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Abstract

The phenomenon of pillar bumps in coal beds is well documented in the
available literature, where the potential for a pillar bump may be estimated from the
difference between local mine stiffness and post peak pillar stiffness (Pen, 1994).
While the evaluation of local mine stiffness has already been well established, the post
peak pillar stiffness can only be estimated through an empirical approach (Pen, 1994).
Certainly, a more comprehensive approach to the evaluation of post peak stiffness

would be desirable.

This research introduces the Joseph-Barron post peak criterion and its
application to predicting the post peak behaviour of rock and rock structures using
intact rock, rock mass, broken rock and non-intact coal data sets from the literature.
Physical tests were carried out on two very different rocks, the results of which were
also used to verify this criterion. The core of the approach is an effective friction
concept that relates the post peak cohesive and frictional characteristics of the rock,

to the strain.

For the purposes of this work, the term “effective friction” is used to describe
a mathematical combination of friction and cohesion, where the apparent cohesion
that maintains the integrity of the asperity height of a rough or broken surface under

given confining conditions is combined with the rough surface resistance to sliding.
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It has been shown that the post peak effective friction - strain behaviour is
common for all states of a given rock, whether in the intact, mass, or crushed states.
The same is postulated for coal, regardless of intact, non-intact or coal mass state.
This behaviour has been shown to translate to a unique single post peak modulus
relationship regardless of the confinement conditions. It is this post peak modulus
relationship that may be employed to determine post peak stiffness values

commensurate with the rock structure dimensions.

As an example of the use of this criterion in analyzing the stability of rock
structures, it was applied to the consideration of post peak behaviour of pillars. The
criterion was used with a commercial finite element program, and the variation of post
peak modulus with pillar width to height ratio was determined. These results were
compared with an approach suggested by Hoek et al. (1997), and shown to make a
significant difference. The use of this criterion in consideration of pillars yields results

that are compatible with Zipf’s empirically established relationship (Zipf, 1999).
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Chapter 1
Introduction

1.1  Significance of the problem

Room and pillar and longwall mining methods that rely on pillars as part and
parcel of the strata support system, particularly those employed in coal seams, have
a long history of violent pillar failures. These failures may be violent in the most
adverse conditions of bump-prone coal beds. The U.S. Bureau of Mines has cited
numerous cases of such events over the past 50 years, where danger to the safety of

workers and equipment was found to be imminent and ongoing.

With the advent and increased use of mechanized longwall mining systems
replacing the more traditional room and pillar mining methods of coal fields such as
those found in the Appalacian Eastern United States, the number of incidents has
decreased, but the use of chain pillars in longwall mining has not negated these

occurrences completely.

1.1.1 Pillar bump potential

These violent failures are known as pillar bumps and arise from the difference
in stiffness between the pillar and the mining environment loading the pillar. If the
pillar material is of a stiffer nature than that of the overlying or underlying strata then
there is a potential for the pillar to violently explode if the overall pillar strength is

exceeded.
The effect is not restricted to single pillars, but may develop into a domino

effect involving adjacent pillars and in extreme cases complete collapse of the active
mining area. The domino effect arises from a load shedding mechanism, where a
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failed pillar can no longer support its initial load and so sheds that load onto the pillars
surrounding it, thus increasing their bearing requirement above the peak allowable

pillar load for the adjacent pillars.

The concept of pillar bump potential arises from the work of Cook (1965) and
Salamon (1970) who recognized and formulated a relationship between the local mine
stiffness (LMS) and the post peak pillar stiffness, A,,, When the magnitude of the
post peak pillar stiffness is greater than that of the local mine stiffness there is a
potential explosive release of energy from the mine environment into the pillar causing

catastrophic failure. This concept is reviewed in more detail in section 1.3.

1.1.2 Application of the pillar bump concept

The prediction of these events has been the subject of research for a number
of years, with the most recent work being conducted by Pen (1994) on coal pillars.
Although Pen completed work on the evaluation of local mine stiffness and
incorporated this information into the numerical pillar model Mulsim NL, his
prediction of pillar bump potential relied on an empirical post peak stiffness
relationship derived from post peak stiffness data gleaned from the available literature.
He noted in his conclusions that more work was necessary to predict the post peak
stiffness directly, that would allow a more accurate evaluation of pillar bump
potential.

1.2 Definition of the problem

It is necessary to define the terms “modulus” and “stiffhess” as related to rock,
through specifying the units commonly used to measure these properties:
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i The modulus of rock, whether in the pre-peak or post-peak region of
the stress-strain curve for a given value of confinement, is a change in
stress for a unit change in strain. The Systeme International units of
modulus are either GPa or MPa. The latter is used in this thesis.

il The stiffness of rock, whether in the pre-peak or post-peak region of
the load-deformation curve for a given value of confinement, is a
change in load for a unit change in deformation. The Systeme
International units of stiffness are kN/m.

As suggested by Pen (1994), the crux of the problem is one of defining the
post peak pillar stiffness without having to rely on empirical relationships. The post
peak pillar stiffness depends on the post peak modulus of the rock, which varies from
location to location across the pillar. Thus the problem becomes one of defining the
post peak stress-strain behaviour for the rock. This is complicated by the need for a
generalized definition that also accounts for all possible values of confinement. It has
been well established (Wagner, 1974 and Brady et al, 1993) that confinement
increases from the pillar edge to the pillar core, and that the magnitude of this
confinement at any location changes with increasing pillar width to height ratio. It is
also well known that the slope of the post peak stress-strain relationship varies with
confinement, as evidenced from triaxial tests on rock samples; hence, for any structure
where strength is enhanced through confinement the post peak modulus will vary

across a given cross section.
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1.2.1 Post peak behaviour as a function of ;

It has been recognized that an evaluation of post peak stiffness for any rock,
not just for coal, would aid an understanding of the post peak failure processes not
only in pillars but also in stability of slopes, or any other structure excavated in rock,
where strength change through confinement is of importance.

The prediction of post peak stiffness at any level of confinement for an
element within a larger mass of rock depends on an understanding of the post peak
portion of the stress-strain behaviour for the rock in question. Since the failure
mechanism of rock fracture, whether intact rock or rock mass, is a predominantly
brittle phenomenon, it is possible to restrict the scope of the problem to a region from
zero confinement to that at the brittle-ductile transition point with all possible degrees
of confinement spanning those limits.

From the work of Wagner (1974), Das (1986) and others it is known that
overall pillar strength increases with increasing width to height ratio. Wagner (1974)
found that although the perimeter of the pillar was only capable of carrying minor
stresses, it did act in a lateral confining capacity, enhancing the strength of the pillar
core. This is an assumption used by Wilson et al. (1972) in formulating the pillar core
confinement model, and by Barron et al. (1992) in the refinement of an analytical
pillar model. In other words a short squat pillar will demonstrate a higher bearing
capacity than a tall thin pillar. In a short squat pillar, the confinement increases from
the pillar edge towards the pillar core, increasing the overall pillar strength, as
demonstrated by Hoek et al. (1980) and illustrated in figure 1.1.
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Figure 1.1: Change in confinement measured across a
short squat pillar, as indicated by Hoek et al. (1980)

During failure of such a pillar, the outer most region of the pillar fails first and
sheds its load onto the remnant portion (Wilson et al., 1972). The whole pillar does
not fail immediately due to the increased confinement experienced by the central
portion, allowing a progressively higher bearing capacity as the central core is

approached.

Since the post peak modulus of rock varies with confinement and the degree
of confinement varies with pillar width to height ratio, the overall post peak behaviour
of the pillar will be dependent on the pillar width.

Hence, to be able to evaluate the overall post peak pillar modulus, it is
necessary to understand how the post peak stress-strain curve for the rock varies with
confinement. It has been established, as indicated by Brady et al., (1993) that pre-
peak modulus varies with changing confining pressure as illustrated in figure 1.2 for
a series of triaxial tests and in accordance with the relationship given in equation 1.1.
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Figure 1.2: Variance of pre and post peak moduli with
increasing confinement from triaxial testing of rock
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However, a relationship has not been established to explain the variance of
post peak modulus, E, with change in confinement, as also illustrated in figure 1.2.
Estimation of this relationship is made possible by the Joseph-Barron post peak

criterion as established during the course of this research.
1.2.2 The existence of 3 strength levels; peak, residual and base
In evaluating the behaviour of rock in the post peak region it is necessary to

understand what is happening in the physical sense. For an intact rock specimen at
peak strength, G, for a given confinement, o; fracture through the specimen will take
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place. At that instant a rough fracture surface is formed. Motion along the rough
surface ensues with some fracture and crushing of the rough asperities until a stable
residual strength, o,, is established. For any further increase in strain the applied
stress remains constant at the residual value, o,, as indicated in figure 1.2. Figure 1.3
illustrates the increase of peak, residual and base strength with confining pressure.
For any given confinement, the post peak stress path from peak to residual and
conceptually to base strength is shown.

o, peak ; /4K
strength g
curve " brittle-ductile

transition po int

E 4 basc
strod Pl!ﬂ‘i strength

S * resldual curve

. ¥ strength
? curve

Figure 1.3: Peak, residual and base strength criteria and
typical stress path for a given confinement.

>

O3

As the confinement is increased both the peak and residual strength also
increase and the roughness of the asperities decreases. Conceptually, if the asperities
were ground to a smooth surface, a base strength would be realized that would be
lower than any residual strength corresponding to a given confinement. However,
base strength is only achieved at the brittle-ductile transition point, where it is equal
to the peak and residual strengths.
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1.2.3 Significance of the brittle-ductile transition point

At the brittle-ductile transition point the confinement is sufficient to realize a
residual strength that is equal to both the peak strength and the base strength, since
at this degree of confinement all of the asperities shear and crush, leaving a smooth
surface. Above the brittle-ductile confinement, the rock behaves in a ductile manner.
For the purposes of this research, due to the brittle nature of the rock fracture under
investigation, the brittle-ductile transition point was taken as the upper limit of study.

1.2.4 Post peak stress-strain data

The available literature contains relatively few complete stress-strain curves
for rock, although those that are documented, particularly for studies on man-made
materials such as concrete, provide good data for a wide range of confining pressures.
The sparsity of complete stress-strain curves obtained via triaxial strength testing
echoes the difficulty of the physical testing of rock. The main problem is the
efficiency in holding a confining pressure constant on a specimen while completing the
post-peak portion of the stress-strain curve, without rupturing the membrane in such
devices as the Hoek-Franklin cell used for triaxial testing of rock at high confinement.
For this reason, most triaxial tests are terminated at or just beyond the peak strength
and are not continued to the residual strength. Hence, there is a very large quantity
of solely peak strength data in the literature.

Hoek et al. (1997) suggested an evaluation approach for the post-peak stress-

strain curve and hence the post-peak modulus by classifying the rock under
investigation into one of three types, as illustrated in figure 1.4:
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Figure 1.4: A simplified evaluation of post-peak
modulus, after Hoek et al., (1997).
i At zero confinement the post peak strength abruptly decreases with
virtually no additional strain.
it At the brittle-ductile transition point the strength remains constant as
the strain increases.
iii At any confinement between the two extremes, the drop in post-peak
strength with respect to strain is a constant, C.

The selection of the constant C is somewhat arbitrary, and assumes a linear
post-peak relationship. From observation of the available post-peak stress-strain
trends, as illustrated in figure 1.2, this is certainly not the case. The constant C,
described by Hoek et al. (1997), is a linear approximation of the non-linear post-peak
modulus, E, suggested from the evidence of triaxial tests. The research conducted
by the author aims to establish a more accurate non-linear estimate of the post-peak
modulus that ties in with the reported triaxial test post-peak evidence.
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1.3  Previous work related to post-peak behaviour

When evaluating the behaviour of rock pillars or elements of pillars, there are
several moduli or stiffnesses that need to be considered, figure 1.5:

i The pre-peak stiffness is an elastic stiffness that is defined as the
increase in load per unit of elastic deformation, usually in units of
kN/m. This is directly proportional to Young’s modulus E,, which is
the slope of the straight line portion of the pre peak stress-strain

curve.

ii The post peak pillar stiffness is a function of the degree of fracturing
and crushing along the fracture planes resulting from failure. The post
peak stiffness, A, is defined as the decrease in load per unit of post
peak deformation. This is directly proportional to the post peak
modulus, E, which is the slope of the of the post peak portion of the
stress-strain curve at the point of interest.

iii To evaluate the stability of a pillar under load, the relative stiffness of
pillar and loading environment must be considered (Pen, 1994). The
stiffness of the loading system is known as the local mine stiffness
(LMS), k. LMS is defined as the load required to cause a unit of
deformation of the loaded pillar.
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Figufe 1.5: Pre and post peak moduli of a rock
specimen.

The relationship between the stiffness of a pillar in the pre and post peak
regions and the stiffness of the loading system (LMS) was introduced by Cook
(1965), described in detail by Salamon (1970) and validated by Starfield et al. (1968),
Ozbay (1989) and Pen (1994) through variations in the perturbation process. The
perturbation process is described later in this section in some detail.

The work of Cook and Salamon draws on an analogy to the stiff or soft
characteristics of a testing machine relative to a specimen under load in the machine,
in terms of the stiffness of a series of springs describing the pillar-loading system

scenario.

Figure 1.6 shows the loading and unloading of a specimen and machine.
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Figure 1.6: Spring analogy showing machine-specimen interaction analogous to a
pillar-loading system, after Brady et al., (1993).
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As the specimen is loaded its representative spring is compressed elastically
while the testing machine springs are extended elastically. Beyond the point of failure
in the specimen, the testing machine unloads elastically in a linear fashion along the
reverse path as loading took place, since the stiffness characteristics of the testing
machine have not changed. However, the stiffness characteristics of the specimen
spring have changed as it becomes damaged. This has the effect that the spring can
no longer resist the load at peak and either deforms slowly to a state of equilibrium,

or fails rapidly due to the rate of energy release from the machine.

Figure 1.7 illustrates the specimen/loading machine analogy in terms of the
energy released after failure of the specimen. If the machine has a stiffness less than
the specimen being tested (a soft machine), then during unloading the energy stored
and released by the machine, W, is greater than can be absorbed by the specimen,
W,, and violent failure of the specimen ensues. If the machine has a stiffness greater
than the specimen being tested (stiff machine), then during unloading the energy
released by the machine, W, is less than can be absorbed by the specimen, W,, and
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gentle failure will follow, as energy must be added to drive the fracture process in the
rock; (Brady et al., 1993).

P 4 . . .
" soft machine violent failure PT stiff machine  gentie failure
W,,,>W, wul<wn
machine
unloading
specimen specimen

machine
unloading

s e ‘_“ ’,‘ '

Figure 1.7: Post-peak unloading for soft and stiff machines, after Brady et al.,
(1993).

It is the concept of a gently failing system that is highly desirable in pillar
reliant mining methods, as the violent failure scenario is one of unstable pillars
resulting in pillar bumps. That is, when the LMS or machine stiffness, k, is less than
the post peak pillar stiffness or specimen stiffness, A, then violent failure is likely.

Following from the initial work of Cook, (1965), Starfield and Fairhurst,
(1968) suggested that the stability of pillar workings could be tested via a comparative
analogy to machine stiffness, which they termed the “local mine stiffness” (LMS).
LMS being the stiffhess of the mine at the vicinity of a pillar of interest. The method
applied, termed the “perturbation method”, considered that the local mine stiffness
could be determined by replacing the ith pillar in an array of pillars by an imaginary
jack. For an incremental change in load applied by the jack, AP, the corresponding
jack displacement, As is used to determine the local mine stiffness, LMS = AP/As.
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The theory was put into practice by Starfield et al. (1972), and later by Ozbay
(1989), who established two different perturbation methods using both laboratory
specimens and pillars in the field, that confirmed the validity of the approaches. The
first approach perturbed the ith pillar by a unit displacement and monitored the change
in load. The second approach perturbed the ith pillar by increasing the reaction load
of the jack replacing the pillar and monitored the change in displacement relative to
the loading strata and the pillar jack.

Around the same time that Starfield was developing the perturbation method,
Salamon (1970) formulated the mathematical relationships that arose out of the initial
work of Cook (1965), and defined the conditions for stable and unstable pillar
workings, which he confirmed would fail in either a controlled or uncontrolled manner

respectively. Salamon’s theoretical formulation was reasoned as follows:

A specimen in a loading frame, figure 1.6, can be modeled as two sets of
springs, representing the loading frame and a specimen, respectively. The
combination is then subjected to an axial load, P,. During loading, both ends of the
specimen spring move downwards. If the spring upper end displacement, y represents
the machine and the specimen and the spring lower end displacement, (y - s)
represents the machine alone, where s is the displacement of the specimen alone, then
by Hooke’s law:

P =k(Y-s) 12

Where k is the spring constant and P, is the compressive load. Equation 1.2

is then a description of the machine reaction due to the applied load.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

If the load-displacement relationship for the rock specimen, characteristic of
the post peak failure region is known to be equation 1.3:

P =fs) 1.3

Then the load applied to the rock and the load applied to the testing frame
must be equal, equation 1.4:

R$)=k(y-s) 1.4

Equation 1.4 may be considered stable if no additional energy is supplied to
the specimen by the machine, that is Ay =0.

The same expression may also be described in terms of virtual work, where
the equilibrium remains unchanged if the work done by the spring, AW,, during a
virtual displacement, As, is less than the work required to produce the same
displacement in the rock, AW

AW -AW >0 1.5
If the work done by the spring on the rock, during the virtual displacement is:
AW;(P*—%AP,)AS 16
And the work required to deform the rock further is:

AW,=(P+ AP As 17
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And if Ay =0, then:

AP =k(0-As)=-kAs 18
AP =f(s)As=A_As L9

Where A, is the post peak stiffness, which is equivalent to the post peak slope

of the load-deformation curve for the specimen.

Combining equations 1.4 through 1.9 yields the condition for stability in the
system:

%(k+l,,p)As2>0 1.10

(k+A,,)>0 L11

If the load-deformation curve pertaining to the ith pillar in an array of identical
pillars describes the LMS of the pillar, k; and the post failure stiffness of the pillar, A

then in accordance with load-deformation plot in figure 1.6:

i Prior to peak load, both k; and ; are positive, equation 1.11 holds and
the system is stable.

ii In the post peak region, if k; <| A, |, then equation 1.11 is violated, and
the pillar will fail violently, that is the local mine stiffhess is less than
the post peak pillar stiffness, which is analogous to the soft machine
scenario, figure 1.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

il Ifk; > | A; | in the post peak region, then equation 1.11 holds and the
pillar will fail gently, that is the local mine stiffness is greater than the
post peak pillar stiffness, which is analogous to the stiff machine,
figure 1.7.

[t can be concluded from Salamon’s work that pillar stability is controlled by
the peak strength of the pillar, ,,, the post-peak stiffness of the pillar, A, and the local
mine stiffness, k;. If the peak strength of the pillar is exceeded, the relative stiffness
of the system, (k; + A,), will dictate whether the pillar will fail violently, causing a pillar

bump, or gently in a controlled manner, figure 1.8.

+ AN Prepesk
clastic region

Post-pesk
region

Figure 1.8: Post peak stiffness, A, as a function of deformation, s, after
Salamon, (1970)

Ozbay (1989) used a displacement discontinuity program to perform

parametric studies on two dimensional rib pillar-panel configurations. This was in
part follow up work to that of Brady et al., (1980), who used a direct formulation of
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a two dimensional boundary element method to determine local mine stiffnesses and
pillar stiffnesses in the elastic range, to subsequently establish that the local mine
stiffness increases with a decrease of W/W, ratio; where W, is the width of an
opening immediately adjacent to the pillar of interest, and W, is the width of the pillar.
Brady et al., (1980) assumed that the average of the convergence across the pillar was
representative of the elastic local mine stiffness. They showed that the postulate of
Salamon, (1970), equation 1.11, was closely approximated for stratiform orebodies.

Ozbay (1989) determined stiffness through a variation on the Starfield
perturbation process, akin to that later used by Pen (1994). He applied a uniformly
distributed displacement disturbance across the entire width of the pillar, and
concluded that if the extraction ratio were kept constant, then the local mine stiffness
would increase proportional to the change in L/H ratio, where L was the mining span
of the openings adjacent to the pillar under investigation, and H is the height of the
pillar. This was shown to hold if the number of pillars in the layout in any one
direction was greater than 5. He also noted that the strata stiffness decreased with an

increasing number of pillars in the layout.

In 1994 Pen evaluated the potential for pillar bumps in chain pillar design for
longwall mining panels. This work was based on the evaluation and comparison of
the local mine stiffness, k, with an estimation of the post peak pillar stiffness, . He
employed Salamon’s pillar bump hypothesis (Salamon, 1970) to compare these two
parameters, such that the condition for stability in equation 1.11 held.

Through the use of the boundary element model, MULSIM/NL (Zipf, 1992)

modified by Pen (1994) to incorporate the Ozbay’s displacement perturbation process
(Ozbay, 1989), Pen was able to estimate the potential of a pillar bump occurring for
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a given unit of perturbation across an entire pillar via measuring the associated change
in load conditions to establish LMS and comparing to an empirical value of post peak
stiffness.

MULSIM was developed as a boundary element approach and employed to
evaluate the LMS, after the initial work of Pariseau, (1981), and Kripakov et al.,
(1983), who performed investigative work on pillar loading. Zipf (1992) made
several adaptations which resulted in the development of MULSIM/NL, a three
dimensional displacement discontinuity boundary element model, which was
specifically designed to simulate and analyze stresses and displacements of tabular

multiple coal seams in elastic homogeneous rock.

The calculation of local mine stiffness within MULSIM/NL was achieved by
Zipf by incorporating Starfield’s perturbation method, (Starfield et al, 1972). He
chose to perturb a single element in a pillar, which was already in an equilibrium state,
thus facilitating a displacement. He then assumed that the resulting load change on
the element divided by this elemental perturbation was the local mine stiffness.

Pen’s modification, (Pen, 1994), of MULSIM/NL took Zipf’s premise of local
mine stiffness, but instead of perturbing a unit deformation for a single element and
measuring the associated change in load for that element, he perturbed every element
across the pillar by the same constant deformation, as per the method suggested by
Ozbay (1989) and then measured the individual load changes at those elements across
the cross section of the pillar. This gave a non-uniform cross sectional loading change
for the pillar, which better matched the actual change in loading conditions of a given

mining environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

Working from the definitions laid down by Starfield et al. (1972), Pen (1994)
defined the local mine stiffness in terms of units of modulus, equation 1.12:

LMS= 1.12

ac
H

Where LMS is the local mine stiffhess of a pillar comprising elements summed
from 1 to n., Ac is the uniform perturbation closure applied to each of the elements
across the pillar, Ap; is the load change associated with each of the representative

elements across the pillar, H is the pillar height, and A is the pillar cross-sectional

area.

To compare the post-peak pillar stiffness to LMS, Pen (1994) devised an
empirical relationship from post-failure pillar stiffness data collated from the available
literature, to establish the post failure pillar stiffness, A, for his coal pillar models.
Pen (1994) reviewed the literature and compiled post-failure pillar stiffness data, for
variable W /H pillar ratios, from a number of sources. The researchers in these
sources measured both small and large specimens, both in the laboratory and in the
field; including Das (1986), Seedsman et al. (1991), van Heerden (1975), Wagner
(1974), Wang et al. (1976), lannachionne (1988), and Crouch et al. (1973).
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Figure 1.8: Pillar post peak stiffness field and laboratory
data compiled by Pen, after Pen (1994).

He plotted the data as normalized post failure stiffness (E,/E,), figure 1.8,
where E, is the post failure modulus, and E js Young’s elastic modulus, against
W_/H ratio; and arrived at the following empirical relationship, which he incorporated
into the MULSIM/NL model.

E W
—2£.=5.98243[—£] 176 1.13
E H

s

The local mine stiffness for the pillars was thus compared to an empirically
derived post peak pillar stiffness (Pen, 1994). Pen used this knowledge to suggest an
application to control pillar bumps and improve chain pillar design in longwall mining,

under bump-prone coal bed conditions.
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To avoid pillar bumps, Pen re-iterated the same concept as previously
suggested by Cook (1965), Cook et al., (1966), Salamon (1970), Ozbay (1989), and
others, that the local mine stiffness should be greater than the post-failure stiffness of
the pillar; thus effecting the stiff machine scenario, and allowing gentle failure to

occur.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

1.4 Research objectives

As can be seen from this review of previous work, there is a need to better
determine the post peak stiffness of rock structures such as pillars. To be able to do
this, it is necessary to have a good understanding of the post peak stress-strain

behaviour for both intact rock and rock masses. The objectives for this work are

therefore as follows:

Phase 1: To develop a means of estimating the post failure modulus of
intact rock from data obtained from triaxial tests on intact
specimens.

Phase 2: To extend the concepts developed in phase 1 to allow the
estimation of the post failure modulus of a rock mass from
triaxial tests on intact rock together with a knowledge of the
geological strength index (GSI), (Hoek et al., 1997).

Phase 3: To illustrate the use of post peak modulus evaluation in

assessing the stability of rock structures, such as pillars.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Definitions, postulates and assumptions

2.1  Definition of the effective angle of friction, ¢, for the post peak region

A

%ﬁze
‘ »
(o]

G, O

? |
: |
| \
2 ! |

(o]

Figure 2.1: Definition of the effective angle of friction

1r

Figure 2.1 shows a general failure criterion, where t is the shear strength of
the material and c is the normal stress applied to the material mobilizing that shear
strength. Thus in general:

t=A0) 2.1

NOTE: The term “effective angle of friction, ¢,” defined in figure 2.1 is a
mathematical expression that combines the traditional Coulomb-Navier
parameters of friction, ¢ and cohesion, c as described by the relationship; t=c
+ G tan, into one parameter. The “effective angle of friction” term used here
is not the same as the traditional soil mechanics term, which for example

describes the effect of reduced friction due to pore pressure effects.
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The effective angle of friction, ¢, as defined in figure 2.1, allows any strength
in the post peak region between peak strength, o, and residual strength, ,,, fora
given value of confinement, ; to be stated by a family of failure envelopes whose
post-peak locus describes the stress path as indicated in the illustration, such that in
general

b, =tan"'[ 2] 22
(0]

At Gy, ¢. = ¢, and at o, ¢, = ¢, for a given value of confinement, o,, where

Oy, is the peak strength and o, is the residual strength.

At the instant prior to peak failure, where ¢, = ¢,, this represents a measure

of both internal friction and cohesion, and the strain experienced is e,

At the instant after failure at peak strength, o,,, the strain remains the same,
but a rough surface has now been formed, and the effective angle of friction is now

a measure of two components of shear resistance:

i Frictional resistance to sliding on the rough surface
ii An apparent cohesional resistance representative of the strength of the
rough surface asperities.

As failure continues, the apparent cohesion reduces as the asperities are
sheared, resulting in a reduced roughness, and a correspondingly reduced frictional
resistance. As the roughness reduces the sliding angle of friction also reduces. That
is, the effective angle of friction is a measure of how the combination of these two

components change.
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For any given confining pressure, o; when the residual strength, o, is reached,
there is no further drop in apparent cohesion due to shearing of the asperities, and the
resistance is due solely to friction on a rough surface. The strain experienced at this
point is e.. The surface of reduced roughness still has a resistance greater than that
defined by the base strength of the material, o,

At the brittle-ductile transition point, (6,, Gy,), all the asperities have been
sheared off, and the effective angle of friction is then equivalent to the base angle of
sliding friction for that material, $,.

2.2 Postulates

2.2.1 Postulate 1 - At peak strength

At peak strength, immediately before failure, the strain e, is known. At the
instant after failure, a failure plane is formed with an effective angle of friction, ¢,

and the strain remains at e, It is postulated that the peak strain is a functional
relationship of the peak effective angle of friction.

b,=fe,) 23
2.2.2 Postulate 2 - Beyond peak strength
At any point in the post peak region, prior to and including the residual

strength, the strain is postulated as being described by the same functional
relationship.

‘b.:f(ep ) 24
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2.3  Assumptions

2.3.1 Assumption 1 - Pre-peak modulus

It is assumed that the pre-peak modulus, E is defined as the straight line
relationship defined by the peak oy, €, values, such that:

e
P

2.5
2.3.2 Assumption 2 - Peak strength relationship

It is assumed that the peak strength is governed by the Hoek-Brown failure
criterion, (Hoek et al, 1980):

- 29112
0,,=0; +[mo o, +s0.] 26

Where m and s are constants and . is the uniaxial unconfined compressive
strength of the rock.

2.3.3 Assumption 3 - Residual strength relationship

It is assumed that the residual strength is described by a 2* order polynomial

criterion:
]
o0,,=Do;+Fo, +0,, 27

Where D and F are constants and o, is the unconfined residual strength.
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2.3.4 Assumption 4 - Base strength relationship

It is assumed that the base strength, G, is described by the Coulomb-Navier
rearrangement:

(1 +sin
0,,=Ko, =_._¢2°3 2.8
(1 -sm(b[,) ’

Where K is the 5,,, - G base strength relationship, and ¢, is the base angle of
friction.

2.3.5 Assumption S - Relationship between the peak, residual and base
strengths

Brittle-
ductile
transition
point

—p»

Gy G,

Figure 2.2: Peak, residual and base strength criteria

It is assumed, as illustrated in figure 2.2, that:
i At zero confinement, 6,, =G,, G}, =G, and 6, = 0

ii At the brittle-ductile transition confinement, 6,, = 6, = Gy,
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2.3.6 Assumption 6 - Friction - strain functional relationship

The functional relationship outlined by the postulates is assumed to be given
by a 2™ order polynomial. The polynomial form was chosen as being the simplest
function that gave a reasonable fit to all the available data, (see chapters 4 and 5).

¢, =R+Se,+ Tepi, 29

Where R, S and T are constants for a given rock type, and e, is measured
from the zero strain datum.

2.3.7 Assumption 7 - Friction - strain minimum at the brittle-ductile

transition point

It is assumed that the ¢, polynomial, equation 2.9, exhibits a2 minimum
corresponding to the base strain, e, at the brittle-ductile transition point, (c,, ;).

3,
de

pp

=0 2.10

This arises from the fact that at the brittle-ductile transition point, the
confinement is sufficient that an applied stress to cause motion along the fracture
plane will only encounter a base friction resistance, since all of the asperities have
been eroded to a smooth surface. Thus for any further increase in strain under those
conditions, the frictional resistance will be constant. So the change in frictional
response for any given change in strain will be zero. The strain accumulated at the
point of brittle-ductile transition must therefore be the base strain, e,.
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If equation 2.10 is applied to equation 2.9, the result is

3¢,
=5 +2Tepp=0 2.11
e
PP
Or
€ =‘:§ 2.12
5T .

2.3.8 Assumption 8 - Peak strength - residual strength relationships at

the brittle ductile transition point

At the transition point, (G,, Gs,), the peak, G,, and residual, 5, strengths are
equal, as explained in section 2.3.5. Further, the slopes of the functions describing o,

and o, are also equal at the brittle-ductile transition point.

éo,P _ oo

1r

13
1 50, b0, 2

olp=01r=o

2.3.9 Assumption 9 - Post peak modulus

The post peak modulus is defined as the slope of the post peak stress-strain

curve

60

—__»pp
(4 6epp 2.14

Where 86, is a change post peak stress corresponding to a change in post
peak strain, Se,,,.
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Chapter 3
The Joseph-Barron approach (applied to intact rock)

The Joseph-Barron approach relies on certain data being available. The
minimum requirement is peak data from a number of triaxial tests including values for
O3, Oy, and €, and a value for the base angle of friction, ¢, obtained from a tilt test.
The optimum requirement would be the complete stress-strain information from a
number of triaxial tests including values for o3, G,,, €,, G, and e, from which a more
accurate value for the base angle of friction may be calculated without resorting to a
tilt test. There are therefore two cases of analysis via the Joseph-Barron approach,
dependent on the availability of data:

i Peak and residual data approach
ii Peak data and base friction approach

For the purposes of this discussion, case i is assumed. Divergence from the

procedure for case ii is described in section 3.10.
3.1  Determination of the Hoek-Brown strength criterion constants

The Hoek-Brown constants, m and o, are determined via a re-arrangement of
the Hoek-Brown peak strength criterion, equation 2.6, into a linear form and solving
for the slope and intercept where s = 1 for intact rock (Hoek et al, 1980):

2_ 2
(pr“’;) =m0 0, +sO, 31

Where the slope = mo, and the intercept = sc.2.
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3.2  Determination of the residual strength polynomial constants and o;, via
polynomial regression analysis

The order in which the residual strength polynomial constants D and F,
equation 2.7, and the brittle-ductile confining pressure, o,, are determined depends on
the availability of sufficient triaxial test data in proximity to the brittle-ductile

transition point.

Saccharoidal limestone (Farmer, 1983)

250 , i
o Hosk-Blownipeak | | |
o residual polynomial |

— 150 | S

£ e

/ ]

20 30 o, 40 50 60
o3 (MPa)

Figure 3.1: 2* order polynomial regression of residual data
plotted with Hoek-Brown peak strength values to attempt
to identify G,, at the brittle-ductile transition point

If the available triaxial test data spans a range of o, from unconfined to the
brittle-ductile transition point, then it is more likely that a 2™ order polynomial
regression of the available residual data (Visman et al., 1970) plotted with the Hoek-
Brown peak strength criterion versus o, will yield a brittle-ductile transition point and
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hence a value for o;,. Figure 3.1 illustrates a reasonable brittle-ductile transition point
identification. The polynomial regression in this case yielded values for D, F and &,
directly as demonstrated in appendix A. Conversely, figure 3.2 illustrates a case with
data far removed from the brittle-ductile transition point, such that the transition is not
identifiable.

In the case where D, F and o, are identified through a 2™ order polynomial
regression, G, is alternatively defined by equating the Hoek-Brown peak strength
criterion, where m, o, and s are known, to the 2™ order residual polynomial and
solving for ;. A spreadsheet is necessary for this solution, as the combination of two

2™ order equations requires a quartic determination.

Lac du Bonnet pink granite (Gorski et al., 1991)
800 — — I
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Figure 3.2: 2™ order polynomial of residual data plotted
with Hoek-Brown strength values for no identification of
G, at the brittle-ductile transition point.
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3.3 Estimation of the residual strength polynomial constants and o, via a
linear approximation of the available residual strength data

If a brittle-ductile transition point is not identified through polynomial
regression, then the determined values of D, F and o, by this method, appendix A,

may not be relied on, and an alternative approach must be employed.

In such a case, a linear regression of the available residual strength data, figure
3.3, allows a direct evaluation of o, at zero confinement, and an approximation of G,
when the linear form is equated with the peak strength criterion at the instance of
brittle-ductile transition. The linear residual strength criterion is expressed as:

0Ir=c,r:r+003 3.2

Portland stone (Farmer, 1983)
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Figure 3.3: Linear regression of the available residual
strength data to allow identification of G,
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Equating 2.6 and 3.2, allows a linear approximation for o;,:

e _
G3r+[moco3t +SOc] 'Ga3t+°cr

(G-1)03+(20,(G-1)-mo )o,,+0_*-562=0

_-(20,(G-1)-m0,)+/(20,(G-1)-ma }*-4(G-1)X(a_, -50))
2(G-1)?

33

3t

Having employed the linear approximation process to identify a value for G,
the residual polynomial constants D and F may be determined while keeping the
values of o;, and o, as fixed end points for the polynomial function. The evaluation
is carried out at the brittle-ductile transition point where the peak and residual
strength values are identical, 6,, = G,, and the slopes of their respective functions are

also identical, equation 2.13. Appendix E provides a step by step solution for D and
F culminating in equations 3.4 and 3.5 respectively.

mo o
D=-L2[oc,—[mocos,+so§]m+ <3 - 3.4
03, 2[me 0, +s0,]'?
F=1- < -—2—[0 -[mo o, +s07]"3] 35
cr ¢ 3t [ -

2[mo 0,,+s02]'2 Os

By back substitution into the 2™ order residual polynomial form

G, G mo o
3 2 3 212

olr= [ -1 ][0,_—,- [mocoy +So:] 12, == 212 ] -ocr+[moc°3t +SO‘_] +03 +ocr
3 O 2[mo 0,,+s0,]
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3.4 Refinement of the residual strength polynomial constants D and F

originally determined via a linear approximation process

In most reported cases for rock, triaxial data results tend to be closer to zero
confinement than to the brittle-ductile transition confining pressure, due to the
difficulty in maintaining sufficiently high confining pressures closer to the transition
point. In these cases a linear approximation to the available data provides a

reasonable regression value, often greater than 0.95.

Since the polynomial constant values of D and F are based on the linear
approximation constant G, an iterative optimization process can be performed to

enhance the residual curve at the higher unreported values of o,.

Doddington sandstone (Santarelii et al., 1989)

350 — , —
| .
0
280 Lo o Lt A
e
5200 | S l//‘?/‘
< o ; ;,,,x/r N
~ 150 ; i P bl ‘ ;
o | el
so |87 | | ® linearappmximation
- P =2 er polynomial
oo T 'r' P 'r° i
) 1 20 30 60
o3 (MPa)
R-square =0.993 #pts=4

y=19.3 +4.29%

Figure 3.4: Modification of residual polynomial function
based on lower confinement linear interpretation.
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By plotting G,, determined via the residual polynomial together with the o,,
determined via the linear approximation versus o;, using a spreadsheet, such that any
variation in G automatically varies D, F and o,, accordingly, the linear relation and the
polynomial curve can be brought together, as illustrated in figure 3.4. This provides
an agreement between the approximation and assumed function for residual strength
at low confining pressures, and allows a better estimate of what is occurring at higher

confinement. For this process o, 6., m and s are held constant.
3.5  Determination of the base angle of friction, ¢,

Given a value for o,, the base angle of friction, ¢, can be determined, since
the peak strength, G,,, equation 2.6 and the base strength, G,,, equation 2.8 command
the same value, (G,, G,) at the brittle-ductile transition point. Hence, equating

equations 2.6 and 2.8:

1 +sin,

= 12
0,,=0,,=0y,+[m0 0, +s0, ] Oy~ O 3.6
1-sinp,

Re-arranging and letting Q = (mo,0,, + so.2)"?

sing, - (1+sind,)-(1-sind,)  2sind,
Q= °"[ o, O me,  lsmd,
Q-Qsind,=20;sind,
+sg2) 12
&, =sin [—L__J-sin o)y 37
20,+0 26,,+(mo 0, +so_)"?
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3.6 Determination of the effective friction - strain relationship

The effective friction, ¢, - post peak strain, e, relationship introduced as
equation 2.9 in section 2.3.6 is bounded by conditions that restrict its applicability to
the region of confinement between unconfined and the brittle-ductile transition point.

Thus the general expression in 2.9 can be rewritten:

¢,=R +SePP+Tepi 29
¢,=R+Se,+Te, 38
d),,=R+Se,,+Te,,2 3.9

Figure 3.5 illustrates the boundary conditions applied to generalized form of
the 2* order polynomial effective friction - strain relationship.

#.
$, ]
o¢/de,, = 0
pn
Lower
boundary
e
ost peak region oun
g1 Doundgry
e, € e

Figure 3.5: Boundary conditions for the effective
friction - strain 2™ order polynomial function
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In the unconfined state at peak strength, o,, a fracture plane forms with an
effective angle of friction ¢, corresponding to an amount of strain, e, This is
represented by the lower boundary condition imposed on equation 2.9, as expressed
by equation 3.8 and illustrated in figure 3.5

At the brittle-ductile transition point (o3, G,,) the fracture plane is now a
smooth basal surface with an effective angle of friction ¢, corresponding to an amount
of strain, e,. This is represented by the upper boundary condition imposed on
equation 2.9, as expressed by equation 3.9 and illustrated in figure 3.5

[t has been shown in section 2.3.7 that there is a minimum with respect to the
friction - strain function, since beyond the brittle-ductile transition point there is no
further decrease in effective friction for any further increase in strain beyond e,. That
is for any strain greater than e,, ¢, is a constant, as shown in figure 3.5. This allows
the minimum to yield a value for e, as in equation 2.12:

e -3 2.12
5 o .

Appendix C solves equations 3.8, 3.9 and 2.12 simuitaneously for the

polynomial constants R, S and T, equations 3.12, 3.11 and 3.10 respectively,

7% ®) 3.10
(e, —ep)2
S=-2e, (d”'-(b"z 3.11
(e, —ep)
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R=¢,+e} @4 3.12
(e,-e,)
and the general solution for the effective friction - strain polynomial 3.13.
2
@0 _e,7¢,) 3.13

(‘bp "bb) (e b -ep)z

3.7  Estimate of the base strain at the brittle-ductile transition point

As previously stated in 2.3.7, the base strain, e, can be determined from the
minimum condition at the brittle-ductile transition point. However, use of the
available strength and strain data can be made to provide a graphical evaluation of e,
directly, appendix F.

3.7.1 Determination of ¢, from the available data

Equation 2.2 can be expanded in terms of o;, 6, and 20 via the Mohr-
Coulomb t and o relationships, where 6, may be either peak or residual strength
provided that the associated strain e, or e, respectively is noted.

20 is described after the work of Balmer (1952), appendix G, equation 3.14,
and will remain constant once the fracture plane has been formed at peak strength.
This allows the use of the same 20 to evaluate peak and residual effective frictions for
a given value of ;. It also follows that the value of 20 determined at peak strength
must be valid for any value of effective friction in the post peak region lying between
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peak and residual. This is illustrated in figure 2.1.

_ -1 601
20=2tan"[ | —1] 3.14
603

When the differential of o, with respect to o, is applied to the Hoek-Brown
peak strength criterion the following result is obtained:

8o mo
l=1+ [

80;  2(mo g, +s02)"?

3.15

The effective angle of friction for any strength condition in the post peak
region has been previously defined as:

¢,=tan"'[~] 2.2
(0]

From the geometry of Mohr’s circle, figure 2.1, equation 2.2 can be redefined:

(0,,-0,)sin28

¢, =tan"[
(0,,+05)+(0,,-0;)cos260

3.16

Where G,,, is any value of post-peak stress including both peak and residual
strengths for a given value of ¢;. This relationship may then be applied to the
available peak and residual strength data gleaned from triaxial tests. Each value of ¢,
determined by this method should be paired with its corresponding strain
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measurement from the available data. In this format a value for e, may be determined.
372 Yvse
The effective friction - strain relationship, equation 3.13, can be manipulated
into a linear form, Y = MX + B, where X is the strain variable, e at the point of

interest, M is the slope and B the intercept of the function. This manipulation is

provided in appendix F, where the linear form is:
Y= (¢¢ -¢b) - -epp " eb 3 . 17
@,-0,) (e,7¢) (e,-¢)

Sandstone (Farmer, 1983)
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s : 5 [
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e

R-square =0.8 #pts=10
y=1.14 +-36.6x

Figure 3.6: Y versus e plot to allow e, interpretation from
the slope.
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Where the peak effective friction, ¢, and peak strain, e, are taken as the

unconfined lower boundary limit values, figure 3.5, at ¢, = 0; and the base friction,

¢, has previously been determined in section 3.5, equation 3.7. An example plot of

this graphical interpretation process is illustrated in figure 3.6.

3.7.3 Estimate of the base strain

A measurement of the Y versus e slope through linear regression, figure 3.6,

allows the best evaluation of e,, since the linear regression process averages the

available data.

= e 4
eb JY; ep

(degrees)
8

de
3

&

30

Quartzite (Gates, 1938)

-

— poly
& peak
o resid

*0

| |
o 0005 001 0015 002 0.025
e

Figure 3.7: Example of an effective friction - strain
function solution compared to the original data.
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Once all constants are known; e, €,, ¢, and ¢,; values for R, S, and T,
equations 3.12, 3.11 and 3.10 respectively can be determined, and an solution for the
effective friction - strain relationship, equation 3.13, figure 3.7, established.

3.8  Determination of the post peak modulus, and its normalized form

The post peak modulus, E, has been defined in equation 2.14 as the change
in post peak stress for a given change in post peak strain:

I & .14

Appendix B shows the derviation of the function in terms of quantities already
defined resulting in the expression:

E = sin20 (Upp‘os)z ($.-b,) 3.19

w i, o (e,e)

An example of the function is plotted in figure 3.8, showing the stepwise
nature of the function with varying confinement.

The normalized form of the post peak modulus, E,, allows a smooth
continuous curve relation when plotted against post peak strain, e,,, figure 3.9.

E, sin20 (9,,-0) b,

opn) - 3.20
(0,705 sin’p, O; (e,"e)
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quartzite (Gates, 1988)
Post peak modulus, Epp versus epp
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Figure 3.8: Example of post peak modulus plotted against
post peak strain, described by equation 3.19

quartzite (Gates, 1988)
Normalized post peak modulus, Epp(n) versus epp
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Figure 3.9: Example of normalized post peak modulus
versus post peak strain as described by equation 3.20
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3.9 Determination of the post peak stiffness
The post peak stiffness, k,, can be expressed in terms of the post peak

modulus, E, and the dimensions of the rock sample or pillar under investigation;
cross-sectional area, A and height, H, for any degree of confinement, o;.

For a change in applied load, AF per unit change in height of a pillar, AH:

_AF
kpp-ﬁ kN/m 3.21
But from equation 2.14:
)
E =2»  GPa 2.14
(4 68

Where da,, = AF/A and de,, = AH/H. Therefore:

AF
E"Pz_—AH((Z[; 3.22

Substituting 3.21 into 3.22 and re-arranging, an expression for k., is obtained:

EA
k ==PE_ 3.23
Ty
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3.10 Variances to the Joseph-Barron approach when only peak strength
triaxial data is available

As mentioned at the beginning of this chapter, in the absence of residual data
it is not possible to determine a brittle-ductile transition point without first evaluating
a base angle of friction. This has been successfully done using a simple tilt test on
core samples (Stimpson, 1981) and will be discussed in chapter 5. Other methods of
obtaining base angles of friction include the triaxial slip test and shear box test and are
more complex in approach. They have been used to verify the applicability of the tilt
test, as reported in chapter S.

Given that the Hoek-Brown constants have been determined, since only peak
data is required for that analysis, appendix D outlines the approach for determining
the brittle-ductile transition confinement, G,, via assumption 8 (section 2.3.8) where
Oy, = Oy, at the brittle-ductile transition point. The outcome is a positive root solution
of a quadratic form yielding:

moc+\/ m?a?+4(K-1)%s0’

2(K-1)?

o, 3.24

4

Once G, has been determined, the solutions for the residual strength
polynomial, the effective friction - strain polynomial, and the post peak modulus are
determined as outlined previously, with the following additional assumption.

Due to the absence of residual data, it is not possible to graphically estimate
a value for the residual strength at zero confinement, 6., as was conducted in section
3.3. Consequently, it is assumed that the residual strength, o, is 20% of the uniaxial
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unconfined compressive strength, o, evaluated through the Hoek-Brown analysis,
section 3.1. The choice of 20% is arbitrary. Variance of &, values from 5% to 50%
of o, revealed that there is a negligible effect on the determined value of the o;,
boundary, as a result of varying the o; = 0 boundary condition.

Again due to the absence of residual data to provide a linear approximation,
the refinement process described in section 3.4 is not possible. However, as will be
shown in chapters 4 and S5, the use of peak data only has little effect on the overall

outcome of the analysis procedure.

3.11 Conclusion

The Joseph-Barron approach provides a means of quantifying the post peak
behaviour via simply measured quantities. By keeping the choice of post peak
function simple, as employed with 2™ order polynomial functions, the ease of use via
a spreadsheet format makes this approach a useful partner to the triaxial testing

process. Application and verification of this procedure follows in chapters 4 and 5.
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Chapter 4
Intact rock - Verification of the postulates and assumptions

via an example data set from the literature

4.1 The intact rock data set

The data set was selected on the following criteria:

i Both peak and residual strength and strain data were available to
allow both the peak and residual data analysis and the peak data only
analysis for comparison of the two approaches.

ii The available data were spread over a reasonable span of the range
from zero to brittle-ductile transition confinement, but not necessarily
to the latter confinement boundary.

iii The data were available in the form of stress-strain plots to allow
comparison with the calculated/predicted stress-strain plots.

iv A value for the base angle of friction was available or calculable to
allow the peak only data analysis.

The author identified 12 such data sets in the literature, of which a silty
sandstone (Farmer, 1983) was selected for demonstration purposes. The other 11
data sets are provided for both the peak and residual analysis and peak only analysis
in appendices H and J respectively.

Figure 4.1 shows the silty sandstone data set used. The peak strength values
are clearly defined, however the residual strength values are a little more difficult to
define due to the fluctuations in the residual region, particularly at the higher
confining pressures. In those cases, the residual strength point was taken as the
intersection of a best fit line passing through the residual region with a best fit line
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through the post peak region. The interpretation of the stress and strain values read
from figure 4.1 are reported in table 4.1.

250
SILTY L
SANDSTON
200
NE LM'
= 150
b '\/ﬂ
W
U
§ 100 3229 | L
:;; S S
03 =21
3
X % 37
P %.7._'

AXIAL STRAIN %

Figure 4.1: Silty sandstone data set, after Farmer (1983)

O; O1p Oy 2 &
(MPa) (MPa) (MPa) (strain) | (strain)
0 64 9 0.006 0.009
4 81 35 0.008 0.013
7 108 42 0.01 0.018
21 151 93 0.015 0.019
29 172 116 0.016 0.026
36 202 142 0.017 0.023
42 221 154 0.019 0.025

Table 4.1: Silty sandstone data set interpretation from figure 4.1
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4.2  Assuming that both peak and residual data are available
4.2.1 Determination of the peak strength criterion
The Hoek-Brown peak strength criterion (Hoek et al., 1980) was rearranged

into the linear form, equation 3.1, and the peak strength and confinement data from
table 4.1 used to create the plot in figure 4.2.

Siity sandstone (Farmer, 1983)
35 r — —
L T '
20 ! | : /
25 | | LA
‘g ‘ ! | : - i ! I
S 5 . | . ‘ ‘
g 20 —— -
| ! P |
o 1 — !
T 10 N .
.f. ps | ! [
A 5 A I ! | i
o é 1
0 | | | i I | X
0 10 20 30 40 S0
o3 (MPa)
R-square =0.985 #pts=7
y = 3.73e+003 + 648x

Figure 4.2: Linear form of the Hoek-Brown failure
criterion applied to the silty sandstone data set.

The slope and the intercept were used to calculate the Hoek constant m and

o, assuming that s = | for intact rock:
o, = {intercept/s}'? = {3730/1}"2 =61 MPa

m = slope/c, = 648/61 = 10.6
or oy, =03 + {648 o, + 3730}'2 4.1
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4.2.2 Determination of the brittle-ductile transition point

Analysis of the o,, versus o; data via polynomial regression (Visman, 1970)

allowed an initial determination of the residual strength polynomial constants, D, F

and o, in equation 2.7, yielding:

6, = -0.026 6,2 + 4.5 6, + 10.5 MPa

42

Equations 4.1 and 4.2 were plotted together, but failed to identify a value for

the brittle ductile transition point, (c,,, ©3,), figure 4.3.
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Figure 4.3: Plot of residual strength polynomial regression
curve and peak strength curve with the original data to try
and identify the brittle-ductile transition point.

From a review of figure 4.1 it can be seen that the data represents a range at

confining pressures much lower than that required for brittle-ductile transition, thus
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the plot in figure 4.3 contains insufficient data points at high enough confinement to
identify the brittle-ductile transition by the polynomial regression method. In addition,
the values of the residual polynomial constants in equation 4.2 are not reliable, and

the approximation approach for the brittle-ductile transition point, section 3.3, must
be employed.

The o,, versus o, data were plotted directly, figure 4.4, and a linear regression

applied to determine the linear constants G and G, in equation 3.2, equation 4.3.

Siity sandstone (Farmer, 1983)

200 E—
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g —
S 100 A — // Ea
2 T ’
S }W s ’
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R-square =0.989 #pts=7
y=15.7 + 3.44x

Figure 4.4: Evaluation of the residual strength linear
approximation via linear regression of the available data.

G, =3.44 0, + 157 MPa 43

Equating equations 4.1 and 4.3 according to the peak strength residual
strength equality condition at the brittle-ductile transition confinement, assumption
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8, section 2.3.8, allows the initial estimation of &, as per equation 3.3.

c; = 102 MPa

54

4.2.3 Determination and refinement of the residual strength criterion

Fixing the value of &, and retaining the value of o, at 6, = 15.7 MPa, the
values of the residual strength polynomial constants, D and F, can be re-calculated
according to equations 3.4 and 3.5 respectively. This results in a new residual

strength polynomial:

G‘r = ‘0.012 632 + 4.7 63 + 15.7 MPa
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Silty sandstone (Farmer, 1983)
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Figure 4.5: Residual strength polynomial and linear
approximation plotted together to show error in the
polynomial function at low confining pressures.
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If equation 4.4 is plotted with the linear approximation in figure 4.4, then a
visual error at the lower confining pressures where the original residual strength data
was available becomes apparent, as illustrated in figure 4.5.

Using a spreadsheet connection, so that changes in the linear approximation
are reflected by changes in the value of o, and the residual strength polynomial, the
iterative optimization refinement process outlined in section 3.4 can be put into
practice. This allows the linear and polynomial residual strength criteria to agree at
low confinement, in the region of available residual strength data, figure 4.6:

Silty sandstone (Farmer, 1983)
200

! i i . : ‘ :
@ linearlapproximation ; ‘ 1
- modlﬂed residual|polynpmiall

150

100

(MPa)

0 10 20 30 40 50
o3 (MPa)

R-square =0.989 #pts=7
y=157 + 3.44x

Figure 4.6: Effect of the refinement process for the residual
strength polynomial at low confining pressures.

Consequently, 6;, = 199 MPa and equation 4.4 becomes:

6, =-0.004 6,2 + 3.6 5, + 15.7 MPa 4.5
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4.2.4 Estimation of the base angle of friction

Given that the confining pressure at the brittle-ductile transition point is
known, o, the base angle of friction, ¢, can be determined by equation 3.7:

¢y = 28.5°

This allows a determination of the base strength criteria, as defined by
equation 2.8, resulting in:

O =2.80, 4.6

4.2.5 Comparison of the peak, residual and base strength criteria

Siity sandstone (Farmer, 1983)
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Figure 4.7: Comparison of peak, residual and base strength
criteria in relation to zero confinement and the brittle-
ductile transition point.
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Figure 4.7 shows the graphical relation between the peak, residual and base
strength criteria. For any o; between zero and the brittle-ductile transition, there is
a transition from peak to residual strength, that can be represented by an effective
friction. At residual strength sufficient sliding roughness is retained along the plane
of failure, such that there is a measure of roughness from residual to base strength.
Only at the brittle-ductile transition point confinement, G,,, are the peak, residual and

base strengths the same value, o,,.

The values of the peak and residual strength at zero confinement define the
unconfined uniaxial compressive strength, o, and residual strength, o, respectively.

4.2.6 Determination of the base strain, e,, the R, S, and T constants,

and the solution to the effective friction - strain polynomial

The general solution of the effective friction - strain polynomial is given by
equation 3.13:

(‘b. '¢1,) _ (e, ‘epp)z
@,-9) (e,-¢,)

3.13

Which can be re-arranged into a linear form of Y versus e, as described in

(‘be"bb) -e e,
Y= - . .
\J ©,0) Cre) Ere) M

section 3.7.2:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Where e is the available peak and residual strain variable, table 4.1, and ¢, can
be determined for the corresponding available peak and residual strength data, table
4.1, via equation 3.16:

(0,,-04)sin26

¢, =tan"'[
(9,,%05)+(0,, -0,)c0s26

] 3.16

Where G,,, can be either the peak or residual strength variable and 28 is given
by the combination of equations 3.14 and 3.15, equation 4.7:

mo
29=2tan"\J 1+ : 47

21n
2(mo o, +s0,)

In expression 3.17, ¢, and e, are the effective friction and strain values under
unconfined conditions, representing the maximum effective friction and the minimum
strain of the post peak region as illustrated in figure 3.5. These values remain
constant. The value of ¢, was previously determined in section 4.2.4 and also remains
constant.

¢, = 65°
e, =0.006
¢, = 28.5°

A plot of Y versus e, figure 4.8, allows the base strain to be determined from
the slope of the linear regression using equation 3.18.

e, =-1/M+¢, = 1/28.3 +0.0058 = 0.04
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Siity sandstone (Farmer, 1983)
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Figure 4.8: Plot of Y versus e to determine the base strain

Once all the constants in equation 3.13 have been determined, the values of
the effective friction - strain polynomial constants, R, S and T, equation 2.9, can be
determined via equations 3.12, 3.11 and 3.10 respectively:

R=79°
S =-2430 °/strain

T = 29600 °/strain’

Therefore the exact solution for the effective friction - strain polynomial for
the silty sandstone data set becomes:

$. =79 - 2430 ¢, + 29600 e, 2 48
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4.2.7 Comparison of ¢,-e curve with the ¢.-e data - verification

A plot of the effective friction values determined from the available data via
equation 3.16 against the corresponding available strain data and the effective friction-
strain polynomial shows that there is good agreement between the derived function
and the available data, figure 4.9:

Silty sandstone (Farmer, 1983)
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Figure 4.9: Correlation between the effective friction -
strain polynomial and the effective friction data values

This correlation verifies postulates 1 and 2. There exists a functional
relationship between effective friction and post peak strain, and that

relationship holds for all values between peak and residual strength regardless
of the confinement imposed on the rock.

If it is considered that the degree of fracturing in the post peak region is a
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function of the applied confinement, o;, then for an incremental increase in
confinement, the range of peak to residual strengths for the respective confinements
will overlap and the effective frictions will overlap, but all will lie on the curve.
Therefore, all strains in the post peak region, not just those at peak and residual
strength, at varying degrees of effective friction will lie on the same curve.

Once defined, the effective friction - strain relationship allows the prediction
of the effective friction for any given amount of post peak strain, e,,,.

4.2.8 Reconstruction of the G - e curves and original comparison

Given that the peak strength, residual strength and effective friction - strain
exact solutions for the rock under investigation are known, equations 4.1, 4.5 and 4.8
respectively, and given expressions for ¢, equation 3.6 and 26, equation 4.7, for any
o3 between zero and the brittle-ductile transition point, a post peak stress-strain plot

can be created. The following is a step by step process provided as a guideline:

i Select a value of o; between zero and the brittle-ductile transition.
it Calculate a value for ,, from equation 4.1.

iii Determine a value for 20 from equation 4.7.

iv Calculate a value of o,, from equation 4.5.

\ Divide the range from ,, to o, into equal increments of G,,,.

vi For each incremented value determine a value of ¢, from equation
3.16.

S

For each value of ¢, solve equation 4.8 for e,,,.

viii  Plot the post peak stress strain plot from G, versus e,
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The same set of confining pressures reported in the original data set, (Farmer,
1983), were used to create the predicted stress-strain curves which were compared
to the original curve set in figure 4.1, as illustrated in figure 4.10.

Silty sandstone (Farmer, 1983)
Reconstructed versus original stress-strain curves
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Figure 4.10: Comparison of the reconstructed with the actual
stress strain curves for the silty sandstone data set.

Since the Joseph-Barron approach does not look at the pre-peak region, but
solely the post peak region from peak to residual strength, the pre-peak regions are
not of prime importance in the comparison. However, it has been assumed in section
2.3.1 that the pre-peak region behaves according to the modulus expression, equation
2.5.

The post peak portions of the predicted stress-strain curves appear to match
the original data curves well, thus verifying the approach.
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4.2.9 The normalized post peak modulus

The normalized post peak modulus, E,,,, as described in equation 3.20 has
been plotted in figure 4.11 as a function of post peak strain, ¢,

E _ sin20 (opp'os) (‘b,"‘bb)

- pp

E 3.20
PPin) (0,70 si’dp, O3 (e,,-¢,)

The values of the constants ¢, and e, are known, and all other parameters in

equation 3.20 are discernable for a given value of o; and a selected value of G,

Silty sandstone (Farmer, 1983)
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Figure 4.11: Plot of normalized post peak modulus versus
post peak strain for a range of o; and G,,, values

As can be seen from figure 4.11, regardless of the choice of 6, between the

determined values of 6, and o,, associated with a given value of G,, there exists a
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continuous relationship between E ) and e,,,.
4.3  Assuming that only peak data is available
4.3.1 Determination of the peak strength criterion

The peak strength criterion evaluation is conducted in exactly the same fashion
as in section 4.2.1, resulting in equation 4.1:

G, = O3 + {648 o, + 3730} 4.1

4.3.2 Estimation of the base angle of friction, ¢,

Since no residual data is available in this case, it is not possible to calculate the
brittle-ductile transition point without first knowing the base angle of friction, ¢,,
which can be evaluated by one of several methods as mentioned in section 3.10.

To allow a direct comparison of all other parameters involved in the Joseph-
Barron approach, the base angle of friction has been set for this verification at the
same value estimated in section 4.2.4, resulting in the base strength criterion, equation
4.6. Section 4.5 discusses the effect of varying the base angle of friction.

¢y = 28.5°

6 =280, 46
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4.3.3 Determination of the brittle-ductile transition point confinement

The brittle-ductile transition point confinement, o, is found by equating
equations 4.1 and 4.6 in accordance with assumption 8, section 2.3 8, resulting in the
solution to equation 3.24, equation 4.9:

5. =548 +/6482+4(2.83-1)33730 49
¥ 2(2.83-1)
G5 = 199 MPa

The value of o, as would be expected since both the peak and base strength
criteria are the same as used in section 4.3, is the same quantity determined from the

available peak and residual data Joseph-Barron approach.

4.3.4 Determination of the residual strength polynomial

The residual strength polynomial constants, D and F are evaluated using
equations 3.4 and 3.5, as conducted in section 4.2.3. However, due to the absence
of residual strength data from which to evaluate G, an approximation at 20% o, is
assumed as per the discussion in section 3.10. The resulting residual strength
polynomial differs only via the choice of 6, and its corresponding effects on the
determination of D and F, equation 4.10:

0. =02(61)=12.2 MPa

6, =-0.004 6>+ 3.7, + 12.2 MPa 4.10
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4.3.5 Comparison of the peak, residual and base strength criteria

Silty sandstone (Farmer, 1983)
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Figure 4.12: Comparison of peak, residual and base
strength criteria in relation to zero confinement and the
brittle ductile transition point using peak data only

The comparison of the peak data only evaluated strength criteria, illustrated
in figure 4.12 provides an equally viable set of criteria, as illustrated in figure 4.7 for
the peak and residual data approach.

4.3.6 Determination of the base strain, e,, the R, S, and T constants,
and the solution to the effective friction - strain polynomial

The base strain, R, S and T constants, and ¢, - e, polynomial are evaluated

by the same approach described in section 4.2.6. The values of ¢, and e, are still
available since these are peak values, and ¢, is known:
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¢, =65°

e, =0.006

¢, =28.5°

The plot of Y versus e is different since the previous evaluation in figure 4.8
included the residual data, which is no longer available. Figure 4.13 illustrates the
Y versus e plot using the peak data only, which allows a slightly different base strain

to be determined from the slope of the linear regression using equation 3.18.

Silty sandstone (Farmer, 1983)
1.1

0.5 : ‘
0.005 0.01 0.015 0.02
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R-square =0.978 #pts=7
y=1.18 +-31.7x

Figure 4.13: Plot of Y versus e to determine the base strain
using the available peak data only.

& =-1/M+¢,=1/31.7+0.006 = 0.04

(The same as e, = 0.04 in the previous analysis)
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The values of R, S and T are evaluated as before from equations 3.12, 3.11
and 3.10 respectively, leading to a solution of the effective friction - strain polynomial,
equation 4.11.

R=80°
S =-2770 °/strain
T = 37100 “/strain’

Therefore the exact solution for the effective friction - strain polynomial for

the silty sandstone data set becomes:
¢. = 80 - 2770 ¢, + 37100 e, 4.11

This function is compared with that for the peak and residual data availability

case in section 4.4.
4.3.7 Comparison of ¢,-e curve with the ¢.-e data - verification

As found for the peak and residual data case, section 4.2.7, a plot of the
effective friction determined from the peak data via equation 3.16 against the
corresponding peak strain data, and the effective friction polynomial, equation 4.11,
shows good agreement between the derived function and the available data. This is
illustrated in figure 4.14.

Once again it can be said that the correlation verifies postulates 1 and 2.
There exists a functional relationship between effective friction and post peak strain,
and the relationship holds for all values of peak strength regardless of the confinement
imposed on the rock.
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Siity sandstone (Farmer, 1983)
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Figure 4.14: Correlation between the effective friction

strain polynomial and the effective friction data values
using the peak data only.

4.3.8 Reconstruction of the ¢ - e curves and original comparison

The procedure introduced in section 4.2.8 is used to reconstruct the stress-

strain curves to compare with the triaxial test data output, figure 4.1, with the
following two changes:

iv Calculate a value of o, from equation 4.10.

vii For each value of ¢, solve equation 4.11 for e,

Figure 4.15 shows the comparison of the original data curves with the
reconstructed stress-strain curves derived from the available peak data only.
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Siity sandstone (Farmer, 1983)
Reconstructed versus original stress-atrain curves
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Figure 4.15: Comparison of the reconstructed with the actual
stress-strain curves using the available peak data only.

4.3.9 The normalized post peak modulus

The normalized post peak modulus, E,,, is determined using equation 3.20
and plotted as a function of e,,, in figure 4.16. When compared to figure 4.11 which
ilustrates the plot of E,,,, versus e, for the peak and residual data availability, it is
evident that there is little difference between the two functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

Siity sandstone (Farmer, 1983)
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Figure 4.16: Normalized post peak modulus derived from
the peak data only.

44  Comparison of the peak and residual data to peak data results

Since the major difference between the two approaches is dependent on the
availability of peak and residual data, the effective friction - strain function is the most
affected. This is due to the procedure for evaluating the base strain that provides the
upper boundary limit at the brittle-ductile transition point, which relies on the
maximum number of data points for increased accuracy, evident by the number of

data points used in section 4.2.6 versus section 4.3.6.

Consequently, differences in the reconstructed stress-strain curves, sections
4.2.8 and 4.3.8, and the normalized post peak modulus curves, sections 4.2.9 and
4.3.9 are the result of the differences seen in the effective friction - strain curves of the
two data sets used. Figure 4.17 shows a comparison of figure 4.9 and figure 4.14.
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Siity sandstone (Farmer, 1983)
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Figure 4.17: Comparison of effective friction - strain
polynomial functions with respect to data availability

As visually expressed in figure 4.17, there s little difference between the two
outcomes with respect to data availability, which suggests that it is not necessary to
gather residual strength data to be able to evaluate the behaviour of the post peak
region. A proviso for this is the need for a careful evaluation of the base angle of
friction to allow the analysis to proceed.

The question then arises as to the sensitivity of the base angle of friction in
evaluating the post peak region. If a technique such as the tilt test, which is a
simplified method of determining the base angle of friction (Stimpson, 1981), is used
then the value of ¢, may be coarse. Section 4.5 addresses this issue by looking at
varying the base angle of friction by several degrees either side of the calculated value.
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4.5  Varying the value of the base angle of friction, ¢\,

The value of ¢, was varied by 8 degrees, in 2 degree increments, either side
of the calculated value of 28.5°, and the effective friction - strain function plotted in
each case, figure 4.18.

Silty sandstone (Farmer, 1983)
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Figure 4.18: The effect of varying the base angle of friction
on the effective friction - strain function.

The plot in figure 4.18 shows that there is negligible difference due to varying
the base angle of friction in the region where the data is available. However, as the
brittle-ductile transition point is approached, where in this case the silty sandstone had
insufficient peak data available, there is some divergence of the respective functions.

It is apparent from figure 4.18 that a small error of one or two degrees in the
evaluation of the base angle of friction does not seem to greatly alter the effective
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friction - strain function in its description of the post peak region.

4.6  Verification of postulates and assumptions using other intact rock data

sets from the literature

As previously stated in section 4.1, 11 additional data sets that contain both
peak and residual data have been worked in a similar fashion to the set described in
this chapter. The results of both peak and residual analysis, and peak only analysis,
on these data sets are summarized in appendices H and J respectively. In addition,
appendix K contains a further 32 worked data sets where only peak data was
available.

It is interesting to note the differences between appendices H and J, where the
effect of peak and residual data being available can be compared to the outcome if
only peak data is used. In appendix H it can be seen that interpretation of the residual
strength, and particularly the strain at which the residual strength commences is made
difficult by the fluctuations recorded in the post peak region. Whether these
fluctuations are due to the effects of equipment or human error during the course of
triaxial testing is unknown, but certainly there appears to be less control in data
collection in the post peak region compared to that in the region up to peak strength.

The effective friction - strain plots show differences between the effective
friction and strain values determined from the recorded and interpreted data compared
to the effective friction - strain polynomial. It will be noted that, when comparing the
peak and residual data reconstructions (appendix H) with peak only data
reconstructions (appendix J), for many of the rocks the latter curves are displaced
somewhat to higher strain values (e.g. marl, appendices H2 and J2), which better
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reflect the original strain data. These differences are primarily due to the difficulty in
defining accurately the residual strains from the original data curves. Where well
defined residual strains are available from the original data this problem does not arise,
e.g. mudstone (appendices H3 and J3).

If, as shown in appendix J, only the peak data is used, there is a much better
correlation between the effective friction - strain polynomial and the effective friction
data points, resulting in a better reconstruction and correlation with the original
stress-strain plots. This leads to a tentative conclusion that poorly collected residual
strain data may in fact do more harm than good.

Since the peak data only approach in section 4.3 and appendix J provides a
good reconstruction of the post peak region of the stress-strain curves, the notion
arises as to whether it is necessary to gather residual data to define the post peak
region. This is confirmed by data cases where both the peak and residual and peak
data approaches compare well, such as the mudstone example (Farmer, 1983),

appendices H.3 and J.3.

Certainly, if a good evaluation of the base angle of friction can be made easily,
then the peak only data approach would be more reliable, due to the difficulty in
evaluating residual data, particularly in a triaxial testing environment.

4.7 Conclusions
Each set of triaxial data taken from the available literature, regardless of the

availability of peak and/or residual data was successfully used to define a post peak
effective friction - strain relationship and a reconstruction of the post peak stress-
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strain data.
It may be concluded that the postulates and assumptions made in chapter 2
have been verified and validated for all 44 data sets from intact rock taken from the

literature, and reported in appendices H, J and K.

Further verification will be reported in chapter 5 using data from tests carried

out by the author on two materials of very different properties.
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Chapter §
Verification of the postulates and assumptions
through physical testing of intact rock

S.1  Testing program for TimKen rock and Highvale mudstone

Two very different rock types were selected to verify the postulates and
assumptions in chapter 2. TimKen is a manmade material whose composition and
manufacture were devised by the author, and which will be discussed in greater detail
in section 5.2. Highvale mudstone is a natural rock extracted from the Highvale coal
mining operation West of Edmonton, Alberta. This rock was located 35 m below
surface, 3 m below the lowest coal seam, and is thought to have been deposited by
glacial activity. The Highvale mudstone is generally of a higher strength than the
sedimentary layers above the coal seams or partings, but is highly susceptible to

weathering.

S.1.1 Triaxial test

Triaxial testing was conducted on two different core sizes, dictated by the size
of the available Hoek-Franklin triaxial confinement cells, (Hoek et al, 1968):

i TimKen rock BX size = 1.625" diameter core
ii Highvale mudstone  EX size = 0.8125" diameter core

Testing of the Highvale mudstone was conducted using the smallest core size
possible, due to the high strength of the rock which required very high confining

pressures to approach the brittle-ductile transition point.

Once recording of the sample dimensions had been made, triaxial testing was
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conducted in accordance with the ISRM standards, whereby the applied confinement

pressure was built up in small stages in conjunction with the applied axial pressure,
to the confinement set for the test. Testing proceeded in all cases using a MTS
loading frame fitted with a 600,000 Ib load cell in stroke control mode. The
restricting factor in testing was the system for applying confining pressure to the
Hoek-Franklin cell, which had an upper reliable limit of 42 MPa. From peak to
residual strength the applied confinement pressure was kept constant through manual
adjustment. Once residual strength was achieved and held constant the test was
stopped, and the confining pressure bled to zero matching the applied axial pressure

to avoid ringing of the specimen.

The data was recorded on a plotter as load versus deformation and transferred
to a spreadsheet manually for interpretation as stress-strain data, thereby taking the
dimensions of the specimen into account. The stiffness of the testing frame was
recorded as 11.6 x 10° kN/m.

Unconfined uniaxial compression tests were also conducted on the samples
in accordance with ISRM standards to provide zero confinement data for each rock

type, which were analyzed with the triaxial data.

S§.1.2 Tilt test

Tilt tests were conducted on core samples to establish the base angle of
friction for the two different rock types. The BX and NX core sizes corresponding
to TimKen and Highvale mudstone as described in section 5.1.1 were used. The
approach used by Stimpson (1981) was employed where one core was allowed to just

slide on two other touching cores of the same diameter, such that the angle of
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inclination of the core, o with the horizontal could be measured, figure 5.1.

Figure 5.1: Tilt test arrangement using core, after
Stimpson, (1981).

The core surfaces were as drilled with only loose material and dust being

removed with a soft brush and air.

For each set of three cores, the uppermost core was used for three tests having
been rotated to a fresh surface for each test. The core positions were interchanged

so that a total of 9 tests were performed on each set of three cores.

Stimpson showed that the base angle of sliding friction could be calculated by
taking into account the angle made by a line passing through the core centres of any
two of three touching cores with the vertical, such that:

¢, =tan "'[sec(p)tan(er)] 5.1
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Where B is half the angle of the internal equilateral triangle made by the
centres of three touching cores of equal diameter, d, figure 5.1, that is B = 30°.

Therefore equation 5.1 becomes equation 5.2:

¢b=tan"[l.155tan(a)] 52

To verify the tilt test, two other methods of establishing the base angle of
friction were used; the triaxial slip test and the shear box test.

5.1.3 Triaxial slip test

The triaxial slip test was conducted in the same fashion as the triaxial test,
with the exception that each core sample tested was pre-cut at an angle of
approximately 30° to the major principal axis, although this angle could be arbitrary.
The angle was recorded since it was needed for the analysis of ¢,. The surfaces of the
cut were ground and polished to remove any saw tooth imprints that might adversely

affect the base friction evaluation. Again the BX and EX core sizes were used.

Once peak strength, indicated by slip, had been achieved then the test was
paused, the peak strength and confinement recorded and the confinement increased
to a higher value. The test was then resumed until slip occurred for the new value of

confinement. The test allowed several data points to be collected for each sample.

The base angle of friction was determined from the siope of a plot of shear
stress, T versus normal stress o, figure 5.2, where t, equation 5.3 and o, equation 5.4
were determined from the values of the peak strength, G|, confinement, ¢, and the

angle made with the major principal stress, 8 recorded.
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Figure 5.2: Plot of 1 versus o to evaluate the base

angle of friction from triaxial slip test results

5.1.4 Shear box test

The shear box test was conducted on pieces of core cut perpendicular to the
cylindrical axis and mounted in a shear box. Varying normal loads, N were applied
to the box, and the applied shear load, T necessary to cause motion of the two halves
measured in each case, figure 5.3. As with the triaxial slip test, the two halves of core
were ground and polished to remove any saw tooth effects that might adversely affect
the base friction evaluation. To maximize the contact surface for this test an NX core
size, 2.125" diameter, was used for both the TimKen and Highvale mudstone samples.
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A plot of T versus N, similar to the t - ¢ plot for the triaxial slip test, allowed

an evaluation of the base angle of friction for the rock.

’ N
E Shear box !

,-——-——-—- <€— Split core

T»} l_—" :
escecence

Figure 5.3: Shear box testing arrangement

I
P

5.2 TimKen rock

TimKen rock is a manmade material consisting of the following constituent

proportions by volume:
i 21.4 % Portland cement
il 53.6% dolomite size 20 sand
it 25.0% water

The constituents were mixed to a smooth slurry and poured into a 16" x 16"
x 6" mold. An initial setting time of 24 hours ensured that a sufficiently stable
structure could be turned out of the mold. The resulting block of material was dried
and cured under constant temperature and airflow conditions for one year, with bi-

monthly turning of the block to ensure even drying and curing. After one year the
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block was cored to provide the appropriate size and number of samples required to
perform the tests outlined in section 5.1. The cores were then dried under the same
constant temperature and airflow drying conditions for a further month. Four such
blocks were prepared and cored for testing.

5.2.1 Triaxial test results

TimKen rock
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Figure 5.4: TimKen rock triaxial test results

Figure 5.4 shows the triaxial test data output for TimKen rock for a range of
confining pressures spanning the range from zero to brittle-ductile confinement.
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§.2.2 Tilt test results and analysis

144 tilt tests were performed on 21 cores, rotating any set of three randomly
chosen cores, so that the slip angle, o« was measured for each core in the set of three.
The base angle of friction, ¢, was determined using equation 5.2 in each case and an

average and standard deviation determined:

¢, = 38.4°
sd =0.6°

5.2.3 Triaxial slip test results and analysis
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Figure 5.5: Triaxial slip test results for TimKen rock

The triaxial slip test was conducted 12 times using 3 samples. The major and

minor principal stresses recorded via peak load and confining pressure in each case
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were used to determine the shear and normal stresses, T and o respectively. These
were plotted as illustrated in figure S.5. The base angle of friction was then
determined via the slope of the plot:

¢, = tan™ {slope} = tan*{0.749} = 36.8°

5.2.4 Shear box test resuits and analysis
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Figure 5.6: Shear box test resuits for TimKen rock

The shear box test was carried out on 6 different samples at 6 different normal
loads. The shear load, T to cause motion along the surface between the two halves
of core, figure 5.3, was plotted against the normal load, N, as shown in figure 5.6.
As with the triaxial slip test, the base angle of friction was determined from the slope

of the plot:
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¢, = tan™ {slope} = tan™{0.791} = 38.3°
5.3  Verification of the postulates and assumptions using TimKen rock
As carried out in chapter 4, the data has been treated in two ways. The first
looks at all the available triaxial data, while the second uses only the peak data.

Following, in section 5.4, a direct comparison is made of the two approaches.

S.3.1 Assuming that the peak and residual data are available and

applying the Joseph-Barron approach

5.3.1a Determination of the peak strength criterion

TimKen rock

3500
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2000 ‘ j : /
1000 ) / ' 1
500 R ad j |
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o3 (MPa)

(o1-a3)2

R-square =0.973 #pts=18
y=208 + 181x

Figure 5.7: Linear form of the Hoek-Brown failure
criterion applied to TimKen rock.

The peak strength criterion was determined from the available peak strength
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data, as per section 3.1, and as illustrated in figure 5.7. The slope and the intercept
from figure 5.7 were used to calculate the Hoek constant m and o, assuming that s =
1 for intact rock, and define the peak strength criterion, equation 5.5.

o, = {intercept/s}'? = {208/1}'2 = 14.4 MPa
m = slope/c, = 181/14.42 = 12.6

and 0, =0; + {181 o5 + 208} "7 55

S.3.1b Determination of the brittle-ductile transition point

TimKen rock
100 —
go | @ Peakswenghdara 1
| ‘ |
80 | Haek-Brown-peak-strength L
70 |_— Residuarstengt porynomal —"
T AT :
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© ; ; ; A
$ so - //?
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‘a ¢
30 it ‘
20 ‘ f
10 ; i
0 s i ’
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Figure 5.8: Polynomial regression of the available residual
data to identify the brittle-ductile transition point.

A polynomial regression analysis of the available residual data, as outlined in
section 3.2, did not provide an identifiable brittle-ductile transition point when plotted
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with the peak strength criterion, equation 5.5, although a sense of the brittle-ductile
confinement was identified between 10 and 20 MPa, figure 5.8.

The linear approximation process, described in section 3.3 was carried out

providing a linear approximation to the residual strength as shown in figure 5.9 and

equation 5.6.
TimKen rock
70 .
60 /
50 i
& a0
<
30
° 20
10
o .
0 5 10 15
o3 (MPa)
R-square =0.971 #pts=17
y=5.27 +4.36x

Figure 5.9: Linear regression of the available TimKen
residual data to allow identification of o;,

6, =4.36 5, + 5.27 MPa 5.6

Equating equations 5.5 and 5.6 according to assumption 8, section 2.3.8,

allowed the determination of o, as per equation 3.3.

Gy = 14.0 MPa
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5.3.1¢ Determination and refinement of the residual strength

criterion

The residual strength polynomial constants, D and F were determined
according to equations 3.4 and 3.5 respectively, assuming c_ = 5.3 MPa from the
linear approximation, equation 5.6, resulting in the residual strength polynomial,

equation 5.7.
G, =-0.12 0'32 +6.00; + 5.3 MPa 5.7
TimKen rock
70 - ‘ .
6o | @ Linear approximation : e
— Residual strength polynomial
50 : ‘ '
S 40
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0 : x
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R-square =0.971 #pts=17
y=5.27 +4.36x

Figure 5.10: Residual strength polynomial and linear
approximation revealing error in the polynomial function

The error in the residual strength polynomial was visible when plotted with the
linear approximation, figure 5.10, which when refined to figure 5.11 allowed new
values for o3, and the residual strength polynomial to be determined, equation 5.8.
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TimKen rock
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Figure 5.11: Modified residual strength polynomial and
linear approximation post refinement process.

G, = 19.0 MPa
6, =-0.0706,>+53 0; +5.3 MPa 58

$.3.1d Estimation of the base angle of friction

The base angle of friction was determined via equation 3.7, given that G, has
been calculated:
&, =37.9°

When compared to the values for ¢, determined via the tilt test, triaxial slip
test and the shear box test, 38.4°, 36.8° and 38.3° respectively, not only did this value
seem reasonable, but the value determined by the tilt test compared well with all other
values and was hence validated.
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The base strength criterion, defined by equation 2.8 and using the calculated

value of ¢, becomes equation 5.9:

o, =4.2 G, 5.9

S5.3.1e Comparison of the peak, residual and base strength

criteria
TimKen rock
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Figure 5.12: Comparison of peak, residual and base
strength criteria in relation to zero confinement and the
brittle-ductile transition point.

Figure 5.12 shows that the peak residual and base strength criteria behave in

a manner suggested by the available data and show the relationship between peak,
residual and base strength as discussed in section 4.2.5.
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5.3.1f Determination of the base strain, e,, and the solution to
the effective friction - strain polynomial

The base strain, e, was determined as per the procedural example in section
4.2.6, via the slope of the Y versus e plot, figure 5.13.

TimKen rock
13 N S
12 X —— r
11 = i :
1 P —
0.9 SN I SN B
. xy P 3 ! : : i
0.7 e 1 : f
! i | ! - 1
0.6 A R =
0.5 R
0.4 S SN N S \
0.3 ‘ ' i ‘ | !
0 0.02 0.04 0.06 0.08
0.01 0.03 0.05 0.07 0.09
e
R-square =0.641 #pts =31
y=1.03 +-7.84x

Figure 5.13: Plot of Y versus e to determine e,

e, =-1/M+e,=1/7.84+0.01 =0.14
The solution to the effective friction - strain polynomial, equation 5.10, was
found via calculating R, S, and T, equations 3.12, 3.11 and 3.10 respectively, given

that ¢, = 59.1° and e, = 0.01 wheno; = 0.

6. =63 - 361 e, + 1300 ¢,” 5.10
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5.3.1g Comparison of ¢,-e curve with the ¢,.-e data - verification

TimKen rock
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Figure 5.14: Correlation between effective friction - strain
polynomial and effective friction data values

Figure 5.14 shows a reasonable correlation between the data and effective
friction polynomial function, verifying postulates 1 and 2.

5.3.1h Reconstruction of the c-e curves and comparison with the

original data

The stress-strain curves were reconstructed using the procedure described in

section 4.2.8, and compared with the original data curves from figure 5.4. This is
illustrated in figure 5.15.

The strain differences seen in figure 5.15 are a reflection of the scatter in the
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interpretation of the residual strains, as also evident in figure 5.14.

TimKen rock
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Figure 5.15: Comparison of the reconstructed with the actual
stress-strain curves for the TimKen rock.

S.3.1i The normalized post peak modulus

Figure 5.16 shows the normalized post peak modulus determined from
equation 3.20 for the TimKen data set.
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TimKen rock
Normalized post peak modulus, Epp(n) versus epp
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Figure 5.16: Normalized post peak modulus versus post
peak strain for the TimKen rock.

$.3.2 Assuming that only the peak data is available and applying the

Joseph-Barron approach

5.3.2a Determination of the peak strength criterion

The peak strength criterion is the same as determined in section 5.3.1a,
equation 5.5, since only peak strength data was used in either case.

G, =03 + {181 o, + 208} 2 5.5
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5.3.2b Estimation of the base angle of friction from a tilt test
The base angle of friction was taken as the value determined by the tilt test,
which compared well with the triaxial slip test and the shear box test, as mentioned
in section 5.3.1d, and allowing the determination of the base strength criterion,
equation 5.11.
¢, = 38.4°
op=430; 5.11
S$.3.2¢ Determination of the brittle-ductile transition point
The brittle ductile transition point confining pressure, o;, was determined by
the procedure outlined in section 3.10, using equation 3.24 arising out of equating
equations 5.5 and 5.11, resulting in:
Gy, = 18.0 MPa

5.3.2d Determination of the residual strength criterion

The residual strength polynomial was determined as per the procedure
followed in section 5.3.1c taking G as 20% of &, and thus yielding equation 5.12.

6, =-0.09 6,2+ 5.7c; + 2.9 MPa 5.12
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5.3.2¢e Comparison of the peak, residual and base strength

criteria

Figure 5.17 illustrates the relationship between the three strength criteria,

which compares equally well to the version in figure 5.12 where peak and residual

data were used.
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Figure 5.17: Comparison of peak, residual and base

strength criteria.

5.3.2f Determination of the base strain, e, and the solution to the
effective friction - strain polynomial

The base strain calculation procedure was carried out as described in section
4.2.6, with the exception that only peak data effective friction values were used.
Figure 5.18 shows the Y versus e linear plot giving a slope for determining e,.
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TimKen rock using peak data only
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Figure 5.18: Plot of Y versus e to determine e,.
e, =-1/M+¢,=1/11.3 +0.01 =0.095

This value is lower than that determined using the peak and residual data
option, where e, = 0.14.

The solution to the effective friction - strain polynomial was determined as

equation 5.13, given the same values for ¢, and e, as in section 5.3.1f.
¢,=67-6003w+3190 ew2 5.13
5.3.2g Comparison of ¢,-e curve with the ¢.-e data - verification

Figure 5.19 shows the effective friction - strain polynomial plotted with the
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peak data effective friction values. When compared to figure 5.14, where both peak
and residual data were employed, the polynomial function in figure 5.19 is equally
valid with respect to the available data. The peak only data option seems to provide
a closer correlation of the polynomial with the data points, indicating that the residual
data gathered during triaxial testing may not have been as accurate as that of the peak
data, evident from the degree of scatter associated with the residual data. When
compared to the lower strength rock data drawn from the literature, such as the marl
(Farmer, 1983), appendices H.2 and J.2, or the Gebdykes dolomite (Santarelli et al,,
1989), appendices H.11, and J.11, this observation is not unreasonable.

TimKen rock using peak data only
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Figure 5.19: Correlation between effective friction - strain
polynomial and peak data effective friction values.

Figure 5.19 shows an equally reasonable correlation between the polynomial
and the data points, as found with figure 5.14, thus verifying postulates 1 and 2.
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5.3.2h Reconstruction of the 6 - e curves and original comparison

TimKen rock using peak data only
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Figure 5.20: Comparison of the reconstructed with the actual
stress-strain curves for TimKen rock using peak data only.

Comparing figures 5.20 and 5.15 and the corresponding effective friction-
strain figures 5.19 and 5.14, it can be seen that using solely the peak data allows for
a better reconstruction of the stress-strain curves in the post peak region. The largest
difference between the two approaches being the adverse effect of including poorly
interpreted residual strain data. This reinforces the fact that it is very difficult to
interpret the amount of strain experienced when residual strength is achieved from a
triaxial test stress-strain plot, due to the shallow erratic curvature of the post peak
region tail.

Figure 5.20 does validate the Joseph-Barron approach and emphasizes the fact
that it may only be necessary to collect peak strength and strain data.
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5.3.2i The normalized post peak modulus

TimKen rock using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Figure 5.21: Normalized post peak modulus versus post
peak strain data for TimKen rock via peak data only.

Comparing figure 5.21 to that for the peak and residual data, figure 5.16, both
curves are virtually the same. This similarity suggests that despite the differences
between the effective friction - strain and stress-strain plots discussed in the preceding
2 sections, the slope of the post peak curves change very little, regardless of the
accuracy of the strain recordings of the residual data. If the slopes of the post peak
curves in figures 5.20 and S5.15 are reviewed it will be seen that it is hard to
distinguish them unless a very large plot scale is employed. This is more clearly seen
in figure 5.23.
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S.4  Comparison of the TimKen rock peak and residual data to peak data

results

During the course of the previous section, 5.3.2, where the peak data was
solely used, comparisons were made with section 5.3.1 at each stage of the Joseph-
Barron approach. Figures 5.22 and 5.23 show a comparison of the peak and residual
to peak only approaches in terms of the effective friction - strain and stress-strain

plots respectively. In each case the peak only curves are shown as dashed lines.

TimKen rock
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Figure 5.22: Comparison of the peak and residual to peak
only approaches via the effective friction polynomials.

Figure 5.22 reveals that the dashed peak only polynomial line passes through
the peak and residual data more effectively than the polynomial curve determined
from the peak and residual data. This is due to the outlying residual data points which
cause the peak and residual function to overestimate the effective friction.
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Figure 5.23: Comparison of the peak and residual to peak only
(dashed) reconstructions of the original stress-strain curves.

As discussed in section 5.3.2i, the curvature of the post peak regions in both
the peak and residual and peak only cases are similar, particularly at the higher
confinements. The strain differences between the two sets, caused by the large scatter
in the residual data points in figure 5.22 is made apparent here by the effect on the
peak and residual strain values. Despite this, the peak and residual strength values
match very well. This continues to suggest that the difference between the two sets
of curves is the interpretation of the effective friction - strain polynomial.

Having investigated the effective friction - strain behaviour of the post peak
region of a weak strength rock, attention is turned to a rock of much greater strength,
where it was only possible to carry out triaxial testing at the lower values of confining
pressure with respect to the brittle-ductile transition point.
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5.5 Highvale mudstone

As mentioned in section 5.1, the Highvale mudstone is a natural rock of local
origin. It consists of a fine grained matrix of particle size less than 0.1 mm, which
classifies the grains in the silt range, and has a cement containing a large clay fraction.
During coring of the rock to gain core samples for testing it became evident that
although the rock was hard enough to warrant water for cooling of the core barrel,
water would very quickly cause the clay cement to soften, thus changing the
behaviour of the material from one of rock to clay. This high susceptibility to water
necessitated a much slower coring program with higher air pressures for core bit
cooling, than had been employed for the TimKen rock. Consequently, great care was
taken to ensure that the rock was dry and remained dry during the course of testing.

§.5.1 Triaxial test resuits

Figure 5.23 shows the triaxial test data recorded for a range of confining
pressures. Due to the high strength of the rock, indicated by the measured uniaxial
compressive strength of 93 MPa compared to 18 MPa for the TimKen rock, the
confinement required to reach the brittle-ductile transition point would be much
greater than possible with the confinement system available. This is seen by the
difference in peak to residual strength values achieved with a maximum possible
confining pressure of 41 MPa. As will be seen the confinement necessary to achieve
brittle-ductile transition for the Highvale mudstone is 350 MPa.
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Highvale mudstone
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Figure 5.24: Highvale mudstone triaxial test results

5.5.2 Tilt test results and analysis
30 tilt tests were performed on various randomly chosen permutations of 15
cores. The base angle of friction, ¢, was determined via equation 5.2 for each

recording, with the average and standard deviation found to be:

B, = 28.5°
sd=0.7°

5.5.3 Triaxial slip test results and analysis

The triaxial slip test was conducted 10 times using 3 samples. The
correspondingly determined values of t and ¢ from each test were plotted as shown
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in figure 5.25 to allow determination of ¢, from the slope of the graph.
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Figure 5.25: Triaxial slip test results for Highvale
mudstone.

¢, = tan™ {slope} = tan {0.524} = 27.7°
5.5.4 Shear box test results and analysis
The shear box test was carried out on 6 different samples at 6 different normal
loads. Figure 5.26 shows the shear load measured, T versus normal load, N to allow

determination of ¢, from the slope of the graph.

¢, = tan™ {slope} = tan™{0.552} = 28.9°
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Figure 5.26: Shear box test results for Highvale mudstone.

5.6  Verification of the postulates and assumptions using Highvale mudstone
As was carried out for TimKen rock, the peak and residual data Joseph-
Barron approach is looked at first, followed by the case using peak data only. Again,

as in section 5.4, a direct comparison of the two approaches is made in section 5.7.

S.6.1 Assuming that the peak and residual data are available and
applying the Joseph-Barron approach

S.6.1a Determination of the peak strength criterion

As before, section 3.1, the Hoek-Brown peak strength criterion constant m

and o, were determined assuming the Hoek-Brown constant s = 1 for intact rock.
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Figure 5.27 shows the linear regression of the linear form of the Hoek-Brown failure
criterion applied to the Highvale mudstone, allowing the exact solution of the peak
strength criterion, equation 5.14.

Highvale mudstone
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Figure 5.27: Linear form of the Hoek-Brown failure
criterion applied to Highvale mudstone.

o, = {intercept/s}'* = {8830/1}"? = 94 MPa
m = slope/c, = 1200/93.97 = 12.8

and G, =03 + {1200 5, + 8830} 5.14

S.6.1b Determination of the brittle-ductile transition point

As was found for the TimKen rock, figure 5.8, a polynomial regression
analysis of the available residual data did not identify a brittle-ductile transition point
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when plotted with the Hoek-Brown failure criterion, equation 5.14, as shown in figure
5.28. In this case it was not possible to even hazard a guess at the brittle-ductile
confining pressure due to the absence of any available data within reasonable

proximity to the brittle-ductile transition point.

Highvale mudstone
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Figure 5.28: Polynomial regression of the available
residual data to identify the brittle-ductile transition point

The linear approximation process, as outlined in section 3.3, was employed
as illustrated in figure 5.29, allowing the determination of o;, via the equating of
equation 5.15 to 5.14 using assumption 8, section 2.3.8.

6, =3.89 0, + 6.88 MPa 5.15

G, = 146 MPa
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Figure 5.29: Linear regression of the available Highvale
mudstone residual data to allow identification of o;,.

S.6.1c Determination and refinement of the residual strength

criterion
The residual strength polynomial constants, D and F were determined as
before assuming o = 6.9 MPa from equation 5.15, allowing an initial, pre-refinement
residual strength polynomial, equation 5.16 to be stated:

6,=-0016,’+540,+69MPa 5.16

The error in the residual strength polynomial compared to the linear
approximation for the Highvale mudstone is much greater than that experienced for
the TimKen rock, figure 5.10, as shown in figure 5.30.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Highvale mudstone
250 T
200 |_— Residual ﬁngtj polynomial -
150 >
5 —
< 1 L /
100 L e
° ? /'/
i L. ' ’
50 L - )
T P
N A N N R RN
0 10 20 30 40 §0
o3 (MPa)

R-square =0.984 #pts=7
y=6.88 + 3.89x

Figure 5.30: Residual strength polynomial and linear
approximation revealing error in the polynomial function.
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Figure 5.31: Modified residual strength polynomial and
linear approximation post refinement process.
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In the Highvale mudstone case the polynomial function appears linear in figure
5.30. This is due to the low confinement region of the data collected compared to the
brittle-ductile transition point confinement. By adjusting the slope of the linear
approximation in figure 5.31, the residual strength polynomial, equation 5.17 and the
brittle-ductile confining pressure are refined.

6, =-0.003 6,2 +3.8 6; + 6.9 MPa 5.17
o, = 350 MPa

5.6.1d Estimation of the base angle of friction
The base angle of friction was determined from equation 3.7 to be:
b, =28.9°
When compared to the values for ¢, determined via the tilt test, triaxial slip
test and the shear box test, 28.5°, 27.7° and 28.9° respectively, not only is the
calculated value reasonable, but the value of ¢, determined by the tilt test is

comparable with all other values determined. This confirms the validity of the tilt test.

The base strength criterion, defined by equation 2.8, and given the value of ¢,
calculated, is equation 5.18.

6, =290, 5.18
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S.6.1e Comparison of the peak, residual and base strength

criteria

Figure 5.32 illustrates the comparison of the three strength criteria defined by
equations 5.14, 5.17 and 5.18. As found with the Timken rock, the appropriate
relationships discussed in section 4.2.5 continue to hold.

Highvale mudstone
1200 1
1000 |_— HoekB kstrebgth.
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! ra
—— ° ’l
800 i
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Figure 5.32: Comparison of peak, residual and base
strength criteria in relation to zero confinement and the
brittle-ductile transition point for Highvale mudstone.

5.6.1f Determination of the base strain, e, and the solution to the
effective friction - strain polynomial

The base strain, e, was determined as before according to section 4.2.6. The
plot of Y versus e, figure 5.33, gives a slope to determine e, for Highvale mudstone.
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Highvale mudstone
1.1 T
1 N
N .
0.9 AN
N\ i
08 i
> T T
0.7 —
; Ny
0.6 T C
0.5 : ! | x
| | ; *
(1] 0.01 0.02 0.03 0.04 0.05
e
R-square = 0.921 #pts=12
y=118 +-17x

Figure 5.33: Plot of Y versus e to determine e,

& =-1/M+e,=1/17 +0.009 = 0.07
R, S and T were evaluated as before using equations 3.12, 3.11 and 3.10
respectively, and the effective friction - strain polynomial determined as equation 5.19,
given that ¢, = 70° and e, = 0.009 when 5, = 0.
d)‘,=83-ISQOeI,p-*-HSOOe‘,‘,z 5.19

5.6.1g Comparison of ¢.-e curve with the ¢,-e data - verification

Figure 5.34 shows a good correlation between the effective friction - strain
data and the polynomial determined in equation 5.19. The agreement verifies
postulates 1 and 2.
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Highvale mudstone
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Figure 5.34: Correlation between the effective friction -
strain polynomial and the effective friction data values.

S.6.1h Reconstruction of the G - e curves and comparison with

the original data

The stress-strain curves were reconstructed in figure 5.35 using the procedure
from section 4.2.8 and compared in the same plot with the original data curves from
figure 5.24. The original stress-strain curves are shown as dashed lines.

Despite the sparsity of available data in the case of the Highvale mudstone, the

close clustering of data in figure 5.34 about the effective friction - strain polynomial
allowed an accurate reconstruction of the stress-strain plots.
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Highvale mudstone
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Figure 5.35: Comparison of the reconstructed with the actual
stress-strain curves for the Highvale mudstone.

Highvale mudstone
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Figure 5.36: Normalized post peak modulus versus post
peak strain for the Highvale mudstone.
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5.6.1i The normalized post peak modulus

Figure 5.36 shows the normalized post peak modulus determined from
equation 3.20 for the Highvale mudstone.

5.6.2 Assuming that only the peak data is available and applying the

Joseph-Barron approach
S.6.2a Determination of the peak strength criterion

The peak strength criterion is the same as determined in section 5.6.1a,
equation 5.14.

oy, = 03 + {1200 G, + 8830} 2 5.14
5.6.2b Estimation of the base angle of friction from a tilt test
The base angle of friction was taken as the value determined by the tilt test,
which compared well with all values measured or determined as mentioned in section
5.6.1d. The base strength criterion was evaluated from this value, equation 5.20.

d, = 28.5°

6y, =28 G; 5.20
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S.6.2¢ Determination of the brittle-ductile transition point

The procedure in section 3.10, employing equation 3.24 via equations 5.14
and 5.20 allowed the determination of the brittle-ductile transition confinement:

Gy =370 MPa

S.6.2d Determination of the residual strength criterion

The residual strength polynomial was determined using the approach followed
in section 5.6.1c, taking o, as 20% of o, resulting in equation 5.21.

Gy =-0.002 6, +3.7 o; + 18.8 MPa 5.21
Highvale mudstone using peak data only
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Figure 5.37: Comparison of peak, residual and base
strength criteria.
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5.6.2¢ Comparison of the peak, residual and base strength

criteria

Figure 5.37 shows the relationship between the three strength criteria. These
compare well with the peak and residual data approach version, figure 5.32.

5.6.2f Determination of the base strain, e, and the solution to the
effective friction - strain polynomial

The base strain calculation procedure in section 4.2.6 was followed, but only
using the available peak data effective friction values. Figure 5.33 shows the Y versus

e plot used to determine e, from the slope.

Highvaie mudstone using peak data only
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Figure 5.38: Plot of Y versus e to determine e,
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e, =-1/M+e,= 1/13.7 +0.009 = 0.08

The solution to the effective friction - strain polynomial was found to be

equation 5.22 given the same values for ¢, and e, as in section 5.6.1f.
6. =80- 1270 ,, + 7760 &’ 522

5.6.2g Comparison of ¢.-e curve with the ¢,-e data - verification

Highvale mudstone using peak data only
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Figure 5.39: Correlation between effective friction - strain
polynomial and peak data effective friction values.

As good a correlation between the effective friction - strain polynomial is seen
for the peak only data approach, figure 5.39, as was seen in figure 5.34 where the
peak and residual data was used. In this case the correlation gives a tight grouping
of the peak data effective friction values to the polynomial. On reviewing figure 5.34,
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the residual data still gives some scatter around the polynomial, whereas the peak data

is much closer.

S.6.2h Reconstruction of the ¢ - e curves and original comparison

Again the procedure in section 4.2.8 was followed to reconstruct the stress-
strain curves which have been plotted in figure 5.40 with the original curves from
figure 5.24. The original curves are shown as dashed lines.

As was found in figure 5.35 previously, there is an equally good correlation

between the reconstructed and original stress-strain curves.
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Figure 5.40: Comparison of the reconstructed with the actual
stress-strain curves for Highvale mudstone using peak data.
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5.6.2i The normalized post peak modulus

As was done with the TimKen rock, section 5.3.2i, comparing figure 5.41 to
figure 5.36 reveals that both curves are virtually the same.

Highvale mudstone using peak data only
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Figure 5.41: Normalized post peak modulus versus post
peak strain data for Highvale mudstone via peak only data.

Again, this suggests that any differences between the peak and residual and
peak only approaches become small with respect to the slope of the post peak region,
as evidenced by figures 5.41 and 5.36.
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5.7  Comparison of the Highvale mudstone peak and residual data to peak
data resuits

Figures 5.42 and 5.43 compare the peak and residual to peak only approaches
in terms of the effective friction - strain and stress-strain plots respectively. As in
section 5.4, the peak only option is shown as dashed lines.

Again, as with the TimKen rock, the Highvale mudstone shows equally good
output from the peak only option as for the peak and residual approach. This
validates the use of peak only data rather than relying on the collection of peak and
residual triaxial data, which is less reliable and more costly than the collection of peak

triaxial data alone.
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Figure 5.42: Comparison of the peak and residual to peak
only approaches via the effective friction polynomials.
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In both figures 5.42 and 5.43, each of the approaches used are equally good
in their outcome of stress-strain reconstruction and matching to the available data

employed in each case.
Highvale mudstone
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Figure 5.43: Comparison of the peak and residual to the peak
only (dashed) reconstructions of the original 6-e curves.

S.8  Validity of the tilt test in defining the base angle of friction, ¢,

The tilt test results for both the TimKen rock and Highvale mudstone have
been compared with those from the triaxial slip test and shear box test and found to
be comparable, table 5.1.

In addition, the values for ¢, calculated from the peak and residual data

approach, also reported in table 5.1, are comparable with the tilt test values. It can
thus be concluded that the tilt test is a valid approach for determining the base angle
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of friction, ¢,
tilt test | triaxial slip | shear box | peak and
test test residual
calculation
TimKen 384 36.8 383 379
rock
Highvale 28.5 27.7 28.9 289
mudstone

Table 5.1: Comparison of determined base angle of friction values.

5.9 Conclusions

The postulates and assumptions made in chapter 2 have been verified through
the physical testing of two intact rocks; TimKen rock and Highvale mudstone.

In particular, the residual strength polynomial is a valid residual strength
criterion for interpreting the available residual strength data and predicting the
behaviour of residual behaviour where data is not available. The effective friction -
strain polynomial is a valid function for interpreting post peak stress-strain behaviour
by allowing reconstruction of the post peak stress-strain curves. The post peak
modulus relationship validly describes the post peak behaviour of intact rock.

Both the peak and residual data approach and the peak only data approach
have been shown to provide similar results, allowing equally good predictions of the
effective friction - strain, stress-strain and post peak modulus behaviour of the two

rocks investigated.

The tilt test as an approach for the determination of the base angle of friction,
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¢y, has been validated through comparison with the values from the triaxial slip test
and shear box test, and with the value calculated from peak and residual data.

It is not necessary to rely on the gathering of residual triaxial data in addition
to peak triaxial data, since the post peak region may be evaluated with merely the

latter set and an evaluation of the base angle of friction by a simple tilt test.

The peak only data Joseph-Barron approach is a valid means of evaluating the
post peak modulus and reconstructing the stress-strain curves.
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Chapter 6
Application of the Joseph-Barron approach to
establish the post peak modulus of broken rock

6.1 Introduction and background

In this chapter, the term “broken rock” is used to describe both rock that is
damaged (i.e. non-intact), for example the rock mass data sets reported by Hobbs
(1970), and where the rock is completely broken (i.e. comprised of reformed crushed
material), for example the crushed rock data set reported by Hussaini (1991). In both

cases the value of the Hoek-Brown constant, s is less than unity.

The available literature reveals little work previously carried out on the post-
peak region for any rock, whether intact or broken. Some empirical work has been
carried out by Hoek et al. (1997) using the concepts of geological strength index,
GS]I, representing the fractured nature of the rock akin to rock mass rating, RMR, and
a knowledge of the intact rock Hoek-Brown peak strength criterion to predict post
peak behaviour. However, to do this Hoek et al. assumed that the post peak region
can be approximated by linear relationships as illustrated in figure 1.2.

Hobbs (1970) conducted triaxial testing on 4 broken rocks drilled from the
roof of coal seams in the UK., and Hussaini (1991) on $ sizes of crushed basalt,
providing several fully reported data sets at peak strength in each case. But, in each
of these cases the aim was to investigate the behaviour to peak strength only, with no
consideration of the post peak region.

Hoek et al. (1980) and Jaeger (1970) reported on the Panguna andesite rock
mass at 5 degrees of weathering, and Hoek et al. (1997) report on 3 additional rock
masses described only as very good, average or very poor in quality.
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Apart from those listed above, the author was unable to locate any further
broken rock data sufficient to perform an example analysis. In fact the 8 data sets
reported by Hoek et al., 1980 and 1997 provide only a pre-peak modulus, a base
angle of friction and the Hoek-Brown peak strength criterion constants, m, and s,
where m, is the m value applied to broken rock, with no actual triaxial data being
reported.

6.2  Postulates
The original postulates outlined in section 2.2 still hold, plus the following:

6.2.1 Postulate 3 - Effective friction - strain relationship for broken

rock

At any point in the post peak region for broken rock, prior to and including
the residual strength for that broken rock it is postulated that the same effective
friction - strain relationship postulated in section 2.2 holds both for intact and broken

rock of the same material.
$.=fle,) 2.4

6.2.2 Postulate 4 - Post peak stress-strain behaviour of broken versus
intact rock

It is postulated that the peak stress and strain for broken rock at a given

confinement, G,, describes a point that lies on the post peak stress-strain curve of the
intact rock under the same confinement conditions. The shape of the post peak
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stress-strain curve for the broken rock is identical to that of the intact rock post peak
stress-strain curve. The broken rock curve passes through the residual stress-strain
point for the intact rock, becoming constant at a residual strength that is less than the
intact residual strength.

6.2.3 Postulate S - The post peak modulus

It is postulated that the normalized post peak modulus for the intact rock and

the broken rock follow same relationship.
6.3  Assumptions

The assumptions 1 through 9 outlined in section 2.3 remain valid. The Hoek-
Brown peak strength criterion, equation 2.6 must however be put into a form

appropriate for use with rock mass, equation 6.1, (Hoek et al., 1997).

o]
- 3 a
0,,=03 +oc[mb? +5] 6.1

4

Where a is the Hoek-Brown exponent which has a value of ' for intact rock,
m, and s are the Hoek-Brown broken rock empirical constants and s is less than unity

assumed for intact rock.

6.3.1 Assumption 10 - Empirical relationships after Hoek et al. (1997)

Hoek et al. provide charts in their paper that allow a determination of the
RMR or GSI parameters, where GSI = RMR - 5. The following empirical
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relationships described in the same paper allow an estimation of the peak strength
criterion when no triaxial peak strength data is available:

m,=m exp| GSI-100]
b __28 6.2
If GSI > 25 then a = Y2 and
7-100
s=exp[g§-9—-] 6.3

If GSI < 25 (poor quality rock mass) then s = 0 and

a=0.65 _GSI 6.4

200

6.3.2 Assumption 11 - Pre-peak broken rock deformation modulus

Bieniawski (1978) suggested an empirical relationship between RMR and in-
situ modulus of deformation based on gathered data, equation 6.5. Serafim et al.
(1983) proposed a modified version to predict pre-peak deformation modulus,
equation 6.6 when RMR is less than 60. A comparison of the two functions is made
in figure 6.1, after Bieniawski (1984), showing the direction change at RMR = 60.

E,,,(,,,om):(ZMI/ﬂtmm—IOO) GPa 6.5
B 10,
Enoroten=10  ®  GPa 6.6
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E, = 2RMR - 100
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Figure 6.1: Comparison of equation 6.5 (solid line) to equation
6.6 (dashed line), after Bieniawski, 1984.

Hoek et al. (1997) suggested that the Serafim et al. form, equation 6.6 worked
well except when the uniaxial compressive strength, o, is less than 100 MPa. They
modified the Serafim et al. form for such cases, as given in equation 6.7. Once again,
as with the work of Bieniawski and Serafim et al., equation 6.7 was devised by Hoek

et al. on an empirical basis.

RMR,y, on
E = % 10[ w GPa 6.7
m(broken) Ioo ¢

It is therefore assumed that if the intact uniaxial compressive strength, o, of the
rock is less than 100 MPa, then the broken rock pre-peak modulus, E e, is given
by equation 6.7. If o, is greater than 100 MPa and RMR is greater than 60, then
E puirokcn) 1S given by equation 6.5. If o, is greater than 100 MPa and RMR is less than

60, then E ;i) is given by equation 6.6.

To be able to verify the postulates via the Joseph-Barron approach it is
necessary to be able to establish the strain at peak strength for a given value of o, for
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both the intact and broken material. If, as is the case with the Panguna andesite and
the generalized rock mass data sets reported in the literature, Hoek et al. (1980) and
Hoek et al. (1997) respectively, where no strain data is directly available, the strain
data at peak strength must be generated from a knowledge of the pre-peak modulus,
and using equation 2.5.

25

If no pre-peak intact modulus is reported, then one must be assumed to be able
to further the analysis. The author took the available data from Hoek et al., 1997,
where the broken pre-peak moduli were given, and used equation 6.5 to generate
intact pre-peak moduli values. The data gave the empirical relationship in equation
6.8, as illustrated in figure 6.2.

E RMR
Log, [—2Ertem |27 g5[—2roken | 6.8

m(intact) intact

It is assumed that in cases where triaxial data is unavailable for a range of
confinements, but there is sufficient data to discern RMR for both intact and broken
rock, and also a pre- peak modulus for the broken material from an appropriate choice
of either equations 6.5, 6.6 or 6.7, then the intact rock pre-peak modulus may be
obtained via this empirical relationship, equation 6.8. The strain at peak may then be

determined using equation 2.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Relationship between Em and RMR
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Figure 6.2: Empirical plot of data after Hoek et al. (1997)
to verify equation 6.8.
6.3.3 Assumption 12 - The Hoek-Brown peak strength criterion and the
residual strength polynomial relationship for broken rock

When rock is broken it will exhibit broken behaviour as opposed to intact
behaviour. When intact rock becomes broken for a given confinement and peak load,
then beyond the peak strength it follows a broken behaviour. When broken rock is
subjected to a given confinement and loaded to peak strength, then beyond peak
strength it continues to exhibit broken behaviour.

Broken rock no longer permits the use of a Hoek-Brown parameter value of
s = 1, but s < 1 dependent on the degree of fragmentation of the broken rock. A
Hoek-Brown peak strength criterion with a value of s < 1 describes the peak strength
of broken rock for a given confinement. The residual strength polynomial, equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

2.7, also describes a strength of broken rock for a given confinement.

If broken rock is considered in the unconfined state, then at peak strength the
effective friction holding the broken rock together is overcome. Since there is no
confinement holding the rock together then the roughness of the broken surfaces are
not reduced and the effective friction experienced at peak remains constant. In other
words the peak strength and the residual strength are the same at ¢; = 0. It is therefore
assumed that the peak strength and the residual strength for the broken rock are
described by the same function at not only the brittle-ductile transition point, (¢, = o3,),
but also in the unconfined state, (o; = 0), equation 6.9.

Oy =01 =0q wheno; =0 6.9

6.4  The Joseph-Barron approach applied to broken rock - a verification of

the postulates using example data sets from the available literature

There are two cases arising from the available data reported in the literature.
The Joseph-Barron approach for cases i and ii are outlined using sample data sets in
sections 6.4.1 and 6.4.2 respectively, allowing verification of the postulates and

assumptions concurrently.

i Triaxial peak strength and strain data for a number of confining

pressures is available for both the intact and broken rock.

ii No triaxial data is available, but the Hoek-Brown intact peak strength

parameters and a geological description of the rock are available.
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6.4.1 Where triaxial data is available

An Ormonde siltstone data set (Hobbs, 1970) was selected to verify the
postulates as applied to broken rock. Appendix M.7 provides a summary of the
available intact triaxial data, rock mass triaxial data, and the subsequent analysis.

If triaxial data is available for both the intact and broken rock then two analyses
may be conducted concurrently to allow a comparison between the intact and broken
relationships. The intact analysis would follow the procedures laid out in chapter 3,
while that for the broken rock is outlined below.

It should be noted that no broken rock residual strength triaxial data was found
in the literature. This is understandable considering the difficulty in gaining intact rock
residual data via triaxial testing as discussed in chapters 4 and 5. Consequently, the
Joseph-Barron analysis described below is akin to the peak only intact data option.

6.4.1a Determination of the Hoek-Brown strength parameters

To enable the values of m, and s to be determined, since s < 1, two plots must
be constructed. One, as described in section 3.1, using the linear rearrangement of the
Hoek-Brown peak strength criterion, equation 6.1; the second plot being a direct plot

of o, versus G;.

Figure 6.3 shows that the slope of the function allows the determination of m,
given that the uniaxial intact compressive strength o, is known, as per section 3.1.
Figure 6.4 illustrates the determination of s via the intercept at o; = 0, equation 6.10,
again given that o, is known.
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Ormonde siltstone broken rock (Hobbs, 1970)
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Figure 6.3: Linear form of the Hoek-Brown broken rock
peak strength criterion to evaluate m, from the slope.

Ormonde siltstone broken rock (Hobbs, 1970)
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Figure 6.4: Linear regression of a 5, versus G; plot to
evaluate s from the intercept.
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oy
olp=03 +o‘c[’nb‘_ +S] 6.1
oc
When o, =0:
. 1
s=[ mtercept] . 6.10

c

Where a = Y4, except for very poor rock (GSI < 25) when s = 0 and a is given
by equation 6.4.

For the Ormonde siltstone example:

Intactrock: m=9.6,s=1,0,=65MPa
Rock mass: my,=4.3,5s=0.02, 6, =65 MPa

6.4.1b Estimation of the base angle of friction, ¢,

Since the base angle of friction and hence the base strength criterion, equation
2.8, are the same for both the intact and broken rock, ¢, may be determined from a tilt
test on cores of the intact rock or by one of the other methods described in chapter 5,
or by a knowledge of similar rock behaviour from the literature. In the case of the
Ormonde siltstone, the base angle of friction was assumed from a plot of shear stress
versus normal stress provided in the literature, and found to be:

¢y = 30°
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6.4.1c Determination of the confinement at the brittle-ductile
transition point

The confinement at the brittle-ductile transition point, ©;,, is determined by
equating equation 6.1 with equation 2.8, according to assumption 8, section 2.3.8.
The resulting confinement values at the brittle-ductile transition point for the Ormonde

siltstone were determined to be:

Intact rock: ©;, =163 MPa
Rock mass: o, =70 MPa

6.4.1d Determination of the residual strength polynomial

constants o, D and F

The residual strength polynomial constants D and F are determined given that
Gy and o, are known, by equating the respective strengths and the slopes of equations
6.1 and 2.7 at the brittle-ductile transition point according to assumption 8, section
2.3.8, equations 2.13.

The uniaxial residual strength of the broken rock, o is determined via
assumption 12, equation 6.9, such that by equating equations 6.1 and 2.7 when o, =
0, equation 6.11 is defined:

0,=0S a 6.11

Appendix L provides the detailed derivation of D and F for broken rock
resulting in equations 6.12 and 6.13:
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D= 1 031 a 03: a-1
——2-[0c,—[mb—-+s] +am 0, [m,——+s]*""] 6.12
05, oc oc
c o
F=1-am,[m,—2+s “"-i[oc,-[m,,iﬂ]"] 6.13
oc 3t oc

The Ormonde siltstone example provided the following residual strength

polynomial parameters:

Intact rock: D =-0.006,F=3.9,6_.=13 MPa
Rock mass: D =-0.013,F=3.7,6,=9.6 MPa

In summary, the solutions to the peak, residual, and base strength criteria for

the Ormonde siltstone data set were determined for the intact rock and rock mass as

given below:

Intact rock:  ©,, =0, +65{0.150; + 1}'> MPa
6, = -0.0066,2 + 3.95, + 13 MPa

Gy =3 0; MPa
Rock mass: oy, =03 +65{0.07 6, +0.02}"> MPa

6, =-0.0136,> + 3.7, + 9.6 MPa

G, =3 0; MPa
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6.4.1¢ Comparison of the intact and rock mass strength criteria

Once the peak, and residual strength criteria have been evaluated for both
broken and intact rock a comparison can be made by plotting them with the base

strength criterion.

The broken rock will have a different brittle-ductile transition point than that
of the intact rock, occurring at a lower value of confinement, but both transition points
will lie on the base strength curve since the base angle of friction remains the same for

intact and broken rock. This is illustrated in figure 6.5.

Ormonde siltstone broken rock (Hobbs, 1970)
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(MPa)

ol

0 50 100 150 200
o3 (MPa)

Figure 6.5: Comparison of broken and intact peak, residual
and base strength criteria showing two transition points.
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6.4.1f Determination of e, and the solution to the effective friction

- strain polynomial
Ormonde siitstone broken rock (Hobbs, 1970)
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Figure 6.6: Plot of Y versus e to determine the base strain.

The procedure outlined in section 3.7 remains valid for determining the base
strain, ¢, with the following change. Despite the fact that both the Hoek-Brown rock
mass peak strength criterion and the rock mass residual strength polynomial both
describe the broken rock behaviour, it is the derivative of the residual strength with
respect to the confining pressure, equation 6.14 that is used rather than the peak
strength with respect to confining pressure, equation 3.15, for the rock mass data.

6o,

—=2D0,+F 6.14
603 3

20=2tan™2Do,+F 6.15
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This allows the value of 20, equation 6.15, to be derived from equation 3.14,
which in turn allows the evaluation of the effective friction data values, equation 3.16,
necessary to determine values of Y, equation 3.17 for the Y versus e plot, figure 6.6,
where the strain values, e are taken from the available data.

It should be borme in mind that the intact rock data values of 20, and
subsequently ¢., are still determined using the derivative of the peak strength with
respect to confining pressure as previously defined by equation 3.15. All values of ¢,
for given values of e, irrespective of intact rock or rock mass data source may be used
to determine values of Y and plotted as per figure 6.6. The value of e, was found as:

e, =0.02

As shown in figure 6.6, for the Ormonde siltstone example, all data points are
clustered about the linear regression, indicating that regardless of fractured nature of
a given rock, there exists a single effective friction function. This is seen more clearly
in the comparison plot of effective friction polynomial versus effective friction data,
figure 6.7.

The values of R, S and T are evaluated as before for the intact rock using
equations 3.12, 3.11 and 3.10 respectively, giving the solution to equation 2.9. The
Ormonde siltstone example results in a single effective friction - strain polynomial
which describes the post peak behaviour of both the intact rock and the rock mass, as
indicated below and in figure 6.7.

¢.=71-3750 ¢, + 86300 ¢,
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Ormonde siltstone broken rock (Hobbs, 1970)
Effective friction - strain polynomial
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Figure 6.7: Effective friction strain polynomial compared
to the available effective friction data values for the intact
rock and the rock mass.

6.4.1g Reconstruction of the c-e curves

The stress-strain reconstruction procedure is the same as outlined in section

4.2.8, with the appropriate changes according to section 6.4.1 as follows:

i Select a value of o; between zero and the brittle-ductile transition.

ii Calculate a value for 6,, from equation 6.1.

iii Determine a value for 26 from equation 6.15.

iv Calculate a value of o, from equation 2.7 using equations 6.11, 6.12
and 6.13.

v Divide the range from 6, to G, into equal increments of G,

vi For each incremented value determine a value of ¢, from equation 3.16.
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vii For each value of ¢, solve the exact solution to equation 2.9 for e,

vii  Plot the post peak stress strain plot from o, versus ¢,

If intact data is available, then the same procedure as outlined in section 4.2.8
should be followed. Both the intact rock and rock mass reconstructed stress-strain
curves should be plotted together to show the relationship between intact and broken
rock, as illustrated by the Ormonde siltstone example in figure 6.8.

Ormonde siltstone broken rock (Hobbs, 1970)
Intact rock (dashed) and broken rock (solid)
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Figure 6.8: Comparison of reconstructed intact and broken
rock stress-strain curves for a range of confining pressures.

Figure 6.8 clearly shows that the post peak curve in all confinement cases is the
same function for both the intact rock and rock mass. The peak and residual strengths
of the intact and broken rock for a given confinement all lie on the same post peak
curve. The residual strength breaks away from the post peak curve when that value
is reached for a given confinement, after which the rock strains in a ductile manner.
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6.4.1h Determination of the post peak modulus and stiffness

The post peak modulus and post peak stiffness are evaluated using the same
procedure already outlined in sections 3.8 and 3.9 respectively. Figure 6.9 illustrates
the normalized post peak modulus for the Ormonde siltstone, with points for both the
intact and broken rock. Regardless of the confinement there is a single post peak
modulus function for the intact and broken rock.

Ormonde siitstone broken rock (Hobbs, 1970)
Normalized rock mass post peak modulus, Epp(n) versus epp
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Figure 6.9: Plot of intact and broken rock normalized post
peak modulus revealing a single function.
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6.4.2 Where only the Hoek-Brown intact peak strength parameters and
values of GSI taken from charts (Hoek et al., 1997) are available

An average quality rock mass (Hoek et al., 1997) was selected to verify the
postulates as applied to broken rock for the option where no triaxial data is available.
Appendix M. 1 provides a summary of the data provided from the data set example and
the subsequent analysis.

6.4.2a Determination of the Hoek-Brown strength parameters

Knowledge of the intact rock peak strength parameters, m and o, as provided
in the average quality rock mass data set, together with a means of evaluating the
geological strength index, GSI, allowed a determination of the broken rock peak
strength parameters, m,, a and s. Where equations 6.2, 6.3 and 6.4 were used to

evaluate these values for the average quality rock mass:

Intactrock: m=12,s=1, o,=80 MPa
Rock mass: m,=2,5s=0.004,2=0.5

6.4.2b Estimation of the base angle of friction

The base angle of friction in the case of the average quality data set was taken
as the Mohr-Coulomb effective friction value provided in the literature. If the value
had not been given, then one of the alternative methods mentioned previously could
be employed.

b, =33°
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6.4.2¢ Determination of the confinement at the brittle-ductile

transition point

The confinement at the brittle-ductile transition point, o, was determined by
the same approach outlined in section 6.4.1c. The values determined for the example

data set were found to be:

[ntact rock: ©;, = 174MPa
Rock mass: ;=28 MPa

6.4.2d Determination of the residual strength polynomial

constants, o, D and F

The residual strength polynomial constants were evaluated as before using
equations 6.11, 6.12 and 6.13 as outlined in section 6.4.1d.

Intact rock: D =-0.007,F=4.5,c_,=16 MPa
Rock mass: D=-0.04,F=42 6,=5MPa

In summary, the exact solutions to the peak, residual, and base strength criteria
for the average quality rock mass data set were determined for the intact rock and rock

mass as given below:
Intact rock: oy, =0; +80{0.150; + 1}'> MPa

o, = -0.0075,2 + 4.50, + 16 MPa
Oy = 3.40; MPa
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Rock mass:  ©,, = ; +80{0.0250; + 0.004}'> MPa
G, = -0.040,> + 4.20; + S MPa
Gy, = 3.40, MPa

6.4.2e Comparison of the intact and rock mass strength criteria
As was carried out in section 6.4.1e, the respective strength criteria were

compared for both the intact rock and rock mass as illustrated in figure 6.10. Again,
as before, the two transition points coincide with the base strength criterion.

Average quality rock mass (Hoek et al., 1997)
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Figure 6.10: Comparison of broken and intact peak,
residual and base strength criteria showing two transitions.
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6.4.2f Determination of e, and the solution to the effective friction

- strain polynomial
Average quality rock mass (Hoek et al., 1997)
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Figure 6.11: Plot of Y versus e to determine the base
strain.

Since the original data set provided no strain data, then the strain data was
generated using a knowledge of pre-peak moduli. The rock mass pre-peak modulus,
E noroken) Was provided in the literature, and the intact rock pre-peak modulus was
determined using equation 6.8.

The RMR,,,, value for use in this empirical relationship was determined using
Bieniawski’s rock mass rating system (Hoek et al., 1980), where the only adverse
effect was the uniaxial compressive strength, which yielded RMR,,,, = 92. The
RMR; o, value was found from the simple relationship given by Hoek et al. (1997)
between GSI and RMR, equation 6.16, and determined to be RMRy,., = 55, for GSI
=50.
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GSI=RMR -5 6.16

The procedure outlined in section 6.4.1f remained the same for evaluating the
effective friction values for use in the Y versus e plot, figure 6.11. The value of e, for
the average quality rock mass was found to be:

e, =0.01
Average quality rock mass (Hoek et al., 1997)
Effective friction - strain polynomial
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Figure 6.12: Effective friction - strain polynomial
compared to the available effective friction data for the
intact rock and rock mass.

The values of the R, S and T constants in the effective friction - strain
polynomial were determined as outlined in section 6.4.1f providing the solution to the
effective friction - strain polynomial for the average quality rock mass:
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¢ = 72 - 7700 e,,, + 380000 e,
The plot of the effective friction - strain polynomial is shown above in figure
6.12. Once again, as illustrated it can be seen that there is a single post peak effective

friction function that satisfies the available data.

6.4.2g Reconstruction of the o-e curves

Average quality rock mass (Hoek et al., 1397)
Intact rack (dashed) and Rock mass (solid)
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Figure 6.13: Comparison of reconstructed intact and
broken rock stress-strain curves for a range of confinement

The same procedure as outlined in section 6.4.1g was used to generate the
stress-strain curves for the intact rock and rock mass, as illustrated in figure 6.13. This
verifies that for any given confining pressure, the post peak curve is the same function
for both intact rock and rock mass. As mentioned in section 6.4.1g, the residual
strength breaks away from the post peak curve when that value is reached for a given
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confinement, after which the rock strains in a ductile manner.
6.4.2h Determination of the post peak modulus and stiffness

The procedure outlined in sections 3.8 and 3.9 remains valid for the
determination of post peak modulus and stiffness respectively. Figure 6.14 shows the
normalized post peak modulus for the average quality rock mass example, again
illustrating that regardless of confining pressure there is a single post peak modulus
function for both the intact rock and rock mass.

Average quality rock mass (Hoek et al., 1997)
Normalized rock mass post peak modulus, Epp(n) versus epp
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Figure 6.14: Plot of intact and broken rock normalized
post peak modulus as a single function.
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6.4.3 Verification of the postulates and assumptions using other broken

rock data sets from the literature

Five additional data sets in addition to the two sets in sections 6.4.1 and 6.4.2,
comprising the total available rock mass data sets, have been worked in a similar
fashion and summarized in appendix M. In all cases the postulates and assumptions
have been verified as discussed in section 6.4.4. In addition, appendices N and M
contain two further data sets, a crushed basalt (Hussaini, 1991) and the Panguna
andesite (Hoek et al., 1980) respectively. These two sets have been worked and also
verify the postulates and assumptions, but have been treated seperately in sections 6.5
and 6.6 respectively as special cases.

6.5  Evaluation of a crushed rock data set - crushed basalt (Hussaini, 1991)

The crushed basalt data set (Hussaini, 1991) as provided in appendix N
comprises of 5 sets of triaxial data with each set being conducted on a different crush
size. The varying crush size can be considered as a variance of the rock mass rating,
RMR of the same rock. With this in mind the data set has been worked in accordance
with the triaxial data set approach to broken rock as outlined in section 6.4.1. The
summary of the calculations is provided in appendix N. Treating each crush size
separately, the Hoek-Brown peak strength parameters were shown to vary with crush

size as shown in table 6.1.

Assuming a value for the base angle of friction at ¢, = 33°, since none was
given in the paper by Hussaini (1991), the brittle-ductile transition point confining
pressure and the residual strength polynomial parameters were also shown to vary with

crush size as shown in table 6.2.
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6.3 mm 12.7 mm 25.4 mm 50.8 mm 76.2 mm
crush crush crush crush crush
o, (MPa) 172 172 172 172 172
m, 0.16 0.18 0.20 0.23 0.26
S 0.00005 0.00005 0.0001 0.00012 0.00013

Table 6.1: Summary of the peak strength parameters for the crushed basalt.

6.3 mm 12.7 mm 25.4 mm 50.8 mm 76.2 mm
crush crush crush crush crush
o, (MPa) 48 5.5 6.2 6.9 79
o, (MPa) 1.2 1.3 1.8 1.9 20
D -0.2 -0.17 -0.15 -0.14 -0.12
F 4.1 4.1 4.0 4.1 4.1

Table 6.2: Summary of G, and the residual strength polynomial parameters.

Dense crushed basait (Hussaini, 1991)
12.7 mm crush
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Figure 6.15: Comparison of the peak, residual and base
strength criteria and the available peak strength data
clustered about the residual strength polynomial.
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The comparison of the peak, residual, and base strength criteria arising from
the parameters given above showed the appropriate relationships with respect to crush
size, as provided in appendix N. [t was interesting to note that the available peak
strength data points agreed more with the residual strength criterion rather than the
peak strength criterion, particularly for the smaller crush sizes, as echoed in figure
6.15. However, as the particle size increases and the confinement increases, there
appears to be a trend where the available peak strength data moves more towards the
behaviour of the peak strength criterion, as shown in figure 6.16.

Dense crushed basalt (Hussaini, 1991)
76.2 mm crush
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Figure 6.16: Comparison of the peak, residual and base
strength criteria, and the available peak strength data
moving towards the peak strength criterion.

This suggests that in the case of broken rock, although a peak strength criterion
adequately satisfies the necessity of identifying a brittle-ductile transition point, the
residual strength polynomial is a better descriptor of the available broken rock peak
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strength data at low confinement and small crush size.

In the case of intact rock it was clearly seen that the peak strength criterion
provided a good representation of the available intact rock peak strength data,
appendices, H, J, and K, and the residual strength polynomial provided a good
representation of the available residual strength data.

However, once the intact rock had exceeded the peak strength at peak strain,
the rock no longer obeyed the intact peak strength criterion. If the rock were re-
loaded to a new peak strength, having previously been fractured, then the new peak
strength would be less than the intact rock peak strength, where the new peak strength
would be dependent on the roughness and strength of the rough asperities of the
broken surface. There might be some crushing of the asperities (an overcoming of
material cohesion) depending on the level of confinement, but for the most part the
new peak strength would be dominated by the surface roughness, amounting to an
effective friction. This agrees with the definition of effective friction provided in
section 2.1.

The crushed rock can be considered as a large number of broken surfaces such
that as a whole the rock sample behaves more in a residual strength fashion at low
confining pressures, with sliding over many rough surfaces, rather than breaking the
cohesion of the material to smooth the surfaces of the crushed particle surface

asperities, as evident at the higher confining pressures and larger crush size.
Taking all the data together for determining a base strain and the effective

friction - strain polynomial parameters, the Y versus e plot, appendix N, showed that
all the data clustered around a single function and allowed a single effective friction -
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strain polynomial function to be defined as shown in figure 6.17, where the base strain,
€, =0.3. The high value of base strain is indicative of a highly crushed material, such
that considerable deformation is possible for relatively small loads.

Dense crushed basait (Hussaini, 1991)
Effective friction - strain polynomial
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Figure 6.17: Effective friction - strain polynomial for the
crushed basalt.

Figure 6.18 shows the reconstructed stress-strain curves for the complete range
of crush sizes for 2 randomly selected confining pressures, within the range of the
smallest crush size brittle-ductile transition point confining pressure.

Regardless of crush size, the post peak function is the same for a given
confining pressure. The peak and residual strengths decrease with decreasing crush
size and the residual strength departs the post peak function in the same fashion as
previously discussed in sections 6.4.1g and 6.4.2g.
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Dense crushed basait (Hussaini, 1991)
s3 = 1 MPa (solid) and s3 = 2.5 MPa (dashed)
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Figure 6.18: Reconstructed stress-strain curves for all crush
sizes for o; = | MPa and 6; =2.5 MPa.

It can thus be concluded that regardless of RMR for a given rock, the post-
peak relationship is the same for a given confinement, and that both peak and residual

strengths decrease with decreasing RMR for a given confinement.
If the normalized post peak modulus is plotted against post peak strain, figure

6.19, then regardless of confinement or RMR, there exists a single normalized function
for the post peak modulus.
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Dense crushed basalt (Hussaini, 1991)
Normalized rock mass post peak modulus, Epp(n) versus epp
s3: circles = 1 MPa, stars = 2.5 MPa
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Figure 6.19: Normalized post-peak modulus versus post-
peak strain for the crushed basalt.

6.6  Evaluation of the Panguna andesite data set (Hoek et al., 1980)

The Panguna andesite data set (Hoek et al., 1980) as provided in appendix P
is made up of RMR g, M and g, values, which were used to generate the rock mass
values of GSI, my, s, a and E, 4., as indicated in table 6.3. Note that the values of
s reported here were determined from equation 6.3 and differ from those reported by
Hoek et al. (1980). Hoek et al. Regarded o, as intact and constant regardless of the
weathered state of the Panguna andesite. However, with weathering the o, value may
change. For the purposes of this analysis, o, is assumed constant.

The analysis of the data was carried out initially using a common base friction,
¢y of 22°, which was later changed for varying base friction values dependent on the
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degree of weathering, as was later indicated by the effective friction - strain plot. The
GSI value was determined using equation 6.16. The Hoek-Brown peak strength
parameters; my, s and a were determined using equations 6.2, 6.3 and 6.4 respectively.

Degree of weathering

Undisturbed IRecompacted Fresh/sl. | Moderate| High Intact

46 28 26 18 8 97

GSI 41 23 21 13 3 92
o, (MPa) 265 265 265 265 265 265

&, (deg.) 22 22 18 18 10 45
m, 0.28 0.12 0.04 0.03 0.01 18.9

s 0.015 0.0061 0.0021 0.0016 | 0.0006 1

a 0.5 0.54 0.55 0.59 0.64 0.5

| Eenien 7940 2820 2510 1590 890 94000

Table 6.3: Peak strength, base strength and pre-peak modulus parameters

To enable the generation of strain data, the values for E .., were determined
using the appropriate equation from section 6.3.2, and the E, ., values were

determined using the empirical relationship, equation 6.8.
The base strength criterion was determined using the initial assumed value for

¢, =22°. The residual strength polynomial in each case was determined as per section
6.4.1d. Its parameters are summarized with the brittle-ductile confinement in table 6.4.
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Degree of weathering
Undisturbed [Recompacted|Fresh/slight| Moderate | High Intact
o, (MPa) 62.5 248 154 9.2 7.5 226
o (MPa)| 321 17.3 92 6.1 24 53
D -0.003 -0.004 -0.003 -0.002 | -0.0009 | -0.01
F 1.9 1.6 1.3 1.3 1.1 8.0

Table 6.4: o, and residual strength polynomial parameters, 6., D and F.

Panguna andesite (Hoek et al., 1980)
Comparison of peak, residual & base strangth criteria
solid = peak, dashed = residual, thick dash = base strength
150 : 5
i i
100
©
& ' . . .
= ; : :
~ ! = undis ' — modw
= i -+ undis  — modw
° 50 = reqonT T="high w—|
| L reqom | — highw
| = fidlw - basa
i -;. frislw |
o ‘ { i .
30 40 50 60 70
o3 (MPa)

Figure 6.20: Comparison of the peak, residual and base
strength criteria with respect to weathered rock mass.

Figure 6.20 shows the comparison of the peak, residual and base strength
criteria, as derived from the parameters in tables 6.3 and 6.4. As was found with the
crushed basalt in section 6.5, the Panguna andesite seems to vary its peak and residual
strength behaviour as a function of changing RMR, as would be reflected with a

variance in weathered characteristic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

12

08

0.6

04

0.2
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Figure 6.21: Plot of Y versus e showing scatter in data due

to weathering of rock mass.
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Taking the entire group of data, regardless of degree of weathering and plotting

as Y versus e to determine e,, R, S and T, as laid out in appendix P, figure 6.21
revealed that with increased levels of weathering the data tended to have lower values
of Y. The more diverse nature of the data is reflected by the lower regression number

of 0.77, than experienced with earlier Y versus e plots. A value for e, was determined

at e, = 0.01S, which is achieved at the base angle of friction in figure 6.22.

Plotting the solution for the effective friction - strain polynomial for the

constants R, S and T given in appendix P, and comparing it to the effective friction
data, as illustrated in figure 6.22, revealed that the base angle of friction appeared to

become lower with increasing levels of weathering, and that the intact rock indicated
a higher base angle of friction than originally assumed at 22°.
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Panguna andesite (Hoek et al., 1980)
Effective friction - strain polynomiai
All data considered

—ife- &M & Mad. weath| data
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Figure 6.22: Effective friction - strain polynomial for the
Panguna andesite, indicating varying base friction angle
with degree of weathering.

Due to the varying ¢, values with weathering, independent values of ¢, were
estimated from figure 6.22 and the Y versus e plots re-worked for each degree of
weathering. Figure 6.23 indicates that ¢, is a function of weathering, and since the
degree of weathering can be expressed in terms of RMR (Hoek et al., 1980), then a
plot of ¢, versus RMR indicated that there is a definite correlation between ¢, and
degree of weathering, figure 6.24, for the Panguna andesite rock mass.
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Panguna andesite (Hoek et al., 1980)
Effective friction - strain polynomials
Data sets considered individually
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Figure 6.23: Effective friction - strain plots for each
individual weathered set with ¢, values from figure 6.24.

Panguna andesite (Hoek et al., 1980)
Base angle of friction versus RMR
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Figure 6.24: Relationship between ¢, and RMR.
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The reconstructed stress-strain curves for a constant level of confinement are
shown in figure 6.25 for both weathered and unweathered rock masses. It appears that
there are several post peak relationships for a given confinement rather than just the
one relationship as seen with previous examples. This seems to be due to the variance

in ¢, that occurs with increasing levels of weathering.

Panguna andesite (Hoek et al., 1980)
Constant confinement = 10 MPa
so t H i ‘
| | — un disnuqed .
50 i ! : — recompacted
| p————— fieshislightly weathered
P / @ P - rf:oderatelly weathered
2 ~— Nighly weatnered
© ! ’ !
$30 | / ? //\ I
- : i ) : i
/ v ""//4\ ~——— ’ !
! | ! { i
.ZZ/ : i i !
o | | i { |
0 0.005 0.01 0.015 0.02
e

Figure 6.25: Reconstructed stress-strain plots for a single
confining pressure with varying degree of weathering.

The effect seen in figure 6.25 carries over to the evaluation of normalized post
peak modulus, as shown in figure 6.26.

It can therefore be concluded that since the effect of weathering changes the
base angle of friction of the rock, in other words it changes a physical property of the
rock, then the Joseph-Barron approach may be used in conjunction with a ¢, - RMR
rock specific empirical function, such as illustrated in figure 6.24.
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Panguna andesite (Hoek et al., 1980)
Normalized rock mass post peak moduius, Epp{n) versus epp
By degree of weathering
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Figure 6.26: Plot of normalized post peak modulus versus
post peak strain showing the effect of weathering on the
Panguna andesite.

6.7 Conclusions

For each of the 8 sets of data taken from the available literature and reported
in sections 6.1 through 6.5 and appendices M and N, post peak effective friction -
strain relationships and reconstruction of the post peak stress-strain data was
conducted successfully for both the intact and broken rock. This showed that in each
case a common relationship exists for the post peak region with respect to a given
confinement, that can be normalized to a single post peak modulus function by rock
type. The only exception is the Panguna andesite, reported in appendix P and section
6.6, which was affected by a changing base angle of friction due to weathering.

It may be concluded that the postulates and assumptions in chapter 2 and
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chapter 6 have been verified and validated for all non-weathered data sets investigated
in this chapter. Of particular note:

i There is a single effective friction - strain relationship that applies to
both intact and broken rock.
it The post peak stress-strain behaviour for both the intact and broken

rock is the same relationship for a given confinement.

il The post peak modulus relationship is the same for both intact and

broken rock.

Thus, by gathering information from intact rock samples of manageable size,

it is possible to estimate the rock mass post peak relationships.
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Chapter 7
Application of the Joseph-Barron approach to coal

7.1 Introduction

As was found for broken rock, there are only a few coal data sets in the
available literature that contain sufficient triaxial strength and strain data for a range
of confining pressures, that permit analysis via the Joseph-Barron approach. Ten sets
of data were identified as providing sufficient data for analysis, reported by Kripakov
(1981) and Hobbs (1964). These data sets consist entirely of triaxial test results
conducted on laboratory-sized samples. The laboratory specimen sizes, as suggested
by Barron et al. (1992a), do not fall into either the category of intact coal or coal
mass, but lie somewhere between the two. Consequently, a size classification termed
“non-intact” is used to describe these test sizes, and the methodology outlined by
Barron et al. (1992a) employed to allow an evaluation of the intact coal and coal mass

behaviour from the non-intact coal behaviour.

7.2  Intact coal, non-intact coal and coal mass strength properties

It has been well documented in the literature that the strength of laboratory-
sized coal specimens is highly dependent on the size and shape of the specimens. This
sensitivity to specimen size and shape is thought to be a clear, indirect indication that
the specimens contain discontinuities causing strength variations. Consequently, in
the size range represented by laboratory sized specimens such as those reported by
Kripakov (1981) and Hobbs (1964), the coal cannot be regarded as intact and thus

the Hoek-Brown parameter s cannot be unity.

Hoek et al. (1982), in discussing comments by Bieniawski et al. (1982) stated

that the variance in the Hoek-Brown parameter m for coal did not allow m to be
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considered a constant for that rock type. Hoek et al. stated that:

“.... The most likely explanation for this unexpectedly wide range in m values
was that the specimens were not truly intact and the assumption that s = | was not
Justified.”

Tao (1991) and Barron et al. (1992a) assumed that laboratory size coal
specimens could not be considered intact, resulting in the development of an approach
to estimate both the intact and coal mass strength properties from tests on non-intact
coal specimens. From this work, a general expression, in Hoek-Brown form, was
derived for coal strength, equation 7.1:

o, =6, + {smo.o; + so.2}? 7.1

Where o, is the uniaxial compressive strength of the intact coal, m is the intact
Hoek-Brown m parameter, and the Hoek-Brown s parameter is a function of the
triaxial test specimen width, b and height, h. Tao (1991) and Barron et al. (1992a)
showed that s could be approximated by one of three empirically derived

relationships:

i If b*/h > 8.784 and b < 0.013 m then the coal specimen can be

considered intact and s = 1.
il If 0.784 < b"%h < 8.784 and 0.013 < b < 1.625 m then the coal

strength depends on size and the non-intact value of's, denoted by s,;
is approximated by equation 7.2:
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s,; = {0.086 + 0.104[b"2/h]}2 72

ii If b"*h < 0.784 or b > 1.026, then the coal specimen can be

considered to approximate the coal mass, and the strength is no longer
size or shape dependent. In this case s =0.028.

Where b and h are in metres.

For example, suppose a suite of triaxial tests are performed for coal specimens
in the size range defined by case ii. The specimen dimensions, b and h in units of
metres are known and so s may be determined from equation 7.2. If &, and o, are the
triaxial data pairs obtained from laboratory scale tests, then a regression analysis of

{o, - 6, }*/s; versus o; can be carried out on a linear re-arrangement of equation 7.1,
as given by equation 7.3.
1
=mg 0, +0, 73
The intercept and the slope of the linear regression allow the determination of
the intact coal uniaxial compressive strength, o, and the Hoek-Brown m parameter.
Having determined the intact coal values for o, and m, the non-intact value for

m, denoted my;, is determined from a comparison of equation 7.1 with equation 2.6,
revealing equation 7.4:

m;=ms, 74
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Similarly for the coal mass, given that s = 0.028, the coal mass value for m,
denoted by m_, is evaluated via equation 7.5:

m_, =0.028 m 75
This allows the respective Hoek-Brown peak strength criteria for non-intact

coal, intact coal and coal mass to be evaluated from the non-intact available data,

equations 7.6, 7.7 and 7.8 respectively.

Non-intact coal: 6, =0, + {m0.0; + 5,0.2}"? 7.6
Intact coal: 6, =0; + {mo.0, + so.*}"? 7.7
Coal mass: o, =0, + {m,0.0; +0.028¢}? 7.8

73 Postulates

The postulates already outlined in sections 2.2 and 6.2 remain valid, plus the
addition of the following:

7.3.1 Postulate 6 - Effective friction - strain relationship for coal
At any point in the post peak region, prior to and including the residual
strength it is postulated that same the effective friction - strain relationship postulated

in section 2.2 holds for non-intact coal, intact coal and coal mass of the same coal
type.
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¢¢=ﬂepp) 24

7.3.2 Postulate 7 - Post peak stress-strain behaviour of coal

It is postulated that the peak and residual stress and strain values for non-
intact coal, intact coal and coal mass for a given confinement, o, describe points that
lie on a common post peak stress-strain relationship for similar confinement
conditions. The shape of the post peak stress-strain curve for the non-intact coal is
identical to that of the intact coal which is also identical to that of the coal mass.

The residual strength values for the intact coal, non-intact coal and coal mass
break away from the common post peak stress-strain relationship and thereafter

remain constant for an incremental increase in strain.

7.3.3 Postulate 8 - The normalized coal post peak modulus

It is postulated that the normalized post peak modulus for the intact coal, non-

intact coal and coal mass follow the same relationship.
7.4  Assumptions

Assumptions 1 through 9 outlined in section 2.3 remain valid for intact coal,
non-intact coal and coal mass. The Hoek-Brown peak strength criterion, equation 2.6
has been adapted for application to non-intact coal, intact coal and coal mass, as
described in section 7.2 by equations 7.6, 7.7 and 7.8 respectively. Assumption 12
from section 6.3.3 remains valid for non-intact coal and coal mass, since both may be

described as broken in nature.
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7.4.1 Assumption 13 - Estimation of the failure angle, 20

When dealing with the transition from intact rock peak to residual strength it
has been stated in section 3.7.1 that the angle of the failure plane, 20 remains
constant. This premise has been shown to be applicable for both intact and broken
rock respectively in all previous examples and continues to be considered applicable
for intact coal, non-intact coal and coal mass. For intact rock the value of 26 is
determined via the derivative of the peak strength criterion with respect to o,
equations 3.14 and 3.15.

It was also shown in section 6.4.1.f that the 20 value for broken rock may be
determined via the derivative of the residual strength polynomial with respect to G,
since broken rock behaves more closely to residual than peak strength behaviour. 20

in this case is given by equations 6.14 and 6.15.

In all of the above cases, data was available for the intact rock and the broken
rock. But when only non-intact coal data is available, what value of 26 is appropriate

to use for the intact coal and coal mass relationships for which there is no data?

It is assumed that the value of 20 determined via the non-intact coal residual
strength polynomial, determined from the available data, remains the same for both
the intact coal and the coal mass for a given value of o;. It is not derived from the
derivative of the intact coal peak strength criterion nor the coal mass residual strength
polynomial since both these relationships are indirectly derived from the non-intact
coal data. It is assumed that a more accurate evaluation of the relationship between
intact coal, non-intact coal and coal mass is achieved by evaluating 20 from the source
non-intact coal data residual strength polynomial relationship.
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7.5  Application of the Joseph-Barron appreach te coal and verification of
postulates 6, 7 and 8

As mentioned in section 7.1, the triaxial data reported in the literature is
dominated by laboratory manageable specimen sizes that fall between the intact and

coal mass definitions.

The author identified one data set where both peak and residual strength and
strain data were reported (Kripakov, 1981) and nine data sets where peak strength
data and pre-peak moduli were reported (Hobbs, 1964). All data sets were reported
for coal specimen size identified as case ii of section 7.2 establishing the data as being
non-intact coal. These ten data sets have been worked to verify the postulates and

assumptions and are provided in appendix R.

An example data set from the available literature has been used to demonstrate
the Joseph-Barron approach as applied to coal. This analysis follows the procedure
laid out in chapter 3 and chapter 6, depending on whether the intact coal or non-intact
coal and coal mass are being analyzed respectively. The data set reported by Hobbs
(1964) describes triaxial measurements made on non-intact coal specimens extracted

from the Cwmtillery coal mine, Wales.
7.5.1 Determination of the Hoek-Brown strength criterion constants
The coal specimen dimensions were provided as b = 0.025 m and h= 0.051
m. Following the procedure described in section 7.2, the non-intact coal (case ii) was

evaluated for the specimen size. Using equation 7.2 the Hoek-Brown non-intact coal
strength parameter, s,; was determined to be 0.17. The linearized form of the
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generalized Hoek-Brown peak coal strength criterion, equation 7.3 allowed a plot of
(0, - 6;)*/s; versus 6, figure 7.1, to yield the intact coal parameters, ¢ = 60 MPa and

m=22
Cwmitillery coal (Hobbs, 1964)
H-B strength parameter analysis (normalized non-intact)
60 .
i o

50 ‘
] =
G 40 ; i ] '
3 i ! Ped ‘

| T
F 30 :
£ : 4
S 20 e
3 o |
a 10
0 o | ! i
0 10 20 30 40
o3 (MPa)
R-square =0.988 #pts=7
y = 3.65e+003 + 1.33e+003x

Figure 7.1: Linearized Hoek-Brown plot to determine m
and the uniaxial intact compressive strength, ..

Using equations 7.4 and 7.5 the non-intact coal and coal mass m values were
found to be m,; =3.7 and m_, = 0.6 respectively. This allowed the definition of the
non-intact coal, intact coal and coal mass Hoek-Brown peak strength criteria as given
by equations 7.6, 7.7 and 7.8 respectively, resulting in equations 7.9, 7.10 and 7.11:

Non-intact coal: G, =03 + {2260; + 621}'2 MPa 79

Intact coal: Gy, =03 + {13300; + 3650}% MPa 7.10
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Coal mass: oy, =03 + {370, + 102}"> MPa 7.11

7.5.2 Estimation of the base angle of friction, ¢,

Since no indication of a base angle of friction was reported with the
Cwmtillery coal data set, as was the case for all the data sets reported by Hobbs
(1964), a base angle of friction was assumed at ¢, = 33°. This value was applied to
most of the data sets since a variance in ¢, from the actual value was shown to have

a minor overall effect as illustrated in section 4.5.

This allowed a base strength criterion, equation 7.12 to be evaluated from

equation 2.8; the base strength criterion being common to all three coal states.
O =3.4 03 7.12
7.5.3 Determination of the brittle-ductile transition point confinements
The brittle ductile confinement for each of the three coal states was evaluated

by equating equation 7.12 to equations 7.9, 7.10 and 7.11 respectively, according to
assumption 8, section 2.3.8.

O3,
Non-intact coal: 42 MPa
Intact coal: 235 MPa
Coal mass: 8.6 MPa
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7.5.4 Determination of the residual strength polynomial constants c_,
Dand F

In the case of the intact coal, the residual uniaxial compressive strength was
estimated at 20% of the uniaxial compressive strength. The non-intact coal and coal
mass residual uniaxial compressive strengths were determined using equation 6.11 in
accordance with assumption 12. In all cases the value of the Hoek-Brown exponent,
a, was taken as 0.5.

Having determined the values of o, for all 3 coal states and knowing the
values of o, for all three coal states from section 7.5.3, the values of D and F for each
coal state were determined using equations 3.4 and 3.5 for the intact coal, and
equations 6.12 and 6.13 for the non-intact coal and coal mass. This allowed the
residual strength polynomials, equations 7.13, 7.14 and 7.15 to be stated.

Non-intact coal: o, =-0.026,* + 3.50, + 25 MPa 7.13
Intact coal: 6, = -0.040;,> + 2.50, + 10 MPa 7.14
Coal mass: 6, = -0.0050,* + 4.50, + 12 MPa 7.15

7.5.5 Comparison of the peak residual and base strength criteria

Figure 7.2 shows the comparison of the three strength criteria for the non-
intact coal and the coal mass, while the intact coal is shown separately in figure 7.3
due to the increase in strength scale for the intact coal relations compared to the non-

intact coal or coal mass.
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Cwmtillery coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Figure 7.2: Comparison of the strength criteria and non-
intact coal to coal mass relationships for Cwmtillery coal.
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Cwmitillery coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Figure 7.3: Comparison of the strength criteria for the
intact Cwmtillery coal.

7.5.6 Determination of e, and the solution to the effective friction -

strain polynomial

Since only non-intact coal strength and strain data were available, only non-
intact coal effective friction and strain values were used to evaluate the effective
friction strain polynomial via the determination of e, using the linearized Y versus e
form, figure 7.4 and equations 3.17 and 3.18, and the polynomial constant equations
3.12,3.11 and 3.10 for R, S and T respectively.

In order to evaluate the effective friction values from the available data, the

value of 20 was determined using equation 6.15, since the non-intact coal is
considered to be essentially broken.
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Cwmtillery coal (Hobbs, 1964)
Linear solution for eb
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Figure 7.4: Plot of Y versus e to determine the base strain
for the Cwmtillery coal.

This allowed an evaluation of the base strain from the slope at e, = 0.04, and
the solution to the effective friction - strain polynomial as given in equation 7.16:

b.=72- 2130e,, + 28900e‘,|,2 7.16
7.5.7 Comparison of the §, - e curve with the ¢, - e data

Figure 7.5 shows a correlation between the effective friction - strain
polynomial and the effective friction data, verifying postulates 1 and 2.

It is this function that is assumed to be common for non-intact coal, intact coal
and coal mass, as defined by postulate 6.
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Cwmtillery coal (Hobbs, 1964)
Effective friction - strain polynomial
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Figure 7.5: Effective friction - strain polynomial derived
from non-intact coal data and common for non-intact coal,
intact coal and coal mass post peak interpretations.

7.5.8 Reconstruction of the ¢ - e curves for non-intact coal, and the

prediction of G - e curves for intact coal and coal mass

A procedure similar to that followed in sections 4.2.8 and 6.4.1g and given
below, resulted in the stress-strain reconstruction of all 3 coal states, as illustrated in
figure 7.6. It is clear from this figure that the post peak relationship is common to all
3 coal states. Together with the evidence given in section 7.5.7, this verifies
postulates 6 and 7.

i To allow a comparison between non-intact coal, intact coal and coal

mass, select a value of o; between zero and the coal mass brittle-
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ductile transition confinement.

=

Calculate a value for 6, for all 3 coal states from equations 7.9, 7.10
and 7.11.

iii Determine a value for 28 from the derivative of equation 7.13 with
respect to o3 as per assumption 13 and equation 3.14.

iv Calculate a value of o, for all 3 coal states from equations 7.13, 7.14

and 7.15.
Cwmitillery coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Figure 7.6: Reconstructed stress-strain plots for all three coal
states, illustrating a common post peak relationship.
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\ Divide the range from G,, to G,, into equal increments of G,,, for each
of the 3 coal states.

vi For each incremented value for each coal state determine a value of ¢,
from equation 3.16.

vii For each value of ¢, solve for e, using equation 7.16.

viii  Plot the post peak stress strain plot from o, versus e, for each coal

state and compare.

7.5.9 Determination of the post peak modulus and stiffness

Cwmitillery coal (Hobbs, 1964)
Normalized post peak modulus, Epp(n) versus epp
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Figure 7.7: Normalized post peak modulus versus post
peak strain for the three Cwmtillery coal states.

The post peak modulus and post peak stiffness are evaluated using the same
procedure outlined in sections 3.8 and 3.9 respectively. Figure 7.7 shows the
normalized post peak modulus for the Cwmtillery coal, with points for intact coal,
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non-intact coal and coal mass. Regardless of the confinement there is a single post
peak modulus function for all 3 coal states. This verifies postulate 8.

7.6  Verification of the postulates and assumptions using other non-intact

coal data sets from the literature

Appendix R contains nine worked data sets in addition to the Cwmtillery coal
example given in section 7.5. Eight of these sets provide non-intact coal peak
strength data only. The Pittsburgh coal data set (Kripakov, 1981), appendix R.1, also
contains residual strength data, which allowed a determination of the base angle of
friction rather than an assumption being made, and a refinement of the residual
strength polynomial relationship, as was performed for the intact rock data where

both peak and residual data were available, chapters 3 and 4.

In all worked cases summarized in appendix R, the postulates and assumptions
outlined in sections 7.3 and 7.4 respectively were verified.

7.7  Conclusions

For each of the 10 sets of data taken from the available literature and reported
in sections 7.5, 7.6 and appendix R, the post peak effective friction - strain
relationships and reconstruction of the post peak stress-strain data was conducted
successfully for the intact coal, non-intact coal and coal mass. As was found for
broken rock and intact rock, in each coal case a common relationship exists for the
post peak region with respect to a given confinement, that can be normalized to a
single post peak modulus function by coal type.
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It may be concluded that the postulates and assumptions in chapter 2, chapter
6 and chapter 7 have been verified and validated for all the non-intact coal data sets
investigated in this chapter. This has allowed intact coal and coal mass relationships
to be constructed, but there is no intact coal or coal mass data to validate those
reconstructions. However, it has been shown that:

i There is a single effective friction - strain relationship that applies to

non-intact coal, intact coal and coal mass.

it The post peak stress-strain behaviour for non-intact coal, intact coal

and coal mass is the same relationship for a given confinement.

iil The post peak modulus relationship is the same for non-intact coal,

intact coal and coal mass.

Thus, by gathering information from laboratory manageable non-intact coal
specimens, it is possible to estimate the intact coal and coal mass post peak

relationships.

It should be noted that when triaxial tests are carried out on laboratory sized
coal specimens, they should not be considered intact (s = 1), but should be assumed
to be non-intact (s < 1). In this case s is approximated from the specimen dimensions

given by Barron et al. (1992a) and iterated in section 7.2.
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Chapter 8
Application of the Joseph-Barron post peak criterion
to predicting pillar behaviour

8.1 Introduction

Having verified the postulates and assumptions that govern the Joséph-Barron
post peak criterion in the previous chapters for intact rock, rock mass and non-intact
coal, this chapter illustrates the application of the procedure to the prediction of post
peak pillar behaviour. This has been carried out for an intact mudstone (Farmer,
1983), and for a coal mass whose properties were derived from non-intact Pittsburgh
coal data (Kripakov, 1983).

Two popular commercially available software packages were employed; Flac
2d (Itasca Consulting Group Inc., 1995) and Phase 2 (Rocscience, 1999). The former
was used to verify the Joseph-Barron approach through mimicking a triaxial test, but
as will be shown was unable to provide output commensurate with expected pillar
behaviour. The latter software was used successfully to illustrate post-peak pillar
behaviour prediction, with a comparison of the Joseph-Barron post peak criterion

with an existing post-peak approach suggested by Hoek et al. (1997).

The pillar peak strength, 6, and post peak modulus, E,,, output for the
mudstone and coal mass pillars with respect to pillar width to height ratio, W/H is
compared with various empirical pillar strength formulae, in particular the “squat
pillar formula™ after Salamon et al., (1985), and empirical expressions for post peak
modulus derived from post peak pillar moduli reported in the literature compiled by
Pen (1994) and Zipf (1999).
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8.2  Triaxial strength prediction via Flac 2d and the Joseph-Barron approach

To allow the application of the Joseph-Barron approach to pillars to be
compared with currently widely used commercially available software, it was first
necessary to validate the Joseph-Barron approach by comparison with the chosen
software package through a simple model. Since spreadsheets had been used
successfully as a tool for illustrating the Joseph-Barron approach and comparing it to
the original reported triaxial test results, triaxial test models for various values of o,
were run using the software package and compared to the Joseph-Barron model
spreadsheet output, which had already been successfully validated by the original data.

8.2.1 Flac2d

The software initially selected for comparison with the Joseph-Barron model
was Flac 2d, version 3.3, due to its availability and popularity, evident by its frequent
use, as reported in the geotechnical literature..

Flac is an acronym for “Fast Lagrangian analysis of continua”. Flac 2d is
described in the version 3.3 user’s manual (Itasca, 1995) as being a two dimensional
explicit finite difference program capable of simulating the behaviour of rock or soil.
It is comparable with finite element methods in its performance, as element matrices
in Flac 2d are the same as those for constant strain triangle formats in finite element
approaches. However, Flac 2d uses an explicit solution method rather than an implicit
solution method found in most finite element approaches. This allows a faster
solution when using non-linear constitutive relationships than is possible with finite
element methods. An implicit approach requires that element matrices be constantly
stored and updated, the explicit approach does not require storage of matrices. This
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has made Flac 2d a popular package in terms of computer capacity requirements and
speed of calculation.

When using Flac 2d, the structure of interest is represented by a grid of
elements in the shape of the structure which are given material properties
commensurate with the material making up the structure. The structure is given
boundary restraints and is subjected to applied forces appropriate with those that the
structure of interest might experience. Each of the elements in the structure behaves
according to a specified constitutive model, which may be selected from a choice of
preset relations or by a user specified model via a built-in progamming language
named “Fish”. Modeling takes place in either plane strain, plane stress, or
axisymmetric modes, the latter being useful for modeling triaxial tests and pillars.

To compare the Joseph-Barron approach with Flac 2d, the Flac 2d built-in
strain softening constitutive model was selected. This model was noted as having

been widely used for the modeling of rock structures by a number of authors.

8.2.2 Triaxial test model

Appendix S.1 provides the Flac 2d triaxial test input code file for the intact
mudstone with a confinement of 14 MPa. The output from Flac 2d was compared
with the output from the Joseph-Barron triaxial test model for a number of confining
pressures in figure 8.1. In all cases there is a good agreement between the peak and
residual strengths for the two model sets.

A comparison with original mudstone data in appendix H.3 shows that the
post peak curves for the Flac 2d strain softening approach do not fit the measured
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data as well as those for the Joseph-Barron approach.

Mudstone (Farmer, 1983)
Triaxial test data reconstruction
Joseph-Barron approach = solid, Flac output = dashed
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Figure 8.1: Comparison of Joseph-Barron to Flac 2d
triaxial test models for an intact mudstone (Farmer, 1983).

This suggests that the Flac 2d strain softening model does not provide as
accurate a reconstruction of the post peak region as the Joseph-Barron approach, but
nevertheless there is a good correlation between the two methods.
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8.3  Prediction of pillar behaviour via Flac 2d and the Joseph-Barron

approach

Having shown a reasonable correlation between the Joseph-Barron approach
and the Flac 2d strain softening approach, the same Flac 2d constitutive model was
used to produce average pillar strength versus average pillar strain estimates for
varying width to height ratios between 0.25 and 8.0.

Mudstone (Farmer, 1983)
Flac 2d strain softening pillar model
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| L C | —iwmi=025 |
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100 : I — WH=10
g WH=20 |
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Figure 8.2: Flac 2d pillar model output for a range of width
to height ratios.
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An example of the Flac 2d pillar model input file code used for a width to
height ratio of 6.0 is provided in appendix S.2. The output for the range of width to
height ratios is plotted in figure 8.2.

It is well documented that pillar strength increases with increasing width to
height ratio. That is, the wider the pillar, the higher the bearing capacity of the pillar.
Figure 8.2 shows that for width to height ratios of 6 and below, the Flac 2d output
indicates no increase in pillar strength with increasing width to height ratio. Since this

is not possible, the author spent considerable time on this issue, but to no avail.

It was therefore tentatively concluded that Flac 2d does not take into account
the change in confinement across a pillar that would lead to an increase in overall
pillar strength with increasing width to height ratio. Instead, Flac 2d appeared to see
the overall pillar as unconfined, and treated it as a uniaxial compression test. This
certainly would account for the peak strength, for width to height ratios up to W/H
= 6, being the same as the uniaxial intact compressive strength of the mudstone, at o,
=56 MPa. It is not known why the strength for W/H = 8 continued increasing, with
no indication of a definite peak value.

The author attempted to write code using the Fish programming language to
allow the Joseph-Barron post peak criterion to be incorporated into Flac 2d as a user
defined constitutive model, but was unsuccessful. The author was unable to get this
to work satisfactorily; consequently Flac 2d was abandoned for the pillar modeling
portion of this research after 6 months.
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8.4  Prediction of pillar behaviour via Phase 2, the Joseph-Barron approach
and the approach suggested by Hoek et al. (1997)

The Phase 2 finite element modeling software package (Rocscience 1999) is
a windows-based application with a graphic interface that permits the user to visually
model and vary structures under load and deformation conditions. The finite element
modeling process uses constant strain triangles and solves the stiffness matrices
arising from the applied boundary conditions and applied deformations implicitly for
the elements making up the structure, where each element in the structure has been
designated a set of material properties. The package is restricted by only allowing 10
different material properties to be designated, which means that for a model pillar
between roof and floor strata, given that one set of material properties must be
designated for the roof and floor material, this leaves merely 9 sets of material
properties for the pillar itself. This translates to a pillar composed of 9 elements, as
illustrated in figure 8.3.

YANVAY, /

Numbers 1 p
denote
element
material
allocation

Figure 8.3: Phase 2 pillar model elements, discretization and
boundary conditions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



193

If a pillar is modeled under plane strain conditions, then half a rib pillar can be
modeled with 9 elements. It should be borne in mind however that with increasing
width to height ratio the size of the elements will increase, thus making the analysis

coarser.
8.4.1 Using the Joseph-Barron post peak criterion with Phase 2

The author designed a spreadsheet to allow the Joseph-Barron approach to
determine a new set of material properties for each incremental increase in
deformation experienced by the pillar being modeled by Phase 2. Since Phase 2 was
run elastically, the post peak moduli determined by the Joseph-Barron approach for
each of the 9 elements in the Phase 2 pillar model were transformed into pseudo

elastic moduli, E, as illustrated in figure 8.4 and described below in point form.

For simplicity, it was previously assumed that the pre-peak elastic modulus
was defined according to assumption 1, section 2.3.1, equation 2.5. However, Phase
2 uses elastic modulus, E according to its true definition, taking into account
confinement as per equation 8.1, where v is Poisson’s ratio.

5

o
=Lty 3 8.1

€ €

In equation 8.1, the pseudo modulus used by Phase 2 is given by E = E,, for
any value of elastic moduli, whether pre-peak or post peak. The simplified pre-peak
modulus used by the Joseph-Barron approach when ¢, < ¢, is given by the o//e,
expression in equation 8.1.
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Ao
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X

g, = gsome value

Figure 8.4: Determining a pseudo elastic modulus E .

For the first Phase 2 iteration, each element is given the same initial elastic
modulus, defined by the unconfined uniaxial compressive strength of the pillar

material, as per assumption 1.

i For a given average value of o, returned by Phase 2 for any element
within the pillar structure having undergone an incremental increase
in overall pillar deformation, values of peak and residual strength, 5,
and G,, are determined from equations 2.6 and 2.7 respectively. Given
values for 6;, 6,, and o, values of 26, and consequently ¢, and ¢, are
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then evaluated from equations 3.14, and 3.16 respectively. Using the
¢.-¢ relationship for the pillar material, equation 3.13, values for e,
and e, are finally evaluated.

ii For a given value of e, returned by Phase 2 for the same element, the
following is applied for the pre-peak and the region beyond e,:

a If e, < e, then the elastic modulus, E returned to Phase 2 for
the next iteration is defined by equation 8.1, where the term
oy/e, is a constant defined by the slope of the pre-peak curve
for the unconfined uniaxial compression of the pillar material,

according to assumption 1.

b Ife, > e, then a pseudo elastic modulus, E = E, is returned to
Phase 2 for the next iteration as defined by equation 8.1,
where the term G,/e, is given by o,/e,, recognizing that the
modulus will still decrease for increasing strain in the post
residual region even though the residual strength of the

element remains constant at o,, for a given value of o;.

It should be kept in mind that for elements within the pillar structure that have
already reached the region beyond e, an increase in confinement will resuit in an
increase in residual strength, even though that element is in a post €, state.

iii For the post peak region where ¢, < ¢, < e, there are two possible

scenarios. The first is where the peak strength, G,, is initially
exceeded requiring that the post peak criterion be invoked for the first
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time. The second is where the previous calculation has been

conducted under post peak conditions.

pw ©

Figure 8.5: Translation from E, to E,, for Phase 2

a Figure 8.4 illustrates an exaggeration of the condition where the peak
strength is first exceeded. In this situation the over-estimation of &,
is corrected to G, by an assumed equilateral amount Ac =Gy, - G,
=0, - Oy, due to a small increment of strain, Ae = ¢, - ¢,. The pseudo
elastic modulus, E,, returned to Phase 2 is then given by equation 8.1,

where the o,/e, term is determined as G,/e, such that:
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O _[20,,70,
e e
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b Figure 8.5 illustrates an exaggerated geometry of the transition
between two known steps (dashed lines) in the post peak region

giving rise to a new pseudo elastic modulus, E,, for the next iteration.

The terms, 6,,, G,, and e, are returned by Phase 2 at the end of the
previous iteration, allowing new values of ¢,, and G,, to be calculated
for the next iteration. It is assumed that the strain increment for the
next iteration is the same as the strain increment for the previous
iteration, that is Ae = a constant, and is therefore known. It is further
assumed that the post peak modulus, E,, for the next iteration can be
calculated from the ratio of the differences of the stress and strain
values for the previous and next iterations, that is equation 8.3:

0,,~0,
Epp=__g 8.3

Aepp
The new pseudo elastic post peak modulus, E; required for Phase 2
to perform the next iteration is determined once a value for o,,, has
been found. To facilitate this process, equation 3.16 is expanded
using the trigonometric double angle identities and subsequently re-
arranged into the form given by equation 8.4.
(1+tand tan0)

o_=0,tan
3 (tan@-tand ) 8.4
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The post peak modulus relationship, equation 3.19 may then be re-
written by expressing E_, as equation 2.14 directly and replacing the
O, terms by equation 8.4, resulting in equation 8.5. The detailed
manipulation is provided in appendix T.

tan® (9,-9,) (tan?0+1)
Ao ,=24e 0, 8.5

cos’d, (€,-¢€,,) (tanB-tand )

An expression for the new confinement, G, is achieved by equating
equations 8.5 and 8.4 given that Ac,, = ), - G,, from equation 8.3,
such that 6, = 6}, and o; = o, where G,, and G, are the values of
strength and confinement for the next iteration and o,, is the strength
returned by Phase 2 for the previous iteration. This results in equation
8.6.

tand,

] ————
tan®
0’3n=o'lo = 8.6

Ae,, (b,-9,) (tan?0+1)
1 +tan6 -2—2=
[1+tan tan‘b‘ coszd)‘ (e i -epp) (tane -tand) e)

The new strength, G,, is found by back substitution into equation 8.3.
This is used to return a new estimate of pseudo elastic post peak
modulus, E as given by equation 8.7.

4] G
E, =—2-2v 1 8.7
e e
pp pp
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8.4.2 Using the Hoek et al. (1997) approach with Phase 2

Figure 1.2 illustrates the Hoek et al. (1997) approach to post-peak behaviour.
Since the Joseph-Barron post-peak criterion is a strain softening constitutive model,
the Hoek et al. (1997) option iii, section 1.2.4, was used as an alternative comparative
model. The post-peak slope was held constant, enabling a pseudo elastic post peak
modulus to be determined and returned to Phase 2 for the next iteration, as illustrated
in figure 8.6, where E is the elastic pre-peak modulus, and E,, is the post-peak
modulus which is related to the pre-peak modulus via a constant, A’.

From the geometry of figure 8.6 the pseudo elastic modulus, E, to be returned
to Phase 2 for the next iteration is determined from the known values of E, A’, 6,,,,

Oy,» O3 and e,, as given by equation 8.8.

c A

O’,’

o, = some value

1/ 4

E, =-AE

>

e e e

Figure 8.6: Evaluation of E,, using the Hoek et al.
(1997) post peak approach.
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The pre-peak region elastic modulus and the post e, region pseudo elastic
modulus are dealt with in the same manner as for the Joseph-Barron approach. To
enable a direct comparison of the effect of the post-peak region on the post peak pillar
behaviour for the Joseph-Barron and Hoek et al. (1997) approaches, the same residual
strength criterion was used for both cases, defined by the residual strength
polynomial, equation 2.7.

8.4.3 Comparison of pillar behaviour predicted by the Joseph-Barron
post peak criterion and the Hoek et al. (1997) approach

Appendix W provides an example and description of the steps used in applying

the Joseph-Barron approach to model a pillar using Phase 2.

Figure 8.7 shows the output from Phase 2 using the Joseph-Barron post peak
criterion and the Hoek et al. (1997) approach for a range of width to height ratios for
a mudstone (Farmer, 1983). The post-peak modulus for the Hoek et al approach was
held constant at A’ =0.5. In each case for width to height ratios greater than 0.5, the
Joseph-Barron approach predicts greater pillar strengths. This shows that the Joseph-
Barron approach does make a significant difference in predicting pillar behaviour
compared to the Hoek et al. approach, which stems purely from the post peak
treatment process, since all other strength criteria used were common to the two

approaches.
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To check whether the choice of post peak modulus constant, A’, for the Hoek
et al. (1997) approach contributed to the large difference between the Joseph-Barron
and Hoek et al. approaches, the value of A’ was varied + 0.25. The results are
plotted in figure 8.8 indicating that the choice of post peak modulus if held constant
makes little difference on the outcome of the Hoek et al. (1997) approach.

Mudstone (Farmer, 1983)
Joseph-Barron/phase2 plilar model = solid lines
Hoek et al (1996)/phase2 pillar model = dashed lines
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Figure 8.7: Comparison of the Joseph-Barron and Hoek et
al. (1997) approaches to predicting pillar behaviour.
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Mudstone (Farmer, 1983) pillar model for WH=4
using Hoek-Brown post peak approach (Hoek et al, 1996)
upper solid = -0.25Em, dashed = -0.5Em, lower solid = -0.75E
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Figure 8.8: Effect of varying post peak modulus constant,
A’ for the Hoek et al. (1997) approach to pillar modeling.

8.5  Application of the Joseph-Barron approach to a coal mass

The Pittsburgh non-intact coal data set (Kripakov, 1981) was used to predict
material properties for the coal mass in appendix R.1. These properties have been
used to predict the behaviour of coal pillars of varying width to height ratio using the
Joseph-Barron post peak criterion and Phase 2 software. The same procedure as
explained in section 8.3.1 was employed to interface the Joseph-Barron approach with
Phase 2.
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Pittsburgh coal (Kripakov, 1981)
Jossph-Barron/Phase2 pillar model
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Figure 8.9: Predicted Pittsburgh coal mass pillar behaviour
using the Joseph-Barron approach and Phase 2 software.

Figure 8.9 shows the output for various width to height ratios from 1 to 8.
The peak strengths with respect to width to height ratio were compared with the well
known and widely used empirical coal pillar strength relationships of:

i Bieniawski (1968), equation 8.9:

op=ol:l[0-64+0.36%] 8.9
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il Obert et al. (1967), equation 8.10:
W
6,=0,,[0.778 +0.222§]

iii Salamon et al. (1967), equation 8.11:

W0.46
e
0,=K 1066

iv Salamon et al. (1985), equations 8.12 and 8.13:

If W/H < 4 then:
0,=nK" Ry H*PRP
R+w

If W/H > 4 then, the “squat pillar formula”:

HR+w b.. R
0 =nK'——L R2p3%R 12 ()~ 1]+1
K oLl -11e1]

Where for coal:
o, = average pillar strength in MPa.
Gy, = peak strength of a W/H=1 pillar in MPa.
K’ = strength of a 1 m® pillar in MPa.
n = 1, indicating square pillars.
R = width to height ratio, W/H.
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w; = width of the adjacent cross-cut to the pillar in metres.

o = a constant = -0.66

B = a constant = 0.46

R, = transition W/H ratio between equations 8.12 and 8.13 = 4.
a =a constant = (o + B)/3 =-0.0667

b =a constant = (B - 2a)/3 = 0.5933

€ = an eccentricity constant = 2.5

The empirical pillar strength formulae outlined above in equations 8.9 through
8.13 were based on square pillars, whilst the Joseph-Barron applied using Phase 2 in
plane strain mode yielded results for two-dimensional pillars, regarded as rib pillars.
To enable a comparison to be made between empirical and modeled results, the
output from Phase 2 was converted into equivalent square pillar results via the

procedure outlined in appendix U, resulting in equation 8.14

(W+w))
W

0s=0,, =ya,, 8.14
Where W = pillar width.

w, = width of adjacent cross-cut along the length of the pillar.

o = the required square pillar strength.

G = the Joseph-Barron/Phase 2 determined rib pillar strength.
and yv=(W+w)/W.

Figure 8.10 shows the plot comparing the Joseph-Barron approach output
converted to equivalent square pillar strength values with the empirical strengths
determined from equations 8.9 through 8.13. It reveals a good agreement between
the modeled and empirical strength resuits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



206

Comparison of Joseph-Barron pillar results for Pittsburgh
coal mass (Kripakov, 1981) with empirical formulae
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Figure 8.10: Comparison of modeled to empirical coal
mass square pillar strengths of varying W/H ratio.

A determination of the post-peak modulus, and from that the post-peak
stiffness, section 3.9 has been the concluding aim of this research. Pen (1994)
compiled an empirical post peak modulus relationship for coal with respect to width
to height ratio from values reported in the literature, equation 1.12; however, this
relationship was largely based on non-intact coal data. Zipf (1999) compiled two
coal empirical post peak modulus relationships, one for laboratory test coal specimens
which would be appropriate for non-intact coal, the other for coal field data gleaned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



207

from the literature. It is this latter relationship, equation 8.15 that has been used in
comparison with the Pittsburgh coal mass model results using the Joseph-Barron post
peak criterion in figure 8.10.

1750
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Figure 8.11: Comparison of post peak modulus via the
Joseph-Barron approach and a coal field data empirical
relationship (Zipf, 1999).

Figure 8.11 shows a good agreement between the Joseph-Barron approach
and the Zipf empirical relationship. The Zipf relationship does yield values greater
than zero for width to height ratios greater than 4. On inspection of his empirical piot
as reproduced in figure 8.12 (Zipf, 1999), the relationship stated in equation 8.15 is
skewed by 3 out of a total 24 data points.
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The skewed Joseph-Barron data point in figure 8.11 for W/H=1 was due to
the coarse nature of the pillar mode! (only 9 elements), which resulted in failure across
the 3 mid height elements before failure of either the roof or floor pillar edge
elements. A progressive failure of elements from the pillar edge to the pillar core was
evident for all other W/H ratios greater than 1 modeled which provided post-peak
data more in line with Zipf's findings reflected in figure 8.11.
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Figure 8.12: Plot of post failure modulus versus width to height ratio,
after Zipf (1999), showing coal mass (field) and non-intact (lab) data.

This skewing of the resulting empirical relationship would account for
predicted post peak modulus values greater than zero for width to height ratios
greater than 4 in figure 8.11. Without the skew, the curves in figure 8.11 would

become still closer in correlation.
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8.6 Conclusions

The Joseph-Barron approach has been successfully used to model pillars for
two very different rocks, an intact mudstone (Farmer, 1983) and a coal mass
estimated from non-intact coal (Kripakov, 1981).

Due to popularity, evident from a wide reporting of use in the available
literature, two software packages were selected for modeling triaxial testing and pillar
behaviour; Flac 2d produced by Itasca (1995) and Phase 2 from Rocscience (1999).

In the case of the intact mudstone, a comparison of modeling triaxial tests
using the Joseph-Barron approach and Flac 2d respectively indicated almost identical
peak and residual strengths. The Joseph-Barron approach however provided a closer
reconstruction of the post-peak stress-strain curves with respect to the original
measured data as provided in appendix R.1.

An attempt to model pillars using Flac 2d revealed that Flac 2d appears unable
to cope with changing confinement conditions for each element in the pillar structure,
for each iteration step of the finite difference analysis procedure. In fact Flac 2d
appears to treat pillars as unconfined uniaxial test specimens, such that the strength
of pillars are the same regardless of the width to height ratio. For this reason, Flac
2d was abandoned as a pillar modeling software package.

Phase 2 was used successfully to model pillars of varying width to height ratio
for the intact mudstone, where the Joseph-Barron approach was compared to a linear
post-peak behaviour approach suggested by Hoek et al. (1997). The pre-peak and

post e, behaviour conditions were held constant for the two scenarios, allowing a
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direct comparison of the approaches due solely to the post-peak behaviour
relationships suggested by each approach. In all width to height ratio cases greater
than unity the Joseph-Barron approach showed greater pillar strengths than those
achieved via the Hoek et al. approach. In other words, the Joseph-Barron approach
does make a significant difference to the currently accepted approaches.

It was noted that a drawback of using Phase 2 as the analysis medium was the
inability to dynamically update the material properties of elements as the analysis
proceeded. A total of 10 sets of material properties could only be specified for any
one iteration, meaning that the number of pillar elements was restricted to 9 plus one
set of material properties for the roof and floor rock. Consequently, with increasing
width to height ratio the individual element size increased, leading to a coarser set of
strength and deformation results. The Phase 2 software was however the only
commercial package available that was capable of multiple material property input.

Pittsburgh coal mass pillars of varying width to height ratio were modeled
using Phase 2 with the Joseph-Barron approach defining the material properties for
each iteration. The resulting average pillar strengths with respect to width to height
ratio were compared with a number of empirical formulae. This indicated a good
agreement, verifying that then Joseph-Barron approach predicts coal pillar strength
of the same magnitude as suggested by the empirical coal pillar strength relationships.

The post peak moduli for the Joseph-Barron predicted pillar behaviour stress-
strain curves were compared with a field (coal mass) empirical relationship derived
by Zipf (1999) from the available literature with respect to width to height ratio. This
showed that the Joseph-Barron approach provides a good prediction of post peak

modulus for pillars.
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Chapter 9

Conclusions and recommendations for future work

9.1  The Joseph-Barron post peak strength criterion

A post-peak strength criterion postulated as an effective friction - strain
function has been verified and validated for intact rock, rock mass, crushed rock and
non-intact coal. In addition it has been shown that non-intact coal behaviour may be

used to define coal mass and intact coal behaviour.

It has been shown that for the same rock type, the intact rock and rock mass
forms obey the same post-peak behavioural relationship, whether in terms of effective
friction or post-peak modulus. It has also been shown that the same logic may be
applied to intact coal, non-intact coal and the coal mass, although no complete coal
data sets were available to verify this latter postulate.

However, a word of caution should be introduced here. The effective friction
- strain function could conceivably be dependent on the stress path. For pillars, where
generally there is an increase in load, the function is acceptable. However, in a case

where load may decrease or cycle, the validity of the function has not been proved.

The Joseph-Barron post-peak strength criterion provides a means of
evaluating the post-peak modulus of rock or coal in any state, whether in sample
form, pillars and potentially to other rock structures under any set of confinement
conditions. Through a simple transformation involving say pillar dimensions, the
post-peak stiffhess is then easily evaluated.

Due to the restriction on the number of different materials and therefore
number of elements, that may be specified in the commercial finite element modeling
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software that was available to the author, the evaluation of rock structure behaviour
using the Joseph-Barron post peak criterion is somewhat coarse. Nevertheless, it has
been shown that the Joseph-Barron post peak criterion makes a significant difference

when compared with current practices.
9.2  Verified and validated original postulates and assumptions

A number of original postulates and assumptions have been verified and
validated during the course of this research, which have been shown to be applicable
to any rock or coal material, regardless of whether intact, non-intact or broken in

nature.
9.2.1 Effective friction - strain relationship

The effective friction - strain relationship, ¢ = f{e,,) which is the core of the
Joseph-Barron post peak criterion is well represented by a 2™ order polynomial of the
general form ¢, = R + Se, + Tewz, equation 2.9, and whose exact solution is given

by equation 3.13:

-0y (e,-e, )
(‘bp'd)b) (e »~€ p)z

3.13

9.2.2 Residual strength relationship
The residual strength criterion, equation 2.7 used in conjunction with the

Hoek-Brown peak strength criterion, equation 2.6, is given by a 2™ order polynomial,
and has been shown to adequately represent any set of available residual strength data.
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Its general form, equation 2.7 and values for the polynomial constants D and F,
equations 3.4 and 3.5 are given by:

_ 2
0’lr-Do}Z! +F03 +o’c:r 2.7

mo O.
<3t 3.4

1 2
D=—[o,,-[mo 0, +so;]"+

2
03, 2[mo o, +s0_]'?

mg
F=1 t -2 [0, ~[mo,0,,+s0]]"") 3.5
24112 Wer c 3t ¢
2[me 0, +s0.]'* Ox

For s = 1, when peak and residual data are available, o, is determined by a
regression of the residual strength data. If only peak data is available , o, is assumed
to be 20% of 5. However, when the Hoek-Brown constant, s is less than unity, that

is for broken rock, then the residual compressive strength may be determined by
equation 6.11:

0,=0s" 6.11
9.2.3 Post peak modulus relationship
The post-peak modulus arising from the effective friction - strain relationship
and defined by equation 2.14 is given by the solution, equation 3.19, which in its

normalized form, equation 3.20, provides a single function regardless of confinement
for any rock or coal state, whether intact, non-intact or broken.
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E = sin26 (opp'os)z ($,-b,) 319
7 sinzd)e 0y (e5€,)

9.2.4 Determination of intact or broken rock pre-peak modulus

An empirical relationship was derived from the available intact and broken
pre-peak modulus and RMR data for rock, resulting in a relationship between the

aforementioned parameters, given by equation 6.8:

E RMR
Log, [—2xbreten] =) g§[——rten 1] 6.8

'm{intact) ntact

9.3  Physical testing - the tilt test to determine ¢,

Through physical testing the tilt test devised by Stimpson (1981) was verified
by comparison with triaxial slip and shear box tests as being a valid means of
determining the base angle of friction, ¢,. This is a simple, quick test that requires

very little sample preparation beyond rock coring.
9.4  The Joseph-Barron post peak criterion applied to pillars

The Joseph-Barron post peak criterion was used successfully to model pillars
in both intact rock and a coal mass. The approach was shown to provide significantly

different pillar strengths and post peak pillar moduli than those achieved using the
Hoek et al (1997) approach.
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The coal mass pillar strengths with respect to width to height ratio compared
well with those determined from a number of empirical relationships. The variations
of the coal mass pillar post peak moduli with width to height ratio were compared to
an empirical relation devised by Zipf (1999) and shown to be similar.

The fact that the coal mass material properties were determined from non-
intact data and still produced pillar strengths and post peak moduli similar to those
from empirical relationships devised from coal mass field data sets, provides indirect
evidence that there is a common post peak relationship for intact coal, non-intact coal

and the coal mass.

9.5 Recommendations for future work

Recommendations for future work centre on the application and integration

of the Joseph-Barron post-peak criterion into software applications.

From the use of commercially available finite element packages such as Phase
2, there is obviously a need for modeling software capable of giving each element in
a given structure its own set of material properties, where those material properties
can be updated dynamically. This would allow much smaller incremental steps, and
many times the number of elements than employed during the course of this work,

leading to a more accurate determination of rock structure behaviour.

Pen (1994) recommended that a means of determining post-peak pillar
stiffness should be investigated for incorporation into the MULSIM/NL longwall
chain pillar model, where he had conducted work establishing the prediction of local
mine stiffness. The difference between the local mine stiffness and the post peak pillar
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stiffness allows an evaluation of pillar bump potential, as discussed in chapter 1.
Given that this research has accomplished a method of determining post-peak pillar
stiffness, the next step here would be to incorporate the Joseph-Barron post-peak
criterion into the MULSIM/NL model.

In addition to rock structures such as pillars, the is a potential for the Joseph-
Barron post-peak criterion to be applied to rock structures other than pillars, such as
rock around openings or broken rock confined within a slope. In consideration of
other structures, it would be necessary to determine whether the Joseph-Barron
approach is stress path dependent.

As was shown in chapter 6, there arises a question as to the applicability of the
Joseph-Barron approach to weathered material. It is suggested that there is some
merit is investigating the phenomenon of varying base angle of friction as a function

of weathering and the implications on the Joseph-Barron post-peak criterion.
Having analyzed broken and crushed rock in chapter 6, there is a potential

application of the Joseph-Barron to finely divided soils, such as cohesionless sands

and soils containing textural structure.
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Appendix A
Procedure for polynomial regression analysis (after Visman et al., 1970)

To correlate a given set of data to a 2 order polynomial of the form:
ol,=Do§ +Fo,+0,,

Employing the procedure laid down by Visman et al. (1970), the constants D,

F and o, are given by:

D- 2([0,-0,,,)0,,-0,,,.)2([0;-0,,,1[6,,-6,,,DE([0;-0,,,1*)
(lo.-0. PP
£([0,-0,, ([0, -0, ) ols :3,,,1 )]

- [2([03 -03@,]3)]2
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2
er O3av +Do3av+olrav

Where n is the number of data points available, and &,,,, and &;,, are the

mean values of the available data.

The correlation coefficient, r, indicating the confidence in the outcome for

a given set of data is given by:

2(0,, duta=O 1reatc) i, 2(01,—[Do§+F03 +a_])?

2(olr.dam-o‘lrmr,data)2 2:(Glr-—alrutv)z

r=1
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Appendix B
Derivation of the post peak modulus, E,,

The post peak modulus, E,, is defined as the slope of the post peak portion
of the stress-strain curve, at any point. It can be seen that the post peak modulus
decreases in magnitude when proceeding from peak to residual strength for a given
confinement, o;. As the brittle-ductile transition point confinement is approached, E,,

approaches zero.

oo
- pp
E === 2.14

(/4
63”

The change of stress with respect to strain which describes the slope of the
post peak portion of the stress-strain curve is not a simple differentiable form, but can
be made easier to solve via a product of two differentials.

Sy,

6epp )( 3¢,

Evaluation of 3¢,/0e,,

((b. '¢(,) _ (eb_ pp)z
(4,4, (e,,-ep)z

3.13

6, _(d,-b)
aepp Z(eb'ep)2 ™%
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But from the general ¢, - e equation:

@)\ bt
(e, ep)2 % (epp‘eb)
Therefore
5, _, (6,-6)
6epp (epp-eb) B-1
Evaluation of 5a,,/5¢,
T (0,,-0,)sin28
=3 (0,,+0,)+(5,,-0,)c0s20 22
Rearranging gives:

tancbe[(opp +0y)+(0,, -03)c0526]=(opp-03)sin26

[tand (cos20-1)-sin20]
0,,=0; 7 —
and (1 +cos20)-sin20]

Differentiating o,,, with respect to ¢,

]
e [tand (1+c0s26)-sin26]+0 ppsecz(b.(l +¢0s20)=-0,sec’ (1 -cos26)

3,
EEPA —-secp [opp(1+coszﬂ)+o3(l-cos26)]
89, “" [tand,(1 +c0s268)-sin20] B-2
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Figure B-1 Relationship between 20 and ¢, via Mohr’s circle

But from Mohr’s circle, figure B-1, and employing the sine law

(9p*03) _(9p=03)
sin(20-¢,)  sind,

But sin (20 - ¢.) = sin 28 cos ¢, - cos 20 sin ¢, hence:

(O'pp +0,) _sin20
(0,,-0,) tand,

-cos20 B-3

Substituting for sin 20 in B-2 with B-3

60,
E‘B:- seczcbe

[o,(1 +€0s20)+0,(1-cos20)]

[tan (1 +c0s26) -tandh [ 22" cos26]]
(opp-os)
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?gpi ——sec [0,,(1 +c0s28) +o,(1 -cos26)]
6¢' tan(b‘(l _(_Op!ﬁ)
(0,,-03)

[(3,,+03)+(0,,-0;)cos26]

6opp =(opp ‘03)Secz¢¢

od, 20,tand,
Substituting cos 20 in B-4 with B-3
; o
(0,,+0,)+(0 -03)[ sin29 - ( pp+°3)
oo PP P tan, (0,,-0,)
2 =(0_-0,)sec’d, L
5p, 20,tand,

60, (0,,-0,)’sec’d,sin20 (0,,-0;)’sin20
8¢, 20,tan’d, 20,sin’d,

E,, is given by the product

_ Bopp - &, ) Bopp)
P de,, de, &9,

From B-1 and B-5

g -Sin20 (9,,-95) (.~

P sindp, o (e,p€5)
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B-4

B-5

3.19



Appendix C
General solution for the ¢.-¢ polynomial: ¢, =R + Se + Te?

A second order polynomial of the form
¢¢=R+Sepp+Tepzp 29

was chosen as the simplest mathematical expression which best describes the
relationship between the effective friction, ¢,, for any given total strain, ¢, in the post
peak region between peak and base strength. It should be borne in mind that this
expression is only applicable between these two strength boundaries, and has no

physical meaning outside of these parameters.

At peak uniaxial strength, 6, = o the peak effective friction, ¢,
corresponding to a given amount of strain experienced at peak strength, e, is defined,
such that

¢p=R+SeP+Te: 3.8
Similarly, at the brittle-ductile transition point, where the base strength of the
material is realized, 5, = G,,, the base friction, ¢, corresponding to a given amount of
strain, e,, is defined, such that

$,=R+Se,+Te; 3.9

Due to the mathematical nature of a second order polynomial, we know that
there exists a minimum or maximum value. In the instance of the above function, a

minimum exists where there is no change in the frictional response for a
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corresponding change in strain. This also defines the base friction, ¢, corresponding
to a base strain, e,. In other words, defined by the differential of the base friction

relationship:
EQ:S +27e b=o
Se
S=-2Te, 2.12
If¢,, e, d,, & are known from an examination of the available data then it is
possible to solve for the polynomial constants R, S, and T, from simultaneous
equations.

Subtracting 3.8 from 3.9 and substituting for S from 2.12
(®,-$,)=S(e,-¢,)+T(es -e))
(d),,-c[)P)=-2Te[,(e,,-ep)+7'(e,,2 -ep2 )

(b,-0,)=T(-2e; +2e,e, +e; -¢,)

(‘bp -q)[,) = T(ebz -Zebep +epz ) = T(eb 'ep)z

- 3.10
(e,-e)’

Substituting 3.10 back into 2.12
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S= _2eb (¢P-¢b) 3.11
(e,-e,)
Substituting 3.10 and 3.11 back into 3.9
R=¢ +2e 2(¢ d)b) z((bp'cbb)
® (e —ep) (e,,-ep)2
R=¢, e, 28 3.12
(e -ep)
Substituting for R, S, and T, 3.10, 3.11, and 3.12 into 2.9, yields the general
form of the polynomial
‘b, ‘bb 2(¢ ¢b) epp (‘b ¢b) z (¢ 'd’b)
(e -e p)z (e,-e,) (eb e,)’
(b,-9,)

@, ¢,,)( b€ mes 26,8, 6 (e, €, )"

(b.-bs) _(e5-€,,)
©,-%) (e, -e )}

3.13
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Appendix D
Determination of G,, when only peak data is available

If no residual strength data is available, then the minimum additional
requirement to allow solution for the brittle-ductile point and inherently o, is a
knowledge of the base angle of friction, ¢, for the rock in question. This may be
achieved via a simple tilt test as described by Stimpson (1981), or by comparison with
rocks of similar origin from experience, or as may be described in the available

literature.

At the brittle-ductile transition point the base strength and the peak strength

command the same value, (o, G,,), that is

1+sind, K
=Ko

=G = M2y =
ol:'olp_o3t+[moc°3r+s°c] _olb'l_sind) 0;,=R0y5,
b

Re-arranging into a quadratic form
(K-1)%63,~mo 0, ~562=0

Then o, can be expressed as the positive root solution

_mo,+|m?a}+4(K-1)}s0} 3.24
2K-1)?

031

oy, is determined by back substitution into either the base strength or peak
strength criterion, as above.
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Appendix E
Evaluation of a residual strength 2™ order polynomial

If the brittle-ductile transition point is known and it is assumed that the
residual strength and the peak strength command the same value, G,, at 6;, then for

a 2™ order residual polynomial

2
o,,=Do3+Fo,+0,,

g 231
6,,=0,+[moc 0, +s0;]

¢,,=0, p=o3,+[moc03,+so:] \2=g, =Do}+FG,+G,,

Where D and F are unknown constants. o is taken as the intercept value

from the linear residual strength approximation if peak and residual data are known,
or 20% of the unconfined uniaxial compressive strength if only peak data is available.
The 20% proportion seems to approximate the value if both peak and residual data
were available. This proportion appears reasonably insensitive and may range from
5% to 50% of the unconfined uniaxial compressive strength with little adverse effect

on the outcome.

Letting Q = (mo,0,, + s6.2)"? and re-arranging in terms of F

[0-0,]

O3,

F=1+ D

O3, E-1

It is also assumed that the slopes of both the peak and residual strength criteria
at the brittle-ductile transition point are the same.
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Again letting Q = (mc0;, + s6.2)"? and re-arranging in terms of F

mo A
F=1+—=-2Da,, E-2

20

Equating E-1 and E-2 and solving for D

. 12e . mo
03’ D 2Q =-2Da;,
-0
Q0,1 o
o,, 20
D-—[o _0+ 19 ma o,
ot 20

mo G,

1 2
D=—{o,,-[mo 8, +s0,]"*+
O3, 2[mo o, +so

34
]m

Substituting 3.4 back into E-2

F=1 ‘—z-é—'-o—:“[a ‘Q]
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mgo, 2 2
F=1 —-2{g,-[mo,0,,+s0]"" 35
2[mo 0, +s0.]'? O3

Substituting 3.4 and 3.5 back into the residual strength criterion

1 MO’CO’}‘ 2 moc 2
0,,=[—[o,-0+ llo3+{1 -—-—[0_,-0l]o; +0
ir cr 3 3
O; 2Q 2Q 03( i “
0; O3 mo 05,
crlr:—_([—. 1 ][ocr-Q +—2_] -ocr+Q) +0, +ocr E-5
3t 3t Q
9; O3 2 mo o 2
ol,.:o—([;-"l][Oa-[m0c03,*SOc]m+ L 2 1,2]-0‘_,’+[m0c03,+30‘.ln)+03 *0,,
3¢ Y3 2[mo_o,,+s0_]
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Appendix F
Determination of the strain at the transition point e,

Appendix C provides the general solution for the effective friction - strain
polynomial, equation 3.13:

(¢. '4)[,) _ (e,- pp)z 3.13
(‘bp '(bb) (eb -e p)z

This equation can be re-arranged into a linear form Y =MX + B

Y= (¢¢-¢b)_ -e + eb
(6,-b,) (e,me) (e,-e) 3.17

Where the Y variable is the square root term, which depends on the calculated

value of ¢, the X variable is the strain e, which replaces e,, in equation 3.13 and
represents the available peak and/or residual strain data, the linear slope is M and the
intercept with the Y axis is B

- e
slope=M=——" intercept=B=——"

(e, -ep) (eb —ep)

It is better to determine e, from the slope, since it is based on an averaging of
all the data points involved, whereas if determined from the intercept it is highly
influenced by a single adverse data point. Thus using a rearrangement of the slope
equation, the base strain is realized:

eﬁ'ﬁ“% 3.18
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Appendix G
Solution for 20, (after Balmer, 1952)

Balmer, (1952), provided a solution for the shear, T, and normal, &, stresses at the
formation of a failure plane through intact material, in terms of the major, &,, and minor, G;,

principal stresses, via the geometric solution of Mohr’s envelope.

Ly

O, c S, o

Figure G1: General analytic solution for Mohr’s envelope,
after Balmer (1952)

The general equation of a circle with centre (h, k) and radius r is given by

(x-h)}+(y-kP=r G-1

For a Mohr circle, as illustrated in figure G1, the following substitutions are made

Where the horizontal offset, h, at the centre of the Mohr circle is given by:
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he (0,+0,)
2

And the vertical offset, k, at the centre of the Mohr circle is zero, due to bisection of

the circle by the horizontal o axis.

Given these definitions, the general form of the Mohr circle is given as:

o, 03 -03

[o-——F+T=[——F G-2

By determining the partial derivative of 5, with respect to o it is possible to derive

expressions for T and ¢ in terms of 5, and o,.

Rearranging equation G-2:

[20-(0,+0,)]*+41%=(0, -0,)
Expanding terms:
40%-40(0, +0,) +(0, +0,)* +41%=01 -20,0, +0}
40%-400, -400,+0,+20,0, +03 +412=01 20,0, +0,
0?-00,-00,+0,0,+12=0 G-3
Differentiating &, in G-3 implicitly with respect to &;:
8o do,

-0——t-0+0,—+G,=0
do, *3a,
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do, da,
-o[l+—1]+0;—+0,=0

05 3

da, o,
-of1+ %o ]+0;=—+0,+0,-0,=0
3 3

S a1+ 200 0
- +—]+0.[l +—]+(0,-0,)=
603 3 603 1703)

_(0,-0,) G4

0-0;=

(l +i)
ba,

Re-arranging G-3:
t2=-0?+00, +00,-0,0;
12=-0?+200,-0; +00, 00, +0; -0, 0,
t?=~(02+200,+03) +0(0,~0;) +05(0;-0,)
t?=-(0-0,)?+0(0,-0,)-0,(0, -0,)
t?=~(0-0,)*+(0,-0;)(0-0;)
Substituting (G - o;) with (4):
2 ~(070)" (0,-0))"

3o, ) 8o,
(1 +6—) (I+—)
a, 8o,
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5. ~G.)2

72 (6,0 [-1+]+—L

(]-1—&2 3
do,

From geometry, 20 is defined in figure G1 as

T
0-0,

(0,-0y) |60l
(hﬁol) 8o,

20=2tan"'[ ]

That is:

Which reduces to:

20=2tan"'[ '&]
3o,
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Appendix H
Worked intact rock data sets where peak and residual data was available

Appendix H.1
Intact high strength concrete HS15 (Ansari et al., 1998)

50

40
= o, = kst
2%
i

! = 6k

92- o
3%

o, = Jkn

a .- I it aaadibees I
[} 001 002 ao3 004 a.0s
Axial strain (lnfin)

HS1S concrete (Ansari et al., 1998)
Comparison of peak, residual & base strength criteria
700 o I | | ! : | !
v i I
600 , y 1 ;
L orni ,/4' |
500 PG
g .
—- A .
© 400 I . %
0. // e
2 ¥ :
300 PO L al |
G .ol f
200 -
100 i '
fis |
0 (.- | | I |
0 50 100 150 200 250
a3 (MPa)
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HS15 concrete (Ansari et al., 1998)
Effective friction - strain polynomiat
70
- Eﬂ‘ectlve friction - strLin polanmiaI
® ¢ HReak data e friction
60 N : . .
N
Foo | | N
N
- TS
40 .k\
3 L \.\
‘ T
30 ,
| i :
i f |
20 | : | |
(1} 0.01 0.02 0.03 0.04 0.05 0.06
epp
HS1S5 concrete {Ansari et al., 1998)
Reconstructed versus original stress-strain curves
400 T 1 i ,
! 4 |
300 T
\A 3
/ v"\ -
[
g 200 N i
— — 62.1
© N y
/( N~ - 828
100 .
J
o ]
0 0.01 0.02 0.03 0.04
e
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HS1S concrete (Ansari et al., 1998)
Normalized post peak modulus, Epp(n) versus epp
0 W
-200
A
- o3
~ 00 . A 20
(=
e A A 207
& A | v 414
-600 " e 621
- ; x 828
| 8 !
200 = ;
A i
-1000
0.004 0008 0012 0016 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Gip = O3 + Ge{mG3/Ce + 5} 5.2 124 1 0.5
Residual strength D F G, (MPa)
Cir= Dcn2 + Fo3 + Ger -0.005 37 25
Base strength & transition point | ¢, (deg.) | 05 (MPa) | G,,(MPa)
o = {(1+sings)/(1-sings) }o3 29 199 578
Friction-strain and base strain R (deg.) S T e,
¢.=R+Se, + Te,,’ 65 -1500 15700 0.05
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Appendix H.2
Intact marl (Farmer, 1983)

80 T___ﬂ-=ﬁ
=L2
3 MARL
/ 03-28 B

“O3=1b
03=17

U3=35

N
Q

11

~N
[ )

AXIAL STRESS MN/m2
P
[ =

/0'33 0

5 10 15
AXIAL STRAIN%

Marl (Farmer, 1983)
Comparison of peak, residual & base strength criteria
100
, ' ' ' t i
g0 L* PeJk striengtﬂ data ; L i
i b ] 7 i
20 Ho{k-Brpwn Peak!strex}gth' P el
vz .
70 | = prion| | L
60 L °® Residual strepgth data T T B
5 & | !
g o Pp%i |
40 /// ! |
i P
° 30 o s i
/( AN , r
20 el |
Vet AR ]
10 e ; ;
0 | 14 - H | ( l :
(1] 10 20 30 40 50 60
63(MPa)
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Marl (Farmer, 1883)
Polynomial vs. friction-strain data
60
I — E e friction - strain polynomial
¢ Peak data e e friction
50 N *Resid fverfriction—
Tao |\
e s N
g ®
g, \\
3 o\ ,
20 f
10 3 i
0 0.05 0.1 0.15
e
Marl (Farmer, 1983)
Reconstructed versus original stress-strain curves
90 —
80 ? ——
70 e
60 // Z - o3
/ — 10
E 50 — - 35
= - 70
= 4 [~/ — 140
—— — 420
20 =
10
) m—
0 0.05 0.1 0.15 0.2
e
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Marl (Farmer, 1983)
Normalized post peak modulus, Epp(n) versus epp
°
]
20 > ad
Pl
40 - a3
f A LD
< A3S
g 60 v 70
w o 140
80 | x 280
f i | 420
-100 3
-120 : — ‘
«0.05 () 0.05 0.1 0.15
epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Olp =03 + 6:{mo3/cc + 5} 1.9 14 1 0.5
Residual strength D F o, (MPa)
o1 =D’ + Fo3 + 0 -0.007 | 2.0 8
Base strength & transition point | ¢, (deg) | o5 (MPa) | 6, (MPa)
o = {(1+singw)/(1-sings) }o3 17 45 82
Friction-strain and base strain R (deg.) S T e,
¢. =R +Se,, + Tem,2 49 -520 2070 0.12
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Appendix H.3
Intact mudstone (Farmer, 1983)

150
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?‘5100
> 4 A
% 32
E O3eibh
v 50 L T
2 O3.7
’4‘ .
03.0
0
6 8 10

AXIAL STRAIN %

Mudstone (Farmer, 1983)
Comparison of peak, residual & base strength criteria
300 — : —
& P | ‘ l | ! i
| | : j
250 | = Hodk-Brown peakistrength | Fd
—~| Residual strehgth polynomial ‘
— Base strength criterion ,rﬁ
200 - ™
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— 2l |
[+ v T
S 150 L f
P
" 00 ,MA qf/ e
50 / - '
;N |
of.-
0o & |
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

245



246

Mudstone (Farmer, 1983)
Effective friction - strain polynomial
90
80
\
70 \
® \
S 60 \
= N
S 5 AN
4
3 40 !
’ |
30 '
h
20 | L :
0 0.01 0.02 0.03 0.04
e
Mudstone (Farmer, 1983)
Reconstructed versus original stress-strain curves
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i !
: | i
i —
| 3 —ﬂ [ - o3
100 - 10
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a — 140
= \ — 210
— 280
o
50 ne — 350
— 400
0 LT
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e
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Mudstone (Farmer, 1983)
Normalized post peak modulus, Epp(n) versus epp
0 ‘L’Ig'
-500

- o3

~1000 3 a 10

_ p A0
< 1500 v 140
& 8 210
A x 280
-2000 « , m 350
: } ® 400

a0 |1 —
- T
0.005 0.015 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m O, (MPa) s a
GCip =03 + cc{mmlcc Jﬁ‘ 2.9 56 l 0.5
Residual strength D F G, (MPa)
Cir = sz + Fm + G '0.007 3.0 1 1
Base strength & transition point | ¢, (deg.) | 05, (MPa) | G, (MPa)
ow = {(1+singv)/(1-sings) }os 245 97 234
Friction-strain and base strain R (deg.) S T e
¢. =R + Se,, + 'I'ew2 86 -5240 111000 | 0.024
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Appendix H.4
Intact Portland stone (Farmer, 1983)

ALL VALU{S OF 0y A‘E N MN/n2

M O3=28

ya Y
WPRQ:MMK%'”
SO i S bl 7

0 —
6

e 2 4
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wn
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AXIAL STRESS MN/m?
8 g
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o

1 1
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Portiand stone (Farmer, 1983)
Comparison of peak, residual & base strength criteria
1000 ‘
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A
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Portiand stone (Farmer, 1983)
Polynomial vs. friction-strain data
» | R
80 ‘ -~P :
\
70 [\
= AN
o 60 &
- BTN
S s0 LR\
LN i
3 40 o i
| ° !
30
a ; 1 %
20 § i }
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e
Portiand stone (Farmer, 1983)
Reconstructed versus original stress-strain curves
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Portiand stone (Farmer, 1983)
Normalized post peak modulus, Epp(n) versus epp
()}
ok
-200
400 AAL - o3
= & A l0
= A a70
§ 600 A v 140
: * 210
-800 A | x 280
1000 |
-1200 | L
0 0.01 0.02 0.03
epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + Ge{mo¥/oc + s} 15.2 71.5 1 0.5
Residual strength D F O, (MPa)
o1 = Dos’ + Fo3 + Owr -0.003 38 19.5
Base strength & transition point | ¢, (deg) | G, (MPa) | G, (MPa)
o = {(1+sings)/( 1-singv) }os 30 286 850
Friction-strain and base strain R (deg.) S T &
¢.=R+Se, + Te",z 86 -2640 30800 0.043
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Appendix H.S
Intact Saccharoidal limestone (Farmer, 1983)
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Saccharoidal limestone (Farmer, 1983)
Comparison of peak, residual & base strength criteria
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Saccharoidal limestone (Farmer, 1933)
Effective friction - strain polynomial

I
\ = E frictlon - suLin polinomi_a_l[
on
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v
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e

Saccharoidal limestone (Farmer, 1983)
Reconstructed versus original stress-strain curves
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Saccharoidal limestone (Farmer, 1983)
Normalized post peak modulus, Epp{n) versus epp
° :
1
-200 |
- o3
-400 A l0
= v A 70
B £00 A v 1490
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Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + G:{mo3/ce + 5} 9.0 50 1 0.5
Residual strength D F 6. (MPa)
oir=Das’ + Fos + Ger -0.03 52 18
Base strength & transition point | ¢, (deg.) | 65 (MPa) | G, (MPa)
o = {(1+singe)/(1-sings) }os 38 50 206
Friction-strain and base strain R (deg.) S T €
6. =R+ Se,, + Te,,‘,2 78 -3170 62800 0.025
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Appendix H.6
Intact sandstone (Farmer, 1983)
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Sandstone (Farmer, 1983)
Effective friction - strain polynomial
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Sandstone (Farmer, 1983)
Reconstructed versus original stress-strain curves
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Sandstone (Farmer, 1983)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + G:{mC3/Ge + s} 27.7 78 1 0.5
Residual strength D F G, (MPa)
or =Dos’ + Fo3 + 0a -0.005 5.0 16
Base strength & transition point | ¢, (deg.) | O3 (MPa) | o, (MPa)
o = {(1+sin¢v)/(1-sinde)}o3 35 296 1100
Friction-strain and base strain R (deg.) S T &
¢.=R+Se, + ’[‘ewz 89 -2630 31900 0.04
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Appendix H.7
Intact silty sandstone (Farmer, 1983)
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Silty sandstone (Farmer, 1983)
Effective friction - strain polynomial
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Silty sandstone (Farmer, 1983)
Reconstructed versus original stress-strain curves
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Siity sandstone (Farmer, 1933)
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Residual strength D F O, (MPa)
ot = Dos’ + Fos + 0w -0.004 3.6 16
Base strength & transition point | ¢, (deg.) | ©;,(MPa) | &,,(MPa)
ow = {(1+sings)/(1-sindv) }o3 28.5 200 564
Friction-strain and base strain R (deg.) S T &
¢. =R +Se,, + Te, 79 -2430 | 29600 0.04
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Appendix H.8
Intact quartzite (Gates, 1988)
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Comparison of peak, residual & base strength criteria
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Quartzite (Gates, 1988)
Effective friction - strain polynomial
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Quartzite (Gates, 1988)
Reconstructed versus original stress-strain curves

300 v N . :
: l ' | lu |
} j\r ;\"\. |
I /’ [} ‘.‘

200 \‘\ X - o3

- 05

K — 35
z : — 69
o / — 138
100 - 276

Aan

1

| S
° i
0 0.005 0.01 0.015

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



262

Quartzite (Gates, 1938)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m o, (MPa) s a
Gip = 3 + Ge{mo3/ce + 5}’ 5.6 200 1 0.5
Residual strength D F o, (MPa)
o1 =Da3’ + Fo3 + e -0.01 5.3 40
Base strength & transition point | ¢, (deg) | ©; (MPa) | G, (MPa)
o = {(1+singw)/(1-sindv) }o3 37 150 605
Friction-strain and base strain R (deg.) S T e
¢.=R+Se, + TS; 75 -4200 117000 | 0.018
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Appendix H.9

Intact Lac du Bonnet pink granite (Gorski et al., 1991)

o, data c,, data o, data e, data e, data
(MPa) (MPa) (MPa) (strain) (strain)
0.01 186 46.25 0.0032 0.0029
2 216 39 0.0038 0.0055
4 257 69 0.0044 0.0070
6 285 90 0.0050 0.0075
10 328 102 0.0054 0.0067
15 393 105 0.0063 0.0092
20 443 158 0.0070 0.0098
30 520 291 0.0082 0.0090
40 586 179 0.0090 0.0140
60 700 377 0.0105 0.0107
Lac du Bonnet pink granite (Gorski et al., 1991)
Comparison of peak, residual & base strength criteria
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Lac du Bonnet pink granite (Gorski et al., 1991)
Effective friction - strain polynomial
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Lac du Bonnet pink granite (Gorski et al., 1991)
Reconstructed stress-strain curves
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Lac du Bonnet pink granite (Gorski et al., 1991)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m G, (MPa) s a
o‘lp =03 + Gc{mm/cc + s}‘ 35.0 192 l 0.5
Residual strength D F G, (MPa)
o1 = Do’ + Fos + Gar -0.002 5.7 38
Base strength & transition point | ¢, (deg) | G5 (MPa) | G, (MPa)
o = {(1+sings)/(1-sindw)}o3 38 670 2800
Friction-strain and base strain R (deg) S T &
¢. =R+ Se, +Te,? 93.5 -5590 141000 0.02
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Appendix H.10
Intact Doddington sandstone (Santarelli et al., 1989)
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Doddington sandstone (Santarelli et al., 1989)
Effective friction - strain polynomial
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Doddington sandstone (Santarelii et al., 1989)
Reconstructed versus original stress-strain curves
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Doddington sandstone (Santarelli et al., 1989)
Normalized post peak modulus, Epp(n) versus epp
° [
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Hoek-Brown peak strength m G, (MPa) s a
Oip = 03 + G:{mo3/Ce + 5} 25.0 74 1 0.5
Residual strength D F G, (MPa)
= sz + Fo3 + G -0.003 44 19
Base strength & transition point | ¢, (deg.) | 63 (MPa) | G, (MPa)
ow = {(1+sings)/(1-sindv) }o3 33 334 1120
Friction-strain and base strain R (deg) S T €
¢.=R+8Se, + Tel,l,2 86 -1750 14200 0.06
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Appendix H.11

Intact Gebdykes dolomite (Santarelli et al., 1989)
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Gebdykes dolomite (Santarelii et al., 1989)
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Gebdykes dolomite (Santarelli et ai., 1989)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m o, (MPa) s a
Gip = 03 + Gc{mo¥/Ge + 5} 4.0 62 ! 0.5
Residual strength D F O (MPa)
Cir = sz -+ Fm + Cer '0.009 3.4 18
Base strength & transition point dy (deg.) | Oy (MPa) | Gy, (MPa)
ow = {(1+singw)/(1-sinv) }o3 28 90 252
Friction-strain and base strain R (deg.) S T [
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Appendix H.12
Intact mudstone (Tao, 1991)

123 peak strength and strain data points and 123 residual strength data points,
but no residual strain data points recorded by Tao.

Mudstone (Tao, 1992)
Comparison of peak, residual & base strength criteria
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Mudstone (Tao, 1992)
Effective friction - strain polynomial
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Mudstone (Tao, 1992)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m c. (MPa) s a
Glp = 03 + G:{mo3/Cc + s}’ 11.4 62 1 0.5
Residual strength D F O, (MPa)
ot = Dos’ + Fos + O -0.01 4.6 15
Base strength & transition point | ¢, (deg.) | 63, (MPa) | G, (MPa)
ow = {(1+sings)/(1-singe)}o3 34 114 406
Friction-strain and base strain R (deg) S T &
6. =R +Se, + 'l’e,,,,2 69 -383 5610 0.08
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Appendix J
Worked intact rock data sets where peak and residual data was available,
but only peak data was used for comparison with results from appendix H

Appendix J.1
Intact high strength concrete HS1S (Ansari et al., 1998)
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HS15 concrete (Ansari et al., 1998) using peak data only
Effective friction - strain polynomial
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HS15 concrete (Ansari et al., 1998) using peak data only
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HS 15 concrete (Ansari et al., 1998) using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m O, (MPa) s a
Cip=03+ Gc{mm/o-c + s}‘ 52 124 1 0.5
Residual strength D F G, (MPa)
Cir = DO'32 + Fo3 + O -0.005 3.8 25
Base strength & transition point | ¢, (deg) | G, (MPa) | G, (MPa)
ow = {(1+singv)/(1-sinv)}o3 30 182 347
Friction-strain and base strain R (deg)) S T e
¢.=R+8Se + Tewz 66.5 -2210 33400 0.03
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Appendix J.2
Intact marl (Farmer, 1983) using peak data only
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Marl (Farmer, 1983) using peak data only
Comparison of peak, residual & base strength criteria
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Marl (Farmer, 1983) using peak data only
Effective friction - strain polynomial
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Marl (Farmer, 1983) using peak data only
Reconstructed versus original stress-strain curves
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Mari (Farmer, 1983) using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Residual strength D F O, (MPa)
ou = Dos’ + Fos + O -0.009 22 3
Base strength & transition point | ¢, (deg) | 65 (MPa) | 6,,(MPa)
ow = {(1+sindv)/(1-sindp) }o3 17 46 83
Friction-strain and base strain R (deg.) S T e
¢.=R+Se, + Tew2 43 -464 2040 0.114
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Appendix J.3
Intact mudstone (Farmer, 1983) using peak data only
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Comparison of peak, residual & base strength criteria
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Mudstone (Farmer, 1983) using peak data only
Effective friction - strain polynomial
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Mudstone (Farmer, 1983) using peak data only
Reconstructed versus original stress-strain curves
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Mudstone (Farmer, 1983) using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Appendix J.4
Intact portland stone (Farmer, 1983) using peak data only
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Portland stone (Farmer, 1983) using peak data only
Comparison of peak, residual & base strength criteria
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Portiand stone (Farmer, 1983) using peak data only

Effective friction - strain polynomial
100 : : I
—|E e friction - strain polynomial
\ & [Pea € @ fiiction
80 -
Pe P
= N |
40 ‘ ' ; - f
L ~_
‘ i i ;
20 v i ‘
0 0.01 0.02 0.03 0.04

Portland stone (Farmer, 1983) using peak data only
Reconstructed versus original strass-strain curves
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Portland stone (Farmer, 1983) using peak data only
Normalized post peak modulus, Epp{n) versus epp
()}
Mw' e
A
w 1 y
2 > - a3
§ A‘ ! A 04
2 A i A7
= 2 : v i4
£ A | e 21
P -3
A E
3 é
0.005 0.01 0.015
epp
Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Clipp=03+ o‘;{mo‘;/cc + S}‘ 15.3 71.5 1 0.5
Residual strength D F o, (MPa)
o1 =Dos’ + Fo3 + 0w -0.003 3.9 14
Base strength & transition point | ¢, (deg.) | G, (MPa) | G, (MPa)
ow = {(1+sinde)/(1-sindv)}o3 30 277 831
Friction-strain and base strain R (deg.) S T &
¢.=R +Se,, + Tew2 91 -2970 35800 0.04
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Intact saccharoidal limestone (Farmer, 1983) using peak data only

Appendix J.5
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Saccharoidal limestone (Farmer, 1983) using peak data only
Comparison of peak, residual & base strength criteria
250 — T
200 S el
L l/r :
| > |
- 150 ; A1
S SR e |
= S . L
_. 100 : A/// , ?
° /!/ //A N . i !
50 /” - lﬁoek!»Brov’m peak sireng
/// .4 P = ﬁesiqual %tren#th polynamial
/_ - had | ! o1
o i \
0 10 20 30 40 S0 60
63 (MPa)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

287



Saccharoidal limestone (Farmer, 1983) using peak data only
Effective friction - strain polynomial
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Saccharoidal limestone (Farmer, 1983) using peak data only
Reconstructed versus original stress-strain curves
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Saccharoidal limestone (Farmer, 1983) using peak data only
Normalized post peak modulus, Epp{n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Glp = 03 + G:{mo¥/Ce + 5} 9.0 50 ! 0.5
Residual strength D F O (MPa)
Cir = sz + Fm + Ger '003 5.6 10
Base strength & transition point | ¢, (deg.) | ©;,(MPa) | G, (MPa)
o = {(1-+sings)/(1-sings) }o3 38 48 204
Friction-strain and base strain R (deg.) S T e
6. =R +Se, +Te,? 83 -3640 73300 0.025
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Appendix J.6
Intact sandstone (Farmer, 1983) using peak data only
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Sandstone (Farmer, 1983) using peak data only
Comparison of peak, residual & base strength criteria
1200 — — ; z
L P | i
R R B ! T il
1oooif;ji!:%‘,//§
g0 | L . A
e
= 600
° 400
200
0
0 50 100 150 200 250 300 3s0
c3 (MPa)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sandstone (Farmer, 1983) using peak data only
Effective friction - strain polynomial
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Sandstone (Farmer, 1983) using peak data only
Reconstructed versus original stress-strain curves
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Sandstone (Farmer, 1983) using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Clp =03 + O'c{mO'B/O'c + S}a 27.7 78 1 0.5
Residual strength D F G, (MPa)
Ot = sz + Fo3 + G -0.004 4.9 16
Base strength & transition point | ¢, (deg.) | G5 (MPa) | G, (MPa)
o = {(1+singv)/(1-singv)}o3 35 303 1120
Friction-strain and base strain R (deg) S T e
¢.=R+Se, + ”['ew2 103 -5450 109000 | 0.025
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Appendix J.7
Intact silty sandstone (Farmer, 1983) usinig peak data ounly
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Silty sandstone (Farmer, 1983)
Effective friction - strain polynomial
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Reconstructed versus original stress-strain curves
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Silty sandstone (Farmer, 1983)
Normalized post peak modulus, Epp{n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Otp = 03 + Ge{mo3/0c + 5} 10.6 61 1 0.5
Residual strength D F o, (MPa)
o= sz + Fo3 + O -0.004 3.6 12
Base strength & transition point | ¢, (deg.) | 65, (MPa) | 6,,(MPa)
ow = {(1+singv)/(1-sindv) }o3 28.5 200 365
Friction-strain and base strain R (deg.) S T Y
¢. =R +Se, + Tem,2 80 -2770 37100 0.04
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Appendix J.8
Intact quartzite (Gates, 1988) using peak data only
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Quartzite (Gates, 1988) using peak data only
Effective friction - strain polynomial
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Quartzite (Gates, 1988) using peak data only
Reconstructed versus original stress-strain curves
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Quartzite (Gates, 1988) using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
O1p = 03 + G:{mo¥/o: + s} 5.6 200 1 0.5
Residual strength D F O (MPa)
Cir = DC)’I&2 + Fo3 + Gur -0.01 5.6 40
Base strength & transition point | ¢, (deg.) | 63, (MPa) | G,,(MPa)
ow = {(1+sings)/(1-singe) }o3 38 137 578
Friction-strain and base strain R (deg.) S T (Y
¢. =R + Se, + '[’e,,,,2 83 -7330 300600 0.012
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Appendix J.9
Intact Lac du Bonnet pink granite (Gorski et al., 1991) using peak data only

o, data oy, data o, data e, data e, data
(MPa) (MPa) (MPa) (strain) (strain)
0.01 186 46 0.003 0.003
2 216 39 0.004 0.006
4 257 69 0.004 0.007
6 285 90 0.005 0.008
10 328 102 0.005 0.007
15 393 105 0.006 0.009
20 443 158 0.007 0.010
30 520 291 0.008 0.009
40 586 179 0.009 0.014
60 700 377 0.011 0.011
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i

300 400 500 600 700
o3 (MPa)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



300

Lac du Bonnet pink granite (Gorski et al., 1991) peak data
Effective friction - strain polynomial
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Lac du Bonnet pink granite (Gorski et al., 1991) peak data
Normalized post peak moduius, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Gip = G3 + Ge{mos/oc + 5} 34.9 192 1 0.5
Residual strength D F G, (MPa)
Cir= sz + Fm + Ger ‘0.002 5.7 38
Base strength & transition point | ¢, (deg.) | G5 (MPa) | G, (MPa)
o = {(1+singv)/(1-sindv) }o3 38 658 2770
Friction-strain and base strain R (deg) S T e
¢. =R +Se, + ’I‘e‘,‘,2 91 -4560 98700 0.023
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Appendix J.10
Intact Doddington sandstone (Santarelli et al., 1989) using peak data only
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Doddington sandstone (Santarelii et al., 1989) peak data only
Comparison of peak, residual & base strength criteria
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Doddington sandstone (Santarelli et al., 1989) peak data only
Effective friction - strain polynomiai
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Doddington sandstone (Santarelli et al., 1989) peak data only
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400

-
0

S ﬂ\\\

AN

100

| / ' - a3
- T NS -
£ o 7N " loso
- AN\ ~ 20
-] — 50.00
2 A\WN
\

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



304

Doddington sandstone (Santarelli et al., 1989) peak data only
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m C, (MPa) s a
Gip = 03 + Ge{mo3/ce + s}’ 19.2 92 ! 0.5
Residual strength D F G, (MPa)
ot = Do’ + Fo3 + Ger -0.004 4.5 18
Base strength & transition point | ¢, (deg) | ;,(MPa) | 6,,(MPa)
ow = {(1+singv)/(1-sindv) }o3 33 312 1060
Friction-strain and base strain R (deg) S T (Y
¢. =R+ Se, + Te,,‘,2 94 -3260 43700 0.04
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Intact Gebdykes dolomite (Santarelli et al., 1989) using peak data only

Appendix J.11
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70

(degrees)
8

Gebdykes dolomite (Santarelli et al., 1989) peak data only
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Gebdykes dolomite (Santarelli st al., 1989) peak data only
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m O, (MPa) s a
Olp = 03 + Ge{mo3/oe + s} 24 77 ! 0.5
Residual strength D F O, (MPa)
ot = Do + Fos + 0er -0.01 3.6 15

Base strength & transition point | ¢, (deg.) | G (MPa) | G, (MPa)

ow = {(1+sings)/(1-sings) } o3 285 78 219
Friction-strain and base strain R (deg.) S T [
¢. =R+ Sew + Tewz 75 -5660 174000 0.02

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



308

Appendix J.12
Intact mudstone (Tao, 1991) using peak data only

123 peak strength and strain data points recorded by Tao.

Mudstone (Tao, 1992) using peak data only
Comparison of peak, residual & base strength criteria
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Mudstone (Tao, 1992) using peak data only
Effective friction - strain polynomiai
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Mudstone (Tao, 1992) using peak data only
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Cip =03 + 0':{[!10’3/0’: + S}' 99 67 1 0.5
Residual strength D F G, (MPa)
oir=Doy’ + Fos + Gar -0.01 4.6 13
Base strength & transition point | ¢, (deg) | 65 (MPa) | ©,,(MPa)
ow = {(1+singv)/(1-sindv) }o3 34 110 388
Friction-strain and base strain R (deg.) S T €
$.=R+ Se,, + ’I'em,2 67 -907 6270 0.07
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Appendix K
Worked intact rock data sets where only peak data was available

Appendix K.1
Intact berea sandstone (Aldritch, 1969)
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Comparison of peak, residual & base strength criteria
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Berea sandstone (Aldritch, 1969)
Effective friction - strain polynomial
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Berea sandstone (Aldritch, 1969)
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + Ge{mG3/e + 5} 15.4 78 1 0.5
Residual strength D F G (MPa)
Cir= sz + Fo3 + G -0.008 49 16
Base strength & transition point | ¢, (deg) | 65 (MPa) | G,,(MPa)
ow = {(1+singv)/(1-sindv)}o3 35 171 630
Friction-strain and base strain R (deg.) S T €
¢. =R +Se,, + Tgmz 90 -4560 95000 0.024
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Appendix K.2

Intact high strength concrete HS06 (Ansari et al., 1998)
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HSO06 concrete (Ansari et al., 1998)
Effactive friction - strain polynomial
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HS06 concrete (Ansari et al., 1998)
Normalized post peak moduius, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m O, (MPa) s a
Glp = G3 + Ge{mo¥/o: + 5} 6.8 335 ! 05
Residual strength D F G (MPa)
cic=Do3’ + Fos + Gur -0.02 48 11
Base strength & transition point | ¢, (deg.) | 65 (MPa) | G, (MPa)
o = {(1+sindw)/(1-sindv) }o3 35 59 217
Friction-strain and base strain R (deg) S T &
$.=R+Se  + Tng 68 -1830 25100 0.04
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Appendix K.3
Intact high strength concrete HS10 (Ansari et al., 1998)

Axia) mtress (he))

Axial strain (inAn)
HS10 concrete (Ansari ot al., 1998)
Comparison of peak, residual & base strength criteria
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HS10 concrete (Ansari et al., 1998)
Effectuive friction - strain polynomial
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HS10 concrete (Ansari et al., 1998)
Reconstructed stress-strain curves
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HS10 concrete (Ansari et al., 1988)
Normalized post peak moduius, Epp(n) versus epp

319

0
N f
-200 ye - a3
A 20
= <300 a 138
§ 2 v 276
W 400 A e 414
: x 552
-500 . m 69.0
A
600 :
-700
0.005 0.01 0.015 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 3 + Ge{mGY/Cc + 5} 3.7 90 1 0.5
Residual strength D F G, (MPa)
Cir= sz + Fo3 + Gee -0.01 42 18
Base strength & transition point | ¢, (deg.) | O3 (MPa) | G, (MPa)
ow = {(1+singw)/(1-singv) }o3 32 84 274
Friction-strain and base strain R (deg) S T e
¢, =R+ Se,, + Te,2 62 | -1290 | 14100 | 005
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Appendix K.4
Intact quartzite (Barron, 1970)
o, data C,, data e, data
(MPa) (MPa) (strain)
0 256 0.0028
6.9 344 0.0039
13.8 407 0.0049
20.7 441 0.0048
27.6 478 0.0056
34.5 530 0.0059
Quartzite (Barron, 1970)
Comparison of peak, residuai & base strength criteria
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Quartzite (Barron, 1970)
Effective friction - strain polynomial
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t— Effecti efn'ctiorJ-strain polynomial
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Quartzite (Barron, 1970)
Reconstructed stress-strain curves
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Quartzite (Barron, 1970)
Normalized post peak modulus, Epp(n) versus epp
(]
-2
‘= - o3
g 4 + A 08
§ A A 69
2 % : v 138
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§ 3 N m 345
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A
12
0.005 0.01 0.015 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m G. (MPa) ] a
Clip=03 + Gc{mm/o-c + s}' 18.0 274 1 0.5
Residual strength D F o (MPa)
i = Doy’ + Fos + G -0.008 7.2 55
Base strength & transition point | ¢, (deg.) | 03, (MPa) | G, (MPa)
ow = {(1+sings)/(1-sings) }o3 43 278 1480
Friction-strain and base strain R (deg.) S T e,
¢.=R+Se, + Tewz 89 -6450 | 228000 0.014
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Appendix K.5

Intact Solenhofen limestone (Barron, 1970)

©, data o,, data e, data
(MPa) (MPa) (strain)
0 183 0.0035
6.9 222 0.0039
13.8 236 0.0044
20.7 263 0.0049
27.6 277 0.0050
34.5 295 0.0050

Solenhofen limestone (Barron, 1970)
Comparison of peak, residual & base strength criteria
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Solenhofen limestone (Barron, 1970)
Effective friction - strain polynomial

]
— Effective frigtion - strain| polynomial
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Solenhofen limestone (Barron, 1970)
Reconstructed stress-strain curves
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Solenhofen limestone (Barron, 1970)
Normalized post peak modulus, Epp(n) versus epp
o L
S = - o3
b A A l0
§ a A 69
g -10 A v 138
= A o 20.7
g : x 276
Q
ﬁ s N m 345
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A
20 |
0.005 0.01 0.015
epp
Criterion Parameters
Hoek-Brown peak strength m O, (MPa) s a
Gip = O3 + Gc{mo3/oe + s} 5.0 191 1 0.5
Residual strength D F G (MPa)
6ir=Do3’ + Fos + G -0.03 6.9 38
Base strength & transition point | ¢, (deg.) | 65 (MPa) | G, (MPa)
ow = {(1+sings)/(1-sings)}os 42 82 421
Friction-strain and base strain R (deg.) S T e
¢, =R+ Se, + Te”z 112 -18700 | 1250000 | 0.008
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Appendix K.6
Intact syenite (Barron, 1970)

o, data G,, data e, data
(MPa) (MPa) (strain)
0 229 0.0032
6.9 336 0.0048
13.8 408 0.0063
20.7 468 0.0068
27.6 525 0.0079
34.5 565 0.0083
Syenite (Barron, 1970)
Comparison of peak, residual & base strength criteria
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Syenite (Barron, 1970)
Effective friction - strain polynomial
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Sysenite (Barron, 1970)
Reconstructed stress-strain curves
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Syenite (Barron, 1970)
Normalized post peak modulus, Epp(n) versus epp
o ‘
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3 A
-10 i '
0.005 0.01 0.015 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Glp = 03 + Oc{mo3/ce + 5} 274 244 1 0.5
Residual strength D F O (MPa)
Clir = Dcsz +Fo3 + Ga -0.004 6.7 49
Base strength & transition point | ¢, (deg) | G5 (MPa) | G, (MPa)
ow = {(1+sindv)/(1-sinds)}o3 41 449 2200
Friction-strain and base strain R (deg.) S T &
¢. =R +Se, +Te,? 87 -3870 82000 0.024
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Intact berea sandstone (Blanton, 1981)

Appendix K.7

C, data o,, data e, data
(MPa) (MPa) (strain)
0 80 0.004
50 274 0.013
62.5 332 0.016
75 345 0.015
87.5 371 0.017
100 380 0.017
Berea sandstone (Blanton, 1981)
Comparison of peak, residual & base strength criteria
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Berea sandstone (Blanton, 1981)
Effective friction - strain polynomial
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Berea sandstone (Blanton, 1981)
Reconstructed stress-strain curves
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Berea sandstone (Blanton, 1981)
Normalized post peak modulus, Epp(n) versus epp
()
<100
-200
N - a3
Y AS
:C: -300 A 50
5 N v 625
-400 e e 75
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" | 100
A
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A
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epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = G3 + Oc{mo¥/o: + s} 7.1 108 1 0.5
Residual strength D F G (MPa)
Cir= DCSZ + Fm + G« '0.007 42 22
Base strength & transition point | ¢, (deg.) | G5 (MPa) | G, (MPa)
ow = {(1+singv)/(1-sinds)} a3 32 166 539
Friction-strain and base strain R (deg) S T e
¢.=R +Se, + Tem,2 77 -3510 67800 0.03
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Appendix K.8
Intact charcoal granodiorite (Blanton, 1981)

o, data o,, data e, data
(MPa) (MPa) (strain)

0 320 0.005
50 690 0.017
250 1320 0.021
450 1750 0.027

Charcoal granodiorite (Blanton, 1881)
Comparison of peak, residual & base strength criteria
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Charcoal granodiorite (Blanton, 1981)
Effective friction - strain polynomial
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Charcoal granodiorite (Blanton, 1981)
Reconstructed stress-strain curves
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Charcoal granodiorite (Blanton, 1981)
Normalized post peak modulus, Epp(n) versus epp
° P
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= ! L a 300
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2000 | 3
A
A
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epp
Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Olp =03 + Gc{maO3/cc + 5} 79 434 1 0.5
Residual strength D F G, (MPa)
Cir = sz +Fo3 + G -0.001 3.9 87
Base strength & transition point | ¢, (deg.) | 65 (MPa) | &, (MPa)
ow = {(1+singv)/(1-sindw) } o3 30 912 2730
Friction-strain and base strain R (deg) S T e
¢. =R +Se, + ’[’ewz 76 -2270 27900 0.04
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Appendix K.9
Intact Indiana limestone (Blanton, 1981)

o, data G,, data e, data
(MPa) (MPa) (strain)
0 79 0.003
5 104 0.004
10 75 0.005
15 128 0.004
20 135 0.006
25 165 0.008
50 174 0.010

indiana limestone (Blanton, 1981)
Comparison of peak, residual & base strength criteria
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Indiana limestone (Blanton, 1981)
Effective friction - strain polynomiai
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Indiana limestone (Blanton, 1981)
Reconstructed stress-strain curves
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Indiana limestone (Blanton, 1981)
Normalized post peak modulus, Epp(n) versus epp
o — ]
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epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + Gc{mo¥/G: + 5} 2.4 88 1 0.5
Residual strength D F G, (MPa)
o1 = Do3’ + Fo3 + G -0.014 3.9 18
Base strength & transition point | ¢, (deg.) | G5 (MPa) | G, (MPa)
ow = {(1+sings)/(1-sings) }o3 30 78 234
Friction-strain and base strain R (deg) S T e
¢. =R+ Se,, + Tew2 72 -5630 189000 | 0.015
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Appendix K.10
Intact Blair dolomite (Brace, 1964)

o, data G,, data e, data
(MPa) (MPa) (strain)
46 826 0.009
94 1020 0.013
115 1060 0.017
157 1130 0.013
184 1240 0.013
273 1370 0.013
349 1470 0.03

Blair dolomite (Brace, 1964)

Comparison of peak, residual & base strength criteria
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Blair dolomite (Brace, 1964)
Effective friction - strain polynomial
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Reconstructed stress-strain curves
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Blair dolomite (Brace, 1964)
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Olp = O3 + Ge{mo3/ac + 5} 2.6 791 1 0.5
Residual strength D F G (MPa)
o =Dos + Fos + G 0002 | 44 157
Base strength & transition point | ¢, (deg.) | 65, (MPa) | G, (MPa)
o = {(1+singe)/(1-singv) }o3 33 554 1880
Friction-strain and base strain R (deg) S T e
¢. =R+ Se + Te,? 60 -1050 | 10200 0.05
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Appendix K.11
Intact quartzite (Chan et al., 1972)

c, data o), data e, data
(MPa) (MPa) (strain)

0 224 0.0038
10.3 265 0.0045
13.8 321 0.0055
27.6 420 0.0072

Quartzite (Chan et al., 1972)
Comparison of peak, residual & base strength criteria
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Quartzite (Chan et al., 1972)
Effective friction - strain polynomial
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Quartzite (Chan et al., 1972)
Reconstructed stress-strain curves
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Quartzite (Chan et al., 1972)
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Cp=03+ Gc{mm/cc + S}‘ 19. 201 1 0.5
Residual strength D F G, (MPa)
o1 = Do’ + Fos + Gar -0.006 6.2 10
Base strength & transition point by (deg.) | 03 (MPa) | G, (MPa)
o = {(1+sindw)/(1-sindv)}o3 40 312 1430
Friction-strain and base strain R (deg.) S T &
¢.=R+Se, + '['e,,,,2 91 -5280 136000 0.02
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Appendix K.12
Intact concrete (Dougill, 1985)
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Concrete, (Dougill, 1985)
Effactive friction - strain polynomial
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Concrete, (Dougill, 1985)
Reconstructed stress-strain curves
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Concrete, (Dougill, 1985)
Normalized post peak modulus, Epp/(spp-s3)
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = O3 + Ge{mo¥/cc + s} 20.0 15 1 0.5
Residual strength D F G, (MPa)
oir=Do3’ +Fas + Ger -0.03 49 3
Base strength & transition point | ¢y, (deg) | 65 (MPa) | G, (MPa)
ow = {(1+sinv)/(1-sings)}o3 35 43 159
Friction-strain and base strain R (deg.) S T e,
¢.=R+ Sew + 'I'em,2 65.5 -556 2540 0.11
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Appendix K.13
Intact berea sandstone (Gnirk et al., 1965)
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Berea sandstone (Gnirk et al., 1965)
Effective friction - strain polynomial
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Reconstructed stress-strain curves
300 :
i
|
250 /
/ - o3
200 /rf - 20
= T - 172
< 150 A . — 345
= L L — 517
"0 e " o
\\ -
50 -
N
o L
Q 0.02 0.04 0.06
e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

348



349

Berea sandstone (Gnirk et al., 1965)
Normalized post peak modulus, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m ©. (MPa) s a
Olp = 3 + Ge{mo¥/ce + 5} 2.5 64 1 0.5
Residual strength D F G, (MPa)
Cie = sz + Fm + Ger '0.006 2.8 13
Base strength & transition point | ¢, (deg.) | G (MPa) | G, (MPa)
ow = {(1+singv)/(1-sinde) }o3 23 118 270
Friction-strain and base strain R (deg) S T e,
¢. =R +Se, + 'I’e‘,‘,2 63 -1500 14000 0.05
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Appendix K.14
Intact Carthage marble (Gnirk et al., 1965)
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Carthage marhle (Gnirk et al., 1965)
Comparison of peak, residual & base strength criteria
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Carthage marble (Gnirk et al., 1965)
Effcetive friction - strain polynomial
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Carthage marble (Gnirk et al., 1965)
Normalized post peak modulus, Epp(n) versus epp
(] M
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
O1p = 03 + Ge{may/ce + 5} 23 113 L 0.5
Residual strength D F G (MPa)
Cir = DCS’Z&2 + Fo3 + G -0.008 3.5 23
Base strength & transition point | ¢, (deg.) | o5, (MPa) | &, (MPa)
o = {(1+sinds)/(1-sindv) }os 28 116 321
Friction-strain and base strain R (deg.) S T &
0. =R +Se,, +Te,? 64 -921 5870 0.08
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Appendix K.15
Intact Danby marble (Gnirk et al., 1965)

Danby marble (Gnirk et al., 1965)

Comparison of peak, residual & base strength criteria
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Danby marble (Gnirk et al., 1965)
Effective friction - strain polynomial
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Danby marble (Gnirk et al., 1965)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m G, (MPa) s a
G1p = 63 + 0c{mMo3/Cc + s}il 2.8 105 1 0.5
Residual strength D F o, (MPa)
Gir= sz + Fm + O '0.003 2.7 21
Base strength & transition point | ¢, (deg) | 65 (MPa) | G,,(MPa)
ow = {(1+singv)/(1-sings) }o3 22 235 516
Friction-strain and base strain R (deg) S T e
¢. =R+ Se,, + Tem,2 61 -186 224 0.42
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Appendix K.16
Intact Hasmark dolomite (Gnirk et al., 1965)

Hasmark dolomite (Gnirk et al., 1965)
Comparison of peak, residual & base strength criteria
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Hasmark dolomite (Gnirk et al., 1965)
Effective friction - strain polynomial
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Hasmark dolomite (Gnirk et al., 1965)
Normalized post peak modulus, Epp(n) versus epp
o
-200
-400 A
- o3
600 ‘L A ls
= al a 172
§ -800 yy v 500
o0 [ 20
-1200 N
A
-1400 =
1600 -
0.005 0.01 0.015 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + Ge{mo3/c: + 5}’ 1.8 226 1 0.5
Residual strength D F G, (MPa)
Cir= sz + Fo3 + G -0.003 32 45

Base strength & transition point | ¢, (deg) | 63 (MPa) | 6,,(MPa)

ow = {(1+sindb)/(1-sindv) }o3 26 251 644
Friction-strain and base strain R (deg.) S T &
9. =R+ Se,, + Te,? 70 -886 4460 0.1
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Appendix K.17
Intact Indiana limestone (Gnirk et al., 1965)
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Indiana limestone (Gnirk et al., 1965)
Effective friction - strain polynomial
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Indiana limestone (Gnirk et al., 1965)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m G, (MPa) ] a
Gip = 03 + Ge{mO3/Cc + 5} 9.7 19 1 0.5
Residual strength D F G, (MPa)
oi = Do’ + Fas + G -0.007 3.0 4
Base strength & transition point | ¢, (deg.) | 63, (MPa) | G, (MPa)
o = {(1+sings)/(1-sinds)}o3 24 101 241
Friction-strain and base strain R (deg.) S T e
¢. =R+ Se,, + Te,? 48 -111 127 0.44
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Appendix K.18
Intact Virginia greenstone (Gnirk et al., 1965)
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Virginia greenstone {(Gnirk et al., 1965)
Effective friction - strain polynomial
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Virginia greenstone (Gnirk et al., 1965)
Normalized post peak modulus, Epp(n) versus epp
o M
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Gip = O3 + Cc{mo¥/C: + 5} 1.2 43 1 0.5
Residual strength D F G, (MPa)
ou=Das’ + Fo3 + Gar -0.003 2.1 9
Base strength & transition point | ¢, (deg) | O3, (MPa) | &, (MPa)
ow = {(1+sindb)/(1-sinds) }o3 16 117 206
Friction-strain and base strain R (deg.) S T e
6. =R + Se + Te,’ 96 -1760 9710 0.09
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Appendix K.19
Intact Jastrzebie sandstone (Kwasniewski, 1983)

o, data o,, data e, data

(MPa) (MPa) (strain)
0 92 0.004
12 140 0.007
18 183 0.010
24 218 0.010
29 223 0.014
35 230 0.012
47 269 0.019
53 283 0.019
60 290 0.021

Jastrzabie sandstone (Kwasniewski, 1983)
Comparison of peak, residual & base strength criteria
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Jastrzebie sandstone (Kwasniewski, 1983)
Effective friction - strain polynomial
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Jastrzebie sandstone (Kwasniewski, 1983)
Normalized post peak modulus, Epp(n) versus epp
° M
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 3 + Ge{mO¥/C: + 5} 7.0 110 1 0.5
Residual strength D F O, (MPa)
ou=Dos +Fo3 + 0 -0.03 6.1 22
Base strength & transition point | ¢, (deg.) | 63 (MPa) | G,,(MPa)
o = {(1+singv)/(1-sings)}o3 40 72 331
Friction-strain and base strain R (deg) S T e,
¢. =R +Se, + Tew2 68.5 -2200 42500 0.03
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Appendix K.20
Intact medium grained Pinowek sandstone (Kwasniewski, 1983)

o, data Gy, data e, data

(MPa) (MPa) (strain)
0 84 0.005
11 163 0.010
21 243 0.009
31 249 0.013
32 206 0.013
41 243 0.013
52 309 0.015
60 328 0.015

Medium grained Pinowek sandstone (Kwasniewski, 1933)
Comparison of peak, residual & base strength criteria
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Medium grained Pinowek sandstone (Kwasniewski, 1983)

Effective friction - strain polynomial
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Medium grained Pinowek sandstone (Kwasniewski, 1983)
Normalized post peak modulus, Epp(n) versus epp
° —
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
C1p = 03 + Gc{ MO3/0c + s}‘ 8.6 111 1 0.5
Residual strength D F O (MPa)
Clir = DC)'Zi2 + Fo3 + O -0.03 6.7 22
Base strength & transition point | ¢, (deg.) | O3 (MPa) | G, (MPa)
o = {(1+sings)/(1-sinds)}o3 42 69 350
Friction-strain and base strain R (deg.) S T e
¢. =R + Se,, + Te,? 100 -6210 166000 0.02
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Appendix K.21
Intact fine grained Pinowek sandstone (Kwasniewski, 1983)

o, data g,, data e, data

(MPa) (MPa) _(strain)
0 81 0.006
11 161 0.009
20 211 0.011
30 258 0.010
41 258 0.014
44 306 0.016
50 322 0.015
61 339 0.019

Fine grained Pinowek sandstone (Kwasniewski, 1983)
Comparison of peak, residual & base strength criteria
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Fine grained Pinowek sandstone (Kwasniewski, 1983)
Effective friction - strain polynomial
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Fine grained Pinowek sandstone (Kwasniewski, 1983)
Normalized post peak moduius, Epp(n) versus epp
[
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Oip = 03 + 6:{MGY/Cc + s} 11.5 102 1 0.5
Residual strength D F G (MPa)
o1 = D3’ + Fo3 + Gar -0.03 6.8 20
Base strength & transition point | ¢, (deg.) | 65 (MPa) | G, (MPa)
o = {(1+singw)/(1-singv) }o3 42 80 404
Friction-strain and base strain R (deg) S T [
¢. =R+ Se,, + Te,,,,2 84 -4080 99900 0.02
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Appendix K.22
Intact Inada granite (Mogi, 1964)
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Inada yranite (Mogi, 1964)
Effective friction - strain polynomial
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inada granite (Mogi, 1964)
Normalized post peak modulus, Epp(n) versus epp
X M
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Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Glp = 03 + Ge{mos/ce + s} 21.3 244 1 0.5
Residual strength D F o, (MPa)
Cir = DO’B2 + Fo3 + G -0.004 6.2 49
Base strength & transition point | ¢, (deg.) | ¢ (MPa) | G, (MPa)
ow = {(1+sindw)/(1-sindv) }o3 40 411 1890
Friction-strain and base strain R (deg.) S T e
¢. =R +Se,, + Te, 77 -1070 7740 0.07
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Appendix K.23
Intact Nabe-ishi peridotite (Mogi, 1965)

377

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(MPa)
AN
N “\\\

g

3 10} I Nabe-ishi Peridotije
s 20008 25000
'5 8 1500b
& 6 8000
E_. 5000
S of M -tloa/
2 .
a | ]
2
o 3 — - s
0 10 i 0 [ ) 1 [+) ) [ ] 2
~—Sirgin - ¢ (%}
Nabe-ishi peridotite (Mogi, 1965)
Comparison of peak, residual & base strength criteria
1500 T
= i
|
1000



Nabe-ishi peridotite (Mogi, 1965)
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Nabe-ishi peridotite (Mogi, 1965)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m o, (MPa) s a
Cip =03 + cc{mm/cc + s}‘ 27.4 126 l OAS
Residual strength D F G, (MPa)
Cir = D(}‘:s2 + Fo3 + G -0.006 6.2 25
Base strength & transition point | ¢, (deg.) | 65 (MPa) | G, (MPa)
ow = {(1+sings)/(1-sings) }o3 40 271 1250
Friction-strain and base strain R (deg.) S T e
¢. =R +Se,, + '['e,,,,z 77.5 -3100 63900 0.024
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Appendix K.24
Intact Orikabe diorite (Mogi, 1965)
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Orikabe diorite (Mogi, 1965)
Effective friction - strain polynomial
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Orikabe diorite (Mogi, 1965)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m o, (MPa) s a
Gip = 03 + Ge{mO¥/Ge + 5} 10.7 274 1 0.5
Residual strength D F G, (MPa)
Clir = sz + Fm + Ger ‘0.005 5.6 55
Base strength & transition point | ¢, (deg.) | 65 (MPa) | G, (MPa)
o = {(1+sings)/(1-sindv)}o3 38 308 1300
Friction-strain and base strain R (deg) S T e
$.=R+Se, + 'I‘ew2 97 -4670 92700 0.025
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Appendix K.25
Intact Shirochoba andesite (Mogi, 1964)
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Shirochoba andesite (Mogi, 1964)
Effective friction - strain polynomial
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Shirochoba andesite (Mogi, 1964)
Normalized post peak modulus, Epp(n) versus epp
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Hoek-Brown peak strength m G, (MPa) s a
Cp=03+ o'c{mmlcc -+ s}l 5.5 163 1 0.5
Residual strength D F G (MPa)
o1 = Do’ + Fos + 0 -0.004 3.8 33
Base strength & transition point | ¢, (deg) | 65 (MPa) | G, (MPa)
o = {(1+sindb)/(1-sinds) }o3 30 250 751
Friction-strain and base strain R (deg.) S T e,
$.=R+Se, + 'l'em,z 72 -1760 18500 0.05
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Appendix K.26
Intact Ukigane diorite (Mogi, 1964)
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Ukigane diorite (Mogi, 1964)
Effsctive friction - strain polynomial
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= LWU omlalﬂ
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Ukigane diorite (Mogi, 1964)
Reconstructed strass-strain curves
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Ukigane diorite (Mogi, 1964)
Normalized post peak modulus, Epp(n) versus epp
0 i l "
A
A
-500 ‘ e
= A a2
E : A 40
w N v 70
-1000 : e 100
A
A
]
-1500 | ;
0.005 0.01 0.015
epp
Criterion Parameters
Hoek-Brown peak strength m o, (MPa) s a
Glp = G3 + O:{mo3/c: + 5} 18.6 201 1 0.5
Residual strength D F O (MPa)
Cir= sz + Fm + G '0002 45 40
Base strength & transition point | ¢, (deg) { ©, (MPa) | &,,(MPa)
ow = {(1+singv)/(1-sinds) }os 33 662 2250
Friction-strain and base strain R (deg.) S T e
¢. =R+ Se, + Tem,2 78 -2230 27600 0.04
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Appendix K.27
Intact carboniferous sandstone (Santarelli et al., 1989)

Deviaotoric stress, oy —~e3 (MP0)
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Carboniferous sandstone (Santarslli et al., 1989)
Effective friction - strain polynomial
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Carboniferous sandstone (Santarelli et al., 1989)
Reconstructed stress-strain curves
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Carboniferous sandstone (Santarelli et al., 1989)
Normalized post peak modulus, Epp(n) versus epp
° vﬂé&”
-1
7] 4 3
g 2 " ; g.s
8 A A 10
= 4 v 25
:":: 3 : ® 50
l% N x 75
- i
A
A
s 1
0.005 0.01 0.015
epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Clp=03 + O'c{mOJ/Gc + S}a 4.5 89 1 0.5
Residual strength D F O, (MPa)
o1 =Dos’ + Fo3 + 0 -0.008 3.8 18
Base strength & transition point | ¢, (deg) | 65 (MPa) | 6, (MPa)
o = {(1+sinds)/(1-sinds) }o3 30 118 353
Friction-strain and base strain R (deg.) S T e,
¢. =R+ Se, + Tep‘,2 75 -5150 147000 0.02
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Appendix K.28
Intact Tennessee marble (Wawersik et al., 1970)
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Comparison of peak, residual & base strength criteria
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Tennessee marble (Wawersik et al., 1970)
Effective friction - strain polynomial
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300 :
— £
: - o3
' - 04
200 X —34
= | — 69
S — 138
\ — 207
-] 100 — 276
\ — 345
— 483
L
o !
0 0.005 0.01
e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



394

Tennessee marble (Wawersik et al., 1970)
Normalized post peak modulus, Epp(n) versus epp
° W

- o3

A A 04
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epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = G3 + G:{mo3¥/C: + 5} 5.5 134 1 0.5
Residual strength D F G (MPa)
Olr = DO?Z + Fo3 + O« -0.03 6.1 27
Base strength & transition point | ¢, (deg) | 63, (MPa) | G,,(MPa)
o = {(1+singv)/(1-singv) }o3 40 75 346
Friction-strain and base strain R (deg.) S T €
¢. =R +Se, + Tew2 85 -13100 | 952000 | 0.007
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Appendix K.29
Intact concrete type A (Xie et al.,

1995)

Longitudina! Streas (MPs)
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Type A concrate (Xie ot al., 1995)
Polynomial vs. friction-strain data
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Type A concrete (Xie ot al., 1995)
Reconstructed stress-strain curves
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Type A concrete (Xie et al., 1995)
Normalized post peak modulus, Epp(n) versus epp
° T
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o 2 a A 0l
° a A 081
Rl — 12
o -4 L J
= v x 83
= N m 113
a A e 143
iy A A 203
4 — v 233
_8 !
0 0.01 0.02
epp
Criterion Parameters
Hoek-Brown peak strength m G. (MPa) s a
Gip = 03 + Ge{mo3/ce + 5} 12.5 61 1 0.5
Residual strength D F G, (MPa)
i =Daos’ + Fo3 + O -0.04 6.8 12
Base strength & transition point | ¢, (deg.) | 65, (MPa) | 6,,(MPa)
o = {(1+sinds)/(1-singe) }o3 42 51 256
Friction-strain and base strain R (deg.) S T e
¢. =R + Se,, + Te,? 77 -1860 25600 0.04
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Appendix K.30
Intact concrete type B (Xie et al., 1995)
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Type B concrete (Xie et al., 1995)
Effective friction - strain polynomial
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Reconstructed stress-strain curves
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Type B concrete (Xie et ai., 1995)
Normalized post peak modulus, Epp(n) versus epp
0 wr
<500 - a3
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< A e 128
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-1500 m 218
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-2000 j v 445
A
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epp
Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Olp = 03 + 0c{mo3/Gc + s}‘ 10.6 108 1 0.5
Residual strength D F O (MPa)
Cu= sz + Fo3 + Ger -0.03 6.8 22
Base strength & transition point | ¢, (deg) | 6y (MPa) | G, (MPa)
o = {(1+singv)/(1-singe)}o3 42 79 397
Friction-strain and base strain R (deg.) S T e
¢, =R+ Se,, + 'I‘e‘,‘,2 74.5 -1580 19100 0.04
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Appendix K.31
Intact concrete type C (Xie et al., 1995)
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Type C concrste (Xie et al., 1995)
Effective friction - strain polynomial
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Type C concrete (Xie et al., 1995)
Normalized post peak moduius, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + Ge{moy/c: + s} 8.6 137 1 0.5
Residual strength D F o, (MPa)
Cir = DC)'32 + FGo3 + Ger -0.02 6.7 27
Base strength & transition point | ¢, (deg) | 05 (MPa) | G, (MPa)
ow = {(1+sings)/(1-sings) }o3 42 85.5 431
Friction-strain and base strain R (deg.) S T e
o.=R+Se, + '[’e[,[,2 74 -1980 30200 0.03
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Appendix K.32
Intact tuffaceous sandstone (Yoshinaka et al., 1980)
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Tuffaceous sandstone (Yoshinaka et al., 1980)
Effective friction - strain polynomial

150
- e fri on-strain'polynomial
[ ata € e n
120
§ \\
g S0

be

B ————

30 |

Tuffaceous sandstone (Yoshinaka et al., 1980)
Reconstructed stress-strain curves
350
300 ~4r
250 Z‘i - o3
= N -1
é 200 /4R — 10
= v — 30
150 ~ /
o J/ /o - ;g
100 /// -
LA /7 \
50
| S S S—
0 |
0 0.005 0.01 0.015 0.02
e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



406

Tuffaceous sandstone (Yoshinaka et al., 1980)
Normalized post peak moduius, Epp(n) versus epp
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Criterion Parameters
Hoek-Brown peak strength m G, (MPa) s a
Gip = 03 + G:{mo3/o: + s} 6.1 128 1 0.5
Residual strength D F G (MPa)
o1 = Dos’ + Fos + e -0.02 5.6 26
Base strength & transition point | ¢, (deg) | 6;(MPa) | G, (MPa)
ow = {(1+sings)/(1-sings) }o3 38 93 390
Friction-strain and base strain R (deg.) S T €
¢. =R +Se, + Te,’ 93 -28100 | 1270000 | 0.01
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Appendix L
Evaluation of a residual strength 2™ order polynomial for broken rock

If the brittle-ductile transition point is known and it is assumed that the
residual strength and the peak strength command the same value, G, at o, then for

a 2™ order residual polynomial

Nl
o,,=Doj+Fo,+0,,

= O3 .
0,,=0;+0 [m,—+s]
oc

g
- = 3.9 n =D
0,,=0,,=05,+0 [m, p +s]*=0,,=D0o3,+Fo,,*0,,

¢

Where D and F are the unknown constants. o, is determined via assumption
12, equation 6.9, such that by equating equations 6.1 and 2.7 when o, = 0, equation
6.11 is defined:

0,=0s" 6.11

Re-arranging in terms of F

03,
[[mb? +s]°-0_]

F: I + < -003' L‘l

o3t

It is also assumed that the slopes of both the peak and residual strength criteria
at the brittle-ductile transition point are the same:
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8o

c 8o
2 =1 +am,[m,— +s]* '=—XL=2Dg, +F
3t o, O3,

Re-arranging in terms of F

o
F=1 +amb[mbl +s1°"'-2Dg,, L-2
oc

Equating L-1 and L-2 and solving for D

1 03( a 031 a-1
Dz_z'[ocf-[m"'g—'+s] +ambosl[mb-o—+s] ] 6.12

03 ¢ c 4

Substituting 6.12 back into L-2 to solve for F:

c o
F=1 -arnb[mb—3‘—'+s]“" -—Z-[oc,—[mb—s—' +s]°] 6.13
<rc 3 oc
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Appendix M
Worked rock mass data sets

Appendix M.1
Average quality rock mass (Hoek et al., 1997)

Gst m S b Entbroien) |
(MPa) (degrees) (MPa)
50 12 80 33 9000

The information tabulated above was provided in the literature. The value for
¢, was assumed from the Mohr-Coulomb value of effective friction, ¢’ provided. The
intact pre-peak modulus, E, ..., was determined using the empirical relation devised
by the author, equation 6.8, with the intact rock RMR value, RMR,,,., based on the
uniaxial compressive strength of the rock, 6. Strain data was then generated from

the Hoek-Brown intact and rock mass peak strengths and the respective appropriate

pre-peak moduli.
Average quality rock mass (Hoek et al., 1997)
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Average quality rock mass (Hoek et al., 1997)
Effective friction - strain polynomial
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Average quality rock mass (Hoek et al., 1997)
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Average quality rock mass (Hoek et al., 1997)
Normalized rock mass post peak modulus, Epp(n) versus epp
0 |
v - o3
-100 A SO
ATS
_ v 100
= * 124
& -200 x 149
al7d
e 199
-300 A A 223
f’ v 248
<00 .
0.004 0.005 0.006 0.007 0.008 0.009
epp
Criterion Parameters
Hoek-Brown intact peak strength m G, (MPa) ] a
Gip = 3 + Ge{mo3/ce + 5} 12.0 80 L 0.5
Hoek-Brown rock mass peak strength m C, (MPa) s a
O1p = 03 + Oe{mo3/o: + 5} 20 80 0.004 05
Intact rock residual strength D F G, (MPa)
Cir = sz + Fm + O '0.007 4.5 16
Rock mass residual strength D F O, (MPa)
e = Do + Fo3 + Ger -0.04 42 5
Base strength & transition point Oy (deg) | Oxumn | Ootcrimass
o = {(1+singv)/(1-sinds) }o3 33 174 28
Effective friction-strain & base strain | R (deg.) S T &
6. =R + Se,, + Te,,’ 72 -7700 | 380000 | 0.01
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Appendix M.2
Very good hard quality rock mass (Hoek et al., 1997)

GSI m o. (Y Ebrokem |
(MPa) (degrees) | (MPa)
75 25 150 42 42000

The information tabulated above was provided in the literature. The value for
¢, was assumed from the Mohr-Coulomb value of effective friction, ¢’ provided. The
intact pre-peak modulus, E,,,,, Was determined using the empirical relation devised
by the author, equation 6.8, with the intact rock RMR value, RMR, ..., based on the
uniaxial compressive strength of the rock, o.. Strain data was then generated from

the Hoek-Brown intact and rock mass peak strengths and the respective appropriate

pre-peak moduli.
Very good hard rock mass (Hoek et al., 1997)
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Very good hard rock mass (Hoek et al., 1997)
Effective friction - strain polynomial
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Very good hard rock mass (Hoek et al., 1997)
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Very good hard rock mass (Hoek et al., 1997)
Normalized rock mass post peak modulus, Epp(n) versus epp
()}
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! i | v 80.1
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-1200 ’ : ' j
0 0.005 0.01 0.015
epp
Criterion Parameters-
Hoek-Brown intact peak strength m G, (MPa) s a
Clp =03 + Gc{mm/cc + S}‘ 25.0 150 1 0.5
Hoek-Brown rock mass peak strength m G, (MPa) s a
Cip=03 + o'c{mmlo-c + s}‘ 10.2 150 0.06 0.5
Intact rock residual strength D F G, (MPa)
CIr= sz + Fm + Ga '0.008 6.6 60
Rock mass residual strength D F O (MPa)
Cir = sz + Fm + Ger "0‘02 6.3 34
Base strength & transition point by [de8) | Oagumy | Tatcrkmass)
o = {(1+singb)/(1-singe) }o3 42 235 95
Effective friction-strain & base strain | R (deg.) S T &
6. =R +Se,, + ’I‘e‘,‘,2 79 -6040 | 249000 | 0.01
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Appendix M.3
Poor quality rock mass (Hoek et al., 1997)

GSt m S, B Eptorten) |
(MPa) | (degrees) | (MPa)
30 8 20 15 1400

The information tabulated above was provided in the literature. The value for
¢, was assumed from the Mohr-Coulomb value of effective friction, ¢’ provided. The
intact pre-peak modulus, E, ., ,, was determined using the empirical relation devised
by the author, equation 6.8, with the intact rock RMR value, RMR,,,., based on the
uniaxial compressive strength of the rock, .. Strain data was then generated from

the Hoek-Brown intact and rock mass peak strengths and the respective appropriate

pre-peak moduli.
Poor quality rock mass (Hoek et al., 1997)
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Poor quality rock mass (Hoek et al., 1997)
Effective friction - strain polynomial
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Poor quality rock mass (Hoek et al., 1997)
Normalized rock mass post peak modulus, Epp(n) versus epp
0
v - o3
-50 A 30
A 57
_ v 83
= ¢ 110
g -100 x 136
w
m 163
AAA‘ ® 190
4150 | = ! A 216
; { v 243
i
200 L !
0.012 0.016 0.02 0.024
0.014 0.018 0.022 0.026
epp
Criterion Parameters
Hoek-Brown intact peak strength m o, (MPa) s a
Clp=03+ O’c{mO'B/O'c + §}‘ 8.0 20 1 0.5
Hoek-Brown rock mass peak strength m, G, (MPa) s a
Clp=03+ o’c{mlcc + s}' 0.7 20 0.0004 0.5
Intact rock residual strength D F O, (MPa)
Cir = DC)".%2 + Fo3 + G -0.001 2.0 4
Rock mass residual strength D F o, (MPa)
ow. =Dos’ + Fos + O -0.01 2.0 0.4
Base strength & transition point by (deg) | Oagmacy | O3tcricmass)
o = {(1+sings)/(1-sinds) }o3 15 331 27
Effcetive friction-strain & base strain | R (deg.) S T &
¢. =R+ Se, +Te,’ 69 -3890 70700 0.03

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



418

Appendix M.4
Bilsthorpe mudstone (Hobbs, 1970)

Rock mass Intact rock
Oy S & 2 S &
(MPa) (MPa) (strain) (MPa) (MPa) (strain)
0.34 4 0.002 0 29 0.002
0.69 6 0.003 3.4 37 0.003
1.72 12 0.005 13.8 69 0.005
3.4 17 0.005 27.6 107 0.007
6.9 29 0.006
13.8 52 0.007
27.6 89 0.010

Bilsthorpe mudstone broken rock (Hobbs, 1970)
Comparison of peak, residual & base strength criteria
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Bilsthorpe mudstone broken rock (Hobbs, 1870)
Effective friction - strain polynomial
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Bilsthorpe mudstone broken rock (Hobbs, 1970)
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Bilsthorpe mudstone broken rock (Hobbs, 1970)
Normalized rock mass post peak modulus, Epp(n) versus epp
-50
-100
r - a3
-150 A7
A 14
£ -200 v 21
& ! * B
w .250 x 7
X m 14
-300 2 i e2l
T ; { A28
-350 X } —
400 : - i
0 0.005 0.01 0.015
epp
Criterion Parameters
Hoek-Brown intact peak strength m o, (MPa) S a
Cip=0G3 + O'c{mGB/Cc + S}a 8.6 24 1 0.5
Hoek-Brown rock mass peak strength m, G, (MPa) s a
Oip = 03 + Cc{mbo3/oc + 5} 5.8 24 0.06 0.5
Intact rock residual strength D F G, (MPa)
o1 = Do3’ + Fa3 + Oar -0.01 3.4 5
Rock mass residual strength D F o, (MPa)
ou=Dos’ +Fos + 0 -0.01 3.3 6
Base strength & transition point Oy (de2) | Osrgumcyy | Tt oomasey
ow = {(1+sings)/(1-sings)}o3 27 78 51
Rock mass ¢, - e and base strain R (deg.) S T &
¢.=R+Se, + Te,,,z 65 -5400 | 192000 | 0.014
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Appendix M.S
Bilsthorpe silty mudstone (Hobbs, 1970)

421

Rock mass Intact rock
O3 Ojp & o5} Oip S
(MPa) (MPa) (strain) (MPa) (MPa) (strain)
0.3 7 0.004 0 39 0.003
0.7 10 0.005 3.4 74 0.006
1.7 17 0.007 6.9 109 0.009
3.4 25 0.009 13.8 110 0.009
6.9 39 0.009 20.7 121 0.010
13.8 61 0.010
27.6 100 0.014
Bilsthorpe silty mudstone broken rock (Hobbs, 1970)
Comparison of peak, residual & base strangth criteria
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Bilsthorpe silty mudstone broken rock (Hobbs, 1970)
Effective friction - strain polynomial
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Bilsthorpe siity mudstone broken rock (Hobbs, 1970)
Intact rock {dashed) and broken rock (solid)
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Bilsthorpe silty mudstone broken rock (Hobbs, 1970)
Normalized rock mass post peak modulus, Epp(n) versus epp
0
-100
- a3
A7
.200 A l4
e v 2
2 ¢ 28
“ 300 X x 7
x m
02l
400 A28
-500
0 0.005 0.01 0.015 0.02
epp
Criterion Parameters
Hoek-Brown intact peak strength o, (MPa) s a
Glp = 03 + Gc{mo¥/oe + s} 5.6 64 1 0.5
Hoek-Brown rock mass peak strength m, G, (MPa) s a
Glp = 03 + Gc{mo3/Ge + 5} 2.9 64 0.03 0.5
Intact rock residual strength D F G, (MPa)
o1 = Do’ + Fos + G -0.004 3.0 13
Rock mass residual strength D F G (MPa)
Gir=Dos’ + Fos + e -0.006 29 11
Base strength & transition point | ¢, (deg.) | Osigumcyy | Tottckmam)
o = {(1+sings)/(1-sinds)}os 24 190 95
Rock mass ¢, - e and base strain R (deg.) S T e
¢. =R +Se,, +Te,’ 74.5 -3800 72000 0.03
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Appendix M.6
Hucknall shale (Hobbs, 1970)
Rock mass Intact rock
O; O & O Oin %
(MPa) (MPa) (strain) (MPa) (MPa) (strain)
0.3 S 0.003 0 59 0.003
0.7 8 0.004 3.4 73 0.004
1.7 14 0.005 6.9 82 0.004
34 24 0.005 13.8 107 0.005
6.9 38 0.006
13.8 64 0.008
27.6 109 0.010
Hucknall shale broken rock (Hobbs, 1970)
Comparison of peak, residual & base strength criteria
500 y
* RocL mass pealk su'egth!data
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Hucknall shale broken rock (Hobbs, 1970)
Effective friction - strain polynomial
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Hucknall shale broken rock (Hobbs, 1970)
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Hucknall shale broken rock (Hobbs, 1970)
Normalized rock mass post peak modulus, Epp(n) versus epp
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w 400 * x 7
x |4
f{* e 2l
-500 X A28
s |
0 0.005 0.01 0.015
epp
Criterion Parameters
Hoek-Brown intact peak strength m G, (MPa) s a
Oip = O3 + Ge{mo3/Ce + 5} 6.3 58 1 0.5
Hoek-Brown rock mass peak strength m, C. (MPa) s a
Clp =03 + GC{M/GG + s}a 4.1 58 002 05
Intact rock residual strength D F G, (MPa)
Cir= sz + Fos + Ger '0.006 34 12
Rock mass residual strength D F o, (MPa)
o1 =Do3’ + Fo3 + O -0.009 33 8
Base strength & transition point by (deg) | Osrguumcyy | Tticmass)
ow = {(1+sings)/(1-singv)}o3 27 137 83
Rock mass ¢, - e and base strain | R (deg) S T &
¢. =R +Se,, + Te,? 76 -5790 | 171000 | 0.02
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Appendix M.7
Ormonde siltstone (Hobbs, 1970)

Rock mass Intact rock
O3 Oip S o, Cip. S
(MPa) (MPa) (strain) (MPa) (MPa) (strain)
0.3 6 0.004 0 56 0.002
0.7 8 0.004 3.4 83 0.003
1.7 16 0.005 6.9 107 0.004
34 26 0.006 13.8 131 0.005
6.9 43 0.008 20.7 148 0.005
13.8 68 0.010
276 115 0.012

(MPa)

Ormonde siitstone broken rock (Hobbs, 1970}
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70

(degrees)

Ormonde siltstone broken rock (Hobbs, 1970)
Effective friction - strain polynomial
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Ormonde siitstone broken rock (Hobbs, 1970)
Normalized rock mass post peak modulus, Epp(n) versus epp
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400 x e 2l
b3 A 28
s00 L
o 0004 0008 0012 0016
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epp
Criterion Parameters
Hoek-Brown intact peak strength m o, (MPa) S a
Gip = 3 + Ge{mo3/c: + 5} 9.6 65 ! 0.5
Hoek-Brown rock mass peak strength m, o, (MPa) s a
Cip=03+ OC{M/Gc + S}‘ 43 65 0.02 0.5
Intact rock residual strength D F O (MPa)
61 = Do3” + Fo3 + Ger -0.006 3.9 13
Rock mass residual strength D F G (MPa)
o1 = Dos’ + Fos + 6 -0.01 3.7 10
Base strength & transition point b (de8) | Osrgomey | Ot (ricmase)
o = {(1+singv)/(1-sings)}o3 30 163 70
Rock mass ¢, - e and base strain R (deg.) S T &
o. =R +Se,, +Te,’ 71 -3750 86300 | 0.02
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Appendix N
Dense crushed basalt (Hussaini, 1991)

Data
6.3 mm crush 12.7 mm crush
O [+ 1 € O €
(MPa) (MPa) (strain) (MPa) (strain)
0.4 24 0.09 2.6 0.08
0.9 4.3 0.14 4.6 0.12
2.1 84 0.19 8.9 0.16
3.1 11.9 0.20 12.6 0.18
25.4 mm crush 50.8 mm crush
Sio & Sio €
(MPa) (strain) | (MPa) (strain)
3.0 0.07 3.2 0.06
5.2 0.10 5.4 0.08
9.7 0.14 10.0 0.12
13.1 0.16 13.7 0.15
76.2 mm crush
Sip €
_(MPa) (strain)
3.4 0.05
5.7 0.07
10.5 0.12
14.5 0.14

According to Hoek et al. (1997), the crushed basalt described by Hussaini
(1991) would be very good (very rough, fresh unweathered surfaces). It would also
be described as disintegrated, indicative of a poorly interlocking heavily broken rock
mass, comprising of a mixture of angular and rounded rock pieces. Following the
GSI descriptive charts (Hoek et al., 1997) a value for the GSI = 45 is estimated.
Since the GSI value is greater than 25 then the Hoek-Brown exponent, a=0.5.
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Analysis of the peak strength data to determine m, and s

Since broken rock triaxial data is available in this case, the procedure outlined
in section 6.4.1 is appropriate. The first step is the evaluation of the broken rock peak
strength criterion as described in section 6.4.1a. Hussaini (1991) provided a value for
the uniaxial compressive strength, o, = 172.2 MPa.

6.3 mm crush
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25.4 mm crush
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6.3 mm crush
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50.8 mm crush
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Analysis summary of the above plots to determine m, and s

6.3 mm 12.7 mm 254 mm 50.83 mm 76.2 mm
crush crush crush crush crush
c. (MPa) 172 172 172 172 172
m, 0.16 0.18 0.20 0.23 0.26
s 0.00005 0.00005 0.00010 0.00012 0.00013
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Determination of the brittle-ductile confinement and

residual strength polynomial for each crush size

A value of ¢, = 33° was assumed by the author since no value was reported
by Hussaini (1991). This enabled the base strength criterion to be determined as given
below, and the brittle ductile-transition point confinement for each crush size. The
residual strength polynomial for each crush size was determined as per section 6.4.1d.
A summary of the brittle-ductile confinement and the residual strength polynomial

parameters is given below by crush size.

Op=340;

6.3 mm 12.7 mm 25.4 mm 50.8 mm 76.2 mm
crush crush crush crush crush
o, (MPa) 48 5.5 6.2 6.9 79
| o, (MPa) 1.2 1.3 1.8 1.9 20
D -0.20 -0.18 -0.15 -0.14 -0.12
F 4.12 4.14 4.03 4.06 4.10

Comparison of the peak, residual and base strength criteria

The peak, residual and base strength criteria are plotted with respect to crush
size together with the original strength data in each case reported. The last plot in the
series shows all curves together to give a global comparison of how crush size affects
the strength criteria behaviour.
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Dense crushed basait (Hussaini, 1991)
6.3 mm crush
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Dense crushed basait (Hussaini, 1991)
25.4 mm crush
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Dense crushed basait (Hussaini, 1991)

76.2 mm crush
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Dense crushed basait (Hussaini, 1991)
Comparison of peak, residual & base strength criteria
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Determination of e, and the solution to

the effective friction - strain polynomial

The procedure outlined in section 6.4.1f was used to determine the base strain,
e, and the values of R, S and T for an solution of the effective friction - strain
polynomial. All data regardless of crush size was used in the Y versus e plot, as

shown in the figure below, illustrating that all the data conformed to the same

relationship.
Dense crushed basalt (Hussaini, 1991)
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The effective friction - strain polynomial compared to the crush data

(degrees)
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Dense crushed basalt (Hussaini, 1991)
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s3 = 1 MPa (solid) and 33 = 2.5 MPa (dashed)
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Normalized post peak modulus
Dense crushed basait (Hussaini, 1991)
Normalized rock mass post peak modulus, Epp(n) versus epp
83: circles = 1 MPa, stars = 2.5 MPa
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Appendix P
Panguna andesite (Hoek et al., 1980)

Data and initial calculations
Degree of weathering
Undisturbed [Recompacted‘ Fresh/sl. |Moderate] High Intact
RMRyrico 46 28 26 18 8 97
GSI 41 23 21 13 3 92
c.(MPa)| 265 265 265 265 265 265
o, (deg.) 22 22 18 18 10 45
m, 0.27 0.12 0.04 0.03 0.01 18.9
S 0.015 0.006 0.002 0.002 0.0006 1
a 0.5 0.54 0.55 0.59 0.64 0.5
| Bk 7940 2820 2510 1590 891 94000

The Panguna andesite data reported by Hoek et al. (1980) comprised values
for RMR 4 ™ (intact) and 6. An adjustment of the RMR,,, value was made to
compensate for the value of o.. Note that the values of s were determined using

equation 6.3, and differ from those reported by Hoek et al., (1980).

Determination of the brittle-ductile confinement and

residual strength polynomial for each data set

The base strength criterion was determined using the respective values for ¢,
depending on the degree of weathering. The residual strength polynomial in each case
was determined as per section 6.4.1d. A summary of the brittle-ductile confinement
and the residual strength polynomial parameters are given below by degree of

weathering.
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degree of weathering
Undisturbed | Recompacted | Fresh/slight | Moderate§ High | Intact
G. a) 62.5 25 15 9 7.5 226
o, (MPa)l 32 17 9 6 2 53
D -0.003 -0.004 -0.003 -0.002 }-0.0009] -0.01
F 1.9 1.6 1.3 1.3 1.1 8.0

Comparison of the peak, residual and base strength criteria

Panguna andesite (Hoek et al., 1980)
Comparison of peak, residual & base strength criteria
solid = peak, dashed = residual, thick dash = base strength
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Determination of e, and the solution to
the effective friction - strain polynomial

The procedure outlined in section 6.4.2f was used to determine the base strain,
¢, and the values of R, S and T for an exact solution of the effective friction - strain
polynomial. All data irrespective of degree of weathering was used in the Y versus
e plot, as shown in the figure below.
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Panguna andesite (Hoek et al., 1980)
1.4 T
+t
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e
R-square =0.773 #pts=30
y=1.36 +-76.1x
e, 0.015
R 82
S -8130
T 274000

The effective friction - strain polynomial compared to the available data

The effective friction - strain plot shows that the initial indication from the Y
versus € plot, that the data was more spread out than previously experienced is
verified. The plot indicates that there may be different values for the base angle of
friction dependent on the degree of weathering. Also the intact data indicates a higher
value for ¢, than assumed for the undisturbed and recompacted data.

The data was re-worked using values for ¢, assumed from the initial effective
friction - strain plot for each set of data, resulting in a new effective friction - strain
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plot for each data set, as illustrated below.

Panguna andesite (Hoek et al., 1980)
Effective friction - strain polynomial
All data considered
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Panguna andesite (Hoek et al., 1980)
Base angle of friction versus RMR
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This new effective-friction - strain plot confirmed that there seemed to be
different base friction values, dependent on the degree of weathering. Hoek et al.
(1980) expressed the degree of weathering in terms of RMR, which when plotted by
the author against ¢, showed a correlation between degree of weathering and the base

angle of friction for the Panguna andesite rock mass, as shown above.

Reconstruction of the crushed rock stress-strain curves

Stress-strain curves were reconstructed for a randomly chosen level of
confinement for the weathered and unweathered rock masses. In this case there is no
agreement in post peak behaviour for a given confinement. This indicates that for a
variable base angle of friction, the common post peak relationship previous seen for
a given confinement with other rock masses does not hold. This is also reflected in
the normalized post peak modulus curve as shown below.
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Panguna andesite (Hoek et al., 1980)
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) Funde
50 —
/ sli ﬂy wegthered
© / — mhoderataly weathered
/ — hghly el
=
: 30 ~ N
° 20 / ,/ S
VD 7NN |
[ | ™ i
10
o ]
0 0.005 0.01 0.015 0.02
e
Normalized post peak modulus
Panguna andesite (Hoek et al., 1380)
Normalized rock mass post peak modulus, Epp(n) versus epp
By degree of weathering
-100 i | 1
H x| E
ol x| |
-200 hd
*
N
it 3
E
g 300 |
m I}
A rpcompacted
-400 v
& & moderale
x Tgh
-500
0 0.005 0.01 0.015 0.02
epp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

447



Appendix R
Worked coal data sets

Appendix R.1
Pittsburgh coal (Kripakov, 1981)
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Pittsburgh coal (Kripakov, 1981)
Comparison of peak, residual & base strength criteria
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Pittsburgh coal (Kripakov, 1981) - intact treatment
Comparison of peak, residual & base strength criteria
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Pittsburgh coal (Kripakov, 1981)
Effective friction - strain polynomial
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Pittsburgh coal (Kripakov, 1981)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Pittsburgh coal (Kripakov, 1981)
Normalized post peak modulus, Epp(n) versus epp
0
ay
-1
§
£ 2 i
Y
I3 T4 %057 -
§ : LA 1.0nonin ® 0.5 coallmass
3 N }V T5nonintact a 1.0 coallmass
. ¢ O.5iptact v 1.5 coalimass
P 1.0 intact
4 ;
0.006 0.008 0.01 0.012 0.014
epp (average)
Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 43 1.3 45.7
o, (MPa) 69 69 69
s* 0.095 0.028 1
Residual D -0.02 -0.04 -0.002
F 38 33 45
o, (MPa) 21 115 14
Base strength | ¢, (degrees) 33 33 33
Brittle-ductile | o, (MPa) 54 17 556
b, -e R (degrees) 83.5
S -3390
T 56900
€, 0.03

* Note: Kripakov (1981) did not report his specimen dimensions. It has
therefore been assumed thatb=0.055mand h=0.11 m.
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Appendix R.2
Barnsley brights coal (Hobbs, 1964)

S Cip Ep
(psi) (ps) | x 10° (psi)

10 3460 3.27
100 6250 3.59
250 6900 4.15
500 7340 421
1000 10460 5.77
3000 15710 4.59
5000 19280 5.01

Barnsiley brights coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Barnsiey brights coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Barnsley brights coai (Hobbs, 1964)
Effective friction - strain polynomial

80
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70 N o Nondntact e efr!cﬁow\ pepk data
\L\
N
e \‘\\ .
= N
40 : \!\v\\
30
0 001 002 003 004 005 006 0.07
e
Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 2.7 0.4 15.6
o, (MPa) 96 96 96
s 0.17 0.028 1
Residual D -0.01 -0.02 -0.004
F 3.1 2.2 4.5
o, (MPa) 40 16 19
Base strength | ¢, (degrees) 33 33 33
Brittle-ductile | &, (MPa) 50 11 268
$.-e R (degrees) 73
S -1310
T 10700
e 0.06
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Barnsley brights coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.3
Barnsley hards coal (Hobbs, 1964)

O3 Sip Em
(psD) (psi) | x 10° (psi)
10 7450 4.17
100 8050 4.61
250 8410 4.55
500 9320 4.36
1000 14020 4.89
2000 14930 5.21
3000 16430 4.55
4000 17930 4.69
5000 20030 4.62

Barnsley Hards coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Barnsiey hards coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Barnsley hards coal (Hobbs, 1964)
Effective friction - strain polynomial

PR
NN

(degrees)
3

0 0.01 002 003 004 005 006 007
e

Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 1.6 0.3 9.2
o, (MPa) 145 145 145
s 0.17 0.028 1
Residual D -0.006 -0.006 -0.005
F 2.6 1.7 44
o (MPa) 60 24 29
Base strength | ¢, (degrees) 33 33 33
Brittle-ductile | o, (MPa) 52 14 247
d.-e R (degrees) 85
S -1800
T 15600
(Y 0.06
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Barnsiey hards coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.4
Cwmtillery coal (Hobbs, 1964)
O3 G Em
(psi) (psi) | x 10° (psi)

10 1920 3.47
100 4310 4.81
250 4350 3.76
500 6210 4.43
1000 8520 5.94
3000 13690 5.14
5000 18160 6.02

Cwmtillery coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Cwmtillery coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Cwmtillery coal (Hobbs, 1964)
Effective friction - strain polynomial
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e
Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 3.7 0.6 22.0
o, (MPa) 60 60 60
s 0.17 0.028 1
Residual D -0.02 -0.04 -0.005
F 3.5 2.5 4.5
o, (MPa) 25 10 12
Base strength | ¢, (degrees) 33 33 33
Brittle-ductile Gy (MPa)_ 42 9 235
¢.-e R (degrees) 72
S -2130
T 28900
& 0.04
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Cwantiliery coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.S
Deep Duffryn coal (Hobbs, 1964)

o3 O Ep
(psi) (psi) | x 10° (psi)
10 1000 2.53
100 2760 3.72
250 3780 3.29
500 5010 3.85
1000 7350 5.15
2000 9970 4.29
3000 11620 4.67
4000 14460 5.6
5000 16040 5.66

Deep Duffryn coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Deep Duffryn coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Deep Duffryn coal (Hobbs, 1964)
Effective friction - strain polynomial
70 —
60 \ ¢ Nop-inta e friction peak data
W\ ®
— L J
g 50 *
: :
w0 \\ .
' \\
30 '\'\\
20 :
0.01 0.02 0.03 0.04 0.05
e
Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 3.6 0.6 21.0
o, (MPa) 46 46 46
s 0.17 0.028 1
Residual D -0.01 -0.03 -0.003
F 3.0 23 36
o, (MPa) 19 8 9
Base strength | ¢, (degrees) 28 28 28
Brittle-ductile | &, (MPa) 55 11.5 313.5
o -e R (degrees) 66
S -1850
T 22600
& 0.04
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Deep Duffryn coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.6
Linby coal (Hobbs, 1964)

O3 O Bg
(psi) (ps) | x 10° (psi)

10 3150 4.71
100 5470 3.48
250 8370 4.14
500 8780 3.66
1000 11600 3.75
3000 17140 3.87
5000 21230 3.81

Linby coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Linby coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Linby coal (Hobbs, 1964)
Effective friction - strain polynomiai
70
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e
Treatment
Criterion | Parameter | Non-intact | Coal mass | Intact
Hoek-Brown m 3.2 0.5 18.6
o, (MPa) 105 105 105
s 0.17 0.028 1
Residual D -0.01 -0.019 -0.003
F 33 23 4.5
o (MPa) 43 18 21
Base strength | ¢, (degrees) 33 33 33
Brittle-ductile | o, (MPa) 63 13.5 346
d.-e R (degrees) 65
S -652
T 3310
& 0.1
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Linby coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.7
Markham coal (Hobbs, 1964)

O3 Sia Ey
(psi) (psi) | x 10° (psi)
10 3160 3.51
100 3550 3.39
250 6670 4.8
500 7560 5.04
1000 8350 4.54
2000 12060 5.34
3000 14350 5.09
4000 15300 3.53
5000 17900 3.16

Markham coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Markham coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Markham coal (Hobbs, 1964)
Effective friction - strain polynomial
8o
— | Nongintas tment
& |Nonrinta @ friction ppak data
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N
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o
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S0 N
g \\
40 \,\ |
4- r I
30
()} 001 002 003 004 005 006
e
Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 24 0.4 14.2
c. (MPa) 84 84 84
s 0.17 0.028 1
Residual D -0.01 -0.02 -0.005
F 3.0 2.1 45
o, (MPa) 345 14 17
Base strength | ¢, (degrees) 33 33 33
Brittle-ductile | &, (MPa) 40 9 214
$.-¢ R (dggrees) 75
S -1840
T 20300
& 0.045
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Markham coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.8
Oakdale coal (Hobbs, 1964)
S Sip. Ep

(psi) (psi) x 10° (psi)
10 770 1.72
100 2890 2.87
250 3510 3.55
500 5990 5.31
1000 6160 421
2000 8160 458
3000 11110 5.04
4000 12670 5.02
5000 17000 6.46

Oakdale coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Oakdale coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Oakdale coal (Hobbs, 1964)
Effective friction - strain poiynomial
% -
70 N ¢_Nop-intact effective friction{peak data |
_. 50 A\
g L 2
& so AN
s AN |
340 N '
30 |
20 |
0 0.01 0.02 0.03 0.04 0.05
e
Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 53 0.9 31.0
o, (MPa) 30.5 30.5 30.5
s 0.17 0.028 1
Residual D -0.01 -0.05 -0.003
F 3.2 2.7 3.6
o, (MPa) 13 5 6
Base strength | ¢, (degrees) 28 28 28
Brittle-ductile | &, (MPa) 52 9 302
$.-e R (degrees) 70
S -2470
T 36500
e, 0.03
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Oakdale coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.9

Pentremawr coal (Hobbs, 1964)

S Cp Ey
(psi) (ps) | x 10° (psi)

10 4580 3.91
1000 11100 5.94
2000 14200 5.16
3000 18630 5.56
4000 22920 6.15
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Comparison of peak, residual & base strength criteria
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Pentremawr coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Pentremawr coal (Hobbs, 1964)
Effective friction - strain polynomial
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Treatment
Criterion | Parameter | Non-intact | Coal mass | Intact
Hoek-Brown m 10.2 1.7 59.8
o. (MPa) 55.5 55.5 55.5
s 0.17 0.028 1
Residual D -0.03 -0.1 -0.007
F 54 43 6.3
o, (MPa) 23 9 11
Base strength | ¢, (degrees 40 40 40
Brittle-ductile | o, (MPa) 44.5 8 257
d.-e R (degrees) 82.5
S -1540
T 13900
< 0.055
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Pentramawr coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix R.10

Teversal coal (Hobbs, 1964)

63 c"ln Em
(psi) (psi) x 10° (psi)

10 2280 1.66
500 6730 3.19
1000 9220 3.79
3000 15420 3.55
5000 18910 3.74
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Teversal coal (Hobbs, 1964) - intact treatment
Comparison of peak, residual & base strength criteria
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Teversal coal (Hobbs, 1964)
Comparison of peak, residual & base strength criteria
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Teversal coal (Hobbs, 1964)
Effective friction - strain polynomial
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Treatment
Criterion | Parameter | Non-intact | Coal mass Intact
Hoek-Brown m 3.4 0.6 20.1
o. (MPa) 76 76 76
s 0.17 0.028 1
Residual D -0.01 -0.03 -0.004
F 3.4 24 45
o, (MPa) 31 13 15
Base strength ¢y, (degrees) 33 33 33
Brittle-ductile | o,, (MPa) 49 10 269
¢.-e R (degrees) 74
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Teversal coal (Hobbs, 1964)
Reconstructed stress-strain curves
intact = dashed, non-intact = solid, coal mass = solid
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Appendix S
Flac 2d code for triaxial test and pillar models

Appendix S.1
Flac 2d input code file for a triaxial test at o; = 14 MPa (after Itasca 1995)

Eit it 2223232223222 22 2223
k4

; Triaxial test of intact rock

; Intact rock sample: mudstone
;#t*t*t***#tt*t##***tt**

config axi
g520

mod ss
call servo.fis

fixyj1
fixyj2l

ini yvel -2.5e-6 j 21
ini yvel 2.5e-6 j 1

prop s=3.394e9 b=5.656e9 d=2283
prop ftab=1 ctab=2
prop fric=20.998 coh=19.191e6 ten=17.5¢e6

table 1 0,20.998 .002,5.456 1 5.456
table 2 0,19.191e6 .02,4.776e6 1 4.776e6

his nste=20

def sigmav
sum=0.0
loop i (1,igp)
sum=sum-+yforce(i,jgp)
end _loop
ismawam/(x(igpdgp)-’c( Ljgp))
en

defev
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ev=(ydisp(3,1)-ydisp(3,21))/(y(3,21)-y(3,1))
end

;averaging major and minor principal stress in pillar
def pillarl
sum1=0.0
sum3=0.0
loopi(1,5)
loop j (1,20)
temp1=-0.5*(sxx(i,j}syy(ij))
temp2=sqrt(sxy(Lj)*sxy(i,j}+0.25*((sxx(i,j)-syy(Lj)) * (sxx(i.j)-syy(Li))))
sl=max(temp1+temp2,-szz(i,j))
s3=min(templ-temp2,-szz(i,j))
suml=suml+sl
sum3=sum3+s3
end_loop
end_loop
pillar1=sum1/100.0 ;since 100 zones in the pillar
pillar3=sum3/100.0 ;since 100 zones in the pillar
end

his nste=20
his unbal
hist sigmav
hist ev

hist pillarl
hist pillar3

- e

(VR AN SRy )

-

-

..

-

set high_unbal=5¢7
set low_unbal=2e4
set high vel=le-4
set his trx_wh14.out

step 12000

save trx_whl4.sav
plot h 2 vs 3 hold
plot h 4 vs 3 hold
plot h 5 vs 3 hold
his write 2 vs 3

his write 4 vs 5

ret
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Appendix S.2
Flac 2d input code file for a pillar of W/H = 6.0 (after Itasca, 1995)

R 22222223333 232322322 23

; Single strain softening pillar in elastic strata
; Strata=mudstone

; Pillar=mudstone M-C ss model

AR 2123122232332 2332323224

gr 30,25

me

prop s=3.394e9 b=5.656e9 d=2283.0
mod null i=1,3 j=11,14
mod null i=28,30 j=11,14

;M-C internal strain softening model
mod ss i=4,27 j=11,14

prop s=3.394e9 b=5.656e9 d=2283.0 i=4,27 j=11,14

prop ftab=1 ctab=2 i=4,27 j=11,14

prop fric=20.998 coh=19.191e6 ten=17.5¢6 dil=11.5 i=4,27 j=11,14
table 1 0,20.998 .002,5.456 1 5.456

table 2 0,19.191e6 .002,4.776e6 1 4.776e6

fixxyj=1
fix x i=1
fix x =31

his nste=80
set large
set his pill6.out

; vertical strain
def deforpil
while_stepping

deforpil=(ydisp(16,11)-ydisp(16,15))/(y(16,15)-y(16,11))
end

; averaging of pillar stress
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def sigp
while_stepping
s=0.0
loop i (4,27)
s=s-syy(,13)
end_loop
sigp=s/24.0 ;since 24 zones at width of pillar
end

;averaging of reaction stress at lower boundary
def avers
force=0.0
loop i (1,igp)
force=force-yforce(i, 1)
end_loop
avers=force/30.0 ;since 30 zones in the lower boundary of j=1
end

;averaging major and minor principal stress in pillar
def pillarl
sum1=0.0
sum3=0.0
loop i (4,27)
loopj (11,14)
temp 1=-0.5*(sxx(i,j)}+syy(i,j))
temp2=sqrt(sxy(i,j)*sxy(i,j)+0.25*((sxx(Lj)-syy(i,j)) * (sxx(i,j)-syy(i}))))
s1=max(temp 1 +temp2,-szz(i,j))
s3=min(temp 1-temp2,-sz2(i,j))
suml=suml-+sl
=sum3+s3
end_loop
end loop
pillar1=sum1/96.0 ;since 96 zones in the pillar
pillar3=sum3/96.0 ;since 96 zones in the pillar

end

his nste=80 ;0
his unbal o |
history sigp 2
history deforpil ;3
history pillarl 4
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history pillar3 5
history avers 6
history yvel i=1 j=26 ;7

;let interfaces settle down under gravity before applying loads
set grav 10

step 500

ini xvel=0.0 yvel=0.0

;apply y-oriented velocities to compress pillar
ini yvel=-1e-3 j=26

ini yvel=le-3 j=1

fixxyj=1

fix x y j=26

fix x i=1

fix xi=31

;servo to control y-velocity
def servo
while_stepping
if unbal > 1e6 then
loopi(1,31)
yvel(i,26)=yvel(i,26)*.975
yvel(, 1)=yvel(i,1)*.975
end_loop
end_if
if unbal < 1e5 then
loopi(1,31)
yvel(i,26)=yvel(i,26)*1.025
yvel(i,1)=yvel(i,1)*1.025
end_loop
end_if
end

step 40000
;output

save pill6.sav
his write 2 vs 3
his write 4 vs 5
ret
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Appendix T
Manipulation of the post peak relationships to evaluate a new pseudo elastic

modulus, E, for input into Phase 2, for a known previous post peak iteration

The post peak modulus, E, is the change in stress for a given change in strain
that follows the post peak stress-strain relationship, according to equation 2.14.

Ao

- pp
(24 Aepp 2.14

This has been derived in appendix B as equation 3.19:

E = sin20 (opp_o3)2 (¢¢-¢b)

- 3.19
i szfb‘ 03 (epp -eb)

Equation 3.16 can be re-arranged by substitution using the double angle
trigonometric identities, resulting in equation 8.4.

any, =S O)20 3.16
‘ (0,,+0,)+(0,, -0,)cos20 .
sin20=2sinBcos6 = 2tan? c0520=c0s20 ~sin?0 =1 ~tan’0
1+tan’0 1+tan’0
(1+tand tan6)
o_=0,tan0 = 8.4
P 37 (tanB-tand,)

Substituting equations 2.14 and 8.4 into equation 3.19 and re-arranging results
in equation 8.5:
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tan® (@,-®,) (tan?0+1)
cos’d) (e,-¢,,) (tanB-tand,)?

8.5

Ao =2Ae e,.03

But Ao, = 6, - 6,,, Where G, is the revised post peak strength for the next
iteration given o,,, the post peak strength returned by Phase 2 for the previous
iteration. Replacing G, in equation 8.4 with 6,,, results in equation T-1.

(1+tand, tane)
( 9-tand>) lo

Aopp=o3t an0®

Substituting 6; with G;, in equation T-1, such that o;, = o,, + Ac;, where o,,
is the confinement returned by Phase 2 for the previous iteration and o, is given by

equating equations T-1 and 8.5 to yield an expression for the new confining pressure,

O3, €quation 8.6.
. tand,
03,010 tand 8.6

pp (‘bb ‘b) (tan e+l) i

1 +tan© -2
L anOtand, 2 26, (ey-e,.) Ganb-tand)

Oy, is then found by back substitution, replacing o, by o, in equation 8.4. The
pseudo elastic post peak modulus is then given by equation 8.7:

E = oln -2y 0 3n
ps— e e 8.7
op PP
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Appendix U
Modification of rib pillar strength to equivalent square pillar strength

From tributary area theory it can be shown that the average pillar stress on
square and rectangular pillars are given by equations U.1 and U.2 respectively:

(W+w ) (W+w
),

S

W+w )L
g

Uz

Using U.1 and U.2, the ratio of the two is given by:

os_(W+wL) L
o, Lw) W

Let L = nW, hence:

Og (W+w)

% el
n

For a square pillar =1, and for a rib pillar n = infinity. Thus, equation 8.14
is given by:

95 O =yo,, 8.14

It follows that to resist the same stress as that subjected to a rib pillar, the
strength of a square pillar must be increased by a factor of .
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Appendix W
Modeling a pillar using Phase 2 and the Joseph-Barron post-peak criterion

This appendix describes the procedure employed to provide updated material
properties for the pillar elements used in modeling an example pillar of W/H = 4 using
the Phase 2 finite element software package. The calculation of new material
propertties in the form of pseudo-elastic moduli were performed using a spreadsheet
and the Joseph-Barron post peak criterion, allowing a new pseudo-elastic modulus to
be returned to Phase 2 manually for each element at each iterative step.

Pillars were modeled in plane-strain mode, allowing them to be interpreted as
rib pillars. Only half a pillar was modeled due to symmetry, allowing the restricted

number of material properties and pillar elements to be maximized.

The pillar model set up is illustrated in figure 8.3 and described below:

Numbers
denote
element
material
allocation

L JBNaa Jnaus maee Jema Jaser

Figure 8.3: Phase 2 pillar model elements, discretization and
boundary conditions.
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The Phase 2 job control was set to plane strain mode.

An external boundary was defined for a half pillar plus roof and floor
material. For all pillars modeled, the pillar height was kept constant
at 2.4 m, with an appropriate half pillar width commensurate with the
width to height ratio of interest. The roof and floor material elements
were given heights of 1.2 m respectively in each case.

A pillar of 9 elements was defined, with each element allocated a set
of matenial properties. The roof and floor elements were defined by
the 10" set of available material properties. For the purposes of the
analysis, Poisson’s ratio was held constant (0.3 for coal, and 0.25 for
mudstone) and the pseudo-elastic modulus varied as the analysis
proceeded.

The elements were discretized, allocating a finer set of constant strain
triangle finite elements throughout the structure. However, the coarse
nature of the structure defined the finite elements to behave in
accordance with the 10 sets of material properties. A better system
would be the ability to allocate each finite element constant strain
triangle its own set of material properties. This would in turn
necessitate a dynamic internal updating of material properties, since
manual updating of hundreds of material properties is unrealistic.
The boundary conditions were defined such that the base of the floor
material was fixed in both the x and y directions (bottom of figure
8.3), the horizontal x direction was fixed at the pillar centreline (right
hand side of figure 8.3), and the roof and floor material above the
opening (far left hand side of figure 8.3) was fixed in the horizontal x
direction.
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All elements were initially allocated the same set of material properties defined
by Young’s modulus for the material, E, as given by the linear portion of the pre-peak

stress-strain relation under unconfined uniaxial compression conditions.

The incremental step was defined as an increase in deformation applied
uniformly across the top of the roof material element as illustrated in figure 8.3. A
small incremental deformation step was selected and used accumulatively during the
course of the modeling process. For the most part, the incremental pillar deformation
steps were set at 0.02 m. Where some confusion arose, due to the coarse nature of
the model elements and the degree of deformation, as to the value of the peak pillar
strength in the analysis, the incremental deformation was reduced in the peak strength
region to either 0.005 m or 0.01 m.

Once Phase 2 had computed the resulting major and minor principal stresses,
o, and ©; and the vertical deformation, u, throughout the structure with respect to the
constant strain triangle finite elements for a given increment of pillar deformation,
interpretation of those values across each of the 9 material elements were measured
using a Phase 2 ‘query line’. The query line values for 6,, o; and u, were copied into
a Joseph-Barron post-peak calculation spreadsheet, where average values for 6,, o,
and vertical strain, e, were determined for each of the 9 pillar material elements. It
was these average values that were employed in the evaluation of a new material
modulus to be returned to Phase 2 for each material element.

The calculation procedure and decision process regarding pre-peak, post-peak

and post €, conditions in defining the pseudo-elastic modulus, E,, is provided in detail
in section 8.4.1. This procedure is summarized in the flow chart illustrated below.
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It is assumed that triaxial strength tests and a tilt test have been conducted on
the pillar material. These tests revealed values for the base angle of friction ¢, the
Hoek-Brown peak strength parameters m, s, and o, the residual strength parameters
D, F and o, and the effective friction - strain polynomial parameters R, S, T and e,.
Poisson’s ratio, v is held constant, and Young’s modulus, E is known from

unconfined uniaxial compression.

For each of the 9 piilar
material elements

Determine average
values of oy, 05, & €,

Determine values for o,,,

Cin 26, ¢, ¢, €, & €, for
/ the average vaiue of o, \

If e, < e, then ife, > e then
Ex =E-2vaoye, Ex = G,/€, - 2v o,/e,

fe,<e, <e then
if 1st instance of post-peak
= (20, - Gy)/e, -2v o, /e
EeTse i& pt’évioﬁ"s)ly 'post-p?ék’
= o,/e, -2v gy /e,
where o, is from equation 8.6
and o,, Is from equation 8.4

Retum E, to Phase 2
for each materiai element,
increment deformation and

re-calculate o,, c,, e, for
each finite element
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