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Abstract

Texture analysis is a well-known research topic in computer vision and image

processing and has many applications. For example, texture features in image

classification have been shown to be useful. Texture features depend on represen-

tation, of which there are many methods. Among them, gradient-based methods

have become popular in classification problems. One of the gradient based methods

is Co-occurrence Histograms of Oriented Gradients (CoHOG) has been applied in

many areas. CoHOG algorithm provides a unified description of both statistical

and differential properties for a texture. But it discards some important texture

information due to the use of sub-regions. In this thesis, based on the original

CoHOG method, three novel feature extraction methods are proposed. All the

methods use the whole image instead of sub-regions for feature calculation. Also

we use a larger neighborhood size for the methods. In the first method, we use Sobel

operators for gradient calculation named S-CoHOG. The second method uses Gaus-

sian Derivative (GD) operators named GD-CoHOG and the third method named

LFDG-CoHOG uses the Local Frequency Descriptor Gradient (LFDG) operators

for gradient calculations. The extracted feature vector size is very large and classifi-

cation using a large number of similar features does not provide the best results. In

our proposed methods, only a minimum number of significant features are selected
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using area under the receiver operator characteristic (ROC) curve (AUC) thresh-

olds. The selected features are used in a linear support vector machine (SVM)

classifier to determine the classification accuracy. The classification results of the

proposed methods are compared with that of the original CoHOG method using

three well-known texture datasets. The classification results show that the proposed

methods achieve the best classification results in all the datasets. The proposed

methods are also evaluated for medical image classification. Three different cohort

datasets of 2D Magnetic Resonance Images (MRI) are used along with a multicen-

ter dataset to compare the classification results of the proposed methods with that

of the gray level co-occurrence matrix (GLCM) method. The experimental results

show that the proposed methods outperform that of the GLCM method.
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Chapter 1

Introduction

1.1 Texture Analysis

Texture analysis is a well-known and promising method in image processing and

computer vision. Visual patterns appearing in images are called image textures

and can be seen everywhere such as: carpet, wall, ultrasound images, fingerprint

images, and medical images (see Fig.1.1).

Figure 1.1: Texture patterns in various images.

In the real world, textures on the surface of objects can be classified as either

micro structures or macro structures. The arrangement of bricks on a wall is an

example of macro structures while the graininess pattern on a brick is an example

of micro structures.

Texture analysis characterizes and quantifies pattern variations in images, in-

cluding those that are imperceptible to the human eye. Textures are used as visual
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cues to differentiate among different image regions or different images.

Texture analysis has been a major research topic for the last four decades. It has

been used in different applications which include document processing [1], remote

sensing [2], automated inspection [3], fingerprint identification [4], and medical

image analysis [5], [6].

In texture analysis, texture features that are invariant to geometric transfor-

mation, noise, blurriness, and illumination changes are desired. Some well-known

2D texture methods are the Local Binary Patterns (LBP) [7] and its variants, gray

level co-occurrence matrix (GLCM) [8], the gray level Aura matrix (GLAM) [9],

the Run Length Matrix (RLM) [10], filter responses in the frequency [11] and spa-

tial [12], [13] domains, Wavelets [14], Orientation Pyramid [15], Markov Random

Fields (MRFs) [16], Gaussian MRFs [17], and spin images [18]. However, none of

the above methods are insensitive to illumination changes.

Recently, gradient orientation based texture methods have become popular in

computer vision and image processing. Among them Scale Invariant Feature Trans-

form (SIFT) [19], Histograms of Oriented Gradients (HOG) [20] and Co-occurrence

Histograms of Oriented gradients (CoHOG) [21] are commonly used in object de-

tection. The CoHOG method and its variants [22], [23] have been successfully used

in pedestrian detection [21], face recognition [24], fine-grained activity recognition

[22], etc.

In recent years, texture analysis methods have also found applications in med-

ical imaging that include texture analysis of MRI images. In particular, diagnosis

of dementia using GLCM and Gabor filter responses [25], the study of pathological

changes of the hippocampus in patients with Alzheimers disease and mild cognitive

impairment using GLCM and RLM [26], brain tumor detection [27] and the study

of epilepsy using Wavelet features [28] are some important contributions. Unfor-

tunately, there is still no well-known feature descriptor for Amyotrophic Lateral

Sclerosis (ALS) detection. A 2D region of interest based approach is used to find

texture changes in ALS [29]. GLCM has been used for 3D texture analysis in ALS
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[30]. Unfortunately, the sensitivity and specificity of these methods are sub-optimal

for clinical utility. Therefore, a method with improved sensitivity and specificity as

well as classification accuracy is much desired.

1.2 The Thesis Work

Gradient based texture feature extraction methods have become popular in image

classification. These methods provide both statistical and differential properties

of a texture. Intensity based methods that use intensity levels of the gray scale

image will have unpredictable performance on images having varying intensities. To

address this problem, instead of using intensity, gradient orientations are used for

texture feature extraction in gradient based methods. Two of the well-known and

popular methods are HOG and CoHOG. In both methods, a feature vector is formed

based on the histogram of gradient orientations. The HOG method only counts the

orientations for a local region. Inter-relationship between orientations is not used.

The CoHOG method overcomes this limitation using the co-occurrence information

of orientations to build the histogram. Also by using different length offsets for co-

occurrence calculation, it can better represent local and global information.

In this thesis, based on the original CoHOG method, we propose three novel

texture feature extraction methods. Three well-known methods such as Sobel [31],

Gaussian Derivative (GD) [23] and Local Frequency Descriptor Gradient (LFDG)

[32], [33] operators are used to calculate the gradient orientations of the image

pixels. In the first method, called S-CoHOG, we use Sobel operators for gradient

calculation. The second method, called GD-CoHOG, uses GD operators and the

third method, called LFDG-CoHOG, uses the LFDG operators for gradient calcu-

lations. The original CoHOG method uses Sobel operators for gradient calculation

and sub-regions of an image and calculates the sum of the co-occurrences of ori-

entation pairs within each sub-region. The use of sub-region limits the accuracy

of co-occurrence calculation for the boundary pixels and thus some information is
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incomplete for each sub-region. For the first time in this thesis, we are applying

CoHOG to the whole image for texture feature extraction without subdividing the

image into sub-regions.

For each of the three proposed methods, the gradient orientations of each pixel

of an image are calculated using the respective gradient operators. The gradient

orientations of the pixels are then quantized into N bins. The co-occurrences of

the gradients are summed for each offset and stored into an N ×N co-occurrence

matrix. An offset is defined by a distance and a direction. Offsets are limited to

a radius specified by the distance from the pixel. All the co-occurrence matrices

calculated from all the offsets are combined to create the feature vector (FV).

The size of the FV can be very large depending on the number of offsets and not

all features are significant. Using this large number of similar features creates am-

biguity in creation of an optimal hyperplane and leads to an incorrect classification

by a classifier. So, we apply receiver operator characteristic (ROC) curve analysis

to select significant features. The selected features vector (SFV) size is less than the

original FV size. Most importantly, using the selected features, a significant differ-

ence between two classes is obtained. Particularly, for medical dataset, it is difficult

to find differences between the patients and the controls without feature selection.

We employ a linear support vector machine (SVM) [34] classifier to calculate the

classification accuracy between two classes.

1.3 Summery of Contributions

The main contributions of this thesis are as follows:

• The proposed three methods use the whole image instead of subdividing it

into sub-regions. The use of sub-regions limits the accuracy of co-occurrence

matrix for boundary pixels and thus some information is incomplete for each

sub-region. Also it increases the size of the feature vector. Thus, using the

whole image not only reduces the boundary pixels problem in sub-regions but
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also reduces the size of feature vector.

• The original CoHOG method uses Sobel operators for gradient calculation.

For the first time, we adopt two gradient operators GD and LFDG for the pro-

posed GD-CoHOG and LFDG-CoHOG methods, respectively. The proposed

methods are compared to determine the impact of the gradient operators on

classification accuracy using the whole image.

• Texture features are extracted using two different neighborhood sizes. The

original CoHOG method uses a maximum neighborhood size of 4. We use

a larger neighborhood size of 8 to evaluate the effect of using more global

information for co-occurrence calculation on classification accuracy.

• The extracted feature vector size using the CoHOG method is very large with

many similar features. Using this large number of similar features creates am-

biguity in optimal hyperplane creation and leads to the wrong classification by

an SVM classifier. We are the first to use a feature selection method to reduce

the number of features used in CoHOG. In particular, we select significant

features using area under the ROC curve (AUC) analysis for classification.

Only features that contain significant differences between classes are selected

using an AUC threshold. The experimental results show that the performance

with feature selection outperforms that without feature selection.

• Three different datasets of 2D Magnetic Resonance Images (MRI) of Amy-

otrophic Lateral Sclerosis (ALS) are analyzed for the first time using the

proposed methods. Every dataset uses different image resolutions and con-

trasts. Another multicenter ALS dataset of different image contrasts for each

center is also used in this experiment to demonstrate the classification per-

formance of the proposed methods. The experimental results show that the

proposed methods can achieve very high specificity and sensitivity as well as

classification accuracy in all datasets.
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1.4 Thesis Outline

The rest of the thesis is organized as follows. Some important related works are

discussed in Chapter 2. In Chapter 3, we explain the proposed approach of feature

extraction and selection. The experimental results and discussions are presented in

Chapter 4. Chapter 5 concludes the thesis.
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Chapter 2

Related Works

Texture analysis is a promising topic in computer vision and image processing. Two

dimensional texture analysis methods have been used for document processing [1],

remote sensing [2], automated inspection [3], fingerprint identification [4], medical

image analysis [6], etc. Some of the representative 2D methods are discussed below.

2.1 2D Texture Analysis Methods

The Gabor filter banks are used in filter responses in the frequency [11] and spatial

[12], [13] domains for image texture recognition. Multiresolution Wavelets [14] are

used in texture feature extraction and selection to segment textures. A Markov

Random Fields (MRFs) [16] model is used to analyze textures in images. Some

related methods include the Gaussian MRFs [17] and spin images [18]. Another

multiresolution approach to gray-scale and rotation invariant texture classification

based on Local Binary Patterns (LBP) is presented in [7] and in its variants. Gray

level co-occurrence matrix (GLCM) [8] is a gray level intensity based texture anal-

ysis method that uses the co-occurrences of gray levels at different pixel locations.

The Run Length Matrix (RLM) [10] is used to calculate features of different terrain

types for classification. Some of the important related methods are discussed below.
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2.1.1 Local Binary Patterns (LBP)

LBP uses the gray level differences between the center pixel and its neighbors and

assigns either 0 or 1 to each of its neighbors depending on the difference as shown

in Eq. 2.1 [7],

S(x) =

1 if x ≥ 0

0 if x < 0

, (2.1)

where x = (gi − gc). Here gc and gi are the gray levels of the center pixel and

its neighbor pixel (i), respectively. These values are used to form a binary local

pattern. Then this binary pattern is converted into the corresponding decimal value

using Eq 2.2 [7],

LBPP,R =
P∑
p=0

S(gp − gc)2p, (2.2)

where P is the number of neighbors and R the radius of the neighboring pixels. An

example of calculating the LBP decimal code for a neighboring radius R = 1 and

number of neighbors P = 8 is shown in the Fig 2.1.

Figure 2.1: LBP process (R = 1, P = 8). (a) A gray level image, (b) neighbors’
values after thresholding, (c) Binary encoding and the corresponding decimal value.

The center gray value of the window is compared with all the neighboring gray

values (see Fig. 2.1(a)) and 1 or 0 is assigned to the corresponding neighbor based

on Eq. 2.1 (see Fig. 2.1(b)). Finally these bits are encoded into a binary code and

converted into the corresponding decimal code (see Fig. 2.1(c)).
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After computing the LBP codes for all the pixels in the image a histogram is

built from these decimal codes to represent the texture image. To achieve rotation

invariant, the minimum right shifted binary pattern is used.

2.1.2 Gray Level Co-occurrence Matrix (GLCM)

In GLCM [8], image intensities are quantized into a fixed number of gray levels

and a co-occurrence matrix is formed by summing the co-occurrences of a specific

pair of gray levels. The process of GLCM can be divided into three steps. First,

each pixel values of a given gray image is quantized into G number of gray levels.

Then, using this gray level information a GLCM is formed. A GLCM is defined

for a given direction (θ) and distance (d). A vector with distance d and direction

angle θ connects image pixel I(x1, y1) to I(x2, y2) such that x2 = x1+d cos(θ) and

y2 = y1 +d sin(θ). GLCMd,θ for distance d and direction angle θ is a G×G matrix

where each entry GLCMd,θ(i, j) shows the number of times that I(x1, y1) = i and

I(x2, y2) = j, where i and j are the gray levels at the corresponding locations.

Simply, GLCM counts the number of times a particular gray level pair co-occurs.

An example of the process of computing the GLCM is shown in Fig. 2.2.

Figure 2.2: GLCM computation process (d = 1, θ = 90◦). (a) A gray level image,
(b) corresponding GLCM.

Usually, GLCM uses one of the eight directions ( 00,±450,±900,±1350, 1800).

Symmetric GLCM uses four directions instead of eight as diagonally opposite direc-

tions are symmetric. Finally, the GLCM is normalized to compute texture features.

The normalization can be done using Eq. 2.3,
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GLCMnorm
d,θ (i, j) =

GLCMd,θ(i, j)∑G−1
i=0

∑G−1
j=0 GLCMd,θ(i, j)

. (2.3)

Twelve well known features of GLCM are defined and used. The texture fea-

tures are listed in Table 2.1. Here P is the normalized GLCM, G the number

of gray levels. µx, µy, σx, and σy indicate means and standard deviations of

the row and column sums of P.Px+y(k) =
∑G

i=1

∑G
j=1i+j=k

P (i, j) and Px−y(k) =∑G
i=1

∑G
j=1|i−j|=k

P (i, j).

Table 2.1: Texture features defined for the GLCM

Texture Feature Formula

Angular second moment f1 =
∑G

i=1

∑G
j=1(P (i, j))2

Contrast f2 =
∑G

i=1

∑G
j=1 |i− j|2P (i, j)

Correlation f3 = 1
σxσy

∑G
i=1

∑G
j=1 ijP (i, j)− µxµy

Sum of Squares: Variance f4 =
∑G

i=1

∑G
j=1(i− µ)2P (i, j)

Inverse difference moment normalized f5 =
∑G

i=1

∑G
j=1

1
1+(i−j)2/G2P (i, j)

Sum average f6 =
∑2G

i=2 iPx+y(i)

Sum variance f7 =
∑2G

i=2(1− f8)2Px+y(i)
Sum entropy f8 = −

∑2G
i=2 Px+y(i) log(Px+y(i))

Entropy f9 = −
∑G

i=1

∑G
j=1 P (i, j) log(P (i, j))

Difference variance f10 = variance of Px−y
Difference entropy f11 = −

∑G−1
i=0 Px−y(i) log(Px−y(i))

Homogeneity f12 = 1
1+|i−j|

∑G
i=1

∑G
j=1 P (i, j)

Recently, GLCM has been used in medical imaging for the diagnosis of dementia

[25], the study of pathological changes of hippocampus in patients with Alzheimer

disease and mild cognitive impairment [26], and brain tumors detection [27]. A 3D

variants of GLCM has been used for 3D texture analysis in Amyotrophic Lateral

Sclerosis (ALS) [30]. The major limitation of GLCM is that it works with the

intensity level of gray scale images, which will have unpredictable performance

when the acquisition equipment or the scanning protocol changes.
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2.1.3 The Run Length Matrix (RLM)

The RLM uses the gray level runs. A set of consecutive, co-linear pixels in an image

having the same gray level value is called a gray level run [10]. The length of the

run is defined by the number of pixels in the run. For a given run direction, the

run length matrix of an image can be calculated. Fig. 2.3 shows an example of

creating a RLM for 00 degree run direction.

Figure 2.3: Generation of (b) RLM matrix from a (a) gray level image using 00

direction of run.

An RLM matrix element (i, j) is the number of times the gray level i appears

in the image with run length j in specific run direction. The number of run lengths

depends on the given gray level image size and the size of the RLM is equal to the

number of run length × number of gray levels of the image.

The numerical texture features are computed using some well-known functions

that are used in the Gray Level Co-occurrence Matrix (GLCM) [8] method for

feature calculation.

2.1.4 Gradient Orientation based Texture Methods

Gradient orientation based texture methods have become popular in recent years

for their robustness against image intensity changes, blurriness and deformations.

Moreover, gradient orientation based methods have better classification accuracy

than LBP-like methods [35]. This is because LBP-like methods merely count the
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number of patterns around pixels and lack gradient orientation related information

[36].

Histograms of Oriented Gradients (HOG) [20] and Co-occurrence Histograms

of Oriented gradients (CoHOG) are two such commonly used methods that have

been used for objects detection[20], pedestrian detection [21], face recognition [24],

fine-grained activity recognition [22], etc. We give a brief description of HOG and

CoHOG below.

Histograms of Oriented Gradients (HOG)

The HOG method uses a gradient oriented image as input. The gradient orienta-

tions are quantized into N bins. Then the image is subdivided into M number of

equal sub-regions. For each sub-region, a histogram of orientations is computed.

The histogram is formed by simply counting different groups of orientations. The

size of the histogram is N . For M sub-regions, there are M different histograms

each of size N . Finally, these histograms are concatenated to form the feature vec-

tor histogram of size M ×N . An overview of HOG calculation process is shown in

Fig. 2.4 [20].

Figure 2.4: Basic HOG calculation process. (a) Gradient orientation of the image
pixels, (b) histogram of gradient orientation of each sub-region, (c) feature vector.

The limitation of HOG is that it only counts the orientations for a local re-

gion. Inter-relationship information between orientations is not used. To overcome
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this limitation, an improvement of HOG called the Co-occurrence HOG (CoHOG)

method is proposed.

Co-occurrence Histograms of Oriented Gradients (CoHOG)

CoHOG is an extension of HOG. It also uses the quantized gradients as input and

subdivides the image into a number of sub-regions. The CoHOG method uses a

circular neighborhood with a given radius in which each pixel with the center pixel

forms a pair called an offset. Now for each sub-region and for each offset, the

co-occurrences of an orientation pair is computed by scanning all the pixels in the

sub-region to form a co-occurrence matrix (CM). The size of the CM is N × N ,

where N is the number of distinct orientations. The total number of CMs for a

sub-region depends on the number of offsets. Finally, these CMs are concatenated

to form the histogram for the sub-region. Then, the histograms of all the sub-

regions are concatenated to form the CoHOG feature vector for the given image.

The overview of CoHOG calculation process is shown in Fig. 2.5 [20].

Figure 2.5: Basic CoHOG calculation process. (a) Gradient orientation of the image
pixels, (b) Combination of of sub-regions and offsets for CM calculation, (c) CM
for each sub-region, and (d) feature vector.

The feature vector size depends on the number of orientations, the number

of offsets and the number of sub-regions. For example, if an image has M sub-
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regions and K offsets with a CM size of N × N , then the final feature vector size

is M ×K × (N ×N).

The CoHOG method has the advantages over HOG in preserving the inter-

relationship among the neighboring pixel orientations and, by using different offsets,

the co-occurrence matrices can better represent the local and global orientation in-

formation. However, the use of sub-regions limits the accuracy of CM for boundary

pixels and thus some information is incomplete for each sub-region.

In this thesis, we present a modified CoHOG method for texture feature extrac-

tion of the whole image which can overcome the sub-region issue mentioned above

and can reduce the feature vector size.
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Chapter 3

Proposed Methodology

3.1 Overview

In this chapter we discuss the proposed approaches of extracting texture features

using the CoHOG method.

The original CoHOG method subdivides the original image and for each sub-

region it calculates the co-occurrence matrices for all the offsets. Finally, all the

co-occurrence matrices of each sub-region are combined to form the feature vector

histogram. The histogram is very large depending on the number of sub-regions and

the number of offsets. Image classes that contain very small changes in between the

groups are almost similar in all other regions. Features extracted from these regions

are also similar. Using this large number of similar features creates ambiguity

in defining the optimal hyperplane and leads to an incorrect classification by a

classifier.

In this thesis, based on the original CoHOG method, we propose three novel

texture feature extraction methods. Since one of the key components in CoHOG

is gradient calculation, three well-known methods such as Sobel [31], Gaussian

Derivative (GD) [23] and Local Frequency Descriptor Gradient (LFDG) [32], [33]

operators are used to calculate the gradient orientations of the image pixels. In

the first method, we use Sobel operators for gradient calculation named S-CoHOG.
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The second method uses GD operators named GD-CoHOG and the third method

named LFDG-CoHOG uses the LFDG operators for gradient calculations.

The original CoHOG method uses sub-regions of an image and calculates the

sum of the co-occurrences of orientation pairs. The use of sub-region limits the

accuracy of co-occurrence calculation for the boundary pixels and thus some in-

formation is incomplete for each sub-region. While it is a simple idea, to the best

knowledge of the author, it is the first time of applying CoHOG to the whole image

using the three proposed methods for texture feature extraction.

The CoHOG features are extracted using two different neighborhood sizes. The

original CoHOG method uses a maximum neighborhood size of 4. We use a larger

neighborhood size of 8 to see the effect of using more distance information for

co-occurrence calculation on classification accuracy.

Finally, we select significant features using area under the ROC curve (AUC)

analysis for classification. Only features that contain significant differences in be-

tween the classes are selected using an AUC threshold.

The overview of the proposed approach is shown in Fig. 3.1. The proposed

Figure 3.1: Overview of the proposed approach.

approach for all the three proposed methods consists of four steps: pre-processing,

texture feature extraction, feature selection and classification. These steps are

discussed below.

3.2 Pre-processing

Texture features are extracted from pre-processed images. Pre-processing involves

gradient orientation (GO) calculation and quantization. The proposed S-CoHOG,
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GD-CoHOG and LFDG-CoHOG methods use Sobel [31], Gaussian Derivative (GD)

[23] and Local Frequency Descriptor Gradient (LFDG) [32] operators for gradient

orientation calculation, respectively. The GO calculation and quantization steps

are discussed below.

3.2.1 Gradient Orientation and Quantization

The gradient orientations of image pixels are computed by convolving the gradient

operators with the image. Horizontal and vertical gradient operators are used

to calculate the corresponding gradient images and then gradient orientations are

calculated from the gradient images. The details of each of the three gradient

operators are discussed below.

The Sobel Operators

Sobel uses two 3×3 kernels to estimate the horizontal and vertical derivatives. The

two operators used in this method are shown in Eq. 3.1,

Gx =


−1 0 1

−2 0 2

−1 0 1

 , Gy =


−1 −2 −1

0 0 0

1 2 1

 , (3.1)

where Gx and Gy are the corresponding horizontal and vertical gradient operators.

The GD Operators

The GD operators that use two basic one-dimensional derivative filters are given in

Eq. 3.2 [23], [37],

f1(t) =
−2t

σ2
e−

t2

σ2 , f2(t) = e−
t2

σ2 , (3.2)

where t is the width of the derivative filter and σ the standard deviation. These

one-dimensional derivatives are used to calculate the two horizontal and vertical

derivative filters as shown below [23], [37].
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Basic filters Filter in x Filter in y

Gx f1 f2

Gy f2 f1

Here, f1 and f2 are two vectors defined in Eq. 3.2. For both Gx and Gy filters,

filter in x and filter in y are convolved with each column and each row of image I,

respectively, to form the corresponding gradient image.

The LFDG Operators

The LFDG operators can be calculated using the representation as shown in Eq.

3.3 and Eq. 3.4 [32],

Gx =

p∑
k=1

fkcos

(
2π(k − 1)

p

)
, (3.3)

Gy =

p∑
k=1

fkcos

(
π

2
+

2π(k − 1)

p

)
, (3.4)

where p is the number of neighboring points and fk the corresponding gray level of

the kth neighbor.

The kernel size depends on the specified radius. For a kernel with radius R, the

LFDG operator has the kernel size of N×N , where N = 2R+1. In our experiments,

we use R = 1 and 34 neighboring points to calculate the kernel operators.

For all of the operators discussed above, Gx and Gy are convolved with the

original image to compute the horizontal and vertical gradient images, respectively.

Gradient orientations are computed using Eq. 3.5,

GO = arctan
Gy

Gx

. (3.5)

Finally, the orientations are then quantized into 8 bins. In particular, 0◦− 360◦

orientations are divided into eight bins of 45◦ each. Each pixel’s orientation is

assigned to the nearest bin. The orientation bins are shown in Fig. 3.2. The blue
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lines are the boundary of the orientation bins.

Figure 3.2: 0◦ − 360◦ degree orientations are quantized into 8 bins.

3.3 Feature Extraction

The quantized oriented image is used for feature extraction using the proposed

methods. It is a two-step process. First, all the co-occurrence matrices for all the

offsets are computed and then these matrices are combined to obtain the feature

vector.

3.3.1 Co-occurrence Matrix (CM) Calculation

In CoHOG, an offset corresponds to the center pixel of the neighborhood to one of

its neighbors (see Fig. 3.3 (b)). Fig. 3.3 (a) shows a neighborhood with a radius

of size 4, 6, and 8 from the center green pixel. For a given radius, each neighbor

within the radius is paired with the green pixel to form an offset. For example,

using a neighborhood size of 4 we have a total of 31 offsets including the pair of the

19



Figure 3.3: (a) Offsets for different radii and (b) a specific offset at distance (x, y)
from pixel (p, q).

green pixel with itself. Increasing the neighborhood size increases the number of

offsets and thus the number of CMs. The upper half of the circular neighborhood

is not considered because they are redundant since pixels in the top left corner of

image are processed first.

In the proposed approach, we use the whole image for co-occurrence matrix

calculation instead of using sub-regions as that used in the original CoHOG method.

A neighborhood size of 4 and 8 are separately used for feature extraction. In

CoHOG, the co-occurrence matrix is obtained by summing the co-occurrences of

each pair of orientations for each offset. The size of the co-occurrence matrix

is N × N , where N is the number of distinct orientations which is pre-defined.

For a specific offset (x, y) and a specific orientation at pixel (p, q) = i and pixel

(p+ x, q + y) = j, the equation for calculating the CM is shown in Eq. 3.6 [21],
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CMx,y(i, j) =
m∑
p=1

n∑
q=1

1 ifQ is True

0 Otherwise

, (3.6)

where Q = GO(p, q) = i and GO(p + x, q + y) = j and GM(p, q) ≥ T and

GM(p + x, q + y) ≥ T . Here m × n is the size of the gradient oriented image

I. GM is the gradient magnitude of the corresponding pixel and T the threshold

magnitude to consider for the co-occurrence count.

Figure 3.4: Illustration of the Co-occurrence Histograms of Oriented Gradients
(CoHOG) calculation for the proposed methods.

Fig. 3.4 shows the workflow of CoHOG. It shows that using the gradient oriented

image which is quantized into four different orientations (00, 900, 1800, and 2700),

a co-occurrence matrix of size 4 × 4 for each offset within the specified radius is

created. The method scans each pixel for all the offsets and sums the co-occurrences

of the orientations for that offset and stores the sums into the entry that corresponds

to the pair of orientations of the specified co-occurrence matrix. After scanning all

the pixels, it finishes in building up all the co-occurrence matrices. The algorithm
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for computing the CMs are given in Algorithm 1.

Algorithm 1: Algorithm for CM calculation of the proposed methods

Given I : Gradient oriented Image;

initialize: CM ← 0;

for all positions (p, q) inside of the image do

i← I(p, q);

for all offsets (x, y) such that corresponds neighbors do

if (p + x, q + y) is inside of the image then

j ← I(p+ x, q + y);

CM(i, j, x, y)← CM(i, j, x, y) + 1;

end

end

end

3.3.2 Feature Vector Generation

Now all the created CMs are used to generate the feature vector for the selected

image. A feature vector (FV) is generated by simply concatenating the CMs as

shown in Eq. 3.7,

FV =
On

i=1

vec(CMi) (3.7)

where,
f

is the concatenation operator, O is the number of offsets and vec is the

vector representation of CM. The FV is a histogram of the co-occurrences of orien-

tations of different offsets in the image (see Fig. 3.4(c)).

The size of the feature vector depends on the number of offsets used and the

size of the CM as shown in Eq. 3.8,

FV size = number of offsets× size of CM. (3.8)

One can see that the size of the feature vector is very large if the number of
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offsets is large. For example, with a neighborhood size of 4, the total number

of offsets is 31. Then the CM size is 8×8 = 64, and the FV size = 31×64 =

1984. With the same CM size, if the radius is increased to 6 with 61 offsets and

8 with 109 offsets then FV size = 3904 and FV size = 6976, respectively. When

the FV size is large, it is difficult to distinguish between two classes of distinct

categories, e.g. changes occur in a small portion of the images between two classes

and the features of all other portions of the image classes are similar. Distinguishing

between classes is difficult due to these similar features. Therefore, it is important

to select significant features that are extracted from the changed portion of the

images. These selected features have significant differences between the classes and

are used for classification.

3.4 Feature Selection

The extracted feature vector size using the proposed methods is very large with

many similar features. Changes that occur in a small portion of the images be-

tween two classes produce a large number of similar features. Hence, classification

using this large number of similar features is very difficult for a classifier. In partic-

ular, using this large number of similar features creates ambiguity in defining the

optimal hyperplane and leads to a wrong classification by a classifier. Therefore, it

is necessary to select the significant features for better classification using a feature

selection method.

ROC based methods [38], [39], [40], are well-known and promising in selecting

important features. Some of the ROC based feature selection examples include

feature ranking and significant feature selection using area under the ROC curve

analysis [38], a regularized ROC method for disease classification and biomarker

selection for microarray data [39], comparison of the ROC feature selection method

with other popular methods [40] and feature selection using the ROC curve for

small samples and imbalanced data classification problems [41]. These methods
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demonstrate that better classification accuracy is obtained using the ROC feature

selection approach.

In this thesis, feature selection is performed using ROC analysis. It is notewor-

thy that we are the first to use a feature selection method to extract significant

CoHOG texture features to further improve classification accuracy. Significant fea-

tures are selected using area under the ROC curve (AUC) analysis for classification.

Only features that contain significant differences in between the classes are selected

using an AUC threshold.

3.5 Classification

For classification we use a linear support vector machine (SVM) [34]. A two stage

classification is used with the use of training and testing datasets.

For a two class classification, the SVM computes the optimal hyperplane to

partition the feature space of the training samples into two halves. Samples from

both classes are used for training. Each training sample consists of a feature vector

and a label of its class.

Finally, the trained SVM is used to predict the class of a test sample using Eq.

3.9,

class(~xt) = Sgn{
∑

∀k,lk∈(p,c)

y(lk)αkK(~xt, ~xk) + b}, (3.9)

where class(~xt) is the class label of the test sample ~xt, ~xk is the feature vector of

the kth training sample. y(lk) is the class label function of the kth sample which

is either +1 or −1, αk the Lagrangian multiplier for the training sample k, K the

kernel function and b the bias parameter of the optimal hyperplane of the SVM.

A linear kernel function is used to map data into higher dimensional spaces hoping

that the data could be better separated. A linear kernel simply uses the dot product

of two vectors.

The classification is performed using LIBSVM [42] version 3.20 package. The
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SVM classifier is trained with a random selection of half of the dataset from each

class and, then using the trained model, the classification accuracy is tested using

the rest of the sample. The average classification accuracy was recorded over 1000

runs to reduce the effect of randomness.
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Chapter 4

Experimental Results

In this chapter, we discuss the results using the proposed methods for different

datasets. The proposed methods are implemented in Matlab. The program runs on

a PC with an Intel Core i7 with 3.40GHz CPU with 24GB RAM running Windows

7 Professional. Three well-known texture datasets are used in this experiment to

compare the classification performance of the proposed methods to other state of

the art methods.

We also use another three datasets consisting of 2D MR images of ALS pa-

tients and healthy controls for classification. We compare the results of these MRI

datasets with that of the GLCM method that has been used for texture classifi-

cation in ALS. Another multicenter dataset in ALS of different image contrasts is

also used to evaluate the classification performance of the proposed methods on

datasets having various image resolutions and contrasts.

4.1 Texture Datasets

In our experiments, we use three well-known texture datasets, namely, INRIA Per-

son [20], Columbia-Utrecht Reflectance and Texture (CUReT) [43], and the UIUC

[44]. The details of these texture datasets are discussed below.
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4.1.1 INRIA Person Dataset

The INRIA Person [20] dataset is a widely used pedestrian detection benchmark

dataset. The dataset contains two classes of human and nonhuman images of

various sizes. We have used 200 images per class and human and nonhuman images

are divided into equal halves in each class. Three image samples of each class of

this dataset are shown in Fig. 4.1.

Figure 4.1: Three sample images of (a) human and (b) nonhuman classes from the
INRIA Person dataset.

4.1.2 CUReT Dataset

In Columbia-Utrecht Reflectance and Texture (CUReT) [43] dataset, we use 10

different texture classes with 55 samples in each class. The image resolution is 640

× 480 for all the classes. The images are acquired from a physical texture sample
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photographed under a range of viewing and illumination angles. Three sample

images in class 1, 3 and 5 are shown in Fig. 4.2.

Figure 4.2: Three sample images of (a) class 1 (b) class 3 and (c) class 5 from the
CUReT dataset.

4.1.3 UIUC Dataset

The third texture dataset we use is UIUC [44]. In the UIUC dataset, we use 10

different texture classes with each class containing 40 image samples. All the classes

have the same image resolution of 640× 480. The dataset includes materials imaged

under significant view-point variations. Three sample images in class 1, 3 and 5 are

shown in Fig. 4.3.
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Figure 4.3: Three sample images of (a) class 1 (b) class 3 and (c) class 5 from the
UIUC dataset.

4.2 Human MRI Datasets

We use three different datasets of Magnetic Resonance Images (MRI) of Amy-

otrophic Lateral Sclerosis (ALS) patients and healthy controls. These datasets are

acquired using two different scanning machines with different scanning parameters

for each dataset. The datasets are referred to as MR dataset 1, 2 and 3. The

subjects in MR dataset 1 are different from that in MR dataset 2 and 3. Also the

image resolution and contrast are different for each dataset. Another multicenter

ALS dataset of different image contrasts is also used in this experiment.

All patients are clinically probable or definite sporadic ALS according to the

revised El Escorial criteria [45] were recruited. By this criteria, all patients had
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clinical evidence of upper motor neuron (UMN) and lower motor neuron (LMN)

involvement.

In this experiment, we use the specified coronal slices of the the MRI scans of

the whole brain. Then a region of interest (ROI) is selected for texture feature

selection. We also use different downsampled version of the same image slice in the

experiment. The details of ALS, ROI selection and downsampling of the subjects

are discussed below.

4.2.1 Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic Lateral Sclerosis (ALS) is a fatal progressive degenerating disorder

of adulthood that causes rapid muscular weakness and disability. Several factors,

including clinical presentation, rate of disease progression, early presence of respi-

ratory failure, and the nutritional status of patients impact the survival of ALS

[46].

ALS is an idiopathic disease of the human motor system. It affects both the

UMN of the cerebral cortex and the LMN in the brainstem and spinal cord [46], [47],

[48], [49]. UMN dysfunction leads to spasticity, weakness, and brisk deep tendon

reflexes. By contrast, features of LMN impairment include fasciculations, muscle

wasting, and weakness. Spastic dysarthria, which is characterized by slow, labored,

and distorted speech, often with a nasal quality is caused by bulbar UMN dysfunc-

tion. Bulbar LMN dysfunction can be identified by tongue wasting, weakness, and

fasciculations, accompanied by flaccid dysarthria and later dysphagia [46].

People are affected by ALS worldwide. Men have a higher incidence than do

women, although the incidence is about the same in familial disease between men

and women. About 90% of ALS patients have sporadic disease and rest of the 10%

are familial. About 50% of patients die within 30 months and about 20% of them

survive between 5 years to 10 years after the onset of symptom [46].

Currently, there is no reliable tool to provide a quantitative measure of cerebral

degeneration in ALS and such a tool is desperately needed to aid in diagnosis and
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to evaluate novel therapies.

4.2.2 ROI Selection

From the MRI scan of the whole brain, coronal slices with an angulation parallel

to the corticospinal tract (CST) (see Fig. 4.4 (a)) are used for texture calculation

(see Fig. 4.4 (c)). The image angulation is performed using Mango [50].

Figure 4.4: (a) Sagittal, (b) Axial and (c) Coronal image slices. Coronal imaging
is used in texture feature extraction.

In particular, an ROI is manually defined that includes the region above the

inferior horn of the lateral ventricles (see Fig. 4.5) and is specified by creating a

mask to segment out the regions of interest. Masks for each subject are created

separately using ITK-SNAP [51].

4.2.3 Downsampling

The selected ROI is downsampled to four different resolutions. Different scaling

factors are chosen to downsample the ROI into 1×1 mm2, 2×2 mm2, 3×3 mm2

and 4×4 mm2 physical dimensions. The downsampling is done using ImageJ [52].
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Figure 4.5: ROI selection from a coronal image slice. The highlighted regions are
selected as ROI.

4.2.4 MR Dataset 1

Twelve patients and nineteen controls are in this datasets. Details of the patients

and controls for this dataset are given in Table 4.1.

Table 4.1: Details of the subjects for MR Dataset 1

Subjects No. Average Age Male Female
Patients 12 57.4 ± 10.0 7 5
Controls 19 57.0 ±10.5 8 11

MR imaging was performed on a 4.7 Tesla whole-body scanner (Varian Unity

Inova console). High-resolution fast spin echo T2-weighted images were acquired in

the coronal plane (TR = 4000ms, TE = 33.3ms, pixel size = 0.5 × 0.5mm2, slice

thickness = 2mm). Three sample image slices of both patients and controls are

shown in Fig. 4.6. We can see that patients and controls are not distinguishable

by visual inspection. 2D MR images of the subjects are downsampled into four

different resolutions. Details of the downsampled images are given in Table 4.2.

4.2.5 MR Dataset 2

Nineteen patients and twenty controls are in this dataset. Details of the patients

and controls are given in Table 4.3.

MRI scans were done on a 1.5 Tesla system (Magnetom Sonata, Siemens Medical
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Figure 4.6: Three sample image slices of (a) controls and (b) patients from MR
Dataset 1. Patients and controls are not distinguishable by visual inspection.

Table 4.2: Details of the downsampled 2D MR images of the subjects for MR
Dataset 1 and MR Dataset 3

Scale Factor Pixel size (mm2) Image size (Pixel2)
1 0.5 × 0.5 385 × 512

0.5 1 × 1 192 × 256
0.25 2 × 2 96 × 128
0.167 3 × 3 64 × 85
0.125 4 × 4 48 × 64

Table 4.3: Details of the subjects for MR Dataset 2 and MR Dataset 3

Subjects No. Average Age Male Female
Patients 19 56.7±13.7 10 9
Controls 20 56.8±12.4 9 11

Systems). Coronal T2-weighted images were acquired (TR=7510ms, TE=113ms,

pixel size = 1.1 × 0.9mm2, slice thickness = 5mm). Three sample image slices of
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both patients and controls are shown in Fig. 4.7. We can see that patients and

controls are not distinguishable by visual inspection. MR dataset 2 images are

Figure 4.7: Three sample image slices of (a) controls and (b) patients from MR
Dataset 2. Patients and controls are not distinguishable by visual inspection.

downsampled into four different resolutions. Details of the image resolutions for

each scale are given in Table 4.4.

Table 4.4: Details of the downsampled 2D MR images of the subjects for MR
Dataset 2

Scale Factor Pixel size (mm2) Image size (Pixel2)
1 0.86 × 0.86 208 × 256

0.86 1 × 1 178 × 220
0.43 2 × 2 89 × 110
0.285 3 × 3 59 × 72
0.215 4 × 4 44 × 55
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4.2.6 MR Dataset 3

All the subjects are the same for MR dataset 2 and MR dataset 3 (see Table

4.3). But MR dataset 3 was acquired with a T1-weighted MPRAGE (TR=1600ms,

TE=3.8ms, TI=1100ms, pixel size = 1.0×1.0mm2, slice thickness = 1.5mm). MRI

scanning were performed on a 1.5 Tesla system (Magnetom Sonata, Siemens Medical

Systems). Three sample image slices of both patients and controls are shown in

Fig. 4.8. We can see that patients and controls are not distinguishable by visual

inspection. The resolutions of downsampled images are given in Table 4.2.

Figure 4.8: Three sample image slices of (a) controls and (b) patients from MR
Dataset 3. Patients and controls are not distinguishable by visual inspection.

For all the MR datasets, coronal imaging was performed with an angulation

parallel to the CST (see Fig. 4.4). ROI was manually selected for each subject that

covers the region above the inferior horn of the lateral ventricles. One sample ROI
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is shown in Fig. 4.5.

4.3 Classification Results of Texture Datasets

In this section, we discuss the classification accuracy of the proposed S-CoHOG,

GD-CoHOG and LFDG-CoHOG methods using two neighborhood sizes of 4 and

8. The original CoHOG method uses a maximum neighborhood size of 4. In this

thesis, we employ a larger neighborhood size of 8 to see the effect of using more

global information for co-occurrence calculation on classification accuracy. The

feature vector size of neighborhood size of 4 is 1984 and is 6976 for neighborhood

size of 8. Classification using these very large feature vectors is difficult due to large

number of similar features. A large number of similar features creates problem in

defining the optimal hyperplane to separate the two classes and thus produces

wrong classification.

For the first time, we employ a feature selection method with the CoHOG

features in this thesis. In all of the reported experiments, we have applied the

ROC feature selection method with a significance level of p ≤ 0.01 using an AUC

threshold to reduce the feature vector size and to select the significant features for

classification. The AUC threshold is chosen to minimize the number of features

such that the selected features can produce better classification results.

Classification accuracies with and without feature selection are compared. We

also compare the results of the proposed methods with that of the other CoHOG

methods. The detailed classification results of the three texture datasets using the

proposed methods are discussed below.

4.3.1 Classification of INRIA Person Dataset

The INRIA database contains two classes of images, namely, human and nonhu-

man. We use the proposed methods for feature extraction and selected using ROC

analysis with AUC thresholds of 0.95 and 0.99 for a neighborhood size of 4 and 8,
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respectively. These thresholds are chosen to minimize the number of features such

that selected features can produce better classification results. For classification,

we use half of the images from each class for training and the remaining images

from both classes for testing. The classification accuracies with and without feature

selection for two neighborhood sizes are shown in Table 4.5.

Table 4.5: Classification accuracy of the proposed methods using INRIA Person
dataset. I means classification without feature selection and II mean classification
with feature selection.

Proposed
Method

Neighborhood Size of 4 Neighborhood Size of 8
Classification Classification Classification Classification
Accuracy (I) Accuracy (II) Accuracy (I) Accuracy (II)

S-CoHOG 99.00% 99.30% 98.90% 99.90%
GD-CoHOG 99.40% 99.60% 99.00% 99.90%

LFDG-CoHOG 98.70% 99.30% 99.00% 99.50%

The classification results for this dataset are almost 100% for all the proposed

methods. There is a small improvement in most cases in the classification accuracy

between with and without feature selection. Also using a larger neighborhood size

has little impact on the classification accuracy. The S-CoHOG and GD-CoHOG

methods acquire a maximum classification accuracy of 99.90% with neighborhood

size of 8 with feature selection.

Table 4.6: Number of features selected using AUC threshold for INRIA Person
dataset using two neighborhood sizes.

Proposed
Method

Neighborhood Size of 4 Neighborhood Size of 8
AUC Selected AUC Selected

Threshold Features Threshold Features
S-CoHOG 0.95 193 0.99 1403

GD-CoHOG 0.95 807 0.99 1080
LFDG-CoHOG 0.95 655 0.99 1245

The number of selected features using an AUC threshold for each of the method

is shown in Table 4.6. The selected features are smaller than that of the total

number of features for both the neighborhood sizes. The proposed methods achieve

better classification accuracy using the selected features than using all the features.
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4.3.2 Classification of CUReT Dataset

The classification results of the proposed methods are calculated using 10 classes

of CUReT dataset. Each class contains 55 images and half of the images in each

class are used to train the classifier and rests of the images in each class are used

for testing. A two class classification is performed among the 10 classes and the

average classification accuracy is recorded. Feature selection is performed using an

AUC threshold of 0.70 and 0.80 for a neighborhood size of 4 and 8, respectively.

These thresholds are chosen to minimize the number of features such that selected

features can produce better classification results. The classification accuracies with

and without feature selection for two neighborhood sizes are shown in Table 4.7.

Table 4.7: Classification accuracy of the proposed methods using CUReT dataset. I
means classification without feature selection and II mean classification with feature
selection.

Proposed
Method

Neighborhood Size of 4 Neighborhood Size of 8
Classification Classification Classification Classification
Accuracy (I) Accuracy (II) Accuracy (I) Accuracy (II)

S-CoHOG 96.70% 96.60% 96.30% 97.80%
GD-CoHOG 96.80% 97.40% 96.50% 98.30%

LFDG-CoHOG 96.80% 97.10% 96.40% 97.60%

From the classification results, we observe that the proposed methods have

higher classification accuracy using feature selection than without feature selection

when the neighborhood size is 8. For a neighborhood size of 4, we found an excep-

tion for S-CoHOG that it has a slightly lower classification accuracy with feature

selection. Without feature selection, the classification accuracies are almost the

same in all the methods for both neighborhood sizes, but using feature selection

the proposed methods have a better classification accuracy for neighborhood size of

8. The GD-CoHOG method acquires a maximum classification accuracy of 98.30%

for neighborhood size of 8 and using feature selection.

The number of selected features using an AUC threshold for each of the methods

is shown in Table 4.8. The number of selected features are much smaller than that of
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Table 4.8: Number of features selected using AUC threshold for CUReT dataset
using two neighborhood sizes.

Proposed
Method

Neighborhood Size of 4 Neighborhood Size of 8
AUC Selected AUC Selected

Threshold Features Threshold Features
S-CoHOG 0.70 343 0.80 235

GD-CoHOG 0.70 371 0.80 403
LFDG-CoHOG 0.70 378 0.80 563

the (1984 for neighborhood size of 4 and 6976 for neighborhood size of 8) number

of features for both neighborhood sizes. The proposed methods achieve better

classification accuracy using the selected features than using all the features.

4.3.3 Classification of the UIUC Dataset

In this dataset, we also use 10 different classes of images and each of which con-

tains 40 images. ROC feature selection is performed with an AUC threshold of

0.80 and 0.90 for a neighborhood size of 4 and 8, respectively. These thresholds are

chosen to minimize the number of features such that selected features can produce

better classification results. Half of the images in each class are used for training

and the remaining images in each class are used for testing. A two class classifi-

cation is performed among the 10 classes and the average classification accuracy is

recorded. The classification accuracies with and without feature selection for two

neighborhood sizes are shown in Table 4.9.

Table 4.9: Classification accuracy of the proposed methods using the UIUC dataset.
I means classification without feature selection and II mean classification with fea-
ture selection.

Proposed
Method

Neighborhood Size of 4 Neighborhood Size of 8
Classification Classification Classification Classification
Accuracy (I) Accuracy (II) Accuracy (I) Accuracy (II)

S-CoHOG 95.30% 95.20% 95.60% 97.00%
GD-CoHOG 93.70% 96.60% 95.00% 98.00%

LFDG-CoHOG 95.00% 95.60% 95.31% 97.50%

For this dataset, we observe that the proposed methods with feature selection
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have similar or better classification results than without feature selection for both

the neighborhood sizes. For a neighborhood size of 4, we found an exception for

S-CoHOG method that it has a slightly lower classification accuracy with feature

selection than that without feature selection. Using a larger neighborhood, we

found better results than that of using a smaller neighborhood. The GD-CoHOG

method acquires a maximum classification accuracy of 98.00% for neighborhood

size of 8 using feature selection.

Table 4.10: Number of features selected using AUC threshold for UIUC dataset
using two neighborhood sizes.

Proposed
Method

Neighborhood Size of 4 Neighborhood Size of 8
AUC Selected AUC Selected

Threshold Features Threshold Features
S-CoHOG 0.80 436 0.90 1028

GD-CoHOG 0.80 188 0.90 743
LFDG-CoHOG 0.80 395 0.90 895

The AUC thresholds used for feature selection and number of selected features

for the proposed methods using this dataset are shown in Table 4.10.

4.3.4 Comparison with other CoHOG methods

We compare the classification results of the proposed methods with that of the

original CoHOG method [21] and the Eig(Hess)-CoHOG method [23] using the

INRIA Person, CUReT and the UIUC texture datasets.

The original CoHOG method uses 6 sub-regions and a neighborhood size of

4. Sobel operators are used for gradient calculations. The Eig(Hess)-CoHOG uses

the Hessian matrix to calculate the eigen values of the image surface. These eigen

values are used for pixel orientation calculation. This method uses 4 sub-regions

with a neighborhood size of 4. The comparison results are shown in Table 4.11.

Here we compare the results found using feature selection and neighborhood

size of 8 for the proposed methods with that of the original CoHOG and Eig(Hess)-

CoHOG methods. The original CoHOG method uses the normalized images of zero
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Table 4.11: Comparison of the classification accuracies (CA) of the proposed meth-
ods with the original CoHOG and the Eig(Hess)-CoHOG methods.

Method INRIA Dataset CUReT Dataset UIUC Datasets
CA CA CA

Original CoHOG 95.5% 94.94% 77.41%
Eig(Hess)-CoHOG - 90.00% 91.66%

S-CoHOG 99.90% 97.80% 97.00%
GD-CoHOG 99.90% 98.30% 98.00%

LFDG-CoHOG 99.50% 97.60% 97.50%

mean and unit standard deviation. We do not use any normalization of the image

dataset for the proposed methods. It is noteworthy that the results of the original

CoHOG are worse for images without normalization. For the CUReT and UIUC

datasets, GD-CoHOG has the best classification accuracies. S-CoHOG and GD-

CoHOG have the best results for INRIA Person dataset. The Eig(Hess)-CoHOG

method has better classification results than that of the original CoHOG method

but are worse than that of our proposed methods.

4.4 Classification Results of MRI Datasets

For the three MR datasets, we use ROC analysis with a significance level of p ≤ 0.01

to find the area under the ROC curve (AUC). Then classification of the subjects

in the dataset is performed using linear SVM classifier. In each run, half of the

patients and controls for each dataset are randomly selected for training and the

rest of the patients and controls are used for testing. The average classification

accuracy and the optimal sensitivity and specificity over 1000 runs are recorded.

The details of the ROC analysis and classification results are discussed below.

4.4.1 ROC Analysis of MR Dataset 1

Six patients and ten controls are used to train the linear SVM classifier and the

rest of the patients and controls are used for testing in this dataset. The maximum

AUC is calculated for the selected features and then the classification accuracy is
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calculated using the selected features. The results are shown in Table 4.12 and

4.13.

Table 4.12: ROC analysis of MR Dataset 1 using S-CoHOG features extracted for
neighborhood radius of 4.

Image Pixel Maximum Optimal Optimal Classification
Size (mm2) AUC Sensitivity Specificity Accuracy
0.5 × 0.5 0.815 54% 67% 63.00%

1 × 1 0.895 57% 73% 67.30%
2 × 2 0.886 81% 84% 83.50%
3 × 3 0.895 81% 91% 87.30%
4 × 4 0.842 71% 84% 79.00%

Table 4.13: ROC analysis of MR Dataset 1 using S-CoHOG features extracted for
neighborhood radius of 8.

Image Pixel Maximum Optimal Optimal Classification
Size (mm2) AUC Sensitivity Specificity Accuracy
0.5 × 0.5 0.831 50% 61% 57.00%

1 × 1 0.895 57% 74% 67.70%
2 × 2 0.906 74% 83% 79.30%
3 × 3 0.917 91% 95% 93.00%
4 × 4 0.921 90% 89% 90.30%

Four different downsampled images along with the original image are used in

this experiment. From the results it is shown that features extracted (using both

neighborhood size of 4 and 8) from downsampled images (image pixel size = 3×3

mm2) have better classification accuracy with a higher maximum AUC than that

of using the original image resolution. In particular, the best classification accu-

racy (93.00%), the maximum AUC (0.917) and the optimal sensitivity (91%) and

specificity (95%) are obtained using features extracted with a neighborhood size of

8.

4.4.2 ROC Analysis of MR Dataset 2

In this dataset, we use 19 patients and 20 controls for classification and ROC

analysis. Ten patients and 10 controls are used for training the linear SVM and
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the other 9 patients and 10 controls are used for testing. The classification results

for different downsampled images with two neighborhood sizes are shown in Table

4.14 (four neighbors) and Table 4.15 (eight neighbors).

Table 4.14: ROC analysis of MR Dataset 2 using S-CoHOG features extracted for
neighborhood radius of 4.

Image Pixel Maximum Optimal Optimal Classification
Size (mm2) AUC Sensitivity Specificity Accuracy
0.86 × 0.86 0.783 48% 57% 53.30%

1 × 1 0.791 54% 59% 56.70%
2 × 2 0.810 63% 78% 71.00%
3 × 3 0.834 75% 78% 76.90%
4 × 4 0.856 84% 86% 85.30%

Table 4.15: ROC analysis of MR Dataset 2 using S-CoHOG features extracted for
neighborhood radius of 8.

Image pixel Maximum Optimal Optimal Classification
Size (mm2) AUC Sensitivity Specificity Accuracy
0.86 × 0.86 0.834 55% 60% 57.70%

1 × 1 0.855 60% 61% 61.10%
2 × 2 0.850 66% 78% 72.70%
3 × 3 0.834 77% 82% 80.00%
4 × 4 0.867 92% 88% 90.40%

We observe from the results that downsampling increases the classification ac-

curacy along with sensitivity and specificity. Here we found the best classification

accuracy (90.40%), the maximum AUC (0.867) and with the best optimal sensitiv-

ity (92%) and specificity (88%) in downsampled images (image pixel size = 4×4

mm2) with a neighborhood size of 8.

4.4.3 ROC Analysis of MR Dataset 3

MR Dataset 3 is a T1-weighted dataset of the same subjects as MR dataset 2. Sim-

ilar experimental settings are used for this dataset as the other two. The observed

ROC analysis and classification results are shown in Table 4.16 (four neighbors)

and Table 4.17 (eight neighbors).

43



Table 4.16: ROC analysis of MR Dataset 3 using S-CoHOG features extracted for
neighborhood radius of 4.

Image Pixel Maximum Optimal Optimal Classification
Size (mm2) AUC Sensitivity Specificity Accuracy
0.5 × 0.5 0.641 40% 35% 37.50%

1 × 1 0.753 53% 45% 49.30%
2 × 2 0.811 63% 65% 64.50%
3 × 3 0.818 68% 75% 72.70%
4 × 4 0.869 81% 75% 78.10%

Table 4.17: ROC analysis of MR Dataset 3 using S-CoHOG features extracted for
neighborhood radius of 8.

Image Pixel Maximum Optimal Optimal Classification
Size (mm2) AUC Sensitivity Specificity Accuracy
0.5 × 0.5 0.659 31% 37% 34.20%

1 × 1 0.780 43% 39% 41.50%
2 × 2 0.821 75% 74% 74.20%
3 × 3 0.845 81% 83% 82.00%
4 × 4 0.895 94% 92% 93.50%

We also found the best results at a lower resolution for this dataset as well. In

this case, downsampled images (image pixel size = 4×4 mm2) have the best results.

We observed the best classification accuracy (93.50%), the maximum AUC (0.895)

and the best optimal sensitivity (94%) and specificity (92%) when the neighborhood

size is 8.

For all of the three MR datasets results, we apply the S-CoHOG method for

texture feature extraction. MR Dataset 1 and 2 are both T2-weighted but are

collected from different scanner parameters. MR dataset 3 is a T1-weighted dataset

which is different from the other datasets. We select the features with AUC ≥ 0.8

for all of the above results because we observe that the best classification results

are obtained using AUC≥ 0.8. Fig. 4.9 shows the classification accuracy for the

selected features using different AUC thresholds.

MR Dataset 1 and two neighborhood sizes are used in this experiment. For both

neighborhoods, we found the best classification results at AUC ≥ 0.8. Mean feature

values and standard deviations of mean feature values of ten selected features of
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Figure 4.9: Classification accuracy for selected features using different AUC thresh-
olds for MR dataset 1.

patients and controls using AUC≥0.8 for MR dataset 1 and MR dataset 2 are shown

in Fig. 4.10. There is a significant difference between the patients and the controls

in the mean feature values and also their standard deviations do not overlap.

Figure 4.10: Mean feature values with standard deviations of the mean feature
values between patients and controls of ten selected features for (a) MR Dataset 1
and (b) MR Dataset 2.
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We observe that images with lower resolution give better results in classification.

This is because the reduced resolution image contains more dense information than

the original image for a fixed neighborhood size. With a fixed neighborhood size,

CoHOG can cover more regions in feature extraction for downsampled image than

for the original image. Thus the extracted features have more distance information

for downsampled image than for the original image. For MR dataset 1, the best

results are obtained using downsampled images with a pixel size of 3×3 mm2 and of

4×4 mm2 give the best results for MR dataset 2 and 3. For all of the MR datasets,

the best results are observed using a neighborhood size of 8. Therefore, the rest

of the experimental analysis is focused on using only downsampled images with a

pixel size of 3×3 mm2 for MR dataset 1 and of 4×4 mm2 for MR dataset 2 and 3

with a neighborhood size of 8.

4.4.4 ROC Analysis using different Gradient Operators

Based on three different gradient operators, Sobel, Gaussian Derivative (GD) and

Local Frequency Descriptor Gradient (LFDG), our three proposed methods S-

CoHOG, GD-CoHOG and LFDG-CoHOG are used separately with the ROC curve

to analyze the classification accuracy of MR dataset 1 and 2. The results of classifi-

cation accuracy and optimal sensitivity and specificity for MR dataset 1 are shown

in Table 4.18.

Table 4.18: ROC analysis of MR Dataset 1 using three proposed methods. CoHOG
features extracted using a neighborhood radius of 8.

Proposed Maximum Optimal Optimal Classification
Methods AUC Sensitivity Specificity Accuracy

S-CoHOG 0.917 91% 95% 93.00%
GD-CoHOG 0.954 98% 96% 97.30%

LFDG-CoHOG 0.897 88% 98% 94.75%

All of the three proposed methods have a high classification accuracy with ex-

cellent optimal sensitivity and specificity. Among them, GD-CoHOG method has

the highest classification accuracy (97.30%) and the optimal sensitivity (98%) and
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specificity (96%). Also, GD-CoHOG has the highest maximum AUC (0.954) among

the all the operators.

Table 4.19: ROC analysis of MR Dataset 2 using three proposed methods. CoHOG
features extracted using a neighborhood radius of 8.

Proposed Maximum Optimal Optimal Classification
Methods AUC Sensitivity Specificity Accuracy

S-CoHOG 0.867 92% 88% 90.40%
GD-CoHOG 0.918 91% 93% 92.30%

LFDG-CoHOG 0.864 87% 95% 91.00%

For MR dataset 2, the results are shown in Table 4.19. In this case, GD-CoHOG

method has a better performance than the other two methods too. GD-CoHOG

acquires the highest classification accuracy of 92.30% along with the highest optimal

sensitivity of 91% and specificity of 93%.

4.4.5 Region Based Analysis

In this experiment, we perform region based analysis of the subjects of MR dataset

1. We subdivided the downsampled image with an image pixel size of 3×3 mm2

into 15 equal sized square sub-regions, each of which is of size 10 × 10 pixels. Now

for each sub-region, we apply our proposed S-CoHOG method with a neighborhood

size of 8. Selected features using ROC analysis are applied to the SVM classifier.

Based on the classification accuracy, we highlight seven regions that have the highest

classification accuracy.

Fig. 4.11 shows the highlighted regions of the MRI image that have the highest

classification accuracy. The classification accuracy of the corresponding colored

box is shown in Fig. 4.11 as well. From the figure, we can see that regions with

significant differences between patients and controls correspond to regions most

severely affected by ALS, namely the motor cortex and the corticospinal tracts.

The top left and right regions contains a little tissue in them. These small regions

do not have enough texture information to extract features and thus have the lower

classification accuracies.
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Figure 4.11: Region based analysis of the subjects of MR dataset 1. Significant
regions are marked by the colored boxes and classification accuracy of the corre-
sponding boxes.

4.4.6 Comparison with the GLCM Method

We compare the best results of our proposed methods with that of the well-known

GLCM method. GLCM has been used in medical image analysis in many appli-

cations [25], [26], [27]. We implemented the GLCM method (Gray Labels = 32,

Neighbor distance = 1, Neighbor direction = 00) in the same environment for MR

datasets 1 and 2. In total, 22 features are calculated using well-known feature

functions in GLCM (see Table 2.1). Among them only 3 features namely, Angular

second moment, Entropy and Sum entropy are selected using ROC feature selection

with an AUC threshold. The results are shown in Table 4.20 and Table 4.21 for

MR datasets 1 and 2, respectively.

Table 4.20: Comparison of ROC analysis between GD-CoHOG and GLCM methods
using MR dataset 1.

Methods Maximum Optimal Optimal Classification
AUC Sensitivity Specificity Accuracy

GD-CoHOG 0.954 98% 96% 97.30%
GLCM 0.601 4% 95% 58.60%

We found the best results in downsampled images with a pixel size of 3×3 mm2

and of 4×4 mm2 for MR dataset 1 and 2, respectively. The proposed GD-CoHOG

method outperforms the GLCM method for both the MR datasets. For MR dataset
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Table 4.21: Comparison of ROC analysis between GD-CoHOG and GLCM methods
using MR dataset 2.

Methods Maximum Optimal Optimal Classification
AUC Sensitivity Specificity Accuracy

GD-CoHOG 0.918 91% 93% 92.30%
GLCM 0.805 68% 76% 72.30%

1, we observe that GLCM has very poor performance. In particular, it has a high

specificity but a very low sensitivity. The overall classification accuracy is very

low compared to that of GD-CoHOG. Using MR dataset 2, GLCM has a better

performance than using MR dataset 1, but is still worse than that of GD-CoHOG.

MR dataset 1 was acquired using a high resolution 4.7 Tesla MRI system and MR

dataset 2 was acquired using a relatively low resolution 1.5 Tesla MRI system. So,

we can see from the comparison results that GLCM has a poor performance using

high resolution images than that of low resolution images. This is because of its

sensitivity to changes in the intensity levels that GLCM uses for features. Such

a finding is consistent with the observation that the proposed methods have very

similar performance using either MR datasets.

Moreover, we also compare the results of the proposed methods with 3D GLCM

that uses 3D texture analysis in ALS [30]. We compare the sensitivity and speci-

ficity in the CST using MR dataset 2. 3D GLCM achieves a sensitivity of 90%

and specificity of 95% whereas our proposed 2D GD-CoHOG method acquires a

sensitivity of 91% and specificity of 93%, which is comparable.

4.4.7 ROC Analysis using Randomly Selected Slices

In this section, we analyze the effect of selecting the wrong slice in the experiment to

calculate the classification accuracy. Manual selection may cause error by selecting

the wrong slice. In this experiment we randomly choose slices from each subjects

to see how it affects the results.

MR Dataset 1 is used in this experiment. We use five slices of each subject.
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These five slices include the manually selected slice along with two immediate slices

from both right and left side of the manually selected slice. Texture features are

calculated for one of the five slices of each subject. The experiment is done using

S-CoHOG with a neighborhood size of 8.

Figure 4.12: Classification accuracies for 10 random slice selection experiments and
the mean and the standard deviation of the classification accuracies.

The experiment is performed 10 times where every time we randomly choose

a slice for each subject. In each run, the classification accuracy is plotted in Fig.

4.12. The maximum and minimum classification accuracies are 96.40% and 81.00%,

respectively. The mean classification accuracy is 88.20% with a standard deviation

of 4.35. From the results, we observe that the classification accuracy decreases

when we use random slices instead of using the selected slices which is 93.00%.

This means that appropriate slice selection is important to get better results.

4.5 ROC Analysis of Multicenter Dataset

Multicenter structural MRI studies can have greater statistical power than single-

center studies due to their ability to recruit a greater number of subjects than a

single center can. However, across-center differences in contrast, spatial unifor-
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mity, etc., may lead to tissue classification or image registration differences that

could reduce or wholly offset the enhanced statistical power of multicenter data

[53]. Therefore, using multicenter data for classification is still a major challenge

due to the use of different scanning parameters as well as the inherent differences in

image characteristics arising from different machines used in different centers. Sev-

eral works have found differences in multicenter data. A multicenter Voxel-Based

Morphometry (VBM) study was done using multicenter data in [54]. The same sub-

jects were used in different scanners with the results showing differences in spatial

patterns of the results between different scanners. Another VBM based multicenter

MRI analysis is done to study reliability in multicenter data [53]. The study was to

detect group differences and to estimate heritability when MRI scans from different

scanners running different acquisition protocols in a multicenter setup. A study

on multicenter data included subjects from three different countries to study gray

matter changes with reading disability [55]. VBM analysis showed significant group

differences.

In this experiment, we use multicenter data for classification using our proposed

methods. We use data from five different centers. T1-weighted MRI scans of the

subjects of different centers are performed using different MRI acquisition param-

eters. One sample image of the patients and controls for each center are shown in

Fig. 4.13. The details of the parameters are shown in Table 4.22.

Table 4.22: MRI acquisition parameters for five different centers.

Centers TR TE Voxel Size Thickness Image Size Scanner
(mm2) (mm) (pixel2)

C1 7.4 3.1 1.0 × 1.0 1 256 × 256 GE Medical Systems
C2 7.4 3.1 1.0 × 1.0 1 256 × 256 GE Medical Systems
C3 7.6 2.9 1.0 × 1.0 1 256 × 256 GE Medical Systems
C4 2300 3.4 1.0 × 1.0 1 256 × 256 Siemens Medical Systems
C5 2300 3.4 1.0 × 1.0 1 256 × 256 Siemens Medical Systems

Data from centers C1, C2 and C3 are acquired using a 3 Tesla GE Medical

Systems scanner and data from centers C4 and C5 are acquired using a 3 Tesla

Siemens Medical Systems scanner. As data from these two groups are acquired
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Figure 4.13: Sample image slices of (a) controls and (b) patients of each center
from Multicenter dataset. Patients and controls are not distinguishable by visual
inspection.

using two different scanners, we combine the subjects of C1, C2 and C3 and formed

a multicenter (MC) dataset 1. Similarly, MC dataset 2 is formed using subjects

of centers C4 and C5. This datasets are formed to study the scanner specific

classification on multicenter data.

The details of the two MC datasets are shown in Table 4.23. MC dataset 1

contains 10 patients and 12 controls and MC dataset 2 contains 19 patients and 13

controls.

Table 4.23: Multicenter (MC) dataset details.

Datasets Patients Controls Centers
MC Dataset 1 10 12 C1, C2, C3
MC Dataset 2 19 13 C4, C5

MC Full Dataset 29 25 C1, C2, C3, C4, C5

The selected 2D MRI images of the subjects are downsampled with an image

pixel size of 3×3 mm2 for both the MC dataset 1 and MC dataset 2. We also

form another dataset containing all the subjects from all the centers called MC Full

dataset (see Table 4.23). This dataset contains 29 patients and 25 controls. we

downsampled all the images to 3×3 mm2 physical resolution.
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Table 4.24: ROC analysis of MC datasets using proposed methods with a neigh-
boring radius of 8 and GLCM.

Datasets Methods Maximum Optimal Optimal Classification
AUC Sensitivity Specificity Accuracy

MC
Dataset 1

S-CoHOG 0.950 81% 99% 91.00%
LFDG-CoHOG 0.929 87% 98% 93.30%

GD-CoHOG 0.912 75% 90% 83.70%
GLCM 0.758 70% 67% 68.80%

MC
Dataset 2

S-CoHOG 0.807 87% 87% 87.00%
LFDG-CoHOG 0.802 88% 72% 81.80%

GD-CoHOG 0.866 83% 84% 83.50%
GLCM 0.729 42% 75% 61.70%

MC Full
Dataset

S-CoHOG 0.846 86% 83% 85.10%
LFDG-CoHOG 0.821 81% 78% 80.10%

GD-CoHOG 0.817 80% 77% 78.60%
GLCM 0.715 52% 66% 59.30%

For all of the datasets, texture features are extracted using the proposed meth-

ods with a neighborhood size of 8. The classification accuracy along with the

sensitivity and specificity are shown in Table 4.24 for the three datasets. The re-

sults for MC dataset 1 is higher than that of the MC dataset 2. LFDG-CoHOG

achieves the best classification accuracy of 93.30% for MC dataset 1. The best

classification accuracy in MC Full dataset is achieved by S-CoHOG method. The

classification accuracy, sensitivity and specificity of these datasets are comparable

to that of using the datasets in section 4.2. Though these datasets have variations in

intensities and illuminations, the proposed methods can still differentiate between

the patients and controls.

We also compare our results with that of the GLCM method. For all the MC

datasets, the proposed methods have much better classification accuracies than that

of the GLCM as shown in Table 4.24.

4.5.1 Classification using Different Centers for Training and

Testing

In this experiment, the classification accuracy of the proposed S-CoHOG method

is analyzed using data from one center for training and data from the other center
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for testing. Texture features are extracted using a neighboring radius of 8. We

use centers C1 and C3 in one group and centers C4 and C5 in another group for

this experiment to perform a scanner specific, between-center classification. Center

C2 is not used in this experiment because it contains only two subjects. For a

particular group, both centers are used for training and testing separately. The

classification results are shown in Table 4.25.

Table 4.25: Classification accuracy using data from one center for training and the
other center for testing.

Proposed Train Test Classification
Method Center Center Accuracy

S-CoHOG

C1 C3 93.00%
C3 C1 90.00%
C4 C5 91.50%
C5 C4 80.00%

From the results, a maximum of 93.00% in classification accuracy is obtained

using C1 data as training and C3 data as testing. A similar classification accuracy

is also obtained using C3 data as training and C1 data as testing. Also the C4,

C5 data group has good classification accuracy, except when C5 data is used for

training. This is because the C5 center contains only few subjects for patients

compared to controls.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, based on the original CoHOG method, three novel gradient-based

methods are proposed. Gradient operators Sobel, GD and LFDG are used in the

proposed S-CoHOG, GD-CoHOG and LFDG-CoHOG methods, respectively. For

the first time, we apply the proposed methods to the whole image instead of to

sub-regions for feature calculation to reduce the sub-region issue problem in the

original CoHOG. The original CoHOG method uses a maximum neighborhood size

of 4. We also use a larger neighborhood size of 8 for co-occurrence calculation.

The extracted feature vector size is very large. Using this large number of similar

features creates ambiguity in creation of an optimal hyperplane and leads to an

erroneous classification by a classifier. For the first time, we apply the feature

selection method on the extracted CoHOG features to select significant features

using ROC analysis with a significance level of p ≤ 0.01 and an AUC threshold.

The selected features are used in a linear support vector machine (SVM) classifier

to determine the classification accuracy.

Three well-known texture datasets, INRIA Person, CUReT and the UIUC are

used to evaluate the classification accuracy of the proposed methods. The proposed

methods achieve the best classification results using a neighborhood size of 8 with
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feature selection. The proposed S-CoHOG and GD-CoHOG methods achieve a

maximum classification accuracy of 99.90% for the INRIA Person dataset. A max-

imum classification accuracy of 98.30% and 98.00% are achieved by GD-CoHOG

method for the CUReT and the UIUC datasets. The classification results of the

proposed methods are compared with that of the original CoHOG method. The

classification results show that the proposed methods achieve the best classification

results on all the datasets that outperform that of the original CoHOG method.

Three different datasets of 2D MRI are used for classification. Each dataset

has a different image resolution and contrast. MRI imaging of ALS patients and

controls are classified using the proposed methods. To the best of our knowledge,

we are the first to use the CoHOG-like methods to study cerebral degeneration

in ALS. A multicenter ALS dataset with images having the same resolution but

different contrasts is also used to demonstrate the classification performance of the

proposed methods. The experimental results demonstrate that our methods have

promising classification abilities with high sensitivity and specificity. In particular,

the GD-CoHOG method achieves the maximum classification accuracy of 97.30%

for MR dataset 1. For these datasets, we compare the results of the proposed

methods with that of the GLCM method. The classification results show that the

proposed methods outperform that of the GLCM method. Also the sensitivity and

specificity of the proposed methods have higher than that of the GLCM method.

Region based analysis is also performed and the result shows that areas most re-

sponsible for significant differences between the patients and controls are congruent

with the spatial distribution of the pathology of ALS. For the multicenter dataset,

classification is done using data from one center for training and that from the

other center for testing. This experiment is done to address the issue when there is

a lack of subjects in a center and whether data from another center can be used for

training. The classification accuracy is promising for such a multicenter setting.

In summary the proposed CoHOG based methods show excellent classification

accuracy in different texture datasets. As well, the proposed methods show excel-
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lent classification accuracy in ALS datasets of different contrasts (T1 and T2) and

data collected from different MRI machines. Thus, the proposed methods using

texture show promise as a potential method to identify ALS. Future research using

the proposed methods in a multicenter setting is much warranted in addition to

determining the ability of the method to monitor disease progression.

5.2 Contributions

The main contributions of this thesis include:

1. The proposed three methods use the whole image instead of subdividing it

into sub-regions. The use of sub-regions limits the accuracy of co-occurrence

matrix for boundary pixels and thus some information is incomplete for each

sub-region. Also it increases the size of the feature vector. Thus, using the

whole image not only reduces the boundary pixels problem in sub-regions but

also reduces the size of feature vector.

2. For the first time, we adopt two gradient operators GD and LFDG for the

proposed GD-CoHOG and LFDG-CoHOG methods, respectively. The pro-

posed methods are compared to see the impact of the gradient operators on

classification accuracy using the whole image.

3. Texture features are extracted using two different neighborhood sizes. The

original CoHOG method uses a maximum neighborhood size of 4. We use a

larger neighborhood size of 8 to see the effect of using more spatial information

for co-occurrence calculation on classification accuracy. Indeed, the experi-

mental results confirm our expectation that a better classification accuracy is

achieved using a neighborhood size of 8.

4. The extracted feature vector size using the CoHOG method is large with

many similar features. Changes that occur in a small portion of the images
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between two classes produce a large number of similar features. Using this

large number of similar features not only creates ambiguity in creation of

an optimal hyperplane but also leads to the wrong classification for a classi-

fier. We are the first to use a feature selection method to extract significant

CoHOG texture features using area under the ROC curve (AUC) analysis

for classification. Only features that contain significant differences between

classes are selected using an AUC threshold. Experimental results show that

classification using feature selection has a better accuracy than that without

using the feature selection.

5. Three different datasets of 2D Magnetic Resonance Images (MRI) are used

for the first time in CoHOG-like methods for classification. Each dataset has

different image resolutions and contrasts. MRI imaging data of Amyotrophic

Lateral Sclerosis (ALS) patients and controls is used for classification. The ex-

perimental results show excellent classification accuracy with high sensitivity

and high specificity using the proposed methods.

Another multicenter ALS dataset of different image contrast is also used in

this experiment to demonstrate the classification performance of the pro-

posed methods. We found comparable classification accuracy for this dataset,

though multicenter data classification is a challenging task due to its variation

in imaging parameters and qualities.

5.3 Future Work

The work in this thesis encourages future research in the following directions:

1. The proposed CoHOG based methods are applied to other areas of image

classification and to study cerebral degeneration in ALS more extensively.

Other areas that are applicable include document processing, remote sensing,

automated inspection, fingerprint recognition, etc.
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2. The proposed 2D CoHOG based methods can be extended to 3D methods to

extract features from a 3D image. The 3D methods can be used to extract

features from 3D MRI scans of the brain. For a 3D method we have to use

a spherical neighborhood rather than a circular neighborhood that we have

used for the proposed 2D CoHOG method. Also 3D gradient operators are

needed for the calculation of gradient orientations of the 3D image.

The above are some of the many interesting problems in which the proposed

methods may be useful.
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