows from Tables 4.14 & 4.15, boxplot 4.8 and histograms 4.9 & 4.10

that the modified genetic algorithm with AI would converge faster than the modified

genetic algorithm without AI. To check that this is true, we do a two sample t-test.

According to the result of two sample t-test in Table 4.16, we have 85% confidence

to conclude that the modified genetic algorithm with AI converge faster than the

modified genetic algorithm without AI.

Therefore, the modified genetic algorithm with AI will give us roughly the same

minimum loss as the modified genetic algorithm without AI in less generations.

33.08

33.1

33.12

33.14

0 1

Figure 4.7: Boxplot of minimum losses without/with AI
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Table 4.13. Two sample t-test for minimum loss, α = 0.01
Ha t-score df std CI p−value

μwithAI − μwithoutAI 6= 0 0.5161 198 0.0095 (-0.0028, 0.0042) 0.6063

Table 4.14. Summary statistics for generations
AI Min Q1 Median Q3 Max Mean Std
1 339.000 393.500 443.500 509.000 715.000 457.960 82.841
0 298.000 391 467.5 529 852 473.51 105.348

Table 4.15. Percentiles of generations
AI 10 20 30 40 50 60 70 80 90
1 367.5 388.5 400.5 418 443.5 466.5 488 522.5 572.5
0 358 380 404.5 432 467.5 481 509 562.5 620.5

300
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800

0 1

Figure 4.8: Boxplot of generations without/with AI

Table 4.16. Two sample t-test for generations, α = 0.15
Ha t-score df std CI p−value

μwithoutAI − μwithAI > 0 1.1603 198 94.7652 (1.6234,∞) 0.1237
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Figure 4.9: Histogram of generations without AI
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Figure 4.10: Histogram of generations with AI
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Chapter 5

Conclusions and future research

In this thesis, we have studied robust sampling design for model-based stratification

when the assumed distribution of an auxiliary variable x and the assumed variance

function in a regression model are only approximates for true distribution and vari-

ance function. We have first obtained the mean squared error of the prediction of

population total based on the regression model. Then, over the neighbourhood of the

working variance function, we have found that the maximum of the mean squared

error is a quadratic form in the probabilities of strata under the true distribution

function. Over the neighbourhood of the working distribution, to find the maximum

of the quadratic form, we have presented an analytical method which is convenient

for numerical analysis. To find the robust design which minimize the maximum in

the previous two stages, we have applied a modified genetic algorithm to different

cases of sugar farm population and MU281 population.

In the future, we want to study on the following projects. First, we will intro-

duce mean misspecifications in model (1.6). Secondly, we will study robust sampling
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designs for cluster sampling. Thirdly, we plan to study robust sampling designs for

other sampling schemes, such as two-stage sampling, multi-purposes sampling and

small area sampling.
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