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Abstract 

Low-density parity-check convolutional codes (LDPC-CCs) are a relatively new 

family of capacity-approaching codes. In this thesis, a novel hard-decoding Paral

lel Improved Bit Flipping (PIBF) algorithm is proposed. The LDPC-CC decoding 

processors are mapped to multiple threads on a multi-threaded microprocessor for 

parallel decoding. In addition, multiple bits can be decoded at another level of 

parallelism by using a microprocessor's built-in bit-wise parallelism within data 

words. A new bit flipping threshold pattern is proposed, that can achieve 2.5 dB 

coding gain compared to Gallager's original bit flipping algorithm at a Bit Error 

Rate (BER) of 10~4. The decoding throughput is 24 times faster than the bench

mark Min-Sum algorithm. Looping overhead was identified as a major bottleneck. 

Zero-overhead looping is therefore proposed as a desirable enhancement to the ex

isting microprocessor. The emulation results show that the decoding throughput 

could thus be further increased by 16%. 
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Preface 

When I started my thesis project, the field of information theory had been explored 
for almost 60 years. The seminal work can be traced back to Claude Shannon's 
1948 paper "A mathematical theory of communication" published in the Bell Sys
tem Technical Journal. In that paper, Shannon showed that for any given channel 
bandwidth and signal power to noise power ratio (SNR), there exists a maximum bit 
rate at which information can be encoded and decoded without error at the receiver. 
Since then, information theorists have searched for code constructions whose per
formance could approach the Shannon Limit. 

After 50 years of search, a near-optimal solution was described in the paper 
"Near Shannon limit error-correcting coding and decoding: Turbo codes" by C. 
Berrou, A. Glavieux and P. Thitimajshima on 1993's IEEE International Confer
ence on Communications (ICC). Their result was not believed initially, with com
ments such as "They must have made a 3dB error" at the time, but their results 
were widely confirmed within the next year. Shortly after, Low Density Parity 
Check (LDPC) codes were re-discovered by other researchers who reported similar 
capacity-approaching performance. 

Turbo codes and LDPC codes were researched extensively thereafter, mainly 
focussing on efficient and economic implementations. When I joined the VLSI lab 
at University of Alberta in 2005, a team led by Dr. Stephen Bates was designing 
the encoder and decoder for a variation of LDPC codes, called LDPC convolutional 
codes (LDPC-CCs). Their work on Field-Programmable Gate Array (FPGA) tech
nology might be the first FPGA implementation of such codes in the world. The 
well-known Min-Sum (MS) algorithm was used and the decoder architecture was 
based on large amounts of memory. With the idea that the LDPC-CC decoding pro
cessors could be matched to a multi-threaded microprocessor architecture, my su
pervisor Dr. Bruce Cockburn proposed to implement LDPC-CCs on an 8-threaded 
microprocessor, called XInC, which was developed by an Edmonton-based com
pany, Eleven Engineering Inc. 

The purpose of the research is to investigate whether it is possible to efficiently 
implement the LDPC-CC encoding and decoding algorithms on microprocessors. 



For one thing, the LDPC-CC algorithm could potentially share the host micropro
cessor with other algorithms and hence reduce the total product cost. In addition, 
the development cycle would be faster and development cost would be low com
pared to a high-performance Application-Specific Integrated Circuit (ASIC), with 
its expensive and slow design, fabrication and test development work. 

However, implementations can be fully customized in hardware with ASIC 
technology while microprocessor architectures and instructions are standardized 
and slow to evolve. The algorithm core operations might be done within one clock 
cycle in an ASIC but require hundreds of clock cycles in a microprocessor. As a 
result, the algorithm could become inefficient to a degree that is totally unaccept
able for important applications. In such a situation, we would have to find other 
solutions to increase the decoding efficiency. 

As a result, both existing algorithms and microprocessors were subjected to fur
ther evaluation and optimization. Two approaches were considered in this thesis 
research project. First, the algorithm should fully utilize the advantages of existing 
multi-threaded microprocessor architectures and resources. Second, the underly
ing algorithm bottlenecks in microprocessor implementations should be identified 
so that new microprocessor hardware extensions could be added to eliminate or at 
least reduce such bottlenecks. To understand the algorithm and microprocessor bet
ter, an emulator for the XInC multi-threaded microprocessor was written. Through 
code profiling techniques, algorithm bottlenecks could be identified. Hardware ex
tensions eliminating such bottlenecks could then be added to the emulator. The 
emulation results of those extensions could help to evaluate those add-on compo
nent's performance. 

The research started with the implementation of the soft-decoding Min-Sum 
algorithm on a 12 Million Instructions per Second (MIPS) XInC-I multi-threaded 
microprocessor. The identical LDPC-CC decoding processors were distributed to 
multiple thread resources. Unfortunately, the decoding throughput was disappoint
ingly slow at 2.2 Kbps. One reason for this low decoding throughput is that the 
XInC-I is aimed at simple, low-cost consumer applications and it has only 1% pro
cessing capability of today's general microprocessors. Another reason, as discussed 
above, is that ASICs and FPGAs can customize the algorithm in hardware while a 
microprocessor architecture is fixed and it takes more instruction cycles to com
plete decoding operations. In addition, the Min-Sum algorithm was emulated and 
the characteristics of the algorithm were determined by code profiling. The bottle
necks were found to be looping overhead and data movement. 

The Min-Sum algorithm result showed that the XInC microprocessor might not 
be a good platform for LDPC-CCs. Luckily, following Dr. Stephen Bates' sugges
tion to consider the hard-decoding algorithm, the research continued and focused 
on Bit Flipping (BF) algorithms. Surprisingly, this algorithm appears to be almost 



forgotten by other researchers. Only one related paper was found during the liter
ature review. The reason might be its simple decoding method and relatively poor 
coding gain. Soon, bit flipping threshold patterns were found during the implemen
tation of the original Gallager's Bit Flipping algorithm. This discovery improved 
coding gain by about 2.5 dB compared to Gallager's algorithm at a bit error rate of 
10~"4. Later, the bit flipping algorithm was modified so that it could decode multiple 
bits at one time by using the microprocessor's built-in bit-wise parallelism without 
introducing much decoding complexity. For a 16-bit XlnC-I multi-threaded micro
processor, the decoding throughput increases almost 12 times. The new algorithm 
is called the Parallel Improved Bit Flipping (PIBF) algorithm. 

The PIBF algorithm was also evaluated using the XInC emulator. Almost 35% 
of the instructions are looping overhead and 30% of the instructions are data move
ment. For data movement, it seems hard to do anything since the changes would 
require modification of the whole microprocessor architecture. However, it should 
be easy to eliminate the looping overhead by adding a relatively small hardware 
extension: zero-overhead looping. Such a method is already widely used by many 
Digital Signal Processors (DSPs). This hardware extension was then added to the 
emulator. The emulation results showed that the decoding throughput could be fur
ther improved by 16%. 

The current PIBF algorithm could decode LDPC-CCs at 56 Kbps on a 12 MIPS 
XInC-I multi-threaded microprocessor. Eleven Engineering has developed another 
100 MIPS XInC-n microprocessor. If the PIBF algorithm is adapted to the XInC-II 
with 25% load, the decoding throughput could reach up to 116 Kbps. Furthermore, 
on a 1 GHz 64-bit multi-threaded microprocessor with 100% load dedicated to de
coding, the throughput might reach up to 18.4 Mbps. 

Although the current decoding throughput on XInC-I can only support relatively 
low-speed applications, the multi-threaded microprocessor architecture was shown 
to be a promising development platform for LDPC-CCs. With further research on 
this topic, it may be possible to further improve the decoding throughput and then 
possible to implement LDPC-CCs for high-speed applications on microprocessors. 
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Chapter 1 

Introduction 

1.1 Overview 

In a communication system or storage system, the physical signals that represent 

information or data can be contaminated by noise. Noise, as understood in electri

cal engineering, is viewed as unwanted deviations in a signal due to the net effect 

of uncertain or unknown underlying physical phenomena. Before Claude Shan

non's work, it was generally believed that the fidelity of information represented 

using signals would be corrupted inevitably due to the presence of noise. Hence, it 

was believed to be impossible ever to be able to transmit or store data with 100% 

accuracy [1]. 

In 1948, Shannon published his paper "A mathematical theory of communica

tion" [1]. In that paper, he showed that for any given channel bandwidth and signal 

power to noise power ratio (SNR), there exists a maximum bit rate at which infor

mation can be encoded and decoded without error at the receiver. This maximum 

possible error-free bit rate is also called Shannon's Channel Capacity or the Shan

non Limit. However, he did not show how to reach that channel capacity in his 

paper. Since 1948, many researchers have tried to find suitable code constructions 

and their associated encoding and decoding methods that could approach the limit 

in an efficient way. 

1 



Section 1.1: Overview 

After 50 years of research, Turbo Codes [2] were reported to be the first capacity-

approaching codes in 1993. Shortly after, Low Density Parity Check (LDPC) block-

based codes [3] were found to be another class of capacity-approaching codes in 

1996 [4]. A block-based code encodes the given information in fixed-sized blocks. 

Today, LDPC codes have been adopted in several communication standards, includ

ing the DVB-S2 standard [5] for the satellite transmission of digital television and 

the IEEE 802.16e standard [6] for wireless data networking services. 

In 1999, A. Jimenez Felstrom and K. Zigangirov adapted the low-density parity-

check concept from block-based codes to convolutional codes [7] and proposed 

Low-Density Parity-Check Convolutional Codes (LDPC-CCs) [8]. We will refer to 

the previous LDPC codes as Low-Density Parity-Check Block Codes (LDPC-BCs) 

since in those codes the information bits are encoded and decoded block-by-block. 

By contrast in LDPC-CCs, the entire data stream is encoded and decoded contin

uously without block boundaries. It was shown in [8] that LDPC-CCs have better 

coding gain than LDPC-BCs with the same memory capacity in the decoder cir

cuit. The coding gain is defined as the reduction of the signal-to-noise ratio Eb/N0 

in decibels when error control coding is used compared to uncoded data at some 

specified bit error rate. Furthermore, LDPC-CCs have a simpler encoder structure 

similar to other convolutional codes. Moreover, LDPC-CCs allow data sequences 

of arbitrary length to be encoded, making these codes especially attractive in sit

uations where either (a) the data block does not fit into the fixed payload field of 

the available data frame, or (b) the data is produced continuously by a streaming 

application [9]. 

Initial decoder implementations for LDPC-CC have been reported on Field-

Programmable Gate Arrays (FPGAs) [10] and Application-Specific Integrated Cir

cuits (ASICs) [11]. However, implementing software-based decoders for LDPC-

CCs on microprocessors could have several benefits: 

2 



Section 1.1: Overview 

1. The LDPC-CC algorithm could share the host microprocessor with other 

algorithms and hence reduce the total product cost. 

2. The development cycle for a software decoder is faster, and the development 

costs and risks are lower compared to the expensive and slow fabrication process 

required by custom ASICs. 

The project started with a conventional soft-decoding algorithm targeted for a 

microprocessor: the Min-Sum (MS) algorithm [12] [13]. This algorithm decodes 

the original encoded bits based on estimated signal reliability information derived 

from the received analog signal. However, when this algorithm is implemented on 

microprocessors, the decoding throughput is found to be rather slow. One reason 

for the low speed is that many operations, which could be customized in FPGAs or 

ASICs to be completed in one clock cycle, require several clock cycles to complete 

on a microprocessor. Another reason is that the reliability information associated 

with the input signal is represented as fixed-point numbers and the decoding algo

rithm is relatively complex. The third reason is that the existing algorithms do not 

fully exploit the advantages of existing microprocessor architectures. 

As a result, another simpler decoding algorithm, the Bit Flipping (BF) algorithm 

[3], became a major focus of this research project. The sampled received analog 

signal is sent into a threshold device (comparator) that compares the signal with a 

reference voltage that lies between the expected '0' and T signals. The resulting 

binary '0' or ' 1' outputs from the comparator are used in the bit flipping decoding 

algorithm. In this research project, an Improved Bit Flipping (IBF) algorithm is 

proposed. The new algorithm uses a Bit Flipping Threshold Pattern (BFTP) to 

identify and then flip the suspect bits. The threshold pattern is the sequence of bit 

flipping thresholds used in the decoding processors when they make decisions about 

changing bit values to correct likely errors. At a Bit Error Rate (BER) of 10~4, the 

IBF algorithm achieves 2.5 dB greater coding gain compared to Gallager's original 

3 



Section 1.1: Overview 

bit-flipping algorithm, which has a fixed conservative flipping threshold. 

In addition, multi-threaded microprocessors are found to be potentially good 

candidates for LDPC-CCs. In the LDPC-CC decoder, the bit stream is processed 

by several identical decoding processors. A decoding processor performs a funda

mental calculation in the process of detecting and correcting errors in the stream of 

incoming bits. These decoding processors could be mapped to multiple micropro

cessor threads and run in parallel. Moreover, bit flipping algorithms use simple bit 

manipulations, such as AND, OR, XOR. Microprocessors could exploit this fact by 

processing multiple bit operations in one instruction at the word level. For a 16-bit 

microprocessor, the decoding throughput could thus potentially improve 16 times. 

In practice, the speed-up will be less than 16 times since not all parts of the calcula

tion can be made parallel (See Amdahl's Law [14]). This proposed bit-parallel bit 

flipping algorithm is called the Parallel Improved Bit Flipping (PIBF) algorithm. 

The PIBF algorithm is analyzed using a microprocessor emulator. The emulator 

was written in the object-oriented programming language C++ at the beginning of 

this project. The multi-threaded microprocessor used in the research is called XInC 

[15]. This part was developed by Eleven Engineering Inc. in Edmonton, Canada for 

low-cost consumer products. Through code profiling, two main bottlenecks of the 

algorithm were found: looping overhead and data movement. A hardware exten

sion, called zero-overhead looping, is proposed to eliminate the looping overhead. 

Using this extension, the decoding throughput could be increased further by about 

16%. 

The decoding throughput of the PIBF algorithm on a 12 Million Instructions Per 

Second (MIPS) XInC-I multi-threaded microprocessor was found to be 56 Kbps 

with an average of 27 instruction cycles required to decode each incoming infor

mation bit. If a 1-GHz 64-bit microprocessor with similar bit-parallel instruction is 

used, the decoding throughput might increase up to 18.4 Mbps, which could well 

4 



Section 1.2: Thesis Organization 

support some broadband access services such as Digital Subscribe Line (DSL) In

ternet access. 

During this research project, Gallager's original bit flipping algorithm [3] was 

improved significantly. We believe that the multi-threaded microprocessor has now 

been shown to be a promising development platform for LDPC-CCs. 

1.2 Thesis Organization 

The remainder of this thesis is organized as follows. 

In Chapter 2, background information on LDPC codes is presented. The con

cepts of block codes, convolutional codes, soft decoding and hard decoding, and 

iterative decoding are defined. Then several published encoding and decoding al

gorithms for LDPC-CCs are reviewed. At the end of this chapter, the architecture 

of the XInC-I multi-threaded microprocessor is presented. 

In Chapter 3, the use of a Bit Flipping Threshold Pattern is proposed. The Im

proved Bit Flipping algorithm (IBF) is then described. Several threshold patterns 

are simulated and the pattern (3 — 2)+ is found to be the best for a benchmark 

(128,3,6) LDPC-CC. In addition, the Parallel Improved Bit Flipping (PIBF) algo

rithm, which exploits microprocessors' built-in bit-wise parallelism to significantly 

increase the data throughput, is also described. 

In Chapter 4, the architecture of the LDPC-CC encoding and decoding algo

rithm on the XInC multi-threaded microprocessor is presented. Implementations 

of the Min-Sum algorithm, the IBF algorithm and the PIBF algorithm on the XInC 

microprocessor are discussed. An evaluation of the trade-off between the coding 

gain and computing complexity is provided at the end of the chapter. 

In Chapter 5, the LDPC-CC decoding algorithms are analyzed using a software-

based XInC microprocessor emulator. The algorithm bottlenecks are identified as 

being looping overhead and data movement operations. A new hardware extension, 

5 



Section 1.2: Thesis Organization 

called zero-overhead looping, is proposed and emulated. The decoding throughput 

improvement of this proposed hardware enhancement is presented. 

The thesis ends with discussions of possible future research directions and con

clusions in Chapter 6. 

6 



Chapter 2 

Background 

2.1 A Brief History of Error Control Coding 

In communication systems, information must be transmitted reliably from the trans

mitter end to the receiver end through a channel. However, due to signal distortions 

and inevitable noise sources present in the communications channel, the quality of 

the received signals can be degraded to the point where bit errors (e.g. bits that 

have been flipped from 0 to 1, or from 1 to 0) occur in the received bits. In order 

to detect and correct these errors, redundant information (i.e. check bits) can be 

added to the intended data (i.e. information bits) at the transmitter before the signal 

is sent into the channel [16]. The known relationship between the information and 

check bits is used at the receiver to detect and hopefully correct any errors in the 

information bits. This process is called channel coding in communication systems 

since the purpose of the coding is to combat the channel noise. The more general 

term "error control coding" is also used since the technique can not only correct the 

errors in a communication system, it also could be used to correct errors in other 

applications such as magnetic data storage systems. 

A typical communication system is shown in Figure 2.1. The information bits 

first go through a source encoder. The purpose of the source encoder is to encode 

the information bits in some way that maximizes the information density contained 

7 



Section 2.1; A Brief History of Error Control Coding 

in the encoded bits by removing data redundancy. Typically, the information bits 

are segmented into small groups of bits and each group represented together as an 

information symbol from a non-binary alphabet. For example, two information bits 

could be grouped and represented as one of the four symbols: 5i='00', 52='0r, 

5*3='10', 54='11'. The source encoder then encodes according to the probability 

that each information symbol appears in the symbol series. Symbols with large 

probability are represented with shorter codewords and symbols with small proba

bility are represented with longer codewords. For example, the symbols 5] ,52,53 

and 54 might get coded as '0', '10', '110' and '111', respectively. For a given in

formation bit stream, the optimum encoded bit stream would have minimal length. 

From a statistical view, each bit in an efficiently encoded bit stream would have 

equiprobability of being '0' and ' 1 ' . The encoded information bits are then sent 

into the channel encoder. The function of the channel encoder is to add redundant 

bits in order to combat the effects of channel noise. After that, the output of channel 

encoder is imposed onto analog carrier signals by the modulator and sent through 

the channel. Within the channel, the signal is distorted and contaminated by noise 

and other environmental factors. When the signal is received, the receiver first 

samples the analog signal. The sampled signal could then be sent into a threshold 

device (comparator) to get binary digits '0' or ' 1' first, and then sent into a channel 

decoder. Alternatively, the sampled signals can be sent into the channel decoder di

rectly as analog or sampled digital signals. If the channel decoder uses non-binary 

signals, it is called a soft-decoder. On the other hand, if the channel decoder pro

cesses binary digits, it is called a hard-decoder. The function of the channel decoder 

is to correct erroneous bits caused by channel noise. The decoded bits are finally 

forwarded to the source decoder for source decoding. After source decoding, we 

hope that the decoded bits are the same as the original information bits. 

In the field of information theory, the information content of a symbol can be 

8 



Section 2.1: A Brief History of Error Control Coding 
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Figure 2.1: Communication Systems 

defined numerically as the logarithm of the probability of the symbol as follows [1]: 

h = l°S2(w) bits 

where Pj is the probability of the y'-th symbol and Ij is the information carried by 

7-th symbol measured in bits. The average information content is defined to be 

m m i 

H=ZPjIj=
yZPAog2(-)bits 

7=1 7=1 rJ 

where m is the total number of symbols. The average information content of a 

source of symbols is also called the entropy. 

Before Claude Shannon, researchers thought that information could not be re

ceived with 100% accuracy due to inevitable signal distortion and contamination by 

noise. In his landmark 1948 paper [1], Shannon showed that for any given channel 

bandwidth and signal power to noise power ratio (SNR), there exists a maximum bit 

rate by which information can be encoded and decoded without error at the receiver. 

The Shannon-Hartley Theorem [1] further states that for the special case of a 

signal plus Additive White Gaussian Noise (AWGN), the channel capacity C (in 

bits/second) is given by, 

C = Bx log2(l + —) bits/second 

9 



Section 2.1: A Brief History of Error Control Coding 

where B is the finite channel bandwidth in Hertz (Hz) and S/N is the signal power 

to noise power ratio at the input to the receiver. 

Additive White Gaussian Noise is widely used in communication systems as an 

ideal noise model. The noise component in physical systems is formed as the net ef

fect of many different noise phenomena. According to the Central Limit Theorem, 

for statistically independent underlying noise sources, the probability distribution 

of the net total noise tends to become Gaussian as the number of statistically in

dependent noise sources is increased without limit, regardless of the probability 

distribution of the noise sources being sampled, as long as the noise signals have 

a finite mean and a finite variance. Many real noise sources thus have the charac

teristics of a Gaussian distribution. For example, for thermal noise, the number of 

electrons in a resistor is very large and their random motions inside the resistor are 

statistically independent of each other, and hence the net produced thermal noise is 

Gaussian-distributed. The probability density function of Gaussian noise with zero 

mean can be written as, 

1 -4 
:eXp 2o2 

. i 

CV2TC 

where a2 is the variance or the average power of the noise signal. So-called white 

noise is a noise with a flat (i.e., frequency-independent) power spectral density spec

trum. The power spectral density of white noise is defined as, 

sw(f) = Y 

where N0 denotes the average noise power per Hertz. The factor 1/2 has been 

included to indicate that half the power is associated with positive frequencies and 

half with negative frequencies [17]. In practice, white noise must be limited in 

bandwidth to avoid describing noise with infinite power. 
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The performance of an error control coding scheme is usually evaluated by ex

pressing the probability that the decoded bits will be incorrect (the bit error rate) 

as a function of the signal-to-noise ratio E{,/N0. Here Ef, is the received signal en

ergy over a one bit time interval. Eb/N0 is useful when comparing the bit error rate 

performance of different digital modulation schemes or channel coding schemes 

without needing to take the bandwidth into account. 

According to Shannon's theorem, the code rate cannot exceed the channel ca

pacity if we want to achieve error-free communication. The code rate is given by 

R=K/N where it is assumed that for every K information bits, the encoder generates 

a total of N bits of data, of which N-K are redundant. For error-free communication 

over an AWGN channel, 

Eb>2^-1 

where R is the code rate and 7J, is the time duration of one bit. In the ideal limiting 

case when unlimited channel bandwidth is available, 

1 
Eb 2 ^ — 1 
— > limB->oo j = ln{2) = —\.59dB, 
N° %B 

which is the absolute minimum Et,/N0 required for error-free communication. This 

limit is higher in real channels with finite bandwidth. 

Although Shannon determined a precise upper bound on the channel capacity, 

he did not give constructions of codes that can actually achieve the channel capac

ity. Finding good code constructions that could approach the Shannon's channel 
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capacity has been an ongoing challenge in coding theory research field ever since 

[18]. 

One strategy for approaching the channel capacity for block codes is to use a 

large block length. Under that condition, a random coding scheme, which randomly 

picks codewords, is good enough to achieve the limit. It has been shown that such 

codes are likely to approach the capacity limit if the block length is indefinitely 

large [7]. However, this random coding scheme cannot be realized since it requires 

exponentially large memory space to store the mapping table that is required to 

map blocks of information bits to codewords. In addition, the time to search this 

table would also be exponentially large. For a moderate block length of 30, the 

table already has more than 1 billion entries. However, the block length normally 

requires more than 104 bits to approach the channel capacity within 0.6 dB [19]. 

As a result, practical codes have to use some pre-defined rules to construct the 

codewords in order to eliminate the mapping table. The encoder and decoder can 

then be operated based on these rules. 

One simple method is to encode the information bits by simply repeating; bits or 

blocks of bits two or more times using a repetition code. When a bit is flipped by 

an error, the error could be corrected according to the majority rule. For example, 

if a block of information bits is "101", we then may encode the block as "101 101 

101". If one of the bits is in error and we receive "101 111 101", the decoder could 

deduce that "101" is the correct information bits since "101" is the result of a simple 

majority consensus. 

Another widely used method is the parity check. A check bit is a bit that is 

added to a block of information bits to indicate whether either the 0's and 1 's within 

that block is an even or odd number. If a single bit is flipped through the channel, 

the prearranged parity check constraint would be violated and the error would be 

detected by the fact that a parity check recomputed at the receiver would fail. In 

12 
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[7], P. Elias showed that a typical parity check code with large block length used 

on a BSC channel could achieve a decoded bit error rate almost as small as the best 

possible code if the code rate is between what he called the critical rate and the 

channel capacity. As a result, if we could generate random-like long codewords 

with multiple parity checks, then the channel capacity can be approached. 

Consequently, Elias sought random-like codes with special structure that per

mitted simple implementation without sacrificing the code's error correcting perfor

mance. Gallager, as Elias's student, proposed Low Density Parity Check (LDPC) 

codes [3] in 1962 motivated by the search for Elias's random-like codes. The result

ing codes are now usually called Low Density Parity Check Block Codes (LDPC-

BCs). The LDPC codes use multiple parity checks. In a LDPC-BC the density 

of 1 's in the parity check matrix H (defined later) is low, that is, much less than 

50%. In his paper, Gallager showed the distance property of LDPCs and gave a 

probabilistic decoding algorithm with promising empirical performance. However, 

LDPCs were then generally forgotten due to the assumption that the subsequently 

developed concatenated codes were probably superior for practical purposes [4]. 

The computational load of the decoding algorithm of LDPC-BCs was also consid

ered to be impractically high. 

After many years of search, the first capacity-approaching code, the so-called 

Turbo code [2], was described in a paper presented in 1993. Shortly after, in 1996, 

D. Mackay and R. Neal [4] found that LDPC-BCs with very sparse parity check 

matrix with an approximate probabilistic decoding algorithm could also approach 

Shannon's channel capacity. They later found that Gallager's work in the early 

1960s on low-density parity-check codes should be credited as having proposed the 

first such codes. 

In 1999, A. Jimenez Felstrom and K. Zigangirov applied the idea of the low-

density parity-check matrix to convolutional codes, and then proposed Low Density 
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Parity Check Convolutional Codes (LDPC-CCs) [8]. In their paper, they gave a 

prototype hardware decoder which can be implemented conveniently by a cascade 

of physically identical decoding processors [8]. 

2.1.1 Block Codes 

In a parity check operation, check bits can be generated by simple logical exclusive 

OR (XOR) operations. Table 2.1 shows the logical truth table of the XOR operation 

for two inputs. 

Table 2.1: Exclusive OR (XOR) Truth Table 

a 
0 
0 
1 
1 

b 
0 
1 
0 
1 

aXORb 
0 
1 
1 
0 

The XOR operation is often denoted using the symbol ©. As an example, the 

check bit for a block of four information bits "0110" is 0 0 1 © 1 0 0 = 0. Note 

that © is associative, so a © (b © c) = (a © b) © c for three binary values a, b and c. 

The information bits together with the one check bit "0110+0" are then transmitted 

together through the channel. At the receiver, the decoder performs XOR opera

tions for both information bits and check bits. If the result is '0', the parity check 

constraint is obeyed. If the result is ' 1 ' , the parity check constraint is failed. For 

example, if the first bit is in error, then the recomputed parity check result at the 

receiver would be 1 © 1 © 1 © 0 © 0 = 1, and hence we know that the parity check 

constraint is failed and an error is detected. However, we still do not know which bit 

is in error now. Furthermore, if two bit errors occur, the errors cannot be detected 

since the parity check constraint would be obeyed. To unambiguously determine 

which single bit is in error, each bit could participate in multiple parity check oper

ations. If a bit is in error, this fact would be indicated several times. For example, 
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in (7,4) Hamming codes, the codeword length is 7 bits. Four bits are information 

bits and remaining three bits are check bits. Three check bits are generated using 

the following parity checks: Pi = I\ ®h ®h, P2 = h ®h ®h, P3 = h ®h ®h • 

When the coded bits are received, the decoder checks the following parity check 

constraints: I\ 8/3 ©74 @P\,I\ ®h ®h ®Pi, h ®h §>h ©-P3 • These parity checks 

should all evaluate to the value 0. In the above (7,4) Hamming code example, if 

I\ is received in error, then the second and third parity check constraints would fail 

and the first parity check constraint would be obeyed. Two failed constraints indi

cate that I\ or I3 has the most possibility of being in error. However, the obeyed 

constraint indicates that I3 is probably correct. From all of the three parity check 

results, we could conclude that I\ has the most probability in error. To correct this 

error, we could flip that bit from ' 1' to '0' or from '0' to ' 1 ' . 

The set of all parity check constraints can be represented by a parity check 

matrix H. Each row of H corresponds to one parity check constraint. The 1 's in the 

same row indicate those bits are involved in one parity check constraint. The (7,4) 

Hamming code parity check matrix is shown below. 

H = 
1 0 1 1 1 0 0 
1 1 1 0 0 1 0 
0 1 1 1 0 0 1 

There are 3 rows in this matrix, which means 3 parity check constraints should 

hold in each 7-bit block. Each row has four 1 's, which identify which 4 of the 7 bits 

are involved in each parity check operation. 

The encoded bits can be represented by a vector x. 

x=(xo,xi,...xN-i) 

The parity check constraints can be represented completely with the following 

matrix equation. 
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xH r = 0 

where H r denotes the transpose of matrix H. 

In addition, a generator matrix can be used for generating all possible code

words. If the generator matrix is G and the information bit vector is c, then the 

generated codeword w is given by the following matrix equation. 

w = cG 

The equivalent generator matrix G of the above (7,4) Hamming code is, 

" 1 0 0 1 1 0 " 
0 1 0 0 1 1 
0 0 0 1 1 1 
0 0 1 1 0 1 

Block codes can be represented by a Tanner Graph [20]. The decoding oper

ations associated with the received bits in a codeword are abstracted as so-called 

variable nodes. The decoding parity check operations are abstracted similarly as 

check nodes. The edges connecting variable nodes with check nodes indicate the 

parity check constraints between the bits. The Tanner Graph for the (7,4) Hamming 

code is shown in Figure 2.2. In the figure, variable nodes are represented as square 

nodes and check nodes are represented as circle nodes. 

The code distance is defined as the minimum number of different bits in cor

responding position between any two codewords. To maximize the coding gain, 

codes should be constructed to maximize the code distance. This means, in effect, 

that the number of bit errors that would be required to change one codeword into an

other valid codeword is maximized. Given a code with code distance N, (N—l)/2 

errors could be corrected by seeking the closest correct codeword to any given error 
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Figure 2.2: (7,4) Hamming Code Tanner Graph 

word. For the (7,4) Hamming code, there are a total of 27 = 128 words. From that 

space, only 8 words are chosen as valid codewords. The choice of these codewords 

uses the following approach: each valid codeword and 7 other words whose dis

tance to that valid codeword is 1 are grouped. One example of (7,4) Hamming code 

codewords is shown in Table 2.2. The code distance between any two codewords 

can be verified to be equal to or greater than 3. If one bit is in error during the 

transmission, this error can be detected and corrected. For example, if the encoded 

codeword is "0000000" and one received bit is in error, the received bits would 

be any of "0000001", "0000010", "0000100", "0001000", "0010000", "0100000" 

or "1000000". The most possible codeword is "0000000" since the code distance 

between the erroneous received bits and "0000000" is one. However, we could not 

correct the received bits if two bit errors occur. For example, if "0000011" is re

ceived, then the received bits would be wrongly corrected as "0100011" rather than 

"0000000" since the code distance between "0100011" and "0000011" is one and 

the code distance between "0000000" and "0000011" is two. 

In order to increase the code distance for the codes of the same code rate R=K/N, 

we generally need to increase the block length N. The number of valid codewords is 

2 ^ . When N increases to infinity, the ratio of the number of valid codewords to the 

total number of words 2~N^~R^ goes to 0. As a result, the coding gain is increased 

as the average code distance between codewords is increased. 

Like a Hamming code, low-density parity-check codes use multiple parity checks 
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Table 2.2: A (7,4) Hamming Code 

Source 
0000 
0001 
0010 
0011 

0100 

0101 

0110 

0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 

mi 

Codeword 
0000000 
0001101 
0010111 
0011010 

0100011 

0101110 

0110100 

0111001 
1000110 
1001011 
1010001 
1011100 
1100101 
1101000 
1110010 

1111111 

and the parity check constraints are specified by a parity check matrix. The char

acteristic of a LDPC parity check matrix is that the 1 's of the matrix have a rela

tively low-density compared to the 0's. For a (N,J,K) LDPC-BC, the matrix has N 

columns. Each column has J ones and each row has K ones. This means that each 

bit involves J parity check constraints and each parity check constraint involves K 

bits. Equivalently, in the Tanner graph, each variable node has J edges connected 

to check nodes and each check node has K edges connected to variable nodes. The 

value of J is called the variable node degree and K is called check node degree. The 

benefit of LDPC-BC's low-density parity check matrix is that the decoder structure 

is simpler. Each ' 1' in the parity check matrix implies the presence of an input to a 

network of XOR gates. A (20,3,4) LDPC parity check matrix is shown below. 
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1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 

0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 

0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 

0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 

0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 

0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 

Note that when we encode, the low-density parity-check matrix would need to 

be converted to its equivalent generator matrix, which normally is no longer low-

density. As a result, the encoder computation complexity is typically 0(N2), using 

big O complexity notation [21]. Finding more efficient encoding algorithms and 

code constructions to encode LDPC in linear time continues to be an active research 

area. Several methods are reported in [22]. 

2.1.2 Convolutional Codes 

Convolutional codes first appeared in P. Elias's 1955 paper [7]. In general, convo

lutional code encoder structure is considered to be simpler than block code encoder 

structure since convolutional codes are encoded continuously while block codes are 

encoded block-by-block. 

Figure 2.3 shows a traditional rate 1/2 convolutional code encoder. Each check 

bit is generated from the current information bit and two previous information bits 

stored in memory registers. The information bits and check bits are then interleaved 

by a multiplexer at the output. 
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m(t)—r-H 

s0(t) N 

s,(t)' 

Figure 2.3: Rate 1/2 Convolutional Code 

The transpose of the parity check matrix of a (M,J,K) LDPC-CC can be repre

sented as follows: 

w r — 

•M Wi *n°) hi (!) 
;(0)/ s.0), 

0 M0)(l) 
40)(D 

0 

0 

h<F>(M+l) 

0 
h\m)(n) 

0 hi f« 
The parity check constraint is based on a sliding memory window of size 2 x M. 

The value of a given parity check bit is a function of the 2M— 1 preceding bits in 

the coded bit stream. The number of 1 's in each row is J, which means each bit 

is involved in J parity check constraints. The number of 1 's in each column is K, 

which means each parity check constraint involves K bits. The parity check matrix 

is extended in a continuous way to accommodate the arriving stream of bits. 
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2.1.3 Survey of Decoding Algorithms 

Many hard-decoding algorithms have been developed [18]. In a hard-decoding al

gorithm, the received analog signal is sent into a threshold device (comparator) and 

the binary output '0' or ' 1' is used for decoding in an entirely algebraic calculation. 

In 1967, an efficient hard-decoding algorithm for convolutional codes, the Viterbi 

algorithm, was proposed [23]. One weakness of the Viterbi algorithm is that the de

coding complexity increases exponentially when the total number of memory regis

ters is increased. As a result, the total number of memory registers must in general 

be under 10. 

Note that the received analog signal contains valuable probabilistic reliability 

information. For example, if ' 1 ' is transmitted as +1 V and '0' is transmitted as -1 

V, then when the received analog signal is sampled as +0.8 V, we could say that 

the bit is more likely to be ' 1 ' than to be '0'. However, with very small probabil

ity the signal could in fact be a '0' that has been corrupted with a large amount of 

noise at the bit sampling instant. That reliability information is discarded when the 

sampled measurement goes through the threshold device. If the reliability informa

tion is exploited in the decoding algorithm, that algorithm is called a soft-decoding 

algorithm. 

To distinguish the received bits, the binary bit from the threshold device is called 

a hard bit and a bit signal representation that includes reliability information is 

called a soft bit. 

Another important concept in the LDPC decoding algorithm is iterative decod

ing. For each iteration, some of the hard-bits are corrected in hard-decoding algo

rithm, or the probabilities of the soft-bits as '0' or ' 1 ' are adjusted and eventually 

strengthened. The result of one iteration is used in the next iteration for further de

coding. The received bits are hence decoded iteratively and the coding gain should 

be gradually increase until some iteration limit is reached. 
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2.2 Low Density Parity Check Codes 

2.2.1 The LDPC-CC Encoder Structure 

Figure 2.4 shows a (128,3,6) LDPC-CC encoder structure. The LDPC-CC encoder 

is similar to other convolutional code encoder structures. For a rate 1/2 (M,J,K) 

LDPC-CC encoder, a memory of length 2 x M— 1 is used. M previous information 

bits V\{t) to Vi(t — M) and M-l previous check bits ^ ( 0 t o Vi(t — M) are stored 

in this memory. The memory is organized as a first-in first-out (FIFO) queue. The 

newest information and check bits are pushed into the queue tail location and the 

oldest bits are removed from the queue head location. Five bits are chosen from the 

memory queue to generate the next check bit. The positions of the 5 chosen bits 

in the memory queue are determined by a position table, which is derived from the 

LDPC-CC parity check matrix. The position table is used in a round-robin fashion 

and current entry is indicated by the position table pointer. The check bits ^ ( / ) 

and information bits V\ (t) are interleaved in strictly alternating order as the encoder 

output. 

Information 
bitu(t) = V,(t) FIFO Queue 

V,(t) 

\ 

t 
V2(t-1) V,(t-1) 

M 
Vjft-M) V,(t-M) 

Select 5 from 2xM-l bits 7* 
o u 

Check bit V ^ Q N ^ 

17 22 131211256 

Output 
Information bit V,(t) 

Figure 2.4: LDPC-CC Encoder Structure 
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2.2.2 The LDPC-CC Decoder Structure 

2.2.2.1 Overview 

The structure of the LDPC-CC decoder is shown in Figure 2.5. The LDPC-CC 

decoder is composed of several identical decoding processors for iterative decoding. 

Inside each decoding processor, multiple FIFO memory queues are used to store 

recently received bits. The received bit, either a soft bit or a hard bit, is sent into 

the first decoding processor's queue. Within each decoding processor, there is one 

check node calculation followed by one variable node calculation. The check node 

retrieves the bits for each parity check constraint from the memory queue according 

to the same position table entries used in the LDPC-CC encoder. The arrows in 

Figure 2.5 show in simplified form the movement of data read and then written by 

the check node CN. The six sources of bits (upper arrowheads) change from clock 

cycle to clock cycle, and can select elements from any of the three lower FIFO 

queues. The check node then checks this constraint. For hard bits, the result is 

simply whether the parity check constraint is obeyed or failed. For soft bits, the 

result is updated (and hopefully more accurate) reliability information for each bit. 

Then the results are stored back to the memory queue. As the new received bits 

are pushed into the tail location of the queue, the existing bits inside the queue are 

shifted one position towards to the queue head. By the time that the bit has reached 

the queue head, it has been checked by the check node J times. The variable node 

integrates the original received bit value and J check node results (i.e., sum them 

up). The new hard or soft bit is then forwarded to the next decoding processor 

for next iterative decoding. After the last decoding processor, the hard-decoding 

algorithm sends out the hard bits directly. For soft-decoding algorithm, the soft 

bits are forwarded by the last decoding processor to a hard decision device. The 

function of the hard decision device is to convert the soft bit into hard bit in binary 

format using a threshold comparator. 
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Received. 
bits 

r-rm*.»n 

Decoding processor 1 Decoding processor 2 

Figure 2.5: LDPC-CC Decoder Structure 

There are several different decoding algorithms that vary in the operation of 

the check nodes and variable nodes. The Sum-Product (SP) algorithm [24] is a 

well-known soft-decoding algorithm. The soft bits are represented typically by 

fixed-point numbers. The operation in the check node requires both the hyperbolic 

tangent function and the inverse hyperbolic tangent function [24]. The computa

tional complexity is large for the hyperbolic function and hence it is inconvenient 

in hardware implementations. But it could get better coding gain compared to other 

LDPC decoding algorithms. To avoid the hyperbolic function calculation, a lookup 

table might be used. 

The Min-Sum (MS) algorithm [12] is another alternative simplified, soft-decoding 

algorithm that is weaker at detecting errors compared to the SP algorithm. In the 

MS algorithm, the hyperbolic function of SP algorithm is replaced by the minimum 

function and sign function. The simulation results show that the coding gain of 

the MS algorithm is only 0.2 dB less than that of the SP algorithm in Figure 3.1. 

However, the complex hyperbolic function is removed. Several improved MS algo

rithms that aim to recover part of the loss incurred by the Min-Sum algorithm are 

proposed in [25] [26] [27]. 

Gallager's Bit Flipping (BF) algorithm [3] is a hard-decoding algorithm that 

appeared in his 1962 thesis. This algorithm only uses hard bits. The reliability 
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information in the analog bit signals is not considered. The operation in its check 

node is a simple exclusive OR (XOR) operation. Since the BF algorithm omits 

the reliability information, it requires a relatively high signal-to-noise (SNR) ratio 

compared to the soft-decoding algorithm to achieve the same bit error rate as the 

SP or MS algorithms. However, the BF algorithm used with a LDPC-CC could still 

superior to other error control codes based on hard-decoding algorithms. la addi

tion, the hard-decoding algorithm is generally simpler and faster than soft-decoding 

algorithms and the hardware implementation requires less circuitry and hence less 

power. For some high-speed communication systems, such as 100 Gbps or 1 Tbps 

optical system, the soft-decoding algorithms may not be fast enough and a hard-

decoding algorithm might be the only choice. 

In the following subsections, the Bit Flipping algorithm, the Sum-Product algo

rithm and the Min-Sum algorithm are briefly reviewed. 

2.2.2.2 Bit Flipping Decoding Algorithm 

Gallager's Bit Flipping algorithm is a hard-decoding algorithm. The check node 

operation is based on simple exclusive OR (XOR) operations. Each bit is associ

ated with an error counter that records the total number of its failed parity check 

constraints. If the bit's error counter value is greater than the bit flipping threshold 

b, it would be flipped. The bit flipping procedure is shown in Figure 2.6. We assume 

in this example that the bit flipping threshold is 3. Most of the bits have no error. 

One of the bits has 3 failed parity check constraints. As a result, that bit would be 

flipped. 

Gallager's BF algorithm was first applied to LDPC-BC codes. This algorithm 

can be described as follows: 

Step 1: Compute all the parity-check constraints in the block. If all of the parity 

check constraints are obeyed, then stop decoding. 

Step 2: Record the number f, of failed parity-check constraints for each bit i 
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Variable nodes 

Parity check 
error counter 

Information 
• • • 

and check bits 

Check nodes 

Figure 2.6: LDPC-CC Bit Flipping Procedure 

during the parity check. When one parity check constraint has failed, all the error 

counters associated with the bits involved in this constraint are incremented by 1. 

Step 3: Consider each bit in turn. If the error counter value of a particular bit 

exceeds the threshold, then flip that bit. 

Step 4: Repeat steps 1 to 3 iteratively until all of the parity check constraints are 

satisfied in step 1 or until a predefined maximum iteration number is reached. 

One improvement to the BF algorithm is proposed in [28]. The authors found 

that many correct bits are wrongly flipped during decoding and this problem de

grades the coding gain. If we only flip the suspect bits with a pre-defined probabil

ity p < 1, then fewer correct bits would be erroneously flipped during one iteration 

and hence improve the coding gain. 

2.2.2.3 Sum-Product Algorithm 

The Sum-Product algorithm is an iterative soft-decoding algorithm based on belief 

message propagation [29]. The soft bits are represented using fixed-point numbers. 
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At the exit of the decoder, the soft-bits are converted to hard-bits by a hard decision 

device. In this research, the Sum-Product algorithm is used as a benchmark algo

rithm for performance comparison purposes since it has the best error-correcting 

performance. 

Assume that we want to transmit a binary bit stream b(k) over a channel using 

Binary Phase Shift Keying (BPSK), where A: is a discrete time index. Thus the 

amplitude of the modulated signal is +1 V when b(k) = 0 and is -1 V when b(k) = 1. 

The stream of transmitted bit voltages t(k) can then be written as 

*(Jfc) = l - (2x6( i t ) ) . 

For a sequence of noise samples n{k), the sampled received bit stream r(k) can be 

expressed as 

r(k)=t(k)+n(k). 

To rewrite the above equation with n(k), when a '0' is transmitted, 

n{k) = r{k)-t{k) = r{k)-\V. 

When a ' 1' is transmitted, 

n{k) = r(k)-t{k)=r(k) + \V. 

Several methods could be used to represent the reliability information of the 

received signal. One way is to use the amplitude of the received signal directly as 

the reliability measure. In this case, when the sampled signal amplitude is +1 V, 

the transmitted bit is most probably a '0'. When the sampled signal amplitude is -1 

V, the transmitted bit is most probably a ' 1'. Another way is to use the Likelihood 

Ratio (LR) of the received signal as the reliability measure. When the received 

bit is measured as x V, the conditional probability of the transmitted bit as '0' is 

represented as, 
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P{t{k) = \\r{k)=x) 

and the conditional probability of the transmitted bit as ' 1' is represented as, 

P(t(k) = 0\r(k)=x) 

The LR is defined as the ratio of the above two conditional probability, repre

sented as, 

L(x) = W ) = 1K*)=*) 
P{t{k) = -\\r{k)=x) 
P{n{k)=x-\) 
P(n(k)=x+l) 

Assume that the channel is an Additive White Gaussian Noise (AWGN) chan

nel. The noise has a zero mean with a power of a2. The probability density function 

of the AWGN channel is given by [1]: 

G\/2K 

Hence, the LR can be represented as 

_ P(n(k)=x-1) 
W P(n(k)=x+l) 

e4(^)2 

e 21- a I 
Ax 

= e^ 

To remove the awkward exponential operation in the LR expression, the Log-

Likelihood Ratio (LLR) is frequently used as the received signal reliability measure. 

The LLR over AWGN channels with BPSK signalling is defined as 
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l(x) = ln(L(x)) = £p (2.1) 

Assume that the LLR is used to represent soft bits in our SP algorithm. The SP 

algorithm for LPDC-BCs can then be briefly summarized as follows: 

Step 1: Store the initial LLR value of each sampled bit in the variable nodes as 

Iv®, where the subscript i is the variable node label number and the superscript is 

the iteration number. 

Step 2: The LLR values in the variable nodes are then sent to the check nodes. 

The following equations are evaluated in the check nodes, 

M 
/cf = 2 x tanh~l(Yltanh(^)), 

j/i 2 

where the notation Yij/i means a repeated product where the product terms include 

all of the LLR values from variable nodes except the value of the i-th variable node. 

The check node results are then sent back to the associated variable nodes. Figure 

2.7 shows the inputs and outputs to the SP algorithm check node operation. 

Step 3: The variable node calculates new LLR values based on the check node 

results using the equation 

/vf+1=/? + (Xfc$), 
j/i 

The results are then sent back to check nodes for the next iteration. The calculation 

involves adding the variable node's initial LLR value with the results from all asso

ciated check nodes except the value of its own. For the last iteration, the results are 

sent into a hard decision device. Figure 2.8 shows the input and output parameters 

that are involved in the variable node operation. 

Step 4: Repeat steps 2 and 3 for iterative decoding until the pre-determined 

maximum iteration number is reached. 

Step 5: In the hard decision device, the initial LLR value for the bit is added to 

all the newest variable node results from step 3. Then a threshold device is tised. If 
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lv0 • 
lc0 = 2tanh1(tanh(lvi/2)tanh(lv2/2)^ 
tanh(lv3/2)tanh(lv4/2)tanh(lv5/2)) 

lv, • 
lcj = 2tanh1(tanh(lv(/2)tanh(lv2/2H 
tanh(lv3/2)tanh(lv4/2)tanh(lv5/2)) 

lv2 • 

lc2 = 2tanh4(tanh(lv0/2)tanh(lVi/2)^ 
tanh(lv3/2)tanh(lv4/2)tanh(lv5/2)) 

lv3 - * 

lc3= 2tanh1(tanh(lv0/2)tanh(lv1/2) A— 
tanh(lv2/2)tanh(lv4/2)tanh(lv5/2)) 

lv4 — • 
lc4 = 2tanh1(tanh(lv0/2)tanh(lv,/2) <— 
tanh(lv2/2)tanh(lv3/2)tanh(lv5/2)) 

lv5 • 

lc5 = 2tanh1(tanh(lv0/2)tanh(lv1/2) < 
tanh(lv2/2)tanh(lv3/2)tanh(lv4/2)) 

Figure 2.7: Sum-Product Algorithm Check Node Parameters for a Degree-6 Check 
Node 

the sum result is greater or equal to 0, the soft-bit is decoded to '0'. Otherwise, it is 

decoded to ' 1 ' . 

2.2.2.4 Min-Sum Algorithm 

The Min-Sum (MS) algorithm [12] is another alternative soft-decoding algorithm. 

Compared to the Sum-Product algorithm, the inconvenient hyperbolic functions in 

the check nodes are replaced by the minimum and sign functions. The simplified 

operation in the Min-Sum check node is as follows: 

V 
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lei 

lv, =l0+lc2+lc3 

lo 

1 
Variable Node 

lc, 

lv2 = l0+lc, + lc3 

lc? 

lv3 = l0+lc, + lc 

Figure 2.8: Sum-Product Algorithm and Min-Sum Algorithm Variable Node Oper
ation 

lc\= Y[sgn(rf) (min|/^|), (2.2) 
J/i J J/' 

where sgn(x) denotes the sign function whose value is ' 1 ' when x > 0 and is '0' 

when x < 0. The product of sign functions can be implemented with simple exclu

sive OR (XOR) operations, and the minimum function can be implemented with 

one loop of arithmetic comparisons. 

Figure 2.9 shows the input and output parameters for a MS check node with six 

inputs. 

Figure 2.10 shows the input and output parameters for a MS check node with 

concrete numbers. The parity check constraint involves 6 bits. The soft bit inputs 

are /v0=+0.3, /vi=+0.7, /v2=+1.0, /v3=+0.6, /v4=-0.1, /v5=+1.5. Among them, the 

minimum magnitude +0.1 is from lv* = —0.1. As a result, the magnitude of the 

outputs Zco,/ci,/c2,/c3,/c5 is 0.1. For output IC4, the magnitude is the minimum 

magnitude of/vo, lv\, /v2, /V3, lv5, which is +0.3 from /vo = 0.3. Sign of each output 

bit is found by multiplying the sign bit of the other five input soft bits. For example, 

the sign of ICQ is from the multiplication of the sign bits of /vi,/v2,/v3,/v4,/vs, 

which is 1 x 1 x 1 x (-1) x 1 = - 1 . Finally, /c0 = - 1 x 0.1 = -0 .1 . 
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lv0 

lc0=sgn(lv1)*sgn(lv2)*sgn(lv3)*sgn(lv4)* A 
sgnOv^minfllv!!, Ilv2l, llv3l, llv4l, llv5l) 

lvi • 

lc,= sgn(lv0)*sgn(lv2)*sgn(lv3)*sgn(lv4)* < 
sgn(lv5)*min(llv0l, llv2l, llv3l, llvj, llv5l) 

lv2 • 
lc2= sgn(lv0)*sgn(lv1)*sgn(lv3)*sgn(lv4)* -4 
sgn(lv5)*min(llv0l, llv,l, llv3l, llv4l, llv5l) 

lc3= sgn(lv0)*sgn(lv1)*sgn(lv2)*sgn(lv4)* <4— 
sgn(lv5)*min(llv0l, llv,l, llv,l, llv4l, llv5l) 

lv4 — • 

lc4= sgn(lv0)*sgn(lv,)*sgn(lv2)*sgn(lv3)* A— 
sgn(lv5)*min(llv0l, llv,l, llv2l, llv3l, llv5l) 

lv5 • 

lc5= sgn(lv0)*sgn(lv1)*sgn(lv2)*sgn(lv3)* A 
sgn(lv4)*min(llv0l, llv1l, llv2l, llv3l, llv4l) 

Figure 2.9: Min-Sum Algorithm Check Node Operation 

2.3 Multi-threaded Microprocessors 

In Flynn's taxonomy [30], computer architectures can be classified into four cate

gories based on the number of concurrent instructions and data streams. 

Single Instruction stream, Single Data stream (SISD) machines use a single 

processor to process a single data stream. Such a processor is also called a unipro

cessor. 

Single Instruction stream, Multiple Data stream (SIMD) machines use tech

niques to achieve data level parallelism. A SIMD processor consists of an array of 

\ 

V 
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+0.3 -0.1 +0.7 -0.1 +1.0 -0.1 +0.6 -0.1 -0.1 +0.3 +1.5 -0.1 

Check Node 

Figure 2.10: Min-Sum Algorithm Check Node Operation Example 

processor elements (PEs). Multiple PEs execute the same instruction on their own 

data stream. 

Multiple Instruction stream, Single Data stream (MISD) machines use many 

functional units performing on the same data. Not many machines of this type 

exist since M M ) and SIMD are often more appropriate for common data parallel 

techniques. 

Multiple Instruction stream, Multiple Data stream (MIMD) machines use a 

number of processor elements. These PEs execute different instructions on dif

ferent piece of data. Each PE has its own Arithmetic and Logic Unit (ALU) and 

control unit. PEs could be interconnected in some manner to allow for the exchange 

of data. 

Figure 2.11 shows Flynn's computer architecture taxonomy. 
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Figure 2.11: Flynn's Computer Architecture Taxonomy 

In practice, many modern computers have hybrid architectures that combine, 

for example, aspects of SISD architecture with SIMD architecture, such as Intel's 
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Pentium microprocessor with MMX and Streaming SIMD Extensions (SSEs) [31]. 

One MIMD architecture that is intended to support flexible data exchange is 

called a shared memory architecture. Any processor can access memory modules 

through the interconnection network which connects microprocessors and memory 

modules. One problem with this architecture is the memory contention which oc

curs when two or more processors try to access the same memory block. Since one 

memory block usually has only one address bus and can only be accessed by one 

processor at a time, other processors have to wait until the first processor finishes 

accessing it. 

Another architecture that facilitates data exchange is called a message pass

ing architecture. Each processor has its own memory block attached to it. When 

data exchange is required, the requesting processor sends a message. In reply, the 

answering processor accesses its memory block and passes data on to the request

ing processor through interconnection network. Memory contention problems are 

avoided since the memory block is only accessed by one processor. 

In this research project, a XInC multi-threaded microprocessor is used. It was 

designed by Eleven Engineering Inc. in Edmonton, Canada. The XInC micropro

cessor was intended to be used in wireless or audio applications. It has its own 

unique structure which allows 8 instruction streams and 8 data streams. Inside a 

XInC there are 8 independent sets of program counters, general-purpose registers 

and conditional code registers. To simplify the microprocessor, only 18 instruc

tions are implemented. Table 2.3 summarizes the XInC instruction set. A hardware 

semaphore mechanism can be used to manage access to the shared resources such 

as memory and I/O ports. Thus either Single Instruction Multiple Data (SIMD) 

mode or Multiple Instruction Multiple Data (MIMD) mode can be used. 

In general, there are two main types of hardware multithreading implementa

tion. A tutorial article about multithreading can be found in [32]. One type of 
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Table 2.3: XInC Instruction Set Summary 

Mnemonic 
add 

and 

be 
bic 
bis 
bix 
bra 
inp 
ior 

jsr 

Id 

mov 
outp 
rol 

St 

sub 
thrd 
xor 

Operands 
R1,R2,R3 
R1,R2,K3 
R1,R2,R3 
R1,R2,K3 

C1,K2 
R1,R2,K3 
R1,R2,K3 
R1,R2,K3 

Kl 
R1,K2 

R1,R2,R3 
R1,R2,K3 

R1,R2 
R1,K2 

R1,R2,K3 
R1,K2 
R1,K2 
R1,K2 

R1,R2,R3 
R1,R2,K3 
R1,R2,K3 

R1,K2 
R1,R2,R3 

Rl 
R1,R2,R3 
R1,R2,K3 

Description 
2's complement add, Rl = R2 + R3 

R1=R2 + K3 
Bitwise and, Rl = R2&R3 

Rl=R2&K3 
Conditional branch, if CI, PC=K2 

Bit clear, Rl = R2&{1 « K3) 
B i t s e t , * l = . R 2 | ( l « . K 3 ) 

Bit XOR, Rl=R2A(l« K3) 
Unconditional branch, PC = PC+Kl 

Read input port, Rl = input(K2) 
Bitwise inclusive or, Rl = R2 \ R3 

Rl=R2\K3 
Jump to/Return from subroutine, i?l = PC; PC = R2 

Rl=PC;PC = K2 
Load from RAM, Rl = *(i?2 +K3) 

Rl = *K2 
Move immediate, Rl =K2 

Write output port, output(K2) =Rl 
Bitwise rotate left, Rl = R2 « R3 

Rl=R2«K3 
Store to RAM, *(R2+K3) = Rl 

*K2 = Rl 
2's complement subtract, Rl = R2 - R 3 

Get thread number, Rl= thread# 
Bitwise exclusive or, i?l = Rl AR3 

Rl=R2AK3 

hardware multithreading is called interleaved multithreading, and XInC should be 

classified in this category. Other examples of interleaved multithreading processors 

include the Tera processor [33] and the HEP multiprocessor [34]. In interleaved 

multithreading, only one thread of instructions is executed in any given pipeline 

stage at a time. The purpose of this type of multithreading is to remove data de

pendency stalls due to one thread from the execution pipeline. Because one thread 
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is relatively independent from the other threads, there's less chance of one instruc

tion in one pipeline stage needing an output from an older instruction of the other 

threads in the pipeline. An example of interleaved multithreading is shown below, 

1. Cycle / : an instruction from thread A is issued 

2. Cycle i+1: an instruction from thread B is issued 

3. Cycle i+2: an instruction from thread C is issued 

4. Cycle i+3: an instruction from thread A is issued 

Another type of hardware multithreading is called Simultaneous Multi-Threading 

(SMT), which allows the instructions from more than one thread to be executed in 

any given pipeline stage at a time. It is a technique for improving the overall ef

ficiency of superscalar CPUs. A superscalar processor executes more than one in

struction during a clock cycle by simultaneously dispatching multiple instructions 

to redundant functional units on the processor. Each functional unit is not a separate 

PE, but an execution resource within a single PE, such as an arithmetic logic unit, 

bit shifter or multiplier. A normal superscalar processor issues multiple instruc

tions from a single thread in every clock cycle. In Simultaneous Multi-Threading, 

the superscalar processor can issue instructions from multiple threads in every clock 

cycle. An example of SMT is shown below. 

1. Cycle i: instructions^' andy'+i from thread A; instruction k from thread B all 

simultaneously issued 

2. Cycle i+1: instruction j+2 from thread A; instruction k+1 from thread B; 

instruction m from thread C all simultaneously issued 

3. Cycle i+2: instruction j+3 from thread A; instructions m+1 and m+2 from 

thread C all simultaneously issued 

Unlike the general MIMD microprocessors which have multiple PEs, the XInC 

has only one time-shared PE. This processor element is divided into 8 pipeline 

stages. In a general-purpose microprocessor, the instruction pipeline breaks the in-
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struction logic into several smaller blocks and inserts registers between the block. 

In this way the propagation delay between registers can be reduced and the sys

tem clock frequency can be increased. In addition, multiple instructions can share 

the pipeline and instruction throughput can be increased. For general-purpose mi

croprocessors, successive instruction sequences from one thread are loaded into 

the pipeline, while in the XInC microprocessor, instructions are fetched from 8 in

struction streams. That is, if for itf, clock cycle, the instruction in jtf, instruction 

stream is fetched, then for the (/+ \)tf, clock cycle, the instruction in the (j+l)th 

instruction stream would be fetched. For each system clock cycle, the instruction 

completes one of the eight pipeline stages. To complete the whole instruction, the 

XInC requires 8 system clock cycles. For each system clock cycle, one instruction 

is completed. The system clock frequency for XInC microprocessor is 12 MHz, and 

hence the maximum instruction throughput is 12 Million Instructions Per Second 

(MIPS). 

Figure 2.12 shows the architecture of the XInC microprocessor and its memory 

model. The XInC microprocessor uses a shared memory architecture. There are a 

total of 16K words of RAM to store the program and data. The RAM is organized 

as 8 blocks of 2K words each. Different memory blocks can be accessed within 

one clock cycle at the same time, but the same memory block cannot be accessed 

more than once in the same cycle. The memory crossbar is responsible for routing 

the data to the addressed memory blocks. The processor has two ports that are 

connected to the memory crossbar. The instruction port is used to fetch instructions. 

The data port is used to access data. For the same system clock cycle, the instruction 

fetch component in the pipeline fetches an instruction through the instruction port 

for one thread while the memory access component in the pipeline fetches data 

through the data port for another thread. As a result, if the instruction and data 

stream are in the same memory block, it is possible to access the same memory 
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block in one clock cycle. If that happens, the instruction is still be fetched, but 

the data access is invalid. This memory contention could be eliminated easily by 

assigning the program space and data space into different memory blocks. 
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Figure 2.12: XInC Microprocessor Architecture 

As mentioned earlier, for MIMD microprocessors, the shared memory architec

ture would cause memory contention if two or more PEs access the same memory 

block. The other processors have to wait until the first processor finishes its data ac

cess. However, in the XInC microprocessor, this problem does not exist since it has 

only one PE. The pipeline's memory access component processes one instruction 

in one clock cycle. Except for the above easily resolved instruction fetch and data 

access contention scenario, there is no memory contention for two data accesses. 

In addition, the XInC microprocessor's pipeline architecture does not have the 

conditional branch problem that exists in a general-purpose microprocessor. Since 

in general-purpose microprocessors, the pipeline cannot know which branch should 

be taken for several clock cycles when it meets the conditional branch instruction, 

it cannot read in the following instructions in the same thread. This problem would 

degrade the pipeline's efficiency. To reduce this impact, branch prediction tech

niques could be used in a general-purpose microprocessor. However, in the XInC 

microprocessor, the pipeline gets instructions thread-by-thread. In the Tera proces-
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sor [33], the processor logic selects a software-thread that is ready to execute and 

issues its next instruction. By contrast in the XInC, instruction streams are run in a 

fixed sequence from thread 0 to thread 7. The instruction in one thread requires 8 

clock cycles to complete. The immediately following instruction in the same thread 

would not be fetched until the previous instruction in the same thread is complete. 

As a result, the conditional branch problem does not exist in the XInC micropro

cessor. 

However, the XInC microprocessor still has potential data dependency prob

lems between different threads due to pipelining. For example, when a memory 

write instruction is executed in one thread, the data would be written to memory 

after several clock cycles rather than written immediately. If a memory read in

struction follows and it reads the same address in another thread, then the read 

instruction would read an old data since the new data has not been written yet. This 

hazard could be eliminated with additional hardware control, such as a hardware 

semaphore, but this approach requires overhead time to set and reset the hardware. 

Another way is to rely on software programmer or compiler to avoid this hazard. 

An example is Intel's Itanium, which relies on the compiler to decide which instruc

tions can be executed in parallel and which must be executed serially [3 5] [34]. 
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Chapter 3 

Improved Bit Flipping Algorithms 

In this chapter, we begin by proposing the use of a Bit Flipping Threshold Pattern. 

The Improved Bit Flipping algorithm (IBF) is then described. Several alternative 

threshold patterns are simulated and the pattern (3 — 2)+ = (3 — 2 — 3 — 2...) is 

found experimentally to be the best pattern for the benchmark (128,3,6) LDPC-CC. 

In addition, the Parallel Improved Bit Flipping (PIBF) algorithm, which utilizes the 

microprocessors' built-in bit-wise parallelism, is also presented. 

3.1 Bit Flipping Threshold Patterns 

In this section, we present simulation evidence that demonstrates that for a well-

studied (128,3,6) LDPC-CC, choosing a strictly alternating bit flipping threshold 

pattern (3 — 2)+ can not only improve the coding gain, it can also speed up the 

decoding process. The regular expression operator (.)+ denotes that the bit flipping 

threshold pattern within the bracket is repeated one or more times. We will be us

ing regular expressions to describe bit flipping threshold patterns in the remainder 

of this thesis. Thus the pattern (3 — 2)+ alternates the bit flipping threshold between 

a conservative ' 3 ' and an aggressive '2 ' . At a bit error rate of 10 - 4 , the (3 — 2 ) + 

pattern achieves a coding gain within 3.5 dB of that of the Min-Sum decoding algo

rithm, using only hard bits and six decoding processors. This decoding algorithm 
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requires much simpler hardware and lower power in a silicon implementation com

pared to decoding algorithms that process soft bits, such as the Min-Sum algorithm. 

The wiring and logic circuits required by hard bit processing is much simpler than 

that required for soft bits. What is more, the coding gain is 2.5 dB better than that 

of the Gallager's BF algorithm which uses a fixed pattern of (3)+. The results will 

be detailed below. 

3.1.1 LDPC-CC Improved Bit Flipping Decoding Algorithm 

In a (MJ,K) LDPC-CC encoder (See Figure 2.4), both the previous M information 

bits and M check bits are stored in a First-In First-Out (FIFO) memory queue. The 

encoder selects K-l of the bits from the FIFO queue and generates one new check 

bit by simple exclusive OR (XOR) operation. The bit positions in the queue for the 

inputs of each parity check are determined by entries in a position table which is 

derived from the parity check matrix. Each encoded bit is involved in J parity check 

constraints, and each parity check constraints involves K earlier bits in the coded 

bit stream. 

The encoded bits are modulated and transmitted as analog signals through a 

noisy channel. The shape of these signals is distorted by the addition of noise. 

There are typically many underlying components to this noise, and by the Central 

Limit Theorem, the distribution of the net noise amplitudes at the bit times will 

tend to be Gaussian. At the receiver end, a threshold device (comparator) is used 

to recover the binary digit '0' or ' 1 ' . Signal strength information, which may be 

related to the reliability of the recovered bit, is discarded. These binary bits are 

then sent into the LDPC-CC decoder for channel decoding. 

LDPC-CC decoder is composed a unidirectional cascade of several identical 

decoding processors. In the bit flipping algorithm, each bit is checked by several 

parity check constraints in the check node. If a constraint fails, the error counter 
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of all of the associated input bits is incremented by 1. When the error counter is 

greater than the bit flipping threshold, the bit would be flipped in the belief that the 

bit's old value was probably be incorrect. 

The intuition behind the Bit Flipping algorithms is that the greater the number 

of failed parity check constraints involving a particular bit, the higher should be the 

probability that the bit is in error. The best choice of bit flipping threshold b might 

be based on the parity check matrix characteristics and the estimated signal-to-noise 

ratio. If b is chosen to be too small (i.e., the threshold is too aggressive), then too 

many correct bits would be wrongly flipped and the algorithm might not converge 

on the correct data. On the other hand, the bit flipping threshold b should be set to a 

sufficiently small value so that suspect error bits that are indicated only by a fewer 

number of failed parity check constraints can get flipped. If b is chosen to be too 

high (i.e, the algorithm is too conservative), then correction of suspect bits is too 

difficult to trigger and convergence on the correct data might be too slow or may 

get stuck in local minima with some errors left uncorrected. 

With respect to the bit flipping decoding algorithm, we define the bit flipping 

threshold pattern {b\ — bi — b^ — •••)+ to be the sequence of bit flipping thresholds 

which are used in the 1 st, 2nd, 3rd, etc. decoding processors. If the pattern is shorter 

than the desired number of decoding processors, then the sequence is repeated as 

often as necessary, starting again each time at b\. The original Gallager bit flipping 

algorithm can be considered as having the bit flipping threshold pattern (3)+. 

Gallager's BF algorithm was developed to decode LDPC-BCs, but here we need 

to decode LDPC-CCs. Essentially LDPC-BC decoding algorithms perform iterative 

decoding in time whereas LDPC-CC decoding algorithms perform iterative decod

ing in space over a cascade of pipelined decoder processors [8]. Our improved bit 

flipping algorithms, modified for LDPC-CCs and based on bit flipping threshold 

patterns, share the following structure: 
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Step 1: Within the FIFO memory queue of information and check bits inside 

each decoder processor, find the number ft of failed parity-check constraints for 

each bit i for the entire time that the bit spends shifting through the decoding pro

cessor. 

Step 2: Once a bit reaches the head of a decoding processor, if the number of 

failed parity check constraints for a bit exceeds the present bit flipping threshold 

b, as specified by the bit flipping threshold pattern, then that bit is flipped before it 

enters into the next decoding processor. 

Step 3: After a bit exits the last decoding processor, the decoding process for 

that bit is finished and the decoded bit is sent out. 

For our benchmark (128,3,6) LDPC-CC, each information and check bit is in

volved in 3 parity check constraints. The bit flipping threshold b could be chosen 

to be ' 3 ' or '2'. In this situation, b = 3 indicates that all the parity check constraints 

have failed and b = 2 indicates that a majority of the parity check constraints have 

failed. Threshold value ' 1' is not used since when a single parity check constraint 

has failed, all the error counters of the bits that are associated with that constraint 

would be incremented by one. The threshold ' 1' would be undesirable since an 

incorrect decision to flip one bit would propagate incorrect decisions to flip all of 

the bits involved in parity check constraints. 

For the first several decoding processors, b could be set to the conservative 

threshold value '3 ' , that is, to flip the bit only when all three of its parity check 

constraints fail. When most of the bits indicated by three failed parity check con

straints are corrected, b could be set to an aggressive threshold value '2' to flip the 

bits indicated by two or more failed parity check constraints. The overall bit error 

rate might rise at this time since many correct bits might be wrongly flipped due 

to the aggressive '2'. But this temporary bit error rate increment is necessary since 

error bits only indicated by two failed parity check constraints could be corrected in 
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this step. Otherwise, an overly conservative strategy would prevent some incorrect 

bits from being flipped and thus the bit error rate would be stuck at a higher level. 

After b=2, b could be set to conservative '3 ' again for the following decoding pro

cessors to drop the bit error rate down to a lower level. The threshold b could in this 

way be alternated between '3 ' and '2' for the decoding processors. In our research, 

we assumed that the bit flipping threshold pattern is set for a fixed number of de

coding processors to a threshold value of '3 ' followed by a threshold value of '2'. 

Thus we focussed our attention on the threshold patterns as (3 — 2)+ , (3 — 3 — 2)+ , 

(3 - 3 - 3 - 2)+. This restriction was supported by experimental evidence from 

many simulation trials. If the threshold pattern starts with threshold value '2', such 

as (2 — 3)+, simulation results show that the coding gain is worse since too many 

corrected bits are wrongly flipped in the first decoding processor. 

3.1.2 Simulation Results 

3.1.2.1 Coding Gain 

Figure 3.1 shows simulation results of bit error rate versus signal-to-noise ratio 

Eb/N0 for an uncoded BPSK signal, the BF algorithm with bit flipping threshold 

pattern (3)+, the BF algorithm with the bit flipping threshold pattern (3 — 2)+ , the 

Min-Sum algorithm and the Sum-Product algorithm for the benchmark (128,3,6) 

LDPC-CC. To determine the maximum coding gain of each algorithm, sixty de

coding processors were used. Each plotted point corresponds to at least 100 er

ror events to ensure statistically reliable values. At a bit error rate of 10~4, the 

(3 — 2)+ pattern achieves a coding gain that is only 3.5 dB less than that of the 

Min-Sum soft-decoding algorithm. What is more, the coding gain is 2.5 dB better 

than that of Gallager's BF algorithm with a fixed pattern of (3)+. Other bit flipping 

threshold patterns (e.g. (3 - 3 - 2)+, (3 - 3 - 3 - 2)+, (3 - 3 - 3 - 3 - 2)+ and 

(3 — 3 — 3 — 3 — 3— 2)+ were also simulated using 60 decoding processors. Their 
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Eb/No (dB) 

Figure 3.1: BER of Uncoded BPSK, BF Pattern (3)+ and (3 - 2)+, Min-Sum and 
Sum-Product algorithm for a (128,3,6) LDPC-CC 

curves show essentially the same coding gain of the pattern (3 — 2)+ , so it appears 

that the coding gain is almost the same if the threshold pattern is alternated strictly 

between '3 ' and '2' with an adequate number of decoding processors. Observe in 

Figure 3.1 that the BF decoding algorithm has some coding gain only for signal-to-

noise ratios Eb/N0 of above 4 dB. Below 4 dB, the bit error rate of the bit flipping 

algorithm is higher than the uncoded BPSK signal. The reason might be that when 

the signal-to-noise ratio is low, too many errored bits are present in the bit stream. In 

this situation, the parity check results and the associated bit flipping actions become 

unreliable and hence more error bits get be generated than get corrected. 
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1 2 3 4 5 6 7 8 9 
Eb/No (dB) 

Figure 3.2: BER of BF Pattern (3 — 2)+ after 1-6 and 60 Decoding Processors for 
a (128,3,6) LDPC-CC 

3.1.2.2 Decoding Processor Number 

Figure 3.2 shows the simulation results of bit error rate versus signal-to-noise ratio 

Eb/N0 for different numbers of decoding processors, given the same (3 — 2)+ pat

tern. In the figure, the coding gain is increased notably for the first six decoding 

processors. But beyond six decoding processors, there are only small further im

provements in the coding gain. For the (128,3,6) LDPC-CC, the curve for 6 decod

ing processors approaches within 0.2 dB of the curve for 60 decoding processors. 

It would thus appear that 6 decoding processors might be a good trade-off point be

tween coding gain and required decoding processors for the (128,3,6) LDPC-CC. 
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Eb/No (dB) 

Figure 3.3: BER of BF Pattern (3 - 2)+,(3 - 3 - 2)+,(3 - 3 - 3 - 2)+,(3 - 3 -
3 - 3 - 2)+ and (3 - 3 - 3 - 3 - 3 - 2)+ for (128,3,6) LDPC-CC with 6 Decoding 
Processors 

3.1.2.3 Error Correction Convergence Speed 

Figure 3.3 shows the simulation results for different bit flipping threshold patterns 

using six decoding processors. In the figure, it is evident that for all of the consid

ered signal-to-noise ratios Ej,/N0, the (3 - 2)+ bit flipping threshold pattern has the 

lowest BER and the (3 - 3 - 3 - 3 - 3 - 2)+ pattern has the highest BER. 

In Figure 3.4, the BER for different bit flipping threshold patterns using different 

numbers of decoding processors was simulated at the same signal-to-noise ratio 

Eb/N0 = 6dB. It appears that the BF threshold pattern (3 — 2)+ has the fastest error 

correction convergence speed compared to its peers. In other words, the bit flipping 
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Figure 3.4: BER of BF Pattern (3 - 2)+,(3 - 2)+,(3 - 3 - 2)+,(3 - 3 - 3 - 2)+,(3 -
3 - 3 - 3 - 2 ) + a n d ( 3 - 3 - 3 - 3 - 3 - 2 ) + after Different Number of Decoding 
Processors, Eb/N0 = 6dB 

threshold pattern (3 — 2)+ requires fewer decoding processors to achieve the same 

bit error rate compared with the other patterns. Note that Gallager's BF algorithm, 

with threshold pattern (3)+, gets stuck at a relatively high BER. It appears that 

by alternating the threshold between ' 3 ' and '2', the decoding algorithm is able to 

escape from local minima that prevent convergence in the presence of some errors. 

From the above simulation results, it can be concluded empirically that for the 

benchmark (128,3,6) LDPC-CC, the bit flipping decoding algorithm using the bit 

flipping threshold pattern (3—2)+ with 6 decoding processors achieves the best 

compromise between coding gain and required decoding processors. 
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3.2 The Parallel Improved Bit Flipping Algorithm 

The Bit Flipping algorithm is based on simple bit manipulations such as the logical 

AND, OR and XOR operations in check nodes and variable nodes. In micropro

cessors, bit manipulation operations are typically designed to be 8-, 16-, 32- or 

64-bits wide. As a result, we developed the Parallel Improved Bit Flipping (PIBF) 

algorithm to exploit this built-in parallelism in microprocessors. 

The encoder structure of our proposed Parallel Improved Bit Flipping algorithm 

(PIBF) is almost the same as the non-parallel encoder. The only difference is that 

the bit stream is processed as 16-bit words since the XInC microprocessor is a 

16-bit microprocessor, and XOR instructions are executed at the word level. We 

will call the 16-bit word a hard word. In PIBF, the bit stream could be viewed as 

16 interleaved streams. Sixteen bits from each of these streams are packed into a 

single 16-bit word. 

In Figure 3.5, the IBF and PIBF algorithm examples are shown. For the IBF 

algorithm, the parity check constraints are based on bits. For example, the constraint 

illustrated in the figure is 

bit\ © bit\% © bihi © bitm © bit2n © bit25i 

In PIBF, the same position table in IBF is used. But the parity check constraints are 

based on 16-bit hard words. As a result, the constraint is 

word\ © word\% © \vord23 © wordm © \vord2\2 © \vord2s1 

If we consider the PIBF algorithm in terms of bit position offsets, the above 

word-based constraints could be written as 16 bit-based constraints as follows: 

bit 1 © bit2S9 © £#369 © &#2113 © ^#3393 © ^#4113 

bit2 © bit290 © &#370 © 6^2114 © &#3394 © bit4\14 
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bit\e © bit3Q4 © M 3 84 © &#2128 © ^#3408 © &#4128 

Improved Bit-Flipping 

Bitl 18 23 132 212 257 

Wordl 18 23 
Parallel Improved Bit-Flipping 

132 212 257 a 
Bit 1-16 289-304 369-384 2113-2128 3393-3408 4113-4128 

Figure 3.5: IBF and PIBF Algorithm Demonstration 

In Figure 3.6, five words are chosen from the FIFO queues based on the position 

table in the encoder. We see that sixteen equivalent groups of bit parity check 

operations are performed at the same time. After four XOR instructions, sixteen 

check bits are generated. Here we call the block of sixteen check bits a check word. 

© [ 
© 
© 

I i y i v i i i i i i i t ? i W 111111111 
t 

Word I 8 (bit289 • • • bit304) 

] Word23 (bit369 — bit384) 

D l W 

Woid212(bit3393-"bit340B) ^ j S * li II * * H * * H * * II * li > " " l " 2 1 2 V u " 3 3 9 3 " " 3 4 0 8 ' 

© \\ k k k k k k k k k *, k k k k D Word257 (bit4„3— bit4128) »< »1 W H » / . 1 >l . / > / XI »J . i W t < »< t i 

I I I I I 1 I I I I [ I I Q Check word, Word, (bit, — bit16) 

Figure 3.6: PIBF Encoding 

In the PIBF decoder check node, parity checks are based on six words as shown 

in Figure 3.7. Five XOR instructions are executed. The check node checks whether 
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the parity check constraints on sixteen groups of bits are obeyed or failed. If one 

group of the parity checks fails, the corresponding bit of the result word would be 

' 1'. Here we call the result word the check error pattern. 

The PIBF decoder for the (128,3,6) LDPC-CC is now designed as follows. Four 

memory FIFO queues are used. The first queue stores the received hard words. The 

other 3 queues store the check error patterns from check node results since each 

word involves 3 parity check constraints. When a new word is shifted into the queue 

head, the variable node retrieves three check error patterns and calculates how many 

errors are associated with each bit. Assuming the bit flipping threshold pattern 

(3 — 2)+ is used, we should determine whether the failed parity check constraint 

number for each bit is equal to '3 ' , or greater or equal to'2'. 

't 'i 'i r \ r \ r \ r \ r \ r \ r \ r \ r i r \ r \ r \ 
IF 11 r 11 r 11 r 11 ? n* 11 ? 11 ? 11 r n r • I r u.* 117 i 

© 

I tt 
nH 

• 1 / 'K 'I 

,1 » E ,1 tt 
H 

Wordi (bit! < 

Word18 (bit289 < 

Word23(bit369 

Word132 (bitj 

Word,,, (bit 
123 

l3393 

® 'lAA/'l/ 'l/ 'lAAAAAAAAA.P word257(bit4113 

bitl6) 

bit304) 
bit384) 

' b i t 2 I 2 8 ) 

' b i t 3 4 0 8 ) 

' bit4128) 

Check error pattern 

Figure 3.7: PIBF Decoding 

One method for calculating the number of failed parity check constraints of each 

bit is to shift and add. Each check error pattern is shifted right by 1 bit and then the 

shifted-out bits are added. However, for a 16-bit word, this method would require 

16 shifts and additions and this would make the variable node slow. 

In our PIBF algorithm, another method is used. Two new patterns are generated 

by word-level instructions on the three check error patterns. One pattern determines 

whether all three parity check constraints have failed. We call this word result Flip

ping Pattern 1 (FP1). It could be calculated by ANDing three check error patterns 
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errorPatternl 
errorPattern2 
errorPottern3 

Y any Errors A 

oneQrThreeErrors 

—B \^y twoOrThreeErrors 

—C> twoEn 

Figure 3.8: PIBF Algorithm Error Pattern Processing 

as follows: 

Yi = Ei AND E2 AND E3 (3 errors) 

The second word result indicates whether the number of failed parity check 

constraint is greater or equal to 2 which we call here Flipping Pattern 2 (FP2). The 

following expressions are evaluated: 

Y\ = E\ AND E2 AND E3 (3 errors) 

Y2 = Ei OR E2 OR E3 (at least 1 error) 

Y3 = Ei XOR E2 XOR E3 (1 error or 3 errors) 

F4 = Y2 XOR Y3 (2 errors) 

75 = Yi OR Y4 (2 errors or 3 errors) 

If the decoding processor's bit flipping threshold is ' 3 ' , XORing the received 

hard word with the FP1 will flip all the bits in the word whose failed parity check 

constraint number is '3 ' . If the decoding processor's bit flipping threshold is '2', 

XORing the received hard word with the FP2 will flip all the bits whose failed parity 

check constraint number is '2' or '3 ' . 

The above logical operations can also be implemented equally well in FPGAs 

or ASICs. The corresponding logic gate schematic is shown in Figure 3.8. The 

inputs are three check error patterns. The outputs are FP1 and FP2. Note that all of 

the inputs and outputs are 16-bit words, and all the logical gates are actually stacks 

of gates that are 16 levels high. 
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3.3 Conclusion 

In this chapter, the Improved Bit Flipping algorithm and Parallel Improved Bit Flip

ping algorithm were proposed based on the use of the Bit Flipping Threshold Pat

tern. At a BER at 10~4, the Bit Flipping Threshold Pattern (3 - 2)+ achieves 2 

dB better coding gain than the original Bit Flipping algorithm with the fixed Bit 

Flipping Threshold Pattern (3)+, which was used in Gallager's bit-flipping algo

rithm. In addition, the Parallel Improved Bit Flipping algorithm exploits a micro

processor's built-in bit-wise logical instructions which could execute the decoding 

algorithm 16, 32, or 64 bits a time on a 16-bit, 32-bit or 64-bit microprocessor, 

respectively. 
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Chapter 4 

LDPC-CCs on Multi-threaded 
Microprocessors 

In this chapter, we describe how the Min-Sum algorithm, Improved Bit Flipping 

algorithm and Parallel Improved Bit Flipping algorithm were implemented on the 

XInC multi-threaded microprocessor. The structure and trade-offs between compu

tational complexity and coding gain of these decoding algorithms are discussed in 

detail. 

4.1 Memory Organization and Flow Chart 

In LDPC-CC decoding algorithms, memories are used to store the received soft 

bits and hard bits, check error patterns, and intermediate soft bit results. The 

XInC multi-threaded microprocessor has a single global memory shared by all 

threads. LDPC-CC decoding processors read data from the memory, process them, 

and store the results back. These decoding processors are distributed onto several 

XInC threads to achieve parallel decoding. As a parallel algorithm on a multi

threaded microprocessor, it is important to prevent memory access hazards among 

the threads. In other words, when a memory location is being accessed by one 

thread, this location should not be accessed by other threads. Otherwise, when the 
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first thread writes to the memory and the second thread reads from the same mem

ory location, old data might be read by the second thread. Also when two different 

data word are written to the same memory location by two different threads, the 

first written data would be overlapped. 

A hardware semaphore mechanism might be used to manage shared hardware 

resources, such as memory. A semaphore is a binary variable which has two states: 

locked and unlocked. Such a variable can be assigned to a shared resource to reg

ulate access to that resource. When the resource is in use, the semaphore is in 

the "locked" state. Otherwise, it is in the "unlocked" state. Before the shared re

source is accessed, the semaphore state should be queried. If the semaphore is in 

the "locked" state, the thread has to wait until the semaphore goes back to the "un

locked" state. If the semaphore is in the "unlocked" state, the shared resource could 

be accessed. When the shared resource is accessed, the thread which uses the re

source must write the semaphore to the locked state to indicate to the other threads 

that the resource is in use. When the operation is finished, the semaphore must be 

unlocked to release the resource. 

However, for intensive memory access algorithms, such as the LDPC-CC de

coder, the semaphore mechanism would likely be too inefficient. For example, in 

the parallel improved bit flipping algorithm, 30% of the instructions are used for 

memory accesses. If each memory access instruction requires two additional in

structions to lock and unlock an associated semaphore, then the algorithm would 

require an additional 60% instructions. 

In our LDPC-CC decoding algorithms, the memory access hazard is resolved 

by organizing the memory into different memory spaces. Each thread has exclusive 

access to its own memory space. In this, different threads are not allowed to access 

the same memory location at the same time. Hence, the semaphore mechanism is 

avoided. 
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In Figure 4.1, the memory organization for the LDPC-CC decoder is shown. 

As mentioned in Chapter 2.2.2.1, FIFO queues are used in the LDPC-CC decoding 

processors. Those queues are organized as circular buffers in the algorithm. Instead 

of moving the data in the FIFO queue, a circular pointer is moved to indicate the 

memory address of the queue tail. For each decoding phase, the circular pointer is 

moved counter-clockwise one step (that is, one information bit and one check bit 

memory space). Each decoding phase for each decoding processor includes one 

check node operation followed by one variable node operation. As shown in the 

figure, the decoding processors on threads 2 to 7 access their own memory spaces. 

Additional memory is allocated at the queue tail for data input operations and at 

the queue head for data output and hard decision operations. As a result, these 

operations on thread 1 could be run without memory access hazards with respect to 

the decoding processors on threads 2 to 7. 

Movement of 
segment/thread 

Thread 1 if \ ' V boundaries 
Data input/output 

Hard decision 
Queue head 

Threads 2-7 implementing 
decoding processors 

Figure 4.1: LDPC-CC Parallel Algorithm Memory Organization 

Figure 4.2 shows the LDPC-CC encoder and decoder algorithm flow chart for 

the XInC microprocessor. The LDPC-CC encoding algorithm is implemented on 

thread 0. LDPC-CC decoding processors are implemented on thread 1 to thread 7. 

The LDPC-CC decoding algorithm can be divided into several operations: the data 
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input and output operations, the hard decision operation and the decoding processor 

(including a variable node and a check node). In thread 1, a decoder controller is 

implemented to synchronize the decoding phases on six decoding processors and to 

control data input and output. At the beginning of the decoding phase, the decoding 

processors are started by the decoding controller at the same time. At the end 

of the decoding phase, the decoder controller queries the status of the decoding 

processors (When the decoding processor is completed, it is left in a endless loop 

state). Only after all of the decoding processors have completed does the decoder 

controller start the next decoding phase. In addition to the decoder controller, hard 

decision operations on the output produced by thread 7 and data input and output 

operations are also implemented on thread 2. These activities execute in parallel 

with the decoding processors on threads 2 to 7. 
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Figure 4.2: LDPC-CC Parallel Algorithm Flow Chart 
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4.2 LDPC-CC Decoder Implementation 

4.2.1 The Min-Sum Algorithm 

The Min-Sum algorithm is a soft-decoding algorithm. In our implementation, a soft 

bit is represented by an integer. Ideally, a Log-Likelihood Ratio (LLR) in Equation 

2.1 is used to represent the reliability information in a sample of the received signal. 

For a (128,3,6) LDPC-CC, four FIFO queues are used. When the received soft bit 

comes in, it is written to the queue tail of all four queues of the first decoding 

processor. 

Figure 4.3 shows the Min-Sum algorithm check node operation. The check 

node reads soft bits from memory queues 1 to 3. Each coded bit is involved in three 

parity check constraints. If the check node is verifying the z-th parity check for an 

input bit k, the check node reads the soft bit from queue i under the location for bit 

k, where 1 < i < 3. When the check node finishes its operation, the result is written 

back to the same queue location where the soft bit was read from. 

The check node operation was specified mathematically in Equation 2.2. For the 

sign function sgn(.) in the equation, the operand's most significant bit is retrieved. 

The exclusive OR(XOR) operation among those bits gives the sign function result. 

The absolute value function |. | requires a comparison with the value zero to deter

mine whether the operand is positive or negative. If it is negative, the operand is 

subtracted from 0 to get its absolute value. In the check node, for each input num

ber, the output magnitude should be the minimum value of all other input numbers. 

In our minimum function min(.) implementation, a single loop is used to find two 

minimum numbers for a set of soft bit inputs. Soft bit outputs are produced from 

the soft bit inputs. For the minimum input, the corresponding output is the value 

of the second minimum (i.e., the minimum of the other inputs). For the remaining 

inputs, the corresponding outputs are assigned the value of the minimum input. 

Figure 4.4 shows the variable node operation. When the soft bit is at the queue 
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from decoding 
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Figure 4.3: Min-Sum Algorithm and Parallel Bit Flipping Algorithm Check Node 
Operation 

head of a decoding processor, all its associated parity check operations involving 

that bit have been finished. The corresponding parity check results have been stored 

in queues 1 to 3. Then the variable node operation is performed. For each exit 

value in queues 1 to 3, the exit value from queues 0 to 4, except the value in that 

queue itself, would be added and stored back. The received soft bit in queue 0 is 

not changed. The results at the queue heads are forwarded to the next decoding 

processor, or to the hard decision operation if the present decoding processor is the 

last one in the decoder cascade. 

During the whole decoding process, one copy of the original received soft bits is 

kept in queue 0. This soft bit information is also pushed in queues 1 to 3 at the first 

decoding processor in the decoder cascade. However, in the following decoding 

processors, the input data that is written to the tails of queues 1 to 3 is shifted in 

from the heads of the corresponding queues of the previous decoding processor. 
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Figure 4.4: Min-Sum Algorithm Variable Node Operation 

The probability of bit errors should gradually be reduced as soft bits shift in the 

rightward direction through the cascade of decoding processors. 

After the data exits the rightmost decoder processor, a hard decision operation 

determines the binary output. In Figure 4.5, the hard decision operation is shown. 

First, all the values from queue 0 to 3 are added together. If the sum is greater or 

equal to 0, the hard output bit is decoded as '0'. Otherwise, the bit is decoded as 

T 

Last Processor 

Queue 0 • • 

Queue 1 • • 

Queue 2 

Queue 3 

• • 

If sum is greater than or 
equal to 0, output is 0 

If sum is less than 
0, output is 1 

Hard decision decoder 

Figure 4.5: Min-Sum Algorithm Hard Decision Operation 
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4.2.2 The Improved Bit Flipping Algorithm 

The Improved Bit Flipping algorithm is a hard-decoding algorithm. The received 

signal is sampled and the threshold device is used to generate the hard bit '0' or 

' 1'. The algorithm then processes this hard bit data. In our IBF algorithm, for im

plementation simplicity, each hard bit is actually represented by a multi-bit integer, 

but only the least significant bit is used. 

Figure 4.6 shows the IBF algorithm check node operation. Two FIFO queues 

are required instead of the four queues in the Min-Sum algorithm. Queue 0 is used 

to store the received hard bits or nipped bits. Queue 1 is used to store the check 

error counter values. The check node reads hard bits from queue 0. The exclusive 

XOR operation among those bits gives the parity check result. If the parity check 

fails, all of the check error counters of the associated bits are incremented by 1. 

Tail Head 

I Processor N I 

Queue 0 
Receive 
hard bits 

Parity check 
error counter Queue 1 

Parity check 
error flag 

Parity check error counter is 
incremented by 1 if parity check fails. 

Figure 4.6: Improved Bit Flipping Algorithm Check Node Operation 

Figure 4.7 shows the IBF algorithm variable node operation. At the exit of 

each decoding processor, the variable node checks whether the check error counter 

exceeds the bit flipping threshold of that decoding processor. The bit in queue 0 
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is flipped if the check error counter equals to or exceeds the threshold. The check 

error counter is then reset to 0 just before it is shifted over to the next decoding 

processor. 

Queue 0, hard bits • • • 

Queue 1, parity • • • 
check error counter 

Figure 4.7: Improved Bit Flipping Algorithm Variable Node Operation 

A hard decision operation is not required in the IBF algorithm since the bits are 

already represented in the hard bit format. The decoded bit at the head of q[ueue 0 

would be output directly from the last processor in the cascade without any further 

processing. 

4.2.3 The Parallel Improved Bit Flipping Algorithm 

In the Parallel Improved Bit Flipping algorithm, hard bits are used. For the XInC 

multi-threaded microprocessor, the datapath width is 16. Hence 16 hard bits can be 

packed into one 16-bit word for parallel decoding. Bit-wise logical instructions can 

then be used to implement the decoding operation. 

Figure 4.3 shows the PIBF algorithm check node operation. Four FIFO queues 

are used. Queue 0 is used to store received hard words and intermediate flipped 

hard word results. The received hard words are stored to the tails of queues 0 to 

3 in the first decoding processor. The input of the following decoding processor is 

shifted out from the head of the previous decoding processor's result. Check nodes 

read hard words from queues 1 to 3. The bit-wise exclusive OR instruction is used 

to calculate the parity check constraints among those hard words. The results are 

check error patterns and these are stored back to the queue. As a result, before the 
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check node operation, queues 1 to 3 store hard bits. After the check node operation, 

queues 1 to 3 store check error patterns. Thus as data shifts rightwards along queues 

1 to 3, the hard bits are eventually all overwritten with check error patterns. 

Figure 4.8 shows the PIBF algorithm variable node operation. At the exit of 

each decoding processor, the variable node gets the check error patterns from the 

head of queues 1 to 3 and calculates the Flipping Pattern FP1 and FP2. The hard 

words in queue 0 are then flipped by XORing the flipping pattern computed by the 

variable node. At last, the nipped word in queue 0 is copied to queues 1 to 3 for the 

next decoding processor. 

Processor N 
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• • 

• • 

• • 
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Figure 4.8: Parallel Bit Flipping Algorithm Variable Node Operation 

At the end of the decoder, the word at the head of queue 0 is output directly. No 

hard decision is necessary since the packed bit values are binary already. 

4.3 Computational Complexity and Coding Gain 

In this section, we evaluated the trade-offs between the computational complexity 

and the coding gain of three LDPC-CC decoding algorithms. 

In Table 4.1, the computational complexity and coding gain of the three alter

native algorithms are shown. MS denotes the Min-Sum algorithm (Chapter 4.2.1), 

IBF denotes the Improved Bit Flipping algorithm (Chapter 4.2.2), and PIBF denotes 
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the Parallel Improved Bit Flipping algorithm (Chapter 4.2.3). The decoding instruc

tion cycles/thread is the required number of the instruction cycles for the LDPC-CC 

decoding processor running on XInC thread 2 to thread 7. The decoded bits/second 

is calculated by 

System Clock Frequency 
Decoding Instruction Cycles/Thread x ^{threads) 

We also included the decoded bits/second measure to help evaluate the scenario 

of using the new 100 MIPS XInC-II when 25% of the load can be used for LDPC-

CC decoding. The result shows that the PIBF algorithm could produce 116 Kbps of 

decoded bit throughput, which could support CD quality audio applications. Note 

that IBF and PIBF requires a higher signal to noise ratio Eb/No for the same bit 

error rate than that of the Min-Sum algorithm. The required Eb/No for BER at 

10 -5 is also listed in the table. 

All of the algorithms were run on the XInC-I multi-threaded microprocessor at 

12 MHz. Six decoding processors are used on thread 2 to thread 7. 

Table 4.1: LDPC-CC Decoding Algorithm Computational Complexity 

Decoding Instruction 
Cycles/Thread 
Decoded Bits/Second 
Decoded Bits/Second 
assuming 100 MIPS 
XInC-II with 25% load 
Possible Application 

Eb/No at BER=10-5 

MS 
679 

2.2 Kbps 

4.6 Kbps 

3.8 dB 

IBF 
315 

4.8 Kbps 

9.6 Kbps 

Compressed 
voice 
7.8 dB 

PIBF 
432 

55.6 Kbps 

116 Kbps 

CD quality 
audio 
7.8 dB 

The Min-Sum (MS) algorithm has the most computational complexity among 

the three implemented algorithms. The decoded bits/second is only 2.3 Kbps. This 

bit rate would be too low for even compressed voice data. To achieve a bit error rate 

of 10 -5, the signal to noise ratio Eb/No requires at least 3.8 dB. 
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In the IBF algorithm, the time consuming minimum function in the Min-Sum 

algorithm is replaced by the exclusive OR instruction for the parity check and the 

addition for the check error counter. As a result, the decoding throughput is in

creased by 113% to 4.8 Kbps. Since only hard bits are used for decoding, to achieve 

a bit error rate of 10~5, the minimum required signal-to-noise ratio Eb/No is 7.8 dB. 

The PIBF algorithm is more complex than the IBF algorithm. Essentially more 

operations are required in the variable node operation to calculate the Flipping Pat

tern. With respect to the number of decoding clock cycles per thread, PIBF requires 

40% additional instruction cycles compared with the IBF algorithm. However, due 

to the bit-wise parallelism, the decoding throughput could increase 10.3 times. In 

addition, the coding gain is at the same level of the IBF algorithm according to the 

simulation results. 
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Chapter 5 

Hardware Optimization and 
Extensions 

5.1 The XInC Emulator 

A XInC emulator was designed at the beginning of this research project to allow 

the outputs and performance metrics to be predicted for alternative algorithms run

ning with any given input. Specifically, the XInC emulator could be used for the 

following purposes. 

First, the required instruction cycles per decoded bit of alternative LDPC-CC 

decoding algorithms can be evaluated. In the XInC, some instructions are 16-bit in

structions while other instructions are 32-bit instructions (or 2-word instructions). 

To execute a 2-word instruction, two passes are required through the data process

ing pipeline. The number of instruction cycles per decoded bit is defined as the total 

number of instruction words required per decoded information bit. For a (128,3,6) 

LDPC-CC, each decoding phase decodes 1 information bit and 1 check bit. As 

a result, the instruction cycle per decoded bit is equal to the total number of in

struction words that are required to implement one LDPC-CC decoding processor. 

The instruction cycles per decoded bit is the primary cost measurement for decod

ing algorithms since it is not related to hardware-specific parameters such as clock 
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frequency. It is a natural measurement of software algorithm complexity, which 

gives us how many instruction words are required to decode one information bit. 

Inside the XInC emulator, code profiling is used to determine exact cycle counts 

for program modules as well as instruction frequencies. This technique is widely 

used by software engineers to investigate the behavior of programs. For software 

engineers, code profiling is generally used to measure the frequency and duration 

of each function call. It can thus be used to identify the main bottlenecks in a pro

gram at the function call level. Software engineers can then focus their efforts on 

the most critical bottleneck functions. Instead of measuring the duration of function 

calls, the XInC emulator measures the frequency of instructions and the frequency 

of instruction formats. The frequency of an instruction is the total number of times 

that one instruction at a specific memory address is executed. There are a total of 18 

instructions and 31 instruction formats in the XInC (Note: some instructions have 

2 instruction formats). The frequency of an instruction format is defined to be the 

total number of times that one instruction of the given format are executed. This 

lower-level code profiling method can help to identify the algorithm bottlenecks at 

the instruction level. 

Second, the emulator can be used to evaluate different hardware designs with

out having to build costly physical hardware system prototypes. It also allows us 

to simulate the effects of possible modifications to the hardware components. For 

example, some algorithm bottlenecks might be reduced or eliminated if certain ad

ditional hardware components were to be added. Before adding them to the real 

hardware, they could be added to the emulator model first. The performance of 

these new components could then be evaluated and confirmed using the emulator. 

Third, using an emulator helps when debugging algorithms. More detailed de

bugging information, such as register values, can be collected and then displayed 

later for any clock cycle. 
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In the XInC emulator, the multi-threaded microprocessor is simulated on a clock 

cycle basis. Machine code is the input to the emulator. For each simulated clock 

cycle, one instruction word is read and its behaviour on the registers is simulated. 

Inside the emulator, memories, general-purpose registers, program counter registers 

and condition code registers are encapsulated by C++ objects. The emulator can be 

configured to execute a predefined number of clock cycles, or it can be allowed to 

execute instructions until the next breakpoint is encountered in the program. All the 

values of registers, memories and I/O ports can be read out. The frequency of each 

instruction and frequency of each instruction format are recorded as the emulator is 

running. 

5.2 Hardware Optimization 

The LDPC-CC decoding algorithm was analyzed on the XInC emulator. By code 

profiling, algorithm bottlenecks could be identified. In addition, various ways of 

extending the XInC microprocessor were studied to eliminate bottlenecks in the 

LDPC-CC application. 

Table 5.1 shows the code profiling results for the check node calculation of 

the Bit Flipping algorithm for the same benchmark (128,3,6) LDPC-CC. The code 

segment reads hard bit inputs from the memory and calculates the check result. 

Through code profiling, we determined that the Bit Flipping algorithm check node 

operation needs 744 instructions. In addition, we could see that the actual check 

operation only takes one instruction at address 0xC3El. The remaining instructions 

are used for reading the data from the memory. Those instructions include looping 

overhead, memory movement and pointer calculations. 

Table 5.2 shows the frequency of the various instruction formats for a Min-

Sum decoding processor which includes a check node and a variable node. There 

are a total of 31 instruction formats in the XInC. This profiling result helps us to 
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Address 

0xC3C6 
0xC3C7 
0xC3C8 
OxC3C8 
0xC3C9 
OxC3CA 
OxC3CA 
OxC3CB 
OxC3CC 
OxC3CE 
OxC3CF 
OxC3Dl 
0xC3D2 

0xC3D4 
OxC3D5 
0xC3D7 
OxC3D8 
0xC3D9 
0xC3D9 
OxC3DA 
OxC3DA 
OxC3DC 
OxC3DD 
OxC3DF 
OxC3El 
0xC3E2 
OxC3E3 
0xC3E4 

Frequency 

6 
6 

42 
42 
36 
36 
36 
36 
36 
36 
36 
36 

36 
36 
36 
35 

1 

36 
36 
36 
36 
36 
36 
36 
36 

Machine Code 

0xlB80 
0x2B80 

0x4DFA 
0x081A 

0xB2A7 
0x332E 
0x23F2 OxFODC 
0x232C 
0x03F6 0xD290 
0x8AAD 
OxOBCl 0x0408 

0x0B41 
0x03Cl 0xE7C0 
0x2C01 
0x0101 

0x4800 

0x03F6 0xD596 
0x0308 
0x03FC0xF154 
0x03F0 0xD89C 
0xlDC3 
0x6D01 
0x01E4 

Section 5.2: Hardware Optimization 

II calculate check result 
mov r3,0 
mov r5,0 
loadPeTheseLLRsCond: 
sub rl,r5,nCheckDegMax 
be ZS,loadPeTheseLLRsEnd 
loadPeTheseLLRsBody: 
Id r6,r2,pnCheckDegRowPosition 
add r6,r6,r5 
Id r4,r2,pnPosition 
add r4,r4,r5 
Id r0,r6,matOnesInPcmYRowPosition 
Id rl,r2,pnSymbolMatLLRPosition 
add rl,rl,nCodeC*nBufWidth* 
nProcSize 
subrl,rl,r0 
sub r0,rl,nBufLength 
be NC,replacePnTheseRows 
bra storePnTheseRows 
replacePnTheseRows: 
addrl,r0,0 
StorePnTheseRows: 
Id rO,r6,matOnesInPcmX 
addr0,r0,rl 
st rO,r4,pnMatLLRPosition 
Id r0,r0,matLLRBuffer 
xor r3,r3,r0 
addr5,r5,l 
bra loadPeTheseLLRsCond 
loadPeTheseLLRsEnd: 

Table 5.1: Instruction Frequencies for the Bit Flipping Algorithm Check Node Cal
culation 
Address Frequency Machine Code Assembly Code 

0xB2A7 
0x332E 
0x23F2 OxFODC 
0x232C 
0x03F6 0xD290 
0x8AAD 
OxOBCl 0x0408 

0x0B41 
0x03Cl 0xE7C0 
0x2C01 
0x0101 

0x4800 

0x03F6 0xD596 
0x0308 
0x03FC0xF154 
0x03F0 0xD89C 
0xlDC3 
0x6D01 
0x01E4 
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identify which instruction formats are the most frequently executed. As shown in 

the table, the three most frequent instructions are bra kl 1 (unconditional branch), 

add rl,r2,k3 (2's complement add) and be cl,k2 (conditional branch). Most of 

these instructions are associated with the looping overhead. The fifth to seventh 

most frequent instructions are Id (load from RAM) and st (store to RAM). They are 

associated with data movement. 

After reviewing these profiling results, we grouped all the instructions into three 

groups: looping overhead, data movement and other operations. The looping over

head group includes bra, add and be. Data movement group includes Id and st. The 

last operation group includes all the other instructions. 

The instruction frequency for each group is shown in Table 5.3. In the table, MS 

stands for Min-Sum; IBF stands for Improved Bit Flipping algorithm; and PIBF 

stands for Parallel Improved Bit Flipping algorithm. 

From Table 5.3, the looping overhead group accounts for 38%, 26% and 35% 

of the total instructions in MS, IBF and PIBF algorithm. The reason is that many 

parts of the algorithms are repeated, such as: loading and storing soft bits from 

memory, and performing check and variable node operations among these bits. In 

addition, most of the instruction segments inside the loop are short, making the 

looping overhead a relatively large proportion of the whole algorithm. 

In traditional looping, the programmer generally requires 3 instructions to con

trol the loop: 1) testing whether the loop ends , 2) jumping to the beginning of the 

loop, and 3) incrementing or decrementing the loop counter. 

To eliminate the looping overhead, zero-overhead looping could be used. This 

hardware technique is already used in many Digital Signal Processors (DSPs) to im

prove the efficiency of general-purpose microprocessors when executing the loops 

that commonly appear in signal processing applications. By using specialized hard

ware, looping is controlled without cycles. 
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Table 5.2: Instruction Format Frequency of a Min-Sum Decoding Processor includ
ing a Check Node and a Variable Node 

Instruction Format 
bra kl 1 
addrl,r2,k3 1 
be cl,k2 1 
addrl,r2,r3 
Idrl,r2,k3 2 
Idrl,r2,k3 1 
strl,r2,k3 2 
movrl,k2 
subrl,r2,r3 
xorrl,r2,r3 
strl,r2,k3 1 
addrl,r2,k3 2 
iorrl,r2,r3 
andrl,r2,r3 
outprl,k2 
andrl,r2,k3 
inprl,k2 
bisrl,r2,k3 
jsrrl,k2 
rolrl,r2,k3 
bicrl,r2,k3 
jsr rl,r2 
thrdrl 
ldrl,k2 
strl,k2 
movrl,k2 2 
bccl,k2 2 
iorrl,r2,k3 
rolrl,r2,r3 
brakl2 
bixrl,r2,k3 

Frequency 
672 
414 
329 
285 
237 
174 
128 
117 
100 
96 
94 
87 
54 
36 
25 
20 
16 
12 
10 
10 
8 
8 
6 
4 
2 
1 
0 
0 
0 
0 
0 
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Table 5.3: LDPC-CC Decoding Algorithm Operation Frequency 

Instruction Group 
Looping Overhead 
Data Movement 
Other Operations 

MS 
38% 
19% 
43% 

IBF 
26% 
38% 
36% 

PIBF 
35% 
30% 
35% 

Data movement is another significant activity of the LDPC-CC decoding algo

rithm. A large amount of memory storage is used to store the soft bit or hard bit 

information and intermediate check node and variable node results, and many in

structions are required to read and manipulate the data. 19%, 38% and 30% of the 

total instructions are recorded for this purpose in MS, IBF and PIBF algorithms, 

respectively. In ASICs or FPGAs, this bottleneck may be minimized by customized 

memory design. For example, multiple data words could be accessed in parallel in 

one clock cycle by exploiting a multi-port memory. However, this is not available 

if we are limited to the original XInC architecture. Permitting the use of multi-port 

memory would require major changes to the given architecture. 

5.2.1 Zero Overhead Looping 

As shown in Table 5.3, more than 26% of the instructions in the decoding processor 

are associated with looping overhead. In the XInC, a typical loop might require 3 

instructions (sub, be, bra) for looping control, as shown below: 

mov rO,#loopCounter ; initialize loop counter 

loopCont: 

sub r0,r0,l ; decrement the loop counter, this is overhead 

be ZS, loopEnd; determine if looping ends, this is overhead 

bra loopCont; branch to the loop beginning, this is overhead 

loopEnd: 
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In the XInC emulator, the zero-overhead looping mechanism was added and 

emulated in behavioral way. The looping time could be reduced by up to 75% if 

three instructions were used to control the loop and only one instruction was inside 

the loop. For each XInC thread, several new register sets are required to provide 

zero-overhead looping. Each register set includes a zero-overhead loop counter, a 

looping start register and a looping end register. The loop counter indicates how 

many loop iterations remains to be executed. The loop counter is decremented by 

1 when the end of the loop is reached. The looping start register and looping end 

register store the looping program start address and looping program end address. 

In addition, two new instructions are created. One instruction will be denoted by 

movZOLR Rx, #counter. It initializes the looping counter Rx as #counter. The 

second new instruction will be denoted by setZOLA Rx,#endAddress. It copies 

the current Program Counter (PC) value to the looping start register. In addition, 

#endAddress is stored in the looping end register. 

The new assembly language code of the zero-overhead looping could be, 

movZOLR RO, #counter ; set loop counter 

setZOLA RO, loopend; set looping start address and end address 

loopend: 

In Figure 5.1, the zero-overhead looping mechanism is represented in a flow 

chart. This algorithm would be enabled to run once for every instruction as long 

as the corresponding assembly language loop is enabled. It runs in parallel with 

instruction execution. The zero-overhead looping hardware monitors the Program 

Counter (PC) and looping end register. When the program counter value equals 

the looping end address, the PC is reloaded with the looping start address and the 

loop counter is decremented by 1. When the loop counter is decremented to 0, the 

looping is finished. 
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N 

± 
Program Counter ++ 

Looping Counter = Looping Counter -1 

Program Counter = Looping start address 

Figure 5.1: Zero-overhead Looping Flow Chart 

In Figure 5.2, the example zero-overhead looping circuitry is given. The looping 

start register stores the looping program start address. The looping end register 

stores the looping program end address. The loop counter register stores the loop 

counter. The upper XOR gate is used to compare whether the looping program has 

reached the end of the program loop. If the program counter equals to the value in 

the looping end register, the XOR gate result is '0'. The bottom XOR gate is used 

to compare the loop counter with '0' to determine if the loop is finished. When the 

loop counter is decremented to '0', the XOR gate result is '0'. Two NOR gates and 

one AND gate are used to check whether both two XOR gate results are '0'. If this 

condition is true, the loopControl signal is T . The loop counter is added by " - 1 " 

and the program counter is set as the looping start register value. 

It is also possible to use more complicated zero-overhead looping mechanisms. 

For example, the loop counter could be replaced by a loop counter start register, a 

loop counter end register, a loop counter step register and a loop counter direction 
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flag register. In this way, the loop counter could have more flexible loop start, loop 

end, loop step and loop direction. 

Note that the maximum number of allowed nested loops in a program would 

be limited by the number of zero overhead loop circuits. This is a limitation, but a 

minor one for many signal processing algorithms. 

5.2.2 Performance Evaluation of the Zero-overhead Looping 

Zero-overhead looping was emulated behaviorally on the XInC emulator. After 

the LDPC-CC PIBF decoding algorithm was re-implemented and simulated, its 

decoding throughput was found to be further increased by 16%. Without zero-

overhead looping, the total number of instructions per decoding processor is 356 

and the total number of instruction cycles per decoding processor is 432. With 

zero-overhead looping, the total number of instructions per decoding processor is 

reduced by 22% to 278 and the total instruction cycles per decoding processor is 

reduced by 16% to 364. 

Figure 5.3 shows the number of instruction cycles per decoding processor for the 

Min-Sum algorithm, Improved Bit Flipping algorithm, Parallel Improved Bit Flip

ping algorithm and Parallel Improved Bit Flipping algorithm with zero-overhead 

looping. The check node operation and variable node operation instruction cycles 

in one decoding processor are shown. The total number of instruction cycles is the 

sum of those two instruction cycles. 

Min-Sum algorithm has complex check node and variable node operations such 

as the minimum function. Its check node requires 422 instruction cycles and its 

variable node requires 257 instruction cycles. The Improved Bit Flipping algorithm 

uses much simpler logical instructions, such as XOR, AND and OR, and its instruc

tion cycles are consequently fewer than that of the Min-Sum algorithm. Its check 

node requires 262 instruction cycles and its variable node requires 53 instruction 
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cycles. The Parallel Improved Bit Flipping algorithm has a more complex variable 

node than the Improved Bit Flipping algorithm, which calculates the flipping pat

terns, FP1 and FP2. Its check node requires 252 instruction cycles and its variable 

node requires 180 instruction cycles. The Parallel Improved Bit Flipping algorithm 

with zero-overhead looping removes the looping overhead, so it requires less in

struction cycles than the Parallel Improved Bit Flipping algorithm. Its check node 

instruction cycle count is 205 and its variable node cycle count is 159. 

Figure 5.4 shows the decoding throughput of the 12 MIPS XInC-I microproces

sor for the Min-Sum algorithm, the Improved Bit Flipping algorithm, the Parallel 

Improved Bit Flipping algorithm and the Parallel Improved Bit Flipping algorithm 

with zero-overhead looping. The decoding throughput is measured as the total de

coded information bit per second. The Min-Sum algorithm's decoding throughput 

is 2.2 Kbps. The Improved Bit Flipping algorithm uses simple logical operations 

in the decoding process and the decoding throughput is 4.8 Kbps. The Parallel Im

proved Bit Flipping algorithm uses bit-wise parallelism to decode 16 bits at a time. 

Its decoding throughput is 55.6 Kbps. When the zero-overhead looping feature is 

used in Parallel Improved Bit Flipping algorithm, the decoding throughput could 

further be increased to 65.9 Kbps. 
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Figure 5.2: Example Zero-overhead Looping Circuitry 
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Chapter 6 

Future Research Directions and 
Conclusions 

6.1 Future Research Directions 

In this section, some preliminary ideas that might further improve the current algo

rithms and coding gain are discussed. 

6.1.1 Longer LDPC-CCs 

(M,J,K) LDPC-CCs with a larger memory window M might be implemented on 

multi-threaded microprocessors to increase the coding gain. The code implemen

tations investigated in this thesis are readily extendible to handle such a change, 

provided there is sufficient available memory capacity in hardware. 

For LDPC-BCs, the bit stream is decoded block-by-block. Check nodes and 

variable nodes in one iteration could be placed on silicon chip in parallel and they 

could be run at the same time. The same check nodes and variable nodes are shared 

by the following decoding iterations for the same block. For a LDPC-BC with a 

block length more than a thousand bits, thousands of variable nodes and hundreds 

of check nodes would be required. As a result, wire routing among these nodes 

becomes a critical challenge to implement long LDPC-BCs. 
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For LDPC-CCs, the bit streams is decoded continuously. Multiple decoding 

processors, which are each analogous to one decoding iteration for LDPC-BCs, are 

realized in parallel. Only one check node and one variable node are required in 

each decoding processor. Hence, the wire routing problem is greatly reduced for 

LDPC-CCs compared to LDPC-BCs. 

Since the wire routing problem for LDPC-CCs is greatly reduced, longer LDPC-

CCs could be implemented to get better coding gain. The computational complexity 

of LDPC-CC decoder would stay the same, except that longer LDPC-CCs would 

require more memories. In our current implementation, only the (128,3,6) LDPC-

CC was used. If the LDPC-CC length could be increased to more than 1000, the 

coding gain might improve more than 2 dB according to simulation results reported 

in [8]. 

6.1.2 Precision 

In the Bit Flipping algorithm, hard bits are used for decoding. During the decoding 

process, these bits are still kept as hard bits. Only one bit is used to represent the 

received signal. 

In contrast, in the Min-Sum algorithm, soft bits are used. Received signals are 

represented as fixed-point numbers or integers. However, parity check operations 

on soft bits require complex computing methods and relatively large memory capac

ity. Received signals are normally sampled, quantized and then sent to the decoder 

directly. 

In Figure 6.1, the Min-Sum algorithm was simulated with soft bit precisions of 

2-, 3-, 4- and 8- bits. The bit error rate versus the signal-to-noise ratio E{,/N0 result 

is shown. The results confirm that coding gain is improved if more bits are used to 

represent the signal. When a soft bit is represented by a 4-, 3- and 2-bit number, the 

coding gain is close to that of the real number within 0.2,0.5 and 2 dB, respectively. 
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When a soft bit is represented by a 8-bit number, the coding gain is almost the same 

as that of the real number. 

•| Q - 6 I I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 

Eb/No (dB) 

Figure 6.1: Min-Sum Algorithm Performance with Precision 8- ,4- ,3- and 2-Bits 

According to this simulation results, decoding algorithm complexity could be 

further analyzed for different precisions and to determine their corresponding cod

ing gains. 

The coding gain of the Bit Flipping algorithm could be increased by increasing 

the soft bit precision from one bit to more bits. This would allow the algorithm to 

exploit some of the reliability information. For example, we could use "strong 1", 

"weak 1", "strong 0", "weak 0"soft bit values in a 2-bit representation. Note that 

the parity check operations could still be relatively simple logical operations. These 
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operations might be only a little more complex than that of the 1-bit algorithm. Bit

wise parallelism might be used. Hence, the coding gain could be increased by 

introducing more than a single bit of precision. 

On the other hand, the precision of the Min-Sum algorithm could be limited to 

4 bits with only 0.2 dB of coding gain loss compared to the real number represen

tation. Since microprocessors could compute 16-, 32- or 64-bits one at a time, a 

modified Min-Sum algorithm might be able to decode 2, 4 or 8 bits concurrently. 

Such parallel algorithms could also be further investigated. 

When only a few bits (for example, less than 3 bits) are used to represent the 

received signal samples, the check node and variable node operation could use a 

small lookup table (or a small network of logic gates) to replace the parity check 

operation. For example, for a 3-bit Min-Sum algorithm, 1 bit is used for the sign 

and 2 bits are used for the magnitude. The look-up table length for check nodes is 

only 212 = 4096 if the logic operation is based on the 2-bit magnitude for a (N,3,6) 

LDPC-CC. With look-up tables, the check node calculation for 2-bit soft bits might 

be as fast as for the bit-flipping algorithm. 

6.1.3 Hybrid Decoder Design 

Hybrid decoder designs might be worth investigating when the Signal-to-Noise 

Ratio cannot be pre-determined. In such a situation, the decoders could switch 

between the Min-Sum algorithm and the Bit Flipping algorithm according to the 

channel conditions (e.g. Signal-to-Noise Ratio). When the SNR is high, the Bit 

Flipping algorithm could be used to reduce the decoding time and save power con

sumption. When the SNR is low, Min-Sum algorithm could be used to achieve 

better coding gain in exchange of more computing complexity. 
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6.1.4 Adaptive Bit Flipping Algorithm 

As we discussed bit flipping in Chapter 3.1, some error bits might never get flipped 

(i.e. corrected) if the threshold is too conservative. On the other hand, an overly 

aggressive threshold could cause some of the correct bits to be flipped erroneously. 

According to the simulation result, the best threshold value might be related to the 

bit error rate. As a result, the bit flipping algorithm might automatically choose the 

proper threshold value according to the estimated bit error rate. If the estimated bit 

error rate is increasing, the algorithm could decide that the current threshold value is 

too aggressive and is thus causing too many errors, and hence a more conservative 

threshold should be chosen. On the other hand, if the bit error rate could not be 

reduced further using the current threshold value, the algorithm could decide that 

the current threshold value might be too conservative. Then a more aggressive 

threshold value could be used for further decoding. Such adaptive algorithms might 

help to increase the coding gain and speed up the algorithm further. 

6.2 Main Contributions and Conclusions 

Error control coding is widely used in the communication field to combat transmis

sion errors caused by noise disturbances. By adding appropriate redundant infor

mation to the transmitted information, the contaminated signal can be recovered at 

the receiver without error. In his landmark 1948 paper [1], Claude Shannon showed 

that for any given channel bandwidth and signal power to noise power ratio (SNR), 

there exists a maximum bit rate at which information can be encoded and decoded 

without error at the receiver. Since then, information theorists have searched for 

coding methods whose performance could approach the Shannon Limit. After 50 

years of research, low-density parity-check block codes (LDPC-BCs) were found 

to be a class of capacity-approaching codes within 0.0034 dB of the Shannon Limit 

[4]. However, these codes require complex encoding and decoding algorithms to 
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implement. Current research on LDPC codes is focused mainly on code construc

tions with implementable encoding and decoding algorithms. 

One of the difficulties when implementing LDPC block codes is their complex 

encoder since the generator matrix is no longer low density. Moreover, Low Density 

Parity Check Convolutional Codes (LDPC-CCs) have a simpler encoder structure 

inherited from traditional convolutional codes. 

Current popular decoding algorithms for LDPC codes process bit reliability in

formation from the received signal. These algorithms involve relatively complex 

fixed-point calculations. In order to realize the desired decoding throughput, these 

decoders have to be implemented in ASIC or FPGA technology. However, there are 

many advantages to implementing LDPC codes in microprocessors. First, the en

coder and decoder algorithms could share the same microprocessor resources with 

other algorithms and this would reduce product costs. As an example of a wire

less audio application, audio compression and decompression algorithms could be 

implemented with LDPC-CC encoding and decoding algorithms in the same mi

croprocessor. Second, the development cycle when using a microprocessor is fast 

and the development cost is low while the ASIC fabrication process is expensive 

and costs several months of engineering time. 

In this thesis, several decoding algorithms were investigated. The main contri

butions of this research project are as follows. 

1. The multi-threaded microprocessor was found to be a suitable architecture 

for implementing LDPC-CC decoding algorithms. The iterative decoding process 

was realized by several identical decoding processors which could be mapped to 

multiple threads on a multi-threaded microprocessor. In addition, the built-in bit

wise parallelism in microprocessor could decode 16, 32, or 64 bits in one time when 

the bit flipping algorithm is used. 

2. The Bit Flipping algorithm was found to be suitable for high Signal-to-Noise 
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Ratio applications. Popular decoding algorithms, such as the Sum-Product algo

rithm or the Min-Sum algorithm, might not be suitable for microprocessors since 

they require a relatively large amount of calculation on fixed-point numbers. On 

the contrary, the BF algorithm only uses hard bit and logical operations and can 

be implemented by exploiting the bit-wise parallelism that is already present in the 

instruction sets of most microprocessors. 

3. The coding gain of the original Bit Flipping algorithm was improved by 

the discovery of the bit flipping threshold pattern. Through simulation, the best 

pattern was determined for a (128,3,6) LDPC-CC. Alternating between a conser

vative threshold (where a bit is flipped only when all the parity check constraints 

fail) and an aggressive threshold (where a bit is flipped when the majority of the 

parity check constraints fail) not only improves the coding gain, it also speeds up 

the error correction convergence. The Improved Bit Flipping algorithm with bit 

flipping threshold pattern (3 - 2)+ achieves 2.5 dB better coding gain compared to 

Gallager's original algorithm with a fixed bit flipping threshold pattern (3)+ at a Bit 

Error Rate of 10~4. It also has the coding gain within 3.5 dB of the Min-Sum algo

rithm. In addition, the decoding throughput is 24 times faster than the benchmark 

Min-Sum algorithm. 

4. A XInC emulator was built to quantitatively analyze the performance of 

the algorithms. Looping overhead and data movement were identified as being 

the main bottlenecks. Zero-overhead looping was added to the emulator to permit 

experiments that could measure the benefits of the new feature on performance. The 

emulation results show that the decoding throughput could be further increased by 

16% using this hardware improvement. 
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Appendix A 

XInC Emulator C++ Source Code 

/ / F i lename: xinc . cpp 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Class xinc implementat ion 
// 
/ / Date: Jan 24 , 2008 

# inc lude "xinc .h" 
# inc lude " x i n c l i b .h" 
# inc lude < c s t r i n g > 
# inc lude < s t r i n g > 
# inc lude < i o s t r e a m > 
# inc lude < f s t r eam> 
#inc lude < c s t d l i b > 
# inc lude < c o n i o . h > 
# inc lude < c s t d i o > 

using namespace s t d ; 

xinc :: xinc () 
{ 

systemClockCycle =0; 

for ( i n t i = 0 ; i < 8 ; i + + ) { 
i sTwoWordsIns t ruct ion [ i ] = f a l s e ; 
f i r s t W o r d [ i ] = 0 ; 
b r a S t a t u s [ i ] = 0 ; 

} 

n e w e s t L o g = " " ; 

for ( i = 0 ; i < 6 5 5 3 6 ; i + + ) { 
a d d r e s s S t a t [ i ] = 0 ; 

} 
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f 

f i leLog = fa lse ; 
screenLog = fa l se ; 
se r ia l InOpen = fa l se ; 
ser ia lOutOpen = fa l se ; 
i n s t r u c t i o n L o g 2 = fa l se ; 

ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 
ins t ruc t ionName 

[0]=' 
[1]=' 
[2]=' 
[3]= ' 
[4]=' 
[5]=' 
[6]=' 
[7]=' 
[8]=' 
[9]= ' 
[10] = 
[11] = 
[12] = 
[13] = 
[14] = 
[15] = 
[16] = 
[17] = 
[18] = 
[19] = 
[20] = 
[21] = 
[22] = 
[23] = 
[24] = 
[25] = 
[26] = 
[27] = 
[28] = 
[29] = 
[30] = 
[31] = 
[32] = 

add r l , r2 , r 3 " ; 
add r l , r 2 ,k3 1 
add r l , r 2 , k 3 2 
and r l , r2 , r3 "; 
and rl , r 2 , k 3 " ; 
be c l , k 2 1"; 
be c l , k 2 2" ; 
bic r l , r2 , k 3 " ; 
bis rl , r2 , k 3 " ; 
bix rl , r2 , k 3 " ; 

="bra kl 1"; 
="bra kl 2" ; 
=" inp r l , k 2 " ; 
="ior r l ,r2 , r3 " 
="ior r l , r2 , k 3 " 
=" j sr r l , r2 "; 
=" j s r r l , k 2 " ; 
="ld rl , r 2 , k 3 1 
="ld rl , r 2 , k 3 2 
="ld rl , k 2 " ; 
="mov rl , k 2 " ; 
="mov rl ,k2 2" ; 
="outp rl , k 2 " ; 
="rol r l , r2 , r 3 " 
="rol rl ,r2 , k 3 " 
="st rl , r2 ,k3 1 
="st rl , r2 ,k3 2 
="st rl , k 2 " ; 
="sub rl ,r2 , r3 " 
" t h rd r l " ; 
"xor r l ,r2 , r3 " 
"movZOLR rl ,k3 

="setZOLA rl ,k3 

for ( i = 0 ; i < 3 3 ; i + + ) i n s t r u c t i o n S t a t [ i ] = 0; 

bool xinc :: load (char* f i l ename) 
{ 

i f s t ream fp_in ; 

if (s t rcmp(&fi lename [ s t r l e n ( fi lename)— 3] , "hex") !=0) { 
cout « " E r r o r : F i le should be ended with \ " h e x \ " " « end l ; 
r e t u r n fa lse ; 

} 
fp . in . open(f i lename , ios :: in | i o s : : b inary ) ; 

i f ( f p . i n . f a i l ( ) ) 
{ 

cout « " E r r o r : Input f i l e open f a i l ! " « end l ; 
r e t u r n fa lse ; 

} 
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in t i=0 ; 
unsigned char f i r s tBy te , secondByte ; 
shor t twoBytes; 
f i r s t B y t e = f p _ i n . g e t ( ) ; 
secondByte = fp_in . get ( ) ; 
while (! fp . in . eof ( ) ) { 

twoBytes=(secondByte « 8) | f i r s t B y t e ; 

if ( i>=49152) { 
ram[i - 4 9 1 5 2 ] . se tValue (twoBytes ) ; 

} 
i++; 
f i r s t B y t e = fp . in . get ( ) ; 
secondByte = fp- in . get ( ) ; 

} 
fp . in . close ( ) ; 
cout « " F i l e loaded s u c c e s s f u l l y ! " « e n d l ; 
s t rncpy (fi lenameRoot , filename , s t r l e n ( f i l e n a m e ) - 4 ) ; 
f i lenameRoot [ s t r l e n ( f i l ename) — 4]=0; 
r e t u r n t rue ; 

}; 

void xinc :: se tTwoWordsIns t ruct ion (bool isTwoWords , shor t threadNum) 
{ 

i sTwoWordsIns t ruct ion [threadNum]=isTwoWords; 
} 

bool xinc :: getTwoWordsInst ruct ion ( s h o r t threadNum) 

{ 
r e tu rn isTwoWordsIns t ruct ion [ threadNum]; 

} 

void xinc :: se tF i r s tWord ( shor t f i rs tWordValue , shor t threadNum) 
{ 

f i rs tWord [threadNum]= firstWordValue ; 
} 

shor t xinc :: ge tF i r s tWord( shor t threadNum) 

{ 
r e t u r n f i rs tWord [threadNum ] ; 

} 

bool xinc :: i sThreadRun( in t threadNum) 

{ 
if ( ( p e r i p h e r a l R e g i s t e r W r i t e [ 4 ] . getValue () & (1 « threadNum)) ==0) { 

r e tu rn t rue ; 
} 
e lse { 

r e tu rn fa l se ; 
} 

}; 
void xinc :: iMov( in t threadNum , shor t i n s t r u c t i o n ) 

{ 
if (ge tTwoWordsIns t ruc t ion (threadNum)) { 
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short r= (getFirstWord(threadNum) & 0x3800) » 11; 
short k2=instruction ; 
thread [threadNum]. setR(k2 , r ) ; 

// cout « "mov R1,K2 W2, second word" ; 

addLog ("mov R"+unsignedLong2String (r)+" ,"+ signedShort2String (k2) 
+"(0x"+short2HexString(k2)+")" ,threadNum); 

} 
else if ( ( ins t ruct ion & 0xc7c0) == 0x0380) { // mov R1,K2W1 

short r=( instruction & 0x3800) » 11; 
short k2=signedExtension ( ins t ruct ion &0x3f ,6 ) ; 
thread [threadNum]. setR(k2,r) ; 

// cout « "mov R1.K2 Wl" ; 
addLog ("mov R"+unsignedLong2 String (r)+","+signedShort2String (k2)+"(0x"+ 

short2HexString (k2)+")" , threadNum ); 

} 
else if ( ( ins t ruct ion & 0xc7ff) == Ox03e8) { // mov R1,K2W2 

setT wo Words Inst ruction (true , threadNum); 
setFirstWord (instruction .threadNum); 

// cout « "mov R1,K2 W2" ; 

} 

xinc :: iOutp ( int threadNum , short ins t ruct ion) 

string log; 

if (getTwoWordsInstruction (threadNum)) { 

} 
else { 

unsigned short k2=instruction & 0x7f; 
short r=(instruct ion & 0x3800) » 11; 
peripheralRegisterWrite [k2]. setValue( thread [threadNum ] . getR(r ) ) ; 

if (! peripheralRegisterWrite [k2]. getlsOutputSet ()) { 
peripheralRegisterWrite [k2].setIsOutputSet( t rue) ; 

} 
else { 

// cout « "Warning: Output" « k2 « "already set!" « endl; 
} 

if (k2==32) { 
if (SPI0tx==l) { 

SPI0tx=0; 
short controlByte ; 
con trolByte= thread [threadNum ] . getR(r ); 
if (controlByte ==0x4000) { // readConfiguration 

peripheralRegisterRead[k2]. setValue (0x00 ) ; 
} 
else if (controlByte==0x00) { // readByte 

if ( seriallnOpen ) { 
if (! fp . se r i a l In .eof ( ) ) { 
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peripheralRegisterRead[k2]. setValue( f p . s e r i a l l n . g e t ( ) ) ; 
} 

} 

} 
else if ((controlByte <0) && ((unsigned short) controlByte != OxcOOf)) { 

//writeByte // OxcOOf is writeConfigure 
if ( serialOutOpen ) { 

fp.serialOut . put ((unsigned char) (controlByte & 0 x f f ) ) ; 
fp.serialOut . flush ( ) ; 
peripheralRegisterRead [k2]. setValue(0x00 ); 

} 

} 
else { 

peripheralRegisterRead [k2]. setValue (0x00 ); 
cout « "Error: I/O control word error - " « 

thread [threadNum ] . getR(r) « endl; 
} 

} 
else { 

SPI0tx = l; 
short controlByte ; 
controlByte=thread[threadNum].getR(r) & Oxff; 
if ( controlByte ==0x40) { // readConfiguration 

peripheralRegisterRead [k2]. setValue(0x40); 
} 
else if (controlByte==0x00) { // readByte 

peripheralRegisterRead [k2]. set Value (0xc2 ); 
} 
else if (( short)( controlByte « 8)<0) { //writeByte 

peripheralRegisterRead [k2]. setValue (0x00 ); 
} 
else { 

peripheralRegisterRead [k2]. setValue (0x00 ); 
cout « "Error: I/O control word error - " « 

thread [threadNum ] . getR(r) « endl; 
} 

} 

} // SPIOtx 
// cout « "outp rl ,k2" ; 

log="outp R"+unsignedLong2String (r)+","+signedShort2String(k2)+ 
"(0x"+short2HexString(k2) + " ) " ; 

log= log+ " IO[0x"+short2HexString(k2)+"]="+ 
signedShort2String( thread [threadNum]. getR(r )) + "(0x"+ 
short2HexString (thread [threadNum]. getR(r)) + ") "; 

addLog (log , threadNum ); 
} 

} 

void xinc :: iBra ( int threadNum , short ins t ruct ion) 
{ 

string log; 
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if ( getTwoWordsInst ruct ion (threadNum )) { 
shor t k l= i n s t r u c t i o n ; 
log="bra " + s i g n e d S h o r t 2 S t r i n g ( k l ) + " ( 0 x " + s h o r t 2 H e x S t r i n g ( k l ) + " ) " ; 
log= log+ " PC=0x"+short2HexString (( uns igned) 

( t h r e a d [threadNum ] . getPc ( )+kl +1))+" "; 
addLog (log , threadNum ) ; 

thread [ threadNum]. setPc ( (uns igned )( thread [threadNum ] . ge tPc( ) + kl ) ) ; 
/ / cout « "bra kl W2, second word" ; 

} 
e l se { 

if ( ( i n s t r u c t i o n & Oxff) ! = 0x0) { / / bra Kl Wl 
shor t k l= s ignedExtens ion ( i n s t r u c t i o n & O x f f , 8 ) ; 
if (k l != - 1 ) { 

b r a S t a t u s [threadNum]=0; 
} 
e lse { 

if ( b r a S t a t u s [ threadNum]>=l) { 
b r a S t a t u s [threadNum]=2; 

/ / bra @ many times , no log for clean 
} 
e lse { 

b r a S t a t u s [threadNum] = 1; / / bra @ f i r s t times 
p e r i p h e r a l R e g i s t e r R e a d [ 4 ] . s e t V a l u e ( p e r i p h e r a l R e g i s t e r R e a d [ 4 ] . 

ge tValue( ) | ( 1 « threadNum)); 
} 

} 
log="bra " H - s i g n e d S h o r t 2 S t r i n g ( k l ) + " ( 0 x " + s h o r t 2 H e x S t r i n g ( k l ) + " ) " ; 
log= log+ " PC=0x"+short2HexString ( (uns igned ) 

( t h r ead [ threadNum]. getPc () + kl +1))+" "; 
if ( b r a S t a t u s [threadNum]! =2) { 

addLog (log , threadNum ) ; 
} 
thread [threadNum ] . setPc ( (uns igned )( thread [threadNum ] . ge tPc ( )+k l ) ) ; 
i n s t r u c t i o n S t a t [ 1 0 ] + + ; 
newestILog2=newestILog2+"| 10"; 

/ / cout « "bra Kl Wl" ; 

} 
else { / / bra Kl W2 

setTwoWordsIns t ruct ion ( t rue . threadNum); 
se tF i r s tWord ( i n s t r u c t i o n , threadNum); 
i n s t r u c t i o n S t a t [11]++; 
newestILog2=newestILog2+"| 1 1 " ; 

/ / cout « "bra Kl W2" ; 
} 

} 
} 

void xinc :: iAdd( int threadNum , shor t i n s t r u c t i o n , shor t method) 
{ 

shor t rl , r2 , r3 ; 
shor t addl ,add2 , addResult ; 
in t addResul t l ; 
s t r i n g l o g = " " ; 
switch (method) 

{ 
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case 0: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x7) ; 
r3=(instruction & 0x38) » 3; 

addl=thread [threadNum]. getR(r2); 
add2=thread [threadNum]. getR ( r3) ; 

// cout « "add r l , r 2 , r 3 " ; 
log="add R"+unsignedLong2String (rl )+" ,R"+ 

unsignedLong2String (r2)+" ,R"+unsignedLong2String (r3 )+" 

break; 
case 1: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x700) » 8; 
addl =thread [ threadNum ] . getR(r2 ); 
add2= signedExtension( instruction & 0 x f f , 8 ) ; 

// cout « "add r l , r 2 , k 3 " ; 
log="add R"+unsignedLong2String (r l )+" ,R"+ 

unsignedLong2 String (r2)+","+signedShort2String (add2) 
+"(0x"+short2HexString (add2)+")"; 

break; 
case 2: 

if (getTwoWordsInstruction (threadNum)) { 
rl=(getFirstWord(threadNum) & 0x3800) » 11; 
r2=(getFirstWord(threadNum) & 0x7) ; 
addl=thread [ threadNum ] . getR (r2 ); 
add2=instruction ; 

// cout « "add rl ,r2,k3 W2" ; 
log="add R"+unsignedLong2String (r l )+",R"+ 

unsignedLong2String (r2)+","+ 
signedShort2String(add2)+"(0x"+short2HexString(add2) + " ) ' 

} 
else { 

setTwoWordsInstruction (true .threadNum ); 
setFirstWord (instruction , threadNum ); 

// cout « "add r l , r 2 , k 3 wl" ; 
return ; 

} 
break; 

default: 

} 

addResult=addl+add2; 
addResultl =(unsigned short)addl+(unsigned short)add2; 
log= log+ " R"+unsignedLong2String(rl )+"="+ 

signedShort2String(addResult)+"(0x"+short2HexString(addResult)+") "; 
if (addResult==0) { 

thread [threadNum ] . setStatusZ () ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum]. clrStatusZ ( ) ; 
log=log+"Z=0,"; 
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} 
if (addResult <0) { 

thread [threadNum ] . se tSta tusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [ threadNum]. c l rS ta tusN ( ) ; 
log=log+"N=0," ; 

} 
if ( ( a d d l > 0 && add2>0 && addResult <0) | | ( addKO && add2<0 && addResult >0)) { 

thread [threadNum ] . se tSta tusV ( ) ; 
log=log+"V=l ,"; 

} 
e lse { 

thread [ threadNum]. c l rS ta tusV ( ) ; 
log = log+"V=0," ; 

} 
if (addResul t l >65535) { 

thread [threadNum ] . s e tS t a tusC ( ) ; 
log=log+"C=l" ; 

} 
else { 

thread [threadNum ] . c l rS t a tu sC ( ) ; 
log=log+"C=0"; 

} 
thread [threadNum ] . se tR( addResult , r l ) ; 
addLog (log , threadNum); 

} 

void xinc :: iAnd( int threadNum , shor t i n s t r u c t i o n , shor t method) 
{ 

shor t rl , r2 , r3 ; 
shor t andl , and2 , andResult ; 
s t r i n g l o g ; 

switch (method) 
{ 

case 0: 

r l = ( i n s t r u c t i o n & 0x3800) » 11; 
r 2 = ( i n s t r u c t i o n & 0x7) ; 
r 3 = ( i n s t r u c t i o n & 0x38) » 3 ; 

and l= th read [ threadNum]. getR(r2 ) ; 
and2=thread [ threadNum]. ge tR(r3 ) ; 

/ / cout « "and r l , r 2 , r 3 " ; 
log="and R"+unsignedLong2Str ing ( r l ) + " ,R"+ 

unsignedLong2Str ing ( r 2 ) + " ,R"+unsignedLong2 String ( r 3 ) + " "; 

b reak ; 

case 1: 
if (ge tTwoWordsIns t ruc t ion (threadNum)) { 

r l= (ge tF i r s tWord( th readNum) & 0x3800) » 11; 
r2=(ge tF i r s tWord( threadNum) & 0x7) ; 
andl = thread [ threadNum]. g e t R ( r 2 ) ; 
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a n d 2 = i n s t r u c t i o n ; 
/ / cout « "and r l , r 2 , k 3 w2" ; 

log="and R"+unsignedLong2Str ing ( r l ) + " ,R"+ 
unsignedLong2Str ing (r2 ) + " , " + s i g n e d Short2 S t r ing (and2) 
+" (0x"+shor t2HexSt r ing(and2 ) + " ) " ; 

} 
e lse { 

se tTwoWordsIns t ruct ion ( t rue , threadNum ) ; 
se tF i r s tWord ( i n s t r u c t i o n , threadNum ) ; 

/ / cout « "and r l , r 2 , k 3 wl" ; 
r e t u r n ; 

} 
b reak ; 

de fau l t : 

} 

andResul t=andl & and2; 
log= log+ " R"+unsignedLong2Str ing ( r l )+"="+ 

s i g n e d S h o r t 2 S t r i n g ( andResu l t )+ 
" (0x"+sho r t2HexS t r i ng (andResu l t )+") "; 

if ( andResul t==0) { 
thread [threadNum ] . s e tS ta tusZ ( ) ; 
log=log+"Z=l ,"; 

} 
else { 

thread [ threadNum]. c l r S t a t u s Z ( ) ; 
log=log+"Z=0," ; 

} 
if (andResult <0) { 

thread [ threadNum]. se tSta tusN ( ) ; 
log=log+"N=l ,"; 

} 
e lse { 

thread [threadNum ] . c l rS ta tusN ( ) ; 
log = log+"N=0," ; 

} 
if ( ( a n d l | a n d 2 ) != and2 ) { 

thread [threadNum ] . se tSta tusV ( ) ; 
log=log+"V=l ,"; 

} 
e lse { 

thread [threadNum ] . c l rS ta tusV ( ) ; 
log=log+"V=0," ; 

} 
if ( (andResul t >0) && (andResul t < 256)) { 

thread [threadNum ] . s e tS ta tusC ( ) ; 
log=log+"C=l" ; 

} 
e lse { 

thread [threadNum] . c l r S t a t u s C ( ) ; 
log=log+"C=0"; 

} 
thread [threadNum ] . setR ( andResult , r l ) ; 
addLog ( log , threadNum ) ; 

} 
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void xinc :: iBc( int threadNum , short instruction , short method) 
{ 

short displacement; 
short condition ; 
string log; 

switch (method) 
{ 

case 0: 

displacement = signedExtension( instruction & Oxff ,8) ; 
condition=(instruction & 0x3c00) » 10; 

// cout « "be cl ,k2" ; 

log="bc C"+unsignedLong2String (condition )+" ,"+ 
signedShort2String (displacement )+"(0x"+ 
short2HexString( displacement) + " ) " ; 

break; 

case 1: 
if (getTwoWordsInstruction (threadNum)) { 

displacement=instruction ; 
condition=(getFirstWord(threadNum) & 0x3c00) » 10; 

// cout « "be cl ,k2 w2" ; 

log="bc C"+unsignedLong2String ( condition )+" ,"+ 
signedShort2String( displacement )+"(0x"+ 
short 2HexString( displacement) + " ) " ; 

} 
else { 

setTwoWordsInstruction (true ,threadNum ); 
setFirstWord( instruction .threadNum); 

// cout « "be cl ,k2 wl"; 
return; 

} 
break; 

default: 

} 
bool test = false ; 
switch (condition) { 

case 0: 
test=thread [threadNum]. isCl ( ) ; // c 
break; 

case 1: 
test = thread [threadNum]. isVl ( ) ; // v 
break; 

case 2: 
test = thread [threadNum ] . isZl () ; // z 
break; 

case 3: 
test=thread [threadNum ] . isNl ( ) ; // n 
break; 

case 4: 
test = thread [threadNum ] . isCl () | | 

thread [ threadNum ] . isZl () ; // c |z 
break; 

case 5: 
test=xor2 (thread [threadNum ]. isNl () , 

thread [threadNum ].isVl ( ) ) ; // n " v 

99 



break ; 
case 6: 

t e s t = x o r 2 ( thread [threadNum ] . isNl () , 
thread [threadNum ] . isVl ( ) ) | | thread [threadNum ] . isZl ( ) ; 

/ / ( n " v ) | z 
b reak ; 

case 7: 
t e s t = t h r e a d [threadNum J . i sNl () | | thread [threadNum ] . i sZl ( ) ; 
/ / n | z 
b reak ; 

case 8: 
t e s t = ! thread [threadNum ] . isCl ( ) ; / / !c 
b reak ; 

case 9: 
t e s t = ! thread [threadNum J . i sVl ( ) ; / / !v 
b reak ; 

case 10: 
t e s t = ! thread [ threadNum]. isZl ( ) ; / / !z 
b reak ; 

case 11: 
t e s t = ! thread [ threadNum]. isNl ( ) ; / / !n 
b reak ; 

case 12: 
t e s t =!( thread [ threadNum]. isCl () | | thread [threadNum ] . i sZl ( ) ) ; 
/ / ! ( c | z ) 
b reak ; 

case 13: 
t e s t = ! x o r 2 ( thread [ threadNum]. isNl () , thread [threadNum ] . is VI ( ) ) ; 
/ / ! (n"v) 
b reak ; 

case 14: 
t e s t = ! ( x o r 2 ( thread [threadNum J . i sNl () . t h r e a d [ threadNum]. isVl ( ) ) 

| | thread [ threadNum ] . i s Z l ( ) ) ; / / ( ( n " v ) | z ) 
b reak ; 

case 15: 
t e s t =!( thread [threadNum ] . isNl () | | thread [threadNum ] . i sZl ( ) ) ; 
/ / ! ( n | z ) 
b reak ; 

d e f a u l t : 
cout « "be cond i t ion e r r o r : c o n d i t i o n : " « cond i t i on « endl ; 

} 
if ( t e s t ) { 

log= log+ " PC=0x"+short2HexString ( th read [ threadNum]. ge tPc( )+ 
d isp lacement + l )+" "; 

addLog (log , threadNum ) ; 
thread [threadNum ] . setPc ( t h r ead [threadNum ] . g e t P c ( ) + d i s p l a c e m e n t ) ; 

} 
else { 

addLog (log , threadNum ) ; 
} 

} 

void xinc :: iBic ( i n t threadNum , shor t i n s t r u c t i o n ) 

{ 
shor t rl , r2 ; 
shor t opl ,op2 , opResu l t ; 
s t r i n g l o g ; 
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r l = ( i n s t r u c t i o n & 0x3800) » 11; 
r2=( i n s t r u c t i o n & 0x7) ; 

op 1=thread [threadNum ] . g e t R ( r 2 ) ; 
op2=( i n s t r u c t i o n & 0x78) » 3 ; 
opResul t=opl & ( ~ ( l < < o p 2 ) ) ; 

log="bic R"+unsignedLong2Str ing ( r l )+" ,R"+unsignedLong2Str ing ( r 2 ) + " ,"+ 
s i g n e d S h o r t 2 S t r i n g ( o p 2 ) + " ( 0 x " + s h o r t 2 H e x S t r i n g ( o p 2 ) + " ) " ; 

log= log+ " R"+unsignedLong2Str ing ( r l ) + " = " + s i g n e d S h o r t 2 S t r i n g (opResul t )+"(0x"+ 
shor t2HexSt r ing ( opResult )+") "; 

if (opResul t==0) { 
thread [threadNum ] . s e tS ta tusZ ( ) ; 
log=log+"Z=l ,"; 

} 
e lse { 

thread [threadNum ] . c l r S t a t u s Z ( ) ; 
log = log+"Z=0," ; 

} 
if (opResult <0) { 

thread [threadNum ] . se tSta tusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum ] . c l rS ta tusN ( ) ; 
log=log+"N=0," ; 

} 
if ( ( ( o p l & ( l « o p 2 ) ) » op2)==l ) { 

thread [ threadNum]. se tSta tusV ( ) ; 
log=log+"V=l ,"; 

} 
e lse { 

thread [ threadNum]. c l rS ta tusV ( ) ; 
log=log+"V=0," ; 

} 
if ( (opResul t >0) && (opResul t < 256)) { 

thread [threadNum ] . s e tS ta tusC ( ) ; 
log=log+"C=l" ; 

} 
e lse { 

thread [threadNum ] . c l rS ta tusC ( ) ; 
log=log+"C=0"; 

} 

thread [threadNum ] . se tR( opResult , r l ) ; 
/ / cout « " b i c r l , r 2 , k 3 " ; 

addLog (log , threadNum); 

} 

void xinc :: iBis ( int threadNum , shor t i n s t r u c t i o n ) 
{ 

shor t r l , r2 ; 
shor t opl ,op2 , opResu l t ; 
s t r i n g log ; 
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r l=( ins t ruc t ion & 0x3800) » 11; 
r2=( instruction & 0x7) ; 

op 1 = thread [threadNum ]. getR(r2); 
op2=( instruction & 0x78) » 3; 
opResult=opl | ( l « o p 2 ) ; 

log="bis R"+unsignedLong2String ( r l )+" ,R"+unsignedLong2String (r2)+" ,"+ 
signedShort2String(op2)+"(0x"+short2HexString(op2 ) + " ) " ; 

log= log+ " R"+unsignedLong2String (rl )+"="+signedShort2String(opResult) 
+"(0x"+short2HexString( opResult)+") "; 

if (opResult==0) { 
thread [threadNum ] . setStatusZ () ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusZ () ; 
log=log+"Z=0,"; 

} 
if (opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum]. clrStatusN () ; 
log=log+"N=0,"; 

} 
if ( ( (opl&(l«op2)) » op2)==l ) { 

thread [threadNum ] . setStatusV ( ) ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusV () ; 
log=log+"V=0,"; 

} 
if ((opResult >0) && (opResult < 256)) { 

thread [threadNum]. setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum ] . clrStatusC () ; 
log = log+"C=0"; 

} 

thread [threadNum ] . setR( opResult , rl ); 
cout « "bis r l , r 2 , k 3 " ; 
addLog (log , threadNum ); 

d xinc :: iBix ( int threadNum , short ins t ruct ion) 

short rl , r2 ; 
short opl ,op2 , opResult; 
string log; 

r l=( ins t ruc t ion & 0x3800) » 11; 
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r2=(instruction & 0x7) ; 

op 1=thread [threadNum ]. getR(r2); 
op2=( instruction & 0x78) » 3; 
opResult=opl " ( l « o p 2 ) ; 
log="bix R"+unsignedLong2String ( r l )+" ,R"+unsignedLong2String (r2)+ 

","+signedShort2String(op2)+"(0x"+short2HexString(op2 ) + " ) " ; 

log= log+ " R"+unsignedLong2String (rl )+"="+signedShort2String (opResult) 
+"(0x"+short2HexString(opResult)+") "; 

if (opResult==0) { 
thread [threadNum ] . setStatusZ () ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum]. clrStatusZ ( ) ; 
log=log+"Z=0,"; 

} 
if (opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusN () ; 
log=log+"N=0,"; 

} 
if ( ( (opl&(l«op2)) » op2)==l ) { 

thread [threadNum ] . setStatusV () ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusV () ; 
log=log+"V=0,"; 

} 
if ((opResult >0) && (opResult < 256)) { 

thread [threadNum ] . setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum ] . clrStatusC () ; 
log=log+"C=0"; 

} 

thread [threadNum ] . setR( opResult , rl ); 
// cout « "bix r l , r 2 , k 3 " ; 

addLog (log , threadNum); 

} 

void xinc :: ilnp (int threadNum , short ins t ruct ion) 
{ 

unsigned short k2=instruction & 0x7f; 
short r=(instruct ion & 0x3800) » 11; 
short opResult = peripheralRegisterRead [k2 ] . get Value ( ) ; 
string log; 

thread [threadNum ]. setR (opResult , r ); 
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log="inp R"+unsignedLong2String (r)+" ,"+signedShort2String(k2)+ 
"(0x"+short2HexString(k2) + " ) " ; 

log= log+ " R"+unsignedLong2String (r)+"="+signedShort2String (opResult)+ 
"(0x"+short2HexString( opResult)+") "; 

if (opResult==0) { 
thread [threadNum]. setStatusZ ( ) ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum]. clrStatusZ ( ) ; 
log=log+"Z=0,"; 

} 
if (opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum]. clrStatusN () ; 
log=log+"N=0,"; 

} 
if ((opResult&l)==l ) { 

thread [threadNum]. setStatusV () ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusV () ; 
log=log+"V=0,"; 

} 
if ((opResult >0) && (opResult < 256)) { 

thread [threadNum ] . setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum]. clrStatusC () ; 
log=log+"C=0"; 

} 

// cout « "inp rl ,k2" ; 
addLog (log , threadNum ); 

} 

void xinc :: ilor ( int threadNum , short instruction , short method) 
{ 

short rl ,r2 , r3 ; 
short opl ,op2 , opResult; 
string log; 

switch (method) 
{ 

case 0: 
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r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x7) ; 
r3=(instruction & 0x38) » 3; 

op 1 = thread [threadNum ]. getR(r2 ) ; 
op2=thread [threadNum ]. getR(r3 ); 

// cout « "ior r l , r 2 , r 3 " ; 
log="ior R"+unsignedLong2String (r l )+" ,R"+unsignedLong2String (r2)+ 

" ,R"+unsignedLong2String (r3 )+" "; 
break; 

case 1: 
if (getTwoWordsInstruction (threadNum)) { 

rl=(getFirstWord(threadNum) & 0x3800) » 11; 
r2=(getFirstWord(threadNum) & 0x7) ; 
opl = thread [threadNum]. getR(r2); 
op2=instruction ; 

// cout « "ior r l , r 2 , k 3 w2" ; 
log="ior R"+unsignedLong2String (rl )+",R"+unsignedLong2String (r2)+ 

","+signedShort2String(op2)+"(0x"+short2HexString(op2) + " ) " ; 
} 
else { 

setTwoWordsInstruction (true .threadNum ); 
setFirstWord( instruction .threadNum ); 

// cout « "ior r l , r 2 , k 3 wl" ; 
return ; 

} 
break; 

default: 

} 

opResult=opl | op2; 
log= log+ " R"+unsignedLong2String (rl )+"="+ 

signedShort2String(opResult)+"(0x"+short2HexString(opResult)+") "; 

if (opResult==0) { 
thread [threadNum]. setStatusZ () ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum ] .c l rS ta tusZ( ) ; 
log=log+"Z=0,"; 

} 
if (opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum]. clrStatusN () ; 
log=log+"N=0,"; 

} 
if ((opl & op2) = op2 ) { 

thread [threadNum ] . setStatusV () ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusV ( ) ; 
log=log+"V=0,"; 

} 
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} 

if ((opResult >0) && (opResult < 256)) { 
thread [threadNum ] . setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum]. clrStatusC () ; 
log=log+"C=0"; 

} 
thread [threadNum ] . setR( opResult , rl ); 
addLog (log , threadNum); 

void xinc :: iJsr ( int threadNum , short instruction , short method) 
{ 

short rl , r2 ; 
short op,op2; 
string log; 

switch (method) 
{ 

case 0: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x7) ; 
op2=thread [threadNum]. getR(r2 ); 

// cout « "jsr rl , r2" ; 
log="jsr R"+unsignedLong2String (rl )+",R"+ 

unsignedLong2String (r2)+" "; 

break ; 

case 1: 
if ( getTwoWordsInstruction (threadNum )) { 

rl=(getFirstWord(threadNum) & 0x3800) » 11; 
op2=instruction ; 

// cout « "jsr rl ,k2 w2" ; 
log="jsr R"+unsignedLong2String (r l )+","+ 

signedShort2String(op2)+"(0x"+short2HexString(op2) + " ) " ; 

} 
else { 

setTwoWordsInstruetion (true ,threadNum); 
setFirstWord (instruction .threadNum ); 

// cout « "jsr rl ,k2 wl" ; 
return ; 

} 
break; 

default : 

} 

op=thread [threadNum ] . getPc () ; 

log= log+ " R"+unsignedLong2String (rl )+"=0x"+short2HexString (( short )(op + l))+" "; 
log= log+ " PC=0x"+short2HexString((short)(op2))+" "; 
addLog (log , threadNum); 

thread [threadNum ] . setPc (( short )(op2 - 1)); 
thread [threadNum ] . setR (( short)(op+ l ) , r l ); 
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} 

void xinc :: iLd( int threadNum , short instruction , short method) 
{ 

short rl , r2 ; 
short opl ,op2 , opResult ; 
string log; 

switch (method) 
{ 

case 0: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x700) » 8; 

short displacement; 
displacement=signedExtension ( ins t ruct ion & Oxff ,8) ; 

op 1 = thread [threadNum ] . getR(r2 ); 
op2=opl + displacement; 

// cout « "Id rl ,r2 ,k3" ; 

log="ld R"+unsignedLong2String (rl )+" ,R"+unsignedLong2String (r2) 
+", "+signedShort2 String (displacement )+"(0 x"+ 
short2HexString( displacement) + " ) " ; 

break; 
case 1: 

if (getTwoWordsInstruction (threadNum)) { 
rl=(getFirstWord(threadNum) & 0x3800) » 11; 
r2=(getFirstWord( threadNum) & 0x7) ; 
op 1=thread [threadNum ]. getR(r2 ); 
op2=opl + instruction ; 

// cout « "Id r l , r 2 , k 3 w2" ; 

log="ld R"+unsignedLong2String (rl )+" ,R"+unsignedLong2String (r2)+ 
","+signedShort2String ( ins t ruct ion )+ 
"(0x"+short2HexString ( ins t ruct ion ) + " ) " ; 

} 
else { 

setTwoWordsInstruction (true , threadNum); 
setFirstWord( instruction ,threadNum); 

// cout « "Id r l , r 2 , k 3 wl" ; 
return ; 

} 

break; 
case 2: 

if (getTwoWordsInstruction (threadNum)) { 
rl=(getFirstWord(threadNum) & 0x3800) » 11; 

op2=instruction ; 
// cout « "Id rl ,k2 w2" ; 

log="ld R"+unsignedLong2 String (r l )+","+ signedShort 2 String (op2) 
+"(0x"+short2HexString(op2 ) + " ) " ; 

} 
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else { 
setTwoWordsInst ruction (true , threadNum ); 
setFirstWord( instruction , threadNum); 

// cout « "Id rl ,k2 wl" ; 
return ; 

} 
break; 

default: 

} 

opResult=ram[( short )(op2-49152)]. getValue () ; 

log= log+ " R"+unsignedLong2String (rl )+"="+signedShort2String(opResult) 
+"(0x"+short2HexString(opResult)+") "; 

if (opResult==0) { 
thread [threadNum ] . setStatusZ ( ) ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum]. clrStatusZ ( ) ; 
log=log+"Z=0,"; 

} 
if (opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum]. clrStatusN ( ) ; 
log=log+"N=0,"; 

} 
if ((opResult&l)==l ) { 

thread [threadNum]. setStatusV () ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum]. clrStatusV () ; 
log=log+"V=0,"; 

} 
if ((opResult >0) && (opResult < 256)) { 

thread [threadNum ] . setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum]. clrStatusC () ; 
log=log+"C=0"; 

} 
thread [threadNum ] . setR (opResult , rl ); 
addLog (log , threadNum ); 

} 

void xinc :: iRol ( int threadNum , short instruction , short method) 
{ 

short rl , r2 , r3 ; 
short opl ,op2 , opResult; 
string log; 
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switch (method) 
{ 

case 0: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x7) ; 
r3=(instruction & 0x38) » 3; 

op 1=thread [threadNum ]. getR(r2 ); 
op2=thread [threadNum ].getR(r3) % 16; 

// cout « "rol rl ,r2 ,r3 " ; 
log="rol R"+unsignedLong2String (r l )+" ,R"+ 

unsignedLong2String (r2)+" ,R"+unsignedLong2String (r3)+" "; 

break; 
case 1: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=( instruction & 0x7); 
op 1 = thread [threadNum ] . getR(r2 ); 
op2= ( ins t ruct ion & 0x78) » 3; 

// cout « "rol r l , r 2 , k 3 " ; 
log="rol R"+unsignedLong2String ( r l )+" ,R"+ 

unsignedLong2String (r2)+","+signedShort2String(op2) 
+"(0x"+short2HexString(op2 ) + " ) " ; 

break; 

default: 

} 

unsigned short maskl ; 
if (op2>0) { 

mask l=( l«op2) - l ; 
opResult=((maskl«(16-op2) & o p l ) » (16-op2)) | 

( (((maskl«(16-op2)) " 0xffff)&opl) « o p 2 ) ; 

} 
else if (op2<0) { 

maskl=( l«abs(op2) ) - l ; 
opResult =(((maskl "0 xffff)&opl)>>(abs(op2 ))) | 

((maskl & opl) « (16-abs(op2))); 
} 
else { 

opResult=opl ; 
} 

log= log+ " R"+unsignedLong2String (rl )+"="+signedShort2String (opResult )+ 
"(0x"+short2HexString( opResult)+") "; 

if (opResult==0) { 
thread [threadNum]. setStatusZ () ; 
log=log+"Z=l ,"; 

} 
else { 
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thread [threadNum ] . clrStatusZ () ; 
log=log+"Z=0 ,"; 

} 
if ( opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusN () ; 
log=log+"N=0,"; 

} 
if ((opResult&l)==l ) { 

thread [threadNum ] . setStatusV ( ) ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusV () ; 
log=log+"V=0 ,"; 

} 
if ((opResult >0) && (opResult < 256)) { 

thread [threadNum ] . setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum ] . clrStatusC () ; 
log=log+"C=0"; 

} 
thread [threadNum ]. setR( opResult , r l ) ; 
addLog (log , threadNum ); 

} 

void xinc :: iSt ( int threadNum , short instruction , short method) 
{ 

short rl , r2 ; 
short opl ,op2 , opResult; 
string log; 

switch (method) 
{ 

case 0: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x700) » 8; 

short displacement; 
displacement = signedExtension( instruction & Oxff ,8) ; 

opl=thread [threadNum ] . getR(r2 ); 
op2=opl + displacement; 

// cout « "st r l , r 2 , k 3 " ; 

log="st R"+unsignedLong2String ( r l )+" ,R"+unsignedLong2String (r2)+ 
","+signedShort2String( displacement^ 
"(0x"+short2HexString( displacement)+")"; 

break; 
case 1: 

if (getTwoWordsInstruction (threadNum)) { 
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H=(getFirstWord(threadNum) & 0x3800) » 11; 
r2=(getFirstWord(threadNum) & 0x7) ; 
opl=thread [threadNum ]. getR(r2); 
op2=opl + instruction ; 

// cout « "st r l , r 2 , k 3 w2" ; 
log="st R"+unsignedLong2String (rl )+",R"+unsignedLong2String (r2)+ 

","+signedShort2String( instruction )+"(0x"+ 
short2 Hex String ( ins t ruct ion ) + " ) " ; 

} 
else { 

setTwoWordsInstruction (true .threadNum); 
setFirstWord (instruction .threadNum ); 

// cout « "st r l , r 2 , k 3 wl" ; 
return; 

} 

break; 
case 2: 

if (getTwoWordsInstruction (threadNum )) { 
rl=(getFirstWord(threadNum) & 0x3800) » 11; 

op2=instruction ; 
// cout « "st rl ,k2 w2" ; 

log=" st R"+unsignedLong2String ( rl )+" ,"+ 
signed Short2String(op2)+"(0x"+short2HexString(op2 ) + " ) " ; 

} 
else { 

setTwoWordsInstruction (true , threadNum ); 
setFirstWord (instruction .threadNum); 

// cout « "st rl ,k2 wl" ; 
return; 

} 
break; 

default : 

} 

opResult = thread [threadNum ] . getR(rl ); 
ram [(short )(op2-49152)]. setValue ( opResult ); 
log=log +"RAM[0x"+short2HexString(op2 )+"]="+ 

signedShort2String( opResult )+ 
"(0x"+short2HexString (opResult) + " ) " ; 

addLog (log , threadNum ); 

} 

void xinc :: iSub(int threadNum , short ins t ruct ion) 
{ 

short rl ,r2 , r3 ; 
short subl , sub2 , subResult; 
int subResultl ; 
string log; 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x7) ; 
r3=(instruction & 0x38) » 3; 
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subl=thread [threadNum ] . getR(r2 ); 
sub2=thread [threadNum ] . getR(r3 ); 
subResult=subl-sub2; 
subResultl =subl-sub2; 

log="sub R"+unsignedLong2String ( r l )+" ,R"+unsignedLong2String (r2) 
+",R"+unsignedLong2String (r3)+" "; 

log= log+ " R"+unsignedLong2String (rl )+"="+signedShort2String (subResult) 
+"(0x"+short2HexString(subResult)+") "; 

if (subResult==0) { 
thread [threadNum ] . setStatusZ ( ) ; 
log=log+"Z=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusZ () ; 
log=log+"Z=0,"; 

} 
if (subResult<0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum]. clrStatusN () ; 
log=log+"N=0,"; 

} 
if ((subl>0 && sub2<0 && subResult <0) | | 

(subKO && sub2>0 && subResult >0)) { 
thread [threadNum ] . setStatusV () ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum]. clrStatusV () ; 
log=log+"V=0,"; 

} 

// if ((subResultl >32767) | | (subResultl <-32768)) { 
if (subl<sub2) { 

thread [threadNum]. setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum ] .c l rSta tusC() ; 
log=log+"C=0"; 

} 

thread [threadNum ] . setR( subResult , rl ); 

// cout « "sub rl ,r2 , r 3 " ; 
addLog (log , threadNum); 

} 

void xinc :: iThrd( int threadNum , short ins t ruct ion) 
{ 

string log; 
short r l=( ins t ruc t ion & 0x3800) » 11; 
thread [threadNum ] . setR(threadNum , rl ); 
log="thrd R"+unsignedLong2String (rl ); 
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log= log+ " R"+unsignedLong2String(rl )+"="+ 
s ignedShort2 String (threadNum )+ 
"(0x"+short2HexString(threadNum)+") "; 

addLog (log , threadNum ); 
cout « "thrd r l " ; 

d xinc :: iXor( int threadNum , short instruction , short method) 

short rl , r2 , r3 ; 
short opl ,op2 , opResult; 
string log; 

switch (method) 
{ 

case 0: 

r l=( ins t ruc t ion & 0x3800) » 11; 
r2=(instruction & 0x7) ; 
r3=(instruction & 0x38) » 3; 

op 1=thread [threadNum ]. getR(r2 ); 
op2=thread [threadNum ]. getR(r3 ); 

// cout « "xor r l , r 2 , r 3 " ; 
log="xor R"+unsignedLong2String (rl )+" ,R"+ 

unsignedLong2String (r2)+" ,R"+unsignedLong2String (r3 )+" 

break; 

case 1: 
if (getTwoWordsInstruction (threadNum)) { 

rl=(getFirstWord(threadNum) & 0x3800) » 11; 
r2=(getFirstWord(threadNum) & 0x7) ; 
op 1 = thread [threadNum ]. getR(r2); 
op2=instruction ; 
cout « "xor rl ,r2,k3 w2" ; 
log="xor R"+unsignedLong2String (rl )+" ,R"+ 

unsignedLong2String ( r2 )+","+ si gnedShort2 String (op2) 
+"(0x"+short2HexString(op2 ) + " ) " ; 

} 
else { 

setTwoWordsInstruction (true , threadNum ); 
setFirstWord( instruction ,threadNum); 

// cout « "xor r l , r 2 , k 3 wl" ; 
return; 

} 
break; 

default: 

} 

opResult=opl " op2; 
log= log+ " R"+unsignedLong2String (rl )+"="+ 

s ignedShort2String( opResult )+"(0x"+short2Hex String (opResult)+") 

if (opResult==0) { 
thread [threadNum ] . setStatusZ ( ) ; 
log=log+"Z=l ,"; 
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} 
else { 

thread [threadNum ] . clrStatusZ () ; 
log=log+"Z=0,"; 

} 
if (opResult <0) { 

thread [threadNum ] . setStatusN () ; 
log=log+"N=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusN () ; 
log=log+"N=0,"; 

} 
if ((opl & op2) == op2 ) { 

thread [threadNum]. setStatusV () ; 
log=log+"V=l ,"; 

} 
else { 

thread [threadNum ] . clrStatusV () ; 
log = log+"V=0,"; 

} 
if ((opResult >0) && (opResult < 256)) { 

thread [threadNum ] . setStatusC () ; 
log=log+"C=l"; 

} 
else { 

thread [threadNum ] . clrStatusC () ; 
log=log+"C=0"; 

} 
thread [threadNum ]. setR( opResult , rl ); 
addLog (log , threadNum); 

d xinc :: runThread () 

unsigned long cycle=getSystemClockCycle () ; 

int threadNum=cycle%8; 

if (threadNum == 0) { 

newestILog2=newestILog2+unsignedLong2String (cycle ); 
} 

if (isThreadRun(cycle%8)) { 
cout « "System Clock Cycle " « cycle « ":" ; 
cout « "Thread " « threadNum « " is running." ; 

// if two word instruction , execute at second run 
short instruction ; 

if (thread [threadNum]. getPc() <16384) { 
instruction=rom[ thread [threadNum ] . getPc ( ) ] . get Value ( ) ; 

} 
else if (thread [threadNum]. getPc()>=0xc000) { 

instruction=ram[ thread [threadNum ] . getPc()-0xc000 ] . getValue ( ) ; 
} 
else { 

cout « "Error: PC out of RAM and ROM range. PC=" 
« thread [threadNum]. getPc()-0xc000 « endl; 
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( getTwoWordsInstruct ion (threadNum )) { 
if ( (ge tF i r s tWord( th readNum) & 0xc7ff ) == 0x03e8) { / / mov R1,K2 W2 

iMov(threadNum , i n s t r u c t i o n ) ; 

} 
e lse if ( (ge tF i r s tWord( th readNum) & OxffOO) == 0x0100) { / / bra Kl W2 

iBra (threadNum , i n s t r u c t i o n ) ; 
} 
else if ( (ge tF i r s tWord( th readNum) & 0 x c 7 f 8 ) == 0x3c0) { / / add 

iAdd( threadNum , i n s t r u c t i o n , 2 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0 x c 7 f 8 ) == 0x3c8) { / / and r l , r 2 , k 3 

iAnd(threadNum , i n s t r u c t i o n , 1 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0 x c 7 f 8 ) == 0x3d0) { / / ior r l , r 2 , k 3 

i l o r (threadNum , i n s t r u c t i o n , 1 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0 x c 7 f 8 ) == 0x3d8) { / / xor r l , r 2 , k 3 

iXor(threadNum , i n s t r u c t i o n , 1 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0xc300) == 0x0) { / / be c l , k 2 

iBc(threadNum , i n s t r u c t i o n , 1 ) ; 
} 
else if ( (ge tF i r s tWord( th readNum) & 0 x c 3 f c ) == 0x3ec) { / / j s r r l , k 2 

i J s r (threadNum , i n s t r u c t i o n , 1 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0 x c 7 f 8 ) == Ox3fO) { / / Id r l , r 2 , k 3 

iLd(threadNum , i n s t r u c t i o n , 1 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0xc7ff) = 0x3ea) { / / Id r l , k 2 

iLd(threadNum , i n s t r u c t i o n , 2 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0 x c 7 f 8 ) == 0x3f8) { / / st r l , r 2 , k 3 

iSt(threadNum i n s t r u c t i o n , 1 ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & 0xc7ff ) == 0x3eb) { / / st r l , k 2 

iSt (threadNum , i n s t r u c t i o n , 2 ) ; 
} 
else if ( (ge tF i r s tWord( th readNum) & Oxff l f ) == 0x3901) { / / movZOLR r l , k 3 

iMovZOLR(threadNum , i n s t r u c t i o n ) ; 
} 
e lse if ( (ge tF i r s tWord( th readNum) & Oxff l f ) == 0x3902) { / / setZOLR r l , k 3 

iSetZOLA(threadNum , i n s t r u c t i o n ) ; 
} 
else { 
} 
se tTwoWordsIns t ruct ion ( f a l s e . threadNum); 

se if ( ( i n s t r u c t i o n & 0 x c 7 c 0 ) == 0x0380) { / / m o v R l , K 2 W l 

iMov(threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [20]++; 
newest ILog2=newest ILog2+" |20"; 

se if ( ( i n s t r u c t i o n & 0xc7ff ) == 0x03e8) { / / mov R1.K2W2 
iMov(threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [21]++; 
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newes t ILog2=newes t ILog2+" |21" ; 

} 
else if ( ( i n s t r u c t i o n & 0xc780) = 0x0280) { / / outp r l , k 2 

iOutp (threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n s t a t [22]++; 
newest ILog2=newest ILog2+" |22" ; 

} 
e l se if ( ( i n s t r u c t i o n & OxffOO) == 0x0100) { / / bra Kl & bra Kl W2 

iBra(threadNum , i n s t r u c t i o n ) ; 

} 
else if ( ( i n s t r u c t i o n & 0xc7c0) == 0x0300) { / / add R1,R2,R3 

iAdd(threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [ 0 ] + + ; 
newestILog2=newestILog2 +" 10"; 

} 
else if ( ( i n s t r u c t i o n & 0 x c 0 0 0 ) == 0x4000) { / / add Rl ,R2,K3 Wl 

iAdd (threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [ l ] + + ; 
newestILog2=newestILog2+" | 1"; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) == 0x3c0) { / / add R1,R2,K3 W2 

iAdd(threadNum , i n s t r u c t i o n , 2 ) ; 
i n s t r u c t i o n S t a t [ 2 ] + + ; 
newestILog2=newestILog2 +" 12"; 

} 
else if ( ( i n s t r u c t i o n & 0xc7c0) == 0x340) { / / sub r l , r 2 , r 3 

iSub(threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [ 2 8 ] + + ; 
newestILog2=newestILog2+" |2 8"; 

} 
e l se if ( ( i n s t r u c t i o n & 0 x c 7 c 0 ) = 0x540) { / / and r l , r 2 , r 3 

iAnd(threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [3]++; 
newestILog2=newestILog2 +" 13 "; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) == 0x3c8) { / / and r l , r 2 , K 3 

iAnd (threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [4]++; 
newestILog2=newestILog2 +" 14"; 

} 
else if ( ( i n s t r u c t i o n & 0xc7c0) == 0x580) { / / ior r l , r 2 , r 3 

i l o r (threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [13]++; 
newestILog2=newestILog2+"| 13" ; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) == 0x3d0) { / / ior r l , r 2 , K 3 

i l o r (threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [14]++; 
newestILog2=newestILog2+" | 14"; 

} 
else if ( ( i n s t r u c t i o n & 0 x c 7 c 0 ) == 0x5c0) { / / xor r l , r 2 , r 3 

iXor(threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [30]++; 
newest ILog2=newest ILog2+" |30"; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) = Ox3d8) { / / xor r l , r 2 , K 3 

116 



iXor(threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [ 3 1 ] + + ; 
newestILog2=newestILog2 +" 131"; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 c 0 ) == 0x500) { / / rol r l , r 2 , r 3 

iRol(threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [ 2 3 ] + + ; 
newest ILog2=newest ILog2+" |23" ; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 8 0 ) == 0x600) { / / rol r l , r 2 , k 3 

iRol (threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [24]++; 
newest ILog2=newest ILog2+" |24"; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 8 0 ) == 0x200) { / / inp r l , k 2 

i lnp (threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [12]++; 
newestILog2=newestILog2+"| 12"; 

} 
else if ( ( i n s t r u c t i o n & 0xc300) = 0x0) { / / be cl ,k2 

if ( ( i n s t r u c t i o n & 0xff)==0x0) { 
iBc (threadNum , i n s t r u c t i o n , 1 ) ; / / b e c l , k 2 w2 
i n s t r u c t i o n S t a t [6]++; 
newestILog2=newestILog2 +" 16"; 

} 
e lse { 

iBc (threadNum , i n s t r u c t i o n , 0 ) ; / / b e c l , k 2 wl 
i n s t r u c t i o n S t a t [5]++; 
newest ILog2=newest ILog2+" |5" ; 

} 
} 
else if ( ( i n s t r u c t i o n & 0xc780) == 0x680) { / / bic r l , r 2 , k 3 

iBic (threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [7]++; 
newestILog2=newestILog2 +" 17"; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 8 0 ) = 0x700) { / / b is r l , r 2 , k 3 

iBis (threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [8]++; 
newestILog2=newestILog2+" | 8"; 

} 
else if ( ( i n s t r u c t i o n & 0xc780) == 0x780) { / / bix r l , r 2 , k 3 

iBix (threadNum . i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [9]++; 
newest ILog2=newest ILog2+" |9" ; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) == 0x3e0) { / / j s r r l , r 2 

i J s r (threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [15]++; 
newestILog2=newestILog2+" | 15" ; 

} 
e lse if ( ( i n s t r u c t i o n & 0xc7fc) == 0x3ec) { / / j s r r l ,k2 

i J s r (threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [16]++; 
newestILog2=newestILog2+" | 16"; 

} 
e lse if ( ( i n s t r u c t i o n & 0 x c 0 0 0 ) == 0x8000) { / / Id r l , r 2 , k 3 wl 

iLd(threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [17]++; 
newestILog2=newestILog2+" | 17"; 
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} 
else 

} 

if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) = 
iLd(threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [18]++; 
newestILog2=newestILog2+" | 18"; 

0x3f0) { / / Id rl , r 2 , k 3 w2 

e lse if ( ( i n s t r u c t i o n & 0xc7f f ) == 0x3ea) { / / Id r l ,k2 
iLd(threadNum , i n s t r u c t i o n , 2 ) ; 
i n s t r u c t i o n S t a t [19]++; 
newestILog2=newestILog2+"| 19"; 

} 
e lse 

} 
e lse 

OxcOOO) { / / st r l ,r2 ,k3 wl 

0x3f8) { / / st rl , r2 ,k3 w2 

else 

} 
else 

} 
else 

} 
e lse 

} 
e lse 

if ( ( i n s t r u c t i o n & OxcOOO) == 
iSt (threadNum , i n s t r u c t i o n , 0 ) ; 
i n s t r u c t i o n S t a t [25]++; 
newest ILog2=newest ILog2+" |25" ; 

if ( ( i n s t r u c t i o n & 0 x c 7 f 8 ) == 
iSt (threadNum , i n s t r u c t i o n , 1 ) ; 
i n s t r u c t i o n S t a t [26]++; 
newest ILog2=newest ILog2+" |26" ; 

if ( ( i n s t r u c t i o n & 0xc7ff ) == 0x3eb) { / / st rl ,k2 
iSt (threadNum , i n s t r u c t i o n , 2 ) ; 
i n s t r u c t i o n S t a t [27]++; 
newest ILog2=newest ILog2+" |27" ; 

if ( ( i n s t r u c t i o n & 0xc7ff ) == 0x3e9) { / / thrd r l 
iThrd(threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [29]++; 
newest ILog2=newest ILog2+" |29" ; 

if ( ( i n s t r u c t i o n & 0 x f f l f ) == 0x3901) { / / movZOLR r l , k 3 
iMovZOLR(threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [32]++; 
newest ILog2=newest ILog2+" |32"; 

if ( ( i n s t r u c t i o n & 0 x f f l f ) == 0x3902) { / / setZOLA rl ,k3 
iSetZOLA(threadNum , i n s t r u c t i o n ) ; 
i n s t r u c t i o n S t a t [ 3 3 ] + + ; 
newest ILog2=newest ILog2+" |33" ; 

{ 
c o u t . s e t f ( i o s : : h e x ) ; 
cout « "The i n s t r u c t i o n cannot be decoded , address : Ox" 

« shor t2HexSt r ing ( th read [ threadNum]. getPc ( ) ) « 
" i n s t r u c t i o n : Ox" « shor t2HexSt r ing ( i n s t r u c t i o n ) 
« end l ; / / decode e r ro r 

thread [threadNum ] . setPc ( th read [threadNum ] . getPc ( ) + l ) ; 
/ / cout « end l ; 

} 
e lse { 
/ / cout « "Thread " « threadNum « " is not r u n n i n g . " ; 
/ / cout « e n d l ; 

newestILog2=newestILog2+"| - " ; 
} 

if (threadNum 7) { 
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newestILog2=newestILog2+"\n"; 
} 
zolProcess (threadNum ); 
setSystemClockCycle(getSystemClockCycle () + l ) ; 
if (cycle%8 ==0) { 

ioProcess ( ) ; 

} 

}; 

void xinc :: ioProcess () 
{ 

if (peripheralRegisterWrite [1] . getlsOutputSet ()) { 
unsigned short pntr = peripheralRegisterWrite [3] . getValue ( ) ; 
unsigned short threadNum =(pntr & 0x38) » 3; 
thread [threadNum ] . setPc(peripheralRegisterWrite [ 1 ] . getValue ( ) ) ; 
peripheralRegisterWrite [ 1 ] . setValue(O); 
peripheralRegisterWrite [ 1 ] . setIsOutputSet( false ); 
peripheralRegisterWrite [3] . setIsOutputSet( fa l se ) ; 

} 

if (peripheralRegisterWrite [0] . getlsOutputSet ()) { 
unsigned short pntr = peripheralRegisterWrite [3] . getValue () ; 
unsigned short threadNum =(pntr & 0x38) » 3; 
unsigned short registerNo=(pntr & 0x7) ; 
thread [threadNum]. setR(peripheralRegisterWrite [0] . getValue ( ) , registerNo ); 
peripheralRegisterWrite [0] .setValue(0); 
peripheralRegisterWrite [0] , setlsOutputSet ( false ); 
peripheralRegisterWrite [3] , setlsOutputSet (false ); 

} 

peripheralRegisterRead [4]. setValue(peripheralRegisterRead [4] . getValue () 
& ~ peripheralRegisterWrite [4] . getValue ( ) ) ; 
// if thread is stop , clear SCUBkpt 

} 

void xinc :: runSystemClockCycles (unsigned long length) 
{ 

unsigned long j=0; 
while ((! _kbhit() && (length ==0)) | | ((length !=0) && (j<length ))) { 

cou t .unse t f ( ios : : hex); 
// cout « "System Clock Cycle " « j « endl; 

// if thread 0 run, run thread 0 
runThread ( ) ; 
j++; 

// if thread 7 run, run thread 7 

// process i/o 
// process scupc write , scucc write , scu register read , scu register write 
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/ / second run to process scupc read , scucc read 

/ / p r i n t R e g i s t e r ( ) ; 
/ / p r i n t l o (0 , 4 ) ; 

} 

} 

void xinc :: p r i n t R e g i s t e r () 

{ 
cou t . s e t f ( i o s :: hex | ios : : r i g h t ) ; 
cout « " PC R0 Rl R2 R3 R4 R5 

R6 R7 N Z V C" « end l ; 
for ( i n t i = 0 ; i < 8 ; i + + ) { 

cout « i « " "; 

cout « " 0 x " ; 
cou t . width ( 4 ) ; 
cou t . f i l l ( ' 0 ' ) ; 
cout « shor t2HexStr ing ( t h r ead [ i ] . g e t P c Q ) « " "; 
for ( i n t j = 0 ; j <8; j++) { 

cout « "Ox" ; 
cout .width ( 4 ) ; 
cout . f i l l ( '0 ' ) ; 
cout « shor t2HexStr ing ( t h r ead [ i ] . ge tR( j )) « " "; 

} 
cou t . width ( 1 ) ; 
cout « ( ( th read [ i ] . g e t S t a t u s () & 8) » 3 ) « " "; 
cout . width ( 1 ) ; 
cout « ( ( th read [ i ] . g e t S t a t u s () & 4) » 2 ) « " "; 
cou t . width ( 1 ) ; 
cout « ( ( th read [ i ] . g e t S t a t u s () & 2) » 1 ) « " "; 
cou t . width ( 1 ) ; 
cout « ( ( t h r ead [ i ] . g e t S t a t u s () & 1) ) « " "; 

cout « endl ; 
} 

cout « end l ; 
cout « " ZOLR0 ZOLR1 ZOLR2 ZOLR3 ZOLR4 ZOLR5 ZOLR6 ZOLR7" « endl ; 
for ( i = 0 ; i < 8 ; i + + ) { 

cout « i « " "; 
for ( i n t j = 0 ; j <8 ; j++) { 

cout « "Ox" ; 
cou t . width ( 4 ) ; 
cou t . f i l l ( ' 0 ' ) ; 
cout « shor t2HexStr ing ( t h r ead [ i ] . getZOLR(j )) « " "; 

} 
cout « endl ; 

} 
cout « e n d l ; 
cout « " ZOLAS0 ZOLAS1 ZOLAS2 ZOLAS3 ZOLAS4 ZOLAS5 ZOLAS6 ZOLAS7" « e n d l ; 
for ( i = 0 ; i < 8 ; i + + ) { 

cout « i « " "; 
for ( i n t j = 0 ; j <8 ; j++) { 
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cout « "Ox" ; 
cout. width (4); 
cout. f i l l ( '0 ' ) ; 
cout « short2HexString (thread [i ].getZOLAS(j )) « " "; 

} 
cout « endl ; 

} 
cout « endl; 
cout « " ZOLAE0 ZOLAE1 ZOLAE2 ZOLAE3 ZOLAE4 ZOLAE5 ZOLAE6 ZOLAE7" « en 
for (i=0;i<8;i++) { 

cout « i « " "; 
for ( int j=0; j <8; j++) { 

cout « "Ox" ; 
cout. width (4); 
cout. f i l l ( '0 ' ) ; 
cout « short2HexString (thread [i ].getZOLAE(j )) « " "; 

} 
cout « endl ; 

} 

d xinc :: runTo( short address , char* logfilename ) 

int i=0; 
while (! -kbhi tQ) { 

runSystemClockCycles (1); 

if ( (shor t ) thread [systemClockCycle %8]. getPc()== address) return; 

// debug purpose begin 
//check nodes 
if ((unsigned short) thread [systemClockCycle %8].getPc()==0xc39a) { 

for ( int j=0;j<6;j++) { 
for ( int k=0;k<6;k++) { 

cout « ram[0xfl8c+j*6+k-0xc000]. getValue () « " "; 
} 
cout « endl; 
for ( k=0;k<6;k++) { 

cout « ram[0xfl68+j*6+k-0xc000], getValue () « " "; 

} 
cout « endl; 
for ( k=0;k<6;k++) { 

cout « ram[0xfl44+j*6+k-0xc000]. getValue () « " "; 

} 
cout « endl; 

} 
} 

// if ((unsigned short )thread [systemClockCycle %8].getPc()==0xc382) { 
// c o u t « short2HexString (thread [ l ] .getR(6)) « " "; 
// } 

// debug purpose end 

if ( fp .ser ia l ln . is.open ()) { 
if ( fp .ser ia l ln . eof()) { 

cout « "Read file end!" « endl; 
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r e tu rn ; 
} 

} 
if ( i==1000) { 

if (! saveNewestLog( logf i lename )) { 
cout « "Log f i l e wrong!" ; 

} 
i=0; 

} ; 
i++; 

} 
if (! saveNewestLog(logfi lename )) { 

cout « "Log f i l e wrong!"; 
}; 

} 

void xinc :: r e s e t () 
{ 

/ / I n i t i a l i z a t i o n 
int i ; 
for ( i = 0 ; i < 8 ; i + + ) { 

thread [ i ] . s e tPc (O) ; 
for ( i n t j = 0 ; j < 8 ; j + + ) thread [ i ] . setR (0 , j ) ; 
t h r e a d [ i ] . s e t S t a t u s ( 0 ) ; 

} 

for ( i = 0 ; i < 1 6 3 8 4 ; i + + ) { 
ram[ i ] . se tValue ( 0 ) ; 
rom[ i ] . s e t V a l u e ( 0 ) ; 

} 

for ( i = 0 ; i < 1 2 8 ; i + + ) { 
p e r i p h e r a l R e g i s t e r R e a d [ i ] . se tValue ( 0 ) ; 
p e r i p h e r a l R e g i s t e r R e a d [ i ] . s e t I s O u t p u t S e t ( f a l s e ) ; 
p e r i p h e r a l R e g i s t e r W r i t e [ i ] . s e t V a l u e ( 0 ) ; 
p e r i p h e r a l R e g i s t e r W r i t e [ i ] . s e t I s O u t p u t S e t ( f a l s e ) ; 

} 

systemClockCycle =0; 

/ / se t eeprom subprogram 
rom[ 10] . se tValue ( ( s h o r t ) 0 x l 3 e 8 ) ; 
rom[l 1 ] . se tValue ( ( s h o r t )0xc003) ; 
rom[12] . se tValue (( shor t )0x0be2) ; 

/ / set thread 0 pc 

/ / setPc(0xc000 , 0 ) ; 
thread [ 0 ] . setPc (OxcOOO ) ; 
/ / set thread 0 run 
p e r i p h e r a l R e g i s t e r W r i t e [ 4 ] . se tValue (254 ) ; / / 11111110 

for ( i = 0 ; i < 6 5 5 3 6 ; i + + ) { 
a d d r e s s S t a t [ i ]=0; 

} 

for ( i = 0 ; i < 3 2 ; i + + ) i n s t r u c t i o n S t a t [ i ]=0; 
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} 

void xinc :: setSystemClockCycle(unsigned long cycleNumber) 
{ 

systemClockCycle=cycleNumber; 
} 

unsigned long xinc :: getSystemClockCycle () 
{ 

return systemClockCycle ; 
} 

void xinc :: printRam(unsigned short start , unsigned short end) 
{ 

cout. setf( ios :: hex | ios :: r i gh t ) ; 
unsigned short address; 
address = start - start % 8; 
while (address <= end) { 

cout « "Ox" ; 
cout. width (4); 
cout « short2HexString (address) « " - " ; 
for ( int i=0;i<8;i++) { 

if ((address + i)>=start && (address + i)<=end) { 
cout « "Ox" ; 
cout. width (4); 
cout « short2HexString (ram[ address+i-OxcOOO ]. getValue ()) « 

} 
else { 

cout « " "; 
} 

} 
cout « endl; 

address = address +8; 

} 

void xinc :: printIO (unsigned short start , unsigned short end) 
{ 

int i ; 
cout. setf( ios :: hex | ios :: r igh t ) ; 
unsigned short address ; 
address = start — start % 8; 
while (address <= end) { 

cout « "W Ox" ; 
cout. width (4); 
cout. f i l l ( '0 ' ) ; 
cout « short2HexString( address) « " — " ; 
for (i=0;i<8;i++) { 

if (( address + i)>=start && (address + i)<=end) { 
cout « "Ox" ; 
cout . width (4); 
cout « short2HexString (peripheralRegisterWrite [address + i ] . 

getValue ()) « " "; 
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} 
else { 

cout « " "; 
} 

} 
cout « endl; 
cout « "R Ox" ; 
cout. width (4); 
cout. f i l l ( '0 ' ) ; 
cout « short2HexString (address) « " - " ; 
for (i=0;i<8;i++) { 

if ((address + i)>=start && (address + i)<=end) { 
cout « "Ox" ; 
cout. width (4); 
cout « short2HexString (peripheralRegisterRead [ address + i ] . 

getValue()) « " *'; 
} 
else { 

cout « " "; 
} 

} 
cout « endl; 
address = address+8; 

} 

} 

bool xinc :: saveNewestLog(char* logfilename ) 
{ 

ofstream fp.out; 
bool wrong=true ; 
if (logfilename [0]==0) { 

newestLog=""; 

} 

else { 

fp.out .open (logfilename , ios :: out | ios::app ); 

if ( fp .out . fail ()) 
{ 

wrong= false ; 
} 
fp_out « newestLog; 
fp.out.close () ; 
newestLog=""; 

} 
if (instructionLog2) { 

char logFilename2 [100]; 
logFilename2[0] = 0; 
streat (logFilename2 , filenameRoot ); 
s treat (logFilename2 ," . il2 " ) ; 
fp.out . open(logFilename2 , ios :: out | ios::app ); 
if ( fp.out . fail ()) 
{ 

cout « "Instruct ion Log 2 file open f a i l ! " ; 
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} 
else { 

fp .out « newestILog2; 
f p - o u t . c lose ( ) ; 

} 

} 
newestILog2 = ""; 

r e t u r n wrong; 
} 

void xinc :: addLog( s t r i n g l o g , unsigned shor t threadNum) 
{ 

s t r i n g currentLog ; 
unsigned shor t cur ren tAddress ; 

if ( getTwoWordsInst ruct ion (threadNum )) { 
cur ren tAddress = thread [threadNum ] . g e t P c ( ) - l ; 

} 
e lse { 

cur ren tAddress = thread [threadNum ] . getPc ( ) ; 

} 

a d d r e s s S t a t f cur ren tAddress ]++; 

if (screenLog | | f i l eLog) { 
currentLog=unsignedLong2Str ing ( getSystemClockCycle ( ) ) + ".T"+ 

unsignedLong2Str ing (threadNum) + ".AOx"; 

currentLog =currentLog + shor t2HexSt r ing ( cu r r en tAddres s ) ; 

cur rentLog=currentLog +"."+ l o g + " \ n " ; 
if ( sc reenLog) { 

cout « currentLog ; 

} 
if ( f i l e L o g ) { 

newestLog=newestLog+currentLog ; 
} 

} 
} 

bool xinc :: s e t S e r i a l l n F i l e ( cha r* f i l ename) 
{ 

if ( f i l ename [0]==0) { 
se r ia l !nOpen = fa lse ; 
r e tu rn fa l se ; 

} 
if ( f p . s e r i a l l n . i s . open ()) { 

f p . s e r i a l l n . close ( ) ; 
se r ia l !nOpen = fa l se ; 

} 
f p . s e r i a l l n . open(f i lename , ios :: in | i o s : : b i n a r y ) ; 
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if ( f p . s e r i a l l n . f a i l O ) 
{ 

ser ia l InOpen = fa l se ; 
r e t u r n fa lse ; 

} 
s e r i a l I n O p e n = t r u e ; 
r e tu rn t rue ; 

} 

bool xinc :: s e t S e r i a l O u t F i l e (char* f i l ename) 
{ 

if ( f i lename [0]==0) { 
ser ialOutOpen = fa l se ; 
r e tu rn fa l se ; 

} 
if ( f p . s e r i a l O u t . i s . open ( ) ) { 

f p . s e r i a l O u t . close ( ) ; 
ser ialOutOpen = fa l se ; 

} 
f p . s e r i a l O u t . open(f i lename , ios :: out | i o s : : binary ) ; 

if ( f p . s e r i a l O u t . f a i l ( ) ) 
{ 

ser ia lOutOpen = fa l se ; 
r e tu rn fa l se ; 

} 
ser ialOutOpen = true ; 
r e tu rn t rue ; 

} 

void xinc :: c l o s e S e r i a l F i l e () 

{ 

if ( f p . s e r i a l l n . i s . open ()) { 
f p . s e r i a l l n . close ( ) ; 

} 
if ( f p . s e r i a l O u t . i s . open ( ) ) { 

f p . s e r i a l O u t . close ( ) ; 
} 

void xinc :: setScreenLog (bool va l ) 

{ 
sc reenLog=val ; 

void xinc :: se tF i leLog (bool va l ) 

{ 
f i l e L o g = v a l ; 

} 

void xinc :: s e t I n s t r u c t i o n L o g 2 (bool va l ) 
{ 

i n s t r u c t i o n L o g 2 = v a l ; 
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void xinc :: p r i n t S t a t (uns igned shor t s t a r t , unsigned shor t end, shor t sor tMethod) 

{ 
unsigned long a [ 6 5 5 3 6 ] [ 2 ] ; 
for (unsigned int i=0 ; i<65536 ; i++) { 

a [ i ] [ 0 ] - i ; 
a [ i ] [ l ] = a d d r e s s S t a t [ i ] ; 

} 
/* for ( i = s t a r t ; i<=end —l;i++) { 

in t max=i ; 
long maxvalue=a[ i ] [ 1 ] ; 
for (uns igned int j = i + l ; j <=en d ; j ++) { 

if (maxvalue < a [ j ] [ l ] ) { 
max=j ; 
maxvalue=a [ j ] [ 1 ] ; 

} 
e lse if ((maxvalue== a [ j ] [ l ] ) && ( a [ i ] [ 0 ] > a [ j ] [ 0 ] ) ) { 

max=j ; 
} 

} 
long temp=a[max] [ 1 ] ; 
a [ m a x ] [ l ] = a [ i ] [ l ] ; 
a [ i ] [ 1 ]= temp ; 
temp=a[max] [ 0 ] ; 
a [ m a x ] [ 0 ] = a [ i ] [ 0 ] ; 
a [ i ] [ 0 ] = t e m p ; 

} 
*/ 

for ( i = s t a r t ; i<=end; i++) { 
if ( a [ i ] [ l ] != 0) { 

cout « "Ox" « s h o r t 2 H e x S t r i n g ( a [ i ] [ 0 ] ) « " : " « a [ i ] [ l ] « e n d l ; 

} 
} 

} 

void x i n c : : r e s e t S t a t () 
{ 

for (unsigned in t i=0 ; i <=65535; i++) { 
a d d r e s s S t a t [ i ] = 0 ; 

} 
} 

void xinc :: p r i n t I n s t r u c t i o n S t a t ( ) 
{ 

unsigned long a [INSTRUCTION-NUMBER] [ 2 ] ; 
for ( s h o r t i =0;i<3NSTOUCTION-NUMBER; i++) { 

a [ i ] [ 0 ] - i ; 
a [ i ] [ 1 ] ~ i n s t r u c t i o n S t a t [ i ] ; 

} 
for (i=0;i<INSTRUCTION-NUMBER-l;i++) 

for ( s h o r t j = i +1;j<JNSTOUCTION_NUMBER;j ++) { 
if ( a [ i ] [ l ] < a [ j ] [ l ] ) { 

long temp=a[j ] [ 1 ] ; 
a [ j ] [ l ] = a [ i ] [ l ] ; 
a[ i ] [ l ] = temp; 
t e m p = a [ j ] [ 0 ] ; 
a [ j ] [ 0 ] = a [ i ] [ 0 ] ; 
a [ i ] [ 0 ] = t e m p ; 

} 
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} 

for ( i = 0 ; i<INSTRUCTION_NUMBER; i++) { 
cout « i n s t r u c t i o n N a m e [ a [ i ] [ 0 ] ] « " : " « a [ i ] [ l ] « end l ; 

} 
} 
void x i n c : : r e s e t I n s t r u c t i o n S t a t ( ) 
{ 

for (unsigned shor t i=0 ; i<DMSTRUCTION_NUMBER; i++) { 
i n s t r u c t i o n S t a t [ i ] = 0 ; 

} 
} 

void xinc :: iMovZOLR( in t threadNum , shor t i n s t r u c t i o n ) 

{ 
shor t r l ; 
s t r i n g log ; 

if (ge tTwoWordsIns t ruc t ion (threadNum)) { 
r l= (ge tF i r s tWord( th readNum) & OxeO) » 5; 

thread [threadNum ] . setZOLR( i n s t r u c t i o n , r l ) ; 

log="iMovZOLR R"+uns ignedLong2St r ing( r l )+" , "+ 
s i g n e d S h o r t 2 S t r i n g ( i n s t r u c t i o n ) + " ( 0 x " + 
short2H ex Str ing ( i n s t r u c t i o n ) + " ) " ; 

addLog (log , threadNum); 

} 
e lse { 

setTwo Words Inst ruction ( t rue . threadNum); 
se tF i r s tWord ( i n s t r u c t i o n , threadNum ) ; 
r e tu rn ; 

} 

} 

void xinc :: iSetZOLA( in t threadNum , shor t i n s t r u c t i o n ) 
{ 

shor t r l ; 
unsigned shor t pc ; 
s t r i n g log ; 

if (ge tTwoWordsIns t ruc t ion (threadNum)) { 
r l= (ge tF i r s tWord( th readNum) & OxeO) » 5; 

thread [threadNum ] . setZOLAE( i n s t r u c t i o n , r l ) ; 
pc=thread [threadNum ] . getPc ( ) + l ; 
thread [ threadNum ] . setZOLAS (pc , r 1 ) ; 

log="isetZOLA R"+unsignedLong2Str ing ( r l )+" end:"+ 
s i g n e d S h o r t 2 S t r i n g ( i n s t r u c t i o n )+"(0x"+ 
sho r t2HexS t r i ng ( i n s t r u c t i o n )+ 
" ) " + " s t a r t : " + s i g n e d S h o r t 2 S t r i n g (pc) + 
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" (Ox" + s h o r t 2 H e x S t r i n g ( p c ) + " ) " ; 
addLog (log , threadNum ) ; 

} 
else { 

se tTwoWordsIns t ruct ion ( t rue , threadNum ) ; 
s e t F i r s t W o r d ( i n s t r u c t i o n , threadNum ) ; 
r e t u r n ; 

} 

} 

void xinc :: zo lProcess (unsigned shor t threadNum) { 

for ( i n t i = 0 ; i < 7 ; i + + ) { 
if ( ( t h r e a d [ threadNum ].getZOLAE(i)== thread [ threadNum]. g e t P c Q ) 

&& ( th read[ th readNum] .ge tZOLR( i )>0) ) { 
thread [ threadNum]. s e tPc ( thread [threadNum ] . getZOLAS( i ) ) ; 
thread [threadNum ] . decreaseZOLR( i ) ; 
if ( th read [ threadNum].getZOLR(i)==0) { 

thread [threadNum ] . setZOLAE(0 , i ) ; 
thread [ threadNum ] . setZOLAS (0 , i ) ; 

}; 

} 
} 

} 

/ / F i lename: x incapp .h 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Main XInC 
// 
/ / Date: Jan 24 , 2008 

# inc lude < i o s t r e a m > 
# inc lude < s t d i o . h > 
# inc lude < c o n i o . h > 
# inc lude < s t r i n g . h > 
# inc lude < s t d l i b .h> 

using namespace s t d ; 

#def ine LOGLEVEL 1 

# inc lude "xinc .h" 

int main () 
{ 

xinc x inc l ; 
char f i lename [ 2 5 5 ] , logfi lename [ 2 5 5 ] , s e r i a l I n F i l e [ 2 5 5 ] , s e r i a l O u t F i l e [ 2 5 5 ] ; 
char memoryAddressl [ 1 0 ] , memoryAddress2 [ 10 ] ; 
char s t a tAddress l [10] , s ta tAddress2 [ 1 0 ] ; 
unsigned long clockCycle ; 
f i lename [0]=0; 
logf i lename [0]=0; 
s e r i a l l n F i l e [0]=0; 
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serialOutFile [0]=0; 
bool screenLog = false ; 
bool fileLog = false ; 
bool s t a t i s t i c s = false ; 
bool instructionLog2 = false ; 

while ( t 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 
cout 

if ( 

} 

rue) { 
« endl 
« " 1 . 

"2. 
"3. 
"4. 
"5. 
"6. 
"7. 

« 
« 
« 
« 
« 
« 
« 
« 
« "a. 
« "b. 
« "c. 
« "d. 
« "e . 

screenLo 
cout « 

' 9 . 

run — 1 system clock cycle" « endl; 
run — 8 system clock cycles" « endl; 
run - system clock cycles" « endl; 
run — breakpoint" « endl; 
print — reg i s t e r s " « endl; 
print — memory" « endl ; 
print - I/O" « endl; 
load program " « filename « endl ; 
reset" « endl; 
log file on " « logfilename « endl; 
log file off" « endl; 
Serial in f i l e : " « ser ia l lnFi le « endl; 
Serial out f i l e : " « serialOutFile « endl. 
Screen log is " ; 
g) { 
"on" « endl; 

else { 

} 
cout 
cout 
cout 
cout 
cout 

if ( 

} 
else { 

cout « "off" « endl; 

« "f. print program address hit s t a t i s t i c s " « endl 
« "g. reset program address hit s t a t i s t i c s " « endl 
« "h. print instruction type s t a t i s t i c s " « endl ; 
« " i . reset instruction type s t a t i s t i c s " « endl ; 
« "j . instruction type 2 s t a t i s t i c s log is " ; 

instructionLog2) { 
cout « "on" « endl; 

} 
cout 

cout « "off" « endl; 

« "z. exit emulation" « endl 

cout « ">"; 

char ch; 
cin » ch; 
switch (ch) { 

case '1 ': 
if ( filename [0]==0) { 

cout « "Hex file has not loaded!"; 
} 
else { 

xincl . runSystemClockCycles (1); 

if (! xincl . saveNewestLog( logfilename )) { 
cout « "Log file wrong!"; 

}; 

} 
break; 

case ' 2 ' : 
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if ( f i lename [0]==0) { 
cout « "Hex f i l e has not l o a d e d ! " ; 

} 
e lse { 

x inc l . runSystemClockCycles ( 8 ) ; 

if (! x incl . saveNewestLog(logfi lename )) { 
cout « "Log f i l e wrong!" ; 

}; 

} 
break ; 

case '3 ' : 
if ( f i l ename[0]==0) { 

cout « "Hex f i l e has not l o a d e d ! " ; 
} 
e lse { 
cout « "P lease input the clock cycles :" ; 
cin » clockCycle ; 
x inc l . runSystemClockCycles (c lockCycle ) ; 
if (! x inc l . saveNewestLog( logf i lename )) { 

cout « "Log f i l e wrong!" ; 

}; 

} 
break ; 

case ' 4 ' : 
if ( f i lename [0]==0) { 

cout « "Hex f i l e has not l o a d e d ! " ; 
} 
e lse { 
cout « "P lease input b reakpoin t address ( e g . OxcOOO):" ; 
cin » memoryAddressl ; 
x inc l . runTo(hexSt r ing2 Short (memoryAddressl ) , l o g f i l e n a m e ) ; 

} 
break; 

case '5': 
xincl . printRegister (); 
break; 

case '6': 
cout « "P lease input memory address range(eg OxcOOO OxcOOl): 
cin » memoryAddressl » memoryAddress2; 

x inc l . printRam( hexSt r ing2Shor t (memoryAddress l ) , 
hexSt r ing2Shor t (memoryAddress2)); 

b reak ; 
case ' 7 ' : 

cout « "P lease input I /O address range (eg 0x0 0 x 3 ) : " ; 
cin » memoryAddressl » memoryAddress2; 

xincl . p r i n t I O ( h e x S t r i n g 2 S h o r t (memoryAddressl) , 
hexSt r ing2Shor t (memoryAddress2)); 

b reak ; 
case '8 ' : 

cout « "P lease input the f i l e n a m e : " ; 
cin » f i lename ; 
x incl . r e s e t ( ) ; 
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if (! x inc l . load( f i l ename) ) { 
f i lename [0]=0; 

}; 
if ( x i n c l . s e t S e r i a l l n F i l e ( s e r i a l l n F i l e )) { 

cout « " S e r i a l in f i l e is s e t . " « end l ; 
} 
e lse { 

cout « " E r r o r : Se r i a l in f i l e is not s e t . " « e n d l ; 
s e r i a l l n F i l e [0]=0; 

} 
if ( x i n c l . s e t S e r i a l O u t F i l e ( s e r i a l O u t F i l e ) ) { 

cout « " S e r i a l Out f i l e is s e t . " « end l ; 
} 
e lse { 

cout « " E r r o r : Se r i a l Out f i l e is not s e t . " « e n d l ; 
s e r i a l O u t F i l e [0]=0; 

} 
b reak ; 

case ' 9 ' : 
cout « "Reset XinC c h i p " « e n d l ; 
x inc l . r e s e t ( ) ; 
x inc l . load( f i lename ) ; 
if ( x incl . s e t S e r i a l l n F i l e ( s e r i a l l n F i l e )) { 

cout « " S e r i a l in f i l e is s e t . " « e n d l ; 
} 
e lse { 

cout « " E r r o r : Se r i a l in f i l e is not s e t . " « end l ; 
s e r i a l l n F i l e [0]=0; 

} 
if ( x i n c l . s e t S e r i a l O u t F i l e ( s e r i a l O u t F i l e )) { 

cout « " S e r i a l Out f i l e is s e t . " « end l ; 
} 
e lse { 

cout « " E r r o r : Se r i a l Out f i l e is not s e t . " « end l ; 
s e r i a l O u t F i l e [0]=0; 

} 
break ; 

case ' a ' : 

cout « "P lease input the f i l e n a m e : " ; 
cin » logf i lename ; 
cout « "Log is on . " « end l ; 
x inc l . setScreenLog ( t r u e ) ; 
f i leLog = t rue ; 
b reak ; 

case ' b ' : 
logf i lename [0]=0; 
cout « "Log is off ." « end l ; 
x inc l . se tScreenLog ( f a l s e ) ; 
f i leLog = fa l se ; 
break ; 

case 'c ' : 

cout « "P lease input s e r i a l in f i l e : " ; 
cin » s e r i a l l n F i l e ; 

if ( x inc l . s e t S e r i a l l n F i l e ( s e r i a l l n F i l e )) { 
cout « " S e r i a l in f i l e is s e t . " « e n d l ; 

} 
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else { 
cout « " E r r o r : Se r i a l in f i l e is not s e t . " « end l ; 
s e r i a l l n F i l e [0]=0; 

} 
b reak ; 

case 'd ' : 

cout « "P lease input s e r i a l out f i l e : " ; 
cin » s e r i a l O u t F i l e ; 
if ( x inc l . s e t S e r i a l O u t F i l e ( s e r i a l O u t F i l e ) ) { 

cout « " S e r i a l Out f i l e is s e t . " « e n d l ; 

} 
e lse { 

cout « " E r r o r : Se r i a l Out f i l e is not s e t . " « e n d l ; 
s e r i a l O u t F i l e [0]=0; 

} 

break ; 
case 'e ' : 

screenLog=! screenLog ; 
x inc l . se tScreenLog( screenLog ) ; 
b reak ; 

case ' f ' : 
cout « "P lease input address range(eg OxcOOO OxcOOl):" ; 
cin » s t a tAddress l » s ta tAddress2 ; 

x inc l . p r i n t S t a t ( h e x S t r i n g 2 S h o r t ( s t a t A d d r e s s l ) , 
hexSt r ing2Shor t ( s t a tAddres s2 ) , 0 ) ; 

b reak ; 
case ' g ' : 

x i n c l . r e s e t S t a t ( ) ; 
cout « "Program address h i t is r e s e t t e d " « endl ; 

break ; 
case 'h ' : 

x inc l . p r i n t l n s t r u c t i o n S t a t ( ) ; 

b reak ; 
case ' i ' : 

x inc l . r e s e t l n s t r u c t i o n S t a t ( ) ; 
cout « " I n s t r u c t i o n s t a t i s t i c s is r e s e t t e d " « endl ; 

b r eak ; 
case ' j ' : 

i n s t r u c t i o n L o g 2 = ! i n s t r u c t i o n L o g 2 ; 
x inc l . s e t I n s t r u c t i o n L o g 2 ( i n s t r u c t i o n L o g 2 ) ; 
b reak ; 

case ' z ' : 
x inc l . c l o s e S e r i a l F i l e ( ) ; 
r e t u r n 0; 

de fau l t : 
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} 

} 

r e t u r n 0; 
} 

/ / F i lename: x i n c l i b . c p p 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
/ / 
/ / D e s c r i p t i o n : 
/ / Function Library Implementat ion 
// 
/ / Date: Jan 24 , 2008 

# inc lude " x i n c l i b . h " 
# inc lude < c s t r i n g > 
# inc lude < s t r i n g > 
# inc lude < i o s t r e a m > 

using namespace s t d ; 

shor t s ignedExtens ion ( s h o r t o r i g i n a l , int b i t ) 

{ 
if ( ( o r i g i n a l & ( l « ( b i t - l ) ) ) == 0) { 

r e t u r n o r i g i n a l ; 

} 
e lse { 

shor t mask=0; 
for ( i n t i=0 ; i <16;i++) { 

mask=(mask « 1); 
i f ( i < 1 6 - b i t ) { 

mask=mask | 1; 

} 
} 
r e t u r n ( o r i g i n a l | mask) ; 

} 
} 

bool xor2(bool o p l , b o o l op2) 

{ 
if (opl==op2) { 

r e t u r n fa l se ; 
} 
e lse { 

r e t u r n t rue ; 
} 

}; 
shor t hexSt r ing2Shor t ( char* in) 
{ 

shor t r e s u l t ; 
r e s u l t =0; 
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r (unsigned in t i = 0 ; i < s t r l e n 
switch ( i n [ i ] ) { 
case '0 ' : 

r e s u l t = r e s u l t *16; 
b reak ; 

case '1 ' : 
r e s u l t = r e s u l t * 1 6 + l ; 
b reak ; 

case ' 2 ' : 
result = result * 16+2; 

break; 
case '3 ': 

result = result * 16+3; 
break; 

case '4': 
r e s u l t = r e s u l t *16+4; 
b reak ; 

case '5 ' : 
r e s u l t = r e s u l t * 1 6 + 5 ; 
b reak ; 

case ' 6 ' : 
r e s u l t = r e s u l t * 16+6; 
b reak ; 

case '7 ' : 
r e s u l t = r e s u l t * 1 6 + 7 ; 
b reak ; 

case ' 8 ' : 
result = result * 16+8; 
break; 

case '9 ': 
r e s u l t = r e s u l t * 16+9; 
b reak ; 

case ' A ' : 
case ' a ' : 

r e s u l t = r e s u l t * 1 6 + 1 0 ; 
b reak ; 

case ' B ' : 
case ' b ' : 

r e s u l t = r e s u l t * 1 6 + l l ; 
b reak ; 

case ' C : 
case 'c ' : 

r e s u l t = r e s u l t * 1 6 + 1 2 ; 
b reak ; 

case ' D ' : 
case ' d ' : 

r e s u l t = r e s u l t * 1 6 + 1 3 ; 
b reak ; 

case ' E ' : 
case 'e ' : 

r e s u l t = r e s u l t * 1 6 + 1 4 ; 
b reak ; 

case ' F ' : 
case '{ ': 

r e s u l t = r e s u l t * 1 6 + 1 5 ; 
b reak ; 

de fau l t : 
r e s u l t =0; 
b reak ; 



} 

} 
return resu l t : 

ng short2HexString (unsigned short 

int a [4] ; 
string hexString ; 
a[0]= (number & OxfOOO) » 12; 
a[ l ] = (number & OxOfOO) » 8; 
a[2]= (number & OxOOfO) » 4; 
a[3]= (number & OxOOOf) ; 
hexString =""; 
for ( int i=0;i<4;i++) { 

switch ( a [ i ] ) { 
case 0: 

hexString=hexString +"0"; 
break; 

case 1: 
hexString=hexString+"l"; 
break; 

case 2: 
hexString=hexString +"2"; 
break; 

case 3: 
hexString=hexString+"3"; 
break; 

case 4: 
hexString=hexString +"4"; 
break; 

case 5: 
hexString=hexString +"5"; 
break; 

case 6: 
hexString=hexString+"6"; 
break; 

case 7: 
hexString=hexString +"7"; 
break; 

case 8: 
hexString=hexString+"8"; 
break; 

case 9: 
hexString=hexString+"9"; 
break; 

case 10: 
hexString = hexString+"a"; 
break; 

case 11: 
hexString=hexString+"b"; 
break; 

case 12: 
hexString=hexString+"c"; 
break; 

case 13: 
hexString=hexString+"d"; 
break; 

case 14: 



hexSt r ing 
b reak ; 

case 15: 
hexSt r ing 
b reak ; 

} 

} 

r e t u r n hexSt r ing ; 

ng s i g n e d S h o r t 2 S t r i n g (s igned shor t number 

s t r i n g r e s u l t = " " ; 
signed shor t current=number; 
if (number < 0) { 

current=(number"0 x f f f f ) + 1 ; 

} 

i f ( o u r r e n t = = 0 ) r e tu rn " 0 " ; 
if ( cu r r en t==-32768 ) r e tu rn " - 3 2 7 6 8 " ; 

while ( cu r r en t >0) { 
unsigned shor t d i g i t = cu r ren t % 10; 
switch ( d i g i t ) { 
case 0: 

r e su l t="0"+ r e s u l t ; 
b reak ; 

case 1 : 
r e s u l t = " l " + r e s u l t ; 
b reak ; 

case 2: 
result ="2"+ result ; 
break; 

case 3: 
r e s u l t = " 3 " + r e s u l t ; 
b reak ; 

case 4: 
r e s u l t = " 4 " + r e s u l t ; 
b r eak ; 

case 5: 
r e su l t="5"+ r e s u l t ; 
b reak ; 

case 6: 
r e s u l t = " 6 " + r e s u l t ; 
b reak ; 

case 7: 
r e s u l t ="7"+ r e s u l t ; 
break ; 

case 8: 
r e su l t="8"+ r e s u l t ; 
b reak ; 

case 9: 
r e su l t="9"+ r e s u l t ; 

=hexS t r ing+ e ; 

=hexS t r ing+" f "; 
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break ; 

} 
cu r r en t = ( c u r r e n t - d i g i t ) / 10 ; 
} 
if (number<0) r e s u l t = " - " + r e s u l t ; 
r e t u r n r e s u l t ; 

} 

s t r i n g unsignedLong2Str ing (unsigned long number) 

{ 
unsigned shor t d i g i t ; 
unsigned long current=number ; 
s t r i n g r e s u l t = " " ; 
if ( c u r r e n t = = 0 ) r e tu rn " 0 " ; 
while ( cu r r en t >0) { 
d i g i t = c u r r e n t % 10; 
switch ( d i g i t ) { 
case 0: 

r e s u 11 ="0"+ r e s u 11; 
b reak ; 

case 1: 
r e s u l t =" 1"+ r e s u 11; 
b reak ; 

case 2: 
r e s u l t = " 2 " + r e s u l t ; 
b r eak ; 

case 3: 
r e s u l t = " 3 " + r e s u l t ; 
b reak ; 

case 4: 
r e s u l t ="4"+ r e s u 11; 
b reak ; 

case 5: 
r e s u l t = " 5 " + r e s u l t ; 
b reak ; 

case 6: 
r e s u l t ="6"+ r e s u l t ; 
b reak ; 

case 7: 
r e s u l t = " 7 " + r e s u l t ; 
b r eak ; 

case 8: 
r e s u l t = " 8 " + r e s u l t ; 
b reak ; 

case 9: 
r e s u l t ="9"+ r e s u l t ; 
b r eak ; 

} 
cu r r en t = ( c u r r e n t - d i g i t ) / 10 ; 
} 
r e t u r n r e s u l t ; 

} 

/ / F i lename: xincMemoryl6 . cpp 
/ / Author: Xin Sheng Zhou 
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// Department of Electr ical and Computer Engineering 
// University of Alberta 
// 
// Description : 
// Class xincMemoryl6 Implementation 
// 
// Date: Jan 24, 2008 

#include "xincMemoryl6 .h" 

xincMemoryl6 :: xincMemoryl6 () 
{ 

memory=0; 
}; 

void xincMemoryl6 :: setValue ( short mem) { 
memory=mem; 

}; 

short xincMemoryl6 :: getValue () { 
return memory; 

} 

// Filename: xincPeripheralRegister . cpp 
// Author: Xin Sheng Zhou 
// Department of Electr ical and Computer Engineering 
// University of Alberta 
// 
// Description: 
// Class xincPeripheralRegister Implementation 
// 
// Date: Jan 24, 2008 

#include "xincPeripheralRegister .h" 

xincPeripheralRegister :: xincPeripheralRegister () : xincMemoryl6 () 
{ 

isInputSet = false ; 
isOutputSet = false ; 

}; 

void xincPeripheralRegister :: setlsOutputSet ( bool outputSetValue) 
{ 

isOutputSet = outputSetValue ; 
} 

bool xincPeripheralRegister :: getlsOutputSet () 
{ 

return isOutputSet ; 
}; 

// Filename: xincThreadRegister .cpp 
// Author: Xin Sheng Zhou 
// Department of Electr ical and Computer Engineering 
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// University of Alberta 
// 
// Description: 
// Class xincThreadRegister Implementation 
// 
// Date: Jan 24, 2008 

#include "xincThreadRegister .h" 

xincThreadRegister :: xincThreadRegister () 

status =0; 

void xincThreadRegister :: setPc (unsigned short newPC) 

pc . set Value (newPC); 

unsigned short xincThreadRegister :: getPc () 

return pc . getValue ( ) ; 

void xincThreadRegister :: setStatus (unsigned char newStatus) 

status=newStatus ; 

unsigned char xincThreadRegister :: getStatus () 

return status ; 

void xincThreadRegister :: setR ( short newR, short rNum) 

r [rNum]. setValue(newR); 

short xincThreadRegister :: getR( short rNum) 

return r [rNum]. getValue () ; 

void xincThreadRegister :: setStatusN () 

status = status | 0x8; 

void xincThreadRegister :: clrStatusN () 

status = status & 0xf7; 

void xincThreadRegister :: setStatusZ () 

status = status | 0x4; 
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void xincThreadRegister :: clrStatusZ () 
{ 

status = status & Oxfb; 
}; 

void xincThreadRegister :: setStatusV () 
{ 

status = status | 0x2; 
}; 

void xincThreadRegister :: clrStatusV () 
{ 

status = status & Oxfd; 
}; 

void xincThreadRegister :: setStatusC () 
{ 

status = status | Oxl ; 
}; 

void xincThreadRegister :: clrStatusC () 
{ 

status = status & Oxfe; 
}; 

bool xincThreadRegister :: isNl () 
{ 

if ((status & 8) ==0) { 
return false ; 

} 
else { 

return true ; 

}; 
}; 

bool xincThreadRegister :: isZl () 
{ 

if ( (s ta tus & 4) ==0) { 
return false ; 

} 
else { 

return true ; 
}; 

}; 
bool xincThreadRegister :: isVl () 
{ 

if ( (s ta tus & 2) ==0) { 
return false ; 

} 
else { 

return true ; 
}; 

}; 
bool xincThreadRegister :: isCl () 
{ 

if ( (s ta tus & 1) ==0) { 
return false ; 



} 
else { 

r e tu rn t rue ; 
}; 

} ; 

void x incThreadReg i s t e r :: setZOLR( unsigned shor t newZOLR, shor t rNum) 
{ 

zo l r [ rNum] . se tValue (newZOLR); 
}; 

unsigned shor t x incThreadRegis te r :: getZOLR( shor t rNum) 

{ 
r e t u r n zol r [rNum]. getValue ( ) ; 

}; 

void x incThreadRegis te r :: increaseZOLR( shor t rNum) 
{ 

zolr [rNum]. se tValue ( z o l r [rNum]. getValue () + l ) ; 
}; 

void x incThreadRegis te r :: decreaseZOLR( shor t rNum) 
{ 

zol r [rNum]. se tValue ( z o l r [rNum]. getValue () - 1); 
}; 

void x incThreadRegis te r :: setZOLAS(unsigned shor t newZOLAS, shor t rNum) 

{ 
zol r [rNum]. set Address Star t (newZOLAS); 

}; 

unsigned shor t x incThreadRegis te r :: getZOLAS( shor t rNum) 
{ 

r e t u r n zolr [rNum]. g e t A d d r e s s S t a r t ( ) ; 
}; 
void x incThreadRegis te r :: setZOLAE( unsigned shor t newZOLAE, shor t rNum) 
{ 

zol r [rNum]. setAddressEnd(newZOLAE); 
}; 

unsigned shor t x incThreadRegis te r :: getZOLAE( shor t rNum) 

{ 
r e tu rn zol r [rNum]. getAddressEnd ( ) ; 

}; 

/ / F i lename: xincZOLR . cpp 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Zero overhead looping implementat ion 
// 
/ / Date: Jan 24 , 2008 

# inc lude "xincZOLR.h" 

xincZOLR :: xincZOLR () 

{ 
memory=0; 
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addressStart=0; 
addressEnd=0; 

}; 

void xincZOLR :: setValue (unsigned short mem) { 
memory=mem; 

}; 

unsigned short xincZOLR :: getValue () { 
return memory; 

} 

void xincZOLR :: decreaseValue () { 
memory—; 

void xincZOLR :: increaseValue () { 
memory++; 

void xincZOLR:: setAddressStart (unsigned short addr) { 
address Start=addr; 

}; 

unsigned short xincZOLR :: getAddressStart () { 
return addressStart ; 

} 

void xincZOLR:: setAddressEnd(unsigned short addr) { 
addressEnd=addr; 

}; 

unsigned short xincZOLR :: getAddressEnd () { 
return addressEnd ; 

} 

// Filename: xinc.h 
// Author: Xin Sheng Zhou 
// Department of Electr ical and Computer Engineering 
// University of Alberta 
// 
// Description: 
// Class xinc 
// 
// Date: Jan 24, 2008 

#include <s t r ing .h> 
#include <st r ing> 
#include <iostream> 
#include <fstream> 
#include "x inc l ib .h" 
#include "xincThreadRegister .h" 
#include "xincPeripheralRegister .h" 
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#def ine INSTRUCTION-NUMBER 32 

using namespace s t d ; 

c l a ss xinc 
{ 
p r i v a t e : 

/ / hardware memories, r e g i s t e r s , io buf fers 
xincMemoryl6 ram[16384] , rom[16384] ; 
x i n c P e r i p h e r a l R e g i s t e r p e r i p h e r a l R e g i s t e r R e a d [ 1 2 8 ] , p e r i p h e r a l R e g i s t e r W r i t e [ 1 2 8 ] ; 
x incThreadRegis te r thread [ 8 ] ; 

/ / i n s t u c t i o n s 
void iMov(int threadNum , shor t i n s t r u c t i o n ) ; 
void i O u t p ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i B r a ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void iAdd( in t threadNum , shor t i n s t r u c t i o n , shor t method); 
void iAnd( in t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i B c ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i B i c ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i B i s ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i B i x ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i l n p ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i I o r ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i J s r ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i L d ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i R o l ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i S t ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void i S u b ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i T h r d ( i n t threadNum , shor t i n s t r u c t i o n ) ; 
void i X o r ( i n t threadNum , shor t i n s t r u c t i o n , shor t method); 
void iMovZOLR( in t threadNum , shor t i n s t r u c t i o n ) ; 
void iSetZOLA(int threadNum , shor t i n s t r u c t i o n ) ; 

/ / emulator i n t e r n a l use 
unsigned long systemClockCycle ; 

bool i sTwoWordsIns t ruct ion [ 8 ] ; 
unsigned shor t f i rs tWord [ 8 ] ; 

s t r i n g newestLog; 

shor t b r a S t a t u s [ 8 ] ; 
shor t SPIOrx , SPIOtx ; 
bool screenLog ; 
bool f i leLog ; 
bool i n s t r u c t i o n L o g 2 ; 
bool se r ia l lnOpen ; 
bool ser ialOutOpen ; 

char s e r i a l I n F i l e [ 2 5 5 ] , s e r i a l O u t F i l e [25 5 ] ; 
i f s t ream f p . s e r i a l l n ; 
ofstream f p . s e r i a l O u t ; 

long a d d r e s s S t a t [ 6 5 5 3 6 ] ; 
long i n s t r u c t i o n S t a t [ 3 2 ] ; 
s t r i n g ins t ruc t ionName [ 3 2 ] ; 
char fi lenameRoot [1 0 0 ] ; 
s t r i n g newestILog2; 
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unsigned long getSystemClockCycle ( ) ; 
void se tSys temClockCycle(uns igned long cycleNumber); 

void se tTwoWordsIns t ruct ion (bool isTwoWords, shor t threadNum); 
bool getTwoWordsInst ruct ion ( s h o r t threadNum); 
void se tF i r s tWord ( s h o r t f i rs tWordValue , shor t threadNum); 
shor t ge tF i rs tWord ( s h o r t threadNum); 
bool isThreadRun( in t threadNum); 
void runThread ( ) ; 
void ioProcess ( ) ; 
void addLog( s t r i n g l o g , u n s i g n e d shor t threadNum); 
void zolProcess (uns igned shor t threadNum); 

publ ic : 

}; 

xinc ( ) ; 
void r e s e t ( ) ; 
bool load ( cha r* f i l e n a m e ) ; 
void runSystemClockCycles (uns igned long l e n g t h ) ; 
void runTo ( s h o r t address , char* logf i lename ) ; 
void p r i n t R e g i s t e r ( ) ; 
void pr in tRam(uns igned shor t s t a r t , unsigned shor t end ) ; 
void pr in t IO (uns igned shor t s t a r t , unsigned shor t end) ; 
bool saveNewestLog(char* l o g f i l e n a m e ) ; 
bool s e t S e r i a l l n F i l e (char* f i l e n a m e ) ; 
bool s e t S e r i a l O u t F i l e ( cha r* f i l e n a m e ) ; 
void c l o s e S e r i a l F i l e ( ) ; 
void setScreenLog (bool v a l ) ; 
void se tF i leLog (bool v a l ) ; 
void s e t I n s t r u c t i o n L o g 2 (bool v a l ) ; 
void p r i n t S t a t (uns igned shor t s t a r t , unsigned shor t end, shor t so r tMethod) ; 
void r e s e t S t a t ( ) ; 
void p r i n t l n s t r u c t i o n S t a t ( ) ; 
void r e s e t l n s t r u c t i o n S t a t ( ) ; 

/ / F i lename: x i n c l i b .h 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
// Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Function Library 
// 
/ / Date: Jan 24 , 2008 

# i fnde f x i n c l i b 
#def ine x i n c l i b 

# inc lude < s t r i n g > 

using namespace s t d ; 

shor t s ignedExtens ion ( s h o r t o r i g i n a l , in t b i t ) ; 
bool xor2(bool o p l , b o o l op2) ; 
shor t hexSt r ing2Shor t ( char* i n ) ; 
s t r i n g shor t2HexSt r ing (unsigned shor t number); 

145 



s t r i n g unsignedLong2Str ing (unsigned long number); 
s t r i n g s i g n e d S h o r t 2 S t r i n g ( signed shor t number); 

#endi f 

/ / F i lename: xincMemoryl6 .h 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Class xincMemoryl6 
// 
/ / Date: Jan 24 , 2008 

# i fndef xincMemory 

#def ine xincMemory 

c lass xincMemoryl6 { 
p r i v a t e : 

shor t memory; / / Memory 

publ ic : 
xincMemory 16 ( ) ; 

void se tValue ( s h o r t mem); 
shor t getValue ( ) ; 

}; 

#endif 

/ / F i lename: x i n c P e r i p h e r a l R e g i s t e r .h 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / U n i v e r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Class x i n c P e r i p h e r a l R e g i s t e r 
// 
/ / Date : Jan 24 , 2008 

# inc lude "xincMemoryl6 .h" 

c l a s s x i n c P e r i p h e r a l R e g i s t e r : publ ic xincMemoryl6 { 
p r i v a t e : 

bool i sOutputSet ; 
bool i s I n p u t S e t ; 

publ ic : 
x i n c P e r i p h e r a l R e g i s t e r ( ) ; 

bool g e t l s O u t p u t S e t ( ) ; 
void s e t l s O u t p u t S e t (bool o u t p u t S e t V a l u e ) ; 

}; 

/ / F i lename: x incThreadRegis te r .h 
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/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
// 
// 
// 

Unive r s i t y of Alber ta 

Desc r ip t i on : 
/ / Class x incThreadRegis te r 

Inc luding PC, Regis ter , Zero overhead looping r e g i s t e r set // 
// 
/ / Date : Jan 24 , 2008 

# inc lude "xincMemoryl6 .h" 
# inc lude "xincZOLR.h" 

# i fndef t h r e a d R e g i s t e r 

#def ine t h r e a d R e g i s t e r 

c l a ss x incThreadRegis te r { 
p r o t e c t e d : 

xincMemoryl6 pc ; / / Program Counter 
xincMemoryl6 r [ 8 ] ; / / R e g i s t e r s 
xincZOLR z o l r [ 8 ] ; / / Zero overhead looping r e g i s t e r se t s 
unsigned char s t a t u s ; / / Condit ion code 

publ ic : 
x incThreadRegis te r ( ) ; 
void s e tPc (uns igned shor t newPC); 
unsigned shor t g e t P c ( ) ; 
void s e t S t a t u s (uns igned char newSta tu s ) ; 
unsigned char g e t S t a t u s ( ) ; 
void setR( shor t newR, shor t rNum); 
shor t g e t R ( s h o r t rNum); 

void setZOLR(unsigned shor t newZOLR, shor t rNum); 
unsigned shor t getZOLR( shor t rNum); 
void increaseZOLR( shor t rNum); 
void decreaseZOLR( shor t rNum); 
void setZOLAS(unsigned shor t newZOLAS, shor t rNum); 
unsigned shor t getZOLAS(short rNum); 
void setZOLAE(unsigned shor t newZOLAE, shor t rNum); 
unsigned shor t getZOLAE( shor t rNum); 

}; 

void se tSta tusN 
void c l rS t a tu sN 
void s e tS t a tu sZ 
void c l r S t a t u s Z () 
void se tSta tusV () 
void c l rS t a tu sV () 
void se tS t a tusC () 
void c l rS t a tu sC 
bool isNl ( ) ; 
bool isZl ( ) ; 
bool i s V l Q ; 
bool isCl Q ; 

0 

#endif 

/ / F i lename: xincZOLR.h 
/ / Author: Xin Sheng Zhou 
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// Department of Electr ical and Computer Engineering 
// University of Alberta 
// 
// Description : 
// Class xincZOLR 
// Zero overhead looping registers 
// Date: Jan 24, 2008 

class xincZOLR { 
private : 

unsigned short memory; // Program Counter 
unsigned short addressStart ; // Looping start register 
unsigned short addressEnd ; // Looping end register 

public : 
xincZOLR (); 

void setValue (unsigned short mem); 
unsigned short getValue ( ) ; 
void decreaseValue () ; 
void increaseValue ( ) ; 
void setAddressStart (unsigned short addr); 
unsigned short getAddressStart ( ) ; 
void setAddressEnd (unsigned short addr); 
unsigned short getAddressEnd ( ) ; 

}; 

148 



Appendix B 

LDPC-CC Encoding and Decoding 
Algorithm on XInC Microprocessor 
Assembly Language 

B.l LDPC-CC Encoding Algorithm Assembly Lan
guage on XInC 

/ / F i lename: Main.asm 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / LDPC-CC Encoder 
// 
/ / Date: Jan 24 , 2008 

# inc lude " . . \ . . \ X I n C L ib ra ry \XInC.h" 
# inc lude "Cons tan t s .h" 

#def ine . . T O . . 
#def ine . . T l . _ 

//================================================================================ 
/ / Code and Data Size : 
/ / After assembly, check the values ass igned to these c o n s t a n t s in the l i s t f i l e . 

SizeOfAppCode = ( . .AppCode.End— — . . A p p C o d e . S t a r t . . ) 
SizeOfAppData = ( . .AppData .End— - . . A p p D a t a . S t a r t . . ) 
SizeOfShortData = ( . . S h o r t D a t a . E n d . . - . . S h o r t D a t a . S t a r t . . ) 

FreeAppCodeSpace = ( . . A p p D a t a . S t a r t . . - . -AppCode .End- . ) // If any of these th ree 
FreeAppDataSpace = (kRAM.End - 127 - . . A p p D a t a . E n d . . ) / / c o n s t a n t s are negat ive , 
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B.l: LDPC-CC Encoding Algorithm Assembly Language onXInC 

FreeShortDataSpace = (kRAMJEnd - . . S h o r t D a t a _ E n d _ . ) / / t he re is an over f low. 

/ / Header F i l e s : 
/ / This s ec t i on inc ludes f i l e s def in ing c o n s t a n t s . 

/ / Code Space: 
/ / Only Code should be inc luded in t h i s segment. 
//============================================================================ 

@ = kRAM.BlockO-Start 
- - A p p C o d e . S t a r t . . : 

// _ 
/ / I n i t i a l i z a t i o n Code 

# inc lude " I n i t . a s m " 

bra ThreadO 

# inc lude " . . \ . . \ X I n C Library\XPD.Echo.asm" 
# inc lude " . . \ . . \ X I n C Library \XPD.Echo.Data . asm" 
# inc lude " . . \ . . \ X I n C Library \LEDs. asm" 

// 
/ / Thread Code 

# i f d e f . . T O . . 
ThreadO : / / Thread 0 Code 

bra ThreadO 
#endi f 

# i f d e f . . T l _ . 
Threadl : / / Thread 1 Code 

mov rl , kXPD.BaudR.ate. 115200 + kXPD.ClockLE.12MHz 
j s r r6 , XPD.Configure 

/ / I n i t i a l i z e the LEDs 
j s r r6 , I n i t i a l i z e L E D s 
mov rl , OxFFFF 
j s r r6 , TurnOnLEDs / / Turn on a l l LEDs to i n d i c a t e the program has loaded 

/ / I n i t i a l i z e FIFO queue 

. . F O R . l . I N I T : 
mov rO , 0 
st rO, i 

-JFOR.1.COND: 
Id rO , i 
mov rl , encoderQueueSize 
sub rO , rO , r l 
be ZS, . .FOR. LEND 

..FOR. 1 .BODY: 
Id rO , i 
mov rl ,0 
st r l , r0 .queue 
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B.l: LDPC-CC Encoding Algorithm Assembly Language on XInC 

-FOR-l - INCR: 
Id rO , i 
add r2 , rO , 1 
st r2 , i 
bra --FOR-1-COND 

-FOR-1-END: 

-ENCODINGJSTART: 
j s r r6 , XPD-ReadByte / / Read data 
j s r r6 , XPD-WriteByte / / Echo data 
Id rO.head // queue [head]= cu r r en t 
st rl , rO , queue 
add rO , rO , 1 / / head++ 
st rO ,head 

/ / i f (head==encoderQueueSize) head==0; 
mov r2 , encoderQueueSize 
sub rO , rO , r2 
be ZS, J F - 1 - R U N . l 
bra IF . l .CONT.l 

- I F . l . R U N . l : 
mov rO ,0 
st rO ,head 

- IF . l -CONT.l : 
/ / queue[head]=0 

Id rO.head 
mov r2 ,0 
st r2 ,r0 , queue 

/ /Ge t f i r s t data 
Id rO,head 
add rO , rO , encoderQueueSize +1 
Id r2 , p o s i t i o n T a b l e P o i n t e r 
Id r2 ,r2 , matrix 
sub rO , rO , r2 
sub r2 , r0 , encoderQueueSize 
be NS.-SAVE-N 
Id r l , r2 .queue 
bra -SAVE.CONT 

.SAVE _N: 
Id rl , rO , queue 

.SAVE-CONT: 

/ / p o s i t i o n T a b l e P o i n t e r + + 
ld rO , p o s i t i o n T a b l e P o i n t e r 
add rO , rO , 1 
st rO , p o s i t i o n T a b l e P o i n t e r 

/ / checkNum=0 
mov rO ,0 
s t rO , checkNum 

-CHECK.COND: 
Id rO,checkNum // checkNum > checkDegree? 
add rO. rO. l / / checkNum++ 
s t rO , checkNum 
sub rO ,r0 , checkDegree 
be ZS,.CHECK_END 

.CHECK-PROCESS: 

151 



B. 1: LDPC-CC Encoding Algorithm Assembly Language on XInC 

II Get fol lowing data 
Id rO.head 
add rO ,r0 , encoderQueueSize+1 
Id r2 , p o s i t i o n T a b l e P o i n t e r 
Id r2 , r2 , matrix 
sub r 0 , r 0 , r 2 
sub r2 ,r0 , encoderQueueSize 
be NS,.SAVE.N.l 
Id r4 , r2 , queue 
bra -SAVE-CONT.l 

-SAVE.N-1: 
Id r4 ,r0 , queue 

-SAVE-CONT.l: 

/ / p o s i t i o n T a b l e P o i n t e r + + 
Id rO , p o s i t i o n T a b l e P o i n t e r 
add rO , rO , 1 
st rO , p o s i t i o n T a b l e P o i n t e r 

/ / Xor two numbers 
xor r l , r l , r4 

/ / Branch to p a r i t y check s t a r t 
bra -CHECKXOND 

-CHECK.END: 

Id rO , p o s i t i o n T a b l e P o i n t e r / / p o s i t i o n T a b l e P o i n t e r > p o s i t i o n T a b l e S i z e ? 
sub rO , r0 , p o s i t i o n T a b l e S i z e 
be ZS,_PHASE.CONT 
bra _PHASE_END 

-PHASE.CONT: 
mov rO , 0 
st rO , p o s i t i o n T a b l e P o i n t e r 

-PHASE-END: 

Id rO , head / / queue [head]= cu r r en t 
st rl , rO .queue 
add rO , rO , 1 
st rO,head 

/ / if ( h e a d = e n c o d e r Q u e u e S i z e ) head==0; 
mov r2 , encoderQueueSize 
sub rO , rO , r2 
be ZS, . I F . 1-RUN 
bra -IF.l-CONT 

-IF_1_RUN: 
mov rO , 0 
st rO ,head 

- IF. l .CONT: 

/ / Echo the p a r i t y check r e s u l t 
ior rl , r l ,560 
j s r r6 , XPD_WriteByte 

-ENCODINGJEND: 
bra -ENCODING-START 

stop : 
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B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC 

bra stop 
#endi f 

// 
/ / Other Source F i l e s 

--AppCodeJEnd—: 

/ / Data Space: 
/ / All Data must be in a sepa ra t e 2kWord Memory Block from any Code. 

/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

@ = (@ + 0x800-1) & -0x800 / / Round up to the next 2kWord Memory Block 
. . A p p D a t a . S t a r t . . : 

# inc lude "Long-Data .asm" 

. . A p p D a t a . E n d . - : 

/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 
/ / Short Address Space: 
/ / Any Data placed in t h i s space may be accessed with a s ing l e word 
/ / i n s t r u c t i o n . 

/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

@ = kRAMJEnd - 127 / / S t a r t of the shor t address space 

. . S h o r t D a t a . S t a r t . . : 

# inc lude " S h o r t . D a t a . asm" 

— Shor tDa ta .End—: 

B.2 LDPC-CC PIBF Algorithm with Zero-overhead 
Looping on XInC 

/ / F i lename: Main.asm 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / U n i v e r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / LDPC-CC Decoder 
/ / P a r a l l e l Improved Bit Fl ipping Algorithm 
/ / With Zero-overhead Looping 
/ / 
/ / Date : Jan 24 , 2008 

# inc lude " .. \ .. \ XInC Library \XInC . h" 
# inc lude "Cons tan t s .h" 

/ / S t a r t thread 1 at the beginning 
#def ine . . T l _ _ 
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B.2; LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC 

/ / Code and Data S i z e : 
/ / After assembly , check the values ass igned to these c o n s t a n t s in the 
/ / l i s t f i l e . 

SizeOfAppCode = (—AppCode-End.. - . . A p p C o d e . S t a r t . - ) 
SizeOfAppData = ( . . .AppData.End — - —AppDa ta .S t a r t—) 
SizeOfShortData = ( . . S h o r t D a t a . E n d . . - _ _ S h o r t D a t a . S t a r t — ) 

FreeAppCodeSpace = ( _ _ A p p D a t a . S t a r t . . - . .AppCode .End . . ) // If any of these th ree 
FreeAppDataSpace = (kRAM_End - 127 - . . A p p D a t a . E n d . . ) / / c o n s t a n t s are negat ive , 
FreeShortDataSpace = (kRAM-End - . . S h o r t D a t a . E n d . . ) / / t he re is an over f low. 

/ / Code Space: 
/ / Only Code should be included in t h i s segment. 
//===============================================================================: 

@ = kRAM.BlockO.Start 
. . A p p C o d e . S t a r t : 

// 

/ / I n i t i a l i z a t i o n Code 

# inc lude " I n i t . a s m " 

bra @ 

# inc lude " . . \ . . \ X I n C Library\XPD.Echo.asm" 
# inc lude " , . \ . . \ X I n C Library \XPD.Echo.Data .asm" 
# inc lude " . . \ . . \ X I n C Library\LEDs.asm" 

// 
/ / Thread Code 

Threadl : / / Thread 1 Code 

mov rl , kXPD.BaudRate.115200 + kXPD.ClockLE.12MHz 
j s r r6 , XPD.Configure 

// I n i t i a l i z e the LEDs 
j s r r6 , I n i t i a l i z e L E D s 
mov rl , OxFFFF 
j s r r 6 , TurnOnLEDs / / Turn on a l l LEDs to i n d i c a t e the program has loaded 

/ / D i s t r i b u t e Decoding Proceesor to th reads 

mov rO ,0 
d i s t r i b u t e P r o c e s s o r l D : 

add r5 ,r0 ,2 
st rO , r5 , processor lD 
add rO , rO , 1 
sub r5 , rO , nProcNum 
be ZS, d i s t r i b u t e P r o c e s s I D E n d 
bra d i s t r i b u t e P r o c e s s o r l D 

d i s t r i b u t e P r o c e s s I D E n d : 

/ / S t a r t decoding thread 2 -7 
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B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC 

mov r3 ,Oxff fc / / Give r3 i n i t i a l v a l u e , only thread 0 and 1 is running 
mov r 4 , 2 / / S t a r t i n g from thread 2 

s e tThread : 
rol r 2 , r 4 , 3 
ior r 2 , r 2 , 7 
outp r2 , SCUpntr 
Id r2 , r4 , SP.ADDRESS 
outp r2 , SCUreg 
mov r2 , Thread2 
outp r2 , SCUpc 
mov rl ,1 
rol rl , r l , r4 
xor r l , r l , 0x f f f f 
and r 3 , r 3 , r l / / r3 c o n t r o l s which thread wi l l run . 
add r4 , r4 ,1 
mov r2 ,2 
sub r2 , r4 , r2 
sub r2 , r2 , nProcNum 
be ZS, setThreadEnd 
bra se tThread 

setThreadEnd : 
st r3 , t h r e a d P a t t e r n 

/ / i n i t i a l matLLRBuffer with einitLLR 
mov rO , 0 
mov rl .nBufLength 
mov r2 ,0 

in i t i a lMatLLRBuffe r : 
sub r3 ,r0 , r l 
be ZS, ini t ialMatLLRBufferEnd 
st r2 , rO , matLLRBuffer 
add rO , rO , 1 
bra in i t ia lMatLLRBuffer 

ini t ialMatLLRBufferEnd : 

mov rl ,0 
st r l , pnSymbolDegPointer / / pnSymbolDegPointer=0 
st rl , b lockRowPosi t ion 

/ / begin i n i t i a l pnPos i t ion 
/ / This block can be removed if the check degree is a cons tan t number. 

mov rO , 0 
mov r2 ,0 

i n i t i a l P n P o s i t i o n C o n d : 
sub rl , r0 ,nProcNum 
be ZS, i n i t i a l P n P o s i t i o n E n d 

i n i t i a l P n P o s i t i o n B o d y : 
st r2 , r0 , pnPos i t ion 
add r2 , r2 , nCheckDegMax 
add rO , rO , 1 
bra i n i t i a l P n P o s i t i o n C o n d 

i n i t i a l P n P o s i t i o n E n d : 
/ / end i n i t i a l pnPos i t ion 

/ / Begin i n i t i a l i z e processorPhase , pnCheckDegRowPosition 
mov rO ,0 
mov r 2 , n P r o c S i z e / / r 2 : cu r r en t phase 
mov r3 , nProcSize*nCheckDegMax / / r3 : cu r r en t phase row p o s i t i o n 
mov r4 , nProcNum 

i n i t i a l i z e P r o c e s o r P h a s e C o n d : 
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B.2: LDPC-CC PIBF Algorithm with Zero-overhead Looping onXInC 

sub r l ,rO , r4 
be ZS, i n i t i a l i z e P r o c e s o r P h a s e E n d 

i n i t i a l i z e P r o c e s o r P h a s e B o d y : 
sub r3 , r3 , nProcSize*nCheckDegMax 
sub r2 ,r2 , nProcSize 
be NS, i n i t i a l i z e P r o c e s o r P h a s e M o d 
bra i n i t i a l i z e P r o c e s o r P h a s e S t o r e 

i n i t i a l i z e P r o c e s o r P h a s e M o d : 
add r3 , r3 ,nCodeT*nCheckDegMax 
add r2 , r2 , nCodeT 
be NS, i n i t i a l i z e P r o c e s o r P h a s e M o d 

i n i t i a l i z e P r o c e s o r P h a s e S t o r e : 
st r3 , r0 ,pnCheckDegRowPosition 
add rO , rO , 1 
bra i n i t i a l i z e P r o c e s o r P h a s e C o n d 

i n i t i a l i z e P r o c e s o r P h a s e E n d : 
/ / End i n i t i a l i z e p rocessorPhase 

/ / Begin i n i t i a l i z e pnSymbolDegRowPosition 
mov r3 ,0 
mov rO,— nCodeM*nCodeC+nProcSize *nCodeC 

ini t ia l izepnSymbolDegRowPosi t ionCond : 
sub r l ,r3 ,nProcNum 
be ZS, in i t ia l izepnSymbolDegRowPosi t ionEnd 
sub rO , r0 ,nProcSize*nCodeC 

addPnSymbolDegRowPosition: 
add rO ,r0 ,nCodeT*nCodeC 
be NS, addPnSymbolDegRowPosition 

subPnSymbolDegRowPosition: 
sub r l , r0 ,nCodeT*nCodeC 
be NS, subPnSymbolDegRowPositionEnd 
mov rO , r 1 
bra subPnSymbolDegRowPosition 

SubPnSymbolDegRowPositionEnd : 
add r3 , r3 ,1 
bra in i t ia l izepnSymbolDegRowPosi t ionCond 

in i t ia l izepnSymbolDegRowPosi t ionEnd : 
/ / End i n i t i a l i z e pnSymbolDegRowPosition 

/ /Begin i n i t i a l i z e pnSymbolMatLLRPosition 
mov r3 ,nProcNum-l 
mov rl ,2*nBlockLength 

in i t ia l izepnSymbolMatLLRPosi t ionCond : 
sub rO ,r3 ,0 
be NS, in i t ia l izepnSymbolMatLLRPosi t ionEnd 

in i t ia l izepnSymbolMatLLRPosi t ionBody : 
st r l , r3 .pnSymbolMatLLRPosition 
add rl , r l , nEachProcBufLength 
sub r3 , r3 ,1 
bra in i t ia l izepnSymbolMatLLRPosi t ionCond 

in i t ia l izepnSymbolMatLLRPosi t ionEnd : 
/ /End i n i t i a l i z e pnSymbolMatLLRPosition 

/ /Begin i n i t i a l i z e procMemoryStart 
mov r3 ,0 
mov rl ,0 

in i t i a l i zeProcMemorySta r tCond : 
sub rO , r3 , nProcNum 
be ZS, i n i t i a l i zeProcMemoryS ta r tEnd 

in i t i a l i zeProcMemoryS ta r tBody : 
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st rl , r3 , procMemoryStart 
add r l , r l , nEachProcBufLength 
add r3 , r3 ,1 
bra in i t i a l i zeProcMemorySta r tCond 

in i t i a l i z eP rocMemoryS ta r tEnd : 
/ /End i n i t i a l i z e ProcMemoryStart 

/ / input f i r s t data 
Id r4 , b lockRowPosi t ion 
mov r5 ,0 

inputDataCondl : 
sub r6 , r5 ,nCodeC 
be ZS, inputDataEndl 
j s r r6 , XPD-ReadByte 
and rl , r l , 0x f f 
rol rO , r l ,8 
j s r r6 , XPD-ReadByte 
and r l , r l , 0x f f 
ior r l , r l , r 0 / / r l : input data 
mov r2 ,nSymbolDegMax+l 

/ / s t o re input data to matLLRBuffer 
mov r3 , 0 

s toreDataCont l : 
sub r6 , r3 , r2 
be ZS, s toreDataEndl 
add r6 , r4 , r3 
st r l , r 6 , matLLRBuffer 
add r3 , r3 , 1 
bra s toreDataCont l 

s toreDataEndl : 

add r4 , r4 , nBufWidth 
add r5 , r5 ,1 
bra inputDataCondl 

inputDataEndl : 

/ / Set s t a r t of the blockRowPosi t ion as nBlockLength 
mov rl , nBlockLength 
st r l , b lockRowPosi t ion 

/ / Decoding s t a r t 
d e c o d i n g S t a r t : 
s t a r t P a r a l l e l : 
/ / s t a r t p a r a l l e l decoding 

mov r4 ,2 / / Decoding processor thread s t a r t i n g from 2 
se tThreadl : 

rol r 2 , r 4 , 3 
ior r 2 , r 2 , 7 
outp r2 , SCUpntr 
Id r2 , r4 , SPJU5DRESS 
outp r2 , SCUreg 
mov r2 , Thread2 
outp r2 , SCUpc 
add r4 , r4 ,1 
sub r2 , r4 ,nProcNum+2 
be ZS, s t a r t T h r e a d l 
bra se tThreadl 

s t a r t T h r e a d l : 
Id r3 , t h r e a d P a t t e r n 
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outp r3 , SCUstop 
e n d P a r a l l e l : 

/ / input data 
Id r4 .b lockRowPosi t ion 
mov r5 ,0 

inputDataCond : 
sub r6 , r5 , nCodeC 
be ZS, inputDataEnd 
j s r r6 , XPD-ReadByte 
and r l , r l , 0x f f 
rol rO , r l ,8 
j s r r6 , XPD.ReadByte 
and rl , r l ,0xf f 
ior r l , r l , r 0 / / r l : input data 

Id rO , pnSymbolDegPointer 
Id r2 , rO , pnSymbolDeg 
add r 2 , r 2 , l / / r2 < - pnSymbolDeg[pnSymbolDegPointer] +1 
add rO , rO , 1 
st rO , pnSymbolDegPointer / / pnSymbolDegPointer++ 
sub r 6 , r 0 , nCodeOnCodeT / / pnSymbolDegPointer mod nCodeC*nCodeT 
be ZS, mod2 
bra mod2Cont 

mod2: 
st r6 , pnSymbolDegPointer 

mod2Cont: 

mov r3 , 0 
s to reDa taCon t : 

sub r6 , r3 , r2 
be ZS, s toreDataEnd 
add r6 , r4 , r 3 
st r l , r 6 , matLLRBuffer 
add r3 , r3 , 1 
bra s toreDataCont 

s toreDataEnd : 
add r4 , r4 , nBufWidth 
add r5 , r5 ,1 
bra inputDataCond 

inputDataEnd : 
/ / Data input end 

/ / Hard Decision begin 
Id r2 ,b lockRowPosi t ion 
add r2 , r2 , nBlockLength 
sub rl , r2 ,nBufLength 
be NC,modDone 
mov rl , r2 

modDone: 
mov r3 ,0 

ha rdDec is ionCont : 
sub rO , r3 , nCodeC 
be ZS, hardDecis ionEnd 

/ / Echo r e s u l t 
st rl , r 7 , 1 0 
mov rl , rO 

/ / j s r r6 ,XPD.EchoHex 
j s r r6 , XPDJEchoUnsignedDec 
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mov rl , space 
j s r r6 ,XPD.EchoString 

p r i n t E n d : 

Id rl , r 7 , 1 0 
add r3 , r3 ,1 
add rl , r l .nBufWidth 
bra hardDecis ionCont 

hardDecis ionEnd: 
// Hard Decision end 

/ / Po in t e r Increment 
/ / Begin MockRowPosi t ion=(blockRowPosi t ion+blockLength) mod nBufLength 
/ / This is the f i r s t item of pnTeseRows [nThisNode ] 

Id r l ,b lockRowPosi t ion 
add rl , r l .nBlockLength 
sub rO , r l , nBufLength 
be NS, storeBlockRowPosit ionFromRl 
st rO , b lockRowPosi t ion 
bra s toreBlockRowPosi t ionEnd 

StoreBlockRowPositionFromRl : 
st r l , b lockRowPosi t ion 

StoreBlockRowPosi t ionEnd: 
/ / End b lockRowPosi t ion=(blockRowPosi t ion+blockLength) mod nBufLength 

/ / Query if decoding processor is f i n i s h ? 
Id r3 , t h r e a d P a t t e r n 
be ZS, queryEnd 
ior r3 , r3 ,Oxf f03 
xor r3 , r3 .Oxffff 

queryThreadSta tus : 
inp r l , SCUbkpt 
and r l , r l ,0xfc 
sub rl , r l , r3 
be ZS, threadDone 
bra queryThreadSta tus 

threadDone : 
/ / Stop Thread 2 - Thread 6 

mov r3 ,0 xfc 
outp r3 , SCUstop 

queryEnd: 

decodingEnd : 
bra decod ingS ta r t 

stop : 

bra stop 

Thread2 : 

thrd r l 
Id r2 , r l , p rocessor lD / / r2 : processor lD 

/ /Begin c a l c u l a t e pnSymbolMatLLRPosition 
Id rO , r2 , pnSymbolMatLLRPosition 
add rO , r0 ,nCodeC*nBufWidth 
sub rl , r0 .nBufLength 
be NC, replacePnSymbolMatLLRPosition 
bra storePnSymbolMatLLRPosition 

replacePnSymbolMatLLRPosition : 
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mov rO , r 1 
storePnSymbolMatLLRPosit ion: 

st rO , r2 , pnSymbolMatLLRPosition 
/ / End c a l c u l a t e pnSymbolMatLLRPosition 

/ / Begin load peTheseLLRs 
mov r3 ,0 
mov r5 ,0 / / r5 : nThisNode 
0x3921,0x5 / / movZOLR rl ,5 

loadPeTheseLLRsCond : 
0x3922 ,loadPeTheseLLRsEnd / / setZOLA rl , 

loadPeTheseLLRsBody : 
/ / r 6 : p o s i t i o n in matOnesInPcmYRowPosition and matOnesInPcmX 

Id r6 , r2 , pnCheckDegRowPosition 
add r6 , r6 , r5 

/ / r 4 : p o s i t i o n in peTheseLLRs and pnMatLLRPosition 
Id r4 , r2 , pnPos i t ion 
add r4 , r4 , r5 
Id rO , r6 , matOnesInPcmYRowPosition 
Id r l , r2 , pnSymbolMatLLRPosition 
add rl , r l ,nCodeC*nBufWidth*nProcSize 
sub r l , r l , r O 
sub rO , r l ,nBufLength 
be NC, replacePnTheseRows 
bra storePnTheseRows 

replacePnTheseRows: 
add rl , r 0 , 0 

StorePnTheseRows: 
Id rO , r6 , matOnesInPcmX 
add rO , rO , r l 
st rO , r4 , pnMatLLRPosition 
Id rO , rO , matLLRBuffer 
xor r3 , r3 , rO 
add r5 , r5 ,1 

loadPeTheseLLRsEnd : 
/ / End load peTheseLLRs 

/ / Begin Check Node Operation 
Id r5 , r2 , pnPos i t ion / / load p o s i t i o n f i r s t 
st r 2 , r 7 , 0 / / push r2 to the buffer 

mov r2 , r3 

/ / Store back to matLLRBuffer 
mov r4 ,0 

checkNodeCond3 : 
0x3921 ,nCheckDegMax-l / / movZOLR rl , nCheckDegMax-1 
0x3922, checkNodeEnd3 / / setZOLR rl , checkNodeEnd3 

checkNodeBody3 : 
add r3 , r5 , r4 
Id r3 , r3 , pnMatLLRPosition 
st r2 , r3 , matLLRBuffer 
add r4 , r4 ,1 

checkNodeEnd3 : 

Id r2 , r7 ,0 / / pop up r2 
/ / End check node opera t ion , r5 is r e l e a s e d 

/ / Begin v a r i a b l e node , only r2 is used at t h i s stage 
Id rl , r2 , pnSymbolMatLLRPosition 
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0x3901 ,nCodeC-l / / movZOLR rO , nCodeC-1 
0x3902 , variableNodeEnd / / setZOLR rO , variableNodeEnd 

variableNodeCond : 

variableNodeBody : 
st r 2 , r 7 , 0 
mov r6 ,65535 / / r 6 : a l l 3 e r r o r s 
mov r4 ,0 / / r 4 : at l e a s t 1 e r ro r 
mov r2 ,0 / / r 2 : 1 e r ro r or 3 e r r o r s 
mov r 5 , l / / r5 , loop v a r i a b l e 
0x3921 snSymbolDegMax-l / / movZOLR rl , nSymbolDegMax-1 
0x3922 , eTotalSumAddEnd / / setZOLR rl , eTotalSumAddEnd 

eTotalSumAddCond : 
add rO , r l , r5 
Id r3 , rO , matLLRBuffer 
and r6 , r6 , r3 
ior r4 , r4 , r3 
xor r2 , r 2 , r 3 
add r5 , r5 ,1 

eTotalSumAddEnd : 
xor r 4 , r 4 , r 2 / / 2 e r r o r s 
ior r 4 , r 4 , r 6 / / 2 e r r o r s or 3 e r r o r s 
Id r 2 , r 7 , 0 

/ / r6(3 e r r o r s ) , r4 (3 or 2 e r r o r s ) 
and r 3 , r 2 , l / / Which p r o c e s s o r ? 
be ZC, twoMoreErrors 
Id r3 , r l , matLLRBuffer 
xor r3 , r3 , r6 
bra s t o r e F l i p p i n g R e s u l t 

twoMoreErrors: 
Id r3 , rl , matLLRBuffer 
xor r3 , r3 , r4 

/ / Store f l i p p i n g r e s u l t 
S t o r e F l i p p i n g R e s u l t : 

mov r5 ,0 
s toreCont : 

sub r4 , r5 ,nSymbolDegMax+l 
be ZS.endStore 
add r4 , r l , r5 
st r3 , r4 , matLLRBuffer 
add r5 ,r5 ,1 
bra s toreCont 

endStore : 

eTmpEnd: 
add rl , r l ,nBufWidth 

variableNodeEnd : 
/ / End v a r i a b l e node 

/ / pnCheckDegRowPosition=(pnCheckDegRowPosition+nCheckDegMax) 
/ / mod nCodeT*nCheckDegMax 

Id rO ,r2 , pnCheckDegRowPosition 
add rO , rO , nCheckDegMax 
sub r l , r0 ,nCodeT*nCheckDegMax 
be NC, replaceCheckDegRowPosition 
bra storeCheckDegRowPosition 

replaceCheckDegRowPosit ion : 
add rO , r l ,0 

StoreCheckDegRowPosition : 
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st rO , r2 , pnCheckDegRowPosition 

bra @ 

// 
/ / Other Source F i l e s 

-AppCode.End—: 

/ / Data Space: 
/ / All Data must be in a s epa ra t e 2kWord Memory Block from any Code. 
/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

@ = (@ + 0x800-1) & -0x800 / / Round up to the next 2kWord Memory Block 
. . A p p D a t a - S t a r t . . : 

# inc lude "Long-Data .asm" 

. .AppData .End—: 

/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

/ / Short Address Space: 
/ / Any Data placed in t h i s space may be accessed with a s i n g l e word 
/ / i n s t r u c t i o n . 
//====,================================================================== 

@ = kRAM.End - 127 / / S t a r t of the shor t address space 
. . S h o r t D a t a . S t a r t . . : 

# inc lude " S h o r t . D a t a .asm" 

—Shor tData .End—: 

B.3 LDPC-CC Min-Sum Algorithm Assembly Lan
guage on XInC 

/ / F i lename: Main.asm 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / Desc r ip t i on : 
/ / LDPC-CC Decoder 
/ / Min-Sum Algorithm 
/ / 
/ / Date: Jan 24 , 2008 

# inc lude " . . \ . . \ X I n C Library \XInC .h" 
# inc lude " Constants . h" 

/ / Define the i n i t i a l running th reads 
#def ine ..TO — 
#define . . T l . _ 
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/ / Code and Data Size : 
/ / After assembly , check the values ass igned to these c o n s t a n t s in the 
/ / l i s t f i l e . 

SizeOfAppCode 
SizeOfAppData 
SizeOfShortData 

FreeAppCodeSpace 
FreeAppDataSpace 
FreeShortDataSpace 

( . .AppCode .End . . - . . A p p C o d e . S t a r t . . ) 
( . .AppDa ta .End - . - . . A p p D a t a . S t a r t . . ) 
( . . S h o r t D a t a . E n d . . - _ . S h o r t D a t a . S t a r t . . ) 

( . . A p p D a t a . S t a r t - . - —AppCode.End—) 
(kRAMJEnd - 127 - . . A p p D a t a . E n d . . ) 
(kRAM.End - . . S h o r t D a t a . E n d —) 

/ / Code Space: 
/ / Only Code should be included in t h i s segment. 

: = kRAM.BlockO.Start 
. A p p C o d e . S t a r t : 

ti
ll I n i t i a l i z a t i o n Code 

# inc lude " I n i t . a s m " 

bra @ 

# inc lude " . . \ . . \ X I n C Library\XPD.Echo.asm" 
# inc lude " . . \ . . \ X I n C Library\XPD.Echo.Data .asm" 
# inc lude " . . \ . . \ X I n C Library\LEDs.asm" 

ti
ll Thread Code 

# i f d e f . . T O . . 
ThreadO: 

bra ThreadO 
#endif 

Threadl : 

# inc lude "Threadl . asm" 

/ / Thread 0 Code 

/ / Thread 1 Code 

mov rl , kXPD.BaudRate.115200 + kXPD.ClockLE.12MHz 
j s r r6 , XPD.Configure 

// I n i t i a l i z e the LEDs 
j s r r6 , I n i t i a l i z e L E D s 

mov rl , OxFFFF 
j s r r6 , TurnOnLEDsm // Turn on a l l LEDs to i n d i c a t e the program has loaded 

/ / D i s t r i b u t e proceesor lD 
mov rO , 0 

.DISTRIBUTE .PROCESSOR-ID: 
add r5 , r 0 , 2 
st rO , r5 , processor lD 
add rO , rO , 1 
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sub r5 , rO ,nProcNum 
be ZS, JENDJ3ISTRIBUTEJROCESSORJD 
bra -DISTRIBUTE-PROCESSORJD 

-END.DISTRIBUTE-PROCESSORJD: 

/ / S t a r t p a r a l l e l decoding 
mov r 3 , 0 x f f f c / / Give r3 i n i t i a l v a l u e , only thread 0 and 1 is running 
mov r4 ,2 / / Decoding processor from thread 2 

.SET-THREAD: 
rol r 2 , r 4 , 3 
ior r 2 , r 2 , 7 
outp r2 , SCUpntr 
Id r 2 , r 4 , SP^VDDRESS 
outp r2 , SCUreg 
mov r2 , Thread2 
outp r2 , SCUpc 

/ / r3 c o n t r o l s which thread wi l l run. 
mov r 1 ,1 
ro l r l , r l , r 4 
xor r l , r l , 0x f f f f 
and r3 , r3 , r l 
add r4 , r4 ,1 
mov r2 ,2 
sub r2 , r4 , r2 
sub r2 , r2 ,nProcNum 
be ZS, -START-THREAD 
bra -SET-THREAD 

-START-THREAD: 
st r3 , t h r e a d P a t t e r n 

/ / I n i t i a l i z e matLLRBuffer with elnitLLR 
. .FOR-2-INIT: 

mov rO , 0 
mov rl ,nBufLength 
mov r2 , elnitLLR 

--FOR.2.COND: 
sub r3 , r0 , r l 
be ZS, -.FOR.2.END 

._FOR.2_BODY: 
st r2 , rO , matLLRBuffer 

-.FOR-2.INCR: 
add rO , rO , 1 
bra __FOR.2-COND 

--FORJ2.END: 

mov rl ,0 
st r l , pnSymbolDegPointer 
st rl ,b lockRowPosi t ion 

/ / I n i t i a l i z e pnPos i t ion 
mov rO , 0 
mov r2 ,0 

i n i t i a l P n P o s i t i o n . C o n d : 
sub r l , r0 .nProcNum 
be ZS, i n i t i a l P n P o s i t i o n E n d 

i n i t i a l P n P o s i t i o n B o d y : 
st r2 , rO , pnPos i t ion 
add r2 , r2 , nCheckDegMax 
add rO , rO , 1 
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bra i n i t i a l P n P o s i t i o n . C o n d 
i n i t i a l P n P o s i t i o n E n d : 

/ / I n i t i a l i z e processorPhase , pnCheckDegRowPosition 
mov rO ,0 
mov r2 , nProcSize / / r2 : c u r r e n t phase 
mov r3 , nProcSize*nCheckDegMax / / r3 : cu r r en t phase row p o s i t i o n 
mov r4 , nProcNum 

i n i t i a l i z e P r o c e s o r P h a s e . C o n d : 
sub r l , rO , r4 
be ZS, i n i t i a l i z e P r o c e s o r P h a s e - E n d 

i n i t i a l i z e P r o c e s o r P h a s e . B o d y : 
sub r3 ,r3 , nProcSize*nCheckDegMax 
sub r2 ,r2 ,nProcSize 
be N S , i n i t i a l i z e P r o c e s o r P h a s e . M o d 
bra i n i t i a l i z e P r o c e s o r P h a s e . S t o r e 

i n i t i a l i z e P r o c e s o r P h a s e . M o d : 
add r3 ,r3 ,nCodeT*nCheckDegMax 
add r2 , r2 , nCodeT 
be NS, i n i t i a l i z e P r o c e s o r P h a s e . M o d 

i n i t i a l i z e P r o c e s o r P h a s e . S t o r e : 
st r2 , rO , p rocessorPhase 
st r3 , rO , pnCheckDegRowPosition 
add rO , rO , 1 
bra i n i t i a l i z e P r o c e s o r P h a s e . C o n d 

i n i t i a l i z e P r o c e s o r P h a s e . E n d : 

/ / I n i t i a l i z e pnSymbolDegRowPosition 
mov r3 ,0 
mov rO,-nCodeM*nCodeC+nProcSize*nCodeC 

in i t i a l i zepnSymbolDegRowPos i t ion .Cond: 
sub r l , r3 ,nProcNum 
be ZS, in i t i a l i zepnSymbolDegRowPos i t ion .End 
sub rO ,r0 , nProcSize*nCodeC 

add.pnSymbolDegRowPosition : 
add rO , rO , nCodeT*nCodeC 
be NS, add.pnSymbolDegRowPosition 

sub.pnSymbolDegRowPosition : 
sub r l , r0 ,nCodeT*nCodeC 
be NS, sub.pnSymbolDegRowPosition .End 
mov rO , r 1 
bra sub.pnSymbolDegRowPosition 

sub.pnSymbolDegRowPosition .End: 
st rO , r3 , pnSymbolDegRowPosition 
add r3 , r3 ,1 
bra in i t i a l i zepnSymbolDegRowPosi t ion .Cond 

in i t i a l i zepnSymbolDegRowPos i t ion .End : 

/ / I n i t i a l i z e pnSymbolMatLLRPosition 
mov r3 ,nProcNum-l 
mov rl ,2*nBlockLength 

in i t i a l i zepnSymbolMatLLRPos i t ion .Cond: 
sub rO ,r3 ,0 
be NS, in i t i a l i zepnSymbolMatLLRPos i t ion .End 

in i t i a l i zepnSymbolMatLLRPos i t ion .Body : 
st r l , r3 .pnSymbolMatLLRPosition 
add rl , r l , nEachProcBufLength 
sub r3 , r3 ,1 
bra ini t ial ize pnSymbolMatLLRPosi t ion .Cond 

in i t i a l i zepnSymbolMatLLRPos i t ion .End : 
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/ / I n i t i a l i z e procMemoryStart 
mov r3 ,0 
mov rl ,0 

i n i t i a l i z eP rocMemoryS ta r t -Cond : 
sub rO , r3 , nProcNum 
be ZS, i n i t i a l i z eP rocMemoryS ta r t_End 

i n i t i a l i z e P r o c M e m o r y S t a r t . B o d y : 
st r l , r3 , procMemoryStart 
add rl , r l , nEachProcBufLength 
add r3 , r3 ,1 
bra in i t i a l i zeProcMemorySta r t_Cond 

i n i t i a l i z e P r o c M e m o r y S t a r t - E n d : 

/ / input data 
Id r4 , b lockRowPosi t ion 
mov r5 ,0 
inputDataCondl : 
sub r6 , r5 ,nCodeC 
be ZS, inputDataEndl 
j s r r6 , XPD-ReadByte 
and rl , r l , 0x f f 
rol rO , r l ,8 
j s r r6 , XPD.ReadByte 
and r l , r l , 0x f f 
ior r l , r l , r 0 / / r l : input data 
Id rO , pnSymbolDegPointer 
Id r2 , rO , pnSymbolDeg 
add r 2 , r 2 , l / / r 2 : pnSymbolDeg[pnSymbolDegPointer ] +1 
add rO , rO , 1 
st rO , pnSymbolDegPointer / / pnSymbolDegPointer++ 
sub r 6 , r 0 , nCodeC*nCodeT / / pnSymbolDegPointer mod nCodeC*nCodeT 
be ZS, .MOD21 
bra -MOD2.CONT1 

-MOD21: 
st r6 , pnSymbolDegPointer 

-MOD2.CONT1: 

-FOR.3 . INIT1 : 
mov r3 , 0 

-FOR.3.CONDI: 
sub r6 , r3 , r2 
be ZS, -FOR-3.END1 

-FOR-3.BODY1: 
add r6 , r4 , r3 
st r l , r 6 , matLLRBuffer 

-FOR.3.INCR1 : 
add r3 , r3 , 1 
bra --FOR.3-CONDI 

-FOR-3.END1 : 

add r4 , r4 , nBufWidth 
add r5 , r5 ,1 
bra inputDataCondl 

inputDataEndl : 
mov rl .nBlockLength 
st r l , b lockRowPosi t ion 

-DECODING.START: 
-START-PARALLEL: 
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II s t a r t decoding p roces so r s 
mov r4 ,2 / / Decoding processor s t a r t i n g from thread 2 

.SET-THREAD 1: 
rol r 2 , r 4 , 3 
ior r 2 , r 2 , 7 
outp r2 , SCUpntr 
Id r 2 , r 4 , SPJU5DRESS 
outp r2 , SCUreg 
mov r2 , Thread2 
outp r2 , SCUpc 
add r4 , r4 ,1 
sub r2 , r4 ,nProcNum+2 
be ZS, .START-THREAD 1 
bra -SET-THREAD1 

-START-THREADl: 
Id r3 , t h r e a d P a t t e r n 
outp r3 , SCUstop 

.END-PARALLEL: 

/ / input data 
Id r4 , b lockRowPosi t ion 
mov r5 ,0 
inputDataCond : 
sub r6 ,r5 ,nCodeC 
be ZS, inputDataEnd 
j s r r6 , XPD.ReadByte 
and rl , r l , 0x f f 
rol rO , r l ,8 
j s r r6 , XPD-ReadByte 
and rl , r l , 0x f f 
ior r l , r l , r 0 / / r l : input data 
Id rO , pnSymbolDegPointer 
Id r2 , rO , pnSymbolDeg 
add r 2 , r 2 , l / / r2 : pnSymbolDeg[ pnSymbolDegPointer ] +1 
add rO , rO , 1 
st rO, pnSymbolDegPointer / / pnSymbolDegPointer++ 
sub r 6 , r 0 , nCodeC*nCodeT / / pnSymbolDegPointer mod nCodeC*nCodeT 
be ZS, -MOD2 
bra -MOD2.CONT 

_MOD2: 
st r6 , pnSymbolDegPointer 

.MOD2-CONT: 

. .FOR.3 . INIT: 
mov r3 , 0 

.-FOR.3-COND : 
sub r6 , r3 , r2 
be ZS, -FOR-3-END 

..FOR.3.BODY : 
add r6 , r4 , r3 
st r l , r 6 , matLLRBuffer 

. .FOR.3.INCR: 
add r3 , r3 , 1 
bra _FOR-3_COND 

..FOR.3-END: 

add r4 , r4 , nBufWidth 
add r5 , r5 ,1 
bra inputDataCond 

inputDataEnd : 
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II Begin Hard Decision 
Id r2 .b lockRowPosi t ion 
add r2 ,r2 ,nBlockLength 
sub r l , r2 , nBufLength 
be NC, ModJDone 
mov rl , r2 

Mod-Done: 

mov r3 ,0 
hardDecis ion-Cond : 
sub rO , r3 , nCodeC 
be ZS .ha rdDec i s ion .End 

hardDec is ion .Body: 
Id r4 , r2 ,pnSymbolDegRowPosition 
add r4 , r4 , r3 
Id r4 , r4 , pnSymbolDeg 
add r 4 , r 4 , l / / pnSymbolDeg[nThisPhase*nCodeC+i]+l 
mov r 6 , 0 / / r6 , eTotalSum 
mov r5 ,0 / / r5 , loop v a r i a b l e 
eTotalSum.Add.Condl : 
sub rO , r5 , r4 
be ZS.eTotalSum.Add-Endl 
add rO , r l , r5 

Id rO , rO , matLLRBuffer 

add r 6 , r 6 , r 0 / / eTotalSum=eTotalSum+ . . . 
add r5 , r5 ,1 
bra eTotalSum-Add.Condl 

eTotalSum.Add-Endl : 

st r l , r 7 , 1 0 
xor rl , r6 ,0 
be NS, printOne 
mov rl , ze ro 
j s r r6 ,XPD.EchoString 
mov rl , space 
j s r r6 , XPD.EchoString 
bra pr in tEnd 

printOne : 
mov rl ,one 
j s r r6 ,XPD.EchoString 
mov rl , space 
j s r r6 , XPD.EchoString 

p r i n t E n d : 
Id r l , r 7 , 1 0 

add r3 , r3 ,1 
add r l , r l ,nBufWidth 
bra hardDecis ion-Cond 

ha rdDec i s ion .End : 

/ / Po in te r Increment 

/ / Begin b lockRowPosi t ion=(blockRowPosi t ion+blockLength) mod nBufLength 
/ / This is the f i r s t item of pnTeseRows [nThisNode ] 

Id rl ,b lockRowPosi t ion 
add rl , r l ,nBlockLength 
sub rO , rl , nBufLength 
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be NS, storeBlockRowPosit ionFromRl 
st rO ,b lockRowPosi t ion 
bra s toreBlockRowPosi t ionEnd 
StoreBlockRowPositionFromRl : 
st rl , b lockRowPosi t ion 
StoreBlockRowPosi t ionEnd: 

/ / Query if decoding processor is f in i shed 
Id r3 , t h r e a d P a t t e r n 
be ZS,.QUERYJEND 
ior r3 , r3 ,0xff03 
xor r3 , r3 ,0 xffff 

.QUERY.THREAD.STATUS: 
inp r l , SCUbkpt 
and r l , r l ,0xfc 
sub rl , r l , r3 
be ZS, -THREAD-DONE 
bra jQUERY-THREAD-STATUS 

-THREAD .DONE: 
/ / Stop Thread 2 - Thread 7 

mov r3 ,0 xfc 
outp r3 , SCUstop 

-QUERY-END: 

-DECOD1NG-END: 
bra .DECODING.START 

stop : 
bra stop 

Thread2 : // Decoding p roces so r s 
thrd r l 
Id r2 , rl , processor lD / / r2 : processor lD 

// Ca lcu la t e pnSymbolMatLLRPosition 
Id rO , r2 , pnSymbolMatLLRPosition 
add rO ,r0 ,nCodeC*nBufWidth 
sub r l , r0 , nBufLength 
be NC, replacePnSymbolMatLLRPosition 
bra storePnSymbolMatLLRPosition 

replacePnSymbolMatLLRPosit ion: 
add rO , r l ,0 

StorePnSymbolMatLLRPosition: 
st rO ,r2 .pnSymbolMatLLRPosition 

/ /Load peTheseLLRs 
Id rl , r2 , p rocessorPhase 
Id r3 , r l .pnCheckDeg 
mov r5 ,0 

load.peTheseLLRs.Cond : 
sub r l , r5 , r3 
be ZS,load.peTheseLLRs.End 

load.peTheseLLRs.Body : 
Id r6 , r2 , pnCheckDegRowPosition 
add r6 , r6 , r5 

/ / c u r r e n t LDPC-CC decoder processor ' s p o s i t i o n in pnTheseCols 
Id r 4 , r 2 , p n P o s i t i o n and pnTheseRowsTemp 
add r4 , r4 , r5 
Id rO , r6 ,matOnesInPcmYRowPosition 

/ / pnTheseRows 
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Id r l , r2 .pnSymbolMatLLRPosition 
add r l , r l ,nCodeC*nBufWidth*nProcSize 
sub r l , r l , rO 
sub rO , r l , nBufLength 
be NC.replacePnTheseRows 
bra storePnTheseRows 

replacePnTheseRows: 
add rl , r0 ,0 

StorePnTheseRows: 
Id rO , r6 , matOnesInPcmX 
add rO , r 0 , r l 
st rO , r4 , pnMatLLRPosition 
Id rO , rO , matLLRBuffer 
st rO , r4 , peTheseLLRs 
add r5 , r5 ,1 
bra load-peTheseLLRs.Cond 
load.peTheseLLRs-End: 

/ / End load peTheseLLRs 

/ / Check Node Operation 
/ / c a l c u l a t e two minimum abso lu te number and the sign 

Id r5 ,r2 , pnPos i t ion 
st r 2 , r 7 , 0 / / r2 is not used in check node 
mov rO , elnitLLR / / rO : the minimum number value 
mov r l , elnitLLR / / r l : t h e second minimum number value 
mov r4 , r3 
st r3 , r7 ,1 
mov r3 ,0 / / r3 : s ign 
sub r 4 , r 4 , l 

checkNode.Condl : 
sub r 2 , r 4 , 0 
be NS,checkNode.Endl 

checkNode.Bodyl : 
add r2 , r5 , r4 
Id r2 , r2 , peTheseLLRs 
be NS, negat ive 
bra a b s o l u t e . e n d 

negat ive : 
bix r3 , r 3 , 1 5 

n e g a t i v e . e n d : 
a b s o l u t e : 

xor r 2 , r 2 , 0x f f f f 
add r2 , r2 ,1 

a b s o l u t e . e n d : 
sub r6 , r l , r2 
be NS, compare .end 
sub r6 ,r0 , r2 
be NS, second.min 
add rl , r 0 , 0 x 0 
add rO , r 2 , 0 x 0 
bra compare.end 

second.min: 
add rl , r 2 , 0 x 0 

compare _end: 
sub r4 , r4 ,1 
bra checkNode.Condl 

checkNode.Endl : 
mov r2 , r3 
Id r3 , r 7 , l 
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II c a l c u l a t e the data based on sign and 
/ / two minimum abso lu te number 

mov r4 ,0 
checkNode-Cond3 : 

sub r6 ,r4 , r3 
be ZS,checkNode.End3 

checkNode_Body3 : 
st r3 , r7 ,1 
add r3 , r5 , r4 
Id r6 , r3 ,peTheseLLRs 
be NS, absolute3 
sub r6 ,r6 , rO 
be ZS,minimum_numberl 
add r6 , rO ,0 
bra minimum_number_endl 

minimum.numberl : 
add r 6 , r l ,0 

minimum.number-endl : 
add r2 ,r2 ,0 / / r2 : sign 
be NS, o p p o s i t e . 1 
bra o p p o s i t e - l . e n d 

oppos i t e -1 : 
xor r6 , r6 , 0x f f f f 
add r6 , r6 ,1 

o p p o s i t e . L e n d : 
bra absolu te3 _end 

absolute3 : 
xor r6 , r6 , 0 x f f f f 
add r6 , r6 ,1 
sub r6 , r6 , rO 
be ZS,minimum_number 
add r6 , r 0 , 0 
bra minimum.number.end 

minimum-number: 
add r6 , r l ,0 

minimum.number.end: 
add r 2 , r 2 , 0 
be NS, absolu te2_end 
xor r6 ,r6 ,0 xffff 
add r6 ,r6 ,1 

absolute2_end : 
absolute3 -end : 

Id r3 , r3 , pnMatLLRPosition 
st r6 , r3 , matLLRBuffer // s to re back to matLLRBuffer 
Id r3 , r 7 , l / / pop r3 
add r4 , r4 ,1 
bra checkNode-Cond3 

checkNode.End3 : 
Id r 2 , r 7 , 0 

/ / Check node ope ra t ion end 

/ / Var iable node 
Id r l , r2 .pnSymbolMatLLRPosition 
mov r3 ,0 

var iab leNode .Cond: 
sub rO , r3 , nCodeC 
be ZS, var iableNode-End 
variableNode -Body : 
Id r4 , r2 , pnSymbolDegRowPosition 
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add r4 , r4 , r3 
Id r4 , r4 , pnSymbolDeg 
add r 4 , r 4 , l / / pnSymbolDeg[nThisPhase*nCodeC+i]+l 
mov r 6 , 0 / / r 6 , eTotalSum 
mov r5 ,0 / / r5 , loop v a r i a b l e 

eTotalSum.Add.Cond: 
sub rO ,r5 , r4 
be ZS, eTotalSum.Add-End 
add rO , r l , r 5 
Id rO , rO , matLLRBuffer 
add r 6 , r 6 , r 0 / / eTotalSum=eTotalSum + . . . 
add r5 , r5 ,1 
bra eTotalSum.Add.Cond 

eTotalSum.Add.End: 

/ / r6(eTota lSum) is used from previous 
mov r5 ,1 

eTmp.Cond: 
sub rO ,r5 , r4 
be ZS,eTmp.End 
add rO , r l , r 5 
Id rO , rO , matLLRBuffer 
sub rO , r6 , rO 
st r3 , r7 ,2 
sub r3 , r0 , elnitLLR 
be NC, g r e a t e r . t h a n . e l n i t L L R 
sub r3 , r O , - elnitLLR 
be NS, l e s s . t h a n . m i n u s . e l n i t L L R 
bra eTmp.compare.end 

g r e a t e r . t h a n . e l n i t L L R : 
mov rO , elnitLLR 
bra eTmp.compare.end 

l e s s . t h a n . m i n u s . e l n i t L L R : 
mov rO, -e ln i tLLR 

eTmp.compare.end: 
add r 3 , r l , r 5 / / s to re back to matLLRBuffer 
st rO , r3 , matLLRBuffer 
Id r3 , r 7 , 2 
add r5 , r5 ,1 
bra eTmp.Cond 

eTmp-End: 
add r3 , r3 ,1 
add rl , r l .nBufWidth 
bra var iableNode.Cond 
var iab leNode .End: 

/ / End v a r i a b l e node 

/ / (p rocesso rPhase++) mod nCodeT 
Id rO , r2 , p rocesso rPhase 
add rO , rO , 1 
sub r l , r0 ,nCodeT 
be NC, r e p l a c e P r o c e s s o r P h a s e 
bra s t o r e P r o c e s s o r P h a s e 

r e p l a c e P r o c e s s o r P h a s e : 
add rO , r l ,0 

s t o r e P r o c e s s o r P h a s e : 
st rO , r2 , p rocessorPhase 

/ / pnCheckDegRowPosition=(pnCheckDegRowPosition+nCheckDegMax) 
/ / and mod nCodeT*nCheckDegMax 
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Id rO , r2 , pnCheckDegRowPosition 
add rO , rO , nCheckDegMax 
sub rl , rO ,nCodeT*nCheckDegMax 
be NC, replaceCheckDegRowPosition 
bra StoreCheckDegRowPosition 

replaceCheckDegRowPosit ion : 
add rO , r l ,0 

StoreCheckDegRowPosition : 
st rO , r2 , pnCheckDegRowPosition 

/ / pnSymbolDegRowPosition=(pnSymbolDegRowPosition+nCodeC) 
/ / mod nCodeT*nCodeC 

Id rO , r2 , pnSymbolDegRowPosition 
add rO ,r0 ,nCodeC 
sub r l , r0 ,nCodeT*nCodeC 
be NC, replacePnSymbolDegRowPosition 
bra storePnSymbolDegRowPosition 

replacePnSymbolDegRowPosit ion: 
add rO , r l ,0 

StorePnSymbolDegRowPosition: 
st rO , r2 , pnSymbolDegRowPosition 

bra @ 

// 
/ / Other Source F i l e s 

_. AppCode.End- . : 

/ / Data Space: 
/ / All Data must be in a sepa ra t e 2kWord Memory Block from any Code. 

/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

@ = (@ + 0x800-1) & -0x800 / / Round up to the next 2kWord Memory Block 
. . A p p D a t a . S t a r t . . : 

# inc lude "Long.Data .asm" 

—AppData_End__: 

/ / Short Address Space: 
/ / Any Data placed in t h i s space may be accessed with a s ing l e word 
/ / i n s t r u c t i o n . 
//====================================================================== 

@ = kRAM-End - 127 / / S t a r t of the shor t address space 

. . S h o r t D a t a . S t a r t . . : 

# inc lude "Shor t -Da ta . asm" 

__ShortData_End-_: 

B.4 LDPC-CC Encoding and Decoding Data Defini
tion 
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II 
II 
II 
II 
ll 
II 
ll 
ll 
ll 

Fi lename: Shor t .Da ta . asm 
Author: Xin Sheng Zhou 
Department of E l e c t r i c a l 
Un ive r s i t y of Alber ta 

Desc r ip t i on : 
Short Data D e f i n i t i o n 

Date: Jan 24 , 2008 

and Computer Engineer ing 

i l : @=@H 

head: @=@fl 
p o s i t i o n T a b l e P o i n t e r : @=@H 
checkNum : @=@H 
nThisBlock: @=@H 
pnSymbolDegPointer : @=<2H-1 
t h r e a d P a t t e r n : @=@H 
nThisBlock.nCheckDegMax : @=@t-l 
nThisProc : @=@*-l 
b lockRowPosi t ion: @=@H 

procDisp : 
0*nProcSize*nCheckDegMax 
l*nProcSize*nCheckDegMax 
2*nProcSize*nCheckDegMax 
3*nProcSize*nCheckDegMax 
4*nProcSize*nCheckDegMax 
5*nProcSize*nCheckDegMax 

% (nCodeT*nCheckDegMax) 
% (nCodeT*nCheckDegMax) 
% (nCodeT*nCheckDegMax) 
% (nCodeT*nCheckDegMax) 
% (nCodeT*nCheckDegMax) 
% (nCodeT*nCheckDegMax) 

matOnesCol: @=@H> 
processor lD : @=@f8 
t h r e a d T e s t : @=@<-8 
pnCheckDegRowPosition: @=@t-nProcNum 
pnSymbolMatLLRPosition: @=@l-nProcNum 

/ / F i lename: Long.Data . asm 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / Un ive r s i t y of Alber ta 
// 
/ / D e s c r i p t i o n : 
/ / Long Data De 
// 
/ / Date: Jan 24 

T0.SP 
T1.SP 
T2.SP 
T3.SP 
T4.SP 
T5-SP 
T6.SP 
T7.SP 

queue 

matrix 

@ = @ + 
@ = @ + 
@ = @ + 
@ = @ + 
@ = @ + 
@ = @ + 
@ = @ + 
@ = @ + 

@p@f257 

f i n i t i on 

2008 

kStackSize 
kStackSize 
kStackSize 
kStackSize 
kStackSize 
kStackSize 
kStackSize 
kStackSize 
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II The p a r i t y check matrix of the benchmark ( 1 2 8 , 3 , 6 ) 
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil 
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing , 
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A 

pnCheckDeg: 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 

pnSymbolDeg: 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 ,3 ,3 ,3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 
3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 

matOnesInPcmY : 
/ / The p a r i t y check matrix of the benchmark ( 1 2 8 , 3 , 6 ) 
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil 
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing , 
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A 

matOnesInPcmYRowPosition : 
/ / The p a r i t y check matrix of the benchmark ( 1 2 8 , 3 , 6 ) 
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil 
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing , 
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A 
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matOnesInPcmX : 
/ / The p a r i t y check matrix of the benchmark ( 1 2 8 , 3 , 6 ) 
/ / LDPC-CC was provided to us cour tesy of Dr. Kamil 
/ / Zigangirov , Department of E l e c t r i c a l Engineer ing , 
/ / Un ive r s i t y of Notre Dame, IN 46556, U.S.A 

matLLRBuffer : @=@-nBufLength 
pnPos i t ion : @=@*-nProcNum 
procMemoryStar t : @=@)-nProcNum 
pnTheseRows : @=@t-nCheckDegMax *nProcNum 
pnTheseRowsTemp : @=@t-nCheckDegMax*nProcNum 
pnTheseCols: @=@t-nCheckDegMax*nProcNum 
pnMatLLRPosition : @=@HiCheckDegMax*nProcNum 
peTmpLLRs: @=@l-nCheckDegMax *nProcNum 
peTheseLLRs : @=@-nCheckDegMax tnProcNum 
variableNodeTmp :@=@fnCodeC*nBufWidth*nProcNum 

var iableNodeTmpPosi t ionl : 
0 , 2 , 4 , 6 , 8 , 1 0 
var iableNodeTmpPosi t ion : 
0 , 4 , 8 , 1 2 , 1 6 , 2 0 , 2 4 , 2 8 , 3 2 , 3 6 , 4 0 , 4 4 

SP.ADDRESS: 
T0.SP 
T1.SP 
T2.SP 
T3-SP 
T4.SP 
T5.SP 
T6.SP 
T7.SP 

THREAD-ADDRESS: 

Threadl 
Thread2 

S t a r t . S t r i n g : " S t a r t Encoding",0 

S t a r t . S t r i n g . D e c o d i n g : " S t a r t Decoding",0 

endOfLine : 0x0d,0x0a ,0 

space : " " ,0 
zero : "0" ,0 
one: "1" ,0 

B.5 LDPC-CC Encoding and Decoding Constant Def
inition 

/ / F i lename: C o n s t a n t s . h 
/ / Author: Xin Sheng Zhou 
/ / Department of E l e c t r i c a l and Computer Engineer ing 
/ / U n i v e r s i t y of Alber ta 
// 
/ / Desc r ip t i on : 
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II Constant D e f i n i t i o n 
// 
/ / Date : Jan 24 , 2008 

#def ine kStackSize 64 
#def ine kSPIOCS.Semaphore kHardwareSemaphoreO 
#define kDevLEDs.Semaphore kHardwareSemaphore2 

#def ine encoderQueueSize 257 
#def ine checkDegree 6 
#def ine phaseNum 129 
#def ine p o s i t i o n T a b l e S i z e phaseNum*checkDegree 

#def ine nCodeM 128 
#def ine nlnfo 1 
#def ine nCodeC 2 
#def ine nSymbolDegMax 3 
#def ine nCodeT 129 
#def ine nCheckDegMax 6 
#def ine nProcSize nCodeT 
#def ine nBufWidth nSymbolDegMax+1 
#def ine nProcNum 6 
#def ine decoderThreadNum 6 / / This is the t o t a l th reads used for decoder 
#def ine nBufHeight nCodeC*(nProcNum*nProcSize+2) 
#def ine nBufLength nBufWidth*nBufHeight 
#def ine nBlockLength nBufWidth *nCodeC 
#def ine nEachProcBufLength nCodeC*nBufWidth*nProcSize 
#def ine f r a c t i o n 3 
#def ine elnitLLR 1000 « f r ac t i o n 
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