Copy available for loan

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR Allan M.R. MacRae TITLE OF THESIS Case History of an Open Pit Coal Mine Slope Failure at Luscar, Alberta

DEGREE FOR WHICH THESIS WAS PRESENTED Master of Engineering YEAR THIS DEGREE GRANTED 1985

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

> PERMANENT ADDRESS: 32 Ranch Ridge Drive N.W. Calgary, Alberta T3G 1W2

DATED April 15, 1985

CASE HISTORY OF AN OPEN PIT COAL MINE SLOPE FAILURE AT LUSCAR, ALBERTA

by

ALLAN M.R. MACRAE, P.Eng.

A Project

Submitted To The Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For The Degree Master of Engineering in Geotechnical Engineering

deotecnificar migrifeering

Department of Civil Engineering

Edmonton, Alberta April, 1985

ABSTRACT

The case history of a major open pit coal mine slope failure is described. The site is Cardinal River Coals Ltd. near Hinton, Alberta. The magnitude of the failure was approximately one million cubic yards (one million cubic metres). A substantial amount of piezometric and slope displacement data was collected before and after failure. The slope instability was detected from surface displacement measurements more than 100 days before any visual signs of failure appeared. The slope displacements were monitored on a continuous basis, permitting safe mining operations up to several hours before failure. The slope was ultimately stabilized by a rock fill toe buttress, to permit future mining in front of the failure. Analysis of slope displacements provided insight into the detailed mechanics of the failure. Stability analyses, combined with slope displacements, provided further insight into the nature of the failure.

ACKNOWLEDGEMENTS

The guidance of Dr. N.R. Morgenstern, P.Eng., Project Advisor, is acknowledged with gratitude.

Permission by Cardinal River Coals Ltd. to use the data for this case history is gratefully acknowledged. Gratitude is extended to Mr. Walter Bish, Mine Manager, Mr. Fred Munn, P.Eng., Chief Engineer, and Mr. Buzz Johnson, C.E.T., Chief Surveyor. Special thanks is extended to Mr. Craig Acott, P.Eng., Geotechnical Engineer for his generous advice and assistance with data assembly. The conclusions in this report are those of the writer and do not necessarily reflect the views of Cardinal River Coals Ltd.

Financial support provided by EBA Engineering Consultants Ltd., which enabled the writer to attend the University of Alberta, is gratefully acknowledged. EBA also provided access to case history data files. Gratitude is expressed to Dr. Elmer Brooker, P.Eng., Mr. Al MacDonald, P.Eng., Mr. Robert Martin, P.Eng. and especially Mr. Ron Lau, P.Eng.

Komex Consultants Ltd. and D.R. Piteau and Associates Ltd. made their computer and GEOSLOPE program available for stability analyses. The generous assistance of Mr. Fred Claridge, P.Eng., Mr. Brian Conlin, P.Eng., Mr. Norm Rokosh, P.Eng. and Dr. Tad Dabrowski, P. Eng. is gratefully acknowledged.

Drafting and typing were provided by Canadian Occidental Petroleum Ltd., with thanks to Mr. Len Cool, Chief Draftsman, Mr. Anwar

iv

ACKNOWLEDGEMENTS (Continued)

Ali, Drafting Supervisor, and especially Mr. Michael Prangley, Draftsman. Particular gratitude is expressed to Mrs. Sandra Cantwell and Mrs. Wendy Unruh who typed the report.

Finally, I would like to express my appreciation to my wife, Patricia, for her encouragement and support.

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
1.1	Units of Measurement	2
2.0	REGIONAL DESCRIPTION	3
2.1	Location and Access	3
2.2	Topography and Surface Drainage	3
2.3	Surface Soils and Vegetation	4
2.4	Climate	5
2.5	Land Use	5
2.6	Regional Structural Geology	6
2.7	Regional Stratigraphy	8
2.8	Regional Hydrogeology	12
3.0	SITE DESCRIPTION	13
3.1	Site Configuration	13
3.1.1	Pit 51-B-2 Configuration	13
3.1.2	North Wall Configuration	13
3.2	Site Instrumentation	15
3.2.1	Slope Displacement Measurements	15
3.2.2	Piezometers	16
3.3	Site Structural Geology	18
3.3.1	Pit 51-B-2 Structural Geology	18
3.3.2	North Wall Structural Geology	18
3.4	North Wall Stratigraphy and Lithology	21
3.5	Site Hydrogeology	23

TABLE OF CONTENTS (Continued)

4.0	ANALYSIS OF SLOPE FAILURE	25
4.1	Summary of Major Events	26
4.2	Detailed Analysis of Events	32
4.3	Detailed Analysis of Slope Displacements	40
4.4	Stability Analysis	45
5.0	CONCLUSIONS	48
LIST OF R	EFERENCES	51
PHOTOGRAP	HIC PLATES	53
APPENDIX	A - FIGURES	
	B - SLOPE DISPLACEMENT DATA AND PLOTS	
	C - PIEZOMETER DATA AND PLOTS	
	D - LOG OF COREHOLE E21-R50	
	E - SLOPE STABILITY ANALYSES	

LIST OF TABLES

Table 2.1	Stratigraphic Column for the Luscar Area	8
Table 3.1	North Wall Structural Discontinuities	19
Table 4.1	Magnitude and Direction of Target Dis-	41
	placements	

APPENDIX B

- Table B.1Three-Dimensional Slope Displacements,Targets 21B, 22B, 23B, 25B, 26B
- Table B.2 Three-Dimensional Slope Displacements, Targets 37B, 38B, 39B, 40B
- Table B.3 Three-Dimensional Slope Displacements, Targets 42B, 43B, 44B
- Table B.4One-Dimensional Slope Displacements,Slope Distance Component
- Table B.5One-Dimensional Slope Displacements andVelocities, Slope Distance Component

APPENDIX C

Table C.1 Groundwater Elevations and Piezometer Readings

APPENDIX E

Table E.1 Summary of Stability Analysis Trials

LIST OF FIGURES

APPENDIX A

- Figure A.1 Topographic Map of the Mine Area
- Figure A.2 Plan View of Regional Structural Geology
- Figure A.3 Stratigraphic Column for the Luscar Area
- Figure A.4 Plan View of Pit 51-B-2 November 23, 1979 (Day 327)
- Figure A.5 Section A-A' Through North Wall November 23, 1979 (Day 327)
- Figure A.6 Geological Section F + 00
- Figure A.7 Plan View of North Wall Structural Geology
- Figure A.8 Polar Plot of North Wall Bedding & Jointing

Figure A.9 Section A-A' for Stability Analysis November 1979 to January 1980

- Figure A.10 Plan View of Pit 51-B-2 North Wall February 23, 1979 (Day 54)
- Figure A.11 Plan View of Pit 51-B-2 North Wall March 25, 1979 (Day 84)
- Figure A.12 Plan View of Pit 51-B-2 North Wall April 25, 1979 (Day 115)
- Figure A.13 Plan View of Pit 51-B-2 North Wall May 21, 1979 (Day 145)
- Figure A.14 Plan View of Pit 51-B-2 North Wall June 25, 1979 (Day 176)
- Figure A.15 Plan View of Pit 51-B-2 North Wall July 25, 1979 (Day 206)

LIST OF FIGURES (Continued)

- Figure A.16 Plan View of Pit 51-B-2 North Wall August 26, 1979 (Day 238)
- Figure A.17 Plan View of Pit 51-B-2 North Wall September 25, 1979 (Day 268)
- Figure A.18 Plan View of Pit 51-B-2 North Wall October 24, 1979 (Day 297)
- Figure A.19 Plan View of Pit 51-B-2 North Wall November 23, 1979 (Day 327)
- Figure A.20 Plan View of Pit 51-B-2 North Wall January 26, 1980 (Day 391)
- APPENDIX B
- Figure B.1 Target 21B Displacement
- Figure B.2 Target 22B Displacement
- Figure B.3 Target 23B Displacement
- Figure B.4 Target 25B Displacement
- Figure B.5 Target 26B Displacement
- Figure B.6 Target 37B Displacement
- Figure B.7 Target 38B Displacement
- Figure B.8 Target 39B Displacement
- Figure B.9 Target 40B Displacement
- Figure B.10 Target 42B Displacement
- Figure B.ll Target 43B Displacement
- Figure B.12 Target 44B Displacement
- Figure B.13 21-26B Slope Distance Cumulative Displacement

LIST OF FIGURES (Continued)

Figure	B.14	26-40B Slope Distance Cumulative Displacement
Figure	B.15	21-26B Slope Distance Component Velocity
Figure	B.16	37B Slope Distance Component Velocity
Figure	B.17	38B Slope Distance Component Velocity
Figure	в.18	39B Slope Distance Component Velocity
Figure	B.19	40B Slope Distance Component Velocity

APPENDIX C

Figure	C.1	Piezometer	Nest	B04	Groundwater	Elevations
Figure	C.2	Piezometer	Nest	B07	Groundwater	Elevations
Figure	C.3	Piezometer	Nest	в08	Groundwater	Elevations

APPENDIX D

Figure D.1 Log of Corehole E21-R50

APPENDIX E

Figure	E.1	Stability	Analysis	Trial	AMT2
Figure	E.2	Stability	Analysis	Trial	АМТЗ
Figure	E.3	Stability	Analysis	Trial	AMT4
Figure	E.4	Stability	Analysis	Trial	AMT5
Figure	E.5	Stability	Analysis	Trial	амт6
Figure	E.6	Stability	Analysis	Trial	АМТ4 З
Figure	E.7	Stability	Analysis	Trial	AMT44
Figure	E.8	Stability	Analysis	Trial	AMT12

LIST OF FIGURES (Continued)

- Figure E.9 Stability Analysis Trial AMT13
- Figure E.10 Stability Analysis Trial AMT15
- Figure E.ll Stability Analysis Trial AMT14
- Figure E.12 Stability Analysis Trial AMT22

LIST OF PHOTOGRAPHIC PLATES

Plate 1 Pit 51-B-2 North and East Walls - Looking Northeast

Early November 1979 - Before Failure

- Plate 2 North Wall Slope Failure Looking North Approx. November 12, 1979 - After Failure
- Plate 3 North Wall Slope Failure Looking Northwest Approx. November 12, 1979 - After Failure
- Plate 4 North Wall Slope Failure Looking East Approx. November 12, 1979 - After Failure
- Plate 5 North Wall Slope Failure Close-up of West Limit Looking East Approx. November 12, 1979 - After Failure
- Plate 6 North Wall Slope Failure Looking West Approx. November 12, 1979 - After Failure
- Plate 7 North Wall Slope Failure Close-up of East Limit Looking South Approx. November 12, 1979 - After Failure

xiii

This report describes the case history of a major open pit mine slope failure which occurred at Cardinal River Coals Ltd. pit 51-B-2 on November 10, 1979.

This case history is of particular interest because:

- the magnitude of the failure volume was relatively large, in the order of one million cubic yards (one million cubic metres);
- piezometric and slope displacement data was collected before and after failure, providing some insight into the details of the mechanics of failure;
- the slope instability was detected from displacement measurements long before any visible signs of failure were apparent;
- the slope displacements were monitored on a continuous basis through failure, permitting safe mining operations up to several hours before failure;
- the slope was ultimately stabilized by a rock fill buttress to permit future mining in front of the failure.

1.1 Units of Measurement

Since Cardinal River Coals Ltd. use the Imperial system of measurement for base maps and sections, the primary units utilized in the figures, text and tables of this report are Imperial for consistency. Wherever practical, metric units are provided in figures and text (in brackets). Raw data in tables is presented in the original units of the measuring instrument.

2.0 REGIONAL DESCRIPTION

2.1 Location and Access

Cardinal River Coals Ltd. is located in west-central Alberta approximately 25 miles (40 kilometres) south of Hinton and 200 miles (320 kilometres) west of Edmonton, on Alberta Highway 40 (Figure A.l, Appendix A). The mine occupies the site of the former town of Luscar.

Pit 51-B-2 is located mainly in Section 27, Township 47, Range 24 West of the Fifth Meridian.

2.2 Topography and Surface Drainage

The mine is situated along the southwestern limits of the Rocky Mountain Foothills, adjacent to the Front Ranges of the Rocky Mountains (Figure A.1).

Approximately 3 miles (5 kilometres) to the southwest, Luscar Mountain rises to 8500 feet (2590 metres) elevation. The ground surface slopes regionally to the northeast, falling to approximately 5000 feet (1525 metres) elevation at the northern edge of the mine site. Within the mine site, natural ground elevations range from approximately 5000 to 6100 feet (1525 to 1860 metres) elevation.

Open pit coal mining extends down to approximately 5000 feet (1525 metres) elevation.

Surface drainage from the site flows west to Cabin Creek, east to Luscar Creek and north to Mary Gregg Creek, which all flow to the McLeod River.

2.3 Surficial Soils and Vegetation

Surficial soil cover across the site is typically thin, in the order of 10 feet (3 metres) or less except along stream valleys. Soils are predominantly colluvium and cordilleran till, which both strongly reflect the composition of underlying sedimentary bedrock. Constituent grain sizes consist predominantly of sand, with lesser amounts of clay and silt. The soils are generally very stony and well-drained.

Along stream valleys, soil thickness can exceed 10 feet (3 metres), and concentrations of coarser and finer-grained soils are formed by fluvial processes.

Prior to mining, the area was covered with trees, predominantly spruce and lodge pine.

2.4 Climate

The Hinton area has a continental subhumid climate, with long, cold winters modified by short periods of chinook conditions and short, cool summers. The mean annual temperature is approximately 34.3° F. (1.3° C.). Mean total precipitation is approximately 20 inches (510 mm), and evapotranspiration is approximately 14.5 inches (370 mm).

2.5 Land Use

Land uses include forestry, recreation and coal mining.

Mining at the Cardinal River Coals site was started in 1921 by Luscar Coal Ltd. Mining at Luscar continued by open pit and underground methods until 1956.

Mining was recommenced by Cardinal River Coals Ltd. in 1970. In 1979, Cardinal River produced 2.7 million clean short tons (2.5 million tonnes) of bituminous coal from three open pits including Pit 51-B-2. The coal was exported for consumption by the Japanese steel industry.

2.6 Regional Structural Geology

Tectonic forces from the southwest have produced major regional folding and faulting which trends northwest - southeast. The Lower Cretaceous strata of the Luscar area lie in two large folds, the Cadomin Synclinorium and the Luscar Anticlinorium, as mapped by Hill (1980) in Figure A.2. Major faults are the Nikanassin Thrust, which outcrops along the Front Ranges to the southwest and the Luscar Thrust, which outcrops between the axes of the two folds discussed above.

The Nikanassin Thrust dips steeply to the southwest at approximately 70°, with a dip direction of approximately 210°. Fault displacement is substantial, in places thrusting Upper Devonian Limestones over Cretaceous sediments. The Luscar Thrust outcrops at the south limit of Pit 51-B-2. Displacement along this fault is approximately 2400 feet (730 metres). The fault dips to the southwest at approximately 30° in the mine area, flattening to the southeast and steepening to the northwest. Associated with the Luscar Thrust are numerous small faults which displace the Jewel coal seam by several tens of feet. It has been inferred that the Luscar Thrust and associated minor faults were folded after faulting.

6

Pit 51-B-2 lies within the south limb of the Luscar Anticlinorium and is defined by a flat-bottomed syncline. The apical angle of the syncline is 140°, and the apical angle of the anticlinorium is 90°. The syncline apical angle decreases to the northwest, and the syncline is distorted into a "W" shape at the western limit of Pit 51-B-2.

Folding tends to cause thickening of the coal at the axes of the folds, which makes mining more economically attractive in these zones.

2.7 Regional Stratigraphy

Hill (1980) summarized the stratigraphic column for the Luscar area as shown in Table 2.1.

Table 2.1 - Stratigraphic Column for the Luscar Area.

·		
Paleocene	Upper	Brazeau Formation Wapiabi Formation Cardium Formation Blackstone Formation
Cretaceous	Lower	Mountain Park Formation Luscar Formation Cadomin Formation Nikanassin Formation
Jurassic		Fernie Group
Triassic		Spray River Group
Paleozoic		Undivided

The mineable coal is confined to the Lower Cretaceous Luscar Formation. The stratigraphy of the Luscar Formation is depicted in Figure A.3, and is described further below.

Hill divided the Luscar Formation into A, B, C and D members. The Luscar Formation conformably overlies the Cadomin Formation and grades into the overlying Mountain Park Formation. Total thickness of the Luscar Formation is estimated to be 1400 feet (425 metres).

Member A

Member A at the base of the Luscar Formation, consists of thin, interbedded sandstones, siltstones and shales with thin coal seams. A coarsening upward sequence is prevalent, with coal or carbonaceous shale at the base and sandstone at the top. Total thickness is estimated to be approximately 413 feet (126 metres).

The sandstones are fine to medium-grained and light to dark grey, weathering to brown, orange and buff. They are predominantly calcareous although occasionally iron-rich, and frequently contain fossils.

The siltstones are typically fissile, dark grey or black weathering to green, brown and buff.

The shales are dark grey or black and frequently carbonaceous, grading into coal seams.

Member B

Member B consists mainly of shales, coarsening near the top into interbedded shales and siltstones, siltstones, and sandstones. Total thickness is approximately 312 feet (95 metres).

The basal shales are 60 feet (18 metres) thick, dark grey in colour and contain thin limestone beds.

The overlying interbedded shales and siltstones are typically dark grey, fissile and sometimes orange weathering.

The sandstones at the top are typically fine to medium-grained, light to dark grey, noncalcareous, orange weathering and sometimes cross-bedded.

Member C

Member C consists of the highly resistant, ridge-forming"Torrens" sandstone. It is 240 feet (43 metres) thick.

The member contains a central shale parting, approximately 100 feet (30 metres) below its top surface, with the overlying sandstone massive and the underlying sandstone well-bedded. The sandstone is medium-grained, light grey, buff to orange weathering and noncalcareous. Thin siltstones and thin chert pebble conglomerates are occasionally present.

Member D

Member D consists of thick sandstones and siltstones, interbedded sandstones, siltstones and shales and thick and thin coal seams. It is 597 feet (182 metres) thick.

10

At the base of this member is the Jewel coal seam, which averages 40 feet (12 metres) thick. This is the main economic coal seam. It contains three thin shale partings.

Approximately 243 feet (74 metres) above the base of Member D is the Ryder coal seam. It averages 12 feet (3.5 metres) thick and is much more shaley than the Jewel seam. The Ryder has not usually been mined.

The two coal seams are separated by thick-bedded sandstones and siltstones, with thin coal or carbonaceous shale seams occurring in or above the dark grey fissile siltstones.

The sandstones are typically light grey, weathering to orange and are mostly non-calcareous. Fine, medium and coarse-grained sizes are present in both massive and well-bedded units. The sandstones toward the top of the member are green-grey, grading into the Mountain Park Formation.

2.8 Regional Hydrogeology

Groundwater flow typically occurs along jointing and bedding. The most active groundwater flow is near surface and is strongly influenced by surface topography. Most groundwater is discharged into local topographic lows, with a small amount of recharge flowing to regional flow systems to the northeast.

Piezometric response during spring breakup or sudden rainstorms can be substantial, sometimes exceeding 100 feet (30 metres) over a few days.

Hydraulic conductivity (permeability) parallel to bedding is generally greater than across bedding, despite well-developed jointing patterns.

Due to the short groundwater flow path and slightly alkaline bedrock, groundwater quality is typically high. Total dissolved solids generally do not exceed 1,000 ppm, and carbonate-bicarbonate anions predominate.

- 3.0 SITE DESCRIPTION
- 3.1 Site Configuration
- 3.1.1 Pit 51-B-2 Configuration

Pit 51-B-2 is depicted in Figure A.4 and Plate 1.

Highway 40 crosses the 51-B pit area immediately west of Pit 51-B-2. The original topography prior to mining sloped to the west, with surface drainage flowing to Cabin Creek.

The pit is oriented Northwest-Southeast parallel to the regional structural trend, and is approximately 3000 feet by 3000 feet (900 metres by 900 metres) in size. Elevation ranged from approximately 5810 feet (1771 metres) at the highest point on the east wall to approximately 5333 feet (1625 metres) at the pit floor at the time of the November 10, 1979 slope failure. Pit design floor was 5067 feet (1544 metres).

Mining progressed in 33 foot (10 metre) lifts, with safety berms every second lift.

3.1.2 North Wall Slope Failure Configuration

The November 10, 1979 slope failure occurred in the North Wall of Pit 51-B-2, as depicted in Figure A.4 and Plates 2 to 7.

The original slope design (Golder Associates, 1975) recommended a 38° overall slope, with 30 foot (9 metre) wide safety berms at 67 foot (20 metre) intervals. The actual overall slope inclination measured through Section A-A' was 36°, Figure A.5. Berm widths were generally narrower than design width, due to back-break at the crest. Berm spacing was 67 feet (20 metres), starting from the 5633 foot (1717 metre) elevation.

The slope failure was 800 feet (245 metres) in length and contained an estimated volume of approximately one million cubic yards (1 million cubic metres) of rock. The height of the failure ranged from 290 feet (88 metres) at the west limit of the failure to 340 feet (104 metres) at the east limit. Elevation at the crest of the slope failure ranged from 5550 feet (1692 metres) at the west limit to 5670 feet (1728 metres) at the east limit. The natural slope above the failure rose gradually to approximately 5940 feet (1811 metres) elevation. The toe of the failure ranged in elevation from approximately 5367 feet (1625 metres) across the west half to approximately 5333 feet (1625 metres) across the east half.

14

3.2 Site Instrumentation

Measurements of slope displacements (movements) and piezometric elevations were performed before, during and after the failure. All instrument locations are shown in Figure A.4.

3.2.1 Slope Displacement Measurements

Slope displacement measurements employed the standard Radial Survey Method using a theodolite and Electronic Distance Measurement (EDM) instrument. A one-second theodolite was used to measure horizontal and vertical angles. The EDM unit measured the "slope distance" from the instrument to each retroreflector prism target on the slope, with a rated accuracy of \pm 0.02 feet (0.005 metres). The three-dimensional coordinate of each target was calculated, and vectors of displacement derived from changes in target locations with subsequent measurements. A one-dimensional "slope distance" component of displacement was also used, since it provided somewhat higher accuracy.

The theodolite and EDM unit were mounted on a permanent concrete monument at Station KR-7 (Figure A.4). Target prisms were permanently mounted on steel posts, which were cemented into holes in the slope.

Inaccuracy in theodolite readings is generally due to pointing error.

Inaccuracy in EDM readings is generally due to inherent difficulties in measuring the atmospheric correction parameters (barometric pressure and temperature) along the line of measurement. Additional sources of error for both instruments are movement of survey reference stations, wind shake of instruments, and atmospheric heat waves.

Slope displacement data is included in Appendix B, and discussed in Section 4.0 of this report.

3.2.2 Piezometers

Standpipe piezometers were installed in individual boreholes, with two or three adjacent boreholes drilled to different depths constituting a "piezometer nest". Piezometer nests BO4 (A and B), BO7 (A,B and C) and BO8 (A, B and C) were located in the north wall as depicted in Figure A.4. In each case, instrument A was established in the shallow borehole, with B and C progressively deeper. Each piezometer consisted of a 2 inch (50mm) nominal PVC plastic standpipe, slotted for an appropriate interval near the bottom of the borehole. The slotted "screen" inlet section was surrounded by clean, coarse sand and hydraulically isolated from overlying strata by bentonite balls and cement grout to surface. Measurements were taken using an electronic "dropline" to detect the water elevation in the standpipe. Inaccuracy in a standpipe piezometer is generally due to hydraulic "plugging" of the screen inlet section, or to the misapplication of standpipes in relatively impervious ground such that the response of the instrument to changing groundwater pressure is excessively slow.

Piezometer data is included in Appendix C, and discussed in Section 4.0 of this report. The screen elevations of piezometer nests B07 and B08 are depicted in Figure A.5.

3.3 Site Structural Geology

3.3.1 Pit 51-B-2 Structural Geology

Strata in Pit 51-B-2 are folded into a broad syncline which follows the regional northwest-southeast trend and plunges gently to the southeast at an average angle of 5°.

In the north side of the pit, the coal seam is displaced downward and thickened due to an east-west striking thrust fault which dips steeply to the south, as depicted in Figure A.6. This fault is associated with tight chevron faulting and folding observed in the north end of the east pit wall. Fault displacement ranges from near zero at the east wall to approximately 100 feet (30 metres) at Section F0 + 00 in the failure area. The fault strikes subparallel to the synclinal fold structure which defines the geometry of Pit 51-B-2, such that its proximity to the north wall increases as it progresses to the northwest.

3.3.2 North Wall Structural Geology

Hebil (1980a) summarized the north wall structural geology based on 260 measurements of discontinuities made by mine and consultant's personnel in 1979. The results are depicted in plan in Figure A.7 and in a pole plot in Figure A.8, and the most significant discontinuity sets are summarized in Table 3.1.

Table 3.1 - North Wall Structural Discontinuities

Discontinuity	Strike	Dip	Dip Direction
Bedding	114°	38°S	204°
Joint Set J _l	213°	79°NW	303°
Joint Set J ₂	281°	54°N	11°
Joint Set J ₃	164°	70°E	74°
Joint Set J ₄	143°	58°E	53°

Hebil divided the north wall into east and west portions at approximately 104,600E, the eastern limit of the slope failure. The average bedding dip of 38° was generally uniform, ranging between 35 to 40°. Major variations in bedding have been caused by structural features of local extent.

The east portion of the north wall was generally more uniform and planar than the west portion, averaging 38° bedding dip. This is believed to be due to the greater distance between the wall and the east-west trending thrust fault discussed above. However, folding and faulting associated with this thrust fault may intersect the east portion of the wall at greater depth. A northeast trending structural zone intersected the east end of the north wall causing local abrupt changes in bedding orientation, but was too far to the east to contribute to the failure.

The west portion of the wall included the slope failure. Bedding dip in the upper half of the west portion was relatively uniform, averaging 38°. The lower half of the west portion exhibited much more variable bedding. There were widespread observations of bedding dipping out of the slope at 25°, which undercut the overall slope, and steeply dipping upright and overturned beds at the toe of the slope. It was hypothesized that these features were associated with the thrust fault discussed above. It is believed that these features observed in the lower half of the slope were directly involved in the failure, as discussed further below.

Joint sets J1 and J2 were by far the most prominent in terms of frequency of occurrence. Sets J1 and J2 are essentially orthogonal with bedding, and are aligned with the northwest-southeast trending regional structural trend. The steep northwesterly dip of J1 correlates with the 5° average southeasterly plunge of the syncline.

The main fault mechanism observed in this area is thrusting along bedding planes. Moderately to intensely sheared surfaces exist on set J1, and to a lesser extent on J3 and J4. Set J1 joint spacing averaged approximately 1 to 3 feet (0.3 to 1 metre) in the north wall, but J1 frequency increased by approximately tenfold at the east limit of the failure.

Set J2 is generally not sheared. However, where bedding is steeply overturned at the toe of the failure, J2 could act as a plane of weakness dipping out of the slope at a shallow angle, thus facilitating failure surface development (Figure A.6).

3.4 North Wall Stratigraphy and Lithology

Pit 51-B-2 strata are situated entirely within the Luscar Formation, and the Jewel coal seam is the only seam of economic significance.

Information on lithology in the north wall is scant due to limited exposure and coreholes. Surficial soil typically consisted of sandy colluvium, in the order of 10 feet (3 metres) thick. A single corehole, number E21-R50 was drilled by Golder Associates in 1975 for design of the north wall. This hole is 900 feet (274 metres) east of Section F0 + 00, as shown in Figure A.4, and has been extrapolated onto section in Figure A.6. The corehole log is included in Appendix D.

Bedrock exposures at the surface of the north wall were predominantly sandstone, locally interbedded with thin siltstone and coal seams. Bedding plane partings were slickensided. An east trending linear depression in the crest of the north wall original ground surface coincided with the location of the tension crack. It was hypothesized by Hebil (1980a) that this depression coincided with weaker, more erodable beds deeper in the wall, which could have contributed to slope instability.

There is some support for this hypothesis from corehole E21-R50. At a depth of 133 to 141 feet (40.5 to 43.0 metres), which coincides with the inferred location of the failure surface, a zone of interbedded soft carbonaceous clay was observed in the core. Clay infilling of fractures was observed repeatedly along the length of the corehole, and occasional coal stringers were also present. RQD (rock quality designation) from 122 to 142 feet (37.2 to 43.3 metres) ranged as low as 20%. Since the overall geologic structure plunged approximately 5° to the southeast, this weak zone would be expected to occur at a somewhat higher elevation in the failure area.

In summary, lithology in the footwall consisted primarily of sandstones and siltstones, with frequent clay infilling of bedding fractures, occasional coal stringers, and a soft carbonaceous clay layer in the vicinity of the failure surface.

3.5 Site Hydrogeology

Piezometers in the slopes of open pit mines at Cardinal River Coals Ltd. typically exhibit downward hydraulic gradients. The shallowest (A) piezometers respond rapidly to surface runoff and precipitation, and the deeper piezometers respond more slowly or not at all. During spring thaw, increases in groundwater elevations in shallow piezometers of up to 100 feet (30 metres) are not uncommon.

Piezometer nests BO4 (A and B), BO7 (A, B, and C) and BO8 (A, B, and C) are depicted in Figures A.4 and A.5. Piezometric data is summarized in Appendix C.

In Figures C.1 to C.3, piezometric elevations are plotted with respect to time. Piezometric elevations in early March 1979 (Day 60) ranged from 5587 down to 5489 feet (1702.9 to 1673.0 metres). This is the seasonal low for groundwater elevations, and the time when flow systems are closest to steady-state conditions.

Certain anomalous behaviour was apparent in the north wall piezometers. In early March (Day 60), piezometers B07B and B08B exhibited strongly artesian conditions with groundwater elevations approximately 60 feet (18 metres) higher than the adjacent A and C piezometers. The similarity in profile of B04B and B07B, and the slight hydraulic gradient to the west from B04B to B07B to B08B, indicate that these piezometers intersected the same artesian
aquifer along strike, and that recharge was primarily from the east. This inference correlates with the local topographic high up bedding dip to the northeast. It is also apparent that piezometer BO7A is plugged, which was confirmed by response tests.

The substantial hydraulic gradient across bedding indicates that hydraulic conductivity (permeability) across bedding is much less than that parallel to bedding.

The rapid response of piezometers B07A and B08A to spring thaw is apparent starting in early April (Day 94), when levels in both piezometers rose approximately 50 feet (15 metres). A smaller, delayed response is observed in deeper piezometers B04B and B07B.

Further comments on groundwater conditions related to the slope failure will be included in Section 4.0 of this report.

4.0 ANALYSIS OF SLOPE FAILURE

The following section includes an overview summary of events, a more detailed analysis of the mechanics of the failure, and a computer back-analysis of the failure.

Due to the very large amount of data available from Pit 51-B-2, only that data considered directly pertinent to the failure is included in this report. Certain slope displacement targets on the north wall were deleted (for example, targets which were lost in the early stages of movement, or targets which were distant from the failure). Unfortunately, much of the original "slope distance" data obtained by contract surveyors from the continuous monitoring of the slope has been lost; all remaining data has been included. Dewatering data was sparse and of little practical value to this analysis; it has not been included, although the results are apparent in the piezometric data.

The rate of progress of mining is apparent in Figures A.10 to A.20 inclusive, Appendix A.

Slope displacement data is summarized in Appendix B and piezometric data is included in Appendix C.

25

4.1 Summary of Major Events

A brief overview of the major events of this case history is presented, as these events were interpreted in monthly site inspection reports by the project geotechnical consultants. A more detailed analysis of events with the benefit of hindsight is provided in Section 4.2.

Time is represented in days, starting with Day 1 on January 1, 1979.

Prior to the beginning of 1979, the north wall of Pit 51-B-2 exhibited no significant movement, with the exception of a small localized slope failure in the area of Target 22B. The adverse orientation of bedding with respect to slope stability had been identified. The artesian piezometric condition in the north wall had also been identified, and recommendations for slope dewatering were submitted.

From January 28 (Day 28) to May 8, 1979 (Day 128), a slope displacement of 0.05 feet (0.015 metres) was observed in Target 26B. This apparent slope movement was too close to measurement system accuracy for conclusive analysis. Piezometers B07A and B08A reached annual minimum elevations of approximately 5500 feet (1676 metres) on or about March 1 (Day 60), and then rose sharply due to spring thaw.

26

From May 8 (Day 128) to June 11 (Day 162), movement occurred at all north wall targets, with the maximum observed change at Target 26B equal to 0.20 feet (0.061 metres) over this time interval.

Piezometers B07A and B08A reached their annual maximum elevations of approximately 5550 feet (1692 metres) in this period, approximately 50 feet (15 metres) above annual minimum elevations. Mining immediately below the north wall was considered a major contributing factor to these slope movements. The north slope was flagged as an area requiring particular vigilance.

From June 11 (Day 162) to July 9 (Day 190), movements at all targets on the north wall progressed more slowly, with the maximum change of 0.05 feet (0.015 metres) occurring at Target 26B. Cumulative movement in Target 26B was now 0.31 feet (0.094 metres) in the horizontal component, and continued movement of the north wall was identified as cause for major concern as the pit deepened.

From July 9 (Day 190) to August 13 (Day 225), slope movements were relatively insignificant. The north wall was reported to be temporarily stable, but renewed movement was predicted.

From August 13 (Day 225) to September 4 (Day 247), major renewed movement was observed, with the maximum change of 0.29 feet (0.088 metres) at Target 26B, and lesser changes at Targets 21B and 22B. Cumulative displacement at Target 26B was now 0.60 feet (0.183 metres) in horizontal component at an azimuth of 245° (trending downslope to the west), and 0.21 feet (0.064 metres) downward in vertical component. Between August 14 (Day 226) and September 6 (Day 249), Piezometer B08B was observed to fall sharply from 5547 to 5507 feet (1691 to 1679 metres). On September 11 (Day 254), the north slope area was inspected in detail. There was no visual evidence of any slope movement. Concern with regard to measured slope movements was restated, and recommendations were made to perform a more detailed evaluation of north wall slope stability and to install additional targets for slope displacement measurements.

From September 4 (Day 247) to October 4 (Day 277), movements at all targets on the north wall progressed more slowly. The maximum change of 0.15 feet (0.046 metres) in horizontal component occurred at Target 26B.

From October 4 (Day 277) to October 22 (Day 295), movement at Target 26B accelerated, changing 0.23 feet (0.070 metres) in horizontal component. On October 26 (Day 299), a 33 foot (10 metre) lift was blasted immediately below Target 26B.

Between October 22 (Day 295) to October 29 (Day 302), movement at Target 26B accelerated sharply, changing 0.70 feet (0.213 metres) in horizontal component. A large tension crack was observed at the crest of the slope, confirming that a full height slope failure was in progress.

The following steps were initiated:

- access of men and equipment in front of the failure was stopped, and a rock window barricade placed across the pit floor;
- surface water infiltration into the tension crack was controlled by surface grading;
- remedial dewatering was commenced to attempt to stabilize the failure;
- additional displacement measurement targets were installed;
- continuous survey displacement monitoring was established;
- a "critical slope velocity" of 0.10 feet/hour (0.030 metres/ hour), measured in "slope distance" component, was established, at which point all pit personnel and equipment would be evacuated;

Of the targets existing prior to October 31 (Day 304), only 26B was located on the failure. On October 31, Targets 37B to 40B were installed on the failure.

From October 31 (Day 304) to November 10 (Day 314) at 9:00 hours, movements of all targets on the failure strongly accelerated. Target 26B on the east end of the failure moved the least, changing 2.68 feet (0.817 metres) in horizontal component. Movement increased toward the west end of failure, changing a maximum of 4.94 feet (1.505 metres) in horizontal component at Target 37B.

On November 10 (Day 314) at approximately 8:00 hours, the critical slope velocity was attained. Pit personnel and equipment were evacuated. Failure cumulative displacement to this time was approximately 7 feet (2 metres) maximum horizontal component at Target 37B.

At approximately 13:00 hours, rapid slope failure occurred. Maximum displacement of an additional 16 feet (4.9 metres) horizontal component occurred at Target 37B, after which the failure decelerated.

On November 11 (Day 315), operations resumed in the east half of the pit, distant from the failure, under continuous survey displacement monitoring. A new "critical slope velocity" of 0.05 feet/hour (0.015 metres/hour) was established.

During November and December, attempts were made to dewater the slope to enhance stability. Due to access and cold weather difficulties, dewatering progress and effectiveness was limited. A rock fill buttress was proposed to stabilize the slide, with continued dewatering as a secondary stabilization measure.

In January 1980, the rock buttress was placed in front of the slide, with the aid of continuous survey displacement monitoring. By January 31 (Day 396) slope movement had ceased.

During the time of this slope failure, mining of Pit 51-B-2 continued safely with a loss of only 1 day of production on November 10. Mining was completed with a minimal redesign and no loss of coal.

4.2 Detailed Analysis of Events

The following detailed analysis of events has been developed with the benefit of hindsight, and utilizes information summarized in Appendices A to C inclusive. In order to obtain the highest possible accuracy, one-dimensional "slope distance" measurements are used where available instead of three-dimensional components, which exhibit slightly lower accuracy. Mining progress is expressed in terms of 33 foot (10 metre) "lifts", with fractional lifts being used to indicate the approach of a subsequent lift to the north wall.

From March 31, 1978 to March 6, 1979 (Day 65), Targets 21B and 23B exhibited no measurable movement. Target 22B moved approximately 2.1 feet (0.6 metres) in a small, single bench scale failure. The failure was approximately 150 feet (45 metres) long and the tension crack was a maximum of 30 feet (9 metres) from the crest of the 5633 foot (1717 metre) bench. The failure was due to adverse localized bedding orientation and temporary surface water ingress, and was not a contributing factor to the November 10, 1979 failure.

From March 6 (Day 65) to May 8 (Day 128), Targets 21B to 26B all moved 0.05 feet (0.015 metres) or less, as depicted in Figure B.13c. This movement was within the range of accuracy of the measurement system and no true slope movement is inferred. During this time Piezometer B08A rose by 48 feet (14.6 metres) to its seasonal maximum of 5553 feet (1693 metres), as depicted in Figure C.3. Mining consisted of 1 1/2 lifts across the west half of the November 10 future failure area, and 1/2 lift across the rest of the north slope.

It is apparent that, to this time, neither high seasonal groundwater conditions nor major mining below the slope had any significant impact on stability.

From May 8 (Day 128) to May 29 (Day 149), Targets 21B to 26B all moved rapidly. Cumulative displacements correlated with distance to the west along the slope, ranging from 0.063 feet (0.019 metres) at Target 25B to 0.178 feet (0.054 metres) at Target 26B. Piezometer B08A fell by 18 feet (5.5 metres) to 5535 feet (1687 metres) while B07A remained high. Mining consisted of 1 1/2 lifts across the west half of the failure to elevation 5433 feet (1656 metres) and 1/2 lift across the rest of the north slope to 5400 feet (1646 metres).

It is apparent that mining below 5500 feet (1676 metres) in the west half of the failure and below 5433 feet (1659 metres) to the east, was the primary change which affected slope stability during this time. However, the relative importance of groundwater as a destabilizing factor is not being disregarded, and will be quantified further in the Stability Analysis, Section 4.4.

The lack of symmetry between piezometers B08A and B07A is of interest, since these instruments displayed virtually identical

behavior in 1978 (1978 data not shown). It is possible that near-surface ground displacements in the western portion of the slope enhanced drainage in this area.

From May 29 (Day 149) to July 30 (Day 211), virtually no movement occurred in any target. Piezometer B08A continued to fall by 25 feet (7.6 metres) to 5510 feet (1679 metres). Mining was relatively inactive, removing less than 1/2 lift across the slope.

The correlation of slope displacement with mining activity remains strong.

From July 30 (Day 211) to August 27 (Day 239), Targets 21B to 26B all moved rapidly. Cumulative displacements again correlated with distance to the west along the slope, ranging from 0.150 feet (0.046 metres) at Target 23B to 0.351 feet (0.107 metres) at Target 26B. Piezometer B08A continued to decline by 6 feet (1.8 metres) to 5504 feet (1678 metres). Piezometer B08B fell sharply from its artesian level of 5547 feet (1691 metres) on August 14 (Day 226) to 5511 feet (1680 metres) by August 27 (Day 239). Mining in this period excavated 1 lift below the future failure to elevation 5400 feet (1646 metres), and approximately 1/2 lift to the east to elevation 5367 feet (1636 metres).

The correlation of slope displacement with mining activity continues to gain strength. The magnitude of displacements was increasing for equivalent mining increments, which could indicate that the pit floor was approaching a structural discontinuity which strongly contributed to the displacements. The entire slope continued to move essentially as a single block - the failure volume which included Target 26B had not yet broken away from the remaining slope, although movements continued to be greatest at the west side of the slope.

The cause of the rapid fall of Piezometer B08B is of interest, and is discussed further below. For the purpose of slope stability analysis, it is reasonable to assume a groundwater elevation of approximately 5500 feet (1676 metres) at the B08 piezometer locations from this time onward.

From August 27 (Day 239) to September 10 (Day 253), Target 26B accelerated to 0.519 feet (0.158 metres), while the remaining targets were comparatively inactive (Figures B.13b and B.13c). This could indicate the initial separation of the failure volume from the rest of the slope along the subsequently observed surface parallel to joint set J1.

From September 10 (Day 253) to October 4 (Day 277), movement of all targets continued at a somewhat slower rate than during August. Cumulative displacements ranged from 0.163 feet (0.050 metres) at Target 23B, increasing to the west to 0.624 feet (0.190 metres) at Target 26B. Piezometer B08B fell to 5501 feet (1677 metres). Mining excavated 1 lift below the east half of the failure, to elevation 5367 feet (1636 metres) and 1/2 lift further to the east.

The conclusions drawn from August data continue to be valid.

From October 4 (Day 277) to October 22 (Day 295), movement of Target 22B accelerated to 0.629 feet (0.192 metres) and Target 26B accelerated to 0.824 feet (0.251 metres), while the remaining targets were inactive. Piezometric elevations were unchanged. Mining had excavated 1 lift from the west half of the failure to 5367 feet (1636 metres) elevation, and had completed the 1/2 lift to the east to 5333 feet (1625 metres) elevation.

It is clear that the failure volume had separated from the remainder of the slope, and Target 26B was accelerating.

The small bench scale failure of 1978, on which Target 22B was located, was immediately adjacent to the new larger failure and was being dragged along due to the "edge effect" of the new failure.

To this point, no surface cracking was apparent from visual inspection.

Mining continues to correlate strongly with slope displacement.

On October 26 (Day 299), the lift from elevation 5367 feet (1636 metres) to 5333 feet (1625 metres) was blasted across the east half of the failure.

By October 29 (Day 302), Target 26B displacement had accelerated to 1.457 feet (0.444 metres), and average velocity was 0.004 feet/hour (0.001 metres/hour). The tension crack delineating the failure became visible. As detailed in Section 4.1, safety and remedial measures were implemented. A "critical slope velocity" of 0.10 feet per hour (0.030 metres/ hour) was established. Actual slope velocities at individual targets are depicted in Table B.5 and plotted in Figures B.15 to B.19. The informational basis for selection of the critical slope velocity was quite limited. The fact that no further work was conducted in front of the failure permitted the use of a relatively high critical velocity. Also, since the failure encompassed the full slope height and was "dozing" the toe in front, it was unlikely that the failure would move excessively far or fast. The selected "critical slope velocity" allowed several hours to evacuate the pit, which was highly desirable from the standpoint of labour and government relations as well as for safety reasons.

On November 10 (Day 314), rapid slope failure occurred following a steady acceleration of target displacements. As measured previously, displacement was greatest at the west end of the failure. As of 13:45 hours on November 10, the cumulative "slope distance" displacements (Figure B.14a) on the failure, proceeding from east to west were:

Target 26B - 12.008 feet (3.660 metres) since March 6, 1979, Target 38B - 12.900 feet (3.932 metres) since Oct. 31, 1979, Target 40B - 14.888 feet (4.538 metres) since Oct. 31, 1979, Target 37B - 19.803 feet (6.036 metres) since Oct. 31, 1979, Target 39B - 17.497 feet (5.333 metres) since Oct. 31, 1979. The behaviour of Target 39B was slightly anomalous. This is

37

discussed further in Section 4.3, together with a more detailed analysis of three-dimensional slope displacements.

From November 10 (Day 314) to January 16, 1980 (Day 381), the slope decelerated steadily, as depicted in Figure B.5b. The timing of buttress placement is estimated to be from approximately January 2 (Day 367) to January 20 (Day 385), as inferred from the last date of reading of targets as follows:

> Target 39B - January 7 (Day 372), Target 37B - January 10 (Day 375), Target 40B - January 10 (Day 375), Target 38B - January 16 (Day 381).

It is apparent that the failure was decelerating significantly before the buttress was placed. There is no doubt, however, that the buttress arrested the movement and provided an additional degree of safety for future mining operations.

The impact of dewatering on slope stability was minor. Practical problems associated with access and winter conditions made dewatering of the upper strata in contact with Piezometer BO8A relatively ineffective. The 120 foot (37 metre) fall of BO8C in response to pumping may indicate that dewatering of upper horizons could have been effected under less adverse conditions. The high contrast in hydraulic conductivity across bedding versus parallel to bedding is demonstrated by this data (Figure C.3). The rapid fall of Piezometer B08B in August 1979 is due to one of two possible, if improbable, causes: either slope displacements directly affected the strata near the inlet screen, which is 150 feet (45 metres) stratigraphically below the inferred failure surface; or the piezometer standpipe sheared near the ground surface in response to movement, while the adjacent Piezometer B08C remained intact.

This analysis, derived with the benefit of hindsight, is not materially different from that derived from monthly consultants reports in Section 4.1. This fact strongly supports the continued practise of slope displacement monitoring as a key predictive and analytical tool for open pit mine slope stability management.

4.3 Detailed Analysis of Slope Displacements

Target displacements are tabulated and plotted in Appendix B.

Displacement directions (azimuths and inclinations) were remarkably constant over the full range of displacement. Initially, variability was greatest due to the small size of the cumulative displacement, which was of the same order of magnitude as measurement system accuracy.

The true magnitudes of target displacements and the displacement directions are summarized in Table 4.1, and plotted in Figure A.19.

The azimuths for Targets 21B to 26B, which were oriented to the west of the downslope direction, appear valid and must reflect some stress relief in that direction as a result of mining. The additional westerly movement of Target 26B, as compared with Targets 21B to 25B probably reflects a degree of dilation occurring along the near-vertical eastern failure surface parallel to joint set Jl. Azimuths of targets on the failure can be "grouped" by elevation, which logically correlates with individual beds which can slide over one another - Target 37B and 38B azimuths are 208° and 206°, respectively, and Target 39B and 40B azimuths are 202° and 200°, respectively.

40

Table 4.1 - Magnitude and Direction of Target Displacements

		Time Interval				Target Number	Magr fee	Magnitude feet (m)		Inclination degrees*
to	Mar. Jan.	6, 3,	1979 1980	(Day (Day	65) 368)	21B	0.669	(0.204)	250	20
						22B	1.148	(0.350)	240	30
		F1				23B	0.343	(0.105)	250	20
		11				25B	0 .3 51	(0.107)	260	15
to	Mar. Oct.	6, 31,	1979 1979	(Day (Day	65) 304)	26B	2.030	(0.619)	239	23.5
to	Oct. Jan.	31, 7,	1979 1979	(Day (Day	304) 372)	26B	23.941	(7.297)	223	30.7
		18				37B	40.550	(12.360)	208	24.9
		11				38B	27.409	(8.354)	206	23.7
		н				39B	36.099	(11.003)	202	31.4
		ц				40B	29.632	(9.032)	200	14.5
to	Nov. Nov.	3, 9,	1979 1979	(Day (Day	307) 313)	42B	1.232	(0.376)	198	-10.7° (upward)

* Azimuths and inclinations for Targets 21B to 25B have been rounded to the nearest 5° to reflect actual accuracy at small displacements.

The inclinations of Targets 26B, 38B, 40B and 42B were respectively 30.7°, 23.7°. 14.7°, and - 10.7° (upward). These targets form a nearly vertical section through the slope. The gradually decreasing inclination of these targets, the magnitude and the consistency of inclinations with time tend to support the hypothesis that these inclinations were parallel to the curved failure surface. An inferred failure surface parallel to these movements is depicted in Figure A.5.

The inclination of Target 37B was 24.9°, which correlates well with Target 38B, at the same elevation to the east. The inclination of Target 39B was 31.4°, which does not correlate with Target 40B to the east. The magnitude of Target 39B displacement was also anomalous, as discussed further below.

The magnitudes of displacements at Targets 21B to 25B adjacent to the failure logically correlate with proximity to the failure. As previously stated, Target 22B was situated on a bench-scale failure which moved alongside the November 10 failure, and so exhibited disproportionally large displacements.

As stated previously, displacement was greatest in the western portion of the failure, with the maximum total vector of 40.6 feet (12.36 metres) observed at Target 37B. Target 38B, at the same elevation and 334 feet (102 metres) to the east, moved only 27.4 feet (8.35 metres). Total displacements through the vertical section at Target 38B were "normalized" to remove the effect of the observed increase in displacement toward the west. The resulting normalized total displacement vectors of Targets 26B, 38B and 40B are 26.8 feet, 27.4 feet, and 26.7 feet (8.17 metres, 8.35 metres, and 8.14 metres, respectively). Within the accuracy limitations of the normalizing technique, these numbers are identical.

The magnitude of Target 39B displacement was 4.5 feet (1.37 metres) less than that of nearby Target 37B. As stated previously, the inclination of Target 39B displacement was also anomalous. It is apparent that Target 39B was involved in a bench scale failure which separated from the total failure. Since total displacement of Target 39B is less than Target 37B, the main failure surface at the west end of the failure must lie above Target 39B. The absence of movement at Target 43B supports but does not conclusively prove this hypothesis.

The use of velocities calculated from displacements to assess impending slope failure involves certain complications, which must be recognized. The reading interval between displacements must be sufficiently large to permit displacements well in excess of measurement accuracy, or the resulting velocities will be misleading. This phenomenon is responsible for some of the "scatter" in velocities, as apparent in Figures B.15 to B.19. The use of the same time interval between subsequent readings helps to control this potential problem. This was practised in the field, but unfortunately not all the hourly readings were available for this report. Accordingly, velocity data presented herein must be evaluated with allowance for the above limitation.

The displacements in Targets 21B, 23B and 25B after the November 10 failure, as depicted in Figure B.13c, exhibit "scatter" in displacements ranging in excess of 0.10 foot (0.003 metres), substantially larger than demonstrated measurement system accuracy. Although not conclusively proved, it is concluded that the above displacements were real, and reflect "chatter" of the stable slope in response to "slip-stick" action of the adjacent failure along the near-vertical eastern failure surface parallel to joint set J1.

4.4 Stability Analysis

A back-analysis of the slope failure was performed with the GEOSLOPE computer program, which utilizes the Janbu analytical procedure. The analysis was run through an idealized section A-A' as depicted in Figure A.9. Detailed data on individual stability analyses is included in Appendix E.

The analysis was run for several different failure surfaces, piezometric surfaces, and material strength properties, for slope geometries without and with the stabilizing rock fill buttress. These trials are summarized in Table E.1.

The initial failure surface analysed was a bilinear surface, with the lower surface assumed to be in disturbed bedrock dipping at a shallow angle out of the slope and the upper surface parallel to the average bedding angle. The disturbed bedrock surface was assumed to have a friction angle of 25°, and the bedding effective friction angle was back-calculated to 35°, at a factor of safety of 0.985. The stablizing impact of the buttress was substantial, raising the factor of safety to 1.433. In comparison, dewatering to lower the piezometric surface by 40 feet (12.2 metres) produced a factor of safety of only 1.145. Lowering the piezometric surface by 80 feet (24.4 metres) produced a factor of safety of 1.259. A buttress half the height of the actual buttress produced a safety factor of 1.269. The second failure surface investigated was a curved surface parallel to the measured displacements of the slope (labelled Curve l in Table E.l). This surface exhibited a factor of safety of 1.121, 14% higher than the equivalent analysis which utilized the bilinear surface. This difference is, however, due largely to the longer length of the bilinear surface in the 25° disturbed There is no significant higher degree of stability of material. the curved surface over the bilinear surface. The stabilizing impact of the buttress is of similar magnitude for both surfaces. The curved surface was back-analysed at a factor of safety of 0.986, to yield a friction angle approximately parallel to bedding of 31.3°.

Other failure surfaces investigated included a modified curved surface (Curve 2) with no upward component at the toe, and a series of circular surfaces. Both displayed factors of safety slightly higher than Curve 1.

The above analyses demonstrate the relative insensitivity of the factor of safety to minor geometric variations in the failure surface, and its higher sensitivity to frictional properties along the failure surface. Additional runs were performed using a single shear strength for upper and lower portions of the rock slope, in both drained and undrained modes. The bilinear surface demonstrated a back-calculated friction angle of 32.1°, and a factor of safety after buttress completion of 1.550. For the curved failure surface, the back-calculated friction angle was 30.8°, and the factor of safety after buttress completion was 1.449.

Undrained ($\oint = 0$) analyses were run since there were clay seams in the slope near the failure surface. For the bilinear surface, an undrained shear strength of 3900 pounds per square foot (187 kPa) was back-calculated. While this figure is not considered realistic, the impact of using the undrained analysis on the factor of safety after buttress placement is significant. With the buttress, the factor of safety for the undrained case is only 1.053, versus 1.550 for the corresponding drained case. If only part of the failure surface behaved for some time in the undrained mode, the stabilizing effect of the buttress would have been decreased and delayed as excess pore pressures dissipated.

47

5.0 CONCLUSIONS

2.

- 1. Using displacement monitoring methods which measure the movements on the surface of the slope, the following practical accomplishments were achieved:
 - The November 10, 1979 (Day 314) failure was flagged as an area requiring particular vigilance as early as June 11 (Day 162), 152 days before failure.
 - ii) By July 9, (Day 190) continued movement of the north wall was confirmed as a cause of major concern as the pit deepened. This was 112 days before the appearance of any visual signs of failure, and 124 days before failure occurred.
 - iii) Pit 51-B-2 operations were safely conducted up to several hours before failure, and only one day of production from the pit was lost due to the failure.
 - iv) The stabilizing buttress was safely placed in front of the moving failure, with no danger to men or equipment.
 - Analysis of slope displacements provided insight into the detailed mechanics of the failure:
 - Prior to the separation of the failure volume from the rest of the slope, the entire slope displaced horizontally. Movement to August 13 (Day 225), was 0.159 feet (0.048 metres) at Target 23B, increasing to the west to 0.311 feet (0.095 metres) at Target 26B.

- ii) Initial separation of the failure volume from the rest of the slope occurred between August 13 (Day 225) and September 4 (Day 247).
- iii) Following separation of the failure volume, the stable slope to the east displaced horizontally inward and outward, reflecting "chatter" in response to "slip-stick" actions of the adjacent moving failure.
- iv) Slope displacements correlated strongly with mining activity. This could indicate that the pit floor was approaching a structural discontinuity which strongly contributed to the displacements, although other valid interpretations are possible.
- v) Placement of the buttress decelerated the failure gradually to a stop. The buttress was more than half placed by January 16 (Day 381), and was fully placed by January 21 (Day 386), but movements continued until at least January 31 (Day 396).
- vi) The failure volume moved as a single intact volume, with the exception of the area near Target 39B which was part of a separate smaller failure. Total displacement of the failure volume ranged from approximately 26 feet (7.9 metres) at Target 26B, increasing to the west to approximately 45 feet (13.7 metres) at Target 37B.
- vii) It is believed that the consistent inclinations displayed by Targets 26B, 37B, 38B and 40B are parallel to the actual failure surface.

- 3. The results of the stability analyses, combined with the slope displacement data, provide further insight into the mechanics of the failure:
 - As noted above, the failure decelerated slowly in response to buttress placement. In the drained analysis, the high factor of safety demonstrated after buttress placement would lead to a rapid cessation of failure movement. It is concluded that at least part of the failure surface material acted in the undrained mode.
 - ii) While there are many variables involved which lead to a wide range of possible results, the back-calculated average effective angle of friction along the failure surface is believed to range from 30° to 32°.
 - iii) The factor of safety after buttress placement will ultimately equal 1.4 to 1.5, after dissipation of excess pore pressures along the failure surface. The failure could, however, be susceptible to renewed movements due to excess pore pressures generated by blast vibrations.
- 4. Piezometric data yielded the following conclusions:
 - Displacement of the slope prior to failure resulted in dewatering of the strata containing Piezometer BO8A in May 1979. This is inferred to be due to the opening of jointing in response to slope deformation.
 - ii) The cause of the fall in Piezometer B08B in August 1979 is less obvious. This is possibly due to slope deformation causing dewatering of the strata, but the depth is too great to strongly support this hypothesis.

LIST OF REFERENCES

- Currie, D.V. 1976. Hydrogeology of the Tri-Creek Basin, Alberta Research Council, Bulletin 33, Edmonton.
- Dahlstrom, C.D.A. 1970. Structural Geology in the Eastern Margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, V18, pp. 332-406.
- Hebil, K.E. 1980a. Report of Geological Investigation of the North Wall of 51-B-2 Pit. Cardinal River Coals Ltd.
- Hebil, K.E. 1980b. Report on Structural Mapping of Pit Walls at the Cardinal River Mine.
- Hill, K.C. 1980. Structure and Stratigraphy of the Coal-Bearing and Adjacent Strata near Cadomin, Alberta. M.Sc. Thesis, University of Alberta, Edmonton.
- Holter, M.E. and Mellon, G.B. 1972. Geology of the Luscar (Blairmore) Coal Beds, Central Alberta Foothills. Proceedings of the First Geological Conference on Western Canadian Coal. ed. G.B. Mellon, J.W. Kramers and E.J. Sengal, pp. 125-135.
- Irish, E.J.W. 1965. Geology of the Rocky Mountain Foothills, Alberta. Geological Survey of Canada, Memoir 334, Ottawa.
- Johnson, R.S. 1982. Slope Stability Monitoring. Proceedings of the Fourth Canadian Symposium on Mining Surveying and Deformation Measurements, Banff.
- MacKay, B.R. 1929. Cadomin, Alberta. Geological Survey of Canada Map 209A, Ottawa.
- MacRae, A.M. 1978. Pit Slope Displacement Monitoring An Aid to Open Pit Mine Operation. E/MJ Operating Handbook of Mineral Surface Mines, McGraw-Hill Inc., New York.
- MacRae, A.M. 1982. Case Histories of Pit Slope and Waste Dump Failures in Western Canada. Fourth Open Pit Operators Conference, Edmonton. Canadian Institute of Mining and Metallurgy, Montreal.
- Reimchen, T.H.F. and Bayrock, L.A. 1977. Surficial Geology and Erosion Potential, Rocky Mountains and Foothills of Alberta. Alberta Research Council, Open File Report 1977-14, Edmonton.

- Tribe, J. 1980. Luscar's Coal Mining Operations.CIM Bulletin, January 1980. Canadian Institute of Mining and Metallurgy, Montreal.
- Golder Associates 1975. Report to Cardinal River Coals Ltd. on Rock Slope Design for Pit 51-B-2.
- Cardinal River Coals Ltd. 1977. Development and Reclamation Plan.
- Cardinal River Coals Ltd. 1978. Application for Pit Licence for Pit 51-B-2 Phase II Pit.
- Cardinal River Coals Ltd. 1978. Pit 51-B-2 Phase II Deficiency Response.
- EBA Engineering Consultants Ltd. 1978. Appraisal of Pit 51-B-2 Dewatering Requirements, Cardinal River Coals Ltd.
- EBA Engineering Consultants Ltd. 1978 to 1980. Pit 51-B-2 Monthly Inspection Reports, Cardinal River Coals Ltd.
- EBA Engineering Consultants Ltd. 1979. Preliminary Report on Mapping of Pitwalls at Cardinal River Coals Ltd.

PHOTOGRAPHIC PLATES

PLATE 1 - Pit 51-B-2 North and East Walls - Looking Northeast Early Nov. 1979 - Before Failure

PLATE 2

North Wall Slope Failure - Looking North Approx. Nov. 12,1979 - After Failure

PLATE 3

North Wall Slope Failure - Looking Northwest Approx. Nov. 12,1979 - After Failure NOTE: Observe Windrows on Pit Floor to Prevent Access Below Failure, Plate 3

PLATE 4

North Wall Slope Failure - Looking East Approx. Nov. 12,1979 - After Failure

PLATE 5

North Wall Slope Failure - Close-Up of West Limit Looking East Approx. Nov. 12,1979 - After Failure

NOTE: For Scale, Observe the Power Pole, Foreground of Plates 4 & 5

PLATE 6

North Wall Slope Failure - Looking West Approx. Nov. 12,1979 - After Failure

PLATE 7

North Wall Slope Failure and Close-Up of East Limit Looking South Approx. Nov. 12,1979 - After Failure NOTE: For Scale, Observe the Tractor Tracks, Foreground of Plates 6 & 7

APPENDIX A

FIGURES

1014A

MOUNTAIN PARK FORMATION

Massive grey green sandstone separated by dark green siltstones and chert pebble lenses chlorite cement.

LUSCAR FORMATION

MEMBER 'D'

- Grey green sandstone at top of member. Thick sandstone and shale beds common in lower half. Coarsening downwards of grain size in zone dominated by thick basal sandstone, which are massive and well bedded, cemented by kaolinite or illite.
- Thin, dark grey fissile siltstone separated by sandstones.
 Thin coal or carbonaceous shale laminations occuring in above siltstones.

 Torrens sandstone. Highly resistant, thin central shale parting. Breaks into boulder sized rectangular blocks.
 Occasional thin chert pebbles conglomerate. Sandstone massive at top, bedded at bottom.

MEMBER 'B'

- Exposed in 50-A-3 pit. Mainly fissile shales coarsening upwards to siltstones then sandstones.
- Fissile shales

MEMBER 'A'

 Thinly bedded medium to fine grained sandstones, fissile siltstones and carbonaceous shales which grade to thin coal seams.

- No exposure

CADOMIN FORMATION

 Highly resistant, ridge forming conglomerate 2 to 6cm, clasts of chert and quartzite in well cemented silica matrix.

FIGURE A. 3 STRATIGRAPHIC COLUMN FOR THE LUSCAR AREA

APPENDIX B

SLOPE DISPLACEMENT DATA AND PLOTS

TARLE R.I - THREE-DIMENSIONAL SLOPE DISPLACEMENTS, TARGETS 218,228,238,258,268. PAGE 1 OF 2.

Note: Moriz and Vert are Morizontal and Vertical Components in Feet. Acim and Incl are Azimuth and Anclination (from horizontal) Angles in Degrees. Perfirst Dientscement and Apriloation are Continued Ath Democrat Nicerical

		1	* * * * *	TARGET	218	} (TARGET 2 2	4 2] [TARGET 23	80	·] [TAR6ET 25	æ] [TARGET 2	5F	
Date	11.85	Days	Horiz	Azjæ	Vert	lacl	Heriz	Azia	Vert	Incl	Hariz	Azim	Vert	lnc1	Horiz	Aci n	Vert	Incl	Horiz	Azie	Vert	Incl
Mar ()5 79	12.00	65.50	0.000	ERR	0.000	ERR	0.000	ERR	0.000	ERR	0.000	ERR	0.000	ERP	0.000	EPR	0.000	ERR	0.000	ERR	0000	ERP
Mar 28 79	12.00	87.50	160.0	26	0.023	14,18	0.045	207	0.026	30.02	0.011	297	0.007	9.69	0.060	300	0.000	0.00	0.073	270	0.012	9.33
Apr 24 79	12.00	14.50	0.058	261	0.002	1.97	0.056	329	0.025	24,06	0.074	101	0.000	0.00	0.134	601	0.013	5.54	0,107	281	-0,056	-27.43
May 08 79	12.00	128-50	0.056	202	-0-042	-38.78	0.020	135	-0.013	-33.02	0.008	1B0	0.013	58.39	893	ERR	ERR	ERR	0.058	222	-0.950	-40.76
May 24 79	12.00	14.50	0.142	249	0.031	12.32	0.105	265	0.085	38.99	0.108	253	0.042	21.25	0.146	286	0.006	2.35	9.181	242	0.067	20.01
71 11 /4	C+ 13	162-45	0, 184 5, 154	222	0.059	17.78	0.181	254	0.112	31.75	0.119	270	0.042	6	0.191	279	0.025	7.46	0.258	251	0.087	18.63
301 05 79	10.30	184. 64	0.192	26	0.058	16.81	0.215	23 -	0.151	35.33	0.107	270	0.015	7.98	9.129	283	610.0	8.38	0.271	257	0.055	11.47
10 01 11 13	10. G	190.42	0.215	220	0.008	2.13	0.249	255	0.055	12,46	0.192	273	0.016	4.76	9.212	278	-0.077	96 61-	0.319	256	£∎0°0	Ü6" L
Jul 30 79	3	ZEL.41	0.22	262	0.052	13.07	0.242	267	0.061	14.15	0.147	292	0.028	10.78	0.174	282	0.439	68,38	0.301	265	-0.022	-4.88
Aug 13 79	10.15	225.43	0.229	275	0.051	12.56	0.290	253	0.281	44.10	0.159	287	0.048	16.89	0.184	396	-0.045	-13.74	0.711	261	0.042	7.69
Aug 27 79	8 9 9	239.42	0.345	255	0.083	13.53	0.433	242	0.188	23.47	0.181	251	-0.017	-5.37	9.318	247	-0.020	-3.60	9.448	249	0.211	25.22
Sep ()4 /3	10, 30	247.4	0.349	521	0,137	21.43	0.478	241	0.253	27.89	0.190	254	0*063	18.34	9.184	270	0.018	5.59	0.603	245	0.207	18,95
5ep 10 79	10, 20	253.44	9.579	260	0.124	18.12	0.508	244	0.253	26.47	0.201	264	0.030	8.49	0.306	259	0.012	2.25	0.638	246	0.Z71	23.01
Det 64 79	00	277.54	0.434	251	0.180	22.53	0.557	243	0.376	34.02	0.225	263	9.143	32.44	0.272	267	0.063	13.04	0.753	244	0, 318	22, 89
Dct 05 79	12.39	282.52	0.435	255	0.153	19.38	0.606	240	0.313	27.32	0.230	257	0.070	16.93	0.279	254	0.082	16.3B	0.812	241	0.313	21.08
Bet 15 79	13,30	288.56	0.526	53	0.189	19.76	0.665	247	0.333	26.57	0.296	396	0.014	8.∮6	0.436	252	0.082	10.65	0.893	245	0.352	21.51
Dct 22 79	13.00	295.54	0.480	260	0.214	24.03	0.701	243	0.372	27,75	0.236	270	0.103	23, 58	0.277	264	0.075	15.15	0.983	201	0.468	25.46
Bct 29 79	1.00	302.58	0.556	28	0, 203	20.06	0.851	244	0.497	30.29	0.275	261	0.151	28.77	0.340	259	0.094	15.45	1.682	241	0.856	26.97
0ct 31 79	(); •	304.58	0.563	258	0.169	16.71	0.881	243	9.459	27.52	0.270	240	0.018	3.81	ER8	ERR	ERR	ERR	1.862	239	áú8°û	23.48
Mov 01 79	[3 , 4 5	305.57	0.588	252	Ą.212	19.83	0.917	242	0.543	30.63	0.311	257	0,099	17.66	59.8	ERR	EPP	EPR	1.993	ÛġŻ	0, 995	26.53
Nov 02 79	14.00	306.58	9.622	260	0.177	17.57	0.974	244	0.512	27.73	Ģ. 338	278	0.084	13.96	599	ERR	ERR	ERR	2.107	240	1.442	26.31
80 v 11 19	6	397.58	0.600	222	0, 232	21.14	0.923	243	0.549	30.74	0.305	263	0.111	20.00	ERR	ERR	ERS	E98	2.234	239	1.133	26.89
557 04 73	10, 13	508.43	9.622	256	0, 198	17.66	0.476	246	0.466	25.66	0.362	269	0.078	15.15	0.484	256	0.030	3.55	2.421	239	1.162	25.64
77 CH 76N		504.52	9.67	2	0, 205	18.19	0.929	240	0.531	24,75	0.275	217	0,079	19.80	0.320	260	0.120	20.5b	2.479	237	1.240	26.57
71 00 702 n	CI . 71	10.01	9.619 • • • • •	254	0.204	18.24	0.971	242	0.499	27.20	0.307	262	0.105	18.88	0.319	259	0.101	17.57	2,678	238	5H2 - 1	29-92
Nov. 07. 19	1 20	311.36	9, 241 A 124	252	0.210	21.21	0.890	243	0.581	11.02 11.02	0.279	264	0.097	9.75	0.325	259	0.083	15.15	2.869	237	1 17	12.12
10 70 70 70	12 C	217.30	0/6.4	6 5	677 N	(1,1) 21 ff		₹;	0.2/0	20, 12	0.27/	261	0.111	20.19	0.323	262	0.107	18.33	3.138	236	1.02	2 31
1/ 1/ 10H	5 F	07 212	849-0	102	C07.V	00.07	197.0	7	0.367	/• 0.	0.281	265	0.118	22,78	0.331	261	0,107 5,557		3 163	237	1.917	27.59
Pov 16 79	8	314.38	0.614	35	0.151	17 87	0 974	142	0.574	72 21	0, 787 A	250	0.050	10.21	2017-0	197	0.007	14 91	0,0/0	707	1 1 10	
May 10 79	17.60	314.71	0.656	258	0.212	17.91	1.003	245	0.518	27.31	0.395	268	0.066	6	0.396	264	0.101	14.31	13.757	228	7 17	1 01
62 y1 ∧0N	20.60	314.83	0.628	257	0.144	12.91	1.077	246	0.455	23.85	0.363	274	-0.022	-3.47	0.318	268	0°.005	0 o	13.319	227	7.564	20 50
Nov 11 29	i0.9	315.25	0.647	266	(.115	10.05	0.952	246	0.399	22.23	0.346	276	0.077	12.55	0.380	266	0.126	18.34	13.435	228	7.690	24 15
Nev 11 /36	51,00	315,88	0.634	258	0,171	15, 09	0.901	241	0.479	27.92	0.359	258	-0.027	-4. <u>3</u> 0	0.334	257	0.019	3.08	13.596	227	7.752	20.19
6/ 71 360	U() A	116.58	9.604	255	0.258	23.13	0.956	240	0.518	28.45	0.309	257	0.172	29.10	0.322	255	0.132	22.29	13.678	227	7.817	29.75
	15. 39	317.36	0.351	25.3	0.294	20.32	14: 0	2.39	0.557	30.54	0.263	247	0.178	60 7 12	EPP.	ERR	EPP	EEP	13.422	727	7.974	ъ. 20 В
	17, 50	20.815	9.651	248	0.261	21.85	6{ý·}	239	0.608	30.82	0.259	249	0.085	18. 17	ERR	ERR	ERR	E RR	14. 144	227	8.167	36-00
67 CT A0%	15.30	519.67	0.545	243	0.238	23.47	0.922	237	0.582	32.26	0.370	24¢	0.053	0 4 0	0, 346	253	0.098	14.27	14.529	526	8ú∎'8	9.1.02
	19-09	RC (./ C	9.060	747	0.245	23.63	0.963	243	0.560	30.18	0.395	255	0.125	17.56	0.340	242	0,038	12.72	14.699	922	61216	11
11 11 11 11 11 11 11 11 11 11 11 11 11	16 14	19.171	109-0	CC7	9.254	26.02	9.995	249	0.557	29.79	0.308	525	-0.148	-25.67	0.317	257	-0.020	-3.61	582° N	226	8, 69,	¥0.05
-/ 21 A64	14.47 	19.226	9.619 * 545	74R	9.152	17.21	1.913	238	0.468	24.80	0.242	257	0.077	17.65	EKA	EPR	683	ERR	15.273	326	157.B	24.75
17 A1 AGN	0.51	67.626	NCC 'A	¢¢7	071.4	14.71	0.4/5	244	9.435	24,04	0.346	212	0.051	8, 38	0.355	269	6,120	18.68	15.366	226	8,859	2° ° 6

TABLE R.I. - THREE-DIMENSIONAL SLOFE DISFLACEMENTS, TARGETS 218,228,258,268. PAGE 2 OF 2.

[0,0,1], (1,1,1), (

Noie: Horiz and Vert are Horizontal and Vertical Components in Feet. Azim and Incl are Azimuth and Inclination (from horizontal) Angles in Degrees. Vertical Displacement and Inclination are Positive in the Rowmard Direction.

2

	Incl		24.88	30, 25	50, 24	30.11	30.03	29.92	39.26	30.14	30.02	30,01	11 0.	70.04	10 10	97.07	30.28	79, 91	10.71	30.25	30.20	39.19	30.03	30.79	30.15	30.20	30.26	30.19	30.37	30.21	30.21	30.26
84	Vert		80.4.28	Y. 383	796',	195.	9.933	10.0	105.01	10.367	10.447	10.497	10.835	1176	1 5 4	11.749	12.945	12.124	12.503	12.749	12.875	13.021	13.018	13, 124	13,024	13.112	13.170	13.157	13.174	13, 137	13.143	13,163
149661	#12H		977	977	977	276	276	225	225	225	225	222	225	225	275	225	222	224	274	224	224	124	224	\$22	122	224	221	522	224	224	122	274
	Horíz		140.01	10. (189	10. 252	16.487	17.184	17.285	17.653	17.857	18, 083	18,165	18 636	19.306	10.707	20.114	20.622	21.072	21.475	21.864	22.129	22.385	22.521	22.470	22.511	22.531	22.570	22.617	22.482	22.559	22.577	22.563
[[Incl	ļ	92.7	71.02		14. [Y	ENK	-11.3	22.27	14.76	9.72	6.96	14.15	ERR	ERR	EPP	12.43	-5.71	9.20	4. 86	15.54	ERR	ERR	ERR	-7.38	-2.17	8.15	10.50	12.53	2.79	5.07	10.89
58	Vert		712.4	0.152	786.0	0, UBB	CHR.	160.0-	0.120	0.107	0.062	0 043	0.088	EPR	ERR	ERR	0.069	-0.033	0.074	0.024	0.094	ERR	ERR	ERR	-0+0	-0.015	0.049	0, 101	0.09	0.018	0.013	0.075
148651	Azi n	175	55	707	8 2 2	ie) [H H	250	259	255	245	260	259	ERR	ERR	ERR	259	250	242	242	260	ERR	ERR	ERR	246	241	14	682	281	270	280	270
	Horiz		312.0	C - C - C	210-2	212		0.356	0 293	90 8 0	0.362	0.352	0.347	EPR	ERR	ERR	0.313	0.330	0.457	0.282	0.338	ERR	EPR	ERR	0.309	0.396	0.342	0.545	0.423	0.369	ê. 185	0.390
[[nc]	00 85		· · · 1			13-17	0+0-	28.52	18.18	12.38	20.46	15.19	17.86	12.98	19,53	19.29	-5.26	16.93	19.92	28.73	7.7	4.87	11.02	2.36	4.89	17.52	1.53	18.80	1.85	10.77	19.76
38	Vert	0.070	0.000	0 151	021 0	0.130	0.000	200 6-	0.144	0.112	0.079	0.119	0.085	0.106	0.065	0.127	170.0	-0.028	0.098	0.692	0.165	0.070	0.067	0.066	0.013	0.026	6.107	0.086	0.111	0.031	0.085	0.072
TARGET 2	Azia	755	256	N S	014	107	5	fe7	261	260	260	256	257	258	258	243	260	246	242	237	258	245	253	228	242	243	241	279	266	271	2B0	269
1 5 7 7 7	Har i z	0 215	112 0	0 755	0 210	0 210		B. 284	0.265	0.346	0.360	0.320	0.313	0.329	0.282	9.358	0.260	0.304	0.322	0.279	0.301	0.515	0.385	0.339	0.316	0.304	0.339	0.512	0.326	0.362	0.447	0.379
] [lncl	75 51	37 07	20 57	10 20	17 DC		04 17	31.12	29.37	29.25	28.04	27.57	27.64	30.25	31.68	28.65	21.91	28. Z1	27, 54	39.16	23.30	21.32	78°01	24.50	25.19	27.45	26.03	28.33	26.32	25.68	36.082
2B	Vert	0 461	0 575	0.550	0.519	012-0	200 S	0.000	0.576	0.570	0.578	0.538	0.519	0.520	0.557	0.569	0.531	9.411	0.552	0.520	0.577	0.490	0.419	0.539	0.462	0.475	0.546	0.565	0.564	0.513	0.526	0.565
TARGET 2	∎i2∀	240	i i	970	240		272	167	241	242	236	241	239	235	241	240	2415	239	240	235	240	239	237	238	236	236	236	250	244	243	248	244
	Horiz	448 U	200 0	51 0 U	945	0 987	A 576	0.110	0.734	1.013	1.032	1.019	0.994	0.993	0.955	0.922	0.972	1.022	1.029	0.997	0.993	1.139	1.071	1.012	1.014	1.919	1:051	1.157	1.946	1.017	1.094	1.060
[lac]	21, 14	48 <i></i>	75.95	74.41	77 71		222	26.08	24.68	ERR	18, 69	20.63	18.49	20.74	23.57	19.76	10° 78	17.77	20.91	22.23	19.16	17.30	20,93	14.52	17.24	23.85	19.35	21.44	15.35	6	18.97
81.	Vert	0.275	0.266	0.257	0.279	0.275	C D D		877.8	0.272	ERP	0.205	0.233	0.205	0.239	0.281	9.218	0.126	0.297	0.233	0.253	0.220	0.208	0.239	0.160	0.185	0.282	0.281	0.258	0.191	0.265	0.254
TARGET 2	Azim	251	254	757	255	21	100	100	Ğİ	52	883	252	251	254	254	248	256	251	250	250	250	252	24)	253	246	250	246	264	Z60	262	267	259
	Horiz	0.587	0.430	0.528	0.409	0.673	EDD	1 U U U	0.368	246.0	E KB	0.612	0.619	0.613	9.631	0.644	9.607	9.662	9.646	0.610	0.619	0.633	0.668	0.625	0.618	0.596	0.638	0.800	0.657	0.696	0.751	0.739
3	Days	324,25	326.27	327.25	328.27	331.27	27 25	111 41		C2-ESC	336.25	337.25	340.32	344.63	347.25	350.23	354.31	357.33	361.42	365.33	368.54	372.38	375.31	381.40	386.46	391.92	396.44	400.44	411.38	416.42	421.40	425,54
	liæe	6.00	6.30	6.00	6.30	6.30	4 00				9°0	ê, 00	7.45	15.40	6.00	5.30	02.7	9. S	10, (%)	8°.00	13.00	5.	92 ° 1	5. -	1.3	22.00	10,30	16.30	9,00	66,61	9.40	13.09
	Eate	Nov 20 79	Nov 22 79	Mav 23 79	Nev 24 19	Nov 27 79	Nev 28 19	New 76 70	57 75 ADU	1/ 1/ Dag	Dec 02 79	195 05 39	Bec 06 79	52 j] 148	Det 13 79	0ec (è 79	Dec 20 79	Bec 23 79	Per 23 70	Dec 31 73	Jan 03 80	Jan 07 29	éa el uver≧	Jan 16 Bi	Jan 21 B9	Jan 25 Bi	Jan 31 80	Feb 04 80	Feb 15 89	Feb 20 80	Feb 25 80	Feb 29 80

TARLE 8.2 - THREE-DIMENSIONAL SLOFE DISPLACEMENTS, TARGETS 378, 388, 399, 408. PAGE 1 DF 2.

Note: Horiz and Vert are Horizontal and Vertical Somponents in Feet. Azim and Nocl are Azimuth and Enclination (From Horizontal) Angles in Begrees. Vertical Displacement and Inclination are Fositive in the Bommard Direction.

Į	[acl	525	27.96	28, 39	22,18	20,86	17.07	20.08	18.60	17.46	17.80	17.95	17.83	14.88	[4.64	14.68	14,58	11.94	14.93	14.93	14.79	14.91	14.72	14.19	14.82	11.59	14.72	14.78	14.76	ERR	14,49	14.83	14.79	14.68	14.69	14.62	14.67	1.38	14.38	14.53	14.21	14.51	14.42
80)	Vert	000	0.112	0.200	0.212	0.263	0.269	0.402	0.450	0.544	0.679	0.737	1.148	4.325	4.275	4, 331	1.371	4.510	1 10	4.705	1 , 795	4.912	1.949	5,037	5.119	5, 135	5.351	5, 155	5.521	ERR	5.720	5.974	6,020	6.938	6.047	6.235	6.504	6,499	6.493	6.908	6.887	7.179	7.287
TAP6ET	Aziæ	443	220	228	214	215	204	208	206	203	50	206	102	661	199	441	199	661	199	199	661	66	66	661	443	661	١٩٩	66	199	ERR	663	661	661	199	64	99	139	199	668	052	64 I	200	661
	Horiz	0.000	0.211	0.370	0.520	0.690	0.876	1.100	1.337	1.730	2.115	2.275	3.570	16.274	16.360	16.531	16.802	16.907	17.308	17.642	18, 167	18.446	18.842	19.918	19.347	19.726	20.372	20.669	20, 954	883	22.139	22.561	22.793	23,044	23.257	23.897	24.843	25.354	25.354	26.647	27.205	27.731	28.316
	l nc l	5 B B	36.53	35.15	33.02	31.36	31.65	31.58	32.31	32.07	31.34	31.46	30.67	31.62	31.45	31.46	31.47	31.59	31.53	31.56	31,51	31.59	31 16	31.45	31.59	31.41	31, 54	31.53	31.58	ERR	ERP	31.58	31.49	31.48	51.40	31.34	31.44	31.47	31.40	31.39	31.13	31.33	31,30
. 86	Ver t	9,000	0.200	0.357	0.468	0.579	0.749	909.0	1.123	1.411	1.691	1.826	2.713	11.737	11.744	11.806	11.933	12.116	12.342	12,557	12.824	13.036	13.206	13,409	13.619	13.726	14.184	14.351	14.536	883	ERR	15.462	15.583	15.494	15.795	16,120	19.701	16.956	17.284	17.596	17.688	18, 156	18.380
TARGET 3	₽sia	FRR	218	222	209	213	206	206	206	205	205	206	204	202	202	202	202	202	202	201	201	201	202	202	202	102	201	201	201	ERR	ERR	201	201	201	202	202	202	202	201	202	201	202	202
1	Horiz	040.0	0.270	0.507	0.720	0.950	1.215	1.479	1.776	2.252	2.777	2.985	₹. 575	19.062	19.200	19.294	19.498	19.704	20.114	20.447	20.915	21.197	21.587	21.928	22,146	22.476	23.114	23.392	23.651	843	ERR	25.153	25.446	25.633	25.872	26.466	27.320	27.698	28.313	28.812	29.283	29.822	30.234
] [Incl	ERR	35.78	23.22	25.91	25.48	25.62	23.33	23.13	24.47	23.68	24.05	ERR	23.18	23.08	73.19	23,08	23.70	23.28	23.37	23.32	23.32	23.10	23.15	23, 38	23.17	23.48	23.38	23.42	ERR	23.02	23,58	23.56	23.54	23.24	23.51	23.61	23.47	Z3.64	23.50	23. 28	23.51	23.59
88	Vert	0,000	0.147	0.166	0.Z3B	0.304	0.398	0.439	0.516	0.705	0.835	0.912	ERR	5.961	5.992	6.043	6.106	6.206	6.375	6.524	6.712	6.814	6.888	7.044	7.185	7.250	7.599	1.672	7.792	ERR	8.084	8.457	8.570	8.612	8.592	8,951	9.354	9.522	9.814	10,030	19, 135	10.467	10.723
TARGET 3	Azie	ERR	218	234	217	221	211	213	215	213	213	213	ERR	207	207	207	707	207	207	207	207	207	207	207	207	206	207	206	207	ERR	206	206	206	206	308	206	296	206	206	206	206	206	206
	Hor i z	0.000	0.204	0.387	0.490	0.638	0.839	1.018	1.208	1.549	1.904	2.044	ERR	13.919	14.061	14. JOB	14, 327	14.478	14.819	15, 101	15.573	15.804	16.150	16.472	16.616	116 91	17.494	17.750	17.992	EPR	19.026	19.378	17.652	13.764	20.610	20.580	21.396	21.932	22.416	23.064	23.554	24.960	24.551
} [lacl	ERR	34.66	26.48	26.93	21.13	22.22	Z3.05	23.86	23.04	23.46	23.35	22.45	23.82	23.58	23,56	23.70	23.94	24.04	24.21	24.11	24,10	24.05	24.01	24.03	24,11	24.18	24.32	24.34	24.39	24.07	24,44	Z4.36	24.35	24.47	24.49	24.58	24.53	24.74	24.73	24.54	24.76	24.96
8.	Vert	0.000	0.204	0.291	0.408	0.412	0.540	0.699	0.880	1,649	.1.310	1.398	2.945	9.499	9.464	9.518	9.707	106.6	10,158	10.409	10.677	10.823	11.923	11.200	11.299	11.519	11.917	12.151	12.320	12.785	108.23	13. 251	13.339	13.469	13.664	126.41	14,608	14.903	15.351	15.697	15.718	16.324	16.750
I ARGET	Aziw	ERR	216	273	214	218	211	213	213	212	212	213	211	704	203	21)9	203	209	70Y	6.ýZ	3ú8	862	209	208	203	208	208	208	298	502	208	208	208	208	208	208	208	208	208	208	207	208	202
1	Horiz	0.000	0.295	0.579	0.803	1.056	1.322	1.643	1.990	2.457	3.013	3.239	4.939	21, 514	21.692	21.827	22.118	22, 305	22 77	23, 149	23.857	24.191	24.698	25.147	25, 339	25.734	26.539	26.897	27.240	28.312	28.660	29.161	29.460	29.769	30.019	30.791	31.947	32,657	33.316	34.085	34.764	35.395	199,55
-	Days	304.58	503.57	306.58	307.58	308.43	309.52	310.51	311.56	312.56	313.35	313.69	314.38	311.71	31.8.	315.25	315.88	316.38	317.56	318.52	319.69	320.58	321.67	322.61	323.25	324.25	326.27	327.25	328.27	331.27	332.25	334.46	335.25	334.75	337.25	340.32	344.63	347.25	350.23	354.31	357-33	24.162	365.33
	Tige	14.00	13,45	14.00	14.00	10.15	12, 30	12.15	13.39	13, 39	B. 30	窗 9	9,00	17.00	20.00	6.00	21.90	S)	17 30	12.30	16.30	14.60	16.00	14.45	60.4	9°.9	5.30	θų - 9	ę. 3	9.4	90. Y	11.09	9° ()()	6.00	6. (i)	7.45	15, (ii)	6.01	5.30		3	(6) ⁽⁶⁾	e e
	Date	Oct 31 79	Mov () 79	Nov (12 79	Mov 03 79	Nov 04 79	Hov 05 79	Mar (16 79	Nev (17 79	Nov (18 79	Nov 49 79	Mpv ()9 79	Hev 16 79	⁴ 54 19 79	Mg: 19 79	No: 11 79	Mov 11 79	Mov 12 79	Nov 15 79	Nov 14 77	Nov 15 79	Nov 16 79	Mov 17 79	Nov 18 79	Hov 19 79	Nov 20 73	Nov 22 79	Wev 23 79	101 24 74	Nev 27 79	MOV 28 /9	Merv 30 79	Vec 11 /Y	Ωer 02 79 -	[er #] 79	Dec 09 24	€er 10 79	Bec 13 29	Dec 15 73	Ene 28 25	Der 23 79	Dec 27 79 - 11 10	0ec 31 79

`

TARLE 0.2 - THREE-BIMENSTONAL SLOPE DISFLACEMENTS, TARGETS 378, 388, 399, 408. PAGE 2 DF 2.

Wate: Horis and Vert are Horisontal and Vertical Components in Feet. Azim and Incl are Azimuth and Inclination (From Aprisontal) Angles in Degrees. Vertical Displacement and Inclination are Fositive in the Downward Direction.

[nc]	14.53 14.54 14.03 14.03
08 Vert	7.436 7.508 7.476 7.476
TAPGET 4 Azia	200 200 200 ERR
Hariz	28,684 28,945 29,908 29,908 588
) []nc1	31.38 31.36 Err Err
9B Vert	18.638 18.788 Err Err
TARGET 3 Azim	202 202 Err Err
Horiz	30.558 30.824 Err Err
] [laci	23.59 23.57 23.57 23.64
88 Vert	10.874 10.994 11.002 11.069
TARGET 3 Azi e	206 206 206 206
Horiz	24.899 25.107 25.223 25.239
] [Incl	24.83 24.94 24.89 24.89 ERR.
78 Vert	16.856 17.100 17.097 17.097 EP8
TARGET 3 Azi n	207 208 207 297
Hariz	36.429 36.768 36.846 E88
) Jays	368,54 372,58 375,31 381,40
11 æe	13,00 9,00 7,30 9,30
Date	Jan 03 80 Jan 07 80 Jan 10 89 Jan 16 80

IARLE B.3 - FIREE-DIMENSIONAL SLOFE DISPLACEMENTS, TARGETS 428, 438, 448, PAGE 1 DF 1.

We have a second

 $M = \{i_1, \dots, i_n\} \in \{i_n, \dots, i_n\}$

Mote: Horiz and Vert are Horizontal and Vertical Components in Feet. Azim and Incl are Azimuth and Inclination (from horizontal) Angles in Degrees. Vertical Displacement and Inclination are Positive in the Domnward Direction.

[Incl	ERR	-20.42	-81.67	-60.26	-54,78	8.88	31.61	0.00	45.00	-4, 24
8	Vert	0.000	-0.035	-0.041	-0.035	-0.034	0.095	0.024	004.0	0.023	-0-906
TARGET 4	Azim	ERR	273	08	62	1	128	337	270	288	296
	Hariz	0000	0.094	0.006	0.020	0.024	0.032	0.039	0.060	0.023	0.081
·] [Incl	ERR	-25.71	-36.72	10.41	-38.53	6.67	ERR	ERR	ERR	ERR
B	Vert	0.000	-0.013	-0.044	0.009	-0.013	0.011	ERR	ERR	ERR	ERR
1AR6E1 40	Aci.	ERR	251	103	130	83	108	ERR	ERR	ERR	ERA
	Horiz	0.000	0.027	0.126	0.049	0.054	0.094	£₽₽	ERR	ERR	ERR
	laci	ERR	-28.56	-15.42	-10.69	-7.21	-B. 21	-9.26	-10.71	ERR	ERR
28	Vert	0.000	-0,096	-0.083	-0.087	-0.080	-0.123	-0.179	-0.229	ERR	ERR
TARGET 4	Az j #	EPR	229	181	195	192	192	194	961	ERP.	EPR
	Horiz	0.000	0.158	102 °0	9.461	0.632	0.853	1.038	1.211	ESR	ERR
يت.	8ys	307.58	398.43	309.52	310.51	311.56	312.56	313.35	313.69	314, 58	314,71
	j ap	11.00	10.15	12.30	12.15	13.30	13.30	8.30	16.30	ÚÚ b	17.60
	Ũa†e	Nov 03 79	Nov 64 79	Nov 05 79	May 06 79	Nov 07 79	Nov (8 79	Nov 09 79	Nev 09 79	No. 10 79	Nev 10 79

TABLE B.4 - DRE-DIMENSIONAL SLOFE DISFLACEMENTS, SLOPE DISTANCE COMPONENT, PAGE 1 OF 4.

Note: Slope Distance is the Direct Reading from the Electronic Distance Measuring Instrument to the larget.

CUMULATIVE DISFLACEMENT (in feet) 218 228 238 258 268 378 388 398		 B 218 844.771 80	228 238 17.376 838, 389	5L0PE DISTA 258 800,743 7	406 (in metre 268 5 29.472 743.1	st 388 388 31 738,221	398 713,482 7
		Nar0679 Ma	ir 0679 Kar 0679	Har 0679 M	ar 0679 Dc t 31.	79 Bet 3179	Oct3179 D
0.000 0.000 0.000 0.000 0.000 ERR ERR	ER	R 844.771 80	1.376 838.380	800.743 7	99.472 EI	ERR ERR	ERR
0.050 -0.010 0.040 ERP 0.010 ERR ERR ERR	EB	844,756 80	17.379 838.368	ERR 7	99.469 EI	RR ERR	ERR
0.060 0.000 0.010 ERR 0.030 ERR ERR ERR	ER	R 844.753 BC	17.376 838.377	ERR 7	99.463 EI	2R ERR	EEA
0.044 -0.021 0.096 0.004 0.063 ERR ERR	Ef.	R 844,758 80	1.382 838.378	800.742 7	79.453 EI	RR EBR	883
0.021 -0.060 0.032 0.030 0.040 EPR EPR	Ë	R 844.765 BC	1.394 838.370	800.734 7	79.460 EF	ere Ere	843 2
0.054 0.002 -0.001 ERP 0.053 ERP ERP	ť	R 844.755 80	1.375 838.380	ERR 7	79.456 Ef	ER9	ERP
0.054 0.025 0.016 0.030 0.092 EAR EAR	ti ti	18 844.755 BC	1.368 838.375	B00.734 7	79.464 EF	CE CER	ERR Con
ענועט ענטון ענעטט ענטסט ענוטס באה באה אוסי איניד איאידי איניד איניד באים באים באים	5	0 041.140 00	1.237 000.337 17 740 070 750	1 571 000		10 CUN	CT-C EDE
0.126 0.117 0.055 0.053 0.168 ERR ERR ERR	183	P 844.733 B0	7.340 838.343	B00.727 7	99.421 EI	R ERR	883
0.153 0.146 0.075 0.102 0.194 ERR ERR	ERN	R 844.725 80	17.331 838.357	800.712 7	79.413 EI	RR ERR	EPP.
0.153 0.150 0.042 0.082 0.168 ERR ER	e er	R 844.725 B0	17.339 838.367	800.718 7	79.421 EF	R ERR	EPP
0.264 0.387 0.150 0.283 0.351 ERR ERR	58) 58	R 844,691 80	17.257 838.334	800.657 7	99.365 EF	RE ERR	ERR
0.267 0.448 0.141 0.240 0.519 ERR ER	R	PE 844.690 BC	17.239 838.337	800.670 7	99.314 EI	ir Err	ERP
0.349 0.591 0.163 0.187 0.674 ERR ERR ER	R. ER.	R 841.665 BC	1.223 838.330	809.486 7	79. 282 · EI	CR ERR	EPR
0.333 0.553 0.180 0.233 0.696 ERR ERP ERF	± ۲	19 844.670 86 P 214 457 00	17.207 838.325 11.207 838.325	809.672 7	79.260 EI	88 ee	8
0.372 V.373 V.273 V.371 V.373 CAN CAN CAN 0.346 0.479 0.150 0.264 0.824 FBR FBR FBR		19 1947.047 01 19 1948.666 190	07.184 R18.334	809.487 7	79.221 El	EPR Con	E BBB
0.405 0.753 0.206 0.266 1.457 EAR EAR	ER .	R 844.648 80	7.146 838.317	809.662 7	79.028 EI	RR EAR	E.88
0.405 0.786 0.203 ERR 1.605 0.000 0.000	0.00	10 B44.64B B0	17.136 838.318	ER8 7	FB. 983 743.10	1 738.221	715-182-7
0.467 0.825 0.246 ERR 1.739 0.295 0.203 0.40	0.14	11 B11 623 BC	17.124 838.305	EPR 7	98.942 743.0	1 738.159	713.360 7
0.425 0.819 0.229 0.286 1.857 0.467 0.325 0.58	11 9.25.	12 844.642 80	07.126 838.310	809.456 7	98.906 743.0	18 738.122	713.305 7
0.464 0.829 0.219 0.371 2.941 0.758 0.479 0.80	7 0.45	53 844.630 80	7.123 838.313	800.630 7	98.850 742.90	50 738.075	713.236 7
U.454 U.454 U.256 U.594 Z.153 I.U20 U.420 I.04 2.15 I.020 D.210 D.210 I.02	9.61	16 644.630 85 • 544.525 55		800.623 /	18'76/ 778'84	10 136-037	/ (91-(I)
9,481 9,848 9,242 9,246 2,241 1,279 9,863 1,31 6,441 0,843 0,276 6,250 2,392 1,598 1,607 1,56	8 1.026	14 844.623 BY	7.113 838.311 7.113 838.311	BDD.667 7	78.743 742.44 98.743 747.6	57.714 CS	7 13.004 7
0.445 ERR ERR 2.842 2.495 ERR 2.31	0 1.63/	17 844.636	EFR ERF	ERR 7	98.606 742.4	STATE BY	712.778 7
0.449 ERE ERE ERE 3.127 2.926 ERE 2.81	2 2.01	4 844.635	EPR ERG	E 993	78.519 742.20	59 ERR	712-625 7
0.448 ERR EFR ERR 3.232 3.140 ERR 3.00	5 2.17.	2 844,635	ERR ERF	ERR 7	78.487 742.20	M ERR	712.566 7
0.464 ERR ERR 4.157 4.813 ERR 4.54	1 3.43.	15 844.630	ERR ERS	ERR 7	78.205 741.6	PA ERR	712.098 7
0.467 EPR EFR EFR 12.009 19.803 12.900 17.49	14.88	18 844.629	ERR ERR	EFR 7	95.812 737.13	25 734.289	708.149 7
0.445 ERP ERP ERP 12.336 20.262 13.182 17.805	15.21.	0 844.636	ERR ERS	EPR 7	75.712 736.91	35 734.203	708.054 7
0.425 ERR EAR ERR 12.444 20.505 13.569 18.02	5 15.434	16 B44.642	ERR ERR	ERP 7	75.679 736.9	1 734.146	707.988 7
ERR ERR ERP ERP 12.651 29.853 13.642 18.31	7 15.69.	12 ERR	ERR ERF	EP8 7	75.616 736.80	NS 734.063	705.899 7
0.474 ERR ERR ERR 12.733 20.977 13.727 (B.412	15.77.	4 844,627	ERA ERA	ERH 7	75.591 736.71	7 734.037	1 978-101
ERR ERR ERR 12.845 21.155 13.865 18.55) 15.85.	56 ERR	EFR ERF	ER9 7	95.557 736.71	3 733.995	707.828 7
ERR ERR EFR ERR 12.864 21.191 13.848 18.59	3 15.96	-B ERR	EAR EAR	ERR 7	75.551 736.7(12 734.000	707.813 7

JARLE R.4 - ONE-DIMENSIONAL SLOPE DISPLACEMENTS, SLOPE DISTANCE COMPONENT, PAGE 2 OF 4.

Note: Stope Distance is the Direct Reading from the Electronic Distance Measuring Instrument to the larget.

80¥	710.668 Dct3179		705,767	202 743	111 201	705.702	705.701	705.677	705,678	705.670	705.663	705.654	705.654	705.565	705.565	705.553	795.542	105.476	705.484	705.462	705.455	705.423	705.366	705.339	705.287	705.263	705.231	795.185	705.135	705,085	705.021	704.971	704.973	704 818	704.742	704.713	704,695	704,672	C47 4V2
398	713.482 Oct3179		207.779	707 771	707.779	707.741	701.707	B59-101	707.676	707.677	707.676	707.672	707.656	707.588	707.568	707.563	707.555	707.493	707.499	707.463	707.465	707.449	707.409	707.362	707.312	707.283	707.266	307.215	707.176	797.114	707.049	707.007	706.961	705.863	511 113	705.762	706.752	705.719	704 ABS
388	738.221 Oct3179		733,960	733.955	733.950	733.915	733,898	733.893	733.880	733.872	733.874	733.852	733.854	733,798	733,790	133.766	733.766	733.705	733.693	733.680	733.684	733.666	733.612	133.579	733.537	733.508	733.487	733. 449	733.406	733.361	133.297	733.259	733.201	733, 125	733.052	733 029	733.032	732,991	732 947
aetres) 378	743.161 Oct3179		135, 661	736.646	736 643	736.58	736.617	736.562	736.540	736.535	734.528	736.521	736.522	736.418	736 400	736.390	736.289	736, 288	736.280	736.259	736.276	736.214	736.162	736.11	736,042	736.015	135, 989	735.916	735.860	735,798	735.731	735,664	735 598	735 489	735 38	735 347	735.372	135 304	735.267
STANCE (In 268	799, #72 Nar (1679		795, 523	795.523	795.519	795.501	795 . 1 98	795.477	795.462	195.444	795.449	795.455	795.444	795.383	795.378	795.371	795.372	795.312	795.306	795.295	795.301	795, 284	795.242	795, 215	795,172	795.156	795.135	795.099	795.044	795.029	194.980	794.948	794.899	794, 833	194.776	794.767	794 744	194 723	794.768
51.0PE D15 258	800.743 Mar 9679		893	ERR	EPR	ERR	ERR	ERR	ERR	EPA	ERR	599	ERR	ERR	ERR	ERR	ERR	ERR	ERR	983 198	ERF	ERR	893	ESR	ERA	EPR	EPR	ERR	EPA	558									
238	838.380 Har0679		ERP	ERR	ERR	ERR	ERR	ERR	ERN	ERR	ERR	ERR	ERR	ERR	E P.R	ERR	EPR	ERR	ERR	ERR	EPR	5 P ,R	ERR	ERR	EPR	ERR	893	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER5	ERR	883	ERR	SR5
228	807.376 Mar 0679		ERR	ERR	58B	ERR	ERR	ERP	ERR	ERR	ERR	ERR	59R	ERR	ERR	ERR	EKR	EPR	ERR	ERR	ERR	ERR	ERR	ERR	EFR	ERR	ERR	£R9	ERR	ERR	ER9	ERR	ERR	ERR	555	58R	55.8	ERR	558
21B	844.771 Mar 0679		ERR	ERP	ERR	844.633	844.620	844.621	999 1	58R	5R8	ERR	ERR	844.619	844.644	844.630	ERR	844.632	841.630	841.618	841.606	841.629	841.632	644°,623	844.619	844.643	844.631	844.625	841.638	844.637	841.632	841.628	844.613	844.620	844,633	844.624	844.615	841.622	844.672
801			16.079	16.158	16.145	16.292	16.296	16.374	16.371	\$6.397	16.420	16.450	16.450	16.742	16.742	16.781	16.817	17.034	17.008	17.080	17.103	17.208	17.395	17.483	17.654	17.733	17.838	17.989	18.153	18.317	18.527	18.691	18.848	19.193	19.442	19.537	19.596	11.672	19.770
398			18.710	18, 737	18.740	18.835	18.947	18.976	19.048	19.045	19.048	190'61	160'61	19.337	19.403	19.419	19.442	19.649	19.659	19.747	19.741	19.793	19.954	20.078	20.243	29.338	20.393	20.561	20.639	20.892	21.195	21.243	21.394	21.716	21.991	22.047	22,089	22.198	22.290
feet) 389			13.979	15.996	14.012	14.127	14.183	i4 199	14.242	14.268	14.252	14.334	14.327	14.511	14.537	14.615	14.616	14.816	14.855	14.878	14.885	14.944	15.121	15.229	15.367	15.462	15.531	15.655	15.777	15.945	16.155	16.279	16.479	16.719	16.958	17.034	17 021	17.159	1.2.37
MENT LLA 378			21.315	21.374	21 384	21.578	21.470	21.650	21.722	21.739	21.762	21.785	Z1. 781	22.122	22.181	22. 21	22.546	22.549	22.575	22.61	22, 588	22.792	22.962	23.120	23, 356	23.445	23, 530	23.769	23 953	24, 157	24.376	24 596	24.813	25.170	25, 515	25 636	25.718	25, 777	25.899
DISPLACE 268			12.956	12.956	12.969	13.028	13.038	13.107	13.156	13.215	13.199	13.179	13, 215	13,416	13.432	13.455	13.452	13.648	13.668	13.704	13.685	13.749	13.878	13.967	14.108	14.160	14.229	14.347	14.528	14.577	14.738	14.843	15.003	15.220	15 107	15 437	15.512	15.581	15 630
UMULATTVE 258			ERP	ERR	5 P.P.	SRP.	ERR	ERR	ERR	ERR	EPR	ERP	ERR	ERP	ERR	ERR	ERR	EPR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	E 2 R	ERR	58B	6H3	443 668	E83	ERR	E 29	ERR	£83	E 8.9	58B	ERR	ERR
C 238			EFR	ERR	ERP	ERR	ERR	ERA	ERR	ERR	EF43	ERP	EPR	ERR	ERR	ERR	ERR	ERR	ERR	EPR	558	5PR	EPR	588	EFR	ERR	ERR	ERR	£28	ERR	E 88	588	ERR	ERP	558	ERP	ERA	EPP	ERR
822			EPP	ERR	ERR	883	ERR	ERR	ERR	EM	ERR	ERR	ERR	ERR	88B	EPP	ERP	ERR	ERR	5P.P	883 8	ERR	ERA	ERP.	ERP	ERR	ERR	ERR	588	599	ERR	SRP.	ERG	5RP	ERR	583	EP	ERR	E 9.8
218			ERR	5RP	ERR	0.454	104.0	0.494	ERR	ERR	598 1	503	ERR	0.500	0.418	0.464	EPR	0.458	9.464	0.504	0.543	0.467	0.458	9.487	0.500	0.422	0.451	0.481	0.438	0.448	0.458	9.471	0.520	0.497	9.454	9.454	0.513	0.490	0.490
•		5Åeĝ	315.38	315.50	315.58	315.88	315.96	316.25	316.36	316.42	316.49	316.53	314.55	317.27	317.50	317.60	317.64	319.17	518.27	318.44	318.52	318.67	319.17	319.42	319.88	320.27	329.40	320.92	321.39	321.85	322, 39	322,83	323.40	324.38	325.25	325,54	325.67	326.00	326.27
	ng Bate	lise	00.6	12.00	14,00	21.00	23.99	6,00	8 1 2	10.00	11.25	12.45	13.20	6.30	12,09	14.20	15,15	4.09	6.30	19,30	12.39	15.00	4 , 00	16.00	21.09	6. JU	9.30	22.09	9.15	20.30	9.90	20,00	9.39	0 j b	9.00	17.00	16.00	21.60	6.19
1 2895	Lero Readi Coro Keadil	0.ete	Nev 11 79	Nov 11 79	Nov 11 79	Nov 11 79	Nov 11 79	Nov 12 79	Nav 12 79	Nov 12 79	90× 12 79	Nov 12 79	Nov 12 79	Nov 13 79	No. 13 29	Nov 13 79	Nov 13 79	Nov 14 79	Nov 14 79	Nov 14 73	Nov 14 77	Hev 14 79	Art 12 Mar	May 15 79	Mov 15 79	Nov 16 79	Mov 16 79	May 16 79	Mar 17 79	82 11 Ada	97 18 79	Nov 19 73	61 61 70M	Mov 20 79	Nov 21 79	97 11 Volt	Bov 21 79	May 21 79	Hov 22 79

TARLE 8.4 - CHE-DIMENSIONAL SLOPE DISPLACEMENTS, SLOPE DISTANCE COMFONENT, PAGE 3 OF 4.

Approximately and the second s

Note: Slope Bistance is the Direct Reading from the Electronic Distance Measuring Instrument to the Target.

80 8	710.668 Dct3179		706 680	005 BVL	704.547	704.537	704.578	161 Púr	104 454	704,409	EPR	ERR	EPD	598	104 199	104 150	680 EU.	960 961	704.085	704.065	104 NOT	704.008	703.969	793 944	703.923	703.912	703.875	103° 820	703.834	793, 863	703.785	703.77	703.746	793.696	11 10	703, 437	193.46	193.632	793.626
39B	713, 482 Oct3179		704 487	704.443	706.631	704.589	706.583	766.550	704.505	106.471	EPR	EPR	883	ERR	706.272	202.207	ERR	766.167	206.149	706.150	706.119	796.086	706-052	796.032	706-009	705.997	705, 960	705.954	705.929	705.901	705.684	705.875	705, 849	202-803	705.815	775.798	705.777	795.741	705.740
388	738.221 Dc13179		132,954	732.930	732. 899	732,876	732.871	732,837	732.793	732.775	732.740	ERR	50R	ERR	732.573	732 529	732.518	732.479	732.452	732.455	732.417	732 491	732.376	732.355	732.321	732.324	732.290	732,288	732.254	732.232	732.212	732.192	732.177	732.16	732,139	732.121	732,106	732.069	732.065
aetres) 378	743.161 Oct3179		735.252	735.209	735, 150	735.141	735.130	735.102	735.038	734 989	734.936	734 787	734,758	734.750	734.722	734.664	734.640	734.605	734,580	734.591	734.528	734.490	734.458	734.425	734.401	734.378	734.341	734.309	734.290	734.255	734.237	734.217	734.184	734.159	7.54.144	734.113	734.092	734.047	134.030
FANCE (in 268	799.472 Mar 0679		794, 703	794.468	794.631	794, 633	794,628	794.590	194.574	794.532	794.482	794.418	791.439	794. 398	794.393	794.320	794.322	794.289	794.278	794.286	794.261	794.232	794.210	744.200	794.170	794.159	794.139	240.446	794.113	744.090	194.074	794,065	794.047	794.022	794.023	774.009	193.991	793.959	793.980
510PE 0151	800, 743 Mar 0679		588	863	ERR	EPR	ERR	ERR	59 <u>8</u>	ERR	ERR	ERR	ERR	ERR	EPR	ERA	ERR	ERR	ERR	ERR	EPR	ERR	893	ERA	ERR	ERR	ERR	59B	ERR	ERF F	ERA	843	EPP	ERR	ERR	883	EFIR	EPR	EPR
238	838, 380 Mar () 679		FRR	588	ERR	ERR	ERR	ERR	EPR	ERR	ERR	ERR	ERR	ERR	588	ERR	589	ERR	ERR	ERB	ERR	ERR	ERR	ERR	883	5RR	ERR	ERR	ERR	883	ERR	EPR	ERR	ERR	ERR	5 F R	893 8	ERF	ERR
228	807.376 Kar0679		ERB	883	ERR	843	ERR	ERR	EPR	ERR	ERR	589	548	ERR	ERR	ERR	ERR	ERR	588	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	EFR	ERA	ERR	ERR	ERP	ERR	EPP	ERR	ERR	ERR
[218	844, 771 Mar 0679		844.626	844.618	844,635	844.625	844.625	844.621	844,634	841.670	844.600	844.630	841.643	844,645	844.636	844.600	844.614	844.602	844,599	844,614	844.575	811.627	841.625	844.622	844.632	844.630	844.627	844.695	844,634	844.624	844.623	844.632	844.630	844.612	844.633	844.630	844,632	844.619	844.627
408			19.777	19.911	20.033	20.115	Z0 144	20.266	20.387	20.535	EEB	ERR	ERR	ERR	21.223	21.384	21.584	21.561	21.598	21.663	21.788	21.850	21.978	22.060	22.129	22.165	22.296	22.368	22.421	22.523	22.582	22, 618	22.710	22.874	22.815	22.903	22.969	23.084	23, 103
39B			22,306	22.437	22.477	22.615	22.634	22, 743	22.890	23.092	ERR	ERR	ERR	ERR	23.655	23.874	ERR	23.999	24.058	24.055	24,157	24.265	24.376	24.442	24.517	24.557	21,678	24.698	24.789	218.12	24.928	24.957	25,042	25.193	25, 154	25.219	25.279	25, 397	25.400
feet) 388			17.280	17.359	17.460	17.536	17, 552	17.661	17.808	17.867	17.982	ERG	ERR	ERB	18.539	18.704	18.710	18.838	18.927	18.917	19.042	19.094	19,176	19.245	19.357	19.347	19.458	19.465	19.577	19.649	19.714	19.780	19.823	19.872	19.954	20.013	20.062	20, 183	20.197
EMENT (i.a 378			25.948	26,089	26.282	26.312	26.348	26.140	26.650	26.811	26.985	27.087	27.569	27.595	27,687	27.877	27.956	28.071	28, 153	28.116	28.323	28,449	28.553	28.661	28.740	28.815	28.937	29.042	29.10	29.219	29.278	29.343	29.452	Z9.534	29,593	29.685	29.75	29.901	29.957
E DISPLACI 268			15.647	13, 761	15.883	15.876	15.893	15.017	16.079	15.208	16.372	15, 582	16.513	16.647	16.664	16 903	16.876	500.71	110.73	17.015	17.097	17.192	17.254	17.297	17.395	17.431	17.497	17.641	17.582	17.458	17.719	17.740	17.799	17.84	17.877	17.923	17.782	18, (18.7	18.019
CUMULATIVE 258			ERB	EPR	ERR	EPR	ERR	ERB	ERR	EPR	ERR	E 8 P	ERR	ERR	ERR	ERR	E9R	ERP	ERR	ERR	EHB	ERR	ERR	E99	EPR	EPR	ERR	i i i i i i i i i i i i i i i i i i i	ERR	EPR	889 199	ERR	59.8	ERR	843	EPR	EER	E P R	ደዋጸ
53B (893	ERR	EFR	ERR	943 1	EPR	ERR	ERR	EPR	9 2 2 2	ERR	ERR	58R	err	ERR	EPR	EFR	843	ERR	ERP.	ERR	689	E P R	E E E	ERR	843	689	E93	59.9 2	EPR	£98	58B	EFR	£ 2 R	55 1 2	EFP	EFR
22B			EFR	ERR	ERR	598	ERR	EPP	ERR	EPR	ERR	ERR	ERR	EPR	282	RR RR	EPR	ERR	ERR	ERR	ERR	ERR	ERR	i di	ERR	EPR	EBB	EPR	ERR	БРР	EPR	ERR	EPR	ERR	EP3	EPR	ERR	ERR	88
218			0.477	9.594	9,448	9.491	0.491	0.494	0.451	0.497	0.563	0.464	0.422	0.415	0.445	0.563	0.517	0.556	0.566	0.517	0.579	0.474	9.485	0.470	9.458	9,464	0.474	9.546	0.451	0.484	0.487	0.458	0.464	0.523	9.454	0.464	0.458	0.500	0.474
_		Days	326.46	326.88	327.29	327.50	327.60	328.99	328.52	329.00	329.31	331.02	331.13	331.31	331.67	332.00	332.33	332.63	333.04	333.33	333.65	331-32	3.4.67	335.00	5.15.33	3.53.63	336.00	536.63	336.63	337.09	337.31	337.67	339,00	338.33	338.63	339.00	339.25	339.71	339-96
	ing Bate	Time	11.00	21,00	7.00	12.09	14.39	24.00	12.30	24.00	7.30	9.30	3.00	1. 10	16.00	24.00	9° 99	15.00	1.00	8.00	15.30	7.45	15.00	24.00	6.03	12° 60	24.00	6-6 9	15.09	10 1 2	7.30	16.09	24.60	9.39	15.00	24.00	6.0)	17.00	23.09
19961	lero fead Jero fead	Date	Nov 22 79	Nov 22 79	Nov 23 79	Plov 23 77	May 23 79	Mbv 23 79	May 24 79	Nov 24 79	Nov 25 79	Nev 27 79	May 27 79	Nov 27 73	Nov 27 73	42 73 VON	Mov 28 79	Hav 28 79	Nev 29 79	Nev 29 79	Nov 29 79	Nov 39 79	6/ 05 AON	110v 37 73	Dec 01 79	Dec //1 //9	CEC 01 79	26C 1/2 /9	Dec 92 73	Dec 92 73	Eac 03 79	Dec 03 79	Dec 01 77	Ber (4 79	646 (M) 243	Dec 34 79	Nec 95 79	Bec 05 79	2ec 02 79

TABLE 8.4 - DRE-DIMERSIBHAL SLOPE DISPLACEMENTS, SLOPE DISTANCE CONFORENT. PAGE 4 OF 4.

Note: Slope Distance is the Direct Reading from the Electronic Distance Measuring Instrument to the Target.

1 1 1	H 713.482 710.666 9 Bct3179 Det5179		1 705.710 703.595	705.696 793.565	2 ERR ERR	2 705.639 703.50	161.20/ 129.20/ 2	/ /U3.6U) /U3.4U/ : 705 573 707 413	105.575 703.439	1 705.556 703.418	705.460 703.314	1 705.438 703.274	105.435 703.275	1 705.420 703.253	981.207 042.369 703.186	105.334 703.150	0 705.328 703.14)) 705.269 703.080	2 705.228 703.032	5 705.218 703.005	186.202 202.981	1 705.170 702.954	5 705.152 702.955	3 705.146 792.935	9 705.131 702.91	1 705.115 702.906	
38E	739.221 Bct3179		732.043	732.021	E	731.962	151.45	771 005	731.899	731.875	731.791	731.758	731.756	731,734	731.679	731.652	731.630	731.690	731.542	731.525	731.501	731.479	731.457	731. 646	731.425	731.400	
a setres) 378	743.161 Oct3179		734.005	733.975	733.943	733.905	135.88	100-00/	733.804	733.773	733.648	733.616	733,608	133.577	733.458	733.463	733,453	EAR	ê pi	733.300	733.264	733.235	733.215	733.200	733.183	733.126	
STANCE (j. 268	799.472 Mar 0679		793. 933	EPP	193, 90	793.860	723.671	105 071	793.820	793.799	793,723	793,703	793.695	793, 686	793.630	793.612	193.607	193.552	ERR	793.506	793.484	793.455	793.454	793.437	793.422	793.393	
SLOPE D11 258	800, 743 Nar 0679		ERR	EPR	ERR	ERR	EXH CH			ERR	EPR	ERR	EFR	ERR	ERR	ERR	EPR	E58	589	ERR	EPR	ERR	ERR	EPR	ERR	ERR	
23b	838,380 Mar0679		ERR	ERR	ERR	E88	ERK 1	E C C C C C C C C C C C C C C C C C C C	ERP	ERR	ERR	EFR	ERR	ERR	ERR	EPR	EPR	£99	ERR	ERR	ERR	ERP	59. 7	59.8	EPP	EPR	
22B	807, 376 Kar 0679		ERR	ERR	ERP	ERR		12 1 1 1	ERR	EBR	ERR	ERR	ERR	ERR	ERP	ERR	EFR	ERR	ERE	ERR	EPA	ERS	5 F R	ERP	ERR	ERR	
(21B	844,771 Mar ()679		844.620	844.622	844.630	844.616	844.623	110.110	844.635	844.623	844.627	844.622	844.532	844.638	844.628	844, 620	844.630	844.599	844.617	844.617	844.613	844.609	814.618	844.615	844.612	844,599	
80¥			23.205	23.294	ERR	23.507	25. 356	012 20	23.717	23.786	24.127	24.258	24.255	24.327	24.540	24.665	24.675	24.895	25 049	25.141	25. 220	25.302	25.311	25.357	25.429	25,495	
39B			25.498	25.544	ERR	25.761	23. /90	75 051	25,941	26.004	26.319	26.391	26.401	26.450	26.647	26.732	26.752	26.945	27.080	27.113	27.231	27.270	27.329	27.349	27.398	27.459	
feet) 388			20.269	20.34I	ERR	20.535	/90.02	710 V)	20.741	20.820	21.096	21.204	21.210	21.283	21.463	21.552	21.624	21.722	21.412	21.968	22.047	22.119	22.198	22.227	22.283	22,378	
EHENT (in 378			30.039	30.137	30.242	30.367	.90 . 36	20.044 70.440	30.69E	30.800	31.210	31.315	31.341	31,443	31.834	31.817	31.850	ERR	ERR	32, 352	32.470	32:565	32, 631	32.680	32,736	32.923	
E DISPLAC 268			18,173	ERR	18.269	18.412	16.13	10.401 10 511	18.543	18.612	18.862	18.927	18, 954	18, 983	19.167	19, 226	19.242	19.423	ERR	19.574	19,646	19.741	19.744	19.800	19.849	19.044	
CUMULATIY 258			ERR	ERR	ERR	ERP	57H	111 100 100	ERR	ERR	ERR	599	ERR	983 1	ERR	ERR	ERF	689	ERR	ERR	ERR	EPR	EPP	ERR	EBP	ERR	
23B			ERR	ERR	ERR	88.3 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111		EeR	ERR	EFR	883	599	993	EFR	893	err Bre	843 8	EER	843	9333	893	55.6	ERR	683 1	
22B			ERR	ERR	ERR	E 129	C HK	223 255	ERR .	ERP	EPR	ERR	ERR	EPR	ERP	£R9	EBA	583	683	ERR	593	ERR	ERP	ERR	EPR	58R	
218			0.497	0.490	0.464	0.519		7.31/ 0.447	0.448	0.487	0.474	0.490	0.458	0.438	0.471	0.497	0.461	0.595	0.507	0.507	0.520	0.533	0.504	9.513	0.523	9,566	
_		Days	344, 25	340.60	341.00	341, 29	541.71	311.78 782 75	342.63	342.93	344.65	344,98	345.31	345.45	346.63	346.98	347.31	347.73	347.96	349.69	349.98	350.29	350.71	350.96	351.29	351.75	
	ateg bu bu	l ae	60.9	14,30	24,00	2.08	(a) : :	50-07 B	15.00	22.09	15.30	23.34	7.30	15.30	15.99	23.30	1.39	17.30	25,00	16.30	23.30	1.69	(7.6)	23.90	1.09	18.00	
1 2865	Zera Seadi Zera Seadi	Date	Dec 06 79	Dec 06 79	Dec 06 79	Bec 97 79	77 01 14 2 01 14	Der AB 79	0ec 08 79	Gec 08 70	Dec 10 79	Dec 10 79	Dec 11 79	Dec 11 79	Dec 12 79	[et 12 79	Pec 13 79	Cec 11 79	Cec 13 79	Der 15 79	fier 15 79	Dec 16 79	Cer. 14 79	Dec 16 79	5ec 17 79	Dec 17 79	

TABLE P.S - ONE-DIMENSIONAL SLOPE DISFLACEMENTS AND VELOCITIES, SLOFE DISTANCE COMPONENT, PAGE 1 OF 4.

gionae trafficher L Note: Slope Distance is the Direct Reading from the Electronic Distance Measuring Instrument to the Target.

	Velocity Modion	Bars		14.00	85.00	00-101	118.59	06.621	140.00	\$47,00	153,00	159.49	186.93	225.42	246.46	265.50	290,01	285.54	292.03	299.04	303.58	395.08 305.08	306.88	347.92	308.98	310.07	10.11S	312.96	01	314.48	314,59	314.59	314.62	314.56	314.76	314.92
80) 				EPR	ERP	E99	EPR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 683	EFP	ERR	ERR	ERR	ERR	EPP	483	EPP	ERR	693	ERR	EPP.	0.0061	0.0068	0.0065	0.0073	0.0091	0.0120	0,0179	0.0450	2.5117	1.3397	0.4716	0.3554	0,0570	0.0244	0.0273
39B				ERP	ERR	ERO	883 883	441 933	641	EFR	ERR	ERR	EPR	843	ERR	EPR	ERP	EPR	883 843	EPR 1	883 1777	0.0168	0.001	1560.0	0.0103	0.0196	0.0151	0.0265	0.0790	2.8412	1.2987	0.4511	e.4055	0.0661	0.0410	0.0121
388				EPS	EPR	ERR	ERR 1			ERR	ERR	ERP	EPR	ERR	ERR	EPR	EPR	ERR	ERR	ER I	EPR	9. 9986 9. 9064	0.0062	1500.0	0.0078	0.9077	E K K	683 1	600	ERF	1.1756	3.3896	0.3782	0.0592	0.9410	010010
(feet/hour) 37B				ERR	ERR	ERR	ERR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	883	893	ERR	ERR	ERR	ERR	ERR	ERP.	EPP	ERR	ERP	ERR		0.0124 (0.0116	0.0106	0.0107	0.0126	0.0164	0.0275	0 0843	3, 2873	1.9138	0.5058 (0.4830	0.0856	0.0527	0°0088 -{
VELOC11Y 268				, 0000	0.0002	0.0001	-0.001	0.0002	10003	0.0002	1000*0-	0.0002	0000°*	0.0003	0.0005	0.0002	0.0006	0.0003	0.0005	0.0037	0.0051	0.9957	0.0074	0.0037	0.0034	0.0072	0.0091	0.0151	0.0476	1.7217	1.3670	0.2256	0.2871	0.0570	0.0332	0.9048
COMPONENT 258				ERR	ERR	ERR	1000.0		0.0002	0000.	-0.0001	0.0003	.0000	0.0003	-0.0001	-0,001	0.0004	0.0010	-0.0910	0.0004	83	883 893	0.0034	0.0009	-0-0056	0.001	EKH	94 E	603	. 8 89	E P.R	ERR	EFR	ERR	E 29	EPR
238				0.0001	-0, 0002	0000.	0.001	700010-	0.0003	-0-001	-0.0001	0.0001	0000.	0.0002	.0000	0600.	1000.0	0.0002	-0.0004	9,0003	1000.0-	0.0018	1000 0-	Lü60°0	0.0003	-0,0007	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ERR Lan	4 G G G	ERR	ERR	ERR	EPR	ERR	EPR	ERR
228				0000	0.0001	.0000	-0.0002	0,0001	0.0002	0.0004	0.0000	0.0002	0000'	0.0004	0.0002	0.0001	0.0004	0.001	0.0003	0.0007	0.0007	0.0017	0.004	0.0005	0,0003	0.0006	22 a	883		ERR	ERR	EPP	59.R	ERR	888 8	EFR
218				0.0001	1000.0	0000	-0.9001	0.000	0.0002	0.0002	.0000	0.0002	0000.	0.0002	.0000	0.0001	-0.0001	0.0004	-0.0003	0.0003	0.0000	0.0026	0.0016	0.000	900010	-0.0017	10/00-0	0.0002	0 0008	0.0007	-0.6957	-0146*0-	ERR	ERR	EPR	ERR
] 408			ERR	ERR	ERR	ERR	ERR Car		ERE	ERR	ERR	ERR	ERR	ERR	ERR	883	ERR	588	ERR	ERR	000-0	0.144	0.453	0.614	0.804	1.020	1.65/	2,014	371.1	11.888	15.210	15.436	15.672	15.774	15.856	15.968
398			ERR.	ERR	883 3	ERR	197 197 197	200	ERR	ERR	0.000	0.400	0.807	1.047	1.316	1.568	212.5	2,812 7 AAE	1 545	17.497	17,808	18.025	18,317	18,412	18.550	18.599										
feet) 388			ERR	ERR	ERR	ERR	5 %B	1 0 1	ERB	ERR	EFR :	0.009	0.203	0.479	0.629	0.823	1.007	243 243	833 833		12.900	13.182	13.369	13.642	13.727	13.865	13.848									
MENT (in 378			ERR	ERR	ERR	ERR	889 882		EBB	ERR	ERR	0.000	0.295	0.758	1.020	1.299	1.598	C04-7	2.926		19.803	20.262	20.505	20.853	29.777	21.155	21, 171									
015PLACE 268			0.000	0.010	0.030	0.063	0.040	CCV.0	0.155	B/1.0	0.168	0.194	0.168	0.351	0.519	0.624	0.696	9.739	0.824	1.457	C09-1	1.739	2,041	2.133	2.221	2 392	2.842	5.127 CTC 7	2 1 5 7	12.008	12.336	12,444	12.651	12.733	12.845	12.864
JAULATIVE 258			0.000	ERR	E88	0.001	0.030	0 030	0.065	0.063	0.053	0.102	0.082	0.283	0.240	0.187	0.233	0.371	0.201	0.266	22	0 284	0.371	0.394	0.246	0.250	ERK 191	ERR	001	ERR	ERR	ERR	E88	ERR	ERR	ERR
CI 238			000.0	0.040	0.010	0.006	0.032	-0-W1	0.085	0.072	0.055	0.075	0.042	0.150	0.141	0.163	0.189	0.209	0.159	0.206	9.203	0.246	0.219	0.235	0.242	0.226		ERR L	201	ERR	H H H	EFR	883	ERR	ERR	EFR
22B			0.000	-6.910	0.00	-0.021	-0.669	160.0	0.071	0.117	0.117	0.146	0,150	0.389	0.448	0.501	0.553	0.573	0.629	0.753	9. /86 ^ ^ ^ ^	0.825	0.825	0,842	0,648	0.861	ERH	ERP.	1000 1000	EPR	ERR	ERR	EPR	ERR	ERR	ERR
218			0.900	0.050	090.0	0.01	0.021	0.654	0.103	0,123	0.126	0.153	0.153	0.26	0.267	0.349	0.333	9.372	0.346	0.405	6 1 02	0.467 0.475	191.0	0 464	0.481	0.441	0.440	0.448	0.44	0.467	0.445	0.425	ERR	9.474	ERP	EKR
ايسه		Days	65.50	82.50	87.50	114.50	122.50	05 521	144.50	149.50	156.50	162.45	211.41	237.42	253.50	277.50	282.52	288.56	295.50	302.58	394,58 105 53	15.201	307.40	308.43	369.52	310.51	95.215	313.35	97.617	314.57	314.58	314.60	314.63	314.69	314.83	315.90
	a Data Data	lise	12.00	12.00	12.00	12,00	12.00	12 00	12,00	12,00	12,50	10.45	9.50	19,09	12.00	12.00	12.30	13,39	12.00	E 63		15.45 15	÷. • يۇ	10.15	12.39	12.15	12.5	8.59 17 EA	0.60	3.45	14.03	14.20	15.90	16.30	29.90	24,00
1354¢I	lero Readin Lero Readin	Bate	Nat 06 79	Mar 23 79	Mar 28 79	Apr 24 79	May 02 79	77 57 YEN	May 24 79	Par 29 79	Jun 05 79	Jun 11 79	Jul 30 79	Avg 27 79	5ep 19 79	Bct 04 79	Oct 09 79	Oct 15 79	Oct 22 79	Dct 29 79	Uct 31 79	Mov 01 79	40, 03 79	Nov 04 79	Mov (15 79	Nov 96 79 11 55 75	70 V 18 17	67 70 vew	Nov 10 79	Nov 19 79	Nov 10 79	Nov 10 79	Nov 10 79	Nav 10 75	Nov 16 79	Nov 10 79

TARLE R.5 - DRE-DIRENSIONAL SLOFE DISFLACENENTS AND VELOCITIES, SLORE DISTANCE CONFORMAL. PAGE 2 OF 4.

a di sanga ana ang

Note: Stope Distance is the Direct Reading from the Electronic Distance Measuring Instrument to the Isrget.

Prior I	218	22B	CUMI 238	ULATIVE 258	BISPLACEI 268	MENT (in 378	feet) 388	398] [408	218	822	CONF 238	PONENT VI 258	ELOCTTY (268	(feet/hour 378) 388	398	80) [
																		>	elocity
																			Bays Bays
	ERR	EPR	ERR	ERR	12, 956	21.315	13.979	18.710	14.079	ERR	ERR	ERR	ERR	0.0101	0.0137	0.0144	0.0122	0.0122	315.19
	EPR	AR3	ERR	ERR	12.956	21 371	13.996	18.737	16.158	EBR	ERR	ERR	ERR	0,000	0.0205	0.0057	0.0091	0,0273	115.44
	EAR	ERR	EPR	ERR	12.969	21.384	11.012	18.740	16.145	ERR	EPR	EAR	ERR	0.0068	0.0051	0.0085	10.0	-0,0048	315.54
	9.454	ERR	ERR	ERR	13.928	21.578	1.127	18.835	16.292	ERR	559	ERR	ERR	0.0082	0.9269 (0.0159	0.0132	0.0205	315.73
	0.497	ERR	EPR P	ERR	13.03B	21.470	14.183	18.947	16.296	0.0222	EFA	ERR	ERR	0.0051 -	0.0564 (0.0290	0.0581	0.0017	315.92
	0.494	683	558	ERA	13.107	21.650	14.199	18.976	16.374	-0.0005	E P. P	ERR	ERR	0.0099	0.0259 (0.0024	0.0042	0.0113	316.11
	EKN EKN	EPR	ERR	ERR	13.156	21.722	14.242	19.048	16.371	ERR	EER	ERR	ERR	0.0186	0.0273 (0.0162	0.0273	-0.0012	316.31
	553	ERR	ERR	ERR	13.215	21.739	14.268	19,045	16.397	ERR	ERR	EPR	ERR	0.9410	0.0114	0.0182	-0.0023	0,0182	316.39
	ERR	EBR	ERR	ERR	13.199	21.762	14.262	17.048	16.420	ERR	ERR	ERR	ERR -I	0.0114	0,0159 -0	0.0046	0.0023	0.0159	316.45
	ERR	ERR	ERP	ERS	13.179	21.785	14.334	19.061	16.450	ERR	ERR	ERR	- 833	0.0164	0.0191 (0.0601	0104	0.0246	316.51
	EAR	ERR	558	ERR	13.215	21.781	14.327	19.081	15.450	EPR	EFR	ERR	ERR	0.0752 -	- 8900.0-	0.0137	0.0410	0.0000	316.54
	9.500	ERR	893	ERP	13.416	22.122	14.511	19.337	16.742	ERR	ERR	ERR	EPR	0.0116	0.0197 (0.0106	0.9148	0.0169	316.91
	0.418	ደዳዩ	EPR	EPR	13.432	22.181	14.537	19.403	16.742	-0-0149	ERR	ERR	588	0.9030	0.0107 (0.0048	0.0119	0.0000	317.39
	0.464	ERR	ERR	ERR	13.455	22.214	34.616	19.419	16.781	0.0171	ERA	EPP	EFR	0.0096	0.0137 (0.0328	0.0969	0.0164	317.55
	89	EPR	596	ERP	13.452	22.546	14.616	19,442	16.817	5.F.B	ERR	ERR	で置	0.0034	0.3452 (0.000	0.0239	0.0376	317.62
	0.458	ERR	663	ERR	13.648	22.549	14.816	19.649	17.034	59.8	ERR	ERR	ERR	0.0155	0.0003 (0.0157	0.0162	0.0170	317.91
	0.464	ERR	EFR	ERR	13.668	22.575	14.855	19.659	17.008	0.0027	EPR	ERR	EFB	0.0082	0.0107 (9.0164	0.0041	-0.0109	318.22
_	0.504	ERR	666	ERR	13.70	22.644	14.898	14.747	17.080	0.0076	ERR	ERR	ERR	0.0088	0.0167 (0.0105	0.0217	0.0177	318.35
<u>.</u> .	0,5 # 3	522	EFR	ERR	13.685	22.588	1.885	19.741	17.103	0.0205	EAR	EPR	- 683	0.0103 -	-0.0290 -4	0.0068	-0.003	0.0129	318.48
	9.467	ERP	ERR	ERR	13.740	22.792	14.944	19.793	17.208	-0.0210	ERR	£ P.P	ERR	0.0155	0.0565 6	0.0164	0.0146	2620°6	318.60
	9.458	ERR	67.R	ERR.	13.878	22.962	15.121	19,954	17,395	-0°-000B	ERR	ERR	ERR	0.0115	0.0142 (0.0148	0.0134	0.0156	318,52
	0.487	ERR	993	ERR	13.967	23.120	15.229	20.078	17.483	0.0049	ERR	ERR	E 84	0.0148	0.0262 (0.0180	0.0708	0.0149	319.30
	0,500	EPR	ERR	ERR	14.108	23, 356	15.367	20.243	17.654	0.0012	EBR	ERR	EER	0.0128	0.0214 (0.0125	0.0147	0.0155	319.65
	0.122	EAP	ERG	ERR	14,160	23, 445	15.462	29.338	17.733	-0.0084	ERR	ERR	EPR	0.0056	0.0095 1	0.0102	19197	€00°°0	320.AB
	9.461	ERR	68B	ERR	14.229	23.530	15.531	20.393	17.838	0.0126	ERR	ERR	88	0.0221	0.0273 (0.0221	0.0179	0.0336	320.34
	0.481	ERR	58B	EFR	14 347	23.769	15.656	20.561	17.989	0.0016	E 29	ERR	883	0.0095	0.0192 (0.0100	0.0134	0.0171	320.66
	0.438	ERR	EFR	ERR	14.528	23.953	15.797	20,689	18.153	-0.0038	ERR	ERR	ER9	0.0160	0.0163 (0.0125	0.0113	0.0145	321.16
	0.441	ERR	EPR	843	11.577	24.157	15 945	20.892	18.317	0.0003	EFR	EFP	ERR	0.6015	0.0184 (0.0134	0.0184	0.0149	321.62
	0.458	ERR	ERR	ERR	14.739	24.376	16.155	21.105	18.527	0.0013	ERR	ERR	ERR (0.0125	0.0173 (9,0165	0,0168	0.0165	322.12
	0.471	ERR	653	ERR	14 847	24.596	16.279	21.243	18.691	0.0012	ERP	ERR	843	0.0077	0.0204 (0.0115	0.0128	0.0152	322.61
	0.520	ERR	ERR	ERR	15, 903	24,813	16.470	21 394	18,848	0.0036	ERR	ERF	EFR	0.0118	0.0158 (0.0139	0110.0	0.0115	323.12
	0.477	ERR	ERP.	E P.F.	15.220	25,170	16.719	21.736	19.193	0100.0-	893	ERR	ERR	0.0072	0.0152 (0.0106	0.0137	0.0146	323,89
	0.454	EPR	EFR	ERA	15.407	25, 515	£6.95B	21.991	19.442	-0.0020	ERR	ERP	ERR	0400-0	0.0165 (0.0115	0.0132	0.0119	324,87
	0.484	ERP	ERR	ERR	15.437	25.636	17 034	22.047	19.537	0.0042	ERR	883	ERR (0.0042	0.6174 (9,0108	0,00.80	0.0137	375. Q U
	0.513	ERP	688	ERR	15.512	25.718	17.024	22,080	19.596	0.6025	ERA	E A B	EFA	0.0242	0.0263 -(0.0032	0.0105	0.0187	325.61
	0.490	883	599	EPR	15.591	25.777	17.159	22.188	19.672	-0 0014	EP.R	EPP	ERR	0.0087	0.0075 (0.0170	0.0137	0.0095	325,84
	0.490	523	EFR	ERF	15.639	25.899	17.237	22.290	077-01	0.0000	ERR	ERR	ERR (0.0076	0.0187 (0.0122	0.0157	0.0152	326.14

•

TABLE R.S - ONE-DIMENSIONAL SLOPE DISPLACEMENTS AND VELOCITIES, SLOPE DISTANCE COMPONENT, PARE 3 0F 4.

Note: Slope Distance is the Direct Reading From the Electronic Bistance Measuring Instrument to the Target.

	Velocity Median	Bays	326.37	326.67	327.09	377.40	327.55	327.80	328.26	328.76	329,16	336.17	331.09	331.22	331.49	331.84	332.17	332.48	332.84	333.19	333.49	333.99	334.50	334,84	335.17	375.48	335.82	336.15	336. 🛤	336.82	337.16	337.49	337.84	3.18.17	338.48	338,82	339.13	319. HB	110° 64
80¥ []			0 00 1	0.0133	0.0123	0.0163	0.0123	0.0126	0.0097	0.0128	ERR	EPR	ERR	EoR	EPR	0.6203	0 0253	-0,0032	0.0037	0.0075	0.0162	0.0039	0.0152	0.0104	0.0087	0.0050	0.0137	0.9137	0.0058	0.0115	0.0079	0.0042	9110°ó	0.0207	0.0092	0.010.0	0.6109	0.0104	0.0033
348			0.0036	0.10.0	0100.0	9.0273	0.0082	0.0113	0.9118	0 0007	ERR	ERR	599	ERR	ERR	0.0278	509	EPP	0.0060	2000 0-	0.0132	0.0067	0.0133	0.0083	0.0075	0.0055	0.0137	0.0013	0.0090	0.0103	0.0075	0.0014	0.0109	0.0191	-0,0055	8.00.5	0.0115	0.0107	0.0005
r) 388			0.004	0.0078	0.0103	0.0150	0.0968	0.0116	0.0116	0.005l	0.9154	EPR	ERR	ERR	EPR	0.0220	0.0008	6.0178	0.0040	-0.0014	0.0162	0.0033	0.0078	0. 00B7	0.0141	-0.0014	0.0126	0.0011	0.0122	0.0081	0.0088	0.0076	0.0062	0.0054	0.0114	0.0067	0,0082	0110.0	0.0922
(feet/hor 378			0.0108	0.0140	0.0197	0.0059	0.0150	0.0096	0.0168	0.0140	0.0234	0.0122	0.0311	0.6061	0.0106	0.0240	0.0099	0.0159	0.0083	-0.0052	0.0269	0.0078	0.0125	0.0137	0.0099	0.0105	0.0137	0.0175	0.0068	0.0129	9.0079	0.0076	0.0137	0.0104	0.0068	0.0115	0.0115	0.0134	0.0093
VELOC11Y 268			9.00.6	0.0114	0.0123	-0.0013	0.0668	0.0130	9.0012	0.0120	0.0220	0.051	-0.0261	0.0311	0.0019	0.0302	-0, 00nB	0.0150	0.0037	-0.0938	0.0107	0.0059	0.0086	0.0041	0.0124	0.0050	0.0074	0.0241	-0.0965	0,0085	0.0071	0.0034	0.0075	0.0104	-0° 0002	0.(052	0.0098	0.0095	-0.0115
ONPONENT 258			ERR	EPR	ERR	EPP	ERR	ERA	ERR	ERR	ERR	EPR	ER9	ERR	EER	ERR	ERR	ERR	ERR	ERR	EFR	ERA	E P P	ERR	ERR	883	ERR	683 683	ERR	ERR	ERR	ERR	ERR	ERR	EBB	ERR	ERR	ERR	ERB
τ 238		i	EHK	ENS	88B	ERR	ERR	EPR	ERP	ERR	ERR	ERR	ERR	ERR	EPR	EPR	ERR	EPP	ERR	2 G R	ERR	ERR	ERR	ERR	ERK	EPR	ERE	ERR	ERR	EPR	ER E	EPR	ERR	ERR	598	599	ERA	ERR	ERR
228		ł	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	EPR	ERR	ERR	ERR	ERR	ERR	EFR	ERR	EPP	ERA	ERR	ERR	EPR	ER8	ER9	ERR	ERP	55	EPR	ERR	ERR	ERR	E P.B	ERR	EPR	ERA	ERR	ERR
218			-0.9024	0.0026	-0.0057	0.0065	0.0000	0.0014	-0.0034	0.0040	0.0088	-0-0024	-0.0162	-0.0015	0.0934	0.0149	0.0058	0.0055	0.0010	0.0071	0.0081	-0.0065	9.0008	0,0912	0.0041	0.0009	0.0011	0.0120	0.0104	9.0037	0.0004	-0.0034	0.0008	0.0075	0.00%	0.6011	1100.0	0.0039	0.0044
80¥ } [111.61	19.91	29.033	20.115	20.144	20.266	20, 387	20.535	ERR	ERR F	ERB .	ERR	21.223	21.384	21.584	21.561	21.598	21.663	21,789	21.850	21.978	22.060	22.129	22.165	22, 286	22.368	22.421	22.523	22.592	22.618 -	22.710	22.874	22.815 -	22.903	22.969 -	23.084	23.103 -
3 68			22.506	22.437	22.477	22.615	22.634	22.743	22.890	23.002	ERR	ERR	EAR	ERR	23.655	23.874	ERR	23.999	24.058	24.055	24.157	24.265	24.376	24.442	24.517	24.557	24.678	24,698	24.780	24.872	24.978	24.957	25.042	25.193	25, 154	25.210	25.279	25.397	25.490
feet) 388			111.289	17,359	17.460	17.536	17.552	17.664	17.808	17.867	17.982	ERR	ERR	ERA	18.530	18.794	18.710	18.838	19.927	18.917	19.042	19.094	19.176	19.245	19.357	19.347	19, 158	19.465	19.577	19.449	19.71	19.780	19.829	19.872	19.954	20.013	20.052	20.183	29.197
HENT (in 378			R . C	26.089	26.282	26.312	26, 348	26.440	26.659	26.811	26.985	27.487	27.569	27.595	Z7.687	27.877	27.556	28.071	28,153	28.116	28.323	28,448	28.553	28.661	28.740	28.815	28, 937	29.042	29, 104	29.219	29.278	29.343	29.452	29.534	29.583	29.685	29.754	29.901	29.957
DISPLACE 268			19.647	15.76	15.983	15.876	15.893	16.017	16.970	14.208	16.372	16.582	16.513	16.647	16.664	16.903	16.876	17.095	17.041	17.015	17,097	17.192	17.264	17.297	17.395	17.431	1.497	149-71	17.592	17.658	17.710	17.749	17.793	17.881	17.877	17.923	17.982	18.087	18.019
UMULATIVE 258			NH N	EPR	ERR	ERR	ERR	SRR	ERR	588	ERR	ERR	ERR	ERR	EPP	ERR	ERR	ERR	ERF :	E E	ERR	ERR	ERR	ERR	ERR	ERR	5 P.P	ERR	ERP	ERR	ERR	ERR							
C 238		a L		ERR	555	ERR	ERR	ERP	ERR	ERR	ERR	EPR	ERP	ERR	59R	ERA	EPR	ERR	EPA	843	ERR	59.P	EAR	ERR	883	585 1			ERR	ERR	ERR	EPR	ERR	ERA	EPF	EPA	EPR	5.P.F.	ERR
22B		2	E	ERR	ERR	ERR	ERR	ERR	EPR	ERR	EPP	ERR	EPR	ERR	ERR	£88	ERR	ERR		EHE I	ERP.	EPR	ERR	ERR	ERB	52 8	883	59.8	ERP	ERP	ERR	EPR							
218			174-0	9.504	0.448	0.48	0.481	0.494	0.451	0.497	0.563	0.464	0.422	0.415	0.445	0.563	9.517	0.556	0.566	9.517	0.579	0.474	0.481	0.430	0.458	9.465		9.2.6	0 42 I	0.484	0.487	0.458	91 (9.523	0.454	9.464	0.458	0.500	0.474
	ſ	zyeu 10 102	969.92	526.88 51	327.29	327.50	327.60	328.90	329.52	329.00	329.31	551.02	331.13	331.31	331.67	332.00	332, 33	332.63	333.04	333.33	333.65	334.32	334.67	335.00	335.33 	525.63	355.9U	220-02	536.65	337.00	337 - 31	337.67	338.00	338.33	338.63	339.00	339.25	339.71	339.96
	g Dete			06 EZ	.09	12.00	14.30	24.99	12.39	24.90	1.30	0° 20	3.00	7.30	15.00	24.00	8, 00	15.00	1.00)	8.90	15.30	7.45	16.00	21.09	8,00	6.C	64 - 17	6. UJ	19.99	21-00	7.30	الا زرق	21.00	9,00	15.00	24.00	(i) (i)	11 - 00	23.00
148561	Tero Keadir Tero feadir Ort	975U 875U 875U	11 23 ADM	A/ 77 ALM	NDV 23 79	Nev 23 79	Hov 23 79	Nov 23 79	Nov 24 79	Mav 24 79	Mov 25 79	Mor 27 79	Nov 27 79	Nev 27 79	FI TS VON	Nov 27 79	Nov 28 79	May 28 79	Nov 29 79	번av 29 79	40% 29 79	Nov 30 79	Nov 30 13	Nov 30 79	Bet 01 /7	11 11 120 14	56C 01 /3	6/ 76 380 5/ 72 30	167 17 18	Dec 92 79	Ber () 79	Dec 03 79	Der (13 29	Ber (1179	Dec 04 73	Bec 04 79	0ec 05 77	Ber 05 79	Der 25 79

•

TARLE R.S. - ONE-DIMENSIONAL SLORE DISPLACEMENTS AND VELOCITIES, SLOPE DISTANCE COMPONENT. PAGE 4 DF 4.

Note: Slope Distance is the Direct Reading from the Electronic Distance Measuring Instrument to the larget.

 218	[25B	218		22 8	CL 238	MULATIVE 258	DISPLACE) 268	tENT (in) 378	feet) 38B	398	408 1	218	22B	23B	PONENT VE 258	LOCITY (26B	feet/hour 375	388	862	80 4	
Bate													·				-				eloci) Hediar
fiæe Days	Bays																				Ūays
6.09 349.25 0.497 ERR ERR ERR 18.173 39.039	349.25 0.497 ERR ERR ERR 18.173 30.039	0.497 ERR ERR ERR 18.173 30.039	ERR ERR ERR 18.173 30.039	ERR ERR 18.173 30.039	ERR 18.173 30.039	18.173 30.039	30.039		20.259	25.498	23. 205	0.0033	ERR	ERR	ER8	,0222	0.0118	0.0104	0.0141	0.0146	340.11
14.30 349.60 9.490 ERR ERR ERR ERR 30.137	349.60 9.490 ERR EPR ERR 50.137	0.490 ERR ERR ERR ERR 30.137	ERR ERR ERR 50.137	ERR ERR ERR 30.137	ERR ERR 30.137	ERR 30.137	30.137		20.341	25.544	23. 29	-0.0008	ESP	ERR	EF.	ERR .	0.0117	0.0055	0.0055	0.0195	349.43
24.00 341.00 0.464 ERR ERR ERR 18.268 30.242	341.00 0.464 ERR ERR ERR 18.268 30.242	0.464 ERR EPR ERR 18.268 30.242	ERR ERR ERR 18.268 30.242	EPR EPR 18.268 30.242	ERR 18.268 30.242	18.268 30.242	39.242		ERR	ERA	599	-0.0027	ESR	ERR	ERA	ERR	0.0109	EP3	E89	883 1	340.80
7.00 341.29 0.510 EBR EPR EPP 18.412 30.367	341.29 0.519 ERR ERR ERR 18.412 39.367	0.519 ERR EPR EPR 18.412 30.367	ERR ERR ERR 18,412 39,367	EPR ERR 18,412 39,367	ERR 18,412 39,367	18.412 39.367	39.367		20.535	25.761	23.507	0.0046	ERR	EBB	EPR	0.0207	0.0179	ERR	599 1993	ERP	341.15
17.09 341.71 0.481 ERR EFR ERR JE.415 30.436	341.71 0.481 ERR EFR ERR 18.415 30.436	0.481 ERR EFR ERR 18.415 30.436	ERR ERR ERR 18.415 30.436	EFR ERR 18.415 30.436	ERR 18.415 30.436	18.415 30.436	30.436		20.567	25,790	23.536	-0.0029	EPR	ERR	EBR	0.003	0.0068	0.0033	0.0029	0.0029	341.50
23.30 341.98 0.517 EAR EAR EAR 18.481 30.544	341.78 0.517 EAR EKR ERP 18.481 30.544	0.517 ERR ERR ERR 18.481 30.544	ERR ERR ERR 18.481 JO.544	EKR ERR 18.491 JO.544	ERP 18.481 30.544	18.481 30.544	30.544		20.640	25.849	23,648	0.0056	ERR B	EPP	843	.0101	0.0167	0.0111	0.0091	0.0172	341.85
8.30 342.35 0.467 ERR ERR ERR 18.511 30.669	342.35 0.467 ERR ERR ERR 18.511 30.669	0.467 ERR ERR ERR 18.511 30.669	ERR ERR ERR 19.511 30.669	EPR ERP 18.511 30.669	ERR 18.511 30.669	18.511 30.669	30.669		20.754	25, 951	23.740	-0.0055	ERR	ERR	ERR	0.0033	0.0140	0.0129	0.0115	0.0101	342.17
15.60 342.63 0.448 ERP ERR ERR 18.543 30.698	342.63 0.448 ERP ERR ERR ERR 18.543 30.698	0.448 ERP ERR ERR 18.543 30.698	ERP ERR ERR 18.543 30.698	ERR ERR 18.543 30.699	ERR 18.543 30.699	18.543 30.698	30.698		20.741	25, 941	23.717	-0.0029	523	ERR	FR3	0019	0.0044 -	0.0020	-A. 0015	-0-0014	342.49
22,00 342,93 0,487 ERR EPR ERR 18,412 30,800 2	342.93 0.487 ERP EPR EPR 18.412 30.800 2	0.487 ERR EPR ERR 18.412 30.800 2	ERR EPR ERR 18.412 30.800 2	EPR ERR 18.412 30.800 2	ERR 18.412 30.800 3	18.412 30.800 3	30,800		20.820	26.004	23. 784	0.0055	ERR	ERR	ERR	9600 8	0.0141	0.0109	0.0987	9600.0	342.78
15,30 344.65 0.474 ERR EPR ERR 18.862 31.210 2	344.55 0.474 ERR EPR ERR 18.862 31.210 2	0.474 ERR EPR ERR 18.862 31.210 2	ERR ' EPR ERR 18.862 31.210 2	· EPR ERR 18.862 31.210 2	ERR 18.862 31.210 2	18.852 31.210 2	31.210 2	~	1.096	26.319	24.127	-0.0003	EPR	EPP	ERA	0.0060	0.0099	0.0067	0.0076	0.0683	343, 79
23.39 344.78 0.490 ERR EFR ERR 18.927 31.315	344.78 0.470 ERR EFR ERR 18.727 31.315	0.470 ERR EPR ERR 18.727 31.315	ERR EFR ERR 18.727 31.315	EPR ERR 18.927 31.315	ERR 18.927 31.315	18.927 31.315	31.315		21.204	26.391	24.258	0.0021	EF.R	EPR	ERA	0.0083	0.0133	0.0137	0.0091	0.0166	341,82
7,30 345,31 0.458 EAR EPR EPR 18,954 31.341	345.31 0.458 EAR EPR ERR 18.954 31.341	0.458 ERR EPR ERP 18.954 31.341	ERR ERR ERR 18,954 31.341	EPR ERR 18,954 31.341	ERR 18,954 31.341	18,954 31,341	31.341		21.210	26.401	24.255	-0.0041	ERR	ERR	EK8	0.0033	0.0033	0.0008	0.0012	+000°0-	345.15
15.30 345.65 0.438 ERR ERR ERR 18.983 31.443	345.65 0.438 ERR ERR ERR 18.983 31.443	0.438 ERR ERR ERR 18.983 31.443	ERR ERR ERR 18.983 31.443	ERR ERR 18.983 31.443	ERR 18.983 31.443	18.983 31.443	31.443		21.283	26.450	24.327	-0,0024	EKR	ERR	ERR	0.0036	0.0125	0.0088	0.0069	0.0088	345.48
15.00 346.65 0.471 ERR ERR ERR 19.167 31.834	346.63 0.471 ERR ERR ERR 19.167 31.834	0.471 ERR ERR ERR 19.167 31.834	ERR ERR ERR 19.167 31.834	EPR EPR 19.167 31.834	ERR 19.167 31.834	19.167 31.834	31.834		21.463	26.647	24.540	0.0014	EPR	ERR	ERR	0.0078	0.0166	0.0077	0.0084	1600.0	346.14
23.39 346.99 0.497 ERR ERR ERR 17.226 31.817	346.99 0.497 ERR ERR ERR 17.226 31.817	0.497 ERR ERR 17.226 31.817	ERR ERR ERR 17.226 31.817	ERR ERR 17.226 31.817	ERR 19.226 31.817	19.226 31.817	31.817		21.552	26.732	24.665	0.0031	ERR	ERR	ERR	- 0190.0	0.0020	0.0105	0.0102	0.0148	346.81
7.30 347.31 0.464 ERR ERR ERP 19.242 31.850	347.31 0.464 ERR ERR ERP 19.242 31.850	0.464 ERR ERR ERP 19.242 31.850	ERR ERP 19.242 31.850	EKR ERP 19.242 31.850	ERP 19.242 31.850	19.242 31.850	31.850		21.624	26.752	24.675	-0-041	EPR	EPR	E B B	9. 0021	0.0041	0.0091	0.0025	0.0012	347.15
17.30 347.73 0.595 ERR EPR ERR 19.423 ERR	347.73 0.595 ERP EPR ERP 19.423 EPR	0.595 ERR EPR ERR 19.423 EPR	ERR EPR ERR 19.423 ERR	EFR ERR 19.423 ERR	ERR 19.423 ERR	19.423 EPP	ERR		21.722	26.945	24.895	0.0130	ERR	ERR	EPR	62 I û 1	ERR	0.0098	0°0172	0.0218	347,52
23.00 347.96 0.507 EAR EAR EAR EAR	347.96 0.507 EAR EAR EAR EAR	0.507 EAR EAR EAR EAR	ERR ERR EPR ERR	EPR EPP ERR	EPP ERR ERR	ESR ERR	ERR		21.912	27.080	25.049	-0.0160	EPR	ERR	ERR	EPR	ERR	0.0345	0.0244	0.0279	347.85
16.3 ⁴ 349.69 0.507 ERR ERR ERR 19.574 32.352	349.69 0.507 ERR ERR ERR 19.574 32.352	0.507 ERR ERR ERR 19.574 32.352	ERR ERR ERR 19.574 32.352	ERR ERR 19.574 32.352	EPR 19.574 32.352	19.574 32.352	32.352		21.968	27.113	25. 111	0.0000	ERR	ERR	ERP	ERR	ERR	0.0013	0.0008	0.0022	346.BJ
23.30 349.98 0.520 ERR EPR ERR 19.646 32.470 2	349.98 0.520 ERR EPR ERR 19.646 32.470 2	0.520 ERR EPR ERR 19.646 32.470 2	ERR EPR ERR 19.646 32.470 2	EPR ERR 19.645 32.470 2	ERR 19.646 32.470 2	19.646 32.470 2	32.470	1.4	2.047	27.231	25.220	0.0019	ERR	ERR	EPR	0.0104	0.0170	0.0113	0.0170	0.0113	
7,00 350.29 0.533 ERR ERR ERR 19.741 32.565 2	359.29 0.533 ERK EPR ERR 19.741 32.565 2	0.533 ERK EPR ERR 19.741 32.565 2	ERR ERR ERR 19.741 32.565 2	EPR ERR 19.741 32.565 2	ERR 19.741 32.565 2	19.741 32.565 2	32.565 2	~	2.119	27.270	25.302	0.0018	ERR	ERP	ERR	0.0128	0.0128	0.0097	0,0053	9.0119	350,14
17.00 350.71 9.594 ERR ERR ERR 19.741 32.631 2	350.71 9.594 ERR ERR ERR 19.741 32.631 2	0.594 ERR EAR EAR 19.744 32.631 2	ERR ERR ERR 19,744 32,631 2	ERR ERR 19,741 32,631 2	ERR 19.741 32.631 2	19.744 32.631 2	32.631 2		22.198	27.329	25.318	-9.0929	EPR	EBB	EPR	0.0003	0.0065	0.0078	0.0059	0.0010	350.50
23.0) 359.96 0.513 ERR ERR ERR 19.800 32.680	359.96 9.513 ERR ERR 19.800 32.680	0.513 ERR ERR ERR 19.800 32.680	ERR EFR ERR 19.800 32.680	ERR ERR 19.800 32.680	ERR 19.800 32.680	19.800 32,680	32,680		22.227	27.349	25.357	0.0016	ERR	ERR	ERR	0.0093	0.0082	0.0049	9.0033	0.0077	350.84
7.00 351.29 0.523 ERR ERR ERR 19.819 32.736	351.29 0.523 ERR ERR ERR 19.849 32.736	0.523 ERR ERR ERR 19.849 32.736	ERR ERR ERR 19,849 32,736	EER ERR 19.849 32.736	EAR 19.849 32.736	19.849 32.736	32.736		22.283	27.398	25.429	9.0012	EPR	EPA	5.F.F	2900.0	0.0070	010010	0.0062	0.0091	351,13
19.00 351.75 0.566 ERR ERR ERR 19.944 32.923	351.75 0.566 EPR ERR ERR 19.944 32.923	0.566 EPR ERP ERP 19.944 32.923	EPR ERR ERR 19.944 32.923	ERR ERR 19.944 32.923	ERR 19.944 32.923	19.944 32.923	32.923		22.378	27.450	25.485	0.0039	ERR	EPR	665	0.0086	0.0169	0.0086	0.0048	0.0051	351.52
8,00 352.33 0.513 ERR ERR ERR 19.984 32.939	352.33 0.513 ERR ERR ERR 19.984 32.939	0.513 ERR ERR ERR 19.784 32.939	ERR ERR ERR 19.984 32.939	EPR ERR 19.984 32.939	ERR 19.984 32.939	19.984 32.939	32.939		ZZ. 428	27.546	25.603	-0.0038	EAP	ERR	ERR	0.0028	0,0012	0.0035	0.0068	0.0085	352,04

DECDEEC

ANGLES IN DEGREES

APPENDIX C

PIEZOMETER DATA AND PLOTS

TAPLE C.1 - SEQUADRATER ELEVATIONS AND FIEZOMETER READINGS. PAGE 1 OF 2.

Mate: Fiecometer Nests B94, 007, and R08 Consist of 2, 3, and 3 Individual Standpipes per Hole, Respectively. Fiecometer 804A is Plugged and Exhibits Very Slow Response.

]	-	GROUNDWAT	ER ELEVAT	IDNS (in)	fæet)		-] [*****	4	EZONETER	BROPLINE	READINES	tin metre	5)	(
PJE20%ETEK		E04A	8048	B07A	B-07B	B07C	BOBA	8089	3080	8044	8048	807A	B078	807C	BOBA	8804	3608
Batum Elevation. Screen Elevation.	ងនេះទ សំពុង	5695.90 5396.99 5446.99	5695.74 5246.00 5296.00	5639.94 5493.00 5523.00	5641.69 5342.00 5372.09	5641.22 5194.00 5224.00	5635.20 5488.09 5518.00	5635, 60 5339, 00 5389, 00	5635.83 5190.00 5220.00			·					
Bate Iise	5 Å ë Q																
Mar 01 79 13.00	60.54	5587.08	5570.68	5596.15	5567.31	5489.25	5504.46	5564.47	5508.71	33.17	38,12	40.78	22.67	46.32	39.85	71.68	39.05
Apr 04 79 10.00	94.42	5586.91	5565.85	5514.42	5562.95	5488.86	5514.07	5563.16	5508.22	33.22	39.59	38.26	24.00	19.44	36.92	22.08	39.20
Hay 02 79 14.04	123.58	5586.85	5562.74	5534.76	5569.85	5487,68	5552.75	5558.40	5504.97	33.24	60.54	32.06	24.64	46.80	25.13	23.53	40.19
Nay 19 79 10.00	130.42	5586.75	5562.80	5539.09	5561.08	5485.46	5552.16	5557.71	5503.73	33.27	40.52	30.74	24.57	47.17	25.31	23.74	40.57
May 17 79 10.00	137.42	5586.68	5563.29	5539.32	5562.36	5486.27	5553.15	5557 32	5503.14	33.29	40.37	30.67	24.18	47.23	25.01	23.86	f0.75
Hay 25 79 14.00	143.58	5586.65	5564.38	5552,01	5564.79	5484, 73	55 19.57	5553.88	5503.50	33, 30	10°0	26.80	23.4	17.70	26.10	24.91	10.61
May 24 79 11.00	90°648	5586.58	5565.56	5550.41	5567.87	5484.79	5535.20 5533.20	5555, 09	5504.91	33.32	39.68 20.65	27.29	22.50	47.68	30.48	24.51	#0.21
00.11 V/ V/ nut	61 - CCI	CC.9900	9368.28 55.0 23	3349.49	3379-36	2484.2/	5522.21	3557.92	c/ .90cc	53.53	CB - B.	16.12	21.68	. 8		23.93	39.63
UNA 11 /7 17.00	4C.741	2049.37 5581 55	3367.77	3398.99 55.7 87	19/1/00	2465.44 5404 70	19-1200	3336, 34 5554 88	07.90CC	57° 55	14.41 17 60	BV - 12	42°17	47.45 47.48	33,65 71 71	24.10 57	37.80 10.01
Un 27 70 10 00	100,701 110 47	1000000 5506 57		11 1111	71.7.155 71.7.175	71.1012	47 DICC	5014111 5551 02	10.07.07	10,00	31,100	DA 27	V7.112	00 / L	97.00 11 64	10.42	40.VI
Jul 06 73 10.00	187.42	5586.52	5573.40	5547.48	5573.81	5484.89	5510.79	5552.94	5504.48		00°.00	28-12	20.49	11.10	37.97	25, 19	40.31
Jul 12 79 9.00	193.38	5585.49	5573.76	5548.50	5573.71	5484.99	5518.40	5552, 53	5594.42	33.35	37.18	27,87	20.72	47.62	35.60	25.32	40.36
00-11 67 91 100	200.46	5586.49	5573.56	5546.14	5573.25	5485.05	5596.59	5552.10	5503.43	33.35	57.24	28.57	20.86	47.60	39.20	25.45	40,66
Jul 25 /7 13,00	109124	5586.45	5573.63	5545, 91	5573.96	5 86 66	5505.15	5551.55	5502.22	33 34	37.22	28.66	20.92	47.11	39.64	25.62	11. 03
Aug 01 79 14,00	213.58	5586.45	5573.30	5547.22	5572.27	5485.45	5510.07	\$550,82	5501.83	33.36	37.32	28.26	21.16	47,48	38.14	25.84	41.15
Aug 07 75 14.00	219.58	5586.42	5512.97	5549.03	5571.48	5483.91	55%6.82	5548,40	5500.64	33.37	37.42	27.71	21.40	47.95	39.13	26.58	41.51
Prid 14 79 13.00	226.54	5586.42	5572.74	5559.34	5571.05	5483.51	S504, 89	5547.08	5499.13	33, 57	37.49	27.31	21.53	#B. 07	39.72	26.99	10.11
Aug 21 79 13.09	233.54	5586.42	5571.69	5547.95	5569.61	5482.49	5501.21	5519-72	5175 36	33, 37	37.81	28.04	21.97	48, 38	40.84	35.32	43.12
Pug 27 79 13.09	219.54	5597,57	5570.91	5550.77	5568.27	5-181-25	5504.10	5511.59	2492.74	33.02	38.05	27.18	22.38	4B.76	19.96	37.80	13.92
Sep 06 79 12.00	249.50	5586.58	5568.90	5548.93	5566.17	5480.20	5497.60	5596.86	2191.33	31.32	38.66	27 74	23.02	₽ 0`0₽	1 o 1	39.21	H. 35
Sep 14 79 15 09	257.54	5586.35	5567.40	5546.67	5564.13	54.79,41	5497.34	5504.07	5491-00	33, 39	39.12	28.43	23, 64	49.32	42.02	40,09	11,15
Sep 21 79 13.00	264.54	5596.42	5566.92	5544.14	5562.59	5479.35	5497 34	5502.20	5491.29	33.37	39.54	29.20	24.11	10, 34	42.02	40.66	44,36
Sep 28 79 13.00	271.54	5586.55	5564.77	5542.30	3569.95	5478.95	5496,82	5501.59	5495.10	33.33	39.92	24 76	24.6	\$5.46	12.18	10.85	13.81
19-1 64 79 19-00	277.58	5586.65	5563.19	5541.78	5559.80	5479.64	5496.36	5501.02	5475.43	33.30	£9° €3	29.92	24.96	49.25	12.32	1.02	13.10
Urt 12 /9 14.00	283.58	5586.71	5561.29	5540.86	5557.73	5478,69	5496. 72	5509.79	5435 ÚJ	33. ZB	B6°6≱	30.20	25.59	19.54	12.33	•1°04	13.22
0ct 17 79 15.00	299,62	5586.45	5553.78	5543.29	5556.26	5478.36	5496.42	5500.46	5493.85	33.36	41. 38	29.45	26.04	40°	42.30	41.19	13,58
0rt 24 // 13.69	237.54	5586.39	5558.14	5543.68	5554.03	5477.28	5497.37	5500.17	5432.25	33, 38	6	29.3	26.72	19.97	42.01	41,28	44.07
0rf 30 79 13.00	303.54	5586.39	5556.50	5541.52	5552.39	5476.66	5497.18	5199.94	5 191 00	33.38	42.44	30.09	27.22	50.16	\$2.07	41.35	44.45
Nov 45 79 12.00	307.50	EPR	£PP	5542,11	5551.53	5476.29	5504.62	5439,91	5499.11	ERR	EPP	29.82	27.48	50.27	11.92	41.35	44.72
Nov 06 19 12.00	319.50	EER .	EPR	5542, 11	5550.55	5475.93	5500.46	2499,91	5486.70	ERR	ERR	29.82	27.78	50.38	41.07	41.36	45.7 6
Nov 19 79 12.00	314.50	EPS	f P.P.	5549.53	5548,58	5472.59	5500.33	5499.84	5438.41	EPR	ERR	30.30	28. 38	51.40	1 1.11	€1. 38	60.48
Nov 13 77 12.40	317.39	а: Ц.	ERR	5539.22	5546.45	5465.39	5500.06	5199, 61	5418.49	668	ERR	39.70	29.03	53.29	11.19	41.45	66.55
Nev 16 79 12.09	320.59	EF9	EPP	5538.16	\$545.40	5459.17	5500.00	5499.45	5407.76	EPR	5P.P	39.93	29.35	55.49	11.21	41.50	69.B2
Nov 20 73 12.60	324.50	EFR	ERR	5536, 37	5543.50	5451.59	5499.83	5499,09	5397,00	699	ERR	31.57	29.33	57.80	\$1. 26	41.61	73.10
Mov 25 79 12.00	327.59	ERR	ERR	5533.84	5540.48	5146.60	5439.67	5498.99	5371,85	ERR	ERR	32,34	30.85	59, 32	41.31	41.64	74.67

TARLE C.1 - GROUNDHATER ELEVATIONS AND PIEZONFIER READINGS. PAGE 2 OF 2.

Note: Piezometer Nests 804, 807, and 808 Consist of 2, 3, and 3 Individual Standpipes per Hole, Respectively. Fictometer 8044 is Plugged and Ethibits Very Slow Response.

PIEZOMETER BROPLINE READINGS (in ≪etres) B04B 807A 8078 807C 808A 8 B04A -----} [-----3808 8088 B04A B04B 807A B07A B07A B08A GROUNDWATER ELEVATIONS (in feet) -----] FIEZOMETER

3808C

8088

Batum Eleva Screen Elev	stion ation,	base top	5695,90 5396,00 5446,00	5695,74 5286,00 5296,00	5639.94 5493.00 5523.00	5641.69 5342.90 5372.00	5641.22 5194.00 5224.00	5635.20 5488.00 5518.00	5635.60 5339.00 5389.00	5636.83 5190.00 5220.00								
Uste	Ť I R C	Ûdys																
Mov 27 75	12.69	331.50	EPA	ERR	5530.26	5535.13	5443,98	5499.47	5498.23	5386.73	ERA	ERR	33.43	32.48	60.12	41.31	41.87	76.23
No.4 50 73	12,00	334,50	ERR	EPR	5526.10	5535.49	5443.58	5499.80	5476.10	5382.40	ERR	ERR	34.70	32.37	60.24	11.27	12.52	77.55
Dec 05 79	12, 40	339,50	ERR	ERR	5525.93	5531.16	5447.49	5509.20	5497.81	5381.49	ERR	ERR	34.75	33.69	59.05	11.15	12,00	17.83
Dec 28 79	12.09	362.59	598	ERR	5514.07	5522.14	5446.60	5499.67	5491.28	5402.06	ERR	SPR	38.38	36.44	59.32	11.31	43.99	71.56
Jan 04 30	12.00	369.50	ERR	5528,78	ERR	EPR	EPR	ERR	ERA	ERR	ERR	50.89	ERR	ERR	ERR	ERR	ERR	ERR
Jan 16 80	12.99	381.59	EPR	ERR	5511.56	5516.59	5453,95	5439.57	5488.55	5430.24	ERR	ERR	39.13	3 8. I 3	57.08	11.34	44,82	19.58
Jan 22 80	12.00	387.50	ERR	E88	5594.38	5473.99	5430.95	5504.82	5508.89	5451.53	ERR	ERR	11.32	45.92	64.09	39. 74	38.65	56.48
5만 18 원이	12.99	414.50	ERR	5517.56	5509.33	5508.62	5450.51	5499.67	5500.07	5421.38	ERR	54.31	39.81	40.56	58, 13	11:31	11.31	65,67

APPENDIX D

LOG OF COREHOLE E21-R50

, 	-	PIEZOMETER						
		OTHER TEST RESULTS						FIGURE D.1 E21-R50 1 of 4
	ار ۲00	DOUBLE SHEAR						
		FRACTURE FREQUENCY PER FOOT						
	E Z C	MOOR DESIGNATION 25 5008 CONTIN 25 5000 FAIR TION 25 5000 FAIR ON 75 6000 FAIR ON 75 75 75 75 75 75 75 75 75 75 75 75 75 7						
		SS3N08AH				жд Ж	R1 R1	<u>T</u>
		WATER LOSS 222				121	///	////
ſ		GRAPHIC LOG						
	IC LOG	DESCRIPTION AND REMARKS	Casing to 20' HQ core to begin with then change to NQ at 82'	Hole Station E21-R50 -60° to the N 30 E	20-28.2 Very soft Carbonaceous sandy clay 28.2-96 oxidized silty sandstone		1" of clay (carbonaceous) at 44.9	Fault Zone 57'-62' Broken core, iron stained gouge
	ပ ၀			20	23 28 28	32 37	43	52 57
	С 0				0 9 1	e e 6 85 0 0	r r r r r	8 v v v ⊼ 20
	GE				ت ت اللہ ا			
		t s		· · · · · · · · · · · · · · · · · · ·				
		PERCEN CORE LOSS -50 -25						
		Ф ОЕРТН	10	20				

Γ	PIEZOMETER						
	OTHER TEST RESULTS						FIGURE D.1 E21-R50 -
) LOG	DOUBLE SHEAR						
INEERING	FRACTURE FREQUENCY PER FOOT 1 2 3						
ENG	ROCK QUALITY DESIGNATION POOR POOR POOR POOR POOR POOR POOR PO						
		<u>R1</u>	R3 R3	R3	R3	R3	
	ек⊾рніс гое						•
c L06	DESCRIPTION AND REMARKS			Now drilling with NQ at 82' 96-138 slightly silty sandstone	Continuing good solid rock. Iron oxide stain- ing down to 96' except on some joints as noted	Sandstone has small (1/16 carbonaceous shale layers	
0 6 1		62 67	72	82 87.5	92 97	102	112 117
С 0		6	70 30 78	87 L 58	6 6 6 8 6 6 4	00 00 tt	75 76 75
ш Ю		<u> </u>	3 28 3	2 2 2		teor Contract	the state
	LYPE T	×					າໝີ ຜູ້ຜ 1.1.1111111 1.11111111
	PERCENT CORE LOSS 25 50 75						
	нтаза 🕱	02	80	06	100	110	120

Γ		NOTALATER NOTALATER	ਹ ਹ														
		OTHER TEST RESULTS			·····	r		T	1	1 1	r 1		T			FIGURE D.1	3 of 4
NEERING LOG	L C C	DOUBLE Shear															
		FRACTURE FREQUENCY PER FOOT I 2 3						1									
ENG	,	Х РООЯ DUALTY 2 POOR SIGNATON 5 POOR SIGNATON 5 COOD N 7 SGOOD N 7 SGOOD N															
		SSENDRAH	R2		TS IS	R2		R2		R3	R3		•••		+		
		WATER LOSS TZZ															
		BROKEN CORE												*****			
		6RAPHIC LOG	••••••	. ·					•	• • •				·			
IC L06		DESCRIPTION AND REMARKS	Core tube did not lock ground core	133 3" soft carbonaceous	ciay 135 1" " " clay 137 3" " " " "		138-141 Silty sandstone with some soft clay	layers 141 Slightly silty sand- stone							Iron stained joint - fault? making water at	20 gal/min	
-061			122 127	132	137		142	147	152	4) {	157	162	167	• •	-72	11.	
E O I	TIDEC		80 20 20		000 000 000	22	89	27 86	91 92	r 5	11	75	73	75	35	75]]	
υ		ТҮРЕ	्र् ब्रि संस ४ ४ ४ ४		5 50 ,	÷		<u>6</u>	5 5	<u>5</u> 5 õ	63	ں آغ	ు 	61 C	5 17-13	â]
		PERCENT CORE LOSS 25 50 75					<u></u>					Ī	<u>I</u>		<u> </u>		
		т 13 оертн	130		1 1 1	140	1-1			1 1	160	11	1	- 27	<u> </u>	1	٥ ۵

Γ	MOLTA IATZNI	Ţ				
	OTHER TEST RESULTS					FIGURE D.1 E21-R50 _
POG	DOUBLE SHEAR					
INEERING	FRACTURE FREQUENCY .PER FOOT					
ENG	V POOR DESIGNATION V POOR DESIGNATION S 600D N S					
	RERNESS	R3 R3 R3	R3 R3 R3			
	WATER LOSS ZZA					
	CRAPHIC LOG	·		•		
	X S N		atch ground			
IC LOG	DESCRIP. AND REMAR		Tube didn't c. core	TD 201'		
001C 100	DESCRIP. AND REMAR	182 187	192 197 Tube didn't c	201 TD 201'		
SOLOGIC LOG		182 187	res 192 197 Tube didn't c	201 TD 201'		
GEOLOGIC LOG		u 182 187	<pre>81 irrs der 192 81 irrs der 192 81 irrs 197 Tube didn[*]t ci core</pre>	201 TD 201'		
GEOLOGIC LOG	PERCENT FRACTURES FRACTURES CORE CORE CORE CORE CORE CORE CORE CORE	-\$3 182 187	- 81 mrg day 192 51 mrg day 192 51 mrg day 192 51 mrg day 192 52 mrg day 192 53 mrg day 192 54 mrg day 192 54 mrg day 192 55 mrg day 1	TD 201		

APPENDIX E

SLOPE STABILITY ANALYSES

TABLE E.1 - SUMMARY OF STABILITY ANALYSIS TRIALS

Figure	Trial	Failure	Phreatic	Fric	tion Ar	gles	Factor	Comments
Number	Number	Surface	Surface	ϕ_1	\$ 2	<u>Ø3</u>	of Safety	
E.1	AMT2	Bilinear	180-200	25°	35'	38'	0.985	No buttress
E.2	AMT3	\$1	11	11	¥¥	11	1.433	With buttress
E.3	AMT4	31	140-160	19	Ļ\$	fi	1.145	No buttress, Dewatered 40 ft.
E.4	AMT5	11	100-120	"	"	18	1.259	No buttress, Dewatered 80 ft.
E.5	AMT'6	44	6080	18	01	11	1.308	No buttress, Completely Dewatered
E.6	AMT43	13	180-200	н	F1	11	1.206	Half width buttress
E.7	AMT44	11	14	11	14	83	1.269	Half height buttress
E.8	AMT12	Curve 1		88	đ	18	1.121	No buttress
E.9	AMT13	91	"	11	H	It	1.503	With buttress
E.10	AMT15	**	30-30	н	16	11	1.411	No buttress, Completely dewatered
E.11	AMT14	Curve 2	180-200	и	"	11	1.137	No buttress
E.12	AMT22	Circles	11	13	81	83	1.130	No buttress Circle through toe
	AMT32AC	Curve 1	180-200	25°	31.3°	38°	0.986	Back calculate ϕ_2 to match AMT2
-	AMT33AC	It	17	"	14	11	1.368	With buttress
	AMT22AC	Circles	н	11	11	¥1	0.941	No buttress
-	AMT12C	Curve l	200-200	25°	35°	38°	1.027	Higher groundwater profile
-	AMT12CS	19	IJ	"	B)	\$1	1.024	25 ft. slices (vs. 50 ft. standard)
	AMT7E	Bilinear	30-30	24°	24°	38°	0.950	Back analysis, completely dewatered

TABLE E.1 - SUMMARY OF STABILITY ANALYSIS TRIALS (Continued)

Figure <u>Number</u>	Trial <u>Number</u>	Failure Surface	Phreatic Surface		tion A $\frac{\varphi_2}{2}$	ngles \oint_3	Factor of Safety	Comments
y	2 Mm E ()		100,000		20.1	201	0.004	
*	AMI'OZ	Bilinear	180-200	32.1	32.1	38-	0.984	NO DUTTRESS
****	AMT53	1 1	f1	¥I	31	31	1.550	With buttress
-	AMT54	11	140-160	"	89	**	1.154	No buttress, Dewatered 40 ft.
-	AMT55	11	100-120	**	14	11	1.282	No buttress, Dewatered 80 ft.
-	AMT56	u	30-30	**	19	13	1.343	No buttress, Completely Dewatered
	AMT62	ja	" C	$1 = \frac{0}{2}$	0 = 3900.	38 lb./ft.	0 . 984 2	No buttress, Undrained analysis
-	АМТ 63	84		"	01	н	1.053	With buttress, Undrained analysis
-	AMT72	Curve 1	180-200	32.1	32.1	38°	1.037	No buttress
-	AMT73	13	81	11		88	1.517	With buttress
	AMT75	11	30-30	11	и		1.333	No buttress Completely dewatered
-	AMT74	Curve 2	180-200	84		ta	1.049	No buttress
	AMT82AC	Curve 1	11	30.8	30.8	**	0.986	Back calculate ϕ_2 to match AMT52
-	AMT83AC	11	18	H	н	11	1.449	With buttress
	AMT92	11	30-30 cl	0 = c ₂ =	0 39001)	38 5./ft. ²	1.078	No buttress Undrained Analysis
	AMT93	11	11	11	FI	Ħ	1.142	With buttress Undrained Analysis

TABLE E.1 - SUMMARY OF STABILITY ANALYSIS (continued)

NOTES:

- Failure Surface: "Curve 1" and "Curve 2" are identical and parallel to the measured slope displacements, except that Curve 2 has no upward inclination at the toe of the failure.
- 2. Phreatic Surface: "180-200" refers to the elevation of the upper portion of the phreatic surface; "180" equates to 5480 feet (1670 metres) elevation at the "crest" of the piezometric surface near the slope; "200" equates to 5500 feet (1676 meters) the measured piezometric elevation is piezometer nest B08 distant from the slope.
- 3. Friction Angles: $|\phi_1|$ applies to disturbed material at the toe of the slope; $|\phi_2|$ applies to strata above the toe, parallel to bedding; $|\phi_3|$ applies to the rock fill buttress.

PROJECT : CRC PIT S1-B-2 ANALYSIS DESCRIPTION : AMT2

FIGURE E.1

JANDU ITERATIVE ANALYSIS

CORRECTION FRCTOR: 1.039 Fos convergence:

.989 .986

FINAL FOS = .985 RESISTING FORCE- 2957277 DRIVING FORCE- 3117992 <u>PROJECT</u> :CRC PIT 51-8-2 DATA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-8-2 MATERIAL PROPERTIES

NUMBER OF LAYERS : 3 NATER DENSITY : 62.4 (166/613)

LAYER DENSI	1 MATE TY : 12	RIAL PF 0.0 (11	OPERT1 of/ft3)	ES COHE	SIOH :	8.8 (15f/ft2)	PHI : 25.0 (deg)
LRYER (Densi) 2 MATE TV : 13	20181 PF	ROPERTI Sf/ft3)	ES COHE	SION ;	0.0 (16f/fi2)	PHI : 35.0 (deg)
LAYER DENSI	1 3 MATE 177 1 12	RIAL PI 5.0 (1)	ROPERTI S(/f(3)	ES COME	510H :	0.8 (16F/f12)	PHI : 30.0 (deg)
PROJECT	CCRC PI	T 51-8	-2				
LRYER (GEOMETRY						
LAYER (1 SURF	ACE (F	()				
×:	0.0	0.0	365.0	398.0	1966.0		
z:	6.9	50.0	50.0	72.0	72.0		
LAYER (2 SURF	ACE (F	1)				
XI	8.8	6.0	365.0	728.0	1888.0		
Z:	0.0	50. L	50.1	385. 0	305.0		
LAYER) 3 5URF	ACE (F	1)				
×:	e.e	8.8	365.0	728.8	1998.9		
2:	0.0	58.2	50.2	305,1	305.1		
PHREAT	IC SURFA	CE (FT)					
X:	8.6	365.0	598.0	1000.0			
Z :	30.0	49.9	198.0	200.0			
FALLUR	E SURFACI	E (FT)					
HAXL	MUM SEIC	E H1DTH	(FT):	50.0			
X;	255.0	365.0	590.0	696.0	888.1		
Z:	50.3	59.3	72.0	300.0	305.2		

PROJECT :CRC PIT 51-8-2 ANALYSIS DESCRIPTION : AMT3

FIGURE E.2

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.040 FOS CONVERGENCE: 1.338 1.416 1.430 1.432 FINAL FOS = 1.433 RESISTING FORCE= 4605747 DRIVING FORCE= 3342560 PROJECT :CRC PIT 51-B-2

DATA LIST FOR FILE :

SLOPE GEOMETRY


```
PROJECT :CRC PIT 51-8-2
 MATERIAL PROPERTIES
 NUMBER OF LAYERS : 3
Water Demsity : 62.4 (166/f13)
LAYER 6 I MATERIAL PROPERTIES
Density : 120.0 (10//f13) comesion :
                                                                       0.0 (15f/ft2) PHI : 25.0 (deg)
LAYER # 2 MATERIAL PROPERTIES
DENSITY : 130.0 (165/113) COMESION :
                                                                       0.0 (156/612) PHI 1 35.0 (deg)
LAYER 6 3 MATERIAL PROPERTIES
Density : 125.8 (166/413) Cohesion ;
                                                                       0.0 (16f/ft2) PHI : 30.0 (deg)
PROJECT :CRC PIT 51-8-2
LAYER GEOMETRY
LAYER # I SURFACE (FT)
X: 0.0 0.8 365.0 390.0 1000.0
Z: 0.0 50.0 50.0 72.0 72.0
LAYER # 2 SURFACE (FT)
X: 8.0 0.0 365.0 720.0 1000.0
Z: 0.0 50.1 50.1 305.0 305.0
LAYER • 3 SURFACE (FT)
X: 0.0 0.9 235.0 497.0 612.0 720.0 1000.0
Z: 0.0 50.2 50.2 230.0 230.0 305.1 305.1
PHREATIC SURFACE (FT)
X: 0.8 365.8 590.8 1080.8
2: 30.8 49.9 180.8 200.0
FRILURE SURFACE (FT)
MAXIMUM SLICE HIDTH (FT): 50.0
X: 255.0 365.0 590.0 880.0 800.1
Z: 50.3 50.3 72.0 300.0 305.2
```

PROJECT :CRC PIT 51-B-2 RNALVSIS DESCRIPTION :AMT4

FIGURE E.3

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.039 FOS CONVERGENCE: 1.103 1.134 1.142 1.144 FINAL FOS = 1.145 RESISTING FORCE= 3434665 DRIVING FORCE= 3117992 <u>PRUJECT</u> :CRC PIT 51-B-2

DATA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-8-2 MATERIAL PROPERTIES

NUMBER OF LAYERS : 3 HATER DEHSITY : 62.4 (lbf/ft3) LAYER 0 1 HATERIAL PROPERTIES DEHSITY : 120.0 (lbf/ft3) COHESION : 0.0 (lbf/ft2) PHI : 25.0 (deg) LAYER 0 2 HATERIAL PROPERTIES DENSITY : 130.0 (lbf/ft3) COHESION : 0.0 (lbf/ft2) PHI : 35.0 (deg) LAYER 0 3 MATERIAL PROPERTIES DEHSITY : 123.0 (lbf/ft3) COHESION : 0.0 (lbf/ft2) PHI : 30.0 (deg) <u>PROJECT</u> :CRC PIT 51-B-2 LAYER 0 1 SURFACE (FT) X: 0.0 0.0 365.0 390.0 1000.0 Z: 0.0 50.0 50.0 72.0 72.0 LAYER 0 2 SURFACE (FT) X: 0.0 0.0 365.0 720.0 1000.0 Z: 0.0 50.1 30.1 305.0 305.0 LAYER 0 3 SURFACE (FT) X: 0.0 0.0 365.0 720.0 1000.0 Z: 0.0 50.2 50.2 305.1 305.1 PHREATIC SURFACE (FT) X: 0.0 365.0 590.0 1000.0 Z: 0.0 365.0 590.0 000.0 AMAXIMUM SLICE WIDTH (FT): 50.0 X: 0.0 365.0 590.0 000.0 305.2 CAMER 0 25.0 350.0 590.0 000.0 305.2 CAMER 0 25.0 300.0 72.0 300.0 305.2 CAMER 0 25.0 300.0 72.0 300.0 305.2 CAMER 0 25.0 300.0 72.0 300.0 305.2 PROJECT : CRC PIT 51-B-2 ANALYSIS DESCRIPTION : AMTS

FIGURE E.4

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.039 FOS CONVERGENCE: 1.186 1.241 1.255 1.250 Final Fos = 1.259 Resisting Force= 3778118 Driving Force= 3117992 <u>PROJECT</u> :CRC PIT 51-B-2 DRIA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-8-2 MATERIAL PROPERTIES

NUMBER OF LAYERS 1 3 Water Density ; 52.4 (156/f13)

LAYER . Densi	1 MATE TY 1 12	ERIAL PI 20.0 (1)	ROPERTI of/f13)	ES Cohe	SION :	0,8 (16f/fi2)	PHI ; 25.8 (deg
LAYER DENSI	2 MATE TY : 13	ERIAL PI 30.0 (II	ROPERTI 66/f13)	ES Cohe	SIGN :	8.9 (16f/ft2)	PHI : 35.8 (deg
LAYER # Densi	Э МАТІ Тү: 1	ERIAL PI 25.0 (1)	RGPERTI bf/f13)	ES Cohe	SION :	0.8 (16F/f12)	PHI : 38.8 (deç
PROJECT	CRC P	IT 51-B	-2				
LAYER G	EOMETRY						
LAYER I	I SUR	FACE (F	T)				
X:	0.0	8.9	365.8	398.0	1999.9		
2:	8.0	50.0	58.9	72.0	72.0		
LAYER I	2 SUR	FACE (F	1)				
X:	6.8	8.0	365.0	728.0	1666.8		
2;	e.e	50.1	50.1	305.0	305.0		
LAYER (3 SUR	FACE (F	тэ				
X:	6.9	0.0	365.8	728.8	1888.8		
Z:	0.0	59.2	50.2	305.1	362.1		
PHREAT	IC SURFA	CE (FT)					
X:	8.0	365.0	590.0	1000.8			
2:	36.9	49.9	106.8	128.8			
FALLUR	E SURFAC	E (FT)					
MAXI	MUM SLIC	E HIDTH	(FT):	50.0			
X1	255.0	365.0	390.0	880.0	505.1		
23	59.3	⊐Ø.3	r 2.6	266.6	363.4		

.

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.039 FOS CONVERGENCE: 1.223 1.260 1.304 1.307 FINAL FOS = 1.300 RESISTING FORCE= 3925620 DRIVING FORCE= 3117992 <u>PROJECT</u> :CRC PIT 51-B-2 DATA LIST FOR FILE :

SLOPE GEOMETRY

<u>PROJECT</u> :CRC PIT 51-B-2 Material properties

```
HUMBER OF LAYERS : 3
HATER DEHSITY : 62.4 (167/ft3)
LAYER • 1 HATERIAL PROPERTIES
DEHSITY : 128.0 (167/ft3) COHESION : 0.8 (167/ft2) PHI : 23.0 (deg)
LAYER • 2 HATERIAL PROPERTIES
DEHSITY : 138.0 (167/ft3) COHESION : 0.8 (167/ft2) PHI : 35.0 (deg)
LAYER • 3 HATERIAL PROPERTIES
DEHSITY : 125.0 (167/ft3) COHESION : 0.0 (167/ft2) PHI : 38.0 (deg)
PROJECT : (CRC PIT 51-B-2
LAYER • 1 SURFACE (FT)
X: 0.0 0.0 365.0 398.0 1000.0
Z: 0.0 50.1 50.1 305.0 305.0
LAYER • 2 SURFACE (FT)
X: 0.0 0.0 365.7 20.0 1000.0
Z: 0.0 50.1 50.1 305.0 305.0
LAYER • 3 SURFACE (FT)
X: 0.0 365.8 590.2 305.1 305.1
PHREATIC SURFACE (FT)
X: 0.0 365.8 590.8 1000.0
Z: 0.0 35.8 590.8 1000.0
Z: 0.0 365.8 590.8 000.0
Z: 30.0 49.9 60.8 00.0
305.2
```

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.040 FOS CONVERGENCE: 1.154 1.194 1.203 1.205 FINAL FOS . 1,286 RESISTING FORCE. 3782268 DRIVING FORCE. 3261116 PROJECT :CRC PIT 51-8-2 DATA LIST FOR FILE :

SLOPE GEOMETRY

8.8 (15f/f12) PHI : 35.8 (deg)

PROJECT : CRC PIT 51-B-2 MATERIAL PROPERTIES NUMBER OF LAYERS : 3 WATER DENSITY : 62.4 (167/ft3) LAYER # ; MATERIAL PROPERTIES Density : 120.0 (167/513) Comesign ; 8.8 (16F/ft2) PHI : 25.8 (deg) LAYER . 2 MATERIAL PROPERTIES Density : 130.0 (16//f13) comesion : LAYER # 3 NATERIAL PROPERTIES Density : 125.0 (16//f13) Comesion : 0.8 (156/512) PHI : 38.8 (deg) PROJECT :CRC PIT 51-B-2 LAYER GEOMETRY LAYER # 1 SURFACE (FT) X: 0.6 0.0 365.0 390.0 1000.0 Z: 0.0 50.0 50.0 72.0 72.0

LAYER 0 2 SURFACE (FT) X: 0.0 0.0 365.0 720.0 1000.0 Z: 0.0 50.1 50.1 305.0 305.0 LAYER # 3 SURFACE (FT) X: 0.0 0.0 310.0 555.0 612.0 720.0 1000.0 Z: 0.0 50.2 50.2 230.0 230.0 305.1 305.1 PHREATIC SURFACE (FT) X: 0.0 365.0 390.0 1000.0 Z: 30.0 49.9 100.0 200.0

FRILURE SURFACE (FT) Haxinum Slice Hidth (FT): 50.0 X: 255.0 365.0 596.0 888.0 808.1 Z: 56.3 56.3 72.0 300.0 305.2

PROJECT :CRC PIT 51-B-2 ANALYSIS DESCRIPTION :AMT44

FIGURE E.7

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.039 FOS CONVERGENCE: 1.284 1.256 1.267 1.269 FINAL FOS = 1.269 RESISTING FORCE- 3092905 DRIVING FORCE- 3103623 <u>PROJECT</u> :CRC PIT 51-B-2 DATA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-B-2 MATERIAL PROPERTIES

HUMBER OF LAYERS : 3 HATER DEHSITY : 62.4 (167/f13) LAYER 4 1 MATERIAL PROPERTIES DENSITY : 120.8 (167/f13) COHESION : 0.8 (167/f12) PHI : 23.6 (deg) LAYER 4 2 MATERIAL PROPERTIES DENSITY : 130.8 (167/f13) COHESION : 0.8 (167/f12) PHI : 35.0 (deg) LAYER 4 3 MATERIAL PROPERTIES DEHSITY : 125.9 (167/f13) COHESION : 0.8 (167/f12) PHI : 30.8 (deg) PROJECT : (CCC PIT 51-B-2 LAYER 4 1 SURFACE (FT) X1 0.8 0.8 365.8 390.0 1000.8 Z1 0.8 50.8 50.7 72.0 72.0 LAYER 4 2 SURFACE (FT) X1 0.8 0.8 355.6 720.0 72.0 LAYER 4 3 SURFACE (FT) X1 0.8 0.8 255.6 376.8 492.8 720.8 1000.8 Z1 0.8 50.1 50.1 305.0 305.0 LAYER 4 3 SURFACE (FT) X1 0.8 0.8 255.8 376.8 492.8 720.8 1000.8 Z1 0.8 50.2 50.2 140.8 140.8 305.1 305.1 PHREATIC SURFACE (FT) X1 0.8 365.0 590.8 1000.8 Z1 30.8 49.9 150.8 200.8 FAILURE SURFACE (FT) X1 0.8 365.0 590.8 1000.8 Z1 30.8 49.9 150.8 200.8 FAILURE SURFACE (FT) MAXINUM SLICE HIDTH (FT): 50.8 X1 255.6 355.0 590.8 000.8 000.1 Z1 50.3 50.3 72.0 305.2

LAYER & 2 MATERIAL PROPERTIES DENSITY : 130.0 (167/ft3) COMESION : 0.0 (167/ft2) PHI : 35.0 (deq) LAYER & 3 MATERIAL PROPERTIES DENSITY : 125.0 (167/ft3) COMESION : 0.0 (167/ft2) PHI : 30.0 (deq) <u>PROJECT</u> :CRC PIT 51-B-2 LAYER & 1 SURFACE (FT) X: 0.0 50.0 50.0 72.0 72.0 LAYER & 2 SURFACE (FT) X: 0.0 50.1 50.1 305.0 1000.0 Z: 0.0 50.1 50.1 305.0 303.0 LAYER & 3 SURFACE (FT) X: 0.8 50.1 50.1 305.0 303.0 LAYER & 3 SURFACE (FT) X: 0.8 50.2 50.2 305.1 305.1 PHREATIC SURFACE (FT) X: 0.6 50.2 50.2 305.1 305.1 PHREATIC SURFACE (FT) X: 0.6 50.6 590.6 1000.0 Z: 30.0 49.9 100.0 200.0 FAILURE SURFACE (FT) MAXIMUM SLICE WIDTH (FT): 50.0 X: 25.0 365.0 393.0 501.0 610.0 800.0 600.1 Z: 50.3 50.3 440 73.0 120.0 202.0 305.2

8.8 (15f/f12) PHI : 25.8 (deg)

PROJECT :CRC PIT 51-8-2 MATERIAL PROPERTIES

NUMBER OF LAYERS : 3 HATER DENSITY : 52.4 (16//f13)

LAYER # 1 MATERIAL PROPERTIES DENSITY : 120.0 (16//f13) COMESION :

SLOPE GEOMETRY

DATA LIST FOR FILE :

CORRECTION FACTOR: 1.831 FOS CONVERGENCE: 1.889 1.113 1.121 FINAL FOS = 1.121 RESISTING FORCE= 2828387 DRIVING FORCE= 2593293 PF0JECT :CRC PIT 51-B-2

PROJECT :CRC PIT 51-B-2 BHALYSIS DESCRIPTION :BMT12

JANBU ITERATIVE ANALYSIS

PROJECT :CRC PIT 51-8-2 ANALYSIS DESCRIPTION :AMTI3

FIGURE E.9

JANBU ITERATIVE ANALYSIS

CORRECTION FACTOR: 1.03; Fos convergence:

> 1.399 1.406 1.500 1.503

FINAL FOS = 1.303 RESISTING FORCE= 4511174 DRIVING FORCE= 3093040 <u>PROJECT</u> :CRC PIT 51-B-2 DATA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-B-2 MATERIAL PROPERTIES

HUMBER OF LAYERS : 3 WATER DENSITY : 62.4 (166/613)

LAYER . Densi	1 MATE Ty 1 13	ERIAL PI 20.0 (1)	ROPERTI bf/ft3)	ES Come	SION ;	0.0 (15f/fi2)	PHI ; 25.8 (deg)
LAYER . Densi	2 MATE TY 1 13	RIAL PI 18.0 (1)	ROPERT[bf/f13)	ES COHE	\$10N :	0.0 (15f/f12)	PHI : 35.0 (deg)
LAYER O Densi	3 HATE TY : 12	RIAL PI 25.0 (1)	RÖPERT1 bf/f137	ES COHE	\$10N ;	0.8 (15f/ft2)	PHI : 38.0 (deg)
PROJECT	:CRC PI	IT 51-B	-2				
LAYER G	EOMÉTRY						
LAYER .	I SURF	ACE (F	T 2				
×	0.0	0.0	365.0	398.0	1000.0		
2:	8.0	38.8	50.¥	72.0	72.0		
LAYER .	2 51196	ere ve	τı				
X:	8.9	6.9	365.8	728.0	1800.0		
Z:	6.0	50.1	50.1	385.9	385.6		
			•.				
LHYER W	3 5081	- HCE (F	1) 285 A	407 0	613.0	779 4 1986 8	
71	0,0 0,0	58.2	58.9	238.4	238.0	305.1 305.1	
	0.0			430.0	130.0	565.1 565.1	
PHREATI	C SURFAG						
X1	8.8	365.9	598.6	1898.8			
Z:	38.6	49.9	100.0	200.0			
SATUDES	CUPEOCO						
MAXIN	UM SITC	с уни) С ытрты	(67)	59.9			
X:	255.9	365.0	393.8	501.0	618.8	888.0 808.1	
z:	58.3	58,3	44.9	73.0	128.9	202.0 305.2	

PROJECT (CRC PIT 51-8-2 ANALYSIS DESCRIPTION (AMT15)

FIGURE E.10

```
JANBU ITERATIVE ANALYSIS
```

CORRECTION FACTOR: 1.031 Fos convergence;

FINAL FOS = 1,411 RESISTING FORCE- 3330634 DRIVING FORCE- 2593293 <u>PROJECT</u> :CRC PIT 51-8-2 DATA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-B-2 MATERIAL PROPERTIES

```
HUMBER OF LAYERS : 3

HATER DEHSITY : 62.4 (167/f13)

LAYER 0 1 HATERIAL PROPERTIES

DENSITY : 120.8 (167/f13) COMESION : 0.0 (167/f12) PHI : 25.0 (deg)

LAYER 0 2 HATERIAL PROPERTIES

DEHSITY : 130.0 (167/f13) COMESION : 0.0 (167/f12) PHI : 35.0 (deg)

LAYER 0 3 HATERIAL PROPERTIES

DEHSITY : 125.0 (167/f13) COMESION : 0.0 (167/f12) PHI : 30.0 (deg)

PPOJECI :(CRC FIT 51-B-2

LAYER 0 1 SURFACE (FT)

X: 0.0 0.0 365.0 398.0 1000.0

Z: 0.0 50.0 50.0 72.0 72.0

LAYER 4 2 SURFACE (FT)

X: 0.0 50.1 305.0 1000.0

Z: 0.0 50.1 305.0 1000.0

Z: 0.0 50.2 50.2 305.1 305.1

PHREATIC SURFACE (FT)

X: -.7 1006.7

Z: 30.6 30.6

FAILURE SURFACE (FT)

MAXIMUM SLICE MIDTH (FT): 50.0

X: 250.3 355.0 301.0 618.0 000.8 600.1

Z: 50.3 305.0 301.0 618.0 000.8 600.1

Z: 50.3 305.4 073.0 120.0 202.0 305.2
```

PROJECT :CRC PIT 51-8-2 ANALYSIS DESCRIPTION :ANTI4

FIGURE E.11

CORRECTION FRCTOR: 1.031 FOS CONVERGENCE: 1.101 1.129 1.135 1.137 FINAL FOS = 1.137 RESISTING FORCE= 2017939 DRIVING FORCE= 2353433 PR0JECT : CRC PIT 51-B-2

DATA LIST FOR FILE :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-B-2 MATERIAL PROPERTIES

NUMBER OF LAYERS : 3 Hater Density : 62.4 (166/ft3)

```
LAYER # 1 MATERIAL PROPERTIES

DENSITY : 128.0 (1bf/f13) COMESION : 0.0 (1bf/f12) PHI : 25.0 (deg)

LAYER # 2 MATERIAL PROPERTIES

DENSITY : 138.0 (1bf/f13) COMESION : 0.0 (1bf/f12) PHI : 35.0 (deg)

LAYER # 3 MATERIAL PROPERTIES

DENSITY : 125.0 (1bf/f13) COMESION : 0.0 (1bf/f12) PHI : 35.0 (deg)

PROJECT :CRC PIT 51-8-2

LAYER # 1 SURFACE (FT)

X: 0.8 0.0 365.0 390.0 1000.0

Z: 0.0 50.0 50.0 72.0 72.0

LAYER # 2 SURFACE (FT)

X: 0.0 0.0 365.0 720.0 1000.0

Z: 0.0 50.2 50.2 305.1 305.0

LAYER # 3 SURFACE (FT)

X: 0.0 365.0 590.0 1000.0

Z: 0.0 50.2 50.2 305.1 305.1

PHREATIC SURFACE (FT)

X: 0.0 365.0 590.0 1000.0

Z: 30.0 49.9 100.0 200.0

FAILURE SURFACE (FT)

MAXIMUM SLICE WIDTH (FT): 30.0

X: 73.0 120.0 500.0 800.1

Z: 50.3 59.3 50.3 73.0 120.0 202.0 305.2
```

 PROJECT
 :CRC PIT 51-8-2

 ANALYSIS
 DESCRIPTION
 :AMT22
 FIGURE E.12

 JAHBU
 ITERATIVE ANALYSIS
 FORCE
 FORCE
 FORCE

 CENTER(424.0, 597.1)
 FOS
 CORRECTION
 RESISTING
 BRIVING

 RABIUS
 420
 1.025
 1.017
 119641
 110749

 RABIUS
 420
 1.025
 1.017
 119641
 110749

 RABIUS
 420
 1.025
 1.021
 10004
 400704

 RABIUS
 420
 1.025
 1.017
 119641
 110749

 RABIUS
 420
 1.025
 1.021
 10004
 400704

 RABIUS
 420
 1.025
 1.021
 1000502
 1000502

 RABIUS
 420
 1.025
 1.021
 1000502
 1000502

 RABIUS
 500
 1.174
 1.032
 204672
 204622

 RABIUS
 500
 1.066
 1.041
 304444
 204622

 RABIUS
 500
 1.066
 1.041
 <t

PROJECT :CRC PIT 51-8-2 Date list for file :

SLOPE GEOMETRY

PROJECT :CRC PIT 51-B-2 MATERIAL PROPERTIES

HUMBER OF LAYERS : 3 WATER DEHSITY : 62.4 (155/f13)

LAYER & L MATERIAL PROPERTIES DENSITY : 128.8 (16//13) CONESION : 0.8 (16//12) PH1 : 25.8 (deg) LAYER & 2 MATERIAL PROPERTIES DENSITY : 128.8 (16//13) CONESION : 0.8 (16//12) PH1 : 35.8 (deg) LAYER & 3 MATERIAL PROPERTIES DENSITY : 128.8 (16//13) CONESION : 0.8 (16//12) PH1 : 38.8 (deg) <u>PROJECT</u> :CRC PIT 51-8-2

<u>PROJECT</u> :CRC PIT 51-8-2 LAVER JEOMETRY

LAYER # I SURFACE (FT)

X: 0.0 0.0 363.0 390.0 1000.0 Z: 0.0 50.0 50.0 72.0 72.0 X: 0.0 50.0 361.0 72.0 72.0 X: 0.0 50.0 361.0 72.0 1000.0 Z: 0.0 50.1 30.1 305.0 100.0 EAVER 4 3 SUBFACE (FT) X: 0.0 50.2 50.2 305.1 305.1 PHREATIC SUBFACE (FT) X: 0.0 363.0 590.0 1000.0 X: 0.0 363.0 590.0 1000.0 CIACLE CENTER POINTS (FT) HRXENUM SLICE HIDTH (FT): 50.0 RADIUS INCREMENT (FT): 20.0 X: 424.0 Z: 424.0 X: 424.0

April 19, 1985

University of Alberta Department of Civil Engineering Edmonton, Alberta T6G 2G7

Attention: Dr. N.R. Morgenstern, P.Eng.

Dear Dr. Morgenstern:

Subject: M.Eng. Project - Final Report

Enclosed are two final copies of my M.Eng. Project entitled "Case History of an Open Pit Coal Mine Slope Failure at Luscar, Alberta". I understand that the deadline for receipt of these reports by the Faculty of Graduate Studies is April 24, 1985.

I will forward three additional copies for Dr. Cruden, yourself and the Civil Engineering Department within a few days. Thank you very much for your guidance and encouragement in the completion of this project.

Yours truly,

Allmanth

Allan M. MacRae, P.Eng. c/o Canadian Occidental Petroleum Ltd. 1500, 635 8th Avenue S.W. Calgary, Alberta T2P 3Z1 Telephone: 234-6097

AMMcR/slc

Encl.

cc: Mr. Fred Munn, P.Eng. Chief Engineer Cardinal River Coals Ltd. Hinton, Alberta