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Abstract 

Oil and gas projects are known for their size and complexity and incorporate multiple disciplines 

such as concrete, steel, and piping. Each discipline is executed within a confined area during a 

limited timeframe. The execution of each discipline requires careful planning and coordination 

between the different disciplines. Each discipline creates separate Building Information Models 

(BIM), which are merged together with others into one huge model in terms of complexity. This 

model is used for different purposes such as: coordinating work packages and detecting any 

possible clashes.  

From the contractor perspective, the BIM model can be utilized for defining the scope and 

obtaining a preliminary estimate while the project is in its early stages. The model’s value depends 

on its degree of completeness and time that it will be available. However, lack of standard structure 

for Building Information Modeling in the industry causes immature, inconsistent and incomplete 

BIM models during the early stages of the project. This means the model usefulness becomes 

limited, thus the contractor has to review the model manually to extract the required and useful 

information, including the scope of each discipline, a preliminary estimate of quantities, etc.  

The objective of this research is to investigate and develop a new methodology that can 

automatically fill the missing data in the BIM model and leverage its usage. This objective is 

achieved by identifying the type for each BIM model component using convolutional neural 

networks. This approach focuses on different projections of BIM model components rather than 

incomplete descriptive attributes. The research reviews different 3D image classification methods 

to select the most suitable method. After selecting a suitable method, an image classifier is 
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developed to identify the missing labels for the BIM model components. Then, the methodology 

is validated by using three real-world industrial project models. Results indicate that the proposed 

method can automatically process ill-defined and incomplete BIM models to fill the missing data, 

and works with 91% accuracy on classifying the BIM model components. 
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1. Introduction 

Industrial projects were among the first to use building information modeling technology; this is 

mainly due to the project’s complexity, which have increased exponentially in the last ten years 

[1]. Studies have shown that complexity of a project determine the utilization degree of 

information technology in a project [2]. Since industrial projects include many component types 

and require a careful plan and coordination, they use modelling tools, such as Navisworks®, which 

can merge multiple 3D models. Because of confusion around the definition of BIM, there is no 

consensus about whether or not these types of software should be considered BIM tools [3]. 

Building Information Modelling (BIM) has become a modelling standard in construction industry; 

it provides a virtual environment for the Architecture, Engineering, and Construction (AEC) 

industry where they can generate, exchange, and merge to increase collaboration and productivity 

in the projects. Many case studies have shown the benefits of BIM in construction projects [3]–

[5]. These benefits are observed by both the private companies and government agencies all around 

the world, which have started to mandate BIM models for public sector construction projects [6], 

[7]. BIM can be used in two categories of passive and active. Passive usage of BIM encompasses 

engineering analysis like safety and scheduling. On the other hand, active usage involves 

extracting embedded knowledge in BIM [8]. BIM has excellent potential, but there are some 

unsolved issues in its modelling process. These issues can be grouped into two categories of 

contractual and technical issues [4]. 

Some researchers argue that a model that only contains 3D objects like CAD models and not 

having other information, or with having few attributes such as type, material, etc. should not be 

considered as a BIM model [3]. According to the definition, industrial models in the early stages 
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of a project, in which the models lack sufficient attributes, are merely 3D models. Other researchers 

divided BIM tools to the tools that are capable of handling 3D objects’ classes and relationships 

and the ones that do not provide full BIM capabilities such as Autodesk Navisworks [9]. The third 

group of researchers consider models with few attributes as BIM models [10], [11]. In this 

research, the generic definition of BIM has been used, which includes models containing 3D 

objects with few attributes. 

Typically, an industrial project BIM model consists of multiple sub-models such as structural, 

mechanical, electrical, etc. Models are designed in parallel to each other, and then all models are 

compiled by an engineering firm into one model to be reviewed. After that, the engineering firm 

issues the model to the contractor as one model. Figure 1 shows an IDEF0 diagram for this process. 

This process is repeated multiple times for fast-tracked projects. IDEF0 diagram is a method for 

diagramming processes, in which each box represents a process, and arrows on the left, top, right, 

and bottom are inputs, controls, outputs and mechanisms, respectively. 

 

Figure 1. IDEF0 for issuing a BIM model to the contractor. 
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The above process results in the following concerns in fast-tracked industrial projects:  

1. BIM ownership (contractual level): The contractor receives only the compiled model for 

reviewing and visualization. However, the contractor is unable to modify the model, or add 

other attributes like component type to the model and, therefore, the contractor has to save 

all operational attributes in a separate database.  

2. Lack of standards (contractual level): The same item might be labelled as “I beam,” “I-

Beam,” or “I Beam column” according to the engineering firm’s conventions as there is no 

common standard. 

3. Model limitation (technical level): The contractor cannot calculate quantity take-off 

accurately as the component types are not accurate. 

4. Interoperability (technical level): Transferring data between different systems or software 

is a time-consuming, and error-prone task. For instance, receiving software might drop 

unsupported classes and properties [12].  

During a project’s life cycle, different parties generate a huge number of documents, CAD 

drawings, and BIM models [13]. Integrating these heterogeneous data from differeny sources 

involves utilizing essential applications such as 4D visualization software [14], and merging BIM 

and GIS data [15], etc. Since these data come in different formats that are optimized for a specific 

application, the machines cannot automatically process and link them, and human inputs are 

required to link the data between different sources. In addition, the BIM models are not shared 

properly in industrial construction projects due to issues such as liability, which results in the 

models that are not complete and called dump models. 
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In summary, there are two limitations that data usage in fast-tracked industrial projects suffers 

from. First, the lack of data integrity and completeness in the BIM models, which limits the model 

usability for preliminary analysis. And Second, although the construction industry is information 

intensive [16], there is no common standard for transferring and merging heterogeneous data 

between different data sources, and these two tasks are usually performed on an ad-hoc basis. 

 

1.1. Research Objective 

The objective of this study is based on the following hypothesis: During the early stages of a fast-

tracked industrial project, automated solutions can be developed to fill in missing data in BIM 

models. 

More specifically, this research aims to provide an automated solution to leverage data usage in 

BIM models at early project stages to complete and validate inconsistent and missing data in the 

BIM models, focusing mainly on identifying the type of BIM model components based on their 

geometry using convolutional neural network algorithm. It aims to investigate whether a CNN 

architecture can provide accurate classification of those components and what level of accuracy 

can be achieved. 

 

1.2. Research Methodology 

The research methodology focuses on identifying the component types in BIM models. Different 

3D image classification methods, found in the literature, are reviewed and analyzed. Based on this 
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analysis, a 3D image classification method [17] is selected. This technique is modified and adapted 

for the problem’s domain and then used to label the unidentified BIM components. 

The proposed methodology is validated using three real-case oil and gas projects that have been 

executed in Alberta. Each step of the methodology is validated as follows: 

The 3D image classification algorithm is applied to the components in three projects. Then a 

sample is drawn from the projects to be identified manually to calculate the accuracy. Figure 2 

shows the different stages of the present research. 

 

Figure 2. Research methodology flowchart. 
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1.3. Thesis Organization 

The remainder of the thesis is organized as follows. Chapter 2 reviews the literature and different 

3D image classification methods. Chapter 3 discusses the use of 3D image classification methods 

to identify the label for BIM model components. It starts by reviewing artificial neural networks 

and convolutional neural networks. Afterwards, it elaborates on the data preparation step and the 

proposed methodology. Chapter 4 discusses the implementation of the proposed method, and in 

chapter 5, the model is validated. 

Finally, Chapter 6 concludes this research and summarizes the academic and industrial 

contributions, limitations, and future work. Appendix A, Appendix B, Appendix C, and Appendix 

D show the sample MATLAB code for dataset generation, Developed CNN model, Naviswork 

Plugin code, and viewpoint generation code, respectively. 
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2. Literature Review 

2.1 BIM in Industrial Projects 

Industrial projects are larger and more complex than the building projects and include information 

and design technology more than other types of construction projects [2]. Although industrial 

construction projects have many similarities with other types of construction projects, they also 

have some specific characteristics. Because of their final product, this type of construction projects 

is known for being more complex and utilizing more sophisticated management tools [18]. 

In order to reach the market faster and gain a faster return on investments, industrial projects are 

executed utilizing fast-track contracts [19]. In this type of contract, design and build stages are 

performed in parallel to each other, instead of being performed sequentially. In other words, the 

construction stage usually starts before the design is finalized. This requires the contractor to 

consider the new designs in the construction plans, as there are usually changes in the design as 

the project progresses [20]. 

Industrial construction projects are known for being complex because of several factors. First,  

complexity in industrial projects is due to lack of clearly defined scope at the start of the project. 

The scope of an industrial project is usually defined through a procedure named of Front End 

Loading (FEL) planning. FEL procedure also include the constructability and maintainability 

reviews [18]. 

The second source of complexity is that there are higher degrees of managerial and technical risks 

in industrial projects. Managerial risks may include schedule delays, scope creep, budget overruns, 
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etc. And the technical risks in engineering, procurement or construction include explosions, leak 

of extremely hazardous materials or severe environmental damages [18]. 

The third source of complexity is that due to the complicated nature of industrial projects, they 

require significant amounts of coordination and sophisticated project management. In contrast to 

residential construction project, an industrial project starts as a request from an owner to build, 

modify or demolish a plant. Then the owner hires an engineering only, Engineering, Procurement 

and Construction Management or Engineering, Procurement and Construction firm(s) to perform 

the FEL planning and defines the scope of the project [18]. 

Many industrial projects utilize modular construction as a part of their project execution plans. 

Modular construction relies on large volumetric components or as substantial elements of a 

building that are factory-produced pre-engineered building units (modules) that are delivered to 

the site and assembled. As the modules are usually manufactured off-site earlier and are shipped 

to the site for final installation, a prefabrication paradigm is utilized in fast-track projects [19], 

[20]. 

There are multiple processes in industrial construction projects that are further explained below. 

Nevertheless, some of these processes are done in parallel to the others in industrial construction 

projects in fast-track environment. 

The first stage of the industrial projects are the feasibility study process. Any industrial project 

starts as a project idea that needs to be evaluated. These ideas are either stay-in-business or revenue 

generating projects. Stay-in-business projects are mandatory in order to comply with external 

regulations and have to be performed regardless of their cost or expected revenue. Therefore, these 

projects directly go to the planning stage. On the other hand, revenue generating projects have to 
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be studied for their feasibility.  The major outcome of feasibility study is to make sure that the 

expected revenue meets the threshold set by the owner(s). After the owner(s) decide to proceede 

with project based on the feasibility study, the planning stage starts [18]. 

In the engineering phase, the engineers receive contracts from the owner(s), and they initiate 

internal projects within their organizations providing them with the required services. The project 

has to initiate with a well-defiend scope and accurate engineering documents to assure the success 

of the project. For industrial projects, these are developed during the planning and engineering 

phase through Front End Loading (FEL) planning. FEL planning usually consists of three 

processes named FEL I, FEL II, and FEL III [18]. 

In FEL I, all the alternative solutions to accomplish the desired product are identified. In FEL II, 

the best solution is identified after evaluating all the alternatives identified in the previous process. 

In the FEL III process, the selected alternative is developed to a complete set of design 

specifications. The rest of the processes in this phase include the detailed engineering and design, 

shop drawings, procurement and construction support, and as-builting processes [18]. 

The next phase is the procurement phase. In industrial projects, procurement is mostly handled by 

the procurement divisions in an Engineering Procurement and Construction (EPC) firm, which 

acts on behalf of the the construction firms, or owner(s). This arrangement requires a tremendous 

amount of efforts, integration and interface management. Some of the processes in the procurement 

phase include the engineering support, requisition, bidding and awarding, contract administration, 

and materials management processes [18]. 

The last phase is the construction phase, and include several processes such as: engineering 

support, fabrication,  assembly, and site installation process. In the engineering support process 
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the constructors provide their input to the engineers to help them with the design optimization, site 

layout, and etc. In the fabrication process, the products get fabricated according to the shop 

drawings and get shipped to the assembly yards or construction site. In the assembly process, the 

fabricated parts get assembled in module yards outside of the construction location. And finally in 

the site installation process, activities like site preparation, rough and final grading, pilling, 

foundations, and modules installation, etc. take place [18]. 

Although there are several challenges during different phases of industrial projects, using BIM can 

help satisfy different aspects of utilizing fast-track technique in industrial projects, as they require 

careful planning and coordination. Building Information Modeling (BIM) represents the physical 

and functional characteristics of a facility in a digital format. Since industrial projects consist of 

many disciplines and require careful planning and coordination, BIM has been applied widely in 

industrial construction projects, such as Autodesk Navisworks, Intergraph SmartPlant and Bentley 

products. The BIM models provide a platform to create, manage and share 3D digital 

representations for any construction projects such as commercial, industrial, and transportation 

projects. In the BIM models, each object contains some information about it. This information 

includes properties of accurate geometrical representation, as well as non-geometric properties, 

such as structural properties, cost of materials, information of assembly, life cycle cost and 

environmental data [21]. The information in the BIM models makes the models widely applicable 

and can be used for multiple purposes. Since the base of the BIM models is 3D computer graphics 

modelling, they are useful for viewing, demonstration and 3D rendering. 

To address the limitations of using the BIM model in quantity take-off, the absent information 

about the model components need to be extracted. In the quantity take-off process, one of the 

primary information required is the type of each model component.  
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Information about the type of each model component can be obtained by different methods. As 

shown in Figure 3, the 3D viewing model retains the properties and descriptions from the original 

BIM model. The information about the component type can be accessed in the text data format 

from the properties and description section for each component. However, as there are several 

engineering firms present in large construction projects such as industrial projects, different 

engineering firms have their internal standards and naming rules. Therefore, it is hard to group 

components in BIM models using semantic information because of different conventions between 

model designers and model users and lack of standards [22], [23]. For example, the value of the 

“TYPE” property could be “SCTN,” “I-SCTN,” and “BEAM,” and all these values can be 

indicated as the component type of “I-Beam.” In addition, even for two components that both have 

the value of “TYPE” as “Beam,” it is not always clear that the components are steel beams or 

concrete beams. 

 

Figure 3. The properties of the model component in Autodesk Navisworks. 

 

The text-based grouping recognition method was built to obtain information about the types of 

model components. The method sets some filters as a series of rules to group 3D model 
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components based on the properties of the components that have been extracted. These properties 

are stored in a separate database as text data. However, the filters need to be custom-built for each 

project, and it is not capable of recognizing all model components with the component types in the 

quantity take-off table [24]. 

Another attempt to obtain information about types of components from the BIM models has been 

based on the shape of the model component. The geometrical shape of the same type of 

components is the same but on different scales. On the other hand, for the components that have 

different types with the same geometrical shape, the geometrical features required for the quantity 

take-off process are the same. In other words, the shape of 3D model components is important in 

the quantity take-off process. Several general algorithms have been built to recognize and retrieve 

the shape of 3D model components [24]. Computer vision and object recognition have also been 

used to classify the components in the 3D models, especially for models based on cloud point data 

or feature point vector data. In such models, the data can be converted to solid models [25] and 

recognized for quantity take-off. Specifically, for industrial construction areas, the shape of the 

components in the 3D model can be grouped and automatically classified based on 3D mesh data 

[26]. 

In the shape recognition algorithm proposed by Ali[26], the shape descriptor is used to represent 

different shapes in the 3D models. The shape descriptor is defined as the histogram. These 

histograms are constructed from different shape functions. In the triangle-mesh-based 3D model, 

the shape functions are formed based on the vertex points of the triangle mesh. By comparing the 

shape descriptor histogram of each component using pre-defined dissimilarity measures, it is able 

to classify the 3D model components. Although the shape recognition algorithm proposed by Ali 
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is able to recognize the shape in industrial projects with an 82% success rate, it can only be utilized 

in recognizing the steel discipline. 

A similar technique is used to obtain as-built models using laser scanning. According to Tang et. 

al. [27], creating an as-built model using laser scanning technology requires three main steps: 1) 

Data collection: surveying techniques will obtain a dense cloud of points that accurately measures 

the physical facility; 2) Data preprocessing: as multiple laser scanners must be used to capture 

different faces of the facility, the collected points must be registered in a single coordinate system; 

and 3) Modelling in BIM: different objects should be identified and categorized in the BIM model 

using the collected point cloud. 

In detecting objects from the point cloud process, the steps include identifying a 3D object 

(typically a physical object in the point cloud but a digitized virtual object in our case) by collecting 

points from the objects’ surfaces. Then, the data has to be preprocessed by being cleaned, 

smoothed, and having its outliers removed. Afterwards, a surface model can be generated using a 

curve-net-based method or by a polygon-based modelling method [28]. Finally, these surfaces can 

be used to construct the 3D surface object [29]–[32]. Although many algorithms try to construct 

3D objects from point clouds [33]–[36], using point clouds to model different objects in BIM is a 

manual task that consumes most of the time required to create an as-built model [27], [34]. 
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2.2. 3D Object Classification 

Since the late 1970s, Computer-Aided Design (CAD) has replaced traditional paper drawing [37], 

because of better quality, quick and accurate editing, and productivity increase. Since then, CAD 

has revolutionized the design process in both engineering and academia [38], [39]. 

One of the limitations of CAD systems is the lack of objects’ attributes concept, which constraints 

their ability to share data between different systems [40]. Therefore, BIM quickly superseded CAD 

systems as BIM seems to address CAD’s limitations, such as attributes of objects. BIM provides 

a huge information source with search and analysis capabilities [37]. 

In recent years, the rapid increase in the number of 3D objects has required new methods to search 

and retrieve these objects as a traditional text search is insufficient [41]. There are many studies 

regarding 3D object classification [24], [42], [43] that have been mostly done in the computer 

science field. 

The 3D object classification process can be divided into two parts, namely data representation of 

3D objects and training of the classifier on the represented data. The 3D objects can be represented 

by two main methods, namely, shape descriptors and convolutional neural networks [44]. 

Shape Descriptors: A large number of shape descriptors have been developed in the computer 

vision field. For instance, shapes can be represented as histograms or bag-of-feature models that 

are constructed from surface curvatures [45]. Alternatives shape descriptors include models based 

on distances, angles, or triangle areas [46], local shape diameters measured at densely sampled 

surface points [47]. Heat kernel signatures [48], [49], or extensions of Scale-Invariant Feature 

Transform (SIFT) and Speeded-Up Robust Features (SURF) feature descriptors to 3D voxel grid 
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[50]. The spherical harmonic descriptor (SPH) [51] and the Light Field descriptor (LFD) [52] are 

other popular descriptors. LFD extracts geometric, and Fourier descriptors from object silhouettes 

rendered from several different viewpoints and can be directly applied to the object classification 

task. Since these features are hand-crafted, some of them do not generalize well across different 

domains [53]. 

Convolutional Neural Networks: Convolutional Neural Networks (CNNs) [54] have been 

successfully used in different areas of computer vision and beyond. In particular, significant 

progress has been made in the context of learning features. It turns out that training from large 

RGB image datasets (e.g., ImageNet [55]) is able to learn general-purpose image descriptors that 

outperform handcrafted features for several vision tasks, including object detection, scene 

recognition, texture recognition and classification [56]. This significant improvement in 

performance on these tasks has decidedly moved the field forward. 

The data representation approaches can be coarsely classified into three categories according to 

their input: 1) view-based methods, 2) volume-based methods, and 3) point cloud-based methods. 

Among the three categories, the view-based methods generally outperform the other two.  

View-Based methods: View-based methods have been considered as one of the fundamental 

approaches in 3D object classification. View-based methods project 3D objects into multiple 2D 

views; then, the classification is conducted using the features from 2D CNNs. Figure 4 shows an 

example of input data of a channel section in steel structure for the view-based CNN model. 
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Figure 4. An example of view-based 3D object. 

 

Volume-based methods: Volume-based approaches apply a 3D convolutional neural network 

directly on voxelized shapes. Voxel-based methods learn 3D features from voxels, which represent 

3D shape by the distribution of corresponding binary variables. Figure 5 shows an example of a 

voxelized 3D object. 

 

Figure 5. An example of a voxelized 3D object. 

 

Point cloud-based methods: While previous works often combine hand-crafted features or 

descriptors with a machine learning classifier, the point cloud-based methods operate directly on 

point clouds in an end-to-end manner. Figure 6 shows a constructed point cloud of a 3D object. 
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Figure 6. An example of a point cloud of a 3D object. 

 

In similar research, shape descriptors to identify the component types in industrial BIM models 

[26]. However, the convolutional neural network has never been used in this field of the 

construction industry, in spite of having promising results in other fields like computer vision. In 

addition, the proposed methodology was only able to identify the steel structure, and the developed 

algorithm was not tested on piping components of the project [26].  

Convolutional neural networks have been utilized in construction industry in several applications. 

In a research, CNN was used to detect concrete carcks and evaluate its density and reached 

approximately 90% for both the max F1 and AP scores on training, validation, and test sets [57]. 

In another research, the problem of the building quality problem in the Chinese government using 

convolutional neural networks [58]. In addition, there have been several researches about utilizing 

transfer learning technique based on the standard datasets that have been generated for object 

classification purposes [59]. 

In summary, there are several ways to represent the data to a object classification operator shape 

descriptors and convolutional neural networks. According to the literature review, since features 
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created by the shape descritors are hand-crafted, some of them do not generalize well across 

different domains [53], and the promising performance of the CNN in the field of 3D object 

classification, it was decided to opt the CNN for this research. In convolutional neural networks, 

the data can be represented in three different ways named view-based, voxel-based, and point 

cloud-based. In this research, a view-based convolutional neural network is opted to be used to 

identify the labels for BIM model components, because of its promising capability in the 

classification of 3D objects and outperforming other two methods because of its better 

generalizability [59] and the simplicity of its architecture, as the input data are simple images. 
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3. Framework Design and Development 

The present research proposes an alternative method to classify and extract the “TYPE” attribute 

of the 3D model components for quantity take-off.  

After reviewing different methods, a CNN model is opted to be used due to its performance in 

image classification tasks. In the present research, there are two sources of building the dataset. 

The first one is the artificially generated images that were generated using MATLAB. These 

projections are the inputs for the CNN model. After training the model using the projections, the 

model is saved using transfer learning to be used in a different environment. In order to utilize the 

pre-trained model, the model has to be retuned using the actual images that are generated from the 

second source which is the 3D model. In this stage, only a few images are needed for retuning, 

unlike the main training of CNN that a bigger dataset is required. After that, the model is tested 

using the images generated from the 3D model that were not shown to the model before. 

The processing includes three major parts: The selected components will be isolated from the 3D 

BIM model. Then four viewpoints in four projections will be generated for each 3D components 

using a developed application program interface (API). After the viewpoints are merged in a table 

and exported as an image file, the CNN algorithm will be applied to each model component to 

obtain the “TYPE” attribute for them. The output of the method is the components’ type, which 

will be saved in the database, which can provide information for the quantity take-off process. 

Figure 7 shows the overall research framework. 
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Figure 7. The overall framework of the research. 
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3.2. Data Preparation 

In order to develop the machine learning model, a set of data is required to train the model based 

on them. To build a dataset, first, the characteristics of suitable data for the model should be 

identified. Since view-based CNN will be used in the research, the required data should include 

different projections of each 3D model component.  

As the components in industrial BIM models usually have simple shapes (e.g. I-Beams, tubes, 

angles), only four projections will be included in each training record. These projections for each 

3D component are front, back, side and top view, which are all merged into one image file. For 

example, Figure 8 shows a 3D component in the BIM model, which is an isolated steel column. 

Figure 9 shows the image that is suitable for training the multi-view CNN, as it consists of different 

projections of the 3D component shown in Figure 8. 

 

Figure 8. An isolated 3D component in the BIM model. 
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Figure 9. An image generated by Autodesk Navisworks plugin containing projections. 

 

There are several disciplines in industrial BIM models, and two of the most important ones in the 

quantity take-off process are steel and piping disciplines. The mentioned disciplines might contain 

thousands of components in industrial projects. Each discipline in industrial BIM models contains 

several component types, some of which are more important than others, as they have more 

substantial quantities and are more expensive than the other components. For example, beams and 

columns are more important than the base plates in steel structure, as, in industrial models, there 

are more beams and columns than base plates, and they consume a more significant portion of the 

budget. The sections used in steel structures are I-Beams, channels, angles, double-angles, 

cylinders, and caps. On the other hand, tubes, tees, elbows, and crosses are the most important 

components in the piping disciplines. 

The companies involved in industrial projects build the BIM models for each discipline (e.g. steel 

discipline); afterwards, once the models for all the disciplines are built, they are merged into a 
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single BIM file, which facilitates the collision detection and the quantity take-off process. Since 

all the disciplines are present in the BIM models, the manual process of selecting a large number 

of 3D components from the model for previously mentioned component type and generating the 

projections and exporting them as image files is a time-consuming task. 

In this research, an artificially generated dataset instead of using a manually built dataset is 

proposed. MATLAB is used for generating the artificial dataset. The artificial dataset contains a 

specific number of images for each component type, which are I-Beams, channels, angles, double-

angles, cylinders, caps, tubes, tees, elbows, and crosses. The images in the generated dataset are 

similar to the actual image obtained from the Autodesk Navisworks, and they include four 

projections for each 3D model component. Figure 10 shows a sample image for the I-Beam 

component type of generated dataset for this research. 

 

Figure 10. Sample image data of I-Beam from the artificially generated dataset. 
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Using MATLAB, 100 images for each component type (10 types), and in total, 1000 were 

generated. The images are in grayscale format with 875 * 656 pixels resolution, and the only 

variable in generating the dataset was the size of the cross-sections of the components. A sample 

code for generating dataset for pipes can be found in Appendix A. 

 

3.3. Developing Machine Learning Model 

3.3.1. Artificial Neural Networks 

There are two fundamental approaches in the field of Artificial Intelligence (AI). The first 

approach is based on knowledge engineering systems, logic programming and logical reasoning. 

The second approach mimics the microscopic biological models [60]. Artificial neural networks 

(ANNs) and genetic algorithms are the prime examples of this latter approach. The field of ANNs 

was initially configured as an attempt to emulate the way that the brain performs a particular task, 

by regarding the brain as a highly complex, nonlinear, parallel information processing system [61], 

[62]. 

An artificial network is a pool of simple processing units. The communication between the 

processing units is by sending signals to each other over a large number of weighted connections 

[63]. 

Main aspects of a parallel distributed model that can be distinguished are [64]: 

• Processing units (‘neurons’ or ‘cells’); 

• A state of activation 𝑦𝑘 for every unit, which is equivalent to the output of the unit; 
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• Connections between the units. Generally, each connection is identified by a weight 𝑤𝑗𝑘 

which determines the effect which the signal of the unit 𝑗 has on unit 𝑘; 

• A propagation rule, which determines the effective input 𝑠𝑘 of a unit from its external 

inputs; 

• An activation function 𝐹𝑘, which determines the new level of activation based on the 

effective input 𝑠𝑘(𝑡) and the current activation 𝑦𝑘(𝑡) (i.e., the update); 

• An external input (bias or offset) 𝜃𝑘 for each unit; 

• A method for information gathering (the learning rule); 

• An operational environment for the system, providing input and error signals. 

Figure 11 illustrates these basics and shows the connections between different units in the network. 

 

Figure 11. The basic components of an Artificial Neural Network. 

 

In an artificial neural network, each unit in the network performs a relatively simple task: receive 

input and use it to compute an output signal which is propagated to other units. The inputs can be 

from neighbours or external sources. Apart from this processing, the second task is the adjustments 
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of the weights. The system is inherently parallel in the sense that units can carry out their 

computations simultaneously [63]. 

Within neural systems, there are three different types of units: input units which receive data from 

outside the neural network, output units which send data out of neural network and hidden units 

whose input and output signals remain within the neural network. 

The units are usually connected in a way that they provide an additive contribution to the input of 

the unit with which it is connected. The total input to unit 𝑘 is simply the weighted sum of the 

separate outputs from each of the connected units plus a bias or offset term 𝜃𝑘 [63]: 

                          𝑠𝑘(𝑡) =  ∑ 𝑤𝑗𝑘(𝑡) 𝑦𝑘(𝑡)𝑗 +  𝜃𝑘(𝑡).    (3.1) 

In order to give the effect of the total input on the activation of the unit, function 𝐹𝑘 is needed, 

which takes the input 𝑠𝑘(𝑡) and the current activation 𝑦𝑘(𝑡), and produces a new value of the 

activation of the unit 𝑘 [63]: 

𝑦𝑘(𝑡 + 1) =  𝐹𝑘(𝑦𝑘(𝑡), 𝑠𝑘(𝑡)).     (3.2) 

The configuration of a neural network has to be such that desired outputs are produced from the 

inputs. Various methods are available to set the strength of the connections to existing. One way 

is using a priori knowledge to set the weights explicitly. Another way is training the neural network 

by feeding it patterns and letting change its weights according to some learning rules [63]. 

Learning situations can be categorized into two distinct sorts. There are: 
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• Supervised learning in which the network is trained by providing it with the input that 

matches output patterns. These input-output pairs can be provided externally, or by a 

system which contains the network (self-supervised) [63]. 

• Unsupervised learning in which the output unit is trained to respond to the patterns that are 

fed to the input units. In this method, the system is supposed to discover statistically 

important features of the input population. Unlike the supervised learning method, there is 

no prior set of categories to classify the patterns into; rather, the system must develop a 

new representation of the input stimuli [63]. 

 

3.3.2. Convolutional Neural Networks 

Recently, deep learning has given new power that allows building artificial intelligence (AI) 

systems that were not possible a few years ago. 

The computing infrastructure is based on a hierarchy of perceptions. Each computing layer is 

characterized in terms of its relation to concepts where the essential layer consists of simple 

concepts. If a graph is drawn to show how these concepts are built based on each other, the graph 

will be deep, with many layers. Therefore, this approach is called deep learning, covering several 

aspects of machine learning [65]. 

Deep convolutional neural networks (CNNs) are a specific kind of ANNs that uses convolution 

instead of general matrix multiplication in at least one of their layers [65]. The 

term “convolution” refers to the mathematical combination of two functions that produce a third 

function. Unlike the simple neural networks that have one or several hidden layers, CNNs consist 

http://timdettmers.com/2015/03/26/convolution-deep-learning/
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of many layers. Such a feature allows them to compactly represent highly nonlinear and varying 

functions [66]. CNNs involve many connections, and the architecture is typically comprised of 

different types of layers, including convolution, pooling and fully-connected layers, and realize a 

form of regularization [67]. In order to learn complicated features and functions that can represent 

high-level abstractions (e.g., in vision, language, and other AI-level tasks), CNNs would need deep 

architectures. Deep architectures, and CNNs, consist of a large number of neurons and multiple 

levels of latent calculations of non-linearity. Each level of the architecture of CNN represents 

features at a different level of abstraction, which is defined as a composition of lower-level features 

[68]. 

The architecture of the convolutional neural networks is different from regular neural networks. 

Regular neural networks transform input by putting it through a series of hidden layers within the 

network. All the layers are made up of a set of neurons, where each layer is fully connected to all 

neurons in the previous layer. Finally, the last layer, which is a last fully-connected layer — the 

output layer — represents the predictions [69]. 

On the other hand, the layers in the convolutional neural networks are organized in 3 dimensions: 

width, height and depth (RGB). Furthermore, the neurons in one layer do not connect to all the 

neurons in the next layer; instead, they just connect only to a small region of it. Finally, the final 

output will be reduced to a single vector of probability scores, organized along the depth dimension 

[69]. 

The main benefit of using the traditional CNNs, which is a fully-connected neural network, is the 

reduced number of parameters that have to be learned [70]. The CNN topology is based on three 

main concepts, namely: local receptive fields shared weights and spatial or temporal sampling 
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[54]. It means that CNNs are typically comprised of different types of layers called convolutional 

layers, whereas each convolutional layer is made of small kernels that allow extracting high-level 

features in an effective way. The last convolutional layer is fed to fully connected layers. As has 

been stated before, if CNNs are the reduced number of parameters to be learned, they cause to 

have much fewer connections and are easier to train [71]. Consequently, this particular kind of 

neural network assumes that it should learn filters in a data-driven fashion as a mean to extract 

features that describe the inputs [67]. 

A standard CNN model has a structure consisting of the input layer, alternating convolutional 

layers, pooling or subsampling layers and non-linear layers [69]. Accordingly, with a complex 

layer terminology, one convolutional net or convolutional layer is composed of a convolutional 

stage, detector stage, and pooling stage [72]. This means that each convolutional layer has more 

than one stage. Therefore, each stage of the convolutional layer can be set apart, and every step of 

processing it can be ruled in its rights. Convolutional layers are typically interspersed with sub-

sampling layers to reduce computational time and gradually build up further spatial and configural 

invariance [68]. 

In the next section, different layers of a CNN and the architecture used for CNN in this research 

will be elaborated. 

 

3.3.3. Proposed CNN Model 

In the developed model, a convolutional neural network model with a simple architecture of 2 

convolutional layers is chosen, as the types of images that have to be classified are simple. 
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Usually, the input is a multidimensional array of data where data are fed to the network [67]. Input 

data can be, i.e., patterns, image pixels or their transformation, time series or video signals. In the 

present model, the input data are fed to the network in 64 × 64 × 1 arrays, which are the values 

for each pixel in the images as they are in grayscale. In order to decrease the amount of the 

calculations and complexity in the model, all the images were generated in grayscale; therefore, 

there is one value for each pixel instead of having three values in RGB format. Different image 

resolutions were tested in the training stage of the model, and 64 × 64 pixel resolution had the 

best performance in terms of the calculation time and the overall validation accuracy. Figure 12 

shows the structure for the proposed CNN model. 

 

 

Figure 12. Structure of the proposed CNN. 
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Convolutional layers are the main building block of CNN. The prime purpose of convolution is to 

extract distinct features from the input [69]. These layers are comprised of a series of filters or 

learnable kernels which aim to extract local features from the input, and each kernel is used to 

calculate a feature map or kernel map [73].  

The first convolutional layer extracts low-level meaningful features such as edges, corners, 

textures and lines. The next convolutional layer extracts higher-level features, but the highest-level 

features are extracted in the last convolution layer [74]. Kernel size refers to the size of the filter, 

that convolves around the feature map while the amount by which the filter slides (sliding process) 

is the stride. It controls how the filter convolves around the feature map of the input. As a result, 

the filter convolves around the different layers of the input feature map by sliding one unit each 

time [65]. 

The number of filters in each convolutional layer depends on (1) the complexity of the dataset, and 

(2) the depth of the neural network. Since the dataset used for the training and the architecture of 

the proposed neural network are not complex, in the first and second convolutional layer, the model 

learns a total of 32 and 64 filters, respectively. These values are recommended practically for 

simple models. The number of filters in each layer can be increased as the model gets more 

complex. 

The next required parameters that need to be provided to the model are the kernel size and the 

stride value. The kernel size is a matrix specifying the width and height of the convolutional 

window, and the stride parameter is a 2-tuple of integers, specifying the “step” of the convolution 

along the x and y-axis of the input image. The typical values for the kernel size include: (1, 1), (3, 

3), (5, 5), and (7, 7). Kernel sizes of (5, 5), and (7, 7) are used for images with pixel resolutions 
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higher than 128 × 128. For the image resolution of 64 × 64 used in the model, the best option for 

the kernel size is (3, 3), as it helps learn larger spatial filters and reduces the volume size more 

quickly compared to the kernel size of (1, 1). The stride value used in the model is the default 

value of (1, 1), which implies that the filter takes a 1-pixel step to the right, and again the filter is 

applied to the input image. This process is performed until the far-right border of the image is 

reached, in which the filter is moved one pixel down and then starts again from the far left. 

Padding is another essential feature of CNNs that gives the option to make input data wider so that 

it does not miss any features that are in the corners [69]. In order to reduce the calculation time, 

zero-padding was not used in the model, and the spatial dimensions were reduced via the natural 

application of convolution. 

Non-linear layers are used to detect each linear activation through a nonlinear activation function. 

In other words, linear activation introduces the non-linearity into neural networks and allows 

learning more complex models [69].  

There are several nonlinear activation functions. The standard way to model the output f of a 

neuron as a function of its input x is with f(x) = sigmoid(x), tanh(x), or Rectified Linear Unit 

(ReLU) [72]. The last one is preferable since it makes the training process several times faster than 

its equivalents. Some authors adopt the sigmoid function at all activation stages due to its 

simplicity [69]. ReLU applies the function y = max(x, 0). It increases the nonlinearity in the 

properties of the decision function and the overall network without affecting the receptive fields 

in the convolutional layer. Using ReLU, it is possible to speed up the training of CNNs by keeping 

up the gradient more or less constant at all network layers [71]. 
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The pooling layer reduces the resolution of the previous feature maps through compressing 

features and the computational complexity of the network [75]. It adjusts the features robust to 

disorder and noise. Another reason to use the pooling layer is to make it robust to small variations 

for previously learned features. As a result, pooling ensures that the network focuses on the most 

important patterns. In general, a pooling layer downsamples the input map and reduces the 

dimensionality of the feature maps used by the following layers [67], [68]. 

In the pooling stage, the inputs are split into regions with the size of R × R to produce one output 

from each region. If a given input with a size of W × W is fed to the pooling layer, the output size 

P is obtained by [76]: 

                          𝑃 = ⌊
𝑊

𝑅
⌋                                           (3.3) 

Pooling can be max pooling, an average of a rectangular neighbourhood, and pooling by 

downsampling. 

The max-pooling action addresses the maximum output within a rectangular neighbourhood. Max 

pooling outputs only the maximum number in each kernel, thus reducing the feature map size. 

Max pooling introduces invariance. For maximum pooling, the maximum value of the four values 

is selected. For average pooling, the average of the four values is selected. Max pooling extracts 

the most important features like edges, whereas average pooling extracts features smoothly, as it 

takes all the values in the pool into consideration. For image data, which are the inputs for our 

model, max-pooling extracts the extreme features, which results in more accurate models in image 

classification tasks. 
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In general, the feature extraction using CNNs consists of multiple similar steps, and each step is 

made of three cascading layers: convolution layer, activation layer and pooling function. 

Figure 13 exhibits the process of 3D convolution used in CNNs. 

 

H – input height and width  s – kernel stride 

         W – input depth, kernel width          n – number of kernels 

              K – kernel height and width   D - #output feature maps 

Figure 13. The convolution process. 

 

The input with the size of H × H × W is convoluted with p number of kernels, where the kernel 

size is k × k × W. Each kernel convolving with an input feature map produces one output feature 

map, and p kernel produces p feature maps, independently. Each kernel is moved to start from the 

top-left corner of the input feature map to the top-right corner element at a time. Then the kernel 
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shifts one element downward, takes a left-side position and moves towards the right-side position. 

This process is finished when the kernel reaches the bottom-right position. 

For instance, for the case when the input is H = 64 and k = 3, there are 62 unique positions from 

left to right, and 62 unique positions from the top to the bottom that the kernel can take. Each 

feature in the convolution output will contain 62 × 62, i.e., (H − k + 1) × (H − k + 1) = (64 − 3 + 

1) × (64 − 3 + 1) elements. To create one element of one output feature, k × k × W operations are 

required. 

From the considerations mentioned above, it can be concluded that a new feature map is typically 

generated by sliding a filter over the input and computing the dot product (which is similar to the 

convolution operation), followed by a non-linear activation function to introduce non-linearity into 

the model. 

The fully connected layer is the last stage of the topology of CNNs, consisting of a generic multi-

layer network. The last layer is a fully connected 1D layer to all activations in the previous layer 

[68]. From these layers, the features can be extracted to train another classifier. To specify how 

the network training penalizes the deviation between the predicted and the true labels, different 

loss functions can be used, e.g., softmax, and sigmoid functions [67]. Softmax function can be 

used for multi-class classification tasks in logistic regression models, while the sigmoid function 

is used for binary classification models. Since there are ten different classes in our model, the 

softmax function will be used for the fully connected layer. The output of the last layer with 

softmax function is a vector of values for the probability of each label with the target label having 

the highest probability. 
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The development and training of the model are done using Keras, which is a high-level neural 

networks API, written in Python that is capable of running on top of TensorFlow. The accuracy of 

the algorithm is dependent on the resolution of the input images extracted from Autodesk 

Navisworks, the size of the dataset used for retraining the model, and the orientation of the 

components. For training the CNN model, four different scenarios were tested, in which the image 

resolution was increased. The resolutions of  16 × 16, 32 × 32, 64 × 64, and 128 × 128 pixels 

were tested. As shown in Figure 14, as the image resolution increases, at the same time, training 

accuracy and computation time increase. After testing these scenarios, the CNN model using 

64 × 64 pixel images was opted to be used, which has 100% accuracy and takes 42 seconds to 

train the model. The code for the proposed CNN model can be found in Appendix B. 

 

Figure 14. Training accuracy for four scenarios. 
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In order to be consistent, the trained model was saved and transferred to the Microsoft Visual 

Studio environment, as the plugin for Autodesk Navisworks is developed using the same 

environment. In addition, to reduce the training time each time the model is used for classification, 

transfer learning, which is the process of saving and reusing the model to predict new instances 

was used. 

Transfer learning is the process of using the knowledge gained while solving one problem and 

applying it to a different but related problem. Because the developed model using Keras has 

already been trained on a large number of images, internally, it contains all the image features that 

are needed for image identification. These internal image features in the model can be used to train 

a new model with far fewer instances, which reduces the calculation time. 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Feature_(computer_vision)
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4. Implementation of the Proposed Method 

4.1. The 3D Viewing Model Platform Navisworks 

In the present research, all the design models are converted and then imported into Autodesk 

Navisworks. Next, Navisworks files are delivered to the general contractors. AutoCAD 

Navisworks is one of the most widely used 3D viewing platforms in the construction industry [37]. 

In Navisworks, the users can integrate models from different sources; the source files can be 3D 

BIM model from different design platforms, such as Tekla, SmartPlant, and Autodesk Revit. The 

users can view, comment, highlight, hide, and measure the Navisworks models using tool 

packages. The tool packages also come with plug-ins to implement clash detections, 4D simulation 

and visualization rendering. Navisworks models are intended only for viewing; the model 

components cannot be edited, duplicated, or deleted. This limitation reduces the risk of source 

model providers in the ownership of their intellectual property. 

 

4.2. API of Autodesk Navisworks  

The application programming interface (API) is a collection of routines, tools, and protocols used 

to develop the application software. For the convenience of the users, some information and 

functions are hidden from the interactive user interface. API can help to access the hidden 

information and functions. The API provides tools that can be used to develop customized 

programs for different purposes, which add to applications and functions of the software. 
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Navisworks provides API such as .NET API, NwCreate API, and COM API. The COM API is 

used to manipulate models and documents. It has a plug-in and automation and provides ActiveX 

controls. The Navisworks API supports C# and Visual Basic language. Therefore using the 

Autodesk Navisworks API and C# language in the Visual Studio environment, the custom 

functions that are not built-in can be developed. In this research, the method was developed using 

COM API and .NET based on C# language. 

 

4.3. Access Model Components in AutoCAD Navisworks 

In a Navisworks file, the model of the project is a combination of sub-models imported from 

different sources. Each sub-model can be subdivided into the lower level model parts. The 

relationships of the model components are listed as a tree structure, which can be found in a panel 

in Navisworks as the “Selection Tree.” The lowest level of components in the selection tree will 

be selected as the basic components such as tubes, I-beams, etc. for the quantity take-off. In the 

present research, to improve the accuracy and reduce the complexity of the developed algorithm, 

the algorithm will be applied to each basic component. The information about the type of each 

basic component will be predicted using the CNN model. 

The components for the quantity take-off process need to be found from the selection tree. In 

industrial construction models, millions of components exist in the selection tree. The top node in 

the selection tree is defined as the root. A lower-level node directly connected to the top node is 

defined as the child of the node, and the converse notion of the child node is defined as a parent 

node. Navisworks will start from the root in the selection tree. After every node is visited at the 
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current level, the program will continue to visit the next lower level. Furthermore, by the end, all 

the components in the selection tree will be visited.  

4.4. Developed Autodesk Navisworks Plugin 

In this research, Autodesk Navisworks Plugin and an image classifier were developed as the 

industrial contribution. There are two steps in identifying the labels of the components in  BIM 

models, which are generating and saving the snapshots and classifying the components.  

The first step can be done using the developed plugin, after opening the BIM model in the 

Autodesk Navisworks and selecting the components that need to be labelled. Firstly, the plugin 

isolates each of the components within the selection and generates a viewpoint of them in 4 

projections, namely: top, side, front, and back view. Next, it exports each viewpoint as an image 

file with a “.png” file format and merges all the four projections in a single image with a tabular 

format. Figure 15 shows the environment of the developed plugin. Appendix C and D includes the 

codes for developing the Naviswork plugin. 

 

Figure 15. The environment of the developed Autodesk Navisworks Plugin. 
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The next step is classifying the unlabeled components, which is done by using the developed CNN 

classifier. The inputs of the classifier are the saved images using the plugin, and the output is an 

excel file containing the ID of each component in the BIM model and the label provided by the 

classifier. The process is summarized as the workflow shown in Figure 16. 

 

Figure 16. The workflow of the proposed method. 
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5. Method Validation 

This section contains a summary of our analysis of the method performance using three real-world 

BIM models obtained from a major contractor in Canada. These models have been created by three 

different engineering firms around the world. Consequently, each model has different labels and 

colour-coding. The contractor performs a preliminary manual estimate for these projects during 

the design stage.  

The number of items in each model varies from a half-million to three-quarters of a million items; 

this includes items from different disciplines such as mechanical, electrical, and structural. A 

visual inspection showed that steel items included angles for trusses and bracing, and H sections 

for columns and beams. In addition, the size and orientation changed significantly from one item 

to the next. Figure 17 shows a full sample model for one of the projects. 

 

Figure 17. Sample BIM model. 
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A random sample of components was drawn and identified them manually and then ran the 

algorithm independently using the same components and compared the results. The sample size 

for testing the model was calculated based on the following equation with a 99% confidence level 

and a 5% margin of error. Since the population of the steel and piping disciplines were not known, 

the value of 𝑝 was decided to be 0.5 to have a conservative sample size. Using the equation (5.1) 

the sample size of testing was 666, which was rounded up to 1000 to be conservative as the 

population is more than millions of components. From these 1000 sample, 334 of them are the 

components that are unidentified to the classifier, meaning that the classifier is unable to classify 

them as there was dataset of them fed to the classifier during training phase. The sample was drawn 

from the three models using a simple random method in which all items had an equal chance to be 

drawn. The sample contained steel and piping components with different shapes.  

𝑛 =
𝑍2×𝑝×𝑞

𝐸2       (5.1) 

After drawing the sample, each item was manually identified and then identified the sample by the 

algorithm several times using different image resolutions. For each scenario, the success rate and 

the average computation time were recorded.  

In order to calculate the average computation time, the total time required to identify the total 

sample was calculated, then divided that by the number of sections in the sample; this is more 

accurate than calculating the time required to identify one section because of the fixed time 

required to load the reference database into the memory. 

 



 

44 
 

5.1. Results 

In order to validate the model after training, the model was tested using 1000 randomly selected 

components from three real-world BIM models. Table 1 shows the confusion matrix for the 

validation. A confusion matrix is a table that is usually used to describe the performance of a 

classification model on a set of test data for which the actual values are known. In the confusion 

matrix table, the columns are predicted values, and the rows are actual values. There are three main 

metrics for the performance of classification models that can be calculated based on the confusion 

matrix that are accuracy, precision, and recall. While accuracy represents the overall performance 

of the classification model, precision and recall are calculated for each class separately. Accuracy 

can be calculated as: 

                                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                     (5.1) 

To calculate the precision, the total number of correctly classified positive examples are divided 

by the total number of predicted positive examples. High Precision indicates that an example 

labelled as positive is indeed positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (5.2) 

Recall can be defined as the ratio of the total number of correctly classified positive examples 

divided to the total number of positive examples. High Recall indicates the class is correctly 

recognized. Since higher recall means that most of the positive examples are correctly recognized, 

it is more important than the precision metric in this research. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (5.3) 
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In the above-mentioned formulas, TP, TN, FP, FN indicate True Positive, True Negative, False 

Positive and False Negative, respectively.  

In this research, the accuracy of the classification model is 91%, and class precision and recall for 

different component types can be found in Figure 18 and Figure 19. In the calculation of the 

accuracy, recall and the precision the unidentified components were included, as the classifier 

could successfully label them as unidentified. Also, there were some components from other 

classes that were identified as unidentified, which is because of low probability. There are some 

classes indicating 100% recall, which means that the classifier will label them correctly all time, 

which results in less supervision. In addition, there are four classes (I-Beam, Angle, Double angle, 

and Channel) that have less recall than the other classes. The reseaon behind the low recall is that 

since the classifier is sensitive to rotations, and these classes are similar, the classifier was unable 

to detect the arbitrary rotations. 

 

 

Table 1. Confusion matrix of the model validation. 

 

 

I-Beam Angle Double Angle Channel Cylinder Cap Tube Elbow Tee Cross Unidentified

I-Beam 156 3 5 3 0 0 0 0 0 0 8

Angle 7 27 9 1 0 0 0 0 0 0 2

Double Angle 4 5 24 2 0 0 0 0 0 0 5

Channel 3 2 1 29 0 0 0 0 0 0 0

Cylinder 0 0 0 0 12 0 0 0 0 0 0

Cap 0 0 0 0 0 9 0 0 0 0 0

Tube 0 0 0 0 0 0 232 0 0 0 0

Elbow 0 0 0 0 0 0 0 59 0 0 0

Tee 0 0 0 0 0 0 0 0 44 0 0

Cross 0 0 0 0 0 0 0 0 0 14 0

Unidentified 0 0 0 0 0 0 0 0 0 0 334
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Figure 18. Class precision of the classification model. 

 

 

 

Figure 19. Class recall for the classification model. 



 

47 
 

6. Discussion and Conclusion 

6.1. Conclusion 

Building Information Modeling (BIM) has changed our way of dealing with construction projects. 

It serves as a data store that can capture attributes other than geometrical objects. This allows 

engineers and contractors to work mainly with one source of the data that is expected to provide 

all information related to a project. 

However, the current data flow practice between engineering firms and contractors and the usage 

of customized BIM solutions in industrial projects limits the potentials of BIM, as there is no 

consensus on the naming convention, and the meta-data is not fully described in BIM models, 

especially during the early stages of projects. This leads to what is known as a “Dump Model,” 

which can be inspected visually but is hard or impossible to utilize for repetitive tasks, such as 

quantity take-off, that are needed for planning. 

This research aims to leverage information usage in BIM models by automatically completing and 

validating missing data in the BIM models. Our work used image classification techniques to find 

the correct type of steel and piping component in the model. 

After reviewing 3D image classification algorithms in the literature, the view-based convolutional 

neural networks was selected. View-based methods project 3D objects into multiple 2D views; 

then, the classification is conducted using the features from 2D CNNs. In the first step, a 

Navisworks plugin was developed to export the viewpoint as images and merge all four views into 

one image with a tabular format. Then, an artificial dataset of images was generated for training 
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the CNN model. After testing the performance of the trained model, it was transferred to Visual 

Studio to classify the images exported from the Navisworks. 

It was tested using data from three real BIM models for oil and gas projects that have been executed 

in Alberta, Canada, during the last decade. The average budget for each project is C$750 million. 

Each model is a typical “Dump Model” that contains 3D components but without enough attributes 

to provide an accurate description. These early-stage models, which are commonly used in fast-

tracked projects, cannot be easily categorized by component type, let alone categorized by their 

classes. The results show that the proposed classification method is able to achieve 91% accuracy.  

 

6.2. Research Contribution 

The work contributions have been categorized into academic and industrial. 

 

6.2.1. Academic Contribution 

The main academic contribution of the study showed that the convolutional neural networks could 

be used to help the engineering firms with recognizing the type of steel and piping components in 

unlabeled BIM models based on their projections. The results showed that the model could identify 

the labels with 91% accuracy. 
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6.2.2. Industrial Contribution 

The industrial contribution of the study introduced is a tool that can perform classification methods 

on BIM objects during the early stages of a project to help with the preliminary quantity take-off 

process. 

 

6.3. Limitations and Future Work 

Although this research manages to provide an alternative to the manual process with acceptable 

accuracy during the early stages of the projects, there are limitations that can be summarized as 

follows: 

1. The proposed method will fail to detect arbitrary shapes as it only compares 

unidentified components to a reference set of components. 

2. The algorithm will fail to detect the label for the components with arbitrary orientations 

because of the limited dataset. 

3. The method is intended only for preliminary estimates and cannot be used, for example, 

to formulate the bill of materials. 

This research can be extended in two different directions. One direction would be to apply the 

same methodology to other component types, i.e. mechanical. Applying the methodology to 

mechanical components would provide an interesting opportunity to compare how the algorithm 

performs with different disciplines.  

Another direction for this research is using more sophisticated architecture for the convolutional 

neural network and measuring the difference in accuracy and processing time. 
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Appendix A – Sample MATLAB Code for Generating Dataset 

For i=1:1000 

subplot(2,2,1) 

rectangle('Position',[1 2 2 10]) 

set(gca,'visible','off') 

 

subplot(2,2,2) 

rectangle('Position',[1 2 2 10]) 

set(gca,'visible','off') 

 

subplot(2,2,3) 

pos = [2 4 2 2];  

rectangle('Position',pos,'Curvature',[1 1]) 

axis equal 

set(gca,'visible','off') 

 

subplot(2,2,4) 

pos = [2 4 2 2];  

rectangle('Position',pos,'Curvature',[1 1]) 

axis equal 

set(gca,'visible','off') 

end 
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Appendix B – Developed CNN in Keras 

import keras 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Flatten 

from keras.layers import Conv2D, MaxPooling2D 

from keras.utils import to_categorical 

from keras.preprocessing import image 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from keras.utils import to_categorical 

from tqdm import tqdm 

train = pd.read_csv('train.csv') 

train_image = [] 

for i in tqdm(range(train.shape[0])): 

    img = image.load_img('train/'+train['id'][i].astype('str')+'.png', target_size=(28,28,1), grayscale=True) 

    img = image.img_to_array(img) 

    img = img/255 

    train_image.append(img) 

X = np.array(train_image) 
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y=train['label'].values 

y = to_categorical(y) 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.2) 

model = Sequential() 

model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',input_shape=(64,64,1))) 

model.add(Conv2D(64, (3, 3), activation='relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(128, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(10, activation='softmax')) 

model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy']) 

model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test)) 

test = pd.read_csv('test.csv') 

test_image = [] 

for i in tqdm(range(test.shape[0])): 

    img = image.load_img('test/'+test['id'][i].astype('str')+'.png', target_size=(64,64,1), grayscale=True) 

    img = image.img_to_array(img) 

    img = img/255 

    test_image.append(img) 
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test = np.array(test_image) 

prediction = model.predict_classes(test) 
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Appendix C – Naviswork Plugin Code 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using Autodesk.Navisworks.Api.Plugins; 

using System.Windows.Forms; 

using AddinRibbon.Ctr; 

 

namespace NWPlugin 

{ 

 

    [Plugin("AddinRibbon","Sina", DisplayName ="AddinRibbon")] 

    [RibbonLayout("AddinRibbon.xaml")] 

    [RibbonTab("ID_CustomTab_1", DisplayName ="Ribbon1")] 

    [Command("ID_Button_1",Icon = "1-16.png",LargeIcon = "1-32.png", ToolTip ="Show a Message")] 

 

    public class ClAddin : CommandHandlerPlugin 

    { 
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        public override int ExecuteCommand(string name, params string[] parameters) 

        { 

 

            switch(name) 

            { 

                case "ID_Button_1": 

 

                    if(!Autodesk.Navisworks.Api.Application.IsAutomated) 

                    { 

 

                        var pluginRecord = 

Autodesk.Navisworks.Api.Application.Plugins.FindPlugin("ClDockPanelUpdate.Sina"); 

 

                        if(pluginRecord is DockPanePluginRecord && pluginRecord.IsEnabled) 

                        { 

 

                            var docPanel = (DockPanePlugin)(pluginRecord.LoadedPlugin ?? 

pluginRecord.LoadPlugin()); 

 

                            docPanel.ActivatePane(); 

                         } 
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                    } 

 

                    break; 

 

            } 

 

            return 0; 

        } 

    } 

} 

 

 

namespace AddinDockPanel 

{ 

    [Plugin("ClDockPanelUpdate", "Sina", DisplayName = "Dynamic Update")] 

    [DockPanePlugin(200, 400, AutoScroll =true, MinimumHeight =100,MinimumWidth =200)] 

 

    public class ClDockPanelUpdate: DockPanePlugin 

    { 

        public override Control CreateControlPane() 
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        { 

            var tc = new TabControl(); 

            tc.ParentChanged += SetDockStyle; 

 

            var tp1 = new TabPage("Auto Update"); 

            tp1.Controls.Add(new UcUpdate()); 

            tc.TabPages.Add(tp1); 

 

            var tp2 = new TabPage("Properties"); 

            tp2.Controls.Add(new UcProperties()); 

            tc.TabPages.Add(tp2); 

 

            var tp3 = new TabPage("UcTools"); 

            tp3.Controls.Add(new UcTools()); 

            tc.TabPages.Add(tp3); 

 

 

            return tc; 

 

        } 
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        private void SetDockStyle(object sender, EventArgs e) 

        { 

            try 

            { 

                var tc = sender as TabControl; 

                tc.Dock = DockStyle.Fill; 

            } 

 

            catch (Exception) 

            { 

 

            } 

        } 

 

        public override void DestroyControlPane(Control pane) 

        { 

            try 

            { 

                var ctr = (UcUpdate)pane; 

                ctr?.Dispose(); 

            } 
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            catch (Exception) 

            { 

 // 

            } 

 

        } 

    } 

 

} 
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Appendix D – Naviswork Plugin Code for Viewpoint Generation 

 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Drawing; 

using System.Data; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using System.Windows.Forms; 

using Autodesk.Navisworks.Api; 

using NavisworksApp = Autodesk.Navisworks.Api.Application; 

using Autodesk.Navisworks.Api.ComApi; 

using Autodesk.Navisworks.Api.Interop.ComApi; 

using eColor = Autodesk.Navisworks.Api.Color; 

using System.IO; 

using Graphics = System.Drawing.Graphics; 

namespace AddinRibbon.Ctr 

{ 

    public partial class UcTools : UserControl 

    { 
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        public string LastSelName { get; private set; } 

        public string LastSelName2 { get; private set; } 

        public string LastSelName3 { get; private set; } 

        public string LastSelName4 { get; private set; } 

 

        public IEnumerable<ModelItem> LastSelection { get; private set; } 

        public IEnumerable<ModelItem> LastSelection2 { get; private set; } 

        public IEnumerable<ModelItem> LastSelection3 { get; private set; } 

        public IEnumerable<ModelItem> LastSelection4 { get; private set; } 

 

        public UcTools() 

        { 

            InitializeComponent(); 

        } 

 

        private void LbIsolate_MouseUp(object sender, MouseEventArgs e) 

        { 

            IsolateSelection(); 

        } 

 

        private void IsolateSelection() 
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        { 

            var acd = NavisworksApp.ActiveDocument; 

    

            try 

            { 

                 

                ModelItemCollection oModelColl = 

Autodesk.Navisworks.Api.Application.ActiveDocument.CurrentSelection.SelectedItems; 

             

                 

                Autodesk.Navisworks.Api.Interop.ComApi.InwOpState oState5 = ComApiBridge.State; 

                Autodesk.Navisworks.Api.Interop.ComApi.InwOpSelection oSel = 

ComApiBridge.ToInwOpSelection(oModelColl); 

                 

 

                int k1 = 1; 

                int k2 = 1; 

                foreach (var item in NavisworksApp.ActiveDocument.CurrentSelection.SelectedItems) 

                { 

                    ModelItemCollection hidden = new ModelItemCollection(); 

 

                    ModelItemCollection visible = new ModelItemCollection(); 
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                    if (item.AncestorsAndSelf != null) 

 

                        visible.AddRange(item.AncestorsAndSelf); 

 

                    if (item.Descendants != null) 

 

                        visible.AddRange(item.Descendants); 

 

 

                    foreach (ModelItem toShow in visible) 

 

                    { 

 

                        if (toShow.Parent != null) 

 

                        { 

 

                            hidden.AddRange(toShow.Parent.Children); 

 

                        } 

 

                    } 
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                    foreach (ModelItem toShow in visible) 

 

                    { 

 

                        hidden.Remove(toShow); 

                    } 

 

                     

 

                    Autodesk.Navisworks.Api.Application.ActiveDocument.Models.SetHidden(hidden, true); 

 

                     

                    

((Autodesk.Navisworks.Api.Interop.LcOwViewer)acd.ActiveView.Viewer).LookFrom(Autodesk.Navisworks

.Api.Interop.LcOaPartitionViewDirection.eFRONT); 

                     

 

                        var state = ComApiBridge.State; 

 

                        var cv = state.CurrentView.Copy(); 
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                        var vp = state.ObjectFactory(nwEObjectType.eObjectType_nwOpView); 

 

                        var view = vp as InwOpView; 

 

                        view.ApplyHideAttribs = true; 

 

                        view.ApplyMaterialAttribs = true; 

 

                        vp.Name = item.DisplayName; 

 

                        vp.anonview = cv; 

                        state.SavedViews().Add(vp); 

 

                        InwOpState10 oState = ComApiBridge.State; 

 

                        InwOaPropertyVec options = oState.GetIOPluginOptions("lcodpimage"); 

 

                        foreach (InwOaProperty opt in options.Properties()) 

                        { 

                            if (opt.name == "export.image.format") 

                                opt.value = "lcodpexpng"; 
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                        } 

                        string snapshot = "C:\\Users\\sinaa\\Desktop\\C#\\Screenshots\\" + k1.ToString() + ".PNG"; 

 

                        oState.DriveIOPlugin("lcodpimage", snapshot, options); 

                        System.Drawing.Bitmap oBitmap = new System.Drawing.Bitmap(snapshot); 

                        System.IO.MemoryStream ImageStream = new System.IO.MemoryStream(); 

                        oBitmap.Save(ImageStream, System.Drawing.Imaging.ImageFormat.Jpeg); 

 

 

                        k1 += 1; 

 

                     

                        

((Autodesk.Navisworks.Api.Interop.LcOwViewer)acd.ActiveView.Viewer).LookFrom(Autodesk.Navisworks

.Api.Interop.LcOaPartitionViewDirection.eRIGHT); 

                     

 

                        var cv2 = state.CurrentView.Copy(); 

 

                        var vp2 = state.ObjectFactory(nwEObjectType.eObjectType_nwOpView); 

 

                        var view2 = vp2 as InwOpView; 
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                        view2.ApplyHideAttribs = true; 

 

                        view2.ApplyMaterialAttribs = true; 

 

                        vp2.Name = item.DisplayName; 

 

                        vp2.anonview = cv2; 

                        state.SavedViews().Add(vp2); 

 

                        InwOpState10 oState2 = ComApiBridge.State; 

 

                        InwOaPropertyVec options2 = oState2.GetIOPluginOptions("lcodpimage"); 

 

                        foreach (InwOaProperty opt2 in options2.Properties()) 

                        { 

                            if (opt2.name == "export.image.format") 

                                opt2.value = "lcodpexpng"; 

                        } 

                        string snapshot2 = "C:\\Users\\sinaa\\Desktop\\C#\\Screenshots\\" + k1.ToString() + 

".PNG"; 

 

                        oState2.DriveIOPlugin("lcodpimage", snapshot2, options2); 

                        System.Drawing.Bitmap oBitmap2 = new System.Drawing.Bitmap(snapshot2); 
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                        System.IO.MemoryStream ImageStream2 = new System.IO.MemoryStream(); 

                        oBitmap2.Save(ImageStream2, System.Drawing.Imaging.ImageFormat.Jpeg); 

 

                        k1 += 1; 

 

                        

((Autodesk.Navisworks.Api.Interop.LcOwViewer)acd.ActiveView.Viewer).LookFrom(Autodesk.Navisworks

.Api.Interop.LcOaPartitionViewDirection.eBACK); 

 

                     

                        var cv3 = state.CurrentView.Copy(); 

 

                        var vp3 = state.ObjectFactory(nwEObjectType.eObjectType_nwOpView); 

 

                        var view3 = vp3 as InwOpView; 

 

                        view3.ApplyHideAttribs = true; 

 

                        view3.ApplyMaterialAttribs = true; 

 

                        vp3.Name = item.DisplayName; 

 

                        vp3.anonview = cv3; 
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                        state.SavedViews().Add(vp3); 

 

                        InwOpState10 oState3 = ComApiBridge.State; 

 

                        InwOaPropertyVec options3 = oState3.GetIOPluginOptions("lcodpimage"); 

 

                        foreach (InwOaProperty opt3 in options3.Properties()) 

                        { 

                            if (opt3.name == "export.image.format") 

                                opt3.value = "lcodpexpng"; 

                        } 

                        string snapshot3 = "C:\\Users\\sinaa\\Desktop\\C#\\Screenshots\\" + k1.ToString() + 

".PNG"; 

 

                        oState3.DriveIOPlugin("lcodpimage", snapshot3, options3); 

                        System.Drawing.Bitmap oBitmap3 = new System.Drawing.Bitmap(snapshot3); 

                        System.IO.MemoryStream ImageStream3 = new System.IO.MemoryStream(); 

                        oBitmap3.Save(ImageStream3, System.Drawing.Imaging.ImageFormat.Jpeg); 

 

                     

                        k1 += 1; 
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((Autodesk.Navisworks.Api.Interop.LcOwViewer)acd.ActiveView.Viewer).LookFrom(Autodesk.Navisworks

.Api.Interop.LcOaPartitionViewDirection.eTOP); 

                     

 

                        var cv4 = state.CurrentView.Copy(); 

 

                        var vp4 = state.ObjectFactory(nwEObjectType.eObjectType_nwOpView); 

 

                        var view4 = vp4 as InwOpView; 

 

                        view4.ApplyHideAttribs = true; 

 

                        view4.ApplyMaterialAttribs = true; 

 

                        vp4.Name = item.DisplayName; 

 

                        vp4.anonview = cv4; 

                        state.SavedViews().Add(vp4); 

 

                        InwOpState10 oState4 = ComApiBridge.State; 

 

                        InwOaPropertyVec options4 = oState4.GetIOPluginOptions("lcodpimage"); 
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                        foreach (InwOaProperty opt4 in options4.Properties()) 

                        { 

                            if (opt4.name == "export.image.format") 

                                opt4.value = "lcodpexpng"; 

                        } 

                        string snapshot4 = "C:\\Users\\sinaa\\Desktop\\C#\\Screenshots\\" + k1.ToString() + 

".PNG"; 

 

                        oState4.DriveIOPlugin("lcodpimage", snapshot4, options4); 

                        System.Drawing.Bitmap oBitmap4 = new System.Drawing.Bitmap(snapshot4); 

                        System.IO.MemoryStream ImageStream4 = new System.IO.MemoryStream(); 

                        oBitmap4.Save(ImageStream4, System.Drawing.Imaging.ImageFormat.Jpeg); 

 

                        k1 += 1; 

 

                          

                        String jpg1 = snapshot; 

                        String jpg2 = snapshot2; 

                        String jpg3 = snapshot3; 

                        String jpg4 = snapshot4; 

                        String jpg5 = "C:\\Users\\sinaa\\Desktop\\C#\\TF\\TF\\TF\\assets\\inputs-predict\\data\\" + 

k2.ToString() + ".PNG"; 
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                        String jpg6 = 

"C:\\Users\\sinaa\\Desktop\\C#\\TF\\TF\\TF\\bin\\Debug\\netcoreapp2.1\\assets\\inputs-predict\\data\\" + 

k2.ToString() + ".PNG"; 

 

 

                        Image img1 = Image.FromFile(jpg1); 

                        Image img2 = Image.FromFile(jpg2); 

                        Image img3 = Image.FromFile(jpg3); 

                        Image img4 = Image.FromFile(jpg4); 

 

                        int width = img1.Width + img2.Width + 50; 

                        int height = img1.Height + img2.Height + 50; 

 

                        Bitmap img5 = new Bitmap(width, height); 

                        Graphics g = Graphics.FromImage(img5); 

 

                        g.Clear(System.Drawing.Color.Black); 

                        g.DrawImage(img1, new Point(0, 0)); 

                        g.DrawImage(img2, new Point(img1.Width + 50, 0)); 

                        g.DrawImage(img3, new Point(0, img1.Height + 50)); 

                        g.DrawImage(img4, new Point(img1.Width + 50, img1.Height + 50)); 
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                        Bitmap img6 = new Bitmap(width, height); 

                        Graphics g2 = Graphics.FromImage(img6); 

 

                        g2.Clear(System.Drawing.Color.Black); 

                        g2.DrawImage(img1, new Point(0, 0)); 

                        g2.DrawImage(img2, new Point(img1.Width + 50, 0)); 

                        g2.DrawImage(img3, new Point(0, img1.Height + 50)); 

                        g2.DrawImage(img4, new Point(img1.Width + 50, img1.Height + 50)); 

 

                        g.Dispose(); 

                        g2.Dispose();     

                        img1.Dispose(); 

                        img2.Dispose(); 

                        img3.Dispose(); 

                        img4.Dispose(); 

 

                        img6.Save(jpg6, System.Drawing.Imaging.ImageFormat.Jpeg); 

                        img5.Save(jpg5, System.Drawing.Imaging.ImageFormat.Jpeg); 

                        img5.Dispose(); 
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                        AddRecord(k2.ToString() + ".png", 

"C:\\Users\\sinaa\\Desktop\\C#\\TF\\TF\\TF\\bin\\Debug\\netcoreapp2.1\\assets\\inputs-

predict\\data\\image_list.txt"); 

                        AddRecord(k2.ToString() + ".png", 

"C:\\Users\\sinaa\\Desktop\\C#\\TF\\TF\\TF\\assets\\inputs-predict\\data\\image_list.txt"); 

 

                        k1 += 1; 

                        k2 += 1;     

                        Autodesk.Navisworks.Api.Application.ActiveDocument.Models.SetHidden(hidden, false); 

                    

                } 

 

            } 

 

            catch (Exception) 

            { 

                // 

            } 

        } 

 

 

        public static void AddRecord(string name, string filepath) 

        { 
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            using (System.IO.StreamWriter file = new System.IO.StreamWriter(@filepath, true)) 

            { 

                file.WriteLine(name); 

            } 

 

        } 

 

 

        private void LbSave_MouseUp(object sender, MouseEventArgs e) 

            { 

                  SaveCurrentViewpoint(); 

            } 

 

        private void SaveCurrentViewpoint() 

        { 

             

        } 

 

        private void LbIsolateSave_MouseUp(object sender, MouseEventArgs e) 

        { 

            try 

            { 
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                IsolateSelection(); 

            } 

            catch (Exception) 

            { 

                // 

            } 

        } 

        protected override void OnParentChanged(EventArgs e) 

        { 

            base.OnParentChanged(e); 

            Dock = DockStyle.Fill; 

        } 

    } 

} 

 


