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Abstract

In this thesis we chiaracterize the features of design specification langanages for distributed
software svatems development. Copcurrency 1s o design issue and therefore must be
miodeled duoring this staee of solhware developiment, Sinee <listribated software is more
complex than sequential soltware structurallye as well s behaviorallve correctness is
an linportant issue, Thus a formal model is required for the development of robust
software systems. We choose the Inevemental Transfornation (IneTrj model based on
the approach proposed iu [Lehmann et al. 1984] as the basis for distributed software
development. The IneTr model provides a formal, step-wise refinement approach to

ihe specification, verification and implementation of software systems.,

To effectively apply this maodel to distributed software desion we need an evolvable
specitication languase with a consistent notation and associated semantics. To identify
the features of such a fanguage. we survey four gronps of formal methods  algebraie.
logic-based, graph-besed and object-based. for specifving and verifving distributed syvs-
tems, classified according to their underlyving formalism. We develop eriteria for evalu-
ating these methods amd compare them. We then propose a framework for developing
design specification languages that defines an appropriate representation scheme for the
IncTr model. Sitice tools are important components of a computer-hased software engi-
neering svsten, we also discuss the tool support required for the specification languages

that could be developed based on the proposed framework.
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Chapter 1

Introduction

In this thesis we present o characterization of formadiams currently under study for spec
ifving designs of distributed systems. We devise eriteria for analvzing these formalisms
and the associated specification languages. Later. we present an hnperative framework
that defines guidelines for the development of specification lanenages for distributed

software svsiems,

The aim of thic thesis is 1o compare different formalisms with the view of integrating
the useful and compatible features Of these formalisms in a comprehensive framework
for specification and verification of distributed svstems.  As far as we know. theroe is
no research of a similar nature or proportions 1o date. Tu this thesis we compare fonr
different formalisms for specifving distnbuted svstems: alycbraic methods. logic-based

methods. graph-based methods and objeet-based methods.

This thesis studies these methods based on an incremental approach to software
development. We use the Iuere cntal Troosformaiion {referred 16 as IneTr in future)
model [Lehmann ot al.. 1931] as the basis. The reason for clioosing this model is that
it defines the properties of a specification succinetly. We discuss this model formally in

Section 2.3.1. In Chapter 9 we also discuss the semantios associated with the transfor-

mations of specification in terms of the tool support required.

In this chapter. we present other studies that compare different specification for-
malisms.  After defining a few key terins we deseribe the scope of this thesis. We
present arguments in favor of formal approaches to software development. and discnss

some issues in the specification and development of distributed systems.
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1.1 Related Work

In the last few years there has been a distinetive shift in e software engineering
methodology, Formal methods are being emphasized. In addition. a few programming
paradigms have become popular. In such a situatien, there has been no recent work
which suninarizes the new ideas and puts them in perspective with respect to each

ather.

[Yau and Tsai. 19%6G] summarizes a number of traditional design methods. In this
paper the authors survey architectural and detail design techniques. They also give a
short deseription of designing distributed software based on petri nets. [Kelly, 1987]
compares four methods for design of real-time systems. This short anaivsis concen-
trates on two object-bhased metheds aud two traditional methods of detail design. Seme
of the comparison criteria are: foundations. scmantic soundncss. de sign verification and
validalion mcthods, maintainability, concurrent processing and communications, perfor-
mance design, history of wsc. reusability. traiving needs, degree of automalic support,
degree of support for other phascs of the lifecycle, language considerations and graphical
notation. T'he paper defines a framework for comparing design methods, provides a
method for choosing a design method and compares the features of four methods for

real-time systems design,

Most other work has focussed on combining complimentary characteristics of two
different methods. For example. object-based methods have been angmented with tem-
poral logic [Diaz-Gonzalez and Urban. 1988]. abstract data types [Bergstra and Klop,
19%4], graphical notations [Bear et al.. 1990: Ackroyd and Dawm. 1991], functional

refinement [Jalote, 1939]0 and horn clauses type logic programming [Vermeir, 1986G].

A nunmiber of papers desceribe work that combines petri nets (augmented in some form
or the other) with process theoretic methods [Best. 193.1: Olderog. 1987; Shields. 1987;
Gorrieri and Montanari, 1990 Boudol. 1990: Baldassari et al.. 1983]. There is little
work that compares/contrasts these two approaches. In fact these papers indirectly
compare the methods they combine by introducing those features that are missing in

one method from the second method.

One recent paper [Boudol and Larsen. 1990] attempts to find the relation between
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the graph models of specification and labelled transition svstems. This paper applies
three criteria in comparing the two methods: crpressivity. modularity and refincime nt.
The paper then describes a syvstem of transformations that allow a characterization of

representaticns in labelled transition systems as graphical specitications and vice-versa.

1.2 Definitions

In this section. we define and discuss the usage of three important terms that are used

in this thesis.

Definition 1.1 (Distributed System) A distributed svstem is a collcction of non-

centralized. interacting computational eleinonis,

These interacting <tements are generally conunceeted in i« computer network.  This
definition excludes all centralized parallel systems. but not the distributed nultipro-
cessor variety. Examples of distributed systems include rcactive systcins, nctworks of

processes, concurrend, coope raling systcms. and communicaling systc s,

Definition 1.2 (Concurrency) Councurrvency is the ability to «sccute inore than one

fask ai the same time.

Concurrency is an abstract concept. Concurrency at one level of detail need not
imply concurrency at adifferent level. For example. we may have a number of concurrent
processes, but the operating system ronning on a sequential machine mav propagate
such a view of the application. We take the view that i concurrent system his appare ul

concurrent activity at the highest lovel.

Definition 1.3 (Parallelism) Parallolismi is a restrictcd form of concurrcney, whe ren

the concurrent activity is actaal ratlcr than appare nd.

We shall use “specification™ to mean design specification in this thesis. We will use

“requirements” for requirements specifications.
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1.2.1 Scope of this Research: Design Specifications

In this thesis we focus on the design specification and its interaction with the preced-
ing and succeeding phases assuming the following phases of the software development

process:;

e Requirements specification.
o Dosign specification, and

e Deovelopment and Verification

The scope of the current thesis does not cover other activities like testing. mainte-
nance, cte. The problem definition activity is assumed to be a preliminary part of the
conceptual modeling activity., Requireinents specification develops a conceptual model

of the software svstem.

Design specifications must bridge the gap between requirements specifications and
implementations.  Requirements specifications describe a sys ot as a set of what is
needed facilities embellished with constraints to speeify any exceptions. Design specifi-
cations must narrow this definition of a system so that the requirements of a software

system may be realized on a given group of resources.

Some researchers hold the view that the equation Design = Requirements + More
Constraindsis 1oo simpilistic. For exanple, data definitions in requirements are abstract.
However, design specifications cannot imply add to the sot of constraints, but in most
cases have to resort to better representation strategics 10 delive data.  In the case
of distributed systems, the design phase should also be able 16 acd jnforniation on
partitioning the software system for allocation to the distributed resources. Uzually this
information is embedded in the description of software structures that allow resource

sharing,.

1.3 Formal Methods: Motivation

In this section we present arguments in favor of a formal method for specification and

design of distributed software systems.



CHAPTER 1. INTRODUCTION -

e Formal methods intraduce precision in the specitication of softw.ire dine the math
ematical nature of specifications.

e Formal methods provide a rigorous. mathematical basis for verification of proper
ties of software [Ghezzi et al.l 1991].

e Most structured techuiques of software development begin with a model of the
system under deveiopment. Unfortunately, the laree number of possible models
that exist make choosing a good model ditlicutt. The choice is fargely made on

the experience and may not always be the best suited for that application.

A formal model i a collection of cone plscarioms, and proof rales. The proof rules
generate new predicates from the axioms and existing, proofl rules. The choiee of
a model is based on the theory represented by the axioms and proof rules. The

inodels at higher levels of deseription evolve from the basic model.

e The uniformity in the theory of software developmoent adlows one to define re
finements as extensions to the model. Thus transfornmations hetween ditferent
Ty ereesnt at ] s of the s N l‘]"'(“"'ll'l
representations ol the same model are feasible,

e Siice the definitions of the components of soitware are matireimaticai in nature,
they are abstract cuough to enconrage reuse. Reuse can oceur for both designs and
code. This results in significant reductious in the costs of softwase development

and maintenance.

o Lack of information abont the global state is an issue in implementing distribated
systems. In a formal approach. the ability to verify aspects of svstem bhehavior
allows us to ignore most problems associated with Tnck of elobal state at the

implementation stage,

1.4 Issues in Developing Distributed Systems

Three factors make distributed programming more difficult than sequential program

ming [Bal et al.. 19x9].

o The use of multiple processors.

'This, of course. increases the complexity of the softwiare 1ools to bhe used i the devielopinent pro
cesses. Nevertheless, the advantages of formal methods are numerous and thos justify the effort put in
to develop appropriate languages and tools for transformational development.
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e | he necd for cooperation among processors.,

e ‘I'Lie potential for partial fatlure.

Ideally, all three factors must be addressed in an environment for distributed pro-
grammming. This entails providing programming primitives and structures for par-
allelisin, for communication (as a means of cooperation among processors), and for
handling partial failures. In addition. distributed software designers have the following

issunes also to contend with.

maintaining a dynamic process structure. thereby providing a more efficient sharing

ol resources,
o kooping connnunication costs low,
o allocation and synclronizcd uzage of sharcd andfov duplicatsd yesoures,
o mapping of concoptaal entitics vo physical units.
o decamposition of a computational task for distributed processing.
o ability to cxtend the application on a (possibly enlarged) diciributed system. and

o «availability of the application versus availability of the systems it s runaing <.

The design process is compounded by the availability of a large number of riethods
of implementing distributed computation. A list of these with appropriate references 1o

literature is given in [Bal et al.. 1939].
1.4.1 Specification of Distributed Systems

Given the above issues in distributed programming. applviug a formal niethod to the
design of concurrent systems becomes a formidable + k. T'his is complicated further
due to the lack of a widely acceptable theory of concurrency. Representing the concur-
rent behavior of the components of a distributed application is difficult. as imposing
a strict ordering on the oceurrence of events would mean considering permutations of
all possible sequences of events. But the advantages of achieving well-behaved and eas-
iy maintainable software outweigh the cost of developiug the application in a formal

manuer.
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The specification of & distributed svstom entails a lormal deseription of the sys
tem as a composition of subsystems including their interfaces, and 1he (internal and
external) behavior of these subsystems. Translating the requirements into such desipn
specifications involves a careful definition of the components and their relationships.
Therefore. the design representation shonld be abstract enough to capture the behavior
of the application without cmphasizing a particular approach to tmplementation. Fhe
choice of a model. and a method for distributed programming would be made at the

later stages of design,

b addition 1o the specification of the beliavior awd the struciure of a4 distributed
system. we are also interested o identifving and establislhing desivable propertios? of
the system. This is becanse these properties provide a computationally feasible mech
anism to ensure that a specification behaves as it is supposed 1o, We provide a formal

introduction to the various propertios of 4 concurrent prograng in Chapter 2.

1.5 Structure of the Thesis

In the vemainder of the thesis we will discuss o nnmber of formal methods, chssified

into the four categories: alyelbraice, logic-bascd, graph-based and objoct-bascd methods,

A common example involving the specification of an elevator svstem will he wsed
to illustrate and compare the different approaches these four major methods adyvoeat e,
We present this example informally in Chapter 2 o this chapter. we also pPresent issies
in formal specification and development of conenrrent proerinns. \We also disciss 1he
IncTr model formally. We discuss the properties of concurrent specifications under
this framework. In Appendix A we present a formal view of specifications and their

properties in the IneTr model.

In Chapter 3 we discuss the properties of  formal specification Linguapge,  Based
on these properties. we develop criteria for comparing the four groups of specification

methods. which we do in the next four chapters.

Chapter 4 describes Lotos. a process algebra language. which combines the advin

tages of abstract data type theory with process algebras. Lotos is based on CCS (and to

2 . . . - -
“These properties are derived from the beliavioral requircments definitions.
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some extent on CSP). We then analyvze spectfications in Lotos and discuss its drawbacks.

Chapter 5 deseribes the UNTTY approach to parallel prograia desigu. UNITY ex-
tends Flovd/Hoare method of program design 1o paratlel programs. We use UNITY 1o
provide an outline specification of the elevaror svstem (introduced in Chapter 2) and
analyvze the method. This method is then compared with the use of temporal logic for

spectlication of conarrent svstems,

Chapter 6 desciibes statecharts o method based ou extended hvpergraphs. We
present STATEMACE a tool that uses statecharts for the specification aud develop-
ment of reactive svstenss After an analvsis of this method. we compare this method

with nse D eror hegraraaares for specification and analysis of distributed systems.

Object-oriented methods are deseribed in Chapter 7. We brielly discuss the basic
issues in object-bused development and concurreney. Actors, a distributed computation
model. is presented. We use actors to model the elevator system and highlight the

features of a siimple actor langnage. We then present an analvsis of the actors method.

Chapter 8 presents an evalnation of the different groups of specification formalisms.
This evaluation is based on the criteria defined in Chapter 3. 3We also present a brief

discassion on the evaluation.

Chapter 9 discusses issues raised in the carlier chapters and proposes a framework for
developing design specification langnages for distributed svstems. We also discuss the
tool support required for a formal development environment during the trausformation
process of the software development. Chapter 9 also lists some possible areas for future
research and development of a formall interoperable environment for specification and

development of distributed softwiare.



Chapter 2

Issues in Formal Specifications

In this chapter we describe an example of o reactive svstem. We choose a0 remctive
svstem as the example as it represents o Lirge class of distributod svstems. We then
relate various issues for developing distributed software, as identified in Section 1.1, to
the problem of specifving thew. We then formalize these issues using the IneTr modol
for software. We use the example where ever nocessary 1o illustrate the properties. We

then discuss other issues related 10 serantics of concurrency.

2.1 Riding the Elevators: An Example of a Reactive Sys-
tem of Processes

In this section. we present an elevator svstem and methods for specifving it We aluo
discuss the tvpe of verification argunments that we will present when speciiving this

system using the four different methods we are wtudving.

2.1.1 Problem Specification

An elevator systen is composed of 1 elovators moving hetween u floors. Bach olevator
has a set of buttons. one for each floor. An elevator visits a floor when the corresponding
button has been pressed. Facli floor lias two buttons, one for each direction. When a
button is depressed. an elevator is called 10 the foor. Pressing a button illmminates it.
Au elevator remains at a floor if it has no request 1o service, The elevator system will

meet the following requirements.

9
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e bventually all floors wnst be serviced and st be given equal priority.

e The reguests within an elevator are serviced sequentially in the direction of travel,

All such requests muast be serviced eventually.

o When anelevator visits a floor, the illumination on the button(s) will be cancelled.

The system must be deseribed with respect to the requiremenis placed on the be-
havior of the system!'. There are two main objects: Elevators and floors. With this
example. we attempt to demonstrate the ability of a method to represent and reason

with the specifications,
2.1.2 i’ossible Solutions

This is a classical example of an incomplete specification of the problem. This system

can be specified 1u three different ways.

L. The elevator system has a centralized control and the elevators get information

about the reguests they service via this coordinator.

i

The control is distributed among all elevators. which service requests as and when
they arvive. The elevators race against cach other to satisfy passenger requests.

3. The controlis distributed. the elevators cooperate with each other in servicing the

passenger requests,

We attempt to specify the system where the elevators cooperate while providing the

service inoa distributed contral eavironment .

2.2 Formal Issues in Specification

In this section we claborate on the issues presented in Section 1.4. We reiterate that a
notation for specifving distributed applications must have a high degree of expressive-

ness and generality. To establish properties of a specification. we need a logic and its

Phis example has been adopted from its initial publication in a vumber of papers in the Fourth
International Workshop of Software Specification and Design. 1987,
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associated proofl system which acts in conjunction with the represeutational structures,

From the discussion in Section 1.1, we conclnde that specification structares should

e be based on a sound semantic theory,

e be able to model a distributed application so that the resulting specilication will
be easily transformable into implementation structures.

e be able to represent a distributed application in terms of abstract entitios so that
further reuse of these descriptions for new entities is made easier,

e represent explicit concurrencey?, and

e contain assertional statemoents 1o

— allow reasoning about the scope and significance of spocifications. and

— allow establishing desirable propertios of specifications.

We use the IneTr model as a basis and formalize these conclusions in the next

soction.

2.3 Mathematical Models and Theories: Their Relation
to Specifications

[tis well known from formal language theory that a langnage is a collection of st rings of
svinbols. These symbols belong to a set ealled the alphabct. Syntar of such a languape

is the set of rules that specify which strings belone to the inguage.

A formal systcmis a set of statemoents which are valid in some Langnage {Bjorner
and Jones, 1982}, For example. a correct program (in auy fangnage) is a formal system,
Semantics define the meaning of a formal svstem. nothe terminology of first order logic,
the syntax is the set of well-formed formulas. aud the semantics are the interpretations
of these formulac. A few other approaches to formal spocification e brielly deseribed

in [Lucas, 1982].

2Concurrency is a design issuc, and therefore is represented during specification of designs, rather
than specification of requirements.
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A Jormal systonccan be defined 1o be a pair (L. 05 where Lis the language. and ¢,
i the conscqueice closure operator defining the deductive rules for the formal systerm.

This operator varies for different formal svstoms,

Thusoa requircients document. which is the basis for specifications. is a theory. A
specification is one model which satisfios this theory. A specification consists of several
statewnents. called theorains. cach describing a behavior of the model. At a different level.
the implementation is again a model. whereas the specification. which is a proposal for
implementation. is the theory which the implementation satisfies. We present the IneTr
madel of software desien below. We then diseuss the properties of specifications. We

borrow the formal notation from [Lehmann ot al., 19=1].

2.3.1 Software Design by Incremental Transformations: IncTr Model

I the IneTr madell tha Qodion oeimnie v giel ol Grirciannts which ds e fined
in o nummber of steps. The design process has an initjal linguistic system {requirements
specification laneunage) and o target linguistic system (implementation language). The
atin of the design process is to achiove a representation in the target inguistic system by
aeries of refinement<® applied 1o o specification in the injtia! Hnguistic systen. A design
specification lanenase nrovides <irneinros 1o reprezent all requirements information.

and additional structures for information that will help in the transformation to an

tnpiementation languave,

Lt IneTr model. a software svstem is considered to be a set of formulas, These
formulas are written in a formal svstem (L. ¢y, The initial specification is a model of
some absiract theory (requirements). the subsequent specifications are derived (refined)
modelz of the quitial specification. A spoecification at a lovel & is a theory for a specifi-
cation at level b+ 1. The process of software development is analogous to the process

of deriving a minimal modoel in logic svstem.

Iu the design process. refinements to a model are done by adding new information.
This process of refinement is not necessa rilv. monotonic. We may need to backtrack and

redo the refinement if the generated model is not satisfactorv. The representations at

TWe e trefinement”™ and Crdification” te mean the same thing. We nse “tran=sformation™ to mean
a ~eries of refinements resnlting in a « harge o the Buguistic system.
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different levels of refinement can be considered as different tevels of abstractions,

The mostimportant property of a specification is its consiste ney {with respect to a
provious specification). Another important property is complofe ness. Compietoness is
not as crucial a property as consistency. Consisteney requirement of 4 specitication can
not be relaxed. but completeness requirenient is. in most cases, relaxed. Incomploteness

allows the designer 1o ignore sone concerns that are not important .

The initial (requircments) specification is assumed to be consistent. Various prop
erties that define verifiable charac: sisties of the system at that representation are as
sumed to be known. Suchia representation is said to be dpl e ntable el thore oxints
a lingnistic svstem in which o valid model can be constructed for this representation.
Given the tnitial and rarget linguistic systemws and the initial repr -ontaiion. *he design
process involves defining a set of verifiable criteria of representation correctness in an
mtermediate finenistic svsten. These criteria devormine i o traneformaiion is correct
or not. By proving that these criteria are et we satisfv a proof obiigation in the desien

step.

In the process of refinement. trausforming the specification i a formal syvsten) at

fevel 7 1o a representation in the next formal svstemn at lovel 7 51 can he done in 1w
ways., Evervihing derivable from rhe rules ¢ ", imestablished asa consequence of the rules
Chyry- Thisis termed as gencral rvoification. The desigier may clinose 1o concentrate
only on certain parts of the represemtation for refinement, or finds that some parts of
the formal system are not useful in the current Frianework. This tvpe of refinement is

termed as selective reification?

The refinement process normally involves clianging the deductive rules or adding new
deductive rules to the formal svstem. Sucha chiange must b consistent before the forma!
svatem can be used to generate a representation. In ;\pp«'nd].‘{ AL we present aomnore
formal view of specifications in the IneTr miodel. and define propertios of specifications

that form proof obligations in the design <tep.

*Selective reification allows the designer o ignore cortain details, thias he loses plobal control aver the
design process. The selective reification process corre=ponda 1o the well-knoswie tec b b ~e paration
t i i i )

of concerusin structured programming,.
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2.4 Properties of Concurrent Programs

The properties of specifications described in Section 23,1 are important and desirable.
Algorithins for compuiing these properties {e.g.. corupleteness) are not only expensive,
but hard to implement. Algorithims for some very simple problems in distributed com-
putation (questions about deadlock and serializability, and communication scheduling
and iosting) have unknown complexities [Johnson, 1983: Johnson. 19%4]. But fortu-
nately, all properties of execution of concurrent programs can be expressed in terms of
three classes of properties: safcty. livencssand fairness [Schineider and Andrews. 1986]5.

Of the threel safoly and liveness are niore himportant,

To get a better nnderstanding of these properties. we define two temporal operators:
always and crventually. These are delined as follows.
A Eventually : From a point in time event 21 s true af some later point.
A Always @ From a poimnt an tane event o ois alwayvs true.
O and < are doals, whose relationship is described by

CA = ~O0-1 .

Now we examine the - ety and liveness properties a little closely below. We also

define fairness informmallyv, o shall see more examples of these properties in Chapter 5.

Safety

A safety property states that all finite prefixes of a (possibly infinite) computation
sequence must satisfy some requirement, Such properties can be expressed by formulas
of the form Op for some predicate p. Disjunction and conjunction of safety properties

arce also safety properties,

Suppose the concurrent program is to implement some form of synchronization. say
mutual crelusion, then the assertion “at most one process is in its critical sectien” is an
example of a safety property. H some property £ s true if a4 program is in its proper
initial state (given by Inif) then the safety property that must be proved is

= it — P

“Actually [Schucider and Andrews, 1986] mentions only safcty and liceness, as fairness properties
van be represcated as safety and/or liveness propertices.
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which states that 2 must be true if it can be derived. The most nnportant tyvpe of
safety property one uses about concurrent programs is fnecariviec. These properties

have the form that P is a predicate that is tnvariant if & 2 — 00,

Intuitively. safety properties can be charactorized as stating, that nothing bad will
happen (or something is alwavs true). Once the property is violated, then the design of
the distributed application will have to be changed so that in the execution of the new
implementation. the safety property will hold. Beiug able to deline such predicates and

proving them to be true,is basic to verification using logic. Below we give an example

of a safety property in the elevator problem.

Example 2.1 Lot a quene  floors. denote the requests 1o he serviced by an elevator.,
Then a safety property if the list is in waiting ~tate . then ffoors is mipty. to be deduced

is

f= ( elevator, = waiting ) —  isempty (floors, )

Liveness

Liveness properties complement safety propertios by reqnirving that cortain proedicate{s)
hold at least oucelinfinitely many times. or continuonsiyv from a certain point in time,
Alpern and Schueider [Alpern and Sehneider, 1955) give formal svntactic and semantic

definitions of liveness propertios.

Basic liveness properties arve those that are expressible by

opP .aol or 0P

where P is a predicate which describes an assertion over finite prefises of sequences,
The first formula states that 2 will be true at some point of tivse in the futonre, he
second formnla states that 22 will be true many times alter some point of time in the
future. The third formula stutes that eventually at sowme poirt of time £2 will be true
at least once. Another common form of liveness properiy is 12 -~ ). where 12 and )

are predicates. If we think of 2 as a predicate which asserts that i process is wailing,
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for service, and @ is a process receiviag service, then we have stated a liveness property

that no process starves.

Intuitively, a liveness property stipulates that (eventually) something good will hap-
pe 1 (or something will eventually be true). A specification describing liveness properties
asserts that a state function must change. A liveness property may become true any-

time before the end of the program.

Example 2.2 The stateme-t —- All floors will eventually be serviced is a liveness prop-
erty. This can be defined as a composition of the safety property in Example 2.1. If 7,
is the safety property associated with each elevator 7 in Example 2.1, then the liveness

property is represented as a composition

= Viap,

Falrness

In nondeterministic computation the choice of a computation sequence is made from
sets of alternate sequences. The problem of fairness is to ensure that a choice is made
such that none of these choices are postponed forever. For example, in a time-sharing
operating system, the choice of which process should be allotted the next processor
time-slice is a fairness problem. Arnother family of fairness problems concern avoiding
starvation of processes. For example, when using semaphores for synchronization in a

correct manner, no process will wait forever while other processes advance.

All these fairness problems arise from a more basic problem; that of termination of
a certain event or state. In such a form, fairness properties tend to be expressed as
liveness properties. Yor example, the fairness property ~ a program will always produce
the correct answer, can be represented using one safety and one liveness property. The
safety property is that the program never terminates with the wrong answer, and the

liveness property is the program eventually terminates.

Example 2.3 The statement —-all floors must be serviced with equal priority is a fairness

statement. This can be expressed as a composition of a safety and a liveness property.
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The safety property is if a two floors arc not screiced, they will be scrviced in the
dircction of fravel. The liveness property is all floors will « centually be se reiced.

The formulation of the sufety property is given bhelow,

= Vivj. k( floor,, > floor,; )} A ( direction, = up) — - service,(floor )

Let P be the safety property given above. Let Q be the liveness property defined in

Example 2.2. The fairness property is represented as

EPAQ

A comprehensive account of the fairness issues i1 concurrent softwiare developnient
|

are presented in [Francez. 19%G],

2.5 Chapter Summary

In this chapter we have addressed various issues in the use of formal methods for software
development. We described a formal model IneTr for software development. Some of

the important issues in software development using this model are:

® getting a requirements specification,
e identifving the initial and target formal svstems.,
e generating a set of eriteria to verify correctness of transformations.

e defining properties that have 1o he satisfied by the specification. ote.

We also defined various propertios of specifications of concurrent systems in this
model. These properties allow a specilication 1o be verified with respect to a previons

representation.



Chapter 3

Criteria for Evaluating
Specification Methods

In this chapter we develop eriteria that will be used in the ensuing chapters for comparing
specification methods. These eriteria will be developed with the objective of determining
an ideal framework for specifving distributed systems. Before presenting these criteria,
we examine the characteristics desirable in a specification formalism for istributed

systems.

3.1 Characteristics of a Specification Formalism

In addition to the ability to describe the distributed software structures (Section 1.4),

a specification formalism must have four main characteristics listed below.

o Frpressivencss: Expressive power of a specification language involves both the
stractural (syvutactic) facilities and the reasoning capabilities.

o lisibility: The specifications should have no implicit information. Though partial
specifications can exist during the design of software, they must also be visible.
and explicitly state all constraints, data. and processes. No assumptions must be
made about incomplete specifications, except that parts of the specification do

not exist as vel.

e Compositionality: Delining systems in terms of compositions of subsystems (or

modules) is important to comprehend a large specification.

I8
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o Vertfication: Availability of a set of proof rules to deduce desirable properties in

an application generates confidence in the development process.

These characteristics translate to two basic compouents of a specification formal
ism: notation and logic. The notational component of a specification formalism can be

represented as the following facilities.

Facilities for data and procoss abstraction.

e Lacilities to specify traces. which are event histories.

e Facilities to encapsulate dita and related processes: modalurity.
o lacilities to specify interfaces between modules,

o TFacilities to specify nondeterminism and concurrency (communication and sv

chivonization primitives).

o Iacilities to specify assertions. Assertions are used to specify constraints on be

havior and properties of the distributed svston.

e Facilities to evolve a specification. successively refining it to add safficient detzil

to allow an easy transformation to an immplementation.

The logical component of Gie specification formalism will provide the specification
system with a mechanism of verifving properties of the specifications. I verification
mechanisms are to be provided in a consistent manner, the specification language must
be based on a semantic theory. Usnally. the verification mechanisms are embedded in a

proof system [Goguen. 1981] which must have the following facilities.

e Ability to record ree rd traces (event histories). and reason about them [Bartussek

and Parnas. 197x].
o Ability to reason with partial specifications.

o Ability to deduce desirable properties of an application. for example, statements

about performance goals. and behavioral constraints imposed on the svater! .

"Though one would like to have a formal system geperate sach desirable properties, as of todav, it
still is up to the designer to specify these properties.
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Such o proof system will consist of tools to check various behavioral aspects of a
specification. For example, the proof system should be able to deduce that the behavior
of a set of modules is consistent with the design constraints imposed on the modules.
Also. the specification of the overall behavior of the module must be consistent with
the combined specifications of the behavior of its submodules. Examples of beliavior
that can be checked are avoidance of deadlock and verifving mutual exclusion of two
processes. The advantages of having a proof system for verifving such characteristics of

distributed software is an important motivation for formal methods [Goguen. 1981].

A spectfication formali-m should be able to represent and reason about an applica-
tion independent of the type of the underlving hardware structure. and add implemen-
tation specific detail only after verifving the consistency of the specifications and after

deciding on the underlving hardware,

3.2 Criteria for Comparison

We develop eriteria for comparing specification methods based on the properties dis-
cussed in the previous section. We separate the notational and logical components of

the criteria as well. The eriteria for comparing notations are listed below,

1. Expressiveness

o Data and process abstraction: Abstraction of data is best provided by ab-
stract data types. The mechanism of abstraction could be objects, processes,
clauses or graphs.

e Structures for defining Constraints on data and processes: Like set expres-
stons and logic. procedures. graphs. Data reification is possible only through
assertional predicates on data and process objects.

e Structures for specifyving transitions: Like state transition descriptions using
traces, graphs or graph grammars. Reasoning about the behavior specifica-
tions can only be done with specification of state transitions.

o Constructs to represent cencurrency aud communication structures. Dis-

tributed systems are nondeterministic and this is caused by the concurrency
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and communication aspects. Mechanisis (o specily these constriets help

reason about concurrent components in the distributed system.

2. Compositionality and Moduolarity: Laree software development needs more strue
turing facifities than is normally provided by simple data cncapsulation mecha

nisms supported by rules defining correct compositions.

The necessary support at the proof svstem involves a nnmber of capabilities. The
main mechanism needed is the ability 1o satisfy specified proof obligations. This can be

expressed as a logical system to represent and reason? about

¢ properties of programs. like preconditions. posteonditions. invariant= and con

straints on state transitions and processes in objects. and

e time and time intervale.

In addition. a verification systenm st have proper semantics associated with it
In short, the following list summarizes the facilities needed as a part ol the proof system

for verification of designs. and subsequent implementations.

e A proof system component 1o check consisteney of specifications. for sonndpess

and completeness.

e A prool system compouent to verifv assertions ina specification. 1 his pives the
ability to prove partial correctiess and a number of safety and liveness assertions.
® A proof system component to reason about time, and validity of processes in g
given state. This gives the ability to verify assertions about the state of o systens.
e A facility to record transitions as defined by the specification. This aids iy proving,
that an implementation meets a specification if the transitions recorded as a part
of the specification are observationally equivalent 1o those recorded as o part of

the implementation.

“The ability to represent the designs as graphs will go a long way in verification and reuse. Graphs
can be processed in an cofficient manner. and have the ability to represent abstraction better than
srocedural representations. Verification mechanisms for graphs are simpler as a result.  Not

1 Braj I

many
specification formalisins have this facility.
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3.2.1 Riding the Elevators: Comparison Criteria

With this example, we expect to demonstrate that the methods we analvze in this thesis

have or do not have the following features,

e Lxpressivity.
o Compositionality.

o Verifiability.

For a method it mayv be difficult {o determine if a verification tool is easy to build.

We will indicate the availability of a logical framework for building snuch a tool.

3.3 Chapter Summary

In this chapter we have defined a set of eriteria that is useful in evaluating represen-
tational aud logical reasoning aspects of specification languages for distributed systems
design. We believe that these criteria form the basis for a framework for designing speci-
fication langnages for distributed software design. and we will propose such a framework

in Chapter 9.



Chapter 4

Algebraic Methods

Algebraic models for specification foens on the specification and verilication of virions
o

processes in a software system and. asa consequence. these process models are appropri

ate candidates for specification aud verification of concurrent (and dist ributed) software

systems.

Iv this chapter we deseribe Lotos, a language based on the process models ol caleu:
lus of commuunicating systems (CCS) [Milner. 1980: Milner. 19833] and communicating
sequential processes (CSP) [Hoare, 19%5). Lotos also incorporates representation strue
tures for abstract data types [Goguen et al.. 1977: Guttag and Horning. 1975]. We then
use Lotos to model the clevators problem. The aim of such an exercise is to highlight

the features of Lotos.

4.1 Lotos: A CCS-based Formalism with Abstract Data
Types

Lotos (Language of Temporal Ordering Specification) is one of the tiiree! formal deserip-
tion techniques developed within ISO [ISO. 1987] framework for formal specification o
verification of ISO standards and open distributed systems. Lotos specifies concurrent
systems by defining the temporal relations among interactions that form the externally

observable behavior of a svsten.

The process behaviors and interactions are modeled using conecepts from CCS, and

'Estelle and SDL are the other two.

23
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parallelism and concurrency are modeled nsing notions from CSP. Anotier aspect of
Lotos deals with description of data structures. and expressions. This component is
based on a formal theory of abstract data types: ithe initial algebra approach [Goguen

et al., 1977,

In this section. we first give an overview of processes in Lotos. We then present tem-
plates that desceribe process definitions and specifications in Lotos. We briefly present
structures for data type definitions.  We then deseribe Lotos constructs that define

operations on processes. These operations allow descriptions of process behavior.

4.1.1 Processes in Lotos

A distributed system is seen as a single process, consisting of several subprocesses. A
Lotos specification consists of a hierarchical ordering of the definitions of these processes.
A process perforins Lwo types of activns, those that are internal to the process, and
those that involve interaction with its cnvironment. The environment of a process P, in
a system S.is a collection of processes of S that interact with P. Such interactions are
based on synchronization, where cach interaction is an ceent. Events form the central
notion of activity in Lotos descriptions. Everyv event is an observable action, and is
atomic: Le. all processes involved in an event have the same view of the event. Either
an event has taken place for all the processes involved, or the event cannot have taken
place at all. The process definition of P specifies behavior, by defining sequences of

observable actions. Fach process has associated ports called gates.

Two interacting processes perform observable actions with respect to each other.
This complementary notion is similar to the notion of partncr ports in CCS [Milner,
19R9]. If the two processes are coupled only at certain gates. then they must synchronize
at those gates only. A process representing two interacting processes has the ability to
hide the interacting gates from the external view. This provides for localizing control

and hence casier verification of behavior.

4.1.2 Process Definitions and Specifications

A process definition defines the name of a process, the gates it uses. its component

processes and the constraints on the behavior of the component processes. A process
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specification defines a set of processes that interact with each other. the pittes used. the
type definitions that represent the interface data structures. the behavior and contraints
on processes and the process definitions. Tvpical structures of a Lotos spectfication and

a process definition is given in Figure 1.1,

specification ( spee-id ) [ { gate-id-list ) | C paramcter-list )« functionality
type-definitions
behavior
behavior-erpression
where
typce-definitions
process-de finitions
endspec

process ( proc-id ) [ ( gatc-id-list ) ) ( paramclor-list )« functionality -
behavior-crpression
where
type-de finitions
process-de finitions
endproc

Figure «1.1: Structnre of Lotos specifications and process definitions.

A Lotos specilication is enriched by the algebraic methods of abstraet dita 1y e
specification. parameterization of data tyvpes. user-delined datz Iy pes, Lvpe renaining
and the notion of equality?. A Lotos data type specification is described in Figure 4.2,
This is one example of a data type pecification. There are of her possible templates, ay

example of which will be presented when discussing the elovator problem.

4.1.3 Combinators and Behavior Expressions

A process definition specifies process behaviors and constraints on the belavior Ly
nieans of belhavior crpressions. A bhehavior expression defines an ordering on events,
Behavior expressions are formed by applyving the following combinators to Lotos events
and processes. Most of these combinators were adapted from CCS. Some extonsions

were borrowed from CSI2.

2r . —_—
“These concepts are based on heterogencons algebras [Goguen et al, 1977].
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type { ADTName ) is
with sorts
< Sorts )
opns
{ Functions
egns
forall
{ Variables )
ofsort
( Equations)
endty pe

Froare 120 A rtemplare of o Lotos data type specification,

Inaction: A completely inactive process is represented Ly stog,.

Action Prefix: The action prefix combinator @ produ-es another behavior expression
from an exisiing one by prefixing it with an event. This Is siinilar to the action prefix
corwoinator -7 of COSCThis combinator mplies sequentiality. Tor example, ¢1 stop
deseribes the behavior of a process participating in an event a. I event ¢ occurs, then

the process exhibits the behavior stop.

Choice: The chioiee combinator (] simulates the nondetenninistic chioice operator "+ of
COSCH By and By are two behavior expressions, then 3 [] B> denotes a nondeterministic

process that bebhaves tike either ) or H..

>arallel Composition: Lotos provides a wider scope of parallel composition than

CC'S. Lotos borrow -~ these extensions from CSP. There are three variants.

o Gieneral Case: I3y [ gi.....g. ] 1 Bo. Lot S = [g1.....g.]. be a set of user-defined

synchronization pates and By and 3y be two processes. Then the expression By |
S| By delines a process that i able to perform any action that either /3 or 3,
can perform at some gate g where ¢ @ S Such a process can also perform any
action that By and 13, can perfornm at some gate g, in S. I two processes Py and Py
have a comion gate, then the processes interact. otherwize the processes perform

dnobservabie actions,
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o Interleaving: Bliif2. When tie ot of synchronization sates, S, is empty, then
cither of the two processes perform. depending ou which is ready to do solor both

interleave actions, as there is no dependency between these two processes.

e Complcte Synchron: fion: By 11 2,0 When the set of svachronization gates,

RIS
the set of all gates. then processes interact syuchronously.

Hiding: This method allows some processes 1o be defined as anobservable, his has

the advantage of abstraction. similar to the concept of function localization to related

data in object-oriented programming laneuages. The expression

H 1
S [

hide < gate N > in beliceior v L gate Tist U gate X be hugvior HUgate it

makes the synchronization between the two processes bohiacior A and be hacior 13

gate_ X unobservable. This facility is used L exolu-de interference from the cnvironent

Process Instantiation: A\ process 15 isianlioied by associaling i Process e with
the list of actual gares. These instautiations oconr in bebavior expressions of ofher
processes aefinitions. or in the same process definition (in which case. it is recursion).
Semantics of gates and refabelling ocenr asin most provramiing linenaves. For exam

plein

process buffer{in. out] :=
in: out: buffer {in. out]

endproc

buffer process is defined as o continnons process having actions in: out: .. Vhe hufler

process is instantiated within itself to define an infinite sequence.
Termination: A successful termination is denoted by o process exit.
; !

Sequential Composition: Sequential compazition of two heliavior expressions. 4
and By is denoted by By > 1,0 Tuformallyv, this mplies that wihen [, terminates

successfully. execution of £, is enabled.

Disabling: A process can disable another proces<. Tu the notation [, (18, I3y,
disables By. This provides cantrolin the specification for application senerated inters Hpt

handling.
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4.1.4 Verification

Verification of Loios specifications is based on the CCS uvotions of observational cquiv-
ale nee and bisivvalation. The idea of obscreational cquivalenee is that the behavior of a
process is determiped by the manner in which it interacts with the external observers
(environment ), and two processes are considered as equivalent whenever we caunot dis-
tinguish betweon them by cxfe rnal obscrrations, This concept also forms a basis for the
semaaitics of a representation in Lotos {as in CCS). Given a behavior expression, the
specification can be represented as a tree structure. Instead of the tree representing the
semanties of the behavior expression. we form equivalence cliasses of trees. and conclude
that two expressions are equivaldent if *he  Lrresponding tree representations fall in the

same equivalence class.

Bisimualation is a property of two behavior expressions that determines the equiva-
Iy of thoir heorvahla SRR AMNENITS Thorn nrn tanle that hola pctablich thie y\y‘nzww?\ﬂ
One such tool desceribed in [Fernandes, and Mournier. 1991] nses the method of forming

cquivalence classes of tree representations.

A number of hnplementations and software tool sets have been developed for Lotos.
These include graph-based Lotos editors. data type verifiers. process and data type
specification templates. fibraries of abstract data types. and specifications analyzers

and simulitors. A few of these tools are discussed in [Turner. TORKR].

4.2 Example: Riding the Elevators

We present a design for the elevator example as a set of decompositions frem a top-
fevel deseription. The elevator svstem has two main groups of processes. The processes
at cach Hloor and the processes in cach clevator. Since these processes have similar
behiavior expressions. we shall denote the process description by a subseript. The top-

lovel specification of the elevator svstem is given in Figure -1.3.

There are two types of data variables: dntegor and qucuc of integers. In fact, the
data types are natural nueebers. Tn Lotos, the data tvpe specifications are defined as
in Figure 1.1 In this specification, Queue is a parameterized data type and is used to

define specific tvpes of quenes,
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specification ( Illevator-svstem [N noexit
type NaturalNumbers is

endtype
type NaturalNumberQueue is

endtype
behavior
process floor-button [l] /S The button behavior

endproc
process clevator [J] /S Thie Jdevator bohiacior

endproc
where

endspec

Figure 41.3: A top-level specification of the elevator svstem,

We now give the basic outline of the two main processes. The design is based on a
broadcast of messages among the buttons on floors and elovators. It is interestine 1o
note that in the specific rion of the elevator svstem, we have specified the svatem 1o he o
continuonsly operating one. This can be specified in a different manner by anegmenting

the noexit statement with exception conditions.

The button process will hiave boolean variables indicating whether the Hoor has been
serviced or not and whether the light is illiminated or not. We Lave not specified o
nuinber of other processes  for example, the process components where the statns is
maintained. or the cancellation of the request after it is serviced. The button process is
sketched in Fignre 1.5 It is important 1o note that the specification describes N olevator
processes and M button processes. Also. we have not deseribed the button processes
associated with each elevator. This extension would not cause any more features of

Lotos 1o be used.

The elevator process addresses a number of issues of the system specification. in
cluding sending an off signal after a floor is serviced. adding a floorid to its service list,

changing its status after it receives a serviee request and maintaining its statius over o
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type NaturalNumbers is
sorts nat
opns
0 : — nat
suee s nat — nat

endtype

type Queue is
formalsorts element
formalopns ¢0 : element
sorts queue

opns
create @ — quege
add : element. quene — (uesse

first : quene — element
eqns
forall x. v : element. 2 @ quene
ofsort clement
fis cate) = o0 ;
firs.  .dd(x. create)) = x:

first fadd(x. add{y. 2))) = first (add(y. 2)) :

andtype

type NaturalNumberQueue is
Queune aetualizedby NaturalNumbers using
sortnames nat for clemem
opnnames  for ol

endtype

Figure -1.1: Data type specifications for the clevator

nuinber.

30
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process button {l}:noexit := (I floorid:NaturalN umbers)

n

onf{floorid] and not entered{floorid} » 'loorid ;
/7 Af the floor has not becn sereiced. broadeast
// Heorid se it may be soreiead

H serviced[floorid] = off{ffloorid]
/7 the floor has boon scrviced then switeh the
// button on that floor off

// Note that both the above process desceriptions have sequential compone nts
where
data type definitions and other process de finitions
endproc

Figure 4.5: Process specification of the button ohject.

period of activity., This process is defined in Figunre 1.6,

We could have implemented a cost-based hehavioral model of the process where each
elevator decides whose cost is the least for a particalar request and adds the vequest 1o
its service list. The elevator also broadeasts a message indicating such an action. This

modification is stimple and can be accomplished with case.

4.3 An Analysis of Lotos

e Notational Features

— Unit of computation: 'The basic unit of computation is a process.

— Data abstraction: Fach process description totally encapsulates associisted
processes and data tyvpe delinitions.  Data abstraction is based on well
founded principles of abstract data types and are not provided via procedural
abstraction mechanisms,

= Modularity and Compositionality: Modularity is provided by specification
definitions. These specification definitions encapsulate process deseriptions

and associated type descriptions. Compaosidonal specifications are generated
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process clevator[J floorid]:noexit :=
(J 7Eid:NaturalNumbers [ floorid ?fid:NaturalNumbers. serviceQ:NaturalNumberQueue)

I // all these processes interleare

center[fid] // the floor fid is serciced

il

'serviced[fid] > off[fid] // Concurrently scnd an off signal to the corresponding button p

Ii

fid and add(fid.serviceQ[Eid]) [> waiting[Eid] // Add a service request
/) from a floor id to the current clcvator Eid and
// intcrrupt the waiting process for that clcvator

where
data type definitions and olher process de finitions
endproc

Figure -1.6: Process specification of the elevator object,

by the use of parallel. sequential. choice. and disrupt combinators.

— Consiraints: Constraints are defined by benravioral expressions which specify
behavioral constraints ou the processes. The rich set of cembinators help
specify constraints on processes by imposing an ordering on them.

~ Transitions: Transitions are recorded as a sequence of instantiated pro-
cess/behavioral expressions. The transitions are characterized by the use
of choice. disrupt and action combinators.

~ Concurrent stracturcs: Lotos provides a rich set of concurrencey specification
structures. The communication structures arve similar to the channel spec-
ifiers in CSP. and concurrency structures are similar to those provided in

oS,
e Semantic Features
= D fining assertions: Assertions in Lotos are a part of the specification of the
behavior of processes. These assertions allow one to prove the equivalence

of two (or more) specifications. This equivalence can be associated with

refinements of specifications.

= Reasoning with time: The temporal ordering imposed oun the behavior of
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processes is not sufficient to specify a total ordering on the svstem.  The
reasoning mechanisis ave only able to infer timing relations hetween the
collections of partial orders.

— Dcfining provable propertics: Properties of Lotos specifications embedded
in the specification of processes and higher-level specifications.  Properties
can be asserted as true or false within cach process. This allows proving

properties at different fevels of detail within the same specification.
4.3.1 Drawbacks of Lotos

The Lotos language is fairly complex and requires a lot of time 16 gain proficieney. The
lack of adequate tools to support development in Lotos makes the task of evaluating such
a language more difficult. The use of labelled event structures to define the semantics of
Lotos makes it difficnlt to specifs trne concurrency. where the cvent< are ardered sine

a collection of partial orders.

One of the major drawbacks is that all the notational features are intecrated in one
major specification notation. Building tools for this specification formalisim that provide
an extensive set of services would appear to be a difficult task. In spite of this a2 number

tools have been buih [Usenet, 19917,

4.4 Chapter Summary

We have described the Lotos specification language. The lingnage combines the bhest
of process algebras and abstract data tyvpe specifications. The Yanguage has o rich sot

of combinators (operators) and is well-suited for development of distributed svatoms.

We also have presemed an example of a smiall reactive svstemn in Lotos. We can
conclude that Lotos is a fairly complete svstem for specifving, distributed systems in a

compositional and modular manner.

Labelled transition systems provide the operational semantics for Lotos. There area
few other algebraic methods which attempt to provide a different approach to specifying
concurrent systems. [Kaplan. 19%9] provides one approach to algebraie specification of

concurrent syvstems. This approach attempts to define concurrency within the frame
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work of initial algebra semantics. The method tries to vxplain the labelled transition

systems semantics using a categorv-theoretic approach.

[Stark, 19%9] defines concurrent transition systeins to represent the semantics of
concurrency. Concurrent transition syvstems extend the labelled transition system se-
mantics by using a concurrent alphabet. The resulting structures studied are the trace
cutomaia. The method provides procedures to define morphisms on the class of coun-
current transition systems, thus forming a category. Properties of these categories are

also defined.



Chapter 5

Logic-based Methods

5.1 Introduction

We will present an Gportant logic-bused ethod and Bva syatem of Drnsionmation
and reasoning: UNITY. UNITY (short for Unbounded. Nondeterministic, Herative
Transformations) is a small language. with associated proof rales 16 derive invariant.
correctness. and termination properties of parallel programs.  This method tries 1o
provide an axiomatic basis for parallel program design. in some wavs analogotis to 1 he

Floyd/Hoare axioms for sequential programs.

We first present the background to UNTUTY s development. The iniportant conceplts
of UNTTY are then highlighted followed by a desceription of the UNTTY model of program
transformations. After a brief section on the structure of UNFEY programs. we present
the rules to specify and derive properties of concurrent programs. We use UNTTY to
model the behavior of the elevator system. After summarizing the features of UNTTY .
we present the drawbacks of UNTTY and compare it with the use of temporal logic fe

specification of concurrent programs.

5.2 The UNITY approach to Development of Parallel
Program Specifications

The UNITY approach preserves the Hoare-style assertions, which wore Litor popular-

ized by Dijkstra as precondition, postecondition and invariant spectlications for sequential

35
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programs [Dijkstra, 1976]. UNTTY has a small language. a computational model, and a
logic for associated proof methods. The UNITY method also provides rules for refine-
ment of specifications. In the preface of [Chandy and Misra, 198R] the authors explain
the choices they made in developing a theory of parallel program developmeni. Briefly

the choicos made are as follows.

o Designs of progreans rather than programs: The authors believe that a design is
more important than the code, and to work with designs one needs a model of
computation. a notation to specify designs. and its associated proof rules. The
cmphasis is on correct program designs.

o loundation of progranuning instead of a taronomical analysis of machines, meth-
ods, progranvming styles or applications: The authors believe that program devel-
opment is independent of the underlving architecture and mapping to an archi-
tecture should be done wfter @ correct program is developed. They do not believe
that the architecture should determine the method of program development.

o [ormal instead of informal notation to desceribe programs: The belief is that a
mathematical framework will bring discipline to the task of designing and reason-
ing about designs.

o Reasoning about stalie aspects rather than the unfolding computations (called op-

crational reasoning) of « program: The authors reason that:

— Operational argniments are more error-prone.
— Operational arguments are not very convincing.

— Operational arguments are longer.

The authors believe that the essence of programming is to make a series of stepwise
refinements to the designs.  In support of their approach the authors present exam-
ples from operating system problems. termination detection in asynchronous programs,
zarbage collection. conflict resolution in parallel systems, combinatorial problems. ma-

trix problems. and communication protocols.
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5.2.1 UNITY theory

The UNTTY theory is based on the premise that program desiens should be indepen
dent of architecture upon which they are to he nnplemented. I the problem specities
the architecture, the refinement process is continued until an efficient representation is

obtained for the target architecture.

The UNITY theory addresses issues relating to nonde terminisom. control How, syn-
chrony and asynchrony, statcs and assignicnts, proof systec s supporting program de
velopment by stepwise refinement of de signs. and de coupling of correctiess{of programs)
from complerity (due to architectures). We present UNIFEY s approach to these jssues

below,

Nondeterminism

Nondecterninisin is caused by the lack of information necessary tomake o choice hotween
many options available at any point. For example. in a Horn clanse Josie program,
several predicates can mateh a given coal. The choice of a predicate for execntion is

arbitrary, i.e.. nondeterministic,

Abstracting program design to a very high level will canse a lack of detail. and nay
cause nondeterminism. UNITY supports this view of program designs. Nondeterminisig
also implies that program designs are simpler due to the absence of detail. and sueh
designs in UNITY can be optimized by limiting the exeentions to the domain of a
given architecture, UNITY provides rules to add formation 1o a hich-fevel solntion so

the final specification will be a program that can be exceuted ofliciently on the target

o
Y

architecture.

Absence of Control Flow

Control flow is a characteristic of sequential computation. but not Gf concurrent com
putation. UNITY designs. doring the initial stages. are devoid of anyv concern related
to control flow. For example, two object classes conmmunicate with eacl other nsing o

well-defined interface. The interface definition is an acceptable concept in g program
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design, but the control sequence defining the order of computations in the methods of

the two interacting objects will only limit the generality of the design.

Synchrony and Asynchrony

Chandy and Misra intend UNITY 1o be useful for a variety of architectures. SIRID
machines are characterized by the svnchronous behavior of processing elements, whereas
the processes in a distributed network are asynchronous. Both these chavacteristics are

basic to concurrency, and hence are supported by UNI'TY.

States and Assignments

State-transition systenis are important when modeling concurrent systems. To develop
program designs one needs representational elements for these concopts. A simple ele-
ment is the inclusion of assignments in the set of notational constructs and use variables

to store represettations,

But the assigument statement must not form the basis of represeutation and compu-
tation. This introduces the concept of control flow into a specification which should be
avoided. This can be done if a non-imperative approach, as in functional languages, is
used in defining the assignment. Sach a definition of the assignment can be angmented
by allowing nndtiple assignimnents in a single statement. This introduces simultaneity in

provessing assigninent statements.

Proving properties from Program Designs

UNITY provides mechanismis to prove properties of program designs. Such a feature
is helpful when proving that incrementally developed program designs are correctly

derived refinements of specifications at the previous steps in the process of design.
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Separation of Correctness and Complexity

UNTTY separates correctness concerns from complexity issues.  Corvectness coneorns
are addressed as a part of the program design process. Complexity is an issue tho
comes up during mapping a design to a particular architecture.  This is when one is

concerned with the method of program execution.

5.2.2 The UNITY Mode!

A UNITY program consists of i declaration of variables. a specification ol their initial
values, and aset of multiple-assignment statements. A UNVEY program executes forevoer
after starting from a state satisfving thie initial condition. Assignment statements are
selected in a nondeterministic manner. The selection is a “fair™ process and therefore

every assignment statement is selecied jufinitely often.

Separating Programs and Implementations in UNITY

A UNITY program describes what shonld he done in the Torm ol initial state and state
transformations. It doesu™t specify when. how and on which processor an assicument
shouid be executed. and when and how a program exccution may halt.  1These are

concerns at the mapping stage.

The Process of Mapping Program Designs to Architectures

The architectures that will be discussed are von Neamann erehitectnre. svnchronons

shared-memory muitiprocessors, and asynchronous shared-memory multiprocessors.

A mapping to a von Neumann architecture specifies the schedule of assigcnuents and
the eondition(s) for which the program execution terminates. The execution schedule
can o iepresented as a finite sequential Jist of assignments in which each assignonent
in the program appears at least once {10 sitisfy the “fairness™ condition).  Another
“fairness” concern. that of representing a terminating program. is 1o view i he execntion

schedule as a finite prefix of the sequence of {infinite ninmber of ) assignients.
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ITthe execntion of any instraction of the program in a state § will cause no change in
the state, then this state is called the fired poind. A predicate FI2 characterizes the fired
poait and b= o coujunction of the equations that result when the assizianent operator :=
is replaced by an equality = operator. ' e predicate £ P0s 1r e only if the left and right
sides of the equality are idental. Stopping at a fixed point implements termination in
a UNIEEY proeeam. A stabde nprope 0 T program is one which alwayvs remains troe,

once it becones trne. Thus F2is a stable property.

In a syuchronous shared-inerory multiprocessor. a fixed number of identical proces-
sors share memory, and a clock, Every processor executes one instruction. A mapping
is casily represented as the execntion of each component of & multiple assignment state:

et

I asyvachronous shared-memory multiprocessor. identical proces-ors share mem-
ory. but sot the clock. Simuliancons references to the sate memory location results in
accesses to memory i some nondeterministic manner. Mapping to such an architecture
can be specified by partitioning the statements of the program amongst the processors,
Such a partitioning needs to be “fair™. Such an architecture would not aliow two instrue-
tions thit modify the same memory location to execute concurrently, This represents

a fair interleaving of the two instructions” individual executions,

Nodeling Programming Lancuage Structures and Software Architectures
o o o

Lot as take the example of a4 program fragment that himposes a sequential order on the
excention. N statement of the forni await B do 5 i an asyvochronons shared-variable

prograt s encoded in UNTPY s o statement that does not change the value of any

variable if B s folsco otherwise has ihe same elfect as S0 A corresponding representa-

tion can be designed for Petri neis. wiich are asvnchronous in nature,

Message passing is implemented with the channels represented by variables. Sending
a message is anafogous to adding the message to the end of a4 message sequence, and

receiving, a message is analogous to removing the message at the head of the sequence,

UNITY provides o framework lor sequencing, instructions. thongh it does 1ot have

the facility to control the execution sequence of statements of the prograni.



CHAPTER 5. LOGIC-BASED METHODS

5.2.3 UNITY Program Notation

prograrn — Programn PrOGIGI =100
declare declure-scction
alwayvs aliwvays-scction
initially rredtially-soction
assign tssign-scelion
end

N prograni-naie isoaostring of characters, The de
a manuer similae to PASCNLL Basie data types are b

sets of basic data tvpes forn the more complex datan

Assign-section

The Assign-section defines the stwtements of the prog

can have enumeraved assiznnients or quantified assig

valid operator in UNTTY piowrions,

Examples
Multiple assignments 1 x0voz i= 10203 s the sane a-

o=y = 2z i= 3
Arravs are assigned valies by thie

o . M S T
ee of Gquantification

(le:0< 0 < N AL} = Bl

The switch-case conditions given hy

7] ity >0

s+ y otherwise
is represented in UNTTY as
roo=mooy ify>0 ~
c+y iy <o
where ~ is nsed 1o sep. ate the two cases,

Foannmerites

Foy =i

, . . . .
clure-~section defines variablos in
ttecers and boolean. Nreras - aoad

Npe-.

crati. A as-teninent statoenient

tments. Loeieal implhication is o

Passignment- are representod by
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for exchanging ». and gy,

An example of quantified assignments is an operation on an array of elements. An

identity matrix 7L NV][1LNT T defined by

(MiLj: 1 Zi<NALZi< N Ilijli=0ili#j~1ifi=]).

Initially-section

The nitially-section defines initial values of variabies used in a UNTTY program. The
syntax of a statement in the juitiolly-scetion is the same as a statement in the assign-
section except that in the = svinbol is replaced by the = svinbol, Vhe dnitially-scetion
essentially defines a non-cirenlar set of equations. This definition satisfies the coustraiuts

tiiat:

e o variable appears at most once on the left-hand side of an equation.

s thoere is an ordering of the eqgnations such that any variable in a guantification
is either a bound variable or a variable that appears on the left-hand side of an
ecquation already defined. and

e the set of equations are completely ordered o such a mam. ¢ that after the equa-
tions have been expandoed over the quantifications, any variable appearing on the
righi-hand side of an equation. or in a subscript, appears in the left-hand side of

an equation carlier in the ordering.

An example:

initially

The initial condition defined is generally the strongest predicate that holds initially.
The predicate can be obtained by applving the following rales to the initial statements:
Hoand | are to be treated as a logical and (A). and an initialization of the form

r = exp,if condy else = (. else = exp,, it cond,
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is to be treated as tcondy = (7 = oxpy 1) AL A { cond, o { + exp, .

Always-section

The always-section defines somie variables as functions of otier variables, The variable
appearing in the left-hand side s termed a branspars id cariable . and does non appear
in the left-hand side of any initialization or assienment. This section delines a set of
tnvariants for the program. and if all variables used in the program are transparent .
the program can be considered as a set of equations. AMso cach occurrence of sueh o
variable can be replaced in o nacro like fashion by its dedinition (this property is ealled

veforantial transpare ney), Transparent variables are well suited for v evalaation.

The syntax of a statement in this section i~ similar to that of <tatenent in the

tritrally-section. An example of an invariant is. fofere st = (Priveipal * et Rate /
100) .

5.2.4 'The UNITY Proof Rules

UNTEY logic is based on three logical operators: wnfess. « nsires and I RRITENE

2 g |

operators deseribe temporal properties of o program. anle ss describes . Lopron
erties and cisvres and deads-to desceribe fivencss propertios. To this ~ - owe detine
these operators and some associated prool rales. Fhese roles help de e and prove

rroperties of UNFEY proeran-.
prog,
The program fragment.

pounloss g
denotes that once predicate pois troe, i petains frue af least until ¢ i~ not triae fay
examiple, i message is received only if it has been sent cardior. 1 reecrecd and ~ent are

the two predicates. then

(= received) wrile s ~enl
The above statement does ot commmeut on the fiture staos of the prosean i Jr 0= nat
true and ¢ is true at the time the statement was made. Invaracg predicates can be

defined in the same manner, thus deriving stable propertios of provrame. Lor esamphe.



CHAPTER 5.0 LOGIC-BASED METHODS 14

p ounless false uplies p remains true once it becomes true. An alternative method of
saving the sarme thing is p is stable, I pis true in the initial state and pis stablel then

bt

Lods nrariant.
The program fragment.

P« Hsures ({
implies that p uzloss ¢ holds for the program and if p holds at any point in the exccution

of the program then ¢ holds eventually. Put formally,

pensurcs ¢ = poundess g A3 statement s {pA =gl s {q) ).

After p becomes trnel statement s executes, after which ¢ becomes true.
The program fragiment,

pleads-to . denoted as po— g .
defines a condition where once p becomes true g becomes true. The operator does not

assume the persistence of the irnth value of p for ¢ to become true at a later point.

Rules for Inference

Sonte of the rules for inference and derivations are given. These rules are used o proving,
the adequacy of specifications (or otherwise), The method does not use transitions as a

basis. Bt st the predicates and their corresponding statements, The first rule! pro-

vides & definition of leads-to relation. The second rule states that levds-tois transitive
The thied rule states that i every predicate in o set leads-to ¢ then their disjunction

also leads-to .

{ baxis)
poensures g
="y

(transitivity)
Py g.oq— r
T Tp—r

11 - . . 3 . . .
Uhie rules are interpreted in the following manner. For two predicates A and £,

\I-
(o) PO

means infer B from AL
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(disjunction)
(Vi o poae v— )

(Frrcpo o=

Rules for unless are given below,

{consequent weakening)
potndess r

pounless gog = r

{(conjuncting)
poundess g p" wnle e

PA /.:' tunlessip A :/") \% ([" Ny \/ ( ;/“/A\Vl/')

A nnmmnber of other axioms allow reasoning abou? properties of procrame. 1 he sub-
stitution axioim ~tates that it is possible to replace s imvariant by o true valne, Given

pr—gANTowhere [ s the invariant it saflices to detive pa— ¢,

Progran Counipcsitious

Two programs 2 and Py that can be execnted conenrrently are denoted hy 17 e, the
set of statements of [0, are the upion of the statements of Py and 250 Vhe ande sa
property holds i 20, i it holds in both 17 and 200 The rsares property hiold- i

Pyl 7 ihe corresponding wnless property holds e both 20 and 77 and the cnsures

property holds in at least one or £ and £2,.

This can be written as two rules:

pounlessgin Pyjl, = pounless gin PyAop oandoss g in 17,

poonsures i PPy o= (poundess qin Py A pocnsarcs g in )

U pansures gin 2y rop undess i 1)

MWe can infer that

pountess g in P00,

poaendooc g e rop s svable i 1o
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poensurcs g in PP

y ensures g in 17, p is stablein o
/ ! 1- 7 2

A Simple Example: Heap sort

in this examples a UNITY program for heap sort is presented. Initiallyv, let Y = X
where Xoand }Voare two arravs of integers. Let e be an integer variable with values

ranging from 1 to N A portion of the array Y is invariant because that portion has

filled up its final values. Let ¢ be the largest element in Y. ..m]. Let big be an index
such that Y[big) = v. The main action of the program is

Interchange Y] awd Y[biq] and concurve ntly decrement e if me > 1.

program lHeapSort

declare big. v : intcger;

No Y sarrvay[1..N] of intoger

always v = < mar i 1 < i< Y/[i] >

Obig = << anyi: (1< I<m)A(v=Y[i]:i)>
initially 7 : 1 <7 < 22 Y[i] = X[i] >

b= N
assign Y/, Y/big]. ne = Y/[big]. Y] m-1 if > 1
end leapSort

5.3 Example: Riding the Elevators

The elevator system has a straight forward implementation in UNITY noiation. The
use of a process based approach allows us to specify the system as a set of interacting
processes. The implementation details of interaction can specified after deciding the

target architecture. The overall skeleton of the UNITY program is given in Figure 5.1,

We shall present additional features of UNTTY using this examples as a part of the

analvsis of UNTTY.
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Program Elevator-system
declare
N. M sinteger @ N clorators scrvice Mo floors
service ©array [1LN]{1.M] of (served. notserved :
butions : array [1..2][1..M] of (on. off) -

initially
Iidtialize the aboce variables to appropriate value s
Sucl an initialization causes the de finition of initial propoetic. of the systcin
Iiitially all el vators are on floor 1
always
A simple incariaat that has to o maintained is:

all clevators screiee first those e Grests i the divection they are travdlling

add (request. schedule) i (request > curr.loor A direction (i apy
V (request < currdloor A direction [i] = down)
- add (request. schedale) i (1ogaest > currdloor A direetion i denen

Vo (request < curr.dioor A direction [i} 1= up)
assign
The assign scction first de fines the bohavior of the e cators
This behaeior is de fined as boing conearvent with the beliarionr
of the button
(fij::
onfuplfi] A = entered = broadeast(up. i)
§ serviced[dir. i] = offfdir. i)

)

The button bchavior is defined

If « floor is not screcd. than the button b r is added fo
the schedule of an ol cator

Abutton is switehed off if the floor for that direction has
bheen serviced

§if button[dir}{i] 1= notserved = seheduleljl(i)

§if service[j]i] := served = button[dir]{ij := off

end

Figure 5.1 The outline of speciication of the elovator systen in UNGY.
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5.4 Analysis of UNITY

¢ Notational Features

= Unil of computation: "The basic unit of computation is a program statement

in UNI'TY.

Data abstraction: 1o UNITY, each set of related processes is deseribed in
a program. Other forms of data abstraction supported by UNITY include
user-defined data tvpes,

Modularity and Compositionality: UNITY specifications are composed of
a set ol interacting programs.  UNITY is a highly modular specification
method. Composition of specifications in UNITY follows a uniform set of
rufes. These rules are the same for a single program and for a collection
of interacting programs. In the above example. a number of programs like
serviced. broadcast and schedule compose the UNITY specification for
the elevator svstem.

Constramts: Logical formulae specify constraints.  These formulae define
behavioral and structural constraints on the svsten specification. Logic pro-
vides a powerful mechanism for specifving constraints.

Transitions: UNITY was not built with the dvnamic analvsis of programs in
mind. UNTTY does not support transitions.

Concuirrent structures: UNITY provides a rich set of concurreney and com-
munication primitives. UNTTY also provides a set of rules for transformation

of such high-level primitives into architecture dependent code.

e Semantic Features

Defininig asscrtions: The logical framework provides a powerful mechanism
for specification of assertions in UNITY. These assertions allow one to prove
properties of the specification. such as safety and liveness properties.

Reasoning with time: The temporal ordering imposed on the behavior of
processes is not safficient to specify a total ordering ou the system.  The
reasc g mechanisms are only able to infer timing relations between the

collections of partial orders,
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= Ddfining provable proportics: Spoecific propertios can be inhereed nsing the
logic rules of UNTTY. As vet no tool exists to realize this automaticativ, bt
the potential exists. For example, a few propertios that can be delined for

the example are as follows.

+ The predicate waiting unless request-exists defines the state that an
clevator is in the waiting state. and will remain so until there is sone
request for service,

# The predicate visited[(floor] leads-fo button[floor] := off defines
a sequence of actions in the elevator svstem,

+ A fairness property of the elevator can be expressed s reguest-exists

(nsures - waiting.
5.4.1 DPrawbacks of UNITY

UNITY. though a stiple language. daoes not provide a few basic facilities fike the ahility

to snecify transitinngs amone nrores oo aud cont
! A ransitions amonae ng = and corn

. .
1
Padhi 4

. ! . e T H o)
S e st LPdlisivinies, e o ad

framework also makes building eflicient tools for UNTTY a difficult task. This is hecise
pure logic does not allow efficient implementations [Hogper. FOSA]L Tt s not possible to
dynamically verify the designs generated by UNITY as it does not provide o frame
work for specifving transitions. The authors justifv this chajce by savine that dyvnanie
analysis is error-prone. But the need for trausitions and reasoning about the dyvnanic
aspects of a speciflication is justified by the fact that most distributed software svstferns
are generally underspecified. Tt is difficult 1o completely specifv? most distributed SAS
tems. specially the reactive systems. The reason s that the tvpes of interction- witl

the environment are not completely epnnierable,

5.4.2 Unity and Temporal Logic

In this section. we attempt 1o show that UNFEY is o very simsple sysrem and may be

subsumed by other logic formalisms like temporal logic aud transition svstems. Such oo

2y - - . . -

“There are other systems ke system hrowsers, artificial mtelligence programs and heuristio < fuased
programs which cannot Le completely specified. This s becanse these progratas anteract with the
environment in resafting in an unspecifiable type of data exelange,



CHAPTER 50 LOGIC-BASED METHODS 50

. . . . . R i NIy -
formalization will help in providing o sound and complete” framoework for UNTTY.

Maost concurrent design svstems are based on transition systems. Transition sys-
tems are normally characterized by a group of graphs. each with a starting control
point. ‘Temporal logic has been shown to be adequate for the specification of transition
systems [Manna and Pouelic 1923)0 UNITY is a simpler transition system (actually a
first-order transition syvstem) whose underlyving graph has exactly one root vertex. The
execntion of UNI'TY programs is constrained so that every transition occurs infinitely

often on this graph.

Transition systems and temporal logic are closely related. Temporal logic is ex-
pressive enough 1o prove properties of transition systems. Compositional verification
of properties is achieved by using transition logic. By this we mean that if the pro-
gram fragments have certain properties. then a compositional verification will try and
compose all these properties into one single property, Since transition svstems have a
number of graphs. one representing cach program fragment. compositional verification

s important.

UNITY has just one basie program. and hence is termed a single-location-program.
Obviously. this is a simpler program than a full transition system which has many such
locations of control. Therefore UNITY is casily modeled using transition and temporal

fogics. A formal presentation of this discassion is in [Gerth and Prueli. 1959].

5.5 Chapter Summary and UNITY Extensions

The UNTTY formalism attempts to provide a paraliel version of Flovd/Hoare style pro-
gramming logic. The methiod provides a logical basis for defining and proving temporal
and invariant properties of programs. The specification of these properties has to be
done by the programmer and there is no mechanism vet that allows the extraction of

such properties from formal specifications of concurrent svstems.

We present a brief deseription of the method and model the elevator problem in

UNITTY. We then analyze UNITY and compare it with temporal logic specifications.

Temporal logic (at least the linear temporal logic) is claimed to be a complete formalism {Manna
aird Poucliy 1988],



CHAPTER 5. LOGIC-BASED METHODS S

This comparison is restricted to the semantic aspeets of UNTEY . as temporal logic does

not have a notation of its own.

[Sanders, 1989] provides an extension to UNITY logic and describes a moethod for
refinement of logic specifications to implementation level programming structares. [Gri
bomont. 1990] extends UNI'TY with a transition svstem semantics and defines o frans
formational approach to formal concurrent systems developrnent, Phoneh the transition
system semantics are algebraic, the propramming semantics are refinements of UNTTY

semantics.

Logic proof systems provide a ricorous model for verification of concurront sSVslens.,
Tools for verification tasks must have proof svstems that are able to reason abont tem
poral properties. and temporal logic is best suited for that type of reasoning. There
also exists a granumar-based approach to specificaiion of teporal propertios of conenr
rent systems [Manna and Pnueli. 1987]0 Incorporating such technigues inta tools wonld
help automate the process of specifving temporal and invariant praperties of software

svstemns.



Chapter 6

Graph-based Methods

Concurrent computation cannot be represented using sequential structures, In a con-

current program. events take place in parallel and it is now recognized that such simul-

taneous conrp - tion s well represented using graph structures,
In this ¢ coowe will present a method called statecharts, which is based on a

special class of graphs known as hypcrgraplt- This method provides a semantics based
on extended state trausition diagrams. V. snefly present the basie concepts of this

method and desceribe the various components o the statecharts visual laneuage.
o ¢

This method has been implemented as an euvironment for development of reactive
systems known as STATEMATE. We present the method used in STATEMATE to
compose specifications. A briel description of the associated tools is also presented, and
we then use this formalisin to model the elevators probleni. Next an analysis state-
charts is presented. followed by a short discussion of graph gramimars as an underlying
framework for graph-based computation. This discussion will highlight those features

of graph grammars that are better represented than in statecharts.

6.1 Statecharts: Extending State Transition Diagrams

States and transitions adequately describe the behavior of complex concurrent systems.
Soostate transition (ST) diagrams and the correspounding finite state machine model
are a good choice to model formally such behavior. ST diagrams are directed graphs

with nodes denoting states and edees denoting transitions. The odges are labelled with

ML
[
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triggering cvents and guards.

Such an arrangcoment is not adequate (o represent laroe systems. as the nomber of
states grows expounentially with the size of the system. Moreover, the deseription is
not stratified. whereas most conplex svstems are hierarchical in nature. We should be
able to group a related set of states into a larger state composilionality and e fine -
nrend. deline abstractions over a set of transitions, and define a group of states as heing,

concurrent and independent  orthogonality.

Statecharts extend the ST divgrams to model AND/OR decomposition of states.
represein hierarchically stroctured svstems, and provide i sense of abstraction when
viewing software component deseriptions [Harel. 1987b]. The Toliowing equation char

acterizes statecharts,

Statecharts = state-transition dingrams 4+ depth 4 orthogonality

hroadcast comnucation

In this section we present the graph specializations that form the bisis for state
charts. These specializations ave calied higraphs whicl in turn are specializations of

hypergraphs.

6.1.1 Higraphs: Visua! Formalisius

A graph can be viewed as o set of nodes with o Bivory otation detined on the oodes.
Restricting the type of relation will vield special classes of graphs. iypergraphs are an
extension of grapis where the relation on nodes is not Biaary and fias no fixed arity.
Hypergraphs have th - ability 1o be more expressive in representing objects aud their

relationships. Figare 6.1 shows a representstion of hyvpergraphs.

Euler diagraq. provide a couvenient method of representing logical propositions
on coliection of seis. They also define structural relationships betweoen the wots. -
graphs [Harel, 16374] wre a hvpergraph-based extension to an extended forn of Faler
diagramns. Euler diqgrams are extended to represent the Cartesiog product. In addition,

the resulting nod L are connected using edges and hyperedges.
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’\

Fieure 6.1 Hypergraj:hes.
£.1.2 Statecharts: Features

The higraph notation uses ronnded rectilinear shapes 10 ropresent et~ Statecharts
eraj I I

are an extension to hieraphs where the rounded recrilinear <hapes represent states and

arrows represent transitions.

Statecharts extend ST diaerams in o mmnber of wavs, A statecharnt provides depth
and Lierarchy in deseribing the structure of o svetem. This allows abstractiors 1o be
huilt . Alvo statecharts model concarreney in o more natveal way by providing facilities
for local composition and not ke ST dinerames where concnrreney can onlv he modeled

by its global states,

Fieure 6.2 gives an example of o statecharts representation, The Cartesian product
i~ defined an o corapos o0 e shiape representing the st 2 s a cartesian produact
of the shapes representing sets Noand Y oin Figure 6.2, Depsin ds represented by the

insideness of the rectilinear shapes.

Compositionality

In Fignre 6.2 objects B and O are duside A and do not overfap. FThen A ds an XOR
representation of Band Coso anevent in A s instate Boor O but not bhoihis Any arrows

that leave N oapply both to Band ¢ Thos we are reducine the number of ares in the
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represeniation.

Orthogonaliy s the dual of XOR decomposition. In Ficure 6.2 X and Y are AND
decar o of 20 and are said to be orthogonal, To be iu state 7 0s to be in both X
i dess The NOR decomposition is also cnown as elustering. Arrows are labelled
witi cames which denote actions. Vartables i parentheses are predicates which denote

i

ronditions . The depth fearare Stfows cne to oo nto and out of an ohjeer d

feseription,

History Mechanisins

A gronp of states are clastered, and ol events in that group are huked in the order of
execution.  Lhis Jostory of states allows one to revisit o eroup of events, | he choiee
of the event can be specihied by an arrow to defandt 1o an ovent in case the connective
I~ appearing For the fir=t tinie. Dieare 6.3 shiows the nse ol such a connective, i
Figure 6.3 (o). the connective 1= the letter B owith the civcle aronnd ito The delaal s
spectlied by the arrow pointed 1o the state € This mechinisin can be ased 1o visi
events ar any level of detadl, Fieare 6.3 @by shows an oxample. Here Vi< the defauh

~tate,

Conditional Transitions

Fwo other vonnectives allow conditional invoration of events within o eronn, and ~elee-
tion of events (see Fioares 6.0 and 6.5). To Fieare G0 () a conditional visit 1o B, €
or 11 s made depending on the truth vadue of the correaponding predicates pol?y plQj
and piRY. Figure 6.1 66 implenents the <ame by nsine a conditional connective. The

value eviluated ar the connective will initiate the corresponding event,

Fieure 6.5 (o shows the conditional ~election of one of the three events, Uhe his-
tory mechanisin can alse intlience the selection of o state. An example is shown in
Picanre 6.5 (b Fvents B C or D are activated depending on which event was active
previoustve Other features inelnde the ability 1o specify delavs on events, and allow for

anclustering a statechart so that events and stites are explicitly displayvid.

Netivity Tists ave also oo part of each state. These lists specify what action s to be

tahen whon o cortain event cocurs, Harel, 1957h1 presents o detatled discussion on the
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Fiewre 6.5 (i) Implementing o selection amone thiee evenis. (b Imiplementing a

selection among three events using o selection connective and a history inpuat.

semantics aud possible extensions to the formalism.

6.0.3 STATENMATE: An Environment for Developing Distributed Sys-

. u

tems

Five speaitication method developed by Harel and his coworkers allows three differen
views of o concurrent, resctive system specification tHarel er alo 1990° funsctionality.

stricture . and b havior,

System Specitication by Nultilevel Hierarchical Decomposition

Structural information deals with ahie hicrarchical decomposition of the svatem into
corponents. Information flow berween each component is specified. Che functional
component provides hierarchical decompoxsition of the system based oun the functions
the svstem performs. Two tyvpes of information fows are specified: How of data items
and dow of conrrol information between fnctions. These two views do not contlict with

cach other hut complement cach otlier. These two views do not specify information



CHAPTER 6. GRAPH-BASED METHODS a4

about when the states of the svstem chianee and about temporal relationships between
varions interacting activities. Pasentially these two views do not specily information

about the hehavior of the svsten,

The behavior is modeled by control fow wnd temporal relations, Pach love! in the
function hierarchy can have a deseription of behavior. A statechar: deseribing, control
flow specifies when how and why events occur. Such astatechart denimes 1he constraint s

on execution and generation of evepts,

The general framework for specification is based ou the statecharts. Phivsical decom
[)ur‘ifi()(l of a syvster I .\[:»H'iﬁd‘(l !»‘\‘ rend il -cliarfs, functional «f«-wun])u\i!iun b actieey.
charts and behavioral decomposition by stateclarts, NMaoduie chart= qod activity charts
are based on the statechart fornadism b are diffierentiated by havine tectanenlar
shapes (different svortaxi and slichile differont somantice. Stornee modnbe e peet
angular shapes with dashied sides. Solid ares define information fowe, and e Tabetld

feupe rarraast,

I activivv-chiarts, the obiects are deseribod by rectamenlny Shines oo wirh monbote
cliarts. but differ in the semantios of the ares hetween objects, T activity charts solid
arcs define data flows and dasiied ares define control flows, Netivity charts reprosent
two data ()l)j(\('ls: storage structures sud control stractares, Cantral <tractnres aro ape

represented within an aetivity steactare by qneans of stateciort -,

Behavioral specification of activitic s sod events s dope by statecionrts, Some conn

mon cotditions and events inodeled by statecharts are listed in table 61,

Other Tools

Thougl these graphic structures define decompositions of @ =oftware - vstem. they have
no way of specifving the structnre of o data object.  forms Langaaoe provides the
necessary mechanisis to specify the data objects in the form of o slot fitler <tiacturee,
STATEMATE provides editors to specils and edit descriptions interactivelv, T he editors

chieck for svntax correctuess before committing specification-.

STATEMATE provides a tool for querving the object specification databluee. e

"Hyperarrows can have more than oue ond poant,
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L ()iﬁ:ﬁ: - Tj Fovents I Conditions ];\('Hnns _:
State S Tentered (S) in(s) - h
exited(S)
o - started () active{\) si;u'l(Tf‘ ‘‘‘‘‘
Activity A stopped(A) stop( A}
hanging(A) | suspewi A
resutne{ 4 ;
“Data tems DL F D read(D)) 1) =1 D=
written(i)) N < F
Condition ¢ true( ) N> make_true( ')
false{ (") make_false( ()
Cbovent b T T
Action A Thineont(F. n) schoednle{ AL )
BRI N

Table 6.1: Some common events and conditions. and corresponding action sequences

for statecharts,

tool keeps a list of incomplete specification components thas sets updated as the speci-
-~

Hcations are completed,

A report generation tool generates reports on data objects and the specified state
chianges. Reportsinclude varions data dictionaries. the beliavioral specification of states

and associated activities. interface diagrams of modules amoug many ot hers.,

STATENMATLE also provides o document goncration language which users can tailor
to meet their specification.. Specilications using this language can be associated with
related structures ina specification. The ability 1o interlace the doenment specifica-
tious with instructions that collate relevant information from the specified model helps

penerate reports that are very detailed,

Executions and Dynamic Analysis The STATEMNATE environment provides a
stinulator that allows execution of system specifications. This allows for dyvnamic analy-
sis of the system behavior, External events are generated to simulate the reactive nature
of the system. The various components of the specification that are carrently being “ex-
ccuted™are shown in the serecn and cctential parallel executions are depicted. The
simulation can be run at varions fevels of detail and deseribes a series of states throneh

which the system passes.
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This facility of stepping through a svsiem beh. Cior interactively alows one 1o dobuy,
specifications visually, STATENMATE also provides o sovdation control lerrigage that
allows a user to procram his executions.  This Lrnguage provides ail the facilities o o

conventional high-level Language and the associated ool allows the neer 1o e breoke
pointsin the simualation to ohserve aud interactively chiange the control structures. Sach

stmulation riuns can be recorded as trace structures and analvsed Tater

6.2 Example: Riding the Elevators

Iu this section we represent the elevitor svatenm using <tatecharts. The alates of 1he
svstent’s components are represented by the rounded rectilinear dinerame. | e arrows
denote events and processes. The clovator svaten consists of 1 elevator and 1o loors.
Fach Hloor has two bhuttons indicating Up and Down requests for <orvice. An out line

representation of the elevitor svstem is given in Fioure 6.6,

The elevator object state chanees and associnted ovents are modeled in Fieare .7,
AN clevator gets as inpul a request lor service Irom sore Hooro N reqguest for service
will get channeled depending on which state the elevator was in (o histors techanisin
= an effect here) I the eleviror was o the Waiting state, the request is processed and
an appropriate state is reached. The conditional connective checks the ivpe of request
before requesting that either Up or Down states he peached. Slist i the st of Fegquests,

to be processed.

The stare ehianges i the Up state of an elevator are sl n in Fiore G.os, L his is one
of the states in Figure G.70 There are essentially two objocts being modeled: Stist and
Curr_Floor. Differcut events tihe place depending on the inpunt received. A~ o new floo
is added. the Shist changes it contents. Depending on the state of Shat. other events,
such as stopping ai o floor and reaching the Waiting state and chiancine direction to
reach the Down stite oecr. The two ovents Stop and Change. Direction 1eich another
state in the elevator snbsvstem shown in Fivuve 6.5, The event Switch Off(Cure Floor)
sends a broadeast messiee to the commnnication link bhetween the elevitors and the

buttons at cach floor.

The state representation of huttons o Hoer are siplers The fnput s o vequies
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Figure 6.6: A high-level representation of the Elevator System using Statecharts,
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for service, e pressing a batton, or a switeh ofl command by one of the elevitors, A
button can be in two states On and Off. When o Switch_Off request is reccived. the
button switechos itself off and voes 1o the Off <tare. When o Button Pressed ovent i
initiated. it goes to the On states Thew it requests o sorvice by Brosdoasrine o message

to all elevators, This beliavior is shown in Figure 6.9,

6.3 Analysis of Statecharis

o Notational Features

= Unit of coniputaiion: The basic unit of computation is o state disigram rep
resentation. i his represents an ohject or its state,

= Data abstroction: Datia abstraction is provided as the “insidenes-" of an
object reprosentation.

= Modularity and Compositionality: NModalarity s agasin an cxtension 16 the

data abstraction principles of statecharts, Cotpositions s formlated by
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Figure 6.5: State changes in the up state of an elevator i.
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Figure 6.9: State changes in the Up_Button at floor .
connecting different obijects and “modntes” by sirrones. These arrowa are

labelled by predicates to denote constrainis. Another mechanism of com
position is the ANID composition of ditferent objects. Overlapping of state
represcntations provides another mechanizm of defining composition.

= Constraints: Constraints are defined by assertional expressions which specify
behavioral constraints on the processes. Processes are represented by arrows
and constraints are labels on these arrows.

~ Transitions: The state transitions are delined as a part of un object deserip
tion and therefore themselves are o form of constraints on the behavior of
the assaociaiod o jects,

= Concurrcnt structurcs: Councurrency is represented by AND parallelisin con
structs and choice construets, These constricts are graphical and are easy 1o
visualize. The AND decomposition of objects is reprosented as in Fignre 6.2,
where objects in state 7 can be iu two possible states Xoand Y at the same

time.
¢ Semantic Features

= Defining asscrtions: Assertions are defined as predicate labels on process con
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nectors (arrows ). Assertions allow expression of properties of a system based
on its behavior. For example, the statement the systemn will not stop until
all vequests have bocn processed is represented in Figure 6.8 as the condition
when Slist gets empty,

~ Reasoning with time: There do not exist any mechanisms to reason about
the iemporal relationships hetween processes. The statecharts are represen-
tations of behavioral changes.

~ Defir-ing provable propertics: Properties are defined as logical predicates on
an object or one ol its states. Such properties are defined as a part of an

event or a process that effects the state of an ohject,

The STATEMATE svstem provides mechanisims to perform many of the verification
tasks for a statechart specification. The semantics of statecharts are based on extended
finite-state-auntomata. Such a formalism does not allow representation of infinitely many
states. and therefore specifications in statecharts Liave a fixed domain to contend with,

and are easier to debugp,

Statecharts allow the designer to represent relationships between states of objects
at different levels. For example, in Figure 6.3, the arrows go into Slist from outside the
object. This fack of a uniform interface for each object does not support the principle

of writing well-defined. complete interfaces for objects.

6.3.1 Statecharts and Graph Grammars

The toolsin STATEAATE provide mechanisis for observing and dynamically changing
the hehavior of a distributed software system. Graph grammars can provide a formal
basis for such visualizations.  This is because graph grammars provide an excellent
framework for defining transformations of representations from one level of detail to

another.

In this section. we briefly describe graph grammars and various operations on them.
inclnding exploiting implicit parallelism to reduce graphs. Then. we discuss how state-

charts can benefit from the graph grammars formalism.
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Graph Grammars

Graph graminars cousist of

o An initial graph. and

e A set of productions.

. L 2l .

A graph grammar is a graph rewriting system?. whoere the set ol mroduetions con
strain the rewrites. Graph-based computation proceeds by moving values chrough nodes
and ares of a program graph. Nodes and ares in a graph cepresent objects and tran
tions respectively. Some examples of static graphs svstems are: potri nets and didig flow

diagran s,

Generalized Graph Grammars

Generalized graph grammars allow the most unconstrainoed tvpe of sraph revrining,
Productions include a left hand side that matcehes g subgraph of & graph (o he peserit

ten. and a right haud side that tells how to replace the matching subgraph in order to
complete the rewrite. Some form of isomorphism (or equivalencey is established daoring
the process of matelung. This poses the problen of how the eight band side is connectod
(embedded) into the graph that is being rewritten. Different Kinds of voueralizod oram

mars specify embedding in different wavs, Frbedding rales for programs that geuerate
X = Y graphs are given in [Goering,. 1990]. We present below peneral technigues of

graph composition and decomposition which are useful in distributod problem solving,

Parallel Graph Transformations

We briefly present resalts of rezearcl on graph grammars and concurrency. DPecom
posed graph representations can be solved over a distributed network of cotputers,
‘Two methods for composition and decomposition of graphs that proserve consisteney of

derivations are split and join. These are delined below.,

2A rewriting system consists of a set of production rales and a set of terms, Vhe teem s translormed
by applying these rules. Ina graph rewriting svstem, the sroductions define wew graphs {or 4 given
A ying 3 A I Krag 3
graph.
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Consi=tepey e presseved 00 st he Doersection of ) and L0 Snchra spliit s detined by

v tion- L 00 and A0 - (0 Sach o split s represented by

Ciy 3 (1, iy

e sddition - defined over the nteriance eraph /.

Join  Pwo craphs G and 5 with o common nterface graph 7. can be Joined o a

Siele erapl (00 Suchoa jomn s represented by

(, (r'] 7/(1-

Such o joinis defined by tle tonerions |- of and o, — ¢ hetween the interfaee eraphs

and the constitnent ¢oaplo- an bothe canstitaent araphe aod the composite graph.

Subsequent transiormeations o the wcranh conponents =t proserve the interface,
otiterwise the compe -ttion i~ destreved . T 0, - o tran~formation Tor 000 then It s
Doprescrrang F there b= o onnvgie erapl ovphism [ o——= ) such theat 1 — 1) — (/) =

/ '(li,

Distributed Graph Grannrmars

Diribod cooap b v~ pronaae oo hand-in for definiae noninteracting produe-

tions o docqd ceomponent tand eiobad eraph-. Pornally such aooraph eraminar s defined

[’)(:' - {[,],/v_r_(:‘.lj’

wirere [ oand 0 Gve the booal erapus et GCis the elobal erant an i/ defines the

interface tintersectior ) eraph.

Prod i~ venerated by osincls wrannnnres ablow tor parvallet processing of graphis.
Generatt of coealindependent seqnences wilow s viewine thom as temmorathy disjoint

sets o aetions . Proois of correctness G snch transformations of globa’ 2raphs to de-
compositions o derivations of components vo therr global oraphs are piven in [1n g

T IO R D



CHAPTER 6. GRAPH BASED M ITHGDS

AT QLD ApProsch (o eraph arniiars s based onvranhs, sraph hotom. s

aud gluing constractions of graplic Plhivfa, 1978 Sich an approach aiiows defimtion ot

('()H(‘IH‘I'(‘HT}}' "_'\Zﬁ‘\"”‘.}ll)l&‘ i):'()‘!111’131)11~. These pr(n!ll\ tions are sald to preseive o OTisInt e A

of eraph decompositions if the homomorphismes defined on tienn are proved tioe Laer

Phese homomorphisms are treated s proef oblications

Graph Grammars and Implications for Statecharts” Metamorphosis

The transfor-nations of statecharis are casily detined as eraph production. One b

sic problom assoctated with socl an ap sronch b that the Tirrows" o statechag i< oo

transcond differeni Joevels of abstracetion < Suel “arrow <" do not ~pport aodubarit v and

cotnpositionaiiry g software svetem o= they viole the pades of wedl detined inter e

Ore wany of sodvine thi- o shlony s tondefine interfnes orapbs hoetwcon the et ot

H

different lovels of detadl Tnoahe amework of wraph eranmiar i i feasible o formalis

detine such interfaces. Sach o representation v wraph eramise cones poneds todinding,

the interseciton eraphs for collections of iuterting ctatechar ol oot o0 Given cuel an
mterlace eraph. transtormine it across aoeraph is done by eraph produciion-. Tor o
niatnber of ciasses of erapls there exisg polvuomial fian alearithon- for recoenizine by

intersectioas Gohimhbie, 19507,

6.4 Chapter Suminary

STAPENMANTI i~ & powertul v onmient dor ~pociicaion of sequiienent s, deaig s and

rapid prototypine of concurrent. reactive svstems, e abilingy 1o cxecite specication -

. . . . . ) '
allow < svstorns to be desdier o wirh Specdle vonds b perionnanoe T onind. Sy e

generated thas are closer 1o the specification -,

STANTEMANTE empioys visuad formalist - for adl the stawes of coftwie devedoprnent
This aliows increase in prodaciivity of development of softwre systens, T he stito bt
forwalismis <hiple and is based on wraphs. The adeorithiims for traveraal are not bird
and can be baplemented efficiently b polviomial thine. Fhe ability to - pecify wiapsh
abstractions also helps i docadizing i

srocessina b e

v
v
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geGeiated deseriptions of 4 wvetenn into o bichdevel proerammine lanenacge. Rapid

prototvping becornes casier with this Kind of facility. Work is beine done 10 generate
AVl DL code o STATEAMNTE e generate code for silicon comnpilation and subseqguent

fabrication of chips,

The aspect of clean niterfaces hetween modules of - atecharts s capably addressed
using praph eramizars. We have mentioned how “deep”™ connections hetween different
objects in s atecharts are abstracted by graph productions. This entails preliminary

transforimation ol statechart eriaplis by recoznizine varinus hitersection subgraphs.



Chapter 7

Object-based Methods

tu this chapter we discunss object based methods for desien of distriboted  vetems. W
present the discussion using Acfors.an object-bhased modet for distvibuted computine. o
Seciion 7.1 we eive a brief historic backeround of object -based approacines 1o compnuting.
I Section 7.2 we provide the motivition for using obioct hased methods fog desipn ol

softweore and define the terms objects and classcs. We then provide o workine definition

T TS P R Y B W .
' ‘S
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tmethods in designine distribumed applications.

In Section 7.3 we present the Actors model G- an example tollustrare the inethods
and issues in using object-based mothods for distributod application desicn. \We e o
compact languase for Aetors 1o hiehlizin the features. We then preent o dio g sion of

actors as a desien forinalism for distvibured application..

7.1 Introduction

SINPULA [Dabl et abos 19700 wirs the first fanguaces 10 introdues the object hused ap
proach to computing. The Linguage introduced the concent ol o eliss to reprosent dit
abstraction. Now object-bi-ed systens have hecotne one of the promdsing approiehes

to development of software at all stages,

e object-based methods evolve sronnd the concept of state based approach rather
thar o dataccontered approael 1o ~oftware desion. OL Tt La~ed ot hod s allone decom

position of software system as a hicrarchical classification of object eli-coa. Aloot wnch

!
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oternooaloo oot e bohieriniass won menns of secinticing anoeisting classfention

polvinorphiao and dvaomic hinding o~ means of generalization. {Weenoer, 1957] gives

an excellent mtrodaction to progratming with objects,

7.2 QObject-based Design Methods

Structure charts represent software designs as Tunciional unita, One drawback with this
strategyis that any change in the system function will vecessitate 4 major redesignu. This
problemy is minimized in object - hased desiens. The basic reason is that inforimation is
gronped with associated operations. Only the relevint operstion definitions need be
chang: ' FThe motivation for an objeci-based approach which emphasizes abstraction

of datalis best expressed by the statement ((Guttae, 1977]).

Subprograms. while wcll suited for the description of abstiact cocits, are ot

particularly woll suited to the deseription of abstract objects,

7.2.1 Object and Classes

Object hased desion was popularized by Booch [Booch, 195610 Before we define objocet-
based design: we dirst define the term objoct (sce [Booch, 198G An objeet can be

defined as an entity that

e has a state and can be referred to by a name.
M 4 .. ! . H . . .

e i~ characicrized by the operations on it by other objects and by the operations by
. -
it on other objects.

e 1s ab instanice of some class of ohjects,

has controlled visibility ol and by objects,

e can be viewed either by its specification or by its implementation.

Anobject can be clossified as an actor.agent. or server depending on the relationship
with other ob jects. A actorobject does not suffer operations but ouly operates on other
abiectso A serecrondy snffers operations and cannot operite on other ob acts. An agent

has both the characteristics of an actor and a server.
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Abobjeci clussis adefinition from which We can creale one or fore oot nstanice s,
cach of which haxits ownlindepondent internal state, hut otherwise identical propertios.
Object instances iteract by sending mressogos 16 cach othor, which canse the receiver

to do any or none of the followine:

L] <'h;mgt\ s internal state,
e send a Hessale oF Jnessazes 1o another ()ll"]o".'l.

o return a resulting object instance to the sender.

New objoel classes car be created by combining ditferent object olusses and/or by
Specang alternate actions to be perforined apon the teceipt of mes~nees. Trlie ritanee
is the property of an object svstem wherein, a chioad objecr inherits dita stenetnrves and
associated methods from its parent. Dologaiion is o technigue of rontine piethaods of &
class to a particalar object. This = mwore flesible than inheritanee, as it i easier to chane
the delegatee object. hut not s sy 1o chanee the superclioss, Ferms Hke dodegation
and Suheritaned refer to varions forms of combination and modification of object classe s,

[ o . w}\—1 AR R LI B A "o P
S L S T I R N N N R R VR SR LD E N S U O I SRS T AU S P IS

7.2.2 Object-basc i Design

Object-based design is the process of ereating object clisios tand agpropriate ohject
instagces thereof) from same hase set of huiltin objec elison to snlve oogiven problon.
Good QOD b= he creation of a mintmal set of eflicieat object Chsses which oeed minimal

changes in case of modifications in desion,

An object definttion provides an abstraction of hobavior of o robatod =et of eati
ties associated with an applicaticon. To this purpose. an object encapsutates both o
specification of its behavior and its representation. Borrowing the idea of information
hiding from Parnas [Parnas. 1972]0 ouly the pertinent heliavior of the hiject is visible
to other objects. and s representation is hidden. This helps addross the probleins of
data abstraction and inforimation hiding. The following concepis are sapported by the

object-based paradigm.

o Generalization: Generalization echanizms ollow the use of o set of ohjects in
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aovariery af citnntion. . Maodeline polviarnhism o ane example of cenernlization,

e Aggregation: ucapauluting relate " concepts into an object definition is agpre-
pation,

e Association: Associations are defined by relatics lups between objects, Exam-

ples of association in the object-based fraunewerk are the techniques of inheritance

and delogation!,

7.2.3 Object-based development and Concurrency

For sequec ™ 7 opoparsicoss an object-based framework offers a mpatior of henefits,
Butina do e on 0t coibated application the notions of inhieritance caises problems
of svnchro o o7 - sdeline sonme of the problems associated with svnchronizing

concurrent everos ivoan object bhased environment below,

o Syvnchronization code embedded 1y parent classes is difticult to rense by sabelasses

that must cooperate with the iliorited code,

o [iarenn ciias Code has no Wad ol Knowing the svuchironzalion poliey requireiments

of the child classos,

o Providing diffvrent svuchronization me-hauisims at ol clas ovels negates the tenet

Fabstraction and informaiion sharing.

7.3 Actors: A Model for Distributed Computation

Actors formalism provides a general framework for programming various concurrent
computers. This frionewark provides a model 1o represent . at an abstract level, the
concepts of communication and concurrency. I addition. it exhibits » number of other

features necessary for development of distributed programs.

Actors are active objects in an actor syvstem which send and receive mossages. Com-
putations in actor systems are defined as a series of interactions between a number of
actors. The actor model defines @ beliavior system for the set of communicating actors.
7 H" Iy

T hese cets are well dofiued in AN
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I the fGiowing wections We detine The camponents of an o tor syvatens MWe then
define the actor iodel of computation. Next we deseribe the propertios of an oaector
program. We use the foanrework built so far and present a sttnple actor laneuave with

the objective of using this langnage 1o apecilv the elevatora probiong.

7.3.1 Components of an Actor System

What is an Actor?

A actor s aopair ( Mo B o where NMois aomail address (reforring 1o a quetie o inconting,
messages ), and B deseribes the behavior associated with the aotor, as o oo ciene e of

processing the nail messaoe, This heboior ean consist of il fortlons e, octneg

LooAn actorean sond pes<oves 1o other know i actor~ cincbnding it-clf . The e IR

are cotnmmnicated by faaks,

20 An actor can creale new actors. The madl addrees. of this new actor i~ hnown
imitially 1o the creator. ipo=<ibiv 1o the newly created actor sdeot aned sy b
commiinicats D uter to other actars,

30 A actor nist specify o (replaceme ) behavior to process suheoainent prensises.
. AN i :

Afteran actor receives i messaee. it Loy perform othier actions too, |\ replivcenent

bebiavior proceases subsequent messiaves. This processing can ceenr concurrent iy

to the other actions an aetor pertoris.

Message passing is the hasis for communication and conciuniene, in actor R NN TTTo
Actor behavior is supported by providine miadl haffer for the tcacags - fon cach acion.
Tasks perform communication. We give o compositional defi= v o taska and their

fusiction next.,

Tasks

We have defined tasks as the processes which perform the aetuad communication. ach

task consists of the following.
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e A fay The vt ioovoed o idenr iy vprions tacks et sk may contain dentical

andresses and mmessapes 1o actors,
© A large ! adidie ss Of a1 actor to which the communication is to be delivered.

o A comrinurication which contains iformation to be passed 10 the receiving actor.

Formatvea task is w teiple 3onoms by oand cach triple is an element of 70 where 7

i~ the sev ol ol tasks in an actor svstem. We define 7 as follows.

T - AT s vt x K.

There are three wavs an actor, while aceepting a commmunication. knows the address

of anoter actor to ~end communteation.

e The address voos kniow s velore it accentod 1he connnuaication.
!

o The address beciune kuown after it accepted a commmunication. which contained
the address.

A . S i . Lo . N [ - o .
. [ll" R T R B B L L L A T B N R O T L S I R R et P T S U E R S PRV

nication.

Types of Actors

Phiere are two classifications for actors. one based on the tyvpe of replacement behavior
specitied and the other based on the type of actor behavior. The replacenent behavior
ol an actor involves the creation of 4 new actor that will process the communications
in the message batfer, Depending on the type of replacenent behavior specified there

are two Kinds of actore: sarialized and unsericlizad.

An unscrial zod actoris one whose beliavior never changes over its lifetime because
the replacement behavior is alwavs cansed by an identically behaving actor. Unserialized
acters are similar to non-recursive mathematical functions whose bhehavior does not

change with diflerent inputs. ice the same set of instructions are executed no matter

what the tnputs are.
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Secrralizod detors are those whose bebavior is charactorized by actions that happened
carlier. These actors are said to be history sensitive. .. the behavior? chanees as
a result of processing o communication. Dyaamic svstems (such s adaptive control

svatems) exhibit such behavior.

7.3.2 The Ar-tor Model

Distributed conimutation can be modeled in different wavs {Section 1o1), The aetors
maodel is based on a message passing model aud provides message haffers with asvn
chironons communication botween wetors. Fach actor is viewoed as o object having, its
own behavior. The internal struetuee is private to each actor. and the only wav of
cffecting the hehavior of an actor is by sending it a4 conmmmnic.. ion. Fhe actor model
does not provide a class wechanisn. but provides o niechanisin G hierarchicn ] Contpa
sition of actor-. The uewly created actors can be given o bolivior 1o aet s processing,
units for the creator actors, The problems associated with inberiianee and CORCUIIency
are avorded as a result. This means more work at defining actor interfcees. bt the
represeutation is a lot cleaner than when dealine with code sharine problems associated

with tnhieviton o,

The message-passing behavior of actors is characterized by o closnee on the actor
addresses. Identifiers in an actor hold the mail addresses of those actor- it knows. Aclors
al these addresses are termed dequaintanees, e HICSSUReS AN actor 1eCeiVes popera e

bindings for the identifiers in the bhody of the actor.

Computation in an actor s dnitiated Ly sending somnessae o Vo daaits act o,
. P Lo}
This actor sends messages © 0 we actors that start up the rest of the appiication.

The actors which receive their first messages frons the external environnent are calloed
receplionists. The roceptionists are similay to a user-interfaee moduie. Tn the actors
formalismi, it is possible 1o have more than one such “modules™. one for each collection

of actors with similar definitions.

Formally, unserialized actors can be defined as folfows. Suppose an actor o has i bheliavior L3, and
It receives a commuuication k. Suppose also the new behsvior is 270 T hen o s an noserialized actor if
foral ke K 3 = 9.

Otherwise, a s a serialized actor. and 37 is the replacerment behavior for 3 as a posndt of PROCESSIng,
the commurnication k. Al is the vniverse of possible communication U1eRsin s

“The hierarchy is defined by the creation of new actors and the information cach oactor his on of ey
aciors.
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Fovery tiime o0 oot e peceives aone-<aee 4 new behavior is created. The old instance
of this actoris destroved if it hias linished all compuatation necessitated by the message.
Henco, an actor can initiate muliiple behbaviors at the sane time. Fach behavior is
assoctanted with an actor. A collection of such actors {each having o different behavior,

but all generated by an actory is called a eoufiquration,

This mechanisim is useful in defining transitions in an actor system. as it provides a
history of actions N new configuration evolves from an older confignration when there
is a change o the composition of the the configuration. either in its set of actors or in
the st of tasks to be performed. Thus there is scope for a tool to verify correctness of
bhehaviors of actor prograss based on the configurations. We define a configuration and

its properties helow,

Configurations

N configuration is a set of actors and tasks. This is defined in terms of the unprocessed
tasks and a Jocal states function. N local state function is a (partial) mapping from the
;

[

. . :
poail wdd VUto che ot of poe

N . gt 2
RS ] MGl G - FES $is NG00 O

l: M - — 3.

By extending the range to 5 U { L} we make [ a total function. All undefined

clements arve mapped 1o L.

Now ., a confignration is defined as a pair (1. 7). where T is the finite set of tasks
in the actor system. The definition is constrainted by the need for uniqueness, e.. two

conlignrations will have different tapgs and mail address s,

7.3.3 Properties of Actor Programs

The esseutial components of an actor progran are

e bohavior definitions which define a behavior and tag it to an identifier without

creating a new actor,

& (Xpressions Lo create actors,
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& o nd commnands to create tasks,

o receptionist declaration which lists all actors that may recoive information from

the external environment.

o cricrnal declaration which lists all actors which are not a part of the current
computational configiration that mayv receive communication from the actors in

the computational conficuration.

We present a simple actor langus o and

A Simple Actor Language and its Semantics

We deseribe o Simple actor ranenage (Sal) PAghie 1osGi which illostrates the easen

ik features of actor langnages. The Tanenaee cruplinsizes the ability to dictribute o

computation. and geuerate maximal concurrency for a computation.

In the « dscussions the acquaintancee list s enelosed i C ... ) and the
conmmnnication fist is onviowed in r: L. 1 Tho hoboaoine Jafinitig.. TS (b

create new actors. but bind an identifier 1o a behavior template, The behavior definition:,

are written as:

{bchaviordefivition ) 1=

def { bilcvior_iian YU acquaintaned Listy ) [ conmmunication Lty |

(commpapd Y e

end def

where beliacior_name is an identificr. 1o which the deseribed bohavior is botid.

The replacement behavior in SaL is specified by o become command whowe svutax

become { caprcssicy )

where ( crpression ) evaluates 1o a behavior. Comunands (o perform operations.

including specifving replacement hehaviors have the SV
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. . [ .
Ccommand o if {(logical_c rpressicn ) chen { coniand

{ else ( comemand ) £i]
become ( ¢rpression ) |
( scrd_comnand ) |

(lei_bindings )y { { command )y } ( bchavior_de finition') |

( command )~

The predicate new creates a new actor.
(new crpression ) = new { bchavior_narnc ) ( { copr i corpr 3T })

This returns the mail address of the new actor created. and denoted by ncw copres-
ston. This address is used for communication after boineg bovnd to an identifier. This
binding can bhe accomplished by a let binding. This is the only form of assignment

stupported,

P

let_binding ) := let id = { cepression and /1= ( corprossion)
4 / /

This binding gives the acier an addross of another actor. but no details of the actor’s
data snd process stractures, Creating tasks is done by sending a communication 1o other

actors. This is accomplished by the send command.,
Coscrd_connind y = send ( communication Y to { target )

The communication is a list of values. and the tareget is an identifier bound to the

matl address of another actor.

Fhe acquaintance fists and conmmunication lists are instances of parame ter list=wiich

have ihe form:

(paramcter sty = {ad | Coas Doy VL Gd L (ear listy o]
(varlisty = case { tay-ficld ) 07 ricial 5 end case

(variant Y e (Cease label 'y RO ETRE T o PRI

Two more construets: call and  eply can be added to model communication be-

tween actor configurations. The call construct is used to request some inputl from an
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actor, apd 1s written as
ca. .

where ¢ is an identifioy bownd to apan ascand A s a communication to the actor

at g, The actor at g can reply by usi construct

A SN tl‘ll/lu].

7.4 Example: Riding the Elevators

There are two basic objects: the elovitors and the floors. The behavior of this svstem
s represented as o set of states of the elevators and the buttons on the floors.  The
actor representing an elevator will describe the behavior of that olevator. There will
he nosueh actors: one for cacli clovator, Fienre 7.1 aives anexample of suel an actor,
We have omitted o lot of detail. but this does not affeet the desien of the actor. Fach
actor gets a message from a message network. This network too can he modeled as an
actor. Messages are vead ofl this network o a by olevator actors, The oxact CONCUTTONeyY
control protocol 1o bhe nsed will be determined ater. The elevator, thus is defined by
tuple O ostate roqice st st floor Y. The crcate i rator actor will create all the olovator
actors. Elevalor actors create now actors 1o service the regnests as they appear. Here

the processing Is sequential.

This type of delinition aliows the hmplementation strateey 1o he onforeed Liter,
A number of invariants can be defined alone with the conditiona! ~latements, | lese
invariants tighten the spectfication by resteicting the scope of fanetion execution. Some

of the invarianis are:

o Il clevator is in waiting state then the huflors are empiy.
o [l clevatorisin up stave. then reqiest e questis a list that is inincrensing order.

o I elevator is in down stares thon sogaest D rcque < is i decreasing order,

Clearly these invariants can be added as condizionals to the above actor definitions.

Every change in state brings in a new configuration. In this cac the other aetor, 1he
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def olevator-i

if sorvice-requests = empty then
clevator-i.status = waiting
call buttonfstatus]

fi

if service-requests NOT = emipty then
go.requestfD) = new (go) [ reqguestD)]

fi

end def

def g0 {reguest i)

[ case requestiDreqguest of

Hp service-reqnest = become ( serviceup) {reguest)

down : service-request = become  (servicedawny [request] s

floorup : service-floor = become (~ervicefloorup {request Hstatns] -

Hoordown service-floor = become (servicelloordown ireqguest Hstatast
end case ;

end def
def servicenp i yeguest )

requuestID.request = sopvieed
send de-illinminate to huttan.request

end def

def servicefioorup (roquest, oorstitus)

if floorstatus = werviced then

exit
else reguestID . reguest = serviced
send de-illaminate to floorrequest
fi
end def

Figure 7.1 A template of an actor definition for an elevaror hehavior.
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button is interacting with some external actor via a receptionist. We shall not give the

—e

details of these 1wo actors as they do not make a major impact on the desien.

A change in the state of an actor is denoted by the change in an actor’s behavior
pattern. The actor specifies a new replacement behavior which now processes the in-
coming messages. The elevator actar has other messages coming to it. These messages
are requests for servicing some jobs. These messages also cause the change it state (rep-
resented by a rep’ cment beliavior). In Figure 7.1, (though it is not shown) the new
replaceent behiavior for go will take care of actually servicing the requests. The new
actor tog will process simmilar messiges. There are a number of replacement behaviors

for this actor configuration.

e Changes in state will canse different behaviors.
e The go behavior will caise a change in the status of the buttons.

e A change in the buffer sizes will canse a new behavior. in that the floor value in

the state of the elevator changes.

Such a detinidion of participating actors is activaied by a main actor called create-
clovators, Such an actor will create all the dlecator-i actors with appropriate properties
on the receipt of a start signal from the environment. A definition of such an actor is

eiven in Figure 7.2,

The other two olject classes of importance are the buttons in vhe elevators and
on cach oor. and the floor requests. A button actor defines the initial behavior (a
manifostation of staie). The chanee in behavior is a result of an external event (a
communication from the environment). The button a-tor is defined in Figure 7.3, A
button has a state of baing on or off. 1t also has a floor value associated with it. We
ditferentiate between the button in the elevator and the one on cach fleor by using button
and floor actors respectively, Fach elevator will have a button actor. In Figure 7.0 we

lixt the floor button actor.

The replacement behavior for a button will be a change in processing of the bufton-i.
There are three beliaviars possible: do nothing, turn button off, or turn batton on. The
behavior of the floor actor wilt depend on the status of that floor serviced. This actor

also sends ont nmess nges to s Vononew event,
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def create-elevators (N)

if START_SIGNAL then
if N < n then
address [N] = new ( elevator-N ¢
let N = N + 1
become create-olevators | N )
fi
fi

end def

Figure 7.2: An actor definition for the main actor: eroafo<clo vafors,

A note on the fairness coneerns expressed in the problem definition (Section 201,
The fairness issue is that of the delivery of communication, generated as a result of
processing raessages at each actor. The actors formalism supports o non strict fairness
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mel. s properties of the problem. The reasoning is as follows:

1. Al messages arriving, at a battan actor are always sent out,

20 A messages arriving a1 s elevator actor are alwiys processed,

Therefore. as no priorities have been asstoned, all reqguests for elevators from floors
will be serviced eventually. and all requests for floors from within elevators will e

serviced eventually,

7.4.1 A Discussion of Actors

A computation in the actor model is made ap of a colledction of configurigions. Tach
configuration may have a reeeplionst (an interface actar), and an crdernal aclor, A
problem is solved by this collection of actors by moving from one configuration 1o

another.in the process interacting with other configurations.,

In this section we briefly present o few salient points about actor languapes. We

shall nse the eriterin we doveloped i Section 3.2,
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def hutton-i (request)

[ case button.status of
on : if pressed then
do.nothing i
if served. floor then
bhutton.status = off fi
off . if pressed then
button.status = on fi
end case |

tf request-is-send-statins then
reply [status]
fi

end def
def button (reqguest)

if request-is-send-status then
repeat
new (button-M) [request]
until all-buttons-created

fi

end def
def floor (request. status)

if changed-status then
floor.status = new-status :
repeat

reply elevator-M [request]

until all-messages-sent

fi

if request-status then
reply [status]

fi

end def

Figure 7.3 A template of an actor Adefinition for a button,
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s Notational Features

— Unit of computation: Nu actor is the basie unit of computation. An actor is
a dyvnaivic unit of data and process representation,

— Data abstraction: Data abstraction is provided by total encapsulation of
behavior methods inside an object definition. The only visible components
of an object are defined by the object dtselil by means of new actors. For
example, all elevator actors have similar actor definitions,

— Modularity and Compositionality: The system of communication hetveen ac

tars is very flexibles Modularity is introduced by the concept of receplionists

which are actors that act ax interfaces to o particalar conficuration. N1
communication i- then ronted throuel this actor which then decides the best
mechanisin of handling messages. A host of receptionists detine module inter
faces. Compesitionality in actor systems is defined by communication prim
itives, since an actor syvstem is a collection of Tpossibly terncting) agents,
it is casy 1o define a configuration as o comiposition of (wo confizurations.

Ritos Tor ~uvh companition wie defined o alingt diany condinuiation. (e

Chapter 7 [Agha. 1986},

Constrainis: Actor langnages provide necessary consirinets for defining con-

straints on actor behavior, The fairness constraiuts are naturallv nrodeled in

actors, ax the fairness of actors formalism applies tao the exanmple’™s fiirness

requirement s,

— Transitions: An execuytion is a collection of confieurationis. each of which has
evolved from a previous configuration, A change in the stitee of either an
clevator actor or a button actor trigeers & new configuration,

— Concurrent structures: Nessage-passing is the hasic feature of setars. Com
munication between conficurations is managed by recoplionisis. communica

tion between individual actors is defined by the target addresses,
e Semantic Features

— Defining assertions: Assertions in actor languages can be defined as con
straints on the behavior of collections of confignrations. T his allows reasoning,

about hehavioral equivalences of confignrations.
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o Reasoning with fonc Series of configurations maititain a trace of the exe-
cution. There is a cloar description of the occurrence of eveuts 1 terms of
ovolution of actor configuratious. The transition semantics defines the evo-
lution of confisurations and provides a framework for reasoning with time.

— D fining provable prope ctic s ‘The formalisin does not admit any specific as-
sertional formalism. and therefore a property defined in an actor langunage
can be verified oniv by a reasoning about the execution sequences generated.

As vet a theorem prover has not been defined for the actors model.

7.4.2 Drawbacks

The actors formalisin represents a paradigmatic shift in software development methods.
The approach is based ou a collection of functional objects that communicate using
message-passing. There s a restriction on the type of communication and the type
of architectures upon which this model can be implemented. For our definition of a
distributed system. this model is adequate for the development of software systems.
The lack of an insieht on the tvpe of support tools necessary 1o make this model of
cotmputation a widely usable one makes visnalization of the ability to develop correct

programns a fittle difficndr.

Another issue is the lack of direction on the syutax of actor languages. Such actor
Linguages should lave more structure than is provided by the San tanguage.  the
structure of the software can be expressed better with provision of sophisticated data

tvpes.

7.5 Chapter Summary

We have summarized the actors formalism for distributed computation. This model
provides a formal framework for development of specification systems. The formal
model is based on message-passing between contmunicating agents. Actor specifications
allow behavior definitions to be represented explicitly. Dynamic behavior is modeled
as a change in the behavior of an actor caused by the a message received by the actor.

Transactions are modeled by configurationsin actor specifications. The actors formalism
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1> abstract enough to be applicd 10 the desten and mplomentation <taoes of softsware

development.

The main issue of concurreney and inheritaace (see Section 7.3.2) can be addressed
in o number of wavs, One way is to keep the svnchranization specifications separvate

from specifications of other actions.

The issue of reuse in =oftware is capably addrossed ustag object hased method. A
number of research papers [Tarumi et a0 198X Gossain and Anderson, 1990: Johuson
and Russo. 1991} discuss issues of rense and how object-based methods aflow rease of

spectlication. desigus and codes

A number of progrannming lancuaees have been desiened to wreite concurrent pro
grams. (Yonezawa and Tokoro, TOSTE prosents several insuaces as exionples: POOT
ABCL ConcurrentSmallvalk. cres There ave other object hased linenaees ke COOL {Sehiwan
et all 1956]. PO [Corradi and Leanavdic 1990]0 Flone [De Pacli ana Jazaveri, 19904,

Trellis [Moss and Koliler, 19877,



Chapter 8

Capabilities of Specification
Methods: An Evaluation

We have analvzed four different methods of specifving concurreni svstems.  In this
chapter we present an evaliation of these methods. We also present some results at
the end of the evaluation. This forms the basis for the cevelopment of o framework for

developing specification langunages for distributed systems,

8.1 The Evaluation

We present a comparison of the methods we have surveved so far. The comparison will

he done based on the criteria identified in Chaprer 3 and repeated below {or convenience,

. .
e [ xpressiveness:

— Data and process structares,
— Structures defining constraints on processes and data,
Structures defining transitions of processes. and
— Concurrency and communication structures,
¢ Maodndarity and Compositionality.
e Verifiability:

— Reasoning with time.

w4
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— Specitication and veritbeation ol properties, and

e Semantios,

We present the comparison in a tabalar manner with the methods appearing in the
order surveved. Tn the ensuine sections we keep the disenssion as general as possible,
bt soimetimes refer to a specitic svstem when our conunents are appropriate for thag

svateni and not the method o gencral,

8.1.1 Expressiveness: Datir and Process Structures

Al the methods surveved © o e dorm of objecs rer cotation to encapsulate infor
mation: however object-hiced aud adeehrie metd s s oege o toe Iramesworks for en
capsulation of information. Data abstraction in most object based methods s provided
by procedural abstracetion, whereas, alechraic methods provide dicta abtraction based
on a mathematical foundation of abstract dita types FCOOK 1990, Process structures
are best presented in aleohraic methods_in which tabelled transition svarenms define the
semantics of interactions hetweon processes. Other mothods have process represent a
tion notions whicli are new and non-conventional. For eximplein the actors formadisin,
processes are active actor objects. M evenis take plice based on the messiee passing,
Graph based methods provide a visnal picture of the interaction hetween differem pro
cesses. Such ropresentations are dependent on anconventional notation. Loeie bhased
methods are the east exprossive and Lave 1o depend on some representation for the
abstract data types for effecrive data representation. Hence adeebragic methods ke Lo
tos have the hest mechanisms for data and process representation. A common featare
of all four methods analyzed is thetr support of a declariative approach to representa
tion. Table X1 preosents the darta and process abstraction feanire= of the founr differem

approaches to specification.

8.1.2 Expressiveness: Specifying Constraints

Constraints specification is an hmportant component of pood design methaods, Different
kinds of constraints can be specified. For o specilication Linguage which hias objects,

methods, transitions. and modules as building blocks, constraints can be spectfied on
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Data and Process Structures for Abstraction

| Spec Methods |
N

A
} Methouds definition. They provide means 1o define data and process abstractions

L b Al Brine e thods cornhine pepresentations for data types with a proeess 1
within a unified fraionework of abstract data types and process algebras,

Logie bissed Logie speetfication structeres are dependent on some adhoe extension to

Methods the declarative representation to incorporate data definitions. For ex-

ample. UNTEY provides pascal-like data declaration facilities. UNTTY
processes are program fraginents which have associated declarations and
prulu'r“t'.\.

Graph-based Data and praocesses are represented as graph objectss Process interactions
Methods arc modeled as connections between process and data objects. For ex-
ample, statecharts use rounded-square figures to represent data objects
and eneapsulation of data.  Abstractions are realized by tmplading and

cploding each unit meoa graph.

“Obhpeet- b
NMethad:

Anee

Object structures provide encapsalation of data and associated processes.

Objects mteriet with o

Table x.1: Specification methods and issociated representation stroctures: Data and

process structires,

cach of theae entities. Table <2 vives an overview of the facilities provided by each
specification formalisin. The languapge used to specily coustraints is predicate logic
or a subset of predicate logic. Al the methods surveved have a rich set of logical
operators to specify constraints. The best mechauism is provided by logic formalisms
for specification.  Logic specifications cau represent guantification succinetly whereas

this is diflicult or impossible 1o do so in other formalisins.

[ §5éc Methods l Specifying Constraints on Data and Processes j
[';Tl’g.',i_“ir;rnir Algebrase methads provides an extended set-theoretie fogie for <|n-<‘iﬁ(?
N ethaods tion of constraints. In moest specification methods in this group no explicrit
constructs are provided. and constraints are a part of the specification.
| Lopic-hased First order logic operators provide the necessary functions to specify con- |
Methiods stramts. This i~ angmented with modal (temporal) operators to specify
and prove time-variant propertics of specifications.
| Giraph-based Constratnts are defined by labeled ares between objects Iabelled with pred-
Methiods icates, The natare of assertions depends on the type of eplementation,
but s mostly a subxet of first order logie,
Object-based Constraints between objects are specified by the interface of each object,
Methods The assertions use relational and logical operators that are usually a part of
most modern progrannming languages. Specification formahsmes hke actors
auginent the operators with quantification.

Table R.2: Specification methods and associated representation structures: Specifving
constraiuts,
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8.1.3 Expressiveness: Specifyving and Recording Transitions

Table X3 compares methods based on their ability to specifs state transitions. Tran

SHIONS in a concurrent svstem are bnportant and are the nmin mechianism to reason

about the dynamic beliavior of concurrent software, Some formalisis provide specili

cation mechanisms for transitions mdirectly, for exaanple, object based methods, Ae

tors specify transitions via the configurations featare. and henee provide the powerful

moechanisms to reason about such transitions. Graph based methods provide o visnal

representation of iransitions via the state transition representation. and tvpically have
adequate factlities to reasan about the dviiomices of the software specilication. Logie
hased methods view trinsitions as linear cor non linears dependine on tle anderlving,

temporal logiod sequences of ovent- ot UNTETY does not provide any facility for spee
ifving transitions.  Phe availability oF facilities in Togie based methods is ddependent
on the tvpe of reasouine wechanism implemented. Alechaie methads do not provide
any explicit construct=. hat allow rea~cning based on the concept of bimmbation gaee

Section VL.

- S |
| Spec Methgds L 7 0 ng State [ransitions. i
r,\'lgt Liraie I No <pecitic availabde, but tools cxast For exaniple, Lotos |
! Mothods has 1ools to e cognZe ul"lt THYR ufu et

t

Logie-based Logie hased nrethods use fisis o record transittons. Phe orgamization of
Methods these lists is based on the underlving temporal fogics Boo UNTTY

not have any facthity to reason abont transitions, as. transiton represen

(il)!'_\

tations are hnphicit awd are very constrainted due to the naturee of the
programining logic (H.4.2).

Grapli-l axsed Transitions are reprosented visaadly asoares i aogeapde representation Aost
Methods arapls-bosed methods v some forng o asscrtrons to b L the s transitions,
v i
providing a niee h.ml\m» To constrain n.m\mun\ g

()i)ilx'(‘l-];.’l.\(-tl

State transitions are Giliendt to model in ulv|1<( Drmedd tnetliods Bat ae
Methods

tors provides i good mechiamsim to represent transitions as relationshipe
he !\\( en (Ullllq'lllllll”l:v .

Fable .30 Specification methods and associated representation stroctures: Reprosenting

state transitions.

8.1.4 Expressiveness: Concurrency and Communication Structures

Explicit communication between interacting processes - st be modehd

conpeurrent
software specifications. Concurrent processes must be represented oxplicitty, Table %1

discusses the connpunication reprosentation facilitios i the methods we have discissed,
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Algebraic and logic based methods provide explicit constructs to epresent concurrent
atruetinres and communication events. These representations are therefore the most ver-
sintile of the fonr methods. Object-hased methods do not explicitly state concurrency
in g software system. But it is possible to deduce implicit concurrency by an analysis
of the static structure of the svstem. For example, Actors has a built-in message pass-
ing mechauisim but not structures to specify concurrency. The situation is similar in
graph-based methods. Conenrrencey is implicit and communication is modeled as events
between objects/processes. An exception to this is the statecharts which represent con-
curreney explicitive but do not have mechanisms to represent contmunication, except

through the specilication of dependent variables or connecting ares.

{__Spec Methods l B Facilities to represent Concurrent Structures .—" _—ﬁ

TAlgebraie Process algebra provides & very rich set of construets to model conenrrency.
Methods Comunnication is modeled by dependent variables.

Logie-bascd Logte based methods provide constructs similar to those provided by al-
Methods eebrine methods, Communication is modeled by shared variables, and

gnards provide synchronization points.

Graph-based Cotnntnieation hetween objects is visnally represented using ares and con- |
Methods curreney is not alwavs explicitly represented.
Ohject-hased NMessage passing prititives exist to deseritbe conmumumication hetween ob-
methods jeets, Concurreney is not explicit,

Table R1: Specification methods and associated representation structures: Representing

concurrent structures,

8.1.5 Modularity and Compositionality

Table X.5 compares methods based on their ability 1o develop software specifications as
interacting modules. Modules provide a mechanism of programming large information
svstems, Algebraie methods allow compositional and modular development as they are
based on a fornel theory of modules. For example. Lotos specification structure
provides the ability to specify distributed systems as compositions of modules. Lotos
also provides a compositional algebra based on labelled transition systems to deduce

properties of compositious of modules from properties of individual modules.

All object-based methods provide mechanisms for modular and compositional de-
velopment of concurrent systems. Actors provide a flexible method for modular devel-
opment of software. Modules in Actors consist of loosely connected actor configura-

tions. Interfaces between such groups are defined by the receptionist actors. Actors
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also provides a set of rules to deduce propertios of compositions of conligurations from
properties of individual configurations. Therctfore verilication of compositions is casv in

Actor systems.

Logic-based methods lack modular software development facilities. Compositional
development of concurrent process is supported at a small-scale, For example, UNTTY
provides a compositional view of interacting processes by wav ol programs. Collections of
programs form compositional elements. Composing UNTUY specilications from smaller

units of specification 15 done using a set of rufes,

Graph-based methods do not have any explicit constructs to atlow for modular
specification of software systems. but wmodularity can be implemented as an abstraction
on related graph objects. One basic problem with praphs is that objecis at different
levels can communicate.  In general. this may not support the developiment of self-
contained units of software. Statecharts, however, provide a graph-based abstraction

mechanism for moedular specification via the explosion il graph objects,

Of the four methods. compositional specifications are visualized most easily in stat
echarts. This is because the correctness of compositions is casily vertlied using the
rutes for transformations of statecharts. Algebraic methods have a formal basis to hoth
modularity and compositional specification development. and hence provide the most

rigorous method of software development.

8.1.6 Verifiability: Reasoning with Time

Logic-based methods normally do not combine tomporal information with specifications
of data and process structures. The elemwents for reasoning about tine are o parate, and
apply to the specifications of data and processes. For example. UNTTY does not provide
specification structures for representing temporal information, but i an eliborate logye
for verifving time-variant properties of UNTTY specifications. Logic-based methads pro-
vide the best mechanism for reasoning about time. Algebraic methods provide an event
ordering mechanism which is =upported by the process algebras. Not all object-based
methods have notions of time: however Actors provides this by the history wmechanism.
Fach actor transition has a time of generate and associated information available with

in itself. This provides a powerful mechanism to reason about transitions as configura-
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lrﬁgp;-c"M_eAtrhods ﬁ o Constructs for Modular Specifications J'
T Aigebraic A formal theory of modinbes serves as a basis for modular and compositional
D Methods software developnent. For example. in Lotes. the specification and
process construcis allow a software system to be decomposed as a set of
ISLeTAcHING Processes.
Lomic ba~ed 1 Do not support modular and compositiotal development of software. How-
AMorhods L over, UNTTY provides such miechanisms ona small seale. The view of a
UNETY specification is similar to the view of 4 Pascal program. But com-
postag specitiontione in UNTEY s easy heennse of the sbility 10 desien
interacting program fragments.
" Graph-Tased Nodniar developiment is not supported by most graph-based methods.
Methods Statecharts provide an abstraction by using different statecharts for differ-
ent modules, Composing these modules into a systern is done by another
statechiart.
TGO et -Boased Most object-Based metheds support modnlar specifications, but tend to
Merhods do o i a =inatl seales This is diue 1o the inerease in complexity of process-
inz with inercase in the hierarchical density, But actor systems achicve
iodotar developnent by way of collections of actors in a configuration. J!

Table N5 specification nethods aud associated representation striciires: Re-presenting

moduies.

tions of actors define o hierarchy of tran-itions over a period of time. Eacli actor records
Phe 1HHe O] CFeation and events Thal faphein sUDsequeiiin.  1abie @0 suiidivalizes i

facilites provided by the four specification methods.

| Spec MethodsJ Reasoning with Time
Algebraie T Algchraie methods provide tinge erdering mechanisms that aliow reasoning

Mothods Coabiout the crdo ety processes,

% Loy -based TT&‘T' viased et ::l_:—;-:;'e Adide separate logies for representing and reasoning
EoMethods ©aboutl tne-variant properties of speatications.
f Graply l;ﬂ::«i_’WT‘(A;r:q'h»lm.\w.l ticthods do not hiave temporal reasoning mechanisims.
Methiods
Object based 1 Object-based methods donot provide any temporal reasoning mechanisms.
AMethods P But actors provides this mechianism in an indirect fashion. via the config-
| i

Pable N.6: Specification methods and associated representation structures: Reasoning
with time.

8.1.7 Verifiability: Specifyving and Verifying Properties

Fable X.7 compares the methods based on the facilities to specify and deduce properties
ol concurrent specifications. Ot the methods sueveyed. logic-based nmethods provide

oxcellent Tacilitios for specifving and verifvine properties of designs. Logic-based meth-
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ods provide verification mechanizms separate of specitications. Algcebraic methods also
provide gnod facilities. Object-hused systems do allow assertions hut do not o logic
for specification and verification of properties. Graph-based systems do not have ex:
plicit miechaunisms for such reasoning. But. statecharts provides tools for verification of
properties. Properties are defined as assertions that should be true on incoming and
outening arcs on objects in a statechart. Graph graminars and petri nets do allow
specification and verification of properties of software svstems. but lack mechianisms to
define structure of a systent. For example. the lack of variables complicates the process

of specifving any property of a system for verification.

| Spec. Methods | Specifying and Verifying I’roperties |
Algebraic Alabrare tetheods provide snechanisins for dedocing propertios of coneur
Methods rent systetns. T we sechanims are based on process adpe bros
Logic-based Logie-bimed netlods provide tenporal fogie Based meehanisins T reison
Methods about the hehavior of specifications.
Graph-based Veriving that a partientar property bolds s not peossible direstly without
AMethods auzinenting the graph represcatation witly sonne form of marking,
Object-based AsseTols can represett properiios of an objeet Dased systenn, bt there
AMethorls are no facilities vet 1o dednee them

Fabie 5.7 Speciiicatlon Hev HOUs aiia assoriaieag VClailon s pois fas i ieas Sjece il

ing and verifviug properties.

8.1.8 Semantics of Specification Formalisms

Table .~ compares the ditfe o nrethods oo on vhe nondertvios cmuntios. e
tvpe of semantics is unportant in o understanding the expressivity and power of the
logic provided. For example, transition svstems are the simpiest of sepresentations for
conenrrent svstems Hlennessey aud Milner, 195510 UNTEY s ihe most Taited form of
transition svsteins. Henceo thonghi UNPEY has o comprehiensive prool -ystem and i
most cases it is able to design any tvpe of conenrrent svstem. v comes up short for
dyvnamic and reactive svstems, In the elevitor exaonples the parametors N oaind N are
not changeable in UNTTY. Lotos is a good example of @ system hased on transition
semantics. The transition setantics are i good wodei for concurrenes, bat fike UNTEY
are inadequate when trying 1o vertfv dyvuammic systems, Lotos has the ability 1o specits

dvnamics svstems basically because of its ability 1o provide ahstraction at mnany Jevel..

Graph-specification methods nse different semantios models cuch as graph erarmsnars
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and petrl nets. Statecharts are based on extended State-Transition aulomata, 1hese
antomata are extended with nondeterministic features adding a power of expression
bevoud that of simple finite-stzte auniomata. The statecharts have a semaniics based on

graph structures. The statecharts also are modified versions of hvpergraphs.

Maost object-based methods are imperative aud there are amimber of efforts to
define semantics for object-based languages. For example POOL admits layered se-
mantics [America and Rutten. 1990]. whereas Actors” semaniics are based on message-
passing schemes. Actors” semantics {Agha. 1990] appear to have been developed inde-
pendently of other object-based approackes. The semantics are more powerful than the
transition svstems as they are able 1o specify and explain dyvnamic configurations of
concurrent svstems. In addition. all actor objects are first-cliass actors. thus providing

a uniform treatment of actor strictures.

fSpec Methods ]L Semantics of Specification B J
Algebraie Semantics for process spectfications 1 algebraic methods are given by Ia-
Methods hetled transition systems. Data representation semauties are defined by

mitial algebras,
Logic-hased Virification setantics are based on temporal logic. UNITY s stifl lim-
Methads e and s semanties are based on extenstons of Flovd/Hoare axioms to
parallel designs. They essentially are limited transition systems.
Ciraph-based 1 The semanties of graph-based methods are based on either graph grammars
Meiwds or petrl nets or geaph event structures (extended finite-state automata).

Statecharts semanties are based on graph event structures and extend
transition system semantics in the area of dynainic software specifications.

Ohjeet-hased One way of defining ~etnanties of ohject-hased systems is layered transition
Methods systems. But actor syvsteins are bised on object algebras and are not

conventions).
—1

Table X.8: Specification methods and associated verification support facilities: Seman-

tics of speciflications,

8.1.9 A Discussion of the Evaluation

\We have concentrated on the power of expression of the specification for-nalisins pre-
sented in the previous chapters. We also have discuss these methods with respect to
their ability provide verification frameworks. In this section we elaborate on the de-

seriptive powers of these formalisms. There are two other eriteria which have not been
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preseuted so far' s aradabdily and arceinioctere todoge nade niee o thie methods, Adter a
discussion on the descriptiveness of these methods we present a briel discussion of the

four methods with respect to these criteria,

Descriptive Simplicity

Graph models of computation are bascd on grapl redaction. A comiputation in such
a model is purely declarative and hence is totally independent of the implenentation
architecture.  Communication and concurrent aspects of an appliciion are modeled
implicitly and hence recognized dvinamicadlyv. A major problem is in the cost of imple

wenting such o modell Statechari: overcome this difficalty, 1o erean extent, by having,

a well-defined set of transfortnations from one fevel of description 1o another.

Lotos is based on o transhiion svsterg, Researchiers in Lotox have developed o wed
of toals that provide a well-detined set of tranformations from one fevel of specification
to another. ‘The expressive power of Lotas is less than graph based maodels such as
statecharts or graph grammars, hecinse of the inabitity to speciy efficiently dvpamically

changing svstems.

UNITY provides a Pascal-like syvntax to o highly declarative mechianism for repre
senting specifications, The specifications essentially consist of guards for statements,
UNITY <cheduling is fiir. therefore, adi statements are chosen for exceution eventually,
UNITY is exprossive encugh to model most conenrrent and distributed application. Like
Lotos. it is based on a limited forng of transition syvstenms and henee is ot expressive

enough to model dynamic svstems.

Stnee Actors 1s based on essage-passing. the concurrency model s tore restrioted
than corresponding models of other maethods, But Actors is more expressive than eithier
Lotos or UNTTY asit can specify dyvinmmically evolving svstems, This is due toats ability
to represent configurations of evolving actors. The formalisim bias o fonnad framework
for the compositional development of specifications. Actors also provides goidelines of

implementing (and increasing) concurrency by tie use of fuluare s

1 . . . . . .
fhese do not present any new information on the expressiveness of the forndisimes hur provide
insights into the features a specification formalisi ~honld have



CHAPTER S, EVALUATION OF SPLCIHFICATION METHODS 99
Architecture Independence

None of the four formalisms we have studied assume a base architecture. like a SIMID
model or a distributed environment. For a specification. Lotos and Statecharts use tools
1o transform it to target architectures. UNTTY does not have such tools, but provides
rules for transformations. Since the Actors formalism is based on a message-passing
rmodel, it is difficult to implement. because at present there is a lack of efficient methods
to provide object management on a distributed or parallel architecture. Efforts are

nnderway to implement actor svstems on distributed architectures [Agha. 1991].

Avatlability of the Formalisin

Of the formalisms we lhave studied. only 1wo (Lotos [Diaz and Vissers. 1939] and Stat-
echarts [Havel ot al. 1990]) have been implemented as a part of software development
onvironments. Distributed implementations for actors ave being built fAgha. 1991j and
a couple of prototvpe UNITY implementations have been completed. Proof systems

have not been developed for Actors and UNTTY: whereas. Lotos and Statecharts have

tools for verification of specifications.

8.2 Chapter Summary

In this chapter we have evaluated fonr of the most popular methods of specifying concur-
rent systems. As a result of this evaluation we have a number of formalisi independent

observations. as listed below,

o There are two main compounents of a specification formalisms: notational aspects
and verification aspects.

o T'hese components must be provided within a semantic framework.

e The notational and verificational aspects are related. but need not be closely
coupled. Tools for notational development and for verification of the specifications
may be separate.

e Specification formalisms should be declarative. i.e.. architecture independent. and

preferably supported by tools for empirical evaluation.
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e Specification formalisms must support an evolutionary model of soltware develop

ment.

As a result of the evaluation. we found two methods. Lotos and Statecharts have
teols that allow extensive experimentation for an cmpirical evaluation. We also found
Lotos to have the most extensive support for specification and verification of complex
concurrent systems, UNITY and Actors do not yvet have tools and systees built around

themselves.

Our survey and evaluation reveals that. ideallve o framework for specification for
malisms for distributed svatems should extract the hest concepts from all the four groups

of methods. Such a framework shonld address the followine, features,

e Object Structures for representation.

e algebraic or eraph-Lased scmantices,

o proof rules and inference procedures,

o graph-based analvsis methads whereever feasihle,

e temporal logic-based analvsis inethods to verify safety and liveness properties. and

e kunowledge-based support for storage and retrieval of design representations.

Ideallv. sueh a framework shonld sapport an ineremental transformation model of
concurrent software development and also address the issue of reuse of designs and cade,

We shall diseuss such a framework in the next chapter,



Chapter 9

A Proposed Framework for
Design Representation
Languages

9.1 Introduction

In this thesis we have assumed the IneTr model of softwa:» dovelopment and surveyed
soliware specification methods that support this model.  Based on thie discussion in
Chapter 2 and the evaluation in Chapter 8 we propose. in this chapter. a framework
for desipn specification languages for distributed systems. First we present the different
phases of development addressed by the framework and then discuss the functionality
of tools needed at each phase. These tools support transformational development of
distributed systems, We then deseribe some problems in the area of distributed software

systems development before summarizing the work prosented in this thesis,

9.2 Specification Formalisms

Based primarily on our survey. we conclude that the following components are needed to

support distributed software design assunuag the fneTr model for systems development.

e ‘Tools relating requirements wpecifications with design specifications.

o Design specification language constructs for describing

101
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— data and process abstractions,

— modular compositions.,

— constraints, assertions and exceptions,

— transactions. and transitions that take place as a result of the transactions,

~ constructs to spectfy concurreney and communication,
e Tools for verifving specifications.

e Tools relating design specifications 1o hnplementation constructs,

In the following suhsections we elaborate on these four points. We develop o nota
tional framework for desien specification languages based on the scinantics associated
with transformations between different representation svstems. For this purposce we
will have to consider two other representation systems: the regniremenis specilication

langunage and the implementation language. In most caxes. tools provide the senanties

of transformations. We presont a discussion of how sneh 1ools may b reabized.

9.2.1 Tools Relating Requirements to Designs

We can relate requirements to design ondy if there is a common semantic basis hetween
the two specification notations. If the same language is used to specily requirements
and design such as Lotos or UNTTY . then the language provides factlities for refinenent
of specifications. If two different languages are used (as in Telos and TDL [Mylopoulos
ot =10 1990 Borgida et al.l 1991]) there is need for tools to transform requirements o

designs. In either case. a transformation involves

tran=lating data and process structures in the reanivements madeling Lingnage to

corresponding constructs in the desien languape.
o verilving correctness and completeness of translations,
e translating/reformulating behavioral constraints and assertions. and

o verifving completeness of transiation of coustraiuts specifications.

Most data and process representations cin be translated 1o similar structures in the

design notation. but any change in the representation of object botween requitements
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and design specifications will involve not only a shuffling of the scope of any constraint
cxprossions. but also resuit in generating new object descriptions and constraint expres-
sions to specifly design. This is a hard task as it is difficult to prove the equivalence of
the structures before and after transformation. The difficulty would arise from the Jack
of a4 common model for compntation for the two formalisms. Transformations normally

involve self-contained modules in a complex systen.

One important function of tools that map requirements to design is to identify
inplicit concurrency in a system description. This assists in defining implementation

strategios at a Licter point in the development,

9.2.2 Design Specification Language Notation Considerations

The basic representation facilities must include the ability to specify data objects and
their relationships. Based on the survey and evaluation, we believe that specifications

should be able to model at least the following entities.

o data objects. which have the ability to represent abstract data types.

o legal iransitions,

o function definitions,

o concurrency (both communication and parallelising.
o rodule difinitions, anud

o interfuces between modules.,

The specitication should be declarative to allow architecture independent represen-
tation. One technique of providing a declarative scheme for objects and operations on
objects is to define operations to be (active) objects. This allows pre wes to be speci-
fied declaratively., For example. operations can be defined as constraints for o particular

object (as in Telos [Mylopouios et al.. 1990}).

The representation should also be able to define constraints. exrce ptions and asser-

tions on these objects. Assertions and exceptions differ from counstraints only in the
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scope of application. The following types of constraints and assertions must be specitfi

able.

o Data Integrity constraints: which preserve the consistency ol data representations.

o Behavioral constraints on transactions: invocation, sequencing and svochroniza

tion constraints.
e Constraints on transitions.
e Constraints on communicalion,
e Constraints on modules and thelr invocation.

e Assertions about objects listed abovel These assertions will specify propertie s of

the ohjects and object compositions. and may include the following,

— Precondition. post condition and invariant assertions,
— Exeeptions, These are normally a part of assertions and constraint- on trans

actions transitions, commmnuication specifications and modales,

The impoiiant issue is that these facilitios must be provided within a formal frame

works We nae the statecharts formalinn tomade! aucl o faow LD Specilication in
this framework are made up of a number of module specifications (Fieure 9.1 This
framework views structures for data and process representation and verification as two
different but closely coupled entities. The module interface definition defines the ob
jeets that are public to other modules. Tt also defines o ~et of transactions that can he

used by other modules toaceess objecta in the current mod 0 Fignre 9.2 deflines the

structure of a moduale interface,

The basic object supporting compaositional development in such a framework is o
module. As depicted in Figure 9.3, a0 module conxists of & nnmber of abject definitions
along with function and travsaction definitions. Concurreney structures can be specified

as a part of object definitions, transaction definitions and function definitions,

Object state changes are modeled by transitions, and are therefore defined as i part
of object definitious. A module definition can define local variables for the purposes
of intra-module synchronization. or just for trausmitting results 1o the external envi

ronment or other modules. Functions mnay eperate on these variables and are therefore
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(" Module Spectlication )
rModulc Decfinition ) (" Constraints )
Apply tq Enjitics in
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Figure 9.1: Essential features of a formal design specification langnage and their rela-

tionships.

~ N

Module Interface Definition

Object List Transaction List

Figure 9.2: Module interface definitions.
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J

Fienre 9.3: Module defintiions.
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not entirely a part of object deseriprions. Funenions may also be encapsulated in object
deseriptions. lmiting their scope 1o the object. Transactions cause state transitions
and el trancactions are defined a<n part of object deseriptions. Transactions can also
change the state of the module: such transactions are defined as a part of the module
definition. Conenrrency structiures allow description of concurrency and communication
between objects within a module and betweern, modules. CSP-like communication prim-
iives are adequate for describing communication. Possible concurrent constructs that
should be supported are: parallcd composition. nondeterministic QR and general choice

(see Section 1.1.3).

The constraint component of the framework assists in the refinement of specifica-
tions.  The assertional fangnage is normally a subset of first-order logic, augmented
with temporal operators to allow specification and verification of formal properties of
desigus. Exceptions are a part of the as ertional language and apply 1o all the data
and process strnctiures. Constraints ¢an be imposed on functions by preconditions and
postconditions.  Transactions. commuuication and concurrency constructs may allow
exceptions and other forms of constraints. Though Figure 9.1 shows them 1o be two
separate entities, constraints are normally specified as part of the definitions of objects,
functions. trausitions. transactions, concurrency constructs and modules.  Figure 9.4

defines the relationships between constraints, assertions and exceptions,

9.2.3 Tools for Verifying Specifications

One wayv of developing quality software is to analyze and test the specifications before
implementing. Specifications can be checked for notational consistency ensuring that
an implementation will be based on a consistent document . Below we present some

svimbolic checks that need to be performed on specifications,

Data tvpe consistency: References to data tyvpes and their definition must be

consistent.
o Consistency between defined object states and object transitions.
e Objects and modules that have been defined and not used can be flagged.

o Compositional consisteney: Modular compositions do not have conflicting syntac-

tic and semantic definitions.
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Figure 9.1: Constraints, assertions and exceptions.

These checks on the specification only ensure a notationally correct specification.
What is more important is that the specification be functionally correct. To achieve
this. we need tools to simulate an execution of the specification. Such a tool must have
cousistency cheeking mechanisms built into it Section ALl fornally defines the notions
of consisteney. sonndness and compleleness for o eiven formal <vstem and ased in the

process of reification. Some mechanisms for verifving constraints are:

e Verifving general assertions: All assertions on data objects, transitions and mod.

ules must be validated. Examples are

— assertions that are true when an object is created,
— assertions that are troe when any transaction is being activitated,
— assertions that are true when a trausition from one state to another is taking

place. and

assertions that are true before and alter a message is communicated,

s Verifving legal transitions.

e Verifving desirable properties of specification compounents.,
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T elaborate on the aspeet of apecifving and verifving properties of concarrent pro-
sramma, we observe that there Is no antomatic method for identifving and generating

these properties  they have 1o he defined by the system designer. These properties can

ponent. The cost may be probibitive, however. The refinement of specifications enables
the process of verification to be more manageable. This is because the verification is
done as the refinement proceeds in small steps. It is easier 10 define correctness criteria

[or small refinements,

This tvpe of verification is necessitated by the lack of Hoare-style {Hoare. 1972)
axtomatic proof rales for prograinming. Sach rules would enable deductive software
deelopment. Until axiomatic proof rules are developed to facilitate deductive svnthesis

of software, stepwise refinement appears 1o be the beat miethod of verifving software.

9.2.4 Tools Relating Designs to Implementations

In transformations at the design 1o implementation stage. the information added is de-
pendent on the problen solving cnviromment: for example. converting the design data
representations 1o data stroctures for the implementation language. At the stage when
we waint to convert desiens to more implementation dependent code. we are confrouted
with two transtormational issiwes: date and behavoor specifications and transaction spee-

tications,

Data and process specifications and associated behavior are not casy to trausform
to the implementation fanguage stroctures. This difficulty mostly arises from the dif-
ference in the computational models. At this stage what is needed is a tool that will
provide a mapping between the computational models of design specifications and the
implementation lanenage. Verification of such transformations can be avoided if the

function that is modeled by the tool is proved correct.

The transaction specifications tool is niore complex as it must odel dynanie sit-
uations. Since the transactions affect the state of data objects, tools are needed which
Aoy st tanceas!y the state changes noduta objects and their behavior. and the

corresponding transaction which cansed the effect. Such a tool will generate the imple-

mentation specitie code depending on the type of simulation representations generated.
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At the point hetween the design and implementation staves, we need tools to perform

the following functions.,

o A data and behiavior representation translator.which will add necessary data tvne
information to madel dista types in the programming language used in implemen

tation.

e A translation system which will take in transaction specifications sud the assoed

ated assertions and gionerate representations in implementation code.

s A temporal ordering tool which vill produce an ordering of events and module
actions of the entive =ystem so corresponding syvnchronization cade can he wen
crated. This traustation can depend on the method 1o he vsed for implementing

copenrrency,

The refinement miethod of the IneTr model helps define the semantios associated
with such toois. At the implementation stage verifving the correctness of the trans
formation tools is suflicient. We tvpically do not need formal verification tools for
tmplementations. as at that level testine s the most commeoen method of veritving the
behavior of an hplementation. Tools 1o conerate tost data vould of course he helpful

from the user perspective,

9.2.5 Tool Support for Formal Reasoning

Until now there have been very fow tools that could help o programimer reason about
properties of programs. S ae such tools are the Rewrite Rule Labaratory Hapur er ol
1986]. O [Paulson. 19X7] the B tool LA hrial. 1958] for proof checkine 7 specifications
and the Hover-Moore theoremn prover [Bover and Moore, 197910 Bt these tools need
constant input from the user and generally require expertise with the logies of the proof
svstem. What is needed is o set of antomated tools which assist in venfication. he

interaction with such a tool set will shimnlate the usage of 4 strocture oditor, Ay pdead

tool set will have the following mathematical capabilities,

e Ability to extend the assertional lanenaes with usefnl vser defined primitives ke

predicates. functions and varia es.
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o Ability 1o postulate and forin the ariom set for making inderences.
o Ability to abstract and define short hand notations for existing definitions.

o Ability 1o generate new inference rules from the axioms and already generated

rules,

e Ability to refine “informal™ proofs ({involving graphical or other representations)

to formal proofs.
o Ability to develop and apply strategies for verification.

o Ahility to collate resalts into theories about specifications and use them to reason

about other specifications.

As vet there are 1o 1ools that satisty the above requirements. Note that the reguire-
ments do not specify the type of inference syvstem to be used. Deduction is a powerful
Meatin 16 vt butandiction w0l adeo b lp piove piopertios e falintract data rpes. One
way of using both is to use Gentzen's Natural Deduction system (see (Paulson, 1937].
pages 16-147) for reasoning and supplement it with a set of rules that define inductive
properties of abstract data types that are being used in the specification. The onus of

veriseation of these inductive reles - the designer who supplicd them,

In addition. facilities to store collections of constant declarations. definitions and
abbreviations. axioms. derived rules and conjectures, complete and incomplete proofs,
and proof strategies are needed to make verification computations cost effective. Such
facilitios also help in the reuse of theorics. Cortain types of reasoning occur frequently,
and it is more efficient to have compiled/coded versions of such patterns. It may be
possible to construct a single rule that represents a mnmber of related patterns of reason-
ing. The type of logics supported will also influence the flexibility and complexity of the
reasoning mechanism. Sowme simple logics include: first order predicate logic. Hoare's
axioms. and temporal logic. It is not reasonable to include nou-monotonic logics. as

this would mean we must also change the deduction systeni.

One important area of research for transforming designs to implementations is
rewriting.  Development of a theory and subsequent development of tools for rewrit-
ing, will provide a powerful mechanisim to realize correct software. Concurrent rewrit-

ing [Meseguer. 1990) extends known logical theories of rewriting to distributed software
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development. Graph rewriting is o techinigiue based ou proving equivalences of graph
representations. Models for distributed svatems have been proposed based on this tech

nique [Degano and Montanari. 1OS7].

9.3 Research Directions

Our survey. analysis and the proposed framework reveal many issues that need atten
tion. In the area of tool support. a number of other tools are needed for the process
or specification.  Some aie tools for database support for specifications that involve
persistent stores for design specifications and supporting multi-user cooperation based
software development. Some of these types of tools are provided by Tutegrated Project
Support Environments (IPSEs) [Brereton. 1OSTL The major issne in the developient

and use of such tools is the integration of tool support. Dillicultios arise in integration

oy .o ) . o [N AR RIN ‘oo 1 " ey . .y - . e
hocaner af b vndd o Stppreert bl nehads Gf Safrine T P N I ST

development environment. Integration problems in IPSEs are discussed in [Brown and

MeDermid. 1992].

Omne of the majorissues i distribnted software development is the inability 1o provide
a global view of the application. As o result, it bhecomes ditlicuit to visnalize how the
many components in a software system interact and beliave, The non sequentiality of
execution infroduces an elemeut of nondeterminism in the belhiavior, Transformation
theory! has not yet bheen able 1o provide a consistent mechauism to trauslate high level
representations of software to implementations when there is no global conrrol over the

process of distributed software design.

A widely accepted theory of concurreney allows the transformation process 1o main
tain control over the development of software. Four main approaches ave heen al
tempted at providing a theory of conenrrency that is necessury to sapport the transfor

mation process.

e Combining process specification formalisins like CCS or CSP with abstract data

'Some transformation systems address software development issues, but do not addiess the issine of
lack of glebal control. [Partsch and Steinbiilgnen. 19%3] gives a survey of different progran tranaforma
tion systems. [Goguen, 1990] presents an algebraie framework for rewriting as a rehinement technigque
PLEASE. an executable specification language. supports incremental transformations [Terwilliger and
Campbell, 19897
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1vpe specifications [ISO. 1987].

e Combining petri net formalisms with abstract data types [Kriamer. 1991].

e Combining abstract data types with denotational semantics based formalisms like
the stream formalisins [Broy. 19%x)

e ‘Ireating processes as abstract data types [Astesiano et al.. 1985: Astesiano et al.,

1990].

Transforming the entire specification set to a level of detail where imiplementation
becomes feasible. is not pragmatic. The main reason is that there is no notion of
global control. An advantageous side offect of lack of global control of the software
transformation process is that parts of specifications can be refined in parallel. "This

view to transformation of specifications has not received enough attention.

It is onr view that combining the formal software develapment methods with par-
tial evaluation ard transformation of high-level representations will result in robust
software. Specifications are broken down into smaller subsets and distributed for refine-
ment. These transformations are partial and a union of these partial transformations
should provide a complete? specification. Distributed graph grammars provide a formal
basis for this tvpe of transformations (see Section 6.3.1). There are » mimber of issues
that have to be addressed in such an approach to transformation. the most important
being management of the distributed transformation processes.  Factors involved in

decomposition of the initial specification. and later re-composition are aiso important.

Another area which has not received much attention is the incomplactcness of software

specifications. Incompleteness of specification can mean two things:

o The specification has omitted some of the key aspects of a system.

o " ue specification models only the required aspects of a system. ignoring the un-

necessary ZIS])(‘(“ S,

ldeally. a specification must be proved complete with respect to the requirements (see

Section ALl for a formal definition of completeness of specifications). But conceptual

“Proof obligations for such compositions are very umportant.
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models. which define requirements. are uot detaited cuougle to define which aspects
of the system are necessary and which aspects are not. The incompleteness issue s of
real importance in the partial evaluation of specifications. If the decomposition does not
generate disjoint units of the specification. then it is not possible to show completeness of

the entire specification without specifving the dependencies between these specifications.
9.4 Summary

In this thesis we have characterized the features of desicu specification lhpgunees for
distributed software syatems development. We clioc: the InePr model ol incremental
transformation of specifications for software deveiopment. We have provided o broad
taxonomy of design specification methods for distributed svsteimns, classified according to
the underlving formal framework. We have examined methods that tvpify cach catesaory,
This taxonomy was helpful in separating the issves in distributed software systenn design.
Based on the design criteria for classification and the subsequent evaluation of the
methods. we have proposed a framework for developing design specification lanpuages

for distributed systems. Such o framework deseribes

e support for stepwise relinement of specifications:

e tools that provide semantics of transforming requircments specification to design

spectiications:
o a framewaork for design specification languages:

e tools that provide semantics {or verifving specificiations:

e tools that provide semantics of trausforming design specifications to implementa-

tion constructs.
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Appendix A

A Formal View of Specifications
in Inclr

In this appendix. we present a formal view of the IncTr model and describe some of
its properties. We use the elevator example from section 2.1 to illustrate some of these
properties.

A formal svstent may be used 1o specify a software system. The specification S is
4 sot of statemeats in the laneuage £ of this formal svstemn F. The rules defined by
the conscquence closure operator €, are observed while synthesizing the specification
statements [Lehmann ot al.. 19%4: Turski and Maibaum. 1987].

It is obvious that & C L. L provides a notation for representation, and ¢, provides a
set of rules for reasoning, abont the theories that are constructed. Thus, a specification
has two interpretations,

. One wav of interpreting specifications is as a set of statements describing various
objects of the software system. and operations on these objects. Until recently,
most software was developed with this view of specifications. When the develop-
ment team was satisfied that the specification closely models the intended behavior
of the system. they started the implementation process.

e

Another view is to use the consequence closure of the specification as the starting
point for veasoning about the behavior of the system. The closure defines all
possible behaviors of the software system being modeled by the specification. In
this wayv properties of a specification and its formal system such as consistency,
sounduness. completeness. ete. can be defined.

Specifications are abstract, and one can formalize the process of refinement of (ab-
~tract, non-executable) specifications to executable forms (implementations) using the
following theorem.

Theorem A.1 (The Specification Theorem) Given an input r satisfying an inpul
condition (' of a systcm. find an output = (which is the output of some program P(z))
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re
2

which satisfics a given input/output rddation R(r.z). The rddation B ois the transforima-
tion function, and the above spceification can be charactorizod as

Vr.('(r)y2D>3z.R(xr. z)

This theorem presents the deductive approach to pregram svothesis from formal
specifications.

A.1 Properties of Specifications

There are a number of properties a specification should have. These properties also
reflect on the characteristics a specification system. The description below is adapted
from [Cohen et al.. 1986].

A.1.1 Consistency

A specification should not derive contradictory theorems. Thos it must be consistent.
For a formal system F = (L. (). a specification S C L is said to be consistent if and
only if the consequence closure of 5 is also included in the Linguage L. Formally,

CAS)C L.

For example. we cannot deduce that an elevator must service two floors at the

same titme. Since implementation can be viewed as a specilication at a higher tevel of
abstraction. we can define it analogously as below.

A specification S; in a formal system F; = (L;. C,)) is said to amplamncnt a specifi-
cation S in a formal system F = (L. ) if aud only if

LCL; and C,(5)C ) (5).

This states that the implementation (57) of S may have a more deseriptive linguape,
but all consequences that can be dedneced from 9 must be included in the consequences
the can be deduced {rom S;. The above statement reflects on the information contents
of the specification and its implementation.

A.1.2 Soundness and Completeness

Two important properties of a formal svstem are soundness and complateness. A fornal
systemn is complete if the rules for deduction are powerful enough to derive all theorems
derivable. It is said to be sound if all derivable theorems are valid, .o, they are in-
cluded in the set of consequences for all possible theories. Applyving these definitions
to specifications and implementation. a formal system for specification F s sound with
respect to the formal system for implemeniation F oy, if and ounly if

VS CL:Cu(S)C ) (95) where [, C ;.
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Simply put. every behavior (theoreny) of S0 which is observable (derivable) in the
formal system of the specification must also be observable in the formal svstem of

immplementation. F is said to be complete with respect to F, if and only if

VS CL 0,052 LS where LT L,

This means that every behavior of S observable in the formal system of implemen-
tation 7, must be observable in the formal system of specification F.

A.1.3 Complete Specifications

A complete specification s one i which the behuaviors of every object in the system are
wo defined that eoery iimplementation must vield the sanie behavior for all the objects.
Formallyv.

VS, c S, Impl S = | rlre O 18 )A syvinla) = syn{S) , = L9

[P

Horo the eplngion Trrp! defines fmondomoentation: je S oimplements S.osvnl SY gives
the svntax of S. This definition conshines sonndness. and completeness.

I the olevator example. completeness would entail considering all possible behaviors
of the elevator (some of which could otherwise be eliminated by constraints). A sound
specification will help constraiu the set of all possibilities to just those situations that
are practical. A complete specification will explore possible behaviors like the elevator
servicing, requests at twa different loors ot the <ame time.

A.1.4 Tightness

Another property involvine specifications is relations between specifications having the
sarme Janguage but differen consequence operators. Given two formal systews Fyoand
Fowith the same language [ Liaving the property

VS C Lo, (S)YC L (Y

we say that £ s looscr than Fo or Fais tightor than Fio A system s tighter if it
hois more informiation. is less abstract. and has wiore constraints defined. Au extremely
¢t ospecification is the basis for uplementation. We present examples of this property
b the Inter chapiers, when we analyvze cach method of specification.

A.1.5 Extension

Consistensy. alone wirh conndneas i< the most important property a specification nst
have, A consistont ertension to a specification 8 C L is another specification S" with
the same language, such that

(":('\‘) (;- ('11(5‘1) C ! -



APPENDIX A, A FORMAL NI OF SPEFCITTCATIONS IV INCTR 12

From this it is obvious that loose specilicatious are more abstract and therefore can

have more consistent extensions. They adso con be used 1o define a greater variety of
similarly structured systems. and thereby capture the notion of reusability.

A.1.6 Systems of Specifications

A specification of a large svstem tends 1o get complexs and using just one formal svs
tem may not only limit the ability to compose specifications for the system. but also
generate large. and unwieldy structures. Tt may be advantageons to have many formal
syvstems and a method for composing specifications in all these formal systems. What
is required is a compact mauner of integrating the nse of two or more formal systems
for specification

In o specification svstem cousisting of two formal systems Fypoand J7o0 0 compos
ite specification Is o oset of statements which s capressible 1o hoth svatens. 4 et of
statements is sald 1o be expressibie i such a =yvstencif

e this set is fintte, or

o this ~ot is the conseguence closure, under €7 op Gl an expressible set of

~tatements,

A specification under such o svstem is defined by the consequence closnre ander
either €', or (',,. A related concepy that fas o similar propeviy is ahstruction. Loose
(or abstract) specifications have less strict closure operators, whereas tight spectitcations
have very strict closure operators. possibly a combination of many closure opevatars, T
other words. loose specifications me he closed ander just one constrain o wherea~ el
specifications may have nore thau one constraint applied on them.

A.1.7 Parameterization

Parameterization is the properiy of applving somie conerpt 1o more than one class of
objects. PFor example. we can have sets of natural numbers. and abso sts ol other
objects, like sets of sets. or sets of cities. The concept of i set is applicable voa variety
of ohjects, By providing the ciass of ohjects. we are providing a parameter dofining, the
tvpe of object ta which this concept will apply. Pormallyo o parametrerized specification
15 a pair

(C,(S).0)

where 0 C san(S) picks that part of the syvatax of S which is acting ws ihe paiaim
cter. To instantiate the parameterized specification (O, (85 ).a). woe st appiv it to
an argument which provides a definition of the parameter, This argument is possibiy
another specification. with its own rules and related mappings from its svntax to the
parameter. Formalive such an argunent s reprosented as

(I°.8:c — p) where A 0 svnlS) ==~ syvul 7]
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and p C syn( ). 6 is an injective mapping. By applving the instantiation discussed
earlier, (¢, (S)a)yto(P.0:0 — ) we get

CL(B(S)Yu Py

‘The resultant property now constrains both the definition of the parameter, and its
specification in that, the instantiation should be consistent. This desirable property
only complicates the correctness arguments. An instantiation such as the above is not
guaranteed to be consistent, even if C,(S) and P are consistent. This property must
be proved for a particular specification system. Given a common set of symbols, this
property holds for notion of equality [Cohen et al.. 1986]. Adding inequality operators
tends to make the specification language more tight, and therefore create uncertainties,
as there is no ordering relation between (7,(5) and F.



