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Abstract 22 

 Kefir, a fermented milk beverage, has shown promise in alleviating obesity and 23 

associated metabolic dysfunction. However, microbial characteristics are variable among 24 

traditional kefirs, and commercial kefirs drastically differ from traditional kefir.  This study 25 

investigated the ability of four traditional and one commercial kefir to control weight gain, 26 

plasma cholesterol, and liver triglycerides in a high fat diet-induced obesity mouse model.  Two 27 

traditional kefirs decreased weight gain and plasma cholesterol levels.  Conversely, commercial 28 

kefir had no beneficial effect.  Additionally, one of the four traditional kefirs lowered liver 29 

triglycerides, which corresponded with decreases in the expression of fatty acid synthase, a gene 30 

involved in liver lipogenesis.  Together with evidence of gut microbiome modulation, this study 31 

shows that traditional kefir has the potential for improving metabolic dysfunction associated with 32 

obesity. Notably, differences in kefir microbial populations may influence the ability of 33 

traditional kefir to positively impact host metabolic health.  34 
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1. Introduction 43 

 Obesity and metabolic disease are a growing problem in the developed world, and have 44 

been shown to be a contributing factor in a variety of chronic diseases, such as type 2 diabetes 45 

(T2D), cardiovascular disease (CVD), and atherosclerosis.  While the link between obesity and 46 

diet is well established, recent research has shown that multiple factors, including the gut 47 

microbiota, play a significant role in the mechanisms underlying diet induced obesity and the 48 

associated disease states (Bäckhed et al., 2004; Everard & Cani, 2013; Gérard, 2016; Pedersen et 49 

al., 2016; Rosenbaum, Knight, & Leibel, 2015).  Specifically, the gut microbiota has been found 50 

to have an impact on energy metabolism through processes such as bile acid breakdown (Joyce 51 

& Gahan, 2016; Ridlon, Kang, & Hylemon, 2006), fatty acid metabolism (Ley, Turnbaugh, 52 

Klein, & Gordon, 2006), immunomodulation (Cani et al., 2008; Cani, Osto, Geurts, & Everard, 53 

2012), and regulating host physiology (Zhang, Osaka, & Tsuneda, 2015).  Additionally, probiotic 54 

and prebiotic interventions that influence the gut microbiota and metabolic health have shown 55 

promising results in preventing and improving some of the complications of metabolic syndrome 56 

(Li et al., 2013), with fermented milk products (Kullisaar et al., 2003) and associated 57 

microorganisms (Naruszewicz, Johansson, Zapolska-downar, & Bukowska, 2002) being 58 

particularly effective.  59 

Although consumed for thousands of years, kefir has recently gained popularity as a health 60 

promoting beverage and source of organisms. While kefir has been associated with diverse 61 

health benefits, recent studies have begun to examine the mechanisms behind them (Bourrie, 62 

Willing, & Cotter, 2016).  Kefir has demonstrated ACE inhibitory activity (Quiro, 2005), the 63 

ability to improve levels of serum cholesterol (H. Liu et al., 2012; J.-R. Liu et al., 2006), and 64 

immunomodulatory characteristics (C. G. Vinderola et al., 2005).  These attributes, and others 65 



such as bile salt hydrolase activity (H. Liu et al., 2012), have been associated with individual 66 

microorganisms isolated from kefir.  Kefir and kefir-derived peptides have also been shown to be 67 

effective at alleviating non-alcoholic fatty livery disease (NAFLD) and obesity (H.-L. Chen et 68 

al., 2013; H. L. Chen et al., 2016; Choi et al., 2017; Fathi, Ghodrati, Zibaeenezhad, & Faghih, 69 

2016; Ostadrahimi et al., 2015).  These characteristics all point to kefir having the potential to 70 

positively impact metabolic syndrome, either through effects on diet, direct interactions with the 71 

host, or through altering the microbiota and its associated metabolic profile.  However, 72 

individual examples of traditional kefir differ in their microbial populations, with the major 73 

differences being in the ratios of key microorganisms (Dobson, O’Sullivan, Cotter, Ross, & Hill, 74 

2011; Marsh, O’Sullivan, Hill, Ross, & Cotter, 2013). Given that these differences impact the 75 

fermentation by-products and development of flavour (Walsh et al., 2016), it is likely that they 76 

also affect the impact that individual kefirs have on consumer health.  Additionally, some 77 

commercially produced beverages that are labelled as ‘kefir’ differ significantly from traditional 78 

kefir from a microbiological perspective.  While such commercial products and traditional kefir 79 

contain Lactobacillus, Lactococcus, and Leuconostoc, most commercial kefir lack acetic acid 80 

bacteria, which is present in the vast majority of traditional examples (Dobson et al., 2011; 81 

Marsh et al., 2013; Walsh et al., 2016).  Additionally, kefir contains Lactobacillus kefiri and L. 82 

kefiranofaciens, both of which have exhibited health benefits in vivo (Carasi et al., 2015; Zhou et 83 

al., 2013).  L. kefiranofaciens also produces an exopolysaccharide unique to kefir called kefiran, 84 

which has shown beneficial effects in vivo (Maeda, Zhu, & Mitsuoka, 2004; G. Vinderola, 85 

Perdigón, Duarte, Farnworth, & Matar, 2006).  Another important aspect of traditional kefir that 86 

is not present in most commercial examples is the presence of a complex fungal community.  87 

While commercial kefir can contain yeast, the complexity of the yeast population is often 88 



significantly lower than what is found in traditional kefir, and sometimes only contain 89 

Saccharomyces cerevisiae, while traditional kefir contains S. cerevisiae, Pichia fermentans, 90 

Kazachastania unispora, and Kluyveromyces marxianus and lactis along with many other 91 

smaller populations of yeast. 92 

To date no studies have compared the health benefits of different traditional kefirs, or of how 93 

mass-produced commercial products compare to traditional kefir made with grains.  We 94 

therefore set out to determine how examples of traditional kefir with differing microbial 95 

compositions (Dobson et al., 2011; Marsh et al., 2013; Walsh et al., 2016) and in vitro 96 

characteristics compare to both each other and a widely available commercial product in their 97 

ability to affect weight gain and lipid profiles using a mouse model of diet induced obesity. 98 

2. Materials and Methods 99 

2.1 Kefir Grain Sourcing and Kefir Production 100 

 Kefir grains were obtained in a previous study (Marsh et al., 2013) from Ireland, Canada, 101 

Germany, United Kingdom, United States of America, Greece and Italy, and were labelled 102 

according to their country of origin.  The grain ICK has an unknown country of origin and thus 103 

stands for Indeterminate Country Kefir.  Grains selected for animal experiments were inoculated 104 

at 1% weight/volume in fresh 2% milk daily for the course of the study.  Fermentation was 105 

carried out in glass jars at room temperature (22℃) for 18 hours each day.  Commercial kefir 106 

contained a microbial composition of Streptococcus thermophilus, Lactobacillus delbrueckii 107 

subsp. bulgaricus, Lb. casei, Lb. acidophilus, Lb. delbrueckii subsp. lactis, Lb. rhamnosus, 108 

Bifidobacterium lactis, Lactococcus lactis subsp. lactis biovar diacetylactis, L. lactis subsp. 109 

cremoris, and Leuconostoc mesenteroides subsp. cremoris and had a CFU/ml of 8.0 x 106.  The 110 



grains used in this study were previously sequenced by our group (Marsh et al., 2013; Walsh et 111 

al., 2016), and have varying microbial composition (table S1). 112 

2.2 Animals and Treatments 113 

 Fifty six 8-week old wild type C57BL/6 female mice were obtained from Jackson Labs.  114 

Mice were allocated into 7 groups (n=8) consisting of low fat diet (LFD) control, high fat diet 115 

(HFD) control, HFD + commercial kefir (COM), and four groups of HFD + traditional kefir 116 

(HFD + ICK, HFD + IR9, HFD + IR10, HFD + Ger2).  The LFD group received standard rodent 117 

chow, while the HFD groups received a diet consisting of 40% calories from fat supplemented 118 

with 1.25% cholesterol by weight (Research Diets D12108C).  Mice were housed in a 119 

temperature-controlled room (22°C–23°C) under a 12 hr light/12 hr dark cycle and fed chow and 120 

water ad libitum.  Animals received an oral gavage of 100ul of either kefir (treatment groups) or 121 

milk (control groups) daily for 12 weeks.  Body weights were taken weekly for the duration of 122 

the study and fecal samples were collected on days 0, 28 and 84.  After 12 weeks, the animals 123 

were sacrificed and tissues were collected, snap-frozen, and stored at -80оC until further analysis.  124 

All experiments were carried out with approval from the Animal Care and Use Committee at the 125 

University of Alberta (AUP 00000671). 126 

2.3 Physiochemical Analysis of Traditional Kefir 127 

 Viscosity was tested using a Discovery HR-3 hybrid rheometer (TA Instruments, New 128 

Castle, USA) with a cone-plate method and was determined at a shear rate of 3.5 Pa/s as this is 129 

similar to shear forces encountered in the human stomach (Pal, Abrahamsson, Schwizer, 130 

Hebbard, & Brasseur, 2003).  Analysis of pH was conducted using an Orion 2 star benchtop pH 131 

meter (Thermo Scientific, Burlington, ON). 132 



2.4 In vitro Cholesterol Assimilation 133 

 The ability of kefir grains to lower the level of cholesterol in whole milk was determined 134 

by inoculating whole milk with kefir grains at 1% weight/volume and fermenting for 24 hours at 135 

22oC.  Total cholesterol was determined in mg/dl using a commercial fluorometric kit 136 

(Cholesterol Quantitation Kit, Sigma Aldrich, Oakville, ON). 137 

2.5 Plasma Cholesterol Measurements 138 

 At termination, following a 6 hr fast, blood was collected via heart puncture in an EDTA 139 

lined blood collection tube (Fisher Scientific, Ottawa, ON).  Blood samples were centrifuged and 140 

plasma was collected and stored at -80оC until further analysis.  Plasma total cholesterol and 141 

high-density lipoprotein (HDL) were determined using commercial colorimetric kits (Wako 142 

Diagnostics, Richmond, VA).  Non-HDL cholesterol was determined by subtracting HDL 143 

cholesterol from total cholesterol. 144 

2.6 Liver Triglyceride Analysis 145 

Liver triglycerides were quantified using a chloroform methanol extraction method. 146 

Approximately 30mg of frozen liver tissue was homogenized using a bead beater (MP 147 

Biomedicals, Solon, OH) in homogenization buffer (10mM Tris-HCl pH 7.4, 150mM NaCl, 148 

1mM EDTA and 1mM DTT containing phosphatase and protein inhibitor cocktails).  Protein 149 

content was analyzed using a bicinchoninic acid assay (Fisher Scientific, Ottawa, ON) and 150 

samples were normalized by protein content.  Total lipids were extracted from liver homogenate 151 

in methanol-chloroform (2:1).  The organic extract was dried under N2 gas and reconstituted in 152 

isopropanol.  Triglycerides were then quantified according to manufacturer’s instructions using a 153 

commercial colorimetric kit (Wako Diagnostics, Richmond, VA). 154 



2.7 Gene Expression  155 

Total RNA was isolated from ileum and liver tissue using the GeneJET RNA Purification 156 

Kit (Thermo Scientific, Burlington, ON) according to manufacturer’s instructions. Following 157 

isolation, 1µg aliquots of RNA were used to synthesize cDNA using the qScript Flex cDNA 158 

Synthesis Kit (Quantabio, Beverly, MA) according to manufacturer’s instructions.  Real-time 159 

PCR was performed using PerfeCTa SYBR Green Supermix (Quantabio, Gaithersburg, MD). 160 

Primers for host genes are listed in table S2. Real-time PCR was performed on an ABI 161 

StepOneTM real-time System (Applied Biosystems, Foster City, CA) using the conditions as 162 

follows: 95оC  for 3 minutes, followed by 40 cycles of 95оC  for 10 seconds and 60-62оC  for 30 163 

seconds.  Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a housekeeping 164 

gene and fold changes of gene expression compared to HFD group were calculated using the 2 -165 

ΔΔCt method. 166 

2.8 Microbiota Analyses 167 

 Total DNA was extracted from either faecal pellets or caecal content using the QIAmp 168 

DNA stool mini kit (Qiagen, Montreal, QC) according to manufacturer’s instructions, with the 169 

addition of a bead-beating step (Willing, Vacharaksa, Croxen, Thanachayanont, & Finlay, 2011).  170 

Following DNA isolation, amplicon libraries were constructed of the V3/V4 region of the 16S 171 

rRNA gene according to the protocol from Illumina (16S Metagenomic Sequencing Library 172 

Preparation).  Primers targeting the region were: 173 

(Forward: 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’ 174 

Reverse: 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’). 175 



Raw data was filtered through a quality control pipeline, with bases of quality score <33 being 176 

filtered using the FASTX-Toolkit.  Paired-end reads were merged using PANDAseq.  QIIME 177 

1.9.1 (Quantitative Insights Into Microbial Ecology) software package (Caporaso et al., 2010) 178 

was applied for obtaining an operational taxonomic units (OTUs) table.  This was performed by 179 

first dereplicating merged sequences and filtering out chimeras using the ChimeraSlayer 180 

database.  Next, high-quality reads were mapped against the database of usearch_global and the 181 

OTU table was obtained using the ‘uc2otutab.py’ script.  The classification of sequences for each 182 

OTU was carried out using QIIME with the Ribosomal Database Project classifier (confidence 183 

threshold, 80%).  Greengenes v.13_8 clustered at 97% identity was used for taxonomy 184 

assignment.   185 

2.9 Statistical Analyses 186 

 Cholesterol assimilation in vitro was analyzed using a 2 tailed student’s T-test comparing 187 

kefir grains to unfermented milk.  Percent weight gain (calculated as
𝑤𝑒𝑖𝑔ℎ𝑡 𝑔𝑎𝑖𝑛 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠

𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑔𝑟𝑎𝑚𝑠
×188 

100), plasma cholesterol, liver triglyceride, and gene expression data was analyzed using 189 

Analysis of Variance with Tukey post-hoc for multiple comparisons utilizing the R packages 190 

multcompView, ggplot2, plyr, and lmPerm.  Effect of treatment on microbiota was determined 191 

using analysis of similarities (ANOSIM) while relative abundance from phylum to genus 192 

taxonomic levels were determined using the Kruskal-Wallis test.  193 

3. Results 194 

3.1 Kefir Grains Vary in their Ability to Decrease Cholesterol in Milk 195 

 As different examples of traditional kefir have previously been shown to differ in their 196 

ability to decrease cholesterol levels in milk (Vujicic, Vulic, & Konyves, 1992), our library of 14 197 



different kefir grains was analyzed in vitro prior to in vivo work.  Of the 14 grains tested, 5 198 

(IR10, Ger2, UK4, IR9, and ICK) significantly lowered cholesterol levels following a 24 hour 199 

fermentation (figure 1). On the basis of the cholesterol lowering phenotype, 4 of the best 200 

performing grains were selected for in vivo studies to assess impacts on host metabolic health.  201 

 202 

Figure 1. Cholesterol levels in whole milk following a 24hr fermentation with different kefir grains, expressed in 203 
mg/dl. * = P ≤0.05 **=P≤0.01 when compared to Milk 204 

 205 

3.2 Physiochemical and Microbial Characteristics of Traditional Kefir 206 

ICK kefir had the highest viscosity (0.43715 ± 0.15605) while IR10 had the lowest 207 

(0.00188 ± 0.00039), with IR9 (0.00242 ± 0.00079) and GER2 (0.00309 ± 0.00041) had 208 

viscosities closer to that of IR10 (Table S3).  While there was no significant difference in 209 

viscosity between groups, ICK exhibited a trend (P<0.10) when compared to all three of the 210 

other kefirs using an ANOVA.  The pH of the kefirs had greater differences than viscosity with 211 

ICK (4.56 ± 0.08) having a significantly lower pH (P<0.05) than both IR10 (5.72 ± 0.10) and 212 

IR9 (5.56 ± 0.12), while Ger2 (5.08 ± 0.06) had a significantly lower pH than IR10.  Ger2 and 213 

ICK did not differ significantly in pH, however, there was a trend (P<0.10) for ICK to be lower 214 

than Ger2. Different traditional kefirs had highly variable microbial compositions, with 215 

differences in the abundance of both bacterial and yeast genera observed (Table S1).  Yeast 216 

populations were much more variable with a total of 13 high abundance genera identified for 217 

yeast when compared to 6 high abundance bacterial genera.  The dominant bacterial genera were 218 

Acetobacter, Lactobacillus, Lactococcus, and Leuconostoc, while Propionibacterium and 219 

Gluconobacter were detected in only IR9 and ICK, respectively.   Acetobacter was the most 220 

abundant bacterial genus in IR10 kefir (53.1% relative abundance), while Lactobacillus was 221 



most abundant in ICK and IR9 (51.9% and 42.2% relative abundance, respectively), and 222 

Lactococcus was highest in GER2 (55.9% relative abundance).  The dominant yeast genera were 223 

Kazachstania in ICK, IR10, and GER2 (15.7%, 88.5%, and 54.8% relative abundance, 224 

respectively) and Naumovozyma in IR9 (81.8% relative abundance).   225 

 226 

3.3 Effects of Kefir on Weight Gain 227 

The ICK and IR10 kefir fed groups both had lower (P<0.05) weight gain over the 12 228 

weeks than the HFD control group, while the LFD fed group had the lowest weight gain (figure 229 

2). The Com mice gained more weight (P<0.05) than LFD control, whereas none of the mice 230 

receiving high fat diet with traditional kefir gained significantly more weight than LFD control.   231 

No differences between groups in terms of feed intake were detected; for instance, daily feed 232 

intake for the HFD control, Commercial kefir, and ICK mice averaged 2.63, 2.65, and 2.75 233 

grams per mouse; while the IR9, IR10, and GER2 fed mice averaged 2.33, 2.11, and 2.04 grams 234 

per mouse respectively. 235 

Figure 2. Weight gain of each groups expressed as a percentage of starting body weight. Means that do not share a 236 
letter are significantly different (P<.05). N=7-8. 237 

 238 

3.4 Traditional Kefir Improved Plasma Cholesterol Profiles and Liver Triglyceride Levels 239 

 To examine how kefir impacted cholesterol metabolism, total plasma cholesterol and 240 

non-HDL cholesterol levels were determined. Groups treated with the ICK and IR10 kefir had 241 

total plasma cholesterol levels similar to the LFD control group (104.372 and 106.174 mg/dl 242 

respectively for ICK and IR10 vs. 81.1551 for LFD; figure 3), while the levels of cholesterol in 243 

the HFD control and commercial kefir fed groups were higher (P<0.05; 196.039 and 190.811 244 



mg/dl respectively).  The same pattern between treatments was observed for plasma non-HDL 245 

cholesterol.   246 

We analyzed triglyceride levels in the liver to determine if kefir might have a protective effect 247 

against the development of NAFLD.  Liver triglycerides were significantly reduced in the ICK 248 

kefir group when compared to the HFD control group (figure 3C). However, all high fat diet fed 249 

groups had significantly higher levels of liver triglycerides as compared to LFD control. 250 

 251 

Figure 3. Plasma total cholesterol (A), non-HDL cholesterol (B), HDL cholesterol (C) and liver triglyceride levels 252 
(D) in mice fed different kefir. Levels are expressed in mg/dl for both cholesterol and triglycerides. Means that do 253 
not share a letter are significantly different (P<0.05). N=7-8 254 

 255 

3.5 The Effect of Kefir Feeding on Cholesterol and Fatty Acid Metabolism 256 

 Expression levels of FGF-15 and Cyp7a1 were examined in the ileum and liver, 257 

respectively, in order to determine whether the differences in plasma cholesterol levels/profiles 258 

could be due to a change in bile acid synthesis.  Although both the ICK and IR10 groups had 259 

decreased FGF-15 expression the ileum as well as increased Cyp7a1 expression in the liver, 260 

these changes were not statistically significant (figure 4). 261 

  262 

Figure 4. Expression levels of (A) FGF-15 in the ileum and (B) Cyp7a1 in the liver.  Expression levels are expressed 263 
as fold change relative to HFD using the ΔΔCT method. N=7-8 264 

 265 

To examine the effect of kefir feeding on fatty acid metabolism, FASN and PPARγ 266 

expression were measured in the liver.  As with previous results, the ICK and IR10 groups 267 



showed a significant decrease in expression of FASN, however, the commercial kefir also 268 

exhibited a significant decrease (figure 5A).  PPARγ however, only showed a significant 269 

reduction in expression in the ICK fed group.  The LFD, IR9 and Ger2 groups did not show a 270 

significant reduction in the expression levels of FASN or PPARγ relative to HFD.  271 

 272 

Figure 5. Fatty acid synthase (A) and PPARγ (B) expression levels in the liver, expressed as fold change relative to 273 
HFD. Means that do not share a letter are significantly different (P<.05). N=7-8.                                                                 274 

 275 

3.7 Kefir had a Varied Effect on IL-18 and IL-1β Expression 276 

 To determine whether kefir affected inflammasome activation, IL-18 and IL-1β 277 

expression were measured in the ileum.  None of the kefir fed groups showed significant 278 

reductions compared to the HFD group, however, ICK mice had significantly higher levels of IL-279 

18 than the LFD group while IR10 fed mice had levels similar to the LFD group. Similar but not 280 

significant (P = 0.20) changes were observed for the expression of IL-1β, with ICK increasing 281 

expression levels compared to the LFD group, while IR10 mice had comparable levels to LFD 282 

(Figure 6).  283 

 284 

Figure 6. IL-18 and IL-1β expression in the ileum expressed as fold change relative to HFD using the ΔΔCT 285 
method. Means that do not share a letter are significantly different (P<.05). N=7-8.         286 

3.8 Microbiota Composition Analysis 287 

 Fecal microbiota was analyzed at 28 days and beta-diversity was compared using a Bray 288 

Curtis distance matrix and visualized utilizing PCoA (figure S1).  ANOSIM of day 28 289 

microbiota showed a significant effect of treatment (P<0.01).  The LFD group separated from the 290 



HFD fed mice, largely due to a significant increase in Erysipelotrichaceae (P<0.01), while the 291 

Ger2 and IR10-fed groups showed significant separation from the other HFD mice, which 292 

coincided with a significant increase in the bacterial genus Akkermansia (18% relative 293 

abundance in IR10 and 42% relative abundance in Ger2 vs <1% in all other groups; P<0.01). 294 

Caecal microbiota was analyzed at day 84 using the same method, and once again the LFD fed 295 

mice separated from the HFD fed mice. ANOSIM of the day 84 caecal microbiota showed a 296 

significant effect of treatment again (P<0.01) despite less obvious clustering in the PCoA plots. 297 

However, removing the LFD group from the analysis eliminated any significance in the 298 

ANOSIM, indicating that no kefir treatment had an appreciable effect on overall microbial 299 

community composition.  Comparisons of individual bacterial families showed only 5 families 300 

with significant differences (P<0.05) between HFD fed mice were at extremely low relative 301 

abundances (<0.001%) and showed no discernible pattern among HFD, Commercial, and 302 

traditional kefir groups. 303 

 304 

 305 

 306 

 307 

4. Discussion 308 

Because each traditional kefir has a different population of microbes, and the commercial kefir 309 

used in this study is microbially very distinct from traditional kefir, we expected that they would 310 

differ in their ability to improve metabolic health outcomes in a high fat/high cholesterol diet 311 



challenge model. Indeed our study showed that certain traditional kefirs are able to alleviate 312 

weight gain, plasma cholesterol levels, and triglyceride deposition in the liver associated with 313 

high fat diet feeding.  Specifically, the IR10 and ICK kefirs resulted in weight gain and plasma 314 

cholesterol levels similar to those seen in the LFD mice. These results indicate that traditional 315 

kefir could potentially be used to alleviate excess weight gain and cholesterol deposition in the 316 

blood.  This is especially important as both obesity and circulating cholesterol levels have been 317 

associated with metabolic syndrome and increased risk of cardiovascular disease and diabetes 318 

(Després & Lemieux, 2006).   319 

In addition to cardiovascular disease and diabetes, hyperlipidemia and obesity have been linked 320 

with NAFLD, with elevated triglyceride levels in the liver being a common marker of NAFLD 321 

and hepatic steatosis (Angulo, 2002).  While not all traditional kefir had an impact on 322 

triglycerides, ICK was able to reduce liver triglyceride levels.  Triglyceride levels in the liver 323 

have been strongly correlated to the expression of specific genes.  For example, fatty acid 324 

synthase is an important modulator of de novo lipogenesis and has been shown to be elevated in 325 

both human and murine subjects with NAFLD (Dorn et al., 2010). PPARγ expression has also 326 

been shown to increase in high fat diet induced liver steatosis in mice (Inoue et al., 2005). In our 327 

study ICK, IR10, and commercial kefir fed mice showed significant reductions in the expression 328 

of FASN. ICK also resulted in reductions in PPARγ expression when compared to the HFD 329 

group, which may help to explain the corresponding reduction in liver triglyceride levels that 330 

were observed.   331 

While there was a strong plasma cholesterol reduction associated with IR10 and ICK kefir 332 

feeding, the analysis of the FGF-15/Cyp7a1 signalling axis showed no significant differences.  333 

FGF-15 and Cyp7a1 were examined as they play an important role in bile acid signalling and 334 



controlling the size of the bile acid pool (Tinting Ju, Li, & Willing, 2016).  FGF-15 expression is 335 

controlled by the bile acid receptor FXR and directly inhibits Cyp7a1 expression, with Cyp7a1 336 

expression being the rate limiting factor in bile acid synthesis (Joyce & Gahan, 2016).  This 337 

means that as FGF-15 expression decreases, Cyp7a1 expression increases leading to greater 338 

synthesis of bile acids, and thus increased utilization of cholesterol in the liver.  Additionally, the 339 

kefir grains tested in this trial were shown to assimilate cholesterol in vitro, which may explain 340 

the observed reduction in vivo.  341 

One of the major contributors to increased metabolic dysfunction in obesity is the induction of 342 

chronic low-grade inflammation by the inflammasome (Henao-mejia et al., 2012; Stienstra, 343 

Tack, Kanneganti, Joosten, & Netea, 2012; Vandanmagsar et al., 2011).  As IL-18 and IL-1β are 344 

the main cytokines involved in activation of the inflammasome (Guo, Callaway, & Ting, 2015), 345 

we used expression levels of IL-18 and IL-1β in the ileum as  markers of inflammasome 346 

activation.  The role of the inflammasome in the development of metabolic dysfunction is 347 

complex and the exact mechanisms behind how IL-1β and IL-18 interact and, in turn, impact 348 

metabolic health are still being elucidated (Murphy et al., 2016; Vandanmagsar et al., 2011). We 349 

found that traditional kefir elicited a varied response in regards to both IL-18 and IL-1β 350 

expression, with ICK increasing expression compared to the LFD fed group, while IR10 fed 351 

mice exhibited expression levels similar to the LFD group; however, none of the traditional or 352 

commercial kefir fed groups showed significantly different expression levels than the HFD 353 

control group.  The common ability of ICK and IR10 to improve plasma cholesterol profiles did 354 

not consistently correlate with markers of inflammasome activation.  355 

Additionally, as recent work has begun to highlight the role of the gut microbiota in the 356 

development of metabolic dysfunction associated with obesity (Everard & Cani, 2013; Gérard, 357 



2016; Rosenbaum et al., 2015), we examined the composition of the fecal and cecal microbiota 358 

at day 28 and 84 of the study.  At week 4, the microbiomes of the IR10 and Ger2 kefir fed 359 

groups showed strong separation from the rest of the high fat diet fed groups based largely on an 360 

increased incidence of the genus Akkermansia. Analysis of the cecal microbiota at week 12 361 

failed to show any consistent differences between treatment groups fed HFD.  The early increase 362 

in Akkermansia is interesting as it has previously been associated with improved metabolic 363 

health outcomes (Dao et al., 2016) and may contribute the metabolic phenotypes observed.  364 

Although the changes to the microbiome were not consistent, this is likely due to differences in 365 

collection point as fecal and caecal microbial communities commonly differ (Gu et al., 2013). 366 

The longer timeline of this trial along with the increased stress associated with a daily gavage in 367 

the mice may have played a role in overcoming the influence of kefir administration (Bailey et 368 

al., 2011; Konturek, Brzozowski, & Konturek, 2011).  Additionally, the lack of difference in the 369 

caecal microbiota may point to a mechanism of action that is not tied to alterations to the 370 

microbiome and instead may involve fermentation and metabolic products present in the kefir 371 

itself. 372 

This study is the first of our knowledge to compare traditional examples of kefir from multiple 373 

origins in an in vivo model examining metabolic health. However, different grains have 374 

previously been compared for a small number of health relevant characteristics in vitro (Vujicic 375 

et al., 1992). Our analysis agrees with past results in showing that kefir can vary in its ability to 376 

lower cholesterol levels in milk.  Additionally, different components of kefir have been 377 

examined for their potential health benefits, such as kefiran (Hamet, Medrano, Perez, & 378 

Abraham, 2016; G. Vinderola et al., 2006), lactic acid (Iraporda, Romanin, Rumbo, Garrote, & 379 

Abraham, 2014), and filtered cell free kefir (de Moreno de LeBlanc, Matar, Farnworth, & 380 



Perdigon, 2006; Rizk, Maalouf, & Baydoun, 2009).  While the traditional kefirs examined 381 

collectively exhibited decreases in weight gain and plasma cholesterol, only IR10 and ICK 382 

showed statistically significant decreases, and only ICK decreased liver triglyceride levels.  383 

While viscosity and pH varied among the traditional kefirs, ICK and IR10 were the highest and 384 

lowest kefirs in both viscosity and pH, indicating that these physiochemical characteristics are 385 

not indicative of the ability of traditional kefir to improve weight gain and lipid profiles.  These 386 

results show that, while traditional kefirs have largely the same microbes present regardless of 387 

origin (Marsh et al., 2013), the differences in the relative abundances of these organisms or their 388 

behaviours may be important. The variation in effect between kefirs is consistent with studies 389 

examining in vitro characteristics of different kefirs. For example, differences in the quantities of 390 

certain microbes have been shown to impact the flavour profile and fermentation by-products 391 

(Dertli & Çon, 2017; Walsh et al., 2016).  These findings point to the potential importance of 392 

microbial interactions during fermentation on the efficacy of functional fermented foods.   393 

While traditional kefir showed promise in reducing adverse health outcomes associated with an 394 

unhealthy diet, commercial kefir did not.  Indeed, commercial kefir fed mice showed near 395 

identical weight gain and plasma cholesterol levels as the HFD control group, while the 396 

reduction observed in liver triglycerides was not significant.  This indicates that traditional kefir 397 

may better prevent weight gain and metabolic dysfunction compared to commercial examples. 398 

The results from the current study may explain why commercial kefir was ineffective in 399 

improving host metabolic health in a human trial (St-Onge et al., 2002).  While commercial kefir 400 

lowered fatty acid synthase levels in the liver and may be beneficial, the beneficial effects of the 401 

commercially available kefir used in this study differ from those imparted by traditional kefir.   402 



The results of this study agree with recent work showing kefir or kefir organisms to be protective 403 

against NAFLD (H.-L. Chen et al., 2013; D. H. Kim et al., 2017) and obesity (Fathi et al., 2016; 404 

D.-H. Kim et al., 2017). It should be noted that we did not see as marked changes in the 405 

expression of genes related to lipogenesis and fatty acid metabolism.  This may be explained by 406 

differences in diet or tissue examined in the other studies.  For instance, many of these studies 407 

have been carried out with knockout strains, such as ob/ob mice, or used diets consisting of 408 

significantly higher levels of fat (ie 60% kcal from fat) or sugar (high fructose corn syrup) in 409 

order to induce obesity/NAFLD.  This may have led to the development of a more significant 410 

phenotype and thus resulted in greater alterations to basal gene expression levels.  Many other 411 

studies have utilized freeze dried kefir as a delivery method through either rehydration in water 412 

or mixing with food, which may lead to increased dosages (>10 times) of microorganisms or 413 

other kefir components beyond what would be consumed under normal circumstances. 414 

Additionally, no previous studies have analyzed gene expression related to bile acid metabolism 415 

and production. While our findings were not significant the patterns observed may indicate a 416 

valuable area of further study. 417 

It should be noted that this study only examined one commercially available product. The 418 

majority of commercial kefirs available in Canada, including from international kefir producers 419 

contain Streptococcus thermophilus, Lactobacillus species such as Lb. acidophilus, Lb. casei, Lb. 420 

delbrueckii, Bifidobacterium species, Lactococcus lactis strains, and Leuconostoc mesenteroides 421 

strains.  In contrast, traditional kefir contains the Lactobacillus species Lb. kefiri and Lb. 422 

kefiranofaciens, as well as a variety of yeast and fungal species in addition to examples of 423 

Lactococcus lactis and Leuconostoc mesenteroides.  Since performing this study we have 424 



become are aware of at least one commercially available kefir that indicates inclusion of kefir 425 

specific isolates and will merit further investigation.   426 

5. Conclusion 427 

 Our findings show that traditional kefir has promise in reducing adverse metabolic 428 

outcomes associated with a high fat western diet. We also observed that traditional kefir 429 

exhibited varying levels of effectiveness alleviating metabolic dysfunction and weight gain, 430 

suggesting that differences in microbial population of the kefir play an important role in how 431 

fermented foods impact host health. Most importantly traditional kefir outperformed commercial 432 

kefir indicating that substantial consideration is needed in future selection of commercial kefir 433 

organisms.    434 
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Table S1 702 

Bacterial Genus ICK IR9 IR10 GER2 

Acetobacter 0.046997 0.199694 0.531256 0.102909 

Lactobacillus 0.519055 0.422822 0.157705 0.25657 
Lactococcus 0 0.363729 0.263348 0.559077 

Leuconostoc 0.344207 0.00866 0.044461 0.079238 

Propionibacterium 0 0.002208 0 0 
Gluconobacter 0.010318 0 0 0 

Other 0.079423 0.002887 0.00323 0.002207 

 703 

Fungal Genus ICK IR9 IR10 GER2 
Kazachstania 0.157029 0.068585 0.885288 0.548772 

Kluyveromyces 0.114724 0.001679 0.001193 0 

Naumovozyma 0 0.818705 0 0 
Saccharomyces 0 0.009353 0 0 

Davidella 0 0.008393 0 0 

Dekkera 0.003695 0 0 0 
Wallerria 0 0 0.005765 0 

Eurotium 0 0 0.00159 0 

Cryptococcus 0 0.006235 0 0 

Teratoshpaeria 0 0.001199 0 0 
Debaromyces 0 0.002878 0 0 

Cyberlinchera 0 0.002878 0 0 

Malassezia 0 0.002158 0 0 
Other 0.724552 0.077938 0.106163 0.451728 

 704 

Supplementary Table 1.  Relative abundance of bacterial and fungal genera in the four traditional kefir 705 

used in this study 706 
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Table S2 713 

Target Gene Forward (5’-3’) Reverse (5’-3’) 

GAPDH ATTGTCAGCAATGCATCCTG ATGGACTGTGGTCATGAGCC 

FGF-15 ATGGACTGTGGTCATGAGCC GAGGACCAAAACGAACGAAATT 
Cyp7a1 GGGATTGCTGTGGTAGTGAGC GGTATGGAATCAACCCGTTGTC 

PPARγ TTGCTGAACGTGAAGCCCATCGAGG GTCCTTGTAGATCTCCTGGAGCAG 

FASN AGGGGTCGACCTGGTCCTCA GCCATGCCCAGAGGGTGGTT 
IL-1β GGAGAACCAAGCAACGACAAAATA TGGGGAACTCTGCAGACTCAAAC 

IL-18 CAGGCCTGACATCTTCTGCAA TCTGACATGGCAGCCATTGT 

 714 

Table S2. Specific primer sequences used for quantitative real-time PCR. GAPDH: Glyceraldehyde 3-715 

phosphate dehydrogenase; FGF-15: Fibroblast growth factor 15; Cyp7a1: Cytochrome P450 family 7 716 

subfamily A member 1; PPARγ: Peroxisome proliferator-activated receptor gamma; FASN: Fatty acid 717 

synthase; IL-18: Interleukin 18. 718 
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Table S3 731 

Kefir Viscosity (Pa·s)  pH 

IR9 0.00242 ± 0.00079 5.56 ± 0.12bc 

IR10 0.00188 ± 0.00039 5.72 ± 0.10b 

ICK 0.43715 ± 0.15605 4.56 ± 0.08a 

GER2 0.00309 ± 0.00041 5.08 ± 0.06ac 

 732 

Supplementary Table 3. Viscosity and pH of traditional kefirs used in this study following an 18 hour 733 

fermentation.  Viscosity was measured at a shear rate of 3.5 Pascal/second. 734 
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Table S4 749 

Genus/Family P ICK LFD IR9 IR10 Ger2 Com HFD 

Blautia 2.67E-05 0.118272 0 1.54E-05 1.51E-05 4.47E-06 2.30E-06 7.16E-06 

Erysipelotrichaceae genus 
unassigned  

4.78E-05 0.111113 0.000404 0.297744 0.077329 0.0852 0.102288 0.221883 

Akkermansia 6.90E-05 0 5.07E-05 2.94E-05 0.184574 0.422434 2.30E-06 1.58E-05 

Epulopiscium 7.34E-05 0.10493 6.73E-06 0.042293 0.068053 0.037031 0.2329 0.162398 

Clostridiales family 
unassigned genus 
unassigned 

7.93E-05 0.075759 0.345705 0.104624 0.067517 0.017508 0.07277 0.024948 

Peptostreptococcaceae 
genus unassigned 

0.000128 0.038614 0.000392 0.060215 0.019229 0.032435 0.069698 0.049866 

Dehalobacterium 0.000153 5.30E-05 0.002575 0 0.001491 0 1.80E-05 1.39E-05 

Anaeroplasma 0.000159 2.51E-05 0.069311 0.00028 5.34E-05 0 0.000241 0 

Citrobacter 0.000185 0.022364 3.90E-06 0.038694 0.006466 0.013921 0.027365 0.012821 

Lactococcus 0.000424 0.002381 0 0.003071 0.00206 0.000982 0.002706 0.002016 

Clostridium 0.001256 0.090775 1.90E-05 0.099827 0.052446 0.040386 0.091779 0.076546 

Coprobacillus 0.002071 0.00387 8.44E-05 0.00192 0.00184 0.002949 0.003367 0.009426 

Coriobacteriaceae genus 
unassigned 

0.00233 0.014812 9.21E-05 0.004878 0.014871 0.010318 0.002152 0.007769 

Coprococcus 0.002362 0.005565 0.003416 0.002781 0.000296 0.003692 0.004389 0.012067 

Eubacterium 0.002699 0 0 0 0 0.001409 0.059179 0 

Enterococcaceaegenus 
unassigned 

0.015149 0.000389 0 0.001694 0.000286 0.000293 0.001201 0.000333 

Ruminococcus 0.015396 0.004485 0.006089 0.001828 0.008329 0.004244 0.006122 0.005566 

Clostridiaceae genus 
unassigned 

0.016222 0.026995 0.004346 0.093302 0.003 0.008224 0.083403 0.017013 

Ruminococcaceae genus 
unassigned 

0.019342 0.012499 0.015909 0.00136 0.012918 0.006044 0.00612 0.008032 

Lachnospiraceae genus 
unassigned 

0.029061 0.027489 0.158359 0.041454 0.058071 0.040633 0.047461 0.039407 

Turicibacter 0.046729 0.004858 0.016611 0.003497 0.000821 0.002662 0.001634 0.005038 

Oscillospira 0.052924 0.024691 0.038367 0.013129 0.045261 0.023167 0.015457 0.034146 

Dorea 0.062129 0.005197 0.002764 0.003022 0.010273 0.007966 0.006508 0.012024 

Ruminococcus 0.11049 0.005568 0.015593 0.01053 0.005178 0.006721 0.006914 0.011716 

Delftia 0.130953 0 7.02E-06 0 0 8.18E-06 0 0 

S24-7 genus unassigned 0.163779 0.2517 0.27422 0.135991 0.324165 0.191931 0.122652 0.243108 

Lactobacillus 0.243882 0.014417 0.001669 0.000772 0.002089 0.004246 0.003867 0.004652 

Unassigned 0.508077 0.000393 0.000572 0.000368 0.000638 0.000292 0.000284 0.000309 

Ruminococcaceae genus 
unassigned 

0.776417 0.031822 0.041871 0.03602 0.031364 0.034436 0.0281 0.038469 
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Table S4. Relative abundances and P values (calculated by ANOSIM) of bacterial genera/families in the 751 
faecal microbiota at day 28. 752 



Table S5 753 

Table S5. Relative abundances and P values (calculated by ANOSIM) of bacterial genera/families in the 754 

caecal microbiota at day 84 755 

 756 

 757 

 758 

Genus/Family P value ICK LFD IR9 IR10 Ger2 Com HFD 

Ruminococcaceae 
genus unassigned 

2.98E-05 0.003626 0.015243 0.004191 0.008386 0.005276 0.000778 0.001387 

Eubacterium 0.000269 0.000181 4.05E-05 0.000396 0.000203 0.002717 0.001814 0.000255 

Coprococcus 0.000417 0.001049 0.001603 0.003029 0.003746 0.000752 0.002393 0.00417 

Epulopiscium 0.002252 0.032719 0.00988 0.031267 0.023693 0.043536 0.061952 0.016324 

Dorea 0.004681 0.001225 0.001657 0.002674 0.007922 0.002674 0.004595 0.00151 

Peptostreptococcaceae 
genus unassigned 

0.01137 0.016139 0.009422 0.008827 0.016878 0.01923 0.024697 0.009847 

Ruminococcaceae 
genus unassigned 

0.015865 0.010217 0.022981 0.016956 0.028286 0.031496 0.011438 0.032871 

Lachnospiraceae genus 
unassigned 

0.030471 0.008576 0.039975 0.009903 0.020062 0.014635 0.011361 0.027957 

Citrobacter 0.030671 0.007384 0.002579 0.008725 0.012192 0.016885 0.010719 0.015153 

Clostridium 0.034922 0.003838 0.003041 0.007168 0.012883 0.008205 0.013383 0.004823 

Erysipelotrichaceae 
genus unassigned 

0.047276 0.002303 0.000786 0.001709 0.006695 0.006924 0.004886 0.003965 

Coprobacillus 0.09503 0.000344 9.26E-05 0.000197 0.000503 0.003281 0.00064 0.000344 

S24-7 genus 
unassigned  

0.108435 0.420998 0.493339 0.354305 0.36574 0.387891 0.352851 0.312552 

Blautia 0.132584 0.00397 0.002503 0.004769 0.010553 0.007361 0.01364 0.002369 

Unassigned 0.148857 0.000346 0.000222 0.000478 0.000546 0.000359 0.000532 0.000583 

Clostridiaceae genus 
unassigned 

0.180998 0.000692 0.000479 0.000406 0.000765 0.001008 0.000374 0.001125 

Akkermansia 0.242513 0.438458 0.241041 0.498901 0.384428 0.376875 0.41381 0.459001 

Oscillospira 0.267119 0.008845 0.026817 0.010423 0.020202 0.011543 0.018403 0.01196 

Lactobacillus 0.319268 0.00473 0.002053 0.001302 0.007424 0.012255 0.002469 0.009768 

Ruminococcus 0.337874 0.001045 0.00414 0.001075 0.002496 0.001449 0.001539 0.001258 

Coriobacteriaceae 
genus unassigned 

0.34322 0.003721 0.002329 0.002477 0.008817 0.008655 0.004839 0.004631 

Clostridiales family 
unassigned genus 
unassigned 

0.345019 0.024256 0.105405 0.023342 0.050533 0.025376 0.034996 0.066912 

Turicibacter 0.441948 0.001104 0.001935 0.001893 0.001982 0.00146 0.002959 0.003259 

Ruminococcus 0.756579 0.003321 0.005191 0.004402 0.0042 0.004478 0.003947 0.007197 


