
University of Alberta

PARALLEL ENCODERS AND DECODERS FOR LOW-DENSITY PARITY-CHECK

CONVOLUTIONAL CODES ON THE X I N C ™ MULTI-THREADED

MICROPROCESSOR

by

Xin Sheng Zhou ' \Jf/

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45917-1
Our file Notre reference
ISBN: 978-0-494-45917-1

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Low-density parity-check convolutional codes (LDPC-CCs) are a relatively new

family of capacity-approaching codes. In this thesis, a novel hard-decoding Paral

lel Improved Bit Flipping (PIBF) algorithm is proposed. The LDPC-CC decoding

processors are mapped to multiple threads on a multi-threaded microprocessor for

parallel decoding. In addition, multiple bits can be decoded at another level of

parallelism by using a microprocessor's built-in bit-wise parallelism within data

words. A new bit flipping threshold pattern is proposed, that can achieve 2.5 dB

coding gain compared to Gallager's original bit flipping algorithm at a Bit Error

Rate (BER) of 10~4. The decoding throughput is 24 times faster than the bench

mark Min-Sum algorithm. Looping overhead was identified as a major bottleneck.

Zero-overhead looping is therefore proposed as a desirable enhancement to the ex

isting microprocessor. The emulation results show that the decoding throughput

could thus be further increased by 16%.

To Hai Yan and Yi Ran

Preface

When I started my thesis project, the field of information theory had been explored
for almost 60 years. The seminal work can be traced back to Claude Shannon's
1948 paper "A mathematical theory of communication" published in the Bell Sys
tem Technical Journal. In that paper, Shannon showed that for any given channel
bandwidth and signal power to noise power ratio (SNR), there exists a maximum bit
rate at which information can be encoded and decoded without error at the receiver.
Since then, information theorists have searched for code constructions whose per
formance could approach the Shannon Limit.

After 50 years of search, a near-optimal solution was described in the paper
"Near Shannon limit error-correcting coding and decoding: Turbo codes" by C.
Berrou, A. Glavieux and P. Thitimajshima on 1993's IEEE International Confer
ence on Communications (ICC). Their result was not believed initially, with com
ments such as "They must have made a 3dB error" at the time, but their results
were widely confirmed within the next year. Shortly after, Low Density Parity
Check (LDPC) codes were re-discovered by other researchers who reported similar
capacity-approaching performance.

Turbo codes and LDPC codes were researched extensively thereafter, mainly
focussing on efficient and economic implementations. When I joined the VLSI lab
at University of Alberta in 2005, a team led by Dr. Stephen Bates was designing
the encoder and decoder for a variation of LDPC codes, called LDPC convolutional
codes (LDPC-CCs). Their work on Field-Programmable Gate Array (FPGA) tech
nology might be the first FPGA implementation of such codes in the world. The
well-known Min-Sum (MS) algorithm was used and the decoder architecture was
based on large amounts of memory. With the idea that the LDPC-CC decoding pro
cessors could be matched to a multi-threaded microprocessor architecture, my su
pervisor Dr. Bruce Cockburn proposed to implement LDPC-CCs on an 8-threaded
microprocessor, called XInC, which was developed by an Edmonton-based com
pany, Eleven Engineering Inc.

The purpose of the research is to investigate whether it is possible to efficiently
implement the LDPC-CC encoding and decoding algorithms on microprocessors.

For one thing, the LDPC-CC algorithm could potentially share the host micropro
cessor with other algorithms and hence reduce the total product cost. In addition,
the development cycle would be faster and development cost would be low com
pared to a high-performance Application-Specific Integrated Circuit (ASIC), with
its expensive and slow design, fabrication and test development work.

However, implementations can be fully customized in hardware with ASIC
technology while microprocessor architectures and instructions are standardized
and slow to evolve. The algorithm core operations might be done within one clock
cycle in an ASIC but require hundreds of clock cycles in a microprocessor. As a
result, the algorithm could become inefficient to a degree that is totally unaccept
able for important applications. In such a situation, we would have to find other
solutions to increase the decoding efficiency.

As a result, both existing algorithms and microprocessors were subjected to fur
ther evaluation and optimization. Two approaches were considered in this thesis
research project. First, the algorithm should fully utilize the advantages of existing
multi-threaded microprocessor architectures and resources. Second, the underly
ing algorithm bottlenecks in microprocessor implementations should be identified
so that new microprocessor hardware extensions could be added to eliminate or at
least reduce such bottlenecks. To understand the algorithm and microprocessor bet
ter, an emulator for the XInC multi-threaded microprocessor was written. Through
code profiling techniques, algorithm bottlenecks could be identified. Hardware ex
tensions eliminating such bottlenecks could then be added to the emulator. The
emulation results of those extensions could help to evaluate those add-on compo
nent's performance.

The research started with the implementation of the soft-decoding Min-Sum
algorithm on a 12 Million Instructions per Second (MIPS) XInC-I multi-threaded
microprocessor. The identical LDPC-CC decoding processors were distributed to
multiple thread resources. Unfortunately, the decoding throughput was disappoint
ingly slow at 2.2 Kbps. One reason for this low decoding throughput is that the
XInC-I is aimed at simple, low-cost consumer applications and it has only 1% pro
cessing capability of today's general microprocessors. Another reason, as discussed
above, is that ASICs and FPGAs can customize the algorithm in hardware while a
microprocessor architecture is fixed and it takes more instruction cycles to com
plete decoding operations. In addition, the Min-Sum algorithm was emulated and
the characteristics of the algorithm were determined by code profiling. The bottle
necks were found to be looping overhead and data movement.

The Min-Sum algorithm result showed that the XInC microprocessor might not
be a good platform for LDPC-CCs. Luckily, following Dr. Stephen Bates' sugges
tion to consider the hard-decoding algorithm, the research continued and focused
on Bit Flipping (BF) algorithms. Surprisingly, this algorithm appears to be almost

forgotten by other researchers. Only one related paper was found during the liter
ature review. The reason might be its simple decoding method and relatively poor
coding gain. Soon, bit flipping threshold patterns were found during the implemen
tation of the original Gallager's Bit Flipping algorithm. This discovery improved
coding gain by about 2.5 dB compared to Gallager's algorithm at a bit error rate of
10~"4. Later, the bit flipping algorithm was modified so that it could decode multiple
bits at one time by using the microprocessor's built-in bit-wise parallelism without
introducing much decoding complexity. For a 16-bit XlnC-I multi-threaded micro
processor, the decoding throughput increases almost 12 times. The new algorithm
is called the Parallel Improved Bit Flipping (PIBF) algorithm.

The PIBF algorithm was also evaluated using the XInC emulator. Almost 35%
of the instructions are looping overhead and 30% of the instructions are data move
ment. For data movement, it seems hard to do anything since the changes would
require modification of the whole microprocessor architecture. However, it should
be easy to eliminate the looping overhead by adding a relatively small hardware
extension: zero-overhead looping. Such a method is already widely used by many
Digital Signal Processors (DSPs). This hardware extension was then added to the
emulator. The emulation results showed that the decoding throughput could be fur
ther improved by 16%.

The current PIBF algorithm could decode LDPC-CCs at 56 Kbps on a 12 MIPS
XInC-I multi-threaded microprocessor. Eleven Engineering has developed another
100 MIPS XInC-n microprocessor. If the PIBF algorithm is adapted to the XInC-II
with 25% load, the decoding throughput could reach up to 116 Kbps. Furthermore,
on a 1 GHz 64-bit multi-threaded microprocessor with 100% load dedicated to de
coding, the throughput might reach up to 18.4 Mbps.

Although the current decoding throughput on XInC-I can only support relatively
low-speed applications, the multi-threaded microprocessor architecture was shown
to be a promising development platform for LDPC-CCs. With further research on
this topic, it may be possible to further improve the decoding throughput and then
possible to implement LDPC-CCs for high-speed applications on microprocessors.

Acknowledgements

I thank the Natural Sciences and Engineering Research Council of Canada (NSERC),
Semiconductor Research Corporation (SRC) and the University of Alberta General
Award which provided supporting funds. In addition, I am grateful to Eleven Engi
neering Inc. for providing two XInC demonstration boards.

I am especially grateful for the opportunity to work under the supervision of Dr.
Bruce Cockburn and Dr. Stephen Bates. Thank you for having me as your student
and for all the valuable advice and feedback which made the completion of this
work possible.

My most heartfelt thanks go to my family, this work is as much your accom
plishment as it is mine. All my love and appreciation to my wife Hai Yan and our
child Yi Ran for enduring the sacrifice of my being away from home, and for their
encouragement and patience throughout my degree.

Table of Contents

1 Introduction 1
1.1 Overview 1
1.2 Thesis Organization 5

2 Background 7
2.1 A Brief History of Error Control Coding 7

2.1.1 Block Codes 14
2.1.2 Convolutional Codes 19
2.1.3 Survey of Decoding Algorithms 21

2.2 Low Density Parity Check Codes 22
2.2.1 The LDPC-CC Encoder Structure 22
2.2.2 The LDPC-CC Decoder Structure 23

2.3 Multi-threaded Microprocessors 32

3 Improved Bit Flipping Algorithms 40
3.1 Bit Flipping Threshold Patterns 40

3.1.1 LDPC-CC Improved Bit Flipping Decoding Algorithm . . . 41
3.1.2 Simulation Results 44

3.2 The Parallel Improved Bit Flipping Algorithm 49
3.3 Conclusion 53

4 LDPC-CCs on Multi-threaded Microprocessors 54
4.1 Memory Organization and Flow Chart 54
4.2 LDPC-CC Decoder Implementation 58

4.2.1 The Min-Sum Algorithm 58
4.2.2 The Improved Bit Flipping Algorithm 61
4.2.3 The Parallel Improved Bit Flipping Algorithm 62

4.3 Computational Complexity and Coding Gain 63

5 Hardware Optimization and Extensions 66
5.1 The XInC Emulator 66
5.2 Hardware Optimization 68

5.2.1 Zero Overhead Looping 72
5.2.2 Performance Evaluation of the Zero-overhead Looping . . . 75

6 Future Research Directions and Conclusions 79
6.1 Future Research Directions 79

6.1.1 Longer LDPC-CCs 79
6.1.2 Precision 80
6.1.3 Hybrid Decoder Design 82
6.1.4 Adaptive Bit Flipping Algorithm 83

6.2 Main Contributions and Conclusions 83

Bibliography 86

A XInC Emulator C++Source Code 90

B LDPC-CC Encoding and Decoding Algorithm on XInC Microprocessor
Assembly Language 149
B.l LDPC-CC Encoding Algorithm Assembly Language on XInC . . .149
B.2 LDPC-CC PIBF Algorithm with Zero-overhead Looping on XInC . 153
B.3 LDPC-CC Min-Sum Algorithm Assembly Language on XInC . . . 162
B.4 LDPC-CC Encoding and Decoding Data Definition 173
B.5 LDPC-CC Encoding and Decoding Constant Definition 176

List of Tables

2.1 Exclusive OR (XOR) Truth Table 14
2.2 A (7,4) Hamming Code 18
2.3 XInC Instruction Set Summary 35

4.1 LDPC-CC Decoding Algorithm Computational Complexity 64

5.1 Instruction Frequencies for the Bit Flipping Algorithm Check Node
Calculation 69

5.2 Instruction Format Frequency of a Min-Sum Decoding Processor
including a Check Node and a Variable Node 71

5.3 LDPC-CC Decoding Algorithm Operation Frequency 72

List of Figures

2.1 Communication Systems 9
2.2 (7,4) Hamming Code Tanner Graph 17
2.3 Rate 1/2 Convolutional Code 20
2.4 LDPC-CC Encoder Structure 22
2.5 LDPC-CC Decoder Structure 24
2.6 LDPC-CC Bit Flipping Procedure 26
2.7 Sum-Product Algorithm Check Node Parameters for a Degree-6

CheckNode 30
2.8 Sum-Product Algorithm and Min-Sum Algorithm Variable Node

Operation 31
2.9 Min-Sum Algorithm Check Node Operation 32
2.10 Min-Sum Algorithm Check Node Operation Example 33
2.11 Flynn's Computer Architecture Taxonomy 33
2.12 XInC Microprocessor Architecture 38

3.1 BER of Uncoded BPSK, BF Pattern (3)+ and (3 - 2)+, Min-Sum
and Sum-Product algorithm for a (128,3,6) LDPC-CC 45

3.2 BER of BF Pattern (3 - 2)+ after 1 -6 and 60 Decoding Processors
for a (128,3,6) LDPC-CC 46

3.3 BER of BF Pattern (3 - 2)+,(3 - 3 - 2)+,(3 - 3 - 3 - 2)+,(3 - 3 -
3 - 3 - 2)+ and (3 - 3 - 3 - 3 - 3 - 2)+ for (128,3,6) LDPC-CC
with 6 Decoding Processors 47

3.4 BER of BF Pattern (3 - 2)+,(3 - 2)+,(3 - 3 - 2)+,(3 - 3 - 3 -
2)+,(3 - 3 - 3 - 3 - 2)+ and (3 - 3 - 3 - 3 - 3 - 2)+ after Different
Number of Decoding Processors, E],/N0 — 6dB 48

3.5 IBF and PIBF Algorithm Demonstration 50
3.6 PIBF Encoding 50
3.7 PIBF Decoding 51
3.8 PIBF Algorithm Error Pattern Processing 52

4.1 LDPC-CC Parallel Algorithm Memory Organization 56

4.2 LDPC-CC Parallel Algorithm Flow Chart 57
4.3 Min-Sum Algorithm and Parallel Bit Flipping Algorithm Check

Node Operation 59
4.4 Min-Sum Algorithm Variable Node Operation 60
4.5 Min-Sum Algorithm Hard Decision Operation 60
4.6 Improved Bit Flipping Algorithm Check Node Operation 61
4.7 Improved Bit Flipping Algorithm Variable Node Operation 62
4.8 Parallel Bit Flipping Algorithm Variable Node Operation 63

5.1 Zero-overhead Looping Flow Chart 74
5.2 Example Zero-overhead Looping Circuitry 77
5.3 Comparison of Decoding Processor Instruction Cycle Counts 78
5.4 Comparison of Algorithm Throughput 78

6.1 Min-Sum Algorithm Performance with Precision 8- ,4- ,3- and 2-Bits 81

Chapter 1

Introduction

1.1 Overview

In a communication system or storage system, the physical signals that represent

information or data can be contaminated by noise. Noise, as understood in electri

cal engineering, is viewed as unwanted deviations in a signal due to the net effect

of uncertain or unknown underlying physical phenomena. Before Claude Shan

non's work, it was generally believed that the fidelity of information represented

using signals would be corrupted inevitably due to the presence of noise. Hence, it

was believed to be impossible ever to be able to transmit or store data with 100%

accuracy [1].

In 1948, Shannon published his paper "A mathematical theory of communica

tion" [1]. In that paper, he showed that for any given channel bandwidth and signal

power to noise power ratio (SNR), there exists a maximum bit rate at which infor

mation can be encoded and decoded without error at the receiver. This maximum

possible error-free bit rate is also called Shannon's Channel Capacity or the Shan

non Limit. However, he did not show how to reach that channel capacity in his

paper. Since 1948, many researchers have tried to find suitable code constructions

and their associated encoding and decoding methods that could approach the limit

in an efficient way.

1

Section 1.1: Overview

After 50 years of research, Turbo Codes [2] were reported to be the first capacity-

approaching codes in 1993. Shortly after, Low Density Parity Check (LDPC) block-

based codes [3] were found to be another class of capacity-approaching codes in

1996 [4]. A block-based code encodes the given information in fixed-sized blocks.

Today, LDPC codes have been adopted in several communication standards, includ

ing the DVB-S2 standard [5] for the satellite transmission of digital television and

the IEEE 802.16e standard [6] for wireless data networking services.

In 1999, A. Jimenez Felstrom and K. Zigangirov adapted the low-density parity-

check concept from block-based codes to convolutional codes [7] and proposed

Low-Density Parity-Check Convolutional Codes (LDPC-CCs) [8]. We will refer to

the previous LDPC codes as Low-Density Parity-Check Block Codes (LDPC-BCs)

since in those codes the information bits are encoded and decoded block-by-block.

By contrast in LDPC-CCs, the entire data stream is encoded and decoded contin

uously without block boundaries. It was shown in [8] that LDPC-CCs have better

coding gain than LDPC-BCs with the same memory capacity in the decoder cir

cuit. The coding gain is defined as the reduction of the signal-to-noise ratio Eb/N0

in decibels when error control coding is used compared to uncoded data at some

specified bit error rate. Furthermore, LDPC-CCs have a simpler encoder structure

similar to other convolutional codes. Moreover, LDPC-CCs allow data sequences

of arbitrary length to be encoded, making these codes especially attractive in sit

uations where either (a) the data block does not fit into the fixed payload field of

the available data frame, or (b) the data is produced continuously by a streaming

application [9].

Initial decoder implementations for LDPC-CC have been reported on Field-

Programmable Gate Arrays (FPGAs) [10] and Application-Specific Integrated Cir

cuits (ASICs) [11]. However, implementing software-based decoders for LDPC-

CCs on microprocessors could have several benefits:

2

Section 1.1: Overview

1. The LDPC-CC algorithm could share the host microprocessor with other

algorithms and hence reduce the total product cost.

2. The development cycle for a software decoder is faster, and the development

costs and risks are lower compared to the expensive and slow fabrication process

required by custom ASICs.

The project started with a conventional soft-decoding algorithm targeted for a

microprocessor: the Min-Sum (MS) algorithm [12] [13]. This algorithm decodes

the original encoded bits based on estimated signal reliability information derived

from the received analog signal. However, when this algorithm is implemented on

microprocessors, the decoding throughput is found to be rather slow. One reason

for the low speed is that many operations, which could be customized in FPGAs or

ASICs to be completed in one clock cycle, require several clock cycles to complete

on a microprocessor. Another reason is that the reliability information associated

with the input signal is represented as fixed-point numbers and the decoding algo

rithm is relatively complex. The third reason is that the existing algorithms do not

fully exploit the advantages of existing microprocessor architectures.

As a result, another simpler decoding algorithm, the Bit Flipping (BF) algorithm

[3], became a major focus of this research project. The sampled received analog

signal is sent into a threshold device (comparator) that compares the signal with a

reference voltage that lies between the expected '0' and T signals. The resulting

binary '0' or ' 1' outputs from the comparator are used in the bit flipping decoding

algorithm. In this research project, an Improved Bit Flipping (IBF) algorithm is

proposed. The new algorithm uses a Bit Flipping Threshold Pattern (BFTP) to

identify and then flip the suspect bits. The threshold pattern is the sequence of bit

flipping thresholds used in the decoding processors when they make decisions about

changing bit values to correct likely errors. At a Bit Error Rate (BER) of 10~4, the

IBF algorithm achieves 2.5 dB greater coding gain compared to Gallager's original

3

Section 1.1: Overview

bit-flipping algorithm, which has a fixed conservative flipping threshold.

In addition, multi-threaded microprocessors are found to be potentially good

candidates for LDPC-CCs. In the LDPC-CC decoder, the bit stream is processed

by several identical decoding processors. A decoding processor performs a funda

mental calculation in the process of detecting and correcting errors in the stream of

incoming bits. These decoding processors could be mapped to multiple micropro

cessor threads and run in parallel. Moreover, bit flipping algorithms use simple bit

manipulations, such as AND, OR, XOR. Microprocessors could exploit this fact by

processing multiple bit operations in one instruction at the word level. For a 16-bit

microprocessor, the decoding throughput could thus potentially improve 16 times.

In practice, the speed-up will be less than 16 times since not all parts of the calcula

tion can be made parallel (See Amdahl's Law [14]). This proposed bit-parallel bit

flipping algorithm is called the Parallel Improved Bit Flipping (PIBF) algorithm.

The PIBF algorithm is analyzed using a microprocessor emulator. The emulator

was written in the object-oriented programming language C++ at the beginning of

this project. The multi-threaded microprocessor used in the research is called XInC

[15]. This part was developed by Eleven Engineering Inc. in Edmonton, Canada for

low-cost consumer products. Through code profiling, two main bottlenecks of the

algorithm were found: looping overhead and data movement. A hardware exten

sion, called zero-overhead looping, is proposed to eliminate the looping overhead.

Using this extension, the decoding throughput could be increased further by about

16%.

The decoding throughput of the PIBF algorithm on a 12 Million Instructions Per

Second (MIPS) XInC-I multi-threaded microprocessor was found to be 56 Kbps

with an average of 27 instruction cycles required to decode each incoming infor

mation bit. If a 1-GHz 64-bit microprocessor with similar bit-parallel instruction is

used, the decoding throughput might increase up to 18.4 Mbps, which could well

4

Section 1.2: Thesis Organization

support some broadband access services such as Digital Subscribe Line (DSL) In

ternet access.

During this research project, Gallager's original bit flipping algorithm [3] was

improved significantly. We believe that the multi-threaded microprocessor has now

been shown to be a promising development platform for LDPC-CCs.

1.2 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2, background information on LDPC codes is presented. The con

cepts of block codes, convolutional codes, soft decoding and hard decoding, and

iterative decoding are defined. Then several published encoding and decoding al

gorithms for LDPC-CCs are reviewed. At the end of this chapter, the architecture

of the XInC-I multi-threaded microprocessor is presented.

In Chapter 3, the use of a Bit Flipping Threshold Pattern is proposed. The Im

proved Bit Flipping algorithm (IBF) is then described. Several threshold patterns

are simulated and the pattern (3 — 2)+ is found to be the best for a benchmark

(128,3,6) LDPC-CC. In addition, the Parallel Improved Bit Flipping (PIBF) algo

rithm, which exploits microprocessors' built-in bit-wise parallelism to significantly

increase the data throughput, is also described.

In Chapter 4, the architecture of the LDPC-CC encoding and decoding algo

rithm on the XInC multi-threaded microprocessor is presented. Implementations

of the Min-Sum algorithm, the IBF algorithm and the PIBF algorithm on the XInC

microprocessor are discussed. An evaluation of the trade-off between the coding

gain and computing complexity is provided at the end of the chapter.

In Chapter 5, the LDPC-CC decoding algorithms are analyzed using a software-

based XInC microprocessor emulator. The algorithm bottlenecks are identified as

being looping overhead and data movement operations. A new hardware extension,

5

Section 1.2: Thesis Organization

called zero-overhead looping, is proposed and emulated. The decoding throughput

improvement of this proposed hardware enhancement is presented.

The thesis ends with discussions of possible future research directions and con

clusions in Chapter 6.

6

Chapter 2

Background

2.1 A Brief History of Error Control Coding

In communication systems, information must be transmitted reliably from the trans

mitter end to the receiver end through a channel. However, due to signal distortions

and inevitable noise sources present in the communications channel, the quality of

the received signals can be degraded to the point where bit errors (e.g. bits that

have been flipped from 0 to 1, or from 1 to 0) occur in the received bits. In order

to detect and correct these errors, redundant information (i.e. check bits) can be

added to the intended data (i.e. information bits) at the transmitter before the signal

is sent into the channel [16]. The known relationship between the information and

check bits is used at the receiver to detect and hopefully correct any errors in the

information bits. This process is called channel coding in communication systems

since the purpose of the coding is to combat the channel noise. The more general

term "error control coding" is also used since the technique can not only correct the

errors in a communication system, it also could be used to correct errors in other

applications such as magnetic data storage systems.

A typical communication system is shown in Figure 2.1. The information bits

first go through a source encoder. The purpose of the source encoder is to encode

the information bits in some way that maximizes the information density contained

7

Section 2.1; A Brief History of Error Control Coding

in the encoded bits by removing data redundancy. Typically, the information bits

are segmented into small groups of bits and each group represented together as an

information symbol from a non-binary alphabet. For example, two information bits

could be grouped and represented as one of the four symbols: 5i='00', 52='0r,

5*3='10', 54='11'. The source encoder then encodes according to the probability

that each information symbol appears in the symbol series. Symbols with large

probability are represented with shorter codewords and symbols with small proba

bility are represented with longer codewords. For example, the symbols 5] ,52,53

and 54 might get coded as '0', '10', '110' and '111', respectively. For a given in

formation bit stream, the optimum encoded bit stream would have minimal length.

From a statistical view, each bit in an efficiently encoded bit stream would have

equiprobability of being '0' and ' 1 ' . The encoded information bits are then sent

into the channel encoder. The function of the channel encoder is to add redundant

bits in order to combat the effects of channel noise. After that, the output of channel

encoder is imposed onto analog carrier signals by the modulator and sent through

the channel. Within the channel, the signal is distorted and contaminated by noise

and other environmental factors. When the signal is received, the receiver first

samples the analog signal. The sampled signal could then be sent into a threshold

device (comparator) to get binary digits '0' or ' 1' first, and then sent into a channel

decoder. Alternatively, the sampled signals can be sent into the channel decoder di

rectly as analog or sampled digital signals. If the channel decoder uses non-binary

signals, it is called a soft-decoder. On the other hand, if the channel decoder pro

cesses binary digits, it is called a hard-decoder. The function of the channel decoder

is to correct erroneous bits caused by channel noise. The decoded bits are finally

forwarded to the source decoder for source decoding. After source decoding, we

hope that the decoded bits are the same as the original information bits.

In the field of information theory, the information content of a symbol can be

8

Section 2.1: A Brief History of Error Control Coding

Information
bits

Source
encoder

Channel
encoder

Modulator Channel

I)ec<
bits

ecoded Source
decoder

Channel
decoder

Demodulator

Noise

Figure 2.1: Communication Systems

defined numerically as the logarithm of the probability of the symbol as follows [1]:

h = l°S2(w) bits

where Pj is the probability of the y'-th symbol and Ij is the information carried by

7-th symbol measured in bits. The average information content is defined to be

m m i

H=ZPjIj=
yZPAog2(-)bits

7=1 7=1 rJ

where m is the total number of symbols. The average information content of a

source of symbols is also called the entropy.

Before Claude Shannon, researchers thought that information could not be re

ceived with 100% accuracy due to inevitable signal distortion and contamination by

noise. In his landmark 1948 paper [1], Shannon showed that for any given channel

bandwidth and signal power to noise power ratio (SNR), there exists a maximum bit

rate by which information can be encoded and decoded without error at the receiver.

The Shannon-Hartley Theorem [1] further states that for the special case of a

signal plus Additive White Gaussian Noise (AWGN), the channel capacity C (in

bits/second) is given by,

C = Bx log2(l + —) bits/second

9

Section 2.1: A Brief History of Error Control Coding

where B is the finite channel bandwidth in Hertz (Hz) and S/N is the signal power

to noise power ratio at the input to the receiver.

Additive White Gaussian Noise is widely used in communication systems as an

ideal noise model. The noise component in physical systems is formed as the net ef

fect of many different noise phenomena. According to the Central Limit Theorem,

for statistically independent underlying noise sources, the probability distribution

of the net total noise tends to become Gaussian as the number of statistically in

dependent noise sources is increased without limit, regardless of the probability

distribution of the noise sources being sampled, as long as the noise signals have

a finite mean and a finite variance. Many real noise sources thus have the charac

teristics of a Gaussian distribution. For example, for thermal noise, the number of

electrons in a resistor is very large and their random motions inside the resistor are

statistically independent of each other, and hence the net produced thermal noise is

Gaussian-distributed. The probability density function of Gaussian noise with zero

mean can be written as,

1 -4
:eXp 2o2

. i

CV2TC

where a2 is the variance or the average power of the noise signal. So-called white

noise is a noise with a flat (i.e., frequency-independent) power spectral density spec

trum. The power spectral density of white noise is defined as,

sw(f) = Y

where N0 denotes the average noise power per Hertz. The factor 1/2 has been

included to indicate that half the power is associated with positive frequencies and

half with negative frequencies [17]. In practice, white noise must be limited in

bandwidth to avoid describing noise with infinite power.

10

Section 2.1: A Brief History of Error Control Coding

The performance of an error control coding scheme is usually evaluated by ex

pressing the probability that the decoded bits will be incorrect (the bit error rate)

as a function of the signal-to-noise ratio E{,/N0. Here Ef, is the received signal en

ergy over a one bit time interval. Eb/N0 is useful when comparing the bit error rate

performance of different digital modulation schemes or channel coding schemes

without needing to take the bandwidth into account.

According to Shannon's theorem, the code rate cannot exceed the channel ca

pacity if we want to achieve error-free communication. The code rate is given by

R=K/N where it is assumed that for every K information bits, the encoder generates

a total of N bits of data, of which N-K are redundant. For error-free communication

over an AWGN channel,

Eb>2^-1

where R is the code rate and 7J, is the time duration of one bit. In the ideal limiting

case when unlimited channel bandwidth is available,

1
Eb 2 ^ — 1
— > limB->oo j = ln{2) = —\.59dB,
N° %B

which is the absolute minimum Et,/N0 required for error-free communication. This

limit is higher in real channels with finite bandwidth.

Although Shannon determined a precise upper bound on the channel capacity,

he did not give constructions of codes that can actually achieve the channel capac

ity. Finding good code constructions that could approach the Shannon's channel

11

Section 2.1: A Brief History of Error Control Coding

capacity has been an ongoing challenge in coding theory research field ever since

[18].

One strategy for approaching the channel capacity for block codes is to use a

large block length. Under that condition, a random coding scheme, which randomly

picks codewords, is good enough to achieve the limit. It has been shown that such

codes are likely to approach the capacity limit if the block length is indefinitely

large [7]. However, this random coding scheme cannot be realized since it requires

exponentially large memory space to store the mapping table that is required to

map blocks of information bits to codewords. In addition, the time to search this

table would also be exponentially large. For a moderate block length of 30, the

table already has more than 1 billion entries. However, the block length normally

requires more than 104 bits to approach the channel capacity within 0.6 dB [19].

As a result, practical codes have to use some pre-defined rules to construct the

codewords in order to eliminate the mapping table. The encoder and decoder can

then be operated based on these rules.

One simple method is to encode the information bits by simply repeating; bits or

blocks of bits two or more times using a repetition code. When a bit is flipped by

an error, the error could be corrected according to the majority rule. For example,

if a block of information bits is "101", we then may encode the block as "101 101

101". If one of the bits is in error and we receive "101 111 101", the decoder could

deduce that "101" is the correct information bits since "101" is the result of a simple

majority consensus.

Another widely used method is the parity check. A check bit is a bit that is

added to a block of information bits to indicate whether either the 0's and 1 's within

that block is an even or odd number. If a single bit is flipped through the channel,

the prearranged parity check constraint would be violated and the error would be

detected by the fact that a parity check recomputed at the receiver would fail. In

12

Section 2.1: A Brief History of Error Control Coding

[7], P. Elias showed that a typical parity check code with large block length used

on a BSC channel could achieve a decoded bit error rate almost as small as the best

possible code if the code rate is between what he called the critical rate and the

channel capacity. As a result, if we could generate random-like long codewords

with multiple parity checks, then the channel capacity can be approached.

Consequently, Elias sought random-like codes with special structure that per

mitted simple implementation without sacrificing the code's error correcting perfor

mance. Gallager, as Elias's student, proposed Low Density Parity Check (LDPC)

codes [3] in 1962 motivated by the search for Elias's random-like codes. The result

ing codes are now usually called Low Density Parity Check Block Codes (LDPC-

BCs). The LDPC codes use multiple parity checks. In a LDPC-BC the density

of 1 's in the parity check matrix H (defined later) is low, that is, much less than

50%. In his paper, Gallager showed the distance property of LDPCs and gave a

probabilistic decoding algorithm with promising empirical performance. However,

LDPCs were then generally forgotten due to the assumption that the subsequently

developed concatenated codes were probably superior for practical purposes [4].

The computational load of the decoding algorithm of LDPC-BCs was also consid

ered to be impractically high.

After many years of search, the first capacity-approaching code, the so-called

Turbo code [2], was described in a paper presented in 1993. Shortly after, in 1996,

D. Mackay and R. Neal [4] found that LDPC-BCs with very sparse parity check

matrix with an approximate probabilistic decoding algorithm could also approach

Shannon's channel capacity. They later found that Gallager's work in the early

1960s on low-density parity-check codes should be credited as having proposed the

first such codes.

In 1999, A. Jimenez Felstrom and K. Zigangirov applied the idea of the low-

density parity-check matrix to convolutional codes, and then proposed Low Density

13

Section 2.1: A Brief History of Error Control Coding

Parity Check Convolutional Codes (LDPC-CCs) [8]. In their paper, they gave a

prototype hardware decoder which can be implemented conveniently by a cascade

of physically identical decoding processors [8].

2.1.1 Block Codes

In a parity check operation, check bits can be generated by simple logical exclusive

OR (XOR) operations. Table 2.1 shows the logical truth table of the XOR operation

for two inputs.

Table 2.1: Exclusive OR (XOR) Truth Table

a
0
0
1
1

b
0
1
0
1

aXORb
0
1
1
0

The XOR operation is often denoted using the symbol ©. As an example, the

check bit for a block of four information bits "0110" is 0 0 1 © 1 0 0 = 0. Note

that © is associative, so a © (b © c) = (a © b) © c for three binary values a, b and c.

The information bits together with the one check bit "0110+0" are then transmitted

together through the channel. At the receiver, the decoder performs XOR opera

tions for both information bits and check bits. If the result is '0', the parity check

constraint is obeyed. If the result is ' 1 ' , the parity check constraint is failed. For

example, if the first bit is in error, then the recomputed parity check result at the

receiver would be 1 © 1 © 1 © 0 © 0 = 1, and hence we know that the parity check

constraint is failed and an error is detected. However, we still do not know which bit

is in error now. Furthermore, if two bit errors occur, the errors cannot be detected

since the parity check constraint would be obeyed. To unambiguously determine

which single bit is in error, each bit could participate in multiple parity check oper

ations. If a bit is in error, this fact would be indicated several times. For example,

14

Section 2.1: A Brief History of Error Control Coding

in (7,4) Hamming codes, the codeword length is 7 bits. Four bits are information

bits and remaining three bits are check bits. Three check bits are generated using

the following parity checks: Pi = I\ ®h ®h, P2 = h ®h ®h, P3 = h ®h ®h •

When the coded bits are received, the decoder checks the following parity check

constraints: I\ 8/3 ©74 @P\,I\ ®h ®h ®Pi, h ®h §>h ©-P3 • These parity checks

should all evaluate to the value 0. In the above (7,4) Hamming code example, if

I\ is received in error, then the second and third parity check constraints would fail

and the first parity check constraint would be obeyed. Two failed constraints indi

cate that I\ or I3 has the most possibility of being in error. However, the obeyed

constraint indicates that I3 is probably correct. From all of the three parity check

results, we could conclude that I\ has the most probability in error. To correct this

error, we could flip that bit from ' 1' to '0' or from '0' to ' 1 ' .

The set of all parity check constraints can be represented by a parity check

matrix H. Each row of H corresponds to one parity check constraint. The 1 's in the

same row indicate those bits are involved in one parity check constraint. The (7,4)

Hamming code parity check matrix is shown below.

H =
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

There are 3 rows in this matrix, which means 3 parity check constraints should

hold in each 7-bit block. Each row has four 1 's, which identify which 4 of the 7 bits

are involved in each parity check operation.

The encoded bits can be represented by a vector x.

x=(xo,xi,...xN-i)

The parity check constraints can be represented completely with the following

matrix equation.

15

Section 2.1: A Brief History of Error Control Coding

xH r = 0

where H r denotes the transpose of matrix H.

In addition, a generator matrix can be used for generating all possible code

words. If the generator matrix is G and the information bit vector is c, then the

generated codeword w is given by the following matrix equation.

w = cG

The equivalent generator matrix G of the above (7,4) Hamming code is,

" 1 0 0 1 1 0 "
0 1 0 0 1 1
0 0 0 1 1 1
0 0 1 1 0 1

Block codes can be represented by a Tanner Graph [20]. The decoding oper

ations associated with the received bits in a codeword are abstracted as so-called

variable nodes. The decoding parity check operations are abstracted similarly as

check nodes. The edges connecting variable nodes with check nodes indicate the

parity check constraints between the bits. The Tanner Graph for the (7,4) Hamming

code is shown in Figure 2.2. In the figure, variable nodes are represented as square

nodes and check nodes are represented as circle nodes.

The code distance is defined as the minimum number of different bits in cor

responding position between any two codewords. To maximize the coding gain,

codes should be constructed to maximize the code distance. This means, in effect,

that the number of bit errors that would be required to change one codeword into an

other valid codeword is maximized. Given a code with code distance N, (N—l)/2

errors could be corrected by seeking the closest correct codeword to any given error

16

Section 2.1: A Brief History of Error Control Coding

Figure 2.2: (7,4) Hamming Code Tanner Graph

word. For the (7,4) Hamming code, there are a total of 27 = 128 words. From that

space, only 8 words are chosen as valid codewords. The choice of these codewords

uses the following approach: each valid codeword and 7 other words whose dis

tance to that valid codeword is 1 are grouped. One example of (7,4) Hamming code

codewords is shown in Table 2.2. The code distance between any two codewords

can be verified to be equal to or greater than 3. If one bit is in error during the

transmission, this error can be detected and corrected. For example, if the encoded

codeword is "0000000" and one received bit is in error, the received bits would

be any of "0000001", "0000010", "0000100", "0001000", "0010000", "0100000"

or "1000000". The most possible codeword is "0000000" since the code distance

between the erroneous received bits and "0000000" is one. However, we could not

correct the received bits if two bit errors occur. For example, if "0000011" is re

ceived, then the received bits would be wrongly corrected as "0100011" rather than

"0000000" since the code distance between "0100011" and "0000011" is one and

the code distance between "0000000" and "0000011" is two.

In order to increase the code distance for the codes of the same code rate R=K/N,

we generally need to increase the block length N. The number of valid codewords is

2 ^ . When N increases to infinity, the ratio of the number of valid codewords to the

total number of words 2~N^~R^ goes to 0. As a result, the coding gain is increased

as the average code distance between codewords is increased.

Like a Hamming code, low-density parity-check codes use multiple parity checks

17

Section 2.1: A Brief History of Error Control Coding

Table 2.2: A (7,4) Hamming Code

Source
0000
0001
0010
0011

0100

0101

0110

0111
1000
1001
1010
1011
1100
1101
1110

mi

Codeword
0000000
0001101
0010111
0011010

0100011

0101110

0110100

0111001
1000110
1001011
1010001
1011100
1100101
1101000
1110010

1111111

and the parity check constraints are specified by a parity check matrix. The char

acteristic of a LDPC parity check matrix is that the 1 's of the matrix have a rela

tively low-density compared to the 0's. For a (N,J,K) LDPC-BC, the matrix has N

columns. Each column has J ones and each row has K ones. This means that each

bit involves J parity check constraints and each parity check constraint involves K

bits. Equivalently, in the Tanner graph, each variable node has J edges connected

to check nodes and each check node has K edges connected to variable nodes. The

value of J is called the variable node degree and K is called check node degree. The

benefit of LDPC-BC's low-density parity check matrix is that the decoder structure

is simpler. Each ' 1' in the parity check matrix implies the presence of an input to a

network of XOR gates. A (20,3,4) LDPC parity check matrix is shown below.

18

Section 2.1: A Brief History of Error Control Coding

1
0
0
0
0
1
0
0
0
0
1
0
0
0
0

1
0
0
0
0
0
1
0
0
0
0
1
0
0
0

1
0
0
0
0
0
0
1
0
0
0
0
1
0
0

1
0
0
0
0
0
0
0
1
0
0
0
0
1
0

0
1
0
0
0
1
0
0
0
0
0
0
0
0
1

0
1
0
0
0
0
1
0
0
0
1
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
1
0
0
0

0
1
0
0
0
0
0
0
0
1
0
0
1
0
0

0
0
1
0
0
1
0
0
0
0
0
0
0
1
0

0
0
1
0
0
0
1
0
0
0
0
0
0
0
1

0
0
1
0
0
0
0
0
1
0
0
1
0
0
0

0
0
1
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
1
0
0

0
0
0
1
0
0
0
1
0
0
0
0
0
1
0

0
0
0
1
0
0
0
0
1
0
0
0
0
0
1

0
0
0
1
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
1
0
0
0
0
0
0
1
0

0
0
0
0
1
0
0
1
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0
1
0
0
0
1
0
0

0
0
0
0
1
0
0
0
0
1
0
0
0
0
1

Note that when we encode, the low-density parity-check matrix would need to

be converted to its equivalent generator matrix, which normally is no longer low-

density. As a result, the encoder computation complexity is typically 0(N2), using

big O complexity notation [21]. Finding more efficient encoding algorithms and

code constructions to encode LDPC in linear time continues to be an active research

area. Several methods are reported in [22].

2.1.2 Convolutional Codes

Convolutional codes first appeared in P. Elias's 1955 paper [7]. In general, convo

lutional code encoder structure is considered to be simpler than block code encoder

structure since convolutional codes are encoded continuously while block codes are

encoded block-by-block.

Figure 2.3 shows a traditional rate 1/2 convolutional code encoder. Each check

bit is generated from the current information bit and two previous information bits

stored in memory registers. The information bits and check bits are then interleaved

by a multiplexer at the output.

19

Section 2.1: A Brief History of Error Control Coding

m(t)—r-H

s0(t) N

s,(t)'

Figure 2.3: Rate 1/2 Convolutional Code

The transpose of the parity check matrix of a (M,J,K) LDPC-CC can be repre

sented as follows:

w r —

•M Wi *n°) hi (!)
;(0)/ s.0),

0 M0)(l)
40)(D

0

0

h<F>(M+l)

0
h\m)(n)

0 hi f«
The parity check constraint is based on a sliding memory window of size 2 x M.

The value of a given parity check bit is a function of the 2M— 1 preceding bits in

the coded bit stream. The number of 1 's in each row is J, which means each bit

is involved in J parity check constraints. The number of 1 's in each column is K,

which means each parity check constraint involves K bits. The parity check matrix

is extended in a continuous way to accommodate the arriving stream of bits.

20

Section 2.1: A Brief History of Error Control Coding

2.1.3 Survey of Decoding Algorithms

Many hard-decoding algorithms have been developed [18]. In a hard-decoding al

gorithm, the received analog signal is sent into a threshold device (comparator) and

the binary output '0' or ' 1' is used for decoding in an entirely algebraic calculation.

In 1967, an efficient hard-decoding algorithm for convolutional codes, the Viterbi

algorithm, was proposed [23]. One weakness of the Viterbi algorithm is that the de

coding complexity increases exponentially when the total number of memory regis

ters is increased. As a result, the total number of memory registers must in general

be under 10.

Note that the received analog signal contains valuable probabilistic reliability

information. For example, if ' 1 ' is transmitted as +1 V and '0' is transmitted as -1

V, then when the received analog signal is sampled as +0.8 V, we could say that

the bit is more likely to be ' 1 ' than to be '0'. However, with very small probabil

ity the signal could in fact be a '0' that has been corrupted with a large amount of

noise at the bit sampling instant. That reliability information is discarded when the

sampled measurement goes through the threshold device. If the reliability informa

tion is exploited in the decoding algorithm, that algorithm is called a soft-decoding

algorithm.

To distinguish the received bits, the binary bit from the threshold device is called

a hard bit and a bit signal representation that includes reliability information is

called a soft bit.

Another important concept in the LDPC decoding algorithm is iterative decod

ing. For each iteration, some of the hard-bits are corrected in hard-decoding algo

rithm, or the probabilities of the soft-bits as '0' or ' 1 ' are adjusted and eventually

strengthened. The result of one iteration is used in the next iteration for further de

coding. The received bits are hence decoded iteratively and the coding gain should

be gradually increase until some iteration limit is reached.

21

Section 2.2: Low Density Parity Check Codes

2.2 Low Density Parity Check Codes

2.2.1 The LDPC-CC Encoder Structure

Figure 2.4 shows a (128,3,6) LDPC-CC encoder structure. The LDPC-CC encoder

is similar to other convolutional code encoder structures. For a rate 1/2 (M,J,K)

LDPC-CC encoder, a memory of length 2 x M— 1 is used. M previous information

bits V\{t) to Vi(t — M) and M-l previous check bits ^ (0 t o Vi(t — M) are stored

in this memory. The memory is organized as a first-in first-out (FIFO) queue. The

newest information and check bits are pushed into the queue tail location and the

oldest bits are removed from the queue head location. Five bits are chosen from the

memory queue to generate the next check bit. The positions of the 5 chosen bits

in the memory queue are determined by a position table, which is derived from the

LDPC-CC parity check matrix. The position table is used in a round-robin fashion

and current entry is indicated by the position table pointer. The check bits ^ (/)

and information bits V\ (t) are interleaved in strictly alternating order as the encoder

output.

Information
bitu(t) = V,(t) FIFO Queue

V,(t)

\

t
V2(t-1) V,(t-1)

M
Vjft-M) V,(t-M)

Select 5 from 2xM-l bits 7*
o u

Check bit V ^ Q N ^

17 22 131211256

Output
Information bit V,(t)

Figure 2.4: LDPC-CC Encoder Structure

22

Section 2.2: Low Density Parity Check Codes

2.2.2 The LDPC-CC Decoder Structure

2.2.2.1 Overview

The structure of the LDPC-CC decoder is shown in Figure 2.5. The LDPC-CC

decoder is composed of several identical decoding processors for iterative decoding.

Inside each decoding processor, multiple FIFO memory queues are used to store

recently received bits. The received bit, either a soft bit or a hard bit, is sent into

the first decoding processor's queue. Within each decoding processor, there is one

check node calculation followed by one variable node calculation. The check node

retrieves the bits for each parity check constraint from the memory queue according

to the same position table entries used in the LDPC-CC encoder. The arrows in

Figure 2.5 show in simplified form the movement of data read and then written by

the check node CN. The six sources of bits (upper arrowheads) change from clock

cycle to clock cycle, and can select elements from any of the three lower FIFO

queues. The check node then checks this constraint. For hard bits, the result is

simply whether the parity check constraint is obeyed or failed. For soft bits, the

result is updated (and hopefully more accurate) reliability information for each bit.

Then the results are stored back to the memory queue. As the new received bits

are pushed into the tail location of the queue, the existing bits inside the queue are

shifted one position towards to the queue head. By the time that the bit has reached

the queue head, it has been checked by the check node J times. The variable node

integrates the original received bit value and J check node results (i.e., sum them

up). The new hard or soft bit is then forwarded to the next decoding processor

for next iterative decoding. After the last decoding processor, the hard-decoding

algorithm sends out the hard bits directly. For soft-decoding algorithm, the soft

bits are forwarded by the last decoding processor to a hard decision device. The

function of the hard decision device is to convert the soft bit into hard bit in binary

format using a threshold comparator.

23

Section 2.2: Low Density Parity Check Codes

Received.
bits

r-rm*.»n

Decoding processor 1 Decoding processor 2

Figure 2.5: LDPC-CC Decoder Structure

There are several different decoding algorithms that vary in the operation of

the check nodes and variable nodes. The Sum-Product (SP) algorithm [24] is a

well-known soft-decoding algorithm. The soft bits are represented typically by

fixed-point numbers. The operation in the check node requires both the hyperbolic

tangent function and the inverse hyperbolic tangent function [24]. The computa

tional complexity is large for the hyperbolic function and hence it is inconvenient

in hardware implementations. But it could get better coding gain compared to other

LDPC decoding algorithms. To avoid the hyperbolic function calculation, a lookup

table might be used.

The Min-Sum (MS) algorithm [12] is another alternative simplified, soft-decoding

algorithm that is weaker at detecting errors compared to the SP algorithm. In the

MS algorithm, the hyperbolic function of SP algorithm is replaced by the minimum

function and sign function. The simulation results show that the coding gain of

the MS algorithm is only 0.2 dB less than that of the SP algorithm in Figure 3.1.

However, the complex hyperbolic function is removed. Several improved MS algo

rithms that aim to recover part of the loss incurred by the Min-Sum algorithm are

proposed in [25] [26] [27].

Gallager's Bit Flipping (BF) algorithm [3] is a hard-decoding algorithm that

appeared in his 1962 thesis. This algorithm only uses hard bits. The reliability

24

Section 2.2: Low Density Parity Check Codes

information in the analog bit signals is not considered. The operation in its check

node is a simple exclusive OR (XOR) operation. Since the BF algorithm omits

the reliability information, it requires a relatively high signal-to-noise (SNR) ratio

compared to the soft-decoding algorithm to achieve the same bit error rate as the

SP or MS algorithms. However, the BF algorithm used with a LDPC-CC could still

superior to other error control codes based on hard-decoding algorithms. la addi

tion, the hard-decoding algorithm is generally simpler and faster than soft-decoding

algorithms and the hardware implementation requires less circuitry and hence less

power. For some high-speed communication systems, such as 100 Gbps or 1 Tbps

optical system, the soft-decoding algorithms may not be fast enough and a hard-

decoding algorithm might be the only choice.

In the following subsections, the Bit Flipping algorithm, the Sum-Product algo

rithm and the Min-Sum algorithm are briefly reviewed.

2.2.2.2 Bit Flipping Decoding Algorithm

Gallager's Bit Flipping algorithm is a hard-decoding algorithm. The check node

operation is based on simple exclusive OR (XOR) operations. Each bit is associ

ated with an error counter that records the total number of its failed parity check

constraints. If the bit's error counter value is greater than the bit flipping threshold

b, it would be flipped. The bit flipping procedure is shown in Figure 2.6. We assume

in this example that the bit flipping threshold is 3. Most of the bits have no error.

One of the bits has 3 failed parity check constraints. As a result, that bit would be

flipped.

Gallager's BF algorithm was first applied to LDPC-BC codes. This algorithm

can be described as follows:

Step 1: Compute all the parity-check constraints in the block. If all of the parity

check constraints are obeyed, then stop decoding.

Step 2: Record the number f, of failed parity-check constraints for each bit i

25

Section 2.2: Low Density Parity Check Codes

Variable nodes

Parity check
error counter

Information
• • •

and check bits

Check nodes

Figure 2.6: LDPC-CC Bit Flipping Procedure

during the parity check. When one parity check constraint has failed, all the error

counters associated with the bits involved in this constraint are incremented by 1.

Step 3: Consider each bit in turn. If the error counter value of a particular bit

exceeds the threshold, then flip that bit.

Step 4: Repeat steps 1 to 3 iteratively until all of the parity check constraints are

satisfied in step 1 or until a predefined maximum iteration number is reached.

One improvement to the BF algorithm is proposed in [28]. The authors found

that many correct bits are wrongly flipped during decoding and this problem de

grades the coding gain. If we only flip the suspect bits with a pre-defined probabil

ity p < 1, then fewer correct bits would be erroneously flipped during one iteration

and hence improve the coding gain.

2.2.2.3 Sum-Product Algorithm

The Sum-Product algorithm is an iterative soft-decoding algorithm based on belief

message propagation [29]. The soft bits are represented using fixed-point numbers.

26

Section 2.2: Low Density Parity Check Codes

At the exit of the decoder, the soft-bits are converted to hard-bits by a hard decision

device. In this research, the Sum-Product algorithm is used as a benchmark algo

rithm for performance comparison purposes since it has the best error-correcting

performance.

Assume that we want to transmit a binary bit stream b(k) over a channel using

Binary Phase Shift Keying (BPSK), where A: is a discrete time index. Thus the

amplitude of the modulated signal is +1 V when b(k) = 0 and is -1 V when b(k) = 1.

The stream of transmitted bit voltages t(k) can then be written as

*(Jfc) = l - (2x6(i t)) .

For a sequence of noise samples n{k), the sampled received bit stream r(k) can be

expressed as

r(k)=t(k)+n(k).

To rewrite the above equation with n(k), when a '0' is transmitted,

n{k) = r{k)-t{k) = r{k)-\V.

When a ' 1' is transmitted,

n{k) = r(k)-t{k)=r(k) + \V.

Several methods could be used to represent the reliability information of the

received signal. One way is to use the amplitude of the received signal directly as

the reliability measure. In this case, when the sampled signal amplitude is +1 V,

the transmitted bit is most probably a '0'. When the sampled signal amplitude is -1

V, the transmitted bit is most probably a ' 1'. Another way is to use the Likelihood

Ratio (LR) of the received signal as the reliability measure. When the received

bit is measured as x V, the conditional probability of the transmitted bit as '0' is

represented as,

27

Section 2.2: Low Density Parity Check Codes

P{t{k) = \\r{k)=x)

and the conditional probability of the transmitted bit as ' 1' is represented as,

P(t(k) = 0\r(k)=x)

The LR is defined as the ratio of the above two conditional probability, repre

sented as,

L(x) = W) = 1K*)=*)
P{t{k) = -\\r{k)=x)
P{n{k)=x-\)
P(n(k)=x+l)

Assume that the channel is an Additive White Gaussian Noise (AWGN) chan

nel. The noise has a zero mean with a power of a2. The probability density function

of the AWGN channel is given by [1]:

G\/2K

Hence, the LR can be represented as

_ P(n(k)=x-1)
W P(n(k)=x+l)

e4(^)2

e 21- a I
Ax

= e^

To remove the awkward exponential operation in the LR expression, the Log-

Likelihood Ratio (LLR) is frequently used as the received signal reliability measure.

The LLR over AWGN channels with BPSK signalling is defined as

28

Section 2.2: Low Density Parity Check Codes

l(x) = ln(L(x)) = £p (2.1)

Assume that the LLR is used to represent soft bits in our SP algorithm. The SP

algorithm for LPDC-BCs can then be briefly summarized as follows:

Step 1: Store the initial LLR value of each sampled bit in the variable nodes as

Iv®, where the subscript i is the variable node label number and the superscript is

the iteration number.

Step 2: The LLR values in the variable nodes are then sent to the check nodes.

The following equations are evaluated in the check nodes,

M
/cf = 2 x tanh~l(Yltanh(^)),

j/i 2

where the notation Yij/i means a repeated product where the product terms include

all of the LLR values from variable nodes except the value of the i-th variable node.

The check node results are then sent back to the associated variable nodes. Figure

2.7 shows the inputs and outputs to the SP algorithm check node operation.

Step 3: The variable node calculates new LLR values based on the check node

results using the equation

/vf+1=/? + (Xfc$),
j/i

The results are then sent back to check nodes for the next iteration. The calculation

involves adding the variable node's initial LLR value with the results from all asso

ciated check nodes except the value of its own. For the last iteration, the results are

sent into a hard decision device. Figure 2.8 shows the input and output parameters

that are involved in the variable node operation.

Step 4: Repeat steps 2 and 3 for iterative decoding until the pre-determined

maximum iteration number is reached.

Step 5: In the hard decision device, the initial LLR value for the bit is added to

all the newest variable node results from step 3. Then a threshold device is tised. If

29

Section 2.2: Low Density Parity Check Codes

lv0 •
lc0 = 2tanh1(tanh(lvi/2)tanh(lv2/2)^
tanh(lv3/2)tanh(lv4/2)tanh(lv5/2))

lv, •
lcj = 2tanh1(tanh(lv(/2)tanh(lv2/2H
tanh(lv3/2)tanh(lv4/2)tanh(lv5/2))

lv2 •

lc2 = 2tanh4(tanh(lv0/2)tanh(lVi/2)^
tanh(lv3/2)tanh(lv4/2)tanh(lv5/2))

lv3 - *

lc3= 2tanh1(tanh(lv0/2)tanh(lv1/2) A—
tanh(lv2/2)tanh(lv4/2)tanh(lv5/2))

lv4 — •
lc4 = 2tanh1(tanh(lv0/2)tanh(lv,/2) <—
tanh(lv2/2)tanh(lv3/2)tanh(lv5/2))

lv5 •

lc5 = 2tanh1(tanh(lv0/2)tanh(lv1/2) <
tanh(lv2/2)tanh(lv3/2)tanh(lv4/2))

Figure 2.7: Sum-Product Algorithm Check Node Parameters for a Degree-6 Check
Node

the sum result is greater or equal to 0, the soft-bit is decoded to '0'. Otherwise, it is

decoded to ' 1 ' .

2.2.2.4 Min-Sum Algorithm

The Min-Sum (MS) algorithm [12] is another alternative soft-decoding algorithm.

Compared to the Sum-Product algorithm, the inconvenient hyperbolic functions in

the check nodes are replaced by the minimum and sign functions. The simplified

operation in the Min-Sum check node is as follows:

V

30

Section 2.2: Low Density Parity Check Codes

lei

lv, =l0+lc2+lc3

lo

1
Variable Node

lc,

lv2 = l0+lc, + lc3

lc?

lv3 = l0+lc, + lc

Figure 2.8: Sum-Product Algorithm and Min-Sum Algorithm Variable Node Oper
ation

lc\= Y[sgn(rf) (min|/^|), (2.2)
J/i J J/'

where sgn(x) denotes the sign function whose value is ' 1 ' when x > 0 and is '0'

when x < 0. The product of sign functions can be implemented with simple exclu

sive OR (XOR) operations, and the minimum function can be implemented with

one loop of arithmetic comparisons.

Figure 2.9 shows the input and output parameters for a MS check node with six

inputs.

Figure 2.10 shows the input and output parameters for a MS check node with

concrete numbers. The parity check constraint involves 6 bits. The soft bit inputs

are /v0=+0.3, /vi=+0.7, /v2=+1.0, /v3=+0.6, /v4=-0.1, /v5=+1.5. Among them, the

minimum magnitude +0.1 is from lv* = —0.1. As a result, the magnitude of the

outputs Zco,/ci,/c2,/c3,/c5 is 0.1. For output IC4, the magnitude is the minimum

magnitude of/vo, lv\, /v2, /V3, lv5, which is +0.3 from /vo = 0.3. Sign of each output

bit is found by multiplying the sign bit of the other five input soft bits. For example,

the sign of ICQ is from the multiplication of the sign bits of /vi,/v2,/v3,/v4,/vs,

which is 1 x 1 x 1 x (-1) x 1 = - 1 . Finally, /c0 = - 1 x 0.1 = -0 .1 .

31

Section 2.3: Multi-threaded Microprocessors

lv0

lc0=sgn(lv1)*sgn(lv2)*sgn(lv3)*sgn(lv4)* A
sgnOv^minfllv!!, Ilv2l, llv3l, llv4l, llv5l)

lvi •

lc,= sgn(lv0)*sgn(lv2)*sgn(lv3)*sgn(lv4)* <
sgn(lv5)*min(llv0l, llv2l, llv3l, llvj, llv5l)

lv2 •
lc2= sgn(lv0)*sgn(lv1)*sgn(lv3)*sgn(lv4)* -4
sgn(lv5)*min(llv0l, llv,l, llv3l, llv4l, llv5l)

lc3= sgn(lv0)*sgn(lv1)*sgn(lv2)*sgn(lv4)* <4—
sgn(lv5)*min(llv0l, llv,l, llv,l, llv4l, llv5l)

lv4 — •

lc4= sgn(lv0)*sgn(lv,)*sgn(lv2)*sgn(lv3)* A—
sgn(lv5)*min(llv0l, llv,l, llv2l, llv3l, llv5l)

lv5 •

lc5= sgn(lv0)*sgn(lv1)*sgn(lv2)*sgn(lv3)* A
sgn(lv4)*min(llv0l, llv1l, llv2l, llv3l, llv4l)

Figure 2.9: Min-Sum Algorithm Check Node Operation

2.3 Multi-threaded Microprocessors

In Flynn's taxonomy [30], computer architectures can be classified into four cate

gories based on the number of concurrent instructions and data streams.

Single Instruction stream, Single Data stream (SISD) machines use a single

processor to process a single data stream. Such a processor is also called a unipro

cessor.

Single Instruction stream, Multiple Data stream (SIMD) machines use tech

niques to achieve data level parallelism. A SIMD processor consists of an array of

\

V

32

Section 2.3: Multi-threaded Microprocessors

+0.3 -0.1 +0.7 -0.1 +1.0 -0.1 +0.6 -0.1 -0.1 +0.3 +1.5 -0.1

Check Node

Figure 2.10: Min-Sum Algorithm Check Node Operation Example

processor elements (PEs). Multiple PEs execute the same instruction on their own

data stream.

Multiple Instruction stream, Single Data stream (MISD) machines use many

functional units performing on the same data. Not many machines of this type

exist since M M) and SIMD are often more appropriate for common data parallel

techniques.

Multiple Instruction stream, Multiple Data stream (MIMD) machines use a

number of processor elements. These PEs execute different instructions on dif

ferent piece of data. Each PE has its own Arithmetic and Logic Unit (ALU) and

control unit. PEs could be interconnected in some manner to allow for the exchange

of data.

Figure 2.11 shows Flynn's computer architecture taxonomy.

D
at

a

| Instructions

—3>IPEl^

SISD

D
at

a

1 Instructions

—^PEK

—HPE|«

—HPEX

—3>IPEteJ

SIMD

D
at

a

Instructions

- ^ P E K ^ I^HPEKJ

MISD

D
at

a

Instructions

—-SMPEkS

—JHPEKr

—3HPEK•

— ^ P E I ^

M

^Tplle

IWPEW

IMD

Figure 2.11: Flynn's Computer Architecture Taxonomy

In practice, many modern computers have hybrid architectures that combine,

for example, aspects of SISD architecture with SIMD architecture, such as Intel's

33

Section 2.3: Multi-threaded Microprocessors

Pentium microprocessor with MMX and Streaming SIMD Extensions (SSEs) [31].

One MIMD architecture that is intended to support flexible data exchange is

called a shared memory architecture. Any processor can access memory modules

through the interconnection network which connects microprocessors and memory

modules. One problem with this architecture is the memory contention which oc

curs when two or more processors try to access the same memory block. Since one

memory block usually has only one address bus and can only be accessed by one

processor at a time, other processors have to wait until the first processor finishes

accessing it.

Another architecture that facilitates data exchange is called a message pass

ing architecture. Each processor has its own memory block attached to it. When

data exchange is required, the requesting processor sends a message. In reply, the

answering processor accesses its memory block and passes data on to the request

ing processor through interconnection network. Memory contention problems are

avoided since the memory block is only accessed by one processor.

In this research project, a XInC multi-threaded microprocessor is used. It was

designed by Eleven Engineering Inc. in Edmonton, Canada. The XInC micropro

cessor was intended to be used in wireless or audio applications. It has its own

unique structure which allows 8 instruction streams and 8 data streams. Inside a

XInC there are 8 independent sets of program counters, general-purpose registers

and conditional code registers. To simplify the microprocessor, only 18 instruc

tions are implemented. Table 2.3 summarizes the XInC instruction set. A hardware

semaphore mechanism can be used to manage access to the shared resources such

as memory and I/O ports. Thus either Single Instruction Multiple Data (SIMD)

mode or Multiple Instruction Multiple Data (MIMD) mode can be used.

In general, there are two main types of hardware multithreading implementa

tion. A tutorial article about multithreading can be found in [32]. One type of

34

Section 2.3: Multi-threaded Microprocessors

Table 2.3: XInC Instruction Set Summary

Mnemonic
add

and

be
bic
bis
bix
bra
inp
ior

jsr

Id

mov
outp
rol

St

sub
thrd
xor

Operands
R1,R2,R3
R1,R2,K3
R1,R2,R3
R1,R2,K3

C1,K2
R1,R2,K3
R1,R2,K3
R1,R2,K3

Kl
R1,K2

R1,R2,R3
R1,R2,K3

R1,R2
R1,K2

R1,R2,K3
R1,K2
R1,K2
R1,K2

R1,R2,R3
R1,R2,K3
R1,R2,K3

R1,K2
R1,R2,R3

Rl
R1,R2,R3
R1,R2,K3

Description
2's complement add, Rl = R2 + R3

R1=R2 + K3
Bitwise and, Rl = R2&R3

Rl=R2&K3
Conditional branch, if CI, PC=K2

Bit clear, Rl = R2&{1 « K3)
B i t s e t , * l = . R 2 | (l « . K 3)

Bit XOR, Rl=R2A(l« K3)
Unconditional branch, PC = PC+Kl

Read input port, Rl = input(K2)
Bitwise inclusive or, Rl = R2 \ R3

Rl=R2\K3
Jump to/Return from subroutine, i?l = PC; PC = R2

Rl=PC;PC = K2
Load from RAM, Rl = *(i?2 +K3)

Rl = *K2
Move immediate, Rl =K2

Write output port, output(K2) =Rl
Bitwise rotate left, Rl = R2 « R3

Rl=R2«K3
Store to RAM, *(R2+K3) = Rl

*K2 = Rl
2's complement subtract, Rl = R2 - R 3

Get thread number, Rl= thread#
Bitwise exclusive or, i?l = Rl AR3

Rl=R2AK3

hardware multithreading is called interleaved multithreading, and XInC should be

classified in this category. Other examples of interleaved multithreading processors

include the Tera processor [33] and the HEP multiprocessor [34]. In interleaved

multithreading, only one thread of instructions is executed in any given pipeline

stage at a time. The purpose of this type of multithreading is to remove data de

pendency stalls due to one thread from the execution pipeline. Because one thread

35

Section 2.3: Multi-threaded Microprocessors

is relatively independent from the other threads, there's less chance of one instruc

tion in one pipeline stage needing an output from an older instruction of the other

threads in the pipeline. An example of interleaved multithreading is shown below,

1. Cycle / : an instruction from thread A is issued

2. Cycle i+1: an instruction from thread B is issued

3. Cycle i+2: an instruction from thread C is issued

4. Cycle i+3: an instruction from thread A is issued

Another type of hardware multithreading is called Simultaneous Multi-Threading

(SMT), which allows the instructions from more than one thread to be executed in

any given pipeline stage at a time. It is a technique for improving the overall ef

ficiency of superscalar CPUs. A superscalar processor executes more than one in

struction during a clock cycle by simultaneously dispatching multiple instructions

to redundant functional units on the processor. Each functional unit is not a separate

PE, but an execution resource within a single PE, such as an arithmetic logic unit,

bit shifter or multiplier. A normal superscalar processor issues multiple instruc

tions from a single thread in every clock cycle. In Simultaneous Multi-Threading,

the superscalar processor can issue instructions from multiple threads in every clock

cycle. An example of SMT is shown below.

1. Cycle i: instructions^' andy'+i from thread A; instruction k from thread B all

simultaneously issued

2. Cycle i+1: instruction j+2 from thread A; instruction k+1 from thread B;

instruction m from thread C all simultaneously issued

3. Cycle i+2: instruction j+3 from thread A; instructions m+1 and m+2 from

thread C all simultaneously issued

Unlike the general MIMD microprocessors which have multiple PEs, the XInC

has only one time-shared PE. This processor element is divided into 8 pipeline

stages. In a general-purpose microprocessor, the instruction pipeline breaks the in-

36

Section 2.3: Multi-threaded Microprocessors

struction logic into several smaller blocks and inserts registers between the block.

In this way the propagation delay between registers can be reduced and the sys

tem clock frequency can be increased. In addition, multiple instructions can share

the pipeline and instruction throughput can be increased. For general-purpose mi

croprocessors, successive instruction sequences from one thread are loaded into

the pipeline, while in the XInC microprocessor, instructions are fetched from 8 in

struction streams. That is, if for itf, clock cycle, the instruction in jtf, instruction

stream is fetched, then for the (/+ \)tf, clock cycle, the instruction in the (j+l)th

instruction stream would be fetched. For each system clock cycle, the instruction

completes one of the eight pipeline stages. To complete the whole instruction, the

XInC requires 8 system clock cycles. For each system clock cycle, one instruction

is completed. The system clock frequency for XInC microprocessor is 12 MHz, and

hence the maximum instruction throughput is 12 Million Instructions Per Second

(MIPS).

Figure 2.12 shows the architecture of the XInC microprocessor and its memory

model. The XInC microprocessor uses a shared memory architecture. There are a

total of 16K words of RAM to store the program and data. The RAM is organized

as 8 blocks of 2K words each. Different memory blocks can be accessed within

one clock cycle at the same time, but the same memory block cannot be accessed

more than once in the same cycle. The memory crossbar is responsible for routing

the data to the addressed memory blocks. The processor has two ports that are

connected to the memory crossbar. The instruction port is used to fetch instructions.

The data port is used to access data. For the same system clock cycle, the instruction

fetch component in the pipeline fetches an instruction through the instruction port

for one thread while the memory access component in the pipeline fetches data

through the data port for another thread. As a result, if the instruction and data

stream are in the same memory block, it is possible to access the same memory

37

Section 2.3: Multi-threaded Microprocessors

block in one clock cycle. If that happens, the instruction is still be fetched, but

the data access is invalid. This memory contention could be eliminated easily by

assigning the program space and data space into different memory blocks.

Thread
Processor 0

st
er

s

60

Pi

Thread
Processor 7

st
er

s
R

eg
i

D

u
a x> 05
tt
o S-,

m
or

y
C

e=a 2KRAM

s=> 2KRAM

K=a 16KROM

Figure 2.12: XInC Microprocessor Architecture

As mentioned earlier, for MIMD microprocessors, the shared memory architec

ture would cause memory contention if two or more PEs access the same memory

block. The other processors have to wait until the first processor finishes its data ac

cess. However, in the XInC microprocessor, this problem does not exist since it has

only one PE. The pipeline's memory access component processes one instruction

in one clock cycle. Except for the above easily resolved instruction fetch and data

access contention scenario, there is no memory contention for two data accesses.

In addition, the XInC microprocessor's pipeline architecture does not have the

conditional branch problem that exists in a general-purpose microprocessor. Since

in general-purpose microprocessors, the pipeline cannot know which branch should

be taken for several clock cycles when it meets the conditional branch instruction,

it cannot read in the following instructions in the same thread. This problem would

degrade the pipeline's efficiency. To reduce this impact, branch prediction tech

niques could be used in a general-purpose microprocessor. However, in the XInC

microprocessor, the pipeline gets instructions thread-by-thread. In the Tera proces-

38

Section 2.3: Multi-threaded Microprocessors

sor [33], the processor logic selects a software-thread that is ready to execute and

issues its next instruction. By contrast in the XInC, instruction streams are run in a

fixed sequence from thread 0 to thread 7. The instruction in one thread requires 8

clock cycles to complete. The immediately following instruction in the same thread

would not be fetched until the previous instruction in the same thread is complete.

As a result, the conditional branch problem does not exist in the XInC micropro

cessor.

However, the XInC microprocessor still has potential data dependency prob

lems between different threads due to pipelining. For example, when a memory

write instruction is executed in one thread, the data would be written to memory

after several clock cycles rather than written immediately. If a memory read in

struction follows and it reads the same address in another thread, then the read

instruction would read an old data since the new data has not been written yet. This

hazard could be eliminated with additional hardware control, such as a hardware

semaphore, but this approach requires overhead time to set and reset the hardware.

Another way is to rely on software programmer or compiler to avoid this hazard.

An example is Intel's Itanium, which relies on the compiler to decide which instruc

tions can be executed in parallel and which must be executed serially [3 5] [34].

39

Chapter 3

Improved Bit Flipping Algorithms

In this chapter, we begin by proposing the use of a Bit Flipping Threshold Pattern.

The Improved Bit Flipping algorithm (IBF) is then described. Several alternative

threshold patterns are simulated and the pattern (3 — 2)+ = (3 — 2 — 3 — 2...) is

found experimentally to be the best pattern for the benchmark (128,3,6) LDPC-CC.

In addition, the Parallel Improved Bit Flipping (PIBF) algorithm, which utilizes the

microprocessors' built-in bit-wise parallelism, is also presented.

3.1 Bit Flipping Threshold Patterns

In this section, we present simulation evidence that demonstrates that for a well-

studied (128,3,6) LDPC-CC, choosing a strictly alternating bit flipping threshold

pattern (3 — 2)+ can not only improve the coding gain, it can also speed up the

decoding process. The regular expression operator (.)+ denotes that the bit flipping

threshold pattern within the bracket is repeated one or more times. We will be us

ing regular expressions to describe bit flipping threshold patterns in the remainder

of this thesis. Thus the pattern (3 — 2)+ alternates the bit flipping threshold between

a conservative ' 3 ' and an aggressive '2 ' . At a bit error rate of 10 - 4 , the (3 — 2) +

pattern achieves a coding gain within 3.5 dB of that of the Min-Sum decoding algo

rithm, using only hard bits and six decoding processors. This decoding algorithm

40

Section 3.1: Bit Flipping Threshold Patterns

requires much simpler hardware and lower power in a silicon implementation com

pared to decoding algorithms that process soft bits, such as the Min-Sum algorithm.

The wiring and logic circuits required by hard bit processing is much simpler than

that required for soft bits. What is more, the coding gain is 2.5 dB better than that

of the Gallager's BF algorithm which uses a fixed pattern of (3)+. The results will

be detailed below.

3.1.1 LDPC-CC Improved Bit Flipping Decoding Algorithm

In a (MJ,K) LDPC-CC encoder (See Figure 2.4), both the previous M information

bits and M check bits are stored in a First-In First-Out (FIFO) memory queue. The

encoder selects K-l of the bits from the FIFO queue and generates one new check

bit by simple exclusive OR (XOR) operation. The bit positions in the queue for the

inputs of each parity check are determined by entries in a position table which is

derived from the parity check matrix. Each encoded bit is involved in J parity check

constraints, and each parity check constraints involves K earlier bits in the coded

bit stream.

The encoded bits are modulated and transmitted as analog signals through a

noisy channel. The shape of these signals is distorted by the addition of noise.

There are typically many underlying components to this noise, and by the Central

Limit Theorem, the distribution of the net noise amplitudes at the bit times will

tend to be Gaussian. At the receiver end, a threshold device (comparator) is used

to recover the binary digit '0' or ' 1 ' . Signal strength information, which may be

related to the reliability of the recovered bit, is discarded. These binary bits are

then sent into the LDPC-CC decoder for channel decoding.

LDPC-CC decoder is composed a unidirectional cascade of several identical

decoding processors. In the bit flipping algorithm, each bit is checked by several

parity check constraints in the check node. If a constraint fails, the error counter

41

Section 3.1: Bit Flipping Threshold Patterns

of all of the associated input bits is incremented by 1. When the error counter is

greater than the bit flipping threshold, the bit would be flipped in the belief that the

bit's old value was probably be incorrect.

The intuition behind the Bit Flipping algorithms is that the greater the number

of failed parity check constraints involving a particular bit, the higher should be the

probability that the bit is in error. The best choice of bit flipping threshold b might

be based on the parity check matrix characteristics and the estimated signal-to-noise

ratio. If b is chosen to be too small (i.e., the threshold is too aggressive), then too

many correct bits would be wrongly flipped and the algorithm might not converge

on the correct data. On the other hand, the bit flipping threshold b should be set to a

sufficiently small value so that suspect error bits that are indicated only by a fewer

number of failed parity check constraints can get flipped. If b is chosen to be too

high (i.e, the algorithm is too conservative), then correction of suspect bits is too

difficult to trigger and convergence on the correct data might be too slow or may

get stuck in local minima with some errors left uncorrected.

With respect to the bit flipping decoding algorithm, we define the bit flipping

threshold pattern {b\ — bi — b^ — •••)+ to be the sequence of bit flipping thresholds

which are used in the 1 st, 2nd, 3rd, etc. decoding processors. If the pattern is shorter

than the desired number of decoding processors, then the sequence is repeated as

often as necessary, starting again each time at b\. The original Gallager bit flipping

algorithm can be considered as having the bit flipping threshold pattern (3)+.

Gallager's BF algorithm was developed to decode LDPC-BCs, but here we need

to decode LDPC-CCs. Essentially LDPC-BC decoding algorithms perform iterative

decoding in time whereas LDPC-CC decoding algorithms perform iterative decod

ing in space over a cascade of pipelined decoder processors [8]. Our improved bit

flipping algorithms, modified for LDPC-CCs and based on bit flipping threshold

patterns, share the following structure:

42

Section 3.1: Bit Flipping Threshold Patterns

Step 1: Within the FIFO memory queue of information and check bits inside

each decoder processor, find the number ft of failed parity-check constraints for

each bit i for the entire time that the bit spends shifting through the decoding pro

cessor.

Step 2: Once a bit reaches the head of a decoding processor, if the number of

failed parity check constraints for a bit exceeds the present bit flipping threshold

b, as specified by the bit flipping threshold pattern, then that bit is flipped before it

enters into the next decoding processor.

Step 3: After a bit exits the last decoding processor, the decoding process for

that bit is finished and the decoded bit is sent out.

For our benchmark (128,3,6) LDPC-CC, each information and check bit is in

volved in 3 parity check constraints. The bit flipping threshold b could be chosen

to be ' 3 ' or '2'. In this situation, b = 3 indicates that all the parity check constraints

have failed and b = 2 indicates that a majority of the parity check constraints have

failed. Threshold value ' 1' is not used since when a single parity check constraint

has failed, all the error counters of the bits that are associated with that constraint

would be incremented by one. The threshold ' 1' would be undesirable since an

incorrect decision to flip one bit would propagate incorrect decisions to flip all of

the bits involved in parity check constraints.

For the first several decoding processors, b could be set to the conservative

threshold value '3 ' , that is, to flip the bit only when all three of its parity check

constraints fail. When most of the bits indicated by three failed parity check con

straints are corrected, b could be set to an aggressive threshold value '2' to flip the

bits indicated by two or more failed parity check constraints. The overall bit error

rate might rise at this time since many correct bits might be wrongly flipped due

to the aggressive '2'. But this temporary bit error rate increment is necessary since

error bits only indicated by two failed parity check constraints could be corrected in

43

Section 3.1: Bit Flipping Threshold Patterns

this step. Otherwise, an overly conservative strategy would prevent some incorrect

bits from being flipped and thus the bit error rate would be stuck at a higher level.

After b=2, b could be set to conservative '3 ' again for the following decoding pro

cessors to drop the bit error rate down to a lower level. The threshold b could in this

way be alternated between '3 ' and '2' for the decoding processors. In our research,

we assumed that the bit flipping threshold pattern is set for a fixed number of de

coding processors to a threshold value of '3 ' followed by a threshold value of '2'.

Thus we focussed our attention on the threshold patterns as (3 — 2)+ , (3 — 3 — 2)+ ,

(3 - 3 - 3 - 2)+. This restriction was supported by experimental evidence from

many simulation trials. If the threshold pattern starts with threshold value '2', such

as (2 — 3)+, simulation results show that the coding gain is worse since too many

corrected bits are wrongly flipped in the first decoding processor.

3.1.2 Simulation Results

3.1.2.1 Coding Gain

Figure 3.1 shows simulation results of bit error rate versus signal-to-noise ratio

Eb/N0 for an uncoded BPSK signal, the BF algorithm with bit flipping threshold

pattern (3)+, the BF algorithm with the bit flipping threshold pattern (3 — 2)+ , the

Min-Sum algorithm and the Sum-Product algorithm for the benchmark (128,3,6)

LDPC-CC. To determine the maximum coding gain of each algorithm, sixty de

coding processors were used. Each plotted point corresponds to at least 100 er

ror events to ensure statistically reliable values. At a bit error rate of 10~4, the

(3 — 2)+ pattern achieves a coding gain that is only 3.5 dB less than that of the

Min-Sum soft-decoding algorithm. What is more, the coding gain is 2.5 dB better

than that of Gallager's BF algorithm with a fixed pattern of (3)+. Other bit flipping

threshold patterns (e.g. (3 - 3 - 2)+, (3 - 3 - 3 - 2)+, (3 - 3 - 3 - 3 - 2)+ and

(3 — 3 — 3 — 3 — 3— 2)+ were also simulated using 60 decoding processors. Their

44

Section 3.1: Bit Flipping Threshold Patterns

Eb/No (dB)

Figure 3.1: BER of Uncoded BPSK, BF Pattern (3)+ and (3 - 2)+, Min-Sum and
Sum-Product algorithm for a (128,3,6) LDPC-CC

curves show essentially the same coding gain of the pattern (3 — 2)+ , so it appears

that the coding gain is almost the same if the threshold pattern is alternated strictly

between '3 ' and '2' with an adequate number of decoding processors. Observe in

Figure 3.1 that the BF decoding algorithm has some coding gain only for signal-to-

noise ratios Eb/N0 of above 4 dB. Below 4 dB, the bit error rate of the bit flipping

algorithm is higher than the uncoded BPSK signal. The reason might be that when

the signal-to-noise ratio is low, too many errored bits are present in the bit stream. In

this situation, the parity check results and the associated bit flipping actions become

unreliable and hence more error bits get be generated than get corrected.

45

Section 3.1: Bit Flipping Threshold Patterns

1 2 3 4 5 6 7 8 9
Eb/No (dB)

Figure 3.2: BER of BF Pattern (3 — 2)+ after 1-6 and 60 Decoding Processors for
a (128,3,6) LDPC-CC

3.1.2.2 Decoding Processor Number

Figure 3.2 shows the simulation results of bit error rate versus signal-to-noise ratio

Eb/N0 for different numbers of decoding processors, given the same (3 — 2)+ pat

tern. In the figure, the coding gain is increased notably for the first six decoding

processors. But beyond six decoding processors, there are only small further im

provements in the coding gain. For the (128,3,6) LDPC-CC, the curve for 6 decod

ing processors approaches within 0.2 dB of the curve for 60 decoding processors.

It would thus appear that 6 decoding processors might be a good trade-off point be

tween coding gain and required decoding processors for the (128,3,6) LDPC-CC.

46

Section 3.1: Bit Flipping Threshold Patterns

Eb/No (dB)

Figure 3.3: BER of BF Pattern (3 - 2)+,(3 - 3 - 2)+,(3 - 3 - 3 - 2)+,(3 - 3 -
3 - 3 - 2)+ and (3 - 3 - 3 - 3 - 3 - 2)+ for (128,3,6) LDPC-CC with 6 Decoding
Processors

3.1.2.3 Error Correction Convergence Speed

Figure 3.3 shows the simulation results for different bit flipping threshold patterns

using six decoding processors. In the figure, it is evident that for all of the consid

ered signal-to-noise ratios Ej,/N0, the (3 - 2)+ bit flipping threshold pattern has the

lowest BER and the (3 - 3 - 3 - 3 - 3 - 2)+ pattern has the highest BER.

In Figure 3.4, the BER for different bit flipping threshold patterns using different

numbers of decoding processors was simulated at the same signal-to-noise ratio

Eb/N0 = 6dB. It appears that the BF threshold pattern (3 — 2)+ has the fastest error

correction convergence speed compared to its peers. In other words, the bit flipping

47

Section 3.1: Bit Flipping Threshold Patterns

10"

10

a.
Mi m

10"

10'
10

- * - BF Pattern (3)+

-©- BF Pattern (3-2)+

- * - BF Pattern (3-3-2)+

- a - BF Pattern (3-3-3-2)+

- i - BF Pattern (3-3-3-3-2)*
BF Pattern (3-3-3-3-3-2)*

20 30
Decoding Processors

40 50 60

Figure 3.4: BER of BF Pattern (3 - 2)+,(3 - 2)+,(3 - 3 - 2)+,(3 - 3 - 3 - 2)+,(3 -
3 - 3 - 3 - 2) + a n d (3 - 3 - 3 - 3 - 3 - 2) + after Different Number of Decoding
Processors, Eb/N0 = 6dB

threshold pattern (3 — 2)+ requires fewer decoding processors to achieve the same

bit error rate compared with the other patterns. Note that Gallager's BF algorithm,

with threshold pattern (3)+, gets stuck at a relatively high BER. It appears that

by alternating the threshold between ' 3 ' and '2', the decoding algorithm is able to

escape from local minima that prevent convergence in the presence of some errors.

From the above simulation results, it can be concluded empirically that for the

benchmark (128,3,6) LDPC-CC, the bit flipping decoding algorithm using the bit

flipping threshold pattern (3—2)+ with 6 decoding processors achieves the best

compromise between coding gain and required decoding processors.

48

Section 3.2: The Parallel Improved Bit Flipping Algorithm

3.2 The Parallel Improved Bit Flipping Algorithm

The Bit Flipping algorithm is based on simple bit manipulations such as the logical

AND, OR and XOR operations in check nodes and variable nodes. In micropro

cessors, bit manipulation operations are typically designed to be 8-, 16-, 32- or

64-bits wide. As a result, we developed the Parallel Improved Bit Flipping (PIBF)

algorithm to exploit this built-in parallelism in microprocessors.

The encoder structure of our proposed Parallel Improved Bit Flipping algorithm

(PIBF) is almost the same as the non-parallel encoder. The only difference is that

the bit stream is processed as 16-bit words since the XInC microprocessor is a

16-bit microprocessor, and XOR instructions are executed at the word level. We

will call the 16-bit word a hard word. In PIBF, the bit stream could be viewed as

16 interleaved streams. Sixteen bits from each of these streams are packed into a

single 16-bit word.

In Figure 3.5, the IBF and PIBF algorithm examples are shown. For the IBF

algorithm, the parity check constraints are based on bits. For example, the constraint

illustrated in the figure is

bit\ © bit\% © bihi © bitm © bit2n © bit25i

In PIBF, the same position table in IBF is used. But the parity check constraints are

based on 16-bit hard words. As a result, the constraint is

word\ © word\% © \vord23 © wordm © \vord2\2 © \vord2s1

If we consider the PIBF algorithm in terms of bit position offsets, the above

word-based constraints could be written as 16 bit-based constraints as follows:

bit 1 © bit2S9 © £#369 © ࡁ © ^#3393 © ^#4113

bit2 © bit290 © Ų © 6^2114 © ൂ © bit4\14

49

file:///vord23
file:///vord2/2
file:///vord2s1

Section 3.2: The Parallel Improved Bit Flipping Algorithm

bit\e © bit3Q4 © M 3 84 © ࡐ © ^#3408 © ဠ

Improved Bit-Flipping

Bitl 18 23 132 212 257

Wordl 18 23
Parallel Improved Bit-Flipping

132 212 257 a
Bit 1-16 289-304 369-384 2113-2128 3393-3408 4113-4128

Figure 3.5: IBF and PIBF Algorithm Demonstration

In Figure 3.6, five words are chosen from the FIFO queues based on the position

table in the encoder. We see that sixteen equivalent groups of bit parity check

operations are performed at the same time. After four XOR instructions, sixteen

check bits are generated. Here we call the block of sixteen check bits a check word.

© [
©
©

I i y i v i i i i i i i t ? i W 111111111
t

Word I 8 (bit289 • • • bit304)

] Word23 (bit369 — bit384)

D l W

Woid212(bit3393-"bit340B) ^ j S * li II * * H * * H * * II * li > " " l " 2 1 2 V u " 3 3 9 3 " " 3 4 0 8 '

© \\ k k k k k k k k k *, k k k k D Word257 (bit4„3— bit4128) »< »1 W H » / . 1 >l . / > / XI »J . i W t < »< t i

I I I I I 1 I I I I [I I Q Check word, Word, (bit, — bit16)

Figure 3.6: PIBF Encoding

In the PIBF decoder check node, parity checks are based on six words as shown

in Figure 3.7. Five XOR instructions are executed. The check node checks whether

50

Section 3.2: The Parallel Improved Bit Flipping Algorithm

the parity check constraints on sixteen groups of bits are obeyed or failed. If one

group of the parity checks fails, the corresponding bit of the result word would be

' 1'. Here we call the result word the check error pattern.

The PIBF decoder for the (128,3,6) LDPC-CC is now designed as follows. Four

memory FIFO queues are used. The first queue stores the received hard words. The

other 3 queues store the check error patterns from check node results since each

word involves 3 parity check constraints. When a new word is shifted into the queue

head, the variable node retrieves three check error patterns and calculates how many

errors are associated with each bit. Assuming the bit flipping threshold pattern

(3 — 2)+ is used, we should determine whether the failed parity check constraint

number for each bit is equal to '3 ' , or greater or equal to'2'.

't 'i 'i r \ r \ r \ r \ r \ r \ r \ r \ r i r \ r \ r \
IF 11 r 11 r 11 r 11 ? n* 11 ? 11 ? 11 r n r • I r u.* 117 i

©

I tt
nH

• 1 / 'K 'I

,1 » E ,1 tt
H

Wordi (bit! <

Word18 (bit289 <

Word23(bit369

Word132 (bitj

Word,,, (bit
123

l3393

® 'lAA/'l/ 'l/ 'lAAAAAAAAA.P word257(bit4113

bitl6)

bit304)
bit384)

' b i t 2 I 2 8)

' b i t 3 4 0 8)

' bit4128)

Check error pattern

Figure 3.7: PIBF Decoding

One method for calculating the number of failed parity check constraints of each

bit is to shift and add. Each check error pattern is shifted right by 1 bit and then the

shifted-out bits are added. However, for a 16-bit word, this method would require

16 shifts and additions and this would make the variable node slow.

In our PIBF algorithm, another method is used. Two new patterns are generated

by word-level instructions on the three check error patterns. One pattern determines

whether all three parity check constraints have failed. We call this word result Flip

ping Pattern 1 (FP1). It could be calculated by ANDing three check error patterns

51

Section 3.2: The Parallel Improved Bit Flipping Algorithm

errorPatternl
errorPattern2
errorPottern3

Y any Errors A

oneQrThreeErrors

—B \^y twoOrThreeErrors

—C> twoEn

Figure 3.8: PIBF Algorithm Error Pattern Processing

as follows:

Yi = Ei AND E2 AND E3 (3 errors)

The second word result indicates whether the number of failed parity check

constraint is greater or equal to 2 which we call here Flipping Pattern 2 (FP2). The

following expressions are evaluated:

Y\ = E\ AND E2 AND E3 (3 errors)

Y2 = Ei OR E2 OR E3 (at least 1 error)

Y3 = Ei XOR E2 XOR E3 (1 error or 3 errors)

F4 = Y2 XOR Y3 (2 errors)

75 = Yi OR Y4 (2 errors or 3 errors)

If the decoding processor's bit flipping threshold is ' 3 ' , XORing the received

hard word with the FP1 will flip all the bits in the word whose failed parity check

constraint number is '3 ' . If the decoding processor's bit flipping threshold is '2',

XORing the received hard word with the FP2 will flip all the bits whose failed parity

check constraint number is '2' or '3 ' .

The above logical operations can also be implemented equally well in FPGAs

or ASICs. The corresponding logic gate schematic is shown in Figure 3.8. The

inputs are three check error patterns. The outputs are FP1 and FP2. Note that all of

the inputs and outputs are 16-bit words, and all the logical gates are actually stacks

of gates that are 16 levels high.

52

Section 3.3: Conclusion

3.3 Conclusion

In this chapter, the Improved Bit Flipping algorithm and Parallel Improved Bit Flip

ping algorithm were proposed based on the use of the Bit Flipping Threshold Pat

tern. At a BER at 10~4, the Bit Flipping Threshold Pattern (3 - 2)+ achieves 2

dB better coding gain than the original Bit Flipping algorithm with the fixed Bit

Flipping Threshold Pattern (3)+, which was used in Gallager's bit-flipping algo

rithm. In addition, the Parallel Improved Bit Flipping algorithm exploits a micro

processor's built-in bit-wise logical instructions which could execute the decoding

algorithm 16, 32, or 64 bits a time on a 16-bit, 32-bit or 64-bit microprocessor,

respectively.

53

Chapter 4

LDPC-CCs on Multi-threaded
Microprocessors

In this chapter, we describe how the Min-Sum algorithm, Improved Bit Flipping

algorithm and Parallel Improved Bit Flipping algorithm were implemented on the

XInC multi-threaded microprocessor. The structure and trade-offs between compu

tational complexity and coding gain of these decoding algorithms are discussed in

detail.

4.1 Memory Organization and Flow Chart

In LDPC-CC decoding algorithms, memories are used to store the received soft

bits and hard bits, check error patterns, and intermediate soft bit results. The

XInC multi-threaded microprocessor has a single global memory shared by all

threads. LDPC-CC decoding processors read data from the memory, process them,

and store the results back. These decoding processors are distributed onto several

XInC threads to achieve parallel decoding. As a parallel algorithm on a multi

threaded microprocessor, it is important to prevent memory access hazards among

the threads. In other words, when a memory location is being accessed by one

thread, this location should not be accessed by other threads. Otherwise, when the

54

Section 4.1: Memory Organization and Flow Chart

first thread writes to the memory and the second thread reads from the same mem

ory location, old data might be read by the second thread. Also when two different

data word are written to the same memory location by two different threads, the

first written data would be overlapped.

A hardware semaphore mechanism might be used to manage shared hardware

resources, such as memory. A semaphore is a binary variable which has two states:

locked and unlocked. Such a variable can be assigned to a shared resource to reg

ulate access to that resource. When the resource is in use, the semaphore is in

the "locked" state. Otherwise, it is in the "unlocked" state. Before the shared re

source is accessed, the semaphore state should be queried. If the semaphore is in

the "locked" state, the thread has to wait until the semaphore goes back to the "un

locked" state. If the semaphore is in the "unlocked" state, the shared resource could

be accessed. When the shared resource is accessed, the thread which uses the re

source must write the semaphore to the locked state to indicate to the other threads

that the resource is in use. When the operation is finished, the semaphore must be

unlocked to release the resource.

However, for intensive memory access algorithms, such as the LDPC-CC de

coder, the semaphore mechanism would likely be too inefficient. For example, in

the parallel improved bit flipping algorithm, 30% of the instructions are used for

memory accesses. If each memory access instruction requires two additional in

structions to lock and unlock an associated semaphore, then the algorithm would

require an additional 60% instructions.

In our LDPC-CC decoding algorithms, the memory access hazard is resolved

by organizing the memory into different memory spaces. Each thread has exclusive

access to its own memory space. In this, different threads are not allowed to access

the same memory location at the same time. Hence, the semaphore mechanism is

avoided.

55

Section 4.1: Memory Organization and Flow Chart

In Figure 4.1, the memory organization for the LDPC-CC decoder is shown.

As mentioned in Chapter 2.2.2.1, FIFO queues are used in the LDPC-CC decoding

processors. Those queues are organized as circular buffers in the algorithm. Instead

of moving the data in the FIFO queue, a circular pointer is moved to indicate the

memory address of the queue tail. For each decoding phase, the circular pointer is

moved counter-clockwise one step (that is, one information bit and one check bit

memory space). Each decoding phase for each decoding processor includes one

check node operation followed by one variable node operation. As shown in the

figure, the decoding processors on threads 2 to 7 access their own memory spaces.

Additional memory is allocated at the queue tail for data input operations and at

the queue head for data output and hard decision operations. As a result, these

operations on thread 1 could be run without memory access hazards with respect to

the decoding processors on threads 2 to 7.

Movement of
segment/thread

Thread 1 if \ ' V boundaries
Data input/output

Hard decision
Queue head

Threads 2-7 implementing
decoding processors

Figure 4.1: LDPC-CC Parallel Algorithm Memory Organization

Figure 4.2 shows the LDPC-CC encoder and decoder algorithm flow chart for

the XInC microprocessor. The LDPC-CC encoding algorithm is implemented on

thread 0. LDPC-CC decoding processors are implemented on thread 1 to thread 7.

The LDPC-CC decoding algorithm can be divided into several operations: the data

56

Section 4.1: Memory Organization and Flow Chart

input and output operations, the hard decision operation and the decoding processor

(including a variable node and a check node). In thread 1, a decoder controller is

implemented to synchronize the decoding phases on six decoding processors and to

control data input and output. At the beginning of the decoding phase, the decoding

processors are started by the decoding controller at the same time. At the end

of the decoding phase, the decoder controller queries the status of the decoding

processors (When the decoding processor is completed, it is left in a endless loop

state). Only after all of the decoding processors have completed does the decoder

controller start the next decoding phase. In addition to the decoder controller, hard

decision operations on the output produced by thread 7 and data input and output

operations are also implemented on thread 2. These activities execute in parallel

with the decoding processors on threads 2 to 7.

\l/

Encoder

.1.

Start decoding
threads 2 to 7

^ /

Hard decision

J.
Data input
and output

</fhreads 2 to 7 arev.

^sflll in endless loop? M

s s

Check
node

J.
Variable

node
V s y-

Endless
loop

Y

• •

N V

Check
node

KU

Variable
node

v s
fc

Endless
loop

Thread 0 Thread 1 Thread 2 Thread 7

Figure 4.2: LDPC-CC Parallel Algorithm Flow Chart

57

Section 4.2: LDPC-CC Decoder Implementation

4.2 LDPC-CC Decoder Implementation

4.2.1 The Min-Sum Algorithm

The Min-Sum algorithm is a soft-decoding algorithm. In our implementation, a soft

bit is represented by an integer. Ideally, a Log-Likelihood Ratio (LLR) in Equation

2.1 is used to represent the reliability information in a sample of the received signal.

For a (128,3,6) LDPC-CC, four FIFO queues are used. When the received soft bit

comes in, it is written to the queue tail of all four queues of the first decoding

processor.

Figure 4.3 shows the Min-Sum algorithm check node operation. The check

node reads soft bits from memory queues 1 to 3. Each coded bit is involved in three

parity check constraints. If the check node is verifying the z-th parity check for an

input bit k, the check node reads the soft bit from queue i under the location for bit

k, where 1 < i < 3. When the check node finishes its operation, the result is written

back to the same queue location where the soft bit was read from.

The check node operation was specified mathematically in Equation 2.2. For the

sign function sgn(.) in the equation, the operand's most significant bit is retrieved.

The exclusive OR(XOR) operation among those bits gives the sign function result.

The absolute value function |. | requires a comparison with the value zero to deter

mine whether the operand is positive or negative. If it is negative, the operand is

subtracted from 0 to get its absolute value. In the check node, for each input num

ber, the output magnitude should be the minimum value of all other input numbers.

In our minimum function min(.) implementation, a single loop is used to find two

minimum numbers for a set of soft bit inputs. Soft bit outputs are produced from

the soft bit inputs. For the minimum input, the corresponding output is the value

of the second minimum (i.e., the minimum of the other inputs). For the remaining

inputs, the corresponding outputs are assigned the value of the minimum input.

Figure 4.4 shows the variable node operation. When the soft bit is at the queue

58

Section 4.2: LDPC-CC Decoder Implementation

Soft or hard bit
from decoding
processor N-l •

Decoding Processor N
Queue 0

i k

• •

• •

Queue 1

Soft or hard bit
to decoding
processor N+l

Check node

Figure 4.3: Min-Sum Algorithm and Parallel Bit Flipping Algorithm Check Node
Operation

head of a decoding processor, all its associated parity check operations involving

that bit have been finished. The corresponding parity check results have been stored

in queues 1 to 3. Then the variable node operation is performed. For each exit

value in queues 1 to 3, the exit value from queues 0 to 4, except the value in that

queue itself, would be added and stored back. The received soft bit in queue 0 is

not changed. The results at the queue heads are forwarded to the next decoding

processor, or to the hard decision operation if the present decoding processor is the

last one in the decoder cascade.

During the whole decoding process, one copy of the original received soft bits is

kept in queue 0. This soft bit information is also pushed in queues 1 to 3 at the first

decoding processor in the decoder cascade. However, in the following decoding

processors, the input data that is written to the tails of queues 1 to 3 is shifted in

from the heads of the corresponding queues of the previous decoding processor.

59

Tail

Received
LLR bits

1

Section 4.2: LDPC-CC Decoder Implementation

Head

Processor!

Queue 0 • •

• •

• •

• •

srN 1
• ;

A \
sH ' !"" jr // •

"*•—•— 1—| fi/f !
^ " V T S C '

M^f f S '
"*•--•— 1—cvyC/ '

LilSsQv i
.Y/ X ^ > ^ i

"* 1—K '

Variable node

Queue 1

Queue 2

Queue 3

Figure 4.4: Min-Sum Algorithm Variable Node Operation

The probability of bit errors should gradually be reduced as soft bits shift in the

rightward direction through the cascade of decoding processors.

After the data exits the rightmost decoder processor, a hard decision operation

determines the binary output. In Figure 4.5, the hard decision operation is shown.

First, all the values from queue 0 to 3 are added together. If the sum is greater or

equal to 0, the hard output bit is decoded as '0'. Otherwise, the bit is decoded as

T

Last Processor

Queue 0 • •

Queue 1 • •

Queue 2

Queue 3

• •

If sum is greater than or
equal to 0, output is 0

If sum is less than
0, output is 1

Hard decision decoder

Figure 4.5: Min-Sum Algorithm Hard Decision Operation

60

Section 4.2: LDPC-CC Decoder Implementation

4.2.2 The Improved Bit Flipping Algorithm

The Improved Bit Flipping algorithm is a hard-decoding algorithm. The received

signal is sampled and the threshold device is used to generate the hard bit '0' or

' 1'. The algorithm then processes this hard bit data. In our IBF algorithm, for im

plementation simplicity, each hard bit is actually represented by a multi-bit integer,

but only the least significant bit is used.

Figure 4.6 shows the IBF algorithm check node operation. Two FIFO queues

are required instead of the four queues in the Min-Sum algorithm. Queue 0 is used

to store the received hard bits or nipped bits. Queue 1 is used to store the check

error counter values. The check node reads hard bits from queue 0. The exclusive

XOR operation among those bits gives the parity check result. If the parity check

fails, all of the check error counters of the associated bits are incremented by 1.

Tail Head

I Processor N I

Queue 0
Receive
hard bits

Parity check
error counter Queue 1

Parity check
error flag

Parity check error counter is
incremented by 1 if parity check fails.

Figure 4.6: Improved Bit Flipping Algorithm Check Node Operation

Figure 4.7 shows the IBF algorithm variable node operation. At the exit of

each decoding processor, the variable node checks whether the check error counter

exceeds the bit flipping threshold of that decoding processor. The bit in queue 0

61

nutc&MJi n

, Flip
^

d *
Reset
to 0

Variable Node
If (CounteoBit Flipping
Threshold Pattern) {

flip the bit in Queue 0;
}

Section 4.2: LDPC-CC Decoder Implementation

is flipped if the check error counter equals to or exceeds the threshold. The check

error counter is then reset to 0 just before it is shifted over to the next decoding

processor.

Queue 0, hard bits • • •

Queue 1, parity • • •
check error counter

Figure 4.7: Improved Bit Flipping Algorithm Variable Node Operation

A hard decision operation is not required in the IBF algorithm since the bits are

already represented in the hard bit format. The decoded bit at the head of q[ueue 0

would be output directly from the last processor in the cascade without any further

processing.

4.2.3 The Parallel Improved Bit Flipping Algorithm

In the Parallel Improved Bit Flipping algorithm, hard bits are used. For the XInC

multi-threaded microprocessor, the datapath width is 16. Hence 16 hard bits can be

packed into one 16-bit word for parallel decoding. Bit-wise logical instructions can

then be used to implement the decoding operation.

Figure 4.3 shows the PIBF algorithm check node operation. Four FIFO queues

are used. Queue 0 is used to store received hard words and intermediate flipped

hard word results. The received hard words are stored to the tails of queues 0 to

3 in the first decoding processor. The input of the following decoding processor is

shifted out from the head of the previous decoding processor's result. Check nodes

read hard words from queues 1 to 3. The bit-wise exclusive OR instruction is used

to calculate the parity check constraints among those hard words. The results are

check error patterns and these are stored back to the queue. As a result, before the

62

Section 4.3: Computational Complexity and Coding Gain

check node operation, queues 1 to 3 store hard bits. After the check node operation,

queues 1 to 3 store check error patterns. Thus as data shifts rightwards along queues

1 to 3, the hard bits are eventually all overwritten with check error patterns.

Figure 4.8 shows the PIBF algorithm variable node operation. At the exit of

each decoding processor, the variable node gets the check error patterns from the

head of queues 1 to 3 and calculates the Flipping Pattern FP1 and FP2. The hard

words in queue 0 are then flipped by XORing the flipping pattern computed by the

variable node. At last, the nipped word in queue 0 is copied to queues 1 to 3 for the

next decoding processor.

Processor N

• •

• •

• •

• •

3 i.mL

P O L J r r o r ! Variable
^"^>atterr£i Node

f, Calculation

— i

Figure 4.8: Parallel Bit Flipping Algorithm Variable Node Operation

At the end of the decoder, the word at the head of queue 0 is output directly. No

hard decision is necessary since the packed bit values are binary already.

4.3 Computational Complexity and Coding Gain

In this section, we evaluated the trade-offs between the computational complexity

and the coding gain of three LDPC-CC decoding algorithms.

In Table 4.1, the computational complexity and coding gain of the three alter

native algorithms are shown. MS denotes the Min-Sum algorithm (Chapter 4.2.1),

IBF denotes the Improved Bit Flipping algorithm (Chapter 4.2.2), and PIBF denotes

63

Section 4.3: Computational Complexity and Coding Gain

the Parallel Improved Bit Flipping algorithm (Chapter 4.2.3). The decoding instruc

tion cycles/thread is the required number of the instruction cycles for the LDPC-CC

decoding processor running on XInC thread 2 to thread 7. The decoded bits/second

is calculated by

System Clock Frequency
Decoding Instruction Cycles/Thread x ^{threads)

We also included the decoded bits/second measure to help evaluate the scenario

of using the new 100 MIPS XInC-II when 25% of the load can be used for LDPC-

CC decoding. The result shows that the PIBF algorithm could produce 116 Kbps of

decoded bit throughput, which could support CD quality audio applications. Note

that IBF and PIBF requires a higher signal to noise ratio Eb/No for the same bit

error rate than that of the Min-Sum algorithm. The required Eb/No for BER at

10 -5 is also listed in the table.

All of the algorithms were run on the XInC-I multi-threaded microprocessor at

12 MHz. Six decoding processors are used on thread 2 to thread 7.

Table 4.1: LDPC-CC Decoding Algorithm Computational Complexity

Decoding Instruction
Cycles/Thread
Decoded Bits/Second
Decoded Bits/Second
assuming 100 MIPS
XInC-II with 25% load
Possible Application

Eb/No at BER=10-5

MS
679

2.2 Kbps

4.6 Kbps

3.8 dB

IBF
315

4.8 Kbps

9.6 Kbps

Compressed
voice
7.8 dB

PIBF
432

55.6 Kbps

116 Kbps

CD quality
audio
7.8 dB

The Min-Sum (MS) algorithm has the most computational complexity among

the three implemented algorithms. The decoded bits/second is only 2.3 Kbps. This

bit rate would be too low for even compressed voice data. To achieve a bit error rate

of 10 -5, the signal to noise ratio Eb/No requires at least 3.8 dB.

64

Section 4.3: Computational Complexity and Coding Gain

In the IBF algorithm, the time consuming minimum function in the Min-Sum

algorithm is replaced by the exclusive OR instruction for the parity check and the

addition for the check error counter. As a result, the decoding throughput is in

creased by 113% to 4.8 Kbps. Since only hard bits are used for decoding, to achieve

a bit error rate of 10~5, the minimum required signal-to-noise ratio Eb/No is 7.8 dB.

The PIBF algorithm is more complex than the IBF algorithm. Essentially more

operations are required in the variable node operation to calculate the Flipping Pat

tern. With respect to the number of decoding clock cycles per thread, PIBF requires

40% additional instruction cycles compared with the IBF algorithm. However, due

to the bit-wise parallelism, the decoding throughput could increase 10.3 times. In

addition, the coding gain is at the same level of the IBF algorithm according to the

simulation results.

65

Chapter 5

Hardware Optimization and
Extensions

5.1 The XInC Emulator

A XInC emulator was designed at the beginning of this research project to allow

the outputs and performance metrics to be predicted for alternative algorithms run

ning with any given input. Specifically, the XInC emulator could be used for the

following purposes.

First, the required instruction cycles per decoded bit of alternative LDPC-CC

decoding algorithms can be evaluated. In the XInC, some instructions are 16-bit in

structions while other instructions are 32-bit instructions (or 2-word instructions).

To execute a 2-word instruction, two passes are required through the data process

ing pipeline. The number of instruction cycles per decoded bit is defined as the total

number of instruction words required per decoded information bit. For a (128,3,6)

LDPC-CC, each decoding phase decodes 1 information bit and 1 check bit. As

a result, the instruction cycle per decoded bit is equal to the total number of in

struction words that are required to implement one LDPC-CC decoding processor.

The instruction cycles per decoded bit is the primary cost measurement for decod

ing algorithms since it is not related to hardware-specific parameters such as clock

66

Section 5.1: The XInC Emulator

frequency. It is a natural measurement of software algorithm complexity, which

gives us how many instruction words are required to decode one information bit.

Inside the XInC emulator, code profiling is used to determine exact cycle counts

for program modules as well as instruction frequencies. This technique is widely

used by software engineers to investigate the behavior of programs. For software

engineers, code profiling is generally used to measure the frequency and duration

of each function call. It can thus be used to identify the main bottlenecks in a pro

gram at the function call level. Software engineers can then focus their efforts on

the most critical bottleneck functions. Instead of measuring the duration of function

calls, the XInC emulator measures the frequency of instructions and the frequency

of instruction formats. The frequency of an instruction is the total number of times

that one instruction at a specific memory address is executed. There are a total of 18

instructions and 31 instruction formats in the XInC (Note: some instructions have

2 instruction formats). The frequency of an instruction format is defined to be the

total number of times that one instruction of the given format are executed. This

lower-level code profiling method can help to identify the algorithm bottlenecks at

the instruction level.

Second, the emulator can be used to evaluate different hardware designs with

out having to build costly physical hardware system prototypes. It also allows us

to simulate the effects of possible modifications to the hardware components. For

example, some algorithm bottlenecks might be reduced or eliminated if certain ad

ditional hardware components were to be added. Before adding them to the real

hardware, they could be added to the emulator model first. The performance of

these new components could then be evaluated and confirmed using the emulator.

Third, using an emulator helps when debugging algorithms. More detailed de

bugging information, such as register values, can be collected and then displayed

later for any clock cycle.

67

Section 5.2: Hardware Optimization

In the XInC emulator, the multi-threaded microprocessor is simulated on a clock

cycle basis. Machine code is the input to the emulator. For each simulated clock

cycle, one instruction word is read and its behaviour on the registers is simulated.

Inside the emulator, memories, general-purpose registers, program counter registers

and condition code registers are encapsulated by C++ objects. The emulator can be

configured to execute a predefined number of clock cycles, or it can be allowed to

execute instructions until the next breakpoint is encountered in the program. All the

values of registers, memories and I/O ports can be read out. The frequency of each

instruction and frequency of each instruction format are recorded as the emulator is

running.

5.2 Hardware Optimization

The LDPC-CC decoding algorithm was analyzed on the XInC emulator. By code

profiling, algorithm bottlenecks could be identified. In addition, various ways of

extending the XInC microprocessor were studied to eliminate bottlenecks in the

LDPC-CC application.

Table 5.1 shows the code profiling results for the check node calculation of

the Bit Flipping algorithm for the same benchmark (128,3,6) LDPC-CC. The code

segment reads hard bit inputs from the memory and calculates the check result.

Through code profiling, we determined that the Bit Flipping algorithm check node

operation needs 744 instructions. In addition, we could see that the actual check

operation only takes one instruction at address 0xC3El. The remaining instructions

are used for reading the data from the memory. Those instructions include looping

overhead, memory movement and pointer calculations.

Table 5.2 shows the frequency of the various instruction formats for a Min-

Sum decoding processor which includes a check node and a variable node. There

are a total of 31 instruction formats in the XInC. This profiling result helps us to

68

Address

0xC3C6
0xC3C7
0xC3C8
OxC3C8
0xC3C9
OxC3CA
OxC3CA
OxC3CB
OxC3CC
OxC3CE
OxC3CF
OxC3Dl
0xC3D2

0xC3D4
OxC3D5
0xC3D7
OxC3D8
0xC3D9
0xC3D9
OxC3DA
OxC3DA
OxC3DC
OxC3DD
OxC3DF
OxC3El
0xC3E2
OxC3E3
0xC3E4

Frequency

6
6

42
42
36
36
36
36
36
36
36
36

36
36
36
35

1

36
36
36
36
36
36
36
36

Machine Code

0xlB80
0x2B80

0x4DFA
0x081A

0xB2A7
0x332E
0x23F2 OxFODC
0x232C
0x03F6 0xD290
0x8AAD
OxOBCl 0x0408

0x0B41
0x03Cl 0xE7C0
0x2C01
0x0101

0x4800

0x03F6 0xD596
0x0308
0x03FC0xF154
0x03F0 0xD89C
0xlDC3
0x6D01
0x01E4

Section 5.2: Hardware Optimization

II calculate check result
mov r3,0
mov r5,0
loadPeTheseLLRsCond:
sub rl,r5,nCheckDegMax
be ZS,loadPeTheseLLRsEnd
loadPeTheseLLRsBody:
Id r6,r2,pnCheckDegRowPosition
add r6,r6,r5
Id r4,r2,pnPosition
add r4,r4,r5
Id r0,r6,matOnesInPcmYRowPosition
Id rl,r2,pnSymbolMatLLRPosition
add rl,rl,nCodeC*nBufWidth*
nProcSize
subrl,rl,r0
sub r0,rl,nBufLength
be NC,replacePnTheseRows
bra storePnTheseRows
replacePnTheseRows:
addrl,r0,0
StorePnTheseRows:
Id rO,r6,matOnesInPcmX
addr0,r0,rl
st rO,r4,pnMatLLRPosition
Id r0,r0,matLLRBuffer
xor r3,r3,r0
addr5,r5,l
bra loadPeTheseLLRsCond
loadPeTheseLLRsEnd:

Table 5.1: Instruction Frequencies for the Bit Flipping Algorithm Check Node Cal
culation
Address Frequency Machine Code Assembly Code

0xB2A7
0x332E
0x23F2 OxFODC
0x232C
0x03F6 0xD290
0x8AAD
OxOBCl 0x0408

0x0B41
0x03Cl 0xE7C0
0x2C01
0x0101

0x4800

0x03F6 0xD596
0x0308
0x03FC0xF154
0x03F0 0xD89C
0xlDC3
0x6D01
0x01E4

69

Section 5.2; Hardware Optimization

identify which instruction formats are the most frequently executed. As shown in

the table, the three most frequent instructions are bra kl 1 (unconditional branch),

add rl,r2,k3 (2's complement add) and be cl,k2 (conditional branch). Most of

these instructions are associated with the looping overhead. The fifth to seventh

most frequent instructions are Id (load from RAM) and st (store to RAM). They are

associated with data movement.

After reviewing these profiling results, we grouped all the instructions into three

groups: looping overhead, data movement and other operations. The looping over

head group includes bra, add and be. Data movement group includes Id and st. The

last operation group includes all the other instructions.

The instruction frequency for each group is shown in Table 5.3. In the table, MS

stands for Min-Sum; IBF stands for Improved Bit Flipping algorithm; and PIBF

stands for Parallel Improved Bit Flipping algorithm.

From Table 5.3, the looping overhead group accounts for 38%, 26% and 35%

of the total instructions in MS, IBF and PIBF algorithm. The reason is that many

parts of the algorithms are repeated, such as: loading and storing soft bits from

memory, and performing check and variable node operations among these bits. In

addition, most of the instruction segments inside the loop are short, making the

looping overhead a relatively large proportion of the whole algorithm.

In traditional looping, the programmer generally requires 3 instructions to con

trol the loop: 1) testing whether the loop ends , 2) jumping to the beginning of the

loop, and 3) incrementing or decrementing the loop counter.

To eliminate the looping overhead, zero-overhead looping could be used. This

hardware technique is already used in many Digital Signal Processors (DSPs) to im

prove the efficiency of general-purpose microprocessors when executing the loops

that commonly appear in signal processing applications. By using specialized hard

ware, looping is controlled without cycles.

70

Section 5.2: Hardware Optimization

Table 5.2: Instruction Format Frequency of a Min-Sum Decoding Processor includ
ing a Check Node and a Variable Node

Instruction Format
bra kl 1
addrl,r2,k3 1
be cl,k2 1
addrl,r2,r3
Idrl,r2,k3 2
Idrl,r2,k3 1
strl,r2,k3 2
movrl,k2
subrl,r2,r3
xorrl,r2,r3
strl,r2,k3 1
addrl,r2,k3 2
iorrl,r2,r3
andrl,r2,r3
outprl,k2
andrl,r2,k3
inprl,k2
bisrl,r2,k3
jsrrl,k2
rolrl,r2,k3
bicrl,r2,k3
jsr rl,r2
thrdrl
ldrl,k2
strl,k2
movrl,k2 2
bccl,k2 2
iorrl,r2,k3
rolrl,r2,r3
brakl2
bixrl,r2,k3

Frequency
672
414
329
285
237
174
128
117
100
96
94
87
54
36
25
20
16
12
10
10
8
8
6
4
2
1
0
0
0
0
0

71

Section 5.2: Hardware Optimization

Table 5.3: LDPC-CC Decoding Algorithm Operation Frequency

Instruction Group
Looping Overhead
Data Movement
Other Operations

MS
38%
19%
43%

IBF
26%
38%
36%

PIBF
35%
30%
35%

Data movement is another significant activity of the LDPC-CC decoding algo

rithm. A large amount of memory storage is used to store the soft bit or hard bit

information and intermediate check node and variable node results, and many in

structions are required to read and manipulate the data. 19%, 38% and 30% of the

total instructions are recorded for this purpose in MS, IBF and PIBF algorithms,

respectively. In ASICs or FPGAs, this bottleneck may be minimized by customized

memory design. For example, multiple data words could be accessed in parallel in

one clock cycle by exploiting a multi-port memory. However, this is not available

if we are limited to the original XInC architecture. Permitting the use of multi-port

memory would require major changes to the given architecture.

5.2.1 Zero Overhead Looping

As shown in Table 5.3, more than 26% of the instructions in the decoding processor

are associated with looping overhead. In the XInC, a typical loop might require 3

instructions (sub, be, bra) for looping control, as shown below:

mov rO,#loopCounter ; initialize loop counter

loopCont:

sub r0,r0,l ; decrement the loop counter, this is overhead

be ZS, loopEnd; determine if looping ends, this is overhead

bra loopCont; branch to the loop beginning, this is overhead

loopEnd:

72

Section 5.2: Hardware Optimization

In the XInC emulator, the zero-overhead looping mechanism was added and

emulated in behavioral way. The looping time could be reduced by up to 75% if

three instructions were used to control the loop and only one instruction was inside

the loop. For each XInC thread, several new register sets are required to provide

zero-overhead looping. Each register set includes a zero-overhead loop counter, a

looping start register and a looping end register. The loop counter indicates how

many loop iterations remains to be executed. The loop counter is decremented by

1 when the end of the loop is reached. The looping start register and looping end

register store the looping program start address and looping program end address.

In addition, two new instructions are created. One instruction will be denoted by

movZOLR Rx, #counter. It initializes the looping counter Rx as #counter. The

second new instruction will be denoted by setZOLA Rx,#endAddress. It copies

the current Program Counter (PC) value to the looping start register. In addition,

#endAddress is stored in the looping end register.

The new assembly language code of the zero-overhead looping could be,

movZOLR RO, #counter ; set loop counter

setZOLA RO, loopend; set looping start address and end address

loopend:

In Figure 5.1, the zero-overhead looping mechanism is represented in a flow

chart. This algorithm would be enabled to run once for every instruction as long

as the corresponding assembly language loop is enabled. It runs in parallel with

instruction execution. The zero-overhead looping hardware monitors the Program

Counter (PC) and looping end register. When the program counter value equals

the looping end address, the PC is reloaded with the looping start address and the

loop counter is decremented by 1. When the loop counter is decremented to 0, the

looping is finished.

73

Section 5.2: Hardware Optimization

N

±
Program Counter ++

Looping Counter = Looping Counter -1

Program Counter = Looping start address

Figure 5.1: Zero-overhead Looping Flow Chart

In Figure 5.2, the example zero-overhead looping circuitry is given. The looping

start register stores the looping program start address. The looping end register

stores the looping program end address. The loop counter register stores the loop

counter. The upper XOR gate is used to compare whether the looping program has

reached the end of the program loop. If the program counter equals to the value in

the looping end register, the XOR gate result is '0'. The bottom XOR gate is used

to compare the loop counter with '0' to determine if the loop is finished. When the

loop counter is decremented to '0', the XOR gate result is '0'. Two NOR gates and

one AND gate are used to check whether both two XOR gate results are '0'. If this

condition is true, the loopControl signal is T . The loop counter is added by " - 1 "

and the program counter is set as the looping start register value.

It is also possible to use more complicated zero-overhead looping mechanisms.

For example, the loop counter could be replaced by a loop counter start register, a

loop counter end register, a loop counter step register and a loop counter direction

74

Section 5.2: Hardware Optimization

flag register. In this way, the loop counter could have more flexible loop start, loop

end, loop step and loop direction.

Note that the maximum number of allowed nested loops in a program would

be limited by the number of zero overhead loop circuits. This is a limitation, but a

minor one for many signal processing algorithms.

5.2.2 Performance Evaluation of the Zero-overhead Looping

Zero-overhead looping was emulated behaviorally on the XInC emulator. After

the LDPC-CC PIBF decoding algorithm was re-implemented and simulated, its

decoding throughput was found to be further increased by 16%. Without zero-

overhead looping, the total number of instructions per decoding processor is 356

and the total number of instruction cycles per decoding processor is 432. With

zero-overhead looping, the total number of instructions per decoding processor is

reduced by 22% to 278 and the total instruction cycles per decoding processor is

reduced by 16% to 364.

Figure 5.3 shows the number of instruction cycles per decoding processor for the

Min-Sum algorithm, Improved Bit Flipping algorithm, Parallel Improved Bit Flip

ping algorithm and Parallel Improved Bit Flipping algorithm with zero-overhead

looping. The check node operation and variable node operation instruction cycles

in one decoding processor are shown. The total number of instruction cycles is the

sum of those two instruction cycles.

Min-Sum algorithm has complex check node and variable node operations such

as the minimum function. Its check node requires 422 instruction cycles and its

variable node requires 257 instruction cycles. The Improved Bit Flipping algorithm

uses much simpler logical instructions, such as XOR, AND and OR, and its instruc

tion cycles are consequently fewer than that of the Min-Sum algorithm. Its check

node requires 262 instruction cycles and its variable node requires 53 instruction

75

Section 5.2: Hardware Optimization

cycles. The Parallel Improved Bit Flipping algorithm has a more complex variable

node than the Improved Bit Flipping algorithm, which calculates the flipping pat

terns, FP1 and FP2. Its check node requires 252 instruction cycles and its variable

node requires 180 instruction cycles. The Parallel Improved Bit Flipping algorithm

with zero-overhead looping removes the looping overhead, so it requires less in

struction cycles than the Parallel Improved Bit Flipping algorithm. Its check node

instruction cycle count is 205 and its variable node cycle count is 159.

Figure 5.4 shows the decoding throughput of the 12 MIPS XInC-I microproces

sor for the Min-Sum algorithm, the Improved Bit Flipping algorithm, the Parallel

Improved Bit Flipping algorithm and the Parallel Improved Bit Flipping algorithm

with zero-overhead looping. The decoding throughput is measured as the total de

coded information bit per second. The Min-Sum algorithm's decoding throughput

is 2.2 Kbps. The Improved Bit Flipping algorithm uses simple logical operations

in the decoding process and the decoding throughput is 4.8 Kbps. The Parallel Im

proved Bit Flipping algorithm uses bit-wise parallelism to decode 16 bits at a time.

Its decoding throughput is 55.6 Kbps. When the zero-overhead looping feature is

used in Parallel Improved Bit Flipping algorithm, the decoding throughput could

further be increased to 65.9 Kbps.

76

Section 5.2: Hardware Optimization

Figure 5.2: Example Zero-overhead Looping Circuitry
77

Section 5.2: Hardware Optimization

800

700

_ 600

£ 500
s

•$ 400

| 300

fl 200

100

£0422

Miu Sum

B Check Node H Variable Nodd

SSJ53J5S

262-

EBF

SS180»
1 » « J ' ^

tQ205

PIBF PIBF with Zero-
overhead Looping

Figure 5.3: Comparison of Decoding Processor Instruction Cycle Counts

a.

a.

O u

H
60
(3

H3
o o

ft

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0
2.2

6S Q

-5i«-

FFffl
MinSum IBF PIBF PIBF with

Zero-
overhead
Looping

Figure 5.4: Comparison of Algorithm Throughput

78

Chapter 6

Future Research Directions and
Conclusions

6.1 Future Research Directions

In this section, some preliminary ideas that might further improve the current algo

rithms and coding gain are discussed.

6.1.1 Longer LDPC-CCs

(M,J,K) LDPC-CCs with a larger memory window M might be implemented on

multi-threaded microprocessors to increase the coding gain. The code implemen

tations investigated in this thesis are readily extendible to handle such a change,

provided there is sufficient available memory capacity in hardware.

For LDPC-BCs, the bit stream is decoded block-by-block. Check nodes and

variable nodes in one iteration could be placed on silicon chip in parallel and they

could be run at the same time. The same check nodes and variable nodes are shared

by the following decoding iterations for the same block. For a LDPC-BC with a

block length more than a thousand bits, thousands of variable nodes and hundreds

of check nodes would be required. As a result, wire routing among these nodes

becomes a critical challenge to implement long LDPC-BCs.

79

Section 6.1: Future Research Directions

For LDPC-CCs, the bit streams is decoded continuously. Multiple decoding

processors, which are each analogous to one decoding iteration for LDPC-BCs, are

realized in parallel. Only one check node and one variable node are required in

each decoding processor. Hence, the wire routing problem is greatly reduced for

LDPC-CCs compared to LDPC-BCs.

Since the wire routing problem for LDPC-CCs is greatly reduced, longer LDPC-

CCs could be implemented to get better coding gain. The computational complexity

of LDPC-CC decoder would stay the same, except that longer LDPC-CCs would

require more memories. In our current implementation, only the (128,3,6) LDPC-

CC was used. If the LDPC-CC length could be increased to more than 1000, the

coding gain might improve more than 2 dB according to simulation results reported

in [8].

6.1.2 Precision

In the Bit Flipping algorithm, hard bits are used for decoding. During the decoding

process, these bits are still kept as hard bits. Only one bit is used to represent the

received signal.

In contrast, in the Min-Sum algorithm, soft bits are used. Received signals are

represented as fixed-point numbers or integers. However, parity check operations

on soft bits require complex computing methods and relatively large memory capac

ity. Received signals are normally sampled, quantized and then sent to the decoder

directly.

In Figure 6.1, the Min-Sum algorithm was simulated with soft bit precisions of

2-, 3-, 4- and 8- bits. The bit error rate versus the signal-to-noise ratio E{,/N0 result

is shown. The results confirm that coding gain is improved if more bits are used to

represent the signal. When a soft bit is represented by a 4-, 3- and 2-bit number, the

coding gain is close to that of the real number within 0.2,0.5 and 2 dB, respectively.

80

Section 6.1: Future Research Directions

When a soft bit is represented by a 8-bit number, the coding gain is almost the same

as that of the real number.

•| Q - 6 I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9

Eb/No (dB)

Figure 6.1: Min-Sum Algorithm Performance with Precision 8- ,4- ,3- and 2-Bits

According to this simulation results, decoding algorithm complexity could be

further analyzed for different precisions and to determine their corresponding cod

ing gains.

The coding gain of the Bit Flipping algorithm could be increased by increasing

the soft bit precision from one bit to more bits. This would allow the algorithm to

exploit some of the reliability information. For example, we could use "strong 1",

"weak 1", "strong 0", "weak 0"soft bit values in a 2-bit representation. Note that

the parity check operations could still be relatively simple logical operations. These

81

Section 6.1: Future Research Directions

operations might be only a little more complex than that of the 1-bit algorithm. Bit

wise parallelism might be used. Hence, the coding gain could be increased by

introducing more than a single bit of precision.

On the other hand, the precision of the Min-Sum algorithm could be limited to

4 bits with only 0.2 dB of coding gain loss compared to the real number represen

tation. Since microprocessors could compute 16-, 32- or 64-bits one at a time, a

modified Min-Sum algorithm might be able to decode 2, 4 or 8 bits concurrently.

Such parallel algorithms could also be further investigated.

When only a few bits (for example, less than 3 bits) are used to represent the

received signal samples, the check node and variable node operation could use a

small lookup table (or a small network of logic gates) to replace the parity check

operation. For example, for a 3-bit Min-Sum algorithm, 1 bit is used for the sign

and 2 bits are used for the magnitude. The look-up table length for check nodes is

only 212 = 4096 if the logic operation is based on the 2-bit magnitude for a (N,3,6)

LDPC-CC. With look-up tables, the check node calculation for 2-bit soft bits might

be as fast as for the bit-flipping algorithm.

6.1.3 Hybrid Decoder Design

Hybrid decoder designs might be worth investigating when the Signal-to-Noise

Ratio cannot be pre-determined. In such a situation, the decoders could switch

between the Min-Sum algorithm and the Bit Flipping algorithm according to the

channel conditions (e.g. Signal-to-Noise Ratio). When the SNR is high, the Bit

Flipping algorithm could be used to reduce the decoding time and save power con

sumption. When the SNR is low, Min-Sum algorithm could be used to achieve

better coding gain in exchange of more computing complexity.

82

Section 6.2: Main Contributions and Conclusions

6.1.4 Adaptive Bit Flipping Algorithm

As we discussed bit flipping in Chapter 3.1, some error bits might never get flipped

(i.e. corrected) if the threshold is too conservative. On the other hand, an overly

aggressive threshold could cause some of the correct bits to be flipped erroneously.

According to the simulation result, the best threshold value might be related to the

bit error rate. As a result, the bit flipping algorithm might automatically choose the

proper threshold value according to the estimated bit error rate. If the estimated bit

error rate is increasing, the algorithm could decide that the current threshold value is

too aggressive and is thus causing too many errors, and hence a more conservative

threshold should be chosen. On the other hand, if the bit error rate could not be

reduced further using the current threshold value, the algorithm could decide that

the current threshold value might be too conservative. Then a more aggressive

threshold value could be used for further decoding. Such adaptive algorithms might

help to increase the coding gain and speed up the algorithm further.

6.2 Main Contributions and Conclusions

Error control coding is widely used in the communication field to combat transmis

sion errors caused by noise disturbances. By adding appropriate redundant infor

mation to the transmitted information, the contaminated signal can be recovered at

the receiver without error. In his landmark 1948 paper [1], Claude Shannon showed

that for any given channel bandwidth and signal power to noise power ratio (SNR),

there exists a maximum bit rate at which information can be encoded and decoded

without error at the receiver. Since then, information theorists have searched for

coding methods whose performance could approach the Shannon Limit. After 50

years of research, low-density parity-check block codes (LDPC-BCs) were found

to be a class of capacity-approaching codes within 0.0034 dB of the Shannon Limit

[4]. However, these codes require complex encoding and decoding algorithms to

83

Section 6.2: Main Contributions and Conclusions

implement. Current research on LDPC codes is focused mainly on code construc

tions with implementable encoding and decoding algorithms.

One of the difficulties when implementing LDPC block codes is their complex

encoder since the generator matrix is no longer low density. Moreover, Low Density

Parity Check Convolutional Codes (LDPC-CCs) have a simpler encoder structure

inherited from traditional convolutional codes.

Current popular decoding algorithms for LDPC codes process bit reliability in

formation from the received signal. These algorithms involve relatively complex

fixed-point calculations. In order to realize the desired decoding throughput, these

decoders have to be implemented in ASIC or FPGA technology. However, there are

many advantages to implementing LDPC codes in microprocessors. First, the en

coder and decoder algorithms could share the same microprocessor resources with

other algorithms and this would reduce product costs. As an example of a wire

less audio application, audio compression and decompression algorithms could be

implemented with LDPC-CC encoding and decoding algorithms in the same mi

croprocessor. Second, the development cycle when using a microprocessor is fast

and the development cost is low while the ASIC fabrication process is expensive

and costs several months of engineering time.

In this thesis, several decoding algorithms were investigated. The main contri

butions of this research project are as follows.

1. The multi-threaded microprocessor was found to be a suitable architecture

for implementing LDPC-CC decoding algorithms. The iterative decoding process

was realized by several identical decoding processors which could be mapped to

multiple threads on a multi-threaded microprocessor. In addition, the built-in bit

wise parallelism in microprocessor could decode 16, 32, or 64 bits in one time when

the bit flipping algorithm is used.

2. The Bit Flipping algorithm was found to be suitable for high Signal-to-Noise

84

Section 6.2: Main Contributions and Conclusions

Ratio applications. Popular decoding algorithms, such as the Sum-Product algo

rithm or the Min-Sum algorithm, might not be suitable for microprocessors since

they require a relatively large amount of calculation on fixed-point numbers. On

the contrary, the BF algorithm only uses hard bit and logical operations and can

be implemented by exploiting the bit-wise parallelism that is already present in the

instruction sets of most microprocessors.

3. The coding gain of the original Bit Flipping algorithm was improved by

the discovery of the bit flipping threshold pattern. Through simulation, the best

pattern was determined for a (128,3,6) LDPC-CC. Alternating between a conser

vative threshold (where a bit is flipped only when all the parity check constraints

fail) and an aggressive threshold (where a bit is flipped when the majority of the

parity check constraints fail) not only improves the coding gain, it also speeds up

the error correction convergence. The Improved Bit Flipping algorithm with bit

flipping threshold pattern (3 - 2)+ achieves 2.5 dB better coding gain compared to

Gallager's original algorithm with a fixed bit flipping threshold pattern (3)+ at a Bit

Error Rate of 10~4. It also has the coding gain within 3.5 dB of the Min-Sum algo

rithm. In addition, the decoding throughput is 24 times faster than the benchmark

Min-Sum algorithm.

4. A XInC emulator was built to quantitatively analyze the performance of

the algorithms. Looping overhead and data movement were identified as being

the main bottlenecks. Zero-overhead looping was added to the emulator to permit

experiments that could measure the benefits of the new feature on performance. The

emulation results show that the decoding throughput could be further increased by

16% using this hardware improvement.

85

Bibliography

[1] C. Shannon, "A mathematical theory of communication," Bell System Tech-

nicalJournal, vol. 27, pp. 379-423 and 623-656, 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-

correcting coding and decoding: Turbo-codes," in Proc. 1993 IEEE interna

tional conference on communications, 1993,pp.1064-1070.

[3] R. G. Gallager, "Low density parity check codes," IRE Trans. Inform. Theory,

vol. 8, pp. 21-28, Jan. 1962.

[4] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low

density parity check codes," IEEElectron. Lett, vol. 32, pp. 1645-1655, Aug.

1996.

[5] "Digital video broadcasting (DVB) user guidelines for the second generation

system for broadcasting, interactive services, news gathering and other broad

band satellite applications (DVB-S2)," Tech. Rep. TR 102 376 VI. 1.1, Euro

pean Telecommunications Standards Institute, Feb 2005.

[6] IEEE Computer Society, the IEEE Microwave Theory, and Techniques Soci

ety, "IEEE standard for local and metropolitan area networks part 16: Air in

terface for fixed and mobile broadband wireless access systems," Tech. Rep.

IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005, Institute of

Electrical and Electronics Engineers, Feb 2006.

[7] R Elias, "Coding for noisy channels," in IRE Conv. Rec, pt.4, Mar 1955, pp.

37^16.

86

BIBLIOGRAPHY

[8] A. Jimenez Felstrom and K. Zigangirov, "Time-varying periodical convolu-

tional codes with low-density parity-check matrix," IEEE Trans. Inf. Theory,

vol. 45, pp. 2181-2191, Sept. 1999.

[9] Z. Chen, S. Bates, and X. Dong, "Low-density parity-check convolutional

codes applied to packet based communication systems," in Proc. IEEE

GLOBECOM2005, Nov. 2005, vol. 3, pp. 1250-1254.

[10] S. Bates and G. Block, "A memory-based architecture for FPGA implemen

tations of low-density parity-check convolutional decoders," in Proceedings

of the IEEE International Symposium on Circuits and Systems (ISCAS), 2005,

pp.336-339.

[11] R. Swamy, S. Bates, and T. L. Brandon, "Architectures for ASIC implemen

tations of low-density parity-check convolutional encoders and decoders," in

Proceedings of the IEEE International Symposium on Circuits and Systems

(ISCAS), 2005, pp. 4513^1516.

[12] M. Fossorier, M. Mihaljevic, and H.Imai, "Reduced complexity iterative de

coding of low density parity check codes based on belief propagation," IEEE

Trans. Commun., vol. 47, pp. 673-680, May 1999.

[13] N. Wiberg, Codes and decoding on general graphs, Ph.D. thesis, Linkoping

Univ., 1996.

[14] John L. Hennessy and David A. Patterson, Computer Architecture: A Quanti

tative Approach, Third Edition, Morgan Kaufmann, 2002.

[15] Eleven Engineering Incorporated, XInC User Guide, 2002.

[16] Shu Lin and Daniel J. Costello, Error Control Coding, Second Edition, Pren

tice Hall, 2004.

[17] Leon W. Couch, Digital and Analog Communication Systems, Seventh Edi

tion, Prentice Hall, 2006.

[18] D. J. Costello and G. D. Forney, "Channel coding: The road to channel ca-

87

BIBLIOGRAPHY

parity," Proceedings of the IEEE, vol. 95, pp. 1150-1177, June 2007.

[19] C. Schlegel and L. C. Perez, "On error bounds and turbo codes," IEEE Com

mun. Lett, vol. 7, pp. 205-207, July 1999.

[20] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans.

Inf. Theory, vol. IT-27, pp. 533-547, Sept. 1981.

[21] T. Richardson and R. Urbanke, "Efficient encoding of low-density parity-

check codes," IEEE Trans. Inf. Theory, vol. 47, pp. 638-656, Feb. 2001.

[22] T. J. Richardson and R. L. Urbanke, "Efficient encoding of low-density parity-

check codes," IEEE Trans. Inf. Theory, vol. 47, pp. 638-656, 2001.

[23] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm," IEEE Trans. Inf. Theory, vol. 13, pp. 260-269,

1967.

[24] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the

sum-product algorithm," IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb.

2001.

[25] S. L. Howard, C. Schlegel, and V. C. Gaudet, "Degree-matched check mode

decoding for regular and irregular LDPCs," vol. 53, pp. 1054-1058, Oct.

2006.

[26] J. Chen and M. P. C. Fossorier, "Density evolution for two improved BP-based

decoding algorithms of LDPC codes," IEEE Commun. Lett, vol. 6, no. 5, pp.

208-210, May 2002.

[27] J. Zhang, M. Fossorier, D. Gu, and J. Zhang, "Two-dimensional correction for

min-sum decoding of irregular LDPC codes," IEEE Commun. Lett, vol. 10,

no. 3, pp. 180-182, Mar. 2006.

[28] N. Miladinovic and M. Fossorier, "Improved bit-flipping decoding of low-

density parity-check codes," IEEE Trans. Inf. Theory, vol. 51, pp. 1594-1606,

Apr. 2005.

88

BIBLIOGRAPHY

[29] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, Morgan Kaufmann, 1988.

[30] M. J. Flynn, "Some computer organizations and their effectiveness," IEEE

Trans. Comput., vol. C-21, no. 9, pp. 948-960, Sept. 1972.

[31] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's

Manuals, 2002.

[32] G. Byrd and M. Holliday, "Multithreaded processor architectures," IEEE

Spectrum, vol. 32, no. 8, pp. 38^6, Aug. 1995.

[33] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan

Porterfield, and Burton Smith, "The Tera computer system," in Proceedings

of the 1990 International Conference on Supercomputing, 1990, pp. 1-6.

[34] R. Krishnaiyer, D. Kulkami, D. Laven, L. Wei, C.-C. Lim, J. Ng, and D. Sehr,

"An advanced optimizer for the IA-64 architecture," IEEE Micro, vol. 20, no.

6, pp. 60-68, 2000.

[35] Jay Bharadwaj, William Y. Chen, Weihaw Chuang, Gerolf Hoflehner, Kishore

Menezes, Kalyan Muthukumar, and Jim Pierce, "The Intel IA-64 compiler

code generator," IEEE Micro, vol. 20, no. 5, pp. 44-53,2000.

89

Appendix A

XInC Emulator C++ Source Code

/ / F i lename: xinc . cpp
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Class xinc implementat ion
//
/ / Date: Jan 24 , 2008

inc lude "xinc .h"
inc lude " x i n c l i b .h"
inc lude < c s t r i n g >
inc lude < s t r i n g >
inc lude < i o s t r e a m >
inc lude < f s t r eam>
#inc lude < c s t d l i b >
inc lude < c o n i o . h >
inc lude < c s t d i o >

using namespace s t d ;

xinc :: xinc ()
{

systemClockCycle =0;

for (i n t i = 0 ; i < 8 ; i + +) {
i sTwoWordsIns t ruct ion [i] = f a l s e ;
f i r s t W o r d [i] = 0 ;
b r a S t a t u s [i] = 0 ;

}

n e w e s t L o g = " " ;

for (i = 0 ; i < 6 5 5 3 6 ; i + +) {
a d d r e s s S t a t [i] = 0 ;

}

90

f

f i leLog = fa lse ;
screenLog = fa l se ;
se r ia l InOpen = fa l se ;
ser ia lOutOpen = fa l se ;
i n s t r u c t i o n L o g 2 = fa l se ;

ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName
ins t ruc t ionName

[0]='
[1]='
[2]='
[3]= '
[4]='
[5]='
[6]='
[7]='
[8]='
[9]= '
[10] =
[11] =
[12] =
[13] =
[14] =
[15] =
[16] =
[17] =
[18] =
[19] =
[20] =
[21] =
[22] =
[23] =
[24] =
[25] =
[26] =
[27] =
[28] =
[29] =
[30] =
[31] =
[32] =

add r l , r2 , r 3 " ;
add r l , r 2 ,k3 1
add r l , r 2 , k 3 2
and r l , r2 , r3 ";
and rl , r 2 , k 3 " ;
be c l , k 2 1";
be c l , k 2 2" ;
bic r l , r2 , k 3 " ;
bis rl , r2 , k 3 " ;
bix rl , r2 , k 3 " ;

="bra kl 1";
="bra kl 2" ;
=" inp r l , k 2 " ;
="ior r l ,r2 , r3 "
="ior r l , r2 , k 3 "
=" j sr r l , r2 ";
=" j s r r l , k 2 " ;
="ld rl , r 2 , k 3 1
="ld rl , r 2 , k 3 2
="ld rl , k 2 " ;
="mov rl , k 2 " ;
="mov rl ,k2 2" ;
="outp rl , k 2 " ;
="rol r l , r2 , r 3 "
="rol rl ,r2 , k 3 "
="st rl , r2 ,k3 1
="st rl , r2 ,k3 2
="st rl , k 2 " ;
="sub rl ,r2 , r3 "
" t h rd r l " ;
"xor r l ,r2 , r3 "
"movZOLR rl ,k3

="setZOLA rl ,k3

for (i = 0 ; i < 3 3 ; i + +) i n s t r u c t i o n S t a t [i] = 0;

bool xinc :: load (char* f i l ename)
{

i f s t ream fp_in ;

if (s t rcmp(&fi lename [s t r l e n (fi lename)— 3] , "hex") !=0) {
cout « " E r r o r : F i le should be ended with \ " h e x \ " " « end l ;
r e t u r n fa lse ;

}
fp . in . open(f i lename , ios :: in | i o s : : b inary) ;

i f (f p . i n . f a i l ())
{

cout « " E r r o r : Input f i l e open f a i l ! " « end l ;
r e t u r n fa lse ;

}

91

in t i=0 ;
unsigned char f i r s tBy te , secondByte ;
shor t twoBytes;
f i r s t B y t e = f p _ i n . g e t () ;
secondByte = fp_in . get () ;
while (! fp . in . eof ()) {

twoBytes=(secondByte « 8) | f i r s t B y t e ;

if (i>=49152) {
ram[i - 4 9 1 5 2] . se tValue (twoBytes) ;

}
i++;
f i r s t B y t e = fp . in . get () ;
secondByte = fp- in . get () ;

}
fp . in . close () ;
cout « " F i l e loaded s u c c e s s f u l l y ! " « e n d l ;
s t rncpy (fi lenameRoot , filename , s t r l e n (f i l e n a m e) - 4) ;
f i lenameRoot [s t r l e n (f i l ename) — 4]=0;
r e t u r n t rue ;

};

void xinc :: se tTwoWordsIns t ruct ion (bool isTwoWords , shor t threadNum)
{

i sTwoWordsIns t ruct ion [threadNum]=isTwoWords;
}

bool xinc :: getTwoWordsInst ruct ion (s h o r t threadNum)

{
r e tu rn isTwoWordsIns t ruct ion [threadNum];

}

void xinc :: se tF i r s tWord (shor t f i rs tWordValue , shor t threadNum)
{

f i rs tWord [threadNum]= firstWordValue ;
}

shor t xinc :: ge tF i r s tWord(shor t threadNum)

{
r e t u r n f i rs tWord [threadNum] ;

}

bool xinc :: i sThreadRun(in t threadNum)

{
if ((p e r i p h e r a l R e g i s t e r W r i t e [4] . getValue () & (1 « threadNum)) ==0) {

r e tu rn t rue ;
}
e lse {

r e tu rn fa l se ;
}

};
void xinc :: iMov(in t threadNum , shor t i n s t r u c t i o n)

{
if (ge tTwoWordsIns t ruc t ion (threadNum)) {

92

short r= (getFirstWord(threadNum) & 0x3800) » 11;
short k2=instruction ;
thread [threadNum]. setR(k2 , r) ;

// cout « "mov R1,K2 W2, second word" ;

addLog ("mov R"+unsignedLong2String (r)+" ,"+ signedShort2String (k2)
+"(0x"+short2HexString(k2)+")" ,threadNum);

}
else if ((ins t ruct ion & 0xc7c0) == 0x0380) { // mov R1,K2W1

short r=(instruction & 0x3800) » 11;
short k2=signedExtension (ins t ruct ion &0x3f ,6) ;
thread [threadNum]. setR(k2,r) ;

// cout « "mov R1.K2 Wl" ;
addLog ("mov R"+unsignedLong2 String (r)+","+signedShort2String (k2)+"(0x"+

short2HexString (k2)+")" , threadNum);

}
else if ((ins t ruct ion & 0xc7ff) == Ox03e8) { // mov R1,K2W2

setT wo Words Inst ruction (true , threadNum);
setFirstWord (instruction .threadNum);

// cout « "mov R1,K2 W2" ;

}

xinc :: iOutp (int threadNum , short ins t ruct ion)

string log;

if (getTwoWordsInstruction (threadNum)) {

}
else {

unsigned short k2=instruction & 0x7f;
short r=(instruct ion & 0x3800) » 11;
peripheralRegisterWrite [k2]. setValue(thread [threadNum] . getR(r)) ;

if (! peripheralRegisterWrite [k2]. getlsOutputSet ()) {
peripheralRegisterWrite [k2].setIsOutputSet(t rue) ;

}
else {

// cout « "Warning: Output" « k2 « "already set!" « endl;
}

if (k2==32) {
if (SPI0tx==l) {

SPI0tx=0;
short controlByte ;
con trolByte= thread [threadNum] . getR(r);
if (controlByte ==0x4000) { // readConfiguration

peripheralRegisterRead[k2]. setValue (0x00) ;
}
else if (controlByte==0x00) { // readByte

if (seriallnOpen) {
if (! fp . se r i a l In .eof ()) {

93

peripheralRegisterRead[k2]. setValue(f p . s e r i a l l n . g e t ()) ;
}

}

}
else if ((controlByte <0) && ((unsigned short) controlByte != OxcOOf)) {

//writeByte // OxcOOf is writeConfigure
if (serialOutOpen) {

fp.serialOut . put ((unsigned char) (controlByte & 0 x f f)) ;
fp.serialOut . flush () ;
peripheralRegisterRead [k2]. setValue(0x00);

}

}
else {

peripheralRegisterRead [k2]. setValue (0x00);
cout « "Error: I/O control word error - " «

thread [threadNum] . getR(r) « endl;
}

}
else {

SPI0tx = l;
short controlByte ;
controlByte=thread[threadNum].getR(r) & Oxff;
if (controlByte ==0x40) { // readConfiguration

peripheralRegisterRead [k2]. setValue(0x40);
}
else if (controlByte==0x00) { // readByte

peripheralRegisterRead [k2]. set Value (0xc2);
}
else if ((short)(controlByte « 8)<0) { //writeByte

peripheralRegisterRead [k2]. setValue (0x00);
}
else {

peripheralRegisterRead [k2]. setValue (0x00);
cout « "Error: I/O control word error - " «

thread [threadNum] . getR(r) « endl;
}

}

} // SPIOtx
// cout « "outp rl ,k2" ;

log="outp R"+unsignedLong2String (r)+","+signedShort2String(k2)+
"(0x"+short2HexString(k2) + ") " ;

log= log+ " IO[0x"+short2HexString(k2)+"]="+
signedShort2String(thread [threadNum]. getR(r)) + "(0x"+
short2HexString (thread [threadNum]. getR(r)) + ") ";

addLog (log , threadNum);
}

}

void xinc :: iBra (int threadNum , short ins t ruct ion)
{

string log;

94

if (getTwoWordsInst ruct ion (threadNum)) {
shor t k l= i n s t r u c t i o n ;
log="bra " + s i g n e d S h o r t 2 S t r i n g (k l) + " (0 x " + s h o r t 2 H e x S t r i n g (k l) + ") " ;
log= log+ " PC=0x"+short2HexString ((uns igned)

(t h r e a d [threadNum] . getPc ()+kl +1))+" ";
addLog (log , threadNum) ;

thread [threadNum]. setPc ((uns igned)(thread [threadNum] . ge tPc() + kl)) ;
/ / cout « "bra kl W2, second word" ;

}
e l se {

if ((i n s t r u c t i o n & Oxff) ! = 0x0) { / / bra Kl Wl
shor t k l= s ignedExtens ion (i n s t r u c t i o n & O x f f , 8) ;
if (k l != - 1) {

b r a S t a t u s [threadNum]=0;
}
e lse {

if (b r a S t a t u s [threadNum]>=l) {
b r a S t a t u s [threadNum]=2;

/ / bra @ many times , no log for clean
}
e lse {

b r a S t a t u s [threadNum] = 1; / / bra @ f i r s t times
p e r i p h e r a l R e g i s t e r R e a d [4] . s e t V a l u e (p e r i p h e r a l R e g i s t e r R e a d [4] .

ge tValue() | (1 « threadNum));
}

}
log="bra " H - s i g n e d S h o r t 2 S t r i n g (k l) + " (0 x " + s h o r t 2 H e x S t r i n g (k l) + ") " ;
log= log+ " PC=0x"+short2HexString ((uns igned)

(t h r ead [threadNum]. getPc () + kl +1))+" ";
if (b r a S t a t u s [threadNum]! =2) {

addLog (log , threadNum) ;
}
thread [threadNum] . setPc ((uns igned)(thread [threadNum] . ge tPc ()+k l)) ;
i n s t r u c t i o n S t a t [1 0] + + ;
newestILog2=newestILog2+"| 10";

/ / cout « "bra Kl Wl" ;

}
else { / / bra Kl W2

setTwoWordsIns t ruct ion (t rue . threadNum);
se tF i r s tWord (i n s t r u c t i o n , threadNum);
i n s t r u c t i o n S t a t [11]++;
newestILog2=newestILog2+"| 1 1 " ;

/ / cout « "bra Kl W2" ;
}

}
}

void xinc :: iAdd(int threadNum , shor t i n s t r u c t i o n , shor t method)
{

shor t rl , r2 , r3 ;
shor t addl ,add2 , addResult ;
in t addResul t l ;
s t r i n g l o g = " " ;
switch (method)

{

95

case 0:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;
r3=(instruction & 0x38) » 3;

addl=thread [threadNum]. getR(r2);
add2=thread [threadNum]. getR (r3) ;

// cout « "add r l , r 2 , r 3 " ;
log="add R"+unsignedLong2String (rl)+" ,R"+

unsignedLong2String (r2)+" ,R"+unsignedLong2String (r3)+"

break;
case 1:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x700) » 8;
addl =thread [threadNum] . getR(r2);
add2= signedExtension(instruction & 0 x f f , 8) ;

// cout « "add r l , r 2 , k 3 " ;
log="add R"+unsignedLong2String (r l)+" ,R"+

unsignedLong2 String (r2)+","+signedShort2String (add2)
+"(0x"+short2HexString (add2)+")";

break;
case 2:

if (getTwoWordsInstruction (threadNum)) {
rl=(getFirstWord(threadNum) & 0x3800) » 11;
r2=(getFirstWord(threadNum) & 0x7) ;
addl=thread [threadNum] . getR (r2);
add2=instruction ;

// cout « "add rl ,r2,k3 W2" ;
log="add R"+unsignedLong2String (r l)+",R"+

unsignedLong2String (r2)+","+
signedShort2String(add2)+"(0x"+short2HexString(add2) + ") '

}
else {

setTwoWordsInstruction (true .threadNum);
setFirstWord (instruction , threadNum);

// cout « "add r l , r 2 , k 3 wl" ;
return ;

}
break;

default:

}

addResult=addl+add2;
addResultl =(unsigned short)addl+(unsigned short)add2;
log= log+ " R"+unsignedLong2String(rl)+"="+

signedShort2String(addResult)+"(0x"+short2HexString(addResult)+") ";
if (addResult==0) {

thread [threadNum] . setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum]. clrStatusZ () ;
log=log+"Z=0,";

96

}
if (addResult <0) {

thread [threadNum] . se tSta tusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum]. c l rS ta tusN () ;
log=log+"N=0," ;

}
if ((a d d l > 0 && add2>0 && addResult <0) | | (addKO && add2<0 && addResult >0)) {

thread [threadNum] . se tSta tusV () ;
log=log+"V=l ,";

}
e lse {

thread [threadNum]. c l rS ta tusV () ;
log = log+"V=0," ;

}
if (addResul t l >65535) {

thread [threadNum] . s e tS t a tusC () ;
log=log+"C=l" ;

}
else {

thread [threadNum] . c l rS t a tu sC () ;
log=log+"C=0";

}
thread [threadNum] . se tR(addResult , r l) ;
addLog (log , threadNum);

}

void xinc :: iAnd(int threadNum , shor t i n s t r u c t i o n , shor t method)
{

shor t rl , r2 , r3 ;
shor t andl , and2 , andResult ;
s t r i n g l o g ;

switch (method)
{

case 0:

r l = (i n s t r u c t i o n & 0x3800) » 11;
r 2 = (i n s t r u c t i o n & 0x7) ;
r 3 = (i n s t r u c t i o n & 0x38) » 3 ;

and l= th read [threadNum]. getR(r2) ;
and2=thread [threadNum]. ge tR(r3) ;

/ / cout « "and r l , r 2 , r 3 " ;
log="and R"+unsignedLong2Str ing (r l) + " ,R"+

unsignedLong2Str ing (r 2) + " ,R"+unsignedLong2 String (r 3) + " ";

b reak ;

case 1:
if (ge tTwoWordsIns t ruc t ion (threadNum)) {

r l= (ge tF i r s tWord(th readNum) & 0x3800) » 11;
r2=(ge tF i r s tWord(threadNum) & 0x7) ;
andl = thread [threadNum]. g e t R (r 2) ;

97

a n d 2 = i n s t r u c t i o n ;
/ / cout « "and r l , r 2 , k 3 w2" ;

log="and R"+unsignedLong2Str ing (r l) + " ,R"+
unsignedLong2Str ing (r2) + " , " + s i g n e d Short2 S t r ing (and2)
+" (0x"+shor t2HexSt r ing(and2) + ") " ;

}
e lse {

se tTwoWordsIns t ruct ion (t rue , threadNum) ;
se tF i r s tWord (i n s t r u c t i o n , threadNum) ;

/ / cout « "and r l , r 2 , k 3 wl" ;
r e t u r n ;

}
b reak ;

de fau l t :

}

andResul t=andl & and2;
log= log+ " R"+unsignedLong2Str ing (r l)+"="+

s i g n e d S h o r t 2 S t r i n g (andResu l t)+
" (0x"+sho r t2HexS t r i ng (andResu l t)+") ";

if (andResul t==0) {
thread [threadNum] . s e tS ta tusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum]. c l r S t a t u s Z () ;
log=log+"Z=0," ;

}
if (andResult <0) {

thread [threadNum]. se tSta tusN () ;
log=log+"N=l ,";

}
e lse {

thread [threadNum] . c l rS ta tusN () ;
log = log+"N=0," ;

}
if ((a n d l | a n d 2) != and2) {

thread [threadNum] . se tSta tusV () ;
log=log+"V=l ,";

}
e lse {

thread [threadNum] . c l rS ta tusV () ;
log=log+"V=0," ;

}
if ((andResul t >0) && (andResul t < 256)) {

thread [threadNum] . s e tS ta tusC () ;
log=log+"C=l" ;

}
e lse {

thread [threadNum] . c l r S t a t u s C () ;
log=log+"C=0";

}
thread [threadNum] . setR (andResult , r l) ;
addLog (log , threadNum) ;

}

98

void xinc :: iBc(int threadNum , short instruction , short method)
{

short displacement;
short condition ;
string log;

switch (method)
{

case 0:

displacement = signedExtension(instruction & Oxff ,8) ;
condition=(instruction & 0x3c00) » 10;

// cout « "be cl ,k2" ;

log="bc C"+unsignedLong2String (condition)+" ,"+
signedShort2String (displacement)+"(0x"+
short2HexString(displacement) + ") " ;

break;

case 1:
if (getTwoWordsInstruction (threadNum)) {

displacement=instruction ;
condition=(getFirstWord(threadNum) & 0x3c00) » 10;

// cout « "be cl ,k2 w2" ;

log="bc C"+unsignedLong2String (condition)+" ,"+
signedShort2String(displacement)+"(0x"+
short 2HexString(displacement) + ") " ;

}
else {

setTwoWordsInstruction (true ,threadNum);
setFirstWord(instruction .threadNum);

// cout « "be cl ,k2 wl";
return;

}
break;

default:

}
bool test = false ;
switch (condition) {

case 0:
test=thread [threadNum]. isCl () ; // c
break;

case 1:
test = thread [threadNum]. isVl () ; // v
break;

case 2:
test = thread [threadNum] . isZl () ; // z
break;

case 3:
test=thread [threadNum] . isNl () ; // n
break;

case 4:
test = thread [threadNum] . isCl () | |

thread [threadNum] . isZl () ; // c |z
break;

case 5:
test=xor2 (thread [threadNum]. isNl () ,

thread [threadNum].isVl ()) ; // n " v

99

break ;
case 6:

t e s t = x o r 2 (thread [threadNum] . isNl () ,
thread [threadNum] . isVl ()) | | thread [threadNum] . isZl () ;

/ / (n " v) | z
b reak ;

case 7:
t e s t = t h r e a d [threadNum J . i sNl () | | thread [threadNum] . i sZl () ;
/ / n | z
b reak ;

case 8:
t e s t = ! thread [threadNum] . isCl () ; / / !c
b reak ;

case 9:
t e s t = ! thread [threadNum J . i sVl () ; / / !v
b reak ;

case 10:
t e s t = ! thread [threadNum]. isZl () ; / / !z
b reak ;

case 11:
t e s t = ! thread [threadNum]. isNl () ; / / !n
b reak ;

case 12:
t e s t =!(thread [threadNum]. isCl () | | thread [threadNum] . i sZl ()) ;
/ / ! (c | z)
b reak ;

case 13:
t e s t = ! x o r 2 (thread [threadNum]. isNl () , thread [threadNum] . is VI ()) ;
/ / ! (n"v)
b reak ;

case 14:
t e s t = ! (x o r 2 (thread [threadNum J . i sNl () . t h r e a d [threadNum]. isVl ())

| | thread [threadNum] . i s Z l ()) ; / / ((n " v) | z)
b reak ;

case 15:
t e s t =!(thread [threadNum] . isNl () | | thread [threadNum] . i sZl ()) ;
/ / ! (n | z)
b reak ;

d e f a u l t :
cout « "be cond i t ion e r r o r : c o n d i t i o n : " « cond i t i on « endl ;

}
if (t e s t) {

log= log+ " PC=0x"+short2HexString (th read [threadNum]. ge tPc()+
d isp lacement + l)+" ";

addLog (log , threadNum) ;
thread [threadNum] . setPc (t h r ead [threadNum] . g e t P c () + d i s p l a c e m e n t) ;

}
else {

addLog (log , threadNum) ;
}

}

void xinc :: iBic (i n t threadNum , shor t i n s t r u c t i o n)

{
shor t rl , r2 ;
shor t opl ,op2 , opResu l t ;
s t r i n g l o g ;

100

r l = (i n s t r u c t i o n & 0x3800) » 11;
r2=(i n s t r u c t i o n & 0x7) ;

op 1=thread [threadNum] . g e t R (r 2) ;
op2=(i n s t r u c t i o n & 0x78) » 3 ;
opResul t=opl & (~ (l < < o p 2)) ;

log="bic R"+unsignedLong2Str ing (r l)+" ,R"+unsignedLong2Str ing (r 2) + " ,"+
s i g n e d S h o r t 2 S t r i n g (o p 2) + " (0 x " + s h o r t 2 H e x S t r i n g (o p 2) + ") " ;

log= log+ " R"+unsignedLong2Str ing (r l) + " = " + s i g n e d S h o r t 2 S t r i n g (opResul t)+"(0x"+
shor t2HexSt r ing (opResult)+") ";

if (opResul t==0) {
thread [threadNum] . s e tS ta tusZ () ;
log=log+"Z=l ,";

}
e lse {

thread [threadNum] . c l r S t a t u s Z () ;
log = log+"Z=0," ;

}
if (opResult <0) {

thread [threadNum] . se tSta tusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum] . c l rS ta tusN () ;
log=log+"N=0," ;

}
if (((o p l & (l « o p 2)) » op2)==l) {

thread [threadNum]. se tSta tusV () ;
log=log+"V=l ,";

}
e lse {

thread [threadNum]. c l rS ta tusV () ;
log=log+"V=0," ;

}
if ((opResul t >0) && (opResul t < 256)) {

thread [threadNum] . s e tS ta tusC () ;
log=log+"C=l" ;

}
e lse {

thread [threadNum] . c l rS ta tusC () ;
log=log+"C=0";

}

thread [threadNum] . se tR(opResult , r l) ;
/ / cout « " b i c r l , r 2 , k 3 " ;

addLog (log , threadNum);

}

void xinc :: iBis (int threadNum , shor t i n s t r u c t i o n)
{

shor t r l , r2 ;
shor t opl ,op2 , opResu l t ;
s t r i n g log ;

101

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;

op 1 = thread [threadNum]. getR(r2);
op2=(instruction & 0x78) » 3;
opResult=opl | (l « o p 2) ;

log="bis R"+unsignedLong2String (r l)+" ,R"+unsignedLong2String (r2)+" ,"+
signedShort2String(op2)+"(0x"+short2HexString(op2) + ") " ;

log= log+ " R"+unsignedLong2String (rl)+"="+signedShort2String(opResult)
+"(0x"+short2HexString(opResult)+") ";

if (opResult==0) {
thread [threadNum] . setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum] . clrStatusZ () ;
log=log+"Z=0,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum]. clrStatusN () ;
log=log+"N=0,";

}
if (((opl&(l«op2)) » op2)==l) {

thread [threadNum] . setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum] . clrStatusV () ;
log=log+"V=0,";

}
if ((opResult >0) && (opResult < 256)) {

thread [threadNum]. setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum] . clrStatusC () ;
log = log+"C=0";

}

thread [threadNum] . setR(opResult , rl);
cout « "bis r l , r 2 , k 3 " ;
addLog (log , threadNum);

d xinc :: iBix (int threadNum , short ins t ruct ion)

short rl , r2 ;
short opl ,op2 , opResult;
string log;

r l=(ins t ruc t ion & 0x3800) » 11;

102

r2=(instruction & 0x7) ;

op 1=thread [threadNum]. getR(r2);
op2=(instruction & 0x78) » 3;
opResult=opl " (l « o p 2) ;
log="bix R"+unsignedLong2String (r l)+" ,R"+unsignedLong2String (r2)+

","+signedShort2String(op2)+"(0x"+short2HexString(op2) + ") " ;

log= log+ " R"+unsignedLong2String (rl)+"="+signedShort2String (opResult)
+"(0x"+short2HexString(opResult)+") ";

if (opResult==0) {
thread [threadNum] . setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum]. clrStatusZ () ;
log=log+"Z=0,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum] . clrStatusN () ;
log=log+"N=0,";

}
if (((opl&(l«op2)) » op2)==l) {

thread [threadNum] . setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum] . clrStatusV () ;
log=log+"V=0,";

}
if ((opResult >0) && (opResult < 256)) {

thread [threadNum] . setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum] . clrStatusC () ;
log=log+"C=0";

}

thread [threadNum] . setR(opResult , rl);
// cout « "bix r l , r 2 , k 3 " ;

addLog (log , threadNum);

}

void xinc :: ilnp (int threadNum , short ins t ruct ion)
{

unsigned short k2=instruction & 0x7f;
short r=(instruct ion & 0x3800) » 11;
short opResult = peripheralRegisterRead [k2] . get Value () ;
string log;

thread [threadNum]. setR (opResult , r);

103

log="inp R"+unsignedLong2String (r)+" ,"+signedShort2String(k2)+
"(0x"+short2HexString(k2) + ") " ;

log= log+ " R"+unsignedLong2String (r)+"="+signedShort2String (opResult)+
"(0x"+short2HexString(opResult)+") ";

if (opResult==0) {
thread [threadNum]. setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum]. clrStatusZ () ;
log=log+"Z=0,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum]. clrStatusN () ;
log=log+"N=0,";

}
if ((opResult&l)==l) {

thread [threadNum]. setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum] . clrStatusV () ;
log=log+"V=0,";

}
if ((opResult >0) && (opResult < 256)) {

thread [threadNum] . setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum]. clrStatusC () ;
log=log+"C=0";

}

// cout « "inp rl ,k2" ;
addLog (log , threadNum);

}

void xinc :: ilor (int threadNum , short instruction , short method)
{

short rl ,r2 , r3 ;
short opl ,op2 , opResult;
string log;

switch (method)
{

case 0:

104

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;
r3=(instruction & 0x38) » 3;

op 1 = thread [threadNum]. getR(r2) ;
op2=thread [threadNum]. getR(r3);

// cout « "ior r l , r 2 , r 3 " ;
log="ior R"+unsignedLong2String (r l)+" ,R"+unsignedLong2String (r2)+

" ,R"+unsignedLong2String (r3)+" ";
break;

case 1:
if (getTwoWordsInstruction (threadNum)) {

rl=(getFirstWord(threadNum) & 0x3800) » 11;
r2=(getFirstWord(threadNum) & 0x7) ;
opl = thread [threadNum]. getR(r2);
op2=instruction ;

// cout « "ior r l , r 2 , k 3 w2" ;
log="ior R"+unsignedLong2String (rl)+",R"+unsignedLong2String (r2)+

","+signedShort2String(op2)+"(0x"+short2HexString(op2) + ") " ;
}
else {

setTwoWordsInstruction (true .threadNum);
setFirstWord(instruction .threadNum);

// cout « "ior r l , r 2 , k 3 wl" ;
return ;

}
break;

default:

}

opResult=opl | op2;
log= log+ " R"+unsignedLong2String (rl)+"="+

signedShort2String(opResult)+"(0x"+short2HexString(opResult)+") ";

if (opResult==0) {
thread [threadNum]. setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum] .c l rS ta tusZ() ;
log=log+"Z=0,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum]. clrStatusN () ;
log=log+"N=0,";

}
if ((opl & op2) = op2) {

thread [threadNum] . setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum] . clrStatusV () ;
log=log+"V=0,";

}

105

}

if ((opResult >0) && (opResult < 256)) {
thread [threadNum] . setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum]. clrStatusC () ;
log=log+"C=0";

}
thread [threadNum] . setR(opResult , rl);
addLog (log , threadNum);

void xinc :: iJsr (int threadNum , short instruction , short method)
{

short rl , r2 ;
short op,op2;
string log;

switch (method)
{

case 0:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;
op2=thread [threadNum]. getR(r2);

// cout « "jsr rl , r2" ;
log="jsr R"+unsignedLong2String (rl)+",R"+

unsignedLong2String (r2)+" ";

break ;

case 1:
if (getTwoWordsInstruction (threadNum)) {

rl=(getFirstWord(threadNum) & 0x3800) » 11;
op2=instruction ;

// cout « "jsr rl ,k2 w2" ;
log="jsr R"+unsignedLong2String (r l)+","+

signedShort2String(op2)+"(0x"+short2HexString(op2) + ") " ;

}
else {

setTwoWordsInstruetion (true ,threadNum);
setFirstWord (instruction .threadNum);

// cout « "jsr rl ,k2 wl" ;
return ;

}
break;

default :

}

op=thread [threadNum] . getPc () ;

log= log+ " R"+unsignedLong2String (rl)+"=0x"+short2HexString ((short)(op + l))+" ";
log= log+ " PC=0x"+short2HexString((short)(op2))+" ";
addLog (log , threadNum);

thread [threadNum] . setPc ((short)(op2 - 1));
thread [threadNum] . setR ((short)(op+ l) , r l);

106

}

void xinc :: iLd(int threadNum , short instruction , short method)
{

short rl , r2 ;
short opl ,op2 , opResult ;
string log;

switch (method)
{

case 0:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x700) » 8;

short displacement;
displacement=signedExtension (ins t ruct ion & Oxff ,8) ;

op 1 = thread [threadNum] . getR(r2);
op2=opl + displacement;

// cout « "Id rl ,r2 ,k3" ;

log="ld R"+unsignedLong2String (rl)+" ,R"+unsignedLong2String (r2)
+", "+signedShort2 String (displacement)+"(0 x"+
short2HexString(displacement) + ") " ;

break;
case 1:

if (getTwoWordsInstruction (threadNum)) {
rl=(getFirstWord(threadNum) & 0x3800) » 11;
r2=(getFirstWord(threadNum) & 0x7) ;
op 1=thread [threadNum]. getR(r2);
op2=opl + instruction ;

// cout « "Id r l , r 2 , k 3 w2" ;

log="ld R"+unsignedLong2String (rl)+" ,R"+unsignedLong2String (r2)+
","+signedShort2String (ins t ruct ion)+
"(0x"+short2HexString (ins t ruct ion) + ") " ;

}
else {

setTwoWordsInstruction (true , threadNum);
setFirstWord(instruction ,threadNum);

// cout « "Id r l , r 2 , k 3 wl" ;
return ;

}

break;
case 2:

if (getTwoWordsInstruction (threadNum)) {
rl=(getFirstWord(threadNum) & 0x3800) » 11;

op2=instruction ;
// cout « "Id rl ,k2 w2" ;

log="ld R"+unsignedLong2 String (r l)+","+ signedShort 2 String (op2)
+"(0x"+short2HexString(op2) + ") " ;

}

107

else {
setTwoWordsInst ruction (true , threadNum);
setFirstWord(instruction , threadNum);

// cout « "Id rl ,k2 wl" ;
return ;

}
break;

default:

}

opResult=ram[(short)(op2-49152)]. getValue () ;

log= log+ " R"+unsignedLong2String (rl)+"="+signedShort2String(opResult)
+"(0x"+short2HexString(opResult)+") ";

if (opResult==0) {
thread [threadNum] . setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum]. clrStatusZ () ;
log=log+"Z=0,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum]. clrStatusN () ;
log=log+"N=0,";

}
if ((opResult&l)==l) {

thread [threadNum]. setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum]. clrStatusV () ;
log=log+"V=0,";

}
if ((opResult >0) && (opResult < 256)) {

thread [threadNum] . setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum]. clrStatusC () ;
log=log+"C=0";

}
thread [threadNum] . setR (opResult , rl);
addLog (log , threadNum);

}

void xinc :: iRol (int threadNum , short instruction , short method)
{

short rl , r2 , r3 ;
short opl ,op2 , opResult;
string log;

108

switch (method)
{

case 0:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;
r3=(instruction & 0x38) » 3;

op 1=thread [threadNum]. getR(r2);
op2=thread [threadNum].getR(r3) % 16;

// cout « "rol rl ,r2 ,r3 " ;
log="rol R"+unsignedLong2String (r l)+" ,R"+

unsignedLong2String (r2)+" ,R"+unsignedLong2String (r3)+" ";

break;
case 1:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7);
op 1 = thread [threadNum] . getR(r2);
op2= (ins t ruct ion & 0x78) » 3;

// cout « "rol r l , r 2 , k 3 " ;
log="rol R"+unsignedLong2String (r l)+" ,R"+

unsignedLong2String (r2)+","+signedShort2String(op2)
+"(0x"+short2HexString(op2) + ") " ;

break;

default:

}

unsigned short maskl ;
if (op2>0) {

mask l=(l«op2) - l ;
opResult=((maskl«(16-op2) & o p l) » (16-op2)) |

((((maskl«(16-op2)) " 0xffff)&opl) « o p 2) ;

}
else if (op2<0) {

maskl=(l«abs(op2)) - l ;
opResult =(((maskl "0 xffff)&opl)>>(abs(op2))) |

((maskl & opl) « (16-abs(op2)));
}
else {

opResult=opl ;
}

log= log+ " R"+unsignedLong2String (rl)+"="+signedShort2String (opResult)+
"(0x"+short2HexString(opResult)+") ";

if (opResult==0) {
thread [threadNum]. setStatusZ () ;
log=log+"Z=l ,";

}
else {

109

thread [threadNum] . clrStatusZ () ;
log=log+"Z=0 ,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum] . clrStatusN () ;
log=log+"N=0,";

}
if ((opResult&l)==l) {

thread [threadNum] . setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum] . clrStatusV () ;
log=log+"V=0 ,";

}
if ((opResult >0) && (opResult < 256)) {

thread [threadNum] . setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum] . clrStatusC () ;
log=log+"C=0";

}
thread [threadNum]. setR(opResult , r l) ;
addLog (log , threadNum);

}

void xinc :: iSt (int threadNum , short instruction , short method)
{

short rl , r2 ;
short opl ,op2 , opResult;
string log;

switch (method)
{

case 0:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x700) » 8;

short displacement;
displacement = signedExtension(instruction & Oxff ,8) ;

opl=thread [threadNum] . getR(r2);
op2=opl + displacement;

// cout « "st r l , r 2 , k 3 " ;

log="st R"+unsignedLong2String (r l)+" ,R"+unsignedLong2String (r2)+
","+signedShort2String(displacement^
"(0x"+short2HexString(displacement)+")";

break;
case 1:

if (getTwoWordsInstruction (threadNum)) {

110

H=(getFirstWord(threadNum) & 0x3800) » 11;
r2=(getFirstWord(threadNum) & 0x7) ;
opl=thread [threadNum]. getR(r2);
op2=opl + instruction ;

// cout « "st r l , r 2 , k 3 w2" ;
log="st R"+unsignedLong2String (rl)+",R"+unsignedLong2String (r2)+

","+signedShort2String(instruction)+"(0x"+
short2 Hex String (ins t ruct ion) + ") " ;

}
else {

setTwoWordsInstruction (true .threadNum);
setFirstWord (instruction .threadNum);

// cout « "st r l , r 2 , k 3 wl" ;
return;

}

break;
case 2:

if (getTwoWordsInstruction (threadNum)) {
rl=(getFirstWord(threadNum) & 0x3800) » 11;

op2=instruction ;
// cout « "st rl ,k2 w2" ;

log=" st R"+unsignedLong2String (rl)+" ,"+
signed Short2String(op2)+"(0x"+short2HexString(op2) + ") " ;

}
else {

setTwoWordsInstruction (true , threadNum);
setFirstWord (instruction .threadNum);

// cout « "st rl ,k2 wl" ;
return;

}
break;

default :

}

opResult = thread [threadNum] . getR(rl);
ram [(short)(op2-49152)]. setValue (opResult);
log=log +"RAM[0x"+short2HexString(op2)+"]="+

signedShort2String(opResult)+
"(0x"+short2HexString (opResult) + ") " ;

addLog (log , threadNum);

}

void xinc :: iSub(int threadNum , short ins t ruct ion)
{

short rl ,r2 , r3 ;
short subl , sub2 , subResult;
int subResultl ;
string log;

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;
r3=(instruction & 0x38) » 3;

111

subl=thread [threadNum] . getR(r2);
sub2=thread [threadNum] . getR(r3);
subResult=subl-sub2;
subResultl =subl-sub2;

log="sub R"+unsignedLong2String (r l)+" ,R"+unsignedLong2String (r2)
+",R"+unsignedLong2String (r3)+" ";

log= log+ " R"+unsignedLong2String (rl)+"="+signedShort2String (subResult)
+"(0x"+short2HexString(subResult)+") ";

if (subResult==0) {
thread [threadNum] . setStatusZ () ;
log=log+"Z=l ,";

}
else {

thread [threadNum] . clrStatusZ () ;
log=log+"Z=0,";

}
if (subResult<0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum]. clrStatusN () ;
log=log+"N=0,";

}
if ((subl>0 && sub2<0 && subResult <0) | |

(subKO && sub2>0 && subResult >0)) {
thread [threadNum] . setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum]. clrStatusV () ;
log=log+"V=0,";

}

// if ((subResultl >32767) | | (subResultl <-32768)) {
if (subl<sub2) {

thread [threadNum]. setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum] .c l rSta tusC() ;
log=log+"C=0";

}

thread [threadNum] . setR(subResult , rl);

// cout « "sub rl ,r2 , r 3 " ;
addLog (log , threadNum);

}

void xinc :: iThrd(int threadNum , short ins t ruct ion)
{

string log;
short r l=(ins t ruc t ion & 0x3800) » 11;
thread [threadNum] . setR(threadNum , rl);
log="thrd R"+unsignedLong2String (rl);

112

log= log+ " R"+unsignedLong2String(rl)+"="+
s ignedShort2 String (threadNum)+
"(0x"+short2HexString(threadNum)+") ";

addLog (log , threadNum);
cout « "thrd r l " ;

d xinc :: iXor(int threadNum , short instruction , short method)

short rl , r2 , r3 ;
short opl ,op2 , opResult;
string log;

switch (method)
{

case 0:

r l=(ins t ruc t ion & 0x3800) » 11;
r2=(instruction & 0x7) ;
r3=(instruction & 0x38) » 3;

op 1=thread [threadNum]. getR(r2);
op2=thread [threadNum]. getR(r3);

// cout « "xor r l , r 2 , r 3 " ;
log="xor R"+unsignedLong2String (rl)+" ,R"+

unsignedLong2String (r2)+" ,R"+unsignedLong2String (r3)+"

break;

case 1:
if (getTwoWordsInstruction (threadNum)) {

rl=(getFirstWord(threadNum) & 0x3800) » 11;
r2=(getFirstWord(threadNum) & 0x7) ;
op 1 = thread [threadNum]. getR(r2);
op2=instruction ;
cout « "xor rl ,r2,k3 w2" ;
log="xor R"+unsignedLong2String (rl)+" ,R"+

unsignedLong2String (r2)+","+ si gnedShort2 String (op2)
+"(0x"+short2HexString(op2) + ") " ;

}
else {

setTwoWordsInstruction (true , threadNum);
setFirstWord(instruction ,threadNum);

// cout « "xor r l , r 2 , k 3 wl" ;
return;

}
break;

default:

}

opResult=opl " op2;
log= log+ " R"+unsignedLong2String (rl)+"="+

s ignedShort2String(opResult)+"(0x"+short2Hex String (opResult)+")

if (opResult==0) {
thread [threadNum] . setStatusZ () ;
log=log+"Z=l ,";

113

}
else {

thread [threadNum] . clrStatusZ () ;
log=log+"Z=0,";

}
if (opResult <0) {

thread [threadNum] . setStatusN () ;
log=log+"N=l ,";

}
else {

thread [threadNum] . clrStatusN () ;
log=log+"N=0,";

}
if ((opl & op2) == op2) {

thread [threadNum]. setStatusV () ;
log=log+"V=l ,";

}
else {

thread [threadNum] . clrStatusV () ;
log = log+"V=0,";

}
if ((opResult >0) && (opResult < 256)) {

thread [threadNum] . setStatusC () ;
log=log+"C=l";

}
else {

thread [threadNum] . clrStatusC () ;
log=log+"C=0";

}
thread [threadNum]. setR(opResult , rl);
addLog (log , threadNum);

d xinc :: runThread ()

unsigned long cycle=getSystemClockCycle () ;

int threadNum=cycle%8;

if (threadNum == 0) {

newestILog2=newestILog2+unsignedLong2String (cycle);
}

if (isThreadRun(cycle%8)) {
cout « "System Clock Cycle " « cycle « ":" ;
cout « "Thread " « threadNum « " is running." ;

// if two word instruction , execute at second run
short instruction ;

if (thread [threadNum]. getPc() <16384) {
instruction=rom[thread [threadNum] . getPc ()] . get Value () ;

}
else if (thread [threadNum]. getPc()>=0xc000) {

instruction=ram[thread [threadNum] . getPc()-0xc000] . getValue () ;
}
else {

cout « "Error: PC out of RAM and ROM range. PC="
« thread [threadNum]. getPc()-0xc000 « endl;

114

(getTwoWordsInstruct ion (threadNum)) {
if ((ge tF i r s tWord(th readNum) & 0xc7ff) == 0x03e8) { / / mov R1,K2 W2

iMov(threadNum , i n s t r u c t i o n) ;

}
e lse if ((ge tF i r s tWord(th readNum) & OxffOO) == 0x0100) { / / bra Kl W2

iBra (threadNum , i n s t r u c t i o n) ;
}
else if ((ge tF i r s tWord(th readNum) & 0 x c 7 f 8) == 0x3c0) { / / add

iAdd(threadNum , i n s t r u c t i o n , 2) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0 x c 7 f 8) == 0x3c8) { / / and r l , r 2 , k 3

iAnd(threadNum , i n s t r u c t i o n , 1) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0 x c 7 f 8) == 0x3d0) { / / ior r l , r 2 , k 3

i l o r (threadNum , i n s t r u c t i o n , 1) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0 x c 7 f 8) == 0x3d8) { / / xor r l , r 2 , k 3

iXor(threadNum , i n s t r u c t i o n , 1) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0xc300) == 0x0) { / / be c l , k 2

iBc(threadNum , i n s t r u c t i o n , 1) ;
}
else if ((ge tF i r s tWord(th readNum) & 0 x c 3 f c) == 0x3ec) { / / j s r r l , k 2

i J s r (threadNum , i n s t r u c t i o n , 1) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0 x c 7 f 8) == Ox3fO) { / / Id r l , r 2 , k 3

iLd(threadNum , i n s t r u c t i o n , 1) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0xc7ff) = 0x3ea) { / / Id r l , k 2

iLd(threadNum , i n s t r u c t i o n , 2) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0 x c 7 f 8) == 0x3f8) { / / st r l , r 2 , k 3

iSt(threadNum i n s t r u c t i o n , 1) ;
}
e lse if ((ge tF i r s tWord(th readNum) & 0xc7ff) == 0x3eb) { / / st r l , k 2

iSt (threadNum , i n s t r u c t i o n , 2) ;
}
else if ((ge tF i r s tWord(th readNum) & Oxff l f) == 0x3901) { / / movZOLR r l , k 3

iMovZOLR(threadNum , i n s t r u c t i o n) ;
}
e lse if ((ge tF i r s tWord(th readNum) & Oxff l f) == 0x3902) { / / setZOLR r l , k 3

iSetZOLA(threadNum , i n s t r u c t i o n) ;
}
else {
}
se tTwoWordsIns t ruct ion (f a l s e . threadNum);

se if ((i n s t r u c t i o n & 0 x c 7 c 0) == 0x0380) { / / m o v R l , K 2 W l

iMov(threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [20]++;
newest ILog2=newest ILog2+" |20";

se if ((i n s t r u c t i o n & 0xc7ff) == 0x03e8) { / / mov R1.K2W2
iMov(threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [21]++;

115

newes t ILog2=newes t ILog2+" |21" ;

}
else if ((i n s t r u c t i o n & 0xc780) = 0x0280) { / / outp r l , k 2

iOutp (threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n s t a t [22]++;
newest ILog2=newest ILog2+" |22" ;

}
e l se if ((i n s t r u c t i o n & OxffOO) == 0x0100) { / / bra Kl & bra Kl W2

iBra(threadNum , i n s t r u c t i o n) ;

}
else if ((i n s t r u c t i o n & 0xc7c0) == 0x0300) { / / add R1,R2,R3

iAdd(threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [0] + + ;
newestILog2=newestILog2 +" 10";

}
else if ((i n s t r u c t i o n & 0 x c 0 0 0) == 0x4000) { / / add Rl ,R2,K3 Wl

iAdd (threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [l] + + ;
newestILog2=newestILog2+" | 1";

}
e lse if ((i n s t r u c t i o n & 0 x c 7 f 8) == 0x3c0) { / / add R1,R2,K3 W2

iAdd(threadNum , i n s t r u c t i o n , 2) ;
i n s t r u c t i o n S t a t [2] + + ;
newestILog2=newestILog2 +" 12";

}
else if ((i n s t r u c t i o n & 0xc7c0) == 0x340) { / / sub r l , r 2 , r 3

iSub(threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [2 8] + + ;
newestILog2=newestILog2+" |2 8";

}
e l se if ((i n s t r u c t i o n & 0 x c 7 c 0) = 0x540) { / / and r l , r 2 , r 3

iAnd(threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [3]++;
newestILog2=newestILog2 +" 13 ";

}
e lse if ((i n s t r u c t i o n & 0 x c 7 f 8) == 0x3c8) { / / and r l , r 2 , K 3

iAnd (threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [4]++;
newestILog2=newestILog2 +" 14";

}
else if ((i n s t r u c t i o n & 0xc7c0) == 0x580) { / / ior r l , r 2 , r 3

i l o r (threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [13]++;
newestILog2=newestILog2+"| 13" ;

}
e lse if ((i n s t r u c t i o n & 0 x c 7 f 8) == 0x3d0) { / / ior r l , r 2 , K 3

i l o r (threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [14]++;
newestILog2=newestILog2+" | 14";

}
else if ((i n s t r u c t i o n & 0 x c 7 c 0) == 0x5c0) { / / xor r l , r 2 , r 3

iXor(threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [30]++;
newest ILog2=newest ILog2+" |30";

}
e lse if ((i n s t r u c t i o n & 0 x c 7 f 8) = Ox3d8) { / / xor r l , r 2 , K 3

116

iXor(threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [3 1] + + ;
newestILog2=newestILog2 +" 131";

}
e lse if ((i n s t r u c t i o n & 0 x c 7 c 0) == 0x500) { / / rol r l , r 2 , r 3

iRol(threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [2 3] + + ;
newest ILog2=newest ILog2+" |23" ;

}
e lse if ((i n s t r u c t i o n & 0 x c 7 8 0) == 0x600) { / / rol r l , r 2 , k 3

iRol (threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [24]++;
newest ILog2=newest ILog2+" |24";

}
e lse if ((i n s t r u c t i o n & 0 x c 7 8 0) == 0x200) { / / inp r l , k 2

i lnp (threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [12]++;
newestILog2=newestILog2+"| 12";

}
else if ((i n s t r u c t i o n & 0xc300) = 0x0) { / / be cl ,k2

if ((i n s t r u c t i o n & 0xff)==0x0) {
iBc (threadNum , i n s t r u c t i o n , 1) ; / / b e c l , k 2 w2
i n s t r u c t i o n S t a t [6]++;
newestILog2=newestILog2 +" 16";

}
e lse {

iBc (threadNum , i n s t r u c t i o n , 0) ; / / b e c l , k 2 wl
i n s t r u c t i o n S t a t [5]++;
newest ILog2=newest ILog2+" |5" ;

}
}
else if ((i n s t r u c t i o n & 0xc780) == 0x680) { / / bic r l , r 2 , k 3

iBic (threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [7]++;
newestILog2=newestILog2 +" 17";

}
e lse if ((i n s t r u c t i o n & 0 x c 7 8 0) = 0x700) { / / b is r l , r 2 , k 3

iBis (threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [8]++;
newestILog2=newestILog2+" | 8";

}
else if ((i n s t r u c t i o n & 0xc780) == 0x780) { / / bix r l , r 2 , k 3

iBix (threadNum . i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [9]++;
newest ILog2=newest ILog2+" |9" ;

}
e lse if ((i n s t r u c t i o n & 0 x c 7 f 8) == 0x3e0) { / / j s r r l , r 2

i J s r (threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [15]++;
newestILog2=newestILog2+" | 15" ;

}
e lse if ((i n s t r u c t i o n & 0xc7fc) == 0x3ec) { / / j s r r l ,k2

i J s r (threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [16]++;
newestILog2=newestILog2+" | 16";

}
e lse if ((i n s t r u c t i o n & 0 x c 0 0 0) == 0x8000) { / / Id r l , r 2 , k 3 wl

iLd(threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [17]++;
newestILog2=newestILog2+" | 17";

117

}
else

}

if ((i n s t r u c t i o n & 0 x c 7 f 8) =
iLd(threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [18]++;
newestILog2=newestILog2+" | 18";

0x3f0) { / / Id rl , r 2 , k 3 w2

e lse if ((i n s t r u c t i o n & 0xc7f f) == 0x3ea) { / / Id r l ,k2
iLd(threadNum , i n s t r u c t i o n , 2) ;
i n s t r u c t i o n S t a t [19]++;
newestILog2=newestILog2+"| 19";

}
e lse

}
e lse

OxcOOO) { / / st r l ,r2 ,k3 wl

0x3f8) { / / st rl , r2 ,k3 w2

else

}
else

}
else

}
e lse

}
e lse

if ((i n s t r u c t i o n & OxcOOO) ==
iSt (threadNum , i n s t r u c t i o n , 0) ;
i n s t r u c t i o n S t a t [25]++;
newest ILog2=newest ILog2+" |25" ;

if ((i n s t r u c t i o n & 0 x c 7 f 8) ==
iSt (threadNum , i n s t r u c t i o n , 1) ;
i n s t r u c t i o n S t a t [26]++;
newest ILog2=newest ILog2+" |26" ;

if ((i n s t r u c t i o n & 0xc7ff) == 0x3eb) { / / st rl ,k2
iSt (threadNum , i n s t r u c t i o n , 2) ;
i n s t r u c t i o n S t a t [27]++;
newest ILog2=newest ILog2+" |27" ;

if ((i n s t r u c t i o n & 0xc7ff) == 0x3e9) { / / thrd r l
iThrd(threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [29]++;
newest ILog2=newest ILog2+" |29" ;

if ((i n s t r u c t i o n & 0 x f f l f) == 0x3901) { / / movZOLR r l , k 3
iMovZOLR(threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [32]++;
newest ILog2=newest ILog2+" |32";

if ((i n s t r u c t i o n & 0 x f f l f) == 0x3902) { / / setZOLA rl ,k3
iSetZOLA(threadNum , i n s t r u c t i o n) ;
i n s t r u c t i o n S t a t [3 3] + + ;
newest ILog2=newest ILog2+" |33" ;

{
c o u t . s e t f (i o s : : h e x) ;
cout « "The i n s t r u c t i o n cannot be decoded , address : Ox"

« shor t2HexSt r ing (th read [threadNum]. getPc ()) «
" i n s t r u c t i o n : Ox" « shor t2HexSt r ing (i n s t r u c t i o n)
« end l ; / / decode e r ro r

thread [threadNum] . setPc (th read [threadNum] . getPc () + l) ;
/ / cout « end l ;

}
e lse {
/ / cout « "Thread " « threadNum « " is not r u n n i n g . " ;
/ / cout « e n d l ;

newestILog2=newestILog2+"| - " ;
}

if (threadNum 7) {

118

newestILog2=newestILog2+"\n";
}
zolProcess (threadNum);
setSystemClockCycle(getSystemClockCycle () + l) ;
if (cycle%8 ==0) {

ioProcess () ;

}

};

void xinc :: ioProcess ()
{

if (peripheralRegisterWrite [1] . getlsOutputSet ()) {
unsigned short pntr = peripheralRegisterWrite [3] . getValue () ;
unsigned short threadNum =(pntr & 0x38) » 3;
thread [threadNum] . setPc(peripheralRegisterWrite [1] . getValue ()) ;
peripheralRegisterWrite [1] . setValue(O);
peripheralRegisterWrite [1] . setIsOutputSet(false);
peripheralRegisterWrite [3] . setIsOutputSet(fa l se) ;

}

if (peripheralRegisterWrite [0] . getlsOutputSet ()) {
unsigned short pntr = peripheralRegisterWrite [3] . getValue () ;
unsigned short threadNum =(pntr & 0x38) » 3;
unsigned short registerNo=(pntr & 0x7) ;
thread [threadNum]. setR(peripheralRegisterWrite [0] . getValue () , registerNo);
peripheralRegisterWrite [0] .setValue(0);
peripheralRegisterWrite [0] , setlsOutputSet (false);
peripheralRegisterWrite [3] , setlsOutputSet (false);

}

peripheralRegisterRead [4]. setValue(peripheralRegisterRead [4] . getValue ()
& ~ peripheralRegisterWrite [4] . getValue ()) ;
// if thread is stop , clear SCUBkpt

}

void xinc :: runSystemClockCycles (unsigned long length)
{

unsigned long j=0;
while ((! _kbhit() && (length ==0)) | | ((length !=0) && (j<length))) {

cou t .unse t f (ios : : hex);
// cout « "System Clock Cycle " « j « endl;

// if thread 0 run, run thread 0
runThread () ;
j++;

// if thread 7 run, run thread 7

// process i/o
// process scupc write , scucc write , scu register read , scu register write

119

/ / second run to process scupc read , scucc read

/ / p r i n t R e g i s t e r () ;
/ / p r i n t l o (0 , 4) ;

}

}

void xinc :: p r i n t R e g i s t e r ()

{
cou t . s e t f (i o s :: hex | ios : : r i g h t) ;
cout « " PC R0 Rl R2 R3 R4 R5

R6 R7 N Z V C" « end l ;
for (i n t i = 0 ; i < 8 ; i + +) {

cout « i « " ";

cout « " 0 x " ;
cou t . width (4) ;
cou t . f i l l (' 0 ') ;
cout « shor t2HexStr ing (t h r ead [i] . g e t P c Q) « " ";
for (i n t j = 0 ; j <8; j++) {

cout « "Ox" ;
cout .width (4) ;
cout . f i l l ('0 ') ;
cout « shor t2HexStr ing (t h r ead [i] . ge tR(j)) « " ";

}
cou t . width (1) ;
cout « ((th read [i] . g e t S t a t u s () & 8) » 3) « " ";
cout . width (1) ;
cout « ((th read [i] . g e t S t a t u s () & 4) » 2) « " ";
cou t . width (1) ;
cout « ((th read [i] . g e t S t a t u s () & 2) » 1) « " ";
cou t . width (1) ;
cout « ((t h r ead [i] . g e t S t a t u s () & 1)) « " ";

cout « endl ;
}

cout « end l ;
cout « " ZOLR0 ZOLR1 ZOLR2 ZOLR3 ZOLR4 ZOLR5 ZOLR6 ZOLR7" « endl ;
for (i = 0 ; i < 8 ; i + +) {

cout « i « " ";
for (i n t j = 0 ; j <8 ; j++) {

cout « "Ox" ;
cou t . width (4) ;
cou t . f i l l (' 0 ') ;
cout « shor t2HexStr ing (t h r ead [i] . getZOLR(j)) « " ";

}
cout « endl ;

}
cout « e n d l ;
cout « " ZOLAS0 ZOLAS1 ZOLAS2 ZOLAS3 ZOLAS4 ZOLAS5 ZOLAS6 ZOLAS7" « e n d l ;
for (i = 0 ; i < 8 ; i + +) {

cout « i « " ";
for (i n t j = 0 ; j <8 ; j++) {

120

cout « "Ox" ;
cout. width (4);
cout. f i l l ('0 ') ;
cout « short2HexString (thread [i].getZOLAS(j)) « " ";

}
cout « endl ;

}
cout « endl;
cout « " ZOLAE0 ZOLAE1 ZOLAE2 ZOLAE3 ZOLAE4 ZOLAE5 ZOLAE6 ZOLAE7" « en
for (i=0;i<8;i++) {

cout « i « " ";
for (int j=0; j <8; j++) {

cout « "Ox" ;
cout. width (4);
cout. f i l l ('0 ') ;
cout « short2HexString (thread [i].getZOLAE(j)) « " ";

}
cout « endl ;

}

d xinc :: runTo(short address , char* logfilename)

int i=0;
while (! -kbhi tQ) {

runSystemClockCycles (1);

if ((shor t) thread [systemClockCycle %8]. getPc()== address) return;

// debug purpose begin
//check nodes
if ((unsigned short) thread [systemClockCycle %8].getPc()==0xc39a) {

for (int j=0;j<6;j++) {
for (int k=0;k<6;k++) {

cout « ram[0xfl8c+j*6+k-0xc000]. getValue () « " ";
}
cout « endl;
for (k=0;k<6;k++) {

cout « ram[0xfl68+j*6+k-0xc000], getValue () « " ";

}
cout « endl;
for (k=0;k<6;k++) {

cout « ram[0xfl44+j*6+k-0xc000]. getValue () « " ";

}
cout « endl;

}
}

// if ((unsigned short)thread [systemClockCycle %8].getPc()==0xc382) {
// c o u t « short2HexString (thread [l] .getR(6)) « " ";
// }

// debug purpose end

if (fp .ser ia l ln . is.open ()) {
if (fp .ser ia l ln . eof()) {

cout « "Read file end!" « endl;

121

r e tu rn ;
}

}
if (i==1000) {

if (! saveNewestLog(logf i lename)) {
cout « "Log f i l e wrong!" ;

}
i=0;

} ;
i++;

}
if (! saveNewestLog(logfi lename)) {

cout « "Log f i l e wrong!";
};

}

void xinc :: r e s e t ()
{

/ / I n i t i a l i z a t i o n
int i ;
for (i = 0 ; i < 8 ; i + +) {

thread [i] . s e tPc (O) ;
for (i n t j = 0 ; j < 8 ; j + +) thread [i] . setR (0 , j) ;
t h r e a d [i] . s e t S t a t u s (0) ;

}

for (i = 0 ; i < 1 6 3 8 4 ; i + +) {
ram[i] . se tValue (0) ;
rom[i] . s e t V a l u e (0) ;

}

for (i = 0 ; i < 1 2 8 ; i + +) {
p e r i p h e r a l R e g i s t e r R e a d [i] . se tValue (0) ;
p e r i p h e r a l R e g i s t e r R e a d [i] . s e t I s O u t p u t S e t (f a l s e) ;
p e r i p h e r a l R e g i s t e r W r i t e [i] . s e t V a l u e (0) ;
p e r i p h e r a l R e g i s t e r W r i t e [i] . s e t I s O u t p u t S e t (f a l s e) ;

}

systemClockCycle =0;

/ / se t eeprom subprogram
rom[10] . se tValue ((s h o r t) 0 x l 3 e 8) ;
rom[l 1] . se tValue ((s h o r t)0xc003) ;
rom[12] . se tValue ((shor t)0x0be2) ;

/ / set thread 0 pc

/ / setPc(0xc000 , 0) ;
thread [0] . setPc (OxcOOO) ;
/ / set thread 0 run
p e r i p h e r a l R e g i s t e r W r i t e [4] . se tValue (254) ; / / 11111110

for (i = 0 ; i < 6 5 5 3 6 ; i + +) {
a d d r e s s S t a t [i]=0;

}

for (i = 0 ; i < 3 2 ; i + +) i n s t r u c t i o n S t a t [i]=0;

122

}

void xinc :: setSystemClockCycle(unsigned long cycleNumber)
{

systemClockCycle=cycleNumber;
}

unsigned long xinc :: getSystemClockCycle ()
{

return systemClockCycle ;
}

void xinc :: printRam(unsigned short start , unsigned short end)
{

cout. setf(ios :: hex | ios :: r i gh t) ;
unsigned short address;
address = start - start % 8;
while (address <= end) {

cout « "Ox" ;
cout. width (4);
cout « short2HexString (address) « " - " ;
for (int i=0;i<8;i++) {

if ((address + i)>=start && (address + i)<=end) {
cout « "Ox" ;
cout. width (4);
cout « short2HexString (ram[address+i-OxcOOO]. getValue ()) «

}
else {

cout « " ";
}

}
cout « endl;

address = address +8;

}

void xinc :: printIO (unsigned short start , unsigned short end)
{

int i ;
cout. setf(ios :: hex | ios :: r igh t) ;
unsigned short address ;
address = start — start % 8;
while (address <= end) {

cout « "W Ox" ;
cout. width (4);
cout. f i l l ('0 ') ;
cout « short2HexString(address) « " — " ;
for (i=0;i<8;i++) {

if ((address + i)>=start && (address + i)<=end) {
cout « "Ox" ;
cout . width (4);
cout « short2HexString (peripheralRegisterWrite [address + i] .

getValue ()) « " ";

123

}
else {

cout « " ";
}

}
cout « endl;
cout « "R Ox" ;
cout. width (4);
cout. f i l l ('0 ') ;
cout « short2HexString (address) « " - " ;
for (i=0;i<8;i++) {

if ((address + i)>=start && (address + i)<=end) {
cout « "Ox" ;
cout. width (4);
cout « short2HexString (peripheralRegisterRead [address + i] .

getValue()) « " *';
}
else {

cout « " ";
}

}
cout « endl;
address = address+8;

}

}

bool xinc :: saveNewestLog(char* logfilename)
{

ofstream fp.out;
bool wrong=true ;
if (logfilename [0]==0) {

newestLog="";

}

else {

fp.out .open (logfilename , ios :: out | ios::app);

if (fp .out . fail ())
{

wrong= false ;
}
fp_out « newestLog;
fp.out.close () ;
newestLog="";

}
if (instructionLog2) {

char logFilename2 [100];
logFilename2[0] = 0;
streat (logFilename2 , filenameRoot);
s treat (logFilename2 ," . il2 ") ;
fp.out . open(logFilename2 , ios :: out | ios::app);
if (fp.out . fail ())
{

cout « "Instruct ion Log 2 file open f a i l ! " ;

124

}
else {

fp .out « newestILog2;
f p - o u t . c lose () ;

}

}
newestILog2 = "";

r e t u r n wrong;
}

void xinc :: addLog(s t r i n g l o g , unsigned shor t threadNum)
{

s t r i n g currentLog ;
unsigned shor t cur ren tAddress ;

if (getTwoWordsInst ruct ion (threadNum)) {
cur ren tAddress = thread [threadNum] . g e t P c () - l ;

}
e lse {

cur ren tAddress = thread [threadNum] . getPc () ;

}

a d d r e s s S t a t f cur ren tAddress]++;

if (screenLog | | f i l eLog) {
currentLog=unsignedLong2Str ing (getSystemClockCycle ()) + ".T"+

unsignedLong2Str ing (threadNum) + ".AOx";

currentLog =currentLog + shor t2HexSt r ing (cu r r en tAddres s) ;

cur rentLog=currentLog +"."+ l o g + " \ n " ;
if (sc reenLog) {

cout « currentLog ;

}
if (f i l e L o g) {

newestLog=newestLog+currentLog ;
}

}
}

bool xinc :: s e t S e r i a l l n F i l e (cha r* f i l ename)
{

if (f i l ename [0]==0) {
se r ia l !nOpen = fa lse ;
r e tu rn fa l se ;

}
if (f p . s e r i a l l n . i s . open ()) {

f p . s e r i a l l n . close () ;
se r ia l !nOpen = fa l se ;

}
f p . s e r i a l l n . open(f i lename , ios :: in | i o s : : b i n a r y) ;

125

if (f p . s e r i a l l n . f a i l O)
{

ser ia l InOpen = fa l se ;
r e t u r n fa lse ;

}
s e r i a l I n O p e n = t r u e ;
r e tu rn t rue ;

}

bool xinc :: s e t S e r i a l O u t F i l e (char* f i l ename)
{

if (f i lename [0]==0) {
ser ialOutOpen = fa l se ;
r e tu rn fa l se ;

}
if (f p . s e r i a l O u t . i s . open ()) {

f p . s e r i a l O u t . close () ;
ser ialOutOpen = fa l se ;

}
f p . s e r i a l O u t . open(f i lename , ios :: out | i o s : : binary) ;

if (f p . s e r i a l O u t . f a i l ())
{

ser ia lOutOpen = fa l se ;
r e tu rn fa l se ;

}
ser ialOutOpen = true ;
r e tu rn t rue ;

}

void xinc :: c l o s e S e r i a l F i l e ()

{

if (f p . s e r i a l l n . i s . open ()) {
f p . s e r i a l l n . close () ;

}
if (f p . s e r i a l O u t . i s . open ()) {

f p . s e r i a l O u t . close () ;
}

void xinc :: setScreenLog (bool va l)

{
sc reenLog=val ;

void xinc :: se tF i leLog (bool va l)

{
f i l e L o g = v a l ;

}

void xinc :: s e t I n s t r u c t i o n L o g 2 (bool va l)
{

i n s t r u c t i o n L o g 2 = v a l ;

126

void xinc :: p r i n t S t a t (uns igned shor t s t a r t , unsigned shor t end, shor t sor tMethod)

{
unsigned long a [6 5 5 3 6] [2] ;
for (unsigned int i=0 ; i<65536 ; i++) {

a [i] [0] - i ;
a [i] [l] = a d d r e s s S t a t [i] ;

}
/* for (i = s t a r t ; i<=end —l;i++) {

in t max=i ;
long maxvalue=a[i] [1] ;
for (uns igned int j = i + l ; j <=en d ; j ++) {

if (maxvalue < a [j] [l]) {
max=j ;
maxvalue=a [j] [1] ;

}
e lse if ((maxvalue== a [j] [l]) && (a [i] [0] > a [j] [0])) {

max=j ;
}

}
long temp=a[max] [1] ;
a [m a x] [l] = a [i] [l] ;
a [i] [1]= temp ;
temp=a[max] [0] ;
a [m a x] [0] = a [i] [0] ;
a [i] [0] = t e m p ;

}
*/

for (i = s t a r t ; i<=end; i++) {
if (a [i] [l] != 0) {

cout « "Ox" « s h o r t 2 H e x S t r i n g (a [i] [0]) « " : " « a [i] [l] « e n d l ;

}
}

}

void x i n c : : r e s e t S t a t ()
{

for (unsigned in t i=0 ; i <=65535; i++) {
a d d r e s s S t a t [i] = 0 ;

}
}

void xinc :: p r i n t I n s t r u c t i o n S t a t ()
{

unsigned long a [INSTRUCTION-NUMBER] [2] ;
for (s h o r t i =0;i<3NSTOUCTION-NUMBER; i++) {

a [i] [0] - i ;
a [i] [1] ~ i n s t r u c t i o n S t a t [i] ;

}
for (i=0;i<INSTRUCTION-NUMBER-l;i++)

for (s h o r t j = i +1;j<JNSTOUCTION_NUMBER;j ++) {
if (a [i] [l] < a [j] [l]) {

long temp=a[j] [1] ;
a [j] [l] = a [i] [l] ;
a[i] [l] = temp;
t e m p = a [j] [0] ;
a [j] [0] = a [i] [0] ;
a [i] [0] = t e m p ;

}

127

}

for (i = 0 ; i<INSTRUCTION_NUMBER; i++) {
cout « i n s t r u c t i o n N a m e [a [i] [0]] « " : " « a [i] [l] « end l ;

}
}
void x i n c : : r e s e t I n s t r u c t i o n S t a t ()
{

for (unsigned shor t i=0 ; i<DMSTRUCTION_NUMBER; i++) {
i n s t r u c t i o n S t a t [i] = 0 ;

}
}

void xinc :: iMovZOLR(in t threadNum , shor t i n s t r u c t i o n)

{
shor t r l ;
s t r i n g log ;

if (ge tTwoWordsIns t ruc t ion (threadNum)) {
r l= (ge tF i r s tWord(th readNum) & OxeO) » 5;

thread [threadNum] . setZOLR(i n s t r u c t i o n , r l) ;

log="iMovZOLR R"+uns ignedLong2St r ing(r l)+" , "+
s i g n e d S h o r t 2 S t r i n g (i n s t r u c t i o n) + " (0 x " +
short2H ex Str ing (i n s t r u c t i o n) + ") " ;

addLog (log , threadNum);

}
e lse {

setTwo Words Inst ruction (t rue . threadNum);
se tF i r s tWord (i n s t r u c t i o n , threadNum) ;
r e tu rn ;

}

}

void xinc :: iSetZOLA(in t threadNum , shor t i n s t r u c t i o n)
{

shor t r l ;
unsigned shor t pc ;
s t r i n g log ;

if (ge tTwoWordsIns t ruc t ion (threadNum)) {
r l= (ge tF i r s tWord(th readNum) & OxeO) » 5;

thread [threadNum] . setZOLAE(i n s t r u c t i o n , r l) ;
pc=thread [threadNum] . getPc () + l ;
thread [threadNum] . setZOLAS (pc , r 1) ;

log="isetZOLA R"+unsignedLong2Str ing (r l)+" end:"+
s i g n e d S h o r t 2 S t r i n g (i n s t r u c t i o n)+"(0x"+
sho r t2HexS t r i ng (i n s t r u c t i o n)+
") " + " s t a r t : " + s i g n e d S h o r t 2 S t r i n g (pc) +

128

" (Ox" + s h o r t 2 H e x S t r i n g (p c) + ") " ;
addLog (log , threadNum) ;

}
else {

se tTwoWordsIns t ruct ion (t rue , threadNum) ;
s e t F i r s t W o r d (i n s t r u c t i o n , threadNum) ;
r e t u r n ;

}

}

void xinc :: zo lProcess (unsigned shor t threadNum) {

for (i n t i = 0 ; i < 7 ; i + +) {
if ((t h r e a d [threadNum].getZOLAE(i)== thread [threadNum]. g e t P c Q)

&& (th read[th readNum] .ge tZOLR(i)>0)) {
thread [threadNum]. s e tPc (thread [threadNum] . getZOLAS(i)) ;
thread [threadNum] . decreaseZOLR(i) ;
if (th read [threadNum].getZOLR(i)==0) {

thread [threadNum] . setZOLAE(0 , i) ;
thread [threadNum] . setZOLAS (0 , i) ;

};

}
}

}

/ / F i lename: x incapp .h
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Main XInC
//
/ / Date: Jan 24 , 2008

inc lude < i o s t r e a m >
inc lude < s t d i o . h >
inc lude < c o n i o . h >
inc lude < s t r i n g . h >
inc lude < s t d l i b .h>

using namespace s t d ;

#def ine LOGLEVEL 1

inc lude "xinc .h"

int main ()
{

xinc x inc l ;
char f i lename [2 5 5] , logfi lename [2 5 5] , s e r i a l I n F i l e [2 5 5] , s e r i a l O u t F i l e [2 5 5] ;
char memoryAddressl [1 0] , memoryAddress2 [10] ;
char s t a tAddress l [10] , s ta tAddress2 [1 0] ;
unsigned long clockCycle ;
f i lename [0]=0;
logf i lename [0]=0;
s e r i a l l n F i l e [0]=0;

129

serialOutFile [0]=0;
bool screenLog = false ;
bool fileLog = false ;
bool s t a t i s t i c s = false ;
bool instructionLog2 = false ;

while (t
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

if (

}

rue) {
« endl
« " 1 .

"2.
"3.
"4.
"5.
"6.
"7.

«
«
«
«
«
«
«
«
« "a.
« "b.
« "c.
« "d.
« "e .

screenLo
cout «

' 9 .

run — 1 system clock cycle" « endl;
run — 8 system clock cycles" « endl;
run - system clock cycles" « endl;
run — breakpoint" « endl;
print — reg i s t e r s " « endl;
print — memory" « endl ;
print - I/O" « endl;
load program " « filename « endl ;
reset" « endl;
log file on " « logfilename « endl;
log file off" « endl;
Serial in f i l e : " « ser ia l lnFi le « endl;
Serial out f i l e : " « serialOutFile « endl.
Screen log is " ;
g) {
"on" « endl;

else {

}
cout
cout
cout
cout
cout

if (

}
else {

cout « "off" « endl;

« "f. print program address hit s t a t i s t i c s " « endl
« "g. reset program address hit s t a t i s t i c s " « endl
« "h. print instruction type s t a t i s t i c s " « endl ;
« " i . reset instruction type s t a t i s t i c s " « endl ;
« "j . instruction type 2 s t a t i s t i c s log is " ;

instructionLog2) {
cout « "on" « endl;

}
cout

cout « "off" « endl;

« "z. exit emulation" « endl

cout « ">";

char ch;
cin » ch;
switch (ch) {

case '1 ':
if (filename [0]==0) {

cout « "Hex file has not loaded!";
}
else {

xincl . runSystemClockCycles (1);

if (! xincl . saveNewestLog(logfilename)) {
cout « "Log file wrong!";

};

}
break;

case ' 2 ' :

130

if (f i lename [0]==0) {
cout « "Hex f i l e has not l o a d e d ! " ;

}
e lse {

x inc l . runSystemClockCycles (8) ;

if (! x incl . saveNewestLog(logfi lename)) {
cout « "Log f i l e wrong!" ;

};

}
break ;

case '3 ' :
if (f i l ename[0]==0) {

cout « "Hex f i l e has not l o a d e d ! " ;
}
e lse {
cout « "P lease input the clock cycles :" ;
cin » clockCycle ;
x inc l . runSystemClockCycles (c lockCycle) ;
if (! x inc l . saveNewestLog(logf i lename)) {

cout « "Log f i l e wrong!" ;

};

}
break ;

case ' 4 ' :
if (f i lename [0]==0) {

cout « "Hex f i l e has not l o a d e d ! " ;
}
e lse {
cout « "P lease input b reakpoin t address (e g . OxcOOO):" ;
cin » memoryAddressl ;
x inc l . runTo(hexSt r ing2 Short (memoryAddressl) , l o g f i l e n a m e) ;

}
break;

case '5':
xincl . printRegister ();
break;

case '6':
cout « "P lease input memory address range(eg OxcOOO OxcOOl):
cin » memoryAddressl » memoryAddress2;

x inc l . printRam(hexSt r ing2Shor t (memoryAddress l) ,
hexSt r ing2Shor t (memoryAddress2));

b reak ;
case ' 7 ' :

cout « "P lease input I /O address range (eg 0x0 0 x 3) : " ;
cin » memoryAddressl » memoryAddress2;

xincl . p r i n t I O (h e x S t r i n g 2 S h o r t (memoryAddressl) ,
hexSt r ing2Shor t (memoryAddress2));

b reak ;
case '8 ' :

cout « "P lease input the f i l e n a m e : " ;
cin » f i lename ;
x incl . r e s e t () ;

131

if (! x inc l . load(f i l ename)) {
f i lename [0]=0;

};
if (x i n c l . s e t S e r i a l l n F i l e (s e r i a l l n F i l e)) {

cout « " S e r i a l in f i l e is s e t . " « end l ;
}
e lse {

cout « " E r r o r : Se r i a l in f i l e is not s e t . " « e n d l ;
s e r i a l l n F i l e [0]=0;

}
if (x i n c l . s e t S e r i a l O u t F i l e (s e r i a l O u t F i l e)) {

cout « " S e r i a l Out f i l e is s e t . " « end l ;
}
e lse {

cout « " E r r o r : Se r i a l Out f i l e is not s e t . " « e n d l ;
s e r i a l O u t F i l e [0]=0;

}
b reak ;

case ' 9 ' :
cout « "Reset XinC c h i p " « e n d l ;
x inc l . r e s e t () ;
x inc l . load(f i lename) ;
if (x incl . s e t S e r i a l l n F i l e (s e r i a l l n F i l e)) {

cout « " S e r i a l in f i l e is s e t . " « e n d l ;
}
e lse {

cout « " E r r o r : Se r i a l in f i l e is not s e t . " « end l ;
s e r i a l l n F i l e [0]=0;

}
if (x i n c l . s e t S e r i a l O u t F i l e (s e r i a l O u t F i l e)) {

cout « " S e r i a l Out f i l e is s e t . " « end l ;
}
e lse {

cout « " E r r o r : Se r i a l Out f i l e is not s e t . " « end l ;
s e r i a l O u t F i l e [0]=0;

}
break ;

case ' a ' :

cout « "P lease input the f i l e n a m e : " ;
cin » logf i lename ;
cout « "Log is on . " « end l ;
x inc l . setScreenLog (t r u e) ;
f i leLog = t rue ;
b reak ;

case ' b ' :
logf i lename [0]=0;
cout « "Log is off ." « end l ;
x inc l . se tScreenLog (f a l s e) ;
f i leLog = fa l se ;
break ;

case 'c ' :

cout « "P lease input s e r i a l in f i l e : " ;
cin » s e r i a l l n F i l e ;

if (x inc l . s e t S e r i a l l n F i l e (s e r i a l l n F i l e)) {
cout « " S e r i a l in f i l e is s e t . " « e n d l ;

}

132

else {
cout « " E r r o r : Se r i a l in f i l e is not s e t . " « end l ;
s e r i a l l n F i l e [0]=0;

}
b reak ;

case 'd ' :

cout « "P lease input s e r i a l out f i l e : " ;
cin » s e r i a l O u t F i l e ;
if (x inc l . s e t S e r i a l O u t F i l e (s e r i a l O u t F i l e)) {

cout « " S e r i a l Out f i l e is s e t . " « e n d l ;

}
e lse {

cout « " E r r o r : Se r i a l Out f i l e is not s e t . " « e n d l ;
s e r i a l O u t F i l e [0]=0;

}

break ;
case 'e ' :

screenLog=! screenLog ;
x inc l . se tScreenLog(screenLog) ;
b reak ;

case ' f ' :
cout « "P lease input address range(eg OxcOOO OxcOOl):" ;
cin » s t a tAddress l » s ta tAddress2 ;

x inc l . p r i n t S t a t (h e x S t r i n g 2 S h o r t (s t a t A d d r e s s l) ,
hexSt r ing2Shor t (s t a tAddres s2) , 0) ;

b reak ;
case ' g ' :

x i n c l . r e s e t S t a t () ;
cout « "Program address h i t is r e s e t t e d " « endl ;

break ;
case 'h ' :

x inc l . p r i n t l n s t r u c t i o n S t a t () ;

b reak ;
case ' i ' :

x inc l . r e s e t l n s t r u c t i o n S t a t () ;
cout « " I n s t r u c t i o n s t a t i s t i c s is r e s e t t e d " « endl ;

b r eak ;
case ' j ' :

i n s t r u c t i o n L o g 2 = ! i n s t r u c t i o n L o g 2 ;
x inc l . s e t I n s t r u c t i o n L o g 2 (i n s t r u c t i o n L o g 2) ;
b reak ;

case ' z ' :
x inc l . c l o s e S e r i a l F i l e () ;
r e t u r n 0;

de fau l t :

133

}

}

r e t u r n 0;
}

/ / F i lename: x i n c l i b . c p p
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
/ /
/ / D e s c r i p t i o n :
/ / Function Library Implementat ion
//
/ / Date: Jan 24 , 2008

inc lude " x i n c l i b . h "
inc lude < c s t r i n g >
inc lude < s t r i n g >
inc lude < i o s t r e a m >

using namespace s t d ;

shor t s ignedExtens ion (s h o r t o r i g i n a l , int b i t)

{
if ((o r i g i n a l & (l « (b i t - l))) == 0) {

r e t u r n o r i g i n a l ;

}
e lse {

shor t mask=0;
for (i n t i=0 ; i <16;i++) {

mask=(mask « 1);
i f (i < 1 6 - b i t) {

mask=mask | 1;

}
}
r e t u r n (o r i g i n a l | mask) ;

}
}

bool xor2(bool o p l , b o o l op2)

{
if (opl==op2) {

r e t u r n fa l se ;
}
e lse {

r e t u r n t rue ;
}

};
shor t hexSt r ing2Shor t (char* in)
{

shor t r e s u l t ;
r e s u l t =0;

134

r (unsigned in t i = 0 ; i < s t r l e n
switch (i n [i]) {
case '0 ' :

r e s u l t = r e s u l t *16;
b reak ;

case '1 ' :
r e s u l t = r e s u l t * 1 6 + l ;
b reak ;

case ' 2 ' :
result = result * 16+2;

break;
case '3 ':

result = result * 16+3;
break;

case '4':
r e s u l t = r e s u l t *16+4;
b reak ;

case '5 ' :
r e s u l t = r e s u l t * 1 6 + 5 ;
b reak ;

case ' 6 ' :
r e s u l t = r e s u l t * 16+6;
b reak ;

case '7 ' :
r e s u l t = r e s u l t * 1 6 + 7 ;
b reak ;

case ' 8 ' :
result = result * 16+8;
break;

case '9 ':
r e s u l t = r e s u l t * 16+9;
b reak ;

case ' A ' :
case ' a ' :

r e s u l t = r e s u l t * 1 6 + 1 0 ;
b reak ;

case ' B ' :
case ' b ' :

r e s u l t = r e s u l t * 1 6 + l l ;
b reak ;

case ' C :
case 'c ' :

r e s u l t = r e s u l t * 1 6 + 1 2 ;
b reak ;

case ' D ' :
case ' d ' :

r e s u l t = r e s u l t * 1 6 + 1 3 ;
b reak ;

case ' E ' :
case 'e ' :

r e s u l t = r e s u l t * 1 6 + 1 4 ;
b reak ;

case ' F ' :
case '{ ':

r e s u l t = r e s u l t * 1 6 + 1 5 ;
b reak ;

de fau l t :
r e s u l t =0;
b reak ;

}

}
return resu l t :

ng short2HexString (unsigned short

int a [4] ;
string hexString ;
a[0]= (number & OxfOOO) » 12;
a[l] = (number & OxOfOO) » 8;
a[2]= (number & OxOOfO) » 4;
a[3]= (number & OxOOOf) ;
hexString ="";
for (int i=0;i<4;i++) {

switch (a [i]) {
case 0:

hexString=hexString +"0";
break;

case 1:
hexString=hexString+"l";
break;

case 2:
hexString=hexString +"2";
break;

case 3:
hexString=hexString+"3";
break;

case 4:
hexString=hexString +"4";
break;

case 5:
hexString=hexString +"5";
break;

case 6:
hexString=hexString+"6";
break;

case 7:
hexString=hexString +"7";
break;

case 8:
hexString=hexString+"8";
break;

case 9:
hexString=hexString+"9";
break;

case 10:
hexString = hexString+"a";
break;

case 11:
hexString=hexString+"b";
break;

case 12:
hexString=hexString+"c";
break;

case 13:
hexString=hexString+"d";
break;

case 14:

hexSt r ing
b reak ;

case 15:
hexSt r ing
b reak ;

}

}

r e t u r n hexSt r ing ;

ng s i g n e d S h o r t 2 S t r i n g (s igned shor t number

s t r i n g r e s u l t = " " ;
signed shor t current=number;
if (number < 0) {

current=(number"0 x f f f f) + 1 ;

}

i f (o u r r e n t = = 0) r e tu rn " 0 " ;
if (cu r r en t==-32768) r e tu rn " - 3 2 7 6 8 " ;

while (cu r r en t >0) {
unsigned shor t d i g i t = cu r ren t % 10;
switch (d i g i t) {
case 0:

r e su l t="0"+ r e s u l t ;
b reak ;

case 1 :
r e s u l t = " l " + r e s u l t ;
b reak ;

case 2:
result ="2"+ result ;
break;

case 3:
r e s u l t = " 3 " + r e s u l t ;
b reak ;

case 4:
r e s u l t = " 4 " + r e s u l t ;
b r eak ;

case 5:
r e su l t="5"+ r e s u l t ;
b reak ;

case 6:
r e s u l t = " 6 " + r e s u l t ;
b reak ;

case 7:
r e s u l t ="7"+ r e s u l t ;
break ;

case 8:
r e su l t="8"+ r e s u l t ;
b reak ;

case 9:
r e su l t="9"+ r e s u l t ;

=hexS t r ing+ e ;

=hexS t r ing+" f ";

137

break ;

}
cu r r en t = (c u r r e n t - d i g i t) / 10 ;
}
if (number<0) r e s u l t = " - " + r e s u l t ;
r e t u r n r e s u l t ;

}

s t r i n g unsignedLong2Str ing (unsigned long number)

{
unsigned shor t d i g i t ;
unsigned long current=number ;
s t r i n g r e s u l t = " " ;
if (c u r r e n t = = 0) r e tu rn " 0 " ;
while (cu r r en t >0) {
d i g i t = c u r r e n t % 10;
switch (d i g i t) {
case 0:

r e s u 11 ="0"+ r e s u 11;
b reak ;

case 1:
r e s u l t =" 1"+ r e s u 11;
b reak ;

case 2:
r e s u l t = " 2 " + r e s u l t ;
b r eak ;

case 3:
r e s u l t = " 3 " + r e s u l t ;
b reak ;

case 4:
r e s u l t ="4"+ r e s u 11;
b reak ;

case 5:
r e s u l t = " 5 " + r e s u l t ;
b reak ;

case 6:
r e s u l t ="6"+ r e s u l t ;
b reak ;

case 7:
r e s u l t = " 7 " + r e s u l t ;
b r eak ;

case 8:
r e s u l t = " 8 " + r e s u l t ;
b reak ;

case 9:
r e s u l t ="9"+ r e s u l t ;
b r eak ;

}
cu r r en t = (c u r r e n t - d i g i t) / 10 ;
}
r e t u r n r e s u l t ;

}

/ / F i lename: xincMemoryl6 . cpp
/ / Author: Xin Sheng Zhou

138

// Department of Electr ical and Computer Engineering
// University of Alberta
//
// Description :
// Class xincMemoryl6 Implementation
//
// Date: Jan 24, 2008

#include "xincMemoryl6 .h"

xincMemoryl6 :: xincMemoryl6 ()
{

memory=0;
};

void xincMemoryl6 :: setValue (short mem) {
memory=mem;

};

short xincMemoryl6 :: getValue () {
return memory;

}

// Filename: xincPeripheralRegister . cpp
// Author: Xin Sheng Zhou
// Department of Electr ical and Computer Engineering
// University of Alberta
//
// Description:
// Class xincPeripheralRegister Implementation
//
// Date: Jan 24, 2008

#include "xincPeripheralRegister .h"

xincPeripheralRegister :: xincPeripheralRegister () : xincMemoryl6 ()
{

isInputSet = false ;
isOutputSet = false ;

};

void xincPeripheralRegister :: setlsOutputSet (bool outputSetValue)
{

isOutputSet = outputSetValue ;
}

bool xincPeripheralRegister :: getlsOutputSet ()
{

return isOutputSet ;
};

// Filename: xincThreadRegister .cpp
// Author: Xin Sheng Zhou
// Department of Electr ical and Computer Engineering

139

// University of Alberta
//
// Description:
// Class xincThreadRegister Implementation
//
// Date: Jan 24, 2008

#include "xincThreadRegister .h"

xincThreadRegister :: xincThreadRegister ()

status =0;

void xincThreadRegister :: setPc (unsigned short newPC)

pc . set Value (newPC);

unsigned short xincThreadRegister :: getPc ()

return pc . getValue () ;

void xincThreadRegister :: setStatus (unsigned char newStatus)

status=newStatus ;

unsigned char xincThreadRegister :: getStatus ()

return status ;

void xincThreadRegister :: setR (short newR, short rNum)

r [rNum]. setValue(newR);

short xincThreadRegister :: getR(short rNum)

return r [rNum]. getValue () ;

void xincThreadRegister :: setStatusN ()

status = status | 0x8;

void xincThreadRegister :: clrStatusN ()

status = status & 0xf7;

void xincThreadRegister :: setStatusZ ()

status = status | 0x4;

140

void xincThreadRegister :: clrStatusZ ()
{

status = status & Oxfb;
};

void xincThreadRegister :: setStatusV ()
{

status = status | 0x2;
};

void xincThreadRegister :: clrStatusV ()
{

status = status & Oxfd;
};

void xincThreadRegister :: setStatusC ()
{

status = status | Oxl ;
};

void xincThreadRegister :: clrStatusC ()
{

status = status & Oxfe;
};

bool xincThreadRegister :: isNl ()
{

if ((status & 8) ==0) {
return false ;

}
else {

return true ;

};
};

bool xincThreadRegister :: isZl ()
{

if ((s ta tus & 4) ==0) {
return false ;

}
else {

return true ;
};

};
bool xincThreadRegister :: isVl ()
{

if ((s ta tus & 2) ==0) {
return false ;

}
else {

return true ;
};

};
bool xincThreadRegister :: isCl ()
{

if ((s ta tus & 1) ==0) {
return false ;

}
else {

r e tu rn t rue ;
};

} ;

void x incThreadReg i s t e r :: setZOLR(unsigned shor t newZOLR, shor t rNum)
{

zo l r [rNum] . se tValue (newZOLR);
};

unsigned shor t x incThreadRegis te r :: getZOLR(shor t rNum)

{
r e t u r n zol r [rNum]. getValue () ;

};

void x incThreadRegis te r :: increaseZOLR(shor t rNum)
{

zolr [rNum]. se tValue (z o l r [rNum]. getValue () + l) ;
};

void x incThreadRegis te r :: decreaseZOLR(shor t rNum)
{

zol r [rNum]. se tValue (z o l r [rNum]. getValue () - 1);
};

void x incThreadRegis te r :: setZOLAS(unsigned shor t newZOLAS, shor t rNum)

{
zol r [rNum]. set Address Star t (newZOLAS);

};

unsigned shor t x incThreadRegis te r :: getZOLAS(shor t rNum)
{

r e t u r n zolr [rNum]. g e t A d d r e s s S t a r t () ;
};
void x incThreadRegis te r :: setZOLAE(unsigned shor t newZOLAE, shor t rNum)
{

zol r [rNum]. setAddressEnd(newZOLAE);
};

unsigned shor t x incThreadRegis te r :: getZOLAE(shor t rNum)

{
r e tu rn zol r [rNum]. getAddressEnd () ;

};

/ / F i lename: xincZOLR . cpp
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Zero overhead looping implementat ion
//
/ / Date: Jan 24 , 2008

inc lude "xincZOLR.h"

xincZOLR :: xincZOLR ()

{
memory=0;

142

addressStart=0;
addressEnd=0;

};

void xincZOLR :: setValue (unsigned short mem) {
memory=mem;

};

unsigned short xincZOLR :: getValue () {
return memory;

}

void xincZOLR :: decreaseValue () {
memory—;

void xincZOLR :: increaseValue () {
memory++;

void xincZOLR:: setAddressStart (unsigned short addr) {
address Start=addr;

};

unsigned short xincZOLR :: getAddressStart () {
return addressStart ;

}

void xincZOLR:: setAddressEnd(unsigned short addr) {
addressEnd=addr;

};

unsigned short xincZOLR :: getAddressEnd () {
return addressEnd ;

}

// Filename: xinc.h
// Author: Xin Sheng Zhou
// Department of Electr ical and Computer Engineering
// University of Alberta
//
// Description:
// Class xinc
//
// Date: Jan 24, 2008

#include <s t r ing .h>
#include <st r ing>
#include <iostream>
#include <fstream>
#include "x inc l ib .h"
#include "xincThreadRegister .h"
#include "xincPeripheralRegister .h"

143

#def ine INSTRUCTION-NUMBER 32

using namespace s t d ;

c l a ss xinc
{
p r i v a t e :

/ / hardware memories, r e g i s t e r s , io buf fers
xincMemoryl6 ram[16384] , rom[16384] ;
x i n c P e r i p h e r a l R e g i s t e r p e r i p h e r a l R e g i s t e r R e a d [1 2 8] , p e r i p h e r a l R e g i s t e r W r i t e [1 2 8] ;
x incThreadRegis te r thread [8] ;

/ / i n s t u c t i o n s
void iMov(int threadNum , shor t i n s t r u c t i o n) ;
void i O u t p (i n t threadNum , shor t i n s t r u c t i o n) ;
void i B r a (i n t threadNum , shor t i n s t r u c t i o n) ;
void iAdd(in t threadNum , shor t i n s t r u c t i o n , shor t method);
void iAnd(in t threadNum , shor t i n s t r u c t i o n , shor t method);
void i B c (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void i B i c (i n t threadNum , shor t i n s t r u c t i o n) ;
void i B i s (i n t threadNum , shor t i n s t r u c t i o n) ;
void i B i x (i n t threadNum , shor t i n s t r u c t i o n) ;
void i l n p (i n t threadNum , shor t i n s t r u c t i o n) ;
void i I o r (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void i J s r (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void i L d (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void i R o l (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void i S t (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void i S u b (i n t threadNum , shor t i n s t r u c t i o n) ;
void i T h r d (i n t threadNum , shor t i n s t r u c t i o n) ;
void i X o r (i n t threadNum , shor t i n s t r u c t i o n , shor t method);
void iMovZOLR(in t threadNum , shor t i n s t r u c t i o n) ;
void iSetZOLA(int threadNum , shor t i n s t r u c t i o n) ;

/ / emulator i n t e r n a l use
unsigned long systemClockCycle ;

bool i sTwoWordsIns t ruct ion [8] ;
unsigned shor t f i rs tWord [8] ;

s t r i n g newestLog;

shor t b r a S t a t u s [8] ;
shor t SPIOrx , SPIOtx ;
bool screenLog ;
bool f i leLog ;
bool i n s t r u c t i o n L o g 2 ;
bool se r ia l lnOpen ;
bool ser ialOutOpen ;

char s e r i a l I n F i l e [2 5 5] , s e r i a l O u t F i l e [25 5] ;
i f s t ream f p . s e r i a l l n ;
ofstream f p . s e r i a l O u t ;

long a d d r e s s S t a t [6 5 5 3 6] ;
long i n s t r u c t i o n S t a t [3 2] ;
s t r i n g ins t ruc t ionName [3 2] ;
char fi lenameRoot [1 0 0] ;
s t r i n g newestILog2;

144

unsigned long getSystemClockCycle () ;
void se tSys temClockCycle(uns igned long cycleNumber);

void se tTwoWordsIns t ruct ion (bool isTwoWords, shor t threadNum);
bool getTwoWordsInst ruct ion (s h o r t threadNum);
void se tF i r s tWord (s h o r t f i rs tWordValue , shor t threadNum);
shor t ge tF i rs tWord (s h o r t threadNum);
bool isThreadRun(in t threadNum);
void runThread () ;
void ioProcess () ;
void addLog(s t r i n g l o g , u n s i g n e d shor t threadNum);
void zolProcess (uns igned shor t threadNum);

publ ic :

};

xinc () ;
void r e s e t () ;
bool load (cha r* f i l e n a m e) ;
void runSystemClockCycles (uns igned long l e n g t h) ;
void runTo (s h o r t address , char* logf i lename) ;
void p r i n t R e g i s t e r () ;
void pr in tRam(uns igned shor t s t a r t , unsigned shor t end) ;
void pr in t IO (uns igned shor t s t a r t , unsigned shor t end) ;
bool saveNewestLog(char* l o g f i l e n a m e) ;
bool s e t S e r i a l l n F i l e (char* f i l e n a m e) ;
bool s e t S e r i a l O u t F i l e (cha r* f i l e n a m e) ;
void c l o s e S e r i a l F i l e () ;
void setScreenLog (bool v a l) ;
void se tF i leLog (bool v a l) ;
void s e t I n s t r u c t i o n L o g 2 (bool v a l) ;
void p r i n t S t a t (uns igned shor t s t a r t , unsigned shor t end, shor t so r tMethod) ;
void r e s e t S t a t () ;
void p r i n t l n s t r u c t i o n S t a t () ;
void r e s e t l n s t r u c t i o n S t a t () ;

/ / F i lename: x i n c l i b .h
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
// Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Function Library
//
/ / Date: Jan 24 , 2008

i fnde f x i n c l i b
#def ine x i n c l i b

inc lude < s t r i n g >

using namespace s t d ;

shor t s ignedExtens ion (s h o r t o r i g i n a l , in t b i t) ;
bool xor2(bool o p l , b o o l op2) ;
shor t hexSt r ing2Shor t (char* i n) ;
s t r i n g shor t2HexSt r ing (unsigned shor t number);

145

s t r i n g unsignedLong2Str ing (unsigned long number);
s t r i n g s i g n e d S h o r t 2 S t r i n g (signed shor t number);

#endi f

/ / F i lename: xincMemoryl6 .h
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Class xincMemoryl6
//
/ / Date: Jan 24 , 2008

i fndef xincMemory

#def ine xincMemory

c lass xincMemoryl6 {
p r i v a t e :

shor t memory; / / Memory

publ ic :
xincMemory 16 () ;

void se tValue (s h o r t mem);
shor t getValue () ;

};

#endif

/ / F i lename: x i n c P e r i p h e r a l R e g i s t e r .h
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / U n i v e r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Class x i n c P e r i p h e r a l R e g i s t e r
//
/ / Date : Jan 24 , 2008

inc lude "xincMemoryl6 .h"

c l a s s x i n c P e r i p h e r a l R e g i s t e r : publ ic xincMemoryl6 {
p r i v a t e :

bool i sOutputSet ;
bool i s I n p u t S e t ;

publ ic :
x i n c P e r i p h e r a l R e g i s t e r () ;

bool g e t l s O u t p u t S e t () ;
void s e t l s O u t p u t S e t (bool o u t p u t S e t V a l u e) ;

};

/ / F i lename: x incThreadRegis te r .h

146

/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
//
//
//

Unive r s i t y of Alber ta

Desc r ip t i on :
/ / Class x incThreadRegis te r

Inc luding PC, Regis ter , Zero overhead looping r e g i s t e r set //
//
/ / Date : Jan 24 , 2008

inc lude "xincMemoryl6 .h"
inc lude "xincZOLR.h"

i fndef t h r e a d R e g i s t e r

#def ine t h r e a d R e g i s t e r

c l a ss x incThreadRegis te r {
p r o t e c t e d :

xincMemoryl6 pc ; / / Program Counter
xincMemoryl6 r [8] ; / / R e g i s t e r s
xincZOLR z o l r [8] ; / / Zero overhead looping r e g i s t e r se t s
unsigned char s t a t u s ; / / Condit ion code

publ ic :
x incThreadRegis te r () ;
void s e tPc (uns igned shor t newPC);
unsigned shor t g e t P c () ;
void s e t S t a t u s (uns igned char newSta tu s) ;
unsigned char g e t S t a t u s () ;
void setR(shor t newR, shor t rNum);
shor t g e t R (s h o r t rNum);

void setZOLR(unsigned shor t newZOLR, shor t rNum);
unsigned shor t getZOLR(shor t rNum);
void increaseZOLR(shor t rNum);
void decreaseZOLR(shor t rNum);
void setZOLAS(unsigned shor t newZOLAS, shor t rNum);
unsigned shor t getZOLAS(short rNum);
void setZOLAE(unsigned shor t newZOLAE, shor t rNum);
unsigned shor t getZOLAE(shor t rNum);

};

void se tSta tusN
void c l rS t a tu sN
void s e tS t a tu sZ
void c l r S t a t u s Z ()
void se tSta tusV ()
void c l rS t a tu sV ()
void se tS t a tusC ()
void c l rS t a tu sC
bool isNl () ;
bool isZl () ;
bool i s V l Q ;
bool isCl Q ;

0

#endif

/ / F i lename: xincZOLR.h
/ / Author: Xin Sheng Zhou

147

// Department of Electr ical and Computer Engineering
// University of Alberta
//
// Description :
// Class xincZOLR
// Zero overhead looping registers
// Date: Jan 24, 2008

class xincZOLR {
private :

unsigned short memory; // Program Counter
unsigned short addressStart ; // Looping start register
unsigned short addressEnd ; // Looping end register

public :
xincZOLR ();

void setValue (unsigned short mem);
unsigned short getValue () ;
void decreaseValue () ;
void increaseValue () ;
void setAddressStart (unsigned short addr);
unsigned short getAddressStart () ;
void setAddressEnd (unsigned short addr);
unsigned short getAddressEnd () ;

};

148

Appendix B

LDPC-CC Encoding and Decoding
Algorithm on XInC Microprocessor
Assembly Language

B.l LDPC-CC Encoding Algorithm Assembly Lan
guage on XInC

/ / F i lename: Main.asm
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / LDPC-CC Encoder
//
/ / Date: Jan 24 , 2008

inc lude " . . \ . . \ X I n C L ib ra ry \XInC.h"
inc lude "Cons tan t s .h"

#def ine . . T O . .
#def ine . . T l . _

//==
/ / Code and Data Size :
/ / After assembly, check the values ass igned to these c o n s t a n t s in the l i s t f i l e .

SizeOfAppCode = (. .AppCode.End— — . . A p p C o d e . S t a r t . .)
SizeOfAppData = (. .AppData .End— - . . A p p D a t a . S t a r t . .)
SizeOfShortData = (. . S h o r t D a t a . E n d . . - . . S h o r t D a t a . S t a r t . .)

FreeAppCodeSpace = (. . A p p D a t a . S t a r t . . - . -AppCode .End- .) // If any of these th ree
FreeAppDataSpace = (kRAM.End - 127 - . . A p p D a t a . E n d . .) / / c o n s t a n t s are negat ive ,

149

file:///XInC.h

B.l: LDPC-CC Encoding Algorithm Assembly Language onXInC

FreeShortDataSpace = (kRAMJEnd - . . S h o r t D a t a _ E n d _ .) / / t he re is an over f low.

/ / Header F i l e s :
/ / This s ec t i on inc ludes f i l e s def in ing c o n s t a n t s .

/ / Code Space:
/ / Only Code should be inc luded in t h i s segment.
//==

@ = kRAM.BlockO-Start
- - A p p C o d e . S t a r t . . :

// _
/ / I n i t i a l i z a t i o n Code

inc lude " I n i t . a s m "

bra ThreadO

inc lude " . . \ . . \ X I n C Library\XPD.Echo.asm"
inc lude " . . \ . . \ X I n C Library \XPD.Echo.Data . asm"
inc lude " . . \ . . \ X I n C Library \LEDs. asm"

//
/ / Thread Code

i f d e f . . T O . .
ThreadO : / / Thread 0 Code

bra ThreadO
#endi f

i f d e f . . T l _ .
Threadl : / / Thread 1 Code

mov rl , kXPD.BaudR.ate. 115200 + kXPD.ClockLE.12MHz
j s r r6 , XPD.Configure

/ / I n i t i a l i z e the LEDs
j s r r6 , I n i t i a l i z e L E D s
mov rl , OxFFFF
j s r r6 , TurnOnLEDs / / Turn on a l l LEDs to i n d i c a t e the program has loaded

/ / I n i t i a l i z e FIFO queue

. . F O R . l . I N I T :
mov rO , 0
st rO, i

-JFOR.1.COND:
Id rO , i
mov rl , encoderQueueSize
sub rO , rO , r l
be ZS, . .FOR. LEND

..FOR. 1 .BODY:
Id rO , i
mov rl ,0
st r l , r0 .queue

150

file:///XPD.Echo.Data
file:///LEDs
http://kXPD.BaudR.ate

B.l: LDPC-CC Encoding Algorithm Assembly Language on XInC

-FOR-l - INCR:
Id rO , i
add r2 , rO , 1
st r2 , i
bra --FOR-1-COND

-FOR-1-END:

-ENCODINGJSTART:
j s r r6 , XPD-ReadByte / / Read data
j s r r6 , XPD-WriteByte / / Echo data
Id rO.head // queue [head]= cu r r en t
st rl , rO , queue
add rO , rO , 1 / / head++
st rO ,head

/ / i f (head==encoderQueueSize) head==0;
mov r2 , encoderQueueSize
sub rO , rO , r2
be ZS, J F - 1 - R U N . l
bra IF . l .CONT.l

- I F . l . R U N . l :
mov rO ,0
st rO ,head

- IF . l -CONT.l :
/ / queue[head]=0

Id rO.head
mov r2 ,0
st r2 ,r0 , queue

/ /Ge t f i r s t data
Id rO,head
add rO , rO , encoderQueueSize +1
Id r2 , p o s i t i o n T a b l e P o i n t e r
Id r2 ,r2 , matrix
sub rO , rO , r2
sub r2 , r0 , encoderQueueSize
be NS.-SAVE-N
Id r l , r2 .queue
bra -SAVE.CONT

.SAVE _N:
Id rl , rO , queue

.SAVE-CONT:

/ / p o s i t i o n T a b l e P o i n t e r + +
ld rO , p o s i t i o n T a b l e P o i n t e r
add rO , rO , 1
st rO , p o s i t i o n T a b l e P o i n t e r

/ / checkNum=0
mov rO ,0
s t rO , checkNum

-CHECK.COND:
Id rO,checkNum // checkNum > checkDegree?
add rO. rO. l / / checkNum++
s t rO , checkNum
sub rO ,r0 , checkDegree
be ZS,.CHECK_END

.CHECK-PROCESS:

151

B. 1: LDPC-CC Encoding Algorithm Assembly Language on XInC

II Get fol lowing data
Id rO.head
add rO ,r0 , encoderQueueSize+1
Id r2 , p o s i t i o n T a b l e P o i n t e r
Id r2 , r2 , matrix
sub r 0 , r 0 , r 2
sub r2 ,r0 , encoderQueueSize
be NS,.SAVE.N.l
Id r4 , r2 , queue
bra -SAVE-CONT.l

-SAVE.N-1:
Id r4 ,r0 , queue

-SAVE-CONT.l:

/ / p o s i t i o n T a b l e P o i n t e r + +
Id rO , p o s i t i o n T a b l e P o i n t e r
add rO , rO , 1
st rO , p o s i t i o n T a b l e P o i n t e r

/ / Xor two numbers
xor r l , r l , r4

/ / Branch to p a r i t y check s t a r t
bra -CHECKXOND

-CHECK.END:

Id rO , p o s i t i o n T a b l e P o i n t e r / / p o s i t i o n T a b l e P o i n t e r > p o s i t i o n T a b l e S i z e ?
sub rO , r0 , p o s i t i o n T a b l e S i z e
be ZS,_PHASE.CONT
bra _PHASE_END

-PHASE.CONT:
mov rO , 0
st rO , p o s i t i o n T a b l e P o i n t e r

-PHASE-END:

Id rO , head / / queue [head]= cu r r en t
st rl , rO .queue
add rO , rO , 1
st rO,head

/ / if (h e a d = e n c o d e r Q u e u e S i z e) head==0;
mov r2 , encoderQueueSize
sub rO , rO , r2
be ZS, . I F . 1-RUN
bra -IF.l-CONT

-IF_1_RUN:
mov rO , 0
st rO ,head

- IF. l .CONT:

/ / Echo the p a r i t y check r e s u l t
ior rl , r l ,560
j s r r6 , XPD_WriteByte

-ENCODINGJEND:
bra -ENCODING-START

stop :

152

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

bra stop
#endi f

//
/ / Other Source F i l e s

--AppCodeJEnd—:

/ / Data Space:
/ / All Data must be in a sepa ra t e 2kWord Memory Block from any Code.

/ / =

@ = (@ + 0x800-1) & -0x800 / / Round up to the next 2kWord Memory Block
. . A p p D a t a . S t a r t . . :

inc lude "Long-Data .asm"

. . A p p D a t a . E n d . - :

/ / =
/ / Short Address Space:
/ / Any Data placed in t h i s space may be accessed with a s ing l e word
/ / i n s t r u c t i o n .

/ / =

@ = kRAMJEnd - 127 / / S t a r t of the shor t address space

. . S h o r t D a t a . S t a r t . . :

inc lude " S h o r t . D a t a . asm"

— Shor tDa ta .End—:

B.2 LDPC-CC PIBF Algorithm with Zero-overhead
Looping on XInC

/ / F i lename: Main.asm
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / U n i v e r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / LDPC-CC Decoder
/ / P a r a l l e l Improved Bit Fl ipping Algorithm
/ / With Zero-overhead Looping
/ /
/ / Date : Jan 24 , 2008

inc lude " .. \ .. \ XInC Library \XInC . h"
inc lude "Cons tan t s .h"

/ / S t a r t thread 1 at the beginning
#def ine . . T l _ _

153

file:///XInC

B.2; LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

/ / Code and Data S i z e :
/ / After assembly , check the values ass igned to these c o n s t a n t s in the
/ / l i s t f i l e .

SizeOfAppCode = (—AppCode-End.. - . . A p p C o d e . S t a r t . -)
SizeOfAppData = (. . .AppData.End — - —AppDa ta .S t a r t—)
SizeOfShortData = (. . S h o r t D a t a . E n d . . - _ _ S h o r t D a t a . S t a r t —)

FreeAppCodeSpace = (_ _ A p p D a t a . S t a r t . . - . .AppCode .End . .) // If any of these th ree
FreeAppDataSpace = (kRAM_End - 127 - . . A p p D a t a . E n d . .) / / c o n s t a n t s are negat ive ,
FreeShortDataSpace = (kRAM-End - . . S h o r t D a t a . E n d . .) / / t he re is an over f low.

/ / Code Space:
/ / Only Code should be included in t h i s segment.
//===:

@ = kRAM.BlockO.Start
. . A p p C o d e . S t a r t :

//

/ / I n i t i a l i z a t i o n Code

inc lude " I n i t . a s m "

bra @

inc lude " . . \ . . \ X I n C Library\XPD.Echo.asm"
inc lude " , . \ . . \ X I n C Library \XPD.Echo.Data .asm"
inc lude " . . \ . . \ X I n C Library\LEDs.asm"

//
/ / Thread Code

Threadl : / / Thread 1 Code

mov rl , kXPD.BaudRate.115200 + kXPD.ClockLE.12MHz
j s r r6 , XPD.Configure

// I n i t i a l i z e the LEDs
j s r r6 , I n i t i a l i z e L E D s
mov rl , OxFFFF
j s r r 6 , TurnOnLEDs / / Turn on a l l LEDs to i n d i c a t e the program has loaded

/ / D i s t r i b u t e Decoding Proceesor to th reads

mov rO ,0
d i s t r i b u t e P r o c e s s o r l D :

add r5 ,r0 ,2
st rO , r5 , processor lD
add rO , rO , 1
sub r5 , rO , nProcNum
be ZS, d i s t r i b u t e P r o c e s s I D E n d
bra d i s t r i b u t e P r o c e s s o r l D

d i s t r i b u t e P r o c e s s I D E n d :

/ / S t a r t decoding thread 2 -7

154

file:///XPD.Echo.Data
file:///LEDs

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

mov r3 ,Oxff fc / / Give r3 i n i t i a l v a l u e , only thread 0 and 1 is running
mov r 4 , 2 / / S t a r t i n g from thread 2

s e tThread :
rol r 2 , r 4 , 3
ior r 2 , r 2 , 7
outp r2 , SCUpntr
Id r2 , r4 , SP.ADDRESS
outp r2 , SCUreg
mov r2 , Thread2
outp r2 , SCUpc
mov rl ,1
rol rl , r l , r4
xor r l , r l , 0x f f f f
and r 3 , r 3 , r l / / r3 c o n t r o l s which thread wi l l run .
add r4 , r4 ,1
mov r2 ,2
sub r2 , r4 , r2
sub r2 , r2 , nProcNum
be ZS, setThreadEnd
bra se tThread

setThreadEnd :
st r3 , t h r e a d P a t t e r n

/ / i n i t i a l matLLRBuffer with einitLLR
mov rO , 0
mov rl .nBufLength
mov r2 ,0

in i t i a lMatLLRBuffe r :
sub r3 ,r0 , r l
be ZS, ini t ialMatLLRBufferEnd
st r2 , rO , matLLRBuffer
add rO , rO , 1
bra in i t ia lMatLLRBuffer

ini t ialMatLLRBufferEnd :

mov rl ,0
st r l , pnSymbolDegPointer / / pnSymbolDegPointer=0
st rl , b lockRowPosi t ion

/ / begin i n i t i a l pnPos i t ion
/ / This block can be removed if the check degree is a cons tan t number.

mov rO , 0
mov r2 ,0

i n i t i a l P n P o s i t i o n C o n d :
sub rl , r0 ,nProcNum
be ZS, i n i t i a l P n P o s i t i o n E n d

i n i t i a l P n P o s i t i o n B o d y :
st r2 , r0 , pnPos i t ion
add r2 , r2 , nCheckDegMax
add rO , rO , 1
bra i n i t i a l P n P o s i t i o n C o n d

i n i t i a l P n P o s i t i o n E n d :
/ / end i n i t i a l pnPos i t ion

/ / Begin i n i t i a l i z e processorPhase , pnCheckDegRowPosition
mov rO ,0
mov r 2 , n P r o c S i z e / / r 2 : cu r r en t phase
mov r3 , nProcSize*nCheckDegMax / / r3 : cu r r en t phase row p o s i t i o n
mov r4 , nProcNum

i n i t i a l i z e P r o c e s o r P h a s e C o n d :

155

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

sub r l ,rO , r4
be ZS, i n i t i a l i z e P r o c e s o r P h a s e E n d

i n i t i a l i z e P r o c e s o r P h a s e B o d y :
sub r3 , r3 , nProcSize*nCheckDegMax
sub r2 ,r2 , nProcSize
be NS, i n i t i a l i z e P r o c e s o r P h a s e M o d
bra i n i t i a l i z e P r o c e s o r P h a s e S t o r e

i n i t i a l i z e P r o c e s o r P h a s e M o d :
add r3 , r3 ,nCodeT*nCheckDegMax
add r2 , r2 , nCodeT
be NS, i n i t i a l i z e P r o c e s o r P h a s e M o d

i n i t i a l i z e P r o c e s o r P h a s e S t o r e :
st r3 , r0 ,pnCheckDegRowPosition
add rO , rO , 1
bra i n i t i a l i z e P r o c e s o r P h a s e C o n d

i n i t i a l i z e P r o c e s o r P h a s e E n d :
/ / End i n i t i a l i z e p rocessorPhase

/ / Begin i n i t i a l i z e pnSymbolDegRowPosition
mov r3 ,0
mov rO,— nCodeM*nCodeC+nProcSize *nCodeC

ini t ia l izepnSymbolDegRowPosi t ionCond :
sub r l ,r3 ,nProcNum
be ZS, in i t ia l izepnSymbolDegRowPosi t ionEnd
sub rO , r0 ,nProcSize*nCodeC

addPnSymbolDegRowPosition:
add rO ,r0 ,nCodeT*nCodeC
be NS, addPnSymbolDegRowPosition

subPnSymbolDegRowPosition:
sub r l , r0 ,nCodeT*nCodeC
be NS, subPnSymbolDegRowPositionEnd
mov rO , r 1
bra subPnSymbolDegRowPosition

SubPnSymbolDegRowPositionEnd :
add r3 , r3 ,1
bra in i t ia l izepnSymbolDegRowPosi t ionCond

in i t ia l izepnSymbolDegRowPosi t ionEnd :
/ / End i n i t i a l i z e pnSymbolDegRowPosition

/ /Begin i n i t i a l i z e pnSymbolMatLLRPosition
mov r3 ,nProcNum-l
mov rl ,2*nBlockLength

in i t ia l izepnSymbolMatLLRPosi t ionCond :
sub rO ,r3 ,0
be NS, in i t ia l izepnSymbolMatLLRPosi t ionEnd

in i t ia l izepnSymbolMatLLRPosi t ionBody :
st r l , r3 .pnSymbolMatLLRPosition
add rl , r l , nEachProcBufLength
sub r3 , r3 ,1
bra in i t ia l izepnSymbolMatLLRPosi t ionCond

in i t ia l izepnSymbolMatLLRPosi t ionEnd :
/ /End i n i t i a l i z e pnSymbolMatLLRPosition

/ /Begin i n i t i a l i z e procMemoryStart
mov r3 ,0
mov rl ,0

in i t i a l i zeProcMemorySta r tCond :
sub rO , r3 , nProcNum
be ZS, i n i t i a l i zeProcMemoryS ta r tEnd

in i t i a l i zeProcMemoryS ta r tBody :

156

B.2; LDPC-CC PIBF Algorithm with Zero-overhead Looping on XInC

st rl , r3 , procMemoryStart
add r l , r l , nEachProcBufLength
add r3 , r3 ,1
bra in i t i a l i zeProcMemorySta r tCond

in i t i a l i z eP rocMemoryS ta r tEnd :
/ /End i n i t i a l i z e ProcMemoryStart

/ / input f i r s t data
Id r4 , b lockRowPosi t ion
mov r5 ,0

inputDataCondl :
sub r6 , r5 ,nCodeC
be ZS, inputDataEndl
j s r r6 , XPD-ReadByte
and rl , r l , 0x f f
rol rO , r l ,8
j s r r6 , XPD-ReadByte
and r l , r l , 0x f f
ior r l , r l , r 0 / / r l : input data
mov r2 ,nSymbolDegMax+l

/ / s t o re input data to matLLRBuffer
mov r3 , 0

s toreDataCont l :
sub r6 , r3 , r2
be ZS, s toreDataEndl
add r6 , r4 , r3
st r l , r 6 , matLLRBuffer
add r3 , r3 , 1
bra s toreDataCont l

s toreDataEndl :

add r4 , r4 , nBufWidth
add r5 , r5 ,1
bra inputDataCondl

inputDataEndl :

/ / Set s t a r t of the blockRowPosi t ion as nBlockLength
mov rl , nBlockLength
st r l , b lockRowPosi t ion

/ / Decoding s t a r t
d e c o d i n g S t a r t :
s t a r t P a r a l l e l :
/ / s t a r t p a r a l l e l decoding

mov r4 ,2 / / Decoding processor thread s t a r t i n g from 2
se tThreadl :

rol r 2 , r 4 , 3
ior r 2 , r 2 , 7
outp r2 , SCUpntr
Id r2 , r4 , SPJU5DRESS
outp r2 , SCUreg
mov r2 , Thread2
outp r2 , SCUpc
add r4 , r4 ,1
sub r2 , r4 ,nProcNum+2
be ZS, s t a r t T h r e a d l
bra se tThreadl

s t a r t T h r e a d l :
Id r3 , t h r e a d P a t t e r n

157

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

outp r3 , SCUstop
e n d P a r a l l e l :

/ / input data
Id r4 .b lockRowPosi t ion
mov r5 ,0

inputDataCond :
sub r6 , r5 , nCodeC
be ZS, inputDataEnd
j s r r6 , XPD-ReadByte
and r l , r l , 0x f f
rol rO , r l ,8
j s r r6 , XPD.ReadByte
and rl , r l ,0xf f
ior r l , r l , r 0 / / r l : input data

Id rO , pnSymbolDegPointer
Id r2 , rO , pnSymbolDeg
add r 2 , r 2 , l / / r2 < - pnSymbolDeg[pnSymbolDegPointer] +1
add rO , rO , 1
st rO , pnSymbolDegPointer / / pnSymbolDegPointer++
sub r 6 , r 0 , nCodeOnCodeT / / pnSymbolDegPointer mod nCodeC*nCodeT
be ZS, mod2
bra mod2Cont

mod2:
st r6 , pnSymbolDegPointer

mod2Cont:

mov r3 , 0
s to reDa taCon t :

sub r6 , r3 , r2
be ZS, s toreDataEnd
add r6 , r4 , r 3
st r l , r 6 , matLLRBuffer
add r3 , r3 , 1
bra s toreDataCont

s toreDataEnd :
add r4 , r4 , nBufWidth
add r5 , r5 ,1
bra inputDataCond

inputDataEnd :
/ / Data input end

/ / Hard Decision begin
Id r2 ,b lockRowPosi t ion
add r2 , r2 , nBlockLength
sub rl , r2 ,nBufLength
be NC,modDone
mov rl , r2

modDone:
mov r3 ,0

ha rdDec is ionCont :
sub rO , r3 , nCodeC
be ZS, hardDecis ionEnd

/ / Echo r e s u l t
st rl , r 7 , 1 0
mov rl , rO

/ / j s r r6 ,XPD.EchoHex
j s r r6 , XPDJEchoUnsignedDec

158

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

mov rl , space
j s r r6 ,XPD.EchoString

p r i n t E n d :

Id rl , r 7 , 1 0
add r3 , r3 ,1
add rl , r l .nBufWidth
bra hardDecis ionCont

hardDecis ionEnd:
// Hard Decision end

/ / Po in t e r Increment
/ / Begin MockRowPosi t ion=(blockRowPosi t ion+blockLength) mod nBufLength
/ / This is the f i r s t item of pnTeseRows [nThisNode]

Id r l ,b lockRowPosi t ion
add rl , r l .nBlockLength
sub rO , r l , nBufLength
be NS, storeBlockRowPosit ionFromRl
st rO , b lockRowPosi t ion
bra s toreBlockRowPosi t ionEnd

StoreBlockRowPositionFromRl :
st r l , b lockRowPosi t ion

StoreBlockRowPosi t ionEnd:
/ / End b lockRowPosi t ion=(blockRowPosi t ion+blockLength) mod nBufLength

/ / Query if decoding processor is f i n i s h ?
Id r3 , t h r e a d P a t t e r n
be ZS, queryEnd
ior r3 , r3 ,Oxf f03
xor r3 , r3 .Oxffff

queryThreadSta tus :
inp r l , SCUbkpt
and r l , r l ,0xfc
sub rl , r l , r3
be ZS, threadDone
bra queryThreadSta tus

threadDone :
/ / Stop Thread 2 - Thread 6

mov r3 ,0 xfc
outp r3 , SCUstop

queryEnd:

decodingEnd :
bra decod ingS ta r t

stop :

bra stop

Thread2 :

thrd r l
Id r2 , r l , p rocessor lD / / r2 : processor lD

/ /Begin c a l c u l a t e pnSymbolMatLLRPosition
Id rO , r2 , pnSymbolMatLLRPosition
add rO , r0 ,nCodeC*nBufWidth
sub rl , r0 .nBufLength
be NC, replacePnSymbolMatLLRPosition
bra storePnSymbolMatLLRPosition

replacePnSymbolMatLLRPosition :

159

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

mov rO , r 1
storePnSymbolMatLLRPosit ion:

st rO , r2 , pnSymbolMatLLRPosition
/ / End c a l c u l a t e pnSymbolMatLLRPosition

/ / Begin load peTheseLLRs
mov r3 ,0
mov r5 ,0 / / r5 : nThisNode
0x3921,0x5 / / movZOLR rl ,5

loadPeTheseLLRsCond :
0x3922 ,loadPeTheseLLRsEnd / / setZOLA rl ,

loadPeTheseLLRsBody :
/ / r 6 : p o s i t i o n in matOnesInPcmYRowPosition and matOnesInPcmX

Id r6 , r2 , pnCheckDegRowPosition
add r6 , r6 , r5

/ / r 4 : p o s i t i o n in peTheseLLRs and pnMatLLRPosition
Id r4 , r2 , pnPos i t ion
add r4 , r4 , r5
Id rO , r6 , matOnesInPcmYRowPosition
Id r l , r2 , pnSymbolMatLLRPosition
add rl , r l ,nCodeC*nBufWidth*nProcSize
sub r l , r l , r O
sub rO , r l ,nBufLength
be NC, replacePnTheseRows
bra storePnTheseRows

replacePnTheseRows:
add rl , r 0 , 0

StorePnTheseRows:
Id rO , r6 , matOnesInPcmX
add rO , rO , r l
st rO , r4 , pnMatLLRPosition
Id rO , rO , matLLRBuffer
xor r3 , r3 , rO
add r5 , r5 ,1

loadPeTheseLLRsEnd :
/ / End load peTheseLLRs

/ / Begin Check Node Operation
Id r5 , r2 , pnPos i t ion / / load p o s i t i o n f i r s t
st r 2 , r 7 , 0 / / push r2 to the buffer

mov r2 , r3

/ / Store back to matLLRBuffer
mov r4 ,0

checkNodeCond3 :
0x3921 ,nCheckDegMax-l / / movZOLR rl , nCheckDegMax-1
0x3922, checkNodeEnd3 / / setZOLR rl , checkNodeEnd3

checkNodeBody3 :
add r3 , r5 , r4
Id r3 , r3 , pnMatLLRPosition
st r2 , r3 , matLLRBuffer
add r4 , r4 ,1

checkNodeEnd3 :

Id r2 , r7 ,0 / / pop up r2
/ / End check node opera t ion , r5 is r e l e a s e d

/ / Begin v a r i a b l e node , only r2 is used at t h i s stage
Id rl , r2 , pnSymbolMatLLRPosition

160

B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC

0x3901 ,nCodeC-l / / movZOLR rO , nCodeC-1
0x3902 , variableNodeEnd / / setZOLR rO , variableNodeEnd

variableNodeCond :

variableNodeBody :
st r 2 , r 7 , 0
mov r6 ,65535 / / r 6 : a l l 3 e r r o r s
mov r4 ,0 / / r 4 : at l e a s t 1 e r ro r
mov r2 ,0 / / r 2 : 1 e r ro r or 3 e r r o r s
mov r 5 , l / / r5 , loop v a r i a b l e
0x3921 snSymbolDegMax-l / / movZOLR rl , nSymbolDegMax-1
0x3922 , eTotalSumAddEnd / / setZOLR rl , eTotalSumAddEnd

eTotalSumAddCond :
add rO , r l , r5
Id r3 , rO , matLLRBuffer
and r6 , r6 , r3
ior r4 , r4 , r3
xor r2 , r 2 , r 3
add r5 , r5 ,1

eTotalSumAddEnd :
xor r 4 , r 4 , r 2 / / 2 e r r o r s
ior r 4 , r 4 , r 6 / / 2 e r r o r s or 3 e r r o r s
Id r 2 , r 7 , 0

/ / r6(3 e r r o r s) , r4 (3 or 2 e r r o r s)
and r 3 , r 2 , l / / Which p r o c e s s o r ?
be ZC, twoMoreErrors
Id r3 , r l , matLLRBuffer
xor r3 , r3 , r6
bra s t o r e F l i p p i n g R e s u l t

twoMoreErrors:
Id r3 , rl , matLLRBuffer
xor r3 , r3 , r4

/ / Store f l i p p i n g r e s u l t
S t o r e F l i p p i n g R e s u l t :

mov r5 ,0
s toreCont :

sub r4 , r5 ,nSymbolDegMax+l
be ZS.endStore
add r4 , r l , r5
st r3 , r4 , matLLRBuffer
add r5 ,r5 ,1
bra s toreCont

endStore :

eTmpEnd:
add rl , r l ,nBufWidth

variableNodeEnd :
/ / End v a r i a b l e node

/ / pnCheckDegRowPosition=(pnCheckDegRowPosition+nCheckDegMax)
/ / mod nCodeT*nCheckDegMax

Id rO ,r2 , pnCheckDegRowPosition
add rO , rO , nCheckDegMax
sub r l , r0 ,nCodeT*nCheckDegMax
be NC, replaceCheckDegRowPosition
bra storeCheckDegRowPosition

replaceCheckDegRowPosit ion :
add rO , r l ,0

StoreCheckDegRowPosition :

161

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

st rO , r2 , pnCheckDegRowPosition

bra @

//
/ / Other Source F i l e s

-AppCode.End—:

/ / Data Space:
/ / All Data must be in a s epa ra t e 2kWord Memory Block from any Code.
/ / =

@ = (@ + 0x800-1) & -0x800 / / Round up to the next 2kWord Memory Block
. . A p p D a t a - S t a r t . . :

inc lude "Long-Data .asm"

. .AppData .End—:

/ / =

/ / Short Address Space:
/ / Any Data placed in t h i s space may be accessed with a s i n g l e word
/ / i n s t r u c t i o n .
//====,==

@ = kRAM.End - 127 / / S t a r t of the shor t address space
. . S h o r t D a t a . S t a r t . . :

inc lude " S h o r t . D a t a .asm"

—Shor tData .End—:

B.3 LDPC-CC Min-Sum Algorithm Assembly Lan
guage on XInC

/ / F i lename: Main.asm
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / Desc r ip t i on :
/ / LDPC-CC Decoder
/ / Min-Sum Algorithm
/ /
/ / Date: Jan 24 , 2008

inc lude " . . \ . . \ X I n C Library \XInC .h"
inc lude " Constants . h"

/ / Define the i n i t i a l running th reads
#def ine ..TO —
#define . . T l . _

162

file:///XInC

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

/ / Code and Data Size :
/ / After assembly , check the values ass igned to these c o n s t a n t s in the
/ / l i s t f i l e .

SizeOfAppCode
SizeOfAppData
SizeOfShortData

FreeAppCodeSpace
FreeAppDataSpace
FreeShortDataSpace

(. .AppCode .End . . - . . A p p C o d e . S t a r t . .)
(. .AppDa ta .End - . - . . A p p D a t a . S t a r t . .)
(. . S h o r t D a t a . E n d . . - _ . S h o r t D a t a . S t a r t . .)

(. . A p p D a t a . S t a r t - . - —AppCode.End—)
(kRAMJEnd - 127 - . . A p p D a t a . E n d . .)
(kRAM.End - . . S h o r t D a t a . E n d —)

/ / Code Space:
/ / Only Code should be included in t h i s segment.

: = kRAM.BlockO.Start
. A p p C o d e . S t a r t :

ti
ll I n i t i a l i z a t i o n Code

inc lude " I n i t . a s m "

bra @

inc lude " . . \ . . \ X I n C Library\XPD.Echo.asm"
inc lude " . . \ . . \ X I n C Library\XPD.Echo.Data .asm"
inc lude " . . \ . . \ X I n C Library\LEDs.asm"

ti
ll Thread Code

i f d e f . . T O . .
ThreadO:

bra ThreadO
#endif

Threadl :

inc lude "Threadl . asm"

/ / Thread 0 Code

/ / Thread 1 Code

mov rl , kXPD.BaudRate.115200 + kXPD.ClockLE.12MHz
j s r r6 , XPD.Configure

// I n i t i a l i z e the LEDs
j s r r6 , I n i t i a l i z e L E D s

mov rl , OxFFFF
j s r r6 , TurnOnLEDsm // Turn on a l l LEDs to i n d i c a t e the program has loaded

/ / D i s t r i b u t e proceesor lD
mov rO , 0

.DISTRIBUTE .PROCESSOR-ID:
add r5 , r 0 , 2
st rO , r5 , processor lD
add rO , rO , 1

163

file:///XPD.Echo.Data
file:///LEDs

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

sub r5 , rO ,nProcNum
be ZS, JENDJ3ISTRIBUTEJROCESSORJD
bra -DISTRIBUTE-PROCESSORJD

-END.DISTRIBUTE-PROCESSORJD:

/ / S t a r t p a r a l l e l decoding
mov r 3 , 0 x f f f c / / Give r3 i n i t i a l v a l u e , only thread 0 and 1 is running
mov r4 ,2 / / Decoding processor from thread 2

.SET-THREAD:
rol r 2 , r 4 , 3
ior r 2 , r 2 , 7
outp r2 , SCUpntr
Id r 2 , r 4 , SP^VDDRESS
outp r2 , SCUreg
mov r2 , Thread2
outp r2 , SCUpc

/ / r3 c o n t r o l s which thread wi l l run.
mov r 1 ,1
ro l r l , r l , r 4
xor r l , r l , 0x f f f f
and r3 , r3 , r l
add r4 , r4 ,1
mov r2 ,2
sub r2 , r4 , r2
sub r2 , r2 ,nProcNum
be ZS, -START-THREAD
bra -SET-THREAD

-START-THREAD:
st r3 , t h r e a d P a t t e r n

/ / I n i t i a l i z e matLLRBuffer with elnitLLR
. .FOR-2-INIT:

mov rO , 0
mov rl ,nBufLength
mov r2 , elnitLLR

--FOR.2.COND:
sub r3 , r0 , r l
be ZS, -.FOR.2.END

._FOR.2_BODY:
st r2 , rO , matLLRBuffer

-.FOR-2.INCR:
add rO , rO , 1
bra __FOR.2-COND

--FORJ2.END:

mov rl ,0
st r l , pnSymbolDegPointer
st rl ,b lockRowPosi t ion

/ / I n i t i a l i z e pnPos i t ion
mov rO , 0
mov r2 ,0

i n i t i a l P n P o s i t i o n . C o n d :
sub r l , r0 .nProcNum
be ZS, i n i t i a l P n P o s i t i o n E n d

i n i t i a l P n P o s i t i o n B o d y :
st r2 , rO , pnPos i t ion
add r2 , r2 , nCheckDegMax
add rO , rO , 1

164

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

bra i n i t i a l P n P o s i t i o n . C o n d
i n i t i a l P n P o s i t i o n E n d :

/ / I n i t i a l i z e processorPhase , pnCheckDegRowPosition
mov rO ,0
mov r2 , nProcSize / / r2 : c u r r e n t phase
mov r3 , nProcSize*nCheckDegMax / / r3 : cu r r en t phase row p o s i t i o n
mov r4 , nProcNum

i n i t i a l i z e P r o c e s o r P h a s e . C o n d :
sub r l , rO , r4
be ZS, i n i t i a l i z e P r o c e s o r P h a s e - E n d

i n i t i a l i z e P r o c e s o r P h a s e . B o d y :
sub r3 ,r3 , nProcSize*nCheckDegMax
sub r2 ,r2 ,nProcSize
be N S , i n i t i a l i z e P r o c e s o r P h a s e . M o d
bra i n i t i a l i z e P r o c e s o r P h a s e . S t o r e

i n i t i a l i z e P r o c e s o r P h a s e . M o d :
add r3 ,r3 ,nCodeT*nCheckDegMax
add r2 , r2 , nCodeT
be NS, i n i t i a l i z e P r o c e s o r P h a s e . M o d

i n i t i a l i z e P r o c e s o r P h a s e . S t o r e :
st r2 , rO , p rocessorPhase
st r3 , rO , pnCheckDegRowPosition
add rO , rO , 1
bra i n i t i a l i z e P r o c e s o r P h a s e . C o n d

i n i t i a l i z e P r o c e s o r P h a s e . E n d :

/ / I n i t i a l i z e pnSymbolDegRowPosition
mov r3 ,0
mov rO,-nCodeM*nCodeC+nProcSize*nCodeC

in i t i a l i zepnSymbolDegRowPos i t ion .Cond:
sub r l , r3 ,nProcNum
be ZS, in i t i a l i zepnSymbolDegRowPos i t ion .End
sub rO ,r0 , nProcSize*nCodeC

add.pnSymbolDegRowPosition :
add rO , rO , nCodeT*nCodeC
be NS, add.pnSymbolDegRowPosition

sub.pnSymbolDegRowPosition :
sub r l , r0 ,nCodeT*nCodeC
be NS, sub.pnSymbolDegRowPosition .End
mov rO , r 1
bra sub.pnSymbolDegRowPosition

sub.pnSymbolDegRowPosition .End:
st rO , r3 , pnSymbolDegRowPosition
add r3 , r3 ,1
bra in i t i a l i zepnSymbolDegRowPosi t ion .Cond

in i t i a l i zepnSymbolDegRowPos i t ion .End :

/ / I n i t i a l i z e pnSymbolMatLLRPosition
mov r3 ,nProcNum-l
mov rl ,2*nBlockLength

in i t i a l i zepnSymbolMatLLRPos i t ion .Cond:
sub rO ,r3 ,0
be NS, in i t i a l i zepnSymbolMatLLRPos i t ion .End

in i t i a l i zepnSymbolMatLLRPos i t ion .Body :
st r l , r3 .pnSymbolMatLLRPosition
add rl , r l , nEachProcBufLength
sub r3 , r3 ,1
bra ini t ial ize pnSymbolMatLLRPosi t ion .Cond

in i t i a l i zepnSymbolMatLLRPos i t ion .End :

165

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

/ / I n i t i a l i z e procMemoryStart
mov r3 ,0
mov rl ,0

i n i t i a l i z eP rocMemoryS ta r t -Cond :
sub rO , r3 , nProcNum
be ZS, i n i t i a l i z eP rocMemoryS ta r t_End

i n i t i a l i z e P r o c M e m o r y S t a r t . B o d y :
st r l , r3 , procMemoryStart
add rl , r l , nEachProcBufLength
add r3 , r3 ,1
bra in i t i a l i zeProcMemorySta r t_Cond

i n i t i a l i z e P r o c M e m o r y S t a r t - E n d :

/ / input data
Id r4 , b lockRowPosi t ion
mov r5 ,0
inputDataCondl :
sub r6 , r5 ,nCodeC
be ZS, inputDataEndl
j s r r6 , XPD-ReadByte
and rl , r l , 0x f f
rol rO , r l ,8
j s r r6 , XPD.ReadByte
and r l , r l , 0x f f
ior r l , r l , r 0 / / r l : input data
Id rO , pnSymbolDegPointer
Id r2 , rO , pnSymbolDeg
add r 2 , r 2 , l / / r 2 : pnSymbolDeg[pnSymbolDegPointer] +1
add rO , rO , 1
st rO , pnSymbolDegPointer / / pnSymbolDegPointer++
sub r 6 , r 0 , nCodeC*nCodeT / / pnSymbolDegPointer mod nCodeC*nCodeT
be ZS, .MOD21
bra -MOD2.CONT1

-MOD21:
st r6 , pnSymbolDegPointer

-MOD2.CONT1:

-FOR.3 . INIT1 :
mov r3 , 0

-FOR.3.CONDI:
sub r6 , r3 , r2
be ZS, -FOR-3.END1

-FOR-3.BODY1:
add r6 , r4 , r3
st r l , r 6 , matLLRBuffer

-FOR.3.INCR1 :
add r3 , r3 , 1
bra --FOR.3-CONDI

-FOR-3.END1 :

add r4 , r4 , nBufWidth
add r5 , r5 ,1
bra inputDataCondl

inputDataEndl :
mov rl .nBlockLength
st r l , b lockRowPosi t ion

-DECODING.START:
-START-PARALLEL:

166

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

II s t a r t decoding p roces so r s
mov r4 ,2 / / Decoding processor s t a r t i n g from thread 2

.SET-THREAD 1:
rol r 2 , r 4 , 3
ior r 2 , r 2 , 7
outp r2 , SCUpntr
Id r 2 , r 4 , SPJU5DRESS
outp r2 , SCUreg
mov r2 , Thread2
outp r2 , SCUpc
add r4 , r4 ,1
sub r2 , r4 ,nProcNum+2
be ZS, .START-THREAD 1
bra -SET-THREAD1

-START-THREADl:
Id r3 , t h r e a d P a t t e r n
outp r3 , SCUstop

.END-PARALLEL:

/ / input data
Id r4 , b lockRowPosi t ion
mov r5 ,0
inputDataCond :
sub r6 ,r5 ,nCodeC
be ZS, inputDataEnd
j s r r6 , XPD.ReadByte
and rl , r l , 0x f f
rol rO , r l ,8
j s r r6 , XPD-ReadByte
and rl , r l , 0x f f
ior r l , r l , r 0 / / r l : input data
Id rO , pnSymbolDegPointer
Id r2 , rO , pnSymbolDeg
add r 2 , r 2 , l / / r2 : pnSymbolDeg[pnSymbolDegPointer] +1
add rO , rO , 1
st rO, pnSymbolDegPointer / / pnSymbolDegPointer++
sub r 6 , r 0 , nCodeC*nCodeT / / pnSymbolDegPointer mod nCodeC*nCodeT
be ZS, -MOD2
bra -MOD2.CONT

_MOD2:
st r6 , pnSymbolDegPointer

.MOD2-CONT:

. .FOR.3 . INIT:
mov r3 , 0

.-FOR.3-COND :
sub r6 , r3 , r2
be ZS, -FOR-3-END

..FOR.3.BODY :
add r6 , r4 , r3
st r l , r 6 , matLLRBuffer

. .FOR.3.INCR:
add r3 , r3 , 1
bra _FOR-3_COND

..FOR.3-END:

add r4 , r4 , nBufWidth
add r5 , r5 ,1
bra inputDataCond

inputDataEnd :

167

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

II Begin Hard Decision
Id r2 .b lockRowPosi t ion
add r2 ,r2 ,nBlockLength
sub r l , r2 , nBufLength
be NC, ModJDone
mov rl , r2

Mod-Done:

mov r3 ,0
hardDecis ion-Cond :
sub rO , r3 , nCodeC
be ZS .ha rdDec i s ion .End

hardDec is ion .Body:
Id r4 , r2 ,pnSymbolDegRowPosition
add r4 , r4 , r3
Id r4 , r4 , pnSymbolDeg
add r 4 , r 4 , l / / pnSymbolDeg[nThisPhase*nCodeC+i]+l
mov r 6 , 0 / / r6 , eTotalSum
mov r5 ,0 / / r5 , loop v a r i a b l e
eTotalSum.Add.Condl :
sub rO , r5 , r4
be ZS.eTotalSum.Add-Endl
add rO , r l , r5

Id rO , rO , matLLRBuffer

add r 6 , r 6 , r 0 / / eTotalSum=eTotalSum+ . . .
add r5 , r5 ,1
bra eTotalSum-Add.Condl

eTotalSum.Add-Endl :

st r l , r 7 , 1 0
xor rl , r6 ,0
be NS, printOne
mov rl , ze ro
j s r r6 ,XPD.EchoString
mov rl , space
j s r r6 , XPD.EchoString
bra pr in tEnd

printOne :
mov rl ,one
j s r r6 ,XPD.EchoString
mov rl , space
j s r r6 , XPD.EchoString

p r i n t E n d :
Id r l , r 7 , 1 0

add r3 , r3 ,1
add r l , r l ,nBufWidth
bra hardDecis ion-Cond

ha rdDec i s ion .End :

/ / Po in te r Increment

/ / Begin b lockRowPosi t ion=(blockRowPosi t ion+blockLength) mod nBufLength
/ / This is the f i r s t item of pnTeseRows [nThisNode]

Id rl ,b lockRowPosi t ion
add rl , r l ,nBlockLength
sub rO , rl , nBufLength

168

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

be NS, storeBlockRowPosit ionFromRl
st rO ,b lockRowPosi t ion
bra s toreBlockRowPosi t ionEnd
StoreBlockRowPositionFromRl :
st rl , b lockRowPosi t ion
StoreBlockRowPosi t ionEnd:

/ / Query if decoding processor is f in i shed
Id r3 , t h r e a d P a t t e r n
be ZS,.QUERYJEND
ior r3 , r3 ,0xff03
xor r3 , r3 ,0 xffff

.QUERY.THREAD.STATUS:
inp r l , SCUbkpt
and r l , r l ,0xfc
sub rl , r l , r3
be ZS, -THREAD-DONE
bra jQUERY-THREAD-STATUS

-THREAD .DONE:
/ / Stop Thread 2 - Thread 7

mov r3 ,0 xfc
outp r3 , SCUstop

-QUERY-END:

-DECOD1NG-END:
bra .DECODING.START

stop :
bra stop

Thread2 : // Decoding p roces so r s
thrd r l
Id r2 , rl , processor lD / / r2 : processor lD

// Ca lcu la t e pnSymbolMatLLRPosition
Id rO , r2 , pnSymbolMatLLRPosition
add rO ,r0 ,nCodeC*nBufWidth
sub r l , r0 , nBufLength
be NC, replacePnSymbolMatLLRPosition
bra storePnSymbolMatLLRPosition

replacePnSymbolMatLLRPosit ion:
add rO , r l ,0

StorePnSymbolMatLLRPosition:
st rO ,r2 .pnSymbolMatLLRPosition

/ /Load peTheseLLRs
Id rl , r2 , p rocessorPhase
Id r3 , r l .pnCheckDeg
mov r5 ,0

load.peTheseLLRs.Cond :
sub r l , r5 , r3
be ZS,load.peTheseLLRs.End

load.peTheseLLRs.Body :
Id r6 , r2 , pnCheckDegRowPosition
add r6 , r6 , r5

/ / c u r r e n t LDPC-CC decoder processor ' s p o s i t i o n in pnTheseCols
Id r 4 , r 2 , p n P o s i t i o n and pnTheseRowsTemp
add r4 , r4 , r5
Id rO , r6 ,matOnesInPcmYRowPosition

/ / pnTheseRows

169

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

Id r l , r2 .pnSymbolMatLLRPosition
add r l , r l ,nCodeC*nBufWidth*nProcSize
sub r l , r l , rO
sub rO , r l , nBufLength
be NC.replacePnTheseRows
bra storePnTheseRows

replacePnTheseRows:
add rl , r0 ,0

StorePnTheseRows:
Id rO , r6 , matOnesInPcmX
add rO , r 0 , r l
st rO , r4 , pnMatLLRPosition
Id rO , rO , matLLRBuffer
st rO , r4 , peTheseLLRs
add r5 , r5 ,1
bra load-peTheseLLRs.Cond
load.peTheseLLRs-End:

/ / End load peTheseLLRs

/ / Check Node Operation
/ / c a l c u l a t e two minimum abso lu te number and the sign

Id r5 ,r2 , pnPos i t ion
st r 2 , r 7 , 0 / / r2 is not used in check node
mov rO , elnitLLR / / rO : the minimum number value
mov r l , elnitLLR / / r l : t h e second minimum number value
mov r4 , r3
st r3 , r7 ,1
mov r3 ,0 / / r3 : s ign
sub r 4 , r 4 , l

checkNode.Condl :
sub r 2 , r 4 , 0
be NS,checkNode.Endl

checkNode.Bodyl :
add r2 , r5 , r4
Id r2 , r2 , peTheseLLRs
be NS, negat ive
bra a b s o l u t e . e n d

negat ive :
bix r3 , r 3 , 1 5

n e g a t i v e . e n d :
a b s o l u t e :

xor r 2 , r 2 , 0x f f f f
add r2 , r2 ,1

a b s o l u t e . e n d :
sub r6 , r l , r2
be NS, compare .end
sub r6 ,r0 , r2
be NS, second.min
add rl , r 0 , 0 x 0
add rO , r 2 , 0 x 0
bra compare.end

second.min:
add rl , r 2 , 0 x 0

compare _end:
sub r4 , r4 ,1
bra checkNode.Condl

checkNode.Endl :
mov r2 , r3
Id r3 , r 7 , l

170

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

II c a l c u l a t e the data based on sign and
/ / two minimum abso lu te number

mov r4 ,0
checkNode-Cond3 :

sub r6 ,r4 , r3
be ZS,checkNode.End3

checkNode_Body3 :
st r3 , r7 ,1
add r3 , r5 , r4
Id r6 , r3 ,peTheseLLRs
be NS, absolute3
sub r6 ,r6 , rO
be ZS,minimum_numberl
add r6 , rO ,0
bra minimum_number_endl

minimum.numberl :
add r 6 , r l ,0

minimum.number-endl :
add r2 ,r2 ,0 / / r2 : sign
be NS, o p p o s i t e . 1
bra o p p o s i t e - l . e n d

oppos i t e -1 :
xor r6 , r6 , 0x f f f f
add r6 , r6 ,1

o p p o s i t e . L e n d :
bra absolu te3 _end

absolute3 :
xor r6 , r6 , 0 x f f f f
add r6 , r6 ,1
sub r6 , r6 , rO
be ZS,minimum_number
add r6 , r 0 , 0
bra minimum.number.end

minimum-number:
add r6 , r l ,0

minimum.number.end:
add r 2 , r 2 , 0
be NS, absolu te2_end
xor r6 ,r6 ,0 xffff
add r6 ,r6 ,1

absolute2_end :
absolute3 -end :

Id r3 , r3 , pnMatLLRPosition
st r6 , r3 , matLLRBuffer // s to re back to matLLRBuffer
Id r3 , r 7 , l / / pop r3
add r4 , r4 ,1
bra checkNode-Cond3

checkNode.End3 :
Id r 2 , r 7 , 0

/ / Check node ope ra t ion end

/ / Var iable node
Id r l , r2 .pnSymbolMatLLRPosition
mov r3 ,0

var iab leNode .Cond:
sub rO , r3 , nCodeC
be ZS, var iableNode-End
variableNode -Body :
Id r4 , r2 , pnSymbolDegRowPosition

171

B.3: LDPC-CC Min-Sum Algorithm Assembly Language on XInC

add r4 , r4 , r3
Id r4 , r4 , pnSymbolDeg
add r 4 , r 4 , l / / pnSymbolDeg[nThisPhase*nCodeC+i]+l
mov r 6 , 0 / / r 6 , eTotalSum
mov r5 ,0 / / r5 , loop v a r i a b l e

eTotalSum.Add.Cond:
sub rO ,r5 , r4
be ZS, eTotalSum.Add-End
add rO , r l , r 5
Id rO , rO , matLLRBuffer
add r 6 , r 6 , r 0 / / eTotalSum=eTotalSum + . . .
add r5 , r5 ,1
bra eTotalSum.Add.Cond

eTotalSum.Add.End:

/ / r6(eTota lSum) is used from previous
mov r5 ,1

eTmp.Cond:
sub rO ,r5 , r4
be ZS,eTmp.End
add rO , r l , r 5
Id rO , rO , matLLRBuffer
sub rO , r6 , rO
st r3 , r7 ,2
sub r3 , r0 , elnitLLR
be NC, g r e a t e r . t h a n . e l n i t L L R
sub r3 , r O , - elnitLLR
be NS, l e s s . t h a n . m i n u s . e l n i t L L R
bra eTmp.compare.end

g r e a t e r . t h a n . e l n i t L L R :
mov rO , elnitLLR
bra eTmp.compare.end

l e s s . t h a n . m i n u s . e l n i t L L R :
mov rO, -e ln i tLLR

eTmp.compare.end:
add r 3 , r l , r 5 / / s to re back to matLLRBuffer
st rO , r3 , matLLRBuffer
Id r3 , r 7 , 2
add r5 , r5 ,1
bra eTmp.Cond

eTmp-End:
add r3 , r3 ,1
add rl , r l .nBufWidth
bra var iableNode.Cond
var iab leNode .End:

/ / End v a r i a b l e node

/ / (p rocesso rPhase++) mod nCodeT
Id rO , r2 , p rocesso rPhase
add rO , rO , 1
sub r l , r0 ,nCodeT
be NC, r e p l a c e P r o c e s s o r P h a s e
bra s t o r e P r o c e s s o r P h a s e

r e p l a c e P r o c e s s o r P h a s e :
add rO , r l ,0

s t o r e P r o c e s s o r P h a s e :
st rO , r2 , p rocessorPhase

/ / pnCheckDegRowPosition=(pnCheckDegRowPosition+nCheckDegMax)
/ / and mod nCodeT*nCheckDegMax

172

B.4: LDPC-CC Encoding and Decoding Data Definition

Id rO , r2 , pnCheckDegRowPosition
add rO , rO , nCheckDegMax
sub rl , rO ,nCodeT*nCheckDegMax
be NC, replaceCheckDegRowPosition
bra StoreCheckDegRowPosition

replaceCheckDegRowPosit ion :
add rO , r l ,0

StoreCheckDegRowPosition :
st rO , r2 , pnCheckDegRowPosition

/ / pnSymbolDegRowPosition=(pnSymbolDegRowPosition+nCodeC)
/ / mod nCodeT*nCodeC

Id rO , r2 , pnSymbolDegRowPosition
add rO ,r0 ,nCodeC
sub r l , r0 ,nCodeT*nCodeC
be NC, replacePnSymbolDegRowPosition
bra storePnSymbolDegRowPosition

replacePnSymbolDegRowPosit ion:
add rO , r l ,0

StorePnSymbolDegRowPosition:
st rO , r2 , pnSymbolDegRowPosition

bra @

//
/ / Other Source F i l e s

_. AppCode.End- . :

/ / Data Space:
/ / All Data must be in a sepa ra t e 2kWord Memory Block from any Code.

/ / =

@ = (@ + 0x800-1) & -0x800 / / Round up to the next 2kWord Memory Block
. . A p p D a t a . S t a r t . . :

inc lude "Long.Data .asm"

—AppData_End__:

/ / Short Address Space:
/ / Any Data placed in t h i s space may be accessed with a s ing l e word
/ / i n s t r u c t i o n .
//==

@ = kRAM-End - 127 / / S t a r t of the shor t address space

. . S h o r t D a t a . S t a r t . . :

inc lude "Shor t -Da ta . asm"

__ShortData_End-_:

B.4 LDPC-CC Encoding and Decoding Data Defini
tion

173

B.4: LDPC-CC Encoding and Decoding Data Definition

II
II
II
II
ll
II
ll
ll
ll

Fi lename: Shor t .Da ta . asm
Author: Xin Sheng Zhou
Department of E l e c t r i c a l
Un ive r s i t y of Alber ta

Desc r ip t i on :
Short Data D e f i n i t i o n

Date: Jan 24 , 2008

and Computer Engineer ing

i l : @=@H

head: @=@fl
p o s i t i o n T a b l e P o i n t e r : @=@H
checkNum : @=@H
nThisBlock: @=@H
pnSymbolDegPointer : @=<2H-1
t h r e a d P a t t e r n : @=@H
nThisBlock.nCheckDegMax : @=@t-l
nThisProc : @=@*-l
b lockRowPosi t ion: @=@H

procDisp :
0*nProcSize*nCheckDegMax
l*nProcSize*nCheckDegMax
2*nProcSize*nCheckDegMax
3*nProcSize*nCheckDegMax
4*nProcSize*nCheckDegMax
5*nProcSize*nCheckDegMax

% (nCodeT*nCheckDegMax)
% (nCodeT*nCheckDegMax)
% (nCodeT*nCheckDegMax)
% (nCodeT*nCheckDegMax)
% (nCodeT*nCheckDegMax)
% (nCodeT*nCheckDegMax)

matOnesCol: @=@H>
processor lD : @=@f8
t h r e a d T e s t : @=@<-8
pnCheckDegRowPosition: @=@t-nProcNum
pnSymbolMatLLRPosition: @=@l-nProcNum

/ / F i lename: Long.Data . asm
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / Un ive r s i t y of Alber ta
//
/ / D e s c r i p t i o n :
/ / Long Data De
//
/ / Date: Jan 24

T0.SP
T1.SP
T2.SP
T3.SP
T4.SP
T5-SP
T6.SP
T7.SP

queue

matrix

@ = @ +
@ = @ +
@ = @ +
@ = @ +
@ = @ +
@ = @ +
@ = @ +
@ = @ +

@p@f257

f i n i t i on

2008

kStackSize
kStackSize
kStackSize
kStackSize
kStackSize
kStackSize
kStackSize
kStackSize

174

B.4: LDPC-CC Encoding and Decoding Data Definition

II The p a r i t y check matrix of the benchmark (1 2 8 , 3 , 6)
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing ,
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A

pnCheckDeg:
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6

pnSymbolDeg:
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 ,3 ,3 ,3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3

matOnesInPcmY :
/ / The p a r i t y check matrix of the benchmark (1 2 8 , 3 , 6)
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing ,
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A

matOnesInPcmYRowPosition :
/ / The p a r i t y check matrix of the benchmark (1 2 8 , 3 , 6)
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing ,
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A

175

B.5: LDPC-CC Encoding and Decoding Constant Definition

matOnesInPcmX :
/ / The p a r i t y check matrix of the benchmark (1 2 8 , 3 , 6)
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing ,
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A

matLLRBuffer : @=@-nBufLength
pnPos i t ion : @=@*-nProcNum
procMemoryStar t : @=@)-nProcNum
pnTheseRows : @=@t-nCheckDegMax *nProcNum
pnTheseRowsTemp : @=@t-nCheckDegMax*nProcNum
pnTheseCols: @=@t-nCheckDegMax*nProcNum
pnMatLLRPosition : @=@HiCheckDegMax*nProcNum
peTmpLLRs: @=@l-nCheckDegMax *nProcNum
peTheseLLRs : @=@-nCheckDegMax tnProcNum
variableNodeTmp :@=@fnCodeC*nBufWidth*nProcNum

var iableNodeTmpPosi t ionl :
0 , 2 , 4 , 6 , 8 , 1 0
var iableNodeTmpPosi t ion :
0 , 4 , 8 , 1 2 , 1 6 , 2 0 , 2 4 , 2 8 , 3 2 , 3 6 , 4 0 , 4 4

SP.ADDRESS:
T0.SP
T1.SP
T2.SP
T3-SP
T4.SP
T5.SP
T6.SP
T7.SP

THREAD-ADDRESS:

Threadl
Thread2

S t a r t . S t r i n g : " S t a r t Encoding",0

S t a r t . S t r i n g . D e c o d i n g : " S t a r t Decoding",0

endOfLine : 0x0d,0x0a ,0

space : " " ,0
zero : "0" ,0
one: "1" ,0

B.5 LDPC-CC Encoding and Decoding Constant Def
inition

/ / F i lename: C o n s t a n t s . h
/ / Author: Xin Sheng Zhou
/ / Department of E l e c t r i c a l and Computer Engineer ing
/ / U n i v e r s i t y of Alber ta
//
/ / Desc r ip t i on :

176

B.5: LDPC-CC Encoding and Decoding Constant Definition

II Constant D e f i n i t i o n
//
/ / Date : Jan 24 , 2008

#def ine kStackSize 64
#def ine kSPIOCS.Semaphore kHardwareSemaphoreO
#define kDevLEDs.Semaphore kHardwareSemaphore2

#def ine encoderQueueSize 257
#def ine checkDegree 6
#def ine phaseNum 129
#def ine p o s i t i o n T a b l e S i z e phaseNum*checkDegree

#def ine nCodeM 128
#def ine nlnfo 1
#def ine nCodeC 2
#def ine nSymbolDegMax 3
#def ine nCodeT 129
#def ine nCheckDegMax 6
#def ine nProcSize nCodeT
#def ine nBufWidth nSymbolDegMax+1
#def ine nProcNum 6
#def ine decoderThreadNum 6 / / This is the t o t a l th reads used for decoder
#def ine nBufHeight nCodeC*(nProcNum*nProcSize+2)
#def ine nBufLength nBufWidth*nBufHeight
#def ine nBlockLength nBufWidth *nCodeC
#def ine nEachProcBufLength nCodeC*nBufWidth*nProcSize
#def ine f r a c t i o n 3
#def ine elnitLLR 1000 « f r ac t i o n

177

