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Abstract

As more and more data is collected, individuals and organizations are begin-

ning to share their collected data to gain valuable insights. In doing so, these

data stakeholders must be aware of the kind of impact that releasing data

will have. Therefore, the misuseability scores M -Score and L-Severity have

been developed to provide a measure of the potential damage to individu-

als and organizations when sensitive information from a dataset is released.

This thesis introduces tkl -Score and its derivative tkl -Scoremax which augments

M -Score and L-Severity measures by increasing record scores when records are

more identifiable in a source table with l -Distinguishing Factor, and also in-

creasing record scores when sensitive attributes are less granular in a source

table with l -Distinguishing Factor and t-Distinguishing Factor. In contrast,

M -Score and L-Severity account for only record identifiability in a source table

with k -Distinguishing Factor. tkl -Score and tkl -Scoremax are shown to better

characterize the risk of releasing records compared to M -Score and L-Severity

due to accounting for sensitive attribute granularity.
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Chapter 1

Introduction

As data-collection software using systems such as the internet of things (IoT)

becomes more ubiquitous, the privacy and sensitivity of collected data is be-

coming an increasing concern to data stakeholders. Gartner [13] estimates that

in 2021 at least 25 billion IoT devices will be deployed. This ever-increasing

amount of devices leads to a plethora of data being collected — possibly un-

derutilized due to factors such as the implications of policies governing data

collection and management.

Thus, organizations who wish to share data with different organizations to

gain more valuable insights need to be more aware of the consequences that can

affect the different stakeholders of the data being shared. Unnecessary disclo-

sures of sensitive information by organizations can lead to severe consequences

for subjects of the data and the organizations themselves. For example, the

personal information of over 50 million Facebook users were unintentionally

exposed to Cambridge Analytica and used for political gain leading to backlash

against Facebook [15].

Within the healthcare space, interconnected data systems allow for better

level of service and treatment as providers can collaborate over decisions and

gain additional insight over richer data. For example, a radiologist may come

to a series of conclusions on hip dysplasia based on MRI imaging and would

like to tell other clinicians about treatment outcomes and effectiveness of treat-

ment. At the same time, in order to have a full report that includes all factors,

specific patient attributes may be shared such as gender, birthdate, specific
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medical conditions, and historical treatment history. In order to enable these

collaborations, strict protocols must be followed to ensure that patient rights

and privacy are respected.

Most organizations are wary of distributing data that may infringe on the

rights of the subjects that they have collected data from. As a result, organi-

zations such as Microsoft are developing teams to help manage the rights of

their users [11]. Furthermore, policies and procedures are also developed and

enforced to deal with the potential harm of releasing private or sensitive data.

For example, the Government of Canada has created checklists to ensure

data integrity and security for government teams to become more open about

the software they develop and data they collect. These checklists, currently

known as the “Digital Playbook”1, strive to create a transparent, digital gov-

ernment.

Moreover, organizations are also developing policies to classify and han-

dle their information. For example, the North Atlantic Treaty Organization

(NATO) has developed a classification standard2 for sharing sensitive infor-

mation (from most secret to least): cosmic top secret, NATO secret, NATO

confidential, NATO restricted.

For many organizations, classification and approval are manual — a dele-

gated team or person must approve the data request before any data is released

or accessed. Consequently, there is a need to design systems that can differ-

entiate the sensitivity of data to improve the data sharing process.

Therefore, the question this thesis wishes to address is: How can we quantify
the sensitivity of data to guide decision making about sharing data?

In this thesis, a scoring function, known as a misuseability score, is designed

to provide a measure of the potential damage to an organization when sensitive

information from a dataset is released. The misuseability score takes into

account: the sensitivity of values, the identifying information that may be

inferred through the release of the data set, and the amount of data. Thus,

1https://canada-ca.github.io/digital-playbook-guide-numerique/
2https://www.act.nato.int/images/stories/structure/reserve/hqrescomp/

nato-security-brief.pdf
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the focus of this thesis is threefold:

1. We determine the potential needs of data sharing with regards to privacy

and sensitivity in an ecosystem of organizations and people wishing to

share their data.

2. This thesis augments the current state-of-the-art misuseability scoring

measures by including more factors that can identify an individual, as

well as a more stringent process for deriving the sensitivity of data val-

ues for score calculation. This new score, tkl -Score, can help determine

whether or not data may be too sensitive for being released to certain

parties by providing a relative measure of misuseability. A derivative

of tkl -Score, tkl -Scoremax, is also designed to account for the worst case

severity of releasing any one maximum record score from a set of pub-

lished records.

3. We establish the validity and usability of tkl -Score and tkl -Scoremax by

comparing it against M -Score and L-Severity.

The rest of this thesis is organized as follows:

• In Chapter 2, the concept of a “data ecosystem” is introduced to illus-

trate how it can fit into the privacy/sensitivity aware paradigm for data

access and sharing.

• In Chapter 3, an illustrative example is introduced to demonstrate cur-

rent anonymity measures in privacy-preserving data publishing (PPDP),

and also state-of-the-art misuseability scoring.

• In Chapter 4, a new misuseability score, tkl -Score, is introduced using

the illustrative example from Chapter 3. Also defined is a derivative of

tkl -Score, tkl -Scoremax.

• In Chapter 5, tkl -Score and tkl -Scoremax is compared against M -Score

and L-Severity using cases created from the illustrative example dataset

introduced in Chapter 3.

3



• In Chapter 6, we reflect on the contributions and provide different av-

enues for using tkl -Score.

4



Chapter 2

Background

In order to understand the broad context of data sensitivity, it is useful to

consider the whole “data ecosystem” which includes the relevant actors (i.e.,

all stakeholders with an interest in the data in question), their roles (i.e.,

their purpose and duties), and the actual resources (i.e., the data itself). Also

included are the relationships among actors, roles, and resources defined by

how data is collected, used, and shared [28]. As well, the data ecosystem

consists of data misuse quantification methodologies to deal with data sharing

concerns.

2.1 Actors’ Perceptions of Data Sensitivity

Actors, consisting of enterprises, institutions, and individuals, can have varying

attitudes and beliefs towards data sharing. Enterprises are organizations such

as service providers who provide the necessary infrastructure for collecting and

sharing data. Institutions can be organizations that act as data intermediaries

or data owners, while individuals can be data owners or data subjects.

Numerous studies have been conducted to understand organizational and

individual attitudes and beliefs towards privacy.

Nget et al. [26] perform an online survey as part of personal data market

platform and conclude that people are more willing to sell their data when

privacy protections are in place and they know how the data will be used and

how sensitive it is.

An empirical study performed by Hadar et al. [16] on software developers’
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mindsets towards privacy by design finds that developers often have a limited

understanding of privacy and believe it is a low priority. These attitudes may

be due partly to the fact that organizations do not consider privacy as a top

priority. This study suggests that a mindset of privacy has to be perpetuated

across all aspects of software development from developers to management

in order to design privacy preserving software systems that can protect data

privacy.

Another study of software developers on designing privacy minded software

systems by Senarath and Arachchilage [36] also comes to a similar conclusion

that better guidelines and education on what privacy encompasses is needed.

In an online survey conducted by Bilogrevic and Ortlieb [3], it was found

that users’ comfort with sharing data was influenced by three contextual fac-

tors such as the type of service the data was being shared with, the type of

data being shared, and the pre-existing relationships a user has with the third

party that the service may be sharing to. Bilogrevic and Ortlieb conclude that

to increase user acceptance of data sharing, there needs to be clear communi-

cation and transparency of how data is used, more concrete value propositions

about the data collected need to be provided, and more controls over data

sharing with third parties need to be implemented.

Moreover, a study commissioned by a telecommunications company, Or-

ange, finds that customers recognize that there is value to their data. Because

of this recognition, organizations should make clear how customer data is used,

allow customers to control what data can be used, and educate the benefits of

using the data [22], [23].

From these studies, it is a common theme that education and awareness is

a big factor towards user willingness for sharing data. As such, a misuseability

score to quantify the severity of potential damage when data is released can

help users become more aware of the privacy implications.

6



2.2 Regulatory Frameworks Around Roles

Roles are defined as “a function played by an actor in a data ecosystem” [28].

For example, an enterprise actor such as Amazon Web Services1 has a role

that provides infrastructure resources for hosting and collecting data. While

software developers, who are also enterprise actors, would have roles to create

and maintain data collection software that is hosted on an infrastructure.

These enterprise actors work with institution actors who have the role of

using the software and infrastructure to collect and share data. Individual

actors are also involved by having roles such as being the subjects of data,

and having rights to the data that is collected about them.

There are many factors that can govern a role. For example, in the case

of commodifying data, there has been legal discussions for the implications of

sharing and selling personal information based on laws. Bankruptcy and debt

can lead to the leak of information as companies are obligated to sell off their

assets such as customer information to recuperate and pay off their debts and

there are no strict governmental regulations for the distribution of customer

data in bankruptcy and debt law [8].

Moreover, Crain [6] argues that more regulation is needed against the com-

modification of data in order to preserve privacy. Bishop [4] also supports this

idea by suggesting that more regulatory action is needed to address the privacy

of IoT data collection.

Laws such as the European Union’s General Data Protection Regulation

(GDPR)2 are good first steps in protecting consumer privacy as it regulates

how data is to be maintained and collected for all citizens of the European

Union and is generalized to encompass all data.

In contrast, laxer regulations in the United States have led to unintended

data exposure. For example, despite the Health Insurance Portability and

Accountability Act (HIPAA) that governs the protection of health informa-

1https://aws.amazon.com/
2https://ec.europa.eu/commission/priorities/justice-and-fundamental-

rights/data-protection/2018-reform-eu-data-protection-rules/eu-data-

protection-rules_en
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tion, Google was still able to obtain the medical data of 50 million Americans

without asking their permission while allegedly conforming with HIPAA [31].

Therefore, the varying laws surrounding data management influence what ac-

tors can and cannot do with data.

Consequently, technologies to share data must be developed to help respect

these laws, and help actors uphold their roles that are governed by regulations.

2.3 Technologies for Collecting Resources

Resources are defined as datasets, data-based software, and infrastructure [28].

Data infrastructures work in tandem with data collection systems (often data-

based software) to collect and create datasets for distribution. Government

and scientific organizations have invested heavily in infrastructure development

for open data. CKAN is widely used by governments such as the Canadian

Government3, US government4, the UK government5, and Australian govern-

ment6 for sharing open data. Similarly, Dataverse7 is widely used by academic

institutions such as Harvard and the University of Alberta to share research

data. There are also many other popular platforms to disseminate academic

research and results such as SciCrunch8, Dryad9, and Figshare10. These plat-

forms share a common goal of streamlining collection of data, increasing dis-

coverability of data, and encouraging the reproducibility of data.

Government and public institutions, in order to enhance their transparency

and improve society, have been adopting open data plans and policies to release

data that can be freely used and repurposed. Moreover, for-profit companies

would also like to release their consumer data to third parties such as marketers

in order to enhance their earnings. These two purposes have allowed for third

parties to provide services based on integrating third-party data while also

3https://open.canada.ca/en
4http://Data.gov
5http://data.gov.uk
6http://data.gov.au
7https://dataverse.org/
8https://scicrunch.org/
9https://datadryad.org/

10https://figshare.com/
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raising privacy concerns about what data is exposed.

Cities and companies are looking to adopt digital strategies that consider

the acquisition of IoT data in order to deliver better services to their inhab-

itants and clients.11 Hence, data owners can capitalize on the data produced

by their IoT devices by sharing the data collected in a data marketplace that

controls payments and the exchange of data between parties. This has mo-

tivated the creation of industry approaches, such as the IOTA marketplace12

and Streamr13. In these services, data is collected and delivered to consumers

for a fee over a central exchange. However, these data marketplaces lack a uni-

form security layer that limits the exposure of their information and minimizes

the leakage of sensitive data.

For many organizations, it becomes onerous to orchestrate different access

control policies, based on the level of trust with users they are sharing with, to

maintain the privacy of restricted information. Many datasets contain propri-

etary and personal information, which fundamentally limits the capability of

businesses to publicly distribute data due to the risk of releasing sensitive in-

formation to the public, losing consumer trust in the process [9]. Furthermore,

the datasets they collect have a variety of structural schemas, syntactic for-

mats, and semantic meanings leading to difficulty when integrating data [28].

Hence, a misuseability score can help by quantifying the sensitivity of in-

formation in a dataset and help support decisions for accessing sensitive infor-

mation.

2.4 Data Usage Relationships

Relationships are formed between actors in the data ecosystem based on a

common interest or related to an actor’s role in the data ecosystem [28]. These

relationships help facilitate the sharing of resources. For example, a company

may for a relationship with another company to sell data that they have col-

11https://www.networkworld.com/article/3257664/internet-of-things/iot-

sensor-as-a-service-run-by-blockchain-is-coming.html
12https://data.iota.org/
13https://streamr.network/
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lected. It is important to understand how these relationships are formed, and

what may be the trade-offs in a relationship.

Acquisti et al. [1] reviews the state of decision-making in privacy and secu-

rity in the context of “nudges” from a multidisciplinary perspective. Nudges

are the aspects that can influence a person’s decision to form relationships

with different actors in the data ecosystem. From a privacy and security per-

spective, understanding nudges are important as improper relationships can

be formed because of improper nudges that can misinform or mislead an actor

to believe that having their security and privacy being exposed is a fair trade-

off. For instance, consider a user who exposes their birthday publicly online

so that they can receive birthday wishes. While a benefit may be receiving

attention, there are also potential risks such as a malicious actor using this

information to gain access to other personal accounts that require a birthdate

to confirm an identity.

The influence of forming relationships is a complex issue that is multidisci-

plinary in nature. Economically, there is a trade-off between costs and utility

that influences a decision. Legally, certain laws or regulations can also in-

fluence how relationships are formed. From a behavioral perspective, certain

nudges can influence a decision. These nudges can be supported through tech-

nical means such as algorithms, heuristics, and persuasive technologies. All

these influences can be important factors for actors to make decisions when

forming relationships.

Therefore, a misuseability score for quantifying the sensitivity of data can

help nudge actors who form relationships by providing them a basis for their

decisions.

2.5 Quantifying and Mitigating Data Misuse

Scoring data concerns occurs in many different areas of software systems. A

brief overview of some scoring systems that can be related to the misuse of

data is introduced in this section to illustrate the need for a misuseability score

to help make decisions for sharing data.
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Data Loss Prevention Scoring

Data loss prevention (DLP) systems monitor network traffic and databases

to see how data is accessed and provide a score for administrators to assess

the criticality of incidents. DLP systems help identify users that are risky

by classifying the behavior of users with a risk score and helps control and

manage the flow of information within an organization. They are designed to

detect and prevent sensitive and private information from leaking.

Companies such as Digital Guardian14, ForcePoint15, Microsoft16, Se-

cureTrust17, and Symantec18 have developed DLP solutions that can produce

a risk score based on the activity performed by users on a network or sys-

tem. For example, when a sensitive file is attempted to be transmitted outside

the organization via methods such as email or file upload, the action can be

blocked and logged. When a user attempts repeated actions to move sensitive

files outside of the organization, a high risk score is assigned to the user. To

recognize the sensitive files, the DLP system has policies created by a system

administrator to help identify and classify sensitive and private information

within files. DLP systems are useful to manage the internal access of sensi-

tive information, but they do not manage how data should be systematically

shared external to an organization. Most systems to date consider only scoring

after data is accessed or leaked — they do not score based on the potential of

leakage and misuseability when giving access – which highlights the need for

a misuseability score.

Risk Adaptive Access Control

Scoring mechanisms are a key component in risk adaptive access control mod-

els. Users requesting access to certain information are evaluated by a cost

function. If they lie under a given threshold, they are granted access. This

14https://digitalguardian.com/
15https://www.forcepoint.com/product/dlp-data-loss-prevention
16https://docs.microsoft.com/en-us/microsoft-365/compliance/data-loss-

prevention-policies
17https://securetrust.com/solutions/compliance-technologies/data-loss-

prevention/
18https://www.symantec.com/products/data-loss-prevention
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differs from traditional access control models that have predefined policies

set for granting access and can be more permissive. Chen and Crampton [5]

propose cost functions for risk that deal with: user trustworthiness, the de-

gree of competence of a user with respect to a particular user-role assignment,

and the degree of appropriateness of a permission-role assignment for a given

role. Bijon et al. [2] propose a risk based access control framework that in-

corporates quantified risk for granting access involving thresholds that can be

calculated by factors such as attributes, purpose, and situational factors. Most

risk adaptive access control systems grant access to resources using decisions

made automatically in real-time. This can lead to access that is too permis-

sive allowing users to use resources that were never intended to be accessed.

Nevertheless, the use of a cost function in access control models draws similar

parallels to misuseability scoring for deciding on how data should be shared.

These parallels can be seen in Harel et al.’s [17] proposed access control model

mechanism using the misuseability score, M -Score, to regulate user access to

sensitive data in relational databases.

Vulnerability Scoring

The Common Vulnerability Scoring System (CVSS) helps to characterize a

software vulnerability and create a numerical score to quantify its severity.19

CVSS relies on a base metric group that determines how a vulnerability can be

exploited and the impacts of the vulnerability [10]. Moreover, this base met-

ric can also be impacted by temporal, and environmental metrics. Temporal

metrics consider how a vulnerability may change over time (e.g. if a security

patch is released, score is reduced), whereas environmental metrics consider

where the vulnerability is located (e.g. the vulnerability requires root access

before executing and therefore risk is reduced). The CVSS can be translated

to a qualitative scale (none, low, medium, high, critical) in order to better un-

derstand the severity of a vulnerability. This also helps organizations to make

decisions on how to prioritize and fix vulnerabilities. The use of CVSS to

quantify the severity of software vulnerabilities draws similar parallels to mis-

19https://www.first.org/cvss/
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useability scoring and highlights the need for a misuseability score to quantify

the severity of data being shared.

2.6 Summary

In this chapter, we establish the need for a misuseability score to help share

data within a “data ecosystem”, and also present a brief overview of scoring

methodologies related with data sharing concerns. In the next chapter, we

explore anonymity measures and their incorporation into misuseability scores.
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Chapter 3

Analyzing Data Sensitivity

The value and protection of data has been the subject of interdisciplinary

research and several solutions have been proposed to manage data privacy and

security. Specifically in the computing sciences, substantial research efforts

are dedicated to the anonymization of data to prevent the leakage of private

or sensitive information when data is released, in what is known as privacy-

preserving data publishing (PPDP).

This chapter reviews the PPDP concepts of k -anonymity which provides

a measure of re-identifiability, and l -diversity, and t-closeness which provide

a measure attribute similarity. Also reviewed are the current state-of-the-art

misuseability scores M -Score, and L-Severity, both of which use a modified

notion of k -anonymity to estimate the potential of misuse when portions of a

dataset are released.

3.1 General Definitions and Illustrative

Example

To illustrate data sensitivity concepts Table 3.1, an example dataset, is intro-

duced below. This table is similar to the example used by Vavilis et al. [39] to

demonstrate how M -Score and L-Severity is calculated for an electronic health

records database. To create more robust scenarios, additional columns “Age”

and “Initial Diagnosis” are added to the table demonstrate how continuous

values and repeated attributes are handled, and the values in the table are

changed.
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Table 3.1: An illustrative example source table created to model a table of
a patient health record database.

id Job City Gender Disease Medication Age Initial Diagnosis
0 Lawyer Calgary Male H1N1 Tamiflu 27 Flu
1 Lawyer Calgary Female H1N1 Antibiotics 19 Flu
2 Lawyer Calgary Female Flu Antibiotics 23 Migraine
3 Lawyer Edmonton Male HIV ARV 49 HIV
4 Lawyer Edmonton Male Hypertension Statin 70 Hypertension
5 Lawyer Edmonton Female Flu Paracetamol 29 Migraine
6 Lawyer Edmonton Female Flu Paracetamol 29 Migraine

Table 3.1 represents the medical data of an EHR (electronic health records)

system where each row in the table represents a patient record. In this table,

there are no “identifier” attributes, i.e., attributes which can directly link the

record of a patient to their real-world identity, such as their full name for

example.

The attributes of a table can be defined as one of the following:

Definition 1 (Identifier Attribute). An identifier attribute is information

which can directly link an individual to their identity (e.g. full name).

Definition 2 (Quasi-identifier Attribute). A quasi-identifier attribute is in-

formation that is not a unique identifier, but when combined with other infor-

mation partially reveals an individual’s identity. For example when “city of

residence”, and “gender” attributes are common among two different datasets,

the datasets can be merged on these quasi-identifier attributes to reveal iden-

tifying information such as an individual’s name present only in one of the

datasets.

Definition 3 (Sensitive Attribute). A sensitive attribute is information that

should not be exposed publicly (e.g. health condition). The release of the

information has the potential to harm an individual such as damaging their

reputation.

Definition 4 (Insensitive Attribute). An insensitive attribute is information

that is considered insignificant and can be ignored (e.g. number used to signify

row number of database).
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In addition, the two types of tables to analyze data sensitivity can be

defined as follows:

Definition 5 (Source Table). A source table, also referred to as a dataset, is

a collection of records with one or more kinds of attributes (identifier, quasi-

identifier, sensitive, or insensitive).

Definition 6 (Published Table). A published table is a subset of a source

table.

3.1.1 Scenarios

Consider the following scenarios, where there are many stakeholders, such

as doctors and clinical researchers, who wish to access Table 3.1 but require

different amounts and parts of the data.

1. Scenario 1: Before data is released to an outside provider, a doctor

would like to know how misuseable the data may be. They wish to share

the results of their diagnoses for patients in records 3, 4, 5, and 6 in

Table 3.1 to discuss patient treatment strategies with another doctor

practicing in a different clinic.

2. Scenario 2: A researcher wishes to access all records of the health

records system in order to better understand the epidemiology of diseases

in various regions. Before the data is released, the data controllers of

Table 3.1 would like to know the misuseability potential if all rows of the

table were to be released.

In both scenarios, the stakeholders must consider how the data can be

misused as a factor to decide whether the data should be shared. Scenario 1 is

intended to demonstrate how some records can be more sensitive than others

based on their attributes when only releasing a subset of the data. Scenario

2 is intended to illustrate that the sensitivity of the scores is also associated

with the amount of data released in misuseability scores.
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3.2 Privacy-Preserving Data Publishing

Fung et al. [12] define privacy-preserving data publishing (PPDP) as “methods

and tools for publishing useful information while preserving data privacy”.

Two of the most common attacks against privacy by an adversary are identity

disclosure, and attribute disclosure.

1. Identity disclosure occurs when an individual can be identified from

a group of records based on a set of attributes. For example, if we

group together Table 3.1 using the quasi-identifier attributes Job, City,

and Gender as seen in Table 3.2, the identity of record 0 can be easily

identified in the dataset since it is the only record in the quasi-identifier

grouping. Thus, we can identify that a 27-year-old male lawyer living in

Calgary has H1N1 and is taking Tamiflu. When record 0 is linked with

another external dataset, the identity of the individual could be further

revealed if identifying attributes such as name are in the external dataset.

2. Attribute disclosure occurs when an individual’s sensitive attributes

become known because they are shared among the released table records

even though they cannot be specifically identified in a group of records.

For instance, in records 5 and 6 of Table 3.1 all attributes are the same.

As a result, an adversary can know for certain that all female lawyers

in Edmonton were initially diagnosed as having a migraine but were

later found to have the flu and were treated with paracetamol. This

example makes it clear that, although an individual’s identity may not

be distinguished between two people, there is no guarantee that other

information will not be inferred.

To estimate the risk of identity disclosure on a dataset, k -anonymity is

commonly used to determine how “unique” individual records are in a table.

To estimate the risk of attribute disclosure attacks, l -diversity and t-closeness

are commonly used as measures of how “identifying” sensitive attributes are

in a table.
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3.2.1 k-anonymity

k -anonymity is a metric of how distinguishable an individual record is in a

dataset, based on common quasi-identifier attribute groupings. These group-

ings can be defined as an equivalence class:

Definition 7 (Equivalence Class). An equivalence class is a set of records that

have the same values for quasi-identifiers attributes [21].

If an equivalence class is small, it can easily be combined with a different

dataset containing the same quasi-identifiers to uniquely identify an individual.

Therefore, the k -anonymity measure is developed to quantify the maximal risk

of linking outside records to identify an individual, and is defined as follows:

Definition 8 (k -anonymity). A dataset is k -anonymous if every equivalence

class in the dataset has at least k records that are indistinguishable. In other

words, the information for each record of a table cannot be distinguished from

at least k − 1 other records [37].

We can see how k -anonymity works in Table 3.2, where equivalence classes

are formed based on the quasi-identifier attributes: Job, City, and Gender.

The table is 1-anonymous, as the record 0 has an equivalence class of size one.

However, if record 0 is removed, then the table becomes 2-anonymous as an

individual must be discerned from at least an equivalence class of size two.

With a table having k = 1, an identity can be positively identified as there

contains at least one equivalence class of size one that has quasi-identifiers

that can be linked to a specific identity. However, If k > 1, then it becomes

more difficult to distinguish a single identity as there are more possibilities of

how the quasi-identifiers in an equivalence class can be linked to an identity.

It should be noted that k -anonymity does not consider attribute disclosure

attacks. Although an individual’s identity may not be distinguished from an

equivalence class, k -anonymity cannot guarantee that other sensitive informa-

tion will not be inferred as evidenced by the similar sensitive attribute values

of records 5 and 6 in Table 3.2. To account for this shortcoming, the measures

l -diversity and t-closeness were developed.
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Table 3.2: Equivalence classes of Table 3.1 grouped based on rows with the
common values of the quasi-identifier attributes Job, City, and Gender

id Job City Gender Disease Medication Age Initial Diagnosis
0 Lawyer Calgary Male H1N1 Tamiflu 27 Flu
1 Lawyer Calgary Female H1N1 Antibiotics 19 Flu
2 Lawyer Calgary Female Flu Antibiotics 23 Migraine
3 Lawyer Edmonton Male HIV ARV 49 HIV
4 Lawyer Edmonton Male Hypertension Statin 70 Hypertension
5 Lawyer Edmonton Female Flu Paracetamol 29 Migraine
6 Lawyer Edmonton Female Flu Paracetamol 29 Migraine

3.2.2 l-diversity

l -diversity is a measure focused on how “well-represented” sensitive attributes

are in a dataset, and can be used in conjunction with k -anonymity to account

for both identity and attribute disclosure.

Definition 9 (l -diversity). A table is l -diverse if every equivalence class in

the table contains at least l distinct values for a sensitive attribute. [24].

The definition of “well-represented” could have many different interpreta-

tions including distinctness of sensitive attribute values, entropy of equivalence

classes, and frequency of appearance of sensitive attribute values. This thesis

considers “well-represented” to be how distinct sensitive attribute values are.

For a basic example of l -diversity, consider the equivalence classes in Ta-

ble 3.3. The l -diversity of the equivalence class containing the records with

id 1 and 2 would be 2-diverse since there are two unique sensitive attribute

values: “H1N1”, and “Flu”. The equivalence class containing the records with

id 3 and 4 would also be 2-diverse, while the remaining two equivalence classes

would be 1-diverse as they only contain one unique sensitive attribute value.

We can then say that Table 3.3 is 1-diverse as that is the smallest l -diversity

among all equivalence classes.
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Table 3.3: Subset of Table 3.2 and with Disease as the only sensitive at-
tribute.

id Job City Gender Disease
0 Lawyer Calgary Male H1N1
1 Lawyer Calgary Female H1N1
2 Lawyer Calgary Female Flu
3 Lawyer Edmonton Male HIV
4 Lawyer Edmonton Male Hypertension
5 Lawyer Edmonton Female Flu
6 Lawyer Edmonton Female Flu

It is important to note that the above example only considers a single

sensitive attribute of an equivalence class. To account for multiple sensitive

attributes in a table, Machanavajjhala et al. [24] introduce the notion of multi-

attribute l -diversity for the case when multiple sensitive attributes are present

in a table:

Definition 10 (Multi-attribute l -diversity). Let T be a table with nonsen-

sitive attributes Q1, ..., Qm1 and sensitive attributes S1, ..., Sm2 . If for all it-

erations i = 1...m2, the table T is l -diverse when Si is treated as the sole

sensitive attribute and {Q1, ..., Qm1 , S1, ..., Si−1, Si+1, ..., Sm2} is treated as the

“quasi-identifiers” [24].

To illustrate multi-attribute l -diversity, a smaller Table 3.4 of records 1

and 2 from Table 3.1 is used. In Table 3.4, we consider Job, City, and Gender

to be the quasi-identifier attributes, while Disease and Medication are the

sensitive attributes. For multi-attribute l -diversity we will have to consider

two different groupings to form “equivalence classes”: (Job, City, Gender,

Disease) with Medication as the sensitive attribute, and (Job, City, Gender,

Medication) with Disease as the sensitive attribute. The (Job, City, Gender,

Disease) grouping is considered 1-diverse as the rows are separate groups, while

the (Job, City, Gender, Medication) is considered 2-diverse as the Disease

attribute contains the unique values “H1N1” and “Flu”. Therefore, only 1-

diversity holds for Table 3.4.

A limitation of the l -diversity metric is that it only accounts for the fre-

quency of attribute values within an equivalence class and not throughout the
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Table 3.4: Subset of illustrative example Table 3.1 to illustrate multi-
attribute l -diversity using the quasi-identifiers Job, City, Gender, and the
sensitive attributes Disease, and Medication.

id Job City Gender Disease Medication
1 Lawyer Calgary Female H1N1 Antibiotics
2 Lawyer Calgary Female Flu Antibiotics

complete table. This shortcoming motivated the development of t-closeness,

which is a measure designed to account for the distribution of values within

equivalence classes and the whole table.

3.2.3 t-closeness

t-closeness measures the frequency of attributes within equivalence classes and

throughout the whole table by comparing their distributions for similarity

using the distance between them.

Definition 11 (t-closeness). An equivalence class is said to have t-closeness

if the distance between the distribution of sensitive attribute values in this

equivalence class and the distribution of the sensitive attribute values in the

whole table is no more than a threshold t. A table is said to have t-closeness

if all equivalence classes have t-closeness [21].

To compare the distance between distributions, a number of methods can

be used such as variational distance, Kullback-Leibler distance [20], and Earth

mover’s distance (Wasserstein metric) [14]. Li et al. [21] suggest using earth

mover’s distance for distributions of continuous attributes, and variational

distance for distributions of discrete attributes.

Earth mover’s distance provides a calculation of the distance between two

distributions that determines the minimal cost of transforming one distribution

into the other. The earth mover’s distance equation is the following where P

and Q denote the distribution:

Earth Mover’s Distance = E(P,Q) =
1

m− 1

m∑︂
i=1

⃓⃓⃓⃓
⃓

i∑︂
j=1

(pj − qj)

⃓⃓⃓⃓
⃓ (3.1)
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Variational distance is a simplification of earth mover’s distance that as-

sumes the distance between any two values in a distribution is 1. The varia-

tional distance equation is the following where P and Q denote the distribu-

tion:

Variational Distance = E ′(P,Q) =
1

2

m∑︂
i=1

|pi − qi| (3.2)

It should be noted that t is bounded to be in the domain of [0, 1] based

on the assumption that all distances in the earth mover’s distance are in the

domain of [0, 1]. If t = 1, it means that the attribute distribution between

the equivalence class and global table distributions are not similar and an

attribute disclosure attack is very likely. As opposed to t = 0, which means

that the distributions are the same and the risk of an attribute disclosure is

low. Therefore, it is ideal to achieve a lower t in a table.

To illustrate how t-closeness is calculated, let us refer back to Table 3.2 and

assume the sensitive attribute columns to be Disease, Medication, Age, and

Initial Diagnosis. The t-closeness then needs to be found for each sensitive

attribute independently.

To compute the t-closeness of sensitive attribute Disease, the global dis-

tribution will be Q = {H1N1, F lu,HIV,Hypertension} containing the fre-

quencies of the attribute values globally. Four other distributions will also be

formed based on the frequencies of attribute values within the four equiva-

lence classes found in Table 3.2: P0 = {H1N1}, P1 = {H1N1, F lu}, P2 =

{HIV,Hypertension}, and P3 = {Flu}.

The distributions are then determined to be: Q = {2
7
, 3
7
, 1
7
, 1
7
}, P0 =

{1
1
, 0
1
, 0
1
, 0
1
}, P1 = {1

2
, 1
2
, 0
2
, 0
2
}, P2 = {0

2
, 0
2
, 1
2
, 1
2
}, and P3 = {0

2
, 2
2
, 0
2
, 0
2
}.

Next, the distribution distance between all the equivalence classes and the

global distribution can be calculated using Equation 3.2: E ′(Q,P0) = 0.7143,

E ′(Q,P1) = 0.2857, E ′(Q,P2) = 0.7143, and E ′(Q,P3) = 0.5714. From the

calculations, the t value threshold for Disease is therefore determined be 0.7143

as that is the largest distance.

If the process for calculating t-closeness is continued for the other sensitive

attributes, the following t values are obtained: Medication as 0.8571, Age as
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0.2380, and Initial Diagnosis as 0.7143. It should be noted that Age is cal-

culated using earth mover’s distance instead of variational distance since it is

continuous. Given all the threshold values obtained for each sensitive attribute

in the table, we use the maximum as the final t value of the table, which is

0.8571. Ideally, if the table had the sensitive attribute values distributed simi-

larly among the equivalence class and whole table, the t value would be lower

and closer to 0.

t-closeness should be considered in conjunction with k -anonymity and

l -diversity, since a low t-closeness does not necessarily guarantee a reason-

able k -anonymity or l -diversity measure. t-closeness only accounts for the

distribution of attribute values in a table but not consider how identifiable

an individual is based on quasi-identifiers, and also how identifiable sensitive

attributes may be within an equivalence class.

3.3 Data Misuseability Scores

All the above PPDP measures consider the distribution of sensitive attribute

values and identifiability of individuals to determine anonymity. Furthermore,

they assume that all the different sensitive attribute values are equally sensi-

tive, and they do not take into account the quantity of data. To address these

issues, M -Score and L-Severity are developed as misuse metrics to quantify

the severity of a dataset release based on the amount of data, the differing

sensitivities of sensitive attribute values, and the identifiability of records.

There is a need for misuse measures in addition to PPDP measures since

some records in a table may have the same k -anonymity value, but the sensitive

values may make some the records more valuable than others. For example, in

Table 3.5 when forming equivalence classes based on the same Job, City, and

Gender quasi-identifier attribute values, they are found to have 2-anonymity.

However, it can be argued that releasing information about “HIV” may be

more severe than releasing information about “Flu” or “Migraine”. Therefore,

M -Score and L-Severity are developed to account for the sensitivities of data

attributes in a table.
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Furthermore, PPDP measures also do not account for the amount of data

in a table. Intuitively, if more data is released from the table, the more severe

a data release should be as more information is accessed.

Table 3.5: A subset of Table 3.1 containing rows 3,4,5,6 with two equivalence
classes to illustrate how one class may contain more sensitive attributes than
the other.

id Job City Gender Disease Medication Age Initial Diagnosis
3 Lawyer Edmonton Male HIV ARV 49 HIV
4 Lawyer Edmonton Male Hypertension Statin 70 Hypertension
5 Lawyer Edmonton Female Flu Paracetamol 29 Migraine
6 Lawyer Edmonton Female Flu Paracetamol 29 Migraine

3.3.1 M -Score

M -Score, proposed by Harel et al. [18], is the first metric designed specifically

for identifying the impacts of a data release. It is a score for tabular data that

quantifies the ability of a user to maliciously exploit exposed data, taking into

account the anonymity of individuals in a dataset and the sensitivity of the

data attribute values.

The process of calculating the M -Score for an exposed dataset, known

as a published table, consists of two steps: (1) eliciting weights for sensitive

attribute values, and (2) calculating the M -Score for the published table.

(1) Eliciting Weights of Sensitive Attribute Values There are several

methods for eliciting sensitive value weights from domain experts, but the

authors of M -Score argue that the Analytic Hierarchy Process (AHP) elicits

the best results for discretized data.

AHP involves a pairwise comparison between different sensitive attributes

in order to determine their sensitivity weights relative to each other. This

helps a domain expert systematically account for different contexts of sensitive

attributes within a table by deriving weights in the domain of [0, 1] where a

higher weight implies a more sensitive value.

A three-level tree model is defined to perform pairwise comparisons. In

the top-level, it consists of a root node with a local weight of 1. In the second
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level there are children of the root node with sensitive attributes as each node.

While the third level contains children of the sensitive attribute nodes with

discretized values of the sensitive attributes as nodes. For example, the three-

level tree model of Table 3.1 can be seen in Figure 3.1.

Attributes

Age Attribute ValuesMedication Attribute Values

Goal
Find weight for a

given sensitive attribute value
Weight = 1

Medication
Weight = 0.5

Age
Weight = 0.5

Antibiotics
Weight = 0.2

Paracetamol
Weight = 0.2

ARV
Weight = 0.2

Tamiflu
Weight = 0.2

Statin
Weight = 0.2

<30
Weight = 0.5

30+
Weight = 0.5

Figure 3.1: Three-level tree model of Table 3.1 assuming that “Medication”,
and “Age” are the sensitive attributes used for AHP.

With a three-level tree model, pairwise comparisons are done by a domain

expert following the process outlined in Appendix A.1 to assign local weights

(known as priorities) to each node in the second and third levels. The final

weights of the sensitive attribute values can then be calculated by multiplying

the priorities of each node in the pathway to the sensitive attribute value node.

For example, to calculate the weight for the sensitive attribute value “Statin”,

each node in the pathway to “Statin” are multiplied as follows: priority(Statin)×

priority(Medication)× priority(Goal) = 0.2× 0.5× 1 = 0.1.

(2) M -Score of the Published Table Given the weights of the sensitive

attribute values, a published table, and a source table, M -Score can be cal-

culated. To begin, each record of a published table is given a record score as

follows:

RSMr =
min(1,

∑︁
ASi

∈r weight(ASi
))

DF kr

(3.3)
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A record score RSMr of the rth record of a published table is the sum of each

ith sensitive attribute value weight of the record minimized to 1 divided by

the k -Distinguishing Factor DF kr of the rth record.

The k -Distinguishing Factor is a measure dependent on comparing the pub-

lished table to the source table. It provides a quantifiable value of how easily

an individual can be identified based on the uniqueness of records in a “lookup

table”. The “lookup table” is collection of records related to a population that

can identify an individual. Since such a collection is not easily acquired, the

“lookup table” is approximated to be the source table. It is based on the

k -anonymity measure (Definition 8), and is defined as follows:

Definition 12 (k -Distinguishing Factor). The k -Distinguishing Factor of a

record in a published table is the size of the equivalence class in the source

table that contains the record in the published table. If there are no quasi-

identifiers to form an equivalence class, then the k -Distinguishing Factor of a

record is the size of the published table.

k -Distinguishing Factor is meant to account for how distinguishable an ex-

posed record is when it is published from the source table, and helps to differen-

tiate the records by their identifiability — when the k -Distinguishing Factor is

smaller, the record is more identifiable and the record score therefore becomes

larger.

To calculate the M -Score of a published table, the maximal record score is

taken and multiplied with the number of records in a published table.

Definition 13 (M -Score). Given a table with n records, the table’s M -Score

is then: M -Score = n
1
x ×max0≤r≤n

(︃
min(1,

∑︁
ASi

∈ weight(ASi
))

DFkr

)︃
where x ≥ 1 is a

parameter for the importance of the amount of records, ASi
is the ith sensitive

attribute value of a record r, and DF kr is the k -Distinguishing Factor of a

record r.

Using the definition above, the M -Score of the published table can be

computed by multiplying the highest individual record score among the n

records weighted with a power 1
x
. The x of n

1
x is a parameter for specifying
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the importance of the quantity of records in a published table. If x = 1 then

the amount of records is given more importance compared to the sensitivity

of data. If x → ∞, then n
1
∞ ≈ 1 which means that we would like to know the

highest individual record score of M -Score. The parameter x can be assigned

any value where x ≥ 1 with a trade-off between the importance of the highest

individual record score to the importance of the amount of records.

3.3.2 M -Score of the Illustrative Example

To illustrate how M -Score is calculated, we use the published table of Scenario

1 described in Section 3.1 shown in Table 3.6 below, and the sensitive attribute

value weights from Table 3.7.

Table 3.6: The “published table” of Scenario 1 described in Section 3.1. It
is the subset of source Table 3.1 that is released.

id Job City Gender Disease Medication Age Initial Diagnosis
3 Lawyer Edmonton Male HIV ARV 49 HIV
4 Lawyer Edmonton Male Hypertension Statin 70 Hypertension
5 Lawyer Edmonton Female Flu Paracetamol 29 Migraine
6 Lawyer Edmonton Female Flu Paracetamol 29 Migraine

We begin by calculating each individual record score, to find the maximal

record score needed for M -Score.

For example, to calculate the record score of the row with id 3 in the

Table 3.6, we begin by obtaining the k -Distinguishing Factor by finding the

size of the equivalence class in the source table containing the row with id 3.

Assuming that Age, City, and Gender are the quasi-identifiers, the relevant

equivalence class will be of size 2; thus, DF kid3
= 2. This is because, there are

two records with the same quasi-identifiers {Lawyer, Edmonton,Male} (rows

with id 3, and id 4) as seen in the equivalence classes in Table 3.2. Once the

k -Distinguishing Factor is found for the row with id 3, the record score can be
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calculated using Equation 3.3 and the weights from Table 3.7 as follows:

RSMid3
=

min

(︃
1,

weight(HIV Disease) + weight(ARVMedication)
+ weight(30+Age) + weight(HIV Initial Diagnosis)

)︃
DF kid3

=
min(1, 1 + 1 + 0.1 + 0.4)

2
=

1

2

= 0.5

When all the record scores of a published table are calculated, the maximal

record score is found to be 0.5 and can be used to calculate the M -Score of

the published table as:

M -Score = 4
1
x × 0.5

where x is a parameter that can be set to how much importance should be

given to the number of records released. For instance, if x = 1 then the

M -Score is 2 as the number of records are considered to be very important,

compared to when x → ∞ where M -Score becomes 0.5 and the number of

records is considered to be not important as we get the maximum score record

only. Notably, x can also be set to a number such as 10 to get 0.574, but

it is difficult to decide the appropriate x parameter for the trade-off between

the importance of the number of records or the maximum record score in a

published table.

If the process is repeated for Scenario 2 of Section 3.1, where the complete

source table is published, the M -Score obtained is:7 when x = 1, and 1 when

x → ∞.

If we compare Scenario 2 to Scenario 1, we can see that theM -Score (x = 1)

for Scenario 2 is greater. This increase is explained by the greater amount of

data being released. Furthermore, we can also determine that the row with id

0 of the published table in Scenario 2 has a record score of 1 which is greater

than any other record score in Scenario 1. Therefore, the M -Score (x → ∞)

in Scenario 2 is also greater than Scenario 1.
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3.3.3 Drawbacks of M -Score

M -Score has many drawbacks. First, the pairwise comparison for determining

sensitive attribute weights can be time-consuming when there is a large amount

values. Second, M -Score is an approximation score which may over quantify

the misuseability of a published table because it takes only the maximum

record score. As well, the x parameter of M -Score may be difficult to decide

on. Finally, M -Score only accounts for identity disclosure attacks, but not

attribute disclosure attacks.

The AHP pairwise comparison method can become time-consuming when

there are a lot of nodes in the tree model. As a model for a dataset becomes

larger due to an increasing number of sensitive attributes or sensitive attribute

values, it increases the number of pairwise comparisons quadratically [38].

M -Score is also approximative in nature as it takes the maximum record

score of a published table for its score calculation. For example, consider a

source table where 99 records of 100 records have a record score of 0.0001 with

the remaining record having a record score of 1. If we release a published table

from the source table where nine records are 0.0001 and one record is 1, the

one record with a score of 1 will be used to calculate M -Score. This leads to

a score of 10 (if x = 1) which is misleading as only a single record has a score

of 1 in the published table.

The approximation in M -Score leads to issues when attempting to identify

the “percentage of severity” a published table takes from the source table score.

If we consider the example from the previous paragraph, where the published

table has a score of 10, and the source table has a score of 100, we can say that

the published table makes up 10 percent of the severity of the source table:

10/100 = 0.1. However, this is not the case when we compare the sum of the

actual values of the record scores in each of the tables: 1.0009/1.0099 = 0.991.

Next, as observed when calculating the M -Score for Scenario 1 in Sec-

tion 3.3.2, it can be difficult to decide on the parameter x when deciding on

the trade-off between the importance of the number of records or the maxi-

mum record score in a published table. If we would like to approximate the
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severity based on the amount of records, then x can be set as 1. If we assume

that releasing any single maximum record of a published table is the maxi-

mum severity, then x can be set as x → ∞. However, to decide on a value

between 1 and x → ∞ that represents the trade-off between these two factors,

an arbitrary decision would need to be made.

The last drawback to note is that the k -Distinguishing Factor in M -Score

only accounts for identity disclosure attacks. The authors of M -Score suggest

that measures such as l -diversity can be used to account for attribute disclosure

attacks, but provide no method to do so.

3.3.4 L-Severity

Building on the work of M -Score, Vavilis et al. [39] design a misuseability

score named L-Severity. L-Severity aims to address the approximative nature

of the M -Score calculation, and also the time-consuming task of determining

sensitive attribute value weights.

To address the approximative nature of M-Score, L-Severity does not get

maximum record score and multiply it by the number of records like M -Score.

Instead, it sums all the record scores calculated. This makes L-Severity more

decimal sensitive compared to M -Score and can help illustrate the potential

severity of misuse more clearly.

To save time when eliciting weights, L-Severity proposes a new propagation

mechanism based on a hierarchical data model. The data model is designed

so that sensitive attributes and their values can be categorized under a single

classification, and weights assigned to the single classification can be propa-

gated to the attributes. The purpose of propagation is so that every possible

sensitive attribute value weight does not need to be separately examined, as

is the case with M -Score.

The process of calculating L-Severity can be divided into three steps: (1)

developing a data model of the sensitive attributes in a source table, (2) elic-

iting weights for sensitive attribute values from the data model, and (3) cal-

culating the overall L-Severity for the published table.
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(1) Developing the Data Model The data model in L-Severity is designed

to represent the hierarchy of concepts surrounding the sensitive attributes in

a source table.

The data model contains two different types of nodes: “data types” and

“data instances”. “Data types” are either attributes or a categorization of

attributes (i.e. the column names of a table or a generalization of other nodes).

“Data instances” are values of attributes (i.e. the values of a column in a table).

This is similar to the three-level tree model for AHP described in Section 3.3.1,

but allows for a more flexible representation of hierarchical relationships with

the “data type” node that can generalize other nodes.

Each node can be assigned a “sensitivity value” by a domain expert, but it

is not necessary to assign values to each node individually as the values can be

propagated top-down in the hierarchy. It should be noted that because of the

top-down propagation, there should be a parent node with an assigned value

for any children node without a value.

Special single directed edges can be formed between “data instance” nodes

to create an “inference relationship”. For each inference relationship, an “in-

ference value” is assigned in the range of [0, 1] to signify how much information

can be inferred by linking the source node to the sink node. Inference rela-

tionships can only be established for “data instance” nodes. These “inference

relationships”, and “inference values” in the data model are created by a do-

main expert.

Figure 3.2 illustrates the L-Severity data model of Table 3.1, modeled to

closely resemble the domain expert decisions of inference relationships and

weights in Vavilis et al.’s [39] data model.

(2) Eliciting Sensitive Attribute ValueWeights using the Data Model

Once all “sensitivity values” and “inference values” are assigned by a domain

expert in the model, they can be used to calculate the sensitive attribute value

weights needed for L-Severity.

First, for any nodes that do not have an assigned sensitivity value, they are

propagated a value by finding the first parent that has a value. For example,

31



Personal Data

Medical Data

Medication Disease
Initial

Diagnosis
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Legend

Data Type

Data Instance

Demographics

Age

30+
0.1

<30
0.1

Inference 
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Figure 3.2: The L-Severity data model of Table 3.1 in the illustrative exam-
ple. The dotted rectangular shapes are data types corresponding to the sen-
sitive attribute table columns and their generalizations. The elliptical shapes
are the sensitive attribute values present in Table 3.1. The inference relation-
ships are denoted as dashed directed edges that indicate a relationship between
sensitive attribute values. The numbers on the inference relationships indicate
“how related” two attribute values are. The small rectangular boxes contain-
ing numbers in the top left or right of data types and instances are sensitivity
values assigned by a domain expert. It should be noted that quasi-identifiers
are omitted in this figure for succinctness, but are included in the data model
defined Vavilis et al. [39].

the sensitivity value of “HIV” in Figure 3.2 is 1, from the propagation of:

“Disease” → “Viral” → “HIV”.

Next, the “sensitive attribute value weight” can be calculated by taking

the sensitivity value assigned to a “data instance” node, and any inference

relationship where the “data instance” node is the source.

For instance, to calculate the sensitive attribute value weight of the

medication “Paracetamol”, we begin by iterating through and calculating

the value for its inference relationships. The inference relationship from

“Paracetamol” to “Flu” has an inference value of 0.4, which is taken and

multiplied by the sensitive attribute value weight of “Flu” resulting in:

0.4× 0.1 = 0.04. This process is repeated for the other inference relationship

from “Paracetamol” to “HIV” yielding 0.1×1 = 0.1. Once all values for infer-

ence relationships are calculated, they are summed to be: 0.04 + 0.1 = 0.14.

This sum is compared against the sensitivity value given to “Paraceta-
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mol” and the max is taken. Hence, the weight for “Paracetamol” will be:

max (sum(InferenceRelationshipValues), SensitivityValue(Paracetamol)) =

max(0.14, 0.1) = 0.14. This method is outlined in Algorithm 1.

Algorithm 1: Algorithm for Calculating Sensitive Attribute Value
Weight

Input: let y be a data instance node with a sensitivity value
Output: Sensitive Attribute Value Weight for y

1 let relValues = 0;
2 for each Inference Value IV (y, z) of y do
3 relValues = relValues +
4 (IV (y, z)) × SensAttValWeight(z));

5 end
6 return max(relValues, SensitivityValue(y));

(3) L-Severity of the Published Table Once the sensitive attribute value

weights for the data instances are calculated, L-Severity can be calculated. To

determine the L-Severity of a published table, the record scores are summed

together. A record score can be calculated as follows:

RSLr =

∑︁
ASi

∈r weight(ASi
)

DF kr

(3.4)

A record score RSLr of the rth record of a published table is the sum of each ith

sensitive attribute value weight of the record divided by the k -Distinguishing Factor

DF kr of the rth record.

Using the sum of the record scores in a published table, L-Severity is:

Definition 14 (L-Severity). Given a published table T, the L-Severity of the

table is: L-Severity =
∑︁

r∈T

(︃∑︁
Asi∈r weight(Asi )

DFkr

)︃
where r is each record of the

published table, ASi
is the ith sensitive attribute value of a record r, and DFkr

is the k -Distinguishing Factor of a record r.

3.3.5 L-Severity of the Illustrative Example

To illustrate how L-Severity is calculated, we refer back to Scenario 1 in Sec-

tion 3.1 where Table 3.6 is to be released and a misuseability score needs to

be calculated for it.
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Before referring to the published and source table for calculating L-Severity,

we refer back to the data model in Figure 3.2 to calculate all the sensitive

attribute value weights following step 2 of Section 3.3.4. First, we propagate

all sensitivity values to any of the data instance nodes such as “HIV” that

are missing sensitivity values. Next, the sensitive attribute value weights are

calculated using Algorithm 1, and the results are shown in Table 3.7.

Table 3.7: Sensitive attribute value weights elicited from the data model in
Figure 3.2 using L-Severity’s methodology.

Disease Medication Age Initial Diagnosis
W (Flu) = 0.1 W (Paracetamol) = 0.14 W (30+) = 0.1 W (Flu) = 0.1
W (H1N1) = 0.4 W (Antibiotics) = 0.4 W (<30) = 0.1 W (Migraine) = 0.3
W (Hypertension) = 0.6 W (Tamiflu) = 0.5 W (HIV) = 0.4
W (HIV) = 1 W (Statin) = 0.6 W (Hypertension) = 0.6

W (ARV) = 1

Now referring back to Table 3.6, we can calculate L-Severity of Scenario 1

using the sensitive value weights in Table 3.7. As a reminder, we also need to

use Table 3.1 as the source table to calculate the k -Distinguishing Factor.

To begin, we iterate through each row of Table 3.6 and using Equation 3.4

to calculate a record score. For example, for the row with id 3 the record score

will be:

RSLid3
=

W (HIV Disease) +W (ARV ) +W (30+) +W (HIV Initial)

DF id3

=
(1 + 1 + 0.1 + 0.4)

2

= 1.25

Repeating the process for each record we get the following scores: row id 4 as

1.9, row id 5 as 0.64, and row id 6 as 0.64. Summing up all the scores, we get

the L-Severity of Scenario 1 to be:

L-Severity = 1.25 + 1.9 + 0.64 + 0.64 = 4.43

If this process is repeated for Scenario 2 of Section 3.1 where the whole

table is released, we get L-Severity = 1.1+1+0.9+1.25+1.9+0.64+0.64 = 7.43

by iterating from row 0 to row 6 of Table 3.1.
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Comparing Scenario 2 to Scenario 1, the score of Scenario 2 is much larger

signifying that releasing the whole table which will be much more severe.

3.3.6 Drawbacks of L-Severity

The major drawback of L-Severity is the assignment of weights to the model,

and the inference relationships in the data model. It is difficult to justify the

value of inference relationships between two data instance nodes. For exam-

ple, how can one decide in a quantifiable value that the inference relationship

from “Tamiflu” to “H1N1” is 0.9 compared to the relationship from “Parac-

etamol” to “Flu” being 0.4. The authors of L-Severity suggest that domain

experts would make decisions on inference values, but provide no method on

how to do so and coming to a consensus among experts may be difficult. The

assignment of sensitivity values to nodes is also of concern as there is no sys-

tematic methodology to assign values like M -Score which uses AHP pairwise

comparison.

It should also be noted that the method to derive the sensitive attribute

value weights from the L-Severity data model makes the weights unbounded.

Therefore, the sum of the sensitive attribute value weights for a record score

is not bounded to a maximum sum. In contrast, M -Score bounds the sum

of sensitive attribute value weights by taking the minimum between 1 and

the sum of weights. Without any maximum bounds on the sum, it becomes

difficult to know the extent of severity for the record score calculation as there

is no theoretical maximum score to normalize against. Without bounding the

weights, we cannot normalize against a theoretical maximum is discussed in

Section 5.4.

As well, L-Severity cannot account for the case that assumes releasing the

maximum record score of a published table is the maximum severity. Recall

that M -Score accounts for this case, by allowing the x parameter to be set to

x → ∞. L-Severity, instead, only accounts for the case that calculates severity

based on the amount of records.

Another issue of L-Severity is the structure of inference relationships de-

fined in the data model. The authors of L-Severity indicate in their example
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data model [39] that inference relationships can be bidirectional between nodes.

However, when calculating the sensitive attribute value weight (Algorithm 1)

a cycle of dependencies is formed. For instance, consider two nodes that have

inference relationships in both directions to each node, and each node has an

assigned sensitivity value. It then becomes impossible to calculate the sensi-

tive attribute value weight of both nodes as they are dependent on each other

to calculate their sensitive attribute value weight.

Finally, L-Severity has the same drawback as M -Score, where additional

anonymity measures like l -diversity and t-closeness are not included to account

for attribute disclosure. The authors of L-Severity suggest that these measures

can be integrated into misuseability scoring, but provide no method to do so.

3.4 Summary

In this chapter, the PPDP measures k -anonymity, l -diversity, and t-closeness

are introduced. k -anonymity quantifies the likelihood of an identity disclosure

attack, while l -diversity, and t-closeness quantify the likelihood of attribute

disclosure attacks.

Since PPDP measures do not account for the quantity of data, and the

differing sensitivities of values in data, the misuseability scores M -Score and

L-Severity were developed to address these factors in addition to integrat-

ing k -anonymity to account for identity disclosure attacks. However, neither

M -Score nor L-Severity account for attribute disclosure attacks.

Furthermore, M -Score always assumes the worst case when it calculates

its misuseability score, while L-Severity fails to systematically assign weights

and has structural issues in its data model. These drawbacks are addressed in

Chapter 4 where tkl -Score is introduced.
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Chapter 4

The tkl-Score

In this chapter, a new misuseability score tkl -Score is designed to: (a) capture

both risks of identity disclosure and attribute disclosure attacks, and (b) reflect

the different sensitivities of sensitive attribute values using derived weights

from a domain specific model. tkl -Score addresses the drawback of M -Score

and L-Severity where attribute-disclosure attacks are not accounted for. It also

addresses the non-systematic method of eliciting weights for sensitive attribute

values in L-Severity.

The calculation of tkl -Score consists of three steps similar to M -Score and

L-Severity: (1) the tkl -Data Model, a domain specific model of sensitive at-

tributes and sensitive attribute values, is developed; (2) weights of sensitive at-

tributes are derived from the developed tkl -Data Model; and (3) the tkl -Score

of a published table using the derived weights.

4.1 Developing the tkl-Data Model

The tkl -Data Model is a well-defined semantic model designed to represent the

underlying hierarchical relationships of sensitive attributes, and the sensitive

attribute values in a source table. It is used to derive weights for sensitive

attribute values.

To construct a tkl -Data Model, a sensitive attribute domain taxonomy is

aligned with a model of sensitive attributes in a source table. To model the

sensitive attributes in a source table, a novel data sensitivity ontology (DSO)

is used to represent the sensitive attributes of the source table.

37



4.1.1 Sensitive Attribute Domain Taxonomy

The domain taxonomy is developed using expert knowledge and is a reflection

of the hierarchical relationships between sensitive attributes found in a source

table. It provides an understanding of the underlying relationships not present

in a table structure.

For example, in the illustrative example Table 3.1 we can see that it con-

tains data about demographics and disease diagnoses. There are many rela-

tionships in the table that may appear to be obvious that should be accounted

for when calculating the misuseability score. Take for instance, the relation-

ship between medication and disease, it is clear that they are related to med-

ical health. However, this relationship is not accounted for in M -Score. In

L-Severity, this relationship is modeled in a data model like Figure 3.2 and

used to derive weights for attribute values.

Considering Preexisting Models

To develop a domain taxonomy, domain expert knowledge is needed to model

the concepts and relationships between them. This process is often time-

consuming, as it requires a consensus among experts and there may be a

significant amount of concepts and relationships. Furthermore, these efforts

may produce duplicate representations for similar tables, as well as discourage

interoperability. Therefore, in this thesis, the use of preexisting ontology, vo-

cabulary, and taxonomy models to develop the domain taxonomy are explored.

Before explaining the process of using preexisting models, we must clarify

the use of the terms: “ontology”, “vocabulary”, and “taxonomy”. “Ontology”

is considered to be a collection of concepts and relationships with defined asser-

tions known as axioms that can be used for inference. Whereas “vocabulary” is

a subset of “ontology” that has no assertions of concepts and relationships [29].

“Taxonomy” is a subset of “vocabulary” that contains a hierarchical definition

of concepts and relationships. Therefore, “ontology” is used as a generalized

term to describe all three terms.

Discovering and choosing the right existing ontologies to create a domain
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taxonomy can be difficult due to the lack of a reliable strategy and sources. The

W3C community has likened this to the process of “dowsing” where resources

are attempted to be found in the ground without any scientific apparatus [30].

They recommend using a combination of indexes, search engines, repositories,

and online communities to help find relevant ontologies.

We should also note that not all ontologies are created equal. Ontologies are

often prone to design errors, and can vary in quality and correctness [27]. As

well, ontologies can be defined using a combination of a variety of specifications

such as the resource description framework (RDF), RDF Schema (RDFS), and

Web Ontology Language (OWL). Each specification allows for different ways

to represent concepts, relationships, and axioms.

As an example, consider finding a relevant ontology model for the sensi-

tive attributes of Table 3.1. The sensitive attributes contain values relating

to occupation, medical relationships, location, and demographics. Using the

Google search engine, some of the following relevant ontologies can be found:

the ResumeRDF ontology1 to describe occupation, the CPR ontology2 to de-

scribe medical relationships, the vCard ontology3 to describe location, and the

FOAF ontology4 to describe demographics. For these ontologies, extracting

the relevant concepts and relationships to build a domain taxonomy prove to

be difficult as they vary in specifications for expression. In order to build a

taxonomy from the ontologies, the varying expressions of concepts and rela-

tionships must be aligned together which is left for future work.

For Table 3.1 in this thesis, the data privacy vocabulary (DPV)5 from an-

other resulting Google search is found to be the most relevant. This is because

DPV is already designed as a taxonomy that encompasses values relating to

occupation, medical relationships, location, and demographics and uses RDFS

to define concepts and relationships.

1http://rdfs.org/resume-rdf/
2https://www.w3.org/wiki/images/3/3a/CPR-W3C-Presentation.pdf
3https://www.w3.org/TR/vcard-rdf/
4http://xmlns.com/foaf/spec/
5https://www.w3.org/ns/dpv
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Extracting Concepts and Relationships from Preexisting Models

Only relevant concepts and relationships should be extracted from existing

domain ontologies. In the case of DPV, “class” is used to define concepts, and

the “subclass of” property is used to define the hierarchical relationships of

classes. By extracting the relevant “classes”, and “subclass of” properties in

DPV, a smaller hierarchical structure is created.

To illustrate how to extract the relevant concepts and relationships, we

refer back to the illustrative example Table 3.1. This table is a medical dataset

containing patient information with the following sensitive attribute columns:

Disease, Medication, Age, and Initial Diagnosis.

The sensitive attribute columns of Table 3.1 can then be used to find the

relevant DPV class as follows:

• Disease ↦→ DPV:Health

• Medication ↦→ DPV:Prescription

• Age ↦→ DPV:Age

• Initial Diagnosis ↦→ DPV:HealthRecord

These mappings consider the sensitive attribute columns of Table 3.1 to be

“directly related” to the DPV class. The decision of finding the relevant DPV

classes comes from referencing the description of classes which can be seen in

Table A.4.

Now to build the hierarchy, a search of DPV is needed to find all the weakly

connected components containing the mapped DPV classes. Weakly connected

components are a subgraph where all nodes are connected by an edge regardless

of edge direction. A weakly connected component forms multiple pathways to

a common root node as seen in Figure 4.1 where there are multiple pathways

to “PersonalDataCategory”.

The process for finding weakly connected components of an ontology, i.e.,

the DPV in our example, begins with initializing a set of concept nodes corre-

sponding to the sensitive attributes of the source table. Next, a breadth-first
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search process adds to the current node set, by adding the parent classes of the

nodes in the current set. The process ends as soon as no new parent classes

can be found, which results in one or more weakly connected components.

The extracted weakly connected component from DPV in Figure 4.1 is a

close to ideal extraction as minimal pruning and no alignment is needed to form

the appropriate domain taxonomy structure. There is a single component so no

alignment between other components is needed. As well, there is only a single

edge that needs to be pruned to form the mono-hierarchical tree structure.

PersonalDataCategory

ExternalSpecialCategory

MedicalHealth PhysicalCharacteristic

Health HealthRecord Prescription Age

Figure 4.1: Connected component of DPV forming the relationships between
sensitive attribute concepts. It contains multiple pathways to the root node
“PersonalDataCategory”. Of note are the two edges (highlighted in red) from
“MedicalHealth” which need to be pruned to form the appropriate domain
taxonomy structure

Domain Taxonomy Structure

The domain taxonomy models the generalization/specialization relationships

of sensitive attributes in a mono-hierarchical tree structure. A mono-hierarchical

tree structure means that each node has only single parent, as opposed to a

poly-hierarchical structure where a node can have multiple parents.
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Each node of the domain taxonomy is an instance of a RDFS class, denoted

by “RDFS:Class”. The relationships between nodes are edges, denoted by

“RDFS:subClassOf”. The resulting domain taxonomy is defined by multiple

RDF triples in the form of “RDFS:Class→ RDFS:subClassOf→ RDFS:Class”

where the second element of the triple denotes a directed edge from the first

element to the third element.

The purpose of the domain taxonomy structure is so that pairwise compar-

isons can be done between groupings of sub-classes to derive relative weights.

Thus, the tree structure needed to be obtained is as follows:

• A single node with no parent, denoted as the “root node”

• Any other node only has a single parent

• All leaf nodes are directly related to the sensitive attribute columns of a

table, i.e. the starting nodes for finding the connected components

• There are no repeated edges between nodes

• Edges all follow a single direction top-down or bottom-up

• Each level of the tree are related to the same generalization (e.g. H1N1

should not be in the same level as Disease since it is a specific value)

To achieve the appropriate domain taxonomy structure from the extracted

components of an ontology, the pruning of extra edges, pruning of leaf nodes,

and alignment of components may be needed as outlined below.

Pruning Extra Edges Notably, in Figure 4.1, the connected component

needs to be pruned as “MedicalHealth” has the two parent classes: “External”,

and “SpecialCategoryPersonalData”. Therefore, one of the edges must be

removed to form a mono-hierarchical tree structure.

For this thesis, we arbitrarily remove the edge between “MedicalHealth”

and “SpecialCategoryPersonalData” assuming that the edges are of equal im-

portance as seen in Figure 4.2a. If one edge is considered more important

than another, then the edge that should be kept should be decided among a
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consensus of domain experts. This consensus is to ensure that the domain

taxonomy still models an accurate representation of the hierarchical concepts

and relationships of sensitive attributes.

Pruning Leaf Nodes The edge pruning of Figure 4.1 results in a leaf node,

highlighted in red in Figure 4.2a, that is not directly related to the sensitive

attribute columns of Table 3.1 since it is not a starting node. Thus, the

“SpecialCategory” node and its edge is removed resulting in Figure 4.2b.

 SpecialCategory

PersonalDataCategory

External

PhysicalCharacteristic MedicalHealth

Age Health HealthRecord Prescription

(a) Result of pruning the edge between
“MedicalHealth” and “SpecialCatego-
ryPersonalData”. Note that there is
now a leaf node (highlighted in red) that
also needs to be pruned.

PersonalDataCategory

External

PhysicalCharacteristic MedicalHealth

Age Health HealthRecord Prescription

(b) Domain taxonomy with the ap-
propriate structure.

Figure 4.2: Pruning an extra edge and leaf node (a) and its resulting struc-
ture (b).

Aligning Connected Components Consider Figure 4.3a which contains

an extra unlabeled component and the component in Figure 4.1. To align

the components a root node is created to take the separated components as

its children resulting in an appropriate domain taxonomy structure as seen in

Figure 4.3b. A consensus of domain experts should be used to verify that the

alignment is correct, and make adjustments to the generalizations of connected

components as needed.
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PersonalDataCategory

External

PhysicalCharacteristic MedicalHealth

Age Health HealthRecord Prescription

(a) Two weakly components differenti-
ated by color.

PersonalDataCategory

External

PhysicalCharacteristic MedicalHealth

Age Health HealthRecord Prescription

(b) Alignment of two weakly con-
nected components by creating and
connecting to a common root node
(outlined in green).

Figure 4.3: Weakly connected components (a) and their alignment (b).

4.1.2 Data Sensitivity Ontology (DSO)

The data sensitivity ontology (DSO) is created to manage the representation of

sensitive attributes in a source table for calculating tkl -Score, and to manage

the metadata needed for weight derivation using the tkl -Data Model. It is

defined using the RDF/RDFS model.6

There are 4 main classes described as follows:

• ContinuousAttributes are the sensitive attributes of a source table

that contain continuous values. They are initiated as an instance to rep-

resent the sensitive attribute column used to map to a domain taxonomy

leaf node. The “value” nodes of its children, are the binned values of the

continuous attribute decided under a consensus of domain experts.

• DiscreteAttributes are the sensitive attributes of a source table that

contain discrete values. They are also initiated as an instance to repre-

sent the sensitive attribute column used to map to a domain taxonomy

leaf node.

• Elements are the generalization of values. They are subclasses of at-

tributes or other elements.

6https://www.w3.org/TR/rdf-schema/
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• Values are the values of discrete attributes, or the ordinal values of

continuous attributes. They can either be a subclass of an attribute or

element, and are leaf nodes.

These classes are used to instantiate a model of sensitive attributes as shown

in Section 4.1.3.

DSO also defines properties that are used in the process for deriving weights

of sensitive attribute values. They consist of “hasPriority” which is used to

assign priorities to all nodes of the tkl -Data Model, and “hasWeight” which

is used to assign weights derived from priorities to instances of DSO Value

classes:

• hasPriority is used to assign a weight value, known as a “priority”, to

an instance of a DSO class. It can be used as a predicate in a triple as

follows: “DPV:MedicalHealth → hasPriority → literal” where “literal”

is a decimal value such as 1.0.

• hasWeight is used to assign the weights calculated based on the pri-

orities in a tree. It is also used as a predicate in a triple with the sub-

ject being a sensitive attribute value and object being a literal as such:

“Sensitive Attribute Value → hasWeight → literal” where “literal” is a

decimal value such as 0.2.

4.1.3 Sensitive Attribute Source Table Model

The modeling of sensitive attributes in a source table involves the use of DSO

to structure its representation.

For example, to model the sensitive attribute Age of Table 3.1 using DSO,

we first begin by creating the namespace to represent the table denoted as

“MED”. Next, we create a node to represent the sensitive attribute denoted

as “MED:A.Age”. “A.” is prepended to the attribute name Age to indicate

the node is an attribute. “MED:A.Age” can then be defined as a “Continu-

ousAttribute” as seen in Figure 4.4a.
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DSO
ContinuousAttribute

MED
A.Age

a

(a) Defining Age of the source
table as a continuous attribute.

DSO
Value

MED
V.GEQ-30

a

MED
V.LT-30

a

DSO
ContinuousAttribute

MED
A.Age

RDFS:subClassof RDFS:subClassof  

a

(b) Defining the attribute values of the Age
attribute.

DSO
Element

DSO
Value

DSO
DiscreteAttribute

MED
E.Viral

a

MED
V.HIV

RDFS:subClassof      

MED
V.Flu

RDFS:subClassof   

MED
V.H1N1

RDFS:subClassof

a a a

MED
V.Hypertension

a

MED
A.Disease

a

RDFS:subClassof RDFS:subClassof

(c) Categorizing some of the attribute values of
Disease to be under a “Viral” element.

Figure 4.4: Creating a source table model using DSO. Dashed lines indicate
the use of DSO.

To model values of the sensitive attribute Age, two additional value nodes

are created: “MED:V.GEQ-30” to represent values greater or equal to 30, and

“MED:V.LT-30” to represent values less than 30. The names are prepended

with “V.” to indicate that the node is an attribute value. Each of the nodes

are then made an instance of “Value” and subclass of “MED:A.Age” as seen

in Figure 4.4b. It should be noted that choosing the appropriate binning for

the value nodes of continuous attributes is decided among domain experts.

Many of the times, using a consensus of domain experts, sensitive attribute

values can be categorized to create a hierarchy of values. This hierarchy

can later be used to propagate weights. For instance, consider the sensi-

tive attribute Disease in Figure 4.4c where an instance of the “Element” class
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“E.Viral” is created. “E.Viral” creates a hierarchy of values as it is the parent

class for the attribute values: “V.H1N1”, “V.HIV”, and “V.Flu”.

Duplicate Node Names When creating the source table model with DSO,

domain experts should be aware of DSO node instances with the same names

as they can have different contexts and should not be considered the same

sensitivity. To illustrate, consider Figure 4.5a where the attributes Age and

Disease are given the “Duplicate” value. This should not occur if the “Dupli-

cate” value under Age and Disease do not have the same meaning. Thus, a

naming scheme such as using “V-0” and “V-1” in Figure 4.5b must be created

to differentiate the “V.Duplicate” node.

MED
V.Duplicate

MED
A.Age

RDFS:subClassof

MED
A.Disease

RDFS:subClassof

(a) The “V.Duplicate” node has
two parent nodes (edges high-
lighted in red) even though it may
not be related to both parents.

MED
V-0.Duplicate

MED
V-1.Duplicate

MED
A.Age

RDFS:subClassof

MED
A.Disease

RDFS:subClassof

(b) The “V.Duplicate” recreated with a
naming scheme to signify that values are
not similar.

Figure 4.5: Handling duplicate node names of a DSO defined model.

The resulting source table model of Table 3.1 created using DSO can be

seen in Figure 4.6.
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Sensitive Attributes

    Sensitive Attribute Values

DSO
ContinuousAttribute

DSO
DiscreteAttribute

MED
A.Age

MED
V.GEQ-30

MED
V.LT-30MED

A.Disease

MED
E.Viral

MED
V-0.Hypertension

MED
A.Initial-Diagnosis

MED
V.Migraine

MED
V-1.Flu

MED
V-1.HIV

MED
V-1.Hypertension

MED
A.Medication

MED
V.Antibiotics

MED
V.Paracetamol

MED
V.ARV

MED
V.Tamiflu

MED
V.Statin

DSO
Value

MED
V.H1N1

MED
V-0.HIV

MED
V-0.Flu

DSO
Element

Figure 4.6: This figure is the sensitive attribute source table model of Ta-
ble 3.1 created using DSO. The dashed lines indicate the instances of DSO
classes used to define the sensitive attributes and their values in a table. This
model is aligned with the domain taxonomy to create the tkl -Data Model.
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4.1.4 Alignment of the Table Model with the Domain
Taxonomy

Once a model of a source table has been created with DSO, it can be aligned

with the sensitive attribute domain taxonomy to create the tkl -Data Model.

The purpose of the alignment to support assigning weights, and propagation

of values to nodes that are missing them.

To align the source table model, the relevant sensitive attribute column

is made a subclass of the relevant class in the domain taxonomy. For exam-

ple, recall the relevant DPV classes that were found to extract concepts and

relationships of sensitive attributes in Section 4.1.1, and the attribute nodes

created to represent the sensitive attributes in Section 4.1.3. Using the rep-

resentation of the sensitive attributes, the following alignments are made in

Figure 4.7 between the domain ontology extracted from DPV in Figure 4.3b

and the source table model in Figure 4.6:

• MED:A.Disease ↦→ DPV:Health

• MED:A.Medication ↦→ DPV:Prescription

• MED:A.Age ↦→ DPV:Age

• MED:A.Initial-Diagnosis ↦→ DPV:HealthRecord

Figure 4.7 demonstrates a complete mapping of Table 3.1’s sensitive attributes

to the domain taxonomy, and is now ready to be used for deriving weights of

sensitive attribute values.

It should be noted that in Figure 4.7, DSO classes and properties are

omitted. This is because, while the metadata information provided is useful

to identify its type corresponding to the source table, it is unnecessary to

visually appear for deriving weights.

Similarity with L-Severity Data Model The tkl -Data Model is similar

to the L-Severity data model, but removes the notion of ad hoc “inference

relationships” that increase complexity and are often difficult to justify. As
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well, the tkl -Data Model does not model quasi-identifier attributes, while the

L-Severity data model does. Lastly, the tkl -Data Model is used to derive sensi-

tive attribute weights in a more systematic manner compared to the L-Severity

data model using the Analytic Hierarchy Process (AHP) to determine weights

as shown in Section 4.2 below.

Similarity with M -Score Three-Level Tree Model The tkl -Data Model

is a well-defined model that includes the hierarchical concepts and relationships

among sensitive attributes. On the other hand, the M -Score three-level tree

model is a simple model that places sensitive attributes in the second level,

and sensitive attribute values in the third level. Therefore, the underlying

relationships between sensitive attributes are not modeled in the three-level

tree model. As well, tkl -Data Model allows for the propagation of weights

because of its structure as seen in Section 4.2.3. M -Score is only limited to

AHP for determining weights which can be time-consuming when a lot of nodes

in the tree model need to be compared pairwise.

4.2 DerivingWeights with the tkl-Data Model

To derive weights for sensitive attribute values, two methods are used on the

tkl -Data Model: the Analytic Hierarchy Process (AHP), and domain expert

assignment. These methods assign all nodes of the tkl -Data Model with “pri-

orities”. “Priorities” are a numeric value that represent a relative weight for a

grouping of nodes in a level of a hierarchical structure. From these priorities,

a “weight” for sensitive attribute values can be calculated.

The weight derivation process involves the elicitation of priorities with the

following steps: (1) the “domain taxonomy” elements and the “sensitive at-

tribute” elements are compared using their AHP criteria groupings to establish

their relative priorities, (2) a domain expert directly assigns priorities to select

“sensitive attribute value” elements, (3) if not all “sensitive attribute value”

elements are assigned priorities, a propagation mechanism is used to propagate

priorities to “sensitive attribute value” elements missing them, (4) once all pri-
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orities have been assigned to every node of the tkl -Data Model, the weights of

“sensitive attribute values” can be calculated from following pathways to the

“sensitive attribute value” elements.

4.2.1 AHP on the Domain Taxonomy and Attributes

The Analytic Hierarchy Process (AHP) is a decision-making technique that

can be used to prioritize criteria for a decision to achieve a common goal. By

comparing the criteria pairwise, it helps systematically decide on the impor-

tance of each criteria relative to others in order to make a decision. It has

been used for a wide variety applications including assessing risk in operating

pipelines [7] and quantifying the overall quality of software systems [25].

Using the tree structure formed by the domain taxonomy and sensitive

attributes of Figure 4.7, we illustrate how AHP can be used to assign different

priorities to criteria. The criteria in the figure, are the nodes grouped with

dashed boxes. The root node is not a criteria, because it is does not need any

comparisons.

To begin, the root node of the domain taxonomy is assigned a priority

of 1 since there are no other comparisons. For each of the criteria under

the root node, a reciprocal matrix of the pairwise comparisons is created by

following the process outlined in Appendix A.1. As an example, consider the

pairwise comparison of the criteria grouping under the node MedicalHealth:

“Health”, “HealthRecord”, and “Prescription” as seen in Table 4.1a. For each

combination pair of criteria, a domain expert indicates which criteria are more

important by assigning a rating based on the Saaty scale seen in Table A.2.

For instance, in Table 4.1a “Prescription” is given rating that it is consid-

ered slightly more important than “HealthRecord”. When all pairwise combi-

nations of criteria are compared, a reciprocal matrix can be from the ratings

as illustrated in Table 4.1b.

From Table 4.1b a priority vector of weights can be calculated as {Health =

0.54,Health Record = 0.297,Prescription = 0.163} with a consistency ratio of

0.01. Since the consistency ratio is less than 0.10, the ratings of the reciprocal

matrix are considered to be consistent as explained in Appendix A.1.3.
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Criteria
More Important Rating

A B
Health HealthRecord A 2
Health Prescription A 3

HealthRecord Prescription B 1/2

(a) Ratings given by a domain expert.

Health HealthRecord Prescription
Health 1 2 3
HealthRecord 1/2 1 2
Prescription 1/3 1/2 1

(b) Reciprocal matrix with consistency
ratio of 0.01.

Table 4.1: Ratings (a) and reciprocal matrix (b) of the criteria: “Health”,
“HealthRecord”, and “Prescription”.

The reciprocal matrices and consistency ratios for all criteria groupings of

Figure 4.7 can be found in Appendix A.3, and their assignment to the domain

taxonomy and sensitive attribute nodes can be seen in Figure 4.8.

4.2.2 Direct Assignment on the Table Model

In the tkl -Data Model, the “sensitive attribute value” nodes are directly as-

signed a “qualitative priority”. The reason is that AHP does not accurately

elicit the appropriate priorities among attribute values. To understand why

this happens, we can frame the attribute values to be the nodes that “take a

proportion of the weight of a sensitive attribute”.

For example, if we wanted the sensitive attribute values of Medication to

have the same weight in Figure 4.7, it would not be possible doing pairwise

comparison. This is because pairwise comparison will equally divide the “pri-

orities” among the five attribute value nodes of Medication to be 0.2, meaning

that the nodes will only “take 0.2 of the weight of Medication”. Instead, if

we keep a constant “priority” such as 1 among all the attribute value nodes,

then the nodes will “take all the weight of Medication”. Thus, with direct

assignment, attribute value priorities can be assigned to take the perceived

“appropriate proportion of the weight of a sensitive attribute”.

A “qualitative priority” is a label from a classification system that is or-

dinal. For example, consider the HL7 confidentiality classification labels7:

unrestricted, low, moderate, normal, restricted, very restricted. We can see

that the labels are ordinal in nature from low to very restricted.

7https://www.hl7.org/fhir/v3/Confidentiality/cs.html
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To translate a qualitative priority to a quantifiable value for calculating

weights, numerical values are assigned to the labels of a classification system

monotonically increasing according to their order. This has also been done by

the authors [39] of L-Severity whom translate the HL7 confidentiality classi-

fication labels to be: unrestricted = 0, low ≥ 20, moderate ≥ 40, normal ≥

60, restricted ≥ 80, and very restricted ≥ 100.

In this thesis, a similar translation of the HL7 confidentiality classification

labels is done where: unrestricted = 0, low = 0.2, moderate = 0.4, normal =

0.6, restricted = 0.8, and very restricted = 1. Using these labels, qualitative

priorities are assigned to the attribute values in Figure 4.8. It should be

noted that a priority is not assigned to “V.H1N1” because the priority can be

propagated as demonstrated below in Section 4.2.3.

The qualitative priorities must be assigned to all first level attribute value

nodes. This is important to ensure that every attribute value is assigned an

appropriate priority when propagating. Referring back to Figure 4.8, all nodes

of the first level of attribute values are assigned a qualitative priority using

the HL7 confidentiality classification labels.

The result of direct assignment of priorities to the “sensitive attribute” and

“sensitive attribute value” nodes for the tkl -Data Model in Figure 4.7 can be

seen in Figure 4.8.

4.2.3 Propagation on the Table Model

Once all qualitative priorities have been assigned to at least the first level of

attribute value nodes, any other attribute value nodes missing priorities can be

propagated to. This strategy is similar L-Severity’s propagation mechanism.

The algorithm for propagating weights can be seen in Algorithm 2. It is

based on depth first search and a non-recursive implementation is described.

To propagate sensitive attribute value priorities, the sensitive attribute

value nodes that are not currently assigned a priority are found. For the

nodes that have no priority, it is assigned the priority of the parent node that

has a priority.

For example, the propagation mechanism can be used in Figure 4.8 as
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Algorithm 2: Algorithm to Propagate Attribute Value Priorities

Input: let C be the tkl -Data Model, let V be the first level of
sensitive attribute value nodes of C

Result: tkl -Data Model with all sensitive attribute value priorities
propagated

1 let S be a stack;
2 let Visited be a set;
3 S.push(V);
4 while S is not empty do
5 node = S.pop();
6 if node is not in Visited then
7 Visited.add(node);
8 if node.Priority DNE then
9 node.Priority = Priority of ParentNode containing priority;

10 end
11 for child of Children Nodes of node do
12 S.push(child);
13 end

14 end

15 end

“V.H1N1” is missing a priority. Using Algorithm 2, the priority can be prop-

agated from “E.Viral” to “V.H1N1” to assign a restricted priority of 0.8.

4.2.4 Calculating Sensitive Attribute Value Weights

When all nodes have been assigned a priority in the tkl -Data Model, the

weights for the sensitive attribute values can be calculated.

To calculate the sensitive attribute value weights, we follow the path from

the attribute value node to the root node of the tkl -Data Model. Using the

pathway the priority of the single attribute value node is multiplied with any

proceeding attribute nodes (note the exclusion of attribute value nodes), and

the root node.

For example, consider the pathway from “V-0.HIV” to “PersonalDat-

aCategory” highlighted green in Figure 4.8. The weight for “V-0.HIV”

is then calculated by multiplying the priority of “V-0.HIV”, priorities of

all attribute nodes in the pathway, and the priority of the root node. It

should be noted that the priority for the root node is considered to be 1,
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and any other attribute value nodes other than the one where a weight is

being calculated for is ignored. The resulting calculation for “V-0.HIV”

is as follows: priority(PersonalDataCategory) × priority(External) ×

priority(MedicalHealth) × priority(Health) × priority(A.Disease) ×

priority(HIV) = 1× 1× 0.8× 0.54× 1× 1 = 0.432.

The resulting weights for all the sensitive attribute values can be found

below in Table 4.2. An interesting property to note is that when summing the

maximum weight from each sensitive attribute, the sum will never be greater

than 1. This makes it easy to know the theoretical maximum for normalizing

any misuseability score calculation. Also of note is how “Medication” contains

the same weights because the attribute value nodes were assigned the same

“restricted” priority.

We can also observe that there are similar attribute values such as “Flu” in

the Disease and Initial Diagnosis columns, but different weights are calculated

for them. The sensitive attribute value weight forDisease has a higher sensitive

weight because it is worse for people to know an actual diagnosis, as opposed

to the knowing the potential diagnosis under the Initial Diagnosis attribute.

The tkl -Data Model manages to capture this intuition by modeling these two

attributes to be generalized under two different concepts: “HealthRecord”

and “Health” when developing the model in Section 4.1. This differentiation

between the concepts allows for different weights to be decided with pairwise

comparison as determined in Section 4.2.1.

Table 4.2: Weights calculated from priorities of the tkl -Data Model in Fig-
ure 4.8 using the tkl -Score methodology to derive scores.

Disease Medication Age Initial Diagnosis
W (Flu) = 0.0864 W (Antibiotics) = 0.10432 W (30+) = 0.08 W (Migraine) = 0.05472
W (H1N1) = 0.3456 W (Paracetamol) = 0.10432 W (< 30) = 0.08 W (Flu) = 0.05472
W (Hypertension) = 0.3456 W (ARV ) = 0.10432 W (Hypertension) = 0.10944
W (HIV ) = 0.432 W (Tamiflu) = 0.10432 W (HIV ) = 0.21888

W (Statin) = 0.10432
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4.3 Calculating tkl-Score

tkl -Score incorporates l -diversity as l -Distinguishing Factor, and t-closeness as

t-Distinguishing Factor to account for attribute disclosure attacks in addition

to identity disclosure attacks. It is important to also account for attribute

disclosure as it may be difficult to be certain of an individual’s identity, but

attributes relating to an individual can still be disclosed when similar infor-

mation about identities are grouped together.

The tkl -Score record score is defined as:

RS tklr =
DF tr +

∑︁
ASi

∈r weight(ASi
)

DF lr

(4.1)

In the equation above, r is a record, DF lr is the l -Distinguishing Factor of a

record, DF tr is the t-Distinguishing Factor of a record, and weight(ASi
) is the

weight of the ith sensitive attribute value of a record.

Section 4.3.1 introduces the intuition behind l -Distinguishing Factor that

replaces the k -Distinguishing Factor of M-Score and L-Severity. Section 4.3.2

introduces the intuition behind t-Distinguishing Factor, which is added to the

sum of sensitive attribute value weights in a record score.

It should be noted that the l -Distinguishing Factor and

t-Distinguishing Factor, like the k -Distinguishing Factor, aim to quan-

tify the identity and attribute uniqueness of records in a “lookup table” that

contains all records related to a population. However, since it is difficult to

obtain all records related to a population, the “lookup table” is approximated

to be the source table of a published table.

4.3.1 l-Distinguishing Factor

Recall that l -diversity (Definition 9) is the measure used to determine how

distinguishable an individual is based on attribute frequency in an equivalence

class (a group of records with common quasi-identifier attribute values). An

interesting property to note is that for the l -diversity of the smallest equiva-

lence class in k -anonymity, k will never be less than l. This is proven below.
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Proof. Let k be the k -anonymity of a dataset which is the smallest equiva-

lence class with size k of rows. Assume that the l -diversity of the smallest

equivalence class has k < l. Based on the assumption, let l = k + 1. Then

based on the definition of l -diversity, there must be k + 1 unique attribute

values. However, this is a contradiction as the size of the equivalence class

must be k + 1 to have k + 1 unique attribute values. Now assume that the

dataset has multiple sensitive attributes and therefore creates a combination

of groupings using Definition 10 to find the multi-attribute l -diversity. The

largest equivalence class of the combinations will still be at most be the size

of the original equivalence class that is matched with only quasi-identifiers.

The reason is that as more attributes need to be matched to form a grouping

of records, the size of the groupings either remains the same as the attribute

values are all the same, or the size of the grouping becomes smaller when the

attribute values are different. Therefore, l ≤ k.

Recall that k -Distinguishing Factor is used to determine how distinguish-

able a record is in a source table for a misuseability score calculation,

and is a divisor in the score equation of M -Score and L-Severity. If the

k -Distinguishing Factor is large it signifies that there is less risk of identifi-

ability as there are more records need to distinguish an identity from. The

inverse, is that with a smaller k -Distinguishing Factor there is an increase to

severity as an individual becomes more identifiable. Hence, we wish to capture

the maximal severity by minimizing the k -Distinguishing Factor.

Since l ≤ k, if we take the l -diversity of the multi-attribute l -diversity

equivalence class containing the published record in the source table, instead

of the k -anonymity of the equivalence class containing the published record

in a misuseability score calculation, the k -anonymity metric for identity dis-

closure attacks of k -Distinguishing Factor will also be accounted for in addi-

tion to accounting for attribute disclosure attacks. Therefore in tkl -Score,

l -Distinguishing Factor replaces the k -Distinguishing Factor factor used in

M -Score and L-Severity.

Definition 15 (l -Distinguishing Factor). The l -Distinguishing Factor of a
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record in a published table is the minimal multi-attribute l -diversity (Defi-

nition 10) “equivalence class” in the source table that contains the record in

the published table. If there are no quasi-identifiers to form an equivalence

class in the source table, then the minimal multi-attribute l -diversity of the

published table (forming equivalence classes based on the sensitive attributes

only) is the l -Distinguishing Factor of a record.

For example, recall the illustrative example source Table 3.1. To find

the l -Distinguishing Factor of record 5, we begin by getting the “equivalence

classes” of the multi-attribute l -diversity on the source Table 3.1. Assum-

ing that the quasi-identifiers are Age, City, and Gender while the sensitive

attributes are Disease, Medication, Age, and Initial Diagnosis, the multi-

attribute l -diversity “equivalence class” groupings containing record 5 paired

with their unique sensitive attribute values are:

(Job, City, Gender, Medication, Age, Initial Diagnosis) : “Flu”

(Job, City, Gender, Disease, Age, Initial Diagnosis) : “Paracetamol”

(Job, City, Gender, Medication, Age, Initial Diagnosis) : “Flu”

(Job, City, Gender, Disease, Medication, Age) : “Migraine”

Since there is only one unique sensitive attribute per “equivalence class”, the

smallest multi-attribute l -diversity is 1, and therefore the l -Distinguishing Factor

will be 1.

If we were to take the k -Distinguishing Factor of record 5, the equiv-

alence class (grouped based on the quasi-identifiers: Age, City, and Gen-

der) containing record 5 would contain: record 5, and record 6. Thus,

the k -Distinguishing Factor would be 2 since that is the size of the equiv-

alence class containing record 5. As a result, the misuseability score of

record 5 calculated with l -Distinguishing Factor would be greater and there-

fore more distinguishable than a misuseability score of record 5 calculated with

k -Distinguishing Factor.
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4.3.2 t-Distinguishing Factor

Recall that t-closeness (Definition 11) provides a measurement for the simi-

larity between the attribute value distribution of an equivalence class, and the

attribute value distribution of an entire table. The similarity of distributions

for sensitive attribute values helps to determine the true diversity of sensi-

tive attributes globally. In comparison, l -diversity only considers the diversity

of sensitive attributes within an equivalence class, which means sensitive at-

tributes may still be prone to attribute disclosure if all the unique attributes

are in a single equivalence class. As a result, t-closeness and l -diversity are

two different anonymity measures that should be used together as a way to

measure the anonymity of sensitive attributes in table.

The objective of integrating t-closeness into tkl -Score is to increase the

relative severity of a exposure as the value of the t-closeness of the released

records increase. This is because the higher the t-closeness, the higher the

likelihood of an attribute disclosure attack as the distributions are less similar

and sensitive attributes are easier to discern. Therefore, adding t to the record

score is chosen as the best option.

The intuition behind adding t to the record score, comes from considering

three options to increase the record sensitivity score keeping in mind that

t ∈ [0, 1]. The three options considered for maximizing the record score using

t are: adding t to the record score, subtracting t from the denominator of the

record score, and dividing the record score by t. For each case, we assume to

have a record score function S
DF

modeled after Equation 3.4 where 1 ≥ S ≥ 0

and represents the sum of sensitive attribute value weights of a record, and

DF ≥ 1 represents the l -Distinguishing Factor.

By adding t to the numerator of the function to calculate a record score, it

produces a linear translation of the score by t
DF

on the y-axis when visualized

on a plot. For instance, if we consider the slope y = S
DF

, then it follows that

when we add t to the numerator y = S+t
DF

= S
DF

+ t
DF

. The y-intercept (by

the definition of slope) is translated from 0 to t
DF

meaning that slope is also

translated by t
DF

. In the best case the record score is minimally reduced when
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t ≈ 0 (the attribute distributions are completely unique), and in the worst

case when t = 1 (all the attributes are the same) the score increases by t
DF

.

If we subtract t from the denominator S
DF−t

of the record score function,

we encounter the issue of division by 0 if DF = t as the function is hyperbolic

by nature. Thus, subtracting from the denominator is not an ideal choice.

We can also divide the record score function by t as such: S
DF ·t . However,

there is also the possibility of encountering division by 0 if t = 0.

Therefore, to avoid division by 0, the best option is adding t to the nu-

merator of the record score function. As a result, the record store will either

be maintained or increased by a factor t to indicate the severity of a record

release more finely.

Definition 16 (t-Distinguishing Factor). The t-Distinguishing Factor of a

record in a published table is the maximal t-closeness of the equivalence class

in the source table that contains the record in the published table. If there

are no quasi-identifiers to form an equivalence class in the source table, then

the t-Distinguishing Factor of a record is 0 as there are no equivalence classes

to compare the distribution of attribute values.

For example, to get the t-Distinguishing Factor for row 0 of the illustra-

tive example Table 3.1 assuming that Job, City, and Gender are the quasi-

identifiers, and Disease, Medication, Age, and Initial Diagnosis are the sensi-

tive attributes. First, determine the equivalence class that row 0 is in, which

is an equivalence class with only itself in it.

Next, we get the global frequencies for each of the sensitive attribute values:

QDisease = {H1N1,Flu,HIV,Hypertension} = {2
7
, 3
7
, 1
7
, 1
7
}

QMedication = {Paracetamol,Antibiotics,Tamiflu, Statin,ARV}

= {2
7
,
2

7
,
1

7
,
1

7
,
1

7
}

QAge = {19, 23, 27, 29, 49, 70} = {1
7
, 1
7
, 1
7
, 2
7
, 1
7
, 1
7
}

QInitialDiagnosis = {Migraine,Flu,HIV,Hypertension} = {3
7
, 2
7
, 1
7
, 1
7
}
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And the frequencies of the sensitive attribute values for the equivalence class

that contains row 0:

PDisease = {H1N1} = {1
7
, 0, 0, 0}

PMedication = {Tamiflu} = {0, 0, 1
7
, 0, 0}

PAge = {27} = {0, 0, 1
7
, 0, 0, 0}

PInitialDiagnosis = {Flu} = {0, 1
7
, 0, 0}

Finally, the distances between the P and Q distributions are calculated

using Equation 3.1 for the continuous attribute Age, and Equation 3.2 for the

discrete attributes Disease, Medication, and Initial Diagnosis. The maximum

of the distances calculated is the greatest t-closeness of the equivalence classes

containing row 0.

The distances of the distributions are as follows: E(PAge , QAge) =

0.2381; E ′(QDisease , PDisease) = 0.7143; E ′(QMedication , PMedication) = 0.8571;

E ′(QInitialDiagnosis , PInitialDiagnosis) = 0.7143.

Therefore, the t-Distinguishing Factor is determined to be 0.8571.

4.3.3 Published Table Score

To calculate the tkl -Score of a published table, every record in the table is

scored and summed together using sensitive attribute value weights derived

from the tkl -Data Model.

Definition 17 (tkl -Score). Given a published table T, the tkl -Score is calcu-

lated as: tkl -Score =
∑︁

r∈T

(︃
DF tr+

∑︁
ASi

∈r weight(ASi
)

DF lr

)︃
where for each record r,

the total sum of each ith sensitive attribute value weight ASi
(derived from

the tkl -Data Model) is summed with the t-Distinguishing Factor DF tr of r

and divided with the l -Distinguishing Factor DF lr of r. The total sum of each

ith sensitive attribute weight,
∑︁

ASi
∈r weight(ASi

), is bounded to [0, 1].

For instance, to calculate the published Table 3.6 tkl -Score of Scenario

1 described in Section 3.1, using the sensitive attribute value weights from

Table 4.2, we first need to calculate the record scores for each row of Table 3.6.
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As an example of a record score calculation, the row with id 3 can be

calculated using Equation 4.1 as follows:

RS tkl id3
=

DF tid3
+ (W (HIV Disease) +W (ARV ) +W (30+) +W (HIV Initial))

DF lid3

=
0.7143 + (0.432 + 0.10432 + 0.08 + 0.21888)

1

= 1.5495

Repeating the process for each record we get the following record scores: row

id 4 as 1.3536, row id 5 as 1.0397, and row id 6 as 1.0397. Summing up all the

record scores, we get the tkl -Score of Scenario 1 to be:

tkl -Score = 1.5495 + 1.3536 + 1.0397 + 1.0397 = 4.983

When this process is repeated for Scenario 2 of the illustrative example,

where the whole source table is released, we get tkl -Score = 1.4418+ 1.2989+

1.0397 + 1.5495 + 1.3536 + 1.0397 + 1.0397 = 8.763 by iterating from row 0

to row 6 of Table 3.1. The score of Scenario 2 is much larger than Scenario 1

which indicates that releasing a bigger table has the potential to cause more

severe consequences.

Similarity to L-Severity tkl -Score is similar to L-Severity as it computes

the score of a published table by summing the corresponding scores of each

released row. However, there are three key differences between the two scores.

First, tkl -Score uses a combination of AHP and domain expert assignment

to derive sensitive attribute value weights as explained in Section 4.2 on the

tkl -Data Model. The tkl -Data Model also does not have a dependency prob-

lem as explained in Section 3.3.6, because no “inference relationships” are

defined. This is in contrast to L-Severity which includes “inference relation-

ships” that have hard to define quantifiable values. In addition, L-Severity

also only uses domain expert assignment in the process of assigning sensitiv-

ity values, as opposed to tkl -Score which uses AHP to systematically evaluate

attribute sensitivity.
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Next, since tkl -Score uses AHP to determine attribute sensitivity, the sum

of sensitive attribute value weights for a record is bounded to [0, 1]. In com-

parison to L-Severity which does not have any bound for the sum of sensitive

attribute value weights of a record.

Finally, tkl -Score accounts for attribute disclosure in addition to iden-

tity disclosure by incorporating l -Distinguishing Factor to increase the record

score when sensitive attribute values are similar within an equivalence class

of a source table containing the record; and t-Distinguishing Factor to in-

crease the record score when the distribution of sensitive attribute values in

an equivalence class of a source table containing the record are different from

the distribution of sensitive attribute values in the source table. In contrast,

L-Severity only accounts for identity disclosure with k -Distinguishing Factor

which increases the record score when the set of records in a table are more

identifiable.

Similarity to M -Score tkl -Score is similar to M -Score as the sum of sen-

sitive attribute value weights are bounded to a maximum of 1 for each record

score. However, the reasons for the maximal bound of the sum are different in

both scores. The sum in M -Score is bounded to a maximum because it mini-

mizes the sum of its sensitive attribute value weights for its record score to 1

as seen in its record score Equation 3.3. In tkl -Score, the sum is bounded to a

maximum because the weights are derived using AHP on the tkl -Data Model.

Like M -Score, tkl -Score also derives attribute sensitivity in a systematic

manner using AHP. However, tkl -Score uses the tkl -Data Model to derive sen-

sitive attribute value weights while M -Score uses a three-level tree model.

With the tkl -Data Model the number of pairwise comparisons can be reduced

since AHP is only performed on the “domain taxonomy” and “sensitive at-

tributes”, while direct assignment and propagation are used on “sensitive at-

tribute values”. The use of propagation can reduce the amount of effort needed

to assign a weight for each sensitive attribute value. In contrast, all “sensi-

tive attribute values” of the three-level three model will need to be compared

pairwise increasing the amount of time needed for deriving sensitive attribute

65



value weights.

UnlikeM -Score, tkl -Score is non-approximative as it sums the record scores

of a published table instead of multiplying the maximum record score of a

published by the number of records in a published table. Thus, tkl -Score

provides a more fine-grained severity of records in a published table instead of

an estimated severity of records in a published table.

Also, similar to the tkl -Score comparison with L-Severity, tkl -Score in-

corporates l -Distinguishing Factor and t-Distinguishing Factor to account for

attribute disclosure in addition to identity disclosure. In comparison, M -Score

only accounts for identity disclosure with k -Distinguishing Factor.

Lastly, tkl -Score cannot account for the case where releasing any single

maximum record score of the table is the maximum severity as there is no x

parameter to set to x → ∞ like M -Score. Instead, tkl -Score only accounts for

the case that calculates the severity based on the number of records. Therefore,

tkl -Scoremax is introduced in the section below to account for the case where

releasing any single maximum record score is the maximum severity.

4.3.4 Maximum Record Severity

tkl -Scoremax is a score that is modeled after M -Score (x → ∞) to signify that

releasing any one maximum record score is the maximum severity. The dif-

ference of tkl -Scoremax is that it also accounts for attribute disclosure because

it incorporates l -Distinguishing Factor and t-Distinguishing Factor, instead of

k -Distinguishing Factor like M -Score. An example of how tkl -Scoremax differs

from tkl -Score can be seen in Section 5.3 where the presence of a maximum

record in two different published table sizes produce the same tkl -Scoremax but

different tkl -Scores.

Definition 18 (tkl -Scoremax). Given a table with n records, the table’s

tkl -Scoremax is then: tkl -Scoremax = max0≤r≤n

(︃
DF tr+

∑︁
ASi

∈r weight(ASi
)

DF lr

)︃
where

for each record r, the total sum of each ith sensitive attribute value weight ASi

(derived from the tkl -Data Model) is summed with the t-Distinguishing Factor

DF tr of r and divided with the l -Distinguishing Factor DF lr of r. The total
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sum of each ith sensitive attribute weight,
∑︁

ASi
∈r weight(ASi

), is bounded to

[0, 1].

4.3.5 Considerations for Dynamic Data

tkl -Score is designed to be calculated for a source table that does not change

when data is published. However, in the real-world the state of data is dynamic

and may change with the addition of new rows or columns to a source table.

Thus, the implications of data changes to the source table must be considered.

The run-time cost of tkl -Score depends on four factors: (1) the derivation

of attribute value weights, (2) the record score of each record in a source table,

(3) the distinguishing factors, and (4) the number of records in the published

table.

The derivation of attribute value weights is by far the most time-consuming

process as it requires human intervention to perform pairwise comparisons

on the criteria of the tkl -Data Model which grows quadratically in the worst

case [38]. If there are c criteria and the maximum amount of nodes in the

criteria are m nodes, then the worst case of needed pairwise comparisons is

c × m(m − 1)/2 comparisons which is O(m2) running time. As well, the

direct assignment of qualitative priorities must be done on the attribute value

nodes of the tkl -Data Model which is constant time as each node just needs

to be assigned a weight which is linear and inconsequential to the pairwise

comparisons of criteria. Finally, the attribute value weights are calculated

from the priorities of the criteria and the qualitative priorities. This operation

is also linear and inconsequential. Therefore, the overall running time of the

derivation of weights is O(m2).

The record score of each record in a source table a constant O(1) run-

ning time as it sums the attribute value weights for the attribute values of a

record with the t-Distinguishing Factor of a record and divides the sum by the

l -Distinguishing Factor.

The calculation of the distinguishing factors are dependent on two vari-

ables: s is defined as the number of sensitive attribute columns, and n

is defined as the number of records in the source table. To calculate the
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l -Distinguishing Factor it requires at most s + 1 groupings and n iterations

of each record leading to O((s + 1) × n) running time. The s groupings

comes from the multi-attribute l -diversity groupings, and the 1 comes from

the k -anonymity equivalence class calculation. The t-Distinguishing Factor

requires the same equivalence calculation as k -anonymity and n iterations of

each record to get the attribute value frequency counts leading to O(n) running

time. Since these calculations can occur in parallel, the worst case running

time is linear at O((s + 1) × n) as the number of sensitive attribute columns

s remains constant unless a new sensitive attribute column is added.

Finally, to calculate tkl -Score the n record scores of a published table are

summed together which is O(n) running time.

This run-time analysis is similar to the analysis of M -Score by Harel et

al. [18] which come to a conclusion that the worst case is linear when distin-

guishing factors need to be determined. It should be noted that analysis of

M -Score does not consider the calculation of sensitive attribute value weights

and assumes that they are predetermined and remain constant.

Modifying the Number of Columns The addition of new sensitive at-

tribute columns to the source table will greatly affect the performance of

tkl -Score as new weights will need to be derived again for the sensitive at-

tribute columns, and new distinguishing factors will need to be calculated.

This leads to a quadratic and linear operation that is unavoidable. If only

additional quasi-identifier columns are added to the source table, the perfor-

mance will not be as greatly affected as only new distinguishing factors and

record scores will need to be calculated which is a linear operation.

If the number of columns are reduced in the source table, no modifications

need to be made to the derived weights if the column removed was not sensitive

or assume that releasing the other attribute values would be more severe.

Otherwise, new sensitive attribute weights need to be calculated. In any case

that the number of columns are reduced, the distinguishing factors will need

to be recalculated with a linear operation.
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Modifying the Number of Rows The addition or removal of rows from

the source table requires the recalculation of distinguishing factors, and possi-

bly require the calculation of new sensitive attribute value weights if there are

new sensitive attribute values in the rows. The distinguishing factors will also

have to be recalculated as well. The worst case overall is therefore still linear

time as the calculation of new sensitive attribute value weights is constant

time with direct assignment, and the calculation of the distinguishing factor

is a linear operation.

4.4 Summary

In this chapter, the rationale behind tkl -Score and its methodology is ex-

plained. tkl -Score accounts for both identity and attribute disclosure attacks

for by incorporating the PPDP measures t-closeness and l -diversity. Fur-

thermore, it uses the underlying relationships of the data, modeled in the

tkl -Data Model, to derive weights for sensitive attribute values. A derivative

of tkl -Score, tkl -Scoremax, is also introduced to account for the case where

releasing any one maximum record score is the maximum severity. In the

next chapter, tkl -Score and tkl -Scoremax are compared against M -Score and

L-Severity.
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Chapter 5

Comparison of Misuseability
Scores

To compare tkl -Score and its derivative tkl -Scoremax against its predecessors

M -Score and L-Severity, three assumptions are considered: (1) the maximum

severity is when a complete source table is released, (2) the maximum severity

is when any one record with the maximum record score in the source table

is released, (3) the maximum severity is when a score reaches the theoretical

maximum score. With assumption (1) the severity is related to the amount

of records that are released, and therefore tkl -Score, L-Severity, and M -Score

(x = 1) are compared. With assumption (2) the severity is related to the

maximum record of a source table, and therefore tkl -Scoremax and M -Score

(x → ∞) are compared. For assumption (3) any misuseability score can be

used, but it is best to be used with tkl -Scoremax and M -Score (x → ∞) as

illustrated in Section 5.4.

Using assumption (1), a case is made for needing t-Distinguishing Factor

in Section 5.1, and a case is also made for needing l -Distinguishing Factor in

Section 5.2.

In Section 5.3, we refer back to the illustrative example of Section 3.1

to see how an increasing amount of records with the same subset of records

in a published table contributes to a greater or equal misuseability score for

assumption (1) and (2).

In Section 5.4, a case is made for why it can be beneficial to normalize

against the theoretical maximum to use as an indicator of severity using as-
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sumption (3).

Normalizing Against the Source Table Score Harel et al. [18] suggest

that M -Score can be normalized by taking the M -Score of the published table

and dividing by the M -Score of the source table. This form of normalization

assumes that releasing a complete source table is the maximum severity —

when a subset of a source table is published, it will take a percentage of the

source table score.

Therefore, one method of normalization that would be appropriate for com-

paring the tkl -Score against its predecessors is by dividing the misuseability

score of a published table by the score of the complete source table. The

normalized score obtained will be in the domain of [0, 1].

It should be noted that scores normalized against one source table should

not be compared to a score normalized against a different source table. The

reason is that source tables can have different sensitivities of attributes, can

vary in size, and can have different attribute values meaning that the records

may have different distinguishing factors.

5.1 A Case for t-Distinguishing Factor

The t-Distinguishing Factor is used to determine a record’s distinguishability

based on the similarity of the distribution of sensitive attributes in the equiv-

alence class of the source table containing the record and the distribution of

sensitive attributes in the whole table. Recall that the higher the t value, the

higher the severity a record would be as the distribution of the values of the

sensitive attributes and the whole table are more different and therefore easier

to differentiate.

To illustrate how t-Distinguishing Factor helps to distinguish records, the

record scores for the source Table 5.1a are calculated in Table 5.1c. From the

normalized scores in Table 5.1b, we can see that: (i) tkl -Score is reduced from

row 5 to row 1, while M -Score (x = 1) and L-Severity maintains consistency

for rows 0, 1, and 5; and (ii) the tkl -Score is reduced from row 2 to 4, while
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M -Score (x = 1) and L-Severity are increased. These observations can be

visualized in Figure 5.1.

It should be noted that the M -Score (regardless of x parameter) and

L-Severity calculated for each record seen in Table 5.1c are the same because

there is only a single record for the misuseability score calculation. However,

if we were to calculate the misuseability scores for a larger subset of published

records, M -Score (x = 1), M -Score (x → ∞), and L-Severity will produce

different results.

id Job City Gender Initial Diagnosis
0 Lawyer Calgary Female Flu
1 Lawyer Calgary Female Migraine
2 Lawyer Edmonton Male HIV
3 Lawyer Edmonton Male Hypertension
4 Lawyer Edmonton Female HIV
5 Lawyer Edmonton Female Migraine

(a) Source table where the sensitive attribute is Initial Diagnosis, and the quasi-
identifiers are Job, City, and Gender.

Row tkl-Score M -Score (x = 1) L-Severity
0 0.1642 0.0417 0.0769
1 0.1642 0.0417 0.0769
5 0.1149 0.0417 0.0769
3 0.1804 0.0833 0.1538
2 0.2128 0.1667 0.3077
4 0.1635 0.1667 0.3077

(b) Misuseability scores for each row of Table 5.1a normalized against the source
table score rounded to four decimal places.

Row tkl-Score M -Score L-Severity DF t DF k DF l Weights
0 0.27736 0.02736 0.02736 0.50000 2 2 0.05472
1 0.27736 0.02736 0.02736 0.50000 2 2 0.05472
5 0.19403 0.02736 0.02736 0.33333 2 2 0.05472
3 0.30472 0.05472 0.05472 0.50000 2 2 0.10944
2 0.35944 0.10944 0.10944 0.50000 2 2 0.21888
4 0.27611 0.10944 0.10944 0.33333 2 2 0.21888

(c) For each row of Table 5.1a: the raw misuseability scores, distinguishing factors,
and sum of sensitive attribute value weights (Table 4.2) rounded to five decimal
places.

Table 5.1: A case for using t-Distinguishing Factor.
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Figure 5.1: Line chart of per row scores normalized against the source ta-
ble score for tkl -Score, M -Score (x = 1), and L-Severity of the records in
Table 5.1a. It is sorted ascending by L-Severity.

The differences of (i) and (ii) stem from the equivalence class consisting of

rows 4 and 5 in Table 5.1a. The distribution of the Initial Diagnosis values

in the equivalence consisting of rows 4 and 5 has a lower t value compared

to the other equivalence classes of the table as “HIV” and “Migraine” occur

elsewhere in the table. In contrast, the equivalence class with rows 0 and 1,

and the equivalence class with rows 2 and 3 have a unique value that do not

appear in any other equivalence class leading to a higher t value. Therefore,

rows 4 and 5 have a lower t-Distinguishing Factor than the other records, and

as a result rows 4 and 5 considered less severe by tkl -Score than the other

records in the table that have the same l -Distinguishing Factor and sum of

sensitive attribute value weights as seen in Table 5.1c.

73



Intuitively, if we were to observe the attribute values of Table 5.1a, we can

see that either a female lawyer from Edmonton or a male lawyer from Edmon-

ton has “HIV”. Likewise, either a female lawyer from Edmonton or a female

lawyer from Calgary has a “Migraine”. Since “HIV” and “Migraine” must be

distinguished from two distinct equivalence classes, it is less likely that these

sensitive attributes will be inferred as opposed to “Flu” and “Hypertension”

which occur only in a single equivalence class.

5.2 A Case for l-Distinguishing Factor

The l -Distinguishing Factor is used to determine a record’s distinguishabil-

ity based on the size of the equivalence class that contains the record in

the source table and also the values of sensitive attributes in the equiva-

lence class that contains the record in the source table. Recall that as the

l -Distinguishing Factor is part of the denominator of a record score (Equa-

tion 4.1), and therefore the smaller the l -Distinguishing Factor, the more the

potential implications of releasing a record. So if there are more unique sen-

sitive attribute values in an equivalence class, the harder it will be to link

specific sensitive attributes to the identities of an equivalence class.

To illustrate how t-Distinguishing Factor can distinguish records, the record

scores for the source Table 5.2a are calculated in Table 5.2c. From the normal-

ized scores in Table 5.2b, we can see that M -Score and L-Severity maintain

consistent scores for rows 0, 2, 4, and 5 while tkl -Score has greater scores in

rows 4 and 5 compared to rows 0 and 2. This observation can be visualized in

Figure 5.2.

We can account for the discrepancies between rows 4, 5 and rows 0, 2 in

tkl -Score by observing its l -Distinguishing Factor and t-Distinguishing Factor

values. In Table 5.2c, we see that the t-Distinguishing Factor values of rows

4, 5 are twice as much as the t-Distinguishing Factor values of rows 0, 2. This

increases tkl -Score additively, but does not explain why the tkl -Score of rows

4,5 are more than double rows 0, 2. To explain this multiplicative doubling

effect, we can look at the l -Distinguishing Factor values of the rows.
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id Job City Gender Initial Diagnosis
0 Lawyer Calgary Female HIV
1 Lawyer Calgary Female Flu
2 Lawyer Edmonton Male HIV
3 Lawyer Edmonton Male Flu
4 Lawyer Edmonton Female HIV
5 Lawyer Edmonton Female HIV

(a) Source table where the sensitive attribute is Initial Diagnosis, and the quasi-
identifiers are Job, City, and Gender.

Row tkl-Score M -Score (x = 1) L-Severity
1 0.0647 0.0417 0.0556
3 0.0647 0.0417 0.0556
0 0.1126 0.1667 0.2222
2 0.1126 0.1667 0.2222
4 0.3227 0.1667 0.2222
5 0.3227 0.1667 0.2222

(b) Misuseability scores for each row of Table 5.2a normalized against the source
table rounded to four decimal places.

Row tkl-Score M -Score L-Severity DF t DF k DF l Weights
1 0.11069 0.02736 0.02736 0.16667 2 2 0.05472
3 0.11069 0.02736 0.02736 0.16667 2 2 0.05472
0 0.19277 0.10944 0.10944 0.16667 2 2 0.21888
2 0.19277 0.10944 0.10944 0.16667 2 2 0.21888
4 0.55221 0.10944 0.10944 0.33333 2 1 0.21888
5 0.55221 0.10944 0.10944 0.33333 2 1 0.21888

(c) For each row of Table 5.2a: the raw misuseability scores, distinguishing factors,
and sum of sensitive attribute value weights (Table 4.2) rounded to five decimal
places.

Table 5.2: A case for using l -Distinguishing Factor

From the equivalence class containing rows 4,5 as seen in Table 5.2a, it can

be observed that “HIV” is the only unique sensitive attribute in the equivalence

class. In every other equivalence class, there are two unique values. This means

that if we knew a female lawyer was from Edmonton, we can deduce that they

have HIV if the table were to be released, as opposed to having to distinguish

between two different sensitive attribute values with the other equivalence class

groupings. Because the equivalence class containing rows 4,5 have only “HIV”

as the sensitive attribute, the l -Distinguishing Factor for rows 4,5 is 1. As a
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result, the record scores of rows 4,5 are not reduced by a factor of 2 like rows

0, 2.
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Figure 5.2: Line chart of per row scores normalized against the source ta-
ble score for tkl -Score, M -Score (x = 1), and L-Severity of the records in
Table 5.2a. It is sorted ascending by L-Severity.

5.3 Scoring the Illustrative Example

Recall the illustrative example in Section 3.1 involving the source Table 3.1

where the rows with ids 3, 4, 5, and 6 are published in Scenario 1, and the

complete source table is published in Scenario 2. The misuseability scores

are calculated for the published table of Scenario 1 in Table 5.3a, and for the

published source table of Scenario 2 in Table 5.3b.
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id Job City Gender Disease Medication Age Initial Diagnosis
3 Lawyer Edmonton Male HIV ARV 49 HIV
4 Lawyer Edmonton Male Hypertension Statin 70 Hypertension
5 Lawyer Edmonton Female Flu Paracetamol 29 Migraine
6 Lawyer Edmonton Female Flu Paracetamol 29 Migraine

Normalized Against Source Table Raw Misuseability Scores
tkl -Score = 0.5686 tkl -Score = 4.98258

tkl -Scoremax = 1.0000 tkl -Scoremax = 1.54949
M -Score (x = 1) = 0.4082 M -Score (x = 1) = 1.67040
M -Score (x → ∞) = 0.7143 M -Score (x → ∞) = 0.41760

L-Severity = 0.5055 L-Severity = 1.06272

(a) Published subset of Table 3.1 consisting of the rows with ids 3, 4, 5, and 6.

id Job City Gender Disease Medication Age Initial Diagnosis
0 Lawyer Calgary Male H1N1 Tamiflu 27 Flu
1 Lawyer Calgary Female H1N1 Antibiotics 19 Flu
2 Lawyer Calgary Female Flu Antibiotics 23 Migraine
3 Lawyer Edmonton Male HIV ARV 49 HIV
4 Lawyer Edmonton Male Hypertension Statin 70 Hypertension
5 Lawyer Edmonton Female Flu Paracetamol 29 Migraine
6 Lawyer Edmonton Female Flu Paracetamol 29 Migraine

Normalized Against Source Table Raw Misuseability Scores
tkl -Score = 1.0000 tkl -Score = 8.76302

tkl -Scoremax = 1.0000 tkl -Scoremax = 1.54949
M -Score (x = 1) = 1.0000 M -Score (x = 1) = 4.09248
M -Score (x → ∞) = 1.0000 M -Score (x → ∞) = 0.58464

L-Severity = 1.0000 L-Severity = 2.10240

(b) Published source Table 3.1.

Row tkl-Score tkl-Scoremax M -Score L-Severity DF t DF k DF l Weights
2 1.03973 1.03973 0.16272 0.16272 0.71429 2 1 0.32544
5 1.03973 1.03973 0.16272 0.16272 0.71429 2 1 0.32544
6 1.03973 1.03973 0.16272 0.16272 0.71429 2 1 0.32544
1 1.29893 1.29893 0.29232 0.29232 0.71429 2 1 0.58464
4 1.35365 1.35365 0.31968 0.31968 0.71429 2 1 0.63936
3 1.54949 1.54949 0.41760 0.41760 0.71429 2 1 0.83520
0 1.44178 1.44178 0.58464 0.58464 0.85714 1 1 0.58464

(c) For each row of Table 3.1: the raw misuseability scores, distinguishing factors,
and sum of sensitive attribute weights rounded to five decimal places.

Table 5.3: The misuseability scores for: (a) Scenario 1 of the illustrative
example, (b) Scenario 2 of the illustrative example, and (c) the records of
the illustrative example in Section 3.1. The scores are calculated using the
sensitive attribute value weights of Table 4.2. The sensitive attributes of the
source table are Disease, Medication, Age, and Initial Diagnosis, and the quasi-
identifiers are Job, City, and Gender.

The scores of these scenarios illustrate that the misuseability score of a
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superset of records is either greater than or equal to the subset of records. For

example, by comparing the misuseability scores normalized against the source

table score in Table 5.3a to the raw misuseability scores in Table 5.3c, we can

see that the individual raw misuseability scores of rows 3, 4, 5, and 6 are smaller

than the scores of the published table containing the rows together. We can

also see that the scores of Table 5.3a (a subset of Table 5.3b) are smaller than

Table 5.3b. It should also be noted that tkl -Score and tkl -Scoremax are the same

in Table 5.3c because there is only a single record for the misuseability score

calculation; likewise for M -Score (regardless of x parameter) and L-Severity.

We can also see that tkl -Scoremax is the maximum severity in both scenarios

as its score normalized against the source table score is 1. This does not occur

for any other misuseability score. Recall that tkl -Scoremax and M -Score (x →

∞) account for assumption (2) where releasing any single maximum record

score of the source table is the maximum severity. Therefore, tkl -Scoremax and

M -Score (x → ∞) report the maximum severity in different published subsets

as long as the published subset has at least one maximum record of the source

table. On the other hand, tkl -Score, L-Severity, and M -Score (x = 1) —

which account for assumption (1) — will never reach maximum severity when

normalized against the source table until all records of the source table are

released in the published table since these misuseability scores rely on table

size as part of their calculations.

The reason that tkl -Scoremax has the maximum severity in both scenarios

can also be explained by looking at the record score of row 3 which is considered

to be more severe than row 0 as seen in Table 5.3c. When looking at the

sensitive attribute values of the rows in Table 5.3b, it can be seen that row 3

has more sensitive attribute values such as “HIV” compared to row which has

attribute values such as “Flu”. This higher sensitivity is reflected in the sum

of weights as seen in Table 5.3c. However, for M -Score and L-Severity it gets

reduced multiplicatively by the k -Distinguishing Factor that is 2, compared to

the l -Distinguishing Factor of tkl -Score and tkl -Scoremax that is 1.
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5.4 Indicating Severity

Recall that the previous sections of this chapter only normalizes the misuse-

ability score against the source table score. We can also normalize against

the theoretical maximum as described below. However, to compare any of

the scores normalized against the theoretical maximum, we must assume that

the source table used to calculate the misuseability score is the best possible

approximation of a “lookup table” and the sensitive attribute value weights of

similar values reflect a similar importance.

Normalizing Against the Theoretical Maximum A misuseability score

can be normalized against the theoretical maximum by taking the misuseabil-

ity score for a published table and dividing by the theoretical maximum score

for the number of records in the published table. The normalized score ob-

tained will be in the domain of [0, 1]. To calculate the theoretical maximum

score of a table, the theoretical maximum score for an individual record is

multiplied by the number of records in the table.

The theoretical maximum scores for an individual record can be determined

when all the upper and lower bounds needed to maximize the record score are

known. Thus, if the sensitive attribute value weights are derived using AHP as

part of its process in Section 4.2, the sum of elicited weights can be bounded

to maximum of 1. As well, the t-Distinguishing Factor is in the domain of

[0, 1] and therefore it is also bounded to a maximum of 1. The lower bounds

of l -Distinguishing Factor and k -Distinguishing Factor is at least 1 since that

is the size of the smallest equivalence class containing a single record in the

source table. Therefore, the theoretical maximum scores for an individual

record in each of the misuseability scores are:

• M -Scorerecord (regardless of x ) = min(1,max(weights))
min(DFk)

= 1
1
= 1

• L-Severityrecord = max(weights)
min(DFk)

= 1
1
= 1

• tkl -Scorerecord = tkl -Scoremaxrecord = max(DF t)+max(weights)
min(DF l)

= 1+1
1

= 2
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The normalization against the theoretical maximization, also “rescales”

misuseability scores as it is modeled after min-max normalization where:
score−min(score)

max(score)−min(score)
= score−0

max(score)−0
= score

max(score)
.

It should be noted that the normalization against a theoretical maximum

using tkl -Score, M -Score (x = 1), and L-Severity is difficult to comprehend as

the tables may have the same number of records, but different scores for the

records. For example, consider the two different published tables with four

records where the theoretical maximum score is 1:

Table1 =
1 + 0.5 + 0.3 + 0.3 + 0.3

1× 5
=

1

2

Table2 =
0.5 + 0.5 + 0.5 + 0.5 + 0.5

1× 5
=

1

2

If we normalize against the theoretical maximum the differences, the tables

both produce the same normalized score. However, it should be noted that

the differences between the record scores are ignored even though one table

may release more severe records than the other.

Therefore, if we were to rely on the normalization against the theoretical

maximum as a metric of severity for assumption (3) using tkl -Score, L-Severity,

or M -Score (x = 1), we cannot say that one set of records is more severe than

the other. However, it can be a good indicator of severity. For instance, if the

normalization is closer to 1, the set of records in the published table are likely

to have larger record scores as opposed to a normalization closer to 0 where

the set of records are likely to have smaller record scores.

If we use tkl -Scoremax or M -Score (x → ∞) with assumption (3), the nor-

malization against the theoretical maximum allows for the comparison between

different tables as the “size” of the published table will always be 1. For ex-

ample, we can say M -Score (x → ∞) in Table 5.3b is more severe than the

M -Score (x → ∞) of record 3 calculated in Table 5.1c: 0.58464 > 0.05472.

However, there is a caveat to the comparison as the t-Distinguishing Factor,

k -Distinguishing Factor, and l -Distinguishing Factor of each record score are

approximated with the source table of a subset of records. This is because it

is difficult to obtain a complete database with records related to a population

for determining the distinguishability of a record. Therefore, we must assume
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that record scores calculated for each of the tables compared have been cal-

culated with the best possible “lookup table”. As well, we have to assume

that the sensitive attribute value weights of similar values reflect a similar

importance if the tables being compared had their sensitive attribute value

weights derived independently. With these assumptions, we can also compare

across misuseability scores as we are also “rescaling” the misuseability scores

to the domain of [0, 1]. For example, if we refer back to Table 5.3b we can say

that the tkl -Scoremax considers the records to be more severe than M -Score

(x → ∞) as: 1.54949
2

> 0.41760
1

.

5.5 Summary

In this chapter, the maximum severity when a complete source table is re-

lease is considered by using tkl -Score, L-Severity, and M -Score (x = 1). The

maximum severity when any one maximum record score in a source table is

released is considered by using tkl -Scoremax and M -Score. Lastly, the severity

relative to a theoretical maximum is also considered and can be used as an in-

dicator when the scores are calculated with tkl -Score, L-Severity, and M -Score

(x = 1). It can also be used with tkl -Scoremax orM -Score (x → ∞) to compare

misuseability scores from different tables under the assumptions that the best

possible “lookup tables” were used to find the distinguishability of records,

and the sensitive attribute value weights of similar values from different tables

reflect a similar importance.

Two cases are presented to demonstrate how t-Distinguishing Factor

and l -Distinguishing Factor can better distinguish records than

k -Distinguishing Factor and make record scores more granular. Because

of these new distinguishing factors, tkl -Score and tkl -Scoremax are better at

characterizing the severity of records compared to L-Severity and M -Score.

It is demonstrated that when more records are added to a published table,

the misuseability score becomes greater or equal to the score of the previous

published table.

Therefore, tkl -Score is a promising misuseability score that can be used in-
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place of L-Severity or M -Score (x = 1) to determine the severity of a releasing

a published table based on the amount of records in it. tkl -Scoremax is a

promising misuseability score that can be used in-place of M -Score (x → ∞)

to decide the severity of releasing a published table by assuming that releasing

any one maximum record score is the maximum severity.
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Chapter 6

Conclusion

This thesis explores the privacy/sensitivity aware paradigm for data access

and sharing to motivate the need for misuseability scoring. Misuseability scor-

ing enables comparisons between different datasets concerning the severity

of a release by quantifying the sensitivity of data. tkl -Score is presented as

an improvement to existing misuseability scoring by accounting for attribute

disclosure attacks in addition to identity disclosure attacks. Furthermore,

tkl -Score introduces a new systematic procedure to elicit weights for sensitive

attribute values using the tkl -Data Model. This procedure uses the underlying

concepts and relationships of sensitive attributes in a dataset to decide on the

appropriate weights.

The contributions of this thesis can be summarized follows:

A new misuseability score tkl-Score is designed (Chapter 4) to better

characterize the severity of records, in a more fine-grained manner, by ac-

counting for attribute and identity disclosure using l -Distinguishing Factor

(Section 4.3.1) and t-Distinguishing Factor (Section 4.3.2). A derivative

tkl-Scoremax is designed to account for the worst case severity of releasing

any one maximum record score from a set of published records (Section 4.3.4).

AData Sensitivity Ontology (DSO) is created to manage the metadata

of sensitive attributes of a source table (Section 4.1.2).

A new systematic procedure to elicit sensitive attribute value

weights is demonstrated using the tkl -Data Model (Section 4.2). As well,

a propagation mechanism is introduced to reduce the amount of human
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intervention needed to elicit weights (Section 4.2.3).

Future work includes investigating applications of tkl -Score and tkl -Scoremax

such as being incorporated into access control frameworks for data privacy

compliance when delegating access. Another application is using tkl -Score and

tkl -Scoremax to quantify the sensitivity of records leaked in a data breach and

indicate the extent of a breach. Furthermore, tkl -Score and tkl -Scoremax could

be integrated with data loss prevention systems to monitor for any anomalies

in user behaviour when accessing database data by calculating a score each

time data is accessed by a user and identifying and extreme scores. tkl -Score

and tkl -Scoremax could also be used as part of a risk assessment process to

determine, based on a score, which sensitive records could cause issues when

released.

As well, other aspects to explore include improving the sensitive attribute

value weight elicitation process by extending the tkl -Data Model to include

more metadata such as data handling and governance policies to provide

additional context for decisions during weight elicitation. Moreover, the ef-

fectiveness of automated ontology alignment techniques should be investi-

gated to help align preexisting ontologies for the domain taxonomy of the

tkl -Data Model.
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Appendix A

Background Material

A.1 Analytic Hierarchy Process

The analytic hierarchy process (AHP) performs pairwise comparisons on groups

of criteria in a hierarchy to determine the relative weights of criteria in the

groups. This section follows the process outlined by Saaty [32], and begins by

illustrating what groups of criteria look like in Figure A.1.

Criteria    

Criteria Criteria

Figure A.1: Criterion of AHP tree.

Using the criteria of a group, reciprocal matrices can be formed by do-

ing pairwise comparisons as explained in Section A.1.1. From the pairwise

comparisons a priority vector can be computed as seen in Section A.1.2, and

verified for consistency as described in Section A.1.3.

A.1.1 Pairwise Comparisons

To perform pairwise comparisons, an evaluator compares each of the criteria

of a criteria grouping pairwise. For example consider a criteria grouping with
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3 criteria: X, Y, and Z. Then a reciprocal matrix of size 3× 3 as illustrated in

Table A.1 can be made to facilitate the pairwise comparisons.

Table A.1: Reciprocal matrix of the criteria grouping: X, Y, and Z.

X Y Z
X 1 2 6
Y — 1 3
Z — — 1

Table A.1 is a reciprocal matrix because, the entries of the lower triangular

matrix of the table are the inverse of the upper triangular matrix. Thus, if

entry TX,Y = 2, then entry TY,X = 1
2
. Because of this property, only an upper

or lower triangular matrix needs to be compared in order to infer the other

triangular matrix.

Each comparison is assigned a value in based on the Saaty scale described

in Table A.2. For example, the comparison TY,Z = 3 means that “Y is of

slightly more important compared to Z”. The reciprocal comparison TZ,Y = 1
3

means that “Z is slightly less important than Y ”.

Table A.2: The Saaty rating scale taken from [34] and used to compare two
elements relative to each other in terms of their importance. It is in the range
of 1–9. Note that the reciprocal can also be used to compare elements in the
other direction.

Rating Definition
1 Equal importance
2 Equal to weak importance of one over another
3 Weak importance
4 Weak to essential importance
5 Essential or strong importance
6 Essential to very strong importance
7 Very strong importance
8 Very strong to extreme importance
9 Extreme importance

A.1.2 Calculating Priority Vector

The priority vector is a vector of priorities for each criteria of a criteria group-

ing. It is calculated by using the eigenvector w of the largest unique real
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eigenvalue λmax of a reciprocal matrix A. The relationship between the dom-

inant eigenvalue, reciprocal matrix, and the corresponding eigenvector w is

described as follows:

Aw = λmaxw (A.1)

w and λmax can be computed using software such as the NumPy1 package in

Python.

Using w, the priority vector can be calculated by converting w into a

stochastic vector w̄. The stochastic vector is a vector consisting of non-

negative entries that sum to one and can be defined as follows:

Priority Vector = w̄ =
1∑︁n

i=1wi

·w (A.2)

For example, the eigenvector of Table A.1 is computed to be: {X, Y, Z} =

{0.88465174, 0.44232587, 0.44232587} which can then be converted to the pri-

ority vector {0.6, 0.3, 0.1} using Equation A.2. This priority vector’s sum of

entries 0.6 + 0.3 + 0.1 is 1 which satisfies the stochastic vector property.

A.1.3 Calculating Consistency Ratio

Once comparisons have been completed for a criteria grouping, the consistency

of judgements in the reciprocal matrix must be evaluated.

The consistency index (CI) can then be calculated from λmax and size n

of the reciprocal matrix as follows:

CI =
λmax − n

n− 1
(A.3)

Using CI, it can be used to finally compute the consistency ratio (CR) as

follows:

CR =
CI

RI
(A.4)

RI is the random index, computed by averaging the consistency index of recip-

rocal matrices filled with random values on the Saaty scale. Table A.3 provides

some precomputed random indices of different sized reciprocal matrices.

1https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
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Table A.3: Random indices to calculate consistency ratio from [35].

Matrix Size 1 2 3 4 5 6 7 8 9 10
Random Index 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

For each reciprocal matrix, a reasonable consistency ratio must also be

maintained. This ratio is suggested to be less than or equal 10% (0.1) up to a

maximum of 15% (0.15) for a single individual who makes comparisons [33].

In a group setting where multiple individuals are making comparisons that

will be averaged, the suitable ratio maximum is increased to 20% (0.20) [19].

For instance, the consistency index of Table A.1 is calculated to be 0 using

Equation A.3 where λmax = 3 and n = 3. Then it follows that the consistency

ratio will be 0 using Equation A.3 and the values CI = 0 and RI = 0.52. This

means that the comparisons in Table A.1 are consistent as it is less than the

suggested threshold 0.1.

A.2 DPV Concepts Related to Table 3.1

The data privacy vocabulary (DPV) is a collection of terms with hierarchical

relationships meant to manage and classify data to be legally compliant with

laws and regulations. DPV is used in this thesis to extract a domain model

that can represent the sensitive attributes of Table 3.1. The definitions of

these concepts can be found in Table A.4.

Table A.4: Concepts of DPV2 that are relevant to the sensitive attributes
Disease, Medication, Age, Initial Diagnosis of Table 3.1.

Concept Definition

PersonalDataCategory
A category of personal data (as defined by GDPR article 4.1) from the
personal data categories taxonomy, i.e. for instance denoting the category of an
object/field or data item that is used for processing

SpecialCategoryPersonalData Special category or personal data as per GDPR Art. 9 (1)

External
Personal Data that can be observed by another person i.e. has external characteristics
that make it visible

MedicalHealth Information that describes an individual’s health, medical conditions or health care
PhysicalCharacteristic Information that describes an individual’s physical characteristics
Health Information about an individual’s health
HealthRecord Information about an individual’s health record
Prescription Information about prescriptions made for an individual
Age Information about an individual’s age

2https://www.w3.org/ns/dpv
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A.3 Reciprocal Matrices of Figure 4.7

The reciprocal matrices are comparisons made for the criteria groupings out-

lined in Figure 4.7. It should be noted that criteria groupings of size 1 are

omitted because the matrix will only have a single cell containing the value 1.

Criteria
More Important Rating

A B
PhysicalCharacteristic MedicalHealth B 4

(a) Ratings given by a domain expert.

PhysicalCharacteristic MedicalHealth
PhysicalCharacteristic 1 1/4
MedicalHealth 4 1

(b) Reciprocal matrix with a consistency
ratio of 0.

Table A.5: Ratings (a) and reciprocal matrix (b) for the criteria: “Physi-
calCharacteristic”, and “MedicalHealth”.
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