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Abstract 

Age-Period-Cohort (APC) models have been widely used by epidemiologists to analyze the 

time trends of incidence and mortality rates of various disease. The linear dependency among 

three factors: "Cohort=Period—Age" results in the well-known "non-identifiability" problem. 

In this article, we review the most popular "solutions" that are built on estimable functions-

parametrization suggested by Holford (1983) and the overall drift concept proposed by Clayton 

and Schifflers (1987). Next, we present how regression splines can be used to extend the current 

APC-model framework by Heuer (1997). Suggestions to practitioners on parameterization of 

APC models by Carstensen (2007) are also reviewed. Finally we consider the use of smoothing 

splines in the APC modeling. We show through simulation studies that the model using 

smoothing splines gives more stable estimates of the estimable functions compared to the other 

two smoothing techniques. All the methods are illustrated to Alberta Mesothelioma data from 

1985 to 2004. 



Acknowledgements 

I would like to thank all of those who have supported and helped me throughout my studies. 

I am deeply indebted to my supervisor Dr. K.C. Carriere. Without her tremendous 

encouragement, guidance and support this project could not be going so smoothly. Her deep 

knowledge and great insight on this project saved me from getting stuck in many issues on the 

way. I am so grateful for the great opportunity to work at Alberta Cancer Board (ACB) she 

provided me, from which I really learned a lot. I have been feeling so lucky to study under the 

guidance of Dr. K.C. Carriere and I could not forget her so prompt decision to accept me. 

I would like to thank those that helped me at ACB, Munira, Marilyn and Zaman for their 

detailed introduction and explanation of the Mesothelioma project in every aspect and their 

knowledge in epidemiology which is really helpful. 

I would like to thank all the faculty and staff in the Department of Mathematical 

and Statistical Sciences for their assistance and for providing such an excellent studying 

environment. Special thanks to those faculties who have taught me courses for leading me 

to further explore the wonderful world of statistics. 

I am very grateful to my parents for their love and forever support. I cannot express how 

much you mean to me. I will never forget your sacrifice. To my twin sister for both cheering 

me up and making me angary and for being present whenever I need her. 

Last but not least I would like to thank my husband Linglong Kong. Your support has been 

a constant source of strength. 



Contents 

1 Introduction 1 

2 Review of the Literature 5 

2.1 The Identification Problem 5 

2.2 Parameterization and Estimable Functions by Holford (1983) 8 

2.3 The Overall Drift and Reduced Two-factor Models 11 

2.4 Regression Splines in the Age-Period-Cohort Model 13 

2.5 Carstensen's Parameterization 16 

2.5.1 Explicit Drift Parameter 17 

2.5.2 Fitting Model Sequentially 18 

2.6 Splines and Generalized Additive Models 19 

2.6.1 Regression Splines 20 

2.6.2 Roughness Penalty and Smoothing Splines 23 

2.6.3 Additive Models: P-Covariate Case 27 

2.6.4 Generalized Additive Models 30 

3 Smooth Age-Period-Cohort Models Using Smoothing Splines 32 

3.1 Holford's Parameterization to the Smooth APC Models 32 

3.2 Smooth APC Models Using Smoothing Splines 33 

3.2.1 smoothing splines 34 

3.2.2 The Parameterization Using Smoothing Splines 36 

4 Simulation Study and Data Analysis 38 

4.1 Simulation Study 38 

4.2 Analysis of Mesothelioma Data in Alberta 69 



5 Conclusion and Discussion 73 

Bibliography 75 



List of Tables 

2.1 Age-by-Period Display 5 

2.2 Age-by-Cohort Display 5 

2.3 Period-by-Cohort Display 6 

2.4 Design Matrix for I = J = 3 9 

4.1 Estimation results from the simulation study when f3a = 0.05, /3P = 0.05 and 

using birth cohort curve / with /3C = 0.01 42 

4.2 Estimation results from the simulation study when j3a = 0.00, f3p = 0.05 and 

using birth cohort curve I with /3C = 0.01 43 

4.3 Estimation results from the simulation study when j3a = —0.05, /3P = 0.05 and 

using birth cohort curve J with /3C = 0.01 44 

4.4 Estimation results from the simulation study when fla = 0.05, /3P = 0.00 and 

using birth cohort curve / with f3c = 0.01 45 

4.5 Estimation results from the simulation study when fia = 0.00, {3P = 0.00 and 

using birth cohort curve / with f3c — 0.01 46 

4.6 Estimation results from the simulation study when (3a = —0.05, fip = 0.00 and 

using birth cohort curve J with f3c — 0.01 47 

4.7 Estimation results from the simulation study when (3a = 0.05, /3P = —0.05 and 

using birth cohort curve / with f3c = 0.01 48 

4.8 Estimation results from the simulation study when (3a = 0.00, 0P = —0.05 and 

using birth cohort curve/ with (3C = 0.01 49 

4.9 Estimation results from the simulation study when @a = —0.05, /3P = —0.05 

and using birth cohort curve / with f3c = 0.01 50 



4.10 Estimation results from the simulation study when /3a = 0.05, /3P = 0.05 and 

using birth cohort curve II with (3C — 0.01 51 

4.11 Estimation results from the simulation study when f3a = 0.00, @p = 0.05 and 

using birth cohort curve II with f3c = 0.01 52 

4.12 Estimation results from the simulation study when (5a = —0.05, (3P — 0.05 and 

using birth cohort curve II with /3C = 0.01 53 

4.13 Estimation results from the simulation study when j3a = 0.05, (3P = 0.00 and 

using birth cohort curve II with /3C = 0.01 54 

4.14 Estimation results from the simulation study when /3n = 0.00,13P = 0.00 and 

using birth cohort curve II with /3C = 0.01 55 

4.15 Estimation results from the simulation study when f3a = —0.05, f3p = 0.00 and 

using birth cohort curve II with f3c = 0.01 56 

4.16 Estimation results from the simulation study when f3a = 0.05, (3P = —0.05 and 

using birth cohort curve II with f3c = 0.01 57 

4.17 Estimation results from the simulation study when f3a = 0.00, (3P = —0.05 and 

using birth cohort curve II with (5C = 0.01 58 

4.18 Estimation results from the simulation study when (3a = —0.05, /3P = —0.05 

and using birth cohort curve II with j5c = 0.01 59 

4.19 Estimation results from the simulation study when 0a = 0.05, 0P = 0.05 and 

using birth cohort curve 7i7 with j3c = -0.00587 60 

4.20 Estimation results from the simulation study when (5a = 0.00, f5p = 0.05 and 

using birth cohort curve III with /3C = -0.00587 61 

4.21 Estimation results from the simulation study when (3a = —0.05, f3p — 0.05 and 

using birth cohort curve III with j3c = -0.00587 62 

4.22 Estimation results from the simulation study when f3a = 0.05, (3P = 0.00 and 

using birth cohort curve / / / with (5C = -0.00587 63 

4.23 Estimation results from the simulation study when (3a = 0.00, /3P = 0.00 and 

using birth cohort curve III with /3C = -0.00587 64 



4.24 Estimation results from the simulation study when /3a = —0.05, /3P = 0.00 and 

using birth cohort curve III with /3C = -0.00587 65 

4.25 Estimation results from the simulation study when (3a = 0.05, j3p = —0.05 and 

using birth cohort curve III with f3c = —0.00587 66 

4.26 Estimation results from the simulation study when /30 = 0.00, j3p — —0.05 and 

using birth cohort curve 777 with f3c = -0.00587 67 

4.27 Estimation results from the simulation study when /3a — —0.05, f3p = —0.05 

and using birth cohort curve III with (3C = -0.00587 68 

4.28 Analysis of deviance for the mesothelioma data in Alberta 69 

4.29 Results for the estimable linear trends in the mesothelioma incidence 70 

4.30 Chi-square tests for the estimable curvature effects for mesothelioma data. . . . 70 



List of Figures 

4.1 Constructed Birth Cohort Effect Curves I, II and III 39 

4.2 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, (3P = 0.05 and using birth cohort curve I with (5C = 0.01 42 

4.3 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.00, PP = 0.05 and using birth cohort curve I with pc = 0.01 43 

4.4 Estimated curvature effects of birth cohort from the simulation study when 

pa = -0.05, PP = 0.05 and using birth cohort curve I with pc = 0.01 44 

4.5 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, Pp = 0.00 and using birth cohort curve I with pc = 0.01 45 

4.6 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.00, PP = 0.00 and using birth cohort curve / with pc = 0.01 46 

4.7 Estimated curvature effects of birth cohort from the simulation study when 

Pa = -0.05, Pp = 0.00 and using birth cohort curve / with pc = 0.01 47 

4.8 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, Pp = -0.05 and using birth cohort curve J with pc = 0.01 48 

4.9 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.00, PP = -0.05 and using birth cohort curve / with pc = 0.01 49 

4.10 Estimated curvature effects of birth cohort from the simulation study when 

Pa = -0.05, Pp = -0.05 and using birth cohort curve /with pc = 0.01 50 

4.11 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, Pp = 0.05 and using birth cohort curve i7 with pc = 0.01 51 

4.12 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.00, Pp = 0.05 and using birth cohort curve II with Pc = 0.01 52 



4.13 Estimated curvature effects of birth cohort from the simulation study when 

Pa = -0.05, PP = 0.05 and using birth cohort curve II with pc = 0.01 53 

4.14 Estimated curvature effects of birth cohort from the simulation study when 

pa = 0.05, PP = 0.00 and using birth cohort curve II with pc = 0.01 54 

4.15 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.00, PP = 0.00 and using birth cohort curve II with pc = 0.01 55 

4.16 Estimated curvature effects of birth cohort from the simulation study when 

Pa = —0.05, Pp = 0.00 and using birth cohort curve II with pc = 0.01 56 

4.17 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, Pp = —0.05 and using birth cohort curve 77 with pc = 0.01 57 

4.18 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.00, Pp = -0.05 and using birth cohort curve II with pc = 0.01 58 

4.19 Estimated curvature effects of birth cohort from the simulation study when 

Pa = -0.05, Pp = -0.05 and using birth cohort curve II with pc = 0.01. . . . 59 

4.20 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, PP = 0.05 and using birth cohort curve III with pc = 5.587 x 10~2. 60 

4.21 Estimated curvature effects of birth cohort from the simulation study when 

pa = 0.00, pp = 0.05 and using birth cohort curve III with pc = -0.00587. . . 61 

4.22 Estimated curvature effects of birth cohort from the simulation study when 

Pa = -0.05, Pp = 0.05 and using birth cohort curve III with pc = -0.00587. . 62 

4.23 Estimated curvature effects of birth cohort from the simulation study when 

pa = 0.05, Pp = 0.00 and using birth cohort curve III with pc = -0.00587. . . 63 

4.24 Estimated curvature effects of birth cohort from the simulation study when 

pa = 0.00, PP = 0.00 and using birth cohort curve III with pc = -0.00587. . . 64 

4.25 Estimated curvature effects of birth cohort from the simulation study when 

Pa = -0.05, Pp = 0.00 and using birth cohort curve III with pc = -0.00587. . 65 

4.26 Estimated curvature effects of birth cohort from the simulation study when 

Pa = 0.05, Pp = -0.05 and using birth cohort curve III with pc = -0.00587. . 66 



4.27 Estimated curvature effects of birth cohort from the simulation study when 

pa = 0.00, pp = -0.05 and using birth cohort curve III with (3C = -0.00587. . 67 

4.28 Estimated curvature effects of birth cohort from the simulation study when 

0a = -0.05, Pp = -0.05 and using birth cohort curve III with pc = -0.00587. 68 

4.29 Estimates of curvature effects from three smooth APC models using 3, 3 and 4 

Dfs for Age, Period and Cohort respectively 72 

4.30 Estimates of curvature effects from the APC factor model with 5, 4 and 8 Dfs 

for Age, Period and Cohort respectively 72 



Chapter 1 

Introduction 

Age-Period-Cohort (APC) models are widely used by epidemiologists to analyze trends in 

disease incidence and mortality. The purpose of fitting APC models is to decompose the 

rates into age, period and cohort effects, which are the parameters of interest. The data to 

be considered are number of cases and population as the denominator for the rates, which can 

be arranged in a two-way contingency table with one dimension for age groups, indexed by 

% = 1,..., I, and the other dimension for period groups, indexed by j = 1,..., J. Such a table 

is also called as the Lexis diagram (Keiding 1990). Due to the linear dependency of the three 

factors: Cohort=Period—Age, all those in a given age group i at period j correspond to the 

same birth cohort as those in age group i + 1 at period j + 1. Thus, if the age and period groups 

have equally spaced intervals, the birth cohorts are the diagonals in the Lexis diagram, which 

will be longer than the interval for age/period groups and overlap to some extent. The birth 

cohort indexed by k = 1,..., K, can be determined uniquely by the age i and period j , 

k = j + I-i. (1.1) 

For each cell (i, j) in the lexis diagram, the number of cases n„fc for Age i, Period j and 

Cohort k = j + / — i is given and are often assumed to be independently distributed as Poisson 

with mean m^. The person-years JV# has usually been considered to be fixed and treated as 

an offset term in the model (Armitage, 1966). It is usually assumed that each factor has an 

additive effect on the log scale: 

log(/iyfc) = Vijk = M + a* + ^j + 7* > (1.2) 

where n is the intercept and a*, 7T,-, jk represent the age, period and cohort effects, respectively. 
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To avoid overparameterization, the usual constraints apply: 

£ a* = ] [> = £ > = <) (1.3) 
i j k 

Alternatively, constraints can be set by identifying one of each of the age, period, and cohort 

groups as the reference, which is the default constraint setting in SAS. Unfortunately, the model 

(1.2) is still not identifiable even under the usual constraint (1.3). 

Fienberg and Mason(1978) used the log-linear contingency tables to present the 

identification problem. They viewed an effect as the interaction contrast between two main 

effects and showed that it is impossible to estimate the linear effect of each of the three factors. 

They pointed out that only one additional linear constraint, which can be written as cT9 = 0 

where 9T — (aT,7rT,7T) is necessary to ensure identifiability of all the parameters in the 

model, say a\ = 0 or 7Ti = 0 or ji — 0. Many authors argued about the choice of c, which 

should be made on the defensible priori information. Kupper et al.(1983,1985) considered the 

commonly used multiple classification APC model in the form of fixed-effect ANOVA-type 

model to prove that the design matrix is one less than a full-column rank, so one additional 

constraint is necessary to ensure the identifiability of all the parameters. With constraints 

imposed, it is well known that the deviance of the model remains the same but the effect 

estimates can be totally different. This is known as the nonidentifiability problem in age-

period-cohort analysis. 

There are many "solutions" that aim to handle this nonidentifiability problem without 

attempting to impose arbitrary constraints. Osmond and Gardner(1982) suggested using the 

penalty function, which is minimized to derive the necessary extra linear constraint. Robertson 

and Boyle(1986) attempted to overcome the identifiability problem by using the individual 

records of cases and forming a three-way table of age group, time period and birth cohort. Lee 

and Lin(1996) modeled the birth cohort effects as the first-order autoregressive time series. 

More recently methods are focused on the utility of estimable functions that are invariant 

to the selection of constraints on the parameter vector (Holford 1983,1991,1996; Clayton and 

Schifflers 1987). Their parametrization decompose each factor into a linear effect and curvature 

effects or deviations from linearity and allows the identifiability of the three curvature effects 

and the sum of any two linear effects out of the three linear effects. Heuer (1997) introduced 
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the regression splines, especially Natural Splines, to the Age-Period-Cohort analysis. This 

approach decomposes the basis of each spline through orthogonal projection into linear and 

nonlinear terms and the nonidentifiability problem can be handled by excluding one of the 

two linear effects of period or curvature effect, which in essence are still based on the 

parametrization by Holford (1983) but provides a framework to include the interactions into 

the model by using Kronecker product of the spline functions. Using the ideas of both 

Holford (1983, 2006) and Heuer (1997), Carstensen (2007) gave a set of recommendations 

for practitioners and introduced the package "Epi" in R that implements them. 

In practice, we may consider a hierarchy of log-linear models: age, age-drift, age-

cohort/age-period and finally age-period-cohort models. Deviance will be used as a measure of 

"goodness of fit" of the models. When the reduced two-factor model is the final model, special 

attention should be paid to the interpretation of the effect estimates. Although the third factor is 

not in the model, one cannot conclude that this factor does not have significant effect. Rather its 

curvature effect is not significant. This is obvious using the parametrization by Holford (1983). 

Kupper(1983) demonstrated this both theoretically and by example in the case of Least-square 

regression. 

Further, we consider the use of Generalized Additive Models (Hastie and Tibshirani 1990) 

for the estimation. The smooth version of the APC model using smoothing splines can be 

specified as: 

log(injk) = log(i\y + fi + fa(oi) + fp(pj) + fc(ck) (1.4) 

where a« and pj are the actual unaggregated values for age and period in one-year intervals and 

Cfe will be identified as the mean values in the corresponding birth cohorts of two-year intervals 

through ck — Pj — ai. JVy- is the value of person-years, and log(iVy) is treated as an offset term; 

fa(a>i),fP(Pj) and fc(ck) are spline functions for age, period and cohort respectively. Since the 

cubic smoothing spline is one of the most popular smoothing technique in practice, here we 

will just focus on the case when cubic smoothing splines are used for all three factors. 

A cubic smoothing spline has symmetric smoother matrix with eigenvalues in (0,1], its 

smoother matrix can be partitioned into two parts: (1) a projection part-the eigenspace spanned 

by the eigenvectors for the eigenvalues that equal 1 corresponding to the space spanned by a 
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constant and linear function of the predictors; and (2) shrinking part-the eigenspace spanned by 

the eigenvectors for those eigenvalues greater than 0 and strictly less than 1 corresponding to the 

space spanned by nonlinear functions of the predictors. Hence estimation of the APC additive 

models fitted by cubic smoothing splines using local scoring algorithm as outer loop and 

backingfitting algorithm as inner loop can be separated into linear components (corresponding 

to the projection part) and nonlinear components (corresponding to the shrinking part). The 

linear dependency among three factors still exists in this framework and can only occur in the 

projection parts. What is worth noticing is, in the GAM situation, the orthogonal projection 

is proceeded in the transformed coordinate using certain weight matrix generated in the step 

of local scoring or in other words, the linear component is a weighted least squares fit of the 

fitted curve on the predictor and the residual is the nonlinear component. But the nonlinear 

components are estimable and then conclusions concerning estimable functions by Holford 

(1983) also hold, so similar parametrization can be conducted and non-identifiability problem 

will has similar solution in the framework of Generalized Additive Model (GAM) using 

smoothing splines. 

In Chapter 2, we will review the identification problem inherent in age-period-cohort 

models, the "solution" that are based on the estimable function-parametrization suggested by 

Holford (1983) and the overall drift concept proposed by Clayton and Schifflers (1987). Next, 

we will present how to parameterize the age-period-cohort by regression splines as suggested 

by Heuer (1997) and still based on the parametrization by Holford (1983). A short review of 

the parametrization by Carstensen (2007) will also be given. Lastly, we reviewed some theories 

about smoothing splines and GAM that we find useful in explaining the parametrization and 

proving the estimable functions in the Chapter 3. Chapter 3 will give the similar solution as 

Holford's (1983) for the APC model using smoothing splines. In Chapter 3, we will use the 

Holford's and Heuer's approach reviewed in Chapter 2 and the newly considered one in Chapter 

3 to analyze the Mesothelioma data in Alberta, 1985 to 2004. In Chapter 4, a brief comparison 

of those approaches and concluding remarks will be given. 
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Chapter 2 

Review of the Literature 

2.1 The Identification Problem 

The identification problem is most simply illustrated in the context of the data from three 

periods of time and divided into three age groups. Corresponding to this structure are five 

birth cohorts. 

The Contingency Table Representation 

Fienberg and Mason (1979) presented the three-age and three-period situation in three 

different cross-classification tables: age-period array in Table 2.1, age-cohort array in Table 

2.2 and period-cohort array in Table 2.3. Tables 2.2 and 2.3 are incomplete contingency tables 

in which the dashes represent structural zeros-categories that are a priori impossible given the 

way in which the data are collected and restructured. 

Table 2.1: Age-by-Period Display 
age\period 

1 
2 
3 

1 

"113 

"212 

"311 

2 

"124 

"223 

71322 

3 
"135 

"234 

"333 

Table 2.2: Age-by-Cohort Display 
age\cohort 

1 
2 
3 

1 

"311 

2 

"212 

"322 

3 

"113 

"223 

"333 

4 

"124 

"234 

5 
"135 

When the effects of age, period and cohort are considered simultaneously, then the third 

effects are measured in terms of interaction contrasts of the other two effects. That is, in 

Table 2.1 cohort effects represent the interaction between age and period; in Table 2.2 period 
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Table 2.3: 
period\cohort 

1 
2 
3 

: Period-by-Cohort Display 
1 

"311 

2 
"212 

"322 

3 
"113 

"223 

"333 

4 

"124 

"234 ' 

5 

1135 

effects represent the interaction between age and cohort; and in Table 2.3 age effects represent 

the interaction between period and cohort. In the following analysis, we use the notation: 

tiijk = logOUyfe/Wjjfc). 

When examining the period-by-cohort array in Table (2.3), we find that there are two 

nonredundant interaction contrasts, involving 2 x 2 subtables of adjacent cells, for estimating 

age effects: 

^113 - ^212 - ^223 + ^322 = «1 ~ 2 a 2 + «3 = - 3 « 2 (2.1) 

(since ai+ a2 + a3 = 0), and 

Ql24 - ^223 - ^234 + ^333 = Oil — 2 a 2 + CK3 = —3o>2 (2.2) 

The two interaction contrasts for the log-odds ratios turn out to be the same contrast for the age 

effect parameters, a2 and this is the only estimable age effects. Similarly, the two interaction 

contrasts for the 2 x 2 subtables of the adjacent cells in the age-by-cohort array both reduce 

to the same contrast for the period effect parameters, 7r2 and this is the only estimable period 

effect. 

Finally, for the age-by-period array, the four interaction contrasts involving 2 x 2 subtables 

of adjacent cells are: 

^113 ~ ^124 - ^212 + ^223 = %73 ~ 72 ~ 74 (2.3) 

O l 2 4 ~ ^135 - ^223 + ^234 = 2j4 - 75 - 73 (2.4) 

fi212 - fi223 - O311 + Q 3 2 2 = 272 - 7 1 - 7 3 (2.5) 

^223 — ^234 — ^322 + ^333 = 273 — 7 2 — 74 (2.6) 

Since Expressions (2.3) and (2.6) involve the same contrast, there are only three equations 

can be used to estimate four independent cohort parameters. By taking linear combinations 
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of expressions of Expressions (2.3), (2.4) and (2.5) and using the constraint Y^k Tfc — 0, the 

cohort effects 73,71 + 75 and 71 + 274 are estimable. 

Therefore each type of effects is lacking one estimable parameter. Another way to look at 

this identification problem is: due to the constraint Ẑ* ai ~ 0>tne onty estimable parameter a2 

allows us to estimate the quadratic effect for age «i — 2a2 + 0:3. But we are unable to get the 

estimate for linear age effect a^ — «i. Similarly, we can get the the quadratic effect for period 

it 1 — 27r2 + 7r3 but not the linear effect it3 — 7Ti. For the cohort effect, from Expression (2.3) 

to (2.5), we cannot obtain the linear effect. What we have seen here is that when the effects 

are described into two components: linear trend and nonlinear trend, the nonlinear effects 

are estimable while the linear effects are not, which is actually the cause of the identification 

problem. 

The identification problem complicates the analysis, but it can be overcome by imposing an 

identification specification; that is, one additional constraint on the effect parameters, such as 

«i = a2, or ""l — 7r2, or 71 = 72 is sufficient to identify all parameters. The goodness-of-fit of 

an Age-Period-Cohort model to data can still be tested despite the non-identifiability of certain 

parameters. 

Least-squares Regression representation 

The identification problems in APC models can be equivalently seen when working with 

the model in a least-squares regression form (Kupper, 1985). The constraint (1.1) implies that 

only the first (I - 1) age effects, the first (J — 1) period effects and the first (I + J — 2) birth 

cohort effects needed to be estimated. Then, the log-linear model (1.2) has the least-squares 

regression presentation as: 

7-1 J - l I+J-2 
Yn = M + J2 aiAi + Yl nip3 + 2 7hCk (2.7) 

»=i j=i k=i 

where, Yy represent the incidence rate or log-transformed rate. A , Pj and Ck are the dummy 

variables for the ith age group, j t h period and kth birth cohort, respectively. The subscript A; of 

the cohort effects can be determined uniquely by i and j . 

Accordingly, the (I J) x [2(1+J)—3] dimensional design matrix X of the matrix presentation 
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of the model (2.7) can be defined, namely 

E(Y) = Xb (2.8) 

where the response vector is 

Y' = (Y11,...,Y1j;Y21,...,Y2J;...;Yn,...,YIj) (2.9) 

and the parameter vector is 

b' = (/i; a i , . . . , a/_i;7Ti, . . . ,7rj_i;7i, . . . ,7/+ j_2) (2.10) 

The ordinary least-squares estimates b is the solution of the normal equation: 

X'X6 = X'Y (2.11) 

But because the design matrix X is one-less than full column rank, the matrix X'X is not 

invertible, and there does not exist a unique solution to (2.11). This is the identification problem 

of APC analysis. Actually, due to the linear dependence: Cohort=Period —Age, some columns 

of the matrix X can be expressed linearly by other columns. 

Kupper et al. (1985, theorem 3.1) have shown that for columns of the IJ x [27 + 2 J — 3] 

matrix X, there exists the following linear dependency: 

f> - ^Ai - X> - T̂-V; + ' l > - '-Vn = 0 (2.12) 
i=l j=l k=l 

The above equation actually reveals that "the linear component of age"—"the linear component 

of period"+"the linear component of cohort"= 0, since [i — ] , \j —] and [fc —] 
Zi Zi Zt 

are the orthogonal polynomial coefficients for accessing the linear trend of corresponding 

factors as suggested by Holford (1983). This result is consistent with other authors' conclusion 

(for example, Fienberg and Mason (1979); Holford (1983)) that the linear effects of age, period 

and cohort are not individually estimable when the three factors are considered simultaneously. 

2.2 Parameterization and Estimable Functions by Holford 
(1983) 

Holford (1983) did not make any attempt to impose any constraints to ensure identifiability 

but concentrated only on the estimable functions. This approach is adopted later on by Heuer 
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(1997) in the age-period-cohort modeling using natural splines. Holford (1983) suggested 

decompose the effects of age, period and cohort into two components: linear trend and 

curvature (or deviations from linearity). 

Table 2.4: Design Matrix for I = J = 3 
i 
1 

2 

3 

3 
1 
2 
3 

1 
2 
3 

1 
2 
3 

k 
3 
4 
5 

2 
3 
4 

1 
2 
3 

Ac 
1 
1 
1 

- 2 
- 2 
- 2 

1 
1 
1 

Pc 
1 

- 2 
1 

1 
- 2 

1 

1 
- 2 

1 

- 2 
- 1 

2 

- 1 
- 2 
- 1 

2 
- 1 
- 2 

C C 

0 
- 2 

1 

2 
0 

- 2 

- 1 
2 
0 

6 
- 4 

1 

- 4 
6 

- 4 

1 
- 4 

6 

A L 

- 1 
- 1 
- 1 

0 
0 
0 

1 
1 
1 

P L 
- 1 

0 
1 

- 1 
0 
1 

- 1 
0 
1 

cL 
0 
1 
2 

- 1 
0 
1 

2 
- 1 

0 

To illustrate, age effects aj (J2i a% = 0) a r e considered. The linear trend of age CCL can be 

described by the linear contrast: 

where, AL(i) = [i — (I + l)/2],i = 1,2,..., / , i.e. the coefficients of the first-order orthogonal 

polynomials and C = ( ^ A L W 2 ) - 1 .
 T n e curvature component of age effects a* is given by 

the age effects with the liner trend of age removed: 

oti = at - AL(i)aL (2.14) 

If Aci(i), I = 2 , . . . , / — 1 are the coefficients of the second- and higher-order orthogonal 

polynomials and otci, I = 2,...,I — 1 are the corresponding parameters, the curvature 

component of age effects CKJ has an alternative expression: 

i-i 

oti^^Aciifictci (2.15) 
1=2 

Obviously, we have Y,iAL{i)ACi{i) = 0, I = 2,...,I and ^AL(i)&i = 0. That is, the 

curvature component on generated by the above methods do have the liner trend removed and 

the linear trend and the curvature component are orthogonal to each other. Similarly, we can 



partition the period and cohort effects in the same way, 

J -2 

TTj = PL(j)7TL + J2 Pci{jVci (2-16) 
1=2 

I+J-l 

Ik = CL{k)lL + Y, CciW-yci (2-17) 
1=2 

where PL(j) =j — and CL(k) = k — . 

Furthermore, we can form the overall design matrix after the parametrization to the model 

1.2, 

X = ( l , A c , P c , C c , A L , P L , C L ) (2.18) 

where corresponding parameters are b ' = (/j,,a'c,T^c,'y'c,aL,^L,'yL)- Alternatively, other 

than using the orthogonal polynomials, Ac, Pc and Cc can be found by projecting the design 

matrix for age, period and cohort to the orthogonal space of the linear vector Ax,, Px and Cx, 

respectively. For the model of the form 1.2, the matrix is just columns of indicators for each 

level of age, period and cohort. Table 2.4 displays the design matrix for the case of / = J = 3 

using the parametrization by Holford (1983). 

Due to the linear dependency of Cohort=Period—Age, we have 

Cx = P L - Ax (2.19) 

Hence the design matrix X in (2.18) is one less than full column rank and generalized inverse 

of X'X have to be employed to obtain a least-squares solution. 

By the definition given by Searle (1971, Ch5.4), the linear function, q'b of the parameters is 

estimable if q'b = t log A for any t, where logA is a vector of log-transformed incidence rates. 

The estimable functions above are invariant to the particular constraint made on the parameters. 

If the least-squares method is used, the estimable functions are also best linear unbiased 

estimates (BLUEs). However when using maximum likelihood or iterative proportional fitting 

method for Poisson random variables, this property does not hold any more. According to 

Searle (1971, P. 185), it is sufficient to check if q'H = q, where H = GX'X, and G is a 

generalized inverse of G. 
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For the design matrix X in (2.18), we partition X = (Xi|CL) , since now Xx is of full 

column rank. Now, 

X'X: Xi Xi Xj CL 

C'LXx C' iC i_ 

is invertible. When we use the generalized inverse of X'X as the following: 

G 

we have H = GX'X as: 

H 

(X/Xx)- 1 0 
0 0 

i ( X i ' X i ^ X i ' o ; 
0 0 

(2.20) 

(2.21) 

(2.22) 

where the upper right-hand portion of H, i.e., Xi ' (Xi) 1Xi'C z , is the least-squares solution 

L to the equation Cz, = XXL. Using the linear dependency in (2.20), H is reduced to: 

/ 0 \ 

H = 0 
-1 

v 1 ; 
(2.23) 

10 0 

The linear effect of age OLL can be expressed as q'b — (0 • • • 0 1 0 0) b and obviously 

q'H 7̂  q'. Hence a t is not an estimable function. Similarly, it is easy to see that the linear 

trend of period and birth cohort, TTL and 7i , are not estimable, as demonstrated by Fienberg and 

Mason (1979). However, a.L + TXL and wL + ^L are estimable, in other words, the linear effects 

of the three factors can be not distinguished from each other. In general, any function of the 

three linear components which has the form of d\a.L + d27i"L + i&2 — &2)1L with arbitrary d\ 

and d,2 is estimable. For curvature components, any linear function given by (q^, 0 0 0) b 

with arbitrary qc is estimable, which means that the curvature components of the three factors 

are all estimable. 

2.3 The Overall Drift and Reduced Two-factor Models 

Clayton and Schifflers (1987) describe an approach to analyzing time trends that only consider 

age effect and the overall "drift" with period or cohort effect: 

Age+drift with period model: 

Qij = fi + ai+j • Pp 

11 
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Age+drift with cohort model: 

Qik = ix + on + k • 0c (2-25) 

These two models are more restrictive than the two-factor models as the period or cohort 

effect is forced to be linear. Further we cannot distinguish between these two models. Actually, 

when applying the relationship among the three indices: k = j — i + I, model (2.24) can be 

written as: 

fl« = /* + (» - I)Pc + ai + k-/3c (2.26) 

Therefore these two models will give an identical fit to the data and thus identical deviance 

also due to the problem. As proved by Holford (1985) that the linear effects of age, period 

and cohort, ai, TTL and 7^ can not be distinguished and only the estimates of OLL + ITL and 

TTX + 1L can be obtained, with which there are two degrees of freedom associated. Clayton and 

Schifflers's method is to partition the two degrees of freedom into two components. One is the 

linear age effect and the other is the "drift", which contain both period and cohort effects. The 

rationale for this approach is to assume age to be the dominant factor and assign one of the 

linear components to this factor and the time and cohort effects are linked together known as 

the "drift". 

The introduction of the idea of "drift" led Clayton and Schifflers (1987) to suggest a 

hierarchicy of models: 

1. Age 

2. Age+Drift 

3. a. Age+Period 

b. Age+Cohort 

4. Age+Period+Cohort 

The comparisons between 3a or 36 with 4 give the tests for cohort adjusted for period and 

vice versa. Here, we use the comparison of the model 3a with 4 to illustrate. Each effect can 

decomposed into a linear effect and curvature effects as suggested by Holford (1983); we can 
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represent age by a* = i*Pa + aCi, where i* = i — (I + l ) /2. Doing the similar partition for 

period and cohort, the model 36 can be rewritten as: 

log(Xijk) = M + i*Pa + oia + k*Pc + ick (2-27) 

and model 4 as: 

log(Xijk) = A* + i*Pa + aa + j*PP + nCj + k*/3c + jCk 
(2.28) 

= n + i*(j3a + Pp) + OLCi + nCj + k*((3p + &) + jCk 

because of j * —i* + k*. It is already well known that aCi, ncj and ^ck are the curvature effects 

and are all estimable in model 4. Obviously, comparing the fit of APC model 4 with AC model 

36 is actually testing whether there is a significant curvature component for the period effects, 

HQ : TTCI — TI"C2 = ... = 7TCJ = 0. Likewise, the AC model 36 cannot escape the bias, either, in 

which the estimates of the linear effects of age and cohort obtained are really the estimates of 

Pa + Pp and Pp + pc, respectively. 

A significant test that compares the fit of model 2 with either model 3a or 36 is equivalent 

to a test for the curvature of period or cohort that adjusts for age and the corresponding linear 

effect of period or cohort. 

2.4 Regression Splines in the Age-Period-Cohort Model 

In this section we review how regression splines can be applied to fitting the age-period-cohort 

models as proposed by Heuer (1997). There are two aspects that needed to be considered. One 

is on the selection of regression splines. The spline curves should be stable in the tails since out 

there they are based on fewer observations. This is especially the case for the cohort variable 

as there are far fewer cells for early and later years than for central years in the lexis diagram. 

The other aspect is on how to handle the nonidentifiability problem sensibly. 

In terms of the first concern, the natural spline known as stable in the tails is recommended 

by Heuer (1997), which has continuous first and second derivatives and is linear past its most 

left and right inner knots until the boundary. It has been proven to be sufficiently smooth and 

flexible in practice. From now on, we will concentrate on natural spline. 

Similar to the parametrization by Holford (1983) described in the section 2.2.1, the natural 

splines for age, period and cohort are to be partitioned into linear and curvature components by 
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the orthogonal projection. The approach of a spline parametrization on the age-period-cohort 

model can be implemented as follows: 

1. Set up the model matrices for age, period and cohort: M0 , Mp and M c , all including the 

intercept term. For the spline model, they are just the columns of basis vectors for each 

of the splines, 

.agQ:Ma:={BaJ>1
e(a),...,BZ-2(a)} 

. period: M p := [B%(p), • • • , JB£_a(p)] 

. cohort: M c := [Ba_{e(c), •••, B°£_2(c)] 

where, ma, mp and mc are the number of inner knots for age, period and cohort. Since 

the recursive definition of the cubic B-spline basis functions are very complicated and 

are hardly revealing, here we skip the specific definition. 

2. Extracting the linear trend from M0 , M p and M c by projecting each column onto 

the orthogonal complement of the vector of ones 1 and the linear vector of a, p 

and c, respectively. For age, the corresponding projectors are (I — . / ' (J 'J) - 1 . / ' ) and 

(/ — a'(a'a)~xa'), respectively, where / is the identity matrix and J the matrix containing 

only ones. The natural spline basis vectors in M a can then be transformed into: 

B?9e(a) := (/ - J'{J'J)-1J'){I - a'{a!a)-la!)B*9e{a) 

with i — —1,2, • • • , ma — 2. The resulting matrix MQ has two fewer columns, i.e., two 

basis vectors can be replaced by the constant 1 and the linear term a. The first and the last 

basis vectors are appropriate for this reduction since they represent the linear influences 

for the tails. The final basis vectors for the later spline parametrization would be: 

[l,a,Br(a),---,BZs(a)} 

We define the nonlinear Natural Spline basis vector for age as: 

Ma:=[Br(a),---,BZ-3(a)}) 

Similarly, we can do the same partition on the corresponding matrices for period and 

cohort and then obtain Mp and Mc . 

14 



3. Define the linear components for age, period and cohort by, 

AL(a) :=a — , PL(p) := p — , CL(c) := c — 

They are orthogonal to the constant term. Here we use S, T to denote the total age groups 

and period groups to accommodate the case of one-year categories. The log-linear age-

period-cohort model under spline parametrization by Heuer has the following form: 

log(Xapc) = \i + AL(a)aL + PL(p)-KL + r%a) + f^(p) + r\c) (2.29) 

where 

/°^(a) = Ma$
a, f^r(p) = MptfP, /«*(c) = Mc??

c 

at and TTL are the linear trend parameters for age and period, t?a,i?p,#c are the 

parameter vectors for the nonlinear natural spline basis vectors for age, period and cohort 

respectively. 

Since in this model 2.29 only two linear effects are considered, all the parameters are 

identifiable and hence no identification problem exists anymore. 

Interactions between age and period or age and cohort can be modeled easily by modifying 

2.29 a little bit. For example, the cohort function fcoh(c) in 2.29 can be viewed as a special kind 

of age vs. period interaction, which can be replaced by a more general form of interaction-

tensor product of the Natural Splines for age and period. This age-period-interaction model 

can be expressed as, 

log(Xap) = V + AL(a)aL + PL(P)TTL + fa°e(a) + f*r(p) + fa^r(a,p) (2.30) 

the two dimensional function for the general form of age-period interaction is given by, 

/ase-per(a,p) := Za9e'per(a,p)g (2.31) 

where g is the coefficient vector with appropriate dimension and 

Za°e*er(a,p) := [AL(a) * PL(p), AL{a) * Mp,Ma * PL(p), Ma ® Mp] (2.32) 

with 

M a ® Mp := [Br (a) * BC(p),..., B^_ , ( a ) * fl£_,(p)] (2.33) 
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where ® denotes the elementwise multiplication of the row vectors of M 0 and Mp . 

That is, the interaction term fa9e'per(a,p) is the tensor product of the Natural Spline basis 

for age [AL(a), Ma] and the basis for period [PL(p),Mp]. 

Likewise, the age-cohort interaction of this kind can be found and modeled similarly. 

2.5 Carstensen's Parameterization 

The 

general form of the multiplicative age-period-cohort model in Carstensen's Parametrization 

has the following form: 

log[X(a, p)] = f(a) + g(p) + h(c) (2.34) 

where, a, p and c(= p — a) represent the mean age, period and cohort for each cell in the Lexis 

diagram and are continuous variables. Then the model can predict the rates at any point. 

"Usually we have strong evidence to believe that age is the most important factor while 

period is the least important." So Carstensen's suggested the parametrization based on the 

following assumptions: 

• The age-function should be interpretable as log of age-specific rates in a reference cohort 

Co adjusted for period effects. 

• The cohort-function is 0 at the reference cohort Co, interpretable as log of relative risk 

relative to cohort c0. 

• Period effect is "0" on average and with "0" slope. 

In practice, the above suggestions can be implemented as follows: 

1. Fit the model 2.34 using any parametrization to obtain f(a), g(p) and h(c). If SAS or R 

are employed, we can just use the default parametrization. 

2. Regress g(p) on p, i.e., g(jp) = /zp + 6pp + g{p). 

3. Report the effects as: 

Age-specific incidence rates in cohort c®: exp[f(a) + JJLP + 5pa + h(c0) + 5PCQ) 
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Rate-ratio relative to cohort CQ: exp[h(c) — /i(c0) 4- Sp(c — c0)] 

Rate-ratio by period controlled for age and cohort: exp[g(p)] 

The formation behind this is to parameterize the model 2.34 in the following way: 

log[\(a,p)] = f(a) + g(p) + h(c) 
(2.35) 

= f(a)+g(p) + h(c) 

where 
f(a) = f(a) + Up + 5pa + h(c0) + 5pco 

g(p) = g{p) -\h- 6PP ( 2 - 3 6 ) 

h(c) = h(c) + Sp(c - c0) - h(co) 

and the resulting functions f(a), g(p) and h(c) satisfy the desired constraint, i.e., g{p) is 0 on 

average and "detrended", h(co) = 0 and f(a) is the log rates in cohort c0 when controlled for 

period. 

If we want the period function to be zero at a reference period po, interpretable as the log 

rate ratio relative to period po. we just use fip = g(po) — 6ppo, where Sp is the estimated slope 

from the regression of g(p) on p in 2.36. 

This method is based on the parametrization of Holford (1983) and similar to the spline 

parametrization by Heuer (1997) but the estimated functions have more sensible interpretation. 

Carstensen (2007) suggested that this can be considered as the solution to the nonidentifiability 

problem. Next, we will list two easily-implemented variants of the above approach. 

2.5.1 Explicit Drift Parameter 

We can extract the overall drift (Clayton and Schifflers 1987), include it into the model as a 

separate parameter and include the "de-trended" period and cohort effects. This corresponds to 

the following partition of the model 2.34, 

log[X(a,p)] = f(a) + g(p) + h(c) 

= fc(a) + 6(c-c0) + g(p) + h(c) (2.37) 

= /P(O) + S(P ~ Po) + gip) + h(c) 
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where period and cohort functions g(p) and h(c) are "de-trended", i.e., have 0 slope and 0 on 

average: 
g(p) = 9(P) - MP - SpP 

(2.38) 
h{c) — h(c) — fic — 5cc 

with the overall drift defined as: 8 = 8P + 5C 

Then the two age functions /c(a) and fp(a) have the interpretation of log age-specific rates 

in the reference period po and Co, respectively and they can be obtained by, 

Ma) = /(«) + Ma + MP + Mc + {Sa + 5p)a + (6P + <5c)co 

= f(a) + fj,p + nc + 6pa + 8CQ 

(2.39) 

fp(a) = /(«) + Ma + MP + Mc + (<*a - $c)a + (SP + 8c)po 

= f(a) + fip + fic- 8ca + 5p0 

where /(a) is "detrended", i.e., / (a) = /(a) — \ia — 8aa 

Thus, age-specific rates can be reported referring to either a specific cohort (longitudinal 

rates) or a specific period (cross=sectional rates). Note that fc(a) — fp(a) + 6(a — (po — Co)), 

so if there is a positive overall drift (5 > 0) the cohort (longitudinal) age-curve will be steeper 

than the period (cross-sectional) age curve. 

2.5.2 Fitting Model Sequentially 

Using a small trick, we can obtain an approximation to the parametrization described above. 

We fit the age-cohort model first: 

log[X(a,c)} = f(a) + h(c) 

In terms of the estimated functions /(a) and h(c), we can parameterize the above model in the 

following way, 
log[X(a,c)} = f(a) + h(c) 

= [/(o) - h(co)} + [h(c) - h(co)} (2.40) 

:=/(o) + fc(c) 

This will make f(a) interpretable as the log age-specific rates in cohort CQ and h(c) as the log 

rate ratio of cohort c compared to cohort CQ. 
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Next, the estimates f(a) and h(c) from the model 2.40 is then modeled as an offset in the 

following model with period effects: 

log[X(a,p)} = /(a) + fi(c) + g(jp) (2.41) 

The period effects from this model can be interpretable as the residual log rate ratio by period. 

The estimates obtained by this sequential procedure are not the ML-estimates from fitting age-

period-cohort models, they are marginal age-cohort estimates and period estimates conditional 

on the estimates from the age-cohort model. 

If there exists a priori knowledge that cohort effects are the major cause of the change in 

incidence rates, then the above sequential procedure would be the best way to model the rates, 

since the period effects are only considered as the residuals conditional on the estimated age 

and cohort effects. 

The above trick can be extended to the case when considering a sequence of log-linear 

models: first fit the age-drift model and then sequentially add cohort and period effects as 

"residuals", 

1. Age+Drift: log[\(a,p)] = / (a) + S(c - c0) 

2. Cohort | Age+Drift: log[X(a,p)] = / (a) + S(c - c0) + h(c) 

3. Period | Age+Drift+Cohort: log[\(a,p)] = /(a) + 6(c - CQ) + h(c) + g(p) 

2.6 Splines and Generalized Additive Models 

In this section, we review some aspects of smoothing splines and Generalized Additive Models 

(GAMs) that are relevant and useful in explaining how the nonidentifiability problem can be 

dealt with when smoothing splines are used on each of the factors. The model would be then 

fitted in the framework of generalized additive models. 
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2.6.1 Regression Splines 

Suppose we have data (y,, Xi), i = l,2,...,n where I < x\ < x2 < ... < xn < u. Consider the 

regression model: 

Vi = f(xi) + a (2.42) 

where e/s are independently distributed N(0,a2). Estimate of / can be obtained by minimizing 

the residual sum of squares: 
n 

E f o - Z f a ) ) 2 (2-43) 
i=l 

Instead of minimizing over all linear linear functions (i.e., functions of the form f(x) = 

Po + fax), we could minimize 2.43 over a larger class of smooth functions, say splines. This 

is basic idea of using splines in the regression analysis and in this context, splines have usually 

been referred to as regression splines. Next we will give more details about splines. 

Given a set of inner knots denoted by £i < £2 < • • • < £K contained in (l,u), splines 

are piecewise polynomials of degree d that are joined smoothly at those K inner knots. 

More specifically any such piecewise polynomial denoted as f(x) satisfies the following three 

conditions: 

• On each of the intervals (I, £1), (£2,6)> • • • , (€K, U), f(x) is d—degree polynomial. 

• Its (d — l)th derivative /(d_1)(x) is continuous over the whole range of (I, u). 

• Its cfh derivative /^(x) is a step function with jumps at £1, £2, • • • ,£K-

All possible such piecewise polynomials span a linear space called spline space (de Boor, 

1978). Totally we need d + K + 1 basis functions to span the spline space, since d+1 basis 

functions are needed to specify the d—degree polynomial for each of the K + 1 intervals 

(£o£i]> [62, £3]) • • • , [£K-I,£K], [£K,V] and 1 additional function for each of the K knots are 

needed due to the continuity constrain. The spline space then can be spanned by these d+K+1 

basis functions denoted as Bi(x), B2(x),..., Bd+K+1(x). Equivalently, any function f(x) in the 

spline space can be expressed as: 

d+K+l 

f(x)= J2 PkBk(x) (2.44) 
fc=i 

20 



Fitting the data (yi; Xi), i = 1,2,..., n using splines would be obtained through the multiple 

least-squares regression of y/s on the d+K+1 basis functions evaluated at the n unique values 

of Si's. The estimated fit f := (/(xi), f(x2), ••• , f{x„))T can be then given by: 

f = B/3 = &(W B)-lW Y (2.45) 

where 

B 
B\{xi) ••• Bd+K+1(xi) 

(2.46) 
!_Bi(x„) ••• Brf+i<:+i(a;n)J 

One simple choice is to generate the splines by Truncated Power basis and hence we get 

Truncated Power splines (abbreviated as TP-splines), which have the following parametric 

expression: 
K 

f{x) = A, + fax + fax2 + • • • + pdx
d + J2 Oj(x - &1 (2.47) 

Where (x)+ = xl(x > 0) with 1 as the indicator function. 

For example, a cubic TP-spline with those K knots at £i < £2 < • • • < €K can be represented 

by a linear combination of the basis functions: {l,x,x2,x3, (x — ̂ i)+, • • • , (x — ^ ) + } - These 

K + 4 basis functions evaluated at the n observed x^s will constitute the n x (K + 4) design 

matrix and the estimates of the if+4 parameters can be obtained through ordinary least-squares 

estimation. 

Despite the simple closed form expression of TP-splines, it is sometimes not recommended 

in practice because large number of knots or too close positions of knots may result in highly 

correlated basis functions. 

Another commonly used spline basis is B-spline basis, which leads to more stable spline 

curves than TP-spline curves. For the fixed K interior knots at £i < ... < £K, additional 

2d + 2 knots outside the range of (£i, £K) are needed to construct the d + K + 1 B-spline basis 

functions denoted as: {B_d4(x), B-d+1)li(x),..., B0>a(x),Bh<i(x),..., BK4}. The full sequence 

of knots for B-spline is defined at: 

£_d = ... = £0 = I < £i < ... < 6r < u = £K+1 = ... = £d+K+i 

Then the B-spline basis {Biid, i = —d, ...,K} can be recursively derived as follows: 
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Let B0,o, Bi,0,..., BKfi be the B-spline basis of degree 0: 

Bfe,o(a;) = l x e [&,&+!) (2.48) 

Then for B-splines of degree d > 1 the basis functions can be derived recursively as: 

Bk4{x) = JLlftB^ix) + / f e + d + 1 ~ / B f c+M-i(*) (2-49) 
?fc+d — Sfc Sfc+d+1 — Sfc+1 

It can be shown that the basis functions of B-splines and TP-splines span the same spline space 

despite the additional 2d + 2 knots denned for the B-spline basis, which are just the boundary 

points of the observation and hence do not have effect on the shape of the spline curve; and 

furthermore the two equivalent bases can be transformed from one to the other through a linear 

transformation, which is omitted here and can be found in (de Boor, 1978). 

Further, it can be shown that the B-spline basis functions have the following properties: 

• Bi4 = 0, for x $ [&, ii+d+i] 

• Bi4 > 0, for x € [&,&+d+i] 

• YtL-dBU*)0i = 1 forx G (l,u) 

The first two properties of B-spline basis will lead to a banded regression matrix and hence 

more stable estimation of spline curves than TP-spline basis. Further, it can be shown that the 

constant 1 and x are both in the span of the B-spline basis functions. 

A variant of splines are the natural splines, which can be defined for any piecewise 

polynomials of odd degree. In order to make a spline to be a natural spline, additional 

constraints that the spline curve is linear beyond the boundary knots (i.e., linear over (Z,£i) 

and £K,U) ) are needed. This constraint will save four degrees of freedom. That is, a natural 

cubic spline with K inner knots can be represented by K basis functions and hence only K 

parameters need to be estimated. Natural splines can be defined for the splines generated 

by both Truncated Power basis and B-spline basis, which are more stable than their original 

curves at the boundaries since at that two regions there are usually less data. Since it is hard 

for our eyes to pick up third or higher order discontinuity, cubic splines or cubic natural splines 

generated by either B-spline basis or Truncated Power spline basis are believed to be flexible 
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and smooth enough to satisfy most practical application. The choice of number and position of 

the knots has a strong influence on the fit of the spline curves and hence should be paid careful 

attention to get desirable fit. One widely used approach to deal with this is to use a maximal 

number of knots and a penalty term to control the roughness or wiliness of the spline curves. 

The smoothing splines to be discussed in the next section just emerge in the context of using 

the roughness penalty approach to spline curve estimation. 

2.6.2 Roughness Penalty and Smoothing Splines 

Consider the regression model (2.42) once again: yi = /(a;t)+ei. Instead of using least-squares 

method (i.e., to minimize residual sum of squares Y12=i{Vi ~~ /(x«)}2) t 0 §e t the estimate 

of f{x), penalty roughness approach is to consider minimizing the the following penalized 

residual sums of squares: 

n 

X>- / (*<)} 2 + AJ(/), <2-50) 
2 = 1 

where J(f) is a roughness penalty defined to regulate and control the smoothness of the 

estimation curves. Here we will focus on the special case with A J(f) := f{f"(t)}2dt. 

Consider the following minimization problem among all functions /(•) with continuous first 

and second derivatives, find one that minimizes the penalized residual sum of squares: 

X > - f{xi)Y + A [{f"(t)}*dt, (2.51) 

where A is a fixed constant called smoothing parameter and controls the smoothness of the 

spline. When the value of A taken goes from 0 to oo, /(•) would go from any function 

that interpolates the data to the simple ordinary least square linear fit, i.e., a larger penalty 

A corresponding to a smoother fit while a smaller penalty leading to a rougher fit. 

Green and Silverman (1994) showed that among all spline curves /(•) that are twice 

continuously differentiable and interpolates the points (ziy xt) at any given values zx, z2, • • • ,zn 

the cubic natural spline with knots chosen at all unique values of x^s turns out to be the solution 

to the minimization problem 2.51. In that case, the first term in 2.51 is fixed for any /(•) that 

interpolates the data (i.e., which has the same fitted value at x'ts) and the natural spline will 

minimize the penalty term f{f"(t)}2dt. 
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Suppose we have n unique values of x[s and let {N}y = Nj (xt) be the corresponding nxn 

nonsingular natural-spline basis matrix, we can write /(•) as 

n 

f(x) = ^Nj(x)ej, (2.52) 
j=i 

where the Nj(x) is the j t h basis function evaluated at x. It can be easily shown that 2.51 can 

be expressed in the following form: 

RSS(0, A) = (y - N0) r (y - NO) + \0TQNe, (2.53) 

where {fl^jk = J Njf(£)Nj£(£)d£. Then the penalized least square estimate of 9 is: 

6 = (NTN + AnJV)-1NTy, (2.54) 

which has the form of a generalized ridge regression estimate. We denote the n-dimensional 

vector of n fitted values of / (XJ) by / and it can be expressed as: 

f = N(N T N + Anjv)_1NTy 
(2.55) 

= SAy 

where SA known as the smoother matrix is actually a linear operator: S\ : Sftn (->• 3ftn. From 

now on SA will be referred to the smoother matrix of cubic smoothing splines. Since N is 

constructed as a natural cubic spline at unique values of x^s, the smoother matrix S> only 

depends on x\, x2, • • • ,xn and the smoother parameter A but not on y. 

The penalized residual sum of squares 2.51 can be reexpressed in the following form: 

RSS(0, A) = (y - f f ( y - f) + AfTKf, (2.56) 

where K = N_ Tfi jvN_ 1 . The solution to this minimization problem leads to the Reinsch form 

of the smoothing spline: 

SA = (I + AK)-1 (2.57) 

Projection and Shrinking 

The usual least-squares hat matrix is also a kind of linear operators like the smoother matrix 

of smoothing splines. Let B^ be the n x (K + 4) design matrix of (K + 4) cubic spline basis 
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functions evaluated at the n values of x'^s with knots £1, • • • ,£K and K « n. Then the vector 

of n fitted values by least-squares is given by: 

f = BA(BlBA)-1B{y 
(2.58) 

= H^y 

Here the linear operator H^ is a projection operator, known as the hat matrix in linear 

regression. The differences between smoother matrices H^ for regression splines and 

smoothing splines SA: 

• Both H^ and SA are symmetric and positive semidefinite. 

• H^ is idempotent (i.e., H^H^ = H^) while SASA ^ SA. In other words, for the projection 

matrix such as H^, it has K eigenvalues equal to 1, and the rest n — K are all 0 while 

for the smoother matrix such as the cubic smoothing spline SA, the first two largest 

eigenvalues of it are 1, and all the left are > 0. That is why smoothing splines are 

referred to as shrinking smoothers while projection splines are referred to as shrinking 

smoothers. 

• rank(H^) = K while rank(SA) = n 

where K{— trace(H^) = rank(H^)} gives the dimension of the projection space (spanned by), 

the number of basis functions and the number of parameters to be estimated. Similarly in the 

smoothing spline, the effective degrees of freedom is defined as: 

dfA = trace(SA) (2.59) 

Eigen-decomposition of the Smoother Matrix 

SA is a n x n and positive semidefinite matrix due to the generation of Natural cubic spline, 

and hence can be eigenvalue decomposed. 

Let ui,U2, ••• ,un be the orthonormal basis of eigenvectors of SA with associated 

eigenvalues #i > 62, • • • ,0n, the eigenvalue-decomposition of SA is: 

n 

SA = X } 0 * U * U * (2.60) 
fc=i 
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with 

ek = T-^-T, k = 1,2, . . . , n (2.61) 

where d̂ ,s are the corresponding eigenvalues of K, which is shown to be a nonnegative definite 

matrix (Golub and van Loan 1983). The followings are true: 

• The eigenvectors of SA are not affected by the value of A. So for a particular sequence of 

x'iS, the eigenvectors are the same despite of A. 

• trace(SA) = T%=10k- For the projection smoother, however, trace(H^) = rank(H^) = 

K, which equals the dimension of the projection subspace. 

Define U = [ui, • • • ,u„] and D = diag[di,d2, • • • ,dn] with d* > 0 for k = 1, • • • ,n. 

Since the matrix of eigenvectors U spans the space of SA, f = SAV can be written as f = U/3 

where f3 is a vector of length n. Accordingly the eigenvalue decomposition of K in 2.56 can 

be expressed as K = UDUT. Then the penalized term in 2.56 can be written as A/3TD/3. In 

this case the smoothing spline SA is the solution to the following minimization problem: 

min || y - U/3 || +A/3TD/3 (2.62) 
0 

When dk = 0 and accordingly 9^ = 1, the roughness penalty controlled by A does not take 

effect. 

It is shown in Craven and Wahba (1979) or Buja, Hastie and Tibshirani (1989) that for 

the smoother matrix of a cubic smoothing spline, its first two largest eigenvalues are l's and 

the associated eigenvectors are spanned by constant 1 and x := [xi, x2, • • • , xn]
T; the left 

n — 2 eigenvalues are positive but strictly less than 1 and associated eigenvectors correspond 

to nonlinear functions or higher order orthogonal polynomials of predictor x with increasing 

degree. As noted earlier that the smoother matrix can be viewed as a linear mapping. That is, 

f = SAY consists of two parts-a linear component due to the orthogonal projection onto the 

eigenspace spanned by 1 and x and hence a linear function of x; and nonlinear components 

of nonlinear functions of x. This can be easily seen by partition U := (UiiU2), where Ui 

corresponds to the eigenvectors of eigenvalues l's. SA can be written as: 

SA = UjUf + UsDaUf (2.63) 

26 



where D 2 is a diagonal matrix of the left eigenvalues. 

It is easily seen that the first part UiUf is the hat matrix of Least-Squares onto (1, x) since 

the eigenvectors are chosen to be an orthonormal basis. That is the smoother matrix SA can be 

partitioned into two parts-projection part and shrinking part: 

SA = H + SA (2.64) 

where H represents the orthogonal projection onto the space spanned by [l,x]; and SA := 

(I — H)SA- It is easily shown that S\ corresponds to matrix of a shrinking smoother and hence 

the name of shrinking part. 

In fact we have S A H = H due to the fact that H is the orthogonal projection onto the space 

spanned by the eigenvectors corresponding to the two eigenvalues 1 of SA. Then for Vy e Rn : 

SAy = (I - H)SAy = y - Hy 

and ||SAy||2 = y r y - y T Hy < y T y = ||y||2. 

Accordingly f can be partitioned into two components as well: 

f = g + f (2.65) 

where g = /301 + A x with /30, fi\ as the coefficients from the linear regression of y on [1, x] 

and f are nonlinear functions of x. 

2.6.3 Additive Models: P-Covariate Case 

The penalized least-squares criterion for the single-predictor case can be easily generalized to 

the p-predictor case by minimizing: 

(y - E f;)T(y - E f j ) + E MTKjfj. <2-66> 
3 3 3 

where Xj is the smoothing parameter, and Kj is the cubic smoothing-spline penalty matrix for 

the j t h predictor, which is defined analogously to the penalty matrix K for the single-predictor 

case as seen in section 1.2. 

Based on penalized least-squares criterion, now we differentiate 2.66 with respect to each of 

fit's, we obtain: 

fk = (I + \kKk)-
1(y-Ylfj) (2-67) 
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As noted before, (14- AfcKfc)
_1 is the smoother matrix for the cubic smoothing spline evaluated 

at unique values of the kth predictor. As it turns out, the solution to the minimization problem 

2.66 is cubic smoothing splines for each of the predictors when given the estimates of smooth 

functions of other predictors. 

The Backfitting Algorithm 

For the additive models with p covariates using linear smoothers Si, S2, • • • , Sp, which can be 

written as: 

E{Y\X) = a + Yjfh (2.68) 

the backfitting algorithm (Friedman and Stuetzle, 1981) can be applied. This iterative algorithm 

is proceeded as: 

• Initialize: a = i E t 1 ^ / i = / 2 0 = --- = /p=0andm = 0. 

where fk — [fk(xki), • • • , fk{%kn)]' is n-dimensional vector for k = 1, • • • ,p 

• Iterate: m = m + 1 

- For j — 1 to p do: 

where Sj is the smoother matrix for the j t h predictor. 

- Until RSS = ||y - a - J2P
j=1 ff\\2 fails to decrease. 

where /J" denotes the estimate of fj at the mth iteration. The purpose to center Y at the first 

step (i.e., a = I £?=i Yd is to make I E t i / j ( ^ ) = 0-

Breiman and Friedman (1985) proved through more general context of the ACE algorithm 

that the solution a + Y%=ifj° i s unique. Further, Buja, Hastie and Tibshirani (1989 

Theorem 5) showed that for symmetric smoother matrices with eigenvalues in [0,1] the 

backfitting algorithm always converges, while the estimates /1, • • • , fp could be non-unique, 

a phenomenon usually referred to as "concurvity", the analogue of collinearity in linear 

regression models. 
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When cubic smoothing splines are used for all of the predictors, for example, the backfitting 

solution will not be unique if there exists exact collinearity among predictors. Let Mi(Sk) 

represent the space spanned by the eigenvectors of S& with eigenvalue l's, which correspond 

to linear functions of the kth predictor or the space spanned by [1, Xfc], k = 1,2, • • • ,p. The 

exact concurvity can only occur in the space .Mi(Si) + .Mi(S2) -\ h Mi(Sp) and it only 

exists when the predictors are exactly collinear, which will be dealt with in the standard linear 

regression manner. On the other hand, the nonlinear components of the estimates / i , • • • , fp 

are not affected by the concurvity but unique. 

Since most smoother matrices are symmetric and have eigenvalues in [0,1] and hence 

have both projection and shrinking parts, in other words, reproduce both linear and nonlinear 

functions of the predictor, this motivates the idea to divide the original backfitting algorithm 

into two steps: combining all of the orthogonal projection for all of the predictors into one 

big projection and using only the non-projection (i.e., shrinking) parts of each smoother in 

the iterative procedure. This is the basic idea of the modified backfitting algorithm, which is 

proceeded as: 

1. Initialize ft, f2, • • • , fp and let f+ = f\ + f2 H 1- fp. 

2. Regress y - f+ onto the space .Mi(Si) + -Mi(S2) H h -Mi(Sp). 

Let H denote the orthogonal projection onto .Mi(Si) + A^i(S2) + • • • + A4i(Sp) 

corresponding to the least-squares regression onto [1, xi, x2, • • • , xp]. This step is just to 

setg = H ( y - f + ) 

3. Apply the original backfitting algorithm to y—g using the shrinking parts of the smoother 

matrices (i.e., S/s); this step is to yield an updated additive fit: f+ = fi + f2 -I h fp. 

4. Repeat steps 2 and 3 until RSS = ||y - g - f+||2 fails to decrease with the final estimate 

for the overall fit f = g + f+. 

In other words, the estimates f can be written as: 

=«+i>*+E$ (2-69) 
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where the nonlinear functions f} j = 1, ...,p are unique and hence estimable while concurvity 

(collinearity) can only affect S j = i faxi ^ ^ w u^ ^ e dealt with in the same manner as in the 

standard linear regression using least-squares. 

Weighted Penalized Least Squares 

The weighted penalized residual sum of squares has the following form: 

(y - E f;)Tw(y - E s ) + E ¥ 7 * ^ . <2-7°) 
where W is a diagonal matrix of weights; \3- is the smoothing parameter and Kj is the cubic 

smoothing-spline penalty matrix for the j t h predictor. Direct differentiation of 3.6 with respect 

to fj gives the weighted smoothing splines as Sj = (I + AjW - 1 Kj)~\ which are no longer 

symmetric smoothers. 

However, the weighted case can be easily mapped back to the weighted case using the 

transformations: y' = WV2y; fj = W^fy, KJ = W - ^ K j W " 1 / 2 , the above weighted 

penalized residual sum of squares can be expressed as a unpenalized form: 

(y' " E *f ) V - E fi) + E AjifKtf. <2-71> 
j j j 

The modified backfitting algorithm will then be applied to the transformed data. Accordingly 

the smoother matrix of the cubic smoothing splines for the j t h predictor would be Ŝ  = 

(I + XK'j). It is still symmetric with eigenvalues in [0,1], and the space spanned by the 

eigenvectors for the two eigenvalues 1 corresponding to linear functions of the j t h predictor 

(Buja, Hastie and Tibshirani, 1989), which means that it has the effect of mapping the partial 

residual of the form (y' — J2j fj) o n t o m e eigenspace spanned by [1, Xj] and the eigenspace 

corresponding to nonlinear functions of Xj. 

2.6A Generalized Additive Models 
Local Scoring Algorithm 

The local scoring for generalized additive models with exponential family consists of the 

following steps: 

• Initialize m=0: a = Si = S2 = • • • = sp = 0 

where sk = [sk(xkl), ••• , sk{xkn)}' for k = 1, • • • ,p. 
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• Iterate m=m+l (Outer Loop) 

1. Form the adjusted dependent variable: 

Zi = vr1 + (in - /c_1) w v w - 1 ) . ** j = 1,2, • • •,« 
where C " 1 = «m _ 1 + E t i ^ _ 1 

and juf-1 = exp^f-1). 

2. Form the weights: wi = ( ^ - I ) 2 ^ " 1 ) - 1 where v™_1 is the variance of y, at the 

(m — l)th iteration. 

3. Fit an weighted additive model to %x using the backfitting algorithm to get the 

estimates of am and s™. (Inner Loop) 

(a) Fork = l,--- ,p: 

^=s^ f e-«m- i-E sr1) 

where S^ = (/ + AfeK )̂-1 with KJ, = W-^KfcW"1/2 as the penalty 

matrices for the kth predictor defined in the same manner as deriving the 

cubic smoothing spline for a single predictor appearing in 2.56; and W = 

diag-fwi, w2, • •• ,wn} as the weight matrix. 

(b) Compute the backfitting convergence criterion in the inner loop: 

RSsm = ^E(^- a m-E^) 2 

(c) Stop when RSSm fails to decrease. 

(d) Compute 77J" = am + Efc «** md V? = exp(r/fl). 

• Stop when the deviance dev(Y, fj,m) fails to decrease. 

The inner loop of backfitting algorithm within the outer loop of local scoring algorithm is 

just repeatedly smoothing the adjusted dependent variable on a single coordinate using the 

weighted penalized least-squares criterion. 
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Chapter 3 

Smooth Age-Period-Cohort Models Using 
Smoothing Splines 

3.1 Holford's Parameterization to the Smooth APC Models 

Holford's parameterization was originally proposed to the data tabulated in five-year age and 

period intervals, but many authors have suggested the use of this parameterization to the yearly 

data. In this section, we review how Holford's parameterization (1980) can be applied to the 

yearly data. We use i = 1, •••,na,j = l,...,np and A; = j — i + na (= l,.. . ,nc = na + np — 1) 

to index age, period and cohort respectively. Let a, and Pj be the actual yearly values in the two 

way table by age and period, which is also called the Lexis diagram; the associated birth cohort 

Cfc will have a length of two years, which will be identified by the mid-point of the intervals 

through Cfc = pj — aj. For example, the birth cohort corresponding to those who were 50 years 

old in 1980 and so were born in 1929 - 1931 will be identified by 1930. 

Assuming the count in each cell of the Lexis diagram y^ ~ Poisson(//y), the expected rate 

\jk = IMj/Nij, where Ny is the person-years at risk. log(iVy) would be treated as offset when 

fitting a log-linear poisson regression model with Ay* = y%j/Nij as the response. The general 

form of the smooth APC model is: 

log(Ayfc) = fi + fa(ai) + fp(pi) + fc(ck), (3.1) 

where fj, represents the intercept, /„(), fp(.) and /c(.) are arbitrary smooth functions 

representing the effect of age, period and cohort respectively. The usual constraints apply here: 

Z)« fa((k) = ]Cj fp(Pj) = 12k fc(ck) = 0. Holford's parameterization is to partition each 

effect into two components-linear trend and curvature effect with two trends being orthogonal 

32 



to each other. For example, we can represent the effect of age /a(aj) as: 

fa(ai) = CLifia + fa{<k) (3-2) 

where Sj = Oj — ^ aj/na is the centralized values for age, j5a is the slope of the linear trend of 

age and fa(oi) is the curvature effect. Let M a be the basis matrix for orthogonal polynomials 

or restricted regression splines (i.e., natural cubic spline) evaluated at a = (ai,..., ana)'. The 

matrix corresponding to the curvature effects can be obtained by projecting the columns of 

M 0 onto the orthogonal complement of [l|a], i.e., the linear trend being removed from M0 . 

The "detrendO" function of R in the "Epi" package by Carstensen (2007) implements this 

projection. The resulting matrix M a has two fewer columns than M a with the corresponding 

coefficient vector J3a. Let M0[i,] represent the ith row of M a , then the function representing 

curvature effects of age can be expressed as: fa(ai) = ~M.a[i,]J3a. Similarly we obtain the 

"detrended" matrices M p and M c and define fp(pj) = Mp\j,}f3p and fc{ck) — Mc[k,]f3c for 

period and cohort respectively. We can rewrite the equation (3.3) as 

log(Ayfe) =fi + OiPa + PjPp + CkPc + /o(o») + fp(Pj) + fc(ck), 

= IX + OiiPa - &) + pj(/3p + fic) + fa(Oi) + fp(pj) + fc(ck) (3.3) 

Or = p + CLi(pa + Pc) + Ck(Pp + (3c) + fa(<k) + fpiPj) + /c(Cfc) 

because ĉ  = pj — aj. The slope of the linear effect representing the overall increasing or 

decreasing trend for each temporal factor are not estimable. However, certain linear functions 

of these slopes such as (3a — @c, (3a + (5C and (5P + /3C are all estimable. The curvature effects 

representing the deviations from the overall trend for each temporal factor are always estimable, 

i.e., the three coefficient vectors J3a, (3P and J3C are all estimable. 

When using cubic smoothing splines, we can still apply Holford's parameterization except 

the functions of curvature effects f0, fp and fc are smooth functions that do not have parametric 

representations. 

3.2 Smooth APC Models Using Smoothing Splines 

In this section we review some properties of the smoothing splines that are helpful in explaining 

the parameterization of the APC model when using smoothing splines. Specifically, cubic 

smoothing splines will be focused here. 
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3.2.1 smoothing splines 

A cubic smoothing spline is the minimizer of the penalized least-squares criterion: 

I > - M)}2 + A f{f"(t)Ydt, (3.4) 
t= i J 

over all functions with two continuous derivatives. A known as the smoothing parameter trades 

off the fit as well as the smoothness: when A = 0 the solution would be any function that 

interpolate the points; when A = oo, the solution is a least-squares line. For any A G (0, oo) the 

solution is a natural cubic spline with knots at each distinct values for x. Green and Silverman 

give the complete and detailed proof (1994) to this statement. Using this conclusion one can 

show that when given the value of smoothing parameter A, the cubic smoothing spline is a 

linear smoother in the sense that the fitted value can be written as f — (I + AK)_1y = S^y, 

where K is the penalty matrix and S> is called the smoother matrix. Both matrices depend 

only on the observed values for x but not on y. This presentation indicates the minimization 

problem (3.4) can be reduced to: 

( y - f f ( y - f ) + AfrKf. (3.5) 

Hastie and Tibshirani (1990, §2.10) give the details. 

It can be also shown that the smoother matrix SA is symmetric and have eigenvalues in 

[0,1]: the first two are l's with the corresponding eigen-space being spanned by [1, x]; the left 

are strictly less than 1 but greater than 0. This fact leads to the eigenvalue-decomposition of S: 

SA = UiUf + U 2D 2Uf = H + S\, where UiUf is the least-squares hat matrix when the 

eigenvectors in Ui and U2 are orthonormal basis. This decomposition suggests that the fitted 

value f has two components corresponding to linear and nonlinear functions of x: 

f = g + f 

where, g = #ol + fax with coefficients /30, A from the ordinary least-squares regression of 

y — f on [1, x]; the nonlinear component f is the nonlinear function of x. The estimation of the 

two components are accomplished in the orthogonal spaces, so we have Hf = 0 and Sr\g = 0. 

When the cubic smoothing splines are applied to the model assuming the response have a 

exponential family density, i.e., the mean /j, = E(Y\Xlt..., Xp) being linked to the predictors 
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through g(fi) •= j30 4- X) • /jPQ)> where fj(Xj) will be estimated by smoothing splines. Such 

models are often called Generalized Additive Models (GAMs). The estimation of #o and 

fi,...,fp can be done by the local scoring with the backfitting algorithm as the inner loop. The 

local scoring algorithm generates the working response variables and the weights in each outer 

iteration and the backfitting algorithm in the inner loop is to fit a weighted additive models on 

the generated response variable. More specifically, the backfitting algorithm for GAM with 

smoothing splines is to find the minimizer to the following form of weighted penalized least-

squares criterion: 

(a - ] T f})TW(z - £ f,) + £ XjffKjij, (3.6) 
3 3 3 

where z is the working response variable; W is a diagonal matrix of the weights; A, and Kj are 

the smoothing parameter and the penalty matrix for the j t h predictor. Direct differentiation of 

3.6 with respect to fj gives the weighted smoothing splines as Sj = (I + AjW_1Kj)-1. When 

using the transformations y' = W1/2y; fj = W1/2^; KJ = W_1 /2K jW-1/2 , the criterion 

(3.6) can be reduced to an unweighted form with the smoother matrix for the j t h predictor as 

S'j = (I + XK'j)-
1(= W^Sj-W -1/2). Having this relationship, it can be easily seen that SJ is 

symmetric with eigenvalues in [0,1], and the two eigenvalues l's correspond to linear functions 

of W1/2[l,Xj]. Hence the overall estimates in the transformed coordinates can be also 

separated into two parts-corresponding to linear and nonlinear functions of W1/2 [1, Xi,..., xp]: 

w i / 2 f = wi/2!^ + ^ W1/2x,-4- + Y^i (3-7) 

where /30,/3i,...,/3p are the coefficients from the least-squares regression of z — ]T)fj o n 

W1/2[l,xi, ...,xp]. As in the single-predictor case, the two parts are estimated in the 

orthogonal spaces: i.e., fJ./3J-W
1/2Xj = 0. When transformed back to the original coordinate, 

(3.7) can be written as: 

f=iA)+x;^+E w ~ i / 2 f j 
(3.8) 

= IA,+ ]>> + £ ! ; 
where gj = Xjfy and fj = W_1/2f, which are referred to as the linear and nonparametric 

components respectively in gam package in R. Based on the conclusion concerning the 

convergence of the backfitting algorithm for Generalized Additive Models by Buja, Hastie 

and Tibshirani (1989), in case of any linear dependency among the p predictors, only the 
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estimation of /3u—,0P will be affected and handled in the same fashion as in ordinary least-

squares regression with f, (j = l,...,p) being all estimable. The orthogonal relationship 

between the two components will be: 

f*'Wg j = 0, (3.9) 

indicating that additional linear components can be further extracted from the nonparametric 

components. 

3.2.2 The Parameterization Using Smoothing Splines 

When cubic smoothing splines are applied on all three predictor: Age, Period and Cohort, the 

contribution of each predictor can be decomposed into two components-a linear component (a 

weighted least square fit) and a nonparametric component: 

fa(<k) = 5aa,i + fa(oi), 

fpipj) = sppj + fpipj), (3-10) 

fc(Ck) = ScCk + /c(Cfc), 

where 6j, pj and ck are the centralized values for age, period and cohort respectively; 5a, 8P and 

6C are the slopes from the weighted least-squares regression, in which the linear dependency 

Cfc = Pj — Q-i will make the design matrix in this step singular and how "gam" function in gam 

package of R deals with this is to force one of the slopes to be zero depending on the order in 

which the three variables are specified. For example, when cohort is the last one to be specified 

in the model, the estimate of the cohort slope Sc = 0, i.e., Sa — Sc, Sp + 5C and 5a + 5P are 

estimable but Sa, Sp or Sc are not. fa, fp and fc are the estimable nonparametric components. 

Note the expression (3.9), we can extract additional linear components from each of them: 

fa(ai) = S:ai + fr(ai), 

fP(Pi) = t;pj+fpur(Pi)> (3-11) 

fc(ci) = 6*ck + fr(ck), 

where the three slopes <5*, 6* and 5* as well as all three curvature components f^ifli), fp™r{pi) 

and /^""(CJ) are uniquely determined and have liner components removed. Substituting the 
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above equations (3.11) into (3.10), we will get: 

iog(Aijfe) = M+(& - Pc)ai+/r(«o 
+ ((3P + f3c)pj + f™r(P3) (3-12) 

+ fr(ck) 

or 
l0g(Ayfc) = fi + (0a + Pp)at + f?T(Oi) 

+ f™rPj (3.13) 

+ (& + &)<* + /c
cup(pfc) 

where 
Pa = 8a + 51 

PP = 5p + 8; (3.14) 

Pc = Sc + 6*c 

with pa, PP and /3C are the true slopes (i.e., representing the linear trends) of age, period and 

cohort respectively. Based on the above analysis, it is easily seen that the linear functions 

Pa - Pc, PP + Pc and PP + pc along with f™r, f™r and f™r are all estimable but individually 

Pa,Pp and pc are not. In conclusion, the estimable functions proved by Holford (1983) for the 

traditional APC model still hold here when GAM was fitted using smoothing splines. 
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Chapter 4 

Simulation Study and Data Analysis 

4.1 Simulation Study 

Simulations with pre-specified age, period and cohort effects were conducted to compare the 

estimations from three different modeling strategies-the new APC model using smoothing 

spline (SS), the APC model using natural spline (NS) by Heuer (1997) and the APC model 

using orthogonal polynomials (OP), which is basically using the same idea as Holford's (1983) 

parametrization on the traditional APC factor model but will be applied here to the yearly data. 

The three methods will be referred to as GAM+SS, GLM+NS and GLM+OP for convenience, 

in which the first acronym (GLM or GAM) represents the framework of model fitting while the 

second acronym represents the smoothing techniques. 

The age curve is given by the following function: 

fa(<k) = Pa(<k - a), en = 51,..., 80. (4.1) 

where a = '^2i a» and /3a is the true linear trend of age effects. The values chosen for (3a are 

—0.05, 0 and 0.05. The assumed scenarios for age effects are reflections of the pattern in the 

age distribution for most cancers; that is, the risk is linearly increasing (/?„ > 0) or decreasing 

(/?„ < 0) for older people (in our case between 51 and 80 years old) while in some other cases, 

the risk of getting the cancer or not could have nothing to do with the age (0a = 0). 

The period curve is given by 

fp(Pj)=PP(Pj-p), (4.2) 

for periods pj starting 1985 up to year 2004, where p = ]T\ pj and /3P is the true linear trend 

of period effects. The values chosen for /3P are —0.05, 0 and 0.05. The assumed scenarios 
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for period effects could also be realistic. When the effective treatments are introduced the 

incidence rate could be decreasing (J3P < 0) while there would be periods when the incidence 

rate remains fairly stable (J3P = 0) or increasing {(5P > 0). 

Three different patterns for the birth cohort effects are assumed, starting the birth year of 

1905 up to 1953. The cohort curve 7: 

/„(<*) = 1.25 + 0 . 1 5 ( ^ ) + 0 . 1 5 ( ^ ) 2 + 0 . 0 2 5 ( ^ ) 4 

the cohort curve 77: 

/c(Cfe) = 1.25 + 0 .15(^-^) -0 .15( 
15 

%--)2 - 0.025( 
15 15 ; ' 

and the cohort curve III: 

fc(ck) = | x 

where Ck = Pj — a% and c = Y^kck-

25 + 0.15(2^5) - 0.15(a=S)2 - 0 .025(^ ) 4 , 
cw) - ^ , 2 5 + 0 . 1 5 ( ^ ) + 0.15(^S)2 + 0 .025(^ ) 4 , 

(4.3) 

(4.4) 

(4.5) 

Birth cohort effects can be thought of as the exposure to some underlying but often unknown 

risk factors, and hence the pattern of the birth cohort curve could be somewhat complicated. 

The assumed cohort curve / , i7 and / / / are shown in 4.1. The assumed cohort curve 7 is a 

reflection of the situation when the incidence rate for earlier cohorts born between 1905 and 

1929 is decreasing and yet for the more recent cohorts born between 1929 and 1953 there was 

an increasing risk; the assumed cohort curve II is a reflection of the opposite situation when 

there was an increase in the incidence rates for earlier cohorts and yet an decrease for the more 

recent cohorts; the assumed cohort curve III is a periodic extension of cohort curve I and II. 

Figure 4.1: Constructed Birth Cohort Effect Curves I, II and 777. 

constructed cohort curve I constructed cohort curve II constructed cohort curve III 

MIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIIIIIIIII 
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' IIIIIIIIIIMIIIIIIIIIIIIIIIIMIIIIIIIIMMIIIIIII' 
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For each of the chosen cohort curves above, the simulation is done for the three different 

values representing the linear trends for age and period effects. The values of coefficients in all 

assumed curves for age, period and cohort are chosen to simulate the situation when we would 

expect very low incidence and approximately 30% of zero incidences in the lexis diagram. 

The expected frequencies /%• per 100,000 in the two-way table by age and period are given 

by: 

juy = exp[log(i\y + fa(oi) + fpipj) + fc(ck)] (4.6) 

where i = 1,..., 30, j = 1,..., 30 and k = 1,..., 59 are the indices for age, period and birth 

cohort respectively; dj and pj are the age and period in years with ck determined by pj — a*, the 

mid-point of the corresponding birth cohort in two-year intervals. Here, we set JV„ = 0.2 for 

all i and j , i.e., the population figure is assumed to be 20,000 for all cells of the two-way table 

and we re-scaled it to 0.2. Using the constructed cell frequencies, we sampled the data 1000 

times from these Poisson distributions, calculating the 95% empirical confidence intervals for 

the estimable cross-sectional age slope (i.e., (3a — f3c), overall slope of time trend (i.e., (3a — fic) 

as well as the curvature effects for birth cohort by selecting the 2.5 and 97.5 percentiles of the 

corresponding 1000 estimates. The estimable age and period slopes in the two way table by 

Age (i.e., Lexis diagram) can be obtained by forcing the linear trend in the birth cohort effect 

to be zero, and hence the cross-sectional age slope and overall slope of time trend represent the 

time trend in both period and cohort effect. 

Holford's parametrization proposed to the traditional APC model treats the three factors age, 

period and cohort as categorical variables, similar to a factorial design. The data are usually 

aggregated into five-year age and period intervals, but this idea can be directly applied to the 

yearly ungrouped data. Holford's parametrization uses orthogonal polynomials to partition the 

effects into two broad components-the linear effects and curvature effects. While the three 

linear slopes representing the corresponding linear effects are not individually estimable, their 

curvature components are uniquely determined, which reflect a sudden change in the overall 

trend and might be related to some important changes in other aspects. For the estimable 

curvature components, they can be further divided into quadratic, cubic and even higher-order 

components. Since each of these components is also estimable, one can choose to include only 
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some components from the overall curvature effects into the model. Since the highest order of 

the assumed curves for birth cohort is 4, we chose to use 4 degrees of freedom for birth cohort, 

including up to the 4 th order of orthogonal polynomials for birth cohort, without constant term. 

For comparison we also chose to use 4 degrees of freedom on the birth cohort for GAM+SS and 

GLM+NS. The smoothing parameter Ac will be chosen to make dfc = trace[Sc(Ac)] — 1 = 4, 

where Sc is the smoothing spline matrix constructed for birth cohort in GAM+SS. Three inner 

knots at equally spaced quantiles of the values of birth cohort (i.e., at 25%, 50% and 75% 

percentiles) will be chosen to construct the basis matrix without including intercept for the 

natural cubic spline when using GLM+NS. 

The mean square errors (MSEs) of the estimates of cross-sectional age slope and overall 

slope of time trend reported in Table 4.1 through 4.27will be used to access the model 

performance. The medians of estimated curvature effects and their 95% confidence intervals 

are shown in figure 4.2 through 4.28. All of the medians of the curves are close enough 

to the true curve and according to the criteria of MSEs the estimates of two slopes are also 

good enough for each method. However, GAM+SS always returns lower MSEs and narrower 

and more stable empirical 95% confidence intervals compared to GLM+NS or GLM+OP. By 

comparing the empirical variances and MSEs, the bias from GAM+SS is smaller than the bias 

from GLM+NS or GLM+OP. Therefore, in the situations of low incidence and even many 

zero incidence, generalized additive APC model using smoothing splines would give more 

stable estimates and should be recommended although both GLM+NS and GLM+OP are also 

nice alternatives. Here we are considering the situation when the model to be fitted reflects 

the true situation; that is, we assume there is only linear trend in both age and period effects 

in the expected incidence rate and hence we only add linear terms of age and period into the 

model. In other words, we use almost "correct" models to check the stability of each smoothing 

technique. We admit that in real life it is impossible for us to know the true situation. The test 

of robustness of these methods is forthcoming. 
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Table 4.1: Estimation results from the simulation study when j3a = 0.05, (5P = 0.05 and using 
birth cohort curve I with /3C = 0.01 

Estimable 
functions 

0a~ Pc 

/3P+/3C 

Theoretical 
Value Model 
(xl(T2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xl(T2) (xl(T5) (xlO-5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

4.02 
4.03 
4.03 

6.00 
6.01 
6.01 

3.2702 
3.5872 
3.8006 

6.7952 
6.8472 
6.9676 

3.2749 
3.5948 
3.8091 

6.7953 
6.8488 
6.9684 

Figure 4.2: Estimated curvature effects of birth cohort from the simulation study when 
/3a — 0.05, /3P = 0.05 and using birth cohort curve / with f3c = 0.01. 

Estimable Curvature Effect Estimable Curvature Effect Estimable Curvature Effect 
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t 0.0 

-1.0 -

-1.5 -

True 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.2: Estimation results from the simulation study when /3a = 0.00, f3p = 0.05 and using 
birth cohort curve I with (3C — 0.01 

„ . , , Theoretical 
Estimable . . . . . , . 
, Value Model 
functions / x l 0 - 2 \ 

Pa-He 

Pp + Pc 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xMT2) (xlO-5^ 

- 1 

5) (xl0~5) 
GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-1.08 
-1.05 
-1.06 

6.04 
6.01 
6.02 

3.6956 
4.1809 
4.5319 

6.7135 
6.8407 
7.0154 

3.7537 
4.2050 
4.5694 

6.7270 
6.8420 
7.0215 

Figure 4.3: Estimated curvature effects of birth cohort from the simulation study when 
/3a = 0.00, (3p = 0.05 and using birth cohort curve I with f3c = 0.01. 

Estimable Curvature Effect Estimable Curvature Effect Estimable Curvature Effect 

iiiiimiiiiiiiiiuiiuiiiiiiiiiiiiiiiiiiimiiii 

1905 1916 1927 1938 1949 

Birth Cohort 

l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 

1905 1916 1927 1938 1949 

Birth Cohort 

i i i i i i i i i i i i i i i i i i i i i i i i i i i i t i i i i i i i i i i i i i i i iuir 

1905 1916 1927 1938 1949 

Birth Cohort 

Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.3: Estimation results from the simulation study when f3a 

birth cohort curve I with fic — 0.01 
-0.05,/?p = 0.05 and using 

Estimable 
functions 

Pa ~Pc 

PP+Pc 

Theoretical 
Value 
(xlO-2) 

Model 
Empirical Mean 
of estimates 
(xl(T2) 

-6 

Empirical Var 
of estimates 
(xlQ-5) 

Empirical MSE 
of estimates 
(xlO'5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-6.17 
-6.14 
-6.17 

6.14 
6.10 
6.14 

4.1103 
5.2706 
6.2161 

7.6804 
8.5383 
9.4194 

4.3928 
5.4633 
6.5053 

7.8757 
8.6386 
9.6052 

Figure 4.4: Estimated curvature effects of birth cohort from the simulation study when 
Pa — —0.05, Pp = 0.05 and using birth cohort curve I with pc — 0.01. 

Estimable Curvature Effect Estimable Curvature Effect 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.4: Estimation results from the simulation study when /3a = 0.05, f3p 

birth cohort curve I with f3c = 0-01 
0.00 and using 

Estimable 
functions 

Pa-0c 

Pp + Pc 

Theoretical 
Value Model 
(xl(T2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xlQ-2) (xHT5) (xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

4.09 
4.07 
4.08 

1.00 
1.02 
1.01 

3.3656 
3.7775 
4.0229 

6.1804 
6.2072 
6.3684 

3.4405 
3.8333 
4.0881 

6.1805 
6.2105 
6.3692 

Figure 4.5: Estimated curvature effects of birth cohort from the simulation study when 
/3a = 0.05, j3p = 0.00 and using birth cohort curve I with (5C = 0.01. 

Estimable Curvature Effect Estimable Curvature Effect Estimable Curvature Effect 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiii 

1905 1916 1927 1938 1949 

Birth Cohort 

1.5 

1.0 

0.5 

0.0 

-0.5 

-1.0 

-1.5 

True 
median from GLM+NS 
95% CI 

1905 1916 1927 1938 1949 

Birth Cohort 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.5: Estimation results from the simulation study when (5a = 0.00, fip = 0.00 and using 
birth cohort curve I with ftc = 0.01 

Estimable 
functions 

Pa~Pc 

Pp + Pc 

Theoretical 
Value Model 
(xlO-2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xl0~2) (xl0~5) (xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-1.02 
-1.02 
-1.02 

0.98 
0.97 
0.97 

3.4011 
3.6946 
3.9353 

6.6411 
6.6164 
6.7514 

3.4064 
3.6971 
3.9396 

6.6450 
6.6255 
6.7579 

Figure 4.6: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.00, Pp = 0.00 and using birth cohort curve / with /3C = 0.01. 

Estimable Curvature Effect Estimable Curvature Effect Estimable Curvature Effect 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.6: Estimation results from the simulation study when (3a 

birth cohort curve I with /?c = 0.01 
-0.05, &, = 0.00 and using 

Estimable 
functions 

A.-& 

&+& 

Theoretical 
Value 
(XKT2) 

Model 
Empirical Mean 
of estimates 
(xlQ-2) 

-6 

Empirical Var Empirical MSE 
of estimates of estimates 
(xlQ-5) (xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-6.10 
-6.07 
-6.08 

1.06 
1.02 
1.03 

3.6887 
4.3084 
4.7909 

6.8969 
7.1710 
7.5035 

3.7897 
4.3580 
4.8520 

6.9302 
7.1735 
7.5124 

Figure 4.7: Estimated curvature effects of birth cohort from the simulation study when 
/3a = —0.05, 0p = 0.00 and using birth cohort curve / with /3C = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.7: Estimation results from the simulation study when pa = 0.05, Pp = —0.05 and using 
birth cohort curve I with (3C = 001 

Estimable 
functions 

Pa~Pc 

Pp + Pc 

Theoretical 
Value Model 
(xlO-2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xlCT2) (xl0~5) (xlO"5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

4.06 
4.02 
4.03 

-4.08 
-4.04 
-4.05 

3.7330 
4.2495 
4.5857 

7.3084 
7.5435 
7.8790 

3.7659 
4.2534 
4.5936 

7.3687 
7.5575 
7.9024 

Figure 4.8: Estimated curvature effects of birth cohort from the simulation study when 
Pa — 0.05, Pp = —0.05 and using birth cohort curve / with pc — 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.8: Estimation results from the simulation study when /?„ 
birth cohort curve I with pc = 0.01 

0.00, (3P = -0.05 and using 

Estimable 
functions 

(3a~ Pc 

Pp + Pc 

Theoretical 
Value Model 
(xlO-2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xlO~2) (xl0~5) (xl0~5) 

-4 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-0.95 
-0.96 
-0.95 

-4.03 
-4.02 
-4.03 

3.2213 
3.5273 
3.7799 

6.0739 
6.0165 
6.1690 

3.2515 
3.5457 
3.8033 

6.0818 
6.0217 
6.1760 

Figure 4.9: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.00, (3P = -0.05 and using birth cohort curve I with pc = 0.01. 

Estimable Curvature Effect 

— True 
- - median from GAM+SS 
•••• 95% CI 

IIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

1905 1916 1927 1938 1949 

Birth Cohort 

Estimable Curvature Effect Estimable Curvature Effect 

1905 1916 1927 1938 1949 

Birth Cohort 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiir 

1905 1916 1927 1938 1949 

Birth Cohort 

Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.9: Estimation results from the simulation study when (3a 

using birth cohort curve I with (3C = 0.01 
-0.05, PP = -0.05 and 

Estimable 
functions 

& - & 

A>+/3C 

Theoretical 
Value Model 
(xlO-2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xl0~2) (xlO-5) (xlO"5) 

- 6 

- 4 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-6.01 
-6.00 
-6.00 

-3.95 
-3.98 
-3.97 

3.3651 
3.7122 
3.9854 

6.9145 
6.9512 
7.1125 

3.4248 
3.7560 
4.0335 

6.9217 
6.9513 
7.1130 

Figure 4.10: Estimated curvature effects of birth cohort from the simulation study when 
(3a = —0.05, (5P = —0.05 and using birth cohort curve / with (3C — 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.10: Estimation results from the simulation study when f3a = 0.05, fip = 0.05 and using 
birth cohort curve II with (5C = 0-01 

Estimable 
functions 

Theoretical Empirical Mean Empirical Var Empirical MSE 
Value Model of estimates of estimates of estimates 

(xirr5) (xicr5) 

Pa-Pc 

Pp + Pc 

4 

6 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

4.03 
4.04 
4.03 

5.98 
5.96 
5.97 

4.7680 
6.0457 
7.0689 

8.2204 
8.9264 
9.7308 

4.7801 
6.0591 
7.0768 

8.2248 
8.9422 
9.7374 

Figure 4.11: Estimated curvature effects of birth cohort from the simulation study when 
j3a = 0.05, (3P — 0.05 and using birth cohort curve II with j3c = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.11: Estimation results from the simulation study when pa 

birth cohort curve II with pc = 0.01 
0.00, PP = 0.05 and using 

^ . . , Theoretical Estimable . . , 
Value functions , , ri_2N (xlO z) 

Pa~Pc 

Pp + Pc 

Model 
Empirical Mean Empirical 
of estimates of estimati 
(xlO"2) (xl0~5) 

^.„^„ Var Empirical MSE 
of estimates of estimates 
' '" " (xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-0.95 
-1.03 
-1.07 

5.98 
6.05 
6.09 

5.1810 
6.8296 
8.1945 

9.5195 
10.0149 
10.6144 

5.2044 
6.8366 
8.2402 

9.0559 
10.0474 
11.3423 

Figure 4.12: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.00, PP = 0.05 and using birth cohort curve II with pc = 0.01. 
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Note: solid curve=constracted curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.12: Estimation results from the simulation study when pa = 
using birth cohort curve II with f3c — 0.01 

-0.05, pp = 0.05 and 

Estimable 
functions 

Pa-Pc 

Pp + Pc 

Theoretical 
Value 
(xHT2) 

Model 
Empirical Mean 
of estimates 
(xlO-2) 

-6 

Empirical Var 
of estimates 
(xlO"5) 

Empirical MSE 
of estimates 
(xlO"5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-6.00 
-6.17 
-6.24 

6.00 
6.17 
6.24 

5.6359 
8.9310 
11.5550 

9.2956 
12.2819 
14.7242 

5.6376 
9.2083 
12.1506 

9.2977 
12.5599 
15.2888 

Figure 4.13: Estimated curvature effects of birth cohort from the simulation study when 
Pa = —0.05, Pp = 0.05 and using birth cohort curve II with pc = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.13: Estimation results from the simulation study when (5a = 0.05, PP 

birth cohort curve II with pc = 0.01 
0.00 and using 

Estimable 
functions 

pa-Pc 

Pp + Pc 

Theoretical 
Value 
(xl(T2) 

Model 
Empirical Mean 
of estimates 
(xHT2) 

Empirical Var 
of estimates 
(xl(T5) 

Empirical MSE 
of estimates 
(xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

4.01 
4.07 
4.10 

0.99 
0.93 
0.91 

5.0849 
6.4702 
7.6514 

9.0591 
9.8598 
11.0543 

5.0867 
6.5149 
7.7469 

9.0597 
9.9060 
11.1398 

Figure 4.14: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.05, Pp = 0.00 and using birth cohort curve II with pc = 0.01. 
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Note: solid curve=constracted curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.14: Estimation results from the simulation study when (5a = 0.00, (5P = 0.00 and using 
birth cohort curve II with f3c = 0.01 

Estimable 
functions 

Pa-Pc 

Pp + Pc 

Theoretical 
Value 
(xlO-2) 

Model 
Empirical Mean 
of estimates 
(xl0~2) 

Empirical Var 
of estimates 
(xlO"5) 

Empirical MSE 
of estimates 
(xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

- .95 
- .97 
- .98 

0.96 
0.97 
0.99 

4.8210 
5.9080 
6.9613 

8.6255 
9.2077 
10.0723 

4.8425 
5.9182 
6.9638 

8.6417 
9.2140 
10.0739 

Figure 4.15: Estimated curvature effects of birth cohort from the simulation study when 
(3a = 0.00, /3P = 0.00 and using birth cohort curve / / with f3c = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.15: Estimation results from the simulation study when /?„ 
using birth cohort curve II with (5C = 0.01 

^ . , , Theoretical 
Estimable . . . 

Value 
functions , irv_2s 

(xlO 2) 

Pa-Pc 

Pp + Pc 

Empirical Mean 
Model of estimates 

(xlO""2) 

-6 

Empirical Var 
of estimates 
(xlO"5) 

= -0.05, 0p = 0.00 and 

Empirical MSE 
of estimates 
(xlO"5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-5.99 
-6.11 
-6.17 

0.94 
1.06 
1.11 

5.4467 
7.9300 
9.8163 

9.3965 
12.8803 
10.0723 

5.4471 
8.0415 
10.1085 

9.4309 
11.1455 
13.0113 

Figure 4.16: Estimated curvature effects of birth cohort from the simulation study when 
/30 = -0.05, PP = 0.00 and using birth cohort curve II with (5C = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.16: Estimation results from the simulation study when /3a = 0.05, f3p — —0.05 and 
using birth cohort curve II with pc = 0.01 

Estimable 
functions 

Pa-Pc 

Pp + Pc 

Theoretical 
Value Model 
(xHT2) 

-4 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xl(T2) (xlQ-5) (xl(T5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

3.99 
4.10 
4.16 

-4.03 
-4.14 
-4.19 

5.4123 
7.6297 
9.4434 

9.2912 
10.8405 
12.2548 

5.4129 
7.7273 
9.7011 

9.2997 
11.0243 
12.6212 

Figure 4.17: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.05, Pp = —0.05 and using birth cohort curve II with pc = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.17: Estimation results from the simulation study when (3a = 0.00, (3P = —0.05 and 
using birth cohort curve II with /3C — 0.01 

Estimable 
functions 

/3a~ 13c 

PP + (3c 

Theoretical 
Value 
(xlQ-2) 

Model 
Empirical Mean 
of estimates 
(xlO"2) 

- 1 

- 4 

Empirical Var 
of estimates 
(x i t r 5 ) 

Empirical MSE 
of estimates 
(xlO-5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-1.02 
-1.00 
-0.98 

-4.01 
-4.03 
-4.05 

4.6466 
5.8311 
7.0622 

8.3213 
8.8857 
9.9712 

4.6526 
5.8310 
7.0653 

8.3225 
8.8947 
9.9958 

Figure 4.18: Estimated curvature effects of birth cohort from the simulation study when 
/3a = 0.00, (3P = - 0 . 05 and using birth cohort curve 27 with @c = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.18: Estimation results from the simulation study when j3a = 
using birth cohort curve II with f3c = 0.01 

-0.05, (5P = -0.05 and 

Estimable 
functions 

Pa'Pc 

Pp + Pc 

Theoretical 
Value 
(xl(T2) 

Empirical Mean Empirical Var Empirical MSE 
Model of estimates of estimates of estimates 

(xl(T2) (xlO-5) (xl0~5) 
GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-6.03 
-6.08 
-6.12 

-4.07 
-4.00 
-3.98 

4.7861 
6.1475 
7.3651 

8.4798 
9.2271 
10.2855 

4.7940 
6.2150 
7.5065 

8.5285 
9.2273 
10.2895 

Figure 4.19: Estimated curvature effects of birth cohort from the simulation study when 
Pa — —0.05, /3P = —0.05 and using birth cohort curve II with fic = 0.01. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.19: Estimation results from the simulation study when (5a = 0.05, (3P = 0.05 and using 
birth cohort curve III with /3C = -0.00587 

Estimable 
functions 

Pa-Pc 

Pp + Pc 

Theoretical 
Value 
(xlO-2) 

Model 

5.587 

4.413 

Empirical Mean 
of estimates 
(xlO"2) 

Empirical Var 
of estimates 
(xlO-5) 

Empirical MSE 
of estimates 
(xlO-5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

5.4926 
5.6022 
5.6832 

4.5034 
4.4424 
4.3455 

3.7187 
4.4908 
5.1859 

7.1026 
7.4320 
7.9383 

3.8078 
4.4931 
5.2785 

7.1844 
7.4406 
7.9838 

Figure 4.20: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.05, j3p = 0.05 and using birth cohort curve III with /3C = 5.587 x 10"2. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.20: Estimation results from the simulation study when (3a 

birth cohort curve III with (3C = -0.00587 
0.00, f3p = 0.05 and using 

Estimable 
functions 

A.-& 

Pp + Pc 

Theoretical 
Value Model 
(xlO"2) 

Empirical Mean Empirical Var Empirical MSE 
of estimates of estimates of estimates 
(xlO"2) (xlO"5) (xlO"5) 

0.587 

4.413 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

0.4497 
0.5252 
0.5783 

4.5170 
4.4850 
4.4157 

4.2572 
4.8936 
5.4040 

7.5668 
7.6964 
8.1797 

4.4456 
4.9318 
5.4047 

7.6741 
7.7482 
8.1798 

Figure 4.21: Estimated curvature effects of birth cohort from the simulation study when 
/3a = 0.00, PP = 0.05 and using birth cohort curve III with pc = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.21: Estimation results from the simulation study when (3a = —0.05, /3P = 0.05 and 
using birth cohort curve III with pc = —0.00587 

Estimable 
functions 

Pa~Pc 

Pp + Pc 

Theoretical 
Value 
(xlO"2) 

Model 
Empirical Mean 
of estimates 
(xlO"2) 

-4.413 

4.413 

Empirical Var 
of estimates 
(xl0~5) 

Empirical MSE 
of estimates 
(xlO"5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-4.6071 
-4.5552 
-4.5234 

4.5888 
4.5246 
4.3455 

4.7749 
6.1468 
6.8972 

8.1135 
8.8046 
9.4491 

5.1518 
6.3491 
7.0192 

8.4225 
9.0613 
9.5735 

Figure 4.22: Estimated curvature effects of birth cohort from the simulation study when 
Pa = -0.05, (3P = 0.05 and using birth cohort curve III with fic = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.22: Estimation results from the simulation study when (3a = 0.05, fip = 0.00 and using 
birth cohort curve III with j3c = -0.00587 

^ . , , Theoretical Estimable . T, „, , , Value Model functions , .,_ 9x (xlO z) 

Pa~Pc 

Pp + Pc 

Empirical Mean 
of estimates 
(xlO-2) 

5.587 

0.587 

Empirical Var 
of estimates 
(xlO"5) 

Empirical MSE 
of estimates 
(xlO-5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

5.4737 
5.5929 
5.6910 

0.5051 
0.5795 
0.6913 

4.0334 
5.3028 
6.3292 

7.9029 
8.7400 
9.7738 

4.1618 
5.3031 
6.4374 

7.9700 
8.7407 
9.8826 

Figure 4.23: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.05, Pp = 0.00 and using birth cohort curve III with pc = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.23: Estimation results from the simulation study when f3a 

birth cohort curve III with (3C = -0.00587 
0.00, f3p = 0.00 and using 

Estimable 
functions 

Pa-(3c 

Pp + Pc 

Theoretical 
Value 
(xHT2) 

Model 
Empirical Mean 
of estimates 
(xl0~2) 

0.587 

-0.587 

Empirical Var 
of estimates 
(xlQ-5) 

Empirical MSE 
of estimates 
(xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

0.4755 
0.5598 
0.6285 

-0.4746 
-0.5157 
-0.6009 

4.4454 
5.1273 
5.8968 

7.8380 
8.0112 
8.4927 

4.5697 
5.1347 
5.9140 

7.9644 
8.0620 
8.4945 

Figure 4.24: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.00, pp = 0.00 and using birth cohort curve III with /3C = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.24: Estimation results from the simulation study when pa = 
using birth cohort curve III with Pc = —0.00587 

-0.05, PP = 0.00 and 

Estimable 
functions 

Pa -de 

Pp + Pc 

Theoretical 
Value 
(xlO-2) 

Model 

-4.413 

-0.587 

Empirical Mean 
of estimates 
(xlQ-2) 

Empirical Var 
of estimates 
(xlO"5) 

Empirical MSE 
of estimates 
(xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-4.5364 
-4.4744 
-4.4326 

-0.5126 
-0.5372 
-0.5984 

4.5672 
5.3311 
5.8606 

7.8218 
8.1403 
8.5593 

4.7195 
5.3688 
5.8645 

7.8771 
8.1652 
8.5606 

Figure 4.25: Estimated curvature effects of birth cohort from the simulation study when 
pa = -0.05, PP = 0.00 and using birth cohort curve III with pc = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.25: Estimation results from the simulation study when /3a 

using birth cohort curve III with f3c = —0.00587 
0.05, PP = -0.05 and 

Estimable 
functions 

Pa~Pc 

Pp + Pc 

Theoretical Empirical Mean Empirical Var Empirical MSE 
Value Model of estimates of estimates of estimates 
(xlQ-2) (xHT2) (xl0~5) (xlQ-5) 

5.587 

-5.587 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

5.4888 
5.6376 
5.7577 

-5.4722 
-5.5795 
-5.7113 

4.7602 
6.9626 
8.6850 

8.5388 
10.0148 
11.4504 

4.8568 
6.9882 
8.9765 

8.6706 
10.0154 
11.6048 

Figure 4.26: Estimated curvature effects of birth cohort from the simulation study when 
(3a = 0.05, PP = -0.05 and using birth cohort curve III with pc = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.26: Estimation results from the simulation study when (3a = 0.00, f3p = 
using birth cohort curve III with pc = —0.00587 

-0.05 and 

Estimable 
functions 

Pa~Pc 

Pp + Pc 

Theoretical 
Value 
(Xl0-2) 

Model 
Empirical Mean 
of estimates 
(xHT2) 

0.587 

-5.587 

Empirical Var 
of estimates 
(xl0~5) 

Empirical MSE 
of estimates 
(xl0~5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

0.5100 
0.6196 
0.7047 

-5.4793 
-5.5431 
-5.6471 

4.0311 
5.0787 
6.1382 

7.6008 
8.1322 
9.0287 

4.0905 
5.0894 
6.2768 

7.7167 
8.1515 
9.0648 

Figure 4.27: Estimated curvature effects of birth cohort from the simulation study when 
Pa = 0.00, PP = -0.05 and using birth cohort curve III with pc = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.27: Estimation results from the simulation study when (3a = 
using birth cohort curve 77/ with /3C = —0.00587 

-0.05, /3P = -0.05 and 

^ . , , Theoretical 
Estimable T , , , , , , 

Value Model 
functions , 1 0 9> 

(xlO z) 

Pa-Pc 

Pp + Pc 

Empirical Mean 
of estimates 
(xl(T2) 

-4.413 

-5.587 

Empirical Var 
of estimates 
(xl0~5) 

Empirical MSE 
of estimates 
(xl(T5) 

GAM+SS 
GLM+NS 
GLM+OP 

GAM+SS 
GLM+NS 
GLM+OP 

-4.5700 
-4.4880 
-4.4317 

-5.5003 
-5.5368 
-5.6146 

4.0412 
4.6789 
5.2600 

7.2239 
7.3431 
7.7350 

4.2878 
4.7352 
5.2635 

7.2992 
7.3684 
7.7426 

Figure 4.28: Estimated curvature effects of birth cohort from the simulation study when 
0a = -0.05, /3P = -0.05 and using birth cohort curve 777. with 0e = -0.00587. 
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Note: solid curve=constructed curvature effects of cohort; dashed curve=median and dotted 
curves=2.5 and 97.5 percentiles of the estimates from 1000 simulation runs. 
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Table 4.28: Analysis of deviance for the mesothelioma data in Alberta. 
Models Na Df Deviance 4>b 

one-year intervals 
GAM+SS 600 638.27 590 1.082 
GLM+NS 600 641.24 590 1.087 
GLM+OP 600 642.53 590 1.089 
five-year intervals 
GLM+F 24 8 7.50 0.938 

a=number of cells in the Lexis diagram. 
6=estimates of the dispersion parameter, i.e., </> = deviance/df. 

4.2 Analysis of Mesothelioma Data in Alberta 

We now analyze the mesothelioma data in Alberta using the three APC smooth models-

GAM+SS, GLM+NS and GLM+OP as well as the traditional APC model, which treats the 

three factors as categorical variable for the data in five-year age and period intervals and will 

be referred to as GLM+F. The incidence rates considered are in one-year age intervals from 51 

to 80 and calender years from 1985 to 2004. To apply the traditional APC model GLM+F, 

the mesothelioma data is further aggregated into five-year age groups (51 — 55, 56 — 60 

through 76 - 80) and period (i.e. year of diagnosis) groups (1985-1989 up to 2000 - 2004); 

the corresponding ten-year cohort intervals would be 1904 — 1914, 1909 — 1919 through 

1944 - 1954, which will be referred to by their mid-points, 1909, 1914 through 1949. For 

comparison, we decided to use the same number of degrees of freedoms for age, period and 

cohort when fitting three different smooth models. The degrees of freedom of 3, 3 and 4 for 

age, period and cohort respectively were found to give the best fits to all the three models 

simultaneously. Actually, different numbers of degrees of freedom around the values chosen 

above will not make the model fittings significantly different. When fitting GLM+F the degrees 

of freedom for each factor is determined by the number of groups upon data aggregation. 

The results of goodness of fits are summarized in Table 4.28. All four models seem to give 

satisfactory fits with the estimates of dispersion parameters being close enough to 1. When 

forcing the linear trend of cohort effects to be zero, we get the estimates of age slopes and 

period slopes (i.e., f3a - /3C and (3P + /?c), which can be interpreted as cross-sectional age 

trend and overall time trend. Since GAM+SS is a nonparametric model fitting technique, the 
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Table 4.29: Results for the estimable linear trends in the mesothelioma incidence. 
A . - A : Pp + Pc 

One-year interval 
GAM+SS 
GLM+NS 
GLM+OP 

Five-year interval 
GLM+F 

Estimate 

0.0513 
0.0529 
0.0548 

0.2411 

SD 

0.0083 
0.0088 

0.0391 

P(> |*|) 

< 0.001 
< 0.001 

< 0.001 

Estimate 

0.0265 
0.0246 
0.0221 

0.1465 

SD 

0.0100 
0.0103 

0.0497 

P(> |*|) 

0.0142 
0.0328 

0.0185 

Table 4.30: Chi-square tests for the estimable curvature effects for mesothelioma data. 
„ , , Age Period Cohort 

One-year interval 
GLM+NS 
GLM+OP 

Five-year interval 
GLM+F 

Df 

2 
2 

4 

Chisq 

3.83 
4.04 

6.81 

P(Chisq) 

0.15 
0.13 

<0.12 

Df 

2 
2 

2 

Chisq 

0.39 
0.52 

1.62 

P(Chisq) 

0.82 
0.77 

0.42 

Df 

3 
3 

7 

Chisq 

20.04 
20.98 

16.61 

P(Chisq) 

< 0.001 
< 0.001 

0.013 

calculation of standard errors of estimable functions is not straightforward and merits future 

research. All three smooth models using one-year intervals returned similar results while the 

factor model using five-year groupings returned higher estimates, which is mostly due to the 

data aggregation. Figure 4.29 shows the three estimable curvature effects estimated using the 

three smoothing techniques. The plot of the curvature effects from the factor model is shown 

in Figure 4.30. All four models show us almost the same pattern of effects for each factor. 

The estimated cross-sectional age slope and curvature effects suggest that the risk of 

mesothelioma is increasing as people get older and yet those between 60 and 65 years of age 

are slightly less likely to have mesothelioma while both the magnitudes and significance tests 

of curvature effects for age in table 4.30 suggest this pattern is not significant. The estimates of 

the overall time trend also indicate that the mesothelioma incidence in Alberta is significantly 

increasing from 1985 to 2004. Although all four plots of curvature effects for period in figure 

4.29 showed a slightly concave and then convex pattern, the magnitudes of these effects are so 

small that the curvature patterns are not significant. Since curvature effects in the trends could 

be related to exterior changes, such as new methods of diagnosis or disease classification, we 

could consider excluding the term representing the curvature effect of period from the model if 

no additional information explained the curvature patterns or changes in the trends. The birth 

cohort, on the other hand, showed significant curvature effects; the incidence rate increased 
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rapidly for early cohorts born from 1905 to 1930 and then decreased sharply for those born 

afterwards. 



Figure 4.29: Estimates of curvature effects from three smooth APC models using 3, 3 and 4 
Dfs for Age, Period and Cohort respectively. 
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Figure 4.30: Estimates of curvature effects from the APC factor model with 5, 4 and 8 Dfs for 
Age, Period and Cohort respectively. 
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Chapter 5 

Conclusion and Discussion 

Age-Period-Cohort model has been widely used in analyzing the time trends disease incidence 

and mortality rates. In this paper, we are mainly focused on two general categories of Age-

Period-Cohort models-smooth APC models using one-year interval and factorial APC models 

using five-year intervals. The data considered in the factorial APC models are usually tabulated 

in a two-way contingency table by age group and period (Lexis diagram), which are most often 

done in five-year intervals. The aggregated incidence counts in each cell of the Lexis diagram 

are assumed to follow Poisson distributions and the incidence rates in each cell are assumed to 

be constant. The three factors contribute additive effects to the log rates. 

The factorial APC model has been considered as the classic and traditional model for 

the Age-Period-Cohort analysis, but in some sense, it causes loss of information due to 

data aggregation, which is important for factorial design to get stable and smoothed effect 

estimates. However, grouping the data into five-year or ten-year intervals is not important in 

the framework of smooth APC models, which can accommodate yearly ungrouped data and 

still fit smoothed curve estimates and it is no longer necessary to make the assumption of 

constant rates for five or ten years. 

The existing smoothing techniques that have been applied to the APC modeling include 

orthogonal polynomials, which is basically the idea of Holford's parametrization (1983) and 

have been the most commonly used and reliable solution to the non-identifiability problem, and 

regression splines by Heuer (1997). In this thesis, we considered the use of another popular 

smoothing techniques in the APC modeling; we proved that the estimable functions obtained 

by Holford (1983) also hold in the framework of APC modeling using smoothing splines. 

In simulation studies we compare the performances of the existing smoothing techniques 

73 



GLM+NS, GLM+OP and GAM+SS in the situation where the incidence is very sparse and 

have fairly large portion of zeroes. We found that GAM+SS is more stable and hence reliable 

for sparse data compared to the other two, although they are also nice alternatives for this data. 

However, due to the nonparametric features of smoothing splines, the calculation of 

standard deviations for estimable functions is not straightforward and will need study further. 

When applying either orthogonal polynomials or regression splines, the design matrix can be 

formulated for each factor. The forecasting can be easily made by extrapolating the estimable 

functions and hence estimable. Although extrapolation is always risky, it is nevertheless a 

useful tool for health services planning and prevention strategies. Theoretically, forecasting 

using GAM+SS is also estimable and possible, and will be explored in future research. 
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