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Abstract

Rigid body models of the feline hindlimb are often used to estimate the joint 

torques which occur within the limb, aiding investigations into the locomotor 

control systems of cats. This study investigates the factors which can affect 

the estimated joint torques. The effect of including or excluding a rigid paw 

is investigated. Additionally the sensitivity of the estimated joint torques to 

variations in the mass, center of mass location (CML), centroidal moment of in

ertia (CMI) of each hindlimb segment, and non-planar motion of the hindlimb 

is also investigated.

This study determined that the estimated joint torques were significantly 

affected by the rigid body paw and the variations in the CML’s and masses of 

each limb segment ( > 48%, > 9%, > 7%, respectively in the observed peak 

knee torque during stance). The variations in the CMI’s, and the non-planar 

movement that was investigated, had negligible effects on the estimated joint 

torques.
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Chapter 1 

Introduction and Literature 
R eview

Locomotion can be defined as the act of moving from place to place and en
compasses tasks such as crawling, jumping, swimming, running, and walking. 
All animals, including humans, use some form of locomotion on a regular basis. 
In nature, locomotion is vital to meet the basic needs of food collection or self 
preservation. There are two principal systems that are responsible for loco
motion: the musculoskeletal system, and the central nervous system or CNS, 
both of which must work in unison to coordinate and perform each locomotor 
task.

The musculoskeletal system provides the frame (skeleton) and the actua
tors (muscles) with which to create the motion. The muscles are connected 
to the bones of the skeleton by tendons and produce motion by moving the 
skeleton about its joints. The forces required to move the skeleton are created 
by contraction of the muscles, thus the forces that are created in the muscle 
are always tensile. Since muscles can only provide a tensile force, to reverse 
the motion of a limb caused by the contraction of one muscle group, another 
group of muscles is required to exert an opposite pull. As an example, one can 
consider simple flexion and extension of the human arm about the elbow joint. 
Flexion of the arm is accomplished by the contraction of the bicep muscles. 
During flexion of the arm the tricep muscles located on the back of the arm 
stretch until they are needed to reverse the motion of the arm. The tricep mus
cles then contract while the bicep muscles relax, extending the arm. Rarely 
does an individual muscle act by itself to create motion, instead groups of 
muscles work together synergistically to create motion. A number of muscles 
may be activated throughout the entire limb for a certain motion; however,

1
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the times at which the muscles are activated, and the levels of activation for 
each individual muscle vary.

The CNS acts as a control system for the musculoskeletal system during 
locomotion. For each different type of locomotion, sensory information such as 
speed, direction, limb location, weight distribution, and intramuscular forces 
must all be simultaneously processed, monitored, and adjusted. The sheer 
amount of information that is processed and modified in order to allow for 
the completion of the many different types of locomotion is a testament to the 
complexity of the locomotor control system. To date, the precise architecture 
of the locomotor control system is unknown for both animals and humans. 
Much of the current knowledge about the control of locomotion in humans is 
actually derived from experiments on quadrupeds, most notably the typical 
house cat. While some extrapolations are required, many basic similarities 
between the locomotor systems of cats and humans have been demonstrated 
[Duysens et al. (2002)]. Human and cat locomotion is hierarchically controlled 
at several levels of the central nervous system, namely the spinal cord, the 
brainstem, and the cerebral cortex, which can interact and influence one an
other [Duysens et al. (2002)]. Difficulty arises in isolating each individual level 
of locomotor control because of the interrelation between the different levels 
of control for locomotion.

There are a number of areas which would benefit from a thorough under
standing of the locomotor control system, such as prosthetics, robotics, and 
various fields within medicine. Prosthetic devices could be improved with re
spect to their functionality. Understanding the types of afferent and efferent 
signals, to and from the nervous system respectively, required for a specific lo
comotor task would then allow prosthetic devices to be designed such that they 
could process and simulate the required signals for the control system. Recent 
research has focused on ways of making connections with afferent nerve axons 
which can then be used as natural transducers for touch, force, and position 
[Gasson et al. (2005)]. Combining knowledge of the locomotor control system 
and a means of communication between the CNS and prosthetic device would 
allow for far more advanced prosthetics. To date many walking robots are 
relatively slow moving and have been confined to statically stable locomotion 
[Schmiedeler and Waldron (1999)]. The development of walking robots that 
can move with the same agility and speed as an animal, throughout numerous 
environments, is highly sought after because they would not have the same 
restrictions on their mobility as a wheeled robot would have. The medical 
field would also stand to benefit since a thorough understanding of the loco-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



motor control system may allow for new methods of treatment for diseases, 
such as cerebral palsy, which disrupts the body’s ability to control movement 
and posture.

As mentioned earlier much of the current knowledge about the control of 
locomotion in humans is actually derived from experiments with cats. The cat 
is an ideal subject for investigation into locomotion control since there is a con
siderable amount of knowledge available about the associated biology [Ekeberg 
and Pearson (2005)]. Investigations into the control systems for locomotion 
are often performed by means of gait analysis, which is defined as being the 
quantitative description of all mechanical aspects of gait [Cappozzo (1984)]. 
Typically there are four types of gait analysis tools which are used: kinematic 
analyses, electromyography, inverse dynamics, and forward dynamics.

1.1 K inem atics
The term kinematics is used to describe the motion of bodies or objects with 
respect to their positions, velocities, and accelerations without regard for the 
forces which cause the motion. Currently, kinematic data for gait studies is 
most often collected through the use of video based systems where markers 
are placed on the bodies of interest. The desired locomotion is then recorded. 
The markers are then found in each image captured by the video camera and 
their locations calculated. Based on the locations of the markers the positions, 
velocities, and accelerations of the bodies of interest are calculated.

Kinematic analyses have been used to investigate a broad range of locomo
tion topics such as: the angular movements of the hindlimb segments and the 
resulting lengths of select hindlimb muscles for a range of locomotion speeds 
[Goslow et al. (1973)], the coordination of the motion of the hindlimbs and 
forelimbs [Miller et al. (1975)], the theory that end point control and trajectory 
planning may be applicable to limb movement in locomotion [Shen and Pop- 
pele (1995)], the motor patters and hindlimb motions for up-slope and level 
walking [Carlson-Kuhta et al. (1998)], and the motor patterns and hindlimb 
motions for forward and backward walking [Buford et al. (1990)].

1.2 E lectrom yography

The electromyogram (EMG) uses an electrode placed within a muscle to mea
sure the electrical activity. Thus, EMG’s represent the muscle activation sig-

3
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nal. An elusive goal of most investigators utilizing EMG in their studies has 
been, and still is, to relate the magnitude of the EMG signal to the muscle 
tension. However controversy exists about the correlation of EMG with muscle 
tension under dynamic loading conditions [Sutherland (2001)]. EMG results 
are usually presented as either an absolute voltage or as a percentage of a 
normalized standard. A drawback associated with EMG’s is due to the nature 
of skeletal muscle make up. A muscle consists of many individual bundles of 
muscle fibres where each individual fibre gives off an electrical signal. Due to 
the sheer number of muscle fibres, and interference from other muscles, EMG 
signals are noisy. See Buford and Smith (1990); Carlson-Kuhta et al. (1998); 
Perell et al. (1993); Miller et al. (1975) for examples of EMG signals collected 
from cats.

EMG’s are used to identify the muscles that are being activated during 
motion. A kinematic analysis is often performed in conjunction with and 
EMG analysis. This way the activation of the muscles can be correlated to 
the position of the limb, providing additional insight into the analysis. EMG’s 
are also used to quantify muscle activation levels, and to find the times at 
which the muscle is active [Buford and Smith (1990); Carlson-Kuhta et al. 
(1998); Perell et al. (1993)].

1.3 Inverse D ynam ics
While kinematic and EMG analyses are both useful gait analysis tools, they 
do not provide any indication of the magnitude of the reactions which occur 
within the limbs of the animal during locomotion. Direct measurement of the 
forces that occur within the limbs is usually not performed due to the invasive 
nature of the measurement techniques. Instead inverse dynamics are applied. 
The internal forces and moments are estimated based upon the physical prop
erties of the limb, the motion of the limb, and the external forces applied to 
the limb. The moments acting about each individual joint in the limb caused 
by muscle forces acting within the limb, and the external forces acting on the 
limb, are termed joint torques. The external forces acting on a limb when in 
contact with a surface are known as ground reaction forces, or GRF’s.

Physical properties for the limbs of cats have been published by both Man- 
ter (1938) and Hoy and Zernicke (1985), however the physical properties pre
sented by Manter (1938) were fairly limited in scope as they only represent 
a single cat. Hoy and Zernicke (1985) went much further by measuring the

4
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segmental parameters of nine separate cats. Hoy and Zernicke (1985) then de
veloped empirical equations with which the segmental masses and centroidal 
moments of inertia about the center of mass for each limb segment can be pre
dicted based on the lengths of each segment and the total mass of the cat. The 
results presented by Hoy and Zernicke (1985) are for a two-dimensional case, 
where the motion of the limb is assumed to occur in the sagittal plane. While 
the empirical equations developed by Hoy and Zernicke (1985) are often used 
to allow the prediction of feline hindlimb dynamics [Fowler et al. (1993); Perell 
et al. (1993); Trank and Smith (1996); McFayden et al. (1999)], to the author’s 
knowledge no study has investigated how sensitive the estimated joint torques 
are to variations in the segmental parameters of the limbs. The results of the 
sensitivity analysis may allow the accuracy of the estimated joint torques to 
be improved in future works by finding more accurate methods of measuring 
or obtaining the segmental parameters, if so required.

To aid in the discussion which follows the skeletal anatomy of a typical 
feline hindlimb is shown in Figure 1.1. The hindlimb contains the following 
joints: a hip joint, a knee joint, an ankle joint, a metatarsophalangeal (or 
MTP) joint, and the interphalangeal joints of the paw. Figure 1.1 highlights 
the aforementioned joints in their respective order, from top to bottom. Ex
cluding the paw, the feline hindlimb consists of three main segments: the thigh 
segment between the hip and knee joints, the shank segment between the knee 
and ankle joints, and the tarsal segment between the ankle and MTP joints.

Inverse dynamics have been used in a number of studies of feline loco
motion. The earliest study that could found, that the author is aware of, 
was Manter (1938). Manter (1938) created a planar, three-link, rigid body 
model of a hindlimb (thigh, shank, and tarsals) to provide an estimate of the 
joint torques acting within the limb during contact with the ground. Hoy and 
Zernicke (1985) studied hindlimb dynamics when the hindlimb was swinging 
freely without ground contact for three separate gaits: pace-like walk, trot
like walk, and gallop. Here a planar, two-segment, rigid body system was 
used to represent the shank, as well as the tarsals and paw as a single seg
ment. Fowler et al. (1993) used inverse dynamics to examine the relationship 
between internal force production in selected skeletal muscles, measured with 
transducers placed upon selected tendons, and the estimated joint torques 
when the hindlimb was in contact with the ground. The planar inverse dy
namics model used by Fowler et al. (1993) was a three-segment, rigid body 
system representing the shank, tarsals, and paw respectively. The hindlimb 
kinetics during both forward and backward walking were assessed by Perell
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Figure 1.1: Typical feline hindlimb skeletal anatomy. The paw, which consists 
of the individual phalanges bones and the interphalangeal joints, 
is shown inside the broken circle.

et al. (1993). Here the planar, three-segment, rigid body model created by 
Hoy and Zernicke (1985) (thigh, shank, tarsals and paw) was used when the 
limb was not in contact with the ground. During contact with the ground a 
planar, four-segment, rigid body model (thigh, shank, tarsals, paw) was cre
ated based upon the three-segment model created by Fowler et al. (1993).

One dissimilarity between the inverse dynamics models used by Manter 
(1938), Fowler et al. (1993), and Perell et al. (1993) is in the way that the 
paw is modeled. It does not appear that Manter (1938) included the paw in 
his model since there is no kinematic data shown for the paw. Kinematic data 
was only shown for the thigh, shank, and tarsal segments. The lack of a paw 
in Manter’s model poses a problem for the estimation of the joint torques in 
the hindlimb since the GRF’s are distributed over the underside of the paw. 
The distribution of the GRF’s can be represented by a single force in each 
coordinate direction, at a single location on the paw for each instant that the 
GRF’s are measured. This point is known as the center of pressure. Over 
the duration of time that the paw is in contact with the ground, the center of 
pressure moves along the paw in the same direction as the locomotion [Fowler 
et al. (1993)]. Manter (1938) also inferred that the center of pressure does 
not remain at a fixed location, however the means with which to calculate the 
center of pressure were not available. W ithout the center of pressure Manter
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(1938) estimated a location at which to apply the GRF’s during the latter 
portion of the stance phase. Manter (1938) stated, ‘An estimated position, 
inferred from the nature of the step, was used for the period toward the end 
of the step when the pressure under the foot shifts towards the region of the 
toes.’ Manter (1938) reported that this correction had no significant impact 
on the observed final results. Fowler et al. (1993) and Perell et al. (1993) 
modeled the paw as a single rigid body during contact with the ground. Both 
Fowler et al. (1993) and Perell et al. (1993) measured the center of pressure 
which allows them to use their paw model.

In each of the inverse dynamics studies [Manter (1938); Hoy and Zernicke 
(1985); Fowler et al. (1993); Perell et al. (1993); Trank and Smith (1996)] an 
assumption was made that the joint torques which were investigated could be 
accurately estimated from a planar model, even though in reality the hindlimb 
is not restricted to planar motion.

1.4 Forward D ynam ics
Forward dynamics uses known forces and moments, both external and internal, 
acting on a system of bodies to calculate the resulting motion of the system. 
Often a forward dynamics model is created to test a theory about the control 
of locomotion [Herr and McMahon (2000); Van Den Bogert et al. (1989)]. The 
movements predicted by the forward dynamics model can be compared to re
ality, enabling identification of incorrect models in many cases. Thus forward 
dynamic simulation models can lead to a better understanding of the function
ing of the locomotor system and the factors that affect i t’s normal behavior 
[Van Den Bogert et al. (1989)].

1.5 T hesis O utline
The purpose of this study is to investigate a number of different aspects as
sociated with the mechanical modeling of the feline hindlimb for both inverse 
and forward dynamics.

Chapter 2 describes the methods used to collect and process the kinematic 
data and the ground reaction force data required for this study.
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Chapter 3 outlines the creation of the two-dimensional hindlimb model. 
The two-dimensional hindlimb model was then used in an inverse dynamics 
analysis to estimate the joint torques occurring within the hindlimb for walking 
on a level surface. The sensitivity of the estimated joint torques to variations 
in the centroidal moment of inertia, the masses, and the center of mass loca
tions of each individual hindlimb segment is investigated. The joint torques 
estimated by the two-dimensional hindlimb model, with and without a paw, 
is also included.

Chapter 4 details an investigation into whether or not a planar hindlimb 
model can be used estimate the joint torques occurring in a feline hindlimb, 
since the hindlimb is actually subject to non-planar motion during typical level 
walking. This was determined by comparing the joint torques estimated from 
the two-dimensional hindlimb model to joint torques estimated from a three- 
dimensional hindlimb model.

In Chapter 5 the two-dimensional hindlimb model is used to perform an 
initial investigation into forward dynamics simulations. The estimated joint 
torques and the GRF’s were used as the inputs with which to run the forward 
dynamics simulations. The predicted kinematics could then be compared to 
the original kinematics as a means of verifying the modeling methodology.

Conclusions and recommendations for future work in this area are pre
sented in Chapter 6.
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Chapter 2 

D ata Collection

In order to create a dynamic model of the hindlimb, the kinematics of the 
hindlimb, as well as the types of forces which act upon it, must first be stud
ied. Here kinematics of the hindlimb refers to the positions, velocities, and 
accelerations, of each segment of the hindlimb. The external forces which act 
upon the limb must also be measured so that they may be used in conjunc
tion with the kinematic data to estimate the forces and moments which occur 
within the hindlimb. For walking along a level surface, the only forces exter
nal to the hindlimb that must be measured are the ground reaction forces, or 
GRF’s. Any drag on the hindlimb caused by air resistance may be neglected 
as it is extremely small in comparison to the GRF’s.

This chapter outlines the methods used to obtain both the two-dimensional 
and three-dimensional kinematic and GRF data required for this study. The 
procedures used to calculate and modify the data, such as: calculation of 
the joint angles, differentiation of joint angle data in order to obtain angular 
velocities and angular accelerations, as well as interpolation and filtering of 
the data, are also discussed.

2.1 D ata  C ollection  M ethod
Currently one of the most common methods of collecting data for gait analysis 
is to employ the use of a video based motion capture system. A brief descrip
tion of a motion capture system used to collect kinematic data for this study 
is included to provide the reader with some background for the data collection 
process. There are three main components of a video based motion capture 
system used for the collection of gait analysis data:
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1. Video Camera.

Reflective markers are placed upon the limbs (or bodies) of interest and a 
video camera is used to film the subject as it moves. The video data is then 
digitized and transferred to a computer where the kinematic measurements 
are made based upon the location of the reflective markers in each frame of 
the digitized video data. The number of video cameras required for kinematic 
data collection depends on both the complexity of the movement being stud
ied and whether or not two-dimensional or three-dimensional kinematic data is 
required. For gait analysis requiring two-dimensional kinematic data, a single 
video camera may be used. Should the motion being studied require three- 
dimensional kinematic measurements, a minimum of two video cameras would 
be required.

2. Force Plate.

Force plates are placed in the surface of the walkway upon which the sub
ject walks to measure the GRF’s between the subject’s foot and the surface. 
The GRF’s are measured in three separate directions where each direction 
corresponds to a single axis of an orthogonal reference frame.

3. Computer.

Computer workstations are used to record and process both the data from 
the video camera and the data from the force plate. A software program is 
used to locate the reflective markers for each frame of the video data and 
calculate the position of the reflective markers with respect to a user defined 
reference frame.

The kinematic and force data used for this study was obtained from the 
lab of Dr. Keir Pearson, Director for the Center of Neuroscience for the Uni
versity of Alberta. The motion capture system used in Dr. Pearson’s lab was 
purchased from Peak Performance Technologies, Inc. and utilizes Peak Motus 
software for the collection of the kinematic and force data. A schematic of Dr. 
Pearson’s motion capture system is shown in Figure 2.1. The walkway is situ
ated on top of a wheeled frame which places the walkway at approximately hip 
height, and is enclosed by plexi-glass walls which keep the cat from straying 
off of the walkway. The video camera is placed perpendicular to the walkway 
so that the portion of the gait cycle in which the hindlimb makes contact with
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the force plate, occurs within the field of view. A gait cycle begins when one 
foot contacts the ground and continues until the same foot again contacts the 
ground. Dr. Pearson’s motion capture system utilized a single video camera, 
therefore only two-dimensional kinematic data was available. An orthogonal 
right-handed global reference frame, also shown in Figure 2.1, was chosen such 
that the positive X-axis is aligned with the forward motion of the cat along 
the walkway, and the positive Z-axis is aligned vertically upwards, parallel to 
the direction of gravity.

Video
C am era

X

V

Force
Plate

W alkw ay

Figure 2.1: Schematic of the motion capture system. The force plate is shown 
as the black square embedded in the walkway.

A brief description of the data collection process for a typical gait trial is 
as follows. First small circular reflective markers are placed upon the shaved 
hindlimb of a cat, above the bony anatomical landmarks of the limb such as 
the hip, knee, and ankle. The motion capture system is then calibrated by 
placing a calibration grid along the walkway, within the field of view of the 
video camera. The calibration grid consists of a number of black dots that 
are placed upon a white background which the Peak Motus software uses as 
a reference on which to base it’s position calculations for the kinematic mea
surements. The force plate is also calibrated by applying a known force in 
each direction while recording the output from the force plate. After the mo
tion capture system has been calibrated, the cat is placed on the walkway and 
coaxed to walk from one end of the walkway to the other. As the cat nears 
the force plate a synchronization pulse is initiated by the operator who is col
lecting the data. The synchronization pulse is recorded onto both the force
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plate data and the video data, and ensures the alignment of the time scales of 
both data files.

Once the data has been collected the Peak Motus software is used to track 
the reflective markers. The tracking process refers to identifying the location 
of the individual reflective markers in each frame of the digitized video. Once 
the markers have been tracked, the Peak Motus software can calculate the 
coordinates of each of the reflective markers for the entire trial. This set of 
coordinate data will be referred to as the positional data.

2.1.1 Lim itations of the M otion Capture System
While the video based motion capture system is a powerful tool for conduct
ing gait analysis investigations, there are a few drawbacks associated with it. 
These drawbacks are related to the use of the reflective markers as the basis 
for the kinematic measurements.

Since the reflective markers are placed directly upon the skin of the hindlimb, 
there may be some movement of the reflective markers as the skin itself is free 
to move relative to the skeletal system. Miller et al. (1975) investigated the 
amount of skin slippage which occurs about the anatomical landmarks of a 
feline hindlimb during locomotion on a treadmill. Small lead disk’s, 4 mm’s 
in diameter, were placed on the skin above bony anatomical landmarks of the 
hindlimb. X-rays of the cat’s hindlimb were then taken as it walked on a 
treadmill. Miller et al. (1975) found that the skin remained closely related 
to the bony landmarks of the hindlimb in all places, except the knee. The 
maximum skin slippage observed at the knee over the duration of several step 
cycles was found to be ^  4.0 cm, the majority of which occurred along the 
axis of the shank segment of the hindlimb. Upon inspection of the kinematic 
data collected from Dr. Pearson’s motion capture system, slippage of the knee 
marker was also observed as maximum variations of 0.9 cm, and 2.6 cm were 
observed in the lengths of the thigh and shank segments of the hindlimb. To 
correct for this variation in the hindlimb segment lengths, the mean length of 
each hindlimb segment was calculated from the positional data. The calcu
lated mean hindlimb segment lengths were then used as the actual hindlimb 
segment lengths for the calculation of the joint angles as well as for the two- 
dimensional model.

The second drawback related to the use of the reflective markers is the 
limitation on the motion that can be measured due to the physical size of
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the different anatomical structures. While the use of the reflective markers 
work reasonably well for the larger limb segments, such as the thigh, shank, 
and tarsals, the motion of much smaller limb segments, such as the individual 
phalanges (the bones of the paw and digits) cannot be measured. The markers 
used to collect the kinematic data for this study were quite large in compari
son to the phalanges, thus the reflective markers would not provide adequate 
resolution to accurately measure the motion of the phalanges. Thus, there is 
also no detailed kinematic information available for the individual phalanges 
of the paw. A single reflective marker was affixed to the middle of the paw for 
the kinematic measurements, however the paw marker only provides a general 
representation of the location of the paw during the gait cycle.

A simple test was conducted in which the positions of four stationary re
flective markers were manually measured and compared to the locations of the 
reflective markers as measured by the motion capture system to investigate 
the error, if any, in the measurements made by the motion capture system. 
A maximum error of 0.21 cm was found in the measurement of the reflective 
marker positions made by the motion capture system. This measurement error 
is fairly small when compared to the error introduced by the movement of the 
reflective markers due to the skin slippage, which can be as high as 4 cm’s. 
The details of the test can be found in Appendix A.

2.2 K inem atic and G round R eaction  Force D ata
Before proceeding there are a few commonly used terms associated with gait 
analysis which should be defined. The gait cycle, previously defined as the 
movement which occurs between two successive contacts with the ground, can 
be divided into two distinct phases. The stance phase begins when a leg ini
tially comes into contact with the ground, and continues until the leg loses 
contact with the ground. Once the leg loses contact with the ground, the leg 
enters into the swing phase which continues until the onset of the next stance 
phase. The swing and stance phases are shown in Figure 2.2.
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Figure 2.2: Gait cycles for a typical hindlimb. The stance phase and swing 
phase portions of the gait cycle are indicated.

2.2.1 Two-Dim ensional Kinem atic Data
The positional data is a subset of the kinematic data as it represents the loca
tions of each of the reflective markers calculated by the motion capture system. 
Occasionally the positional data will be referred to directly to distinguish it 
from the angular kinematic data which consists of the angular positions, an
gular velocities, and angular accelerations of the hindlimb segments. The 
positional data for the hindlimb of a typical cat is shown in Figure 2.3. The 
reflective markers (A to E) are plotted with respect to their X and Z coordi
nates, and are connected by line segments to aid in the visualization of the 
limb’s motion. The Peak Motus software uses a Butterworth filter for the 
filtering of the positional data. The order and cut-off frequency for the But
terworth filter are chosen automatically by the Peak Motus software and are 
not included in the data.

Only a portion of the positional data, as indicated in Figure 2.3, was used 
for the study. Since a single force plate was used, only the GRF’s for a single 
stance phase of the hindlimb could be recorded. Without the GRF’s the in
ternal moments and forces which occur in the hindlimb at each joint during 
the stance phase can not be estimated. Therefore only the positional data 
for the swing phase prior to the stance phase, and the swing phase immedi
ately following the stance phase for which the GRF’s were recorded, was used. 
Therefore the kinematic data set consisted of a pre-stance swing phase, the 
stance phase, and a post-stance swing phase.
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Figure 2.3: Positional data for a cat hindlimb captured at 60 Hz. Each 
hindlimb position shown represents and interval of A s. Each 
dot represents a reflective marker, where: A =  Hip, B =  Knee, C 
=  Ankle, D =  MTP, and E =  Paw.

Goslow et al. (1973) measured the duration of the step cycle for the un
restrained walking, trotting, and galloping of 11 adult cats. They found that 
for a cat walking at 2 mph (which was the slowest walking speed studied) the 
duration of a complete step cycle for the hindlimb was 700 ms, where the swing 
phase lasted 225 ms, while the stance phase lasted 475 ms. Comparatively for 
the fastest galloping speed studied of 16 mph, the duration of a complete step 
cycle was reduced to 290 ms where the swing phase decreased slightly to 200 
ms and the stance phase was reduced quite drastically to 90 ms. Goslow et al. 
(1973) showed that over a relatively large range of locomotion speeds (2 — 16 
mph) the duration of the swing phase for a cat’s hindlimb remains relatively 
constant, while the duration of the stance phase decreases rather dramatically.

For the trial shown in Figure 2.3 the duration of each step cycle was ~  
915 ms, where the swing phase lasted «  230 ms, which is very close to the 
duration of the swing phase of the cat walking at 2 mph observed by Goslow 
et al. (1973). The stance phase for the trial shown in Figure 2.3 lasted ss 
685 ms. The hindlimb moves the fastest during the swing phase which can be 
inferred from Figure 2.3. The kinematic data was recorded at a constant 60 
Hz and during the swing phases the positions of the hindlimb become more 
spread out from one another, indicating that the limb is moving faster. The 
230 ms duration of the swing phase corresponds to the hindlimb moving at 
«  4.3 Hz. Since the video camera of the motion capture system recorded the 
positional data at 60 Hz, the sampling rate is then 14 times faster than the
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motion being filmed. According to the Sampling Theorem [Shannon (1949)], 
the sampling frequency must be at least twice as fast the data being sampled. 
Therefore the 60 Hz sampling rate should be more than adequate to provide 
an accurate representation of the positional data.

While the positional data was collected at 60 Hz, resulting in a time step of 
£jj s between each data point, the GRF data was collected at 600 Hz, resulting 
in a time step of s between each data point in the GRF data sets. In order 
to simplify working with both the positional and GRF data sets a time step of 
0.001 s was chosen and both the positional and GRF data sets were interpo
lated using cubic spline interpolation. This ensured that the positional data 
and the GRF data sets were the same size, and shared the same time interval. 
While a time step of ^  may seem to be a more obvious choice, thus negating 
the need to interpolate the GRF data sets, the time step of 0.001 s was chosen 
since it is easier to work with. Also, since the forward dynamics simulations 
utilize an adaptive step size integrator, the smaller time step should reduce 
the number of interpolations required during the integration process thereby 
reducing the time needed to run a forward dynamic simulation.

The angles which described the location of each hindlimb segment were 
calculated using Equation 2.1, and the X and Z coordinates of the hip, knee, 
ankle, metatarsalphalangeal (or MTP), and paw reflective markers.

©j =  arctan ^ (2 .1 )
V. %i+l %i J

where: i =  1,2 ,3 ,4
x, z =  coordinates of the reflective markers

Since each of the angles are measured at one of the hindlimb’s joints, they 
are referred to as the joint angles. Figure 2.4 illustrates how the joint angles 
used to describe the location of each hindlimb segment are defined. The hip, 
knee, ankle, and MTP joint angles are represented in Figure 2.4 by ©i, 0 2, 
© 3 and ©4 respectively. Each joint angle is measured relative to the negative 
Z-axis of the global coordinate system, where the positive direction of each 
angle is defined as being clockwise.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ankle (x3,z3) ;

MTP (x4,z4) ;...g paw (x5,z5)

Figure 2.4: Definition of the joint angles. Positive and negative joint angle 
directions are shown with the solid (clockwise) and dashed (coun
terclockwise) arrows respectively. All joint angles are measured 
relative to the negative Z-axis.

The angular velocities and angular accelerations of each hindlimb segment 
were calculated using the central difference formulas shown in Equations 2.2 
and 2.3.

e „ >  =  e ( ' * ‘ l2 A [e > ' ~ 11 (2 -2 )

A )  =  (2.3)

where: 0  =  Angle
© =  Angular Velocity
0  =  Angular Acceleration
1 =  (2,3,4, . . .  ,n  -  1)
n = number of data points in data set

A t = time step
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While other alternative differentiation techniques could have been used, 
the central difference method was chosen for i t’s simplicity and because it 
allows the angular velocities and accelerations to be calculated at the same 
discrete time steps as the original joint angle data. A problem that can occur 
when using the central difference method is that for a discrete data set of 
size i = 1 . . .  n, the first value (i =  1 ) and the last value (i = n) in the data 
set can not be differentiated. This is a result of the central difference equa
tions requiring information about the values which either precede or follow the 
value at the location where the differentiation is to take place. However since 
the entire positional data set was not required, due to the GRF’s being col
lected for a single stance phase as mentioned earlier, this problem was avoided.

The joint angles for the hip, knee, and ankle joints, estimated from the 
positional data set, are shown in Figure 2.5. The MTP joint angle is not in
cluded since, as mentioned in Section 2.1.1, the paw marker only provides a 
very general representation of the location of the paw and is not required, as 
will be discussed in Chapter 3, Section 3.2.

1.5

1.0

0.5

0

-0.5

- 1.01 I________ 1_I_______I________ I________ I____ I___ i________ I________ I
O 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

Figure 2.5: Estimated joint angles, ©i, ©2 , and © 3 represent the hip, knee, 
and ankle joint angles, respectively. The two vertical lines repre
sent the transitions from swing phase to stance phase (0.23 s), and 
stance phase to swing phase (0.92 s).
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The estimated angular velocities are shown in Figure 2.6, while the esti
mated angular accelerations are shown in Figure 2.7. The angular velocities 
(©i, ©2 , @3), and angular accelerations ( 0 l5 0 2, ©3) of each limb segment 
adhere to the same sign convention as the joint angles. As mentioned earlier 
Goslow et al. (1973) found that as the forward speed of the cat increased, the 
time that it took to complete one step cycle decreased, where the majority 
of the decrease in step cycle duration came from the decrease in the duration 
of the stance phase. Alternatively for slower locomotion the duration of the 
stance phase is increased while the duration of the swing phase changes very 
little. The cat from which the positional data was collected was travelling at a 
relatively slow, self-selected walking speed (approximately 0.70 mph). There
fore it is not surprising that the hindlimb moves much more slowly during the 
stance phase as shown in Figures 2.6, and 2.7.

-oco
-2

-4
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-8

10
0.2 0.4 0.6 0.8 1 .2 1.4

Time (s)

Figure 2.6: Estimated angular velocities, ©i, 0 2, and 0 3 represent the respec
tive hip, knee, and ankle angular velocities. The two vertical lines 
represent the transitions from swing phase to stance phase (0.23 
s), and stance phase to swing phase (0.92 s).
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Figure 2.7: Estimated angular accelerations. ©!, 0 2, and 0 3 represent the 
respective hip, knee, and ankle angular accelerations. The two 
vertical lines represent the transitions from swing phase to stance 
phase (0.23 s), and stance phase to swing phase (0.92 s).

As mentioned earlier in Section 2.1.1 there was some movement of the knee 
reflective marker observed in positional data. To minimize the effect of the 
marker movement the location of the knee marker is often estimated by tri
angulating it’s location based upon the location of the hip and ankle markers 
and the known lengths of the thigh and shank segments (Buford et al. (1990); 
Carlson-Kuhta et al. (1998); Fowler et al. (1993); Goslow et al. (1973); Shen 
and Poppele (1995)). As a investigation to see how triangulating the location 
of the knee marker would affect the joint angle data, the location of the knee 
marker was calculated using the hip and ankle marker locations and the mean 
lengths of the thigh and shank segments, as calculated from the positional 
data. The resulting angular kinematic data is shown in Figures 2.8 to 2.10. 
As shown in Figure 2.8 the differences between the hip and knee joint angles 
occur during the swing phases and the transition from stance phase to swing 
phase. The differences in the hip joint angles are larger than the differences in 
the knee joint angles, however the profiles of the joint angle curves estimated 
using the triangulated knee marker position remain quite similar to the origi
nal kinematic data. Similarly, the angular velocities and angular accelerations 
shown in Figure 2.9 and Figure 2.10 respectively, also are fairly similar to the 
angular velocities and angular accelerations shown in Figures 2.6 and 2.7.
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Figure 2.8: The hip and knee joint angles calculated using the triangulated 
position of the knee marker, 0 i  Tri and 0 2 Tri respectively, are 
shown plotted over the hip and knee joint angles (solid lines) shown 
in Figure 2.5.
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Figure 2.9: Angular velocities calculated using the triangulated position of the 
knee marker.
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Figure 2.10: Angular accelerations calculated using the triangulated position 
of the knee marker.

An assumption of the triangulation method is that the lengths of the thigh 
and shank segments are known, as they are measured directly from the cat. In 
this investigation the actual thigh and shank segment lengths were unknown 
as they were not available. Instead the mean lengths of the thigh and shank 
segments calculated from the positional data were used. Thus, while the joint 
angles calculated with the triangulated knee joint marker position may be more 
consistent because the lengths of the thigh and shank segments do not change, 
there is no way to be sure that joint angles calculated from the triangulated 
knee marker locations are any more accurate than joint angles calculated di
rectly from the positional data. Therefore the joint angles calculated with the 
triangulated knee marker locations were not used in this study.

2.2.2 Three-Dim ensional Kinem atic Data
In order to investigate if there were any significant differences between the joint 
torques estimated by a two-dimensional hindlimb model and the joint torques 
estimated by a three-dimensional hindlimb model, a three-dimensional kine
matic data set was also required. However, as mentioned earlier, Dr. Pearson’s 
motion capture system was only set up to obtain two-dimensional positional 
data. Fortunately an associate of Dr. Pearson, Dr. John Misiaszek, who is an 
Associate Professor in the Department of Occupational Therapy at the Univer
sity of Alberta, studied three-dimensional movement of feline hindlimbs. Dr.
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Misiaszek studies investigated the amount of adduction and abduction of the 
hip during the gait cycle. When viewing the cat from behind, adduction refers 
to motion at the hip which moves the limb closer to the body, while abduction 
refers to motion at the hip that moves the limb out laterally, farther away from 
the body. Unfortunately Dr. Misiaszek was only interested in the hip adduc
tion and abduction motion and did not collect any positional data for the knee 
or ankle, nor did he collect any GRF’s. Since a complete three-dimensional 
kinematic data set could not be obtained, and approximated three-dimensional 
kinematic data set was created by combining a two-dimensional kinematic data 
set with an approximated hip adduction and abduction data set. The approx
imation of the hip adduction and abduction data will be discussed later in this 
section.

An additional positional data set was obtained from Dr. Pearson for which 
a three-dimensional GRF data set was also collected. The new two-dimensional 
positional data set is shown in Figure 2.11, where the positions of the reflective 
markers have been connected with lines to aid in the visualization of the limbs 
motion. Once again only the kinematic data of the swing phases prior to, and 
immediately following the stance phase for which the GRF’s were recorded, 
were used. The joint angles, angular velocities, and angular accelerations were 
all calculated using the same procedures as outlined for the first kinematic 
data set in Section 2.2.1, and are shown in Figures 2.12 to 2.14.
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Figure 2.11: Plot of the positional data. Each hindlimb position shown repre
sents an interval of A s.
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Figure 2.12: Estimated joint angles. 0 l5 0 2, and 0 3 represent the hip, knee, 
and ankle joint angles, respectively. The two vertical lines rep
resent the transitions from swing phase to stance phase (0.10 s), 
and stance phase to swing phase (0.40 s).
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Figure 2.13: Estimated angular velocities. 0 i ,  0 2, and 0 3 represent the re
spective hip, knee, and ankle angular velocities. The two vertical 
lines represent the transitions from swing phase to stance phase 
(0.10 s), and stance phase to swing phase (0.40 s).
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Figure 2.14: Estimated angular accelerations. 0 X, ©2, and 0 3 represent the 
respective hip, knee, and ankle angular accelerations. The two 
vertical lines represent the transitions from swing phase to stance 
phase (0.10 s), and stance phase to swing phase (0.40 s).

The joint angles of the first kinematic data set (shown in Figure 2.5) and 
the second kinematic data set (shown in Figure 2.12) are quite similar to one 
another as they share the same characteristic shapes. There is some variability 
between the two joint angle data sets with respect to the magnitudes of each 
of the joint angles. Since a different animal was used to obtain each kinematic 
data set variability between the two data sets should be expected because the 
hindlimb segment lengths and gait patterns of the two animals may differ from 
one another. The main difference between the second kinematic data set and 
the kinematic data set used in Section 2.2.1 is the speed of locomotion. In the 
second kinematic data set (shown in Figure 2.11) the swing phases are 0.15 s in 
duration, while the stance phase lasts 0.3 s, both of which are approximately 
one half the duration of the swing and stance phases of the kinematic data in 
Figure 2.5. Thus the cat from which the new data was collected was moving 
approximately twice as fast as the cat from which the first data was collected. 
This is readily apparent in the larger magnitudes of the angular accelerations 
of the second kinematic data set shown in Figure 2.14. The most noticeable 
difference is the large spike in the magnitude of the knee angular acceleration 
at 0.1 s which is approximately four times larger than the comparable magni
tude of the knee angular acceleration observed from the first kinematic data 
set, shown in Figure 2.7.
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Hip A dduction and A bduction

Dr. Misiaszek was gracious enough to provide five separate hip adduc
tion and abduction data sets. Dr. Misiaszek also uses a Peak Motus motion 
capture system for his data collection, similar to Dr. Pearson’s, with the ex
ception that Dr. Misiaszek’s system is set up to measure three-dimensional 
kinematic data. Reflective markers were placed on the head, the shoulders and 
paws of the forelimbs, as well as the hips and MTP joints of the cat’s hindlimbs.

Over the duration of a complete gait cycle the hip joint transitions through 
both adduction and abduction. 0 a represents the adduction and abduction 
angle as shown in Figure 2.15. Abduction of the hindlimb occurs during the 
swing phase as the hindlimb swings out from the body. During the stance 
phase the hip joint undergoes adduction wherein the hip moves out laterally 
over the paw, which is also shown in Figure 2.15.

Swing Stance

/  Surface
Hip Markers = •  

MTP Markers = o

Figure 2.15: Abduction and adduction of the hip joint during the swing and 
stance phases. Abduction is represented by a negative 0 a while 
adduction is represented by a positive 0 a. 0 a is measured relative 
to the negative Z axis.

After analyzing the five data sets provided by Dr. Misiaszek, the mean 
peak abduction at the hip joint during the swing phase was found to be 6° 
(0 a =  —6°), while mean peak adduction of the hip joint was found to be 4°
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(Oa =  4°) during the stance phase. In each of the data sets the transitions 
between the stance and swing phases occurred when ©a was approximately 
0°. Thus the hindlimb is very near perpendicular to the surface when lift
ing off or touching down on the surface. One of the trials obtained from Dr. 
Misiaszek for the adduction and abduction motion of the hindlimb is shown in 
Figure 2.16. A sine curve was fitted to the sample abduction and adduction 
data to highlight the repeating pattern of the sample data, which was a trend 
observed in all of the abduction and adduction angular data obtained from Dr. 
Misiaszek. The data set shown in Figure 2.16 differs slightly from the other 
adduction and abduction data sets since the magnitudes of the abduction and 
adduction are almost the same. In each of the other trials the peak magnitude 
of the abduction angles are slightly larger, by up to 4 degrees, than the peak 
magnitude of the adduction angles.
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Figure 2.16: Sample hip adduction and abduction angle data. A sine curve 
was fitted to the sample data to highlight the repeating pattern 
observed in the sample data.

Since the hip adduction and abduction data sets were obtained from cats 
walking at self selected speeds the length of each data set, as well as the mag
nitudes of the hip adduction and abduction angles between each of the data 
sets, varied from one another. In order to obtain a hip abduction and adduc
tion data set that matched the time interval of the second kinematic data set 
obtained from Dr. Pearson an approximate adduction and abduction data set, 
which will referred to as the ©a data set, was created based on the mean peak
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adduction and abduction angles. The durations of the swing and stance phases 
were calculated from the second set of GRF data obtained from Dr. Pearson. 
Ideally a single sine curve would be used for the approximation. However, as 
mentioned earlier the amplitudes of the hip adduction and abduction phases 
differed from one another, thus a single sine curve would not provide an ac
curate representation. Therefore a combination of sine and cosine curves were 
used to create an approximation of the adduction and abduction motion.

The different amplitudes of the sine and cosine curves used for the ap
proximated data set, created discontinuities at the transitions between the 
abduction and adduction phases when combined together to create a single 
data set. If the approximated data for 0 a was differentiated with the dis
continuities at the transitions between the adduction and abduction phases, 
very large and unrealistic changes in the magnitudes of the angular velocities 
and angular accelerations would be observed. To solve the problem of the 
discontinuities at the transition points between the swing and stance phases, a 
sixth order polynomial which was the lowest order polynomial that provided a 
reasonable fit to the data as observed by the author, was fitted to the approx
imated data set. The result of using the sixth order polynomial is a smooth, 
continuous data set for the approximated 0 a motion, the use of the polyno
mial also ensured that ©a and ©a, which are the angular velocities and angular 
accelerations respectively for the hip adduction and abduction motion, were 
smooth and continuous.

Admittedly the approximated data set for the abduction and adduction 
motion of the hip is somewhat idealized. As shown in Figure 2.16, the mag
nitudes of the hip adduction and abduction motion vary slightly from peak to 
peak. Also when increasing in magnitude the slope of the sample data appears 
to be slightly steeper than the slope of the sample data when the magnitude 
is decreasing.However this approach provides an acceptable approximation for 
this study. Figures 2.17, 2.18, and 2.19, show the angular data set, angular 
velocity data set, and the angular acceleration data set, respectively for the 
approximated adduction and abduction motion of the hindlimb.
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Figure 2.17: Approximated hip adduction and abduction angle, ©0. Adduc
tion of the hip is positive, while abduction of the hip is negative.
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Figure 2.18: Approximated hip out-of-plane angular velocity, 0 a.
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Figure 2.19: Approximated hip out-of-plane angular acceleration, 0 a.

2.2.3 Two-Dim ensional Ground Reaction Forces
Inspection of the raw force plate signals, shown in Figure 2.20, revealed a no
ticeable amount of noise in the signals. The source of the noise in the signals 
may have been caused by the force plate measuring vibrations in the building 
or the walkway itself. Additionally, there may have been some environmental 
electrical or magnetic interference with the analog force plate signals which is 
a common source of noise in analog signals. The noise in the raw force plate 
signals was removed by filtering the raw force plate signals with a digital, low 
pass, third-order Butterworth filter using a cutoff frequency of 15 Hz. A num
ber of different cutoff frequencies and filter orders were tried until the results of 
the filtering process appeared sufficiently smooth upon visual inspection. To 
ensure that the chosen cutoff frequency did not remove any higher frequency 
components of the force plate signals resulting in a loss of information from 
the force plate signal, a fast fourier transform of the force plate signal was 
performed. Upon inspection of the fast fourier transform it was determined 
that the majority of the power of the force plate signals occurred below 8 Hz, 
thus the chosen cutoff frequency should not significantly affect the results.
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Figure 2.20: Raw force plate signals. A single step for both the left front limb 
and the left hindlimb is shown. Sx is the force plate signal in the 
X-direction, while Sz is the force plate signal in the Z-direction.

A common problem encountered when filtering data is the occurrence of 
a phase shift, which is a translation of the filtered data along the time axis. 
To ensure that the force plate signals were not affected by a phase shift they 
were first filtered in the forward direction and then immediately filtered again 
in the reverse direction, with the same filter. Usually when data is filtered 
the filtering process begins with the initial value the data set and proceeds 
through until the end of the data set. Filtering in the reverse direction infers 
that the filtering process starts with the last value in the data set, and works 
backwards towards the first value. The result of the dual-direction filtering is 
zero-phase shift in the filtered data, as well as a doubling of the filter order 
[Winter (1979)]. Due to the dual direction filtering the filter order was doubled 
from a third-order butterworth filter, to a sixth-order Butterworth filter. The 
filtered force plate signals are shown plotted over top of the unfiltered signals 
in Figure 2.21.

After the filtering process was completed the force plate signals were con
verted from voltages to forces using calibration factors obtained from the force 
plate calibration of 0.6 N / V  and 1.3 N / V , for the X and Z directions respec
tively. The ground reaction force in the Z-direction (GRFz) was defined to be 
positive when aligned with the positive Z-axis of the global reference frame.
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Figure 2.21: Filtered and unfiltered force plate signals. Sx is the force plate 
signal in the X-direction, while Sz is the force plate signal in the 
Z-direction.

Similarly the ground reaction force in the X-direction (GRFx) was defined 
to be positive when aligned with the positive X-axis of the global reference 
frame. The GRF’s that were recorded contained data for both a forelimb and 
a hindlimb, as can be seen by the multiple peaks in force plate signal in the 
Z-direction (Sz) in Figure 2.21. Since only the hindlimb GRF data was of 
interest, the forelimb GRF data was removed.

The precise times at which touch-down and lift-off occurred, which are de
fined as the points at which hindlimb comes into contact, and loses contact 
with the surface, were determined through inspection of the GRFz data. Due 
to the noise in the force plate signal there was some fluctuation in the GRFz 
data about zero when the hindlimb was not in contact with the ground, even 
after filtering. The fluctuation in the force plate signals when there was no 
contact between the force plate and the cat, may be attributed to the force 
plate measuring vibration in the walkway, or noise in the signal. From a 
physical standpoint no GRF’s should be applied to the limb outside of the 
stance phase, since the limb is no longer in contact with the surface. Once the 
touch-down and lift-off times were determined all of the GRF data before the 
hindlimb touched down, and after the hindlimb lifted off, was set equal to zero.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.22 shows both GRFx and GRFz after processing. The rapid rise, 
plateau, and rapid fall in GRFz over the duration of the stance phase occurs 
since the hindlimb must momentarily support a portion of the cat’s body- 
weight. The positive value of GRFz indicates the force which the ground 
must apply to the cat’s paw in order to counteract the weight that is being 
supported by the paw. For this study GRFz will always be positive since 
a negative GRFx would indicate that there was some sort of adhesive force 
between the paw and the surface, which was not the case. Compared to the 
magnitude of GRFz, GRFx remains much smaller over the duration of the 
stance phase. W hat really distinguishes GRFx from GRFz is the change in 
direction in which GRFx is applied during the stance phase. Initially GRFx is 
negative, indicating a force that opposes the cat’s direction of motion, which 
can be viewed as a friction or braking force. If the friction force was not 
present the paw would slip forward during the initial contact with the ground. 
Part way through the stance phase GRFx changes signs and becomes positive 
for the remainder of the stance phase. The positive value of GRFx indicates 
a force that acts in the same direction as the motion of the cat, and can be 
thought of as a propulsive force.
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Figure 2.22: Two dimensional hindlimb ground reaction forces. GRFx is 
the ground reaction force in the X-direction, while GRFz is the 
ground reaction force in the Z-direction.
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2.2.4 Three-Dim ensional Ground Reaction Forces
The three-dimensional GRF data obtained from Dr. Pearson were processed 
using the same methods which were used for the two-dimensional GRF’s in 
Section 2.2.3, and are shown in Figure 2.23.
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Figure 2.23: Three dimensional hindlimb ground reaction forces. GRFx, 
GRFy, GRFz are the ground reaction forces in the X, Y, and 
Z directions respectively.

During the initial portion of the stance phase the three-dimensional GRFz 
undergoes a rapid rise in magnitude. Unlike the two-dimensional GRFz, a 
more pronounced peak can be observed in the three-dimensional GRFz during 
the initial portion of the stance phase, however this may be due to the faster 
speed of locomotion of the cat for which the three-dimensional GRF data was 
collected. A gradual drop in the magnitude of the three-dimensional GRFz oc
curs over the main portion of the stance phase followed by a rapid drop in the 
magnitude near the end of the stance phase. Like the two-dimensional GRFx, 
the three-dimensional GRFx acts as a braking force over the initial portion of 
the stance phase before switching to a propulsive force for the remainder of 
the stance phase, however the braking and propulsive portions of the three- 
dimensional GRFx are not as pronounced as is observed in the two-dimensional 
GRFx. The differences between the two-dimensional and three-dimensional 
GRFx and GRFz data sets occur mainly in the magnitudes and shapes of
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the force curves, however they both share the same underlying characteristics. 
The differences observed between the two-dimensional and three-dimensional 
GRF data sets can be attributed to variations in the gait, such as speed of 
locomotion, between the twro animals from which the GRF data was collected.

The third GRF is GRFy, and like GRFx and GRFz it is defined as being 
positive when aligned with the positive Y-axis of the global reference frame. 
As shown in Figure 2.23 GRFy gradually increases in magnitude over the ini
tial portion of the stance phase, it then plateaus and stays relatively constant 
over the mid-portion of the stance phase before gradually decreasing back to 
zero over the last part of the stance phase. GRFy remains positive over the 
duration of the stance phase. Intuitively this makes sense since during the 
stance phase the hip moves laterally out over the paw. The hip must then 
provide a torque which acts about the negative X-axis to prevent the hip from 
moving out too far in the lateral direction, thereby preventing the cat losing 
i t’s balance and falling over on it’s side. The result of the negative hip torque 
is that the paw pushes out laterally in the negative Y-direction, so the ground 
must supply a force acting in the positive Y-direction.

2.2.5 Lim itations of the Force P late M easurements
During contact with the ground the GRF’s are transferred through the portion 
of the paw that is in contact with the ground. The paw acts as a compliant 
platform that can change i t ’s shape in order to provide a stable base of support 
between the limb and the surface. Contact between the paw and the ground 
does not occur at a single point, but rather over number of points, thus there 
are a number of forces acting on the underside of the paw at any given instant 
during stance. At each instant during the stance phase the forces which act be
tween the paw and the surface can be summed to find a resultant GRF vector. 
The location on the paw at which this single GRF vector is applied is known 
as the center of pressure. The center of pressure is often used in gait analysis 
studies [Bobbert et al. (1992); Fowler et al. (1993); Huber and Dutoit (2004); 
Wu and Hitt (2004)], and is an important consideration for the development 
of ground contact models for both forward dynamics simulations and robotics 
[Bruneau and Ouezdou (1999)]. There are two relatively common methods 
which are used to measure the center of pressure which will be discussed.
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The first method involves using a grid of small force plates (or pressure 
sensors) instead of a single force plate. As the subject walks across the grid 
the forces (or pressure) applied to each part of the grid can be measured indi
vidually. The force distribution along the foot can then be summed for each 
discrete time step for which the data was collected, and then analyzed to find 
the center of pressure.

The second method involves the measurement of both the moments which 
are applied to the force plate and the location of the paw on the force plate, 
in addition to measuring the forces in the vertical and horizontal directions. 
Using the location of the foot on the force plate and the measured forces and 
moments applied to the force plate, the center of pressure for each discrete 
time step can be determined.

Both of the aforementioned techniques used to obtain the center of pres
sure information could not used for this study. A single force plate was used 
to measure the GRF’s, thereby ruling out the first method. Neither the mo
ments acting on the force plate, nor the location of the paw on the force plate 
were recorded which then ruled out the second method. Therefore no center 
of pressure information was available for this study.
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Chapter 3

Two-Dim ensional Inverse 
D ynam ics M odel

When a system of rigid bodies is subject to a motion, the internal forces and 
moments which act upon the connections of the system during the motion 
are often desired. If the motion, the physical properties of the bodies, and 
the external forces which act upon the system are known, then the internal 
forces and moments can be calculated. The process of calculating the inter
nal moments and forces is known as inverse dynamics and is often used in 
gait analysis studies. The direct measurement of the torques and the reaction 
forces which occur within the limbs is generally not a feasible option for most 
investigations. The cost, the time required, or the invasive nature of the tech
niques used to directly measure the moments and forces in a limb frequently 
prevent the implementation of direct measurement technique.

The application of inverse dynamics to the study of animal locomotion is 
performed by creating models with which to simulate the motion. The model 
itself may encompass the whole animal [Herr and McMahon (2000)], or may 
focus only on a single limb [Manter (1938); Hoy and Zernicke (1985); Fowler 
et al. (1993)]. Once a suitable model has been created, the locomotion of 
the animal is studied and the kinematics of the body (or bodies) of interest 
are determined. Should any external forces act upon the body during the 
locomotion, the magnitude, direction, and time that the forces occur must 
be measured as well. After the kinematic and force data are collected, the 
equations of motion governing the chosen model can then be used to solve for 
the unknown internal forces and moments. The internal moments and forces 
could then be related to muscle forces if so required.
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This chapter outlines the methodology pertaining to the creation of the 
two-dimensional hindlimb model used to investigate the joint torques which 
occur at the hip, knee, and ankle joints for a typical feline hindlimb. The joint 
torques estimated by the model, and the sensitivity of the estimated joint 
torques to variations in the segmental parameters of the model, are discussed. 
The segmental parameters referred to are the centroidal moments of inertia, 
the masses, and the center of mass locations for each segment of the hindlimb 
model. The sensitivity analysis of the joint torques to variations in the seg
mental parameters of the model is included in order to clarify which of the 
segmental parameters are the most influential with respect to their effect on 
the estimated joint torques. Should the estimated joint torques prove to be 
sensitive to any of the segmental parameters, the accuracy of the estimated 
joint torques could be improved in future works by finding more accurate meth
ods of measuring or obtaining the segmental parameters, if so required. An 
investigation into the joint torques estimated by the two-dimensional hindlimb 
model, with and without a rigid paw, is also included.

3.1 A natom ical M odeling
The two-dimensional hindlimb model is based upon the skeletal anatomy of a 
typical feline hindlimb, as shown in Figure 3.1. Excluding the paw, the feline 
hindlimb consists of three main segments: the thigh segment between the hip 
and knee joints, the shank segment between the knee and ankle joints, and the 
tarsal segment between the ankle and MTP joints.

When creating the two-dimensional hindlimb model, the thigh, shank, and 
tarsal segments of the hindlimb were modeled as rigid uniform slender rods. 
The actual geometry and mass distribution of a feline hindlimb is much more 
complex due to the non-uniform distribution of soft tissues along the limb, 
however the validity of the uniform slender rod assumption will be addressed 
in a subsequent analysis (see Section 3.5.4). Modeling the paw for the two- 
dimensional hindlimb model proved to be much more difficult since the struc
ture of the paw is is quite different when compared to the structure of rest of 
the hindlimb.

A typical feline hindlimb paw is comprised of four digits, where each digit 
contains a number of individual phalanges and their associated interphalangeal 
joints. Due to the much smaller size of the digits and the number of phalangeal 
bones in each digit, the structure of the paw allows for far more flexibility
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Figure 3.1: Typical feline hindlimb skeletal anatomy. The paw, which consists 
of the individual phalanges bones and the interphalangeal joints, 
is shown inside the broken circle.

when compared to the rigidity of the rest of the hindlimb segments. Kuhtz- 
Buschbeck et al. (1994) performed an X-ray study of the feline hindlimb for 
typical cats walking on a treadmill. Figure 1 from Kuhtz-Buschbeck et al. 
(1994) shows a sequence of X-ray frames taken during the transition between 
the swing and stance phase for a feline hindlimb. During the latter portion of 
the swing phase the digits of the paw extend and spread out in preparation 
for contact with the ground. Upon initiation of the stance phase the digits 
then contract, pulling in closer to the rest of the paw, providing a more solid 
base of support. Figure 4 from Kuhtz-Buschbeck et al. (1994) shows the tran
sition between stance to swing phase. Here the MTP joint gradually lifts off 
of the ground and at the very end of the stance phase the hindlimb touches 
the ground with the tips of the digits. Along with the movement of the pha
langes, there is also some small amount of deformation which occurs during 
ground contact due to the compliance of the soft tissues in the paw. These 
soft tissues include a plantar pad and four digital paw pads which are located 
on the underside of the paw. The events that have just been discussed for the 
contact between the paw and a surface are depicted in Figure 3.2.
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Figure 3.2: Depiction of the paw: A) Immediately prior to contact with the 
ground. B) Just after initial contact with the ground. C) Near the 
end of the stance phase. The direction of locomotion is from left 
to right.

The trajectory of the MTP joint, obtained from the two-dimensional kine
matic data during the stance phase, is shown in Figure 3.3. When the paw 
initially comes into contact with the surface the MTP joint is located at a 
height of 1.6 cm above the ground and at an X coordinate location of 16.0 cm. 
Midway through the stance phase the MTP joint descends to the minimum of 
height 0.95 cm while travelling forward to a X coordinate location of 17.6 cm. 
At lift off the MTP joint is located at a height of 2.7 cm and a X coordinate 
location of 19.2 cm. The distance travelled by the MTP joint in both the X 
and Z directions during the second half of the stance phase is larger than the 
distance travelled during the first half of the stance phase due to the rotation 
of the paw about its area of contact, as shown by event C in Figure 3.2.

Due to the compliance of the soft tissues, and the lifting of the rear portion 
of the paw over the latter portion of the stance phase, the GRF’s do not act 
at a single location on the paw over the duration of the stance phase. Fowler 
et al. (1993) measured the changes in the center of pressure for the hindlimb 
paws of three separate cats walking along a level surface. The results of 26 
trials showed that from the point of initial contact to the end of the stance 
phase, the center of pressure moved a mean distance of 1.2 cm, with a standard 
deviation of 0.7 cm, in the same direction in which the cat was walking.

Perhaps the most straight forward approach to implementing the paw into 
the two-dimensional hindlimb model for an inverse dynamics investigation 
would be to treat the paw as a single rigid body and use the center of pressure 
information to apply the GRF’s at the appropriate locations on the paw. This 
approach was taken by both Fowler et al. (1993) and Perell et al. (1993). This 
approach does not portray the actual dynamics of the paw in the sense that it
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Figure 3.3: Trajectory of the MTP joint during the stance phase (0.23 s to 
0.92 s).

ignores the reaction forces and moments which occur within the paw itself. To 
create a inverse dynamics model of the paw to investigate the reaction forces 
and moments that occur internal to the paw would require kinematic data 
for the phalanges. As mentioned in Section 2.1.1 it is difficult to acquire the 
required kinematic data with a video based motion capture system, due to the 
physical size of the phalanges. Additionally the precise location to which the 
GRF’s would be applied to the phalanges would be quite difficult to ascertain 
since the GRF’s are transmitted to the phalanges through the soft tissues on 
the underside of the paw. Thus, an approximation must be made to simplify 
the modeling process. Here the rigid body paw and the center of pressure 
information provides such an approximation.

For this study a decision was made to exclude the paw from the two- 
dimensional hindlimb model because any paw model that might be constructed 
would require the kinematic data for the motion of the phalanges, as well as 
the center of pressure information, both of which were not available. The 
MTP joint was chosen as the end of the two-dimensional hindlimb model. Un
fortunately by excluding the paw from the hindlimb model the joint torques 
estimated by the hindlimb model may not accurately portray the joint torques 
which actually occur within the feline hindlimb. An investigation into the ef
fects on the estimated joint torques due to the inclusion of a rigid body paw 
is included in Section 3.6.
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While the chosen two-dimensional hindlimb model may not provide an 
accurate portrayal of the joint torques which occur in the feline hindlimb, it 
can provide an approximation of what the joint torques may look like, and can 
be used to investigate how the joint torques are affected by variations in the 
segmental properties of the hindlimb.

3.2 H indlim b M odel
Mabuchi and Fujie (1996) measured the dynamic friction coefficients for the 
stifle (knee) joints of mature Japanese white rabbits and found the dynamic 
friction coefficient to have a mean value of 0.008 with a standard deviation of 
±0.002. They compared their findings to those of an earlier study for an intact 
canine hip in which the dynamic coefficient of friction for the hip joint was 
found to be 0.007 with a standard deviation of ±0.004. These findings show 
that while there is a small amount of friction between limb joints, the amount 
of friction that exists is very small. Since the contribution of friction to the 
joint torques should be negligible when compared to the total magnitude of 
the joint torques, the hip, knee, and ankle joints of the hindlimb model were 
modeled as frictionless revolute joints.

With the exclusion of the paw the two-dimensional hindlimb was modeled 
as a three-link, three-degree of freedom, rigid body system, as shown in Fig
ure 3.4. It was assumed that the relatively constant motion of the hip in the 
sagittal plane (see Figure 2.3) would not be large enough to cause any signifi
cant effects in the estimated joint torques. Thus, the position of the hip was 
held at a stationary location for the two-dimensional hindlimb model. The 
orientation of each limb segment of the two-dimensional hindlimb model is 
specified by a single joint angle associated with each individual segment. 0 i ,  
0 2, and 0 3 are used to specify the orientation of the thigh, shank and tarsal 
segments respectively, as shown in Figure 3.4. The two-dimensional hindlimb 
model shown in Figure 3.4 is oriented such that all of the joint angles are 
positive.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hip
Joint

Knee
Joint

Ankle
Joint

Figure 3.4: Two-Dimensional hindlimb model for a typical feline hindlimb.
Note that the model is not shown to scale.

The free body diagrams for each of the limb segments of the two-dimensional 
model is shown in Figure 3.5. Both ground reaction forces, GRFx and GRFz, 
are applied to the end of the tarsals (which corresponds to the location of the 
MTP joint for the actual feline hindlimb). Both GRF’s are defined as being 
positive when the directions in which they act are aligned with the positive 
axes of the global reference frame. The moments ThiP, Tknee> and Tankie, shown 
in Figure 3.5 are referred to as the joint torques. The hindlimb model was 
defined such that each joint torque corresponds to a specific limb segment. 
For example a positive hip torque implies that a clockwise torque would act 
upon the thigh at the hip joint. Similarly a positive knee torque implies that 
the shank would experience a clockwise torque, while a torque of equal mag
nitude would act in the opposite direction upon the thigh segment as shown 
in Figure 3.6
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Figure 3.5: Free body diagram for the two-dimensional model. ThiP, Tknee, and 
Tankie are the joint torques. F\, F2 , ..., Fe are the reaction forces 
which occur between the rigid bodies.
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Figure 3.6: Definition of joint torques. Positive (negative) joint torques are 
shown with solid (dashed) circular arrows.

The length of the limb segments could not be found directly from the kine
matic data due to the movement of the markers affixed to the skin of the 
hindlimb. In order to compensate for the variation in the lengths observed in 
the kinematic data, the mean length of each limb segment was calculated from 
the kinematic data and used as the actual limb segment length, as discussed 
in Chapter 2 , Section 2.1.1.

Hoy and Zernicke (1985) measured the segmental limb parameters of nine 
individual cats and presented empirical equations with which the individual 
segmental masses and the moment of inertia about the center of mass, for a 
cat’s limb segments, can be predicted. Table 1 in Hoy and Zernicke (1985) also 
listed the individual segment masses as a percentage of the total cat mass, the 
center of mass location as a percentage of the segment length, and the moment 
of inertia of each segment as measured from nine separate cats. As mentioned 
in Section 2.1.1 the length of each hindlimb segment was estimated from the 
positional data. The mass of the cat for which the two-dimensional kinematic
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and GRF data was collected was not provided. Since a total cat mass was re
quired in order to use the empirical equations presented by Hoy and Zernicke 
(1985) to predict the segmental masses for the hindlimb model, a mass of 4.0 
kg for the cat was assumed.

While the masses for the hindlimb segments were predicted using the em
pirical equations presented by Hoy and Zernicke (1985), the center of mass 
locations (L1; L2, and L 3), and the centroidal moments of inertia, or CMI’s, 
(Ia, lb, and Ic) for the two-dimensional hindlimb model were calculated based 
on the hindlimb segments being modeled as uniform slender rods. If the val
ues predicted by Hoy and Zernicke (1985) had been used for the center of 
mass locations and CMI’s, the variation of the segmental parameters of each 
hindlimb segment for the sensitivity analysis would have been made quite dif
ficult. The moment of inertia of each hindlimb segment is dependant on the 
mass, the center of mass location, and the geometry of each hindlimb segment. 
Since Hoy and Zernicke (1985) did not provide any geometries with which to 
model each segment of the hindlimb, the change in the moment of inertia for 
each hindlimb segment could not be calculated when the mass or location of 
the center of mass for each hindlimb segment was varied. By modeling the 
hindlimb segments as uniform slender rods this problem is avoided, allowing 
for the variation of each of the segmental parameters of the two-dimensional 
hindlimb model.

Not surprisingly the values for the segmental centers of mass and CMI’s 
predicted by Hoy and Zernicke (1985) conflict with the uniform slender rod 
assumption, since the slender rods do not account for the more complex ge
ometry of a feline hindlimb. Table 3.1 shows the values for the CMI’s of each 
limb segment, as predicted the empirical equations of Hoy and Zernicke (1985), 
along with those values used for the model based upon the homogenous solid 
slender rod assumption. Also included in Table 3.1 are measured center of 
mass locations for each of the hindlimb segments [Hoy and Zernicke (1985)], 
and the center of mass locations used based on the slender rod assumption. 
The location of the mass center for each segment is defined as a percentage 
of the segment length, as measured from the proximal joint of the segment. 
The proximal joint is defined as being the joint which is nearest the point of 
attachment or origin. Thus for the thigh, shank, and tarsal segments the hip 
joint, the knee joint, and the ankle joint are the respective proximal joints. Of 
the three hindlimb segments the center of mass location of the shank, which 
is 42.3% of the length of the shank segment as measured from the knee joint, 
is the furthest from the center of mass locations based upon the homogenous

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



slender rod geometry. The suitability of the choice of slender rods for model
ing the hindlimb segments will be addressed in the sensitivity analysis of the 
segmental limb parameters. All of the segmental parameters and their values, 
for the limb segments of the two-dimensional hindlimb model, are shown in 
Table 3.2.

Table 3.1: Centroidal moments of inertia and center of mass locations from 
Hoy and Zernicke (1985) and the uniform slender rod assumption.

Limb Predicted Slender Measured Slender Rod
Segment CMI Rod CMI Center of Center of

(kg-m2) {kg-m2) Mass (%)f Mass (%)

Thigh 2.171 x 10“4 1.204 x l 0 “4 44.3 (6.33)* 50.0
Shank 1.031 xlO “4 0.667 x l 0 “4 42.3 (2.39) 50.0
Tarsals 0.093 x l 0 “4 0.076 x l 0 “4 48.6 (6.04) 50.0

CMI =  Centroidal Moment of Inertia, 
f Percent of segment length from proximal joint. 
* Mean (standard deviation)

Table 3.2: Table of two-dimensional hindlimb model segment parameters.

Segment Parameter Description Value Units

h CMI of the thigh 1.204 x lO -4 kg-m2
h CMI of the shank 0.667 x l 0 “4 kg-m2
Ic CMI of the tarsals 0.076 x lO -4 kg-m2

Ma Mass of limb the thigh 204 g
M„ Mass of the shank 57 g
Mc Mass of the tarsals 23 g
La Length of limb the thigh 8.48 cm
Lb Length of the shank 9.11 cm
Lc Length of the tarsals 5.83 cm

Li Center of mass location Lah cm
l 2 Center of mass location Lb/2 cm
l 3 Center of mass location Lch cm
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3.3 K an e’s E quations
Kane and Levinson (1988) outline a method of formulating dynamical equa
tions of motion, which are often referred to as Kane’s equations of motion. 
Kane’s method has a number of advantages over other methods formulating 
equations of motion, such as Newton’s method or Lagrange’s method. In gen
eral the equations of motion obtained from Kane’s method are less complex 
when compared to the equations of motion obtained from either Newton’s or 
Lagrange’s method. Kane’s method automatically eliminates non-contributing 
forces and moments without requiring the use of algebraic means, as is the case 
when employing Newton’s equations of motion, which simplifies the equations 
of motion. Additionally Kane’s method is operationally straightforward and 
the dynamic equations provided are computationally efficient, thus suited to 
both forward and inverse dynamics simulations.

Once the segmental parameters for the two-dimensional hindlimb model 
were defined, Autolev was used to find Kane’s dynamical equations of motion 
for the model. Autolev is a symbolic manipulator that automatically derives 
Kane’s dynamical equations of motion. The Autolev code used to generate 
Kane’s equations of motion can be found in Appendix B. Kane’s equations of 
motion for the two dimensional inverse dynamics model are:

Thip =  Tknee T La(GRFx cos0i — GHFZ sinQi) +  g s in 0 i(L jMa+ L aMb + LaMc) 

+L a(L2M(,-l-Z/6Mc)sin(0i —0 2)© 2  T L3LaMcsin(@i —0 3 ) 0 3  

+ (Ia +  Ma L\ +  MbL2a+ McL2a) 0 1 +  La(L2M6 -|-L;,Mc)cos(0i —0 2) 0 2  

+ L 3LaMc cos(@i — ©3)@ 3 (3.1)

Tfcnee =  Tankie +  Lb(GRFx cos©2 — GRFZ sin@2) +  gsin©2(L2Mb+LbMc) 
—La(L2Mb+Li)Mc)sm(Qi — 02)Qi +  L3LbMc sin(02 —©3)6)3 
+La(L2Mb+LbMc)cos(Qi — ©2)©i +  {h+MbL\ + AfcI /^)© 2

+L3V tfccos(0 2 - © 3)0 3  (3-2)

Tankie =  + L C(GRFX cos© 3 ~GRFZ sin©3) -  LzLaM c s in (© i-0 3)©?
—L$LbMc sin(© 2  — 0 3 )0 2 +  gLzMcsinQ3 +  (Ic+ M CL\)Q^ 
+ L 3L bM c cos(02 — ©3)© 2  +  L 3L aM c cos(©i — ©3)©i (3-3)
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After Kane’s equations were generated using Autolev, they were imple
mented into a MATLAB® program created to determine the three joint torques 
when given the kinematic and GRF data as the inputs. Newton’s equations of 
motion for the two-dimensional inverse dynamics model were also derived and 
implemented into a MATLAB® program so that they could be used to solve 
for the three joint torques in a similar fashion. The joint torques calculated 
from Newton’s equations of motion were then used as a check on those found 
from Kane’s equations.

3.4 T w o-D im ensional Joint Torques
When discussing joint torques the terms flexor and extensor are often used. A 
flexor torque refers to any torque which flexes the limb, bringing the limb closer 
to the body, while an extensor torque is just the opposite of a flexor torque, 
as it extends the leg away from the body. For the hip and ankle joints an 
extensor torque represents a positive torque, while a flexor torque represents 
a negative torque. The knee joint on the other hand is just the opposite. A 
flexor knee torque represents a positive torque, while an extensor knee torque 
represents a negative torque.

The estimated joint torques calculated using the two-dimensional hindlimb 
model are shown in Figure 3.7. The two vertical lines which run through the 
figure indicate the transitions between the swing and stance gait phases. The 
first transition occurs at 0.23 s when the paw comes into contact with the 
ground, as the limb exits the first swing phase and enters the stance phase. 
The stance phase continues until 0.92 s at which point the paw loses contact 
with the surface, and the limb enters into a second swing phase. Figure 3.8 
has been included to aid in the discussion of the joint torques by providing a 
visual representation of some of the positions of the hindlimb during the swing 
and stance phases.
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Figure 3.7: Joint torques estimated from the two-dimensional inverse dynam
ics hindlimb model. The two vertical lines indicate the transitions 
between the swing and stance gait phases, while the small vertical 
bars, numbered 1 — 1 0 , represent the times for each limb position 
shown in Figure 3.8
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Figure 3.8: Selected hindlimb positions corresponding to Figure 3.7. Positions 
3 and 8  have been darkened as they show the beginning and end 
of the stance phase.
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During the swing phases the estimated joint torques are much smaller in 
comparison to the joint torques which occur during the stance phase. An 
explanation for the difference in the size of the estimated joint torques can 
be found if one considers the forces which act upon the hindlimb during the 
swing and stance phases. The only forces which act upon the hindlimb that 
contribute to the joint torques during the swing phases are the gravitational 
forces acting on each hindlimb segment, and the forces which arise due to the 
inertia of each of the hindlimb segments. The masses of each limb segment, 
which are large contributors to the magnitude of the inertial and gravitational 
forces, are relatively small and thus the joint torques which occur during the 
swing phases are also small. During the stance phase the hindlimb must sup
port a portion of the body weight of the cat, which is much larger than the 
individual masses of the hindlimb segments, and aid in locomotion by provid
ing propulsion in addition to the inertial and gravitational forces. Therefore 
much larger forces can be expected during the stance phase.

During the initial portion of the first swing phase (position 1) all three joint 
torques act as flexors, where the hip torque swings the leg forward, while the 
knee and ankle torques lift the shank and tarsals clear of the ground. During 
the latter part of the first swing phase (position 2 ) both the hip and ankle 
torques become positive as the hip torque acts as a extensor torque to slow 
the forward progression of the leg, and the ankle torque begins extending the 
tarsals in preparation for the stance phase. The knee torque remains a flexor 
torque throughout the latter part of the swing phase, keeping the shank from 
extending, and maintaining the orientation of the lower limb.

At the onset of the stance phase (positions 3 — 5) the knee and ankle torques 
undergo a marked change in magnitude as the hindlimb must now support a 
portion of the cat’s body weight. Both the knee and ankle torques act as exten
sor torques in order to keep the leg from collapsing. The hip torque, however, 
does not see the same change in magnitude as the knee or ankle torques. At 
the onset of the stance phase the magnitude of the hip torque increases as it 
helps to propel the cat forward, then for the majority of the stance phase (po
sitions 5 — 8 ) the hip torque decreases and becomes a flexor torque (a negative 
hip torque) in order to prevent the hip from dropping while the other hindlimb 
swings forward. During the latter stage of the stance phase (positions 7 and 
8 ) all three joint torques undergo a rapid decrease in magnitude as the other 
hindlimb comes into contact with the ground. This allows the hindlimb being 
studied to unload and prepare for the next swing phase.
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The initial portion of the second swing phase is quite similar to that of the 
first swing phase, but the latter portion of the second swing phase does differ 
from the first swing phase. During the latter portion of the second swing phase 
(position 1 0 ) the hip torque does not reach the same negative magnitude as in 
the first swing phase, nor does it change signs to become positive, switching 
from a flexor to an extensor torque. This could be explained by the decrease in 
speed of the limb over the second swing phase, which can be seen in Figure 2.6. 
Many factors could contribute to this reduction in speed of the limb, though 
the most likely would be that the cat slowed its forward progression speed.

3.4.1 Static and Dynam ic Contributions to the Esti
m ated Joint Torques

The static and dynamic contributions to the estimated joint torques can be 
separated from one another. If all dynamic terms in the equations of motion, 
such as 0 j, 0 2, ©3 , ©i, ©2 , and ©3 , are set equal to zero the static contri
butions to the estimated joint torques can be brought to light. These will 
be referred to as the static joint torques. The static joint torques can then 
be subtracted from the original joint torques to obtain the dynamic contri
butions to the estimated joint torques, or dynamic joint torques. The static 
joint torques are shown in Figure 3.9. As can be observed in Figure 3.9 the 
static joint torques are a contributor to the joint torques in the swing phases 
and a major contributor to the stance phase. This is not surprising during 
the stance phase when considering the relatively slow motion of the hindlimb, 
when compared to the swing phase, and the application of the GRF’s.

Figure 3.10 shows the dynamic joint torques. While the dynamic joint 
torques do play a significant role during the swing phase, they are almost neg
ligible when compared to the magnitude of the static joint torques between 
0.35 s and 0.8 s. Should the speed of locomotion increase, the contribution of 
the dynamic joint torques should remain very small in comparison to the static 
joint torques throughout the majority of the stance phase. While the duration 
of the stance phase will decrease as the locomotion speed increases (Goslow 
et al. (1973)), and thus the speed at which the hindlimb moves increases, larger 
GRF’s can be expected as well thereby increasing the magnitudes of the static 
joint torques.
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Figure 3.9: Static contributions to the estimated joint torques.
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Figure 3.10: Dynamic contributions to the estimated joint torques.
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Researchers sometimes ignore the contributions of the dynamic joint torques 
altogether during the stance phase (Fowler et al. (1993); Perell et al. (1993); 
Shen and Poppele (1995); Trank and Smith (1996)), however care should be 
taken to not rule out the effects of the dynamic joint torques during the transi
tions between the swing and stance phases. As shown in Figure 3.10 the peak 
magnitudes of the dynamic joint torques occur during the transition from the 
swing phase to the stance phase. Depending on the speed of locomotion be
ing studied the contributions of the dynamic torques may become significant 
during these transitions between swing and stance.

3.4.2 Fixed Hip Assum ption
An assumption that was made when defining the two-dimensional hindlimb 
model wras that the hip could remain at a stationary location. In reality, how
ever, the hip joint moves. The two-dimensional hindlimb model was modified 
such that the motion of the hip could be included, allowing the effect of the hip 
motion on the estimated joint torques to be investigated. The hip positions, 
velocities, and accelerations were calculated from the positional data similarly 
to the angular kinematic data. Figures 3.11, 3.12, and 3.13 show the joint 
torques calculated when the hip joint is held at a fixed location (solid lines) 
and when the hip joint of the model follows the actual hip motion (plotted 
with dots). The only differences observed in the three joint torques occurred 
in the hip joint torque, the majority of which occur during the swing phases. 
Since there was no available data on the three-dimensional motion of the hip, 
for use in the three-dimensional hindlimb model, the fixed hip position was 
used for both the two-dimensional and three-dimensional hindlimb models to 
maintain a level of consistency among them. Thus, results obtained with the 
hip motion included in the model will vary slightly from the results determined 
in this study.
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Figure 3.11: Hip joint torques estimated with the hip fixed and with the hip 
free to follow the actual hip motion.
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Figure 3.12: Knee joint torques estimated with the hip fixed and with the hip 
free to follow the actual hip motion.
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Figure 3.13: Ankle joint torques estimated with the hip fixed and with the hip 
free to follow the actual hip motion.

3.5 Joint Torque S en sitiv ity  to  V ariations in  
Segm ent Param eters

The sensitivity of the joint torques to changes in each of Ia, I b, I c, M a, M b, 
Mc, Li,  Z/2 , and L3, were investigated in order to determine the influence each 
segmental parameter has on the estimated joint torques. All nine of the pre
viously mentioned limb segment parameters were individually varied in 1 0 % 
increments, from —50% to +50% of the their nominal values. Using the mass 
of the thigh (Ma) as an example, the minimum and maximum values used for 
the variations would be 50% and 150% of the nominal value of Ma, as listed in 
Table 3.2. Using the same kinematic and GRF data, the resulting joint torques 
were calculated from the two-dimensional hindlimb model for each variation 
of the segmental parameters. Since all of the maximum deviations observed 
occurred for the ±50% variations in each of the segmental parameters, the 
discussion will focus on the ±50% variations. The maximum deviations ob
served in the hip, knee, and ankle torques, as percentages of the magnitude 
of the peak torque for each joint, are shown in Table 3.4 for each one of the 
segmental parameters varied.
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Table 3.3: Maximum deviations observed in the estimated joint torques during 
the swing phases, as a percentage of the peak joint torques during 
each swing phase, due to ±50% variations of the hindlimb segmental 
parameters.

Segmental Maximum Hip Maximum Knee Maximum Ankle
Parameter Torque Deviations Torque Deviations Torque Deviations

Varied (%) (%) (%)
Swing 1 Swing 2 Swing 1 Swing 2 Swing 1 Swing 2

la 2.0 2.5 § § § §
h 4.5 6.6 6.2 6.2 § §
Ic 0.4 0.6 0.6 0.6 5.8 6.9

M a 16.8 33.7 § § § §
M b 16.8 18.7 25.5 31.3 § §
M c 19.6 15.2 21.4 17.3 48.0 52.2

h i 17.1 31.0 § § § §
l 2 39.2 45.8 41.3 40.0 § §
u 10.3 13.2 9.0 7.4 66.4 60.2

Swing 1 =  l s< Swing Phase 
Swing 2 =  2nd Swing Phase 
§ =  No Change

Table 3.4: Maximum deviations observed in the estimated joint torques during 
the stance phase, as a percentage of the peak joint torques during 
the stance phase, due to ±50% variations of the hindlimb segmental 
parameters.

Segmental Maximum Hip Maximum Knee Maximum Ankle
Parameter Torque Deviations Torque Deviations Torque Deviations

Varied (%) (%) (%)

h 1.0 § §
h 1.4 0.8 §
Ic 0.2 0.1 0.1

Ma 10.7 § §
Mb 7.7 6.9 §
Mc 8.2 4.1 0.9

h i 10.3 § §
h 2 20.2 9.2 §
h 3 3.6 1.2 0.9

= No Change
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Before beginning it should be noted that only the joint torques of the joints 
located above the hindlimb segment which had its segmental properties varied, 
were affected by the variation. This occurs due to the interrelation between 
the hip, knee, and ankle torques in the equations of motion. The equation of 
motion used to calculate the hip torque depends on the knee torque, which in 
turn depends upon the ankle torque. Any changes in the segmental parameters 
of the tarsals (7C, Mc, or Lz) will affect the equation of motion used to calculate 
the ankle torque, causing a change in the ankle torque, and thus the knee and 
hip torques as well. A change in one of the segmental parameters of the shank 
(/(,, Mb, or L2) portion of the hindlimb model will affect the knee torque 
and the hip torque, however the ankle torque will remain unchanged as the 
equation of motion used to solve for the ankle torque is not affected by any 
variation in the properties of the shank.

3.5.1 Effect of Centroidal M oment of Inertia Variations
The first segmental parameters investigated were the CMI’s of each hindlimb 
segment. As shown in Table 3.4, the largest deviation observed in the three 
joint torques was a 2.5% deviation in the hip torque during the initial swing 
phase caused by a ±50% variation in the centroidal moment of inertia of 
the shank (Ib). Figure 3.14 shows the estimated hip torques for the ±50% 
variations in Ib in addition to the original hip torque based on the uniform 
slender rod assumption. For comparison purposes each of the three original 
joint torques estimated from the two-dimensional hindlimb model, which were 
based upon the uniform slender rod assumption, will be referred to as the con
trol torques. The largest deviations which occur due to the ±50% variations in 
Ib take place during the swing phases but are difficult to observe in Figure 3.14.

While the deviations in the joint torques caused by variations in Ib were 
quite small, variations in Ia and Ic had even less of an effect. The variations 
in Ia caused peak deviations of 1 .1% or less in the hip joint torque throughout 
all three phases of the step cycle. Variations in Ic caused peak deviations of 
0.2% or less in each of the three gait phases. The extremely small deviations 
in the joint torques caused by the variations in Ic can be attributed to the 
small value of Ic, as it is two orders of magnitude smaller than both Ia and Ib-

A linear relationship exists between the deviations observed in the joint 
torques and the variations of each of the segmental inertia properties. For 
example, if the amount that Ib was varied by was reduced by a factor of 5, 
from 50% to 10%, all of the deviations that occur in the joint torques due to

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EZ
f

- 0 .10

Figure 3.14: Hip joint torques estimated with ±50% variations in Ib.

the variation in Ib would also be reduced by a factor of 5. Therefore the peak 
deviation of 2.5%, which was observed when the nominal value of Ib was varied 
by 50%, would decrease to 0.5% if the amount the nominal value of Ib was 
varied by was decreased to was 10% instead of 50%. The linear relationship 
between the deviations in the joint torques and the variations in the segmen
tal inertia parameters can be inferred from Equations (3.1), (3.2), and (3.3). 
Since all of the CMI’s (Ia, h ,  and I c) are first order variables, the deviations 
in the joint torques are a direct result of the variation in that single parameter.

In addition to the linear relationship between the deviations in the joint 
torques and the variations in the segmental inertia properties, there is symme
try in the deviations about the control torque caused by both the positive and 
negative variations in the inertia properties. A positive or negative variation of 
a fixed magnitude in the value of one of I a, Ib, or Ic will result in deviations of 
identical magnitudes, but with opposite signs, about the control torque. Due 
to this symmetry about the control joint torques, the magnitudes of the peak 
deviations observed are identical for both positive and negative variations of 
the same magnitude, in the CMI values.

3.5.2 Effect of Segmental M ass Variations
Figures 3.15 - 3.17 illustrate the deviations which occur in the hip joint torque 
for the ±50% variations in Ma, Mb, and Mc, respectively. Over the first swing 
phase the variations in Ala, Mb, and M c all cause similar deviations in the hip
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torque. However, for the second swing phase variations M a cause the largest 
deviations in the hip torque. During the stance phase the deviations which 
were observed are also quite similar in magnitude.
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Figure 3.15: Hip joint torques estimated with ±50% variations in M a.
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Figure 3.16: Hip joint torques estimated with ±50% variations in M^.
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Figure 3.17: Hip joint torques estimated with ±50% variations in Mc.

Figures 3.18 and 3.19 illustrate the deviations which occur in the knee 
joint torque for the ±50% variations in Mb and Mc. The deviations in both 
the swing and stance phases, caused by the variations in Mb and Mc, are quite 
similar in shape and location.
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Figure 3.18: Knee joint torques estimated with ±50% variations in Mb.
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Figure 3.19: Knee joint torques estimated with ±50% variations in Mc.

Figure 3.20 illustrates the deviations which occur in the ankle joint torque 
for the ±50% variation in M c. The variations in Mc have a significant effect 
on the ankle joint torques during the swing phases, however during the stance 
phase variations in Mc are negligible.
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Figure 3.20: Ankle joint torques estimated with ±50% variations in Mc.
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Similar to the CMI’s there is also a linear relationship between the varia
tions in the masses and the deviations which occur in each of the joint torques, 
as well as symmetry in the deviations about the control torque. Again these 
relationships can also be inferred from the Equations 3.1, 3.2, and 3.3, for the 
same reasons given previously for the CMI terms. Interestingly the variations 
in relatively small Mc caused deviations in the knee and ankle joint torques, 
in both the swing and stance phases, that were very close in magnitude to the 
deviations caused by M a and M&.

3.5.3 Effect of Variations in Center of Mass Locations
The sensitivity of the estimated joint torques to the positions of the center of 
mass of each limb segment were investigated. For the center of mass locations, 
a positive variation implies that one of L \ ,L 2, or L3 has increased, moving 
the center of mass down the limb segment, farther away from the body. Al
ternately a negative variation implies that one of L\, L2, or L 3 has decreased, 
moving the center of mass upwards along the limb, towards the body.

Figures 3.21 to 3.26 show the deviations which occur in the hip, knee, and 
ankle torques for ±50% variations in each of L i ,L 2, and L3. During the stance 
phase the ±50% variation L2, the location of the center of mass for the shank 
segment, caused the largest deviations in the estimated joint torques. The 
±50% variation in L 2 caused a deviation in the hip joint torque that was twice 
as large as the deviation caused by the ±50% variation in Li, where the mass 
of the thigh was «  4 times larger than the mass of the shank segment. The 
variations in L3 had a modest effect on all three joint torques when compared 
the deviations caused by L\ and L2 during the stance phase. This may be 
attributed to the smaller length and much smaller mass of the tarsal segment 
of the hindlimb when compared to the thigh and shank segments.

During the swing phases L2 also caused the largest deviations in the es
timated joint torques, while the variation in L 3 had a much more significant 
effect on all three estimated joint torques during the swing phases.
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Figure 3.21: Hip joint torques estimated with ±50% variations in L\.
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Figure 3.22: Hip joint torques estimated with ±50% variations in ± 2 -
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Figure 3.23: Hip joint torques estimated with ±50% variations in L3.
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Figure 3.24: Knee joint torques estimated with ±50% variations in L 2.
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Figure 3.25: Knee joint torques estimated with ±50% variations in L3.
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Figure 3.26: Ankle joint torques estimated with ±50% variations in L3.
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Unlike variations in the masses and inertias, variations in the locations of 
the center of mass for each limb segment did not have a linear relation, or any 
symmetry about the control torque, with respect to the deviations that they 
caused in the joint torques. This may be observed in Figure 3.22 during the 
swing phases. The +50% variation in Z/2 causes deviations that are quite a bit 
larger than the —50% variation in L 2 near t =  0.075 s. The non-linearity of 
the relationship between the variables L\, L2, and L% can be inferred from the 
Equation 3.1, as each one of Li, L2, and L3 are all second order variables. In 
general the negative variations in the center of mass location of each hindlimb 
segment, which moved the center of mass locations closer towards the hip joint, 
resulted in much smaller deviations in the joint torques than those caused by 
the positive variations.

3.5.4 Sensitivity Summary
Of the segmental limb parameters that were investigated the center of mass 
location of the shank segment, L2, proved to have the most influential effect 
on the estimated hip and knee joint torques.

The masses of the hindlimb segments were the next most influential seg
mental parameters with respect to their effects on the estimated hip and knee 
joint torques.

The joint torques estimated by the two-dimensional hindlimb model proved 
to be fairly insensitive (< 6.9% change during swing, < 0.2% change during 
stance) to the ±50% variations in the CMI values.

Earlier in Section 3.1 the hindlimb segments of the two-dimensional hindlimb 
model were chosen to be modeled as uniform slender rods. As shown in Ta
ble 3.1 the CMI’s and center of mass locations of each hindlimb segment as 
calculated based upon the uniform slender rod assumption, differed from the 
center of mass locations and the CMI’s which were predicted by Hoy and Zer- 
nicke (1985). In order to see how the estimated joint torques would be affected, 
the center of mass locations and CMI’s of the two-dimensional hindlimb model 
were replaced by the center of mass locations and CMI’s predicted by Hoy and 
Zernicke (1985). The hip, knee, and ankle joint torques estimated with the 
slender rod assumption and with the values predicted by Hoy and Zernicke 
(1985) are shown in Figures 3.27, 3.28, and 3.29 respectively.
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Figure 3.27: Hip joint torques estimated by the two-dimensional hindlimb 
model using the CMI’s and center of mass locations based on the 
slender rod assumption [SR], and the CMI and center of mass 
location values predicted by Hoy and Zernicke (1985) [Hoy].
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Figure 3.28: Knee joint torques estimated by the two-dimensional hindlimb 
model using the CMFs and center of mass locations based on the 
slender rod assumption [SR], and the CMI and center of mass 
location values predicted by Hoy and Zernicke (1985) [Hoy].
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Figure 3.29: Ankle joint torques estimated by the two-dimensional hindlimb 
model using the CMI’s and center of mass locations based on the 
slender rod assumption [SR], and the CMI and center of mass 
location values predicted by Hoy and Zernicke (1985) [Hoy].

As shown in Figures 3.27 to 3.29 the joint torques estimated using the 
uniform slender rod values versus the joint torques using the values predicted 
by Hoy and Zernicke (1985) are virtually indistinguishable from one another. 
Therefore the joint torques estimated using the values predicted by Hoy and 
Zernicke (1985) were subtracted from the joint torques estimated uniform slen
der rod values, the results of which are shown in Figure 3.30. The maximum 
observed differences of 5.7 x 10~ 3 Nm, 8 .6  x lO - 3  Nm, and 3.5 x lO - 4  Nm cor
respond to 2.9%, 2.4%, and 0.1% differences in the peak hip, knee, and ankle 
joint torques respectively.

The similarity between the joint torques estimated with the CMI and cen
ter of mass locations based on the uniform slender rod assumptions, and the 
joint torques estimated with the CMI and center of mass locations predicted 
by Hoy and Zernicke (1985), were somewhat surprising since the variations 
in the center of mass locations caused very large deviations in the estimated 
joint torques. However the center of mass locations were only varied by 5.7%, 
7.7%, and 1.4% for the thigh, shank, and tarsal segments, respectively. These 
variations in the center of mass locations were far smaller than the ±50% 
variations which were investigated in Section 3.5.3. Also the center of mass 
locations were all moved closer to the proximal joints, which as noted in Sec
tion 3.5.3, caused smaller deviations in the estimated joint torques.
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Figure 3.30: Differences between the joint torques estimated by the two- 
dimensional hindlimb model using the CMI’s and center of mass 
locations based on the slender rod assumption, and the CMI and 
center of mass location values predicted by Hoy and Zernicke 
(1985).

Since the differences between the joint torques estimated with the CMI and 
center of mass locations based on the uniform slender rod assumptions, and the 
joint torques estimated with the CMI and center of mass locations predicted 
by Hoy and Zernicke (1985), are so small the choice of using the uniform 
slender rods to model the hindlimb segments is then validated. Therefore the 
two-dimensional hindlimb model provides an accurate representation for the 
estimation of the two-dimensional joint torques.

3.6 R igid  B od y  Paw  M odel
A rigid body paw was added to the two-dimensional hindlimb model to inves
tigate how it would affect the estimated joint torques. The rigid body paw, 
like the rest of the two-dimensional hindlimb model, was modeled as a uni
form slender rod and was attached to the two-dimensional hindlimb model at 
the MTP joint using a frictionless revolute joint. A free body diagram of the 
paw is shown in Figure 3.31. The joint torque and kinematic data for the 
paw adhere the same sign conventions used for the rest of the two-dimensional 
hindlimb model.
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Figure 3.31: Rigid body paw model. Mmtp represents the MTP joint torque 
shown acting in the positive direction. F 7 and F8 are the reaction 
forces which occur at the MTP joint.

The length of the rigid body paw, La, was estimated from the kinematic 
data as twice the mean length between the reflective marker placed on the 
MTP joint and the reflective marker placed on the midpoint of the paw. The 
mass of the paw, Ma, was found using the empirical equations presented by 
Hoy and Zernicke (1985). The centroidal moment of inertia, la, was then cal
culated based upon the mass and the slender rod geometry of the rigid body 
paw model. The segmental parameter values for the paw are shown in Ta
ble 3.5.

Table 3.5: Segment parameters for the rigid body paw.

Segment Parameter Description Value Units

Ld Length of paw 2.8 cm

U Location of center of mass Ld2 cm

l 5 Center of pressure n Ld Ld LLd r ,’ 4 ’ 2 ’ 4 ’ cm

Id CMI of paw 0.009 xlO "4 kg-m2
Md Mass of paw 13.6 g
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Since center of pressure data was not available for this study five sepa
rate locations for the application of the GRF’s on the rigid body paw were 
investigated. The joint torques estimated for each different location of GRF 
application could then be compared to one another to observe the what effects 
that the center of pressure location had on the estimated joint torques. The 
variable L5, shown in Figure 3.31, describes the locations on the paw to which 
the GRF’s were applied. Each of the locations were equidistantly spaced from 
one another over the entire length of the paw, where the distance between the 
locations was equal to \  the length of the paw. Thus when L5 =  0 the GRF’s 
were applied directly to the MTP joint, while for L5 =  L d the GRF’s were 
applied to the end of the rigid body paw.

The kinematic data for the paw was calculated from the reflective marker 
placed on the MTP joint and the reflective marker placed on the midpoint of 
the paw. The same methods used to calculate the kinematic data for thigh, 
shank, and tarsal segments of the two-dimensional hindlimb model were used 
to calculate the kinematic data for the paw, as discussed in Chapter 2 . The 
estimated joint angles ( © 4 ) ,  angular velocities ( © 4 ) ,  and angular accelerations 
( © 4 )  for the paw are shown in Figure 3.32, Figure 3.33, and Figure 3.34, re
spectively. While the data shown in Figures 3.32 to 3.34 may not appear to be 
quite as smooth as the two-dimensional kinematic data shown in Chapter 2 , 
Section 2.2.2, it was calculated from the same positional data set and subject 
to filtering with the same Butterworth filter.
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Figure 3.32: Joint angles for the rigid body paw.
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Figure 3.33: Angular velocities for the rigid body paw.
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Figure 3.34: Angular velocities for the rigid body paw.
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3.6.1 Equations of M otion with Rigid B ody Paw
Autolev was again used to solve for Kane’s dynamical equations of motion for 
the four segment, two-dimensional hindlimb model, and are shown in Equa
tions (3.4) to (3.7). With the additon of the paw to the two-dimensional 
hindlimb model an additional joint torque about the MTP joint was created, 
hence there are four equations of motion. Kane’s equations were implemented 
into a MATLAB® program created to solve the equations for the hip, knee, 
ankle, and MTP joint torques when given the kinematic and ground reaction 
force data as the inputs.

Thip = Tknee A  L a(GRFx cos ©i — GBFZ sin ©i)
+ La(L/2 M b A LbMc A LbMd) sin(©i — ©2 ) 6 2

+ L a{LzMc A LcMd)  sin(©i — ©3 ) 6 3  +  L±LaMdSvn.{®\ — ©4 ) 6 4

+ g(Ll Ma A La(Mb + M c + Md)) sin@i
a ( / «  +  M aL\  A  ( M b A  M c+ M d) L2a )  ©  i

+ L a +  L b(Mc+M d))  c o s ( 0 1 — 6 2 ) © 2
+La(L3M c + LcMd) cos(©i — ©3 ) 6 3  +  LALaM d cos(©i — 0 4) © 4

(3.4)

Tknee =  Tankie +  Lb(GRFx cos © 2 — GRFZ sin ©2)
~ L a{L2 M b +  L bM c + LbM d) sin(©i —©2)©!
+ L b(LzMc +  L cMd)  sin (0 2 — © 3 ) © 3  +  L$LbMdSv&{®2 — © 4 ) 6 4  
+ g ( L 2M b A  Lb(Mc+ M d ) )  sin 0 2 

+ L a(Li2Mb +  L bM c A  L bMd) cos(©i — ©2)©i 
+  { lb +  M bLl +  (Mc+ M d) L l ) e 2

+Lb(L3Mc A  LcM d) cos( © 2  © 3 ) ^ 3  A  L iL bMdCos(Q2 ~Q i)Q i
(3.5)
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T a n k l e  =  T m t p  +  L C { G B F X  co s  03  — G R F z  s in  O 3)

— L a ( L 3 M c  +  L c M d )  s i n ( 0 i  —© 3) 0 ^

—Lb{L^Mc +  LcMd) sin(0 2 ~© 3)© 2  +  L iL cM dsm {Q z~©4)© 4  

+g(L3M c +  LcMd) s in © 3 +  La(L3Mc +  LcMd) cos(©i — ©3)©! 

+Lb(L3M c +  LcMd) cos(© 2  ©3)© 2 +  (Ic +  MCL\  +  MdL 2)Q3 

+LALcMd cos(© 3  — ©4)6)4

(3.6)

Tmtp — L 5 (GRFx cos 0 4 — GRFZ sin 0 4) +  gLAM d sin ©4

—L \L aMd sin(©! — 0 4)©i -  L4L(,A:fdsin(0 2 - 0 4 )6>2 

—LAL cM d sin(0 3 — ©4)6)3 +  L$LaMd cos(©i — ©4)6)1 

+L^LbMd cos(© 2  — ©4 ) 6 2  +  L^LcMd cos(© 3  ©4 ) 0 3  

+ ( id + M dL l ) e A
(3.7)

3.6.2 Estim ated Joint Torques
The estimated MTP joint torques are shown in Figure 3.35 for each value of 
I /5 investigated. Only during the stance phase (t = 0.23 s to t = 0.92 s) were 
any differences observed in the estimated MTP joint torque, due to the GRF’s 
acting on the rigid body paw. For the case in which L5 = 0 the estimated MTP 
joint torques were very close to zero as the only forces acting on the paw were 
the gravitational and inertial forces. As the magnitude of T5 was increased, 
and the location to which the GRF’s were applied was moved further along 
the paw towards the digits, the magnitude of the estimated MTP joint torques 
also increased. A linear relationship was observed between the increases in the 
location of the center of pressure and the increases observed in the magnitude 
of the MTP joint torques. At each discrete time step the magnitude of the 
increase in the estimated MTP joint torque was identical for each subsequent 
increase in L5. To illustrate this result the observed peak magnitude of the 
MTP joint torque when L5 =  ^  was found to be 0.080 Nm at t = 0.633 s. 
When L5 was increased to L5 =  -y- the observed peak magnitude in the MTP 
joint torque increased by another 0.080 Nm to 0.160 Nm at t = 0.633 s. Each 
time L 5 was increased by 25% of the total length of the paw, the magnitude
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of the estimated MTP joint torque at t  =  0.633 s increased by 0.080 Nm.
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Figure 3.35: Estimated MTP joint torques calculated calculated for different 
locations of center of pressure application.

The estimated joint torques for the hip, knee, and ankle joints are shown in 
Figures 3.36 to 3.38. Each of these joint torques were affected by the changes 
in L 5 since the joint torques are dependant on one another. The joint torques 
dependance on each other can be observed from the equations of motion where 
the hip joint torque is affected by the knee joint torque, which is affected by 
the ankle joint torque, which in turn is affected by the MTP joint torque. The 
linear relationship between L5 and the changes in magnitude observed in the 
MTP joint torque was also observed in the hip, knee, and ankle joint torques. 
For the case in which L5 = which caused the MTP joint torque to increase 
by 0.080 Nm at t = 0.633 s, each of the other three joint torques saw a change 
in magnitude of 0.080 Nm at t = 0.633 s as well. An increase in magnitude 
of 0.080 Nm was observed in the hip and ankle torques, while a decrease in 
magnitude of 0.080 Nm was observed in the knee torque.
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Figure 3.36: Estimated hip joint torques calculated for different locations of 
center of pressure application.
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Figure 3.37: Estimated knee joint torques calculated for different locations of 
center of pressure application.
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Figure 3.38: Estimated ankle joint torques calculated for different locations of 
center of pressure application.

As shown in Figures 3.36 to 3.38, the location to which the GRF’s are 
applied to the paw has a significant impact on the joint torques estimated by 
the hindlimb model during the stance phase. When the GRF’s were applied 
to the middle of the rigid paw (L5 =  ^ ), it was found that the hip, knee, 
and ankle joint torques estimated by the hindlimb model each increased by 
0.16 Nm (t — 0.633 s) over the joint torques estimated when the GRF’s were 
applied to the MTP joint. When the GRF’s were applied to the end of the 
rigid paw it was found that the hip, knee, and ankle joint torques increased 
by 0.32 Nm (t =  0.633 s) respectively, over the joint torques estimated by the 
two-dimensional model without a paw.

3.6.3 Rigid B ody Paw Summary
The location along the paw to which the GRF’s are applied is a highly impor
tant consideration for the estimation of the joint torques. Variations in the 
location on the paw to which the GRF’s are applied have a far more significant 
effect on the estimated joint torques than any of the ±50% variations in the 
segmental masses, centroidal moments of inertia, and center of mass locations 
of the hindlimb model.
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Figure 3 in Fowler et al. (1993) shows that for walking on a level surface the 
center of pressure initially acts at the middle of the paw and moves towards 
the digits over the duration of the stance phase. Assuming that this result is 
also representative of the cat’s from which the kinematic and GRF data was 
collected for this study, bounds can then be created for the amount of variation 
in the estimated hip, knee, and ankle torques which could be expected over the 
duration of the stance phase, if a rigid paw was included in the two-dimensional 
hindlimb model. Thus if center of pressure data was available for this study 
and a rigid body paw was included in the two-dimensional hindlimb model as 
outlined above, the magnitudes of the estimated hip and ankle joint torques 
would be increased by at least 0.16 Nm (GRF’s applied to the middle of the 
paw), and at most by 0.32 Nm (GRF’s applied to the end of the paw), of their 
respective values. The magnitude of the estimated knee joint torque would be 
decreased by at least 0.16 Nm and at most 0.32 Nm of it’s respective values.
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Chapter 4

Three-Dim ensional Inverse 
Dynam ics M odel

When studying animal locomotion researchers often restrict their analysis of 
the motion of the animal’s limbs to the sagittal plane [Fowler et al. (1993); 
Goslow et al. (1973); Herr and McMahon (2000); Hoy and Zernicke (1986); 
Manter (1938); Neveu et al. (2001); Shen and Poppele (1995); Trank and Smith
(1996)]. In this study, the sagittal plane coincides with the X-Z plane of the 
global reference frame. An assumption is made that any movement which oc
curs outside of the sagittal plane during locomotion is small enough that it 
would have a negligible effect on the analysis.

To investigate the validity of the two-dimensional motion assumption, an 
additional degree of freedom was added to the hip joint of the two-dimensional 
hindlimb model. The extra degree of freedom allowed for adduction and ab
duction of the hip so that the model could then incorporate motion outside of 
the sagittal plane, which will be referred to as the out of plane motion. The 
joint torques could then be calculated by both the two-dimensional and three- 
dimensional models to determine if any significant differences exist between 
them.
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4.1 T hree-D im ensional H indlim b M odel
Out of plane motion for the two-dimensional hindlimb model was created by al
lowing rotation at the hip joint about the X-axis of the global reference frame. 
The amount of hindlimb rotation about the Z-axis is much smaller than the 
abduction and adduction movement about the X-axis at the hip. Therefore 
this study will focus only on the abduction and adduction movement about 
the X-axis at the hip joint.

The mass of the animal for which the three-dimensional kinematic and 
GRF data was collected was not provided, so a total cat mass of 4 kg was 
assumed, as it was for the cat from which the two-dimensional kinematic data 
was collected. The segmental parameters for the three-dimensional hindlimb 
model are shown in Table 4.1. The moments of inertia shown in Table 4.1 
represent both principal moments of inertia, Ix and Iy, about the center of 
mass for each hindlimb segment. Since each hindlimb segment is modeled as 
a uniform slender rod Ix = Iy, while Iz =  0 .

Table 4.1: Table of three-dimensional hindlimb model segmental variables.

Variable Description Value Units

la CMI of limb segment A 141.8 x l(T 6 kg-m2
h CMI of limb segment B 66.8 x l0 “6 kg-m2
Ic CMI of limb segment C 7.1 xlO"6 kg-m2

M a Mass of limb segment A 195 g
Mb Mass of limb segment B 58 g
M c Mass of limb segment C 22 g
La Length of limb segment A 9.21 cm
L b Length of limb segment B 9.12 cm
L c Length of limb segment C 5.64 cm

Li Center of mass location L J i cm
l 2 Center of mass location Lb/ 2 cm
l 3 Center of mass location L ch cm
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;nee

Tankle

Figure 4.1: The four joint torques for the three-dimensional model. All four 
joint torques depicted are positive when acting in the directions 
shown. ThipY, Tknee, and Tankie are defined similarly to the two- 
dimensional hindlimb model, as shown in Figure 3.6.

W ith an additional degree of freedom added to the model, an additional 
torque was required to govern the abduction and adduction motion of the 
hip. Figure 4.1 shows all four of the joint torques for the three-dimensional 
hindlimb model. ThipY and Thipx represent the hip joint torques occurring in 
the sagittal plane (about the Y-axis) and the adduction and abduction torque 
(occurring about the X-axis) respectively. Note that ThipY is equivalent to Thip 
of the two-dimensional hindlimb model.

4.2 T hree-D im ensional K an e’s E quations
Autolev was again used to formulate Kane’s dynamical equations of motion 
for the three-dimensional hindlimb model. The Autolev code used to generate 
Kane’s equations for the three-dimensional hindlimb model can be found in 
Appendix B. Once the equations of motion were formulated using Autolev 
they were then implemented into a MATLAB® program along with the three- 
dimensional kinematic and GRF data. The equations of motion could then be
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solved in order to find the joint torques. The equations of motion are

Thipx =  - ( L a smQ1+ L bsin&2 + L csmQ3)(GRFy cosQa+GBFz smQa)
+g sin ©a [(LiMa + LaMf,-\-LaMc) cos©x +  (L2Mb+ LbMc) cos©2 

-\-L^AIc cos03] — 2 s in 0 3 [/ccos03+ L 3Mc(La c o s0 i+ L 6cos02 

+ L 3 cos03)] 0 30 a -  2 s in 0 2 [La(L2Mb+ LbMc) cosQ1 
-K-J& +  MbL\-\-McLb) COS0 2 + L$LbMc cos03] 0 20 a 
—2sin0i [(/a +  MaL2 +  (Af6 +  Mc)L/^)cosQi-\- La(L2Mb + LbMc)cosQ2

+L3LaM c cos03] 0 i 0 a +  (/a +  A/aLx +  M(,L2)cos20x

+(Ib + M bL\)cos2Q2 + {Ic+ MCL\)  cos20 3 +2L 2LaAf6Cos0i cos02

+2L 3Mccos03 (Lacos0i +  LbcosQ2) + M c(Lacos© i+I/6cos02)' © a

(4.1)

' hipy Tknee +  La sin©i (GRFX arctanO i+GRFy sinQa — GRFZ cos0a)

+<7sin0 j cos0a {^L\Ma-\-La{Mb + Mc)) +  LaL3Afc sin(0i — 0 3)0

sin©i \LaL bM c cos© 2+La(L2M b +  L bM c) sin(0x — 0 2) 0 2 +

+(/a+ M aL2 + M 6L2 +  McL2)cos0i] + L 2LaMb cos20 2 [sin(0x - 0 2) 
+  ta n 0 2 cos(©i — 0 2)] + L 3LaM c cos03 [ cos© 3 sin(©x — 0 3)

+  sin03 cos(0i — © 3 ) ]  0 2 +  La(L2M b+ L bMc) cos(0i — ©2) 0 2 

+ (la + M aLl + (Mb+ M c)L2a)Q 1 +  LaL3Mccos( © 1 —©3 ) 6 3

(4.2)
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Tknee — '■̂ 'ankle Tfr S i n 0 2 ( G R F E  a r c t a n 0 2 ~F G R F y  S i n O a GHFZ COS0 a )
—La(L2 Mb+LbMc) sin(@i 0 2)0 j +  T;,T3Afcsin(0 2 —0 3)0g 

+  [(/(, + A'/^L2 -I-A7cLj) cos© 2 +  L a(L/2 Mi1-\-LbMc) cos0 i] sin0 2

+LfeL3Mc [ c o s 2 0 3 sin(0 2 -  0 3) +  sin0 3 cos0 3 cos(0 2 — 0 3 ) ]

-irLa(L2 Mb + LbMc) cos(0 ! — 0 2 ) 0 1  +  {Ib~ir^/h L \ JtM cL\)Q 2 

+LbL3Mc cos ( 0 2  0 3) 0 3  +  g sin0 2  cos0a(L2A:f;, +  LbMc)
(4.3)

© a

Tankle =  Lc sm<dz{GBFx arctanQ3+GBFy sinQa-GBFZ cos0a) 
- L aL3A/csin(0 1 - 0 3)0 i -  L6L3Mcsin(0 2 - 0 3) 0 2  

+  sin0 3 [/c cos 0 3 + L 3Mc(La cos0 i+Lfe cos0 2+ I /3 cos0 3)] 0 2 

+9 L 3Mc s in0 3 cos0a +  LaL3Mc cos(0i - 0 3)0 i 
+LbL3Mc cos(0 2 —0 3)0 2 +  (7C+ M CL2)0 3

(4.4)

Recall that the adduction and abduction motion is represented by 0 a, as 
defined in Chapter 2, Section 2.2.2.

4.3 T hree-D im ensional Joint Torques
The estimated joint torques calculated using the three-dimensional hindlimb 
model are shown in Figure 4.2. Vertical lines have been used in the figure 
to indicate the transitions between the swing and stance phases. The first 
transition occurs at 0 .1 1  s as the hindlimb exits the first swing phase and en
ters the stance phase when the paw comes into contact with the ground. The 
stance phase then continues until 0.39 s at which point the paw loses contact 
with the surface, and the limb enters into a second swing phase. Figure 4.3 
has been included to aid in the discussion of the joint torques by providing a 
visual representation of some of the positions of the hindlimb during the swing 
phases and the stance phase.
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Figure 4.2: Joint torques estimated by the three-dimensional inverse dynamics 
hindlimb model. The vertical lines indicate the transitions between 
the swing and stance phases. The small vertical bars, numbered 
1 — 9, represent the times corresponding to each limb position 
shown in Figure 4.3.
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Figure 4.3: Selected hindlimb positions corresponding to Figure 4.2. Positions 
3 and 7 have been darkened as they show the beginning and end 
of the stance phase.
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Figure 4.4: Joint torques estimated by the two-dimensional inverse dynamics 
hindlimb model. The vertical lines (t — 0.23s and t =  0.92 s) 
represent the transitions between the swing and stance phases.

Since two different cats were used for the collection of the two-dimensional 
kinematic and GRF data, and the three-dimensional kinematic and GRF data, 
the joint torques estimated using the two separate data sets are not the same. 
The joint torques estimated from the two-dimensional kinematic and GRF 
data sets, previously shown in Figure3.7, have also been included here in Fig
ure 4.4 to aid in the discussion. The most noticeable difference between the 
joint torques estimated from the two-dimensional and three-dimensional kine
matic and GRF data sets is the large spike in the magnitude of the hip torque, 
and to a slightly lesser degree the knee torque, during the transition between 
the swing phase to the stance phase shown in Figure 4.2. The spike in the joint 
torques can be attributed to the large angular accelerations of the thigh and 
shank portions of the hindlimb during the first swing phase (see Figure 2.14). 
The static joint torques and dynamic joint torques for this data set have been 
included in Figure 4.5 and Figure 4.6 respectively. As shown in Figure 4.6 
the dynamic joint torques are responsible for the spike in the estimated joint 
torques near the swing phase to stance phase transition. This further high
lights why the dynamic torques should not be excluded from the joint torque 
estimation during the stance phase, as mentioned earlier in Section 3.4. Aside 
from the spikes in the hip and knee torques, the joint torques estimated from 
the two-dimensional and three-dimensional kinematic and GRF data sets dis
play many of the same characteristics.
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Figure 4.5: Static contributions to the estimated joint torques.
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Figure 4.6: Dynamic contributions to the estimated joint torques.
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The new joint torque T/l,Px, shown in Figure 4.2, initially starts as an 
adduction torque swinging the leg towards the body during the first swing 
phase (position 1). Over the last portion of the first swing phase Thipx becomes 
negative, as it switches to an abduction torque to slow the hindlimb, so that 
the hindlimb will be positioned near perpendicular with the surface for the 
onset of the stance phase (position 2). During the swing phases the primary 
contribution to the magnitude of Thipx comes from Qa, the angular acceleration 
due to the adduction and abduction motion of the hindlimb. During the stance 
phase the GRF’s become the major contributors to Thipx. During the stance 
phase (positions 3 - 7 )  the hip swings out slightly over the paw in the negative 
Y direction, therefore the abduction torque supplied by Thipx prevents the 
hips from collapsing laterally. Over the last portion of the stance phase Thipx 
gradually increases back towards zero, however remaining an abduction torque 
over the first portion of the second swing phase in order to swing the hindlimb 
out away from the body once more. The peak magnitude of Thipx =  0.36 Nm, 
is very close to the peak magnitude of Tankie =  0.34 Nm, and also close to the 
peak magnitude of Tknee =  0.50 Nm during the stance phase.

4.4 T w o-D im ensional and T hree-D im ensional 
Joint Torque C om parison

The three-dimensional kinematic data set in which the abduction and adduc
tion motion (0 a) was approximated, and the three-dimensional GRF data was 
used to calculate the joint torques from both the two-dimensional and three- 
dimensional hindlimb models. For the estimation of the two-dimensional joint 
torques, the hip abduction and adduction motion and the ground reaction 
forces acting in the Y-axis of the global reference frame were simply ignored.

The joint torques estimated by both the two-dimensional and the three- 
dimensional hindlimb models are shown in Figures 4.7, 4.8, and 4.9. The 
differences observed between the hip, knee, and ankle torques, as estimated by 
the two-dimensional and three-dimensional hindlimb models respectively, were 
very small. Each one of the joint torques estimated by the three-dimensional 
model were subtracted from their counterparts estimated by the two-dimensional 
hindlimb model. The results of which are shown in Figure 4.10. The magni
tude of the differences between joint torques estimated by the two-dimensional 
and three-dimensional hindlimb models are less than 4.0 x 10~ 3 Nm.

This result validates the assumption that a planar inverse dynamics model
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of the hindlimb will provide an accurate estimation of the joint torques T]>lipx 
(equivalent to Thip), Tknee, and Tankie, as they have been defined in this study.
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Figure 4.7: Hip joint torques estimated by both the two-dimensional and 
three-dimensional hindlimb models.
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Figure 4.8: Knee joint torques estimated by both the two-dimensional and 
three-dimensional hindlimb models.
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Figure 4.9: Ankle joint torques estimated by both the two-dimensional and 
three-dimensional hindlimb models.
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Figure 4.10: Differences between the two-dimensional and three-dimensional 
hindlimb torques. D if f i ,  D i f f2, and Diffo  represent the dif
ferences between the two-dimensional and three-dimensional hip, 
knee, and ankle joint torques respectively.
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Chapter 5

Two-Dim ensional Forward 
Dynam ics

In Chapter 3 a two-dimensional inverse dynamics hindlimb model was de
veloped to provide an estimate of the joint torques which occur within the 
hindlimb of a cat for walking on a level surface. In this chapter a two- 
dimensional forward dynamics model will be developed. In forward dynamics 
the forces and moments which act upon the system are used to calculate the re
sultant motion. The joint torques estimated from the inverse dynamics for the 
two-dimensional hindlimb model, along with the measured two-dimensional 
GRF’s, will be used for the forward dynamics simulations.

5.1 T w o-D im ensional Forward D ynam ics M odel
The two-dimensional hindlimb model is used for both the inverse dynamics 
and the forward dynamics simulations. The difference between the two is in 
the way that the equations of motion are solved. For inverse dynamics, the 
known kinematics are used to estimate the forces and moments occurring in 
each joint of the two-dimensional hindlimb model. The forward dynamics sim
ulations, on the other hand, determine the motion of a system for a given set of 
applied forces and moments. As a test, a forward dynamics simulation can be 
performed using the joint torques obtained from an inverse dynamics simula
tion as inputs. In principle this should result in a motion which is identical to 
the original kinematics. This can be used to verify the results of both forward 
and inverse dynamics procedures.
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For the forward dynamics simulations the equations of motion were ar
ranged into matrices such that all of the acceleration terms (all second order 
terms) were located on the right hand side of the equations, while the remain
ing terms were located on the left hand side of the equations, as shown in 
Equation 5.1.

' e r

A © 2 — B
0 3 .

The A matrix represents the (3x3) angular acceleration coefficient matrix, 
which contains all of the terms associated with the angular accelerations. The 
B matrix on the right hand side of the equation, of size (3x1), contains all of 
the remaining terms from each of the three equations of motion. All terms 
in both the A and B matrices are known for each time step taken during the 
integration of the equations of motion. The equations of motion are solved for 
the angular accelerations during the integration using

■ e r

© 2 — A- 1 B
© 3 .

Integration of the equations of motion for the forward dynamics simula
tions was performed using ODE45 (an integration routine that is built into 
MATLAB® ) which is an adaptive step size integrator based on the explicit 
Runge-Kutta (45) formula, the Dormand-Prince pair [Shampine and Reichelt
(1997)]. ODE45 is a one-step solver as it needs only the solution at the time 
step (fn_i) immediately preceding the point (tn) which is to be computed. 
Thus, before the integration process begins the initial angular positions and 
velocities of each of the hindlimb segments, in addition to the GRF’s and the 
joint torques acting on the two-dimensional hindlimb model at t =  0  need to 
be specified.

For the forward dynamics simulations the two-dimensional hindlimb was 
modeled with the hip joint fixed at a single location, as it was for the inverse 
dynamics. The GRF’s and joint torques were applied to the forward dynamics 
model based solely upon the progress of the forward dynamics simulation with 
respect to time, not position. Unlike the joint torques, which were continu
ously applied to the two-dimensional hindlimb model for the entire duration of 
the forward dynamics simulation, the GRF’s were only applied between 0.23 
s and 0.92 s. These two times correspond to the onset and end of the stance
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phase respectively, as calculated from the two-dimensional GRF data.

During the integration ODE45 often chooses time steps that do not coincide 
with the fixed step-size of 10- 3  s for the discrete joint torque and GRF data 
sets. For example, if ODE45 chose to perform an integration step at 0.3106 s 
no joint torque or GRF data would be available for that specific integration 
step. In this case joint torque and GRF data would be available on either 
side (0.310 s and 0.311 s) of the required integration step of 0.3106 s. To 
provide the proper joint torque and GRF data at the time steps required by 
the integrator, both the joint torques and GRF’s were interpolated using a 
cubic spline function when required.

5.2 Failure o f th e  Forward D ynam ics Sim ula
tions

The initial forward dynamics simulations for the two-dimensional hindlimb 
model failed quite spectacularly. Figures 5.1(a), 5.1(b), and 5.1(c) show the 
original kinematic data used to calculate the two-dimensional joint torques, 
as well as the kinematic data predicted by the forward dynamics simulation. 
As shown in Figures 5.1(a) - 5.1(c) the kinematics predicted by the forward 
dynamics simulation begin to deviate away from the original joint angles al
most immediately. The deviation of the predicted joint angles becomes quite 
drastic at 0.4 s when the tarsal segment of the hindlimb begins to spin in the 
counterclockwise direction (see Figure 5.1(c)). Shortly after both the thigh 
and shank segments begin to spin as well.

After trying numerous combinations of different step-sizes and error tol
erances the forward dynamics simulations still failed. MATLAB®;s ODE23, 
which uses the explicit Runge-Kutta (23) of Bogacki and Shampine [Shampine 
and Reichelt (1997)] was tried to see if an alternative integrator might work, 
but it also failed in the same manner. After the failure of ODE45 and ODE23, 
which are both non-stiff integrators, it was thought that there may be some 
stiffness in the equations of motion. ODE15s, which is an integrator for 
stiff systems of equations based upon the numerical differentiation formulas 
(Shampine and Reichelt, 1997), was then tried but it also failed in a similar 
fashion.
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Figure 5.1: Original kinematic data is shown with solid lines while the pre
dicted kinematic data from the forward dynamics simulation is 
shown with dashed lines.

W ith the failure of the forward dynamics simulations for the two-dimensional 
hindlimb model a decision was made to investigate a simplified forward dy
namics model in order to ascertain what was causing the simulations to fail.

5.2.1 Forward Dynam ics Simulations for a Simple Pen
dulum

A single link pendulum was created by removing the shank and tarsal segments 
from the two-dimensional hindlimb model, as shown in Figure 5.2. The single
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link pendulum then consisted of a uniform slender rod hanging from a fixed 
frictionless pin joint which was previously the hip joint of the two-dimensional 
hindlimb model.

Figure 5.2: Single link pendulum created by removing the shank and tarsal 
segments from the two-dimensional hindlimb model. GRFX, 
GRFZ, and Thip are defined as positive in the directions shown, 
while 0 i is shown in the negative direction.

The segmental parameters of the single link pendulum remained unchanged 
from those of the thigh segment of the two-dimensional hindlimb model. All 
of the sign conventions for the joint angles, angular velocities, angular ac
celerations, and torques previously defined for the thigh segment of the two- 
dimensional hindlimb model also apply to the single link pendulum. The 
GRF’s are also defined in the same was as for the two-dimensional hindlimb 
model, except that they were applied directly to the free end of the single link 
pendulum. The equation of motion for the single link pendulum is

Tmp =  La(GRFx cosQx-G RFz sinGi) +  gLiM a sin0i + Qx(la+ M aL\). (5.3)

The joint torque for the single link pendulum was calculated based upon 
the kinematic data for the hip joint and the two-dimensional GRF’s. ODE45 
was used as the integrator for the forward dynamics simulation. It was possi
ble to correctly predict the kinematics for the first portion of the simulation, 
however at approximately 0 .6  s the predicted kinematics diverged away from 
the true solution as shown in Figure 5.3.
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Figure 5.3: Original kinematic data (solid line) and the kinematic data pre
dicted by the forward dynamics simulation (dotted line) for the 
single link pendulum.

Investigation into the failure of the forward dynamics simulation for the 
single link pendulum revealed that just prior 0 .6  s, the predicted position of 
the pendulum began to drift away slightly (< 2.29 x 10- 2  degrees) from its 
expected position. The joint torque being applied to the pendulum was no 
longer correct with respect to reproducing the original kinematics, since it was 
calculated with the original kinematics. Due to the mechanical nature of the 
two-dimensional pendulum model, as there was no control system present in 
the model, there was no way to modify the joint torques being applied to the 
pendulum to correct for the small deviations in the predicted position. Thus, 
as the forward dynamics simulation progressed the joint torques being applied 
to the pendulum amplified the deviations in the predicted position of the pen
dulum.

To further investigate the initial drift in the pendulum’s position the for
ward dynamics simulation was simplified one step further by focussing only 
on a static case. For the static case investigations the joint torque was used to 
hold the pendulum at a fixed position while a single static force was applied 
to the free end of the pendulum in either the X or Z direction, as shown in 
Figures 5.4(a) and 5.4(b). The positions used for the static case investigation 
were 0 to 27t rads in |  increments. At each position a range of different static 
forced were applied from GRFX Z =  —20 N to +20 N in 5 N increments.
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G RFZ

(a) (b)

Figure 5.4: Figures (a) and (b) show the forces applied to the free end of the 
pendulum for the static case investigation.

It was found that the stability of the forward dynamics simulations for the 
static cases, depended on whether or not a compressive or tensile force was 
applied to the pendulum. If a tensile force was applied to the pendulum, such 
as a negative GRFz at 6\ — 0, the forward dynamics simulation provided a 
static solution as expected. Here any drift in the calculated position of the 
pendulum, caused by round off error during the integration, was offset by the 
tensile force which acted to stabilize the simulation. However when a compres
sive force was applied to the pendulum, such as a positive GRFz at =  0, 
the forward dynamic simulation diverged. In this case the compressive force 
acts to destabilize the pendulum, causing any drift in the calculated position 
of the pendulum to be amplified. The time required for the forward dynamics 
simulation to become unstable was decreased by increasing the magnitude of 
the compressive force applied to the pendulum.

For the non-static forward dynamics simulation the GRF’s create compres
sive forces which acts on the free end of the single link pendulum, over the 
duration of the stance phase. The compressive forces created by the GRF’s 
destabilize the forward dynamics simulation causing the simulations to fail. 
Similarly for the two-dimensional hindlimb model the GRF’s also apply com
pressive forces over the duration of the stance phase. However, compared to
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the single link pendulum model, the two-dimensional hindlimb model is more 
sensitive to the destabilizing effect of the compressive forces. Any variation 
in the predicted kinematics from the expected kinematics, will cause the joint 
torques being applied during the forward dynamics simulation to be incorrect. 
Therefore without some sort of control mechanism in place to account for the 
drift in the position of the pendulum, or each of the hindlimb segments for 
the two-dimensional hindlimb model, the forward dynamics will not provide a 
successful simulation.

5.3 Torsional Springs and D am pers
In an effort to overcome the destabilizing effect of the GRF’s on the forward dy
namics simulations the addition of linear torsional spring-damper pairs, anal
ogous to the linear spring-damper pair shown in Figure 5.5, was investigated. 
The limbs of animals (including humans) have been shown to display spring 
like behavior. Alexander (1985) proposed that animal’s limbs employ spring 
like qualities as a means of minimizing energy expenditure during running 
gaits. Human legs have also been modeled as springs during running where 
the stance limb is modelled as single linear spring with a point mass that is 
equivalent to the body mass [Ferris et al. (1998)]. More complex limb models 
utilizing both one dimensional springs and dampers [Nigg and Liu (1999)] as 
well as torsional springs [Farley et al. (1998)] and torsional spring-damper pairs 
[Rapoport et al. (2003)] have also been used to investigate the effects of limb 
stiffness characteristics in humans. The muscles and tendons of the limbs do 
not behave as simple springs since they exhibit viscoelastic properties as they 
can store, dissipate, and return energy [Zajac (2002)]. Thus, it is appropriate 
to include viscoelastic properties in the hindlimb model.

Linear Linear Torsional
Spring-D am per Spring-Dam per
Pair Pair

C

K

Figure 5.5: Torsional spring-damper pair representation. The torsional spring 
and torsional damper are in parallel with one another, similar to 
the linear spring damper pair.
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Adding a linear torsional spring-damper pair to the forward dynamics mod
els is a simple way of accounting for the small amount of error which propagates 
during the forward dynamics simulations. A linear torsional spring-damper 
pair was added to the pendulum model as shown in Figure 5.6. The torsional 
spring was defined such that it would not apply any torque when 0 X =  0. A 
positive (or negative) angular displacement and angular velocity then results 
in a negative (or positive) torque being supplied by both the torsional spring 
and torsional damper. The addition of the linear torsional spring-damper pair 
to the single link pendulum model corrected for any drift in the predicted po
sition of the pendulum by automatically supplying a corrective torque. With 
the addition of the torsional spring-damper pair to the pendulum model the 
joint torques estimated by the inverse dynamics model were altered. For the 
sake of clarity the torques created by the torsional springs and dampers will 
be referred to as passive joint torques. The joint torques estimated without 
the torsional springs and dampers will be referred to as the anatomic joint 
torques and the combination of both the passive and anatomic joint torques 
will then be referred to as the total joint torques.

Figure 5.6: Single link pendulum with the addition of the torsional spring- 
damper pair.

The stiffness coefficient (K)  and damping coefficient (C) for the torsional 
spring-damper pair were found by running the forward dynamics simulation 
repeatedly. A kinematic accuracy requirement of ±1° (±0.0175 rads) was used 
to evaluate whether or not the forward dynamics simulations were successful. 
If at any point, one of the joint angles predicted by the forward dynamics 
simulation differed by more than ±1° from the original joint angle data (see 
Chapter 2, Figure 2.5), the simulation was deemed a failure. Each time the
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simulation was run either K  or C  was varied so that a combination of the 
smallest K  and C  values could be found, while still allowing the kinematic 
data predicted by the forward dynamics simulation to meet the kinematic 
accuracy requirement. By finding the combination of the smallest values for K  
and C, the passive joint torque which they create would be minimized, thereby 
decreasing the effect of the passive torque on the total joint torque. The values 
which were found for the pendulum were K  — 0.09 C  =  0.032 
The anatomic joint torque and the total joint torque profiles for the pendulum 
are shown in Figure 5.7.

0.5
  "^anatomicalTtotal

0.4

0.3

EZ

0.1

- 0.1

- 0.20 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time(s)

Figure 5.7: Anatomic and total joint torques for the pendulum model.

The passive torques supplied by the torsional spring-damper pair as cal
culated from the inverse dynamics, and the passive torques used during the 
forward dynamics simulation for the pendulum, are shown in Figure 5.8. To 
illustrate the corrective torque supplied by the torsional spring-damper pair 
during the forward dynamics simulation, a portion of Figure 5.8 has been 
blown up and is shown in Figure 5.9. The small difference between the two 
torques shown in Figure 5.9, beginning just prior to 0.6 s, represents the cor
rective torque required to stabilize the forward dynamic simulation.
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Figure 5.8: Passive torques supplied during the inverse dynamics (Torque 
ID) and during the forward dynamics simulation (Torque FD). 
K  =  0.09 g s  C  =  0.032

0.030 —  Torque ID 
Torque FD

0.025

0.020

3 0.015

0.010

0.005
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Figure 5.9: Magnification of Figure 5.8 to highlight the corrective torque sup
plied by the spring-damper pair during the forward dynamics sim
ulation.
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5.3.1 Im plem entation of Torsional Springs and Dam pers
Similar to the single link pendulum, linear torsional spring-damper pairs were 
added to each one of the three joints of the two-dimensional hindlimb model 
as shown in Figure 5.10. While the spring-damper pair added to the hip joint 
is implemented into the two-dimensional hindlimb model in exactly the same 
way as for the pendulum model, the spring-damper pairs added to the knee 
and ankle joints were defined differently. For the knee and ankle joints, the 
torques supplied by the spring-damper pairs depend on the relative angles (dq 
and $ 2) and the relative angular velocities ( $ 1  and $ 2) between the thigh and 
shank, and the shank and tarsals. <fq and <f>2 are also shown in Figure 5.10.

Thigh

Shank

Y Tarsals

Figure 5.10: Two-dimensional hindlimb model with the addition of the linear 
torsional spring-damper pairs, represented by the spirals.
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$ 1, $ 2 , $ 1, and $ 2  are related to the kinematic data as shown in Equations 
(5.4) to (5.7).

$1 =  02 -  0 !  (5.4)

$2 =  03 -  ©2 (5.5)

$1 =  02 -  ©! (5.6)

$2 =  03 -  02 (5.7)

The addition of the torsional spring-damper pairs to the two-dimensional 
hindlimb model added a spring stiffness term and a damping term (highlighted 
with an underbrace) to each of the equations of motion for the two-dimensional 
hindlimb model, as shown in Equations (5.8) to (5.10). The total joint torques 
are represented by T^p, Tfcnee, and Tankie in Equations (5.8) to (5.10). The pas
sive joint torques are represented by the stiffness and damping terms that have 
been under-braced on the right hand side of Equations (5.8) to (5.10). The 
anatomic joint torques are then represented by all of the remaining terms on 
the right hand side of Equations (5.8) to (5.10). All of the torsional springs im
plemented into the two-dimensional hindlimb model had identical stiffnesses,
K , and shared the same damping coefficient, C.

Thip =  Tknee +  La(GRFx cos©i— GRFZ sin©i) -I- g (^L\Ma + LaM b + LaMcj sin0i 

-\-La(L2M b+ TftAfc) sin(0i —0 2)©2 +  LzLaMcsin(Q\ — 0 3 ) 0 3  

+ (la + M aL2l + M bL2a+ M cL2a) e 1 +  La(L2M b+ LbM c) cos(01- © 2) 0 2 

-\-LzLaMc cos(©i — 0 3 ) 0 3  +KQ  i +  C 0 i^... "V '
(5.8)

Tknee — Tankle H" L b{GBFx cos02 — GRFZ s in02) +  g(L2M b+ L bMc) sin02 
- L a(L2M b + LbM c) s m (e 1- Q 2) e 21 + L3LbM csm(Q2- e 3)Gt 

+ La(L2Mb+ LbM c) cos(0i — 0 2 )0 i +  (ffcTMbL2 + M CL ^ Q 2 

+L3L bM c cos(02 —0 3 ) 0 3  i + 0 $ !

(5.9)
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Tankle LC(GRFX cos03 — GRFz s in03) — LsLaMcsin(Qi — Q3)Ql

sin( 0 2  0 a)© 2  +  sin@3 +  ( /c +  McLi^jQ^
+L$LbMc cos(© 2  — ©3)@2 +  LsLaM c cos(@i — ©3)©! 2 +  C $ 2N ^ ,

(5.10)

The implementation of the linear torsional spring-damper pairs into the 
two-dimensional hindlimb model was somewhat artificial in the sense that they 
did not account for any anatomical properties of the hindlimb, but were in
stead used as a means of stabilizing the forward dynamics simulation. However 
as mentioned at the beginning of this section the limbs, and the muscles and 
tendons which actuate them, display spring and damper like behavior. There
fore viscoelastic properties should also be included in the hindlimb model.

There has been very little research regarding the torsional stiffness and 
torsional damping properties of feline hindlimb joints. Yasuda et al. (1986) 
measured the passive torsional stiffness and damping coefficients for a feline 
knee about the X-axis direction for valgus loading of the knee. Valgus loading 
occurs when a force is applied laterally to the limb, which would occur if a 
force was applied in the Y-axis direction to the hindlimb. The torsional stiff
ness and damping coefficients could be approximated by modeling the stiffness 
and damping properties for hindlimb muscles and tendons, but this would in
volve the development of models for each of the muscles and tendons of the 
limb, and their distribution on the hindlimb model. The work involved in such 
an endeavor would go beyond the scope of the current study.

The range of K  and C  values that would allow the forward dynamics sim
ulation to meet the kinematic accuracy requirement is quite large. However 
large values for K  ( > l ^ j )  and C  ( > l ^ f )  create passive joint torques 
which are far larger than the anatomic joint torques. When observing the 
total joint torques, the anatomic joint torques are then buried underneath the 
much larger passive joint torques. Therefore the combination of K  and C  
values which introduced the smallest passive joint torques, was chosen. Thus 
the effect of adding the torsional spring-damper pairs was minimized with re
spect to the total joint torques. The kinematic accuracy requirement of ±1° 
or ±0.0175 rads used for the pendulum model was again used to evaluate 
whether or not the forward dynamics simulations for the hindlimb model were 
successful. The stiffness and damping coefficients for the torsional springs and
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dampers of the two-dimensional hindlimb model were found in a similar fash
ion as the stiffness and damping coefficients for the single link pendulum.

The combination of K  = 0 .0 4 ^  and C  =  0 .0 4 2 ^ f  introduced the small
est passive torques, while allowing the forward dynamics simulation to meet 
the kinematic accuracy requirement, for the chosen segmental parameters of 
the hindlimb model. The passive joint torques introduced by the spring- 
damper pair at the hip, knee, and ankle joints are shown in Figure 5.11. The 
torsional dampers are the dominant contributors to the passive joint torques 
shown in Figure 5.11, which is caused by the much larger angular velocities of 
the hindlimb segments, when compared to the angular displacements.

0.3
— Hip 
■ Knee 

' ' Ankle
0.2

0.1
9 \

<L> 3 O' 
o  
I— -0.1

- 0.2

-0.3

-0.4 0.2 0.4 0.6 1 .40.8
Time (S)

Figure 5.11: Passive Joint Torques created by the spring-damper pairs (K  =  
0.04 C =  0.042^£p). The vertical lines (t — 0.23 s and t =  
0.92 s) represent the transitions between the swing and stance 
phases.

5.3.2 Joint Torques with Torsional Spring-Damper Pairs
The total joint torques estimated with the torsional spring-damper pairs are 
shown in Figure 5.12. For comparison purposes the anatomic joint torques 
are shown in Figure 5.13. As shown in Figure 5.12 the addition of the spring- 
damper pairs affects the total joint torques the most during the swing phases. 
Here the much smaller anatomic joint torques become hidden beneath the 
larger passive torques created by the spring-damper pairs. During the stance
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phase the total joint torques are affected the most near the transitions between 
the swing and stance phases. The magnitudes of all three total joint torques 
are also slightly decreased during the stance phase, when compared to the 
anatomic joint torques shown in Figure 5.13.

0.3
— Hip 
— Knee 

■ 1 Ankie
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-0.3

-0.5 O 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

Figure 5.12: Total Joint Torques (K  — 0.04 C  =  0.042

— Hip
— K nee
■ 1 Ankle

-0.3

Tim e (s)

Figure 5.13: Anatomic joint torques. The vertical lines represent the tran
sitions between the swing and stance phases (t =  0.23 s and 
t = 0.92 s).
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5.4 C oncluding R em arks
The initial failure of the forward dynamics simulation for the two-dimensional 
hindlimb model demonstrated the need for some type of control to be inte
grated in to the model to account for the sensitivity of the forward dynamics 
simulation to slight variances in the predicted positions of the hindlimb seg
ments, and the destabilizing effect of the GRF’s. The addition of the linear 
torsional spring-damper pairs were shown to stabilize the forward dynamics 
simulations. Although the torsional spring-damper pairs may be somewhat 
artificial at this stage of development, their inclusion provides a means of 
modeling the viscoelastic properties of the soft-tissues in the hindlimb, which 
will need to be addressed in future work if quantitative information is required.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Conclusions and Future Work

6.1 C onclusions
The study of feline hindlimb modeling has allowed for a number of conclusions 
to be drawn about the modeling process:

Care should be taken when obtaining the segmental lengths of the hindlimb. 
This will ensure that the triangulation technique can be used to calculate the 
position of the knee joint for the kinematic data. It will also allow for the 
most accurate estimation of the segmental parameters for the hindlimb model 
calculated from Hoy and Zernicke (1985).

The use of uniform slender rods to model the geometry of the thigh, shank, 
and tarsal segments was demonstrated to be an acceptable approximation for 
the hindlimb studied, provided that the masses of the individual segments were 
predicted using the empirical equations developed by Hoy and Zernicke (1985).

The contributions to the estimated joint torques made by the dynamic 
joint torques should not be ignored since they can have a significant effect on 
the estimated joint torques near the transitions between the swing phases and 
stance phases.

Variations in the center of mass locations and the masses of the hindlimb 
model can also have a significant effect on the estimated joint torques. Of the 
segmental parameters investigated the center of mass location of the shank, 
L2, had the greatest influence on the estimated hip and knee joint torques. 
Most of the differences in the estimated joint torques were caused during the
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swing phases, due to the faster motion of the limb during swing phase than 
the stance phase.

The addition of a rigid body paw to the two-dimensional hindlimb model 
had a very significant effect on the estimated joint torques during the stance 
phase. Much greater, in fact, than any of the investigated variations in the 
segmental hindlimb parameters. From the rigid paw investigation it can be ex
trapolated that the addition of a paw model to the two-dimensional hindlimb 
model will result in an increase in the magnitudes of the estimated hip and 
ankle torques, and a decrease in the magnitude of the estimated knee torque.

During a typical walking gait the cat hindlimb does not move in a simple 
planar fashion. However this study has shown that a planar model will provide 
an accurate estimate of the joint torques occurring within the limb. Should 
three-dimensional joint torques be estimated at each joint, this finding would 
no longer hold true. The addition of GRFy, which pushes laterally on the 
paw creating a valgus load on the limb during the stance phase, will cause a 
significant increase in the joint torques acting about the X-axis (adduction /  
abduction) at each joint.

A successful forward dynamics simulation, run using the estimated joint 
torques and the measured GRF’s as inputs, was not achieved without some 
means of accounting for the instability caused by the GRF’s. The forward dy
namics model required the addition of linear torsional spring-damper pairs at 
each joint to stabilize the forward dynamics simulations. The linear torsional 
spring-damper pairs also provide a means of incorporating the viscoelastic 
properties of the soft tissues (muscles and tendons) in the hindlimb, in the 
absence of soft tissue models in the two-dimensional hindlimb.

6.2 Future W ork
Recommendations for future research into the modeling of the feline hindlimb 
include are broken into two categories: inverse dynamics and forward dynam
ics.

Inverse Dynam ics

To the author’s knowledge no studies have performed a three-dimensional 
inverse dynamics investigation into the feline hindlimb. Muscles at the hip
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and MTP joints stabilize the hindlimb during gait about the adduction and 
abduction axis. The estimated joint torques may provide an additional insight 
into the cat’s locomotor control system.

If the forces and moments which occur within the paw itself are to be es
timated, the kinematic data for the phalanges or a method of modeling the 
motion of the phalanges will be required. Collection of kinematic data for the 
phalanges will require a refinement in the video based kinematic data collection 
process, or require the development of an alternative method for measuring 
the kinematic data of the phalanges. Additionally the transfer of the GRF’s 
from the soft tissues on the underside of the paw, to the phalanges, will be 
needed.

Forward Dynam ics

For forward dynamics investigations the flexibility and compliance of the 
paw will need to be addressed. The movement of the MTP joint and the sub
sequent movement of the area of contact over the surface of the paw are two 
factors that should be addressed by a paw model. The compliance of the paw 
due to the deformation of the soft tissues in the paw during contact, should also 
be considered. Alexander (1990) stated that some sort of padding is needed to 
avoid excessive impact forces when the hindlimb makes contact with a surface.

The creation of a ground contact model could be investigated. A ground 
contact model removes the two-dimensional hindlimb model’s reliance on the 
application of the measured GRF’s during the forward dynamics simulations. 
This is an important step towards creating a forward dynamics model which 
can propel itself, thereby creating locomotion. The ground contact model 
should be developed with the inverse dynamics model, since the motion of the 
inverse dynamics model is fixed (due to the kinematic data), such that it will 
provide GRF’s that match the measured GRF’s.
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A ppendix A  

M otion Capture System  
Calibration

A quick test of the motion capture system used by Dr. Pearson for the collec
tion of the positional data was performed to investigate if there was any error 
made in the measurements of the kinematic data.

Four reflective markers were placed upon a calibration board in a rectan
gular configuration as shown in Figure A.I. The calibration board was then 
placed in the middle of the walkway. A calibration of the motion capture sys
tem was performed by recording a single frame of the stationary calibration 
board. For the calibration, the operator running the motion capture system 
manually chooses the location of each of the corners of the calibration board 
captured in the single frame using the Peak Motus program. The physical 
dimensions of the calibration board are then entered into the Peak Motus pro
gram. Since the motion capture system uses digitized video, pixels are used to 
measure distances. The calibration lets the Peak Motus software know what 
distance value to assign each pixel so that the program can correctly calculate 
the positions of the reflective markers.

The stationary calibration board was then recorded for 0.5 s at 60 Hz. The 
film was digitized and the position of the four reflective markers were then 
calculated relative to the bottom left hand corner of the calibration board by 
the Peak Motus program, creating a positional data set. The locations of the 
center of each of the four reflective markers were then manually measured us
ing a ruler with a resolution of 0.5 mm, also with respect to the bottom left 
hand corner of the calibration board for comparison purposes.
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40 cm

Figure A.l: Calibration board used for the calibration of the motion capture 
system. Reflective markers were placed at points 1 through 4, in 
a rectangular configuration.

Upon analysis of the positional data set for the four reflective markers, a 
small amount of fluctuation was observed in the calculated values of each of 
the X and Z coordinates of the four reflective markers. The X coordinate data 
calculated by the motion capture system for Point 1 is shown in Figure A.2. 
A maximum fluctuation of 0.3 mm’s can be observed in Figure A.2. The 
fluctuation in the calculated value of the X coordinate may be attributed to 
the tracking of the reflective markers, where the tracking process refers to the 
identification of the location of each of the reflective markers in each frame of 
the digitized video. The majority of the tracking process is automated by the 
Peak Motus software, where the software chooses the location of the reflective 
markers in each frame of the digitized video based on the contrast between the 
intensity of the light given off by the reflective markers relative to their back
ground. Any variations in the intensity of the light given off by the reflective 
markers, from frame to frame of the digitized video, may affect the calculation 
of the location of the center of the reflective marker. Of the four markers, the 
maximum observed fluctuation in the X and Z coordinates was 1.0 mm in the 
Z coordinate of the reflective marker located at point four.

Each of the X and Z coordinate data sets calculated by the motion capture 
system were averaged to find a mean X coordinate and Z coordinate for each
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Figure A.2: Plot of the calculated X-Coordinate position of the reflective 
marker at Point 1 from the motion capture system.

of the four reflective markers. The measured locations of reference points 1 
through 4 were then compared to the mean X and Z coordinates. The maxi
mum error found in the motion capture system’s calculation of the coordinates 
of the four reflective markers was 2.1 mm’s.

Factors Affecting M easurem ents

For the purpose of this study an error of 2.1 mm’s in the location measure
ments of the reflective markers provide an adequate estimation of the markers 
locations, since as mentioned in Chapter 2 Section 2.1.1 skin slippage is a far 
greater source of error in the measurements. There are, however, a few other 
factors which may affect the accuracy of the measurement of the reflective 
markers.

The two-dimensional kinematic data provided by Dr. Pearson was collected 
with a single camera. Therefore any motion of the hindlimb which occurs 
outside of the two-dimensional plane of the camera (which is the X-Z plane 
of the global reference frame) will not be accounted for. However for the case 
of a cat walking along an enclosed walkway, the errors which may occur due 
to the use of the single camera are fairly small. As mentioned in Chapter 2, 
Section 2.2.1 the largest out of plane motion occurs when the hip joint abducts 
during the swing phase. The largest observed abduction angle from the hip 
adduction and abduction data provided by Dr. Misiaszek was 10 degrees.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assuming a total limb length of 25 cm’s, the maximum error caused by the 
maximum observed hip abduction of 10 degrees would be 3.8 mm’s in the Z 
direction for the paw marker, see Figure A.3. Any error due to the use of the 
single camera is still far less than the error attributed to the skin slippage, 
which may be as large as 4 cm’s.

Hip

Paw

Camera

L = 25.0 cm 

Z1 = 24.6 cm

Y

Figure A.3: Error in the measurement of the limb caused by two-dimensional 
data collection. L is the total length of the limb, while Z\ would 
be the distance between the hip and paw markers as measured by 
the motion capture system.

The placement of the camera with respect to the distance that it is located 
from the walkway, and therefore the cat, will also affect the accuracy of the 
measurements. If the camera is not placed the same distance from the walk
way for each trial, the accuracy of the system may vary for each gait trial since 
the pixels will then have a different distance value assigned to them for each 
trial.
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A ppendix B 

A utolev Code

This appendix contains the code used by Autolev to generate Kane’s equations 
of motion for the two-dimensional hindlimb model, and the three-dimensional 
hindlimb model. The code is saved as a text editor file which is then accessed 
and run by Autolev. The Autolev code for the three-dimensional hindlimb 
model also generates a set of equations with which the reaction forces which 
act upon the hip can be solved.

B .l  T w o-D im ensional H indlim b M odel C ode

File: 2D_ID_3Link ( Setup for Autloev 3.4)
Problem: Analysis of 3 link leg with 3 torques and 2 GRF’s

Newtonian, bodies, frames, particles, points

degrees off % angles expressed in radians
Newtonian N % Newtonian reference frame
Bodies A,B,C
Points E,F,H,I
%------------------------------------------------------------------------------------------------------
*/. Variables, constants, specified, mass, inertia
%------------------------------------------------------------------------------------------------------
VARIABLES Q{3}” % Angles + derivatives
VARIABLES U-C3}’ % Generalized Speeds and their derivatives
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VARIABLES GRFx,GRFy % Ground reaction Forces
VARIABLES T1,T2,T3 */. Torques
Constants L1,L2,L3 % Distance centers of mass for links A,B,C
Constants LA,LB,LC % Lengths of Body A,B,C
Constants G % gravity
MASS A = MA, B = MB, C = MC % Masses of bodies A,B,C,D
% Model the limbs as slender rods
Inertia A, IGA, IGA, 0 % inertia properties for body A
Inertia B, IGB, IGB, 0 '/. inertia properties for body B
Inertia C, IGC, IGC, 0 % inertia properties for body C
%------------------------------------------------------------------------------------------------------
"/, Geometry relating unit vectors
X------------------------------------------------------------------------------------------------------
dircos(N,A,SPACE213,Q1,0 ,0) 
dircos(N,B,space213,Q2,0,0) 
dircos(N,C,space213,Q3,0 ,0)
7.------------------------------------------------------------------------------------
% Position vectors
7,------------------------------------------------------------------------------------
P_E_Ao> = -L1*A3> % Position vector from E to c.o.m. body A
P_E_F> = -LA*A3> '/, Position vector from E to end of body A
P_F_Bo> = -L2*B3> % Position vector from F to c.o.m. body B
P_F_H> = -LB*B3> % Position vector from F to end of body B
P_H_Co> = -L3*C3> % Position vector from H to c.o.m. body C
P_H_I> = -LC*C3> % Position vector from H to end of body C
P_E_I> = P_E_F> + P_F_H> + P_H_I>
express(P_E_I>,N) % Express position vector in N reference frame
7,-----------------------------------------------------------------------------------
% Generalized Speeds
7.-----------------------------------------------------------------------------------
Ql’ = U1 
Q2’ = U2 
Q3’ = U3 
Ql” = DT(Ql’)
Q2” = DT(Q2’) %
Q3” = DT(Q30
7.-----------------------------------------------------------------------------------
#/, Angular velocities
%------------------------------------------------------------------------------------------------------
angvel(N,A)
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angvel(N,B)
angvel(N,C)
*/,---------------------------------------------------------------------------
% Angular accelerations
%----------------------------------------------------------------------------------------------------------

ALF_A_N> = DT(W_A_N>,N)
ALF_B_N> = DT(W_B_N>,N) %
ALF_C_N> = DT(W_C_N>,N)
'/,---------------------------------------------------------------------------
"/. Velocities
%----------------------------------------------------------------------------------------------------------

V_E_N> = 0> #/0 Velocity of point E in reference frame N 
V2PTS(N,A,E,Ao)
V2PTS(N,A,E,F)
V2PTS(N,B,F,Bo)
V2PTS(N,B,F,H)
V2PTS(N,C,H,Co)
V2PTS(N,C,H,I)
*/,--------------------------------------------------------------------------------------------
% Accelerations
'/,--------------------------------------------------------------------------------------------
A_E_N> = 0> % Acceleration of point E in reference frame N 
A2PTS(N,A,E,Ao)
A2PTS(N,A,E,F)
A2PTS(N,B,F,Bo)
A2PTS(N,B,F,H)
A2PTS(N,C,H,Co)
A2PTS(N,C,H,I)
'/,--------------------------------------------------------------------------------------------
*/, Forces and Torques
'/.--------------------------------------------------------------------------------------------
GRAVITY( -G*N3> )
Force_I> = GRFx*Nl> + GRFy*N3>
TORQUE(B/C,T3*B2>)
TORQUE (A/B,T2*A2»
TORQUE(N/A,T1*N2>)
I --------------------------------------------------------------------------------------------
% Kanes Equations of Motion
'/.--------------------------------------------------------------------------------------------
Zero = expand (FRO + FRSTARO)
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zero = arrange(zero,2,ul,u2,u3) 
zero = arrange(zero,1,U1’,u2’,u3’)
KANEO
'/,------------------------------------------------------------------------------------------
'/, Output constants for Matlab code
%-----------------------------------------------------------------------------------------------------------

UNITS GRFx = N, GRFy = N UNITS T = s, Q1 = rads, Q2 = rads,
Q3 = rads CHECK = NICHECK()%
output T,Q1,Q2,Q3,U1,U2,U3,T1,T2,T3,check %
pause
save 2DID3L.all

B .2 T hree-D im ensional H indlim b M odel C ode

File: 3D_ID ( Setup for Autloev 3.4)
Problem: Analysis of 3 link leg with 4 torques and 3 GRF’s 
Calculates Kanes Eqn’s
Measures angles relative to the negative Z-axis

degrees
Newtonian
Bodies
Points
%-------------
%
%-------------
VARIABLES
VARIABLES
VARIABLES
VARIABLES
%
Constants
Constants

Newtonian, bodies, frames, particles, points

off % angles expressed in radians 
N % Newtonian reference frame 
A,B,C */, Three segments of the Hindlimb 
D,E,F,0

Variables, constants, specified, mass, inertia

Q{4>’’ % Angles + deriv’s
U{7>’ % Generalized Speeds and their derivatives
FGRF1,FGRF2,FGRF3,F1,F2,F3 % Forces 
T1,T2,T3,T4 % Torques

L1,L2,L3 % Distance centers of mass for links A,B,C
LA,LB,LC % Lengths of Bodies A,B, and C
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Constants G 7. gravity
7.
MASS A = MA, B = MB, C = MC 7. Masses of bodies A.B.C
7, Model the limbs as slender rods
Inertia A, IGA, IGA, IGA 7, inertia properties for body A
Inertia B, IGB, IGB, IGB 7. inertia properties for body B
Inertia C, IGC, IGC, IGC 7. inertia properties for body C
'/,-------------------------------------------------------------------------------------------
7. Geometry relating unit vectors
’/,-------------------------------------------------------------------------------
dircos(N,A,SPACE213,-Q1,Q4,0) 
dircos(N,B,space213,-Q2,Q4,0) 
dircos(N,C,space213,-Q3,Q4,0)
%----------------------------------------------------------------------------------------------------------------------

7. Position vectors
•/,-------------------------------------------------------------------------------------------
P_0_Ao> = -L1*A3> 7. Position vector from origin to c.o.m. body A
P_0_D> = -LA*A3> 7. Position vector from origin to end of body A
P_D_Bo> = -L2*B3> 7. Position vector from D to c.o.m. body B
P_D_E> = -LB*B3> 7. Position vector from D to end of body B
P_E_Co> = -L3*C3> 7. Position vector from D to c.o.m. body B
P_E_F> = -LC*C3> 7. Position vector from D to end of body B
P_0_F> = P_0_D> + P_D_E> + P_E_F> express(P_0_F>,n)
%----------------------------------------------------------------------------------------------------------------------

7. Generalized Speeds
%----------------------------------------------------------------------------------------------------------------------

qi> = ui
Q2’ = U2 
Q3’ = U3 
Q4’ = U4 
Ql” = DT(Ql’)
Q2” = DT(Q2’)
Q3” = DTCQS’) 
q4” = DT(q4>)
%----------------------------------------------------------------------------------------------------------------------

7. Angular velocities
'/,-------------------------------------------------------------------------------------------
angvel(N,A)
angvel(N,B)
angvel(N.C)
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yt----------------------------
'/, Angular accelerations
’/,-------------------------------------------
ALF_A_N> = DT(W_A_N>,N)
ALF_B_N> = DT(W_B_N> ,N)“/, 
ALF_C_N> = DT(W_C_N>,N)
%--------------------------------------------------------

'/, Velocities
I --------------------------------------------------------

V_0_N> = U5*N1> +U6*N2> + U7*N3 
V2PTS(N,A,0,Ao)
V2PTS(N,A,Q,D)
V2PTS(N,B,D,Bo)
V2PTS(N,B,D,E)
V2PTS(N,C,E,Co)
V2PTS(N,C,E,F)
I -------------------------------------------------------

7, Accelerations
t -------------------------------------------------------

A_0_N> = DT(V_0_N>, N) 
A2PTS(N,A,0,Ao)
A2PTS(N,A,0,D)
A2PTS(N,B,D,Bo)
A2PTS(N,B,D,E)
A2PTS(N,C,E,Co)
A2PTS(N,C,E,F)

•/.-
7.
7.-

Motion Constraints

AUXILIARY[1] = Dot(V_0_N>, Nl» 
AUXILIARY [2] = Dot(V_0_N>, N2» 
AUXILIARY[3] = Dot(V_0_N>, N3>) 
Constrain( AUXILIARY[U5,U6,u7] ) 
’/,--------------------------------------

'/„ where Dot(V_0_N> ,N1>) = 0 
7. where Dot(V_0_N>,N2>) = 0 
•/. where Dot(V_0_N>,N3» = 0 
7, Solves for U5,U6,U7

Forces and Torques%
•/,----------------------------------------------------------------------
GRAVITY( -G*N3> ) % Gravity acts in negative Z dir. 
Force_F> = FGRF1*N1> + FGRF2*N2> + FGRF3*N3>
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Force_0> = F1*N1> + F2*N2> +F3*N3> % Forces acting on hip 
TORQUE(B/C,T3*B2>) % torques on each joint 
TORQUE(A/B,T2*A2>)
TORQUE(N/A,T1*N2> + T4*N1>)
•/,------------------------------------------------------------------------------------------------
*/. Kauies Equations of Motion
•/# -------------------------------------------------------------------------------------------------------------------

Zero = expand(FR() + FRSTARO) 
zero = arrange(zero,2,ul,u2,u3,u4) 
zero = arrange(zero,1,U1’,u2’,u3’,u4’)
KANE(F1,F2,F3)
'/,------------------------------------------------------------------------------------------------
I  Output constants for Matlab code
'/,----------------------------------------------------------------------------------
UNITS FGRF1 = N, FGRF2 = N, FGRF3 = N, FI = N, F2 = N, F3 = N 
UNITS T = s, Q1 = rads, Q2 = rads, Q3 = rads, Q4 = rads CHECK = 
NICHECKO output T,Q1,Q2,Q3,Q4,U1,U2,U3,U4,FI,F2.F3,check pause 
save 3did.all
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